
February 2008
Torgeir Dingsøyr, IDI
Nils Brede Moe, SINTEF

Master of Science in Informatics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

In The Scrum
An Ethnographic Study Of Implementation and Teamwork

Øyvind Kvangardsnes





Abstract

Agile software development have in recent years been widely accepted in
industry, as well as being the target of much research. XP has been the
main focus, while there exist relatively few studies of other Agile methods
such as Scrum.

This thesis describe an ethnographic study of a Scrum team in a project.
The goal is to give a rich description of the use and application of Scrum.
Special attention is given to the implications of di�erences in implementation
from theory. Another focus is to reveal the dynamics of teamwork within
the project.

The main �ndings are that Scrum was easy to implement, and worked well,
but is challenging when used to increase predictability. With regard to team-
work, Scrum supported a shared mental, communication and adaptability.
The leadership function is however complex, and requires good interpersonal
skills.

Keywords: Agile, Scrum, Teamwork, Implementation, Software develop-
ment, Software engineering





Preface

As the �nal step in a 2 year Masters program in Informatics, this thesis
represents a full year of work.

For my part the process started with sending an innocent e-mail 30th of
October, 2006 to my supervisor, asking for a short meeting to talk about a
possible assignment on Agile development methods.

My initial knowledge on the subject was very basic. None of the units pre-
viously studied had anything in the curriculum on Agile methods, focusing
more on the traditional side of software engineering. I was however inter-
ested from the start, because it appeared to be an interesting and evolving
part of the �eld.

After choosing to accept this assignment, the following months were used to
read articles and theory, meet with my, attend a course on Scrum in Oslo,
and �nally, in March starting the study. The study was �nished in the end
of 2007, and the thesis delivered February 6th, 2008.

In the study, my co-researcher was already involved on site using ethno-
graphic methods. In order to better cover the project, we decided to share
research material and cooperate as much as possible. This worked, for my
part, extremely well as I got someone with more experience to learn from
and discuss with.

Through the process, there were a number of people that contributed to the
�nished product you are now reading.

First and foremost the developers and people the study site deserves a hon-
orable mention. This thesis would never had possible without your active
support. Thank you for always making me feel welcome and being forthcom-
ing at every opportunity. I'm glad you �nally got a better co�ee-machine,
you deserve it!

Thanks to DNV Software for letting me attend their Scrum-course. This
was a valuable experience.

Researchers at SINTEF ICT have all been friendly and interested in my

I



II

work, but more signi�cantly has allowed me to play in their football team.
The Monday sessions, the matches, and especially the exceptional last match
of the season with me as goalkeeper will be remembered.

My class mates deserves a mention for putting up with my endless chatter
on Agile methods.

My beautiful girlfriend deserves special gratitude. Supporting me when not
working, and making me relax after several exhausting days of writing made
my life better. Thank you.

Lastly, I would like to thank my supervisor Torgeir Dingsøyr, NTNU/SINTEF
and co-researcher Nils Brede Moe, SINTEF who have both been invaluable,
giving constant coaching and assistance far exceeding my initial expectations
on the level of supervision.

These two have never treated me like a clueless student and made me feel like
part of a team. Small things such as inviting me to lunch or coofee-breaks
were greatly appreciated. Perhaps slightly more important for the study was
that they gave me the opportunity to participate in the conference, CAiSE
07, where one area of focus was Agile methods. Discussing with experienced
researchers on the subject was interesting. I'm

NTNU
Trondheim, February 6th, 2008

Øyvind Kvangardsnes



Contents

1 Introduction 1
1.1 Research Questions And Focus . . . . . . . . . . . . . . . . . 1
1.2 The Ideal Spectator . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure And Naming . . . . . . . . . . . . . . . . . . . . . . 3

2 The Game: Rules And Tactics 4
2.1 Software Engineering . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 A Brief History Of Methods . . . . . . . . . . . . . . . 6
2.2 Traditional Methodologies . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Traditional Methods . . . . . . . . . . . . . . . . . . . 9
2.2.2 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Agile Software Development . . . . . . . . . . . . . . . . . . . 13
2.3.1 Motivation And Background . . . . . . . . . . . . . . . 15
2.3.2 Agile Methods . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Comparison: Agile VS. Traditional . . . . . . . . . . . . . . . 20
2.5 Scrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 The Fundamentals . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.3 Scrum And The Big Five . . . . . . . . . . . . . . . . 29

3 The Seating Arrangements 34
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Interpretative Research . . . . . . . . . . . . . . . . . 35
3.2 The Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 A Choice: Research Approach . . . . . . . . . . . . . . 36
3.2.2 Fieldwork: Style Of Involvement . . . . . . . . . . . . 37
3.2.3 Data. Lots Of Data . . . . . . . . . . . . . . . . . . . 38
3.2.4 Use Of Theory . . . . . . . . . . . . . . . . . . . . . . 40
3.2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Match Day: Live Scores 45
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 The Development Department . . . . . . . . . . . . . 45

III



CONTENTS IV

4.1.2 The Project . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Pre-Game: February To April . . . . . . . . . . . . . . 57
4.2.2 Everyday Work: April To October . . . . . . . . . . . 59
4.2.3 Emergency Scrum: October To Christmas . . . . . . . 61
4.2.4 Post-Game: January And Beyond . . . . . . . . . . . . 64

4.3 Applying Scrum . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.1 Estimating . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.3 Sprinting . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.4 Adapting . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Results 85
5.1 Scrum'ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Compliant . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.2 Deviations And Adaptations . . . . . . . . . . . . . . . 88
5.1.3 The Challenges . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Teamwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.1 Coordination Mechanism . . . . . . . . . . . . . . . . 93
5.2.2 Team Leadership . . . . . . . . . . . . . . . . . . . . . 94
5.2.3 Mutual Performance Monitoring . . . . . . . . . . . . 95
5.2.4 Backup Behavior . . . . . . . . . . . . . . . . . . . . . 95
5.2.5 Adaptability . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.6 Team Orientation . . . . . . . . . . . . . . . . . . . . . 98

5.3 Validity, Evaluation and Justi�cation . . . . . . . . . . . . . . 98
5.3.1 Seven Principles . . . . . . . . . . . . . . . . . . . . . 98

6 The Final Table 101
6.1 Impact of Scrum in the project . . . . . . . . . . . . . . . . . 101

6.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . 102
6.1.2 Teamwork . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Implications For Research And Practice . . . . . . . . . . . . 104
6.3 The Next Matches . . . . . . . . . . . . . . . . . . . . . . . . 105

A Quantitative Data 110
A.1 Burndown Charts . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.2 The project in numbers . . . . . . . . . . . . . . . . . . . . . 115

B Research templates 118



List of Figures

2.1 The iron triangle . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Evolution of Software process models . . . . . . . . . . . . . . 6
2.3 The main steps of traditional software engineering . . . . . . 8
2.4 Royce's initial lifecycle model . . . . . . . . . . . . . . . . . . 10
2.5 The spiral model . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Rational Uni�ed Process . . . . . . . . . . . . . . . . . . . . . 12
2.7 The XP Life cycle . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Crystal methodologies . . . . . . . . . . . . . . . . . . . . . . 18
2.9 The planning spectrum . . . . . . . . . . . . . . . . . . . . . . 20
2.10 The Scrum Process . . . . . . . . . . . . . . . . . . . . . . . . 22
2.11 Life-cycle support of various Agile methods . . . . . . . . . . 23
2.12 Sample burndown chart . . . . . . . . . . . . . . . . . . . . . 25
2.13 The �Big Five� of teamwork. . . . . . . . . . . . . . . . . . . . 29

3.1 Distribution of contacts per week . . . . . . . . . . . . . . . . 39
3.2 Analyzing with post-its and whiteboard. . . . . . . . . . . . . 43

4.1 Organizational chart . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 �Emergency center� . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Di�erent projects in the company . . . . . . . . . . . . . . . . 50
4.4 Experiences from a retrospective . . . . . . . . . . . . . . . . 51
4.5 The teams �island� in the development area . . . . . . . . . . 54
4.6 O�ce �oor plan . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Timeline of the project . . . . . . . . . . . . . . . . . . . . . . 55
4.8 Interface design using whiteboards . . . . . . . . . . . . . . . 58
4.9 Sprint 1 Burndown Chart . . . . . . . . . . . . . . . . . . . . 60
4.10 Sprint 4 Burndown Chart . . . . . . . . . . . . . . . . . . . . 60
4.11 Sprint 6 Burndown Chart . . . . . . . . . . . . . . . . . . . . 62
4.12 Estimation meeting prior to sprint 3 . . . . . . . . . . . . . . 65
4.13 The product backlog . . . . . . . . . . . . . . . . . . . . . . . 66
4.14 Cartoons next to the index card wall . . . . . . . . . . . . . . 72
4.15 Daily Scrum meeting in the emergency phase . . . . . . . . . 74
4.16 Retrospective meeting held after sprint 3. . . . . . . . . . . . 76

V



LIST OF FIGURES VI

4.17 Finished-section of the index card wall, week 45. . . . . . . . 77
4.18 Screenshot from the product backlog in Visual Studio . . . . 79
4.19 The index card wall in week 35. . . . . . . . . . . . . . . . . . 80
4.20 Index cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.21 Manual burndown chart . . . . . . . . . . . . . . . . . . . . . 82

5.1 The �Big Five� in the project . . . . . . . . . . . . . . . . . . 92



List of Tables

2.1 Comparison between Traditional and Agile methods. . . . . . 21

3.1 Distinct contacts through the study. . . . . . . . . . . . . . . 40

4.1 Key actors in the project . . . . . . . . . . . . . . . . . . . . . 52
4.2 Context factors in the study . . . . . . . . . . . . . . . . . . . 56

VII



Chapter 1

Introduction

Computers, and computer software has in the last decades become an in-
dispensable part of modern life. Basically every high-tech gadget from your
mobile phone through everything on the internet to the new Airbus A380 is
completely dependent on quality software.

Despite this, most people has probably experienced faulty or di�cult to
use software. It is not uncommon that large software projects fail, with
subsequent outcries in press. This is by some attributed to a lack of maturity
in the software industry.

Agile methods are a �new� approach to creating software, which has been
widely adopted in industry. These claim to improve on the traditional
approaches to software development process, improving adaptability, pre-
dictability and e�ectiveness.

1.1 Research Questions And Focus

The initial research question for this study is the following:

RQ: Present an in depth, rich description of a Scrum project.

Agile methods are still relatively young, and there exists relatively few sci-
enti�c studies on the use of Scrum Dybå and Dingsøyr [2008]. This research
questions aims to add to existing research on Scrum, and give insight into
problems and opportunities in a project using this method. How the di�erent
practices

In addition to this rather wide research question, two additional and more
speci�c ones:

1



CHAPTER 1. INTRODUCTION 2

RQ 1: How is Scrum implemented in a project compared to the
book? What are the bene�ts and disadvantages?

Traditional methodologies describe large numbers of complex practices and
techniques, which are seldom implemented as advertised [Avison and Fitzger-
ald, 2003]. Scrum literature also describe a number practices and techniques,
but compared to traditional methodologies, the number of practices are rel-
atively low. RQ1 aims to illustrate how Scrum is implemented in an actual
project, and highlight whether or not the practices are used in a fashion
similar to theory.

RQ 2: How does Scrum support teamwork?

The self organizing team involved in the entire development process is an
important philosophy in Scrum [Schwaber and Beedle, 2001]. This is di�er-
ent from traditional methods where the development process is divided into
discrete steps, where each step is performed by specialized personell, and
communication between steps is document oriented. How a team actually
works, and how Scrum supports this will be explored.

1.2 The Ideal Spectator

This thesis is on a rapidly emerging part of software engineering. Hopefully,
it has some value for the following audiences:

For readers with little or no previous knowledge of software development,
some parts will probably probably be di�cult to follow. However, it should
contain enough basic theory to make most parts understandable.

Students of computer science or related subjects should get some insight into
the day-to-day situation of the industry. Most parts could be of interest.

Practitioners interested in adopting Agile methods can possibly gain insight's
valuable when eventually trying out Agile methods. This is part of the target
audience.

Experienced Agile practitioners are probably aware of most parts presented.
It should be read as a story, there might be concepts worthy attention.

Researcher interested in Agile methods should consider this thesis as an
interesting addition to the rather scarce pool of other studies on Scrum.
Absolutely in the target audience.



CHAPTER 1. INTRODUCTION 3

1.3 Structure And Naming

A quick word on the naming of the chapters is in order. As the term �Scrum�
originates from rugby, the naming of chapters also adopts a rugby or sport
metaphor viewing the project as a match.

Chapter 2: The Game: Rules and Tactics de�nes the rules of the
game. It provides some background in order to explain the �eld of software
engineering in general, and to highlight the research questions. A particular
focus is on giving an introduction to Agile methods and Scrum.

Chapter 3: Seating arrangements is about the research design. As
with sports, a spectators viewpoint of is important when regarding a later
description of a game, by knowing whether the reviewer played the or listened
to radio. This chapter outline the theoretical background and describe the
research approach used.

Chapter 4: Match day: Live scores is the �ndings-section of this thesis
which answers the initial research question. This chapter describes the case
through three di�erent but related aspects: contextual, chronological and
the adoption of Scrum.

Chapter 5: Results discuss the �ndings, and addresses the two secondary
research questions.

Chapter 6: Final table presents the �nal conclusions, possible improve-
ments and further work.



Chapter 2

The Game: Rules And Tactics

The process of creating software is a complex undertaking. In some cases
it is a technical challenge, but almost always when creating large systems
there are several other important components such as communication and
teamwork. Brooks describes the work of a software developer in the following
way:

The programmer, like the poet, works only slightly removed from
pure thought-stu�. He builds his castles in the air, from air,
creating by exertion of the imagination. Few media of creation
are so �exible, so easy to polish and rework, so readily capable
of realizing grand conceptual structures.[Brooks, 1987, page 7]

This poetic description notwithstanding, creating good software is di�cult.
It has been plagued with several high pro�le failures, and undertaking large
software development projects is often associated with some degree of un-
certainty. A general rule when managing a software project is that of the
often cited �Iron Triangle� shown in �gure 2.1. There are 3 interdependent
priorities in any project; cost, time and quality. Of these three, a project
can arguably predict and control only two [Atkinson, 1999].

This chapter is about di�erent approaches to software engineering, described
in the next sections, is the systematic approach to creating software, a dis-
cipline commonly known as Software Engineering.

2.1 Software Engineering

Software engineering includes according to Sommerville [1995] speci�cation,
development, management and evolution of software systems. IEEE1 gives

1Institute of Electrical and Electronics Engineers

4



CHAPTER 2. THE GAME: RULES AND TACTICS 5

Figure 2.1: The iron triangle. From Atkinson [1999].

the following de�nition:

software engineering. (1)The application of a systematic, dis-
ciplined, quanti�able approach to the development, operation,
and maintenance of software; that is, the application of engi-
neering to software. (2) The study of approaches as in (1) [IEEE,
1990].

The above de�nition states that software engineering is about a rigorous ap-
proach to building software. The term, which originated at a NASA work-
shop in the late 1960s [Sommerville, 1995], imposes the image of rigour, care
and assurance normally associated with engineering2. The level of rigour
needed when creating software, and whether or not engineering is a appro-
priate metaphor for software is somewhat debated (Bryant [2000] argues that
the engineering metaphor does not �t software and that software should be
grown, rather than built). This notwithstanding, Software engineering is
about solving the problems inherent in software development, with the goal
of making it as cost-e�ective, predictable and successfull as possible.

From the de�nition given by IEEE of Software Engineering, it has three com-
ponents: development, operation and maintenance. Although these three
can be intertwined, this thesis is mainly about the development component.
Again, the de�nition by IEEE is useful:

software development process. The process by which user
needs are translated into a software product. The process in-
volves translating user needs into software requirements, trans-

2The creative application of scienti�c principles to design or develop structures, ma-

chines, apparatus, or manufacturing processes, ...[eng, 1941]



CHAPTER 2. THE GAME: RULES AND TACTICS 6

Figure 2.2: Evolution of Software process models. From Salo [2007].

forming the software requirements into design, implementing the
design in code, testing the code, and sometimes, installing and
checking out the software for operational use. Note: These ac-
tivities may overlap or be performed iteratively. See also: incre-
mental development; rapid prototyping; spiral model;
waterfall model. [IEEE, 1990]

Software development as de�ned above is about the systematic approach to
software development. The following sections will give a brief outline on
how the discipline has evolved over time, and further present some methods
common in software engineering.

2.1.1 A Brief History Of Methods

As previously described, software engineering as a discipline emerged in the
1960s, and has in the following years grown in scale and importance. The
various models used in software engineering have as �gure 2.2 shows also
evolved. While not all of the terms in this �gure are explained, especially
two of them are central in the later chapters; waterfall models and Agile
Software Development.

According to Avison and Fitzgerald [2003] software engineering has gone
through 4 di�erent eras; pre-methodology, early methodology, methodology
and are now in the post-methodology era.



CHAPTER 2. THE GAME: RULES AND TACTICS 7

Pre-methodology era was the early years of pioneering in the 1950s and
1960s. The emphasis was on programming and problem solving, often cou-
pled tightly with hardware constraints. There was little emphasis on user
needs, problems were usually very technical in nature. Development was
done without using formalized processes, and the e�ort was usually individ-
ualistic, with simple project management and control [Avison and Fitzgerald,
2003].

Early Methodology era in the late 1970s and early 1980s focused iden-
ti�cation of phases and stages. The aim was to improve the management of
software development, and to use speci�c techniques in the di�erent phases.
This era introduced discipline into the process [Avison and Fitzgerald, 2003],
but had several issues. Among others were di�culty of meeting business
needs, dissatis�ed users and in�exibility.

Methodology era was the answer to the issues from the earlier method-
ologies, and in the 1980s and early 1990s several new approaches emerged.
These speci�ed a recommended collection of phases, rules, techniques, tools,
documentation, management principles, and training. Although the recom-
mendations followed several di�erent approaches, the motivations were the
same; To achieve better end products, to improve the development process,
and to standardize on methodology.

Post-Methodology era can be considered as the reappraisal of some of
the values from the pre-methodology era. This is attributed to the use,
misuse, or nonuse of the elaborate and heavy methodologies of the 1980
and 1990s [Avison and Fitzgerald, 2003], which generally was rejected by
practitioners. Reasons for this rejection include disappointing productivity,
overly complex and unrealistic sets of rules, and the requirement to use costly
and complex tools. The reappraisal included among other approaches such
as increased tool use or external development, incremental methods which is
one of the cornerstones of Agile software development [Avison and Fitzgerald,
2003].

The methodologies from the two methodology eras are from now on broadly
labeled as traditional methods. The following section elaborates on the use
of this label.



CHAPTER 2. THE GAME: RULES AND TACTICS 8

Figure 2.3: The main steps of traditional software engineering

2.2 Traditional Methodologies

De�ning traditional software development is di�cult. According to Boehm,
traditional methods include extensive planning, codi�ed processes, and rig-
orous reuse in order to create software e�ciently and predictably. They are
in other words essentially plan-driven. With planning Boehm means:

... documented process procedures that involve tasks and
milestone plans, and product development strategies that involve
requirements, designs, and architectural plans [Boehm, 2002]

In the above quote three expressions are central to understanding the distinc-
tion between Agile methods and traditional methods; requirements, design
and architectural plans. Compared with �gure 2.3, requirements encompass
step 1 and 2, while designs and architectural plans are parts of both step 2
and 3.

As �gure 2.3 shows, the �rst step is to outline the concept of the system,
creating a broad statement of the users requirements. Setting the projects
bounds and the direction for the whole project [Hawryszkiewycz, 2001].

Requirements are the second step of traditional methods. This is usually the
process of creating a (extensive) requirement document which specify the re-
quired functionality, expected business improvements and detailed objectives
of a software system. These documents are created by specialized analysts
using specialized techniques such as object oriented techniques or structured
systems analysis [Hawryszkiewycz, 2001]. When �nished, the requirements
document is essentially frozen, and is rarely changed.

Design is the third step where the requirement document are used to design
and create plans for the systems architecture. First a broad architectural de-
sign specifying logically how a system will full�ll the requirements is created.
Then a physical design is created based on the architectural design, which in
detail explains how the logical design should be developed [Hawryszkiewycz,
2001].



CHAPTER 2. THE GAME: RULES AND TACTICS 9

Another take on the traditional way of doing things is in �Software Pro-
cess Models� by Sommerville. In this paper, the distinction is between
Speci�cation-based models and Evolutionary development models. Speci�-
cation based models relies on a set of speci�cations that are frozen and is
the basis of further development. Sommerville writes that such models are
most applicable to large system-engineering projects where the need for pre-
dictability is high.

Plan driven or speci�cation based models can be compared with the process
of building a house or a bridge. Get the basic requirements from the buyer
and the surroundings. Create the architecture sketches and plan the building
process. Build according to the architecture and progress plans. Deliver on
a date set in the contract. How the build is done is of small importance, and
requirements are di�cult to change in the middle of the build. This basic
outline of the process is applied to software

To further illustrate the traditional approach, the following section will elab-
orate on some common traditional methods.

2.2.1 Traditional Methods

The prime example of traditional methods, often used as the opposite of
Agile, is the linear waterfall model. Also the later, spiral model and Rational
Uni�ed Process are labeled as traditional models, and is used as examples
of the more modern breeds of traditional methodologies.

The following section elaborates on these three methods.

Waterfall And Linear Methods

The archetypal software development model is the linear or waterfall model3.
It is quite similar to the house-building analogy from the last section.

The waterfall model was initially proposed in Royce [1987] in 1970, and is
a true product of the early-methodology era. Royce's original model has
7 consecutive steps, illustrated in �gure 2.4. The model in �gure 2.4 is a
strictly linear process where each step �nishes completely before the next
step begins. The analysis phase requires a �nished set of speci�cations, and
the design phase depends on a �nished analysis. Each phase produces a
range of documents, which is used in the next phase. Royce's paper also has
versions of this model where there are some feedback between consecutive
phases, although with the same basic process. Feedback can be done in

3The model is popularly known as the Waterfall model, because the products of each
phase cascade from one to another creating a �waterfall� [Sommerville, 1995]



CHAPTER 2. THE GAME: RULES AND TACTICS 10

Figure 2.4: Royce's initial lifecycle model, now popularly known as the Wa-
terfall model. From Royce [1987]

several ways. According to Sommerville [1995] one example is when the
experience from the last phase (operation) can be used as input in any of
the other phases. It is however usual to have a single sign-o� point where
one activity terminate, shifting focus to the next [Hawryszkiewycz, 2001].

Structured teams are often used in linear projects, where team members
are assigned to speci�c phases [Hawryszkiewycz, 2001]. System analysts
produces an analysis document and passes this on to the architectural team.
The architects then produces a system design document, which is the basis of
the development phase carried out by a development team. The development
team produces a system which is tested by testers, and lastly implemented.
It is possible that only management is a part of the entire process, making
documentation the essential information-carrier from one phase to the next.
Quality assurance is ensured by validation of the produced documents at the
end of the phase.

Despite being criticized from the inception [Royce, 1987], the waterfall model
is still in widespread use. It has been adopted as a general standard in many
software procurement processes, and is by this still an important model in
software engineering [Sommerville, 1995].

The Spiral Model

The spiral model is a generic model proposed by Boehm in 1986 based on
experiences from TRW [Boehm, 1986]. It is an example of the methodology-



CHAPTER 2. THE GAME: RULES AND TACTICS 11

Figure 2.5: The spiral model. From Boehm [1986]

era. The focus is on recognizing and handling risks in the development
process. As the name hints at, the spiral model takes the form of a spi-
ral where each loop in the spiral represents a phase of development. Each
loop has a di�erent emphasis, the �rst can be about system feasibility, the
next with requirements and so on. Each phase or cycle goes through some
planning and risk analysis as well as prototyping of the system. As this is a
generic model it is up to the management to decide the focus of each cycle.

The spiral model can be used as a encapsulation of other models. For in-
stance one phase can use prototyping to explore and specify the system, while
the next can be a waterfall-like phase where the prototype is developed into
a full scale product. The main points are that the development is done in
cycles which support each other, and that risks are evaluated before starting
a new cycle. These cycles are quite long (2-3 months to a year or more) and
risks are evaluated through surveys, interviews and benchmarking tools. It



CHAPTER 2. THE GAME: RULES AND TACTICS 12

Figure 2.6: Rational Uni�ed Process. From Abrahamsson et al. [2002].

is according to Boehm less document driven than the waterfall model, and
is most suitable for large complex systems. Cohen et al. [2004] notes that
while the spiral model is more adaptable than the waterfall model, it still
relies on long cycles and have a heavy component of analysis and planning.

Rational Uni�ed Process

Rational Uni�ed Process, abbreviated as RUP, was developed to comple-
ment UML4 It is an iterative approach for developing object-oriented systems
[Abrahamsson et al., 2002].

As �gure 2.6 shows, RUP consists of four phases named inception, elabo-
ration, construction and transition, which can roughly be mapped to the
phases shown in �gure 2.3. The phases are further divided into several cy-
cles or iterations. Further, RUP speci�es nine work�ows ongoing through
the entire project, and divides responsibilities among 30 di�erent roles, such
as architect, designer, design reviewer or con�guration manager). RUP also
have an emphasis on tool automation and modelling tools [Abrahamsson
et al., 2002].

Labelling RUP as a traditional methodology can be argued and is labeled
as an Agile method in �Agile software development methods: Review and
analysis� [Abrahamsson et al., 2002] labeled as an Agile method. The reason
for including RUP in this context is because of the number of di�erent roles,
practices and techniques, as well as the reliance on tools, documentation,
planning and architecture. RUP is an example of a heavy methodology from
the late 1990s so complex that it requires signi�cant training just to know
the basics. Abrahamsson et al. [2002] writes that RUP is supposed to be
tailored to speci�c projects, but the number of practices means that it fails
to provide clear implementation guidelines.

4Uni�ed Modelling Language is a standard of notations to represent object models
[Hawryszkiewycz, 2001], which according to Avison and Fitzgerald [2003] is one part of
the methodological era.



CHAPTER 2. THE GAME: RULES AND TACTICS 13

2.2.2 Issues

Traditional methods, as described so far, spans over a large range of meth-
ods from the somewhat archaic waterfall to (arguably) RUP. Their common
characteristics are mainly in the planning aspects and an emphasis on spec-
i�cations, architecture and design. As section 2.1 illustrated, the methods
employed have evolved considerably

There are a number of issues associated with these traditional methodologies.

The linear methods has, as previously stated been criticized from the incep-
tion, also by Royce in the paper initially containing the waterfall model:

I believe in this concept, but the implementation described above
is risky and invites failure Royce [1987]

The argument was that the process lacked feedback from one stage to another
[Sommerville, 1996]. In the same paper, Royce proposed a modi�cation with
feedback loops, but these have largely remained forgotten.

In Brooks [1987], the extensive planning done in the speci�cation and design
stages of traditional methods is criticized. Brooks argues that the hard parts
of creating software is not to develop the system. Problems in this phase are
not that important, compared with conceptual errors done while creating
the speci�cation and designing the system. Further, he argues that these
issues cannot be resolved without fundamental revision in the industry that
provides for iterative development and speci�cation.

Traditional methodologies focuses on making software development into a
repeatable, de�ned and predictable process [Cohen et al., 2004]. This aim
has been criticized, because when the problem is complex, changing, or not
completely understood, an in�exible, large methodology is especially unsuit-
able.

Agile methods, elaborated on in the next section, are designed to address
some of these issues.

2.3 Agile Software Development

As mentioned in section 2.1.1, Agile software development was one of the
approaches adopted in the post-methodology era.

A good, concise de�nition of what Agile means in software engineering world
is di�cult to come by. However, the de�nition of the word Agile is a start:

S: (adj) agile, nimble, quick, spry (moving quickly and lightly)
"sleek and agile as a gymnast"; "as nimble as a deer"; "nimble



CHAPTER 2. THE GAME: RULES AND TACTICS 14

�ngers"; "quick of foot"; "the old dog was so spry it was halfway
up the stairs before we could stop it"

S: (adj) agile, nimble (mentally quick) "an agile mind"; "nimble
wits" WordNet

These two de�nitions give some insight into the general idea of Agile meth-
ods. Instead weighing down a process with too much �fat�, Agile methods
aims to be lean, adaptable and intelligent.

Agile methods are inspired by by Lean manufacturing, which was a trend
started in Japan after world war II. Lean manufacturing is about managing
without large stores of supplies, producing only according to demand, and
empowering workers to do their job as well as possible [Cohen et al., 2004].

Agile methods are the principles of Lean manufacturing applied to software
engineering. Agile encompasses several practical approaches which is perhaps
best summarized by the guiding principles of Agile Software Development
stated in the Agile Manifesto:

We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more. Beck et al. [2001]

These statements form the core of Agile methods. The focus is on doing the
things directly related to the software development with rich communication5

between all interested parties, o�ering an alternative to the documentation
driven, heavyweight software development processes [Cohen et al., 2004].

In recent years, Agile methods, and especially XP, have attracted substantial
interest in academia, including several literature reviews [Abrahamsson et al.,
2002, Cohen et al., 2004, Dybå and Dingsøyr, 2008]. Studies report that the
methods are easy to adopt and work well, especially in small, uncritical
projects with changing requirements. Improvements have been found in the
following areas: customer collaboration, work processes for handling defects,

5Richness is connected to the modes of communication available. Face to face commu-
nication using a drawing whiteboard is considered as very rich, while paper is considered
as the opposite [Cockburn, 2002, �gure 3.14].



CHAPTER 2. THE GAME: RULES AND TACTICS 15

learning in pair programming, thinking ahead for management, focusing on
current work for engineers and estimation [Dybå and Dingsøyr, 2008].

2.3.1 Motivation And Background

Traditional software development methods as have several issues as described
in 2.2. The actual use of these methodologies are described in Abrahamsson
et al. [2002] to be more symbolic than anything else, and something that
is viewed with skepticism by many industrial software developers. Agile
methods can be regarded as the practitioners response with more useable
practices.

In section 2.1.1, the post-methodology phase was described as the reappraisal
of values from earlier years. Some of the roots of Agile methods are described
in �Iterative and Incremental Development: A Brief History�[Larman and
Basili, 2003]. This article has several good examples of early use of Agile-
like methods:

NASAs project Mercury used in the early 1960s test-�rst development very
much like XP (see section 2.3.2).

Iterative and incremental methods (IID) was further used in various defense
programs in the 70s, including the Light Airborne Multipurpose System
which was a 200-person-years project on helicopter to ship weapon systems.
This project used one month iterations like Scrum (see section 2.5), and de-
livered the system in 45 iterations. NASA continued to use similar methods,
with the Space Shuttle project as one high pro�le example [Larman and
Basili, 2003].

This type of methods was used and discussed signi�cantly through the 80s
and 90s. Waterfall-in�uenced processed still remained as the most used and
referred to. This is attributed by Larman and Basili [2003] to the simplicity
of the model, the orderly process with simple and understandable milestones,
and the continued promotion in texts, courses and consulting organizations
which labeled it as the idealized process.

In February 2001, a group of practitioners created the Agile manifesto [Beck
et al., 2001] which �o�cially� started Agile software development. The term
has since then become an established part of software engineering.

2.3.2 Agile Methods

The following sections contains an overview of a selection of existing Agile
approaches. Scrum has not been included in these, as it is the main fo-



CHAPTER 2. THE GAME: RULES AND TACTICS 16

cus of this thesis, and consequently warrants the somewhat more thorough
explanation given in section 2.5.

Extreme Programming

Extreme programming or XP is the most widely researched Agile method [Dybå
and Dingsøyr, 2008]. It evolved from problems with the traditional devel-
opment models, and is based on practices that had been found e�ective in
software development in the earlier decades. Ideas from among others Scrum,
evolutionary development and the spiral model is incorporated into XP. It
is essentially a theorized version of common sense principles and practices
taken to extreme levels, giving its name. There also exists a newer, more
extensive version, XP2, but the traditional XP described in Abrahamsson
et al. [2002] is covered here.

Figure 2.7: The XP Life cycle. From Abrahamsson et al. [2002]

As XP is based on experience with existing methodologies, it gives quite clear
advice on how a software project should be run. XP describe the distinct
phases of a project, roles and responsibilities, and 13 concrete practices:

• Planning game � Planning done by cooperation between programmers
and customer; programmers estimate e�ort, the customer decides on
scope and timing.

• Small/short releases � New versions of the system is released rapidly,
at least monthly.



CHAPTER 2. THE GAME: RULES AND TACTICS 17

• Metaphor � A �shared story� describing how the system works, guiding
development.

• Simple design � Design the simplest possible solution which is possible
at the moment.

• Testing � Development is driven by tests, which are implemented before
the actual code. Tests are run continuously.

• Re-factoring � Restructuring the system by improving and cleaning up
the code whenever possible.

• Pair programming � Two people write code using one computer.

• Collective ownership � Code can be change by anyone, anytime.

• Continuous integration � Code is integrated into the code-base as soon
as it is ready, tested and built.

• 40-hour week � Team members is not allowed to work more than 40
hours a week. More than two overtime weeks is treated as a problem.

• On-site customer � The team has access to a customer at all times.

• Coding standards � Programmers follow coding rules, with emphasis
on communication through code.

• Open workspace � The team works together in a open workspace op-
timized for cooperation.

• Just rules � Team creates and follows their own rules.

XP is mainly suited for small and medium sized teams (between 3 and 20
members), working with technology which supports �graceful change�. As
some of the practices in XP requires discipline, it is important not to have
members or management which resists these [Beck, Oct 1999].

When regarded as a whole, adopting all the practices of XP can be a dif-
�cult task. Both the creators and experience reports agrees on this, and
suggests that XP should be adopted gradually, and tailored to the needs of
the individual projects. Beck writes:

If you want to try XP, for goodness sake don't try to swallow it
all at once. Pick the worst problem in your current process and
try solving it the XP way.

In addition to experience reports, there have been a substantial amount of
studies on XP, dominating research on Agile methods [Dybå and Dingsøyr,
2008]. Conclusions are mostly positive, with documented gains in produc-
tivity [Abrahamsson et al., 2002].



CHAPTER 2. THE GAME: RULES AND TACTICS 18

As �gure 2.7 suggests, XP speci�es most aspects of a development process.
It is especially strong on the engineering aspects through the 13 practices.
XP has often been combined with other methodologies such as Scrum.

The Chrystal Methodologies

The Chrystal family is a range of methodologies designed for projects with
di�erent requirements. The choice of methodology is based on two variables;
criticality of the system and size of the project, which decide which method-
ology is appropriate. Each member of the family is marked with a color,
and the darker the color the heavier the methodology. Crystal clear is most
suitable for small simple projects, while Crystal red is for the large, complex
ones with the other colors for the intermediate spectrum.

Figure 2.8: Dimensions of the Crystal methodologies. From Abrahamsson
et al. [2002].

The crystal family have some common principles:

• The number of intermediate work products are reduced as the team
produce more running code, and communicate better.

• Conventions in a project is shaped and evolves over time.



CHAPTER 2. THE GAME: RULES AND TACTICS 19

• The amount of overlapping work, and information holders is deter-
mined by the shifting bottlenecks in the system.

Two rules are common:

• Incremental development, with increments between 1 and 3 months,
with a maximum of 4.

• Pre- and post-increment re�ection workshops, and with a preference
to hold one in mid-increment.

Further there are two base techniques:

• Tuning the base methodology to �t the project based on project inter-
views and workshops.

• The re�ection workshop technique.

Crystal Clear and Crystal Orange are the only members of the family which
actually have been speci�ed in detail.

Crystal clear is designed for very small projects with up to six developers,
and is tolerant and free of ceremony. It describes some roles, policies and
work products, but does not require any documentation to be created [Abra-
hamsson et al., 2002].

The following elements are regarded by Cockburn as important success fac-
tors in Crystal Clear; focus on close seating and close communication, fre-
quent deliveries, information from real users and use code versioning tools.
Further he summarizes the method in the following statement:

I don't think you can get any sloppier than Crystal and still plan
on having better-than-even odds of completing successfully. [Cock-
burn, 2002]

Crystal Clear require the following tools: compiler, versioning and con�guration-
management tool and printing whiteboards for documentation.

Crystal Orange is for medium sized projects with 10 to 40 project members.
Compared to Crystal clear, more roles, work products and policies are sug-
gested, and in addition the members of the project are divided into functional
teams such as system planning and project monitoring. These teams are then
split into cross-functional groups. Crystal orange requires the following tools
in addition to the tools of Crystal clear: versioning, programming, testing,
communication, project tracking, drawing, and performance measuring.

There have been no published studies on Crystal methodologies [Abrahams-
son et al., 2002, Dybå and Dingsøyr, 2008]. However, the proposed scope of
these methodologies is an example of an Agile method which can scale be-



CHAPTER 2. THE GAME: RULES AND TACTICS 20

yond the commonly cited �home grounds� of small, non-critical and volatile
internet systems.

2.4 Comparison: Agile VS. Traditional

Before elaborating Scrum, it is �tting to review and compare the fundamental
values of the traditional and Agile approaches.

In section 2.2 traditional approaches were described as plan-driven. The
planning spectrum in �gure 2.9 compares the level of planning in di�erent
approaches. Traditional methodologies are generally to the right in this
spectrum.

Figure 2.9: The planning spectrum. Unplanned hacking is on the far left
side of the spectrum, while micromanaged planned approaches are on the
extreme right. From Boehm et al. [2002].

A more detailed comparison is in table 2.1. It is outside of the scope of
this thesis to explain all of the terms in this comparison. However, the
following aspects and the di�erences are the important ones when relating
this comparison with the research questions in this study; control, knowl-
edge management, communication and assignment of roles, and especially
fundamental assumptions.

Agile methods puts people in control, in contrast to traditional methods
which relies on pre-described processes and. This relates to RQ1.

Agile methods aims to be light and easy to implement, supporting practice
with concrete guidelines. Reports suggest easy adoption. Traditional meth-
ods preaches predictability by meticulous speci�cation of the process, and
is rarely implemented as described [Cohen et al., 2004]. This is the central
point of RQ1.



CHAPTER 2. THE GAME: RULES AND TACTICS 21

Traditional Agile

Fundamental
assumptions

Systems are fully speci�able,
predictable, and can be built
through meticulous and ex-
tensive planning.

High-quality, adaptive soft-
ware can be developed by
small teams using the princi-
ples of continuous design im-
provement and testing based
on rapid feedback and change.

Control Process centric People centric

Management
Style

Command-and-control Leadership-and-collaboration

Knowledge
Management

Explicit Tacit

Role Assign-
ment

Individual � favors specializa-
tion

Self-organizing teams � en-
courages role interchangeabil-
ity

Communication Formal Informal

Customer's
Role

Important Critical

Project Cycle Guided by tasks or activities Guided by product features

Development
Model

Life cycle model (Waterfall,
Spiral, or some variations)

The evolutionary-delivery
model

Desired Or-
ganizational
Form/Structure

Mechanistic (bureaucratic
with high formalization)

Organic (�exible and partic-
ipative encouraging coopera-
tive social action)

Technology No restriction Favors object-oriented tech-
nology

Table 2.1: Comparison between Traditional and Agile software development.
From Nerur et al. [2005].



CHAPTER 2. THE GAME: RULES AND TACTICS 22

Figure 2.10: The Scrum Process. From Abrahamsson et al. [2002]

Agile methods focus on good communication and tacit knowledge, instead
of formal communication through documents and explicit knowledge6. Both
RQ1 and RQ2 are in�uenced by this di�erence.

Agile methods favors self organizing, organic teams where the collective is
more important than the individuals. Traditional methods favors special-
ization, where individuals are assigned to distinct tasks. This relates to
teamwork, and is directly relevant to RQ2.

2.5 Scrum

[htb] The term Scrum originates from rugby7, where it is a special strategy
for getting an out-of-play ball back into play [Schwaber and Beedle, 2001]. In
engineering, the term Scrum was �rst used in Takeuchi and Nonaka [1986]
where they presented an adaptive, quick, self-organizing product develop-
ment process [Abrahamsson et al., 2002]. This approach was primarily used
in non-software products at Honda, Canon and Fujitsu.

Inspired by this Je� Sutherland and Ken Schwaber applied this method to
software development at Easel Corp. in what would eventually be known
as Scrum. Scrum was later re�ned in writing by Beedle et al. [2000] in

6Tacit knowledge encompasses unexpressed internal knowledge, while explicit knowl-
edge is expressed through writing [Walsham, 2001].

7It is worth noting that the rugby heritage means that Scrum is not an acronym, and
should not be uppercased



CHAPTER 2. THE GAME: RULES AND TACTICS 23

Figure 2.11: Life-cycle support of various Agile methods. From Abrahamsson
et al. [2002]

�SCRUM: An Extension pattern Language for Hyperproductive Software
Development�, and has since then accumulated much related literature.

Scrum is mainly an agile approach to management of software development
projects [Abrahamsson et al., 2002] and it does not specify details about
how the development is done. Scrum is designed to encapsulate the existing
practices. Management of the process is empirical, inspired by industrial
process control theory, where the process is controlled by constant monitor-
ing of progress and doing adjustments based on this knowledge [Schwaber
and Beedle, 2001]. Figure 2.11 illustrates this, and compares Scrum with a
number of other methods. Compared with XP, Scrum supports the project
management aspects of a project, but has little support for the more detailed
aspects of development.

2.5.1 The Fundamentals

As �gure 2.10 shows, the core practice in Scrum, described by Schwaber as
the skeleton, is the Sprint. This is a short iteration, typically 30 days, of the
development process where a potentially shippable increment of the system
is developed and delivered. A potentially shippable increment is de�ned by
Schwaber as tested, well structured code, compiled into an executable with



CHAPTER 2. THE GAME: RULES AND TACTICS 24

the necessary documentation. Any number of sprints may be performed
before �nishing a project.

While a sprint and the deliveries may be the skeleton of Scrum, the heart
is in the di�erent management practices [Schwaber]. These include the use
of various artifacts, discussions in a number of meetings, and responsibilities
divided among a small number of roles.

Artifacts

The following artifacts are the fundamental ones;

The Product Backlog is simply a prioritized queue of features wanted, or
work to be done on the system. Items can be added to the product backlog
at any time in the project and it can be re-prioritized. It is considered
to be a dynamic document [Schwaber and Beedle, 2001], very unlike the
speci�cation documents described in section 2.2.1. The e�ort needed to
realize the product backlog items is estimated prior to implementation, but
these estimates are not supposed to be binding[Schwaber].

Sprint Backlog is in essence a list of tasks to be done in a sprint. Before
starting a sprint, the team selects an appropriate number of items from the
prioritized product backlog which together form a sprint increment. These
items are then decomposed into concrete tasks needed to create the delivery.
Together, these tasks form the sprint backlog which is stable through a sprint
[Abrahamsson et al., 2002].

Burndown Chart is not a part of �gure 2.10, but is still a recognizable
and often referred to part of Scrum. Schwaber describes it as a chart showing
the remaining work in a sprint as time progresses. It is useful as a tool to
indicate when a sprint backlog is �nished, and realizing if adjustment of the
e�ort is needed. Figure 2.12 show an example.

Meetings

The artifacts discussed in the previous section are closely linked to these
meetings:



CHAPTER 2. THE GAME: RULES AND TACTICS 25

Figure 2.12: Sample burndown chart. From Schwaber and Beedle [2001].

Sprint Planning Meeting is a done prior to a sprint, and is used to
create the sprint backlog. The objective of this meeting is to plan the the
next sprints product increment. The input is the prioritized product backlog,
along with descriptions from the product owner. This is then weighed by the
team together with knowledge of previous deliveries and past performance
[Schwaber and Beedle, 2001]. The result is a commitment from the team
to release a part of the system, and a relatively detailed plan to full�ll this
delivery.

Scrum Meetings are short, 15 minute meetings, usually done daily aimed
to ensure communication and establish the current progress and identify im-
pediments [Schwaber and Beedle, 2001]. The meetings core can be summa-
rized by three common questions:

1. What have you worked on since last the last daily Scrum?

2. Does there exist impediments which hinders your work?

3. What will you work on until next daily Scrum

It is usual to do these meetings in a pre-designated place, not necessarily a
meeting room, but one readily accessible to the team [Schwaber and Beedle,
2001].

Sprint Review Meetings are performed at the end of a sprint, and is
where a product increment is demonstrated by the team for the stakeholders



CHAPTER 2. THE GAME: RULES AND TACTICS 26

to get input on the progress, and further development. It is according to
Schwaber and Beedle [2001] usually 4 hours long.

Retrospective Meetings are held by the team when appropriate, and is
an opportunity to look back and identify possible improvements to the pro-
cess. The other meetings are geared mainly towards the product increments,
while the retrospective meeting is used to re�ect and improve on the process
as a whole Schwaber.

Roles

Agile methods preach people before process. People in a Scrum project is
divided into three di�erent roles; the product owner, the Scrum master and
the team:

Scum Master is responsible for the success of Scrum [Schwaber and Bee-
dle, 2001], but does not manage the project. The Scrum master instead
works with the team in de�ning and realizing the goal of the product. While
some aspects of the Scrum master role is project management related, this
role is described as more like a coach ensuring that the other actors follows
the rules laid out by Scrum [Schwaber].

A Scrum Team is the main part of any Scrum project, and is responsible
for designing, developing, testing and in many cases, deploying the software
product. A Scrum team is self managing, self organizing and cross functional
[Schwaber]. It should, according to Schwaber and Beedle, include people with
the necessary skills to achieve the team goal. Developers, testers, architects,
analysts, designers and so on. The ideal team is [Schwaber and Beedle, 2001]
seven people, plus minus two.

The Product Owner is the link between the scrum team and the cus-
tomers and stakeholders of the project. Stakeholders can be management,
users and IT management personell, basically everyone interested in the �nal
outcome of the system. The product owner manages the product backlog on
behalf of the stakeholders. According to Schwaber and Beedle there should
ideally be only one product owner.

Phases In a Scrum Project

Scrum has three main phases; pre-game, development and post-game.



CHAPTER 2. THE GAME: RULES AND TACTICS 27

The Pre-Game phase consists of planning and design. The planning
consists of compiling a initial product backlog. Some high level design can
then be done based on the product backlog. Last in this phase, preliminary
plans for the releases are prepared [Abrahamsson et al., 2002]. The pre-game
phase should be as short as possible [Schwaber and Beedle, 2001].

The Development phase, or game phase, is the agile part of Scrum where
the team actually develop the product. In the development phase the scrum
team is responsible. This phase is treated as a black-box divided into a num-
ber of sprints, where the team is protected from changes. Changes such as
requirements, time-frame, quality, resources, release plans and speci�cations
are handled only between sprints [Abrahamsson et al., 2002], while product
increments are delivered steadily. This makes Scrum �exible, ensuring that
developers are not constantly interrupted, while focusing on frequent and
predictable deliveries.

The Post-Game phase is when the release is closed. This phase is reached
when the requirements are completed, quality demands are met, business
dictates termination or other reasons for closing the project become evident.
In this phase necessary and remaining system testing, documentation and
integration is performed [Abrahamsson et al., 2002].

To highlight, I will illustrate a model Scrum project:

A need for a new scoring system is identi�ed by the President of the Norwe-
gian Rugby Union. They decide to buy it, and hire a consulting company
which have good experiences with Scrum. The consulting company, promptly
identi�es the team and Scrum master while the Union �nds a product owner
which knows what is needed.

The team and product owner then go through a short (1 week) pre-game
phase and creates an initial product backlog. They then hold a sprint plan-
ning meeting, creates the �rst sprint backlog and starts sprint 1. On conclu-
sion of Sprint 1 they present the increment of functionality created, receives
an updated and prioritized product backlog, create the next sprint backlog
and starts sprint 2. After sprint 2, the system has baseline functionality and
is put to use as is.

In the following months, the team �nishes 4 more sprints. After sprint 6,
the Rugby union management is satis�ed and declares that the System has
all the necessary functions and meets quality demands. A short post-game
phase is carried through where the team polishes the user manual. The new
system is then put to use and the rugby union from now on has complete
control of all scored points.



CHAPTER 2. THE GAME: RULES AND TACTICS 28

2.5.2 Studies

As noted in the motivation for the study, the number of Scienti�c studies
on Scrum is relatively low, with a high number of lessons-learned article.
The studies presented brie�y in this section are scienti�c studies of Scrum
implementation. Summarized, their conclusions are that Scrum works well,
especially when combined with other Agile techniques. However, with re-
gard to teamwork it is has some limitations. Reported bene�ts are reduced
overtime, fewer defects, increased customer satisfaction, and deliveries ahead
of schedule.

In Mann and Maurer [2005], the researchers conducted a 2 year longitudi-
nal case-study of Scrum in an industrial case. This organization introduced
Scrum, and some other Agile practices (pair programming, unit testing and
continuous integration). Their �ndings indicated that introducing Scrum de-
creased the use of overtime, and enabled a more sustainable pace for develop-
ers. In addition, the results showed a tendency towards increased customer
satisfaction.

�Customizing agile methods to software practices at Intel Shannon� [Fitzger-
ald et al., 2006] is a 3 year exploratory case study of the use of XP and Scrum.
At Intel, a mix of XP and Scrum was used, where the development depart-
ment tailored their own process based on the available practices from these
two methodologies. Only 6 of the practices from XP was adopted, while
notable modi�cations to Scrum included splitting large tasks across sprints,
and using a two-stage planning process instead of one. The study found that
the a la carte combination of practices worked very well, and led to com-
mited usage. The reported bene�ts of the Agile methods included reductions
in code defect density by a factor of 7 as well as delivery ahead of schedule
in projects of 6-month and 1-year duration.

Moe and Dingsøyr [2008] is a ethnographic study on Scrum and how it sup-
ports teamwork. The �ndings are structured along the �Big Five� from Salas
et al. [2005]. The results were that Scrum does not address the leadership
function su�ciently, lacking clear advice on how to actually implement this.
Backup-behavior and mutual trust are also issues, which might be resolved
using other Agile techniques such as pair-programming.

Two master thesises on Scrum are worth to mention. Lervåg [2006] is a
interpretive study of a Norwegian Scrum project, in some ways similar to
this, but with a broader scope and employing di�erent research methods.
Tøsse [2007] is also a case study on Scrum, but one from another viewpoint,
namely interdisciplinary culture studies. In this study, the main data was
from interviews.



CHAPTER 2. THE GAME: RULES AND TACTICS 29

Figure 2.13: Relationships between the big �ve and coordination mecha-
nisms. From Salas et al. [2005].

2.5.3 Scrum And The Big Five

Teamwork in Scrum is regarded as a black box. While the responsibilities are
divided between roles, the personalities of the people involved are probably
just as important as these. In the previous section, one study on Scrum [Moe
and Dingsøyr, 2008] used the framework in Salas et al. [2005] to discuss
teamwork in a Scrum project. The following section will brie�y compare
theory on Scrum with this framework.

Coordinating Mechanisms

Shared Mental Model



CHAPTER 2. THE GAME: RULES AND TACTICS 30

De�nition [Salas et al., 2005]: An organizing knowledge structure
of the relationships among the task the team is engaged in and
how the team members will interact.

Creating and maintaining a shared mental model is important in order to
understand the task at hand to create a basis for cooperation. A shared un-
derstanding of team members priorities and work situation is also important
in this mechanism [Salas et al., 2005]. Shared mental models directly a�ects
mutual performance monitoring, back-up behavior and adaptability.

This aspect is according to Moe and Dingsøyr [2008] well supported by
Scrum. Involvement by the product owner, planning through backlogs, re-
view and retrospective meetings and the daily Scrum meeting are important
aspects. Co-location of the team is also vital.

Closed Loop Communication

De�nition [Salas et al., 2005]: The exchange of information be-
tween a sender and a receiver irrespective of the medium.

In Scrum, there are essentially four two-way communication links. Developer
to developer, developer to Scrum master, Scrum master to product, owner
and product owner to developer. The daily feedback in the �rst two links
are well supported by Scrum. Closed loop communication with the product
owner is only ensured by review meetings [Moe and Dingsøyr, 2008], but
could be further supported by follow up meetings and communication.

Mutual Trust

De�nition [Salas et al., 2005]: The shared belief that team mem-
bers will perform their roles and protect the interests of their
teammates.

The commitment to sprints as well as protection and reliance on the team
means that Scrum assumes that mutual trust is in place. Without it com-
mitment and keeping deadlines is di�cult [Moe and Dingsøyr, 2008]. There
are no mechanisms in Scrum designed to develop mutual trust, which could
be a challenge for new teams.

Team Leadership

De�nition [Salas et al., 2005]: Ability to direct and coordinate
the activities of other team members, assess team performance,



CHAPTER 2. THE GAME: RULES AND TACTICS 31

assign tasks, develop team knowledge, skills, and abilities, moti-
vate team members, plan and organize, and establish a positive
atmosphere.

Proposition 1: The team leader will in�uence team e�ectiveness
through his or her ability to set or reinforce performance expec-
tations including performance monitoring and backup behavior.

One note on these de�nitions is that existing theory on team leadership
is biased towards individual leadership theory, making direct comparison
di�cult[Salas et al., 2005]. Compared to Scrum, the leadership de�nition
is covered by the the Scrum master and product owner roles, and to some
degree the team itself.

The Scrum master, described as more as a coach, and less as a leader, is
regarded by Moe and Dingsøyr as the central role in Scrum leadership. The
responsibility is to make Scrum work, which compared to the de�nition of
leadership is somewhat unspeci�c. The clear tasks include team protection,
and daily monitoring of impediments in a sprint, but responsibilities may
exceed these signi�cantly, depending on the qualities of the team and prod-
uct owner. One example is setting and reinforcing performance expectations
which is done in sprint planning and sprint review. Setting these is in essence
the responsibility of the team in cooperation with the Scrum master. Re-
inforcing these is a task primarily assigned to the product owner, but the
Scrum master has a participating role.

Mutual Performance Monitoring

De�nition [Salas et al., 2005]: The ability to develop common
understandings of the team environment and apply appropriate
task strategies to accurately monitor teammate performance.

Proposition 2: Mutual performance monitoring a�ects team ef-
fectiveness through e�ective backup behavior.

Proposition 3: E�ective mutual performance monitoring will only
occur in teams with adequate shared mental models and a climate
of trust. [Salas et al., 2005]

Moe and Dingsøyr found that Scrum does not directly support mutual perfor-
mance monitoring, but enables it. The daily scrum meeting is an important
practice, as well as the sprint burndown chart. Review and retrospective
meetings enable discussions on what performance is expected, which is a key
component as unknown performance expectations makes monitoring devia-
tions di�cult.



CHAPTER 2. THE GAME: RULES AND TACTICS 32

Back-Up Behavior

De�nition [Salas et al., 2005]: Ability to anticipate other team
members' needs through accurate knowledge about their respon-
sibilities. This includes the ability to shift workload among mem-
bers to achieve balance during high periods of workload or pres-
sure.

Proposition 4: Backup behavior a�ects team performance di-
rectly by ensuring that all aspects of the team task are com-
pleted.

Proposition 5: The e�ect of backup behavior on team e�ective-
ness is mediated by the team's ability to e�ectively adapt to
changes internal and external to the team.

Proposition 6: E�ective backup behavior requires the existence
of adequate shared mental models and mutual performance mon-
itoring. [Salas et al., 2005]

Back-up behavior is important to Scrum as it is incorporated into the multi-
functional self organizing team [Moe and Dingsøyr, 2008]. While this aspect
is important, there are no mechanisms in Scrum to ensure it functions well.
Adoption of other Agile practices, such as pair programming seems to be a
commonly used way to do it.

Adaptability

De�nition [Salas et al., 2005]: Ability to adjust strategies based
on information gathered from the environment through the use of
backup behavior and reallocation of intra-team resources. Alter-
ing a course of action or team repertoire in response to changing
conditions (internal or external).

Proposition 7: Adaptability of a team has a direct e�ect on team
e�ectiveness.

Proposition 8: E�ective adaptability requires the existence of ad-
equate shared mental models and e�ective engagement in mutual
performance monitoring and backup behavior.[Salas et al., 2005]

Moe and Dingsøyr writes that Scrum is designed to be adaptable, by using
short feedback loops and frequent re-planning. This applies both to task-
related aspects as well as project related ones. Self-organization should be
considered as an enabler of this, because it does not guarantee adaptability,



CHAPTER 2. THE GAME: RULES AND TACTICS 33

but ensures that the team is not bound by too much commitment to plans
or contracts.

Team Orientation

De�nition [Salas et al., 2005]: Propensity to take others behav-
ior into account during group interaction and the belief in the
importance of team goal's over individual members' goals.

Proposition 9: Team orientation a�ects team e�ectiveness through
teammembers' willingness to engage in mutual performance mon-
itoring

Proposition 10: Team orientation a�ects team performance through
team members' acceptance of feedback and/or assistance through
backup behavior.[Salas et al., 2005]

Scrum team members are empowered to commit as to an amount of work as
they see �t, and there is a heavy emphasis on consensus [Moe and Dingsøyr,
2008] when doing planning. Goals are supposed to be clearly speci�ed early
in the project, as well as before each sprint. The team is trusted to divide
tasks internally and to commit to sprints, which can be considered to require
a strong team orientation. Team protection and empowerment should on
the other hand facilitate it, making this a potentially important aspect in
Scrum.



Chapter 3

The Seating Arrangements

The design of a research study is a product of the initial motivation, as
well as the context of the study. In this study, the wish was to study and
gain a deeper understanding of how Agile methods in general, and Scrum
in particular, are implemented and used in a real world environment. This
presented several opportunities to the type of study possible.

The result was an interpretative case-study using ethnographic methods.
This chapter will give a brief theoretical grounding of relevant research
methodologies. Following this the methods used and data gathered in the
study is laid out. The rationale for method choices is also discussed, as well
as the approach to analysis.

Finally, the validity of the study is evaluated based on an existing set of
principles [Klein, Heinz K. and Myers, Michael D., 1999].

3.1 Methodology

The methodology used in research is critical to the nature of understanding
gained. There is a wide range of methodologies appropriate in information
systems (IS) research.

Research in IS has historically been biased towards traditional, empirical and
quantitative research [Galliers and Land, 1987]. Galliers and Land criticizes
this bias which consider IS as purely within the province of technology, and
argues that it is more appropriate to extend a study also into behavioral
and organizational considerations. In later years, it seems that this historic
bias has changed. Two of the methodologies classi�ed in Galliers and Land
[1987] as new, are the descriptive/interpretive methods and action research.
According to Walsham [June 2006], these mainly qualitative methods are

34



CHAPTER 3. THE SEATING ARRANGEMENTS 35

now quite common and a well-established part of the �eld. As a side-note,
research on Agile methods is biased towards case-studies. In Dybå and
Dingsøyr [2008] 72% of studied found were single or multi-case studies.

Generalizing on single-case studies is a debated subject. Walsham [1995]
suggests four types of generalization from interpretive case studies: the de-
velopment of concepts, the generation of theory, the drawing of speci�c im-
plications, and the contribution of rich insight. In addition to these four
types, Rolland and Herstad argues that a �critical case� can give another
bene�t to generalization, namely falsi�cation:

Case studies are useful for falsifying existing theories, because
case studies pays particular attention to context and situations
that might explain why outcome of an action is inconsistent with
theory.[Rolland and Herstad]

This quote can be used to illustrate the intention of this study. Scrum claims
reintroduce �exibility, adaptability and productivity into systems develop-
ment [Schwaber and Beedle, 2001]. Subsequently, performing a case study
can be useful to explore the validity of these claims and shed light on im-
portant contextual factors.

3.1.1 Interpretative Research

Qualitative studies can be done based on a number of di�erent underlying
philosophical assumptions. The interpretative is one of these, which is based
on the assumption that our knowledge of reality is a social construction
of human actors [Klein, Heinz K. and Myers, Michael D., 1999]. Various
artifacts such as language, consciousness, shared meanings, documents and
tools are important to construct this knowledge.

Interpretative research have traditionally been an anthropological research
tradition [Walsham, 1995]. When used in IS they are aimed at understanding
of the context of the system, and the process of how a system in�uences and
is in�uenced the context [Klein, Heinz K. and Myers, Michael D., 1999].

Social dimensions are an intrinsic part of software development, which is
regarded by Sharp and Robinson as mainly a social activity. Shared values,
assumptions, beliefs, and the in�uence of particular individuals are impor-
tant to provide insight into the process. Interpretive research has been used
to understand how software development teams operate, and to facilitate
deeper re�ection on process [Sharp and Robinson, 2004]



CHAPTER 3. THE SEATING ARRANGEMENTS 36

Ethnographic Methods

One methodology suitable for interpretive research is ethnography. This
type of research is originally from social and cultural anthropology. It can
be described as a method where the researcher is immersed in the study for
a signi�cant amount of time, from months to years. The objective is to place
the phenomena studied in their social and cultural context [Myers]. There
are several examples where ethnographic methods have been employed in
information systems research, such as Sharp and Robinson [2004] and Myers
and Young [1997]. According to Myers, ethnography has become widely used
in research on information systems, including research on the development
process.

The primary data source is detailed, observational evidence [Myers], sup-
ported by various types of material; �eld notes, audio and video recordings,
photographs, sketches of physical layout, copies of documents and artifacts
and records of interviews [Robinson et al., 2007]. When doing ethnographic
research Myers suggests three general rules of conduct; that �eld notes should
be written up on a regular basis, write up interviews as soon as possible, and
regularly review and develop ideas as research progresses.

3.2 The Study

The initial with to study Agile methods in practice presented several op-
portunities. The single case studied, and the focus on Scrum was chosen
because of two factors.

• The number of scienti�c studies on Scrum is limited [Dybå and Dingsøyr,
2008].

• A researcher from SINTEF was already involved in a project which
used Scrum.

Working on one case with another researcher provided potential bene�ts for
both, where sharing of research material and someone to discuss the case
with were the two most prominent.

3.2.1 A Choice: Research Approach

Choosing this was inspired by Sharp and Robinson [2004], which highlighted
the usefulness of using ethnographic methods when studying a development
process.



CHAPTER 3. THE SEATING ARRANGEMENTS 37

Another very important factor was that the co-researchers already had adopted
an ethnographic approach. Consequently , the study was decided to be in-
terpretative using ethnographic methods.

Ethical Research

Walsham [June 2006] addresses 3 di�erent ethical issues that are possible
in interpretive research; Con�dentiality and anonymity, working with the
organization, and reporting in literature. These were considered in the study.

The study site, research subjects, projects names or other identi�able aspects
of the study are kept anatomized, both in writing and in pictures. Further,
research material that can identify the people involved is not released and
regarded as con�dential.

Working with the organization was included in the larger action research
project this study is part of. When it comes to identifying organizational
issues, the research subjects were cooperative and willing to discuss the re-
searchers views. The company had entered the research project with the
motivation of getting insight to improve their own processes.

With regard to reporting and possibly portraying the organization negatively,
this was handled by giving the people involved the possibility to comment on
the �ndings. A presentation and feedback-session was held two weeks prior
to the submission, and the company also received an un�nished version of
the document less than one week before the deadline.

Bias

It is important to be up front previous experience and expectations before
starting a study.

During the study, the author was a student in informatics, thus the expe-
rience with software engineering methods was mostly from education. The
initial take on Agile methods was generally positive, and this was reinforced
by studying theory on the subject before the study. By these two factors,
the author recognized an initial slight bias towards Scrum. However, this
bias was negated by limited practical experience.

3.2.2 Fieldwork: Style Of Involvement

Access to the study site was negotiated as part of a larger action-research
study project, EVISOFT which is a national industrial project on process
improvement. When the author got involved in the case (middle of March)



CHAPTER 3. THE SEATING ARRANGEMENTS 38

the co-researcher had been on-site since mid February and was working with
the team on design tasks.

The roles in this study varied in a spectrum of roles from the �involved� to the
�outside� researcher [Walsham, June 2006]. In the beginning of the project
the involved researcher was the dominating role. The co-researcher worked
extensively with the team on GUI-design. Later when the author became
involved, both were active in workshops on high-level design, identi�cation
of concerns and estimation and planning meetings.

In the two �rst development sprints, the author had responsibilities in run-
ning unit tests, and also did some work on setting up automated testing and
building. The Scrum master often asked in daily scrum meetings how testing
was going. In the later parts, this participating role disappeared altogether,
and was replaced by a more passive role.

The co-researcher was in the development sprints generally used as a consul-
tant on process and did not have any directly development related respon-
sibilities. Among other things he was responsible for introducing the index
card wall in the project. In the following quote the Scrum master addresses
the co-researcher in a way which illustrates his position:

Scrum master: Remember to let me know if you come up with
something clever!

From sprint 3 and onwards, both researchers became more outside researchers
which attended but did not participate in meetings. As �gure 3.1 shows, the
number of contacts decreased towards the later stages. Also the median
duration of contacts decreased.

To summarize, our style of involvement was inductive. It is perhaps �tting
to say it evolved with our understanding of the case. In the early stages
much time was invested in working with the team. As the team became more
involved in the work and interesting concepts became clearer, the information
gathering process became more focused towards the research questions.

3.2.3 Data. Lots Of Data

The data collected was from three distinct sources; material from observa-
tions, documents and charts from the computerized process support, and
interviews.

Field notes from participant observation, pictures, documents and other
types of material acquired using ethnographically informed methods formed
the majority of material gathered. The gathering of the material is summa-
rized in �gure 3.1 which shows the distribution of contacts along the weeks



CHAPTER 3. THE SEATING ARRANGEMENTS 39

Figure 3.1: Graph showing the distribution of contacts per week.

of the study. A contact in this context is de�ned as documented communica-
tion between researcher and subject. There were additional meetings, such
as a conference in June, but these were not documented, and is not included
in the summary. Table 3.1 shows the number of distinct contacts ordered by
type throughout the study.

As stated earlier, �eld notes was the major part of material gathered. The
size and scope of these �eld notes varied, from the short impressions after
a quick visit, through detailed summaries of meetings, to transcriptions of
discussions. In some of the �eld notes illustrative quotes was recorded. The
quality also varied much. Some of the earlier notes were, to be honest, very
light on information because of inexperience and lack of focus. However,
the quality improved signi�cantly in the later notes. Pictures was a valuable
addition, and a digital camera was used when appropriate. Other documents
and artifacts included some of the index cards used in sprints.

A lot of supporting material was gathered from the project support system
used (see section 4.3.3 for more details on the software). Among the types of
documents were burndown charts, sprint and product backlog composition,
sprint views (sprint backlog with the estimated remaining e�ort for each item



CHAPTER 3. THE SEATING ARRANGEMENTS 40

Type of contact #

Participant observation 23
Daily Scrum meeting 19
Sprint review meeting 6
Sprint planning meeting 4
Retrospective meeting 1
General meetings 7
Other (email, telephone etc.) 6

Table 3.1: Distinct contacts through the study.

through a sprint) and other Scrum-related reports. Various types of project
documentation was also gathered from this system, as these documents usu-
ally were stored in the integrated content management system. In addition,
this software suite featured data-warehouse capabilities on source-control,
and this was also used to some extent. Some of these data are included in
appendix A.

The �nal data source was interviews of the 3 developers and the Scrum
master. These interviews were performed in the middle of December at the
study site. Each interview was aimed to last approximately 30 minutes, and
the interview guide (included in appendix B) was sized accordingly. The
author and the co-researcher performed the �rst interview together and then
did the remaining 3 individually.The interviews were then transcribed by
the author and put into a summary sheet where the answers from all of the
interview subjects could be easily compared.

In retrospect, some additional material could have been helpful. E-mails
between developers and the product owner, personal notes taken by the
Scrum master, and data from the company's time-keeping system could all
contributed to a better understanding of the process. However, the amount
of data gathered is quite extensive and one have to say stop at one time.

3.2.4 Use Of Theory

Walsham [1995] suggests 3 distinct examples of how theory can be used in a
case study.

1. As an initial guide to design and data collection

2. As part of an iterative process of data collection and analysis

3. As a �nal product of the research

This study uses theory in both role 1 and 2, which is related to the two
speci�c research questions; RQ1 and RQ2.



CHAPTER 3. THE SEATING ARRANGEMENTS 41

In RQ1 the idea was to study a Scrum project and compare the process to
existing theory on the subject. This did from the authors perspective mean
that it was important to have a good knowledge of theory before starting
the study. Notable theory includes general studies on Agile methods such as
Abrahamsson et al. [2002], Boehm [2002], Highsmith [Sep 2001], as well as
more Scrum-speci�c material [Schwaber and Beedle, 2001, Fitzgerald et al.,
2006].

Walsham [1995] warns that this use of theory presents a danger of seeing
only what the theory suggests. This warning was given weight throughout
the study, and it was emphasized to keep an open mind to �deviations� from
theory. It should be noted that the action-research parts of the study, meant
that the researchers probably in�uenced the implementation somewhat to-
ward a more strict implementation of Scrum. This use of theory does however
not necessarily mean that theory was treated rigidly. It was rather an initial
starting point for all of the parties involved which facilitated further work,
and the author �rmly believes that the �ndings con�rm this.

The secondary research question, RQ2, was adopted in the later stages of
the study, and was directly linked to the framework in Salas et al. [2005]
on teamwork. This framework had previously been employed by my co-
researcher and my supervisor on other cases, and using it in this case could be
useful for comparison and presented opportunities of multi-case publications.
The analysis done when deciding to use this theory, revealed that our data
was inconclusive on some of the aspects of teamwork discussed. With this in
mind, the interview guide used in the interview had a few questions angled
towards how teamwork had functioned in the project.

3.2.5 Analysis

Analyzing interpretative research is a process which often requires some time
and is described as a cycle of data gathering and analysis Walsham [June
2006].

Walsham [June 2006] writes that analysis of interpretative data when using
theory to guide the research, often leads to the researcher to understand and
form data-theory links while doing the study. Compared with this study the
description �ts well as theory on Scrum was the initial starting point and
guided further data gathering as understanding evolved. Continuous analysis
was done through frequent discussion with the researchers involved in the
case, namely the author, the co-researcher and the supervisor. Discussions
which were valuable to guide and improve data gathering. The amount and
variation of data gathered did however require a more systematic analytical
approach in the later stages in order to better understand the case.



CHAPTER 3. THE SEATING ARRANGEMENTS 42

In October the �eld notes then gathered was coded thematically using a
software suite designed for qualitative research 1. While this was a valuable
way to read through the data, the themes identi�ed was not used in the later
stages of the analysis and was not re�ned further. The reason was that this
way of handling the data felt too rigid, much like the lock-in e�ect described
in Walsham [June 2006]. Coding all of the data thematically was a very
time-consuming process which was di�cult to justify by the insights gained.

A di�erent approach was then tried. Inspired by the contact summary sheets
in Miles, Matthew B. and Huberman, Michael A. [1994, pages 54-56] the
material was processed and distilled into weekly contact summaries. The
approach described di�ers somewhat from the actual summary forms used;
One di�erence is that the summaries are supposed to be based on write ups
of the raw data, while they in this case were based on the raw data alone.
The described approach also states that the summaries should be at the most
one page, while some of the �nished summaries were 3 or four pages.

These di�erences probably contributed to making the summaries more com-
plex than the example summary forms provided, but they were useful in the
same way as described; as practical way to do �rst-run data reduction with-
out loosing too much precision. The summaries used the following template:

• Encounters - A list of the weeks contacts; date, researcher and nature.

• Summary - Summary of the data gathered that week.

• Events - Notable events.

• Process - An evaluation of the process used according to theory.

• Key observations - The most important observations.

• Quotes - Notable quotes from the material.

• Pictures - Notable pictures taken.

Compared to thematically coding the raw material, this technique was per-
ceived by the author as much more open-ended and valuable. While some
precision is always lost using such a technique, the source material was used
as a reference when needed. The summaries was used as a source when doing
the �nal analysis.

Further analysis was then done while iterating between writing this the-
sis, reviewing the summaries and more writing.. Discussions with the other
researchers were also common, and an analysis-workshop was held where
the case was analyzed thematically using post-it notes and whiteboard (see
�gure 3.2). About three weeks before deadline, the author had a presenta-
tion and feedback session for the team and other interested parties in the

1NVivo7 by QSR software



CHAPTER 3. THE SEATING ARRANGEMENTS 43

Figure 3.2: Analyzing with post-its and whiteboard.



CHAPTER 3. THE SEATING ARRANGEMENTS 44

company. The subject were the preliminary �ndings, and some issues were
discussed.

While the analysis probably could have been done more systematic, the fol-
lowing quote from Walsham inspired and guided the process, and is perhaps
a �tting summary of the analysis work:

I believe that the researchers best tool for analysis is his or her
own mind, supplemented by the minds of other when work and
ideas are exposed to them [Walsham, June 2006].



Chapter 4

Match Day: Live Scores

This is the main chapter of this thesis, where the actual �ndings are pre-
sented. The aim is to give the reader an understanding of the study, empha-
sizing the details relevant to the research questions.

It is divided into three sections; the �rst section presents the project and
surroundings, the second section give a chronological overview of the project,
the third section describe the development process and the implementation
and use of Scrum.

4.1 Background

The study took place in the development department of a medium sized
Norwegian company, studying the development of a system for use internally.

As the organizational chart in �gure 4.1 shows, the company had 3 regional
divisions with one separate ICT division. These regional divisions, with of-
�ces scattered throughout most of Norway, was the actual customer of the
project, and represented the company's core business. The ICT division,
consisted of a consulting department, an IT management department, and
a development department. These departments main business were develop-
ment and maintenance of a series of o�-the-shelf software products developed
in-house. They were also reseller of some products. Additionally, the devel-
opment department did projects for external customers.

4.1.1 The Development Department

The development department had approximately 16 employees, divided into
a Java and a .Net department. Generally, the atmosphere in the development

45



CHAPTER 4. MATCH DAY: LIVE SCORES 46

Figure 4.1: Organizational chart

department was informal and relaxed with little visible internal hierarchy.
The department head (and also project Scrum master), was located in the
same open-plan o�ces as developers.

The open-plan o�ces were a relatively recent introduction. The department
also had some experience with Scrum as it had been used on an earlier
project, with mixed results. During the study there were started two new
projects using Scrum, and there was generally much interest in using Agile
methods among the developers.

Scrum is advertised to be e�ective in handling noisy projects [Schwaber
and Beedle, 2001], and categorize noise along two axes, technological and
requirements. In this project, these two factors were relatively stable. There
was however much noise in the project, but this was related mostly to the
surroundings of the project. Especially two practices were problematic, and
these are described in the following sections.

The Quagmire

The quagmire is a term which was on a few occasions used by the devel-
opers to describe some aspects of the company culture. These aspects were
in large part related to the lack of a dedicated software support and man-
agement department, but also to the number of projects. The quagmire
describes when a developer is stuck with supporting functionality developed
in a earlier project, and is forced to use time on this even when engaged on
other projects. One of the developers explained it in the following way:

Developer: Over time it has become common, that if you take re-



CHAPTER 4. MATCH DAY: LIVE SCORES 47

Figure 4.2: A humorous take on the quagmire. TheWhiteboard reads �Emer-
gency center�



CHAPTER 4. MATCH DAY: LIVE SCORES 48

sponsibility for something, then you are stuck with it for eternity.
This can lead us to avoid responsibility.

The developers felt this situation was di�cult. They would often use time
responding to requests from earlier customers, because they were the only
ones capable of doing so. Another developer coined it the following way:

Developer: I don't think management knows how much time we
spend on the changes we perform. And I don't know if the com-
pany is paid for work done on maintenance and changes. As an
example, related to the SMP-project. It has been a continuous
emergency situation the last period. It is a lot of work, continu-
ous �re �ghting.

Also the Scrum master, who was head of the development department was
frustrated with this situation.

Scrum master: Generally, it is customer follow up; support work
that consumes time, especially so with Greg and Allison. There
are some customers that are completely dependant on support.
We don't have any other department that can handle this.

There was talk about establishing a separate support and management de-
partment, but this did not materialize during the project.

Parallel Projects

It was quite common that developers were involved in several projects at the
same time. Only newly hired developers were spared of this.

This situation a�ected the developers in some ways. One was that frequent
meetings, customer contact and noise from other projects meant that they
were occupied with much more than development. There probably existed
signi�cant overhead, which sometimes would leave little time for coding.

Developer: I get really frustrated when I barely can write a single
line of code.

Projects that mostly were �nished was also a real concern for the develop-
ers previously assigned. One of the developers noted the following about a
project which was being implemented at the customer:

Developer: I feel that this project is going to be long, it is grad-
ually turning into a nightmare.

This project was essentially �nished, and the rest of the developers had
ceased to work on it. However, there still remained work, and getting as-
signed to a new project still meant that this had to be done. Through this,



CHAPTER 4. MATCH DAY: LIVE SCORES 49

the developers felt that it was di�cult to get the opportunity to �nish, pro-
ceed and focus on new projects. Previous project managers and customers
would still interfere and give assignments.

The product owner was also aware of this situation. In one of the review
meetings, the product owner jokingly expressed that he wished the project
was on a �xed-price contract. This illustrates that while the project was pri-
oritized by management, it still competed with other projects on resources.
As an internal project, it was sometimes more important to priorities outside
customers, a view which was reinforced by the developers.

4.1.2 The Project

The study object was a project doing the redevelopment of a software package
used internally in one of the company's core areas, The operators of the
software used it in day to day operations when dealing with the customers
handling reports used in coordination activities. The volume of reports are
linked seasonal constraints. Winter is the low season and the high season
begins in March/April. The seasonal constraints gave a relatively narrow
time frame for introduction of a new version of the software, and a quite
�rm deadline for completion of the project which initially was January 1,
2008.

The old version (version 3) was developed and maintained by a consulting
�rm. Version 3 was relatively mature, but the company wished to maintain
and develop the software internally. The motivations was to take control
of core systems, and to improve the software used by operators in order to
reduce the time used on handling a report. Management decided to develop
a new version from scratch in-house using newer technology1, and the project
can subsequently be called a re-enginering e�ort, although with new features
added.

Curiously, the project never had a proper vision statement for the project,
even when the Scrum master asked the product owners several times to create
one. �We want to create a system that can grow� was at one time mentioned,
but this was never used as the o�cial one. Uno�cially, the intention of the
project was to create a system which had the same functionality as the old
one, but did the same tasks more e�ciently and added certain functions.

As previously described, the development department had several parallel
projects. According to the team the project had a high priority from man-
agement, but was prioritized higher towards the later stages. This picture

1The new software is developed on the .NET platform using Microsoft Visual Studio
Team System, from now on abbreviated VSTS



CHAPTER 4. MATCH DAY: LIVE SCORES 50

Figure 4.3: Part of presentation showing some of the di�erent projects in
the company

is consistent with other data; In the early stages, comments from the prod-
uct owners as well as the priorities in the �rst sprints, suggests that the
early stages was in some respects a proving ground to see if the project was
worth going for. Figure 4.3 reinforces this view. The changes done in the
later stages further suggests increased priority, and supports the statements
about priority increasing towards the end.

Prioritizing a project over another was di�cult, and the Scrum masters dual
role probably also interfered. At one time, another project was put into
production where two of the developers from the project were involved, and
consequently the progress on slowed down leaving the 100% developer more
or less alone. There were also several times where other projects were dis-
cussed in the daily Scrum meetings.

The Team

Initially the project consisted of 2 developers and 1 scrum master (see ta-
ble 4.1). Also, two product owners were involved2. The project had a man-

2When discussing the product owner role, the plural form is used in situations where
both product were involved, as in review meetings, and single form when referring to



CHAPTER 4. MATCH DAY: LIVE SCORES 51

Figure 4.4: Experiences from a retrospective after the previous Scrum
project.

agement group, overseeing progress and budgeting on a higher administrative
level. A third developer joined the team late in sprint 1 3

Scrum Experience

The teams previous experience with Scrum in�uenced the project. Two of
the three developers, as well as the product owner participated in an earlier
Scrum project. The experiences from a retrospective after this project is
shown in �gure 4.4, which lists a number of concrete measures to improve
the process. This project had been a turbulent one with regard to Scrum,
and the developers referred to this on many occasions.

The Scrum master did not have previous experience as a Scrum master,
but had access to the experience reports and results from retrospectives in
the previous Scrum project. With regard to training, the entire development
department had a 1-day Scrum-workshop led by SINTEF prior to the project,

Product owner 1 (see table 4.1).
3Team is used about the developers and Scrum master.



CHAPTER 4. MATCH DAY: LIVE SCORES 52

Name Description

Scrum Master Scrum master for the project as well as manager of
the development department. Has a technical back-
ground, and participates in some development work
towards the end of the project. Attended Scrum mas-
ter certi�cation with Mike Cohn in September.

Developer 1 The main developer on the project, and the only one
with close to 100% time allocated. Was newly hired in
the company when the project started, and graduated
with a masters degree in 2006. Worked on a start-up
after graduation.

Developer 2 Have 5 years of experience in the company. Was gen-
erally involved about 30-40% on the project, more in
the last 3-4 months. Participated in an earlier project
which also used Scrum, and was working on two par-
allel projects in addition to this. Became a certi-
�ed Scrum-master halfway in the project at the same
course as the Scrum master.

Developer 3 Was the last developer added to the project, and
started working on it in sprint 1. Used about 30%
of time available on the project. Has worked in the
company since 2005, and worked on with Developer 2
on the earlier Scrum project, which he also worked on
during the study. Was also involved in the same two
parallel projects as Developer 2.

Product Owner1 The main product owner, who the team communicated
the with. As he is located in another city, teleconfer-
ences were used when he was unable to attend impor-
tant meetings such as sprint review.

Product Owner2 Was involved in some of the earlier work, and has been
to most of the review meetings. Is based in another
city. Non-technical background, but has experience
with the old version of the software, and has been in-
volved with several earlier development projects. Is in
practice more a project manager than actual product
owner.

Development Chief Certi�ed as Scrum master along with the Scrum mas-
ter and Developer 2. Was generally not an active part
of the project.

Regional Manager Part of the management group for the project. At-
tended at least one review meeting.

Table 4.1: Key actors in the project



CHAPTER 4. MATCH DAY: LIVE SCORES 53

which he attended. In sprint 4 the Scrum master together with one of the
developers �nished a Scrum master course.

Engineering Practices

Scrum does not specify engineering practices, and can be used to encapsulate
the existing practices. Encapsulation was also the main theme in this project,
although some new practices were adopted as it progressed.

Automated building of the system was employed throughout most of the
project, except from the �rst two sprints. In sprint 3 the team started auto-
mated building of the system, through the integrated build system in VSTS.
A build was started when a developer checked in code, and the development
team was then noti�ed by email of the status of the build. The main reason
for this was said to be a need for improved synchronization when the team
worked on overlapping parts of the system.

In most parts of the project, there was little organized user testing. Unit
testing was tried to some extent in sprints 1 and 2, but was not carried out
at later stages. The developers would test while developing, demo, and �x
what was commented in the in review meetings. The product owner did
also do some testing during the sprints, and gave feedback through email,
telephone or other means.

The developers indicated that the approach described was the usual way to
do testing. Although the Scrum master wished to introduce unit testing, it
was not really adopted by the team. The reasons are unclear. One of devel-
opers expressed that he found it hard to create proper unit test, suggesting
that lack of training was a factor. However, it was probably a lack of interest
and perceived bene�t that prevented unit testing from gaining traction. As
one of the developers put it:

Developer: We have managed without testing for many years, so
it should be OK.

The Setting

Scrum advocates open-plan o�ces to facilitate communication between team
members [Schwaber and Beedle, 2001]. This was also the case in this study.
The entire development department, of approximately 16 persons, is located
in an open-plan o�ce with 4 separate islands with 4 desks per island. The
team members on this project were co-located on one of these islands. The
Scrum master sat in the 5 �rst sprints at another island, but moved to sit
with the developers from sprint 6.



CHAPTER 4. MATCH DAY: LIVE SCORES 54

Figure 4.5: The teams �island� in the development area

In addition to the actual desks needed for day to day development, a meeting
room was used to conduct the daily Scrum meetings, review meetings and
other collaborative activities. This meeting room was down the hall from
the development, and was shared with the rest of the company. It had a
projector, equipment for teleconferencing, and seating for 8-10 people. In
the later stages of the project, a Nintendo Wii gaming console was hooked
up to a big screen TV and set up in the development area. The developers,
and sometimes people from other parts of the company, occasionally played
Wii:Sports game on this during the working hours. At one recorded occasion,
the division head joined the developers for a game of tennis.

4.2 Project Overview

The project started in February 2007 and was scheduled to �nish develop-
ment by end of the year. As it progressed the use of Scrum evolved consid-
erably, and viewed in hindsight, was done in four distinct phases; pre-game
Scrum, everyday Scrum, emergency Scrum and post-game Scrum.



CHAPTER 4. MATCH DAY: LIVE SCORES 55

Figure 4.6: O�ce �oor plan

Figure 4.7: Timeline of the project with some important events. E�ort is
visualized by the height of each sprint, with average hours per work day
under the sprint number.



CHAPTER 4. MATCH DAY: LIVE SCORES 56

Ergonomic factors

Physical Layout Open space, team in same desk is-
land

Distracton level of o�ce space Medium
Customer communication e-mail, tele conference, meetings

Geographic factors

Team location Collocated
Customer cardinality and location Two, one primary, both in another

city.
Supplier Cardinality and Location Multiple; both remote and local

Sociological factors

Team size (developers) 1+2
Team education level Masters: 3
Experience level of team <5 years: 3
Domain expertice Moderate/Low
Language expertice Low/High
Experience of Project Manager Moderate
Specialist available None
Personell Turnover 33%
Morale factors Many parallel projects

Project speci�c factors and Software classi�cation

Software classi�cation Information system
Delivered user stories 214
Domain Industry speci�c
Person Months 25
Elapsed Months 10
Nature of project Reengineering with enhancement
Relative Feature Complexity Moderate
Project Age 0
Constraints Date Constrained, Resource con-

strained

Table 4.2: Context factors in the study. In�uenced by Williams, L. et al.
[2004].



CHAPTER 4. MATCH DAY: LIVE SCORES 57

To follow up on the football metaphor, the team planned their tactics prior
to the match and played a semi-decent �rst half. At half-time they realized
that they were behind 1-0, and decided to step up their e�orts. In the second
half of the match, they equalized and �nished 1-1. As the study ended, the
match went into overtime.

4.2.1 Pre-Game: February To April

At the start of this study, in February, the project had just started the pre-
game phase, and went through early analysis, design and planning. At this
early stage, the future of the project depended on a bid the company had on
another project. As �gure 4.3 shows, the project would halt or downgrad the
e�ort for a few months if the bid was won, and then restart in the autumn.

The vision for the pre-game phase was as follows:

Describe the user interfaces which will need change

This vision highlighted that the project in essence was a re-engineering ef-
fort. Most of the user interface and functionality was based on the previous
version, but some parts of this was to be improved.

To do this the team employed white-board and paper based prototyping
combined with a digital camera to create and document the interfaces (see
�gure 4.8). In addition, some diagrams were made to better understand the
work�ow.

This work was done by one of the developers and the Scrum master in co-
operation with one of the researchers. The main source for this work was a
document created by the primary product owner, describing the interfaces
that needed change. Questions was generally directed to one of the product
owner by mail. Apart from this, there was limited user interaction.

After �nishing most of the interface design, the project started a 14 day long
'design sprint', where one additional developer and one researcher became
involved. The tasks performed in this were: high level architectural design,
data and information modelling and identi�cation of risks and concerns. A
number of concerns were identi�ed. Among others were performance, exter-
nal dependencies and development resources. To quote one of the product
owners when reviewing these:

Product Owner: I'm always pessimistic with regard to getting
resources. This I know from experience.

During the design-sprint, the product owner created the initial product back-
log. The basis for this was the user interface sketches created earlier, and



CHAPTER 4. MATCH DAY: LIVE SCORES 58

Figure 4.8: Interface design using whiteboards



CHAPTER 4. MATCH DAY: LIVE SCORES 59

this was re�ected by the �nished backlog. The initial backlog was quite long,
and had large variations on the granularity items.

As mentioned earlier, it was at this point not certain whether the project
would be started or not. This was due to the competing project but also
because the scope of the project was unknown. The management group
wanted the Scrum master to give an estimate on the total e�ort required.
To create this, all items in the product backlog was estimated using planning
poker, creating a total of about 3000 hours. These initial estimates were the
basis for the planning of �rst sprints, although they were re-estimated later
in the project.

At the end of the design sprint, the team received the initial product backlog
which was then estimated (see section 4.3.1. Also, a preliminary release plan
was created, and together with the product owners, the team performed a
planning meeting for sprint 1.

4.2.2 Everyday Work: April To October

From the start of sprint 1 in April, to the end of sprint 5 in October, the
team worked on the project using 30 day sprints. Progress was generally OK,
and both the Scrum master and product owners were reasonably satis�ed at
the review meetings as pieces of functionality was delivered.

In sprints 1 and 2 the team used some time to explore the capabilities of the
new project support software suite. This suite integrated most aspects of
the projects into the developers IDE4. This exploration included engineer-
ing aspects such as unit testing and automated building as well as process
tracking (see 4.3.3).

One recurring theme in this phase, was that the team never actually �n-
ished any of the sprint backlogs. This was usually planned beforehand (see
section 4.3.2 for a more in depth discussion of this). The burndown charts
in �gure 4.9 and 4.10 illustrates this tendency. Interestingly, sprint 4 was
regarded by the team as one of the best sprints, but as �gure 4.10 shows,
the sprint was far from �nished.

The priority in the �rst sprint was on creating functionality which could be
integrated with the existing version of the system. The team was not thrilled
with patching the old system, as they wanted to get on with the new one,
but accepted the product owners priorities and produced modules which was
then tested and put into the production environment. The name of sprint 1
is a good illustration of this:

4Integrated Development Environment



CHAPTER 4. MATCH DAY: LIVE SCORES 60

Figure 4.9: Sprint 1 Burndown Chart. Unlike theory, this sprint never
reached 0 hours left.

Figure 4.10: Sprint 4 Burndown Chart. While regarded as one of the better
sprints, also this failed to reached 0 hours.



CHAPTER 4. MATCH DAY: LIVE SCORES 61

Sprint 1: Patching - GSys3

Beyond this initial priority, the product owners had relatively few concrete
priorities on functionality. It is perhaps best summarized by the following
quote:

Scrum master: Do you have any sensible views on priorities be-
yond what we have already discussed?

Product owner 2: No, beyond this we want you to work in a
sensible sequence.

As described in 4.1.1 two of the developers were involved in other projects.
This a�ected priorities, especially in this phase where there generally were
little protection of the developers from other tasks. The other projects also
had emergencies, major releases or other things which meant that these two
developers had to down-priorities the project.

This situation was planned, but often meant that the project had even fewer
resources than planned initially. Sprint 1, 2 and 5 was impacted by this, as
these sprints used only 60 - 75% of the originally allocated hours (this is ac-
cording to the number of hours reported by the Scrum master, see appendix
A). On average, the project used only 82,5% of the resources planned in the
everyday period. This also made the full time developer responsible for the
majority of e�orts on the project.

Towards the end of sprint 4, it became apparent that the everyday pace might
be too slow to �nish the required functionality on time. This was discussed
when planning sprint 5, but no measures were taken. The team hoped that if
everything went well in sprint 5 it would still be possible to �nish as planned.
Sprint 5 did however not go as planned, with signi�cantly less progress than
hoped for. The following quotes are from the review meeting after sprint 5:

Scrum Master: If we had the resources we had when we planned
the sprint, things would have been OK.

Scrum Master: It has been interferences from others outside of
the project that has stolen time.

4.2.3 Emergency Scrum: October To Christmas

In the sprint 5 review the team and product owners knew that they could not
�nish the required functionality on time with the everyday pace. They had
to �nish the product backlog in 2007, because of the seasonal constraints.
Based on the earlier sprints this was unrealistic. To quote ScrumMaster:



CHAPTER 4. MATCH DAY: LIVE SCORES 62

Figure 4.11: Sprint 6 Burndown Chart

Scrum Master: We need to prepare for the fact that we probably
won't �nish by sprint 6

The product owner was somewhat surprised that this was an issue:

Product Owner: This was an unexpected problem. Actually, it
was two unexpected problems.

What the product owner meant by two unexpected problems is uncertain.
However, after considering the options available, and discussing these with
management, the following measures were put into action starting sprint 6.

• 14 day sprints which gave 4 sprints before Christmas. The motivation
was to increase control and throughput.

• Team protection which involved notifying other parts of the company
and protecting them from interruptions 3 days a week.

• Relocating the Scrum Master to sit with the team and use him as a
developer when available/necessary.

• Overtime; not forced and kept within reasonable limits.

These measures worked well, according to some of the team members they
worked better than expected. As �gure 4.11 shows, the 14 day sprint 6 almost
completely �nished the sprint backlog, which was comparable in scope to
what was �nished in the earlier 1-month sprints.

The developers reported an increased sense of urgency in the project at this
time. The most important change was the increased use of time, which



CHAPTER 4. MATCH DAY: LIVE SCORES 63

the team members could spend mostly on the project, and work relatively
uninterrupted. Overtime was also used to some extent, and this probably
improved progress further.

The interruptions didn't stop completely; sometimes because the developers
felt obligated to respond to a request from a customer, or because they were
assigned tasks (sometimes from the Scrum master which also managed other
projects). When compared with the everyday situation it was however a big
improvement. The protection worked best when the Scrum master was in
the area, but they also felt it easier to say �no, I'm busy� when asked about
something.

As progress improved, the introduction date became more feasible. There
was however very little slack. Towards the end of the year there was still
items left in the product backlog, but the most important parts were com-
pleted. In sprint 8 one of the developers had an accident which resulted in a
sick leave for the remainder of the year. This reinforced the general feeling
among the team that although the system could be delivered on time, some
parts would still require some work. One of the developers explained this in
the following conversation.

Researcher: Do you think you will manage to deliver what you
are supposed to?

Developer: I think that when we reach that date, then we have
something, but I believe that there still remains a long list of
things that are missing or that doesn't function very well.

This feeling was probably shared to some extent with the product owners,
and there was talk in review meetings on a having later releases; 4.1, 4.2 and
so on. The following conversation from the sprint 7 review meeting provides
some insight in this:

Product owner 1: Can we conclude that we will get a system
before Christmas?

Scrum master: You will get a system before Christmas.

Product owner 2: The question is what kind system we will get.

<laughter>

The system was still relatively untested, and user testing started in the
middle of December, about a week before the Christmas holiday.

In the start of the emergency-phase, one of the developers expressed concern
that the focus on process would decline towards the end of the project,
giving way to more individual and uncoordinated work than earlier. It is
not evident that concern did manifest itself, but the burndown chart for



CHAPTER 4. MATCH DAY: LIVE SCORES 64

sprint 8 (see appendix A) indicates that the team stopped writing down
tasks in the computerized system. One thing that seemed to function also
toward the end was cooperation in the team, based on statements made in
the interviews as well as observations.

4.2.4 Post-Game: January And Beyond

The study ended before sprint 9 was �nished. The project was not �nished,
but entered the post-scrum period shortly after. The plan after this was
that the team would use January for user testing, bug�xing, training and
integration work, before integrating the system into production February 1.
Before sprint 5, the plan was to introduce the system 1. January, but this
was as previously noted, pushed back a month. Before the post-game phase,
in late December, the team was not looking forward to this period, fearing
that this would be a hectic period requiring a lot of work.

When the preliminary �ndings of the study were presented, the Scrum master
revealed that the systems introduction was pushed back another month to
March. This was credited partly to an extended sick-leave, but probably also
because the team needed more time to do system testing.

4.3 Applying Scrum

Scrum has quite a bit of wiggle room on how to actually implement the
practices. In addition, it is never an easy task to comply 100% when a new
process is introduced, and it might not be bene�cial to do so.

This section describes how the team implemented and used Scrum in their
process through estimation, planning, sprinting and adapting. It also de-
scribes bene�ts and problems in the development phase, and how Scrum
played a part in these.

4.3.1 Estimating

When the product owner �nished the product backlog in the pre-game phase,
the team had an estimation meeting where all the items in the product
backlog were estimated. This was a relatively quick process using planning
poker5 which received quite positive feedback by the team members. Two of
the developers, the Scrum master and one of the researchers attended this

5Planning poker is a wide band delphi technique, using a special card deck as the
medium. Described in Haugen [2006]



CHAPTER 4. MATCH DAY: LIVE SCORES 65

Figure 4.12: Estimation meeting prior to sprint 3

meeting. Later in the project, the team had additional estimation meetings
where the initial estimates were estimated.

Planning a backlog item, used the following process: The Scrum master
selected an item from the product backlog which was then considered by
the estimators. Using the cards from the Fibonacci based card deck, the
participants would show their estimate at the same time. Sometimes the
team would discuss their numbers and re-estimate, but usually the median
value of the card values was used as �nal estimate. The estimates were
logged in a spreadsheet, and put into the product backlog.

The estimation unit used was hours. The estimates was often compared with
the number of logged hours, to get a feeling for the estimation accuracy. As
seen in Appendix A, this was on average through the entire project about
90%, meaning that the estimates usually was a little bit higher than time
reported. The estimates was frequently referred to later, and they were
especially important in review meetings (see section 4.3.3).

4.3.2 Planning

There was relatively little architectural or high-level planning done.



CHAPTER 4. MATCH DAY: LIVE SCORES 66

Figure 4.13: Part of the product backlog shown in VSTS

The team did some work in pre-game phase through meetings where the
arhictectural design was discussed. They also addressed data design, the use
of architectural patterns, and the main concerns for the system. These were
however used as a starting point, and did in not remain set in stone through
the project.

Towards the end of the pre-game phase the Scrum master and product owner
created a rough plan of the later sprints, where areas of desired functionality
was distributed in the available time. There was no planning of dependencies,
milestones or freeze-points.

There were two artifacts important in the long and short term planning
process. Namely the product and the sprint backlogs:

The Product Backlog

The product backlog was the starting point for the development phase, and
work on this started in the design-sprint after the interface design was �n-
ished. These interface sketches, combined with the existing system was the
basis for creating the product backlog. This becomes quite clear when re-
garding the �nished backlog, which was focused towards the graphical user
interface6. Scope of these items varied with regard to implementation from

6GUI - Graphical User Interface



CHAPTER 4. MATCH DAY: LIVE SCORES 67

trivial to potentially very complex. Sometimes an item could be a simple
task such as adding a textbox to modify an attribute:

Add request description

Other items required signi�cant work on an several levels of the system:

Search for customer using name, phone number, fax

Also, the �nished backlog had according to the team some shortcomings with
regard to describing the system as a whole, as it focused on the changes and
improvements to the existing systems. In some areas the description was
unspeci�c and ambiguous. Other items were large pieces of functionality,
which ideally should have been divided into smaller ones, and which were
estimated to require more than a weeks work.

When developers were unsure of what the these items actually required,
they would usually discuss it with the product owner. However, at some
occasions the product owner wanted to create speci�cation documents for
these modules instead of putting the desired features in the product backlog.
The following conversation from the review meeting after sprint 6, about
uncertainties in a map module, illustrates this.

Product Owner: What kind of speci�cation document do we have
on maps?

Developer: It is kind of vague.

After some discussion the product owner wanted to create a speci�cation
document for this subsystem. This was opposed by the developers, who
wanted a prioritized backlog.

Scrum master: The customer needs to make a speci�cation doc-
ument, however the customer does not need to create a speci-
�cation document which is 50 pages long and detailed beyond
insanity.

Product Owner: Start working on it, and if it proves to require
endless work we can discuss it.

This is perhaps a re�ection of this being a re-engineering project, but it also
shows that old habits die slowly.

The product backlog did change somewhat in the project, but generally
there were few features added to the actual backlog. The meaning, content
and understanding of backlog items did however change, but this was not
re�ected in the name of product backlog items.

Instead, the developers would usually add the new information to the items
comments-section in VSTS (Figure 4.18 shows a screenshot of this). If the



CHAPTER 4. MATCH DAY: LIVE SCORES 68

changes were not recorded there, the developer responsible used printouts
of e-mails or other documentation and kept these on the desk. An item
name could as a consequence of this remain quite di�erent than the actual
feature, as the description and content changed with communication between
developers and product owner.

Despite the shortcomings described, the team was generally satis�ed with
how the product backlog worked in practice. When something was unclear,
the team was quick to ask the product owner for clari�cation, and this did
probably �ll most of the gaps in clarity.

Creating a sprint backlog

Before each sprint, a sprint backlog was created which in essence was a
subset of the product backlog. The product backlog was prioritized on the
di�erent �areas�, and rarely on actual product backlog items. An area would
encompass several related items from the product backlog. This practice was
possibly a natural consequence of the sometimes very �ne grained product
backlog.

Common in all the everyday sprints was that the sprint backlog was �lled
with tasks which had a combined estimated e�ort far exceeding the hours
available. On average, the sprint backlog contained 677 estimated hours,
peaking in sprint 4 with 794 hours. When compared with the average number
available (345 hours) and used (287 hours), unsurprisingly none of these
sprint backlogs were completed.

The team tried several times to limit the number of hours. An example of
this is when planning sprint 3. After planning this sprint they landed on
approximately 300 hours which would have been possible. However after
un�nished and unstarted items from sprint 2 were transferred, as well as
additional items, the estimated total was 624 hours.

Conversations with the Scrum master suggests that this was a conscious
decision in the beginning, and was sometimes related to tasks that where
dependant on external issues, such as training. The basic idea was to not
run out of things to do. Instead of adding items if the team �nished the
sprint backlog, the backlog was �lled so the team always had work.

A consequence of this practice was that the team would have many unstarted
or un�nished tasks at the end of a sprint. These were more or less automat-
ically transferred to the next. When creating the next sprint backlog, they
would not take into consideration the tasks inherited from last sprint, leaving
the sprint backlog over�lled yet again. This became a problematic issue after
a while, because the team would create the sprint backlog before considering



CHAPTER 4. MATCH DAY: LIVE SCORES 69

the remaining work from the last sprint.

Scrum Master: I don't want this many items under started. We
have been burned by that before. Then it is better to move things
away from here.

As the above quote illustrate, even when trying to limit the size of the sprint
backlog, un�nished tasks would remain. This issue was not resolved before
the emergency period, when the 14 day sprints made it easier to size the
backlogs.

The sprint backlogs were usually composed out of tasks that were copied
directly from the parent product backlog item. It also contained orphan
tasks that were unrelated to an actual item in the product backlog, but still
was necessary. An example orphan task from Sprint 7:

Separate test from development environment.

The close link between product items and sprint tasks, can be illustrated by
the average break down factor. When disregarding orphan items, a product
backlog item was broken down to an average of 1.17 tasks.

One thing commented by team members in the interviews, and con�rmed by
the sprint backlogs, was that some sprint tasks were part of several sprints.
As an example, one product backlog item was present in all the sprint back-
logs from sprint 1 to 8, except sprint 6.

The reasons for this was also discussed. The prevailing argument given was
that the developers was afraid of starting on that item/area, because they
felt that they didn't have the required experience to handle it. The item
was then put in the sprints but postponed until it was necessary to do it,
even if the product owner had prioritized this functionality. In the end,
the developers gained the necessary experience on this area through other
projects and felt con�dent enough to start on it.

4.3.3 Sprinting

In the everyday phase the team used 30 day sprints which changed to 14 day
sprints in the emergency phase.

The team could work quite independent, and was free to choose the appro-
priate technical solutions. One that presented itself in sprint 3 was that
the database layer had been created in a less than optimal way, which made
further development more di�cult than necessary. This was during the sum-
mer months, when most of the team was on vacation. However, when the
remaining developer identi�ed this as a problem, he found and successfully
implemented a better solution after quickly discussing it with those present.



CHAPTER 4. MATCH DAY: LIVE SCORES 70

This is a good example of the prevailing work situation in the sprints, il-
lustrating that discussing and then implementing was the norm when faced
with challenges.

O�cially, a sprint started the day after a review meeting, but the team usu-
ally had a few days before doing sprint planning and really getting started.
This time usually used to �clean up� after the last sprint, to �x small prob-
lems which surfaced in the review meetings.

The work in the sprints was controlled by the team using the sprint backlog.
Task distribution was usually discussed in the planning meetings, and de-
cided by the team. The Scrum master stated that he would sometimes give
suggestions on who worked on the di�erent tasks, but the team had �nal
word, and was quite happy with this independence.

One incident related to task distribution happened in December. In the in-
terviews, the team members were asked whether or not they could continue
another members work if this member was hit and injured by the Gråkallen
tram. All of the team members responded more or less positively on this
question. Tragicomically, about one week after the interviews, the main
developer was injured in an accident and became absent on sick leave for
the remainder of the year. Incidentally this gave the remaining developers a
chance to prove what they had earlier said. After a discussion with the prod-
uct owner they decided to postpone the functionality which the unfortunate
developer worked on, focusing on the modules prioritized.

Use Of The Sprint Backlog

The sprint backlog was used in all of the sprints and was a guide to the
day-to-day work situation. The developers planned the sprints based on the
sprint backlog, assigned tasks and used it to control what was worked on.

The sometimes very detailed product backlog and the 1 to 1 mapping had
one implication which was mentioned by the team. When doing small tasks
it was common to work in parallel on the ones that were related. This was
in itself not a problem, but was said to in�uence how they wrote down tasks.

As discussed in section 4.3.2, a recurring problem in the everyday sprints
was huge sprint backlogs. This in�uenced the team's commitment to �nish
a sprint. As they knew that a backlog was too large and impossible �nish,
the commitment to do so became low. It decreased the urgency to �nish.
One developer explains this in the following quote:

Developer: [...] I think that as time in a sprint passed, and we
realized that we wouldn't �nish all the tasks anyhow, it didn't
matter that much whether the sprint was 70% or 90% done.



CHAPTER 4. MATCH DAY: LIVE SCORES 71

The low importance of the burndown chart discussed in section 4.3.3 can be
regarded as one symptom of this. As the team knew they would never reach
zero anyway, and by this regarded the burndown as more or less useless.

Another symptom was that the developers felt that this situation made it
di�cult to maintain a complete overview of the sprint:

Researcher: Do you from sprint to sprint maintain a clear image
of what is supposed to be delivered?

Developer: No, not in the �rsts sprints. But there is more focus
now on what we wish to deliver in the sprint.

Researcher: When did you gain this overview?

Developer: After sprint 3 maybe?

Meetings

The meetings are an important part of Scrum, and was also an important
part of this project. While the use and importance of daily Scrum meetings
varied, they still gave important bene�ts. The review meetings were regarded
as the most important ones, especially as an opportunity to get feedback and
explanation on functionality.

Daily Scrum meetings The Scrum meetings were quite informal and un-
scripted through the entire project, but many of the other properties changed
quite a bit from the everyday to the emergency phase. In the everyday phase,
meetings would take place about 9 (often later) in the main conference room
(see �gure 4.6). The team would sit down, have co�ee and talk about sports
or other events for a short while before starting the actual meeting. It was
then usual to address and discuss project issues, often quite detailed. Due
to this, the meetings were often quite long (15+ minutes). Sometimes in
the beginning of the project, the Scrum master showed the burndown chart,
but this practice vanished altogether after a while. The meetings were not
strictly daily, and when the Scrum master was absent, the team would rarely
have daily meetings by themselves.

There can be several explanations to why the meetings had this form. One
explanation (a recurring one, which a�ected many issues in this project) is
the limited time available to some the developers, which probably increased
the need to discuss technical issues in the Scrum meetings. Another ex-
planation is that the venue was a meeting room, far away from the �home
ground� where the developers had their things, including the index card
wall. Sitting down in a meeting room probably invited to more discussion,



CHAPTER 4. MATCH DAY: LIVE SCORES 72

Figure 4.14: Cartoons next to the index card wall, with a demotivational
postera on the virtues of meetings.

aA demotivational poster is a parody to the more usual inspirational or motivational
posters. As an example, a motivational version of �Meetings� could advertise meetings as
�Two minds think better than one�, while the demotivational version could be �None of us
is as dumb as all of us�.



CHAPTER 4. MATCH DAY: LIVE SCORES 73

as in a proper meeting, instead of the short update-session indented with a
traditional scrum meeting.

Regardless of the format, the daily Scrum meetings was still valuable, prob-
ably especially so for the junior developer. The technical discussions helped
the team maintaining a team e�ort, which probably would have su�ered
without these meetings. In the sometimes chaotic situation with multiple
projects, priorities and interruptions, daily meetings in some ways ensured
team communication. A developer expressed this in the following quote:

Developer: I think we had a positive sprint. If we hadn't used
Scrum we would still be messing about on our individual com-
puters. [...] We would have lost focus on the project as a whole.

In the emergency phase, a lot of things changed, and also Scrum the meetings
was tweaked quite a bit. The Scrum meetings was now held while stand-
ing/sitting in front of the index card wall close to the work area. When
the Scrummaster was absent, the developers sometimes had a short update-
session by themselves in the beginning of the day. The duration was shorter
and there was less technical discussion, suggesting that this was not needed
to the same extent as before as the team members cooperated more of the
time. Although our data from this period is less complete than from the
everyday period, observations and the interviews back up this tendency.

Review meetings The review meetings was according to some of the team
members one of the most successfull aspects of the Scrum in the project.

The review meetings generally had the folllowing pattern: Before the meeting
started, the team did last minute adjustments, bug �xing and wrote down
tasks which could be demoed. The product owners travelled by plane and was
on site for the meeting which would usually start at around 10. If they could
not attend in person, teleconference and desktop sharing was used. Review
meetings were usually around 4 hours, somewhat shorter in the emergency
phase.

When the meeting started, the Scrum master would �rst describe the gen-
eral status of the project; hours used, hours written down, the important
impediments, reasons for few lacking progress and so on. It was quite usual
to have a longer discussion on these things before proceeding. The following
conversation is from one of the earlier review meetings:

Scrum master: After last sprint we created this list and we all
agreed on it. We had inserted too many hours, Greg disappeared
on paternity leave before expected because of his wife went early
into labour, and Howard did not enter the project as planned.



CHAPTER 4. MATCH DAY: LIVE SCORES 74

Figure 4.15: Daily Scrum meeting in the emergency phase

Scrum master: 24 of May we had 600 hours remaining, now we
have 300 hours.

Product owner 1: How can you say that this is good?

Scrum master: If we had the resources we planned when creating
the sprint, things would have been OK.

Product owner 2: OK. The most important thing is that the
paternity leave came now.

Developer: This can't be 300 hours.

Scrum master: No, but we started with to many hours. Next
time we need to start on the right level compared with resources.

Product owner 1: How much of available resources used on the
project were used compared with the planned? This says nothing
of what has you have actually done.

Scrum master: I will make a summary of hours used, and then we
can look at how this compares with hours written down. Then
we can consider the estimates.



CHAPTER 4. MATCH DAY: LIVE SCORES 75

As seen in the above quote, hours were a discussed topic. The tendency
was to discuss hours used and written down in the beginning of the review
meetings, and this persisted through the entire project except from sprint 1.
In these sprints, the hours were used more as a progress measure than in the
beginning. The following quote is from a review meeting in the emergency
phase:

Product owner 2: Good! You have written down more hours
than you have used.

The above quotes are quite typical for the review meetings, also in the emer-
gency phase. Hours written down and used were important when measuring
the success of the sprints. Sprints 3 and 4 were regarded as the most suc-
cessfull sprints in the everyday period, and these had a higher percentage of
hours used than sprints 1,2 and 5.

Worth to note was that team generally perceived the product owners as
positive after the review meetings.

Scrum master: Review was positive as usual.

The next issue on the agenda was demonstration of the functionality pro-
duced. The developer responsible for an area of functionality would do this
demonstration, and the product owner would comment as the demo pro-
gressed. After the demo, the participants would discuss adjustments and
technical details around the functionality produced.

The last item on the schedule was discussions on the next sprint. Here
the Scrum master, developers and product owner prioritized the areas for
the next sprint, as discussed in 4.3.2. After this, the sprint was essentially
planned, and the review meeting was concluded.

Planning meetings As the description of the review meeting shows, the
size of a sprint backlog was essentially determined in the review meeting.
The team still had planning meetings afterwards, in meetings which usually
were around 2 hours long. This was done before all of the sprints. The
agenda was on discussing the progress of the sprint, add orphan items and
discuss possible technical issues. Re-estimation of product backlog items was
also done in these meetings.

Retrospective meetings Only one retrospective meeting was performed
in the project. This was held in week 35 after sprint 3. Quite a few issues
were addressed in this meeting. As �gure 4.16 shows, the team used post-it
notes to identify positives and negatives in the project, as well as possible
improvements. The team members �rst created notes on positive and neg-



CHAPTER 4. MATCH DAY: LIVE SCORES 76

Figure 4.16: Retrospective meeting held after sprint 3.

atives in the project and grouped the notes together depending on topic.
After a discussion, the topics were ranked according to priority. The team
then created new notes with possible solutions to these.

The following list is a summary of the results of the retrospective.

• Dependencies on other projects

• Resources

� Hiring new people

� Prioritize projects

� Other available developers

• Testing

� Create a check-list for testing

� Set a deadline/code freeze some time before a sprint is completed

• Discuss technical choices at daily Scrum meeting

• Meeting/Process/Tasks



CHAPTER 4. MATCH DAY: LIVE SCORES 77

� Developer 1 is responsible for the �nished product

� Daily meetings regardless of who is present

� Do something with the breaking down of product backlog items

As the project progressed, some of these issues were addressed. The majority
of these changes happened �rst in the emergency phase.

Finished! (for testing)

Figure 4.17: Finished-section of the index card wall, week 45.

A important principle in Scrum is the empirical process management, where
the state of a process is constantly monitored and adjusted. The sprint
backlog coupled with the release and product backlog is the one of the two
process management techniques proposed by Scrum project (the other is �rst
hand observations [Schwaber, Chapter 4.3]). One issue related to this but
not covered in detail by Scrum literature is when to declare a sprint task, or
a product backlog item as done.

The criteria for �nishing a sprint task (and in most cases, also a product
backlog item), was not explicitly de�ned in this project. Generally, a task



CHAPTER 4. MATCH DAY: LIVE SCORES 78

was declared as �nished when the developer responsible declared it so. Fig-
ure 4.17 shows the label for the done-section of the index-card wall, which
reads �Finished (for testing)�. The criteria �for testing�, was added quite
late in the project (after week 40), and meant that the developer deemed it
ready for user testing. Organized system user testing began �rst in week 51,
and feedback from this could naturally not be incorporated into the earlier
sprints.

The relatively unde�ned �nished-criteria had a subtle e�ected on progress
measuring. The team naturally wanted to �nish functionality, and especially
so before a review meeting, in order to show progress to the product owners.
This sometimes meant that functionality that was mostly done, but perhaps
had a few known bugs, was declared as �nished even if the developer re-
sponsible knew that some work remained. It was not that uncommon that
functionality being demoed in review meetings crashed, or functioned worse
than hoped for. Usually, some of the remaining work was then done in the
beginning of the next sprint, which can explain why there was little progress
in the starting period of a sprint (as described earlier in this section). Our
data also suggests that this tendency was stronger in the emergency phase
when the pressure to deliver functionality was more acute.

Tool Support

The Scrum process was supported by both computerized and manual tools.

The main computerized tool suite was Microsoft's Visual Studio Team Sys-
tem (VSTS). This integrated most aspects of the development process such
as coding, testing, building and bug tracking with process support. Although
Scrum was unsupported out-of-the-box, a 3rd party plug-in provided sup-
port for most Scrum-related aspects in the beginning, with an o�cial plug
in released in sprint 3.

The product backlog was tracked with description, area, estimates and addi-
tional information of the backlog items (See �gures 4.18 and 4.13 for exam-
ples). Additional information relating to the product backlog features was
added continuously by the developers, for instance after receiving clari�ca-
tion on a issue from the product owner. While this was not done consistently,
the possibility to do so was popular with the team. The product backlog
items were also linked to sprints, and with the related sprint tasks.

Sprint backlog tasks were tracked in much of the same way as product backlog
items. Checked in code could also be linked to a sprint task, but this feature
was not used. As developers �nished tasks, they would write down the
estimated time left. The burndown chart was a product of the sprint backlog



CHAPTER 4. MATCH DAY: LIVE SCORES 79

Figure 4.18: Screenshot from Visual Studio of product backlog showing items
in progress

tracking, and was by this always up to date and available in VSTS or in a
project web portal where project documents could be accessed.

At the start of sprint 3 one of the researchers introduced index cards, and
helped create these initially and later in the project, based on the sprint
backlog. These were then put on a wall in the development area next to
the developers island. As �gure 4.19 show, the wall was divided into three
segments: �not started�, �in progress�, and ��nished�. The wall was well
received by the team and especially by the Scrum master:

Scrum Master: I have got a REALLY good start on your cards.
I think it will be a very good thing to have this visually on the
wall. It will be interesting to follow up on estimates.

The index card wall was after this a very visible part of the project, but
did not replace the computerized system, and the two systems were used in
parallel. Developers would usually update the estimated number of hours
left on the computer, while the index cards were moved from the di�erent
segments of the wall as tasks were started or �nished. One of the developers
said that he would move an index card from left to right in the �in progress�
segment as the corresponding task progressed. A newly started task would
be on the border to �started�, while one that neared �nish in the right of the
segment close to the border of ��nished�.



CHAPTER 4. MATCH DAY: LIVE SCORES 80

Figure 4.19: The index card wall in week 35.

As previously mentioned, the burndown chart was seldom used in the daily
scrum meetings. In large parts of the project it was only visible when the
Scrum Master showed it or when a team accessed it on the computer. This
changed for a while after the introduction of the index card wall, when a
printout of the chart was put on the wall next to the index cards. Although
this was maintained in Team System, and available through the development
environment and in the projects web portal, it was not used to any extent.
The printouts were relatively infrequently updated.

In sprint 6, early in the emergency Scrum phase, the printout of the burn-
down chart was for a short time replaced with a manual version shown in
�gure 4.21. This was at the same time as the team started having the daily
Scrum meeting next to the index card wall. According to one of the de-
velopers, this was to improve visibility of the burndown, but the e�ort was
relatively short lived. The burndown chart was not used to any extent in
the last two sprints.



CHAPTER 4. MATCH DAY: LIVE SCORES 81

Figure 4.20: Index cards. The information is; Task name, Task area, initial
hour, remaining hours.



CHAPTER 4. MATCH DAY: LIVE SCORES 82

Figure 4.21: Manually calculated burndown chart introduced in sprint 6

Closing The Sprint: Measuring Progress

As described in section 4.3.3, an important progress measure in the review
meetings was hours used and not functionality delivered. This did not mean
that the delivered functionality was not important. After sprint 1 the team
had produced a subsystem which was introduced in two of the regional o�ces,
and was according to the product owner well received by the operators there.
In sprint 2 and 3 the team created more back-end systems which was not
as visible. In the later sprints, the team worked on creating the rest of the
system and had more �demo-friendly� things to show in the review meetings.

As the sprints were seldom �nished, ful�lling the planned deliveries of a
sprint was not that important. This was re�ected in the team through vari-
ous remarks and statements in the interviews. Also the product owner was
seldom very concerned in the review meetings when the sprint backlog was
un�nished. The emphasis was more on the actual number of hours used,
than the functionality delivered. This is perhaps not that surprising, given
that the project planned to integrate the system in one big bang rather than
doing it continuously. The whole system in the end was more important
then 3 modules delivered in a sprint, and a missed delivery was a regarded
as a slip and not a tendency.



CHAPTER 4. MATCH DAY: LIVE SCORES 83

4.3.4 Adapting

As described in section 4.2.2, the project fell behind schedule about mid-way.
The team probably knew this quite early, but did not introduced measures
to improve progress before sprint 5 was �nished.

That the team had an idea that things weren't going quite as planned, was
highlighted by several remarks along the way as well as in the interviews.
The lack of resources was an identi�ed concern from the start, and was also
discussed in the retrospective meeting. After the sprint 5 review meeting
one of the developers had the following comment:

Developer: It is strange that it's a surprise to the others that we
won't make the deadline. 3000 hours were allocated, but only
1500 have been available.

The large sprint backlogs and tendency of many un�nished and ongoing
tasks at the end of a sprint probably concealed the actual progress quite
a bit, and contributed to the late discovery of the problems meeting the
deadline. A generally optimistic approach to planning also contributed to
the late discovery, as the team tended to generalize on the best-case sprints
(sprints 3 and 4).

The team, and especially the Scrum master probably needed concrete evi-
dence to justify drastic changes to the process. As these changes were both
internal (shorter sprints, overtime, etc.) and external to the project, justi�-
cation was clearly required by convince management. Some self-justi�cation
was probably also needed.

When sprint 5 didn't go as planned, the team was forced to make changes.
The Scrum master noti�ed the product owners in the middle of the sprint,
and decided on measures in the following review meeting. These measures
are described in the last part of section 4.2.2. These changes were visible
on several levels; The backlogs were generally more adjusted to available
resources, but were still over�lled to some extent. As the timespan was
shorter, the team had a better understanding of the whole sprint. While the
team didn't meet the delivery plan all the time, they were generally much
closer to the target. This, combined with increased team protection and
more time improved sprint commitment considerably. The product owners
were still quite concerned with the number of hours used, perhaps out of
habit.

In the emergency phase, the team and product responded by increasing
both the e�ort (team protection, more time) and control measures. Due
to the narrow time frame left before the deadline, the increased control was
probably needed, as further slips in the planned progress would have been



CHAPTER 4. MATCH DAY: LIVE SCORES 84

critical.

The sprints in Scrum enable and encourage continuous integration and test-
ing. These possibilities were only partly utilized, as described in section 4.1.2.
As the study ended before organized full scale system testing had started, we
have little data on the actual build quality of the system. Based on the fact
that the deadline was postponed two times, it is probable that this would
have bene�ted from more dedicated testing after sprint releases. The lack of
experienced testers in the team could also explain this.



Chapter 5

Results

In the previous chapter, some of inner workings of the case was described.
Hopefully, the reader gained an understanding of the ups and downs of the
project, their challenges, possibilities and solutions.

In this chapter, the research questions will be discussed further. To repeat,
the research questions were the following:

RQ 1: How is Scrum implemented in a project compared to the
book? What are the bene�ts and disadvantages?

RQ 2: How does Scrum support teamwork?

The two �rst sections in this chapter are dedicated to each of the research
questions. The third addressed the validity of the study.

5.1 Scrum'ed

In the course of the project, many of the things relating to Scrum varied in
such a manner that it is sometimes tempting to regard the project as two
di�erent cases (see section 4.2 for a overview of this). This discussion will
focus on the most visible themes in the project, and consider eventual change
in this when relevant for con�rmation.

In the following sections, the compliance of the project studied is discussed.
Compliance is de�ned as follows:

S: (n) conformity, conformation, compliance, abidance (acting
according to certain accepted standards) WordNet

The term compliance when used in an Agile setting is perhaps a poor choice
of words, because Agility as described in the Agile manifesto [Beck et al.,

85



CHAPTER 5. RESULTS 86

2001] supposed to be �Individuals and interactions over processes and tools�.
The motivation for this discussion is inspired by this, not to cast any form
of judgment, but rather highlight and discuss how di�erences in the imple-
mentation from the book in�uenced the project.

5.1.1 Compliant

Many of the most visible parts of the project was well within the descriptions
in literature. This sections discuss the Scrum-compliant practices, and how
they attributed to the project.

The following items were considered to be compliant within the bounds de-
scribed in literature.

• Scrum fundamentals; sprints, roles and co-location.

• Product is planned through product and sprint backlogs

• Communication with Product owner through backlogs, review meet-
ings and frequent communication

• Team was trusted to work independently

• Adapted to technical challenges and opportunities

• Estimation

• Progress issues were discovered and handled

The team used 30 day sprints in the �rst period of the project, which was
changed to 14 day sprints after recognizing that the project was behind
schedule. Within the sprints they worked on tasks from a sprint backlog,
and conducted (mostly) daily Scrum meetings. When �nishing of sprints,
the team and product owners performed sprint review meetings, where the
�nished functionality was demonstrated to the product owners. At the end of
this meeting, the team got instructions on what was prioritized, and created a
new sprint backlog based on this. This corresponds well with the description
in theory.

Planning and speci�cations is in Scrum mainly done through the product
backlogs. Existing theory is not speci�c on how a product backlog is sup-
posed to be, all that is said is that it is supposed to be a prioritized list of
business and technical functionality [Schwaber and Beedle, 2001]. While the
product backlog in this project had it's issues, as described in section 4.3.2,
especially on the granularity of tasks and a strong GUI-focus, these proved
to be less important. Mostly because of good communication between the
product owner and the team.



CHAPTER 5. RESULTS 87

Most aspects of the customer side of the project functioned from the authors
perspective well, and was mostly within the bounds of Scrum. Albeit Scrum
speci�es one, and there initially were two product owners, these adopted
separate functions, with one acting as a reference person (product owner 1),
and one as a product manager (product owner 2). Similar to the description
in section 2.5.1, the product owner in cooperation with the Scrum master
created and managed the product backlog and was the �nal authority on
questions and priorities related to this.

Review meetings were an especially important practice in communication,
and enabled discussions between product owners and the entire team. They
presented, according to the team, an opportunity to �shed light� on issues.
This description correlates with the �ndings in Mann and Maurer [2005]. It
could be argued that an on-site product owner would have been preferential,
but this possibility was discussed early, and rejected because of a lack of
a suitable person. The early GUI-work, the review meetings and commu-
nication through telecommunication was probably su�cient, and an added
bene�t was that the product owner had a good understanding of the system
as a whole.

The team was trusted to distribute tasks and work independently pretty
much as described (see section 2.5.1. This part is challenging for a Scrum
master, but he did mostly stay out of the task distribution process. At the
most, there could be suggestions when a sprint backlog was divided, but the
team always had the �nal word and would juggle tasks as they saw �t. Also in
the technical aspects, the team was very independent and could incorporate
other projects, open-source modules and generally create the system as they
saw �t. Schwaber and Beedle [2001] writes that a team should be granted full
authority to do whatever is necessary to full�ll a sprint, and in the technical
aspects this is a good description of how things were handled in this project.

Estimation in Scrum is based on the notion that estimates are unreliable,
that they probably will improve with time and experience, that the people
actually doing the tasks are best suited to estimate, and that they are not
binding [Schwaber and Beedle, 2001]. This description �ts well with the
estimation process used. The team used planning poker to estimate the
product backlog, a process which was surprisingly accurate. The estimates
was then used to size the sprints. While the size of sprints was an issue, the
estimation process was not the cause of this.

The metamorphosis of the project from the everyday to the emergency phase,
illustrated that the team could adapt e�ectively based on the information
and progress measures acquired through the sprints. This is consistent with
the description of empirical process control described in theory.



CHAPTER 5. RESULTS 88

5.1.2 Deviations And Adaptations

The practices in this section are considered to deviate from the by-the-book
way of doing them. However, they worked reasonably well and are regarded
as adaptations to the process.

• Much discussion in daily Scrum meetings

• No use of the burndown chart

• Little or no breaking down of items when planning sprints

• Long pre-game phase

As described in section 4.3.3 the setting of the meeting di�ered in the every-
day phase somewhat from description in Schwaber and Beedle [2001]. This
was also the case with the focus, which was signi�cantly more discussions
on details. The meetings were seldom only a status update. This is similar
to Mann and Maurer [2005] where the daily meetings were found useful, but
had a tendency to drag on if the team was unfocused. This is considered an
adaptation because these meetings still was a valuable contribution to the
project, and increased communication between team members that would
otherwise be working more separately. In the emergency phase, the daily
meetings changed, and became more like the short, to the point meetings
described in literature. The increased team e�ort, focus and communication
probably decreased the need to discuss, because issues had been sorted prior
to the meeting. Short, focused meetings, was in this study an indication of
more e�ective teamwork.

The burndown chart is a quite visible and advertised artifact in Scrum (there
are several sample burndown charts in theory [Schwaber and Beedle, 2001,
Schwaber]. It is described as a tool for visualizing remaining work and
progress, and is a derivative of the sprint backlog. It is interesting that
it was not used seriously in any part of the project, and was never found
valuable. There are several practices that contributed to this. The most
important one was too large sprint backlogs, and tendency of not aiming at
or reaching zero hours left. Another one, was the relative invisibility of the
burndown in the �rst sprints when only the computerized system supported
Scrum.

As these practices changed in the emergency phase, the team did not suc-
cessfully re-introduce the burndown. The index card wall was instead the
primary sprint progress indicator, with the adaptation of moving the cards
from left to right as tasks progressed. This is somewhat similar to the situ-
ation described in Fitzgerald et al. [2006]. The absence and low importance
of the burndown chart was probably not important to the overall e�orts
in the project. However it could be regarded as a symptom of low sprint



CHAPTER 5. RESULTS 89

commitment.

When creating a sprint backlogs, theory suggests that the team should trans-
form the goals and items from the product backlog into the discrete tasks
necessary to reach the goal [Schwaber and Beedle, 2001]. This was rarely the
case, as the average break-down rate of 1.17 tasks per items con�rm. One
reason for this might be the sometimes very �ne-grained product backlog,
which in most cases made it unnecessary to break down items. All in all
this probably did not a�ect the project that much, however one developer
felt that it could have bene�cial to do it to a larger extent. Similar to this
situation was the product backlog in Lervåg [2006] which was found to be
highly technical and detailed.

The pre-game phase of this project was relatively long. Production of GUI-
sketches was a main part of this period, as well as some high-level planning.
Scrum allows a pre-game phase, but states that it should be as short as
possible. Because this period created a reference that supported later work
instead of inhibiting it, I think it was a valuable adaptation to the process.
Other studies on Scrum-projects [Cloke, 2007, Fitzgerald et al., 2006] also
refers to a sprint 0 or a planning phase where the further sprints are planned,
showing that this is not unusual.

5.1.3 The Challenges

All project have aspects that works great, aspects that works, and aspects
that needs changing. This section describe the aspects that deviated much
from Scrum theory or studies and which plainly didn't work. They were
absent or implemented in such a way that they became a liability to the
project. Together, they formed a whole that had negative e�ects on the
project performance and monitoring of progress. The list of suspects are:

• Interference, intruders, but no peddlers

• Creation of sprint backlog before discussion

• Consistently large sprint backlogs

• Little or no commitment to sprints

• Hours as a progress measure

• Potentially shippable?

• Not so steady deliveries

The �rst item in the list of challenges is a direct reference to chapter 3.6.2 in
Schwaber and Beedle [2001], which is named �No Interference, No Intruders,
No Peddlers�. Scrum preaches highly autonomous teams that controls their



CHAPTER 5. RESULTS 90

own work day. While the team was generally independent internally in the
project, it was a completely di�erent story when considering the work situ-
ation as a whole. Customer support, other projects and disturbances forced
two of the team members to divide their e�orts, and decreased the priority
on the project. This degraded the alignment towards the team, which was
supported by statements from developers. It had ripple e�ects that are im-
portant when trying to understand a number of other issues. That it was
considered to relocate the team to separate o�ces, is illustrative of the level
of interruptions. The experiences from the emergency phase, when there was
more e�ective team protection reinforces the view that this was a signi�cant
problem.

The process used when creating the sprint backlogs deviated only slightly
from theory, but can still be regarded as an important prerequisite to the
problems with sprint size. As described in section 2.5.1, Scrum states that
the product owner should only prioritize the product backlog, and later co-
operate with the team to create the sprint backlog in a later sprint planning
meeting. Generally the sprint backlog was calculated and created in the last
part of review meetings, and discussed afterwards in an extended planning
meeting. In other words, the scope of the sprint was essentially decided,
before the team could discuss what they could realistically do. Why this
became the norm is di�cult to say. Possibly, it was the convenience of doing
setting the sprint when the product owners were on site that led to it being
the usual way to do it.

The sprint backlogs were large, often twice the size of estimated team ca-
pacity. Theory suggests that the team should adjust the sprint backlog
according to estimated capacity and previous velocity. As described in sec-
tion 4.3.2, this description could not be used about the everyday phase of
this project. While the initial size often was within scope, the un�nished
sprint tasks were automatically transferred from the previous sprint. This
created a �shadow backlog� that followed the sprints like a bad habit until
sprint 6. There are various explanations. One was the stated motivation to
have enough work. Another was an optimistic view of the team capacity,
and tendency to generalize on the best-case sprints and projected available
hours. The team and especially the Scrum master wanted to show that they
could �do it� and over-promised. Using hours as a performance measure, and
not adjusting is more the traditional way of thinking, rather than Agile.

In Schwaber, it is stated that the team should at the end of each sprint deliver
an increment of potentially shippable functionality. Potentially shippable is
a slightly ambiguous term, which in this case meant that the code was ready
for (system) testing. Because there were no experienced testers in the team
as well as a lack of tradition of doing structured tests when developing, this
was postponed to after the deadline. This could mean that quality issues



CHAPTER 5. RESULTS 91

were discovered late, but as our data contain few indications on the build
quality it is di�cult to say how this turned out. This tendency is similar to
the waterfall-model as described in section 2.2.1, where coding is done �rst
with testing done afterwards, and is not compatible with the the concept of
delivering �tested� code (section 2.5.1.

A sprint is a time-boxed period of time where the team commits to full�lling
the sprint goal, and is in exchange for commitment given the freedom to
do so [Schwaber and Beedle, 2001]. The team never really committed to the
sprints. Commitment improved in the emergency phase, but it was still more
geared towards the �nal deadline. The high amount outside interference was
arguably the main contributor to this. The large sprint backlogs were also
important, both as a cause and an e�ect. It can be argued that a committed
team would never agree to anything but a decently sized backlog. Because
of the general interference in the company, this commitment was not there
in the beginning, and with the recurring large backlogs, it did not develop
further until sprint 6. This type of commitment is again more similar to
traditional waterfall where the commitment is towards delivering the �nal
system, rather than delivering increments in the sprints.

One might ask if this all of this really matters, when the premise of Scrum
is to deliver steady production ready increments, rate the success of a sprint
on the software delivered and regard development as a black box. That
question is prudent also in this case. As discussed, the increments were not
strictly production ready. Also, the success factor, at least in the review
meetings was not only the deliveries but also on hours used compared with
hours written down. This shifted some of the focus from �nishing sprints to
�nishing the project before the �xed and much more serious deadline after
sprint 9, and was as discussed a waterfall-like part of the project. Why and
when the hours became a success factor is uncertain, but our earliest data of
it is from the review meeting in sprint 2. It was quite possibly just a defense
mechanism to justify not �nishing the sprint, or maybe a more convenient
way to keep the product owners up to date with progress.

5.2 Teamwork

In section 2.5.3, theory on Scrum was brie�y evaluated towards the �Big
Five� of teamwork [Salas et al., 2005]. The �ndings from the study are in
this section discussed according to the Big Five. Figure 5.1 represents a
simpli�ed graphical representation of this discussion.

As �gure 5.1 shows, the ultimate measure of teamwork is e�ectiveness. This
is hard to measure, and also in this study it is di�cult to say anything
conclusive about without good, quantitative performance measures.



CHAPTER 5. RESULTS 92

Figure 5.1: Graphical representation of relationships among the Big Five
and Coordinating Mechanisms. Adaptation of �gure 1 in Salas et al. [2005]



CHAPTER 5. RESULTS 93

Generally, the data points to an improvement in the teamwork-e�ectiveness
in the emergency phase. Some of the previously weaker aspects was ad-
dressed in this phase, and the team worked closer together. This is reinforced
by statements made in the interviews.

5.2.1 Coordination Mechanism

Shared Mental Models

The shared mental model is supported by several Scrum practices such as
review meetings

By and large, these practices were e�ectively used throughout the project.
In addition to these, the early work on GUI-sketches was bene�cial when cre-
ating the shared model, especially for the team members involved. Accuracy
was reinforced and maintained mainly through the review meetings, but also
by communication with the product owner when something was unclear. In
the team, members reported that they usually knew what the others were
doing.

The work done on GUI sketches in the pre-game phase had a positive e�ect
for establishing a shared model of the system, and was said to have prevented
discussions later in the project. They were later used as reference material in
the development process. Maintaining this was supported by the co-location
of the team. In addition, the estimation meetings was important as they
provided an arena where the team had to discuss the entire product backlog.
However, perhaps the most important Scrum feature in this respect were the
review meetings, where the team could synchronize their mental model with
the product owner. When asked about the day to day cooporation with the
product owner, one of the developers responded:

Developer: [...] but it is like, the product owner knows the sys-
tem, so if we wonder about something, we will get a response
telling us how things are supposed to be.

As the product owner was in another city, this communication was done
using email, phone or teleconference. Review meetings still had a important
role:

Developer: There have been things that required a little more
presence, and those have been handled in the sprint review.

The co-location and daily meetings were also important to update members
on things happening in other projects.



CHAPTER 5. RESULTS 94

Closed Loop Communication

In the �rst two links the communication worked quite well, supported by fre-
quent meetings and co-location. In the everyday-phase, the communication
in the daily meetings was a more important than later phases when the team
cooperated more. With respect to communication with the product owner,
the communication methods available presented a challenge and which at
a few incidents lead to misunderstanding. However, given these limitations
also this aspect of communication worked and there were few examples of
misunderstandings.

Mutual Trust

The team reported that they trusted that the others both could and would do
their jobs. One developer stated that there were no cases of other members
not taking responsibility. Also technically there seemed to be con�dence
in the others abilities. Working on shared code segments was much more
common than earlier, something which is an indication of mutual trust:

Developer: I think it is the �rst time I've experienced this here,
that it [code] has been shared this much.

Trust in the team as a whole is a slightly di�erent story. While the �ndings
show that the Scrum master and product owners trusted the team to do
their job, they also knew that their job included other projects. The team
had clear problems with sprint commitment. This was probaly in�uenced by
knowing the others situation and occasional need to prioritize other tasks.

That the product owner jokingly wished the project was on a �xed-price
contract illustrates that they didn't fully trust the team, as they knew they
had other and sometimes con�icting responsibilities. Focus on hours as a
performance measurement is another indication of this. Being an internal
project probably also meant that �real� customers often had priority.

5.2.2 Team Leadership

As described in 2.5.3, leadership in Scrum is a shared responsibility between
all of the roles. However, it is an aspect of teamwork which is challenging,
especially with regard to the Scrum master which requires a �ne balance of
intervention and motivation.

Within the team, leadership worked well with relatively few issues to deal
with. The team had few problems with self-organization and communicated
well with both the Scrum master and product owner.



CHAPTER 5. RESULTS 95

Externally, the situation was more chaotic due to practices in the company,
as described in section 4.1.1. Further, this situation was not helped by the
Scrum master having a responsibilities as head of the department. Team
protection which is important in Scrum was not implemented e�ectively
before the emergency phase.

The sprint backlogs were in large parts of the project over�lled, and the
review meetings used hours as a performance measure. These two practices
together created unclear performance expectations, which was re�ected in
low sprint commitment. This situation had a detrimental e�ect on mutual
performance monitoring and back-up behavior, which is discussed in the next
sections.

5.2.3 Mutual Performance Monitoring

Mutual performance monitoring is enabled by daily scrum meetings, and
sprint burndown charts on in the sprints, and by review and retrospective
meetings in the project.

The daily meetings and the co-location provided an environment where it
was easy for the team to discuss issues and keep up to date with what was
going on in the project. The communication in the meetings further suggests
that the team had the ability to perform mutual performance monitoring,
especially in the emergency phase, when they worked together more.

A di�erent interpretation could be that the shorter meetings in the emer-
gency phase meant less cooperation and more individual hacking. This view
is however contested by the team members themselves, which was especially
pleased with this aspect and how it worked.

While the ability to perform mutual performance monitoring was in place,
the unclear performance expectations discussed in section 5.2.2 meant that it
wasn't that important to monitor the performance. It wasn't really expected
that the team met the goals set in the sprint backlog, and this a�ected backup
behavior negatively because there was little need for it.

5.2.4 Backup Behavior

Backup behavior is about providing feedback, coaching, assistance and com-
pleting tasks for each other. As mentioned in section 2.5.3 Scrum has no
direct practices to support it, but relies on an e�ective self organizing team
in which this is an important dimension.

The team showed some evidence of e�ective backup behavior in feedback,
coaching and assistance. This was provided mainly by co-location and an



CHAPTER 5. RESULTS 96

environment of mutual trust. As described in the previous section, there was
a lot of communication between the developers when they were working.
They described it as e�ortless to ask for assistance from the other team
members if there was a problem. As one of the developers described it:

Developer: I think it has worked very well sitting together with
those involved on the project. When something comes up it has
been easy to just ask and get an answer.

Also with the product owner, the team felt that it was quite easy to ask
for feedback. Overall, mutual assistance worked well in this project. As
with performance monitoring, it seems that this aspects improved in the
emergency phase, when the team worked together more of the time.

With regard to feedback and coaching things are more unclear. It is appar-
ent from the data that cooperation was the rule rather than the exception.
Sharing of code was quite common, they did on some occasions do pair-
programming sessions, and generally had knowledge of how each others code
worked (some exceptions probably existed on special modules). With this
overlapping knowledge of each others code, they would give feedback when
discovering improvements, and coach each others to improve their work.

Whether or not the team completed each others tasks is unknown, and the
data points both ways. The answers given in the interviews suggests that
some task completion might have happened. The developers said that there
were some juggling of tasks going on, that they were quite �exible on who
should do a the tasks, and that they sometimes worked on others code. There
also are evidence to the contrary. One pattern suggesting this is that when
demoing it was usually referred to individual developers when talking about
speci�c functionality. One speci�c event from week 45 reinforces this view:
At this review meeting, the demonstration of a feature was postponed to the
next review meeting, because the developer responsible was sick that day.
This would be one case where ideally another team member could have done
the demo. When it didn't happen then, it implies that is was uncommon
also in the rest of the project.

Salas et al. [2005] writes that backup behavior is dependant on both the
needs of the team, and the opportunities of the di�erent team members.
With this in mind, the relatively low commitment to sprints and the high
workload from other projects in the everyday phase inevitably had an in�u-
ence and degraded the teams backup behavior, they did however help each
other. The need was probably also quite low, and as described in the previ-
ous section, mutual performance wasn't functioning optimally. When need
and opportunity increased in the emergency phase, the e�ective backup be-
havior was seen to increase. While task completion probably wasn't done
extensively, the assistance, feedback and coaching functioned well.



CHAPTER 5. RESULTS 97

5.2.5 Adaptability

Increased adaptability is one of the adverticed e�ects of Agile methods, as
a result of the short feedback loops. The team is also able to control their
work to a large degree, which further facilitates adaptability.

There were a relatively few technical problems during the project, and the
team adapted well to those that arose, and had much liberty in this respect.
One example of technical adaptability was when the team discovered and in-
corporated functionality from another project. Another example was when
the plan to use a existing externally developed (and quite expensive) sub-
system was dropped because of performance issues, and the team decided to
develop it themselves. This type of adaptability was mainly supported by
the shared mental model, and good communication.

Adaptability with regard to tasks was also quite e�ective. Perhaps one of the
biggest problems was the limited amount of time available in the everyday
phase for 2/3s of the team, and adapting to this was di�cult for the team
alone. However, the fact that the team could freely distribute tasks on their
own helped to avoid bottlenecks, something which was illustrated by one of
the developers:

Developer: At least, it isn't like anything blocks the project if
one of us is away. That is a positive thing.

The limited back-up behavior did however mean that there seldom was a
perceived need to �nish tasks started by other team members.

On a higher level, adaptation to the resource situation did, as discussed in
section 4.2, not happen before sprint 5 was completed. The changes im-
plemented were e�ective and proved that the feedback loop worked. Nev-
ertheless, this adaptation could ideally have happened earlier, as the team
identi�ed them in sprint 4, and the team had problems �nishing with the
desired functionality before the deadline. The somewhat late handling can
be attributed to several practices. The overfull sprint backlogs probably ob-
fuscated matters a bit, making the actual progress harder to measure. More
signi�cantly, the situation with many parallel projects also contributed, by
demanding more evidence to implement e�ective measures because of the
in�uence this would have on other projects.

5.2.6 Team Orientation

Team orientation is well facilitated by Scrum, which leaves much in�uence
in the hands of the team. Shared planning procedures, and consensus are
also important



CHAPTER 5. RESULTS 98

Again, one of the main challenges for the team was limited hours available,
due to parallel participation in other projects. The general impression was
that although the team members was interested and tried to work as a team,
these mostly organizational factors impeded the team e�ort. The team mem-
bers had other priorities because of the quagmire, and the parallel projects.
Team orientation su�ered because of this, but it improved in the emergency
phase. As an example, one developer suggested that he didn't really feel
involved in the team before this phase.

5.3 Validity, Evaluation and Justi�cation

Walsham [June 2006] suggests that the methodological approach is justi�ed,
preferably through the use of a pre-compiled criteria. One such is the seven
principles of interpretive �eld research in �A Set of Principles for Conducting
and Evaluating Interpretive Field Studies in Information Systems� [Klein,
Heinz K. and Myers, Michael D., 1999].

5.3.1 Seven Principles

The Hermeneutic Circle

The hermeneutic circle requires iteration between considering the interde-
pendent meaning of parts, and the whole these form.

This aspect has been important to understand this project. Parts such as
the recurring large backlogs have been considered independently, and have
further been connected to more underlying contextual causes. There will
always be a possibility of not understanding the dependence of various parts,
but generally this aspect has been given much consideration.

Contextualization

This principle requires re�ection on the historical and social background of
the research setting.

Historical and social elements were given much weight in this study. The
actors experience and history with software engineering methods were im-
portant, especially their previous experience with Scrum and Agile methods.
The social and organizational context was a essential piece of this case, and
had a large impact on the analysis. While the explanation of the context
could have been been a bigger part of this thesis, the most important aspects
are covered su�ciently.



CHAPTER 5. RESULTS 99

Interaction Between the Researchers and the Subjects

The researchers role in a study and interaction with the research subjects is
critical to the understanding of the case. This principle requires a critical
re�ection on this aspect.

This study featured aspects of action-research and had an expressed focus
on Scrum and Agile methods. This could very well have in�uenced the data
gathered and statements given from the research subjects. They knew the
interest was on Scrum and that their implementation of it was in part guided
by the researchers. This could have lessened their rigour in the implemen-
tation and use, thinking that the researchers would let them know when
something was wrong giving a sense of comfort. Some remarks from the
�ndings support this suspicion.

On the other hand, the duration of the study and the spectrum of roles
employed should have prevented this e�ect. Also, the interaction between
researchers and the subjects is a recognized part of the study, as it is part
of a action research project. While the �ndings might have been in�uenced,
they should not be considered invalidated on behalf of this.

Abstraction and Generalization

Through the application of the �rst two principles, this principle requires
that the data is interpreted through theoretical general concepts.

The two detailed research questions are contributions to generalization. RQ1
compares the �ndings with the theoretical Scrum principles. RQ2 uses the
framework in Salas et al. [2005] to generalize the teamwork in this study, in
order to add understanding on how a team functions in a Scrum project.

Dialogical Reasoning

A sensitivity to possible contradiction between theoretical preconceptions
and the actual �ndings is the requirement for the principle of Dialogical
reasoning.

The researchers preconceptions is recognized as a part of the study. While
Scrum is the studied aspect, the longevity of the study, frequent discussions
with co-researchers and feedback sessions with the subjects made reasoning
on the �ndings versus existing theory a natural component of the process.
Through this, theoretical preconptions are di�cult to maintain.



CHAPTER 5. RESULTS 100

Multiple Interpretations

Using multiple sources, is in this principle important to reveal possible dif-
ferences in interpretations.

This is one aspect where sources could have been employed more e�ectively.
While the interviews gave good data from the di�erent actors in the project,
as well as conversations underway, these di�ering narratives is quite possibly
not used to the full extent in the resulting discussion. Some of the reasons
for this can however be attributed to con�dentiality reasons.

Suspicion

Sensitivity to �biases� and systematic �distortions� in collected narratives is
the requirement for this principle.

There is a real possibility of this emerging in a study such as this, especially
because the subjects knew they were studied and that it was possible that
management would read the resulting report. Using several di�erent data
sources, and supplementing these with targeted interviews, as well as the
long duration of the study should however have negated such distortions. It
should be noted that the author felt that the subjects were up-front about
their view through the entire study.



Chapter 6

The Final Table

Agile methods has in recent years gained a large following in industry. Re-
search has been focused on XP, with few studies dedicated to Scrum.

This study has followed a software project employing Scrum in 8 sprints over
a timespan of 10 months. The conclusions are based on data from several
sources.

This chapter presents the �nal conclusions from the study, the generalized
impact to research and practice, and proposes further work in the company
and in academia.

6.1 Impact of Scrum in the project

The main impact of Scrum is that both developers and company is of the
opinion that it is a useful contribution, similar to conclusions from general
studies of Agile methods (see chapter 2).

Developers, both in the project studied and in other projects, were pleased
with using Agile methods, and was clearly happy with prospect of continued
use.

Also the company was positive, and initiated two other projects using Scrum
during the study, which is considered as an indication that Scrum had a
positive in�uence on process. While not all went as hoped in the project
studied, it was considered as an improvement from previous projects.

Generally, teamwork functioned quite well, but also had some issues. The
following sections elaborates on the speci�c conclusions which Scrum had on
the project, divided by the research questions.

101



CHAPTER 6. THE FINAL TABLE 102

6.1.1 Implementation

RQ 1: How is Scrum implemented in a project compared to the
book? What are the bene�ts and disadvantages?

The study revealed a project which employed Scrum through the entire pro-
cess. Despite limited initial training, most of the practices described in
theory were implemented from the start with adjustments done to some of
the issues discovered.

Good Project Visibility There was through the entire project high vis-
ibility into the process. The team managed to adjust their e�orts according
to this. While the adjustment could have been done earlier, the required
adjustments were mostly external to the project, which made them harder
to put in motion.

Low Opportunity + Little Need = Low Commitment There were
several themes which indicated low sprint commitment; consistently large
backlogs and no use of the burndown charts were two of the more visible.
The low level of commitment was because of two connected reasons:

The organization had a high level of distraction, with developers involved in
several projects at once, giving little opportunity to commit to sprints.

At the same time, the performance of sprints were measured partly by hours
used, and increments were generally not put in use when �nished. There
was low urgency to �nish sprints, because it was not expressed as important
compared with the �nal deadline.

Questionable Predictability The project was set to deliver signi�cantly
behind schedule. Increments were delivered after each sprint, but the ma-
jority was clustered towards the end. This was mainly because of added
resources, but can also be partly attributed to low commitment in the early
sprints.

In contrast with other studies, the predictability was in this project relatively
low. Predicting the �nal delivery date was di�cult when the sprint commit-
ment was low, combined with the practice of delivering almost potentially
shippable code. These two practices were more similar to waterfall-planning
of a project than the Agile way of thinking. If these had been eliminated
earlier, the predictability of the project would probably have improved, with
a better possibility to avoiding the slipped schedule.



CHAPTER 6. THE FINAL TABLE 103

6.1.2 Teamwork

RQ 2: How does Scrum support teamwork?

Regarding the teamwork in the project we can also draw some speci�c con-
clusions.

Communication! Developers were empowered. They speci�ed, designed
and developed the system from the start in cooperation with the manage-
ment. As a whole, communication through the frequent meetings, coupled
with initial work on GUI-sketches, ensured that the developers understood
their task well. There was relatively little specialization among the devel-
opers. A shared mental model and closed loop communication was strong
points in the entire project well supported by Scrum practices.

Adaptable Good communication had e�ects on mutual performance mon-
itoring and back-up behaviour. As discussed in section 5.2 adaptability was
high through the entire project, which had a signi�cant positive impact. This
is perfectly in sync with Scrum, and Agile theory, which holds adaptability
as one of the main bene�ts.

Leadership Is Challenging In the project, the team orientation was rela-
tively low, while some aspects of the leadership task could have been handled
better. These two factors negated the e�ective mutual performance moni-
toring and backup behaviour.

It is quite clear that leadership is a challenge when using Scrum because
of the distributed responsibilities between the di�erent roles (see section
2.5.3). With the wide responsibility of ensuring the success of Scrum (see
section 2.5.1), the Scrum master has several important but not necessarily
well de�ned tasks.

Ensuring that the team is independent and works together were very success-
fully performed. On the other hand, the Scrum master has a role in creating
sprints of the correct size, as well as making sure that increments are the
main progress indicator. None of these tasks were performed optimally.

An additional problematic task was team protection, which was di�cult due
to contextual factors. Put together, the Scrum master focused more on
ensuring communication and keeping a smooth process, while focusing less
on maintaining and ensuring steady performance.



CHAPTER 6. THE FINAL TABLE 104

6.2 Implications For Research And Practice

As shown in chapter 3, it is possible to generalize on single-case studies. This
section lays out the how this study has implications for the state of research,
as well as the contribution to application of Agile methods in practice.

Research As mentioned in previous chapters, reviews of the state of re-
search in Agile methods found that there have been limited scienti�c research
on the use of Scrum. Abrahamsson et al. addressed an urgent need for em-
pirical studies on the possibilities of Agile methods, and speci�cally on the
adoption of practitioners. There exist in-depth studies on XP-projects, but
none with Scrum as focus. By this, the main contribution of this thesis is
the rich description of the use of Scrum in a real-world project.

The methods and data sources have been found appropriate for such a study,
and are considered as well suited for this kind of research. The use of a
framework for comparison and analysis was a valuable addition.

Practice Further, there are contributions relating to the more speci�c re-
search questions:

One view expressed in chapter 2 was that Agile methods are easy to adopt
and work well. This view is reinforced by this study, which suggests that
Scrum is light enough to be used more or less as described, yet concise
enough give valuable bene�ts. Contrary to XP, the �ndings suggest that
Scrum works best as a whole, advising against pick-and-choose adoption
of the method, and suggesting that tailoring of the method should happen
over time. Scrum will mature through use, but sticking to the play-book is
probably a good idea in the beginning.

One important issue was identi�ed, which might be important depending on
the speci�c setting. If Scrum is used in order to increase predictability, the
�ndings suggests that this is di�cult to achieve without a commited team
and well-de�ned done-criteria. Commitment is strongly in�uenced by the
environment of the project, as well as how the sprint deliveries are valued.
Dybå and Dingsøyr writes that ease of implementation of Agile methods is
a�ected by how interwoven the development is with other functions of the
orgnaization, a view which correlates with this conclusion.

A point on the di�erent roles of Scrum was revealed by the analysis of team-
work. Good interpersonal skills were found to be an important characteristic
of successfull XP teams [Dybå and Dingsøyr, 2008]. This is also the case
when using Scrum, but is especially true for the Scrum master.



CHAPTER 6. THE FINAL TABLE 105

This role complements the other roles, and has in�uence in almost all of
the �Big Five of Teamwork�. There is much responsibility with little o�cial
authority, and the often used comparison with a coach is found to be a sur-
prisingly accurate methaphor. Education is an important, but interpersonal
skills are vital in order to facilitate communication, while at the same time
ensuring progress.

6.3 The Next Matches

With regard to the company, they are well underway to becoming a very
agile organization. They do however have some challenges; There is a need
for more continous quality improvement in the projects, which can be ad-
dressed through adoption of selected XP-practices. The biggest challenge
is however in making sure that developers can focus on only one project at
the time, without frequent interruptions from support and other parts of the
organization. This was by far the biggest problem experienced in the study.

The author is reinforced in the initially positive view of Agile methods. It
is however clear that while they are easier to implement than traditional
methods, making them function optimally is di�cult and requires perfection
over time. Dicipline and professionalism are key.

Concerning further research, studies on teamwork in mature Scrum teams
would be interesting. Another is to establish other major organizational ob-
stacles, and the most common success factors relevant to Scrum adoption.
Recognizing that Agile methods are people-centric, establishing these could
help new teams to avoid common pit-falls. One thing which could be espe-
cially useful in this sense, is to establish a more formal evaluation framework,
similar to Williams, L. et al. [2004], to facilitate comparison and to establish
the real �home grounds� of Agile methods.



Bibliography

The engineers' council for professional development. Science, 94(2446):456,
nov 1941. ISSN 0036-8075. URL http://links.jstor.org/sici?sici=

0036-8075%2819411114%293%3A94%3A2446%3C456%3ATECFPD%3E2.0.CO%

3B2-F.

P. Abrahamsson, O. Salo, J. Warsta, and J. Ronkainen. Agile software
development methods: Review and analysis. VTT Publications, (478),
2002. ISSN 1235-0621.

R. Atkinson. Project management: cost, time and quality, two best guesses
and a phenomenon, its time to accept other success criteria. International
Journal of Project Management, 17:337�342(6), 1999. doi: doi:10.1016/
S0263-7863(98)00069-6.

D. E. Avison and G. Fitzgerald. Where now for development methodologies?
Commun. ACM, 46(1):78�82, 2003. ISSN 0001-0782. doi: http://doi.acm.
org/10.1145/602421.602423.

K. Beck. Embracing change with extreme programming. Computer, 32(10):
70�77, Oct 1999. ISSN 0018-9162. doi: 10.1109/2.796139.

K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Je�ries,
J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Suther-
land, and D. Thomas. Manifesto for agile software development.
http://www.agilemanifesto.org/, 2001.

M. Beedle, M. Devos, Y. Sharon, K. Schwaber, and J. Sutherland. SCRUM:
A pattern language for hyperproductive software development. In N. Har-
rison, B. Foote, and H. Rohnert, editors, Pattern Languages of Program

Design 4, pages 637�652. Addison Wesley, 2000.

B. Boehm. A spiral model of software development and enhancement.
SIGSOFT Softw. Eng. Notes, 11(4):14�24, 1986. ISSN 0163-5948. doi:
http://doi.acm.org/10.1145/12944.12948.

106

http://links.jstor.org/sici?sici=0036-8075%2819411114%293%3A94%3A2446%3C456%3ATECFPD%3E2.0.CO%3B2-F
http://links.jstor.org/sici?sici=0036-8075%2819411114%293%3A94%3A2446%3C456%3ATECFPD%3E2.0.CO%3B2-F
http://links.jstor.org/sici?sici=0036-8075%2819411114%293%3A94%3A2446%3C456%3ATECFPD%3E2.0.CO%3B2-F


BIBLIOGRAPHY 107

B. Boehm. Get ready for agile methods, with care. Computer, 35(1):64�69,
2002. doi: 10.1109/2.976920.

B. Boehm, D. Port, and A. W. Brown. Balancing plan-driven and agile meth-
ods in software engineering project courses. Computer Science Education,
12(3):187�195, sept 2002. ISSN 1744-5175.

F. P. J. Brooks. No silver bullet: essence and accidents of software engineer-
ing. Computer, 20(4):10�19, 1987. ISSN 0018-9162.

A. Bryant. It's engineering jim ... but not as we know it: software engineering
- solution to the software crisis, or part of the problem? In ICSE '00:

Proceedings of the 22nd international conference on Software engineering,
pages 78�87, New York, NY, USA, 2000. ACM Press. ISBN 1-58113-206-9.
doi: http://doi.acm.org/10.1145/337180.337191.

G. Cloke. Get your agile freak on! agile adoption at yahoo! music. agile, 0:
240�248, 2007. doi: http://doi.ieeecomputersociety.org/10.1109/AGILE.
2007.30.

A. Cockburn. Agile software development. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002. ISBN 0-201-69969-9.

D. Cohen, M. Lindvall, and P. Costa. An introduction to agile methods.
ADVANCES IN COMPUTERS, VOL 62, 62:1 � 66, 2004. ISSN 0065-
2458.

T. Dybå and T. Dingsøyr. Empirical studies of agile software development:
A systematic review. Information and Software Technology, 2008. doi:
10.1016/j.infsof.2008.01.006.

B. Fitzgerald, G. Hartnett, and K. Conboy. Customising agile methods to
software practices at intel shannon. EUROPEAN JOURNAL OF INFOR-

MATION SYSTEMS, 15(2):200 � 213, 2006. ISSN 0960-085X.

R. D. Galliers and F. F. Land. Viewpoint: choosing appropriate information
systems research methodologies. Commun. ACM, 30(11):901�902, 1987.
ISSN 0001-0782. doi: http://doi.acm.org/10.1145/32206.315753.

N. Haugen. An empirical study of using planning poker for user story esti-
mation. Agile Conference, 2006, pages 9 pp.�, 2006. doi: 10.1109/AGILE.
2006.16.

I. T. Hawryszkiewycz. Introduction to systems analysis and design. Pearson
Education Australia, 5 edition, 2001. ISBN 1-7400-9280-5.

A. Highsmith, J.; Cockburn. Agile software development: the business of
innovation. Computer, 34(9):120�127, Sep 2001. ISSN 0018-9162. doi:
10.1109/2.947100.



BIBLIOGRAPHY 108

IEEE. Ieee standard glossary of software engineering terminology. IEEE Std

610.12-1990, 1990. URL http://ieeexplore.ieee.org/servlet/opac?

punumber=2238.

Klein, Heinz K. and Myers, Michael D. A set of principles for con-
ducting and evaluating interpretive �eld studies in information sys-
tems. MIS Quarterly, 23(1):67�93, mar 1999. ISSN 0276-7783.
URL http://links.jstor.org/sici?sici=0276-7783%28199903%2923%

3A1%3C67%3AASOPFC%3E2.0.CO%3B2-Q.

C. Larman and V. R. Basili. Iterative and incremental developments. a brief
history. Computer, 36(6):47�56, 2003. ISSN 0018-9162.

A. B. B. Lervåg. A case study of a norwegian scrum project. Master's thesis,
NTNU, 2006.

C. Mann and F. Maurer. A case study on the impact of scrum on over-
time and customer satisfaction. adc, 0:70�79, 2005. doi: http://doi.
ieeecomputersociety.org/10.1109/ADC.2005.1.

Miles, Matthew B. and Huberman, Michael A. Qualitative Data Analysis:

An expanded Sourcebook. SAGE Publications, 2 edition, 1994. ISBN 0-
8039-4653-8.

N. B. Moe and T. Dingsøyr. Scrum and team e�ectiveness: Theory and
practice. 2008. Submitted to XP 2008.

M. Myers. Investigating information systems with ethnographic research.
Commun. AIS, page 1.

M. D. Myers and L. W. Young. Hidden agendas, power and managerial
assumptions in information systems development: An ethnographic study.
Information Technology & People, 10:224�240(17), 1997.

S. Nerur, R. Mahapatra, and G. Mangalaraj. Challenges of migrating to
agile methodologies. Commun. ACM, 48(5):72�78, 2005. ISSN 0001-0782.
doi: http://doi.acm.org/10.1145/1060710.1060712.

H. Robinson, J. Segal, and H. Sharp. Ethnographically-informed empirical
studies of software practice. Inf. Softw. Technol., 49(6):540�551, 2007.
ISSN 0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2007.02.007.

K. H. Rolland and J. Herstad. The `critical case' in information systems
research. URL http://citeseer.ist.psu.edu/416909.html.

W. W. Royce. Managing the development of large software systems: con-
cepts and techniques. In ICSE '87: Proceedings of the 9th international

conference on Software Engineering, pages 328�338, Los Alamitos, CA,
USA, 1987. IEEE Computer Society Press. ISBN 0-89791-216-0.

http://ieeexplore.ieee.org/servlet/opac?punumber=2238
http://ieeexplore.ieee.org/servlet/opac?punumber=2238
http://links.jstor.org/sici?sici=0276-7783%28199903%2923%3A1%3C67%3AASOPFC%3E2.0.CO%3B2-Q
http://links.jstor.org/sici?sici=0276-7783%28199903%2923%3A1%3C67%3AASOPFC%3E2.0.CO%3B2-Q
http://citeseer.ist.psu.edu/416909.html


BIBLIOGRAPHY 109

E. Salas, D. E. Sims, and C. S. Burke. Is there a "Big Five" in
Teamwork? Small Group Research, 36(5):555�599, 2005. doi: 10.
1177/1046496405277134. URL http://sgr.sagepub.com/cgi/content/

abstract/36/5/555.

O. Salo. Enabling Software Process Improvement in Agile Software Develop-

ment Teams and Organisations. PhD thesis, University of Oulu, 2007.

K. Schwaber. What is scrum? Published by the Scrum Al-
liance. URL http://www.scrumalliance.org/system/resource/file/

275/whatIsScrum.pdf.

K. Schwaber and M. Beedle. Agile Software Development with Scrum. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2001. ISBN 0130676349.

H. Sharp and H. Robinson. An ethnographic study of xp practice. EMPIR-

ICAL SOFTWARE ENGINEERING, 9(4):353 � 375, 2004. ISSN 1382-
3256.

I. Sommerville. Software Engineering. Addison Wesley, 1995. ISBN 0-201-
42765-6.

I. Sommerville. Software process models. ACM Comput. Surv., 28(1):269�
271, 1996. ISSN 0360-0300. doi: http://doi.acm.org/10.1145/234313.
234420.

H. Takeuchi and I. Nonaka. The new new product development game. Har-
vard Business Review, 64(1):137�146, 1986.

S. E. Tøsse. Kodekultur � programmeringens iscenesettelser. Master's thesis,
NTNU, 2007.

G. Walsham. Knowledge management: The bene�ts and limitations of com-
puter systems. European Management Journal, 19(6):599�608, 2001.

G. Walsham. Interpretive case studies in is research: nature and method.
European journal of information systems, 4(2):74�81, 1995.

G. Walsham. Doing interpretive research. European Journal of Informa-

tion Systems, 15:320�330(11), June 2006. doi: doi:10.1057/palgrave.ejis.
3000589.

Williams, L., Layman L., and Krebs W. Extreme programming evaluation
framework for object-oriented languages � version 1.4. Technical report,
North Carolina State University Department of . Computer Science, 2004.

WordNet. Wordnet - princeton university cognitive science laboratory. www.
URL http://wordnet.princeton.edu/perl/webwn.

http://sgr.sagepub.com/cgi/content/abstract/36/5/555
http://sgr.sagepub.com/cgi/content/abstract/36/5/555
http://www.scrumalliance.org/system/resource/file/275/whatIsScrum.pdf
http://www.scrumalliance.org/system/resource/file/275/whatIsScrum.pdf
http://wordnet.princeton.edu/perl/webwn


Appendix A

Quantitative Data

A.1 Burndown Charts

110



APPENDIX A. QUANTITATIVE DATA 111



APPENDIX A. QUANTITATIVE DATA 112



APPENDIX A. QUANTITATIVE DATA 113



APPENDIX A. QUANTITATIVE DATA 114

Sprint Burndown Chart:8. Skade

Burndown
Trend based on Team Capacity
Trend using Linear Regression



APPENDIX A. QUANTITATIVE DATA 115

A.2 The project in numbers

Sprint
1

Sprint
2

Sprint
3

Sprint
4

Sprint
5

Time period 11.4�
11.5

15.5�
18.6

25.6�
21.8

27.8�
25.9

1.10�
25.10

Work days 22 24 43 22 20

Lines (x1000) 82 34 81 44 15
Churn (x1000) 102 56 147 54 18

Prod. backlog items 4 7 33 29 34
Sprint backlog tasks 17 14 38 37 54
Orphan tasks 12 7 5 6 8
Initial sprint tasks 40 43 66 82 56
Tasks completed 8 13 18 22 15

Hrs (est. ex def) 340 290 267 355 297
Hrs (est. ex orph) 55 82 158 348 270
Rem hrs. (est.) 42 16 0 6 34

Initial hours (est.) 762 720 624 793 486
Hours (est.) remaining 479 323 417 505 327

Hours available 300 350 327 400 350
Hours used (actual) 182 245 372 375 260

Completed hours (est.) 298 274 267 349 263

Brkdown factor 1,25 1,00 1,00 1,07 1,35
Resources 61 % 70 % 114 % 94 % 74 %
Avg. hrs per day 8,27 10,21 8,65 17,05 13,00

Estimation acc. 61 % 89 % 139 % 107 % 99 %

Avg. item size (est. hrs) 85,00 41,43 8,09 12,24 8,74
Avg, task size (est. hrs) 20,00 20,71 7,03 9,59 5,50



APPENDIX A. QUANTITATIVE DATA 116

Sprint
6

Sprint
7

Sprint
8

Time period 1.11�
15.11

19.11�
29.11

3.12�
12.12

Work days 11 9 8

Lines (x1000) 21
Churn (x1000) 28

Prod. backlog items 12 35 38
Sprint backlog tasks 15 45 47
Orphan tasks 0 7 7
Initial sprint tasks 12 46 28
Tasks completed 6 33 9

Hrs (est. ex def) 321 195 269
Hrs (est. ex orph) 281 183 228
Rem hrs. (est.) 8 0 100

Initial hours (est.) 207 246 242
Hours (est.) remaining 36 114 148

Hours available 254 254
Hours used (actual) 278 253

Completed hours (est.) 313 195 169

Brkdown factor 1,25 1,09 1,05
Resources 109,4% 99,6%
Avg. hrs per day 25,3 28,1 0,0

Estimation acc. 88,8% 129,7% 0,0%

Avg. item size (est. hrs) 26,8 5,6 7,1
Avg, task size (est. hrs) 21,4 4,3 5,7



APPENDIX A. QUANTITATIVE DATA 117

Avg.
S1-S5

Avg.
S6-S8

Average Total

Time period
Work days 26,2 9,3 19,9 159

Lines (x1000) 51,2 277
Churn (x1000) 75,4 405

Prod. backlog items 21,4 23,5 24,0 192
Sprint backlog tasks 32 30 33,4 267
Orphan tasks 7,6 3,5 6,5 52
Initial sprint tasks 57,4 29 46,6 373
Tasks completed 15,2 19,5 15,5 124

Hrs (est. ex def) 309,8 258 291,8 2334
Hrs (est. ex orph) 182,6 232 197
Rem hrs. (est.) 19,6 4 15

Initial hours (est.) 677 226,5 510 4080
Hours (est.) remaining 314

Hours available 345,4 254 279 2235
Hours used (actual) 286,8 265,5 246 1965

Completed hours (est.) 290,2 225,7 266 2128

Brkdown factor 1,13 1,13 1,13
Resources 82,5% 69,7% 88,8%
Avg. hrs per day 11,4 17,8 15,8

Estimation acc. 98,8% 104,5
%

89,34
%

Avg. item size (est. hrs) 14,5 11,0 24,4 194,9
Avg, task size (est. hrs) 12,6 12,8 11,8 94,3



Appendix B

Research templates

118



Write-up: Week X

Encounters
Date Researcher Type of contact

Summary

Events (project)

Process

Key observations

Quotes



Intervjuguide
Generelt

1. Hvordan har dette prosjektet vært sammenligna med andre prosjekter?

2. Hvor viktig har dette prosjektet vært?

3. Hvordan synes du kvaliteten er på det som har blitt utviklet?

4. Hva har fungert bra i prosjektet?

5. Hva har ikke fungert så bra i prosjektet?

Scrum: Møter 
1. Hva synes du om de forskjellige møtene som er en del av Scrum 

metodikken?
• Sjekk at man snakker litt om de daglige møtene?

Scrum: Planlegging og Estimering
1. Hvordan synes du estimeringsprosessen har blir gjennomført?

2. Hvordan synes du prosjektet er planlagt. Fungerer planlegging ved bruk 
av backloggene?

3. Hvor viktig har det vært å fullføre sprint backlog?
• Sjekk: henger dette sammen med størrelse på sprint backlog?

4. Sjekk: Har dette forandret seg etter sprekken?

5. Synes du Burndown er nyttig?

Verktøybruk
1. Hvordan har Team System fungert

2. Hvordan har veggen og kartotekkortene fungert?

3. Har disse to fungert bra sammen?

4. Hva ville du valgt om bare ett skulle brukes?

5. Hvor viktige har Scrum-verktøyene vært for prosjektet?
 Verktøy =  Team system + Visual Studio samt indexkort+burndown.

Teamarbeid
1. Hvordan har oppgaver blitt oppdelt og tildelt?

2. Påvirker hengemyra denne oppdelinga?

3. Kan du fortsette på arbeidet om et av teammedlemmene blir truffet av 
Gråkalltrikken?

4. Er det noe annet du som er viktig men som vi ikke har snakket om?


	Title Page
	Introduction
	Research Questions And Focus
	The Ideal Spectator
	Structure And Naming

	The Game: Rules And Tactics
	Software Engineering
	A Brief History Of Methods

	Traditional Methodologies
	Traditional Methods
	Issues

	Agile Software Development
	Motivation And Background
	Agile Methods

	Comparison: Agile VS. Traditional
	Scrum
	The Fundamentals
	Studies
	Scrum And The Big Five


	The Seating Arrangements
	Methodology
	Interpretative Research

	The Study
	A Choice: Research Approach
	Fieldwork: Style Of Involvement
	Data. Lots Of Data
	Use Of Theory
	Analysis


	Match Day: Live Scores
	Background
	The Development Department
	The Project

	Project Overview
	Pre-Game: February To April
	Everyday Work: April To October
	Emergency Scrum: October To Christmas
	Post-Game: January And Beyond

	Applying Scrum
	Estimating
	Planning
	Sprinting
	Adapting


	Results
	Scrum'ed
	Compliant
	Deviations And Adaptations
	The Challenges

	Teamwork
	Coordination Mechanism
	Team Leadership
	Mutual Performance Monitoring
	Backup Behavior
	Adaptability
	Team Orientation

	Validity, Evaluation and Justification
	Seven Principles


	The Final Table
	Impact of Scrum in the project
	Implementation
	Teamwork

	Implications For Research And Practice
	The Next Matches

	Quantitative Data
	Burndown Charts
	The project in numbers

	Research templates

