
June 2008
Maria Letizia Jaccheri, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Joining in Apache Derby: Removing the
Obstacles

Henrik Holum
Svein Erik Reknes Løvland

Problem Description
Apache Derby is an open source project started in 2004. At the time of writing there are 21
committers, 11 members of the Project Management Committee and 4 commercial companies
working actively on the project, with Sun Microsystems and IBM as the major contributors. The
community is very active, with up to several hundred mails on the mailing lists every day.

Joining means becoming an active developer in the Apache Derby project when starting with no
previous knowledge about it.

Challenges will be to get an overview of the code, find where it is possible for a newcomer to
contribute, identify obstacles and find suggestions to remove these.

The students will this semester look at Joining in Apache Derby. They will use Canonical Action
Research as their research method when doing this.

The result will be a guideline on how to remove the obstacles which are identified.

The results can be used by others projects to lower their contribution barrier, specially other
Apache projects.

Assignment given: 21. January 2008
Supervisor: Maria Letizia Jaccheri, IDI

Abstract

Over the last decade, the amount of commercial interest in Open Source has
been growing rapidly. This has led to commercially driven Open Source projects.
Those projects have problems keeping their newcomers and needs ways to ease
the joining process. Therefore we ask these research questions:

� RQ1: Which obstacles are encountered by Newcomers to Apache Derby
when Joining?

� RQ2: What can be done to ease the Joining process?

There has been very little research on what the OSS projects can do in this
area. As a consequence it is hard to �nd good reliable theory to cross-reference
this research. If the research is successful, it can contribute to the literature on
joining in OSS projects. This literature will then contain all obstacles encoun-
tered by newcomers to OSS projects and ways to mitigate these.

In this master's thesis Canonical Action Research was used to study the
Open Source project Apache Derby. Canonical Action Research is a qualitative
research method where the researchers enters the environment they are research-
ing to extract the data needed.

We have three contributions in this thesis. The �rst contribution is a list
of obstacles in the joining process of Apache Derby. The second contribution is
suggestions on how a project can mitigate the contribution barriers we found.
The third contribution is a re�ned version of CAR to use when studying Open
Source Software Development.

The list of obstacles is a contribution speci�c to the Apache Derby project,
and it is very unlikely that other non Apache projects will bene�t from it. Our
suggestions on how a project can mitigate contribution barriers are potentially
generalizable. Di�erent projects have di�erent structures, and some of the con-
tribution barriers might therefore not apply to them all. The re�ned CAR model
is general for all research on OSS projects. This is the result we think can have
the biggest impact on the research community if proven successful.

Preface

This thesis is the result of a semester's work, from January to June 2008. It is
part of the subject TDT4900, Program and Information Systems, Master's thesis.
This subject is the �nal step of our Masters degree at the Norwegian University
of Science and Technology(NTNU), Department of Computer and Information
Science(IDI).

We have used Canonical Action Research to investigate how to ease the Join-
ing process in an Open Source community, namely Apache Derby. This was a
continuation of our previous work where we looked at testing in an Open Source
community. We have had large quantum of literature to study. We were famil-
iar with the concepts of Canonical Action Research after using it last semester,
but we had to spend a lot of time to ensure the correctness of our research this
semester as well. This has led us to be able to use a real research method to
investigate interesting research questions and re�ect on the outcome.

We would like to thank Maria Letizia Jaccheri for her guidance throughout
our work on this report. We would also like to thank IDI for providing us
with a working space and the hardware needed for this project. Henrik would
like to thank his girlfriend for putting up with his early mornings over the last
months of this project. Svein Erik would like to thank Carl-Fredrik Sørensen for
good advice. Last but not least we would like to thanks all our fellow students,
specially those who shared the o�ce space with us at Gribb, that have endured
our endless discussions on the subjects of this thesis.

Trondheim, 13. June 2008

Henrik Holum Svein Erik Reknes Løvland
holum@stud.ntnu.no sveinelo@stud.ntnu.no

i

ii

Contents

1 Introduction 1

1.1 Context . 1
1.2 Canonical Action Research . 2
1.3 Research Questions . 2
1.4 Contributions . 2
1.5 Report Outline . 2

I Prestudy 5

2 Research method 7

2.1 History of Action Research . 7
2.2 Canonical Action Research . 9

2.2.1 Principle of the Researchers-Client Agreement 9
2.2.2 Principle of the Cyclical Process Model 9
2.2.3 Principle of Theory . 11
2.2.4 Principle of Change Through Action 11
2.2.5 Principle of Learning Through Re�ection 11

3 Open Source Software 13

3.1 History of OSS . 13
3.2 Open Source Software Development Process 14
3.3 Licensing . 16
3.4 Recent Development . 17
3.5 About the Apache Foundation . 17

4 Joining 19

4.1 De�nitions . 19
4.2 Personal Attributes to Consider when Joining Open Source 20

4.2.1 Joining-script . 20
4.2.2 Motivation . 21
4.2.3 Contribution Barrier . 23

4.3 Software Artifacts in OSSD . 24

iii

II Participation 27

5 Analysis of the Situation 29

5.1 Research Questions . 29
5.2 Data Collection . 31
5.3 Joining-script . 31
5.4 Motivation . 33
5.5 Contribution Barrier . 35
5.6 Artifacts . 36

6 Iterations 39

6.1 Our Previous Work . 39
6.2 First Iteration . 40

6.2.1 Diagnosis . 40
6.2.2 Action Planning . 41
6.2.3 Intervention . 41
6.2.4 Evaluation . 42
6.2.5 Re�ection . 43

6.3 Second Iteration . 43
6.3.1 Diagnosis . 43
6.3.2 Action Planning . 45
6.3.3 Intervention . 45
6.3.4 Evaluation . 48
6.3.5 Re�ection . 50

6.4 Third Iteration . 51
6.4.1 Diagnosis . 51
6.4.2 Action Planning . 52
6.4.3 Intervention . 52
6.4.4 Evaluation . 54
6.4.5 Re�ection . 54

III Discussion and Conclusions 57

7 Discussion 59

7.1 Results . 59
7.1.1 Joining-script . 60
7.1.2 Motivation . 60
7.1.3 Contribution Barrier . 61
7.1.4 Artifacts . 63

7.2 Research Questions . 65
7.3 Research Method . 66

7.3.1 Principle of the Researchers-Client Agreement 66

iv

7.3.2 Principle of the Cyclical Process Model 66
7.3.3 Principle of Theory . 67
7.3.4 Principle of Change Through Action 67
7.3.5 Principle of Learning Through Re�ection 68

8 Conclusions and Further Work 69

8.1 Conclusions . 69
8.2 Re�ned Research method . 71
8.3 Further work . 72

Bibliography 72

IV Appendices 77

A Abbreviations 79

B JUnit URLs 81

C Researchers-Client Agreement 83

v

vi

List of Tables

2.1 Summary of the Cyclical Process Model. 10

3.1 The Free Software De�nition. 14

4.1 Motivational Factors. 22
4.2 Contribution Barriers [von Krogh et al., 2003]. 23
4.3 Artifacts from [Scacchi, 2007]. 25

6.1 Plan for the First Iteration. 41
6.2 Possible Tasks for the Second Iteration. 44
6.3 Plan for the Second Iteration. 45
6.4 DERBY issues Second Iteration. 46
6.5 Short Diary. 47
6.6 Tasks Worked on in the Second Iteration. 49
6.7 Plan for the Third Iteration. 53

7.1 Obstacles from Our Iterations. 59
7.2 Contribution Barriers. 61

8.1 Final Obstacle List. 69

vii

viii

List of Figures

2.1 Overview of Action Research Process [Iversen et al., 2004]. 8
2.2 The Cyclic Process Model. 10

3.1 OSS Onion Model. 15
3.2 OSS License Features [Beard and Kim, 2007]. 16

6.1 Screenshot from the JIRA issue tracker #1. 53
6.2 Screenshot from the JIRA issue tracker #2. 54

7.1 Derby IRC Activity Chart. 64
7.2 Grouped IRC Users. 65

ix

x

Chapter 1

Introduction

This chapter is an introduction to this thesis. The context is explained, the
research method is presented as well as our research questions and contributions.
Finally the report outline is given.

1.1 Context

This report was written as part of the subject TDT4900, Program and Infor-
mation Systems, Masters Thesis. It is a continuation of our work from last
semester, where we aimed to shed light on testing in an Open Source Software
Development (OSSD) setting. These projects have a lot of similarities and we
have chosen to use our old pre-study as the foundation for the pre-study in this
project. We did however have a much more thorough understanding of Open
Source and Canonical Action Research this semester, giving us the opportunity
to dive much deeper into more specialized literature, enabling us to write a much
more in-depth State-of-the-art. We are two students, with a general interest in
Open Source, working on this as a semesters work. The project was supervised by
professor Maria Letizia Jaccheri who is working at the Department of Computer
and Information Science (IDI), NTNU. She accepted our problem description,
which builds upon our problem description from last semester.

A short description of our previous assignment is: Studying Open Source

Software with Action Research. The reason we chose this project is because
OSS have been rapidly increasing in importance over the last decade. This fact,
combined with the characteristics of Canonical Action Research, made this a
very interesting theme for us as students. We chose to work with Apache Derby,
which is a mature and stable OSS project.

1

2 1. Introduction

1.2 Canonical Action Research

�CAR aims to address organizational problems while at the same time contribut-
ing to scholarly knowledge� [Davison et al., 2004]. Canonical Action Research
(CAR) gave us a unique chance to get involved in a project, improve our own
technical skills and contribute to an Open Source Software (OSS) project while
at the same time do research and extract knowledge. In this thesis we used the
�ve principles outlined in [Davison et al., 2004] as a basis to structure our work.

1.3 Research Questions

Below you can see the research questions we answer in this thesis.

� RQ1: Which obstacles are encountered by Newcomers to Apache Derby
when Joining?

� RQ2: What can be done to ease the Joining process?

Apache Derby is a mature project. The obstacles found while working with
RQ1 will therefore be of interest to other Open Source projects. There exists
commercial interest in getting new developers. By answering RQ2 this thesis
will increase the chance of Newcomers staying with a project and thereby adding
value to it.

1.4 Contributions

As this thesis will show, we have answered the RQs listed above. By doing this
we have increased knowledge concerning :

� Obstacles in the Joining process of Apache Derby.

� How a project can help mitigate its Contribution Barriers.

� The use of CAR as a research method in OSSD projects.

1.5 Report Outline

The structure of this report is as follows:

� Chapter 1: Introduction
Project context, project objectives and report structure.

Action Research: A study of OSS testing in Apache Derby

1.5. Report Outline 3

� Chapter 2: Research Method
Presentation of Canonical Action Research.

� Chapter 3: Open Source Software
An introduction to Open Source.

� Chapter 4: Joining
This is our State-of-the-art chapter. De�nitions needed for the report is
presented.

� Chapter 5:Analysis of the Situation
Analysis of the situation in Apache Derby with regards to our State-of-the-
art chapter. Here we also present our Research Questions.

� Chapter 6: Iterations
Our iterations. Includes a summary of our previous work.

� Chapter 7: Discussion
Here we discuss our research and �ndings. We will also criticise our work.

� Chapter 8: Conclusions and Further Work
Here our conclusions and further work are presented.

Appendices:

� Appendix A: Abbreviations

� Appendix B: JUnit URLs

� Appendix C: Researchers-Client Agreement

Henrik Holum and Svein Erik Reknes Løvland

4 1. Introduction

Action Research: A study of OSS testing in Apache Derby

Part I

Prestudy

5

Chapter 2

Research method

We will in this project use Canonical Action Research(CAR), a derivative of
Action Research(AR) when looking into Joining in the Open Source project
Apache Derby. In this chapter we will present the research method CAR.

2.1 History of Action Research

Lewin (1951) get credited for developing Action Research (AR) at the Research
Centre for Group Dynamics (University of Michigan) in order to study social
psychology within the framework of �eld theory. Independently of the work of
Lewin, a group of researchers at the Tavistock Clinic (later renamed Tavistock
Institute)) developed a similar approach [Trist, 1976]. After World War II there
were thousands of cases of psychological and social disorders caused by battle-
�elds and prisoner-of-war camps. The Tavistock Institute dealt with these kinds
of problems. These psychological syndromes had not been identi�ed in such a
large population of patients before, and throughout the studies you could see that
each case was a bit 'di�erent' �Hence, the idea of social action arose. Scientists
intervened in each experimental case by changing some aspect of the patients'
being or surroundings. Since scientist and therapist were one, the scientists were
participants in their own research�[Baskerville and Wood-Harper, 1996]. The re-
searcher recorded the results in each case, and let others access this data. In this
manner, a body of knowledge was developed about successful therapy for the
illnesses (cf, [Rapoport, 1970]).

Lewin organised this research method into six phases, opposed to the �ve
phases we use in CAR today. The original six phases were (1)analysis, (2)fact-
�nding, (3)conceptualization, (4)planning, (5)implementation of action, and (6)eval-
uation. These steps are very similar to the �ve steps we today use in CAR. From
the original model to todays model, there has been alot of modi�cations. In
�gure 2.1 you can see a few di�erent models presented by, and one created by,
[Iversen et al., 2004]. The principle of the Cyclical Process Model (CPM) is used

7

8 2. Research method

Figure 2.1: Overview of Action Research Process [Iversen et al., 2004].

Action Research: A study of OSS testing in Apache Derby

2.2. Canonical Action Research 9

by all models, and is the cornerstone of AR. The main reason for the di�erent
models is the modi�ability of the AR model. Two projects are never the same,
and each project will have some distinct attributes that requires unique mod-
i�cations to the model. This is one of the strengths of AR, the possibility to
modify the model to suite the project. We follow the principles of CAR in our
research project, and as will be seen, this is yet another modi�cation of AR.

2.2 Canonical Action Research

There are a lot of papers attacking the use of AR in computer science. �Ac-
tion research (AR) is not without its critics, and those who reject some of the
paradigmatic assumptions embodied in AR maintain that AR is little more than
consultancy, that it is impossible to establish causal relationships, that it is dif-
�cult to generalize from AR studies, that there is a risk of researcher bias, and
that generally speaking, it lacks some of the key qualities that are normally
associated with rigorous research.� [McKay and Marshall, 2001]. These views
are supported by [Avison et al., 1999]. An answer to this critique was written by
[Davison et al., 2004]. Here he presents �ve principles to guide action researchers
to ensure rigor and relevance in their research, and help readers of AR papers
decide the quality of the articles. We follow these principles in our research. An
outline of the principles follows.

2.2.1 Principle of the Researchers-Client Agreement

A Researchers-Client Agreement (RCA) is meant to give the client an under-
standing of how the research method works. The client should get an understand-
ing of what might be expected and agree that CAR is an appropriate method for
studying the subject. In the agreement responsibility of the researcher and client
organization, objectives and evaluations measures, and data collection and anal-
ysis methods should be speci�ed explicitly. This will help the client organization
understand what is to take place, de�ne in what way the researcher collect data
and elaborate on how the experience will help improve the current situation.

2.2.2 Principle of the Cyclical Process Model

Cyclical Process Model (CPM) helps the researchers structure the task at hand.
Each stage will produce an output which will be used as an input to the next
stage. The stages in chronological order can be seen in �gure 2.2. In table 2.1
you can see a description of the di�erent stages in CPM. This model is described
in detail by [Susmanand and Evered, 1978].

In the re�ection stage we check if we have enough data to answer the research
questions. If we do, then we can exit the project.

Henrik Holum and Svein Erik Reknes Løvland

10 2. Research method

Figure 2.2: The Cyclic Process Model.

Stages Description

Diagnosis First a problem is addressed, then the situation is compared to exist-
ing theory. The client and the research community should agree that
the problem addressed is of interest.

Action Planning A plan is made according to the diagnosis. It addresses the problems
detected in diagnosis.

Intervention Perform the planned actions and collect data.

Evaluation Analyze the collected data and the actions taken.

Re�ection Re�ect on the results from the evaluation.

Table 2.1: Summary of the Cyclical Process Model.

Action Research: A study of OSS testing in Apache Derby

2.2. Canonical Action Research 11

2.2.3 Principle of Theory

Action Research without theory is in danger to become action learning. You
have to tie your actions to knowledge, often academic papers, to help verify the
validity of your research. Without theory there is no point in doing CAR. Theory
makes sure the investigation is of interest for researchers and the client. It helps
focus the research and improve the intervention stage so that it has a purpose
and does not become pure consultancy. Theory is what separates action research
from consulting.

2.2.4 Principle of Change Through Action

AR want to change the diagnosed problem to the better. If there is no change,
then a new problem might have to be re-diagnosed. Action Research seeks to
improve the current diagnosed situation by action taking in the environment. If
there is no change in the diagnosed problem then this might be because the issue
was not a problem after all, or the researcher might need another cycle in the
CPM.

2.2.5 Principle of Learning Through Re�ection

An action researcher has multiple stakeholders, with the research community
and the client as the most important. The client wants an improvement in the
situation while the research community want new knowledge. This is achieved
by learning through re�ection. It is vital to choose a subject to study which
is of interest for both stakeholders. New knowledge might be to re�ne current
methods. It is important to document the learning when it is found, so that
the research will not be biased by retrospective reporting. This means that
knowledge tends to change over time, and if you do not document it when you
learn it you might not get the same result when you later sit down to recollect
the situation.

Henrik Holum and Svein Erik Reknes Løvland

12 2. Research method

Action Research: A study of OSS testing in Apache Derby

Chapter 3

Open Source Software

This chapter gives a short introduction to the history of Open Source Software
(OSS), an overview of the development process, an introduction to licensing and
an overview of recent development. A speci�c look at the Apache Foundation
can be found at the end of this chapter.

3.1 History of OSS

The people working with computers in the early years were either connected
to the academic community or military. Sharing knowledge and �ndings are
common among the people in academia and they shared their code and ideas. In
the late sixties ARPANET was created, which is the predecessor of the Internet
as we know it today. Previously Open Source hacker cultures had evolved at the
di�erent universities throughout the USA and with the ARPANET this culture
really started to thrive [Raymond, 2001a]. They now had an electronic highway
to exchange information, research and a now famous slang dictionary (Jargon
File1), which helped build a common hacker culture.

Commercial companies started to protect their investments by distributing
their software as binary packages without making the code available to the public.
This annoyed some people, especially hackers and speci�cally Richard Stallman
who initiated the GNU (GNU's Not Unix) project and started the Free Software
Foundation2 in 1985 [Beard and Kim, 2007]. FSF was founded with the ideology
that software should be free for the user. In 1989 Stallman wrote the GNU
General Public License (GPL) which is the most common OSS license in use
today.

The term free in Free Software is ambiguous. It is often misinterpreted as free
of charge. What it really means is stated in The Free Software De�nition3(see

1http://www.catb.org/jargon/
2www.fsf.org
3http://www.gnu.org/philosophy/free-sw.html

13

14 3. Open Source Software

freedom 0 The freedom to run the program, for any purpose.

freedom 1 The freedom to study how the program works, and
adapt it to your needs. Access to the source code is
a precondition for this.

freedom 2 The freedom to redistribute copies so you can help your
neighbor.

freedom 3 The freedom to improve the program, and release your
improvements to the public, so that the whole commu-
nity bene�ts. Access to the source code is a precondition
for this.

Table 3.1: The Free Software De�nition.

Table 3.1). Eric S. Raymond et al. suggested to use the term Open Source
Software to Netscape in 1998. They wanted to; remove the misconception of the
term free; make business open up their source; and understand the advantages
the OSS development model gives. Netscape was the �rst to open their source
from previously closed source with the Mozilla project. Lately the abbreviation
FLOSS (Free/Libre/Open-Source Software) has been suggested.

The kernel Linux is a success story which have astound many people. It was
started by Linus Torvalds, a �nish student, in 1991. Together with the utilities
and libraries from the GNU project it forms the GNU/Linux operating system
which has been widely adopted [Wheeler, 2007]. Linux was seemingly randomly
hacked together by many people, but rapidly evolved into a full featured Unix
like system. Some of the well known successful OSS projects are Apache (httpd),
Mozilla Firefox and OpenO�ce.

3.2 Open Source Software Development Process

Research on Open Source Software Development (OSSD) have increased the
in last years. [Østerlie and Jaccheri, 2007] argues that the literature describes
OSSD as a homogeneous phenomenon and it has an implicit view of OSSD as
di�erent from Closed Source Software (CSS) development. This is a potential
bias in most of the research on OSSD. [Gacek and Arief, 2004] notes that the
only common characteristic of OSSD is that software product is released under
a license compliant with the Open Source De�nition 4. A single generic OSSD
process is therefore di�cult to describe.

A description of OSSD processes can be found in [Raymond, 2001b]. Two
ways of developing software are presented: the cathedral and the bazaar. The

4http://www.opensource.org/

Action Research: A study of OSS testing in Apache Derby

3.2. Open Source Software Development Process 15

development process of Linux is described as bazaar like, and it is this develop-
ment style which is commonly thought of as the OSSD process. In bazaar like
development many people seemingly randomly hacks the code together and there
is little or no control of who works on what problem. The result is that more
than one solution to a problem are made and can be chosen from. The project
owner of Linux, Linus Torvalds, could choose the solution he though was most
appropriate. This is opposed to the cathedral development style where problems
are assigned and the assignee comes up with a solutions and no working alter-
native is made. Frequent releases of beta versions and rapid feedback from a
large source of beta testers and co-developers is regarded as one of the strength
of OSSD. It is also claimed that: �Given enough eyeballs, all bugs are shallow�
(Linus's Law) [Raymond, 2001b]. If a project has a large enough user-base then
all bugs will be reported, and eventually �xed.

Most OSS projects are organized as meritocracies. The commit regime has
gained their status by showing their skills and gaining trusts from their co-
developers. If the commit regime fails, the other developers are free to fork the
project5. [Mockus et al., 2002] found that Open Source developments will have
a core of developers who control the code base, and will create approximately
80% or more of the new functionality. If this core group uses only informal ad
hoc means of coordinating their work, the group will be no larger than 10 to 15
people.

Figure 3.1: OSS Onion Model.

5"In software engineering, a project fork happens when developers take a copy of source
code from one software package and start independent development on it, creating a distinct
piece of software." - Wikipedia.org

Henrik Holum and Svein Erik Reknes Løvland

16 3. Open Source Software

The organization of an OSS community can be viewed as an onion-model (see
Figure 3.1) with the core developers in the center and the users in the outer rim.
[Jensen and Scacchi, 2007] looks into role migration and advancement processes
in OSSD projects and found the onion-model inadequate. Role migration can
be di�erent from project to project, but climbing up a step in the community is
almost always done in a meritocratic fashion.

3.3 Licensing

�The OSI (Open Source Initiative) are the stewards of the Open Source De�nition
(OSD) and the community-recognized body for reviewing and approving licenses
as OSD-conformant�6. To call a software Open Source it must come with a license
which is approved by this group. The GNU GPL license has been criticized
for being viral and �executives from proprietary software �rms have asserted
that OSS (speci�cally that covered by the GNU Public License or �GPL�) is a
cancer that attaches itself to intellectual property� [Scacchi, 2007]. This critique
comes from the fact that any modi�ed version or software using GPL'ed software
must use the GPL license, thus making it less attractive for commercial use
and impossible to use in proprietary software. GPLv3 has taken further steps
to assure the original intend of the GNU GPL license and it addresses recent
challenges in computer software. There has been a lot of debate around GPLv3.
It is worth noting that Linus Torvalds has not adopted GPLv3 for Linux, but is
keeping GPLv2.

Most OSS licenses provide the means to protect the rights of software devel-
oper, and provide the means to protect the end-user as well [Cuéllar, 2005]. In
�gure 3.2 an overview of some of the common OSS licenses is presented.

Figure 3.2: OSS License Features [Beard and Kim, 2007].

6http://opensource.org/about - Open Source Initiative

Action Research: A study of OSS testing in Apache Derby

3.4. Recent Development 17

3.4 Recent Development

[Fitzgerald, 2006] labeled the recent development in the Open Source domain
�OSS 2.0". It is argued that the OSS 2.0 phenomenon is signi�cantly di�erent
from its FOSS antecedent. For example the planning phase in FOSS is thought of
as �an itch worth scratching� [Raymond, 2001b] but in OSS 2.0 this is superseded
by corporate �rms considering how best to gain competitive advantage from OSS
[Fitzgerald, 2006]. Greater commercial interest results in an increased amount
of paid developers and more OSS produced for vertical domains. Companies can
earn money by selling support or dual license their software. Hardware sales can
also increase since the OSS which runs on the hardware has a lower cost than
the alternatives of proprietary software.

In a study on O�-The-Shelf Component Based Development [Li et al., 2005]
found that �Source code of OSS components was read frequently with very few
modi�cations. OSS components were de facto used as COTS components, even if
the source code was available.� This suggest that the usage of OSS in component
based development is not di�erent from the usage of propriety components.

Intellectual property (IP) concerns around OSS is much debated. News stories
on slashdot.org concerning legal issues are frequent. A list of some legal issues
from 2007 can be found at the �Law & Life: Silicon Valley� blogg7.

3.5 About the Apache Foundation

The Apache Software Foundation (ASF) was formed by the Apache Group in
1999. This group had previously made the Apache HTTP Server. The goal of
the organization is to �provide organizational, legal, and �nancial support for
a broad range of Open Source software projects. The Foundation provides an
established framework for intellectual property and �nancial contributions that
simultaneously limits contributors potential legal exposure�8. The foundation
stresses that all who participate and/or donate code signs a contributor license
agreement. This helps the foundations protect contributors legally. If a new
project is suggested or donated, it enters an incubation state. The Apache Derby
project would not have passed the incubation state if not SUN Microsystems had
contributed developers to the project. IBM would have had all the developers
working on the project, and having only one company running the project is
against the Apache Foundations rules. This is to make sure not one company is
in charge of everything in a project. It is also stated that when working in an
Apache community you should take o� your �company hat�.

7http://lawandlifesiliconvalley.blogspot.com/2007/12/2007-top-ten-free-and-open-source-
legal.html

8http://www.apache.org/foundation/

Henrik Holum and Svein Erik Reknes Løvland

18 3. Open Source Software

Action Research: A study of OSS testing in Apache Derby

Chapter 4

Joining

Joining is normally viewed as part of Open Source. We have chosen to have a
separate chapter discussing Joining literature, because it is the focus of the entire
report.

Here we will de�ne what we mean by Joining and present literature and
previous studies related to Joining process. This is our State-of-the-art chapter.

4.1 De�nitions

Before we can describe exactly what we mean by Joining, we have to de�ne a
few of the terms we will use.

� The Cloud

This is what is best describes as the Cloud of people not actively partici-
pating in or contributing to Apache Derby in any way. They can be passive
users of the product, and might even ask questions about the use of the
product on the IRC channel or the derby-user@db.apache.org mailing list,
but do not open JIRA issues or participate in technical discussions.

� Joiner

This is the people who have initiated �rst contact with the development
e�ort. This can be looking at the JIRA issue tracker, reading the developer
mailing list, or even send a few questions on the developer mailing list.

� Lurker

Lurker is usually a subcategory of Joiner. Before sending the �rst mail or
answer a question it is common to have a period were you are on the mailing
lists, lurking, while getting familiar with the project and comfortable with
the technology. This is one step of what [von Krogh et al., 2003] describes
as a Joining-script.

19

20 4. Joining

� Newcomer

When a Joiner have had �rst contact with the mailing list, and start getting
familiar with the community he will be de�ned as a Newcomer. He can then
start participating in easier technical discussions, answer user questions and
even contribute simple code or documentation.

� Contributor

When a Newcomer have been around for a while, and gained some �geek
fame� [Scacchi, 2007] he will become a Contributor. This is were a person
starts becoming a valuable person in a project, contributing to the project
instead of being the one in need of support. This does however not mean
that you have to contribute code. Documentation and technical discussion
will su�ce to join this group.

� Developer

A Developer is a person that have passed though all the other steps, and
are now actively contributing code. We de�ne both Contributor and Devel-
oper because we will use the term Contributor in our de�nition of Joining,
and it is therefor important that the reader knows that they are not the
same thing. A Developer is a code contributor, while a Contributor is
contributing to the project in any other fashion.

� Joining

This project will focus on Joining. We de�ne Joining as the process were a
person goes from being a Joiner to when they are Contributors. We choose
not to include the full process of becoming a Developer, because this is a
very time consuming task, and the time horizon on this project wont let us
cover this well enough to get any satisfactory results. [Herraiz et al., 2006]

4.2 Personal Attributes to Consider when Joining

Open Source

In this section we look at what is needed from the person that wants to join a
project. We will look at the traditional Joining-script, as described by
[von Krogh et al., 2003], and what motivates a person to contribute to an OSS
project, as well as looking into what a Contribution Barrier is.

4.2.1 Joining-script

It has been observed that Newcomers to a project will have to demonstrate some
level of skill and understanding when Joining a project ([von Krogh et al., 2003],
[Lovgren and Racer, 2000]). [von Krogh et al., 2003] introduced the idea of a

Action Research: A study of OSS testing in Apache Derby

4.2. Personal Attributes to Consider when Joining Open Source 21

Joining-script, but this was in�uenced by [Tilly, 1999]. Krogh claims that fol-
lowing certain rules when Joining a project will give you a much bigger chance
of becoming an accepted member of the community. His proposition 1 says:
�Participants behaving according to å Joining-script (level and type of activity)
are more likely to be granted access to the developer community than those par-
ticipants that do not follow the project's Joining-script.�. He does describe a
Joining-script for Freenet, were he outlines how a Joiner should show his skill,
contribute to technical discussions and post concrete examples on the mailing
list to be accepted. Inn [Holum and Løvland, 2007] you can see how we used
the ForNewDevelopers page as a similar Joining-script, and how we got good
feedback when doing so. [Bird et al., 2007] performed a statistical analysis of
mailing lists of Apache web server, Postgres, and Python. He came up with the
following hypotheses:

� Hypothesis 1
Likelihood of attaining developer status will rise with tenure, peak at some
point, and then decline.

� Hypothesis 2
Demonstration of skill level, such as patch submissions and/or acceptances,
will increase the likelihood of becoming a developer.

� Hypothesis 3
Social status will positively in�uence attainment of developer status.

This supports the fact that following a certain behavioral pattern when Joining
a project will help a new developer get accepted into the community. If the new
developer can show a skill level and be social, the chance of being accepted will
increase.

4.2.2 Motivation

There are several reasons for people to join OSS projects. [Scacchi, 2007],
[Hertel et al., 2003] and [Wang et al., 2005] lists a few of these. Here we present
a combined list of their results. We will later use these to see what Apache Derby
can do to stimulate Joiners to keep them motivated to work on the project.

We have chosen to use the same motivational items under more than one
heading. This is because these headings and motivational factors do overlap quite
a bit. If you want a reputation in the Open Source community, we have to assume
that you also want to be part of the Open Source community. This would again
lead us to presume that you do believe in the inherent value of Free Software. The
most important here is to see that there is a lot of di�erent motivational factors

Henrik Holum and Svein Erik Reknes Løvland

22 4. Joining

Motivational factors

Self-Determination

Participate in a new form of cooperation.

Participate in the Open Source scene.

Improve my job opportunities.

Get help in realizing a good idea for a software product.

Peer Recognition

Participate in a new form of cooperation.

Learn and develop new skills.

Share knowledge and skills.

Participate in the Open Source scene.

Improve Open Source products of other developers.

Get a reputation in Open Source community.

Project A�liation

and Identi�cation

Participate in a new form of cooperation.

Participate in the Open Source scene.

Get a reputation in the Open Source community.

Distribute not marketable software products.

Solve problems that could not be solved by proprietary
software.

Think that software should not be a proprietary good.

Self Promotion

Learn and develop new skills.

Share knowledge and skills.

Participate in the Open Source scene.

Improve Open Source products of other developers.

Get a reputation in Open Source community.

Belief in the

Inherent Value of

Free Software

Participate in the Open Source scene.

Get a reputation in Open Source community.

Limit the power of the large software companies.

Solve a problem that could not be solved by proprietary
software.

Think that software should not be a proprietary good.

Table 4.1: Motivational Factors.

Action Research: A study of OSS testing in Apache Derby

4.2. Personal Attributes to Consider when Joining Open Source 23

that comes into account when Joining a project. The personal motivation for
staying can vary a great deal. We also �nd it important to point out that there
is a di�erence between people payed to work with Open Source and hobbyists
[Hars and Ou, 2002]. We consider this as important, since we in our previous
research found that everyone with commit access in the Apache Derby project
are employed to work on the project. The most obvious di�erences we see is in
Hars and Ou's paper is Self-determination (92.6% hobbyists and 62.5% for paid
OSS developers) and Selling products (3.7% for hobbyists and 83.8% for paid
OSS developers).

4.2.3 Contribution Barrier

[von Krogh et al., 2003] also writes about the Contribution Barrier. This is a
barrier that new Newcomers and Joiners have to overcome in order to contribute
to the project. This barrier can be lowered by both the project and the person
wanting to join. In table 4.2 you can see the list of Contribution Barriers iden-
ti�ed by Krogh et. al when they studied Freenet. A common denominator that
is easily identi�ed is the modularity of the project. A project should provide a
codebase or architecture that is clear and with high modularity. A Joiner should
be able to �nd a module that suites his preferred programming language. It
should be easy to integrate new modules and the interfaces between the modules
should be clear.

KCB Description

KCB1 ease of modifying and coding module

KCB2 the extent to which the potential developer can choose
the computer language used to code for the module can
vary

KCB3 ease with which to �plug� the module into the architec-
ture

KCB4 the extent to which a module is intertwined or indepen-
dently working from the main code

Table 4.2: Contribution Barriers [von Krogh et al., 2003].

A project can help lower their Contribution Barrier by improving any and all
of the points mentioned in table 4.2. By doing this they will help ease the entry
into the project for Joiners and Newcomers.

Joiners can themselves help lower the Contribution Barrier when Joining a
project. The obstacles mentioned above will be hard to in�uence, but the back-
ground and specialisation of the Joiner may help lower the Contribution Barrier.

Henrik Holum and Svein Erik Reknes Løvland

24 4. Joining

A Joiner with little previous OSSD experience and programming expertise, you
can lower the Contribution Barrier by admitting this. Start with simple tasks,
like reviewing documentation or running tests. A Joiner with a specialisation
within a �eld of the project would normally be able to quickly contribute, be-
cause his expertise will help him lower his Contribution Barrier. After the �rst
contributions, either on a simple task or in an area of expertise, a Joiner will
gain knowledge about the project. This will help the Joiner contribute in other
and maybe more advanced parts of the project later. Contributions will get the
Joiner �geek fame�, making it easier to later get contributions accepted into the
project.

[Hertel et al., 2003] found that in the Linux kernel project the lack of time to
be one of the biggest obstacles for participating. [Herraiz et al., 2006] found that
volunteers Joining the GNOME project used 30 months to get enough knowledge
about the project to be able to write code. For a Developer hired by a company
to work on the project this time was signi�cantly lower, but the exact time was
not mentioned in the paper. This suggests that it is easier for a Joiner to be
successful in Joining a project if he is hired by a company, and that this is
because a volunteer, or hobbyist, does not have the same amount of time to
spend getting familiarized with the projects. This also has to be considered as a
personal Contribution Barrier that probably is very hard to avoid for a volunteer
Joining the project.

4.3 Software Artifacts in OSSD

�Software informalisms are the information resources and artifacts that partic-
ipants use to describe, proscribe, or prescribe what's happening in a FOSSD
project.�[Scacchi, 2007]. In table 4.3 the software informalisms, or artifacts, are
listed. They are used in OSSD to coordinate the work, transfer knowledge and
more. Some of these artifacts can be used to help Joiners and Newcomers. We
will use this to see if Apache Derby can improve their artifacts to help Joiners
get familiarized with the project, and reduce the time it takes for volunteers to
contribute.

Action Research: A study of OSS testing in Apache Derby

4.3. Software Artifacts in OSSD 25

Di�erent artifacts used in OSSD

Email lists News postings Discussion forum

IRC FAQs How-to guides

Scenarios of usage as
linked Web pages

Traditional system
documentation

Project property
licenses

Wiki Open software
architecture diagrams

Intra-application func-
tionality realized via
scripting languages like
Perl and PhP

Incorporate plug-in
externally developer
software modules

Integrate software
components, modules,
or scripts from other
OSSD e�orts.

Project related
Web sites or portals

Software bug reports Issue tracking
data base like Bugzilla

Project speci�c
Web sites

OSSD multi-project
Web sites
(e.g., SourceForge.net,
Savanah.org,
Freshmeat.org,
Tigris.org,
Apache.org,
Mozilla.org)

Embedded project
source code Webs (di-
rectories)

Project repositories
(CVS / SVN)

Table 4.3: Artifacts from [Scacchi, 2007].

Henrik Holum and Svein Erik Reknes Løvland

26 4. Joining

Action Research: A study of OSS testing in Apache Derby

Part II

Participation

27

Chapter 5

Analysis of the Situation

In this chapter we formulate and describe our research questions and explain how
they relate to both the research community and Apache Derby. We continue
by mapping theory from the literature studied in chapter 4 to the practices in
Apache Derby. We look into Joining-script, motivational factors, artifacts and
possible Contribution Barriers.

5.1 Research Questions

At the very start of this semester we had meetings with one of the commercial
companies working on Apache Derby were presented our previous report. They
presented suggestions on what they wanted us to look at this semester. We
wrote a RCA that can be seen in appendix C. This did not get signed, and as
a consequence we got no more feedback from our client throughout the project.
However, they helped us de�ne a goal and gave us an area to focus on, which both
us and them though of as interesting. We knew that at least one part of the Open
Source project wanted us to research this, and even though we didn't manage to
get a RCA signed, at least we knew they would agree on our research focus. One
of the e-mails we got from the commercial company, and it's translation, can be
found below.

**

Ola Nordmann - Kommersielt selskap wrote:

Jeg inviterer gjerne til et møte. Vi har snakket om at vi gjerne

ønsker at eksterne krefter undersøker litt om hvor lett Derby /

Java DB er å ta i bruk og hvor lett det er å bidra med kode,

bygge/teste systemet etc. Er det ting som kan skriver eller

gjøres for å senke terskelen og dermed utvide community? Kanskje

29

30 5. Analysis of the Situation

det kan formuleres noen oppgaver i dette landskapet?

-Ola

This translates into:

Jhon Doe - Commercial company

I'll be glad to invite to a meeting. We have talked about how we

would like external people to research how easy DERBY / Java DB

is to start to use and how easy it is to contribute code,

build/test the system etc. Are there anything that can be written

or done to lower the threshold and thereby expand the community?

Can a thesis be formulated with this in mind?

-Jhon

**

We formed our research questions (RQ) based on this. The questions are
meant to contribute both to Apache Derby and the research community. The
research questions can be found below.

� RQ1: Which obstacles are encountered by Newcomers to Apache

Derby when Joining? When Joining an OSS project there are di�erent
obstacles that can be encountered. We seek to �nd these. An obstacle can
be be, but are not limited to, the lack of motivational feedback, bad or
lacking tools or documentation. One thing to consider here is that di�er-
ent people will see di�erent obstacles, and this makes it harder to identify
generic obstacles that everyone can agree on. We will try to identify the
obstacles that most Newcomers meet.

By answering this question we contribute both to the research community
and Apache Derby. If we can identify proved document and obstacles
these, Apache Derby can use this information in a constructive manner.
The same information can also be used by other researchers working in
similar research domains to compare results and help generalize these.

� RQ2: What can be done to ease the Joining process? After �nd-
ing obstacles when working on RQ1, we will look at what can be done to
lessen the impact of these obstacles. If we can �nd an obstacle that might
be completely removed, a plan for this will be compiled. Because of the
duration of this project, and the time it will take to see any impact of
changes done, measuring the outcome will not be part of answering this

Action Research: A study of OSS testing in Apache Derby

5.2. Data Collection 31

research question

This research question is interesting to both the research community and
the Apache Derby project. If we can get the changes implemented, and
they work as intended, Apache Derby will bene�t directly from this. If
the changes are successful, the research community will have gained new
knowledge on how to ease the Joining process in OSS projects. If the
changes suggested is not a success, this will also help increase the knowledge
base concerning the issue. The biggest problem here is if none of our
changes are implemented. A result of this will be that this research bene�ts
no one, except the researchers knowledge.

In our previous study we encountered some obstacles. When writing these
research questions we de�ned ourselves as in the midst of the Joining process,
and we wanted to use our own experience as well as the experience of others to
help us in our work. Involvement in the community is a good way to answer our
research questions and is also a basic part of CAR.

5.2 Data Collection

To gather the data needed to answer the research questions we used di�erent
metrics. We got involved in the community and gathered data through both
our own experience and their communication channels. We used IRC and the
mailing lists to look for possible obstacles that arose. Likewise we saw if solutions
to these obstacles were posted. If solutions were not posted, we would try to �nd
them ourselves.

Throughout the project a diary was kept so that the research wouls not be
biased by retrospective reporting. We gathered statistics from the IRC metric
by logging the activity on the #Derby channel. We payed close attention to
the JIRA issue tracker. Most of the technical discussion happens there. This is
also were the issues are created, and were the priority is assigned. To overview
these processes and discussions has been of great value to us. The last metric
we used is our autumn report [Holum and Løvland, 2007]. We found obstacles
when working on it, and these has been transfered to this report.

5.3 Joining-script

In section 4.2.1 we presented the theory of a Joining-script, and how a partic-
ipant can follow this to easier get accepted into a community. An important
factor for a project wanting to attract new Developers is be to publicly post
their Joining-script, and make it easily accessible for Joiners wanting to become

Henrik Holum and Svein Erik Reknes Løvland

32 5. Analysis of the Situation

Newcomers. When we started to work on Apache Derby last fall we did �nd
good documentation describing Joining in Apache Derby. It was easy to �nd in-
formation about the e-mail lists, IRC and the ForNewDevelopers document. The
ForNewDevelopers document explain what they want Joiners to start with be-
fore they begin working on JIRA issues. We did follow this document ourselves,
and got good and fast feedback on the mailing list as you can see in the JIRA
issue tracker1. We do describe some hypotheses about Joining-script in section
4.2.1. When reading the mailing lists of Apache Derby one can see that these
hypothesises hold for the Apache Derby project. We have included a request to
vote Jørgen Løland a committer. Here one can see that it is both his social and
professional skills that they comment on.

From the data presented above, and our own experience, we conclude that
the availability of a Joining-script in Apache Derby is not an obstacle for Joiners
who want to contribute to the project.

**

Subject: [VOTE] Jørgen Løland as a committer

From: Rick Hillegas <Richard.Hillegas@Sun.COM>

Date: Thu, 03 Apr 2008 10:03:18 -0700

To: derby-dev@db.apache.org

Please vote on whether we should make Jørgen Løland a Derby

committer. The polls close at 5:00 pm San Francisco time on

Thursday April 10.

Jørgen has contributed significantly to adding replication

functionality to Derby. Although he readily seeks and

cheerfully incorporates community feedback, his work does

not need supervision by other committers. In addition,

Jørgen fields questions on the user lists and his

interactions with the broader community are respectful,

thoughtful, and thorough.

Regards,

-Rick

**

1https://issues.apache.org/jira/browse/DERBY-3165

Action Research: A study of OSS testing in Apache Derby

https://issues.apache.org/jira/browse/DERBY-3165

5.4. Motivation 33

The phrase Joining-script is not used by the Apache Derby community, but
they got it in the form of linked web pages. The Wiki page ForNewDevelopers2 is
approximately the same as the Joining-script described by [von Krogh et al., 2003].

5.4 Motivation

According to our previous research on Apache Derby, all committers are em-
ployed by commercial companies. [Hars and Ou, 2002] writes, as mentioned in
section 4.2.2, that 83.3 % of payed Developers are motivated by selling products.
However, selling products are not necessarily the motivational factor for Joiners,
and it di�ers with each individual. We will not try to measure what motivates a
single Developer in Apache Derby, but rather see if Apache Derby stimulates the
motivational factors described in table 4.1. Below we look into those �ve factors.

Self-Determination

The Apache Derby project do ful�l the criteria for this factor. If you join as a
free agent you will be able choose what part of the project you want to work on.
We cannot say what the situation is for the payed Developers, but from what
we see on the mailing lists we got the impression that they decide what parts of
the project to focus on. Apache Derby is a mature and well know project and
has corporately supported versions, known as Cloudscape and Java DB. Working
on this well known project will increase the Developers job opportunities. The
Apache Derby community is positive and open for new ideas. An example of this
can be seen below, were we show a part of an e-mail correspondence when a new
idea was suggested to the community.

**

Hi Sun,

This is great to hear! Peter Yuill is also working on adding

spatial datatypes to Derby. It may be possible to coordinate

your efforts and divide the feature between the two of you.

Here's a pointer to a recent email thread in which Peter

describes his work:

http://www.nabble.com/Spatial-Functionality-td17042147.html#a17042147

I encourage you to contact Peter. I believe that the community

will be very eager to support the two of you in this effort.

Thanks!

-Rick

2http://wiki.apache.org/db-derby/ForNewDevelopers

Henrik Holum and Svein Erik Reknes Løvland

34 5. Analysis of the Situation

Sun Ning wrote:

> Hello!

>

> I am willing to develop a spatial extension for Apache Derby

> database. This will enable derby to store and manage

> geospatial data in the way of OpenGIS standard: Simple

> Feature Access. That means some geometry types and build-in

> functions should be added to the engine. After that, we can

> use Derby as a geospatial data source, at the backend of a

> portable mapping software or a web mapping site.

>

> I will do this in the later three months. So I just post this

> to the mailing-list to get some suggestions from you.

**

Peer Recognition

It is a very active group of people on the Apache Derby mailing lists. On aver-
age there are 60 mails a day on the developer, user and commit lists combined 3.
The response time is short, and the community big, with 207 subscribers to the
developer list and 440 subscribers on the user list. This means that there is a
lot of people overlooking the progress of the project, that can notice good work.
So far the feedback people have gotten on the mailing lists have been positive
and constructive. We conclude that the motivational factor of Peer Recognition
is ful�lled.

Project A�liation and Identi�cation

Sun Microsystems and IBM are selling Apache Derby as Java DB and Cloud-
scape, respectively. These are well known products and companies in the IT
business. The Apache foundation is also well known and ensures that the project
is lead following certain rules, which increase the integrity of the project. The
motivational factor of Project a�liation and Identi�cation is not an obstacle.

Self Promotion

The Apache Derby project is a mature project. It has stable releases, a big core
of people working on it and the necessary tools are in place. This means that
the most trivial problems are all solved, or will probably be solved by one of the
experienced Developers as soon as they �nd them. This can make it harder for
Joiners to start contributing to the project, and might make the motivational
factor Self Promotion hard to achieve.

3http://people.apache.org/~coar/mlists.html

Action Research: A study of OSS testing in Apache Derby

http://people.apache.org/~coar/mlists.html

5.5. Contribution Barrier 35

On the other hand, the same things that makes it hard to get started makes
it a very good place to be when you have made it past the �rst thresholds. When
a person have achieved the knowledge needed to actively participate and work
with the community he/she will have the bene�t of working with experienced
programmers from two of the biggest computer companies in the world. And
that can be used in Self Promotion.

Belief in the Inherent Value of Free Software

[Hars and Ou, 2002] says that 83.8% of paied programmers have selling products
as a motivational factor. Seeing that the committers in Apache Derby are payed
to work on the project, this motivational factor is not very important. However,
we do not feel that there is any reason why this fact would keep others that
want to join, because they believe in the inherent value of Free Software, away
from the project. The Derby project is part of the Apache foundation, and they
follow strict rules to ensure that the project is indeed an Open Source project,
following the norms of OSSD and the Apache Open Source licence. By being
an Apache project Apache Derby can attract people who have the Belief in the
inherent value of free software.

5.5 Contribution Barrier

When we looked further into this issue, we used table 4.2 as our starting point.
[von Krogh et al., 2003] have developed this list of Contribution Barriers. This
was when they studied Freenet4, an OSS project developed with the GNU GPL
licence. We have found that some of the Contribution Barriers that they found
here can not be applied in the same way to Apache Derby, because the programs
developed are very di�erent from each other, both in usage and architecture. We
did �nd that Apache Derby is module based, and that working on one module
can be done without it interfering too much with other modules. From this we
can conclude that KCB1 not an obstacle.

KCB2 states that a potential developer should be able to choose what pro-
gramming language to work with. Apache Derby is a database coded in Java,
and changing the language would not be an option. If the Joiner or Newcomer
does not know Java he will have to learn it before he can contribute code to the
project.

Being a database, it is not easy to plug modules into the architecture (KCB3).
In a top layer application project modules can be everything from new function-
ality through new buttons and windows to new GUI elements. In the Apache
Derby project they do follow the SQL standard strictly, and changes to the SQL
syntax must comply with the standard. Even though new functionality is added

4http://freenetproject.org/

Henrik Holum and Svein Erik Reknes Løvland

http://freenetproject.org/

36 5. Analysis of the Situation

with new releases this report will not look further into what obstacles can be
found when integrating new modules in Apache Derby. Introducing new func-
tionality to a mature project is not an endeavour a Newcomer should set forth.

We do not have enough knowledge about the architecture of Apache Derby
to know how close modules are intertwined with the main code (KCB4). Let us
assume a Developer want to change or add an encryption algorithm for encrypting
the database. For what we know this can be done without too much interference
with the rest of the code, but we do not know this for certain.

�The problems facing distributed software development teams are re�ected in
Conway's Law, which states that the structure of a product mirrors the structure
of the organization that creates it.�[Crowston et al., 2007]. Apache Derby once
was a closed source project called Cloudscape, developed by IBM. This was done
by a geographically close software development team and is re�ected in the code.
This is a Contribution Barrier. A possible challenge here will be that some of
the knowledge about the code of Apache Derby are not made explicit, but exist
tacit in the heads of the former Developers. We believe the knowledge is still in
the community, since many of the Developers are from the original development
team of Cloudscape.

The Contribution Barriers found by [von Krogh et al., 2003] can not be ap-
plied directly to Apache Derby. The main focus of the Contribution Barriers
found by Krogh has to do with the modularity of the code. Any reason that
would keep a person from contributing to the project will be classi�ed as a Con-
tribution Barrier. The di�erence between a Contribution Barrier and an obstacle
will be the abstraction level. A spelling error in a document can constitute an
obstacle, but wrong or bad documentation will be the Contribution Barrier. This
is in line with the idea of a Contribution Barrier presented by Krogh, even though
it is changed to suite Apache Derby and our research method.

5.6 Artifacts

As a mature project, following the rules of the Apache Foundation, the artifacts
discussed in table 4.3 are naturally in existence. We will therefore discuss the
artifacts inadequately used, rather than trying to �nd artifacts not used at all.

When starting to work on an Open Source project, the �rst thing one would
do is to sign up to the e-mail lists and join other communication channels they
might have. This can be in the form of forums or IRC. We found their e-mail
communication to be very good and useful from the start. We did not �nd a
discussion forum for the project, but we quickly realised that they didn't need
one, because it would all be discussed on the JIRA issue tracker and on the
mailing lists. The communication would then be posted on the Internet, for
everyone to read. This gives the same functionality as a web-based forum. We

Action Research: A study of OSS testing in Apache Derby

5.6. Artifacts 37

did not �nd the same level of activity on their IRC channel. As Newcomers
to the project we thought IRC would be a good place to start asking simple
questions and getting basic help when building the project. Getting more people
to actively use IRC would help Newcomers.

After a Joiner becomes aware of all the communication channels, the Joiner
would normally start looking for ways to contribute. Here we looked for guides,
Wiki and the likes. We did �nd good guides and user manuals for the di�erent
versions of Apache Derby, but we found much less information for Developers.
It was hard to �nd information on architecture, structure and code conventions.
We did �nd some discussions on code convention on the JIRA issue tracker, but
these issues were not closed. Gathering more info on what documentation a new
Developer needs and usually looks for would be useful. The ForNewDevelopers
page mentioned earlier gives help to get started, but it does not give much
information on how to do the tasks suggested.

Henrik Holum and Svein Erik Reknes Løvland

38 5. Analysis of the Situation

Action Research: A study of OSS testing in Apache Derby

Chapter 6

Iterations

In this chapter we start by presenting the obstacles found in our previous work.
We then continue to present our iterations. The research model used in all
our iterations is the one described in [Davison et al., 2004]. This is re�ected in
the structure of this chapter, were we have the �ve phases; Diagnose, Action
Planning, Intervention, Evaluation and Re�ection as part of each iteration.

6.1 Our Previous Work

In our previous study on Apache Derby [Holum and Løvland, 2007] we started
our Joining process. In that study we got familiar with OSSD processes in Apache
Derby and encountered an outdated document describing the build process of
Apache Derby. We got our suggested updates to BUILDING.txt accepted into
Apache Derby repository1. Below is a list of Known Obstacles we encountered
during our involvement last year.

� KO1: Installing correct programs, correct versions and setting

up the environment variables.

This involves con�guring, downloading and setting up Ant, the di�erent
and correct Java versions and adding the correct $CLASSPATH as de-
scribed in BUILDING.txt and Readme.htm. Ant is a building tool for
Java. #CLASSPATH is an environmental variable. It can be set locally in
a shell or command line. To set the variable globally the MS Windows en-
vironmental variable window or the *NIX startup �le is used. The function
of the #CLASSPATH is to tell the Java Virtual Machine where to look for
user-de�ned classes and packages when running Java programs.

� KO2: Hard for Newcomers to answer user questions

The questions either required an in-depth understanding of Apache Derby

1https://issues.apache.org/jira/browse/DERBY-3165

39

40 6. Iterations

or were answered too quick. As a result of this we never got the chance
to answer user questions. By the time we had found an answer somebody
else had already given one.

� KO3: Lack of activity on IRC

We noticed almost no activity on IRC when we �rst joined the project
last semester. Users asked questions, but answers were few. When we
asked questions about our test logs, we got no answer. We think the low
IRC activity leads to even less activity. If the activity was high, checking
it frequently to see if anything new had happened, would be part of a
Developers routine. When the activity is low, there is no tangible reason
to check the channel. This leads to the long response time on IRC.

� KO4: Availability of software

When building an old version of Apache Derby (10.2) we had problems �nd-
ing the required java versions, since Sun Microsystems no longer supports
Java 1.3.

KO2 is a result of the lack of hobbyist working on Apache Derby. In
[Holum and Løvland, 2007] we found that most of the Developers worked for
either SUN or IBM. We might �nd more questions to answer this semester since
there has been an increase in applications for Google Summer of Code projects.
Counting 12 in total as this is written.

The current version is 10.4. We investigated an issue regarding Apache Derby
10.2 when we discovered this obstacle. Because the development of 10.2 is dis-
continued, we decided not to look further into KO4.

6.2 First Iteration

In our previous study we did one cycle of the CPM. This iteration is a continu-
ation of our previous research done in [Holum and Løvland, 2007].

6.2.1 Diagnosis

As seen in the above list (KO3) we found that activity on IRC is a probable
obstacle. We noticed an increased use of IRC this semester. Many of the new
names are students that have signed up for Google Summer of Code(GSoC).
From what we saw Newcomers came to IRC to get basic help and to have an
informal �rst contact with the project. There were a few of the experienced
Developers there as well, but the reaction time on questions varied from a few
seconds to many days. Getting more reliable activity on IRC would make it
more interesting for Developers and Newcomers to stay in the #Derby channel.
This would again lead to more people wanting to stay in the channel, hopefully

Action Research: A study of OSS testing in Apache Derby

6.2. First Iteration 41

leading to even more activity. There could be a lower threshold for asking a
questions about building and setting up the environment on IRC than on the
mailing list.

6.2.2 Action Planning

We made an action plan for this iteration. The plan can be found in table 6.1.

We plan to send an e-mail to the Derby-dev list letting everyone know that
we will be available on IRC to help Newcomers getting started. With all
the new people signing up for GSoC, we hope top be able to help them with
problems they might have building the code, running the tests, navigating
the documentation and setting up the environment. This will give us a
dialog with the Newcomers and maybe we will identify some obstacles which
Newcomers encounter when starting working on Apache Derby.

Table 6.1: Plan for the First Iteration.

6.2.3 Intervention

To start this intervention we sent the e-mail posted below to the developer mail-
ing list, where we inform everybody that we would be available to help Newcom-
ers with their questions.

**

Hi,

me and Henrik would like to help the new people if they have

any difficulties when starting working on Derby. We'll mainly

be available on IRC 8:00-14:00 GMT and try to answer any

questions we're able to. Perhaps we can find something that

will make starting working on Derby easier.

We don't have an in depth-understanding of the code, but have

been lurking for a while and believe we know where most

information can be found. We've build and run tests on both

linux and windows with a variety of jdk's.

Regards,

Svein Erik (sveinelo)

Henrik Holum and Svein Erik Reknes Løvland

42 6. Iterations

Henrik (Hebla)

PS.

To send messages directly to anyone on IRC you have to register

your nick on freenode.

**

After lurking on IRC for a week, we saw no questions directly to us or con-
cerning building, testing, �nding documentation or setting up the environment.
But we noticed an increased use of IRC. We got a quick positive answer on the
mailing list by a committer named narayanan, and he also joined IRC were he
had a short discussion with kmarsden. There were some Newcomer questions
in the weekend, but unfortunately we were not online to help. The Newcomers
asking questions in the weekend got help from other participants, so there were
not a lack of response and they got the answers they needed.

6.2.4 Evaluation

We saw that a lot of the Joiners, specially the ones that were waiting for answers
on their GSoC applications, were asking general question on IRC. kmarsden was
answering these questions rapidly. She was the person responsible for handling
the GSoC applications, and assigning mentors to the people that got accepted.
Shortly after we sent the e-mail to the developer list Narayanan answered the
e-mail before joining the #Derby IRC channel. This led him to have a short talk
with johnemb to coordinate testing of the 10.4.1.1 release candidate. Here they
encouraged everyone on the channel to have a look and help with the testing
of the release candidate, something we considered for our next diagnose phase.
Narayanan was a regular on IRC for a long time after this, even though he was
not registered in our logs earlier.2

We did not have adequate data to con�rm that our e�ort to increase the IRC
activity was successful or if it has eased Joining. We therefore decide to continue
our activity on IRC and monitor the channel throughout our project.

One of the reasons why we found it hard to evaluate if our actions had an
impact is the increased activity of kmarsden. Her response time on IRC has been
very low since the applicants for GSoC joined the channel. Her knowledge of the
codebase and good overview of the issue tracker left us a bit redundant.

2kmarsden, Narayanan and johnemb are IRC nicknames used on the #Derby IRC channel

Action Research: A study of OSS testing in Apache Derby

6.3. Second Iteration 43

6.2.5 Re�ection

When we diagnosed IRC to be an obstacle there were few Newcomers to the
project. Almost all activity would be from active members of the community that
seems to have a good understanding of the program, issues and codebase. When
looking back we realise that IRC communication among Developers experienced
in the Apache Derby development process might not need the communication
channel provided by IRC. The little activity we saw on IRC would mostly be
users joining the channel to ask questions about use, not development. When
the Joiners from the GSoC project started asking questions on IRC we could see
a much better response time, specially from kmarsden. This leads us to believe
that they are not neglecting the opportunity to recruit and motivate possible
Newcomers on IRC. They do step up the IRC activity when needed, instead of
having a constant focus on it, even when the amount of Joiners and Newcomers
are low.

From this we will deduct that an increased IRC activity might help catch the
interest of few Developers on a normal day, but the decreased response time when
there are visible Joiners and Newcomers in the project makes IRC much less of
an obstacle than �rst anticipated. We did not have enough data to answer either
RQ1 nor RQ2, and therefore we decided to continue our involvement with the
Apache Derby community. We also decided not to change the research questions.

6.3 Second Iteration

In our �rst iteration we got little interaction with the community. In this iteration
we wanted to make our presence more visible to the community. We chose to
work on issues from the JIRA issue tracker this intervention.

6.3.1 Diagnosis

When we started our second iteration the community was working on the 10.4
release candidate. Testing this was a natural starting point for us as Newcomers.
In our previous work we found an obstacle while setting up the environment and
building our own binary �les for Apache Derby(KO1 in section 6.1). We found
that it was more time consuming than expected to set up the test environment
and run the test suites. We did not run the JUnit tests last semester, and seeing
how these are a high priority to the project, mapping obstacles concerned with
both JUnit and the old harness suite are of value to the research questions.

Henrik Holum and Svein Erik Reknes Løvland

44 6. Iterations

Tasks Description

T1 Choose an issue from JIRA issue tracker �agged as Newcomer.

T2 Actively seek out Newcomers and ask if they need any help.

T3 Run tests on the 10.4 release candidate, analyze results and report
�ndings back to community

T4 Improve on the architecture description and compose a diagram of it.

T5 Improve upon /java/testing/README.htm , which is a document
describing how to run the test old harness test suite with link to how
to run the JUnit test suite.

T6 Check if the $CLASSPATH environment variable can be set automat-
ically, either with a script or with the build tool ANT.

T7 Convert a test from the harness suite to JUnit.

T8 Choose a documentation issue from JIRA issue tracker and complete
it.

T9 Run tests on Ubuntu 7.x with IBM JAVA 6 on 10.4, analyze result
and report back �ndings.

T10 Improve upon DERBY-3601.

T11 Choose a build issue from JIRA issue tracker and complete it.

T12 Improve upon DERBY-1671.

T13 Test JMX support in the release candidate.

Table 6.2: Possible Tasks for the Second Iteration.

Action Research: A study of OSS testing in Apache Derby

6.3. Second Iteration 45

6.3.2 Action Planning

During the �rst iteration we compiled a list of suggestions for what we could do
in our second iteration. The list of possible tasks is presented in table 6.2. Issues
from the JIRA issue tracker have a number in this format: DERBY-XXXX. All
references to such issue can be found in the JIRA issue tracker of Apache Derby3.

From the list of possible tasks in table 6.2 we deduced a plan for our second
iteration. We chose to work with T3, T5 and T9. The plan is presented in table
6.3.

In this iteration we will build and test the 10.4 release candidate (T3). While
doing this we will look at the Readme.htm document(T5). This document
describes how to setup and run the test suites. Looking at Readme.htm is a
natural step when building the release candidate. This means that T3 and
T5 should be possible to work on in parallel. Afterwards we will be running
tests on the release candidate on Ubuntu 7.x with IBM JAVA 6, and report
our �ndings(T9). This was requested on the mailing lists.

We plan to do the following tasks:

T3 - Run tests on the 10.4 release candidate, analyze results and report
�ndings back to community.

T5 - Improve upon /java/testing/README.htm , which is a document de-
scribing how to run the test old harness test suite with link to how to run
the JUnit test suite.

T9 - Run tests on Ubuntu 7.x with IBM JAVA 6 on 10.4, analyze result and
report back �ndings.

Table 6.3: Plan for the Second Iteration.

6.3.3 Intervention

When we started this intervention we could see on the mailing lists that T9 was
already resolved. The errors found by the reporter were not real failures, but
showed up because of a fault in the reporters build environment. We therefore
tried to �nd another issue concerned with testing 10.4. This time we used the
JIRA issue tracker to �nd a Newcomer issue to ful�l T1. This was instead of
picking the issue from the mailing lists. We found DERBY-1342 which was a
Newcomer issue, concerned with testing. This became the main issue of this

3http://issues.apache.org/jira/browse/DERBY

Henrik Holum and Svein Erik Reknes Løvland

46 6. Iterations

DERBY-3638 java/testing/Readme.htm location of derbyTesting.jar

DERBY-3642 Update and rectify the Derby tutorial

DERBY-1342 Run derbyall suite with -Dframework=DerbyNetClient
and analyze failures.

Table 6.4: DERBY issues Second Iteration.

intervention. T1 and T3 could be combined, and as you will later see, this was
what we did. Table 6.4 contains the JIRA-issues involved in this iteration and
table 6.5 contains a short version of our diary. This is included to show the
important dates of this intervention.

To run the test suite you have to sett an environment variable called $CLASS-
PATH. This had to be done before we could work on the main tasks T3 and T1
(DERBY-1342). Setting the $CLASSPATH variable is listed as a possible ob-
stacle from our earlier work. Because of this we decided to try to make a script
which automatically sett it. The $CLASSPATH variable have to point to every
.JAR �le in the Apache Derby release you want to work with. You can either set
it in your windows environmental variables, making it a global variable, or you
can sett it in you command window to make it a local variable for the command
windows lifetime. We encountered a few problems setting this variable automat-
ically. You can have di�erent builds of Apache Derby and you can have di�erent
bin releases, a sane build or an insane build, on the same computer. This meant
that the script would have to take input parameters, and making a script see the
di�erences between the various Apache Derby jars proved to be a big challenge.
Seeing that the use of the script would be troublesome, and how hard it would be
to make the functionality of the script good enough to be usable and intuitive,
we concluded that it is easier and faster to create the variable manually. Simply
making a text �le with the di�erent $CLASSPATH variables you might need
and then copy-pasting from this �le to the command line, is much easier. This
seems to be the de-facto standard in the community, and we therefore chose
not to post our observations on the mailing list. This work was connected to
T6. We updated the example on how to set the $CLASSPATH in the testing
documentation(DERBY-3638) while working on this task. To update the test
documentation ful�lls T5. This document did not need any other updates, so
T5 turned out to be less work than expected.

When we started working on T3 there was no binary distribution released for
10.4. Therefore we compiled the branch ourselves and ran tests on the self built
binaries. When we ran the test suites on our binaries we got so many failures
that we believed we had done something wrong when building them. We started
analyzing the test suite output for clues to what might be wrong. It looked as
if connections to the default port for Apache Derby server were refused, but we

Action Research: A study of OSS testing in Apache Derby

6.3. Second Iteration 47

Date Short Diary

19.04.08 Intervention started

Started testing of 10.4 release candidate

20.04.08 Discovered inconsistency in location of derbyTest-
ing.jar.

21.04.08 Created DERBY-3638, patch submitted.

23.04.08 DERBY-3638 - Patch accepted.

26.04.08 Release of Derby 10.4.1.3 - bin distribution.

28.04.08 DERBY 3642 - worked on issue.

DERBY-1342 - Tested release candidate again with -
DerbyNetClient set.

29.04.08 Started testing of the 10.4-bin distribution.

30.04.08 -Dframework=DerbyNetClient parameter made the
tests hang.

01.05.08 Finished work on DERBY-1342.

Considered reopening DERBY-3638 - derbyTesting.jar.

Looked into working on DERBY-1671 - junit.jar.

02.05.08 Got veri�cation that patch DERBY-3638 was correct.

Table 6.5: Short Diary.

had no �rewalls that could block the connection requests, on our machines. This
puzzled us for some time and during this analysis of failures we found the time
to help with another issue (DERBY-3642).

DERBY-3642 deals with an Apache Derby tutorial which needed updates
because of the upcoming release of Apache Derby 10.4. To get a better under-
standing of how Apache Derby works and perhaps understand why we got all
those failures when working on T3, we decided to work through the tutorial and
at the same time to improve it. This would ful�ll T8. We �rst discussed some
changes on the IRC channel and reported the result from the discussion in the
JIRA issue tracker. Unfortunately this did not help us much in understanding
the failures we got from testing our self build binaries. During this work the
binary release was ready and made public. We decided not to dwell longer on
the analysis of the failures on our self built binaries, and instead run the same
tests on the now �nished and released binaries. This reduced the possibility of
it being our own built environment creating the failures.

Remember that our main task was to run the test suite with a special pa-
rameter according to DERBY-1342. Now that the community build binaries
were available we downloaded them and ran the test suites without the special

Henrik Holum and Svein Erik Reknes Løvland

48 6. Iterations

parameter to be certain that they ran cleanly, which they did. We then went
on and ran the test suites with the parameter -Dframework=DerbyNetClient4.
This resulted in that the derbyall suite hung and never continued when it came
to a test called store/streamingColumn.java. The derbyall suite was run on two
di�erent operation systems, Linux and Windows XP, with Java virtual machine
1.6 and both machines hung on the same test. After we manually stopped the
test runs we started to analyze the outputs created by the suite, but we did
not understand all of what we were looking at. We therefore asked for help on
IRC. After some discussion with a Developer on IRC, we got the impression that
spending time running and analysing the results of this test would not be very
useful to the community. They are trying to move away from the old harness
test suite, and continuing working on this issue would be a step backward rather
than forward. Therefore we chose to stop working on this issue and withdraw to
do our evaluation and re�ection.

6.3.4 Evaluation

One miscalculation we did in this iteration was that what we though would be
the main task did not turn out to be a real issue after all. The result of that
was that we could not strictly follow our plan from the Action Planning phase,
and the iteration sometimes felt unstructured. To avoid this we could have done
a more thorough analysis of T9, but since the analysis of this problem was the
issue, doing so would be the same as starting the intervention. Another thing to
mention is the fact that the action planing phase took some time, since we had
a lot of possible tasks to evaluate. T9 was a live issue on the mailing lists, so
it was resolved in the time from when we found it to when we had �nished our
action plan. Instead of T9 our main task turned out to be a combination of T1
and T3, and exists in the JIRA issue tracker as DERBY-1342.

In our previous report we found that setting the $CLASSPATH variable to
be an obstacle for Joiners and Newcomers (KO1, section 6.1). As mentioned in
section 6.3.3 we encountered this obstacle again when we worked on the main
task. Because of this we made an e�ort to remove the obstacle by working on
T6, which was not a part of the original plan. Even though we did not succeed in
�nding a solution for T6 we gained more experience about challenges connected
to KO1 and T5. The improvement on Readme.htm (DERBY-3638, T5) would
not have been possible without working on T6. T5 turned out to be a smaller task
than expected. The Readme.htm �le was not as outdated as we �rst thought, and
the only update we chose to add a patch for was the location of derbyTesting.jar.
The interactions with the community about the location of derbyTesting.jar was
valuable to us. We got to interact with the community in a positive manner.

4The DerbyNetClient parameter runs the test using the server and the Apache Derby client
driver (as opposed to using the embedded driver)

Action Research: A study of OSS testing in Apache Derby

6.3. Second Iteration 49

DERBY-3642 was another issue that enabled us to interact with the com-
munity. Here we helped a Newcomer on a documentation issue concerning the
tutorial. We suggested changes, and our �ndings were included in the patch sub-
mitted. This patch got committed, but the issue is not yet closed. Even though
the issue is not closed we are satis�ed with the work we did on this issue. Since
the patch got committed this issue satis�es T8.

When working on DERBY-1342, running tests on the release candidate, we
got a huge error log. At �rst we thought we had done something wrong, because
of the amount of failed tests. The other work we have done this iteration was
connected to all the failed tests. Looking back we can say that trying to �gure
this out have given us information and experience working with Apache Derby.
We did �nd all the failures to be an obstacle to us as Newcomers. The issue is
�agged as a Newcomer issue, but it gives no information on how to handle the
test logs or what to expect when running the tests with the special parameter.
We had a hard time trying to understand what was actually happening, and
in the end when we were asking for help on IRC, we got told that they were
trying to move away from the old test suite, so our energy would be better spent
elsewhere.

Tasks Description

T1 Choose an issue from JIRA issue tracker �agged as Newcomer.

T3 Run tests on the 10.4 release candidate, analyze results and report
�ndings back to community

T5 Improve upon /java/testing/README.htm , which is a document
describing how to run the test old harness test suite with link to how
to run the JUnit test suite.

T6 Check if the $CLASSPATH environment variable can be set automat-
ically, either with a script or with the build tool ANT.

T8 Choose a documentation issue from JIRA issue tracker and complete
it.

T9 Run tests on Ubuntu 7.x with IBM JAVA 6 on 10.4, analyze result
and report back �ndings.

Table 6.6: Tasks Worked on in the Second Iteration.

We are satis�ed with T1 and T3 as our main tasks, because they led us to
the other tasks and issues we worked on this iteration. On a personal level we
did learn a lot. However, we can't say that this iteration have been as usefully
to the community as expected. We helped on some minor issues, and had some
useful communication on the mailing lists, but our �ndings turns out to be on
a personal level, and was not worth reporting to the community. We do have a

Henrik Holum and Svein Erik Reknes Løvland

50 6. Iterations

test log for DERBY-1342, but did not post this on the JIRA issue tracker. This
because we felt that we did not manage to analyse it thoroughly enough, and we
did not want to make unnecessary noise. We could have used more time trying
to understand these test logs, but after the feedback we got on IRC, the use of
this would be minimal. We decided not to work further with the old harness test
suit and stop the intervention.

In table 6.6 all the tasks from this intervention are presented. It is a subset
of the tasks in table 6.2, which was used in the action planning stage. We have
marked the planned actions with bold font in the �rst column. As mentioned
earlier we ended up working on tasks which were not a part of our original plan.
There were two reasons for this. The �rst reason was that some of the suggested
tasks in the action planning phase were overlapping or closely related to one
another. The second reason was that our planned main task (T9) turned out not
to be something we could work on, and we instead chose a combination of T1
and T3, realized in DERBY-1342, as our main tasks. The changes to the initial
plan made our intervention unstructured at times.

6.3.5 Re�ection

Four obstacles were found in this iteration. First we present the obstacles and
then possible solutions to mitigate or remove the them.

We found the $CLASSPATH variable to be problematic. Setting this variable
for a Joiner, and understanding how it works is not as trivial as one might expect
at �rst. Also the fact that it change every time you have a new build of Apache
Derby helps complicate the situation. Possible mitigations for this would be to
describe even better how the variable works. Giving a deeper understanding will
make a Joiner able to understand how this variable works with Apache Derby
and edit it to the wanted use. Also giving the tip to save the various versions of
the variable in a text �le could save a Joiner both frustration and time.

Another obstacle encountered while working on this intervention was incor-
rect documentation. This made us spent some time trying to �gure out what
was wrong. We found that outdated or wrong documentation is an obstacle for a
Newcomer in a project since this could result in either wasting time on unintelli-
gible errors or that the Newcomer loose interest and leave the community. This
makes it very important to keep the documentation updated. One way to im-
prove this would be to have a person responsible for the documentation e�ort. It
is important that this person will focus on the documentation for Apache Derby
Developers, not only for the users.

The third obstacle encountered in this iteration was the test result log. When
working on DERBY-1342 we found it challenging to analyse the test logs for sev-
eral reasons. The directory structure and �le structure was hard to understand.
There are some information concerning this in the Readme.htm �le, but even

Action Research: A study of OSS testing in Apache Derby

6.4. Third Iteration 51

after reading this, navigating the test result logs turned out to be a challenge
best. When we found the �les we though we were looking for we encountered
yet another problem. The log listed 36 tests that failed in the test suite derbyall.
Each of the tests that failed had multiple errors in their logs, and starting to
analyze this amount of failures is not a trivial task for a Newcomer. The fact
that the error logs requires an in-depth knowledge of the test suite and the code
base makes this task unsuitable for a Newcomer. To remove this obstacle the
community should encourage Newcomers not to start working on the old test
suite. The focus of Newcomers that want to start working on tests should be on
JUnit testing. Apache Derby are currently converting many of the old harness
tests to JUnit, so this would help a Newcomer get to know what will be instead
of what have been.

We encountered the obstacle with the test logs while working on an issue
�agged as Newcomer. When working on this issue we did however �nd the
level of knowledge needed to exceed what we would expect from a Newcomer
issue. We found it very demoralizing not to have any success in progressing on
an issue pictured to be solvable by a Newcomer. This made us feel that the
contribution barrier for this project might be even higher than expected, and
quite discouraging. To ensure that the correct �ags are put on issues could help
Newcomers a lot. We do not have any good suggestions on how to ease this
obstacle, and it looks like the community uses their own judgement when it
comes to �agging an issue as Newcomer.

In this iteration we worked on the old harness test suite. A Newcomer to
Apache Derby might start to work on another area of the project. We decided
not to withdraw from the community and continue our research to see if we could
�nd other obstacles in a di�erent area.

6.4 Third Iteration

In this iteration converted an old harness test to JUnit. We continued to use the
same research model as in the two �rst iterations, so the outline of this chapter
will be the same as seen above. The research questions have not been changed.

6.4.1 Diagnosis

During the �rst two iterations we learned that most of the Joiners to Apache
Derby were doing so through the GSoC project and most of them had started
working on converting tests from the old harness suite to JUnit. We wanted to
see if we could �nd any obstacles when carrying out the same thing as the GSoC
participants.

Henrik Holum and Svein Erik Reknes Løvland

52 6. Iterations

6.4.2 Action Planning

In the previous iteration we did not include the community in the design of our
action plan. One consequence of this was that our main task turned out not to
be a real task. Therefore we wanted to use the mailing list to get suggestions on
what test to convert to JUnit. This would ensure that our work was relevant for
and needed by the community. A part of the e-mail correspondence can be seen
below.

**

Svein Erik Reknes Løvland wrote:

Hi,

I want to convert a test from the old harness to JUnit.

Any suggestions on which test I might work on?

Narayanan wrote:

http://issues.apache.org/jira/browse/DERBY-2514

tagged as Newcomer, seems fairly easy for starters,

You might also want to look into closely at the comments by Myrna,

Narayanan wrote:

You can also take a look at

http://issues.apache.org/jira/browse/DERBY-1903

This is a bigger one than 2514, I guess if you want to look

at a simple one first 2514 is better.

**

DERBY-2514 was selected. The full correspondence can be found in the
e-mail archive5. Our plan for the third iteration can be found in table 6.7.

6.4.3 Intervention

First we started by looking at the code connected to the issue at hand. We found
the test from the old harness suite easy to read and understand. The JUnit test
covering the same area, but not all of it, was not as intuitive to read. This was
because the JUnit tests made use of some parts of the Java API which we were
not familiar with and we had not yet read the JUnit documentation on the Wiki.
We let the community know that we were going to work on the issue and that

5http://www.nabble.com/I-want-to-convert-a-test.-to17338834.html#a17338834

Action Research: A study of OSS testing in Apache Derby

6.4. Third Iteration 53

In this iteration we will convert a test. From the discussion with the com-
munity we decided to look at DERBY-2514.

DERBY-2514:convert lang/closed.java to JUnit

From the discussion around the issue in the JIRA issue tracker we understand
that most of the tests in lang/closed.java are covered by the JUnit tests in
ClosedObjectTest.java, with two exceptions.

-

Exception 1 : The DERBY-62 test case

Exception 2: ClosedObjectTest does not test reading of DatabaseMetaData
obtained earlier, after a connection is closed.

Our plan is to convert the two exceptions into JUnit.

Table 6.7: Plan for the Third Iteration.

we were in the process of learning about the JUnit framework . We were given
a link to the Wiki with information about converting a test (see �gure 6.1).

Figure 6.1: Screenshot from the JIRA issue tracker #1.

The documentation around JUnit was spread out on several Wiki pages, each
with a speci�c focus (see appendix B). We completed a tutorial on JUnit and
how it is used in Apache Derby. This was quite useful and prepared us to use
the existing and extended JUnit framework of Apache Derby. In our opinion the
framework was intuitive and it was quite easy to understand how to use.

After preparing ourselves for the actual task we made a patch to solve the
issue and attached it to the JIRA issue for review (see �gure 6.2). We did not set
the patch available �ag since it was not intended for inclusion in the code, but

Henrik Holum and Svein Erik Reknes Løvland

54 6. Iterations

Figure 6.2: Screenshot from the JIRA issue tracker #2.

rather a suggestion on how to solve it. We wanted to get feedback on our work
since we were uncertain if the the tests we made did cover the two comments on
the JIRA issue tracker. Another uncertainty was if all the tests from the old test
suite were now covered by JUnit tests. If they were the old harness test could
be removed.

After a couple of days with no feedback we decided to withdraw from the
project. The reason for this was lack of time. We had encountered some obstacles
during our intervention, and this was our main goal.

One week after withdrawing from the project we got some feedback on the
patch submitted. Even though we had withdrawn from the project we used one
day to complete the patch. This patch is now committed.

6.4.4 Evaluation

This intervention was more focused than the second one. We worked on a speci�c
task and had a clear and well de�ned goal to work with. Involving the community
and letting them know what we were working on made the whole process more
e�cient. By involving them in the action planning and letting them see our
progress step by step we gave them the opportunity to give feedback and share
their knowledge with us.

If we were more experienced with JUnit and the speci�c part of the Java
API, which we had not seen before, this iteration would have been even swifter.
It is worth noting that part of the motivational factor for some of the hobbyist
OSS developers is to learn something new and enjoy it. We did indeed learn
something new and had fun while doing it.

6.4.5 Re�ection

Again we found that documentation is very important for a Newcomer. We had
to go through a lot of Wiki pages and API documents to get familiarized with
JUnit before we could start the actual programming. The documentation we
did �nd was of good quality, but the amount found can be quite overwhelming.
Adding links to the the di�erent JUnit pages at the end of the IntroToJUnit page

Action Research: A study of OSS testing in Apache Derby

6.4. Third Iteration 55

is an easy way to help a Newcomer �nd the information he is looking for. The
links should contain a short description of the info found one the linked page.
Now only a few pages and some external resources are linked from the document
most Newcomers will turn to when starting to work on JUnit. Adding links to
the Wiki pages should then not be a hard task to do. A Newcomer can of course
ask on the mailing lists were to �nd this information, and the response time on
such a question is, in our experience, quite rapid. The problem here will be the
unnecessary noise this creates on the mailing lists. If the Developers have to
start spending more and more time answering these kinds of questions, they will
probably become tired of it. As a consequence their response time will increase
while the politeness will decrease.

We found the folder structure to be confusing when working on the JUnit
tests. The folders might have a good system and be the way it is for a good
reason, but this reason is not written in any documentation we could �nd. This
makes it hard to navigate through the folders when looking for speci�c �les. Our
experience from other projects is that they have a Readme �le in the di�erent
sub folders, explaining the directory structures. Using these makes it easy to
understand were to look for information, and to understand the structure and
modularity of the code. We did �nd some information when building and reading
the java-doc, but this was hard to reach and lacking. This makes the information
unpractical for a Joiner.

When we started converting the old harness tests to JUnit we found our
own programming experience in this area to be insu�cient. We had to spend
some time reading the Java API and refreshing our own skills before we could
start coding. This is an obstacle that got to do with personal attributes, not
the Apache Derby project. Good documentation can help the Newcomers �nd
the right information, but it is not the projects job to teach the Newcomers
programming. Therefore we choose not to look further into this obstacle.

We chose to convert one of the old harness tests suggested to us on the mailing
lists. When reading the JIRA issue we found that most of the tests in the old
harness test suite were already covered by a JUnit test. This greatly reduced
the workload of converting the test to JUnit. Not because the programming
became easier, but because we did not have to spend so much time writing the
tests. Learning about JUnit programming etcetera still takes the same amount
of time, but we did not have to write all the lines of code needed for all the test
cases. This enabled us to �nish writing this test within a reasonable amount of
time. A volunteer can usually not spend as much time as a paid programmer
working on a project. This unable a volunteer to assign himself to issues that
are too time-consuming. To mitigate this one can make use of the �eld on the
JIRA issue tracker were the reporter can suggest an estimated time to �nish an
issue. We all know that time estimates on programming tasks are hard to do.
This would work if the Developers reporting the issues, that would need little

Henrik Holum and Svein Erik Reknes Løvland

56 6. Iterations

time to do, resisted the urge to just do them themselves. Leaving small issues
of minor importance to Newcomers could lower the Contribution Barrier. This
would allow Contributors with little time, to contribute.

Action Research: A study of OSS testing in Apache Derby

Part III

Discussion and Conclusions

57

Chapter 7

Discussion

In this chapter we go through the various aspects of this report. We start by dis-
cussing our results and group these according to the theory presented in chapter
5. We then continue to criticise the the research questions and research method.

7.1 Results

In this section we present our results and discuss their rigor and relevance. We
link them to the themes from our literature study in chapter 4. In table 7.1
the obstacles from our iterations are presented. These obstacles are discussed
throughout this section.

It. Ob. Description Suggested Fix

1 O1 IRC -

2

O2 $CLASSPATH
a) Description

b) Cut and paste to text �le

O3 Outdated documentation Person responsible for documen-
tation e�ort

O4 Test log Guide Newcomers to JUnit issues

O5 Wrong issue �ags -

3

O6 Scattered information Collection of link

O7 Folder structure Readme �le describing the folder
structure in sub folders

O8 Coding experience in speci�c area -

O9 Time consuming issues Give time estimate

Table 7.1: Obstacles from Our Iterations.

59

60 7. Discussion

7.1.1 Joining-script

In section 5.3 we concluded that the availability of a Joining-script was not an
obstacle in Apache Derby, and that we thus would not look further into this
issue. This conclusion is still valid, but now that our knowledge about the
project has increased, we see that the quality of the Joining-script could have
been investigated. We based our evaluation of their Joining-script largely on
our own experience when working with it last semester. When going through
the Joining-script this semester looking at the old harness suite, we found that
this suite was far from an ideal place to start for a Newcomer. So even if the
Joining-script existed and was easy to �nd, it could have been updated to re�ect
the focus on JUnit instead of the old harness test suites.

We did encounter all our obstacles following the Joining-script, but this does
not mean that all the obstacles are a consequence of it. The ForNewDevelopers
document should be redone to make sure that Newcomers get guided to JUnit
testing rather than the old harness test suite. If a Newcomer follow the Joining-
script they describe, a Newcomer will get a good start with the community, in
the way a Joining-script is meant to do.

7.1.2 Motivation

The Apache organisation is a well oiled machinery with a lot of experience run-
ning Open Source projects. Their projects are well known, and they have a
lot of lurkers overlooking the progress of those projects. Feedback is fast and
constructive, and Joiners are allowed to ask questions without being ridiculed
by more experienced Developers. All of this means that the visible factors con-
tributing to motivating Joiners and Newcomers are present. However, we found
other obstacles that can in�uence a persons motivation to continue in a project.

O4 and O5 are closely knit together. When we encountered those obstacles
we worked on an issue that we thought would be quite easy to solve. It was
�agged as Newcomer and proposed on the ForNewDevelopers web page. Instead
of being able to solve it we ran into a huge incomprehensible test log. We have
worked on other issues where we easily asked questions, but we did not want to
ask for assistance relating to this issue since it would discredit us publicly on the
mailing list. We did not want the Developers to know that we could not handle a
Newcomer issue on our own, since they are the same people that would evaluate
our work later on. This illustrates that even if everything is in place to help and
motivate Newcomers, the use of tools like the JIRA issue tracker and personal
resources have to be correct. In this case the issue was wrongly �agged, and it
was discouraging to us that we needed help to solve it.

Action Research: A study of OSS testing in Apache Derby

7.1. Results 61

7.1.3 Contribution Barrier

As mentioned in section 4.2.3, a Contribution Barrier is any reason keeping a
Newcomer from contributing to the project, but with a higher abstraction level
than an obstacle. Contribution Barriers can be personal. This means that they
can be eased by the person, but not the project. An example of this is O8, were
our own lack of programming experience in the JUnit arena is the obstacle. Good
documentation can help smooth out this obstacle, but in the end only experience
will help the Newcomer. We have therefore ignored this kind of Contribution
Barriers.

The Contribution Barriers we found while working on the project are listed
in table 7.2.

CB Name Description

CB1 Utilities (O1) The informal information channel IRC is not used to
its full potential. (O5) JIRA issues must have the correct
�ag.

CB2 Documentation (O2, O3 and O6) Scattered/Outdated documentation

CB3 Time (O9) Time consuming issues makes it hard for free agents
to join

CB4 Meta data (O4) Test logs in the old harness suite is too hard to
read for a Newcomer.(O7) The folder structure of Apache
Derby source code is not self-explanatory.

Table 7.2: Contribution Barriers.

CB1

The Apache foundation makes sure the utilities needed to run a project are in
place. However, it is up to the project to use these utilities in the best manner
possible. The full potential of IRC is not used. The activity did increase when
the students from GSoC joined the project, but it is hard to tell what will
happen if the students stop asking questions. Normally there is only one to
three experienced Developers in the #Derby channel, and they seldom answer
questions not asked directly to them.

The JIRA issue tracker is a great utility to control the tasks needed to be done
in the project. All issues pass through this utility. This result in a lot of JIRA
issues being created. The handling of these issues are important. Slipping with
�agging of di�culty or importance of tasks can be misleading to other Developers
wanting to help out with an issue.

Henrik Holum and Svein Erik Reknes Løvland

62 7. Discussion

CB2

We found multiple obstacles that had to do with the documentation of Derby.
O2 is an obstacle because there was a mistake in the example on how to set
the $CLASSPATH. This might seem trivial, but to a Newcomer that lacks the
deeper understanding of how this variable works, a correct example is needed to
be able to progress in the project. We also found outdated documentation in O3
and the documentation to be very scattered in O6.

When searching for information on JUnit testing, you will �nd loads of di�er-
ent pages giving tips and help with single issues and cases, but not a document
explaining how to tie this information together. You have to guess from the
index name of the Internet page what it will contain, and what help it might
give you. Many pages got good, explanatory names, but not all.

CB3

Time is an important criteria when working on anything, specially for free agents
in OSSD. If a Newcomer is to work on something in his/her spare time knowing
the time limit of the task is very useful. This again (as O5 also focus on) shows
the importance of competent use of the issue tracker to give a good indication
of the workload an issue results in. Payed Developers will not be as a�ected by
the time constrains as free agents.

CB4

By Meta Data we mean �data about data�. The lack of information on how to
interpret the test logs from the old harness test suite (O4) is an obstacle. When
a Newcomer to the project gets a directory containing 486 folders when running
a test suite, with no further information on what they contain, he is bound to
get confused.

Browsing the directory structure of the Apache Derby source code is not self-
explanatory(O7). The folders seen when �rst opening the source code looks good,
and they are self explanatory. But as soon as one goes further into the folder
structure, it gets harder. One will meet a total of 2747 folders containing 12905
�les, but not a single �le explaining how the folders are structured. An example is
when we tried to �nd the JUnit tests. We started by opening the Testing folder.
Then continued past the mandatory /org and /apache folders before moving on
to /derbytesting1. Here we found a JUnit folder, and we thought jackpot at �rst
try. But when we opened this folder we did not �nd the tests, but super-classes
made to help produce new JUnit tests. After some more searching we ended up
in another test folder that also contained another JUnit folder2. But again we

1$DERBY_SOURCE/java/testing/org/apache/derbyTesting/junit/
2$DERBY_SOURCE/java/testing/org/apache/derbyTesting/functionTests/tests/

Action Research: A study of OSS testing in Apache Derby

7.1. Results 63

were confused, because we could only �nd a few of the JUnit tests here. After
checking all the sub folders of the /tests folder, we found that the JUnit tests
were scattered between all of them. To us it seems that there was no greater
plan to where the �les were put, and that it is up to the individual committer
do decide were he thinks a �le belongs.

7.1.4 Artifacts

The Apache Foundation got long experience with OSSD projects. They make
sure the artifacts needed for a project to be successful are in place. They help
facilitate web pages, Wiki, JIRA issue tracker, IRC channel, mailing lists, legal
help et cetera. A problem we found when using all these artifacts was that the
information on them could vary. An example can be found below, were we show
an e-mail that was sent on the developer list 03.06.2008.

**

Hello,

I observe that the lists of committers in the STATUS file and in Jira

are out of sync. There are names in the STATUS file that are not in

the Jira committer group, and vice versa.

I have not found a definite authority listing committers, but I know

the access control structure for Subversion would give us the current

situation. Digging out votes from the mail archives would also work,

but requires some more work.

Do we generally want to keep the various lists in sync?

-Developer

**

When a project got the amount of artifacts found in Apache Derby it is very
hard to keep everything up to date. Problems that arise because of this can be
observed in most of the artifacts in Apache Derby. Examples of this are the issue
tracker and the documentation e�orts that were discussed in 7.1.3.

The artifact that will not get clouded or outdated because of the use of other
artifacts is IRC. In our �rst iteration we tried to get more people to join IRC. We
started logging the #Derby channel. After the �rst iteration we decided to keep
on logging, to see if the increased activity we saw would continue throughout the
semester. We have used the IRC log to create a chart of the activity per day

Henrik Holum and Svein Erik Reknes Løvland

64 7. Discussion

on the channel, and the result can be found in 7.1. As you can see the activity
increased signi�cantly when the GSoC students joined the channel. March 24 is
the �rst day that the activity signi�cantly increased. This was two days after the
�rst GSoC applicants had said hello on the mailing list. This is when we started
our �rst iteration. However, our intervention did not start before June 07. The
goal of the intervention was to increase the IRC activity. It is hard to evaluate
the results of this intervention because the activity had already increased when
we started it. Up until March 23 there were an average of 13 lines spoken a day.
From March 24 the average number of lines spoken per day had increased to 78.

Figure 7.1: Derby IRC Activity Chart.

In �gure 7.2 we grouped the IRC users according to their roles in the project.
As can be seen on the pie chart, there are three Developers particularly active
on IRC, but only one that really distinguish herself, namely Developer1. This
is the same person that was the facilitator for GSoC. Developer2 got more than
twice the activity of Developer3. This Developer was a Co-mentor for GSoC. The
remaining big groups are the accepted and declined GSoC applicants, Others and
one user that was exceptionally active.

The groups Other dev, Others, User1 and Developer3 are not talking about
issues related to GSoC. These groups make up for a total of 35.44% of the activity,
or an average of 28 lines pr day. This is an increase from the 13 lines a day we
saw before the GSoC activity started. We think this increase in other activity

Action Research: A study of OSS testing in Apache Derby

7.2. Research Questions 65

was a result of the additional activity from GSoC. The activity this project has
brought to IRC has made it a more interesting place to be.

Figure 7.2: Grouped IRC Users.

7.2 Research Questions

In this section we defend our choice of research questions. A possible bias with
our answers to the researcher questions is that we were actively seeking out
obstacles.

We did not change these research questions throughout our project. The
nature of the RQs makes them hard to change. We did not identify any additional
obstacles in our �rst iteration, but still we kept our RQs. The RQs can be viewed
as goals for our research, and this is both a weakness and a strength with them.
It is easy to stay focused and know what the goal is when the research questions
remain unchanged. On the other hand it, if the research questions have �aws or

Henrik Holum and Svein Erik Reknes Løvland

66 7. Discussion

turn out to be uninteresting they should be open for change. We believe that we
would have changed the RQs if we were getting no results.

7.3 Research Method

In this section we discuss the �ve principles from [Davison et al., 2004]. First we
discuss whether or not our research followed the principle. Second we suggest
how to archive ful�llment and present possible re�nements to CAR.

7.3.1 Principle of the Researchers-Client Agreement

In [Holum and Løvland, 2007] we did not have a RCA and that turned out to
be problematic. Learning form our previous research we started this project by
contacting a possible client as mentioned in section 5.1. During the meeting with
the client we got suggestions on which areas we should focus our research on.
We never got the chance to present the research method to the client and the
suggested contract was never signed. This resulted in us having a focus area
given by the client, but since the client never committed to the RCA they were
not included throughout our research. When taking this into consideration, this
report does not ful�ll the principle of the RCA.

CAR is not speci�cally aimed at doing research on OSSD. We believe changes
to the RCA principle can make it easier to apply the method in future OSSD
studies, while at the same time keeping the intended rigor and relevance. We
suggest to post the agreement publicly on a suitable mailing list stating the
intentions of the research and how the community might bene�t from it. In-
stead of having a signed agreement the community can be said to commit to the
agreement if they reach consensus and accept the RCA. This would work in an
Apache community where they have processes to reach consensus. Other OSSD-
projects might have one leader. This leader would then have veto rights when
voting. Similar suggestions could be made for a variety of OSSD organisational
structures. The bottom line is to reach an agreement with those who control the
project.

7.3.2 Principle of the Cyclical Process Model

Our interventions were clearly build up around the CPM and this is re�ected in
the structure of the report. We did our research in an iterative manner with the
output of each phase used as the input for the next. This helped us accomplish
structured and focused work. The evaluation phase was originally intended to
include a client, but we had no client to discuss an iteration with. Instead we
evaluated the data collected from the iterations ourselves.

Action Research: A study of OSS testing in Apache Derby

7.3. Research Method 67

We sometimes made the mistake of mixing evaluation and re�ection when we
verbally discussed the actions done in an iteration. We ended up with evaluat-
ing the actions done in an intervention and presenting the collected data in an
evaluation phase. In a re�ection phase we use the data previously presented and
knit it to our research questions.

7.3.3 Principle of Theory

In the pre-study we presented literature around OSS and Joining. This liter-
ature was then applied to Apache Derby. The theory did not strictly inform
our diagnose phases but our research questions were strongly in�uenced by it.
Our research questions are by their nature resistant to change when used with
CAR. They are the basis for all our diagnoses and action plans. By this all our
interventions are indirectly in�uenced by theory through the research questions.
Theory is also used above when discussing the results. We conclude by this that
our research did ful�ll the principle of theory.

We do not have any tuning of this principle when it comes to applying CAR
when studying OSSD. It is worth noting that if a future study has research
questions unlike ours, new theory might need to be introduced in succeeding
diagnosis. Introducing new theory and presenting it to the client takes time.
This master's thesis project has a 20 week duration limit. In our experience one
would need a lot more time to see the e�ects of the actions taken and to be able
to measure the impact of the theory introduced. A project spanning 2-3 years
would be more reasonable.

7.3.4 Principle of Change Through Action

This is by far the most challenging principle to achieve when studying OSSD. To
ful�ll this one should have a fully committed community ready to accept possibly
radical changes to see how they work. A RCA must exist and the community
must be devoted to it. Since we had no signed RCA we did not have a devoted
community, because they had nothing to be devoted to. However our attempt
to increase the activity on IRC was successful and that is �a change through
action". By this we conclude that we partly ful�lled this principle.

We do not have any suggestions on how future research can ful�ll this principle
without a RCA. Our suggestion is that a RCA must be in place. Given that a
RCA is a though challenge to achieve with a OSS community leads us to the
conclusion that if there is no indication of a RCA being achieved prior to the
�rst intervention the CAR method should be discarded and replaced, possibly
by an ethnographic study. As a side note, our e�ort to ease Joining is highly
dependant on a frequent supply of Joiners to measure the impact of the changes.

Henrik Holum and Svein Erik Reknes Løvland

68 7. Discussion

7.3.5 Principle of Learning Through Re�ection

Since we lacked an explicit client we did not make any formal progress reports
about our research while performing it. But, we kept a diary where we main-
tained an informal progress report and wrote down lessons learned. Our implicit
client, the Apache Derby community, got progress reports through discussions
on the mailing list, IRC and JIRA issue tracker. In the re�ection phases we did
not involve the Apache Derby community, but re�ected on the output from the
evaluation phases. Our goal was to �nd obstacles which we did by completing our
Joining. And �ndings concerning our research questions are based on our own
experience as well as observations of other Newcomers. The other Newcomers
were not actively included in the re�ection phases, but their generated output
were. We as researcher have re�ected on the results of this project, but have not
included a client in the process. Again we partly ful�ll the principle.

To ful�ll this principle when studying OSSD and having the OSS community
e�ectively working as the client, one should include the a�ected members of the
community in the re�ection phase. By doing that one would get acknowledge-
ment that the results are sound. The researchers would then get the needed
feedback from the community necessary to ful�ll this principle.

Action Research: A study of OSS testing in Apache Derby

Chapter 8

Conclusions and Further Work

In this chapter we present the answers to our research questions, before we present
our re�ned model for CAR and further work. The research questions were:

� RQ1: Which obstacles are encountered by Newcomers to Apache Derby
when Joining?

� RQ2: What can be done to ease the Joining process?

8.1 Conclusions

Research question 1 is a direct result of our conversation with a company working
on Apache Derby. They wanted external forces looking at Joining trying to �nd
obstacles. The obstacles encountered during our Joining can be found in table
8.1 which is the answer to RQ1.

Ob. Obstacle Description Ob. Obstacle Description

O1 IRC O6 Scattered information

O2 $CLASSPATH O7 Folder structure

O3 Outdated documentation O8 Coding experience in a speci�c area

O4 Test log O9 Time consuming issues

O5 Wrong issue �ags - -

Table 8.1: Final Obstacle List.

Research question 2 is the natural next step from RQ1. Identifying the ob-
stacles, but not trying to improve them, and thus easing the Joining, would not
make much sense. We group the obstacles found from RQ1 into Contribution
Barriers in table 7.2. To answer RQ2 we look further into these Contribution

69

70 8. Conclusions and Further Work

Barriers and present possible solutions for how to mitigate the e�ects they have
for a Newcomer to the project.

Contribution Barrier 1 concerns the use of utilities in an Open Source
project. It is important for a Joiner to quickly get familiarized with the available
utilities of a project. Without these it will be extremely hard to stay updated on
what is going on in the project. The availability on IRC by experienced personnel
is very important for a Joiner who needs to have an informal conversation before
exposing himself to the community. Also the use of the JIRA issue tracker is
important to a Joiner. Much of the communication in a project, and all the issue
assignments happens on the JIRA. It is therefore very important that the �ags
on the JIRA issue tracker is correct and re�ect the actual knowledge level needed
to solve a task.

Contribution Barrier 2 raises the very important issue of documenta-
tion. This is not an issue solely for OSSD projects, but because the tacit infor-
mation is hard to share in an OSSD project, documentation is very important.
The amount of documentation in an OSSD project makes it hard to have full
control. For a person in the Joining the most important document to lean on at
the start will be a Joining-script. Keeping the Joining-script updated and easily
accessible is something any OSSD project should strive to do.

Contribution Barrier 3, the time issue, can be viewed as a personal con-
tribution barrier in the same way as we choose to look at O9, as a personal con-
tribution barrier. This barrier can however be mitigated by the OSSD projects
with much more ease than solving O9. Making sure that there are small issues
available for Newcomers with little time on their hands would help overcome this
barrier. It might be easier for an experienced Developer to solve these issues
themselves as soon as they are found, but by letting Newcomers solve these they
attract new people that get a positive �rst contact with the community. On
small simple issues there should not be a big problem adding a time factor to the
task as well. This way the Newcomer will know that he can handle the workload
before assigning himself to a task.

Contribution Barrier 4 focuses on the use of meta data in the OSSD
projects. It is not trivial to get familiar with the code base in a large, mature
project. Several meta datas should be in place to help a Newcomer. First o� good
open software architecture diagrams describing the code are needed. Secondly
you need Readme �les in the directory structure of the source code explaining
the use of the folder and its sub folders. The last mitigating factor we found
was good meta data on how to read the test logs. Folders and output �les are
not trivial to �nd for a Newcomer, and meta data explaining what the �les and
folders contain is essential for the Newcomers experience.

Action Research: A study of OSS testing in Apache Derby

8.2. Re�ned Research method 71

8.2 Re�ned Research method

The absence of an explicit client consequently restricted us from fully ful�lling
the principles of CAR. Below is a summary of our suggested re�nements to the
research method when it is used to study OSSD.

� RCA

� Be open about doing research.

� Propose a RCA to the community.

� Do not continue without an agreed upon RCA.

� CPM

� Actively include the community in the di�erent phases.

� Evaluation is to check if the actions were correct and evaluate the
data collected.

� Re�ection is to use the data to answer the research questions.

� Theory

� Present the used theory to the community.

� Change Through Re�ection

� Impossible without a RCA.

� Some research areas might have unforeseen dependencies.

� Learning Through Re�ection

� Report lessons learned to the community.

� Use feedback from the community.

CAR without modi�cations does not work on a short term student project.
Students do not have the manpower to read all the literature needed to back
up all the phases while at the same time use this literature actively for action
planning, intervention, evaluation and re�ection. You will need 4-10 people over
a period of 2-3 years, working on a project with a client that is willing to introduce
the changes suggested.

Henrik Holum and Svein Erik Reknes Løvland

72 8. Conclusions and Further Work

8.3 Further work

It would be interesting to implement our suggestions on how to ease the Contri-
bution Barriers in the Apache Derby Community and try to measure the impact.
This can be done as a new iteration.

Using the same research questions while looking at other OSSD projects to
extrapolate new results is an exciting possibility. This could verify or disprove
the claims of this thesis.

The research questions did not change while writing this thesis. Changing the
the RQs in a succeeding study to focus more spesi�cally on one of the following;
Joining-script, Motivation, Contribution Barrier or Artifacts could give a much
deeper insight into the mentioned aspects.

While doing any of the suggested future work, trying out the re�ned research
model should be considered.

Action Research: A study of OSS testing in Apache Derby

Bibliography

[Avison et al., 1999] Avison, D. E., Lau, F., Myers, M. D., and Nielsen, P. A.
(1999). Action research. Commun. ACM, 42(1):94�97.

[Baskerville and Wood-Harper, 1996] Baskerville, R. L. and Wood-Harper, A. T.
(1996). A critical perspective on action research as a method for information
systems research. Journal of Information Technology, 11(3):235 �.

[Beard and Kim, 2007] Beard, A. and Kim, H. (2007). A survey on open source
software licenses: student paper. J. Comput. Small Coll., 22(4):205�211.

[Bird et al., 2007] Bird, C., Gourley, A., Devanbu, P., Swaminathan, A., and
Hsu, G. (2007). Open borders? immigration in open source projects. In MSR

'07: Proceedings of the Fourth International Workshop on Mining Software

Repositories, page 6, Washington, DC, USA. IEEE Computer Society.

[Crowston et al., 2007] Crowston, K., Li, Q., Wei, K., Eseryel, U. Y., and How-
ison, J. (2007). Self-organization of teams for free/libre open source software
development. Information and Software Technology, 49(6):564�575.

[Cuéllar, 2005] Cuéllar, L. E. (2005). Open source license alternatives for soft-
ware applications: is it a solution to stop software piracy? In ACM-SE 43:

Proceedings of the 43rd annual Southeast regional conference, pages 269�274,
New York, NY, USA. ACM.

[Davison et al., 2004] Davison, M., Martinsons, G., and Kock, N. (2004). Prin-
ciples of canonical action research. Info Systems Journal, 22(14).

[Fitzgerald, 2006] Fitzgerald, B. (2006). The transformation of open source soft-
ware. Forthcoming in MIS Quarterly, 30(3).

[Gacek and Arief, 2004] Gacek, C. and Arief, B. (Jan-Feb 2004). The many
meanings of open source. Software, IEEE, 21(1):34�40.

[Hars and Ou, 2002] Hars, A. and Ou, S. (2002). Working for free? motivations
for participating in open-source projects. Int. J. Electron. Commerce, 6(3):25�
39.

73

74 BIBLIOGRAPHY

[Herraiz et al., 2006] Herraiz, I., Robles, G., Amor, J. J., Romera, T., and Bara-
hona, J. M. G. (2006). The processes of joining in global distributed software
projects. In GSD '06: Proceedings of the 2006 international workshop on

Global software development for the practitioner, pages 27�33, New York, NY,
USA. ACM.

[Hertel et al., 2003] Hertel, G., Niedner, S., and Herrmann, S. (2003). Motiva-
tion of software developers in open source projects: an internet-based survey
of contributors to the linux kernel. Research Policy, 32(7):1159�1177.

[Holum and Løvland, 2007] Holum, H. and Løvland, S. E. R. (2007). Action
research: A study of oss testing in apache derby. Master's thesis, NTNU.

[Iversen et al., 2004] Iversen, J. H., Mathiassen, L., and Nielsen, P. A. (2004).
Managing risk in software process improvement: An action research approach.
MIS Quarterly, 23(3).

[Jensen and Scacchi, 2007] Jensen, C. and Scacchi, W. (2007). Role migration
and advancement processes in ossd projects: A comparative case study. In
ICSE '07: Proceedings of the 29th International Conference on Software En-

gineering, pages 364�374, Washington, DC, USA. IEEE Computer Society.

[Li et al., 2005] Li, J., Conradi, R., Slyngstad, O., Bunse, C., Khan, U., Torchi-
ano, M., and Morisio, M. (19-22 Sept. 2005). Validation of new theses on o�-
the-shelf component based development. Software Metrics, 2005. 11th IEEE

International Symposium, pages 26�26.

[Lovgren and Racer, 2000] Lovgren, R. H. and Racer, M. J. (2000). Group dy-
namics in projects: Don't forget the social aspects. Journal of Professional

Issues in Engineering Education and Practice, 126(4):156�165.

[McKay and Marshall, 2001] McKay, J. and Marshall, P. (2001). The dual im-
peratives of action research. Information Technology and People, 14.

[Mockus et al., 2002] Mockus, A., Fielding, R., and Herbsleb, J. (2002). Two
case studies of open source software development: Apache and mozilla. ACM
Trans. Softw. Eng. Methodol., 11(3):309�346.

[Rapoport, 1970] Rapoport, R. (1970). Three dilemmas in action research. Hu-
man Relations, 23(4):499 � 513.

[Raymond, 2001a] Raymond, E. S. (2001a). A brief history of hackerdom. The
Cathedral and the Bazaar, 2(1).

[Raymond, 2001b] Raymond, E. S. (2001b). The cathedral and the bazaar. The
Cathedral and the Bazaar, 2(1).

Action Research: A study of OSS testing in Apache Derby

BIBLIOGRAPHY 75

[Scacchi, 2007] Scacchi, W. (2007). Free/open source software development: re-
cent research results and emerging opportunities. In ESEC-FSE companion

'07: The 6th Joint Meeting on European software engineering conference and

the ACM SIGSOFT symposium on the foundations of software engineering,
pages 459�468, New York, NY, USA. ACM.

[Østerlie and Jaccheri, 2007] Østerlie, T. and Jaccheri, L. (2007). A critical re-
view of software enginering research on open source software development. In
2nd AIS SIGSAND European Symposium on Systems Analysis and Design.

[Susmanand and Evered, 1978] Susmanand, G. I. and Evered, R. D. (1978). An
assessment of the scienti�c merits of action research. Administrative Science

Quarterly, 23(4):582�603.

[Tilly, 1999] Tilly, C. (1999). Durable Inequality. University of California Press,
Berkley, CA.

[Trist, 1976] Trist, E. (1976). Exsperimenting with Organizational Life: The

Action Research Approach. Plenum Press, NY, NY.

[von Krogh et al., 2003] von Krogh, G., Spaeth, S., and Lakhani, K. R. (2003).
Community, joining, and specialization in open source software innovation: a
case study. Research Policy, 32(1):1217�1241.

[Wang et al., 2005] Wang, F.-R., He, D., and Chen, J. (18-21 Aug. 2005). Mo-
tivations of individuals and �rms participating in open source community.
Machine Learning and Cybernetics, 2005. Proceedings of 2005 International

Conference on, 1:309�314.

[Wheeler, 2007] Wheeler, D. A. (2007). Why open source software / free software
(oss/fs, �oss, or foss)? look at the numbers! www.dwheeler.com.

Henrik Holum and Svein Erik Reknes Løvland

76 BIBLIOGRAPHY

Action Research: A study of OSS testing in Apache Derby

Part IV

Appendices

77

Appendix A

Abbreviations

AR Action Research

ASF Apache Software Foundation

CAR Canonical Action Research

CPM Cyclical Process model

FOSS Free and Open Source Software

FLOSS Free/Libre Open Source Software

FSF Free Software Foundation

GNU GNU's not Unix

GPL General Public Licence

GSoC Google Summer of Code

IRC Internet Relay Chat

IT Information Technology

MIT Massachusetts Institute of Technology

OSS Open Source Software

OSSD Open Source Software Development

RCA Researchers-Client Agreement

RQ Research Question

SVN Subversion

79

80 A. Abbreviations

Action Research: A study of OSS testing in Apache Derby

Appendix B

JUnit URLs

These are some of the URLs used in the iteration when converting a test from
the old harness suite to JUnit. Last accessed 26.05.2008.

http://wiki.apache.org/db-derby/ConvertOldTestToJunitTips

http://wiki.apache.org/db-derby/DerbyJunitTestConfiguration

http://wiki.apache.org/db-derby/DerbyJUnitTesting

http://wiki.apache.org/db-derby/DerbyTopLevelJunitTests

http://wiki.apache.org/db-derby/IntroToJUnit

http://wiki.apache.org/db-derby/JunitAssertMessages

http://wiki.apache.org/db-derby/KillDerbyTestHarness

http://mail-archives.apache.org/mod_mbox/db-derby-dev/200607.mbox/%3c44BFD7EE.

3020708@apache.org%3e

http://svn.apache.org/viewvc/db/derby/code/trunk/java/testing/README.

htm?view=co

81

http://wiki.apache.org/db-derby/ConvertOldTestToJunitTips
http://wiki.apache.org/db-derby/DerbyJunitTestConfiguration
http://wiki.apache.org/db-derby/DerbyJUnitTesting
http://wiki.apache.org/db-derby/DerbyTopLevelJunitTests
http://wiki.apache.org/db-derby/IntroToJUnit
http://wiki.apache.org/db-derby/JunitAssertMessages
http://wiki.apache.org/db-derby/KillDerbyTestHarness
http://mail-archives.apache.org/mod_mbox/db-derby-dev/200607.mbox/%3c44BFD7EE.3020708@apache.org%3e
http://mail-archives.apache.org/mod_mbox/db-derby-dev/200607.mbox/%3c44BFD7EE.3020708@apache.org%3e
http://svn.apache.org/viewvc/db/derby/code/trunk/java/testing/README.htm?view=co
http://svn.apache.org/viewvc/db/derby/code/trunk/java/testing/README.htm?view=co

82 B. JUnit URLs

Action Research: A study of OSS testing in Apache Derby

Appendix C

Researchers-Client Agreement

83

Researcher Client Agreement

This is a contract between Svein Erik Reknes Løvland, Henrik Holum and Sun
Microsystems. This contract is valid from _________ to _________.

Research Method: CAR
We agree that Canonical Action Research is the appropriate research method for this
project.

Focus: Joining
The research will focus on Joining, which is the process of transforming a newcomer to an
active developer.

Commitments: Feedback
There will be at least one meeting with the client each evaluation phase. There will be a
minimum of two evaluation phases in this project. Meetings outside of the evaluation
phase might be needed, but this will be agreed upon with the client if the situation occurs.
A notice will be sent at least 48 hours before the time of the meeting. E-mails will be
answered within 24 hours, or withing the end of the next working day. The researchers will
give the contact a status report once a month, and within 24 hours if requested.

Roles:
The client will in a working situation not treat the researcher any different than they would
treat other participants in Apache Derby. The researchers will participate in Apache Derby
and will take a role as newcomers. The only time the client will treat the researchers
different from other developers will be during the feedback meetings in the evaluation
phase. The researchers will get a contact in SUN with whom they will be communicating
with regards to meetings and feedback.

Goal: Improve the Joining process
The goal of the project is to remove obstacles which are encountered during our Joining
process. Feedback on the intervention phase will be needed by the client to asses any
progress in eliminating these obstacles. The time it takes and the number of obstacles
encountered by newcomers when compiling and running the DerbyAll test suite will be
used to evaluate the measures taken.

Data gathering and analysis:
Data will be collected from the researchers interaction with the community and analyzed
with suitable methods. Because we do not know exactly what data that will be collected
yet, the exact gathering method and analyze method will be agreed upon through dialog at
a later stage of the project.

________________ __________ _____________________ ___________
Sun Representative Henrik Holum Svein Erik Reknes Løvland Date, Place

	Title Page
	Problem Description
	Introduction
	Context
	Canonical Action Research
	Research Questions
	Contributions
	Report Outline

	I Prestudy
	Research method
	History of Action Research
	Canonical Action Research
	Principle of the Researchers-Client Agreement
	Principle of the Cyclical Process Model
	Principle of Theory
	Principle of Change Through Action
	Principle of Learning Through Reflection

	Open Source Software
	History of OSS
	Open Source Software Development Process
	Licensing
	Recent Development
	About the Apache Foundation

	Joining
	Definitions
	Personal Attributes to Consider when Joining Open Source
	Joining-script
	Motivation
	Contribution Barrier

	Software Artifacts in OSSD

	II Participation
	Analysis of the Situation
	Research Questions
	Data Collection
	Joining-script
	Motivation
	Contribution Barrier
	Artifacts

	Iterations
	Our Previous Work
	First Iteration
	Diagnosis
	Action Planning
	Intervention
	Evaluation
	Reflection

	Second Iteration
	Diagnosis
	Action Planning
	Intervention
	Evaluation
	Reflection

	Third Iteration
	Diagnosis
	Action Planning
	Intervention
	Evaluation
	Reflection

	III Discussion and Conclusions
	Discussion
	Results
	Joining-script
	Motivation
	Contribution Barrier
	Artifacts

	Research Questions
	Research Method
	Principle of the Researchers-Client Agreement
	Principle of the Cyclical Process Model
	Principle of Theory
	Principle of Change Through Action
	Principle of Learning Through Reflection

	Conclusions and Further Work
	Conclusions
	Refined Research method
	Further work

	Bibliography

	IV Appendices
	Abbreviations
	JUnit URLs
	Researchers-Client Agreement

