
June 2008
Helge Langseth, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Intelligent agents in computer games

Karl Syvert Løland

Problem Description
This project will look on the possibility for a computer to play a game using the same percepts and
actions as a human player. Is this possible to do without using too much of the resources available
and stalling the computer game? Is this possible without having to "cheat" and get sensory data
from the game-engine. This is something we are going to test using the Quake II game from ID
Software and especially look into being able to map the environment and identify enemies using
computer vision. We hope to be able to at least navigate around the environment using the learned
map and avoiding obstacles using computer vision. The choice of agent architecture are going to
be an important part of making this work.

Assignment given: 21. January 2008
Supervisor: Helge Langseth, IDI

Intelligent agents in computer games

TDT 4900 Computer Science, masters thesis

Karl Syvert Løland

PREFACE

This report is a result of the project from the course TDT 4900 Computer
science master thesis. The project was performed spring 2008, by a master stu-
dent from the masters degree program in computer science at the Department of
Computer and Information Science (IDI) at the Norwegian University of Science
and Technology (NTNU). The project continues on previous work done by Karl
Syvert Løland and Stein Gunnar Grastveit.

The assignment was to check if a intelligent agent can learn to play a game
using the same inputs and outputs like a human uses and what agent architecture
would be best for this purpose. The programming and designing in this assignment
was done as a pair, but we ended up writing separate reports.

I would like to thank my supervisor Associate Professor Helge Langseth for
guidance and help trough the project, Stein Gunnar Grastveit for putting up with
working with me on this assignment and John Eggett for being the sport he is and
for letting me interview him regarding the subject this thesis brings up.

Abstract

In this project we examine whether or not a intelligent agent can learn how to
play a computer game using the same inputs and outputs as a human. An agent
architecture is chosen, implemented, and tested on a standard first person shooter
game to see if it can learn how to play that game and find a goal in that game.

We conclude the report by discussing potential improvements to the current
implementation.

Trondheim, June 23, 2008

i

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Introduction . 1
1.3 The scope of this report . 2

2 Agent architectures 3
2.1 Purely reactive agents . 4
2.2 Utility-based agents . 4
2.3 Goal based agents . 4
2.4 What makes an agent rational . 5
2.5 BDI agents . 5
2.6 Hybrid architectures . 5

2.6.1 TouringMachines . 6
2.6.2 InterRRaP . 7

3 The environment 9
3.1 Quake II . 10
3.2 Quake II as an environment . 10
3.3 Agent architecture for use in Quake II 11

4 The InteRRaP agent architecture 12
4.1 The overall structure . 12
4.2 World Interface . 14
4.3 Control Unit . 14

4.3.1 Behavior Based Layer . 15
4.3.2 Local Planning Layer . 16
4.3.3 Cooperative Planning Layer 16

4.4 Knowledge Base . 16
4.4.1 World Model . 16
4.4.2 Mental Model . 16
4.4.3 Social Model . 17

ii

5 Design choices 18
5.1 The InteRRaP library . 18

5.1.1 Learning in the local planning layer 18
5.1.2 The cooperative planing layer 19

5.2 The map . 20
5.2.1 Requirements for the new map 20
5.2.2 The new map . 21

5.3 The game server . 22
5.4 Computer Vision . 24
5.5 Plans . 25

6 Implementation 26
6.1 The InteRRaP library . 26

6.1.1 World interface . 26
6.1.2 Control unit . 29
6.1.3 Knowledge base . 32

6.2 The agent . 32
6.2.1 The QT GUI . 32
6.2.2 The map . 33
6.2.3 Rules . 34

6.3 The server . 35
6.3.1 Sensors . 36
6.3.2 Actuators . 36

6.4 The network library . 36

7 Testing 38
7.1 Test 1: Recognizing enemies using OpenCV 38

7.1.1 Why . 38
7.1.2 The setup . 38
7.1.3 Results . 39
7.1.4 Discussion . 39

7.2 Test 2: Learning in the local planning layer 39
7.2.1 Why . 39
7.2.2 The setup . 39
7.2.3 Results . 40
7.2.4 Discussion . 40

7.3 Test 3: Finding the goal . 40
7.3.1 Why . 41
7.3.2 The setup . 41
7.3.3 Results . 41
7.3.4 Discussion . 41

iii

8 Discussion and future work 44
8.1 Intelligent agents in games today 44
8.2 The InteRRaP architecture . 45
8.3 Using computer vision . 46

9 Conclusion 48

A Explore1.lua 49

iv

List of Figures

2.1 An agent in its environment. 3
2.2 Horisontal Layering . 6
2.3 Vertical Layering. Left: One pass control. Right: Two pass control. 6
2.4 TouringMachines . 7
2.5 InteRRaP . 8

3.1 Screenshot of the Quake II game 11

4.1 Overview of the InteRRaP architecture 13
4.2 Overview of the world interface . 14
4.3 A layer in the InteRRaP architecture. 15

5.1 A situation/plan matrix with example values 20
5.2 Representation of the old map with data in position (2,2) 21
5.3 A map tile and its neighbors . 22
5.4 A overview of the usage of LD PRELOAD 23
5.5 Simple TCP/IP setup . 24
5.6 Before and after a threshold function 24
5.7 The grid used to parse the number 25

6.1 UML class diagram of the WorldInterface class 27
6.2 Overview of execution and parsing of a new plan or action. 28
6.3 Overview of execution of an existing current plan. 29
6.4 Abstract overview of the inner workings of a perception-class 30
6.5 Screenshot of the QT GUI . 33

7.1 The results of Test 1 . 42
7.2 The results of Test 2 . 43
7.3 The results of Test 3 . 43

8.1 Proposed change in the InteRRaP architecture for games. 47

v

Chapter 1

Introduction

1.1 Problem Description

This project will look on the possibility for a computer to play a game using
the same percepts and actions as a human player. Is this possible to do without
using too much of the resources available and stalling the computer game? Is this
possible without having to ”cheat”and get sensory data from the game-engine. This
is something we are going to test using the Quake II game from ID Software and
especially look into being able to map the environment and identify enemies using
computer vision. We hope to be able to at least navigate around the environment
using the learned map and avoiding obstacles using computer vision. The choice
of agent architecture are going to be an important part of making this work.

1.2 Introduction

When people are playing a first person shooter game they use strategy and try
to find the best solution to a situation. Humans not only have an image on a
computer screen, but memories about the past are also used to solve a situation
or avoid a dangerous situation. When a human player explores some part of the
game environment, he will try to map the area into memory and make a plan and
goals for where to go next. When moving around like this and suddenly an enemy
jump around a corner the human will react fast to avoid the danger.

The motivation behind this project is to make an intelligent agent that are able
to play a first person shooter like a human player. Let the computer interact with
the game the same way a human player does, and have the same perceptions.

1

1.3 The scope of this report

In this report I am going to mainly concentrate on the agent architectural part
of this project. I will mention the parts on this project that’s explicitly done by
Stein Gunnar Grastveit at a design level only, and not go in any depth on parts
that I have not participated in. (The computer vision part.)

This report will go in detail on the InteRRaP architecture and why this archi-
tecture may be good to use in computer games and test this. An implementation
of the InteRRaP architecture to try to test this will be made and explained in
detail.

The report will then test the use of the InteRRaP architecture and discuss
what can be changed, if anything, to make the InteRRaP architecture better for
use in computer games.

2

Chapter 2

Agent architectures

This chapter will make you an introduction to what an intelligent agent is and
then continue to explain two simple agent types. Ending with explanation and
introduction to two hybrid architectures between the two agent types.

There are no universally accepted definition of the term agent. Since it would be
hard to continue explaining about agent architectures without having a definition
I will present the agent definition suggested by Michael Wooldridge in [Woo05]:

An agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order
to meet its design objectives.

Figure 2.1: An agent in its environment.

Using that definition Wooldrige proposed figure 2.1 illustrates an abstract view
of an agent in its environment.

3

2.1 Purely reactive agents

Purely reactive agents are agents that choose their actions without any reference
to prior perception information (the past). This type of agent chooses it action all
based on current perceptional information (the present). This type of agent does
not do any other than just respond directly to the environment they exists in. So
in other words they only iterate trough all perception data and react to it if there
is anything to react to. A purely reactive agent can be represented abstractly in
the following function:

Ag : E → Ac

A small example of a purely reactive agent would be an agent that controls the
water-level in a dam. And lets water out trough the watergate by opening it when
the water hits a certain level, and closes the gate when the water hits a certain
level.

2.2 Utility-based agents

A utility based agent are an agent that have several available runs. Each run con-
tains a set of actions to perform a certain goal. A utility is a numeric evaluation on
how good a particular run is given the current perception data from the environ-
ment. A utility based agent contains a function that calculates the utility for a run
as a real number based on the data from the perceptions from the environment.
This utility function, as it can be called, can be represented abstractly as follows:

u : R→ R

The agent performs the run with the highest utility. This ensures that the
agent is trying to maximize its own performance.

2.3 Goal based agents

Goal based agents are agents that make a plan of actions to perform to satisfy
their goal. This selection of actions are often complex and searching and planning
are used. The plans are are made given the goal and percepts. This function
then checks if the goal is satisfied in the percepts already. If so then no plan will
be generated. The planning involved in selecting actions can involve a history of
previous information from the percepts and use pattern in these to recognize what
needs to be performed.

4

2.4 What makes an agent rational

The ability of being rational is the ability to choose its actions based the infor-
mation from the environment and on knowledge about the environment it exists
in. Knowledge about the environment includes information of its past experiences
and how the environment evolves or behaves. Wooldridge and Jennings have in
[WJ94] come up with a list of what kind of abilities a rational agent is expected
to have:

Reactivity. Rational agents are able to perceive their environment, and
respond in a timely fashion to changes that occur in it in order to
satisfy their design objectives.

Proactiveness. Rational agents are able to exhibit goal-directed behav-
ior by taking the initiative in order to satisfy their design objectives.

Social ability. Rational agents are capable of interacting with other
agents (and possibly humans) in order to satisfy their design objectives.

2.5 BDI agents

BDI agents are an example of rational agents. The BDI architecture are inspired by
the Belief-Desire-Intension model of human practical reasoning that was developed
by Michael Bratman in [Bra87]. This model that Bratman developed was a way of
explaining the human practical reasoning. BDI agents are developed with Beliefs,
Desires and Intensions.

Beliefs represent what the agent believe about the environment and itself. New
beliefs are generated from perceptional data and old beliefs. A belief that an agent
has can be wrong, and can be changed in the future.

Desires represent which motivations the agent have. These desires are more
what an agent wants to accomplish then a goal. Using the term goal we add a
restriction, since the set of goals must be consistent [Spa03] . By consistent I mean
that an agent should not have concurrent goals like a goal to go out and another
goal to stay at home.

Intensions represent the desire that the agent has chosen to do and committed
to. The intension are chosen by the agent based on the agents beliefs and desires.

2.6 Hybrid architectures

For an agent to be capable of both reactive and proactive behavior, an introduction
of a hierarchy of interacting subsystem layers is a well used option to solve this. It

5

Figure 2.2: Horisontal Layering

is at least two layers in a hybrid architecture, one to deal with reactive behavior and
one to deal with proactive behavior. Horizontal layering are a layered architecture
where all layers are connected to the perception input and action output. Figure
2.2 shows an abstract overview over horizontal layering. A horizontal architecture
are most often in need of a control function that decides which of the layer that
has ”control” of the agent at the time. This control function can be considered a
bottleneck in the decision making of the agent.

Figure 2.3: Vertical Layering. Left: One pass control. Right: Two pass control.

Vertical layering are a layered architecture where at least one layer deals with
the sensor input and action output. There are two types of vertical layered ar-
chitectures. One is one-pass architecture and the other is two-pass architecture.
One-pass architecture is a vertical layered architecture where the control and in-
formation flows sequentially trough each layer, until the final layer generates an
action output. An abstract overview of one-pass architecture are illustrated in
the left part of figure 2.3. Two-pass architecture is a vertical layered architecture
where the information flows up the layers and control flows down. An abstract
overview of a two-pass architecture are illustrated in the right part of figure 2.3.

2.6.1 TouringMachines

The TouringMachines architecture consists of three layers that continually pro-
duces suggestions of actions for the agent to perform. The TouringMachines ar-
chitecture are a horizontal layered architecture with a control subsystem which is

6

Figure 2.4: TouringMachines

responsible for deciding which of the layers that should have control of the agent
at any given time. The control subsystem is implemented as a set of control rules
which can either suppress sensor information from reaching the control layers, or
censor actions chosen by a control layer. Figure 2.4 gives an abstract overview of
the TouringMachines architecture.

The reactive layer in the architecture provides the architecture with the ability
to respond immediate to changes or events in the environment. This layer maps
the perception input to a desired action, just like a purely reactive agent.

The planning layer in the architecture provides the architecture with a proactive
behavior. The planning layer does not create plans from scratch but rather uses a
library of ”skeleton” plans called schemas. So to achieve a goal the planning layer
searches trough the library of schemas to find one that matches that particular
goal.

The modeling layer in the architecture provides the architecture with represen-
tations of the various entities in the environment. The modeling layer generates
goals which it passes down to the planning layer to solve. These goals are gener-
ated using the representations within the modeling layer so the agent can avoid
conflicts with other agents.

2.6.2 InterRRaP

The InteRRaP architecture is a vertically layered two-pass architecture that con-
tains three layers. The bottom layer is the behavior layer which deals with reactive
behavior. The middle layer is the local planning layer which is responsible for the
proactive behavior and uses planning to achieve the goals. The top layer is the
layer responsible for the agent’s social interactions.

All of these three layers are connected to a knowledge base that represents the
environment in a different lever of abstraction that’s appropriate for the connected
layer.

7

Figure 2.5: InteRRaP

The layers in the InteRRaP architecture interact with each other using bottom-
up activation and top-down execution to achieve the same end. Using bottom-up
activation the layers passes control to the layer above if itself are not capable to
deal with the current situation. Top-down execution is used for a layer to make
use of facilities available by the layer beneath to achieve its goal(s).

So if the bottom reactive layer can deal with the current situation it does so, if
not it passes the control up to the local planning layer. If the local planning layer
can deal with the situation it uses top-down execution to achieve its goal(s), if not
then it passes the control up to the cooperative layer which again uses top-down
execution to deal with the situation if it can so, if it can’t solve the task then an
empty top-down execution occurs.

8

Chapter 3

The environment

The environment is the world where the agent operates in. An environment can
have many properties that can be classified. Russel and Norvig suggest the follow-
ing classifications. [RN03]

Accessible versus inaccessible: An accessible environment is one which
the agent can obtain complete, accurate, up-to-date information about
the environment’s state. Most real-world environments (including, for
example, the everyday physical world and the Internet) are not acces-
sible in this sense.

Deterministic versus non-deterministic: A deterministic environment
is one in which any action has a single guaranteed effect - there is no
uncertainty about the state that will result from performing an action.

Static versus dynamic: A static environment is one that can be as-
sumed to remain unchanged except by the performance of actions by
the agent. In contrast, a dynamic environment is one that has other
processes operating on it, and which hence changes in ways beyond the
agents control. The physical world is a highly dynamic environment,
as is the Internet.

Discrete versus continuous: An environment is discrete if there are
fixed, finite number of actions and percepts in it.

The more accessible an environment is, the simpler it is to build agents that
operate effectively within it. This is something that is very logical, since for an
agent to be good and make the right decisions it depends on good and accurate
information from the environment. An agent that do get inaccurate information
from the environment will make bad decisions more often.

9

3.1 Quake II

Quake II is a game developed by IDSoftware [IDS97] and released to the public in
1997 . The main person behind this game is John Carmac, one of the worlds best
game developers known for his mathematical skills and ability to create lightweight
games that looks good. [Wik08b] Carmac ”invented” the 3D FPS genera with his
game Wolfenstein 3D. It existed first-person games before Wolfenstein 3D but none
of them utilized a gun and shooting. Quake II the environment that are used by
the agent in this project.

Quake II lets the user to chose between Software or SDL/OpenGL to render
the graphics. To be able to get the screenshot from the display-card the game must
use SDL/OpenGL rendering. This is because if the game was software rendered
there would be no framebuffer and depthbuffer on the graphics-card to get the
screenshot and the depth image from. A typical screenshot of the game is shown
in figure 3.1.

Quake II was released under a GPL license in 2001. This made the source-code
open and made it possible for the public to look at in and change it and build
modifications of the game or completely new games based in the engine. The
possibility for changing the source-code of the game was the main reason for us to
use this game as an environment. Its source-code is written completely in C, and
are fairly easily readable.

3.2 Quake II as an environment

Based on the classifications suggested by Russel and Norvig [RN03] we can say that
Quake II is an inaccessible, non-deterministic, dynamic and continuos. Quake II
is an inaccessible environment since we cannot obtain all information about the
state of the environment and there is no guarantee that the information we obtain
from the environment is complete or accurate. In Quake II there are no guarantee
that our actions have the preferred effect that we want, this makes it a non-
deterministic environment as well. In Quake II our agent will also not be alone,
so there is other agents (Non Playing Characters or bots as they are called in the
game) that also can change the environment. This makes Quake II a dynamic
environment. The amount of actions and percepts in Quake II are not a fixed one.
These classifications of the environment is something we have to have in the back
of our heads when we are choosing an architecture to use within it.

10

Figure 3.1: Screenshot of the Quake II game

3.3 Agent architecture for use in Quake II

A game uses a lot of the available resources on a computer and requires the player
to often react very quickly to get further in the game. Norling discusses in [Nor03]
the possibility to use a BDI agent to model human behavior in games, based on
how humans answer when asked how they think. Using a hybrid architecture with
a reactive layer and a planning layer would satisfy a BDI architecture for planning
and a reactive architecture for quickly reacting.

Both InteRRaP and TouringMachines are a hybrid architecture with proac-
tivity and reactivity. TouringMachines is a horizontal layered architecture and
requires a control subsystem that can be a bottleneck into the agents decision
making, and also require us as developers to make control rules to control the flow
of information in the architecture. InteRRaP on the other hand is a two-pass agent
architecture and does not require a control subsystem since the architecture itself
takes care of the information flow. InteRRaP also have the benefit of having a
knowledge base that makes it able to better represent the environment for the dif-
ferent layers. It is also assumed that since there is no control subsystem needed for
InteRRaP and all layers in InteRRaP does not create an action at the same time
like in TouringMachines, that it do require a little less computational resources
when running. InteRRaP seems to be the architecture that would fit best into a
computer game.

11

Chapter 4

The InteRRaP agent architecture

This chapter contains a brief introduction to the InteRRaP agent architecture as
explained in [FMP94]. There exists several versions of the InteRRaP architecture
and the most recent one is presented in muller-pischel94c [FMP94]. The InteR-
RaP architecture is an extension of the RATMAN architecture [BM91]. It was
developed for interacting robots. An evaluation of InteRRaP is performed in the
loading-dock application described in [MP93].

4.1 The overall structure

InteRRaP is a layered architecture where the signals and data go bottoms up and
the actions go top down. Figure 4.1 shows a good overview of the architecture.
The world interface (section: 4.2) are the lowest layer and is the layer that interacts
with the environment. The world interface sends sensory and perception data to
the world model (section: 4.4.1)and performs actions.

The behavior based layer (section: 4.3.1) is a reactive layer and reacts to known
situations and events. If there are not any known events or situations where the
behavior based layer knows how to solve it, then the signals and data are sent
upwards to the local planning layer (section: 4.3.2).

The local planning layer is a goal based layer. The local planning layer checks
of there are any known situations that it recognize and has a plan ready for. If it
has a plan for the current situation it performs the actions of the plans by sending
the actions down to the behavior based layer that sends in to the world interface
and performs them. If the local planning layers does not recognize then the signals
and data are sent upwards to the cooperative planning layer (section: 4.3.3).

The cooperative planning layer is a layer that creates joint plans, i.e., plans
that resolve or avoid conflicts and allow several agents to cooperate in joint goals.

To provide a better understanding on the general principle about how the

12

behavior based layer, local planning layer and cooperate planning layers works
together I will provide an everyday example of this:

Imagine that you are sitting in your office and you feel like you want
a cup of coffee. The planning layer makes a plan for you to go the
canteen and you head out of your office heading for the canteen. The
plan generated consists of a route down the corridor, down the steps and
into the canteen that are located at the ground floor. You are heading
down the corridor to the steps when a coworker suddenly slams his door
open right in front of your nose. The behavior based layer inside your
brain suddenly recognizes the situation and takes over and you avoid
the opening door by taking a few steps in the opposite direction of the
door. You then continue on the plan to get to the canteen for a coffee.
When you arrive at the canteen the plan generated by the planning
layer is complete. Now you still want that cup of coffee, but you find
out you don’t have any money on you. Neither the behavior layer or
planning layer recognizes the situation so the control is passed upward to
the cooperative layer. The cooperative layer recognizes the situation and
generates a plan which involve communicating to the colleague standing
behind you and ask to borrow a small amount so you will be able to get
yourself that cup of coffee.

Figure 4.1: Overview of the InteRRaP architecture

13

4.2 World Interface

The world interface is the agents connection to the environment. The world in-
terface performs the actions selected by the control unit (section: 4.3) on the
environment. These actions are stored in the action-module within the world in-
terface and activated by a top-down approach from the behavior based layer. The
world interface contains the perceptrons available to the agent and transfers the
perception data from the perceptrons to the world model (section: 4.4.1). The
world interface is the part of the InteRRaP architecture that connects the agent
to the environment and other agents, so it sends and receives messages with other
agents and translate their responses into messages usable within our own agent if
needed. An illustration of the world interface is shown in figure 4.2.

Figure 4.2: Overview of the world interface

4.3 Control Unit

The control unit is controls the flow of information between the behavior based
layer, local planning layer and cooperate planning layer. The control unit encapsu-
lates these three layers. Every layer in the control unit has three functions, belief
revision (BR), situation recognition (SG) and planning and scheduling (PS). An
abstract illustration of a generic layer in the control unit are shown in figure 4.3.

Belief Revision The BR function translates the current perception information
and old beliefs into new beliefs.

14

Figure 4.3: A layer in the InteRRaP architecture.

Situation Recognition and Goal Activation The SG function uses the cur-
rent beliefs and goals to make new goals. When the SG function on a layer is
invoked , it uses the beliefs generated by the BR and recognizes situations for
this corresponding layer if there exists some. For every known situation there is a
desire associated with it, and the desires of the recognized situations are sent to
the PS.

Planning and Scheduling The PS maps the current beliefs, desires and in-
tensions into new intensions. The PS chooses which of the desires, if more than
one desire sent over from the SG, that will perform best given the situations and
pick the plan connected to that desire and send it to the layer beneath it. If no
desires are sent from the SG the PS invokes the BR of the layer above.

4.3.1 Behavior Based Layer

The behavior based layer is a reactive layer. This layer is the first layer in the
control unit, and therefor have a first priority to check for situations and send
actions down to the world interface to do. The behavior based layer mainly takes
care of problems and situations that happen sudden and unexpected and requires
a reactive action. If the behavior based layers recognizes a situation the above
layers are not invoked and saves some computational power.

An example of a situation that the behavior based layer is designed to compre-
hend may be: A box fall down in front of an agent and the agent have to avoid
hitting it.

15

4.3.2 Local Planning Layer

The local planning layer is a goal based layer. The local planning layer recognizes
situations where a plan is needed to achieve the goal. When a situation is recog-
nized there may be several plans that can be generated to achieve the desired goal,
but only one of those plans gets chosen. The plan that gets chosen gets broken
into actions that the behavior based layer can understand and passed down to the
behavior based layer.

An example of a situation that the local planning layer is designed to com-
prehend may be: The agent has ”seen” the goal and needs to find the fastest and
safest possible way to it.

4.3.3 Cooperative Planning Layer

The cooperative planning layer uses information from other team-members or their
location in the world to create plans to satisfy its goal, either by creating a plan to
avoid conflicts with other agents in the environment or create a plan that involves
the abilities of the other agents and cooperates in a joint goal.

4.4 Knowledge Base

The knowledge base contains all the knowledge within the agent. The knowledge
base is designed so each of the players in the control unit have their own layer
of knowledge in the knowledge base. Each layer in the knowledge base has their
distinct trades that will be explained in the following sections.

4.4.1 World Model

The world model represent what the agent observe at time t. It is a representation
of the reading from the perceptions to the agent. This information is overwritten by
new reading from the perceptions and therefor does not store previous knowledge
about what the agent have observed at time t − 1. The world model is used by
the behavior based layer.

4.4.2 Mental Model

The mental model is a representation of the world model where observations at
time t−n are stored. This makes it able to remember past situations as well as the
current ones. The mental model is used by the local planning layer. The mental
model makes the local planning layer able to create good plans based on current
situations and previous situations.

16

4.4.3 Social Model

The social model represents the environment and other agents in it with the abili-
ties of the other agents. This makes the agent able to generate plans that involve
cooperation with other agents to solve a common goal. This is the highest level of
knowledge in the knowledge base.

17

Chapter 5

Design choices

In this chapter there will be discussed the design choices and the challenges we
had during our design process. The possible alternative solutions will be discussed
and a decision will be made on how we want to develop our prototype.

5.1 The InteRRaP library

In the pre-project we did in the autumn semester of 2007 [LG07] we created an
InteRRaP library that could be used to easily and fast create an agent that used the
InteRRaP architecture. This library is to be used now to ease the development
process a little. This library is mainly designed after the design in [LG07] but
there are some changes to the design that are explained in more detail in this
chapter. A major issue with this design of the library is it’s learning capabilities.
In [LG07] there are mentioned several places in the architecture to implement
learning. The places being the Belief Revision (BR), Planning Scheduler (PS)
and the perceptions. We stated then that learning would best be used in the local
planning layer to learn witch plans that are best suited for the situations that arise.
How this can be done will be explained in 5.1.1. The InteRRaP library supports
an easy integration with perceptions so we can fast make a new perception if we
need so. The InteRRaP library has support for rules to be made and changed
during runtime without the need to recompile the library. The rule-files are simple
scripts and are explained more in detail in 5.5.

5.1.1 Learning in the local planning layer

As mentioned earlier there are a couple of places in a layer one can implement
learning. Implementing learning in the BR would mean it would learn to better
translate the perceptional input into situations. A way of implementing learning

18

in the PS would be to make it choose the plans to schedule for the world interface
better. Learning in these places may not be the best solution. If we instead
implement learning in the Situation Recognition and Goal Activation (SG) module
we teach the SG to recognize what plan are best suited for a situation that occur.

To learn the connections between one or several situations and a specific plan,
a matrix that connects the situations and plans with a weight can be used. This
would be a simple solution that would fit right into the SG. An example of what a
matrix like this might look like can be seen in figure 5.1. Every rule available in the
local planning layer will be represented by a row in the matrix, and every situation
known will make up the columns. New situations can be added in runtime as they
occur by adding a new column and initialize its weight for every rule with the
default weight the rule has. (The default-weight a rule has, is a global-variable
named priority in the lua-files.) A new situation will be generated if there is
any combination of perceptual inputs that never has occurred before. A situation
consists of all the perceptions with a particular combination of inputs. So every
situation has a different combination of perceptual input. This means that the
agent is only in one situation at a time. So the plans to be chosen from have the
weights that the plans have for that particular situation, and these plans with their
weights would be sent to the PS for a decision.

The weights can be tuned in positive or negative direction based on the evalua-
tion on how the plan performed when it has been executed. To be able to evaluate
a plan like this, the situation that triggered the plan has to be remembered to-
gether with the knowledge of the plan that was selected for execution. When the
plan is finished executing, we can then evaluate the plan and change its weights to
that situation up if it succeeded or down if it failed. The way a plan is represented
in the InteRRaP library from [LG07], there is no way of evaluation. The represen-
tation of the plan has to be changed in the rules and methods for evaluation have
to be made. How we can chance the rule-files and the representation of the plan
will be explained more in detail in 5.5.

5.1.2 The cooperative planing layer

The cooperative planning layer is the layer in the InteRRaP architecture that
selects a plan that can be executed if there is a need of cooperating between 1 or
more other InteRRaP agents as explained in more detail in section 4.3.3. In our
case this layer need not have any rules made for it . The agent we shall make will
be the only agent in the environment. If we introduced more InteRRaP agents into
the environment the need for planning and learning in the layer may arise. Since
we are not introducing more InteRRaP agents into the environment or think of
doing it we will leave the layer ”empty” and the information-flow will go trough it
as a normal layer. In this ”normal” flow the BR will not find any new beliefs, the

19

Figure 5.1: A situation/plan matrix with example values

SG will not find any desires and the PS will not chose an intension. The layer will
then pass down to the local planning layer that it did not find anything it could
do.

5.2 The map

In the pre-project we did in the autumn semester of 2007 we used at XY coordina-
tion based map [LG07] as shown in figure 5.2. This map expanded quadratically
so the map always have the size NxM . Every tile in this map held information
about the cell as well as a memory of what it had contained previously at time
t − n. The size of this map got very big and used a lot of memory. It ended up
containing a lot of information about tiles we never had visited or would end up
visiting in the near future. This was not a very memory efficient way of creating
a map, and searching after a path in this map would require a test to filter out
all the tiles in the map that did not contain any information. During testing we
discovered a big flaw with this way of making a map as well. Since the unit used
in this map was a step in the environment for the agent, and since we had to wait
for 3 images to come trough to see if we were at a wall. The map mapped the
steps the agent took (but did not really move, since it was stuck at a wall). This
made the map not very accurate since the agent got confused where in the map it
was.

5.2.1 Requirements for the new map

After what we did in the pre-project in the autumn semester of 2007, we now
figured out that we needed a list of requirements before we started making a
map. The minimal requirements we figured out we needed based on the previous

20

Figure 5.2: Representation of the old map with data in position (2,2)

experience as mentioned above was:
After the experience with the pre-project there no special requirements were

set for the map we now wanted to have a short list of requirements for the new map
ready before we began developing it. This small list was made over a discussion
about what both of us meant was needed. The list ended up to be three main
requirements that was the following:

� Fast to search trough for an A to B path.

� Accurate mapping from the environment to internal map representation.

� Low memory usage.

5.2.2 The new map

To make the map take less space it consists of tiles linked together. These tiles
are linked together in a way where a tile contains a link to its neighbors in north,
east, south and west direction. A tile and its linkings are shown in figure 5.3. If
one of its neighbors are not yet discovered the link to it will be empty. This make
the map take less space since we now discard the unexplored tiles in the map. A
tile contains only the information of what it consists of, and does not have any
memory as the previous map mentioned earlier had. A tile has the possibility to
consist of several things like floor, wall, goal, etc.

21

Figure 5.3: A map tile and its neighbors

To create a new tile the map needs the position in the environment it will
represent. This position in the environment is used to calculate the position of the
tile. A tile can represent a NxN part of the environment. When the position in
the map of the tile is calculated the tile finds its neighbors in the map and links
itself to them and makes them link themselves to it. This makes the new tile a part
of the old map. Using the environment position instead of steps like we used in the
pre-project to represent the position of the agent within the map, the accuracy of
the map is as good as it can be.

5.3 The game server

The game server needs to be able to collect data and screenshots from the en-
vironment. The environment is the Quake II game explained in 3.2. To get the
information we need we can ether change the source-code of Quake II or use the
LD PRELOAD instruction to load a library into the game. LD PRELOAD is
an instruction to tell the loader to load additional libraries into a program. This
makes us able to load additional libraries into an already compiled program.

To change the source-code of the game would mean that the solution would not
be very general for other games, and just Quake II. To make it work on other games
we would have to have the source-code available for us to use it as an environment.

The solution of using LD PRELOAD will make us able to make a shared library
that we can use on more then the one game as an environment without much
modification to the shared library itself. Whenever swapbuffer is called from the
game, the swapbuffer method in our shared library is run instead of the method
in the OpenGL library. The override of the swapbuffer method using the shared
library are shown in figure 5.4 ,where the normal flow is drawn with a dotted line,
and the flow using the LD PRELOAD instruction are drawn with a solid line.

22

This will make the shared library only able to be used on OpenGL based games,
but a very similar technique can be used on DirectX [Mic06] based games as well.
This technique in DirectX is called ”DLL injection” [Wik08a].

The swapbuffer method in our shared library will have to call the actual swap-
buffer method in the OpenGL library so that the game can render to screen.In our
swapbuffer method we can access all global variables within the game, and call on
OpenGL methods. The data from the game is then easy accessible since Quake
II is implemented using the programming language C and uses global variables to
store data. So this solution is the one that would fit the project best.

Figure 5.4: A overview of the usage of LD PRELOAD

When we have the image data and position data needed we have to send it
over to the agent. A simple TCP/IP client/server architecture will be ideal here.
This will make the environment able to run on a different machine if ever needed,
as well as run both the agent and environment on the same machine. To set up
this we can use the network library. This network library makes it easy and fast
to set up a network connection. This library is explained in more detail at section
6.4. The environment will become the server and the agent will become the client.
The server (also referred to as ”the game server”) will then continuously send data
from the environment to the agent for it to use. An illustration of this simple
TCP/IP setup is shown in figure 5.5.

23

Figure 5.5: Simple TCP/IP setup

5.4 Computer Vision

To be able to utilize the health information on the image we get sent over from
the game server we have to parse it somehow. An idea could be the use of training
an artificial neuron network to parse the health of the player. This will involve a
lengthy training process [Cal99] together with the time it will take to implement it
and that is not very desirable. The health is displayed in the pictures as numbers
with a black border around them as shown on the left part of figure 5.6. A quick
way to parse them would then be to run them trough a threshold function that
would make all thats not the color black to white, and all that is the color black to
black. This would make a representation of the numbers as shown in the right part
of figure 5.6. The ”cleaned” image of the number was then divided into 9 equal
sections as shown in figure 5.7. The number can then be identified by counting the
number of black pixels in every section. Then for every number we had a vector
of nine integers that would identify it. This solution will not be very resource
demanding as one can figure from the explanation of the method above.

Figure 5.6: Before and after a threshold function

To be able to recognize an enemy advanced computer vision algorithms have
to be applied. Instead of developing all these ourselves OpenCV can be used.
OpenCV has many capabilities and the demonstration program showed us some
very good results. It has AI and machine-learning methods, the possibility of image
sampling and transformations, methods for computing 3D information and high-
level computer vision methods [Hew07]. Using the facial recognition algorithms in

24

Figure 5.7: The grid used to parse the number

OpenCV we can recognize an enemy in front of us facing us.

5.5 Plans

The rules will have to be able to be evaluated. To do this there are two possi-
ble solutions. One solution is to evaluate it using an evaluation method in the
InteRRaP library and the other one is to let the file containing the rule have a
method to evaluate itself. To use an evaluation method in the InteRRaP library
would mean that that the evaluation method need to be general for the current
domain the agent exists in. It is not an easy task to make such a general evaluation
method, and if one are made it would stand against the reason behind making the
InteRRaP library in the first place. Since the reason to make a InteRRaP library
was to make a general library that would work on several domains and not only
one.

The best solution is then to let the rule-file have an evaluation method to be
able to evaluate itself. The rule-file would then have to contain its goals and have
them available to the evaluation method. To create variables in runtime when
using the lua script language is very easy. The evaluation method then has to
query the environment at the time of evaluation to check if the goals have been
accomplished.

So the rule-files will now contain a global initial weight variable, a global goal
variable, a method for creating a plan and a method for evaluate itself.

25

Chapter 6

Implementation

This chapter will explain in more detail how the different parts in this project
are implemented. The code-base at the end extended to approximately 10,000
lines of a mixture between C and C++ code. The LUA code is not counted. It
was developed an InteRRaP library that uses rules written in LUA, an agent that
makes use of the InteRRaP library and has a GUI for debugging purposes, a server
wrapping around the Quake II environment and a network library.

6.1 The InteRRaP library

The InteRRaP library is based on the InteRRaP library used in the pre-project.
As stated in chapter 5 the library needed to be changed to implement learning,
and thus some parts of it had to be made from scratch to support this. I will in
this section give an overview of the implementation of the library, and go in more
detail only where the changes were made.

6.1.1 World interface

The world interface is developed as a public class with public methods to access or
invoke the different parts it contain. The world interface also contains two private
classes, Action and Perception, that represents the action and perception modules
shown in figure 4.2. The world interface class is shown in detail using UML in
figure 6.1.

performing a plan or action

The public methods DoLplPlan(char* plan, int sID), DoBblPlan(char* plan) and
Continue() are the methods used to make the world interface perform actions
from a plan on the environment. The DoLplPlan and DoBblPlan methods are

26

Figure 6.1: UML class diagram of the WorldInterface class

very similar, only differences are that DoLplPlan method only gives the plan to be
run access to the mental model and the DoBblPlan gives the actions access to the
world model. In figure 6.2 an overview of what the methods do are shown. This
figure represents both methods, since the execution in them both are the same.
The methods DoBblPlan and DoLplPlan are from now referred to as the DoPlan
method for easier reading, since they are so similar.

The DoPlan methods iterates trough the lua files in the rules folder for the
current layer, ether LPL or BBL, opens the file and check if its name are the same
as the string-value passed as an argument. If no file that matches are found, the
method vil exit. If a match is found then the name of the rule and the situation
responsible for the rule to be chosen are stored as global variables within the world
interface. These two global variables will from now on be referred to as plan-name
(for the name of the current plan that to be executed) and SID (for the situation
responsible for that plan). The SID is only set if the current layer are LPL, if the
current layer are BBL the SID are set to a default value of -1. The plan is then
parsed and the lua-function named Rule() 6.2.3 are executed and this produces a
list containing of actions to be performed are stored to a global variable called list.
The method Continue() is then called.

The Continue method performs the next action in the plan currently stored in
the plan-name global variable. If this global variable is empty then it just returns
doing nothing. When the next action is performed, the method checks if there are
more actions left in the plan. If there are none, then this means that the plan
are done executing and if it is a plan that origins from the LPL layer, it starts
to evaluate it. The evaluation is done by parsing a lua-file again and executing a
method in the lua file called Post() this method returns -1,0 or 1. If the return
value is 1 the plan was a success, if the return value are 0 the plan returned neutral
and if the return value are -1 the plan failed. The neutral return value means that
the evaluation was no good and is not usable for further use in adjusting weights
later on. (More on that in section 6.2.3.) When the evaluation is done, the plan-

27

Figure 6.2: Overview of execution and parsing of a new plan or action.

name SID and evaluation value are stored in a log called PlanHistory for later use
by the learning process in the LPL explained in section 6.1.2.

Perceptions

The perceptions are added to the world interface trough the method AddPercep-
tion where a pointer to a perception-class is passed as a parameter. This perception
is stored in a list in the world interface and available to insert data to the knowl-
edge base using the GetPerceptions method that returns a list with pointers to the
perceptions. The perception-class contains methods for inserting data to the per-
ception and retrieving it. An abstract overview on how a perception-class works
and its data-flow are illustrated in figure 6.4

28

Figure 6.3: Overview of execution of an existing current plan.

6.1.2 Control unit

The control unit is implemented as a simple class that contains 3 members. The
members are instances of the BBL, LPL and CPL classes. It contains an invoke
methods that starts the information flow within the control unit. This is done by
letting the control unit call the invoke method in the BBL class. The implemen-
tation of this class / container is unchanged from the pre-project[LG07].

The behavior based layer

The behavior based layer wraps around 3 classes. These 3 classes are the bblBR,
bblSG and bblPS that are implementations of these 3 modules, as described in
4.3, specially tailored for the behavior based layer. The implementation of the
behavior based layer is almost unchanged from the version used in the pre-project
except for major changes in the bblSG module and minor changes in the bblPS

29

Figure 6.4: Abstract overview of the inner workings of a perception-class

module.
The bblBR module reads the perceptions and translates it to beliefs it stores

in the world model. This is implemented by getting the list of Perception pointers
from the world interface and traverse trough them en read the data each perceptron
contains.

The bblSG module are now implemented to recognize a situation and select the
action actions corresponding to it by first parsing trough all the lua files, where
each one represent an action to take, and keep a track of the lua-files that wants
to do some action on the environment. If a lua-file wants to do some action on the
environment means that the action can be corresponded to a current situation. The
bblSG puts the names of these actions in a list that it passes on to the bblPS. This
list contains the name of the actions and its weight. The weights are implemented
so one action may have a higher priority then others if there is any need for it.

The bblPS module goes trough the list from the bblSG and chooses the best
reactive action to do given the current situation(s).The best reactive action is
chosen by sum all the weights of the actions in the list, divide every weight of a
rule with this sum. This generates a fraction that represents how big chance the
action has to be chosen. A random variable between 0 and 1, R, are chosen and
a new loop starts. In this new loop the fractions are added to a variable V that
starts with the value 0.0. Every iteration of the loop the fraction-value for one of
the actions are added. If the value of V is greater then the value of R then the
last action that had its fraction added wins and becomes the action to perform.

An example would be that a list containing two actions with both weight 1 are
sent to the bblPS, and the fraction for both actions becomes 1/2. First action in
the list gets represented from 0 to 0.5 and the other action will get represented
from 0.51 to 1. A random float number are then chosen between 0 and 1, and if
this number is <=0,5 the first of the two actions are chosen, if the number is >0.5
the second action is chosen.

30

The local planning layer

The local planning layer wraps around 3 classes, lplBR, lplSG and lplPS that
are implementations of the BR, SG and PS modules as described in 4.3. The
local planning layer have undergone a total rewrite since the pre-project. This
has been done to support learning in this layer. The local planning layer have an
initialization method that are invoked when the InteRRaP library are started for
the first time. This method iterates trough all the lua-files available to the local
planning layer and makes a list over every available plan and its initial weights.
This initialization process also initializes the BR,SG and PS modules within the
layer.

The lplBR is initialized with the list containing the name of the plans and their
weights. This list is then stored as a member of the lplBR class for later use. When
the lplBR are invoked it gets the list over plans that have been executed if any
form the world interface. The weights for those plans are then adjusted for the
situation that was responsible for the plan based on their evaluation. The data in
the world model are then traversed trough and if a new situation are discovered it
adds this as a new column in the matrix and initializes its weights with the plans
to the default weights for the plans. This is then our current situation, and no
need to check which situation the agent are in. If no new situation are discovered
the lblBR find the current situation by checking the data in the world model. The
situation is sent to the lplSG and the matrix containing the weights are stored and
updated in the mental model.

The lplSG is invoked with the current situation from lblBR as a parameter.
The plans and their weights for the situation are sent as a list to the LPL’s together
with the current situation.

The lplPS then sums the weight with a power of the value K together to a

total weight. (Sum =
n∑

i=0

WK
i , where n is the total number of plans sent to the

lplPS.) This is very similar to the summing of weights done in the bblPS, the big
difference are using the weight in power of K we get a bigger number to use when
a plan are to be chosen. The plan is chosen by getting a random float number
from 0.0 to the value of the summed weights, and then start to sum the weights
over again. In the loop summing the weights again there is a test that tests if the
sum have become larger then the random number. If not then sum next weight.
If the sum became bigger, then the plan connected to the weight last summed are
the plan to be executed.

31

The cooperative planning layer

The cooperative planning layer are implemented as an empty layer. If information
are sent upwards to the layer, it just sends empty commands downwards.

6.1.3 Knowledge base

The knowledge base is developed as a class containing the three layers world model,
mental model and social model. The world model is a class containing a primitive
hash-table containing the data it contains. The knowledge base wraps around a
method for inserting data into this table, and another method for extracting data
from the table. The mental model stores the matrix that connects the situations
and the plans with a weight as well as storing all the situations that have occurred.
The social model are implemented as an empty class as a place-filler if it ever needs
to be implemented.

6.2 The agent

The agent is implemented by using the InteRRaP library. The agent connects
the perceptions from the environment and the actions available to perform with
the InteRRaP library. It is developed as a tcp/ip client that connects to the
environment. It tries to connect to a hardcoded IP-address, and the InteRRaP
library are initialized and started when a connection have been established. There
are 2 conditions that needs to be true for the agent to consider a connection
established. The first one is that besides the normal handshake-packages used by
the network-library, a package containing position-data and image-data have to
be received. The second condition is that the environment have sent a package
containing how long a step with on move action, and how big an angle are rotated
with one rotate action. This makes the agent able to better calculate the amount
of moves needed to go a certain distance or rotate to a certain angle. When a
connection have been established and the InteRRaP library have been initialized
and started, the agent waits for new data from the environment and makes this
data available for the perceptions to use and invoke the InteRRaP library once
every second.

6.2.1 The QT GUI

The agent has a GUI for debugging and interacting purposes. This GUI is devel-
oped using the QT [Tro08] library developed by the norwegian company Trolltech.
This GUI contains 3 main frames mainly. A text debug area on the bottom part of
the frame, an image area to display the image-data received from the environment

32

and an area on the upper right side to put buttons for interacting with the GUI.
The image area can switch between showing the color image received, the depth
image received or a visualization the map generated by the agent. This GUI makes
it possible for observing the agent in more detail in runtime.

Figure 6.5: Screenshot of the QT GUI

6.2.2 The map

The map is integrated into the agent as a more or less stand-alone module. To be
able to interact with the map at a high design level the map had to be implemented
into the agent and not the InteRRaP library as it was in the pre-project.

The tiles that the map consists of are stored in an array where the position in
the array is the identity of that particular tile at that position in the array. So a
tile that has the ID 15 are stored at position 15 in the array, this makes it very
efficient retrieving data for a tile we know the ID of since no search trough array
is needed. A tile is represented with the MapRegion class. The map contains
methods for adding a new tile into the map, load a map from a file, save the map
to file and a method for find a route from a to b. When adding a new tile to
the map the neighbors for that new tile have to be found. This is done by going
trough the entire array of tiles and checking if the new tile represents a part of the
environment thats ether north, south, west or east of that old tile. If the new tile
is a neighbor then links are created between those two tiles in the direction they
are neighbors.

33

6.2.3 Rules

The rules are written in the lua scripting language. There are no need for a
recompile when one wants to add another rule to the agent or a change is made in
an existing rule. This is because lua is parsed at runtime.

Rule parsing

The rules are parsed using the lua C api [Ier06]. The lua C api takes care of
executing the lua-script, all we need to do is tell it which file to execute and what
methods and/or global variables that will be available from the C code. With
this api we are able to make a connection between lua and C. There are methods
made available from C to the lua-script depending on which layer of the InteRRaP
architecture that parses the rule. These methods make the lua-script available to
communicate to the compiled program and call methods. When parsing the lua-
script only the method Rule() within the script are executed, all other methods
are ignored and will only be parsed if they are used from the Rule-method. It
is this Rule-method that calls all the methods in C and generates actions for the
agent to perform.

To be able to evaluate a rule after all actions it generated have been executed
by the InteRRaP agent, an evaluate method had to be implemented in every lua-
script that would be executed by the local planning layer. A method called Post()
in the lua-script is executed to evaluate itself. To be able to do this a global
string-variable in the lua-file called ”goals” contain variables that will be globally
available trough out the lua-file. The goals-string contains a set of variables that
will be available for Rule() to store the goals in, and for Post() to check the goals.
This goal-string is not a static declaration of the goals, but rather a declarations
of variables available for that purpose later in Rule() and Post(). This string
is parsed in C before Rule() is called and injected into the lua-parser as global
variables available. The variables that are in the string are separated by a comma
and stored in the mental model until the evaluation are done. So lets say the string
”goals” contain ”gTest1=0,gTest2=10”, then a variable called gTest1 and gTest2
will be available to the lua-script with values 0 and 10. These global variables can
be read and written to, so if you write 60 to gTest1 then gTest1 will have this
value until its changed or the lua-file are done and evaluated. Using these global
variables we can store goal-values or other values we want to use when we evaluate
the rule later. So of I wanted to go to a tile with ID 6 in Rule() and made a plan
to do so, I’d store the ID in a global variable and then in Post() I can evaluate
and see if we are in a tile with ID 6 as we wanted.

34

Structure of a rule

I will here show an overview of the structure of a rule. The rule shown beneath is
written in lua.

----------------- Testrule1.lua --------

rulename = "Testrule" -- name of the plan, used as a identifier

priority = 1.0 -- Initial weight used by the LPL

ruletype = 0 -- 0=plan, 1 = subgoal/reactive, 2 = subsubgoal

goals = "dummy=0" -- initializes a global variable named dummy

-- to be used globally in Post() and Rule()

function Rule() -- The main function that generates a action or plan

-- Available functions from the InteRRaP library:

-- DoAction(string query)

-- Query(string query)

end

function Post() -- Evaluation function

-- Available functions from the InterRRaP library:

-- QueryPast(string query)

-- Query(string query)

return 0 -- returns: -1=failure, 0=neutral, 1=success

end

6.3 The server

The server application starts the Quake II game with LD PRELOAD=injector.so
in front of the command that starts the game. The server then starts up as a
network server accepting connections on port 6800 and opens the shared memory
allocated by the injector. The injector is a small library that overwrites the swap-
buffer function and dumps the image from the frame-buffer and depth-buffer into
an allocated shared memory so the server can access it later. It also obtains the
address of the swapbuffer method in the OpenGL library so it can call that every
time itself gets called. This ensures that the frame from the game still gets shown.

The server then enters into a loop where it does two procedures every iteration.
The first procedure are a check if there have been any network packages received
since last time. And if so parse them. The packages received are in all cases except

35

the initial handshake commands to be sent to the actuators. This will be described
in more detail beneath. The second procedure is a check if the data in the shared
memory segment have been changed since last time, and if so send the data to the
client. A more detailed explanation ow what types of data this is and how this is
sent are written beneath.

6.3.1 Sensors

The sensors and perceptions are implemented in the injector. The sensors imple-
mented are a coordination sensor, a frame- buffer sensor and a depth-buffer sensor.
These sensors are updated with new information every time the Quake II game
calls the swapbuffer method that the injector are overriding. The information from
the sensors are placed in a shared memory segment, so the server can send this to
the client. This information is stored in the memory as a struct. This struct has 5
members. The xyz coordinate, the depth-image and the color-image. The server
then reads this data if it has changed and packs it in to a package to be sent over
the network before sending it.

6.3.2 Actuators

The actuators are the movement-keys available in the Quake II game. The server
receives network packages from the client with the keys to be pressed down. The
keys get pressed down by the client using the X11 api. But before a key can be
pressed, the server have to get the X11 window-id of QuakeII. Since this ID can
change every time the game starts, it has to be retrieved every time we start our
server. When a key to be pressed have been received we have to translate it to the
X11 code for that key. After the key have been translated a XEvent have to be
sent. The event message gets generated with all the values it need to contain to
send a KeyPressedEvent to X11. This event contains the key to be pressed, what
window to press it in and for how long it will be pressed down.

6.4 The network library

The network library supplies us with an easy to use and understand API for
networking between our client and server. This library supports peer-2-peer net-
working and client-server networking, but not both at the same time. You choose
which of them you want to use when you initialize the library trough the API.

Sending and receiving of packages runs in separate threads and received pack-
ages go into a buffer and waits to be read. Thread safety is ensured. There is no
max-limit on how big the packages or data chunks can be. If they are bigger than

36

16KB the library will split them up in 16KB chunks and send them one chunk at
a time. This decreases the strain on the network adapter when big packages are
sent.

All in all this self-made library makes the usage of networking an easy task,
and it is only a matter of 3-4 API calls to set up a connection and begin sending
packages back and forth.

37

Chapter 7

Testing

This chapter contains the tests done using the prototype implementation of the
InteRRaP agent on the Quake II environment.

7.1 Test 1: Recognizing enemies using OpenCV

The test is to test a perception able to recognize enemies in real-time using the
OpenCV library.

7.1.1 Why

The reason behind this test is to see if its feasible for the prototype implementation
to use a perception that identifies enemies and send data to the agent about if there
is an enemy visible or not in front of the agent. A successful result would mean
that the agent could identify enemies in the environment and eventually kill them
before the enemies kill him (the agent).

7.1.2 The setup

The setup for this test is a game server running the Quake II environment and
the prototype implementation as a client connected to it. The prototype uses the
OpenCV library with a pre-learned XML-file of training data to try to identify an
enemy. The training-data is generated using OpenCV and a data-set consisting
of 3000 negative examples (images not containing an enemy) and 7000 positive
examples (images containing an enemy in them). The generation of the training
data took 3 days in total.

38

7.1.3 Results

In figure 7.1 8 of the results from this test are pasted together into one big figure.
These results give a good overview on how the test went. In 3 of the 8 images
shown in figure 7.1 managed OpenCV to identify the enemy. This shows that the
OpenCV library with the training data used a low chance of identifying an enemy
in an image. The circles in the images show where OpenCV found an enemy.
The identification process took approximately between one and two seconds too
perform.

7.1.4 Discussion

This test shows us that, using the training data we made, identifying an enemy
using OpenCV is not very feasible. Only having a little success-rate on identifi-
cation makes the result from the identification process very unreliable. A wrong
identification would result in the agent trying to shoot something that is not there,
and could in worst case scenario make the agent go closer to an enemy thats not
there. (If the plan performed by the prototype includes some actions making it
move closer to the target for a better aim.)

Using between one and two seconds to identify an enemy is acceptable though.
The worst case of two seconds will not lead to unusable data because they are too
old. (”The transduction problem” [Woo05].)

7.2 Test 2: Learning in the local planning layer

This is a test to see if the learning we have implemented works as we want it in
the local planing layer.

7.2.1 Why

The reason behind this test is to see if the agent is capable of learning what plan
to execute for its current situation, based on how well or bad it has done with the
plans in the situation before. What we want to see here is that the agent wants to
explore in the beginning when most of the area around it is unknown to it. And
after it has explored what it can explore it learns that exploring is not that good
of an idea anymore and starts doing other plans.

7.2.2 The setup

The setup for this test is the prototype implementation of the agent in a big room
with no obstacles. We accomplished this room in the game by letting the agent

39

go trough walls so the test would not be disturbed by to small corridors. The
environment is the Quake II game ”encapsulated” by the game server application.
The prototype agent has 3 plans available: Explore1, Dummy1 and Dummy2.
Explore1 is a plan that makes the agent explore an unknown tile next to the tile
it is currently standing, and are successful if that tile gets explored. Dummy1 is
a generic plan that does nothing, but have a 85% chance to return neutral, 5%
chance to return failure and 10% chance to return success. Dummy 2 are an also a
generic rule that does nothing, but this one have a 93% chance to return neutral,
2% chance to return failure and 5% chance to return success.

7.2.3 Results

The results of this test is given in figure 7.2. These results was what we wanted
to see in this test. In the beginning the exploration plan have a lot of success and
gets rewarded a lot for that, something that make the exploration plan more likely
to be run next time as well. After time is approximately 800 the exploration plan
starts to get punished. This punishment is because the exploration plan is called,
but there are no more to explore, so it returns failure every time its executed. After
a little while one of the dummy rules takes over the biggest chance to get selected,
since it has been rewarded so much and now have a big weight. The exploration
converges to a weight where the plan no longer gets chosen.

7.2.4 Discussion

The results of this test showed that the learning in the local planning layer worked
as planned. Since one of the dummy plans have a little more chance of success it
managed to follow the exploration plan very closely when gaining weight. Since
we used a ”big room” without any obstacles in this test we managed to show a
proof of concept. But if we used this in a corridor or a room with a lot of crates,
the agent would get to a point where he had only explored tiles around him much
faster. So to entirely explore a map only one simple exploration rule like the one
used in this test is not enough.

7.3 Test 3: Finding the goal

This test is to see if the agent can find the goal. If the agent find the goal, this
test will also check if the agent uses the knowledge about the whereabouts of the
goal to get to it faster.

40

7.3.1 Why

To be able to solve the game, the agent have to find the goal. So if the agent
cant find the goal it will not be able to win the game. So to be able to show that
InteRRaP works on a computer game environment it has to find this goal.

7.3.2 The setup

The setup for this test is the agent in a normal map in the game with small open
areas, corridors and crates. The environment is as the previous test the Quake
II game ”encapsulated” by the game server application. The agent has 3 plans
available for it to use to find the goal. The plans are: Explore1, Walker and
GoToGoal. Explore1 is the same plan used in test2 and are a plan that makes
the agent explore an unknown tile next to the tile it is currently standing, and are
successful if that tile gets explored. Walker is a plan that goes to an explored tile
that is next to the tile the agent is currently standing on, and are successful if the
agent gets to that tile. GoToGoal is a plan that generates a route to the goal if
the position of the goal is known and are successful if the agent gets to the goal
position.

7.3.3 Results

The results of this test are given in figure 7.3. This graph shows that the agent
found the goal after a little while exploring. The next time the agent tried to find
the goal it used almost one sixth of the time it used the previous run. When the
goal position is known the agent uses very little time and uses mostly the same
time finding the goal after that.

7.3.4 Discussion

This test was a great success. The agent found the goal as hoped and was faster
to find it again after it had learned the position of the goal. After knowing the
position of the goal, the time to find it varies a little every time. This may be
because it is not always the GoToGoal plan gets selected right away and some of
the other plans might have had a chance to execute a time or two before GoToGoal
was executed. This test also shows that the InteRRaP architecture managed to
control a player in the Quake II game and with the use of the perceptions that
were implemented it managed to solve the game by finding the goal.

41

Figure 7.1: The results of Test 1

42

Figure 7.2: The results of Test 2

Figure 7.3: The results of Test 3

43

Chapter 8

Discussion and future work

This chapter will contain a discussion about if intelligent agents, and especially
InteRRaP agents, are usable for computer games. Any changes that can be made
to make intelligent agents more suitable for the game environment will also be
covered.

8.1 Intelligent agents in games today

Using the above question I called up John Eggett a game designer of Team17 in
Newcastle and asked him it. I have explained to him the InteRRaP architecture
and the basics of intelligent agents on a previous occasion. His opinion was that
intelligent agents as they are today might not be very usable in computer games,
mostly because of how games are designed today. Todays games are designed with
very little A.I. in mind, and what may seem like A.I. to the person playing the
game is most often just predefined scripted actions, or scenes as Eggett called
them. Between the rendering of frames there is little time to let any A.I. make
decisions, and that is mainly an ”error” in the game-design making it not very
easy to implement any sort of intelligent agents in the game. Eggett stated that
most games today cheat to make the player believe there is some sort of decision
making going on, while in reality there is none. When asked if he saw a future
where this would change he responded that he didn’t think so with the normal
way of designing a game today.

An example of a game that has succeeded with using agents in computer games
is F.E.A.R created by Monolith Productions. Jeff Orkin is the person behind
the A.I. in this game and used an agent architecture that resembles MIT Media
Lab’s C4 architecture [Ork05] [BID+01]. The agent architecture was successfully
accomplished by distributing the processing of costly preconditions over many
frames and caching results for the planner to inspect on-demand [Ork05]. What

44

Orkin means by preconditions is the parsing of sensory data and getting sensory
data from the environment, since the architecture only calls the planner when
there are new perceptual data available. In Orkin’s agent architecture an agent
has a blackboard, working memory, subsystems and sensors. The subsystems are
targeting, navigation animation and weapon systems. Sensors detect changes in
the world and put the data (percepts) it collects in the working memory. The
sensors places the data it is calculation on in between frames on the blackboard
so the sensor can start calculating the data where it stopped when the frame
was to be rendered. The planner then uses the percepts in the working memory
in its decision making and communicates the instruction to its subsystems using
the blackboard. Instead of letting the planner do costly computations on-demand
sensors were used to reduce the cost over these computation over many frames and
cache the results in working memory instead of only one frame that would have
been the case if the planner did the computations.

8.2 The InteRRaP architecture

As we have seen in this report, the InteRRaP architecture is not optimal for
computer games, although its computational complexity is rather low for a hybrid
architecture. So there is a potential for this architecture to be modified for better
use within a game-engine to control NPCs (Non Playing Characters). However,
if the costly calculations in the architecture can be distributed similar to Orkin’s
architecture [Ork05], the InteRRaP architecture can be very usable for games.
This would mean that a blackboard has to be introduced in the world interface so
the perceptions can be handeled like the sensors in Orkin’s architecture. Letting
the sensors reduce the cost of the expensive calculations in the local planning
layer and distributing it over many frames instead of only calculating it between
2 frames would most likely give as good results as Orkin experienced using his
architecture. An abstract illustration of the proposed changes are given in figure
8.1. The knowledge base will get data from the perceptions,communication unit
and information about the success of a plan (containing several actions) that were
executed using the blackboard in the world interface. The control unit will pass
actions down to the blackboard for the action unit in the world interface to execute
along with plan information so it can know what plan the actions belong to. The
control unit will only be invoked if there are new perceptual information that can
lead to a new plan or action, or if there are no plan currently executing. Since all
heavy calculations are now distributed between frames and the control unit is not
invoked all the time, the architecture will not give big spikes of processor usage
between the frames, but rather have a steady and lower flow of processor usage all
the time so the rendering can go more smoothly.

45

Another possible change is to replace the rules/plans by python scripts instead
of using lua. Lua has shown us many of its weaknesses during this project. It
is easy to integrate in C, but does not have as big standard library available to
use in complicated plan generation. Python is a bit harder to implement, but its
worth using the time to do it to have the big standard library included in python
available to use in plan generation.

Using python the actions available to the library implementation could also be
generalized and placed in scripts instead of hardcoded in the implementation as
it is now. This would greatly increase the generalization of the library and make
it easier for users to create actions available to the agent, since no C knowledge
would then be needed.

Most of these changes would make the architecture differ from the original
InteRRaP architecture, but make it better to use in computer games. The reason
for making these changes is that computer games most often have only a small
”time-slot” available to do A.I. calculations. The concept used by the agents in
F.E.A.R. is a concept that could be used in the library to make it better for games
to do heavy calculations between frames and distribute them over several frames
instead of only between the 2 frames that we use now in this project.

8.3 Using computer vision

Using computer vision we made perceptions for the prototype implementation.
The main reason behind this was not to ”cheat” too much and try to give the same
percepts to the agent what is given to a human. This was something that slowed
down the agents decision making. Using computer vision as a perception was tested
in test 1 (in section 7.1), and this test shows that using OpenCV to recognize an
enemy was not a success. Using OpenCV we didn’t manage to recognize enemies
sufficiently and it took too long to identify an enemy. To make the architecture
perform better on games computer vision has to be discarded and replaced by
”cheating” techniques. These ”cheating” techniques uses information from within
the game engine to give to the agent. No or very little computation is needed to
get this information, as with computer vision would need extreme computation to
get the same data without this ”cheating”. The cost of not cheating is too high
to justify it. Even with the backside of having to generalize the perceptions and
plans/rules to a specific game for the agent, instead of having the ability to use
same perceptions and plans/rules on several games.

46

Figure 8.1: Proposed change in the InteRRaP architecture for games.

47

Chapter 9

Conclusion

To play a computer game with the same percepts and actions as a human player
an intelligent agent have to use computer vision. Computer vision proved in test1
to be hard to accomplish with a good success rate and without using a lot of
computational power. This can however be solved by introducing a blackboard
into the agent architecture and let the perceptions distribute their computations
between frames. But even if its solvable with distributing the processing power
between frames it is not very feasible since another problem can occur even when
distributing the processing. This problem is the ”transduction problem”, and are
the problem were the translation from environment to symbolic takes too long time
and the data is no longer usable when they are done translating.

Using a little cheating technique with getting the in-game position of the agent
we were able to successfully map the environment. The agent learned from his
mistakes like he was supposed to, and learned how to get to the goal when the
goal was discovered in the environment. The test runs showed that the agent
architecture used have a potential for use in computer games, and with some
changes have an even better potential.

48

Appendix A

Explore1.lua

Explore1.lua is the simplest exploring plan available for the agent. This plan checks
to see if there are any unknown tiles around the agent. If there are any unkown
tiles around the agent, then one of these tiles get randomly chosen to be explored
and generates a action-set for doing so.

rulename = "Explore1"

priority = 1.0

ruletype = 0

goals = "gYaw=0,gUkjente=0,gTileID=0,gDirection=0"

function Rule()

AntUnknown = 0

NextPos = nil

east = Query("East")

south = Query("South")

north = Query("North")

west = Query("West")

yaw = Query("Yaw")

myPos = Query("Position")

gTileID = myPos

if(east == "unknown") then

AntUnknown = AntUnknown +1

end

if(south == "unknown") then

AntUnknown = AntUnknown +1

49

end

if(north == "unknown") then

AntUnknown = AntUnknown +1

end

if(west == "unknown") then

AntUnknown = AntUnknown +1

end

if(AntUnknown >= 1) then

math.randomseed(os.time())

randTall = math.random(AntUnknown)

gUkjente = AntUnknown

NumUnknown = 1

if(east == "unknown") then

if(NumUnknown == randTall) then

NextPos = 0

gDirection = 1

randTall = 0

else

NumUnknown = NumUnknown +1

end

end

if(south == "unknown") then

if(NumUnknown == randTall) then

NextPos = -90

gDirection = 2

randTall = 0

else

NumUnknown = NumUnknown +1

end

end

if(north == "unknown") then

if(NumUnknown == randTall) then

NextPos = 90

gDirection = 0

randTall = 0

50

else

NumUnknown = NumUnknown +1

end

end

if(west == "unknown") then

if(NumUnknown == randTall) then

NextPos = 180

gDirection = 3

randTall = 0

else

NumUnknown = NumUnknown +1

end

end

if (AntUnknown > 0) then

DoRoatations(NextPos,yaw)

step = Query("StepLength")

step = tonumber(step)

steps = 100/step

for i=0,steps,1 do

DoAction("moveforward")

end

gYaw = NextPos

end

else

gUkjente = 0

end

end

function Post()

result = -1

ukjente = tonumber(gUkjente)

expectedYaw = tonumber(gYaw)

retning = tonumber(gDirection)

myPos = Query("Position")

51

curYaw = Query("Yaw")

if(ukjente ~= 0) then

if(myPos ~= gTileID) then

liste = GetNeighbourInfo(gTileID)

forventet = tonumber(liste[retning])

if(forventet == 1) then

result = 1

else

result = -1

end

else

result = -1

end

end

return result

end

function DoRoatations(goal, yaw)

goal = tonumber(goal)

yaw = tonumber(yaw)

goal180 = goal+180

divider = Query("YawStep")

divider = tonumber(divider)

if(yaw > 0) then

goal180 = goal180 - yaw

else

goal180 = goal180 + (yaw * -1)

end

if(goal180 > 360) then

goal180 = goal180 - 360

end

if(goal180 < 0) then

52

goal180 = goal180 + 360

end

goal180 = goal180-180

if(goal180 < 0) then

diff = goal180 * -1

rotation = diff/divider

for i=0, rotation, 1 do

DoAction("rotateright");

end

else

rotation = goal180/divider

for i=0, rotation ,1 do

DoAction("rotateleft");

end

end

end

function Length(x0, y0, x1, y1)

if(x0 > x1) then

dx = x0 -x1

else

dx = x1 - x0

end

if(y0 > y1) then

dy = y0 - y1

else

dy = y1 - y0

end

l = math.sqrt((dx * dx) + (dy * dy))

return l

end

53

Bibliography

[BID+01] R. Burke, D. Isla, M. Downie, Y. Ivanov, and B. Blumberg. Creatures-
marts: The art and architecture of a virtual brain, 2001.

[BM91] H.J Börckert and Jörg P. Müllerl. Ratman: Rational agents testbed for
multi agent network. Technical report, 1991.

[Bra87] M. E. Bratman. Intention, Plans, and Practical Reason. Harvard Uni-
versity Press, Cambridge, MA, 1987.

[Cal99] Robert Callan. The essence of Neural Networks. Practice Hall Europe,
1999.

[FMP94] Klaus Fischer, Jörg P. Müller, and Markus Pischel. Unifying control in
a layered agent architecture. Technical Report TM-94-05, 1994.

[Hew07] Robin Hewitt. Seeing with opencv. 2007.

[IDS97] IDSoftware. Quake ii, May 1997.
http://www.idsoftware.com/games/quake/quake2/.

[Ier06] Roberto Ierusalmischy. Programming in Lua. Lua.org, March 2006.

[LG07] Karl Syvert Løland and Stein Gunnar Grastveit. Intelligent agents in
computer games, 2007. Prosjektoppgave.

[Mic06] Microsoft. Directx, 2006. http://msdn.microsoft.com/en-us/directx/default.aspx.

[MP93] Jörg P. Müller and Markus Pischel. The agent architecture inteRRaP:
Concept and application. Technical report, German Research Center for
Artificial Intelligence, 1993. RR 93-26.

[Nor03] Emma Norling. Capturing the quake player: using a bdi agent to model
human behaviour. In AAMAS ’03: Proceedings of the second interna-
tional joint conference on Autonomous agents and multiagent systems,
pages 1080–1081, New York, NY, USA, 2003. ACM.

54

[Ork05] Jeff Orkin. Agent architecture considerations for real-time planning in
games. In R. Michael Young and John E. Laird, editors, AIIDE, pages
105–110. AAAI Press, 2005.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

[Spa03] Luca Spalazzi. M. j. wooldridge, reasoning about rational agents, in-
telligent robots and autonomous agents series, cambridge, ma: The mit
press, 2000, isbn 0-262-23213-8. Minds Mach., 13(3):429–435, 2003.

[Tro08] Trolltech. Qt cross platform application framework, 2008.
http://trolltech.com/products/qt/.

[Wik08a] Wikipedia. Dll injection, 2008. http://en.wikipedia.org/wiki/DLL_injection.

[Wik08b] Wikipedia. John d. carmac, 2008.
http://en.wikipedia.org/wiki/John_D._Carmack.

[WJ94] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: The-
ory and practice, 1994.

[Woo05] Michael Wooldridge. An introduction to MultiAgent Systems. Wiley,
2005.

55

	Title Page
	Problem Description
	Introduction
	Problem Description
	Introduction
	The scope of this report

	Agent architectures
	Purely reactive agents
	Utility-based agents
	Goal based agents
	What makes an agent rational
	BDI agents
	Hybrid architectures
	TouringMachines
	InterRRaP

	The environment
	Quake II
	Quake II as an environment
	Agent architecture for use in Quake II

	The InteRRaP agent architecture
	The overall structure
	World Interface
	Control Unit
	Behavior Based Layer
	Local Planning Layer
	Cooperative Planning Layer

	Knowledge Base
	World Model
	Mental Model
	Social Model

	Design choices
	The InteRRaP library
	Learning in the local planning layer
	The cooperative planing layer

	The map
	Requirements for the new map
	The new map

	The game server
	Computer Vision
	Plans

	Implementation
	The InteRRaP library
	World interface
	Control unit
	Knowledge base

	The agent
	The QT GUI
	The map
	Rules

	The server
	Sensors
	Actuators

	The network library

	Testing
	Test 1: Recognizing enemies using OpenCV
	Why
	The setup
	Results
	Discussion

	Test 2: Learning in the local planning layer
	Why
	The setup
	Results
	Discussion

	Test 3: Finding the goal
	Why
	The setup
	Results
	Discussion

	Discussion and future work
	Intelligent agents in games today
	The InteRRaP architecture
	Using computer vision

	Conclusion
	Explore1.lua

