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Abstract

This report aims to asses the efficiency of various inverted indexes when the indexed document
collection is dynamic. To achieve this goal, we experiment with three different overall struc-
tures: Remerge, hierarchical indexes and a naive B-tree index. An efficiency model is also
developed. The resulting estimates for each structure from the efficiency model are compared
to the actual results.

We introduce two modifications to existing methods. The firstis a new scheme for accumulating
an index in memory during sort-based inversion. Even though the memory characteristics of
this modified scheme are attractive, our experiments suggest that other proposed methods are
more efficient. We also introduce a modification to the hierarchical indexes, which makes them
more flexible.

Tf-idf is used as the ranking scheme in all tested methods. Approximations to this scheme are
suggested to make it more efficient in an updatable index.

We conclude that in our implementation, the hierarchical index with the modification we have

suggested performs best overall. We also conclude that the tf-idf ranking scheme is not fit for
updatable indexes. The major problem with using the scheme is that it becomes difficult to
make documents searchable immediately without sacrificing update speed.
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Chapter 1

Introduction

This report explores different inverted indexes for dynamic document collections. A document
collection is considered dynamic if it is subject to change. The possible changes include adding,
deleting and updating documents.

Several index structures for dynamic document collections have been proposed in the literature.
However, there are not many reported results from experiments comparing them [LZWO06]. This

report aims to contribute with additional experiment, and the focus is on adding new documents.
Although deletions are supported in some of the implemented structures, we do not test this in
the experiments. We also propose some slight modifications to some existing methods.

The contributions of this report include:

e Results from experiments with three overall index structures for dynamic document col-
lections are presented. The results are compared to estimates for each of the structures.
The estimates are calculated based on an efficiency model developed in this report.

e A modification of the scheme for how a partial index in memory is accumulated in sort-
based inversion is proposed.

e A modification to hierarchical indexes constructed with method 2 from [OvL80] is pre-
sented. The modification makes the method more flexible. By changing a variable one
can make the update speed faster, but doing so sacrifices search performance.

e The effects of using the tf-idf ranking scheme in updatable indexes is considered. Some
approximations are introduced in the ranking scheme to make the overhead of maintaining
document lengths for all documents less significant.

The report is organized i& chapters. Chapter 2 provides a basic introduction to the subject at

hand, and gives a summary of the author’s previous work. Chapter 3 introduces the most recent
developments in the field, and Chapter 4 explains how we have implemented the search engine
used in the experiments in this project. Chapter 5 introduces the experiments conducted. The
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CHAPTER 1. INTRODUCTION

efficiency model for the implemented index structures is developed in Chapter 6. The actual
results are presented and analyzed in Chapter 7, and we conclude in Chapter 8.
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Chapter 2

Background and problem statement

This report is based on the work in the authdrgé semester project [Bjg06], and the theory
underlying this work is therefore similar. This chapter gives a summary of all the notation used
in this report, and a brief introduction to the subject. It also explains the problem at hand, before
a short summary of the findings in [Bjg06] is presented.

2.1 Notation

Most of the notation used in this report is listed below. Less frequently used notation is intro-
duced as needed. The meaning of the variables listed here will be introduced in the text as well.
The intent of including the list is to provide efficient look-up for the reader.

N - the number of documents in a document collection. This variable will be used with sub-
scripts to denote subsets df.

n - the total number of terms in a document collection.

tepu - the time spent processing. This variable is typically used with additional subscripts to
denote the phase considered.

tq - time used accessing disk. This variable is sometimes used with subscripts to denote the
phase considered.

ts - time used searching for the correct position on disk.
t; - the inverse bandwidth between disk and memory.
b - a given number of bytes

d; - the document vector for document number

17
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q - a query vector.

|v| - the length of vectop.

fij - the frequency of termin document;.

n; - the number of documents in the collection containing térm
occ; - the total number of occurrences of tefm

V' - The number of unique terms in a document collection. This variable will also be used with
subscripts to denote the number of unique terms in a subset of the document collection.

w - a given term.
K - avariable defining how sizes of indexes in a hierarchical index grow.
B - the buffer size.

M - the amount of main memory available. This variable will sometimes be used with subscripts
to denote specific parts of the main memory, for example a part reserved for caching index files.

t.- - a term number, which is a number chosen to represent a given term.

d,, - a document number, which is a number chosen to represent a given document.
z - the number of index entries there is room for in an in-memory index.

T - the maximum number of searchable partial indexes in a hierarchicial index.

t, - the time used to parse one term, and add it to the HashMap of terms and occurrences for its
document.

tem - the time used to add parsed documents to the memory resident index, measured in seconds
per byte.

tse - the average time used for one operation in a multi-way merge of several lists.
t. - the time used to update the length of document based on a single index entry.
t;., - the average time used to perform a look-up in a sorted list dictionary.

ty; - the average time used to insert a new entry in a B-tree.

tys - the time used to perform a search in a B-tree.

na4,. - the average number of unique terms per document.

naq. - the average total number of terms per document.

18
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I - the average length of the term of one index entry.
[, - the average length of unique terms.

s - the number of bytes used to store an object. Subscripts are used to denote the object consid-
ered.

nodes - the number of nodes in a B-tree. Different subscripts will be used to denote specific
B-trees.

nodes;.q; - the number of leaf nodes in a B-tree. Different subscripts will be used to denote
specific B-trees.

|V| - the size of a dictionary file.

|I| - the size of an inverted file.

d, - anumber of disk accesses.

m - the number of indexes merged in a given merge.

o - a given number of operations. Subscripts are used to denote the kind of operation.
pi - an expected number of partial indexes.

he - the height of a B-tree.

h - the hit ratio, which is the fraction of pin requests to the buffer pool that ask for an already
cached part.

tsearch - the time spent performing a search in an index. This variable is used with various
subscripts to denote the type of index structure.

2.2 Inverted indexes

Large-scale search engines allow a user to search in a large collection of documents efficiently.
In order to achieve this, the document collection is indexed before the user is allowed to search.
Indexing involves creating a data structure in which the search is carried out, instead of per-
forming a brute-force search through the complete document collection.

There exist many kinds of index structures, each with its own characteristics. Inverted indexes
have proven to be the indexing method of choice for large-scale search engines [LZWO06]. They
are thus the focus of this report. The following subsections provide a definition of an inverted in-
dex and explain a method for building them. An introduction to compression of inverted indexes
Is given and basic ranking of documents in search engines is also explained. This information
can be found in further detail in [Bjg06] and in several textbooks [WMB99, BYRN99].
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2.2.1 Definition of an inverted index
A basic inverted index usually consists of two parts [Bjg06]:

e Adictionary
e An inverted file

The dictionary is a data structure which contains all searchable words, called terms, in the
document collection. It also contains a mapping to where the inverted list for each particular
term is found in the inverted file. Several data structures have been proposed for the dictionary.
The most common ones are sorted lists of terms, tree structures and structures based on hashing.

An inverted file contains inverted lists for all terms in the dictionary. An inverted list is a list of
the occurrences of the term it represents. If the list only gives the documents which contains the
given term, the structure is called a document-level inverted file. If it contains all occurrences
in all documents, it is called a word-level inverted index. Inverted indexes may be built with
other granularities as well, however word-level inverted indexes are the most efficient ones if
one is to support phrase queries. This report only considers inverted indexes with word-level
granularity.

A word-level inverted file may consume as much spacgla® 100 percent of the size of the
document collection [WMB99]. Because a large-scale search engine should enable the user
to search in very large document collections, the inverted index may not fit in main memory.
Usually the inverted file is stored on disk, and it is also possible to store parts of the dictionary
on disk [REO4].

Even though the space capacity of disks has increased steadily, the access time has not de-
creased proportionally. The following model is widely used when considering disk accesses
[Bra, TGMS94]. The model says that in order to transfeonsecutive bytes of data from or to

a disk, the time spent accessing the disk will follow Equation 2.1.

td:ts+tt'b (2.1)

The equation explains that the time used to transf@nsecutive bytes consists of a time used
searching for the correct position, and the transfer time. The transfer time is lingavitio

t;, the inverse bandwidth, as the constant. The time spent searching for the correct position is
usually modelled as a constant as well. It involves moving the disk arm to the correct cylinder,
and waiting until the correct sector is under the head. It should be noted, that ¢, [Bra].

This implies that it is much more efficient with a few large consecutive transfers than several
small scattered ones.

When the inverted file is stored on disk, it should be made sure that a search involves as few disk
accesses as possible. If we make sure that each inverted list is stored sequentially, searching for
one term will typically involve one single disk access. The order of the documents within an
inverted list has been thoroughly investigated. The most common solution is to sort them ac-
cording to document number, even though sorting on frequency of the term within the document

20



CHAPTER 2. BACKGROUND AND PROBLEM STATEMENT

has been proved to result in more efficient retrieval [PZSD96, GWCO04]. This report will only
consider sorting the inverted lists on document numbers. It is also common to store the inverted
lists for different terms sorted lexicographically on the terms.

| love inverted files!

Inverted files are the best
indexes.

3

Code monkeys loves inverted
indexes.

Figure 2.1: Example documents

The example documents shown in Figure 2.1 will be used throughout the rest of this chapter. An
inverted index for these documents with document-level granularity is shown in Figure 2.2. The
numbers in the upper left corner of the documents are the document numbers, and the numbers
in the inverted file in Figure 2.2 denotes the document number of the document that contains
the given term. The dictionary in the example index is a sorted list of all terms.

2.2.2 Building inverted indexes

There exist many methods for building inverted indexes, but when the index can not fit in main
memory, most of them are quite similar in spirit [BYRN99]. They usually follow the overall
method outlined in Figure 2.3.

The variations over this overall method may differ on several aspects. First they may differ in
how they treat the dictionary. It is possible to have only one dictionary with references to all
inverted lists for each term in different indexes, or one may flush a dictionary together with each
inverted file.

There are also several ways to accumulate the partial index in memory, and the two main ap-
proaches are presented here. The first is to accumulate a list of triplets consisting of a term,
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are > 2
best > 2
code > 3
files » 1

i 2
indexes —\—> 1
inverted —\—> 2

love 3

loves > 1

monkeys 2
the 3

> 1

> 3

3

2

Figure 2.2: Index for example documents

create a partial index in memory
while there are more documents to be indeged
if the memory is exhaustaden
flush the current partial index
create a new partial index in memory
end if
Add a new document to the current partial index
end while
flush the current partial index
: merge all partial indexes together to one index with a multi-way merge based on a priority
queue

[iny
o

Figure 2.3: Overall method for building inverted indexes

a document number, and a sorted list of the occurrences of the term within the given docu-
ment [WMB99]. When the memory is exhausted, a version of this list sorted on term first and
then document number is flushed to disk, which gives an inverted file. The other well-known
approach is to construct an in-memory dictionary and accumulate occurrences in either linked
lists or lists with array doubling. These approaches and variants thereof will be discussed in
more detail in Chapter 4.

2.2.3 Compression

Compression is widely used in inverted indexes. It might reduce the size of an inverted index to

approximatelyl0 — 15% of the size of the indexed document collection [WMB99]. Apart from

the obvious advantage of limiting the disk space used, compression typically also reduce the
time spent constructing an index and querying it, because of the smaller amount of data moved
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between disk and memory.

At a first glance, it is not obvious how one can compress an inverted file. The main idea behind
compression is to use few bits to represent likely values, and more bits to represent unlikely
values. For a given inverted list it seems like all values of document numbers are equally likely,
however a slight change in the representation eliminates this problem. If a document number in
an inverted list is represented as the difference between its value and the previous one, smaller
values will be more likely. This can be seen from Figure 2.4, which contains a representation of
the index shown in Figure 2.2 but where the document numbers are coded as differences, often
called d-gaps.

are
best
code
files
i
indexes
inverted
love
loves
monkeys
the

vy A 4 l I vy v vyYY

NW W= mamaN=mmm=mwiN D

Figure 2.4: Index with difference lists

Looking at Figure 2.4, we notice that there are mtsehere than in Figure 2.2. The inverted
list for "files” is an example. It consists of twis in Figure 2.4, while it consisted of hand a
2 in Figure 2.2.

The most common compression schemes for inverted lists are Golombs code [Gol66] and Elias
code [Eli75]. Even though Golombs code results in a compression scheme which is optimal

under some constraints, it is shown in [SWYZ02] that using a compression scheme where all

integers consume an integral number of bytes results in faster query evaluation.

Compression is not implemented in the experiments in this report, and we therefore do not go
into further detail here.

2.2.4 Ranking in search engines

Ranking of results is what makes information retrieval systems different from data retrieval sys-
tems [BYRN99]. Even though the focus of this report is not on ranking, a search engine is an
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information retrieval system and should thus facilitate ranking. There are many different rank-
ing schemes, but only one basic scheme within the so-called vector-space model is considered
here.

In the vector space model, each document can be viewed as a vector that contains one entry
per unique term in the document collection, and the same applies to queries. A common way
to calculate the relevance of a document for a given query is to calculate the angle between the
two vectors using the dot-product. A formula for such a calculation is shown in Equation 2.2.

dj-q
2.2)
|d;]lq|

sim(d;, q) =

Because we are only interested in finding a ranking that discriminates between the documents,
dividing by the length of the query is usually omitted.

Each entry in the vectors may be the number of occurrences of the given term in the document
or query, but a measure called tf-idf has proven to be a better alternative. Tf-idf is shernfior
frequency - inverse document frequentiie term frequency describes that the more frequent a
termis in a document, the more itis assumed to be relevant to the contents of the document. The
inverse document frequency says that when there are many documents containing a given term,
the term is not likely to be well fitted for distinguishing a relevant document from an irrelevant
one. The entry in a document vector for documgenthen using tf-idf may be calculated as in
Equation 2.3.

N
dji = fij - log — (2.3)

Equation 2.3 says that the weight given to documédram terms is given from the frequency of
term: in document; times the logarithm of the number of documents in the collection divided
by the number of documents in the collection containing term

Although there are reported results suggesting that the overhead of using tf-idf instead of sim-
pler strategies is not justified by better rankings in the results [GF04], tf-idf will be used in all
implementations in this report as it is the textbook example of a ranking strategy [BYRN99,
WMB99, GF04].

2.2.4.1 Evaluating ranked queries

A naive implementation of the tf-idf ranking scheme will lead to an inefficient solution. It is
obviously quite simple to calculate the numerator in the fraction of Equation 2.2 at query time
by merging the inverted lists for each of the query terms.

As noted above, the length of the query in Equation 2.2 is usually discarded, and the only
remaining value to be calculated is the document length. Performing this calculation at query

24



CHAPTER 2. BACKGROUND AND PROBLEM STATEMENT

time is very expensive, and it should be pre-calculated. Equation 2.4 gives the formula for
calculating the value for documedit.

14 2

i=1

The variablél” in Equation 2.4 denotes the number of unique terms in the document collection.
The lengths of the example documents from Figure 2.1 are given in Table 2.1.

Document number Length of document (tf-idf
1 1.6057
2 1.9874
3 1.9456

Table 2.1: Lengths of the example documents using the tf-idf weighting scheme

A search for the term “files” in the example document collection would give higher relevance to
documentl than documen2, because documeitis shorter. We could also note that a search
for "inverted” will give a relevance score 6f0 for all documents, because the inverse document
frequency will be0.

As noted above, the lengths of documents in the collection is typically pre-calculated. Main-
taining such values when the document collection changes will be discussed in Chapter 4.

2.2.5 Zipf's law and Heap’s law

Zipf's law and Heap’s law describes the occurrences of words in corpuses of natural language.
They provide a basis for giving estimates of the efficiency of various methods for indexing and
updating inverted indexes.

Zipf’s law was originally stated in [Zip49], and states that in large document collections, the
frequency of a word is inversely proportional to its rank. The rank is defined as the position
of the term in a list of all terms sorted by descending frequency. This can be expressed as in
Equation 2.5 [CP90].

fw)r(w) =z (2.5)
f(w) andr(w) in Equation 2.5 are the frequency and rank of werdespectively, and is a
constant.

Heap’s law is often used to estimate the size of the vocabulary [BYRN99]. It is given in Equa-
tion 2.6.

V==k-n’ (2.6)
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In Equation 2.6} is the size of the vocabulary amdis the number of terms in the document
collection. 8 andk are constants, and their values depend on the document collection at hand.
[Fre02] reports results from experiments suggesting that typical values of these constants for
large web collections argi = 0.57 andk = 16.24.

2.3 The problem

As noted in Section 2.2.1, the inverted file is usually stored sequentially on disk. Maintaining
such a property is difficult when the document collection is updated.

Three kinds of updates might occur in a document collection.

1. A documentis added
2. A document is deleted

3. A document is updated

As noted in [Bjg06], one will change the index correctly in casieone deletes the old version
of the document, and insert the new one.

This report considers different ways of facilitating efficient updates in inverted indexes. The
focus is on adding documents, however significant choices in the implementation is made to
ensure that a future implementation of deletions does not involve too much work.

2.4 Summary of [Bjg06]

[Bj@06] is a survey of methods suggested for solving the problem introduced in Section 2.3. The
main part of the report is a qualitative comparison of the suggested methods, where the methods
are evaluated according to some predefined criteria. It also contains results from experiments
with some of these methods. This summary will focus on the qualitative analysis, because the
experiments performed in [Bjg06] had limited applicability due to disk caching in the operating
system. We will first go through the criteria used in the evaluation of the different methods.
Then the considered methods will be explained, and finally a short summary of the results of
the evaluation will be given.

2.4.1 Criteria for evaluating updatable indexes

The following criteria for evaluating proposed methods for handling updates in document col-
lections were used in [Bjg06]:
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Ability to support all kinds of updates: As noted in Section 2.3, one is able to support
all kinds of updates if insertion and deletion is supported. Some of the methods evaluated
do not support deletions out of the box.

Update speed:At which rate updates can be reflected in the index is called the update
speed. In many cases it is beneficial for the update speed to batch updates. Both update
speed when batching updates and for single updates is considered.

Update latency: The update latency is the amount of time, in the worst case, between the
time when the update is requested and the time when the index reflects the update.

Search speedThe search speed is measured as the number of disk transactions needed
to search for a single term, and low values are obviously preferred. The inverted index
outlined in Section 2.2.1 typically requires one disk access per query term.

Ability to support searches while updating: This criteria aims to assess whether or
not it is possible to support searches while updating, and if so, to what extent the search
performance suffers from the ongoing update process.

Storage overhead:This is the amount of extra space used when compared to a compact

representation of an index for a given document collection. Storage overhead might be
needed to enable support for searching while the index is being updated, or the method
might over-allocate to reserve room for more entries at the end of inverted lists. Either

way, a limit on the amount of storage overhead is wanted, and a small overhead is pre-
ferred.

Recoverability: Recoverability is concerned with whether a failure will destroy our cur-
rent index and force us to build it from scratch. If not, the index is recoverable and that is
obviously a beneficial feature.

2.4.2 Evaluated methods

This section will give an introduction to the methods evaluated in [Bjg06], as well as a short
resume of the results of the evaluation. The methods evaluated are characterized as belonging
to two different groups, methods based on rebuilding the index and incrementally updatable
methods. The first three methods evaluated belong to the first group, while the last four methods
are incrementally updatable.

2.4.2.1 Rebuild

This method is probably the simplest one as it just rebuilds the complete index from scratch
every time there is a given number of updates pending [LZWO04]. It takes advantage of the fact
that there exist very efficient methods for constructing an index for a document collection, for
example the multi-way merge mentioned in Section 2.2.2.
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Despite efficient methods for constructing inverted indexes, rebuilding an index for each update
in a large document collection is clearly not feasible, and updates should be batched.

Evaluation

The rebuild method is capable of supporting all kinds of updates, and the search speed is es-
sentially unchanged from an inverted index for a static document collection. The update speed
and latency however, are dependent on the size of the complete index. This is a substantial
drawback if the document collection is large.

The method is capable of supporting searches while updating if one is prepared to store an old
version of the index while the new one is being built, but this introduces space overhead. The
guestion of recoverability is not as important here, because it should be fairly straightforward to

recover an index where the complete index is flushed to disk, and redoing a rebuild is not more
expensive than processing updates.

2.4.2.2 Remerge

This method is quite similar to the complete rebuild, but takes advantage of the index already
built. When new documents arrive, they are added to a partial index in memory which is flushed
if it becomes full. When a batch of updates is added, the partial indexes are merged with the
existing index on disk. By maintaining a list of documents to be deleted, the entries in the index
for these documents can be filtered out during the merge. The method is tested in [LZWO04].

Evaluation

Remerge supports insertions, and deletions can be supported by keeping a list of deleted doc-
uments as noted above. The advantage of this method compared to rebuild is that documents
that are unchanged since the last merge will not need to be parsed and written to a partial index
a second time. This may result in a more efficient update speed and latency, but the result is
reversed if significant fractions of the old index are deleted.

It is simpler to lower the update latency here than in merge rebuild, because it is possible
to allow searches in the partial indexes. This will on the other hand lower the search speed,
because searches in more than one index may be required.

If one uses a merge method where the old index is kept while merging, this method supports
searching while updating. It is quite common in construction methods to keep a copy of the old
index, although methods with less space overhead exist. Allowing searches while updating will
thus typically introduce a space overhead equal to the size of the complete index.

2.4.2.3 Hierarchical index

If we do not merge new updates into the main index in merge rebuild, but rather keep all flushed
partial indexes and perform searches in each of them, we will have a much more efficient update
process. Such a scheme would punish the search time severely though, and hierarchical indexes
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are a compromise between these two schemes.

Hierarchical indexes were first properly introduced in [OvL80], and has since been studied with
some variations in several other texts [BC05a, LMZ05]. Here we will focus on the presentation
given in [OvL80], which presents two different methods. Common to both methods is that
they maintain several indexes of various sizes, and a complete search should involve all these
indexes. Just like with the two previous methods, updates may be accumulated in main memory,
and when it becomes full, they are merged into the current hierarchy of indexes.

The organization of the hierarchy differs slightly between the two methods, leading to different
trade-offs between search efficiency and update efficiency. Method 1 has a hierarchy containing
indexes with maximum sizes @t for integer values of. It may hold up toX — 1 indexes of

each maximum size. The size may be quantified in different manners, but a common measure
Is the number of postings in the inverted file. A sizela$ typically a number of postings that

will fit in main memory, although lower update latencies may be enabled by choosing the size
of 1 to be smaller.

Adding documents in method 1 proceeds as follows: New documents are added to an in memory
index until a size ofl is reached. When this happens, the partial index is merged into the
hierarchy. It is first flushed. If this leads to a situation where therefanadexes with a
maximum size ofl, these are merged into an index with maximum gizdt is merged into an
already used one if there exist one that can include it, or into a new one if not. If we now have
K indexes of maximum siz&’, these are merged into an index of si¥é, and so on. Figure

2.5 shows an example hierarchy using method 1 wikien 3.

Figure 2.5: Example hierarchy with method 1 aikid= 3

Method 1 leads to an average insertion time for an index wighostings,/;(n), as given in
Equation 2.7.P;(n) is the time used to create a static index of size

Equation 2.8 gives an upper bound on the relationship between the number of disk accesses re-
quired to search in a hierarchical index from method 1 and the number of disk accesses required
to search a static indeX);(n) is the amount of disk accesses required to perform a given search
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in a static index of size.

n

Q1(n) =0 (log](([() log(n)) @:(n) (2.8)

Looking at equations 2.7 and 2.8, it is obvious that by increasingie can get an average
insertion time as close as we Wantféfli). Setting K to infinity is actually equivalent to
flushing all partial in memory indexes in a normal inverted index construction without merging
them at the end. It is thus clear that by increasihgve obtain a lower average insertion time,
but sacrifice search speed.

Method 2 differs from method 1 in that it only keeps one index of each size. As in method 1,
postings may be accumulated in memory until a threshold for a sizesgEached. At that time

the partial index is merged into the hierarchy. If there is no index in the hierarchy with,size

it will be flushed and set into the hierarchy at this position. Otherwise, it is merged into index
i in the hierarchy.; is the smallest position where the resulting index from merging the new
partial index and all indexes at positions smaller than or equalrtdhe hierarchy, is smaller
than the maximum size for positian The different possible maximum sizes of the indexes in
the hierarchy in method 2 are just as in method 1. An example hierarchy for method 2 with
K = 4is shown in Figure 2.6.

Figure 2.6: Example hierarchy with method 2 akid= 4

The equations for average insertion time and upper bound on disk accesses in a query for method
2 are given in equations 2.9 and 2.10.

Ln) =0 (L log(n)) B n) (2.9)
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Quln) =0 (o1 Tox(m) ) Q.(o 210

We note that settings to infinity in method 2, makes it similar to remerge. We also note that
setting K equal to2 in both methods makes them similar [Gri05], and the evaluation is only
carried out for such a setting in [Bjg06]. Deletions may be supported by constructing a ghost
structure as suggested in [OvL80], or by maintaining a delete list in memory where merged
indexes filter out occurrences from these documents.

Evaluation

All update operations are supported in all hierarchical methods, and thus also for the special
case withK' = 2. The average insertion time becomes as given in Equation 2.11 for this special
case.

I(n) = O(log(n)) - 372”) (2.11)

The best case for insertion in this method is when the current in memory index can fit in the
position for an index of sizé in the hierarchy, which is supported only by flushing it. The worst
case is that all indexes in the hierarchy will have to be merged, giving a complete remerge. The
update speed is just better than the two previous methods on average, but the worst case is
almost equivalent to remerge. To which extent this method batches updates depends on how we
quantify the size of an index, and on how a sizd o6 defined. We note that choosing the size

of 1 to be quite large is likely to give a higher update speed, by sacrificing update latency (if we
do not allow searches in the partial index in memory).

The upper bound on the number of disk accesses required to perform a search in this special
case of a hierarchy is given in Equation 2.12.

Q(n) = O(log(n))@s(n) (2.12)

If we assume that a search in a single index requires one disk access, we can give a plot of the
relationship between the index size and disk accesses required, as shown in Figure 2.7 [Bjg06].
Figure 2.7 also plots the worst case given in Equation 2.12 for reference.

This method is capable of supporting searches while updating, and this issue will be studied
in more detail in Chapter 4. The storage overhead is again dependent on the method used for
building the inverted indexes, and to which extent we will support searches during processing
of updates. As in the previous two methods, recoverability is not a big issue here.

2.4.2.4 Simple incrementally updatable index

The first incrementally updatable index takes advantage of the fact that when adding a new
document, only the inverted lists representing terms that occur in the document need to be
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Figure 2.7: Number of disk accesses required in a search as a function of index size

modified [LZWO04]. This simple approach thus looks up these lists, updates them, and writes
them back to disk. They may have to be written to another position on the disk if there is no
more room after their current position. It may not be necessary to read the complete list if we
know that the new document has a higher document number than all previous ones.

From Equation 2.6 stating Heaps’ law, we note that it is beneficial to batch updates in such a
scheme because the number of inverted lists that require update grows as fast as the vocabulary
of the batched document collection. Heaps’ law states that this relationship is sublinear.

Evaluation

Simple incrementally updatable indexes are capable of supporting both insertions and deletions.
As noted above, batching updates requires fewer list updates per document and is thus likely to
be beneficial, although this compromises update latency. [Bjg06] contains an argument saying
that the number of disk accesses required for an update in this method is more or less indepen-
dent of the size of the inverted index, although it is obvious that the amount of moved data is
not. The update latency is dependent on the way we batch updates as noted above, and another
important aspect is whether or not this method is capable of supporting several update opera-
tions at once. If it is not, a new update will have to wait for the current batch to finish before it
can be processed. In a basic implementation it is likely that two updates can not be processed
at once, and it is thus hard to give an exact bound on update latency.

The search speed for this method is equivalent to that of a static inverted file, but some care must
be taken to support searches while updating. [Bjg06] gives a general bound on storage overhead
for this method dependent on the size of the longest inverted list, but concludes that a thread

running in the background to minimize external fragmentation is likely to give the method a
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decent performance with respect to storage overhead in practice. To which extent the method is
recoverable depends on the implementation, but it is definitely a very desirable feature for such
a method.

2.4.2.5 Methods using B-trees

[CP90] introduces several methods based on B-trees capable of handling updates. The first
solution is called a naive B-tree index, and is an index where both the dictionary and the inverted
file are represented in one single B-tree with keys consisting of a term and a document number.
According to typical characteristics of a B-tree, this should give us a search tithgig;(n)),

where n is the number of postings in the index, @&t the size of the buffers used. Note that
O-notation is used. The correct logarithm is actudlylivided by the average number of bytes
needed to represent a term, a document number and a pointer to another B-tree node. To be
precise, we should also replagavith the number of leaf nodes in the B-tree, but because we
useO-notation, this does not matter. An update requires us to perform one insert per distinct
term in a document, leading to one operation with logarithmic complexity per term. A naive
B-tree index for our example documents is shown in Figure 2.8.
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Figure 2.8: A naive B-tree index for the example documents

The asymptotic complexity is equal to the number of disk accesses needed to perform each
of the operations when caching is not used. When caching the upper nodes in the B-tree, the
number of disk accesses needed becofgsg ;(n) — logz(M..)), wherell. is the amount of

main memory available for caching.

Two optimizations to this scheme are presented in [CP90]. The first one is based on the obser-
vation that when considering update speed only, it is more beneficial to use the main memory

available to cache updates rather than caching the B-tree. The only part cached from the B-tree
is the path from the root to the currently processed leaf. Based on an estimate of the vocabulary
size based on Zipf’s law, it is shown that this scheme leads to higher update speed. In [Bjg06]

it is noted that search speed is likely to suffer severely though, which makes this approach

significantly less attractive.
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The second proposed improvement is a space optimization. The idea is to avoid having multiple
entries in the B-tree with the same term. This is achieved by grouping all occurrences of a term
in different documents into one entry. This implies that the term itself can be used as the
primary key. It is shown in [CP90] that this will typically reduce the space requirements by
50%. The problem is, however, that some entries might become very large using this approach,
and may thus not fit within a single B-tree node. A suggested solution to this problem is to
store the entries in a separate file, making this scheme similar to an incrementally updateable
inverted index with a B-tree as the dictionary. A technique known as pulsing is also introduced
in [CP90]. This technique reserves space for some occurrences in the entry for a given term.
When this buffer is full, the entries are moved to the separate file.

[Bj@06] notes that there are several possible schemes obtained by grouping different numbers
of entries for a given term. These schemes are also likely to be more space efficient than a naive
B-tree index, and may also be constructed so that no separate file is needed.

When choosing to store the entries in a separate file, one has to choose how to store the inverted
lists within the file. [Bjg06] refers to studies from [FJ92] which shows that storing all inverted
lists contiguously on the disk is often the most efficient solution for both searches and space
overhead. By reserving extra space at the end each time the list is relocated, the amortized
complexity of appending a new entry on an inverted lisD{g ).

Evaluation

Two different methods using B-trees is evaluated in [Bjg06], the naive B-tree index, and the
space optimization. The organization of the inverted file recommended in [FJ92] is used in the
space optimization.

All update operations are supported by both evaluated methods. All evaluations carried out
in [Bj@06] assume that the dictionary structure can fit in main memory. As opposed to the
previously discussed methods, this assumption is not vital for a B-tree because the structure is
well fitted for storage on disk.

Based on a worst case estimate of the amount of space used by naive B-tree index, it is argued
in [Bj@06] that it is likely that each update in the index will require more than one disk access.
The space optimization on the other hand, is more likely to require only one disk access based
on the assumption that a normal dictionary for the collection can fit in memory. The pulsing
technique available for the space optimization is also likely to result in higher update speed on
average.

The naive index has one important advantage compared to the space optimization. When the
list is relocated in the space optimization, the complete list must be read and written. In the
naive B-tree index on the other hand, the correct position to insert a new entry is found directly
through the insert in the B-tree. This may have a positive effect on update speed.

B-trees are widely used structures in databases, and it is well known how to ensure serializable
histories in them. This makes it easy to perform concurrent updates in the tree, which is likely
to lower the update latency. To extend this to the space optimization, some modification is
needed to introduce locking in the inverted file as well. Using such a locking scheme, it is easy
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to support searches while updating as well.

Using the same assumptions as above, [Bjg06] concludes that a search in an index using the
space optimization is likely to use only one disk access. When storing several entries for a term
in the naive index, they may be stored on adjacent blocks in the b-tree, but we have no guarantee
that these blocks are sequential on disk. Assuming that an update reqdisksaccesses in the

naive index, a search for a term that is spread out pverdes, will require + 1 disk accesses.

This makes the space optimization more attractive for performing efficient searches and it also
has the benefit of not requiring to read the redundant information stored in the naive B-tree.

Because the worst case space efficiency in a B-trée(%son average), it is clear that the dic-
tionary in the space optimization will consume more disk space than a compact representation.
The inverted file will be similar to the one for the simple incrementally updatable method, and
the overall storage overhead is thus likely to be within reasonable bounds. [CP90] reports that
the space optimization is abob% more efficient than the naive index with respect to space
usage. The storage overhead in the naive index is thus expected to be significant.

With respect to recoverability, the methods based on B-trees have a clear advantage compared
to other methods. Recoverability for B-trees is also a well studied field and a form of logical
logging is likely to yield good performance while at the same time enforcing recoverability.

2.4.2.6 Continuous update

Continuous update is the name used in [Bjg06] to describe a method introduced in [CCB94] and

[CC95]. Itis not strictly speaking an incrementally updatable approach, but the authors argue

that it solves some of the problems with methods based on B-trees. Figure 2.9 describes how
this method works.

not updated
updated

Figure 2.9: Snapshot of the index on disk when continuous update is used
An update process goes through the index at given intervals, and updates to occur are kept in
lists. The file containing the inverted lists may be considered as a circular buffer as Figure 2.9
suggests. The update process starts with the first inverted list, reads it, merges in the updates
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from the update lists, and writes it back out after the last inverted list. This process continues
until all inverted lists are processed and a run is completed. How often a new run is started is
a tuneable parameter, and the effects on search performance from this choice is discussed in
[CC95].

Evaluation

Continuous update supports both insertion and deletion, but the update speed is again dependent
on the size of the complete index. If there are few updates pending when the update process
begins, the cost per update will be large. With many updates pending, the cost of each update
is relatively smaller, just like with the other methods based on rebuilding the index.

If one insists on processing a new or deleted document completely within one update cycle, the
update latency using this method is the time between initiations of two update cycles plus the
time spent performing one update cycle. If we do not impose such a restriction, and continously
run the update cycle, the worst case latency is the time spent on one update cycle.

The search speed using this method is almost equivalent to a static inverted file. The equivalence
is valid if we choose never to let an inverted list that will fill more than the rest of the file store

its first postings at the end of the file. It is easy to allow searches while updating the index if
we do not insist on consistent retrieval. We only keep the copy of the inverted list to be moved
to the end until we have written the updated version. When the new version is written to disk,
the pointer in the dictionary is changed in an atomic operation. Insisting on consistent retrieval
introduces a significant space overhead as well as some implementation difficulties if we want
to support searches while updating.

Some of the modifications suggested in the evaluation introduce a slight space overhead. The
file we have allocated to the index should be able to accommodate the complete index we
eventually get, or we should be able to allocate new disk chunks adjacent to the current chunk.
Recoverability may be supported in this method and [CC95] suggests checkpointing on a regular
basis to be able to restart from the last checkpoint in case of a failure.

2.4.2.7 Dual-structure index

A dual-structure index partitions the inverted lists into two sets: long ones and short ones
[TGMS94]. The long lists are processed like in the simple incrementally updatable index,
while the short lists are stored in buckets. When searching for a term we first look it up in the
dictionary for long lists. If it is not found here, we use a hash functios/(w), to decide in

which bucket the inverted list (if it exists) is stored. This scheme allows us to maintain a far
smaller dictionary, but may also require an unnecessary disk access when searching for terms
that do not exist in the document collection.

In the updating process we follow the same overall scheme as sketched for searches. An update
in a bucket might make the bucket overfull. When that happens, the longest list in the bucket is
transformed into a long list. The distinction between long and short lists is assumed to be well
fitted for information retrieval because of Zipf’'s law, which essentially state that there are a few
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long lists that will grow very rapidly, while a few short ones will almost never grow.

[TGMS94] performs simulations where various policies for handling the long lists are com-
pared. They conclude that even though no method is definitely better than the others, the method
that keeps all lists stored continuously all the time is promising in most areas. This conclusion
is analogous to the conclusion in [FJ92].

Evaluation

The dual structure index is the only method studied that does not support deletions out of the
box. The problem is that there is no policy for migrating long lists back to short ones. The
method can undoubtedly be extended to fix this problem, as discussed in [Bjg06].

[TGMS94] does not discuss the choice of a dictionary structure in detail, but it seems highly
likely that the dictionary structure can fit in main memory, because we only need a dictionary
structure for the frequently occurring terms. Following this assumption, either the bucket or
the list for updated terms will have to be read in, updated, and written back out. This leads
to a maximum of2 disk accesses per updated term. The latency for this method is similar to
the simple incrementally updatable method. The same is true for considerations regarding the
ability to support searches while updating.

A search only requires one disk access, as is the case with a static inverted file, and it is certainly
not a drawback that the dictionary used is smaller than for a static inverted file. A complete
analysis of the storage overhead introduced by this method is complex, but it is concluded
in [Bj@06] that it is likely to be in the same order of magnitude as the simple incrementally
updateable index. [TGMS94] does not consider fault tolerance, but that their algorithms and
data structures are constructed so that it is possible to restart after a failure.

2.4.3 Further considerations and experiments

[Bjg06] also mentions a technique called landmarks. While all evaluated methods supports
updated documents by deleting the old version and inserting the new one;"A)/Bhows

that updates occurring in documents are usually small and clustered. To handle such updates
efficiently they propose to insert landmarks in the text [LV@B]. This technique makes it
possible to insert a term at a position in the document without having to update the references
for all terms after the inserted one in the text.

When [Bjg06] was written, the only reported experiments comparing updatable index structures
were found in [LZWO04]. They compare rebuild, remerge and the simple incrementally updat-
able approach. They argue that all methods evaluated in [Bjg06] are inefficient because they
predate the invention of the fastest building techniques for static indexes.

They conclude that with large document collections and relatively small batches, the simple
incrementally updatable method performs best, but that in other settings remerge is the best
method. They see optimizations to the in-place method as a promising area for future work.
[Bj@06] reports that it is peculiar to state that the other proposed incrementally updatable ap-
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proaches will perform poorer than the simple method tested in [LZWOE]. It is believed that this
deserves a more thorough investigation.

Experiments were carried out in [Bj@06] to test remerge versus various configurations of the hi-
erarchical index (which was not tested in [LZWO04]). The results of these experiments had very
limited applicability though, because of problems with disk caching in the operating system,
and no results from these experiments are reported here.

The conclusion of [Bjg06] is that far more experimentation should be carried out in this field

to get a clearer view of the strengths and weaknesses of the different methods. The methods
considered most interesting to test are the ones based on B-trees with the possible improvement
mentioned in Section 2.4.2.5. The dual-structure index is also considered to be an interesting

starting point for further refinements.
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Chapter 3

State of the art

As noted in Chapter 2, [Bj@06] concluded that more experiments are required within the field

of updatable indexes to get a clearer view of the advantages and disadvantages of the different
techniques. Fortunately, several authors have seen this need and there have been several pub-
lications reporting results from experiments during the last year. Through these articles, the
author became aware of a technical report [CH98] from several years back that unfortunately
was missed in [Bjg06], even though it presents interesting ideas.

This chapter will give an overview of the recent developments in this field, by going through
each of the contributions. Each section will explain the overall approaches in the contributions,
before the author comments on the presented ideas.

3.1 Eager, Piggyback and Batch

[CH98] is the first article known to the author to focus on an important aspect also mentioned in
[Bj@06], the update latency. Their overall goal is to be able to reflect changes in the document
collection as soon as possible. In order to solve this problem, they consider three different
overall approaches:

e Eager: When a document is added or deleted, the inverted lists representing terms con-
tained in this document are updated immediately.

e Piggyback: When a new document is added, the update is eagerly applied to all currently
cached inverted lists, and a transient index is constructed to describe the updates that has
not yet been applied to the index on disk. The updates in the transient index are applied
to the real index when a query for the term is submitted, in which case the list is read
anyway. A deleted document is handled by marking it as deleted in a list. Documents
marked as deleted will eventually be filtered out from the index on disk.

e Batch: Added documents are added to a transient index, but none of these updates are
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applied to the index immediately. During periods with low load, the transient index is
merged into the real index. By searching in both the transient and the real index, queries
will have an updated view of the collection between these merges. Deletion is handled
just like in the piggyback version.

It is assumed that both transient indexes and the hash-based dictionary used can fit in main
memory, but that the list of words for each hash value is stored as a linked list on disk. Con-
currency control when there is only one thread performing updates is quite simple and based on
a timestamp method which, according to the results of some experiments, obtains far superior
performance compared to an approach based on locking [CH98]. The index used is an example
of something in between a word-level inverted file and document-level inverted file, because the
occurrence of a term within different sections in the document is recorded.

Results from experiments reported in [CH98] show that the piggyback and batch methods are
far more efficient than the eager approach when it comes to handling updates. Piggyback is
slower than the other two when it comes to search speed because it has to perform updates
while searching, while the batch method is significantly slower at searching while the batch of
updates is being processed.

The authors conclude that the piggyback approach seems to be the best method because it
spreads the updating cost over a longer period of time without severely degrading search per-
formance [CH98].

3.1.1 Comments

When explaining the poor results obtained for the eager method, the authors mention a naive
implementation which iterates through all terms in the dictionary. This is done by accessing
each value of the hash function, and following the disk-resident linked list of each of the terms
with the given value. If the currently checked term exists in the document, its inverted list is
obtained and written back out. This leads to a very low variance in insertion and deletion times
as a function of the size of the inserted/deleted document.

How the linked lists of all terms with a given hash value is stored on disk is not commented
in [CH98]. If it is stored as a linked list on disk it may require one disk access per term in
the dictionary regardless of whether the term exists in the document. It appears that such an
implementation should not give sufficient proof to the claim that the eager approach is a bad
solution.

It also seems like the focus of [CH98] is on processing boolean queries. If they were to support a
ranking scheme like tf-idf, it is likely that some additional processing is needed for every added
document using the piggyback or batch method. This issue will be discussed when considering
the implementation of other methods in Chapter 4.

According to the experiments performed in [CH98], the batch and piggyback methods seems
to have very good performance, but the disadvantages of these methods are not mentioned. It
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is said that piggyback only updates lists when a search for the term is processed. If the system
during a period of time has to handle a lot of updates, while the query load is low, the memory
requirements become very high. Itis not in any way guaranteed that a list with a lot of updates
represents a term frequently searched for. In addition, some terms are probably never searched
for, and will thus consume memory throughout the whole lifespan of the index. A backup
strategy in case the memory becomes full should thus be incorporated in the method.

For the batch method, it is said that the batch can be processed while the load on the system is
low. Some systems experience high load 24 hours a day, and even if not so, the memory may
become full long before a period with low load sets in.

Regardless of the commented issues, the focus on update latency in [CH98] seems very reason-
able. The piggyback method is not commented elsewhere, but is certainly an interesting path.
Schemes with some of the same characteristics have been applied with great success in other
fields [ADHNOG].

3.2 Experimentation with B-trees

[Bjg06] called for experimentation with updatable structures where a B-tree was used as the
vocabulary structure. Such experiments are carried out in [LZWO06]. The paper is a follow-up
on the experimentation performed in [LZW04]. Rebuild, remerge and various forms of in-place
update is compared. In-place update has become the de facto standard term in the literature
to denote what was called incrementally updatable methods in [Bj@06], even though there are
more aspects to in-place updates which will be discussed later in this section.

Common to all tested methods is that added documents are accumulated in an in-memory in-
dex. This index is searchable by using a method for accumulating partial indexes described
in [HZ03], a technique that will be discussed in Chapter 4. This implies that a document is
searchable immediately after it is added to the in-memory index.

Once a predefined number of documents are added to the in-memory index, the added docu-
ments are incorporated into the main index. How this is performed varies between the different
methods. The rebuild strategy only initiates a complete rebuild of all added documents. To
enable searching while updating, a copy of both the previous index and the in-memory index is
kept. This strategy obtains quite poor results in all experiments in [LZWO06].

The next strategy tested is remerge, which is explained in Section 2.4.2.2. The accumulation is
just as for rebuild, and the resulting in-memory index is merged with the main index when the
memory is exhausted.

The last method tested is basically the space optimization from [CP90] with the B-tree as the
vocabulary, as explained in Section 2.4.2.5. Initial tests found a naive implementation of this
method to have quite modest performance according to the authors, and two improvements
where implemented. The first is pulsing, as introduced in [CP90] and explained in Section
2.4.2.5. The second is over-allocation for the inverted lists, but the authors argue that the moti-
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vation for their over-allocation policy is not to make room for more than the current entries as
in [TGMS94] or the more advanced approach introduced in [SCO05]. On the other hand, their
motivation is to avoid many small entries in their free map. It is argued in [LZWO06] that an
efficient implementation of a free map is essential for the overall performance. According to
the authors, over-allocation to avoid small entries makes it easier to achieve decent performance
in the free map.

The B-tree method is argued to be an in-place update method, because one does not merge
in the new batch once it is processed, but rather looks up the terms present in the batch, and
appends the new entries at the end of the inverted list for these terms. If there is not enough
room for them, the complete list is moved to a different location. This differs slightly from
incrementally updatable approaches in [Bjg06]. Whereas new entries are always appended at
the end of the inverted lists here, they are typically merged with existing lists in incrementally
updatable methods discussed in [Bjg06]. The effects of the approach used here is discussed in
Section 3.2.2.

3.2.1 Experiments in [LZWO06]

Experiments on these structures were carried out with two different collections, starting with
either a small or a large collection for which an initial index was built. Both initial indexes where
then updated with approximatelyGB of additional data. The authors mention, as is also noted
in [Bj@06], that no earlier experiments with such structures are reported in the literature.

Their results from the experiments with the small initial collection show that the rebuild-method

is inefficient for all but unrealistic scenarios [LZWO06]. The naive implementation of the in-place
approach performs even worse than rebuild as opposed to the results in [LZWO04]. The authors
argue that the reason is that parts of the vocabulary structure is now stored on disk. For larger
collections on the other hand, the naive in-place becomes competitive, at least when the number
of buffered documents is reasonably low.

It turns out that the first optimization to the in-place solution, pulsing, had a positive effect on
the update speed. Concerns about the space overhead introduced by keeping short inverted lists
in the vocabulary structure were not confirmed, supposedly because the vocabulary structure
did not consume a significant part of the complete index [LZWO06].

Using the two optimizations together provides very limited benefits compared to using only
pulsing, and it is concluded that the potential benefits of over-allocation are small. The average
update speed varies betwekersecond and.1 seconds as a function of the amount of buffered
documents in this case.

The same overall results are obtained in the tests with the large collection, and it is concluded
that the in-place method is the most interesting method despite the fact that it is slightly less
efficient than remerge and leads to fragmentation. The in-place method does not require several
copies of the index, and the authors see this as a very desirable feature. They would therefore
prefer this method if it can be made slightly more efficient, and see optimizations to an in-place
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scheme as a promising area for future work.

3.2.2 Comments

[LZWO06] provides the first real experimentation with updatable structures, which is an impor-
tant step forward. Their average update speed seems to be reasonably good, at least when the
document collections are small. But when the document collection consists of approximately
25 million documents, a second is typically needed per document when the batches are not
very large. Evaluating the quality of these values is difficult without reference values, but some
general comments are in order.

First, it should be noted that only insertions are tested in [LZWO06]. Methods for support-
ing deletions are discussed at the end, but this would possibly require changes in the in-place
method. As noted above, new entries in an inverted list are appended to the existing one on
disk. To preserve the property that the inverted lists should be stored with increasing document
numbers, all new documents must have higher document numbers than all previous ones. To
achieve the best possible compression when the lists are represented with d-gaps, the document
numbers should have the smallest range possible. It would thus be beneficial to reuse document
numbers a while after a document has been deleted, but this is not possible using this method
without merging in the new documents instead of appending them. Another solution is of course
to not compress the most newly added documents until they are relocated, but either of these
solutions will affect performance, and their impact should be considered.

A second comment is in order regarding update latency. Update latency is clearly a focus of

[LZWO06], and because they are capable of searching in the in-memory index, they argue that
the documents are instantly available. It is obviously true that once they are ready to insert a
new document, it will be searchable very fast. But the update latency should be measured from
the time the document was found to be updated until it is searchable. Such a setting will have
to be simulated, and finding a realistic experiment is not straight-forward. We can for instance

give an estimate on the average update-latency given a maximum number of arriving documents
per second for a given method. Such an experiment would have been interesting.

Finally, the claim in [LZWO06] that the documents added to the in-memory index are immedi-
ately searchable is also interesting. The ranking scheme used in the experiments is not com-
mented. To which extent ranked queries are immediately available when a document is added
to the in-memory index is also uncertain. If tf-idf ranking is used, adding the document to the
in-memory index is not sufficient to make it searchable, because the document length will also
have to be computed. More elaboration regarding this issue will be given in Chapter 4.
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3.3 Hybrid methods

Two hybrid approaches where a distinction between short and long lists is incorporated into
different kinds of hierarchical indexes have also been proposed recently [BC06, BCL0O6]. Both
of these papers use the hierarchical methods that were only described as subsets of the overall
hierarchical method in Section 2.4.2.3. We will therefore give a short introduction to these
variants here, because especially one of them is an important basis for understanding a proof in
[BCLOG].

3.3.1 Geometric partitioning

This method is proposed in [LMZO05]. It is quite similar to method 2 in [OvL80], described in
Section 2.4.2.3. A size of one is defined as the number of postings that can fit in main memory,
and the various indexes has maximum sizes defined almost as in [OvL80]. The only difference
is that the smallest index is of siZé — 1, while the next is of siz¢ K — 1) K and so on. This
scheme enables the authors to give a bound on the cost of building an index online as given in

Equation 3.1.
N\ *
) <N (M) ) (3.1)

When K = 2, this method is referred to as Sqrt merge in [BCLO6]. Note that this not contra-
dict the results referred to in Section 2.4.2.3, because of the slight difference in sizes for each
partition, and because the result here takes the size of the batches into consideration.

3.3.2 Logarithmic merge

This method is outlined in [BCO05a], and a more elaborate explanation is given in [BCO5Db].
This method is essentially method 2 of [OvL80], which is also presented in Section 2.4.2.3.
The value ofK is set to2 here as well. In essence, this makes the method similar to the Sqgrt
merge method mentioned above, as noted in [Gri05]. But the authors of [BC05a] manage the
merges so that only two indexes are merged at any time, giving a cost of building the complete
index online as given in Equation 3.2.

o(n(2)

[BCO5b] also supports deletions in this scheme, in the fashion suggested for hierarchical indexes
in [Bj@06], except that they incorporate delete lists in another feature originally developed for
supporting multi-user desktop search.
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Experiments from a desktop search environment are also reported, suggesting that the loga-
rithmic merge seems to be a good choice for many different settings regarding the number of
queries per update operation [BCO5b].

3.3.3 Afirst set of hybrid methods

A first set of hybrid methods, incorporating a distinction between long and short inverted lists

in the above mentioned hierarchical methods is presented in [BC06]. Recent experiments have
shown that in-place methods are usually slightly slower than merge-based methods. The merge-
based methods have the advantage that the disk access pattern is strictly sequential, and thus
short inverted lists are merged without requiring a disk access for each of them. The in-place
methods, on the other hand, are likely to be more efficient when processing long inverted lists,
because they do not require relocating the list each time if over-alloction is used.

Following the line of thought given above, it seems likely that there exists a certain threshold
value for the length of inverted lists that should be processed in-place, while the rest should be
merged. This scheme is similar to the presented methods in [TGMS94]. The main invention
in [BCOG] is that a hierarchical approach is used as the merge-based method. The hierarchical
method chosen is the logarithmic merge presented aboveivith2.

The authors argue that a custom implementation of an in-place update scheme is not trivial. To
make the implementation simpler, one relies upon the file system. Each long inverted list is
represented in a single file. When new entries should be added to this file, the new entries are
appended to the file. One thus relies on the file system to limit the amount of fragmentation and
keep each inverted list stored more or less contiguous on disk.

For the immediate merge method used, called remerge in Section 2.4.2.2, various limits on the
size distinguishing long from short inverted lists are used. For the hierarchical approach, it is
not trivial to keep track of the complete number of occurrences in the complete inverted file
because it is usually fragmented over several indexes. The strategy used takes the decision of
whether a list is short or long when the first partial index is flushed.

Another possible improvement is also presented. When the memory is exhausted after building
a partial index in main memory, parts of the accumulated postings should be appended to long
lists, while the rest should be merged with the on-disk short lists. The merging process requires
reading and writing the complete on-disk index. It is thus suggested that merging should be
delayed as long as possible. Therefore, when the memory is exhausted, the long lists are ap-
pended to the appropriate files, and deleted from memory. If the amount of free memory now
becomes below a given threshold, one starts accumulating more postings in memory. If it is
above the given threshold, the merge with the on-disk index for short lists is initiated. This
strategy requires a smaller number of merges, and the strategy is called partial flush.

Experiments show that while only constructing partial indexes without ever merging them is
the most efficient method for index construction, the best version of the hybrid method with
logarithmic merge is not much worse. It is substantially better than a normal logarithmic merge,
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which is in turn better than immediate merge.

Partial flush has a positive effect on indexing performance. Although the hybrid method used
with remerge is slightly faster at queries than hybrid logarithmic merge, it is substantially slower
at index construction. The authors thus conclude that the hybrid logarithmic merge is the overall
best method. They also note that relying on the file system for the allocation strategies for the
long inverted lists is risky because it is completely unknown what is done. Future work is to
implement a custom way of handling the long inverted lists.

3.3.4 Improving hybrid methods

[BCLO6] presents some improvements to the techniques discussed above. The authors argue
that there are two main problems with the previous hybrid methods.

1. Handing over control of the in-place updates to the file system makes it difficult to ana-
lyze, and it is uncertain whether the inverted lists are actually stored contiguously.

2. With a certain limit discriminating between long and short inverted lists, some lists may
use a lot of merge operations to achieve this limit. When they eventually become long,
the next merge will append the new entries for these terms to the long list, even if it would
be much more efficient to merge the new entries into the merge-part of the index. This
problem is more severe if the main memory available is limited, because this implies a
larger number of small appends on the long inverted lists.

These problems are dealt with in [BCLO6]. To fix the second problem, the limit on the length of
inverted lists considered long is not set as a global value. Whether a resulting inverted list from
merging indexes is stored as a long or short list is dependent on its length, not the length of the
complete inverted list obtained by concatenating all inverted lists for this term. This implies that
a complete inverted list may be scattered between its long list part, and several short list parts.

All long lists are stored in a single file. This file is not organized with contiguous lists that are
relocated. When a new inverted list should be stored in the file for long lists, it is just appended
to the end of the file. This solution requires a structure for keeping track of all segments of all
inverted lists within the file for long lists. This structure will never be very large, because there
are quite few terms with such a length if one chooses a high number of entries to define a long
list. The authors in [BCLO6] thus conclude that this is a structure that will fit in main memory.

It is obvious that this scheme sacrifices search speed to enable faster updates, but it is argued
that if the value used to define a large inverted list is high, the overhead is not substantial
[BCLO6]. The reasoning behind the claim is that when the threshold for long inverted lists is
large, each part of the inverted list in the file for long lists will be long. The disk accesses
involved when switching from one part of an inverted list to another in the file, will thus not
constitute a significant part of the time spent accessing the disk in a search.
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The number of disk accesses required to build a complete indexmpibstings is proven in
[BCLO6] to be linear inn when using this strategy together with logarithmic merge. The proof
builds on the fact that as increases towards infinity, the number of short lists will go towards
zero while the number of long lists will increase. Itis also shown that applying the same strategy
to immediate merge does not have a similarly positive effect, although the asymptotic number
of disk accesses is slightly reduced.

[BCLOG6] also reports results from experiments testing their strategy. The collection used in the
experiments is the same as the large one used in the experiments in [LZWO06], TREC GOV2.
Various configurations with the improved and old hybrid schemes, and different basis structures
like remerge, logarithmic merge and sqrt merge is tested. As a baseline, building all partial
indexes without merging them for the complete document collection is also tested. This method
is referred to as No merge. Almost regardless of the amount of memory available, their baseline
Is capable of constructing the index with approximat&ly2 million documents int.66 hours.

The other methods are slower, but the new hybrid method with logarithmic merge is the fastest
one and builds the complete index@r86 hours. The average search time in this structure is
much faster than with no merge2 versus4.8 seconds.

Itis also shown that the hybrid methods have different performance depending on the length de-
fined to make a list long or short. As the authors expected, the new improved hybrid techniques
are less dependent on the amount of memory available compared to the old hybrid scheme.
The reason is that whether a list is considered long is defined at each merge, not after a given
percentage of the collection has been indexed, as was the case in [BC06].

The hybrid method with remerge is, not surpisingly, the most efficient method for query pro-
cessing. Its most efficient configuration is when the limit for long lists is set to infinity, which

is basically the same as a normal remerge. The new hybrid technique with logarithmic merge
IS hot an improvement when it comes to search speed. It is actually less efficient than all other
configurations except no merge.

The results reported in [BCLO6] are shown to be quite consistent with computed expected times.

3.3.5 Comments

As a first comment it can be noted that the reported results seem quite good. Building all partial
files for a complete index of the GOV2-collection in less thdrours is impressive. The newly
proposed technique is also quite fast when it comes to updating.

That the new hybrid approach with logarithmic merge is fast compared to the baseline strategy
IS not strange if one takes into account the choices made in the implementation. The logarith-
mic merge is quite efficient for updates in itself, as we know from Equation 2.7. In addition,
choosing to relax the restriction that long lists are to be stored contiguously will obviously
have positive effects on the update speed. The search efficiency does not seem to be quite as
impressive though.
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Update latency is not commented on in [BCLO6], and this remains an open but nevertheless
important question. It is said that the Okapi BM25 [RWB99] is used for ranking. This does not
require such a complex computation of document length as tf-idf. It is therefore plausible that
documents are searchable as soon as they are added to the in-memory index. According to a
technical report describing the memory management in their overall implementation, it is not
unlikely that these documents are immediately searchable [BC05c].
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Implementation

This chapter gives an introduction to the implementation used as a basis for all experiments in
this report. It starts with a presentation of the methods chosen for testing, and explain why they
were chosen. All the code used in the experiments in this project was eventually written from
scratch, and the reason why is explained in Section 4.1.2.

Section 4.2 will give an overall introduction to the implemented search engine called Brille
[HCG'06]. Brille was originally developed in a course calleBT4215 Knowledge in Docu-
ment Collectionst NTNU, but only the name is still the same. All the code is rewritten, and it
is included in Appendix C.

4.1 Implemented methods and overall choices

There are several important aspects when considering which methods to test. First and foremost,
one should believe that testing the chosen methods will give a further insight. We also prefer
choosing methods we expect to be efficient. Another important aspect is to choose methods
with manageable implementation complexities for the scope of the given project. Based on
such considerations, the chosen methods for this report are:

1. Remerge
2. Hierarchical index method 2

3. Naive B-tree index

The next subsection will give a further explanation of why these methods where chosen, and the
following will explain the rationale for choosing to implement the overall solution from scratch.
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4.1.1 Rationale behind the methods chosen

The reasons for choosing to implement remerge are quite simple. First of all, it is a basic
method. This means that it is fairly straight-forward to implement, but it is still reported to
have decent performance in several experiments [LZW04, LZWO06]. Implementing remerge
involves implementing a standard construction algorithm for inverted files, like the one outlined
in Section 2.2.2. A basic construction algorithm is a quite interesting baseline test, and getting
both methods through one implementation seems like a good idea.

The hierarchical methods have quite a lot in common with remerge. The accumulation in mem-
ory is equivalent, and the only difference is essentially when to merge and what files to merge.
When the choice of implementing a hierarchical method was made, the author was not aware
of the experiments performed in [BC0O6] and [BCLOG6]. It was thus not known to the author
that such methods with suggested improvements had been tested quite thoroughly in the litera-
ture. Because hierarchical methods had received some attention in [BC05a] and [LMZ05], they
seemed like promising methods to test. The results from [BC06] and [BCLO6] proves that the
methods are indeed interesting, and a basic version of the scheme still seems like a good basis
for comparison.

Hierarchical method 2 was chosen over method 1 because we believed that the sacrifice of query
performance in method 1 is not acceptable in practical systems. As will be shown in Section
4.2, some implementation choices are made to enable a lower average update latency in method
2 by sacrificing search speed there as well. By using such an implementation, it was believed
that implementing only method 2 was reasonable.

The choice of implementing the naive B-tree index from [CP90] probably seems more strange.
[Bj@06] concluded that the structure where the B-tree is the dictionary is probably the most
interesting one to test. Implementing that method is not straight-forward though. Apart from
having to implement a B-tree, one needs to implement free space management in the inverted
file on disk. This was thought to be a quite complex operation, and the comments in [LZWO06]
confirms this assumption.

Several authors have noted that a method updating the inverted list of each distinct term in each
document is likely to have very bad performance [LMZ05, LZWO06]. Even if this is the worst
case performance of a naive B-tree index, it has some beneficial features as well.

Compared to methods building a partial index in memory, the naive B-tree index will have more
free memory to be used for buffering the index. Because a web collection is assumed to be Zipf
distributed, we know that some terms are very common. When we are buffering significant
parts of the index, it is likely that we are at least buffering the parts containing the most common
terms. This implies that inserting new entries in the inverted lists for the common terms will
usually not involve any disk accesses. When we have more memory available for buffering,
we are able to cache larger parts of the index, and it is thus likely that a smaller fraction of the
inserted terms requires a disk access.

Furthermore, because the naive B-tree index is simply a B-tree, producing serializable histories
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under concurrent accesses in it is a well studied field. Such a feature is likely to have a positive
effect on update latency because an update can be initiated as soon as it comes in. We therefore
choose to support serializable histories.

In Section 3.2.2 we noted that appending new entries at the end of an inverted list required us
to know that all incoming document numbers are larger than the previous ones. The naive B-
tree-index does not require any ordering of the input, and replacing deleted document numbers
Is thus not a problem. No matter what length the inverted list has and regardless of size of
the document number for the inserted document, only the part where the new entry should be
inserted is accessed.

Another motivation for testing this method is that creating a B-tree producing serializable his-
tories under concurrent accesses is an essential part of the method originally thought to be the
best in [Bjg06]. The naive B-tree index is an example of an eager updating scheme according
to the classification in [CH98]. As their experiments with eager updates seem to have tested a
quite naive approach, it seems reasonable to test one that is not quite as naive. The naive B-tree
index is in our opinion likely to be more efficient than the method tested in [CH98], especially
because not all entries in the dictionary are accessed for each added document. The author has
not been able to find any reported results from experiments with the naive B-tree index. The
reason can be that it has shown modest performance. Testing a method that may prove to be
inefficient is not necessarily a bad idea in a master’s thesis, because one might gain important
experience.

Following the given argument, the naive B-tree index was chosen as the last method to test de-
spite its inherent drawbacks including a quite large space overhead and a possibly slow indexing
speed.

4.1.2 Why implement a Search Engine from scratch?

To experiment with indexes, one needs an implementation to experiment with. There are sev-
eral open-source search engines available, and we could either choose to extend one of these,
or to implement our own from scratch. Lucene from Apache is one of the most prominent
open-source search engihe¥he initial choice in this report was narrowed down to choosing
whether to extend Lucene, or the search engine the author participated in developing in the
courseTDT4215 Knowledge in Document CollectiatdNTNU, called Brille.

When one is to modify the index structures of a search engine, it is likely that many other parts
of the application are affected. It is therefore tempting to do this in a system one already knows,
because it might be very time consuming to get familiar with code written by others. Based on
such an argument, Brille was decided on to be the basis of the implementation in this report.
As noted in [Bjg06], Brille suffers from some drawbacks. This was part of the reasons why the
experimental results in [Bjg06] where damaged by disk caching in the operating system.

The main problems with using Brille in its original form for this report was:

http://lucene.apache.org/
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¢ Brille had support for a lot of ranking schemes, clustering algorithms, collocations and
so on. These features are not of particular interest in this report, and the maintenance
costs associated with keeping them when changing the index structure are probably not
justified.

e Because Brille did not perform any buffering of the index by itself, we relied upon the
operating system to perform it for us. As is shown in [Bj@06], the operating system
typically did this job quite well, but relying on it makes the results very sensitive to other
load on the system. It is also generally tempting to have control over such behavior in an
application.

e The document manager was memory based in Brille, making its scalability questionable.

The implementation thus started with fixing the second problem, by creating a buffer pool.
Eventually it turned out that the maintainability costs for the other parts of Brille became a
significant workload because of large changes to the way disk accesses where handled, and how
the index works. It was therefore decided to delete all the old code, and build everything from
scratch. Such a solution also has the benefit that it is easier to distinguish what parts of the code
that should be considered as part of this report.

4.2 The new Brille

This section aims to give an overall explanation of how Brille works, and explain some of the
more important choices in the implementation and why they were made.

The section starts with an overview of the design principles used throughout the implementa-
tion. These principles lead to limitations regarding the scope of the implementation. Then, the
overall structure of Brille is presented, after which all of the implemented methods are pre-
sented. Some of the various other features in Brille with their implementations are represented
in the end.

4.2.1 Overall design principles

When the development of Brille started, some initial guidelines for the whole implementation
were decided upon. The intent of the different guidelines may either be to limit the scope of the
implementation, or to help ensure that the implementation is of descent quality. This section
will explain these principles and why they were chosen:

e Allimplementation is done in Java: Java is the author’s language of choice. It therefore
seemed like a natural choice, even though it is a common opinion that C++ is a more
efficient language when it comes to processing. Regardless of whether this is true or not,
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it is certainly more efficient to implement something in a language one already knows,
and we therefore chose Java.

Using Java NIO buffers: Thejava.niolibrary has been made to provide efficient I/O in
Java. Because a search engine typically is an I/O-intensive application,nisisgems
like an obviously good idea.

Managing buffers in a buffer pool: Instead of relying on the operating system to per-
form caching of the index files, a buffer pool is to be created within the application. This
will give more control as to what is currently buffered, and it might be an area for future
work to make it better adapted to the problem at hand.

Have a concious approach to using main memoryThis principle can actually be con-
sidered to be a requirement to create a search engine that scales reasonably well. This
principle has for instance been the basis of a choice on how to implement the in-memory
accumulation of inverted files, as described in Section 4.2.3.

Supporting the tf-idf ranking scheme: Ranking is an important concept in search en-
gines as most queries are ranked [LZWO06]. To support ranking, a ranking scheme must
be chosen, and there are several available. Because the vector space model and tf-idf are
introduced as the most common basic one in both [BYRN99] and [WMB99], it seemed
like a natural choice. Section 4.2.6 will give insight into the consequences of this choice.

Do not support index compression: Index compression is widely used both to limit

the space usage of the index, and to obtain faster construction and query evaluation, as
mentioned in Section 2.2.3. If the mentioned operations should become faster, their per-
formance have to be bound by the disk usage. According to [WMB99], this is usually
true for search engines. Despite these obvious advantages, implementing compression
requires some extra amount of effort. This is especially true in the naive B-tree index,
because the author has not got any particular experience with compression in such a
structure. It thus seems like a reasonable limitation of scope not to implement it.

Do not support deletions, but make sure that a future implementation of deletion

will not require too much changes: It is a common restriction within this field to only
consider a monotonically growing document collection [LZW06, BC06, BCL06]. We
will limit the scope of this project with the same restriction, but will not make any choices
that makes a future implementation of deletion significantly more complex.

The index should be a word-level inverted index:Word-level granularity is the most
commonly used one within this field [LZW06, BC06, BCL06], and this choice obvi-
ous. We do not choose to implement support for phrase queries though, because it is not
believed to add significant further insight about the search performance of an index struc-
ture. Searching for phrases only involves a slightly more sophisticated merging process
in memory over searching for multiple terms.
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4.2.2 The architecture of Brille

This section aims to give an introduction to the architecture of Brille, without going into much
detail. The idea is to give the reader an overall understanding of the system.

We will first give a class diagram describing how the system typically looks like regardless
of the index structure used. Such a diagram is given in Figure 4.1. The class diagram shows
that there are two interfaces that are implemented by all masteleserand Searcher There

exists no class calledasterin the source code for Brille, but there is one master for each index
structure.

«interface» «interface»

Indexer Searcher
+addDocument{BufferedReader in URI urj() : int +search(List<ByteArr> |)()
+inishedBatch()() 4&

|
' [
' [
' [
___________ 1 [m———————=
l |
l |
1
Master
«interface»
DocMan Dictionary
+addDocument(URI urj() :int
+getRankingValue(int docNr)() : double +search(ByteArr term)() : object

+getURI(int docNr)() : string

Figure 4.1: Generic class diagram for Brille

This master contains methods to add a new document to the index, and to finish a batch of doc-
uments. The method for finishing a batch is called when you want to make all added documents
searchable. The master also contains a method for searching for a list of terms. This method
returns the results ranked according to standard tf-idf ranking.

Figure 4.1 also contains one other interface and one other class. The interface iDoaNéh

and represents that each Master has a document manager. The primary tasks of the document
manager is to have an overview of the relationship between document number and document
URI for all documents, and to store the length of each document as calculated in the tf-idf
ranking scheme. It provides method to add a new document, manipulate the tf-idf-length of
documents and retrieve these lengths.

The Dictionary is an interface which declares methods available in all different dictionaries.
The most important method here is the one to search for a term, which returns an iterator over
all hits in the given dictionary. While emergeMastehas only one dictionary, Blierar-
chiclndexMastemay have several. For the naive B-tree index, the dictionary is actually also
the complete inverted index. These distinctions will be made clearer in the next subsections.
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To give the reader a clearer view of the flow in the system for both indexing and searching, some
sequence diagrams will be presented next. To avoid making these diagrams to abstract, we will
now make a distinction between the naive B-tree index on one hand, and remerge and the hier-
archical index on the other. We will first concentrate on remerge and the hierarchical indexes,
and Figure 4.2 contains a sequence diagram representing what happens when a document is
added.

Master DocMan BTree InMemPartiallndex

addDocument(URI uri)

»

insert(DocEntry entry)

] 1 i

addDocument()

Figure 4.2: Sequence diagram for adding a document in remerge and hierarchical indexes

As can be seen from Figure 4.2, the document is first added to the document manager, where the
URI is stored, and the document number for this document is returned. Note that the document
manager inserts entries in a B-tree. This will be detailed in Section 4.2.6.

Next, it is checked whether the currédnMemPartialindexcan accommodate the current docu-
ment to be added. There is actually no method call that tests specifically for this in the imple-
mentation, it is incorporated into tlr’ldDocumenmethod inlnMemPartialindex The method

call is included here for clarity. If there is no more room in the current in-memory index, a
new one is created. At this point, the two methods differ. The current in-memory index will
be flushed and the hierarchical method will make the documents added to the old in-memory
index searchable, while remerge will not when it builds an index off-line. Either way, a new
in-memory index is created, and the new document is added to it.

In the naive B-tree index, the process of adding new documents is slightly different, as can
be seen in Figure 4.3. The document is first added to the document manager as before. Each
distinct term in the document is then added to FudiBTreelndex Adding the index entry for

one term initiates two operations on the B-tree. This issue will be commented in Section 4.2.5.
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BTreelndexMaster DocMan BTree FullBTreelndex BTree

|
1 |
addDocument(URI uri) :

»

J

|
fm——mmmm - = N
0% msert(BytleArr term, IndexEntry ie) :
: : incOrIns(FullBTreelndexLeafEntry e)
: : numDocsWithTerm
: : insert(FullBTreelndexLeafEntry e)
| |
[ [ e
addToDoclLength :
2 S, L

1
-

Figure 4.3: Sequence diagram for adding a document in the naive B-tree index

While adding the distinct terms in the document to the naive B-tree index, the value to be added
to the length of the document for each term is returned and aggregated. Eventually we end up
with the tf-idf length, which is set in the document manager. This will lead to an approximation
of the tf-idf score, and this issue will be discussed in Section 4.2.6.3.

In Figure 4.4, a sequence diagram describing searches in Brille is given. This process is more
or less similar for all indexes, and we thus only give one general sequence diagram for this
operation. All searches in Brille are ranked ones. One may search for several terms, but phrase
queries are currently not implemented even though the index structure supports it.

The first thing that happens in a typical search is the actual search for the given terms. Each
of these searches returnSaarchResultHandlhich is a handle capable of iterating over the
results for a particular term. All these handles to search results are then add8ddahRe-
sultMerger A SearchResultMerges capable of returning all ranked results from this search by
performing a multi-way merge based on a priority queue of the handles. Some searches request
the topX ranked results. If so, these are gathered in a priority queue, as described in [WMB99].

When we have found the results to return, we look up these documents URIs in the document
manager. The results are then returned sorted by decreasing tf-idf relevance.
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Figure 4.4: Sequence diagram for searching

4.2.3 Remerge

In remerge, new documents are added to an in-memory index. When main memory is full, this
partial index in memory is written to disk. When using this method to construct an index, as
introduced in Section 2.2.2, several such partial indexes are written to disk before a multi-way
merge at the end makes all the documents searchable. When using remerge as an updatable
method, each partial index is merged with the main index immediately. The updatable version
was introduced in Section 2.4.2.2.

As mentioned in Section 2.2.2, different versions of this method typically differ on which dic-
tionary they use, and how the in-memory index is accumulated. These are the two aspects we
will discuss here, while the reader is referred to the source code in Appendix C for all further
details.

4.2.3.1 Chosen dictionary

When choosing what kind of dictionary to use, there are several aspects to consider. First of
all, we want a fairly efficient structure. We believe that it also is a good idea to use a structure
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which is quite easy to understand. We do not assume that the dictionary can fit in main memory,
and we thus need to store it on disk. It is therefore important to choose a structure that enables
caching the parts stored on disk in a buffer-pool, and provide look-ups with a small number of
disk-accesses. Several different structures have been used in the literature [LZW06, RE04], and
we have no reason to believe that some are definitely superior over the other.

To make the chosen structure easy to understand, Brille uses a dictionary that is essentially a
sorted list of the terms. A search in a sorted list is performed through a binary search. Because
we want to store the dictionary on disk, it is important to avoid the random accesses caused by
a binary search on a disk based structure. We therefore divide the sorted list into blocks where
each block has the same size as a buffer in the buffer pool. The last term in each block is stored
in a list that is always kept in memory as long as the dictionary is searchable. We may thus
binary search the in-memory list first, before the buffer possibly containing the term search for
Is read in.

A binary search is then performed in the correct block to obtain the dictionary entry. This
structure is similar to the structure outlined in [RE04]. Note that terms have different lengths.
To enable a binary search in the blocks, we need to store some information telling us where the
different terms start and how long they are. This is done by storing a list of pointers at the end
of the block, while the terms are stored starting at the start of the block. These two lists will
grow towards each other, and the block is considered full when they will collide if we store the
next term in between.

An advantage of this structure is that it only requires a maximurh @ik seek per look-up
in the dictionary. It is also easy to understand, and scales reasonably well with respect to main
memory consumption.

It should be noted that a quite different strategy is used in [BCLO6], when making a dictionary
for the terms with inverted lists that are shorter than a given length. They actually do not keep
all terms in the dictionary. When several short inverted lists are stored within one disk block,
only the lexicographically smallest term within that disk block is stored in memory. When
searching in such a dictionary, a binary search in the list in memory is performed. The disk
block pointed to from the entry found in the binary search is read in. The given disk block
typically contains several inverted lists, and one has to read all of them to find the one for the
term searched for. The advantage with this structure is that the dictionary is smaller, especially
when only storing short inverted lists. In addition, the possible disk access introduced within
the dictionary is avoided. The disadvantage on the other hand, is that one needs parse more data
from the disk. Because we do not discriminate between long and short inverted lists in Brille,
the benefits of this structure are not thought to be significant in our setting. We therefore chose
the more traditional approach introduced above.

4.2.3.2 In-memory accumulation

The next aspect to consider in the implementation of remerge is how the partial index in main
memory is accumulated. [HZ03] gives an overview of the most promising proposed methods
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in this field, and they also come up with a new suggestion which they argue is better than the
previous ones. We will give an introduction to the new method they propose and the old method
that is the fastest one for construction.

The fastest old method is called the sort-based approach, and it proceeds as follows. When
documents are parsed, triplets of the foftn., d,.,, fi,,.4,,) are stored in memory, whete,

is the term numbetj,,, is the document number anfd,, 4. is the frequency of the term with

term numbet,,. in the document with numbet,.. When the memory is full, these triplets are
sorted, typically using a form of Quick sort, and written out as a partial inverted index. When all
documents are added, a multi-way merge process, as described in Section 2.2.2, is performed.

Notice that the traditional sort-based approach consider term numbers, not the actual terms. This
implies that we need a mapping between the actual terms and the term numbers. It also implies
that the final index will have inverted lists stored sorted on their associated term numbers, not
lexicographically on their terms. Both these problems are fixed if we choose to store the actual
terms instead, but it might lead to a slightly poorer utilization of main memory.

The new method introduced in [HZ03] is called the single-pass approach, and works by keeping
a small inverted index in memory. It consists of a dictionary which is typically a hash map, and
each term in the dictionary maps to a byte vector. When this byte vector becomes full, a new
and larger one is allocated to allow more entries to be added. When the memory is full, this
partial index is written to disk. This process goes on until the final multi-way merge.

Results from experiments reported in [HZ03] show that the single-pass approach is slightly
faster than the sort-based approach, but there are more aspects than speed to consider when
implementing a method.

When using memory to accumulate indexes, it is important to be able to control the amount of
memory used. Because a significant part of the available memory is used by NIO buffers in
our implementation, it seems like a natural approach to use these for storing the partial index
as well. This approach will also make it simple to evaluate the amount of memory used for the
partial index.

If we are going to use the buffers as memory for the partial index, we have a different basis for
considering which method to implement. To implement the single-pass approach, we have to
implement a memory allocation-routine for the buffers, and find a way to minimize fragmenta-
tion. This is certainly feasible, but according to [LZWO06] it is quite complicated to implement
an efficient allocation routine within a file on disk, and this is essentially the same problem.
In addition, implementing a dictionary within the buffers seems quite cumbersome, and it is
likely to be significantly simpler to keep it out of the buffers. Keeping the dictionary outside the
buffers would introduce more uncertainty regarding the amount of memory used at any given
time.

To keep the implementation reasonably simple, the sort-based approach was thus chosen. It
should be noted though, that two papers the author was not aware of when this method was
chosen, describes a method which should be faster, while at the same time being simpler to
implement in our setting [BCO5c¢, LLO7]. The method in [BCO5c] keeps buckets with similar
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sizes. All terms in the dictionary get one bucket allocated initially. When the bucket for one
term runs full, a new one is allocated, but the list is not relocated. A pointer is rather stored
in the old bucket to the new one, and we end up with a linked list of buckets for each term in
the dictionary. This leads to far simpler memory management, and according to experimental
results the speed improvement is approximadely. It is quite likely that this would have been

the best approach to implement in Brille, but such an implementation job was not initiated when
the project was approaching its deadline.

Even if the sort-based approach was chosen, a straight-forward implementation of it is not the
only option, and we ended up with a slight modification in this project. The author has not been
able to find any presentation of this modification elsewhere.

When using sort-based inversion, there are typically three phases that lead to the construction of
a new partial index. First, the new documents are read in one by one. Each document is parsed
and its triplets are stored. When the memory becomes full, the triplets are sorted. Assuming
that we can accommodatetriplets in memory, the asymptotic complexity of this operation is
O(zlog(z)). And finally, the partial index is written to disk. In most implementations, the first
and last phases are probably I/0O-bound, while the second is CPU bound. It thus seems like a
good idea to make two of these phases overlap to achieve a speed-up.

It is not straight-forward to make the first phase overlap with the second, but it is quite simple to
make the second and third overlap. This could for instance be done by implementing a sorting
routine that scans through the tripletimes, finding the smallest one at each run. This would
enable us to know when the first buffer is full, and it can be written to disk while the triplets to
go in the next buffer are found. Such a scheme is not likely to be efficient though, because of
the O(2?) complexity of the sorting routine.

Instead, we introduce a scheme in Brille that both allows us to overlap these two phases and
achieves a better asymptotic complexity for sorting the triplets. In addition, the triplets are
actually not triplets any more, and the memory usage is hence more efficient. We also use the
actual terms instead of term numbers, to avoid the problems mentioned previously, even though
this might lead to poorer space utilization. Next follows an introduction to how our method
works.

Wiq | OCCS11 | Wi2 | OCCS12 | vevererrrrnns freespace | e; | st |du2| €1 | St | dung

Figure 4.5: In-memory accumulation of index

When accumulating documents in the in-memory index, we basically have an array of buffers.
Such a structure is represented in Figure 4.5. When new documents come in, their terms are
stored lexicographically from the beginning of the array together with a list of the occurrences of
the term in the document. The document number together with pointers to where this document
starts and ends is stored at the end of the array. The pointers are denstefbathe start of
document, ande; for the end of documeritin the figure. This process continues until the two

lists meet. At this point, the memory is considered full, and we start the second phase, which
now includes the two last phases in the standard sort-based approach.
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Because we know that the terms within each document are sorted, we only need to compare the
first term for each document to find the first entry to be flushed. We can actually build a priority
queue with one entry per document and perform a multi-way merge in it. By using a standard
representation of a priority queue in an array, this priority queue is actually represented in the
list of documents at the end of our array. By performing the multi-way merge in-place, we are
using only constant memory apart from the buffers for the in-memory index.

This process will have an asymptotic complexity for the sorting equél(tolog(XN,)), where

N, is the number of documents in the partial index. This complexity is bette¥atog(z)) as

long as there is more than one distinct term in each document on average. As empty documents
are not added to the priority queue, it can never have worse complexity than the sorting in
standard sort-based inversion. The method does not need to store triplets, but rather the terms
together with a list of occurrences. On the other hand, it needs to store pointers to where this
document starts and ends in the array. This scheme will lead to better memory utilization if
the number of distinct terms in each document is larger than average, which is a highly

likely scenario. In addition, it makes it simple to overlap the 1/O in the third phase of standard
sort-based inversion with the computation in the second step, which is also beneficial.

Compared to the alternative approaches discussed in [HZ03] and [BCO05c], it is uncertain how
our strategy performs. But because it is likely to be more efficient than standard sort-based
inversion, it is likely to be reasonably close to the single-pass method. A further comparison of
these strategies is deferred to future work.

4.2.4 Hierarchical index

The hierarchical method will reuse part of the code from the remerge method. Specifically, it
will use the same method for accumulating a partial index in memory. When and which indexes
to merge on the other hand, is inherently different and that is what we will focus on here. Section
4.2.6.2 will describe how the tf-idf ranking scheme is implemented for the hierarchical index.

When implementing a hierarchical index, one has the basic choice of whether to implement
method 1 or 2, or similarly the sqrt merge or logarithmic merge [LMZ05, BC05a, BCO06].
Method 2 gives the best search performance while sacrificing update performance while it is
the other way around for method 1. While implementing method 1, we have discovered that it
Is actually possible to optimize it for low update latency by changing some parameters. We thus
chose to implement method 2, but with a slight modification to enable better update latency.
How this is accomplished is described next.

When a partial index is to be merged with the hierarchy of indexes in a straight-forward imple-
mentation of method 2, it will initiate a merge of all small indexes in the hierarchy that can not
fit themselves and all smaller indexes in their position. Such a merge may actually be a merge
of all indexes. If we can not add another document until this process finishes, the update latency
may become large.

The implementation in Brille follows another principle: There is only a background thread that
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is allowed to perform merges into the hierarchy. This implies that when a partial index is full,

it is written to disk, and its ranking values are updated in the document manager, as described
in Section 4.2.6.2. The partial index is then added as a small index, in which searches may be
performed. The added documents are thus searchable. The background thread will note that a
new small index is added, and this will initiate a merge just as in a regular implementation of
method 2.

While a merge is processed, new documents may be added, and their partial index might be
written to disk. If a large merge is processed and a lot of new documents come in, we might
get a large number of small indexes. Having a lot of small indexes will sacrifice search perfor-
mance significantly, and we thus introduce a new tuneable parameter, Ealldus parameter
describes the maximum number of small indexes that can be part of the searchable indexes at
any given time. When a partial index is flushed, it checks whether it may create another partial
index. If it can not, because the number of partial indexes is equa) towill wait until it is

notified by the background thread performing merges. When it is notified, a new partial index
is created.

Note that setting” = 1 makes this modification similar to a standard implementation of method
2. Setting!” to be larger than will give lower update latency, but sacrifices search speed.

By using such a method, it is believed that we get the same flexibility as we would have gotten
from implementing both method 1 and 2. We therefore choose to implement this special version
of method 2, and skip method 1.

4.2.5 Naive B-tree index

The main difficulties when implementing a naive B-tree index is to implement the B-tree. An
important requirement for the B-tree is that it supports keys with variable length. Some insight
into how the B-tree is implemented will be given in Section 4.2.8. Here we will focus on how the
part of the ranking performed at search time can be processed efficiently, while Section 4.2.6.3
will describe how the tf-idf lengths of documents are maintained. We will also introduce some
restrictions on what can be stored in the B-tree.

According to the tf-idf ranking scheme with the formula given in Equation 2.2, we need to
know the number of documents containing a term searched for to calculate the rank given to
the particular document from the given term. As should be obvious from Figure 2.8, a search in
the naive B-tree index for a particular term will have to traverse all occurrences of a particular
term to find this number. Because this would require two traversals of all hits for each search,
it would be quite inefficient. We will therefore try to avoid it.

To do so, we introduce one extra entry per unique term in the B-tree. This entry contains the
term and has a document number-of. Because of the low document number, this entry will

be found at the beginning of the list for this particular term. It will thus be the first entry we
return from a search for the term. In this entry, there are no actual occurrences of terms included,
but rather two integers. One of them represents the approximate number of documents in the
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collection that contains the given term, and the other the total number of occurrences of the term
in the document collection.

Using such a scheme, we may use these numbers in the ranking and will thus not need to traverse
the occurrences twice or keep them in memory. The disadvantage of the approach is that we
need to insert two values in the B-tree for every distinct term in every document. This is likely
to have a significant impact on the construction time for the index, but we consider efficient
searches to be more important. In addition, we will never be completely sure that the calculated
ranking values are exactly correct. The insert of an entry describing the occurrence of aterm in
a document involves updating the number of occurrences of the term first, and then inserting the
actual entry. If a search goes on while this entry is inserted, it might read the updated number
of documents containing the entry, but not the entry describing the occurrence of the term in
the document currently being added. The ranking will therefore possibly be slightly wrong, but
following the argument that tf-idf is a heuristic, the error is not considered significant.

It is not possible to store an entry in a B-tree that consumes more space than a node. Brille
uses a word-level index, and some terms are very common. The term "the” occurs more than
11000 times in one of the documents in the collection used in the experiments in this project.
To avoid that the solution fails on such inputs, we chose to put a maximum length of the terms
indexed, and also a maximum length on an entry to be stored. Terms that are longer than the
maximum length is not indexed. If an entry is longer than the maximum, the last occurrences
are not listed, but we still store the actual number of occurrences.

4.2.6 Document manager

As mentioned previously, the document manager has two main tasks:

1. Maintain the mapping between document numbers and URIs.
2. Have an overview of the tf-idf length of the different documents.

We keep in mind our basic principle of limiting the main memory consumption. A solution
which keeps all this information in memory will not follow that principle, and some of it should

be stored on disk. To decide what to store in main memory and what to store on disk, we need
to consider the access pattern for the information stored in the document manager.

Brille only supports ranked queries. A typical ranked query will ask for the top ten ranked
documents, although it is possible to retrieve all results. If one asks for the top ten documents,
all documents containing any of the terms searched for will have their ranks calculated. To do
so, we need to know the tf-idf length of the document. When returning the top ten results, we
also need the URIs for these documents. This scheme is depicted in Figure 4.4. We note that
we may need the tf-idf length for a lot of documents, but that we only need the URI for a few
of them. If a user asks for all documents containing any of the terms, we will actually need the
URI for all matched documents, but this is not considered a likely scenario.
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Based on the discussion given above, it seems like a natural choice to store the tf-idf lengths
of documents in main memory, while storing the mapping from document number to URI in a
disk-based structure. The disk-based structure used in Brille for this purpose is a B-tree. This
choice was quite obvious because a B-tree has been implemented for other purposes as well, and
is thus easily available. The structure used to store the tf-idf lengths of documents in memory
is discussed in Section 4.2.6.1.

To provide some insight into how the document manager maintains the length of the different
documents in a quite basic setting, we will now give a quick overview of how it works for the
remerge method. In a situation where we first build an index of reasonable size, the document
lengths are easily calculated while the partial indexes are merged. If we now add another batch
of documents, consisting of some patrtial indexes, we will have new lengths for the new doc-
uments. But the lengths of the documents in the old index will also have to be updated to be
correct. This can be seen from the idf-part in formula 2.3 whémndn, are present.

We want to be able to search in the old index while merging the new one, and we hence need to
keep the old value in the document manager. To be able to calculate the new values at the same
time, a shadow copy of list of document lengths is kept. When we switch to the new index,
the current list of document lengths is switched with the shadow copy and we thus have correct
document lengths for the new index. It should be noted that the lengths of the old documents
will not change significantly when new ones are added to an already large index. The overhead
of calculating these extra values is relatively small though, because the whole index is read and
written anyway. We therefore chose to calculate all lengths from scratch at each merge.

It should be obvious that this scheme does not work in the same way for the other two methods,
and the issues introduced by them are discussed in sections 4.2.6.2 and 4.2.6.3.

4.2.6.1 Limiting the main memory requirement

We have decided to store the tf-idf document lengths in memory, and we thus need to choose a
structure to store them in. They are accessed when we know the document number we want to
obtain the length for, and they have to be extendable because we want to be able to add more
documents. An array with array-doubling therefore seems like a natural choice of structure.

Java contains a claggrayListin its APl. When using it to store floating point numbers, a nat-
ural choice would be to use a&arrayList<Double>or ArrayList<Float> object. It is probably
not a good idea to us&rrayLists with simple types, a fact the following small experiment will
show.

To show the memory usage and speed ofamayList<Integer>versus a self-made implemen-
tation of array doubling for integers, the programs shown in figures 4.6 and 4.7 where run.

These programs where run on the same computer used for running the actual experiments in this
report. Its specification is given in Chapter 7. As can be seen from the code, one of the classes
usesArrayList<integer>, while the other one usdatArrayList, a class included in Brille and
provided in Appendix C.8.
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import java.util.x*;
public class test_arraylist{

public static int doWasteWork (){
int a =0;
for(int i=0;i<1000000;i++) a+=i;
for(int i=0;i<1000000;i++) a-=ij;
return a;

}

public static int calcSum(ArrayList<Integer> 1){
int sum = 0;
for(int i=0;i<1l.size();i++) sum+=1.get (i);
return sum;

}

public static void runGC(){
for (int i=0;i<100;i++) System.gc();
}

public static long memoryUsed (){
runGC () ;
return Runtime.getRuntime () .totalMemory () -
Runtime.getRuntime () . freeMemory () ;

}

public static void main(String[] args){

int w = doWasteWork ();

int addelem = 1000000;

long start = memoryUsed();

ArrayList<Integer> 1 = new ArrayList<Integer>();

for(int i=0;i<addelem;i++) 1.add(i);

long used = memoryUsed()-start;

System.out.println("added "+addelem+" elements, and used "+used+
" bytes of memory.");

System.out.println("That means approximately "+(used/addelem)+
" bytes per element.");

int sum = calcSum(l);

int write=sum-w;

System.out.println("This is only printed to make sure nothing is"+
" optimized away. The meaning of life is not 42, it is "+write);

Figure 4.6: Code for the test_arraylist class

Both programs start out with performing some unnecessary work. This is done to make sure the
java virtual machine is done initializing before we start allocating any memory. Then, the list
used in the given program is populated witmillion integers, and we measure the amount of
memory this occupies. Some calculations are performed in the end to ensure that no significant
parts of the code are removed by optimization. The results from running these programs and
timing them withtimein Linux, is given in figures 4.8 and 4.9.

As can be seen from the results, each integer consB2ri®ges of memory in aArrayList<integer>,
while it only usest bytes in anintArrayList Using4 bytes to represent an integer is expected.
We will now try to explain why arArrayList<Integer>uses a lot more.

The first reason is that afsrrayList is only capable of storing objects. We will therefore not
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public class test_intarraylist{

public static int doWasteWork (){
int a =0;
for(int i=0;1<1000000;i++) a+=i;
for(int i=0;1<1000000;i++) a-=1ij;
return a;

}

public static int calcSum(IntArrayList 1){
int sum = O0;
for(int i=0;i<1l.size();i++) sum+=1.get (i);
return sum;

}

public static void runGC() throws Exception{
for(int i=0;i<100;i++) System.gc();
}

public static long memoryUsed () throws Exception{
runGC () ;
return Runtime.getRuntime ().totalMemory () -
Runtime.getRuntime () . freeMemory () ;

}

public static void main(String[] args) throws Exception{

int w = doWasteWork();

int addelem = 1000000;

long start = memoryUsed();

IntArraylList 1 = new IntArrayList();

for(int i=0;i<addelem;i++) 1.add(i);

long used = memoryUsed()-start;

System.out.println("added "+addelem+" elements, and used "+used+
" bytes of memory.");

System.out.println("That means approximately "+(used/addelem)+
" bytes per element.");

int sum = calcSum(l);

int write=sum-w;

System.out.println("This is only printed to make sure nothing is"+
" optimized away. The meaning of life is not 42, it is "+write);

Figure 4.7: Code for the test_intarraylist class

$ javac test_arraylist.java && time java test_arraylist
added 1000000 elements, and used 32003080 bytes of memory.
That means approximately 32 bytes per element.

This is only printed to make sure nothing is optimized away.
The meaning of life is not 42, it is 1783293664

real Om18.096s
user Om17.939s
sys Om0.126s

Figure 4.8: Results when running the test_arraylist class
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$ javac test_intarraylist.java && time java test_intarraylist
added 1000000 elements, and used 4023552 bytes of memory.
That means approximately 4 bytes per element.

This is only printed to make sure nothing is optimized away.
The meaning of life is not 42, it is 1783293664

real Om2.250s
user Om2.222s
sys Om0.025s

Figure 4.9: Results when running the test_intarraylist class

use a regulamt data type, but rather amtegerobject. In addition to storing the object, the
actual array where the array doubling is performed, is a list of pointers to these objects. On
a 64-bit architecture like the one in our experiments, these pointers will conSuyites of
memory each. Because the doubling factoAmayList is approximatelyl.5, eachinteger
object consumes betweef and24 bytes of memory. We will not go into a discussion of how
this memory is used, but note that the overhead is significant.

We also see that the timings suggests thatltii&rrayList class is way more efficient. This

is partly because it does not need to allocate as much memory, and partly because an array
of integers is typically stored contiguosly in memory while the Integer objects may be spread
randomly. This makes it way more efficient to use an array of integers because of caching
effects.

We conclude that through making our own implementations of array doubling for simple types,
we both get a more memory efficient solution and a faster solutiodo@bleArrayListis thus

used to store both the document lengths and the shadow copy. Even though this will occupy a
significant amount of main memory, it will now only be approximatelyytes per document in

each list. Forl0 million documents, these two lists will occupy approximatedy3MB of main
memory, and this is thought to be reasonable.

4.2.6.2 Adaptation to hierarchical index

As noted above, it is not feasible to update the tf-idf document lengths in the same fashion as for
remerge in the other indexes. This section will provide an introduction to the problems caused
by the tf-idf scheme for a hierarchical index, and what choices were made in Brille to solve
these problems.

According to the tf-idf ranking scheme, the document length for each document should be
calculated as shown in Equation 2.4. We note that this formula says that the length of each
document is dependent on both the total number of documents, and on the number of documents
containing the terms in this document. This actually implies that the lengths of all documents
should change when a single new document is added. In the hierarchical index, we should thus
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recalculate all document lengths when a new batch of documents from memory is added as a
small index. Doing this is likely to lead to quite modest performance, and we would like to
avoid it.

Tf-idf is basically a heuristic used to approximate which documents that are likely to match the
users query. We consider it to be reasonable to change this heuristic slightly to achieve better
performance. In Brille we follow the following principles for tf-idf lengths in the hierarchical
index:

1. A document gets its length (re)calculated when it is:

(a) part of a merge.
(b) flushed as a small index for the first time.

2. When a (re)calculation of the length of a document is performed, it will always use the
number of currently searchable documentgvasdt will count the number of occurrences
of a term,n;, as the number of occurrences within the currently processed documents and
the largest current index(if the largest index is not part of the current merge).

By following these rules, it is believed that the document lengths are kept reasonably up to date.
At the same time, the approach does not make it impossible to make the newly added documents
searchable within reasonable amounts of time.

4.2.6.3 Adaptation to an incrementally updatable index

The same problem as for the hierarchical index occurs for the naive B-tree index as well, and
it has possibly even more impact here. The naive B-tree index should be able to add one and
one document to the index, and recalculating the tf-idf lengths for all other documents as well
would be prohibitive performance wise.

As mentioned in Section 4.2.5, there is an additional entry in the B-tree for each unique term in
the naive B-tree index. This entry contains the number of occurrences of the term. When the
entry for a term in a document is inserted, one first updates the entry containing the number of
occurrences. This is done in a special operation in the B-tree dali€xtinsert This method
returns the updated or inserted entry, and we will thus know how many documents that con-
tains the inserted term. Because we also keep track of the number of active documents in the
document manager, it is actually quite simple to calculate the tf-idf length of the new document.

We thus have a scheme for giving each new arriving document its correct tf-idf length, but
the problem is that as more and more documents are added, the lengths for the old documents
deteriorate. To cope with this problem, Brille has a background thread that on regular basis
reads through the whole index and updates all document lengths. The implementation makes
sure that no documents that are currently being added get their lengths updated.

As for the hierarchical index, this implementation choice is made to enable better performance
while sacrificing the exact heuristics of tf-idf ranking.
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4.2.7 Buffer Pool

As mentioned in Section 4.2.1, it was decided early on that Brille should perform buffering
from the index files by implementing a buffer pool. This section explains the implementation
of such a structure.

The initial implementation of a buffer pool in Brille was quite naive. It managed free and dirty
buffers in arrays with array doubling. When pinning a buffer, one searched through all buffers
to see if one had the part asked for buffered. If not, one of the buffers was flushed if it was dirty,
pinned to the new part, and filled with data from the part asked for. The source code for this
implementation is found in thBufferPoolclass in Appendix C.3.

During initial testing, the old version of the buffer pool proved to be a significant performance
bottleneck, especially when the application is run with a lot of buffers. This should not come as
a surprise because pinning and unpinning buffers is a very common operation in all tested meth-
ods. Experiments not reported in this report showed that Brille was able to index approximately
3 times as many documents per second by switching to a new and improved implementation.
We will now give an introduction to how the new implementation of the buffer pool works. The
code for this solution is also found in Appendix C.3, and a drawing of a snapshot of how the
structures in the buffer pool might look at a given time is shown in Figure 4.10.

The new version of the buffer pool consists of three main data structures. The most important
one is aHashMapthat maps a pair of integers to a buffer. The pair of integers represents a file
number and a part number. Each index file gets a number when it is added to the buffer pool,
and if one wants a part from a given file one needs to know the file number. The part number
obviously describes which part of the file you want to access. If one wants part ninoloer

gets the bytes betweds - i and B - (i + 1). If a buffer contains a given part from a given file,

it is found with this pair as a key in thdashMap

If a buffer is not currently pinned, it is also found in one of the doubly linked lists in the buffer
pool. One of the lists represents buffers that are dirty, meaning that they contain changes that are
not yet written to disk, while the other list contains buffers that are identical to their disk-based
version.

When another part of the application wants to pin a buffer, several scenarios might occur. If a
buffer contains this part at the moment, the given buffer is returned. If this buffer is part of one
of the lists, it is removed from it. Note that in order to be able to call a method on an object
to remove it from a list, thé.inkedListclass in the API in Java can not be used, because the
elements in such a linked list only contains pointers to the actual objects stored in the list. Brille
thus contains an implementation of a doubly linked list where the objects themselves are linked.

If there is no buffer currently containing the wanted part, the first buffer in the list of non-dirty
buffers is removed from the queue, and its reference irHaghMapis removed. It is then
inserted in theHashMapwith the wanted part. The correct part is read into the buffer and the
buffer is returned. Because the first buffer in the list of not dirty buffers is used, this buffer pool
uses an LRU replacement policy. There are most certainly more sophisticated possibilities, but
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Figure 4.10: The new and improved buffer pool

that is not tested in this report.

To make sure that dirty buffers are eventually flushed, a background thread checks for dirty
buffers on a regular basis. When the linked list of dirty buffers is non-empty, the first one is
removed, written to the corre€ileChanne] and inserted at the end of the non-dirty list. A
FileChannelis an object injava.nia When writing sections of a file to it, it will eventually
write it to the actual file. One is capable of forcing it to write out all changes to the file by
a calling a specific method, but that is never done in Brille. Not doing so introduces some
uncertainty regarding the number of disk accesses performed. It is likely that it is capable of
merging several writes. Finding an efficient pattern for when to forcé&ile€hannelto flush

all its changes is deferred to future work.

To make this explanation clearer, we take a look at the example in Figure 4.10. In the snapshot
given in this figure, we can conclude that bufférand6 are currently pinned because they are

not part of any of the linked lists. When they are unpinned they will be appended to either the
dirty or not dirty linked list.

We also see that all buffers except buffebuffers a part from a file. We can see that buffer
2 does not contain any part because it has not got any reference to it fradagidap If a
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request for a pin on a part that is not currently buffered is issued, Buftét be used to fulfill
this request.

This new approach will require one look-up in thiashMapfor each request to pin a buffer,
and it will also typically remove the buffer from one of the linked lists. It might also require
removing and entry from thelashMapand inserting a new one. All of these operations have
average asymptotic complexities©f1). This is far more effecient than the linear complexity
of the previous buffer pool.

Having a good average asymptotic complexity is very important in a buffer pool because the
methods are mostly synchronized, and it is important to not let other threads wait longer than
necessary. Its implementation is not straight-forward though, and there has been several bugs
due to synchronization issues in this new version of the buffer pool throughout the development.

4.2.8 Implementing a B-tree

The B-tree is an important structure in Brille, because it is both the main index in the naive
B-tree index and it is also an important part of the document manager. The way the B-tree is
used imposes several requirements on its implementation. Most importantly, we need to support
insert, update and inc-or-insert. To make the implementation ready for a future implementation
of deletion, we also chose to support delete and dec-or-delete. Dec-or-delete is the opposite
operation of inc-or-insert, and should be used when an entry is removed from the inverted list
for a given term in the naive B-tree index.

To enable adding new documents while performing searches, both the B-tree in the document
manager and the index need to produce serializable histories. Doing so will also enable adding
several documents at the same time in different threads in the index. We thus chose to ensure
that the B-tree produces serializable histories, and this requirement is fulfilled by making a
so-called linked B-tree with a form of tree locking [BHG].

The B-tree supports deletion of entries, but if we want to support deletion of nodes, the locking
scheme will have to change quite significantly. We thus chose to not support deletion of nodes.
This choice has several implications. The negative effect is that we can no longer guarantee
that the space utilization in a B-tree is at wogsand on averagé, because all entries in an
existing node might be deleted. This scenario is considered quite unlikely in a search engine
though, because the size of the index is assumed to increase rather than decrease. This issue
will not have any impact in our experiments anyway, because deletions are not tested. The
positive effect of not deleting nodes is that the lock contention is less significant, and that the
implementation is simpler and thus likely to be more robust.

Both the keys and the data part of the entries may be of variable sizes in the B-trees in Brille, and
our implementation has to support this. This requirement is fulfilled by making the structure
of the nodes quite similar to the blocks in the sorted list dictionary used in remerge and the
hierarchical index.
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We will not go into more detail about the implementation of the B-tree in Brille. There are sev-
eral interesting aspects when implementing a B-tree, but they are not thought to be of particular
interest in this report.

72



Chapter 5

Experiments

When experimenting with indexes one need a document collection to index. The one used in our
experiments is introduced in Section 5.1. Section 5.2 explains how Brille obtains information
about the utilization of the I/O subsystem and the CPU, while Section 5.3 ends the chapter with
an introduction to the experiments performed.

5.1 Document collection

The document collection used in the experiments in this report is the GOV2 text collection from
the TREC Terabyte traékGOV2 was chosen because it is the most commonly used collection
in related work [BC06, BCLO6, LZWOQ6].

This section will provide some statistics for GOV2 and explain how the documents in it is
stored. How the collection is parsed in Brille will also be explained.

5.1.1 GOV2

The GOV2 collection consists of approximately.2 million documents, mostly html or text
documents. The size of the complete collection26 GB. The experiments in this report will
use various subsets of this collection.

The documents in the GOV2 collection are organized in a particular fashion. The complete
collection is partitioned int@73 different directories, with approximateB§2000 documents

in each directory on average. These directories cori@irfiles, and each file thus contains
slightly under1000 documents on average.

Each of the files has a structure resembling an XML-file. Itis not proper XML however, because

hitp://www-nlpir.nist.gov/projects/terabyte/
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there is no single root element. Most of the documents are html, while some are in text format. If
the document was in a binary format originally, it is represented in a text format in the collection.
Brille has to be able to parse the documents, and the following subsection explains how it is
done.

5.1.2 Parsing GOV2

Each document in the xml-like GOV2 files starts with some meta-information about the doc-
ument. The only information extracted about the documents is the content between the
DOCNO > and< /DOCNO > tags. This string is used in Brille as the URI for the docu-
ment. The rest of the parsing only considers the actual documents.

Tokens are collected from a document as all sequences of alpha-numeric characters. This means
that all sequences of English characters and digits are considered to be terms. No stop words
are removed, and Brille will end up with a complete index of all terms in text files.

For html files however, the situation is slightly different. The content within tags in such files is
not indexed. We do not index scripts and CSS code either. This means that the content between
< script > and< /script > or < style > and< /style > is also removed. After removing

these segments, the tokenization in html files are just as in text files.

5.2 Obtaining I/O and CPU statistics

There are typically two different resources that may be the bottleneck in a search engine: CPU
and the 1/0 subsystem. Memory is typically not a bottleneck because all algorithms in a well
engineered search engine uses constant memory. To get a better understanding of which re-
source that is the bottleneck in various phases of indexing and searching, we need to measure
the utilization of both resources. Appendix C.8 contains code to gather statistics from the
I/O subsystem under Linux and FreeBSD, and statistics from the CPU under Linux. The rea-
son why FreeBSD is included is that it was originally planned to run the experiments under
FreeBSD because of problems making Linux run on the available hardware. These problems
were eventually fixed, and we will only explain the Linux implementation here.

No tool available in Linux known to the author is capable of measuring the utilization of the
processor or the I/O subsystem between a start time and a later defined end time. It was there-
fore necessary to include code capable of gathering such statistics in Brille. Fortunately, there
are several useful features undproc/ in Linux. The main inspiration for the current imple-
mentation of this part is in thiestattool which is available on most *nix-systems.

The information gathered about the disk utilization is founfpnoc/diskstatsThis file contains
information about the number of processed read and write operations for each disk as unsigned
integers. The basic idea of the implementation is to read these values at the beginning and end of
each phase, and to subtract the start values from the end values. The coulpiewdiskstats

74



CHAPTER 5. EXPERIMENTS

might overflow the unsigned int they are stored in, and Brille will give correct statistics if these
values are not overflowed more than once during a phase. Information about the CPU utilization
is found in a similar way by obtaining values from counterfoiroc/stats

The information we gather froprocis only available ir2.6-kernels. In earlier kernel versions,
the same information can be found withsysfs but this is not supported in Brille.

5.3 Experiments performed

When experimenting with the implemented methods, there are two main aspects of each method
we want to test, its efficiency when it comes to handling updates, and its search performance.
How each of these aspects is tested is explained in the following two subsections. The last
subsections will explain the different configurations tested for each method and introduce a

last set of experiments carried out to consider the intrusiveness of the output given in the other
experiments.

5.3.1 Testing updatability

It is not straightforward to test updatability, and different ways of conducting the experiments
have been presented in the literature [LZW06, BCLO6]. As mentioned in previous chapters,
both update speed and latency are of interest. Testing update latency is probably the most
complicated of these two, because it brings up a lot of questions. In our experiment setting,
we already have the document collection available, and the most natural way to test update
latency is probably to do some sort of simulation of the arrival of different documents. One
possible approach is to decide upon a specific feeding rate for documents and measure the
average latency for the different methods with this given rate. Choosing the rate is quite tricky
though, because a high rate will benefit the methods that batches documents while a slow one
will benefit the naive B-tree index.

Rather than to conduct experiments giving a precise answer to the question of which methods
that are superior over the others with a given feeding rate, we wish to illuminate both positive
and negative aspects of all methods. To do so, we let all methods index as fast as they can, and
note when the documents are read in versus when they are searchable. This will give us two
graphs, one representing the feeding and one representing the time when different documents
are searchable. The area between these two graphs will describe the update latency; while the
time spent constructing the final index will describe the update speed.

This experiment will be run with various numbers of documents in the final index. The numbers
chosen are100000, 300000, 1 million and 10 million documents. The naive B-tree index is too
slow to index10 million documents within reasonable amounts of time, so these experiments
were not completed. Because only one computer was available for carrying out the experiments,
the limited time frame of this project only allowed the largest index size for each index to be
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built 1 time, while the smaller experiments were rihtimes each to be able to measure the
variability in the results as well as average speed.

In all experiments with updatability, the documents used are the lexicographically firstin GOV2.
It is assumed that these do not differ significantly from the others in the collection.

We try to measure the utilization of disks and CPUs in all different phases of construction in
each of the methods, in the way described in Section 5.2.

5.3.2 Testing search performance

To test search performance, we test searching for various terms in indexes with different amounts
of documents. Because of the Zipf distribution assumed for the terms in the collection, it is
likely that the number of occurrences of each term varies significantly.

Itis also likely that it takes more time to search for a very common term than a rare one because
the amount of data read from disk is typically larger. To consider the effects of searching for
terms with varying amounts of postings, search performance is tested ditferent groups

of terms. To find the groups of terms the index for the firstillion documents was built and

the dictionary was dumped to disk. The most common term in this collection is "the” with
41813109 occurrences in total, which is almokl on average per document.

The first group consists of frequently occurring terms, and containgthenost frequent ones

in this collection. These terms have an averag835f3112.56 occurrences in the document
collection consisting of the first million documents from GOV2. The least frequent terms
have only one posting each, and this applies to more than half the vocabilg@rgf these

terms were randomly chosen to be the group of the least frequently appearing terms. The last
group of terms consists of the ones that comes the closest in number of postings to the square
root of the average number of postings per term for the most frequent terms.

By choosing these three groups we hope the capability of the different structures to process
searches for terms with various frequency is tested. In all processed search queries we only
want the top ten ranked documents to be returned, but this will nonetheless require us to read
the complete inverted list for the term searched for. Searching for multiple terms at the same
time is not tested because the expected time for such a search has a clear relation to a search
for a single term. To search farterms at once is equivalent to performingearches, one for

each of the terms, minus the time spent retrieving the URIg@or(x — 1) documents. Note

that this calculation assumes that all searches has atlleastches.

All groups of terms have been randomly permuted. The rationale behind such an operation is to
make sure the terms within one group are not sorted lexicographically, because this could be a
significant benefit for the caching in the dictionaries. All groups of terms are listed in appedix
A, in the order in which they are searched for in all experiments. For each index siz@0the
searches within one group are performed one time each. We measure the time spent performing
all 100 searches. It is important that we do not search for the same term several times, because
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of caching effects.

5.3.3 Tested configurations

We have chosen some methods to test, but each method can be configured to work in many dif-
ferent ways. Testing all different configurations for each method is not feasible. The reader may
get an overview of the different possible configurations by looking at the inteBaleDefini-

tionsin Appendix C.1.

All experiments are run with the same amount of memory allocated to the Java virtual machine,
and all experiments use the same amount of buffers. Several authors have reported results sug-
gesting that the amount of main memory allocated to the application has reasonably low impact
on efficiency [HZ03, BCL06]. Choosing not to vary this parameter thus seemed reasonable.
For the methods batching updates we also chose to always allow the method to use the same
number of buffers to construct the in-memory index, namely half the buffers in the buffer pool.
Brille is a multi-threaded application and it is possible to configure different sleep times for
different threads, but testing several such values is assumed to be more time consuming than it
is interesting. We thus leave all values as shown inBhikeDefinitionsinterface included in
Appendix C.1.

The remerge method may be run either as an off-line construction method, or by merging with
the main index at given intervals. We chose to test it with both these configurations. As opposed
to the experiments carried out in [BCLO6], we perform the merge at the end in the off-line
construction method. For the method that merges partial indexes with the main index at given
intervals, one has the choice of when to perform the merge. We choose to do so every time the
memory is filled with the partial index. Doing it more often could have resulted in better average
update latency, but update efficiency is likely to suffer, and to keep the number of configurations
manageable we do not test other configurations for remerge.

The size of each of the buffers in the buffer pool might be varied, and we try two different
configurations for all methods, namelib and16Kb.

There are more configurable variables in the hierarchical index than in remerge. In particular,
it is obviously interesting to vary’, which describes by which rate the maximum sizes of the
different indexes increase. We choose to test With- 2 and X' = 4. The variablél" introduced

in our method is also likely to have an impact on the results, and we testwiti andT" = 4.

Notice that?” = 1 will make the hierarchical index similar to a standard implementation of
method 2 from [OvL80].

The naive B-tree index does not have very many variables, but it is obviously interesting to see
if using more feeding threads will lead to more efficient index construction. We therefore vary
the number of feeding threads betwdeand4. Otherwise, we only vary the buffer size like in

the other methods.

This leaves us with the configurations for the different methods listed below:
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e Remerge:
— Tested as an off-line construction method and with immediate merges with the main
index.
— Buffer size:4096 and16384

e Hierarchical index:

— K: 2and4
— T:1and4
— Buffer size:4096 and16384

e Naive B-tree index:

— Number of feeding threadg:and4
— Buffer size:4096 and16384

5.3.4 Test output intrusiveness

As mentioned in Section 5.3.1, we measure the utilization of both disks and CPU in each phase
of index construction. The results are stored on disk, and outputting them will obviously have
an impact on the results in the experiments. It is important however that the impact is not too
significant. Otherwise, the results from the experiments can not be trusted. To get a better view
of the impact of these measurements on the results, we run one configuration with each overall
method once, to compare the construction time with the obtained average for this configuration.
Each index structure has its own pattern of when it outputs results from a phase. Testing one
configuration per index structure is therefore believed to be sufficient to consider to which extent
the output is intrusive.

We chose to build the index wits00000 documents in all these experiments, and we always
use the largest buffer size, nameéBikB. Remerge is run as an off-line construction method, and
the naive B-tree index is run withfeeding threads. The hierarchical index is run with= 2
andT = 4.
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Efficiency model

This chapter provides estimates of the expected performance of the different index structures,
based on I/O and CPU usage. To obtain such estimates, we need to know some basic quantities.
Section 6.1 will introduce the quantities used in our calculations.

Section 6.2 will estimate the time spent constructing a partial index in memory, and Section 6.3
considers merging indexes. The following sections will provide estimates for each of our tested
structures. We will only calculate the exact expected values for the largest index size where
the test for the particular structure is rt times. We could have calculated for all possible
sizes, but we believe the presentation is clearer when we only consider one size. Section 6.7
will provide estimates for the expected time used to process the searches tested in this report.

As will be clear from Section 6.1, the underlying model in this chapter will be partly dependent
on our experiment environment and partly on our implementation. The developed model is
thus not a reasonable framework for validating the quality of our implementation, but it will
hopefully help analyzing the results obtained in the experiments. This may in turn provide
guidelines for future improvements of the implementation.

6.1 Model of computation

In search engines there are typically two possible bottlenecks, disks and the central process-
ing unit(CPU). As explained in Section 5.2, memory is typically not a bottleneck in search
engines because all the algorithms use constant memory. To achieve reasonable estimates on
performance, both 1/0 and CPU is taken into account.

Obtaining theoretical estimates for disk performance is quite straight-forward, but estimating
theoretically the average time needed to parse a term on a given processor is not. We will there-
fore use more practical methods to estimate CPU performance, which for instance involves
running parts of our implementation. By doing so, we do not end up with a strictly theoreti-
cal model, but it will hopefully provide some insight nonetheless. We will first consider disk
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performance in Section 6.1.1, before we look at CPU performance in Section 6.1.2.

6.1.1 Disk performance

Equation 2.1 introduced the most commonly used model for disk accesses, and it is repeated in
Equation 6.1 for convenience.

To obtain estimates on disk performance, we need to find values for the disk access time, de-
notedt,, and the inverse bandwidth, There are several ways to determine these values, but
for the average disk access time we do as in [HZ03] and trust the disk Vemstmrording to

the vendor, the average time spent moving the disk arm from one position to andiltems

on the disks in our experiment environment. In addition, we will have to wait until the correct
sector is under the disk head. Because our disk rof@@srounds per minute, it will spend
approximately8.33 ms on each rotation. On average, we have to wait half a rotation after the
disk head has moved to the correct position. We will thus have an averagé3.1 ms.

Several available third party applications are capable of measuring transfer speed for files with
different sizes and different buffer sizes, for example I0Zced Bonnie++. Because our

main goal is to establish an upper bound on the bandwidth, we choose a simpler approach.
Using the below command with a large file as input, we are able to get an estimate on how fast
it is possible to read a large, and probably sequentially stored, file from disk.

time dd bs=128k if=<largefile> of=/dev/null

The above command copies the large filedev/nulland outputs the amount of megabytes
transferred per second. This command was run several times, but the variability was low. The
result from one run is shown in Figure 6.1.

20096+1 records in
20096+1 records out
2634055680 bytes (2.6 GB) copied, 32.7171 seconds, 80.5 MB/s

real Om32.719s
user Om0.008s
sys Om0.924s

Figure 6.1: Result from testing the maximum bandwidth from disk

As can be seen from Figure 6.1, the measured bandwidtrsvasvB/s. We know that there
is typically at least one disk seek involved in the timings. According to our estimates, the disk

http://www.samsung.com/Products/HardDiskDrive/
2http://www.iozone.org
3http://sourceforge.net/projects/bonnie/
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seek would take approximately.1 ms. This does not constitute a significant part of the time
overall, and we do not bring it into the calculations. We thus end up with the model parameters
for disk performance shown in Table 6.1.

Variable Estimate
ts 131-10%s
t 1.2-107% s/byte

Table 6.1: Parameters for disk performance

6.1.2 CPU performance

As mentioned above, estimating CPU performance is not straight-forward. It is possible to know
the cost of assembly operations on a processor, but it is not feasible to estimate the number of
single operations performed while constructing an inverted index. We thus need to consider
more abstract operations. At a higher level of abstraction, it is easier to estimate the number of
different operations performed, but it is harder to estimate the cost of each of them.

It seems like the only sound way to estimate the cost of high-level operations is to run our own
implementation, and try to measure the amount of time used by different parts of the code. This
approach is used in several other texts in the field as well [WMB99, HZ03]. Unfortunately,
such timings can never be very accurate in a multi-threaded application, because the thread
containing the code currently being timed might be suspended. In addition, it is important to
avoid measuring the time spent accessing the disk. To be able to state that we actually obtain a
model, and not only the results from experiments, we would also like to minimize the runs used
to obtain the estimates.

Before we decide which experiments to run to determine the expected CPU running times for
different operations, we have to decide which operations we want to consider. Following the
arguments given above, the operations should be high-level enough to ensure that we are able
to estimate the number of times they occur. They should not be too high-level however, because
it is very difficult to avoid measuring disk accesses and other parts of the code when measuring
high-level operations. With these considerations in mind, the following operations were chosen
as the basis for our CPU performance model:

e ¢, - the time used to parse one term, and add it tdthshMapof terms and occurrences
for its document.

e t,, - the time used to add parsed documents to the memory resident index, measured in
seconds per byte.

e 1. - the average time used for one operation in a multi-way merge of several lists. In
other words, this is the constant for an extract minimum operation from a priority queue
of iterators, which is known to have an asymptotic complexity)ofog(s)), wheres is
the size of the priority queue.
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e ¢, - the time used to update the length of document based on a single index entry.
e 1, - the average time used to perform a look-up in a sorted list dictionary.

e t,; - the average time used to insert a new entry in a B-tree. Note that we choose not to
consider the height of the B-tree or the size of the entry.

e t,, - the time used to perform a search in a B-tree.
e 1,4, - the average number of unique terms per document.
e n,4, - the average total number of terms per document.

e [. - the average length of the term of one index entry. An index entry will be created per
unique term for each document, ahdlescribes the average length of the term an index
entry represents.

e [, - the average length of unique terms.

It might seem inconsistent to measure seconds per term),fand seconds per byte fay,,. It
will introduce additional uncertainties in our estimates to change one of them though, and we
prefer more reliable estimates. A similar approach is used in [HZ03].

The remaining part of this section will explain how we estimate these variables. We manage to
obtain estimates for all of them in just one baseline run with our implementation, and by using
the data gathered in Chapter 5 to choose which terms to search for.

6.1.2.1 Estimation based on a dumped dictionary

In Chapter 5, we dumped a dictionary for the collection witmillion documents, to consider
which terms to search for in our experiments. For each term in the dumped dictionary, there
Is information about the number of documents containing the term, and the total number of
occurrences. We are thus able to estimate the last four variables in the list above from this
dump.

The average length of the term of one index entry can be found as shown in Equation 6.2. The
equation shows thd is equal to the sum over all terms, of the length of the téfm,;), times
the number of documents containing the teri divided by the total number of index entries.

- >y Lwi) -
) i i

(6.2)

By substituting values from the dumped dictionary in Equation 6.2, we ohtain6.01. The
average length of unique terms is calculated as in equation 6.3.
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= Sl 63

Substituting values from the dumped dictionary into Equation 6.3 gives us an estifpated
7.92. We note that the value estimated fpicompared to the one fdy, suggests that the more
common terms are actually shorter than the less common ones.

Because we know that the document collection, represented by the index we dumped the dic-
tionary for, containgV = 1 million documents, we can find the average number of terms per
document as shown in Equation 6.4.

v
. 0Ce

ndﬂg = ZZ# (64)

The variableocc; in Equation 6.4 represents the total number of occurrences of terikewise,

we can find the average number of unique terms per document as in Equation 6.4.

v
N = —ZZNI (6.5)

By substituting values from our dumped dictionary into the two above equations, we obtain the
following estimated valuesy;; = 946.14 andn,, = 279.95.

Note that we could have used Heap’s law to estimate the average number of unique terms in
a document based on the average number of terms it contains. Heap’s law is only considered
applicable for large document collections, and applying it per document does not seem like a
sound approach. We will use this law for some estimates in the following sections however.

6.1.2.2 Estimation based on running the application

The rest of the variables chosen to be the basis for our CPU performance model are estimated
empirically. We will now explain how we measure to obtain the estimajgs.easily estimated

by recording the number of terms parsed, and the amount of time spent doing so. This happens
in a thread by itself, and it is obviously possible that this thread is suspended occasionally. It
is suspended when it waits for various other threads to perform work needed by this thread. To
limit the effects of such events on the timings, we stop and start the timings before and after
calls towait() on various objects. We also stop and resume timings before and after segments
of code that may cause disk accesses. Even though there are still several possible causes of
errors in our estimates, this seems to be the best we can achieve with reasonable amounts of
effort.

There is only one part of the code where parsed documents are added to the memory resident
index, and we thus have no choice regarding where to measure to obtain an estimgte for
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This operation happens in parallel with parsing the documents, but in another thread. We thus
have the same problem with the measurements as in the previous case, but because this is the
only place in the code this operation is performed, we do not have other options. Because the
processor has two cores, it is possible to run two threads at once, and it is thus theoretically
possible that the measurements will lead to reliable estimates.

Sorting through a multi-way merge is a quite common operation when using remerge or a
hierarchical index in Brille. When flushing a partial index, we perform a multi-way merge on
the entries from different documents. It is also used when merging different indexes, both to
merge dictionary entries and to merge inverted lists. This gives us a choice of where to obtain
our estimate of,., and a decision should be reached based on where it is likely to obtain the
most reliable estimates. When flushing partial indexes, the only other thread that definitely
running, is the thread flushing dirty buffers from the buffer pool. It is quite straight-forward

to measure the time spent sorting in this phase, because the sorting is the only CPU intensive
operation performed. The sorting process may however, be forced to wait due to lack of buffers
in the buffer pool. We allow using half the buffers to accumulate the memory resident index.
Some of the remaining buffers are used to cache the B-tree in the document manager, and we
will probably use the rest to flush the partial index. Because the overall need for buffers is
relatively low, at least when the B-tree in the document manager is small, we assume that the
overhead involved with pinning new buffers is not overwhelming.

Measuring one of the other sorting processes is more complicated. First of all, the code perform-
ing the merges is spread over different classes, and the amount of disk 1/O involved is higher.
We therefore choose to estimate by measuring the time spent flushing a partial index, and
divide by the number of entries to sort times the logarithm of the number of documents. We
keep in mind though, that the reliability of this estimate is questionable due to the possible need
to wait for flushing when pinning new buffers.

Updating document lengths is also a frequent operation in Brille. Usually when this happens, a
lot of other operations go on at the same time however. The length is typically updated when
merging partial indexes, or when the thread updating document lengths iterates over the naive
B-tree index. In both of these cases there are a lot of disk accesses involved and measuring the
exact part of the time used for updating the document lengths is difficult. Fortunately, there is
one code segment where the process of updating document lengths is more isolated. This is
when we want to make a single partial index searchable. This occurs in the hierarchical index
when an index is flushed and in remerge when adding all files to be indexed only involves one
partial index. Because the partial index has just been flushed, it is quite likely that most parts
of it is cached in the buffer pool. When we also take care not to measure the time spent pinning
buffers from the buffer pool, it seems quite likely that we are able to obtain a reasonable estimate
for t,,.

We thus choose to make a baseline run adding the exact number of documents that can fit in
a single partial index, and use remerge as the method. Choosing this amount of documents is
necessary to obtain a reasonable estimate,gras mentioned above. Fortunately, all of the
previously mentioned variables can also be estimated during such a run. The sorting in a multi-
way merge is estimated when we flush our partial index. It is actually an advantage that we
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only measure the time spent in one flush, because the B-tree in the document manager is quite
small when relatively few documents have been added. This makes the estimates more reliable
as the amount of buffers currently in use is not exhaustive. We are also capable of estimating

the first two variables, as parsing of documents and adding them to the memory resident index

will obviously take place when we construct a partial index.

The only sound way to find an estimate for the time spent searching in a sorted list dictionary,
t1u, 1S to perform searches and time them. We have chosen not to discriminate between different
sizes of the dictionary for this variable. It is likely that there is a difference between searching
in dictionaries for large and small indexes, but according to Heap’s law, the vocabulary grows
significantly slower than the total number of terms in the index. In addition, the complexity
of a binary search is logarithmic, which also makes the differences between different sizes less
significant than if it was linear. The index constructed in the baseline run depicted above is not
large. This might not give us a fair average look-up time, but we can at least be quite sure that
the dictionary is cached in the buffer pool when the index is just constructed. We therefore try
searching for the same terms as we do in the experiments, but measure only the average time
spent searching in the dictionary. We do a complete roursd@&earcheg000 times. Cache
effects are not a problem here, because we wish to estimate the processing time.

The only variables not estimated yet are those considering the efficiency of the B-tree. Dur-
ing the run depicted above, the only operations on a B-tree are the ones adding the mappings
between document numbers and URIs in the document manager. Adding slightly more than
60000 documents involves adding the same number of entries in the B-tree. This number is
considered too small to obtain a reliable estimate on the average time needed to insert an entry.
To insert more entries into the B-tree and obtain more reliable estimates, we thus add several
more such mappings, until we reach a totall ghillion inserted entries. Timing the insertion

of 1 million insertions will hopefully give us a more reasonable estimate of insertion time. The
reason for using the B-tree in the document manager instead of the naive B-tree index is that
it gives us a smaller probability of having to read in nodes from the disk. The insertions from
the document manager is ordered according to document number, and the next insertion is thus
always in the last node on the leaf level. We will therefore follow the same path down through
the B-tree each time, and it seems quite unlikely that it will be necessary to stop caching these
nodes in the buffer pool.

When we have constructed a B-tree containingillion entries, it is straight-forward to test
searching in it. We estimatg, with 100000 searches in the constructed B-tree. Note that

it is intuitively likely that the time spent performing searches and insertions in a B-tree are
dependent on the size of the B-tree, because their complexities are asymptotically linear to the
height of the B-tree. We therefore considered testing both insertions and searches in B-trees of
various sizes. It turned out that it was hard to extract a pattern when testing with heights up to
however. It is also an advantage to keep the calculations based on the model relatively simple,
and it therefore seemed reasonable to restrict the estimates to a single operation.

The baseline run introduced above was ranimes, producing reports as the example in Figure
6.2. Based on the reports from all runs, the estimates were calculated, and the results are given
in the following subsection.
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[java] Used 81495356000 nanoseconds to parse 49624458 terms.

[java] Used 112191789000 nanoseconds to flush the new docs in inmemindex.
There are now 64335 docs flushed.

[java] Used 11015449000 nanoseconds adding rankings for 16032955 entries.

[java] Used 15956032000 nanoseconds adding 393207293 bytes to memory
resident index.

[javal Created the index in 3 minutes and 43 seconds.

[java] Used 3113530000 nanoseconds searching for 300000 entries in
the dictionary

[java] Used 85643928000 nanoseconds adding 1000000 entries to B-tree

[javal Used 1447276000 nanosecond searching for 100000 entries in B-tree

Figure 6.2: Example results from a baseline run
6.1.2.3 Resulting estimates

The results from the estimations introduced in the previous subsections, gives us the estimated
values presented in Table 6.2.

Variable Estimate
t 1.62-107%s
tam 412-10%s
toe 487-107"s
tur 7.14-10"s
tiu 1.05-10°s
thi 8.64-10°s
ths 1.58-10"°s
N 279.95 terms
Nt 946.14 terms

l. 6.01 bytes

L, 7.92 bytes

Table 6.2: Parameters for CPU performance

6.1.3 Some notes on the experiment environment

Even though the experiment environment is formally introduced in Chapter 7, we mention some
details here that are essential for obtaining estimates with some resemblance to reality. First of
all, the computer used in the experiments has two processor cores. This makes it possible for
two threads to run in parallel. Making estimates about the level of parallelism actually obtained
is inherently hard, but we should at least be aware of it while calculating.

The GOV2 collection used in the experiments is quite large. We therefore use a single empty
disk to store all itst26 GB. The other disk on our experiment computer contains the operating
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system and all index files created by Brille. It is thus theoretically possible to read documents
from one disk, while writing index files to the other.

6.2 Constructing partial indexes

As explained in Chapter 4, the in-memory accumulation proceeds in two phases. In the first
phase, the documents are read, parsed and added to the in-memory index stored in buffers. The
other phase involves sorting the occurrences of different terms and constructing a dictionary
and an inverted file. This section aims to give an estimate of the time we expect to spend
constructing a partial index, based on the framework introduced in the preceding section. We
will first consider each of the two phases individually, before we consider constructing partial
indexes as a whole in Section 6.2.3.

6.2.1 In-memory accumulation

During accumulation in memory, the documents are read and parsed in one thread; while an-
other thread stores the parsed documents in the buffers in main memory. This phase will proceed
as long as we can fit the next document in the reserved buffers. To estimate the work needed to
fill the memory, we should estimate the number of documents added. A document with average
length will occupy the number of bytes in the in-memory indexas given in Equation 6.6.

Sq — 12 + (le + 6) *Ndu + 4. ng.t (66)

Equation 6.6 describes that for each document, its entry into the priority queue used for merging
occupiesl2 bytes. For each unique term, we usbytes to represent the length of the term,
while 4 additional bytes are used to represent the number of occurrences. For each occurrence
of a term within a document} bytes are used to describe its term number. By inserting our
average values we can conclude that an average document wil} us&158.76 bytes. Brille

allows the in-memory index to fiB75 MB. On average, we thus have room for approximately

N, = 54928 documents. Given such a batch of documents, the following two subsections will
estimate the time needed for disk accesses and processing for the batch.

6.2.1.1 Estimating time spent accessing disk

To obtain an estimate on the time spent accessing the disk during this phase, we need to consider
how the documents in GOV2 are stored. As mentioned in Chapter 5, the collection is partitioned
into 273 directories, where each directory contaif® files. The average size of such a file is
approximatelyl6 MB, and they contai®23.27 documents on average. We can thus conclude
that the average number of files we need to read in this phase is as given in Equation 6.7.
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[ 24928

923.2% = [59.5] = 60 (6.7)

From Equation 6.7 we can conclude that we on average will need to agite#erent files,

and read9.5 of them in each accumulation phase. The amount of read data from the disk is
thus easily calculated, but estimating the number of disk accesses is not as straight-forward. A
file system will usually try to store single files sequentially. It is therefore likely that we are
able to read a single file with just one disk access. Even if we might need to access the disk
each time we fill our buffer used for reading, we choose to assume that it is possible to read the
file sequentially. With on averagi® disk accesses arid.5 - 16 MB of read data, the estimated

time spent reading from disk in this phase is given in Equation 6.8.

60 - t, +59.5-16-22° . t, = 12.76 (6.8)

We thus estimate that it will take approximatel®.76 seconds to read the documents to be
indexed from the disk containing the collection. There are also some accesses to the other disk
during this phase. All the new documents get their document number and URI stored in the
B-tree in the document manager.

In our implementation of a buffer pool, we have a so-called flushing thread which is responsible
for writing the contents of dirty buffers to EleChanne] as mentioned in Section 4.2.7. The
flushing thread starts at regular time intervals, and writes out all dirty buffers that are not in
use at the moment. During the accumulation phase, there are several insertions in the B-tree,
and it is hard to estimate the number of times a buffer is written out before its final version is
written to disk. We know that as a minimum, each buffer is flushed once. In order to keep these
calculations simple, we assume that each buffer is flushed only once, and that this flush requires
the disk to seek for the correct position. We thus have to calculate the average number of buffers
needed to store a B-tree wit1928 document entries. We assume an average space efficiency
of % for a B-tree, even though we can not guarantee the lower limit on space efficieglcfwof

our implementation, as noted in Section 4.2.8.

Itis actually quite straight-forward to estimate the number of nodes at the leaf level in the B-tree
of the document manager, because the size of each entry when we index the GOV2 collection
is 22 bytes.4 of these bytes are used to store the document numbeg, @nstore the length of

the URI. All URIs are actuallyi6 bytes long in the GOV2 collection, and we thus end up with

22 bytes per leaf entry. In addition, the B-tree node will store a pointer to the entry, making the
total space consumption for each ertfybytes. The space consumption for internal entries in
the given B-tree i42 bytes, because they store the document number, a pointer to a node, and
a pointer to the entry within the node.

When using a buffer with siz& to represent a B-tree node, the number of leaf nodes in the
B-tree is as given in Equation 6.9.
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26-Np-3—‘ 6.9)

nOdeSleaf,dm:’V 5 5

Assuming the same space efficiency for internal nodes, each node will on average gpgtain

% pointers. This approximation applies to all nodes except the root, which may have as few
as2 pointers. Carrying out a similar calculation to what is done in [Bj@06], it is quite easy to
calculate the approximate total number of nodes in the B-tree as given in Equation 6.10

d €a m
nodes gy, = 1—|—Z {MJ ~ 1+nodesieqf,am: Z

i = 1—|—nodesleaf dm* Z (18>
=L @)

E8) =0
(6.10)

We recognize the geometric series in Equation 6.10, and end up with the approximate number
of nodes given in Equation 6.11.

nodesqm ~ 1+ nodesieq f,dm - (6.11)

B —18

Our experiments are run witB = 4096 and B = 16384. When B = 4096, the number of
leaf nodes iswodes;eqf.4m = 523, and the total number of nodes is approximatel§. We thus

get approximatelyp26 disk accesses and slightly ovemMB of written data according to our
assumptions. This will require approximat@ly2 seconds spent accessing the disk according
to our model. WithB = 16384, we estimate to spend76 seconds.

Because we use an LRU replacement policy in the buffer pool, it seems likely that we might have
to read in some nodes while inserting in the B-tree. Because of the way we assign document
numbers to documents, this is quite unlikely however. Each new document receives a document
number that is strictly larger that the previous. This implies that it will be inserted to the far
right at the leaf level in the B-tree. The path from the root down to rightmost node in the leaf
level is thus accessed for every insert. We therefore consider it unlikely that these buffers will
be replaced.

Note that the above calculation is based on the first added partial index, but only slightly more
nodes will be added in later batches because the number of nodes in the top of the tree grows
slowly. For simplicity we assume that the number of nodes added in each batch is similar.

We thus have estimates for all disk operations in this phase, but we should keep in mind that
the flushing of the nodes for the B-tree does not necessarily happen before the next phase,
because the buffer pool does not guarantee that the buffers are flushed instantly. We should thus
consider whether flushing these buffers, in addition to the disk operations in the next phase,
might become the bottleneck. We will consider this aspect in Section 6.2.3.
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6.2.1.2 Estimating time spent processing

The most important processing operations involved in accumulating a partial index in memory

is parsing the terms and adding the occurrencesHashMapfor each document, and adding

the partial documents to the in-memory index. These operations take place in different threads,
but the threads may obviously have to wait for each other. We will calculate estimates for each

of the operations, and consider how we can estimate the time spent doing both of them at the
end of this section.

We have calculated the average number of documents contained in one memory resident index,
N,. We also know the average number of terms in each document. Multiplying the product
of these two values with our estimate of the time spent parsing each term, and adding it as
an occurrence, we end up with an estimated number of seconds for this operation as given in
Equation 6.12.

N, - ngy-t, = 84.9 (6.12)

We thus estimate using approximatély.9 seconds to parse all terms and record their occur-
rences. This is a quite interesting result, because regardless of the time spent doing the rest
of the processing, we are now in a position to estimate that this phase is bound by CPU. This
contradicts our initial beliefs introduced in Section 4.2.3.2.

The other part of processing involves adding documents to the in-memory index, and to insert
their mapping between document number and URI in the document manager. In order to keep
the things simple, we assume that we will be reasonably close to fill all the buffers set aside for
accumulating an index, meaning that there3a®eMB to add. We use the number of documents
added to estimate the time spent inserting entries in the B-tree. The calculations are performed
in Equation 6.13.

375 2% o + N, -ty = 20.95 (6.13)

Adding the documents to the in-memory index is estimated to 28K seconds, and is thus
more efficient than parsing them.

Because our processor has two cores, it is not reasonable to sum these two values to obtain
the final estimate for the processing involved in this phase. It is not likely that we can use just
the most costly operation either, because it is dependent on some I/O before it can initiate, and
we must add the final documents to the index after they have been parsed. These aspects are
considered too cumbersome to estimate though, and this leads us to a final estimate of spending
approximatelys4.9 seconds processing in this phase. We keep in mind though, that the actual
number is probably slightly higher.
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6.2.2 Sorting and flushing

The next phase during construction of partial indexes is when the index entries are sorted and
flushed to disk. For this phase to be done, we need to have sorted all entries, and unpinned all
buffers. This does not imply that all buffers will have to be flushed before the phase is ended,
but we will estimate the time needed to do so nonetheless, and use the estimate in the next
subsection.

6.2.2.1 Estimating time spent accessing disk

During this phase, all disk accesses are to the disk storing the index files created by Brille. Disk
accesses are required when we flush the dictionary and the inverted file for this partial index.
We will first estimate the size of each of these files.

The dictionary contains all unique terms in the collection of the estim@jegbcuments in this

partial index. To obtain an estimate on the number of unique terms in such a collection, we use
Heap’s law, which is introduced in Section 2.2.5. We have an estimate on the number of terms
in this collection through the number of documents in the collection multiplied by their average
number of terms. We will also have to determine which constants to use in Heap’s law. Because
GOV2 is an example of a large web collection, we choose to use the constants suggested in
[Fre02]. We thus end up with the calculation of vocabulary size given in Equation 6.14

V, =16.24- (N, - ng,)""" (6.14)

Substituting our estimated values into Equation 6.14, we obtain the estijated06034.62.

Each entry in the sorted list dictionary will consume space equal to the length of its term in
addition to18 bytes used to store the pointer into the inverted file and some statistics. We have
an estimate on the average length of unique terms, and we can thus estimate that the space
occupied by the dictionary i8/,| = 10.04 MB.

We know that for each document, the number of bytes used in the inverteg,filis, as given
in Equation 6.15.

Sai = 8 Ngy +4 - Nay (6.15)

By substituting our estimated variables into Equation 6.15 and multiplying with the estimated
number of documents, we calculate that the size of an average inverted file for a partial index is
approximately|Z,| = 315.51 MB.

Having obtained estimates for the size of each file, we know the amount of data that should

be written to disk during this phase. We also need to determine the number of disk accesses.
As noted above, the write operations to disk in this phase are performed by the flushing thread
in the buffer pool. At regular time intervals, the flushing thread goes through all dirty buffers
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and writes them to &ileChannel This happens in the order in which the buffers have been
unpinned, and we do not know exactly when they are actually flushed to disk. Because of the
uncertainties regarding when the different buffers are actually flushed, we have to make some
conservative estimates. The inverted file is substantially larger than the file for the dictionary,
and it thus grows faster. This implies that every time we unpin a buffer for the dictionary, the
last and next unpinned buffers are most likely to be part of the inverted file. A conservative
estimate is to assume that each time we write a bufferRite€€hanne] it will be flushed fast.

It thus seems reasonable to assume that a disk seek is required each time we switch what file
we write to. With such an assumption, each buffer written to the dictionary will requdigk
accesses. One disk access is needed to move the disk arm to the correct position in the file for
the dictionary, while the other one is needed to move it back to the inverted file again. How
many buffers the complete dictionary consists of is dependent on the buffer size, and we can
estimate the number of disk accesse® imes the size of the complete dictionary divided by

the buffer size. This gives us the estimated time spent accessing the disk given in Equation 6.16.

v
tg=2- {%w ts + (|Vp| + 1))t (6.16)
When using a buffer size dfkB, we get the; = 71.46 seconds, and for a buffer size If kB,
tq = 20.94 seconds.

6.2.2.2 Estimating time spent processing

The only main contributor to processing time during this phase is the sorting of the index entries.
We know the number of documents to merge and we can find an estimate on the number of index
entries to sort, and are thus able to estimate the worst-case number of operations performed in
the priority queue of iterators. Because we have an estimate of the constant in such operations,
ts., We are able to estimate the time spent processing during the sorting phase as given in
Equation 6.17.

tepus = Np - Ny - 10g(Np) - tse (6.17)

Based on Equation 6.17, we estimate the number of seconds spent processing during the sorting
phase to be,,, , = 117.91.

6.2.3 The phase as a whole

In the last two subsections we have calculated estimates for the time spent constructing partial
indexes based on our framework of CPU and disk performance. The estimates show that in
both phases, the processor is actually the bottleneck in our implementation. The processing
performed in the sorting phase is dependent on the first phase, meaning that it can not initiate
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before the first phase is completed. This implies that the estimated time spent constructing one
partial index is84.9 + 117.91 = 202.81 seconds.

The flushing to the disk containing the files created by Brille will, if it was the only process
running, spend’1.46 + 6.92 = 78.38 seconds accessing the disk if the buffer sizéd IeB.

When the buffer size i$6 kB, the estimate i20.94 + 1.76 = 22.70 seconds. In both cases,

the processing time will be the bottleneck. The same is true for the disk where the indexed
documents are read from, because reading in the documents is approximated 1d.7éke
seconds.

We thus conclude that in our implementation, the expected time used to construct a partial index
when filling the allowed memory completelyd82.81 seconds. The quite surprising result that
processing time seems to be the bottleneck will be commented on when we obtain the actual
results in Chapter 7.

6.3 Merging indexes

To merge indexes is a frequent operation in both remerge and hierarchical indexes. Even though
there are slight differences between merges with different numbers of indexes and indexes with
different sizes, we choose to develop common estimates for merging indexes. The rationale
behind such a choice is to keep this section within reasonable length. Furthermore, itis believed
that even with such a choice, we will still get a fair idea about the bottlenecks in our system.
The following two subsections will consider the two possible bottlenecks, disk 1/0 and CPU.

6.3.1 Time spent accessing disk

During a merge, we will obviously have to read all partial inverted files and their dictionaries,
and write the complete new index to disk. All of these operations take place at the same disk
in our experiment environment. The size of the resulting inverted file is equal to the sum of
the sizes of the inverted files we merge. The size of the dictionary is not calculated that easily
however, because the smaller dictionaries are likely to have several terms in common. Assuming
that the complete number of terms in all indexes to mergewge can use Heap’s law to estimate

the size of the vocabulary, as given in Equation 6.14. Remembering from Section 6.2.2.1 that
each occurrence in the dictionary consum8sbytes in addition to the term itself, we can
estimate the size of the complete dictiona¥yj, to be as given in Equation 6.18.

V| =16.24 - n%*" - (18 +1,) (6.18)

We are thus capable of estimating the total amount of moved data between disk and memory. We
also need to estimate the number of disk accesses however. This is slightly more complicated
because there are several effects that might play a significant role. We will first consider the
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expected number of disk accesses needed to read the indexes to merge. All the dictionaries and
inverted files will be read sequentially, but we may possibly need to read from different files for
each new pinned buffer. This makes the access pattern far from linear. Because our buffer pool
will only read one buffer at a time, we might expect the number of disk accesses needed to be
the sum of the number of buffers needed to be read each index. Such an assumption is used in
a comparison of different construction methods in [HZ03].

There are some effects we should probably take into consideration however. The operating
system will usually employ some form of read-ahead, meaning that it will cache the content
of the disk following the section just read. The same kind of caching is usually performed in
the disk controller. It is therefore likely that the number of disk accesses will be smaller. The
problem is however, that such effects are inherently hard to estimate. Even if it is possible to
get a reasonable overview of the caching in an open-source operating system, it is usually not
known exactly how the disk controller works [Bra].

Because of the problems involved with giving a precise estimate, we will give two separate
estimates. One of the estimates follows the strategy in [HZ03], while the other one will assume
that the access pattern is actually sequential. Even if we know that the access pattern is not
sequential, the effects mentioned above are likely to decrease the number of disk accesses sig-
nificantly. If we actually read large parts of the files sequentially, the overhead introduced by
the disk accesses will not be significant, and this estimate might be appropriate.

6.3.1.1 Estimate 1

If we assume that one disk access is required for each buffer read from eachnofpueial
indexes to be merged, we need the number of disk accesses given in Equation 6.19 to read in all
indexes to be merged.

o= 3 ([ < ) 619

i=1

We must also need to write the complete merged index to disk, with the size of the dictionary
and inverted file as calculated above. The dictionary is typically far smaller than the inverted
file, and it seems reasonable to assume that we will require one disk access per buffer in the
dictionary as well. We might obtain better results for the inverted file however. If we are
merging several indexes with approximately the same size, it is likely that they have inverted
lists for terms within approximately the same lexicographical range in one buffer. It is therefore
likely that we are able to flush several buffers to the inverted file sequentially, which requires
only one disk access. Despite such observations, we choose to keep this estimate conservative,
and follow the same approach as in [HZ03]. This implies that we assume that each buffer
written to the complete inverted file will also require one disk access. The total number of
expected disk accesses is given in Equation 6.20.
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We are now able to give an estimate of the time spent accessing the disk with estimate 1, and it
Is given in Equation 6.21.

td,m,l = da : ts + <|V| + Z (l‘/;| + 2- |Iz|)> tt (621)

=1

6.3.1.2 Estimate 2

The amount of moved data is similar in estimates 1 and 2, but the number of disk accesses
differs. In estimate 2, we assume that onlglisk access is needed per file read or written.
Because each partial index consists of one dictionary and one inverted file, such a scheme
would require2 disk accesses per partial index, and furthéo write out the final index. This
makes the computation for estimate 2 quite straight-forward, and it is given in Equation 6.22.

tame = (2 m + 2)t, + <|V| +> (Vi +2- |L-|)> t (6.22)
=1

6.3.2 Time spent processing

Both the dictionaries and the inverted files are merged during a normal merge. The dictionaries
are merged to find the unique terms. For each unique term, the inverted lists from the indexes
that contain the given term are merged. We thus have two levels of merge operations. We will
consider the merge of the dictionaries first. The number of entries to be merged is equal to the
sum of the number of entries in each of the merged dictionaries. Assuming that index number
containsh; - ng, terms in total, we can estimate the number of entries in each dictionary with
Equation 6.14. The number of entries in the priority queue is equal to the number of indexes to
be merged, denoted. The worst-case number of operations needed to perform the merge of
dictionariesp,,q, is given in Equation 6.23.

Oma = Y _16.24 - (N; - nq,)*"" - log(m) (6.23)

=1
We also merge the inverted lists for each unique term. Such merges will also be performed in a

priority queue, and it seems natural to estimate that the cost of such an operation is dependent
on the number of occurrences of the term, and the number of merged indexes which contain

95



CHAPTER 6. EFFICIENCY MODEL

the given term. There is one important observation here however. When indexes are merged in
Brille, we will always have partitioned the document numbers between the different indexes. In
addition, all indexes will contain a continuous range of document numbers. This implies that
during the merge in the priority queue, we first empty one index, before we start emptying an-
other. We will thus only have the worst-case logarithmic complexity of extracting the minimum
index entry each time an index is empty.

For common terms, the above observation will give the merge an average complexity that is
almost linear. For terms that occur only once or twice, we never have to merge more indexes
than there are occurrences of the term. Even if we for some terms are likely to obtain the worst-
case complexity, it seems reasonable to assume that the logarithmic factor in the merge can be
discarded. We make this assumption, and the expected number of operations in the merge of
inverted lists is given in Equation 6.24.

14 m
Omi = Z Ny =Nqu - Z Nz =Ndu - N (624)
i=1 i=1

While the merge is performed, new and updated tf-idf document lengths are also computed.
Each index entry will contribute, and we have estimated the time needed to update the length of
a document based on one index entry. We can then estimate the processing time spent merging
indexes as given in Equation 6.25.

topum = tse -log(m) - > (16.24 (N; - 1q)*™") + (tse + tur) - g - N (6.25)

i=1

With Equation 6.25 as a basis, we are able to estimate the time spent processing a merge based
on the total number of documents in the mergg,the number of documents in each of the
indexes to mergey;, and the number of indexes to be merged,

6.4 Remerge

In the last two sections, we have estimated the time spent constructing partial indexes and
merging them. We are thus able to estimate the time spent constructing an index with the off-
line version of remerge, and with the version where new partial indexes are immediately merged
with the main index. We will do so in the following two subsections. As for the other overall
methods, we will only calculate exact estimates for the largest index size where we tell with
runs in the experiments.
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6.4.1 Off-line construction

When constructing an index with off-line construction, we first construct partial indexes until

all documents are indexed. The partial indexes are eventually merged into a large searchable
index. This section will estimate the time spent during such a construction. When considering
the time spent in the merge, we will calculate values using both estimate 1 and 2. Regardless
of which of those estimates we use, the same partial indexes are constructed, and we start by
calculating the expected time for this phase.

In Section 6.2, we calculated the expected time spent constructing one partial index. In order
to use the values calculated there, we need to know the expected number of partial indexes
constructed when building an index farmillion documents. We have an estimate for the
number of documents there is room for in one partial indéx,and it is thus easy to calculate

the expected number of partial indexgs, Such a calculation is shown in equation 6.26.

N 1000000
= = T 1821 6.26
PP=N, T 754928 (6.26)

We note that the expected number of partial indexds.i31. We have calculated the estimated

time spent constructing a full partial index, but it is not likely that the time spent constructing
one that is not full scales linearly with size. The process of constructing a partial index consists
of two phases. The first phase consists of parsing documents, and adding them to an in-memory
index. We noted that parsing the documents was the dominant factor in that phase. The com-
plexity of the process is linear to the number of documents, if we assume that they all have the
same length. The complexity of the second phase is not linear to the number of documents how-
ever, because sorting the entries was assumed to be the dominant factor here. The asymptotic
complexity of the sorting routine usedd¥z log(XN,)), wherez is the number of index entries,
and N, is the number of documents in the partial index. Because our estimates indicate that
grows almos®80 times as fast ad/,, we will actually assume that the process of constructing
partial indexes scales linearly with the amount of documents added. The rationale behind such
an assumption is to keep the calculations simple, and the belief that the impact is insignificant.
We thus estimate the time spent constructing partial indexes to be as given in Equation 6.27.

18.21 - 202.81 = 3693.17 (6.27)

According to Equation 6.27, we expect the time spent constructing partial indexe3aGa30E7
seconds, or slightly more than an hour. When all the partial indexes have been created, they
are merged to form a large searchable index. The time spent performing such a merge was
estimated in Section 6.3, and we will use both of our estimates for time spent accessing disk
in the following two subsections. First, we will calculate the processing time for such a merge
however, because it is needed to obtain the final estimates for both estimation methods.

From Equation 6.25, we know how to calculate the expected time spent processing during a
merge. All variables in the equation are already known, excepVfdor all partial indexes, but
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these values are easily estimated. The figspartial indexes are assumed to contain approxi-
mately54928 documents each, and this leaves us Witho6 for the last partial index. We thus
end up with the estimated time spent processing during a merge as shown in Equation 6.28.

tepum = toe -10g(19) - (18- 16.24 - (54928 - ngy) ™" +16.24 - (11296 - ngy)™")
+ (tse + tur) - N - 1000000 (6.28)

By substituting values for the variables in Equation 6.28, we obtain the estimaigd =

351.68 seconds. For each of the estimates for time spent accessing disk in the following two
subsections, we must consider whether the obtained estimate is larger or smaller than the esti-
matedt.,,.,. The largest of the two will be our estimate for the time spent merging indexes,
because we assume that disk accesses and processing can overlap.

6.4.1.1 Merging indexes with estimate 1

The time spent accessing disk when merging indexes in estimate 1 is given in equations 6.20
and 6.21. We have to calculate the size of the various index files to obtain the estimated time
spent accessing disk. We have estimated the size of the dictionary and inverted file for a partial
index in Section 6.2.2.1, to bi&.04 and315.5 MB respectively. The last partial inverted file is
0.21-315.5 MB, which is equal t®6.25 MB. The size of the last partial dictionary is estimated

as in Equation 6.29.

V| = 16.24 - (11296 - n4,)*"" - (18 4 1,,) (6.29)

Equation 6.29 follows the same assumptions as Equation 6.18, and estimates the siz@1o be
MB. The size of the complete dictionary is estimated2ol7 MB by substitutingl million for

11296 as the number of documents in Equation 6.29. The size of the final inverted file is the
sum of the sizes of the partial files, and is t3@g6.26 MB, or approximately>.61 GB.

Because the expected number of disk accesses is dependent upon the size of the buffers used,
we will have to calculate values for both of the buffer sizes used in our experimeiis,

and16 KB. Substituting our estimated values into Equation 6.20, we estimate that the number

of disk accesses with the small buffer3g01914. For the large buffer, our estimate becomes
750494 disk accesses. The total size of all files is approximaléh27.77 MB. Based on these
calculations, the expected number of seconds spent accessing disk when using a small buffer is
calculated in Equation 6.30, and the same value for the larger buffer size is given in equation
6.31.

tam14006 = 3001914 - ¢, + 11727.77 - 2% - t, = 39472.64 (6.30)
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tam11638a = 750494 - t, + 11727.77 - 220 - ¢, = 9979.04 (6.31)

According to the above calculations, we should use almbkburs merging the partial indexes
with the small buffer size, and approximat@lrours andl7 minutes with the larger buffer size.

The estimated processing time is significantly lower, and we can conclude that if estimate 1 is
the most valid approach, merging indexes is definitely 1/0 bound.

According to estimate 1, it should tak8165.81 seconds to construct the complete index when
the small buffers are used, ah872.21 seconds with the large buffers.

6.4.1.2 Merging indexes with estimate 2

Estimate 2 is simpler to calculate than estimate 1. We already know the total size of the files.
The number of disk accesses is assumed td(hdecause there an partial indexes. Be-
cause this method does not distinguish between using different buffer sizes, the only needed
calculation is shown in Equation 6.32.

tama = 40 - t, +11727.77 - 2% - t, = 147.73 (6.32)

Using estimate 2, we estimate to only ug48.09 seconds accessing disk while merging indexes.

If this estimate is valid, we expect this phase to be CPU bound, because we estimated using
351.68 seconds processing the merge. According to estimate 2, it should(&k&5 seconds

to construct the complete index.

It should be noted that neither estimate 1 nor estimate 2 is likely to give a correct view of
the actual time spent accessing disk while merging. They are probably upper and lower limits
for the actual time spent accessing disk. We discuss the validity of both approaches when we
discuss the actual results in Chapter 7.

6.4.2 Immediate merge

When all partial indexes are immediately merged with the main index, making the newly added
documents searchable, remerge is expected to give lower update latency. It will however, prob-
ably need more time to construct the complete index. The partial indexes constructed are just
the same here as for the off-line construction, and we thus estimate that the process of con-
structing the partial indexes to také93.17 seconds. We need to calculate the expected time
spent performing the merges as well to obtain an estimate for the complete construction with
this configuration.

We will first consider the processing involved in each of the merges. When we make the first
partial index searchable, we do not need to merge it. Brille will then pin buffers with all parts of
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this recently flushed index, and update the lengths of all documents. The time spent processing
for this batch is thus as given in Equation 6.33.

tepumi = Ny - Ny - tur = 10.98 (6.33)

According to Equation 6.33, we will usi).98 seconds updating the document lengths for the
first batch.

The following merges will mergen = 2 indexes each. One of the indexes will contap
documents, while the other will contain the documents added before this batch. The last batch
will also have2 indexes to merge, but the smallest one will confidi296 documents according

to our previous estimates. We are thus able to calculate the estimated processing time for each
merge, based on Equation 6.25. The results are shown in the second column in Table 6.4.

To find our estimates for the time spent accessing disk during the different merges, we need to
know the size of the indexes. We estimate the size of each inverted file as the sum of the sizes
of the merged inverted files. The sizes of the dictionaries are estimated with Heap’s law, as in

Equation 6.14. The results are shown in Table 6.3.

Batches| Dictionary (MB) | Inverted file (MB)
1 10.04 315.51
2 14.90 631.02
3 18.77 946.53
4 22.12 1262.04
) 25.12 1577.56
6 27.87 1893.06
7 30.43 2208.57
8 32.84 2524.08
9 35.12 2839.59
10 37.29 3155.10
11 39.37 3470.61
12 41.37 3786.12
13 43.31 4101.63
14 45.17 4417.14
15 46.99 4732.65
16 48.75 5048.16
17 50.46 5363.67
18 52.13 5679.18
19 52.47 5746.26

Table 6.3: Expected sizes of index files for the complete index after each batch is added
With the sizes of all intermediate index files calculated, we are able to calculate the expected
time used to access disk during the merges. As for remerge, we will estimate with both methods
1 and 2. The calculations are explained in the following two subsections. We will compare each
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of the estimates with the obtained estimate for processing time, and provide a summary of the
results in Section 6.4.2.3

6.4.2.1 Disk estimate 1

All merges in remerge with immediate merge inclidmdexes. According to estimate 1, the
amount of moved data is equal to the size of all files to merge, in addition to the size of the
resulting index. We also need one disk access for each buffer read and written for each index
file. In all but the last batch, the smallest index will be equal to the resulting index after the first
batch given in Table 6.3.

When the first batch is added, there will not be any merge, and we will only update the document
lengths of all documents added. In the current implementation, this involves pinning a buffer
for each part of the index file. Because the B-tree in the document manager is quite small at this
point, it is not likely that significant parts of these buffers have gotten their content replaced. It
is therefore not likely that we have to read significant parts of the file. We will not make any
such assumptions however, and carry out the calculations for all estimates as previously. We
will consider whether this is a sound approach when discussing the actual results.

For the first batch, we thus have to read the complete file while updating the document lengths.
We can calculate the time spent accessing disk after batch 1 with estintatg 1, as shown
in Equation 6.34.

10.04 - 220 315.51 - 2%
tami1 = U 5 W + { 5 D -ty + (10.04 + 315.51) - 2% - ¢, (6.34)

When we substitute the buffer sizes from our experimeintd and 16 KB, into equation 6.34,
we obtaintg,, 11 = 1095.88 andt, ,, 11 = 277.05 respectively.

The expected times spent performing the other merges according to estimate 1, is calculated as
shown in equations 6.20 and 6.21. The results are shown in the third and fourth column of table
6.4.

6.4.2.2 Disk estimate 2

Estimating the time spent accessing disk with estimate 2 is quite simple now that we have
calculated the sizes of all files to read and write. After the first batch, we will only have to
read2 files, the inverted file and dictionary for the partial index. For all later batches, estimate

2 assumes that we will requite disk accesses in each mergé.of these disk accesses are
used to read the indexes to merge, while theldast used to write out the resulting index. The
calculations required to obtain our estimates are thus straight-forward, and the results are shown
in column5 in Table 6.4.
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6.4.2.3 Resulting estimates

Batch | Z.pum | tam.1,4006 | tam1,163810 | tamz | ESt1 (@KB) | Est1 (16KB) Est2
1 10.98 1095.88 277.05 4.12 1095.88 277.05 10.98
2 37.33 4366.06 1103.78 16.40 4366.06 1103.78 37.33
3 55.89 6519.57 1648.19 | 24.45 6519.57 1648.19 55.89
4 74.44 8668.00 2191.32 32.48 8668.00 2191.32 74.44
5 92.97 | 10813.53 2733.72 | 40.50 10813.53 2733.72 92.97
6 111.50 | 12957.02 3275.59 | 48.51 12957.02 3275.59 111.50
7 130.02 | 15098.99 3817.10 | 56.52 15098.99 3817.10 130.02
8 148.54 | 17239.85 4358.32 | 64.52 17239.85 4358.32 148.54
9 167.06 | 19379.77 4899.29 | 72.52 19379.77 4899.29 167.06
10 185.57 | 21518.88 5440.07 | 80.52 21518.88 5440.07 | 185.57
11 204.08 | 23657.31 5980.68 | 88.51 23657.31 5980.68 | 204.08
12 222.59 | 25795.16 6521.13 96.50 25795.16 6521.13 222.59
13 241.10 | 27932.56 7061.47 | 104.49 27932.56 7061.47 | 241.10
14 259.60 | 30069.48 7601.68 | 112.48 30069.48 7601.68 | 259.60
15 278.11 | 32205.99 8141.81 | 120.47 32205.99 8141.81 278.11
16 296.61 | 34342.17 8681.85 | 128.45 34342.17 8681.85 296.61
17 315.11 | 36477.97 9221.78 | 136.43 36477.97 9221.78 | 315.11
18 333.61 | 38613.50 9761.65 | 144.42 38613.50 9761.65 | 333.61
19 337.33 | 39045.76 9868.54 | 146.05 39045.76 9868.54 | 337.33

Sum: 405797.45 102585.02 | 3502.44

Table 6.4: Time spent processing and accessing disk while merging for different estimates in
remerge with immediate merge

The first5 columns of Table 6.4 show all estimates calculated for the different merges during a
run with 1 million documents. As previously, we assume that 1/O and processing can overlap
while we are merging indexes. The final estimates for both estimate 1 and 2, are thus the
maximum of the estimated time spent processing and the estimated time spent accessing disk.
The estimated time spent accessing disk is dependent on the buffer size used in estimate 1. The
last3 columns of Table 6.4 show the resulting estimates.

It should be noted that according to estimate 1, all merge processes are 1/O bound, while all
merges are CPU bound according to estimate 2. We will have to evaluate the validity of each of
these approaches when we report the actual results in Chapter 7.

The bottom line in Table 6.4 shows the total time we expect to use merging files with each of the
estimates. By adding the number of seconds we expect to spend constructing partial indexes,
we obtain the final estimates for each of our estimation methods. According to estimate 1, we
will use 409490.62 seconds, or nearliyl4 hours building the complete index with small buffers.

With larger buffers, the estimate beconmi@6278.19, or approximatel\29.5 hours. According

to estimate 2, the process is much more efficient and takes7aaly61 seconds, or slightly

less thar hours.
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6.5 Hierarchical index

Significant parts of the construction phase for hierarchical indexes are similar to construction in
remerge. New documents are added in batches, and some of the partial indexes are merged oc-
casionally. When and what indexes to merge, depends on the paraikietaty’, as explained

in Section 4.2.4. We will not consider settifig= 4 or K = 4 in this section. The rationale be-

hind this choice is that we know that our estimates for time spent accessing disk while merging
are probably inaccurate. It is therefore very difficult to estimate how many small indexes that
will be part of a merge when we allow adding more thaat a time. We defer a more thorough
investigation of the effects of changifigto further work, after we have developed more precise
estimates for disk accesses while merging indexes. The reason why we do not consider varying
K is that we want to avoid making this section too long. We believe that estimating the expected
time with X' = 2 will help us determine to which extent our estimates are accurate. Performing
the same calculations fdt = 4 is not believed to add significant insight.

To develop estimates for hierarchical indexes, we should consider the differences between a
hierarchical index and remerge in more detail. The construction of partial indexes is almost ex-
actly similar. The only difference is that after each partial index has been created, the document
lengths for the documents within the given index are calculated. This process is similar to the
process carried out in remerge with immediate merge when the first batch is made searchable.
When there are already several indexes in the hierarchy, we will perform a lookup in the dictio-
nary for the largest one for each unique term in the newly added batch. This is done to calculate
more accurate tf-idf document lengths, as explained in Section 4.2.6.2.

It might require disk accesses to look up in the largest dictionary, because we do not know how
large parts of it that is buffered at a given moment. The dictionary is accessed sequentially
because the look-ups are ordered lexicographically on the terms. It might seem reasonable to
assume that the dictionary is read in a single sequential read. There is one problem with such
an assumption however, that the partial index just created might have to be read at the same
time. We thus end up with a situation which to some extent is similar to a merge of different
indexes, except that we do not need to write out anything to the disk. To know the size of the
dictionary file read, we need to know how the hierarchy looks like when a new partial index is
made searchable.

To estimate the cost of the merges in the hierarchical index, we must know which merges we
expect to occur. If this is known, we can estimate the size of the largest index when each
new partial index is made searchable. We will therefore present which merges we expect to
occur in Section 6.5.1. Section 6.5.2 will calculate the time we expect to spend to make all
partial indexes searchable. In Section 6.5.3, we will estimate the time spent processing for the
expected merges, and Section 6.5.4 estimates the time spent accessing disk in the same merges.
We will provide a short summary of the results in Section 6.5.5.
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6.5.1 Expected merges

This section will present which merges we expect in a hierarchical indexivith2 and7 = 1

when constructing an index withmillion documents. To define a size dfin the hierarchy,

Brille uses the number of buffers we are allowed to fill with an in-memory index. When a new
index is constructed, either as a new partial index or as a result of a merge, we count the number
of buffers it occupies. This determines at which position in the hierarchy we will put the index.

It therefore seems likely that we are able to fill a sizd @lmost completely each time we fill

the memory, and we make this assumption.

When we assume that each partial index nearly fills a siZie tife evolution of the hierarchy

with K = 2 is similar to counting in binary digits, as noted in [OvL80]. When the first partial
index is constructed, it is added as a small index. We only allow one small index in the hierarchy
where we search, and the process of adding new documents will thus have to wait. The partial
index added as a small index is already searchable, and since there is no index at the first position
in the hierarchy, the index is just moved there. We assume that the time used removing an entry
from one list, and inserting it in another is negligible. The same thing will happen each time
there is no small index in the hierarchy when we add a new one, and this is actually true in half
the cases. On the other hand, a merge will always take place when the smallest index in the
hierarchy is non-empty, and we have added a new partial index.

We thus end up with actual merges, and Figure 6.3 shows all of them in correct order.

In Figure 6.3, it should be noted that the index to the far left in all hierarchies is strictly not part
of the hierarchy. It represents the additional small index we allow searches inhvkenh For
the case witl” = 4, we would havel such extra indexes.

As can be seen from Figure 6.3, the first merge will involve two indexes oflsiaad create

an index of size. The next merge will merge two indexes of sizeand one of siz€. The
resulting index from this merge is expected to have diz&\Ve note that merges, 2, 4 and

8 will involve the largest index constructed up until now. We thus do not need to access the
largest index to calculate more correct document lengths in these merges. The other five merges
on the other hand, require accesses to the largest dictionary. This issue will be commented in
the following subsections. We also note that we have estimated the size of both the dictionary
and the inverted file for indexes that are merged from different numbers of full batches when
estimating performance for remerge with immediate merge in Section 6.4.2. Those estimates
are found in Table 6.3.

6.5.2 Constructing partial indexes

As noted above, we have already estimated the expected time used to construct a single partial
index. In Section 6.2, we estimated that it take€2.81 seconds to construct and flush a full
partial index, and we have estimated that it tak&5§9 seconds to construct the one in tt¢h

batch. We also need to estimate the time spent making each partial index searchable, and that is
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Figure 6.3: All expected merges while building a hierarchical index itk 2 and7" = 1 for
1 million documents

the focus of this section.

If there are any indexes in the hierarchy, making a partial index searchable involves a look-up in
the largest dictionary for each unique term in the partial index. This will probably require us to
read in the dictionary as well. Because there is both processing and disk I/0O involved, we will
calculate estimates for both, and choose the largest within each estimation method as our final
estimate.
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The first time we make a partial index searchable, there is no index in the hierarchy. This

situation is thus similar to the first batch in remerge with immediate merge, and we have already
calculated all necessary values in the first row in Table 6.4. When the second batch is added,
there is one index in the hierarchy, the first partial index added. For the third and forth batches,
the largest index in the hierarchy is merged fr2imatches. For batchégo 8, the largest index

is merged fromt batches. For the nestbatches, the largest index is of sizeand for the last

3 batches, it is of sizé6.

The expected processing time for all batches except the first and last are similar, because our
estimate for time spent looking up in a dictionary is independent of its size. We can estimate
the processing time for all batches except the first as shown in Equation 6.35.

tcpu,sp = Np *Nda - Lur + ‘/p : llu (635)

We note that the first part of Equation 6.35 is similar to Equation 6.33. The second part on the
other hand, represents the look-ups in the dictionary. We need to perform one look-up for each
distinct term in our partial index, and, is estimated as shown in Equation 6.14. The estimated
time spent processing while making each batch searchable is shown in the second column in
Table 6.5.

We also need to estimate the time spent accessing disk while making the partial indexes search-
able. The files we possibly need to read are the dictionary file for the largest dictionary in the
hierarchy, and the partial index we have just flushed. As noted in Section 6.4.2, it is not likely
that we have to read the complete partial index, but we choose to make the conservative assump-
tion that we need to do so. We can thus estimate the time spent accessing disk while making a
partial index searchable, ,, for both disk estimates. The calculation for estimate 1 is shown

in Equation 6.36, and the calculation for estimate 2 is shown in Equation 6.37. The obtained
results are shown in the third, forth and fifth column of table 6.5.

wn= (5] |5 [+ B]) el emienin-n 630

td,sp,2:3ts+(|‘/;)‘+|]p’+“/2|)tt (637)

|V;] in the above equations, is the size of the dictionary in the largest index in the current hier-
archy. We have noticed above which batches that are added with different sizes of the largest
index in the hierarchy. The expected size of the dictionary in an inverted index merged from a
given number of batches is found in Table 6.3.

We have now calculated all required values to estimate the total time spent constructing all
partial indexes and making them searchable. Constructing the partial indexes was estimated
take202.81 seconds for each of the firsg batches, and2.59 seconds for thé9dth. We thus

expect to spend693.17 seconds to construct all partial indexes. The table above contains the
different estimates for how much time we will spend making the partial indexes searchable.
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Batch tcpu’sp td,sp,1,4096 td,sp,1,16384 td73p72 Est1 (4KB) Est1 (16KB) Est 2

1 10.98 1095.88 277.05 | 4.12 1095.88 277.05 | 10.98

2 15.24 1129.68 285.60 | 4.26 1129.68 285.60 | 15.24

3 and4 15.24 1146.04 289.73 | 4.32 1146.04 289.73 | 15.24
5108 15.24 1170.34 295.88 | 4.41 1170.34 295.88 | 15.24
9to 16 15.24 1206.43 305.00 | 4.55 1206.43 305.00 | 15.24
17and18 | 15.24 1259.98 318.53 | 4.75 1259.98 318.53 | 15.24
19 3.99 400.81 101.33 | 1.54 400.81 101.33 3.99
Weighted sum: 21771.21 5504.02 | 274.05

Table 6.5: Time spent processing and accessing disk while making partial indexes searchable

By adding the time spent constructing partial indexes with the different estimates for making
them searchable, we end up with our final estimates. For estimate 1 with small buffers we
expect to spend5464.38 seconds constructing all partial indexes and making them searchable.
The expected times for estimate 1 with large buffers and estimate 2]9Fe9 and3967.22
seconds respectively. We again note that we end up with much better expected performance if
estimate 2 is closest to reality. In such a case, we would be able to construct all partial indexes
and make them searchable in approximatehyour andé minutes. If we use the small buffer

size, estimate 1 expects it to take more thdmours.

These times could have been appropriate estimates on the total time spent constructing a hierar-
chical index if we sef” = 4, never had to wait for merges of small indexes, and if the merging
process did not slow down the construction of partial indexes significantly. We have decided
to estimate the time spent constructing the hierarchical index When1 however. We will
therefore have to wait for an index to be merged into the hierarchy every time a new one is
created. We thus have to calculate the expected time spent merging as well.

6.5.3 Processing merges

Figure 6.3 gives an overview of the merges we expect to occur while constructing the hierarchi-
cal index forl million documents. This section will estimate the expected time spent processing
during each of these merges. As noted in Section 64501the9 merges include the currently
largest index in the hierarchy, and will thus not need to access the largest dictionary to calculate
more correct tf-idf document lengths. The remaininon the other hand, will require an access

in the largest dictionary for each unique term in the merged index. We will first calculate the
expected processing time for the four merges that do not require dictionary look-ups.

When no look-up in the largest dictionary is required, the merges in the hierarchical index are
just like the merges considered in Section 6.3. Their expected processing time can thus be
calculated as shown in Equation 6.25. This applies to mergest and8, and the results are
shown in the second column in Table 6.6.

When a look-up is required for each unique term, the expected time spent processing in a merge

107



CHAPTER 6. EFFICIENCY MODEL

is as shown in Equation 6.38.

m

topum = toe-10g(m)- Y (16.24 - (N; - 14.)™™") + (tae + tur) g N +16.24- (N - ng)"" -1y,
=1
(6.38)

We notice that the only difference between Equation 6.38 and Equation 6.25 is the last part,
which estimates the cost of the look-ups. The results when estimating time spent processing
during the merges with look-ups in the largest dictionary are also shown in the second column
of Table 6.6.

6.5.4 Time spent accessing disk in merges

This section will estimate the time spent accessing disk during the merges introduced in Section
6.5.1.4 of the expected merges will not involve look-ups in the largest dictionary in the hierar-
chy, because the currently largest index is part of the merge. These merges are thus handled just
like standard merges, which was discussed in Section 6.3. Their estimated time spent accessing
disk are calculated as shown in equations 6.20 and 6.21 for estimate 1, and as in Equation 6.22
for estimate 2.

The remaining> merges requires accesses to the largest dictionary in the hierarchy, with size
denotedV;|. Estimate 1 will, as usual, assume that oBlyytes at a time can be read from the

file. Estimate 2 on the other hand, assumes a sequential read with simigle disk access for

the complete file. The calculation for estimate 1 in this case, is shown in equations 6.39 and
6.40, while Equation 6.41 shows the calculation for estimate 2.

][5 (S () e

tama = do - ts + <|w + |V,| + Z (V| +2-|L]) | (6.40)

=1
tama = (2-m + 3)t, + <|V1| + Vo] + Z (|Vi| +2- |Ii|)> t (6.41)
=1

Based on the above equations, estimates for the time spent accessing disk during the merges
have been calculated. The results are shown in the third, fourth and fifth column of Table 6.6.

The last3 columns shows the resulting estimates when using the different methods to estimate
time spent accessing disk. The resulting estimate is the maximum of the time we estimate to
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Merge tcpu,m td,m,1,4096 td,m,1,16384 td,m,Q Est1 (4KB) Est1 (16KB) Est 2
1 37.33 | 4366.06 1103.78 16.4 4366.06 1103.78 | 37.33
2 74.96 | 8688.79 2196.59 | 32.58 8688.79 2196.59 | 74.96
3 43.66 | 4440.52 1122.61 16.69 4440.52 1122.61 | 43.66
4 149.99 | 17295.87 4372.5 | 64.78 17295.87 4372.5 | 149.99
) 43.66 | 4476.62 1131.73 | 16.83 4476.62 1131.73 | 43.66
6 84.36 | 8799.35 2224.54 | 33.01 8799.35 2224.54 | 84.36
7 43.66 | 4476.62 1131.73 | 16.83 4476.62 1131.73 | 43.66
8 299.6 | 34453.0 8709.89 | 128.94 34453.0 8709.89 | 299.6
9 43.66 | 4530.16 1145.26 | 17.03 4530.16 1145.26 | 43.66

Sum: 91526.97 23138.6 | 820.89

Table 6.6: Time spent processing and accessing disk while merging for different estimates in a
hierarchical index withk' = 2 and7 = 1

spend processing, and the time we estimate to spend accessing disk. As for remerge, when
estimate 1 is used, all merges are I/O bound. If estimate 2 is an accurate estimate on the other
hand, processing is the bottleneck.

6.5.5 Expected times for hierarchical index construction

We are now able to give precise estimates for the time we expect to spend constructing a hierar-
chical index forl million documents with' = 2 and7T" = 1. In Section 6.5.2, we calculated the
expected time spent constructing the partial indexes and making them searchable. Because we
estimate fofl’ = 1, we will have to wait for all merges. Table 6.6 contains the results from our
calculation of expected time for performing the merges. Adding the values for each estimation
method, we obtain our final estimates for constructing the complete index. We expect it to take
116991.35 seconds when using the small buffers according to estimaté@91.35 seconds

Is approximately32 hours and30 minutes. Estimate 1 expects the process to be more efficient
with larger buffers. FoB = 16 KB, our estimate become335.79 seconds, or slightly under

9 hours. According to estimate 2, we will spend onfig8.11 seconds, which is approximately

1 hour and20 minutes. We will compare these expected values with the obtained results in
Chapter 7.

As noted at the beginning of this section, we do not calculate precise estimates for other config-
urations. We will however, give a less formal explanation of what we expect.

Setting K = 4 will typically improve the search efficiency, but the construction speed will
typically suffer. The search efficiency will improve because there are on average fewer indexes
in the hierarchy, and the construction speed will decrease because the merges are larger on
average.

How much time we expect to spend building the whole index whea 4 depends heavily on
which of our two estimates of disk performance that is most accurate. According to estimate
1, the merges are definitely disk bound. We noted in Section 6.2 that the whole process of
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constructing partial indexes is CPU bound. If we allow building new partial indexes during a
merge, it is thus likely that the two processes can run in parallel without degrading each others
performance. This implies that the merges will run constantly, while we add the next small
indexes to the hierarchy. It is thus likely that the time spent constructing partial indexes will
have limited effect on the total construction time.

If estimate 2 is accurate on the other hand, the merges are expected to be CPU bound. Be-
cause the construction of partial indexes is also CPU bound, we need a good utilization of our
dual-core processor to obtain a significantly faster construction. The construction of partial in-
dexes uses several threads, and we thus consider a significant improvement in construction time
unlikely in this case.

6.6 Naive B-tree index

The naive B-tree index differs quite a lot from the other two methods, because it does not go
through phases, but rather keeps doing the same throughout its lifecycle. The naive B-tree index
processes one document at a time. The document is first parsed, a process that, just like for the
other methods, goes on in a thread on its own. The mapping between the document number and
the URI of the document is then inserted into the B-tree in the document manager. There are
two insertions into the B-tree index for all unique terms in the document, and the tf-idf length
for the document is calculated while these entries are inserted in the B-tree.

We will try to give estimates for both time spent accessing disk and time spent processing for
this structure as well, but there are some complicating factors here. When accessing a B-tree,
we will search downwards from the root. In each node, we perform a binary search which will
tell us which node to access next. The buffer containing the given node is then pinned. If this
buffer is not currently cached, we will have to read it into a buffer. Because the binary search
that determines which buffer to pin was just finished, it seems unlikely that this read can be
carried out while we are processing. It is thus likely that the processing will have to wait while
we are reading in the next buffer. We therefore do not assume that the operations on the B-tree
and the possible reads can overlap. For the B-tree in the document manager, we did not consider
this aspect. Because we only insert documents with strictly increasing document numbers in
our experiments, we will follow the same path down from the root to a leaf at each insert in the
B-tree in the document manager. It is therefore unlikely that we will need many reads overall.
We thus believe that it makes sense to consider this aspect for the naive B-tree index, and not
for the B-tree in the document manager.

The above observation implies that we can not assume that processing in the B-tree and reads
from disk can go on in parallel. We also know that the constructed B-tree will have to be written
to disk. Read and write operations on a disk can not go on in parallel either.

In addition, as for the other index structures, the documents are parsed in a thread on its own.
This will of course require both disk accesses and processing, as explained in Section 6.2.1.
The documents to index are stored on another disk than the constructed index however, and we
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thus assume that reading them will not interfere with the disk accesses to the index files. When
there is only one feeding thread for the index, it also seems likely that the processing performed
when parsing documents can go on in parallel with the insertions in the B-tree.

Based on the above assumptions, there3adédferent processes that might be the bottleneck
during construction of a naive B-tree index fsrdocuments:

e Reading in documents and parsing them.

e Constructing the index for the parsed documents, and reading in the necessary buffers in
the B-tree.

¢ All disk operations performed on the disk with the index files. These operations include
the read operations mentioned under the previous item.

In order to obtain estimates for each of these possible bottlenecks, we need to know the size
and height of the complete B-tree index. We estimate these values in Section 6.6.1. We will go
through each of the possible bottlenecks in sections 6.6.2, 6.6.3 and 6.6.4 respectively. Section
6.6.5 will give a summary of our findings and provide estimates for the expected time used to
construct the index witl300000 documents. The estimates will be given as a function of hit
ratio, h. The hit ratio defines the fraction of the accessed buffers thatodloequire a read
operation. We have thus chosen not to estimate an average hit ratio, because we do not find a
reasonable basis for providing such an estimate. The hit ratio will in addition be dependent on
the size of the index, which complicates the aspect even further.

To avoid too much complexity in our estimates, we will not consider using moreltfeading

thread for the index. It should also be noted that there is a background thread in Brille that
updates the document lengths of all documents at regular intervals. This will of course cause
additional disk accesses and processing time, but we will not consider its effects here. We note
that this possibly introduces a significant inaccuracy in our estimates, but it is left out to keep
this section within reasonable length.

6.6.1 The size of a complete B-tree index

Each unique term in each document will lead to an entry in the naive B-tree index. We know
the average number of unique terms, and the average number of terms in one document. Based
on these values, we are able to calculate the average number of occurrences of each unique term
in each document. This will again enable us to estimate the expected average size of each entry
in the B-tree index, denoted. The calculation o, is shown in Equation 6.42.

o= 1, +12 44 &t (6.42)
UZR

The rationale behind Equation 6.42 is that the term and the document number will have to be
stored. In addition, we usebytes to store the length of the term ahbytes for the length of
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the occurrence list. The entries in the occurrence list consubges each. The lagtbytes

are used to store the pointer in the node to where the given entry is stored. Substituting our
estimates into the equation, we obtain an estimated average85.62 bytes. We will have

N - ngq,, entries with this average size in our B-tree.

There is also another type of entry in our naive B-tree index, namely the ones storing statistics
about the occurrences of each term. There will be one such entry per unique term in the col-
lection. This entry will store the actual term, in addition2dbytes. It uses the first2 bytes

just like the normal entries, and always Rastored occurrences. The occurrences represent the
number of documents containing the term and the total number of occurrences of the term in
the indexed document collection. The number of unique terms is estimated according to Heap’s
law, as in Equation 6.14.

With NV documents in the collection and assuming a space efficiency in the B-t%eavefcan
estimate the number of leaf nodes as we did in Equation 6.9. The calculation for our current
setting is given in Equation 6.43.

(Se+ N - ngy + (Iy +20) - 16.24 - (N - 1q)*"") - 3

5 (6.43)

nodesieq f,pr =

To estimate the total number of nodes, we also need to know the average size of internal entries
in the B-tree. Each internal entry contains a term, a pointer to a nodé exula bytes. The

length of the term is not as easily estimated here. We know that there aré entries in the

B-tree for termi. Our estimates fot, and/. suggest that the common terms are on average
shorter than the less common ones, becayselarger than,.. Since we now have one extra
entry per term, we might believe that the average length of the terms stored in upper levels of
the B-tree are longer thap. On the other hand, the most common terms typically also have
the largest number of occurrences in each document, making their entries larger. This makes it
more likely to find common terms in higher levels of the B-tree. We thus estimaté. tisah
reasonable value for the average length of terms in the internal entries in the B-tree as well.

On average, this should make the size of an internal node equélxbbytes. When we take
into account that each node has an average space efficieéc}ma‘ average entry will occupy
approximately24 bytes. We thus get the approximate number of nodes given in Equation 6.44.

B
B —-24

nodesy, ~ 1 + nodesieqfpt - (6.44)

According to the above calculations, the average branching factor for each internal rﬁ)de IS
The height of the B-tree, denotéd, is defined as the number of pointers one has to follow
from the root to reach a leaf node. Witlades,.,; leaf nodes, the average height is calculated
as shown in Equation 6.45.

he = [log% (nodesleaf)-‘ (6.45)
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We note that the number of nodes we need to access to insert or search for an entry in a B-tree
with heighthe is he + 1.

6.6.2 Reading and parsing documents

Reading and parsing documents for the naive B-tree index proceeds just like for the other meth-
ods tested in this report. In Section 6.2.1, we estimated the expected time spent reading and
parsing documents, and adding them to an in-memory index. We concluded that the bottleneck
in such a phase was parsing the documents, while reading them was far more efficient. Both
reading and parsing documents scales linearly with the number of documents. It is therefore
clear that parsing the documents will be the bottleneck in the naive B-tree index as well. We
can thus estimate the time spent reading and parsing documents as shown in Equation 6.46.

N -nge-t, (6.46)

6.6.3 Constructing the index

A thread responsible for adding the parsed documents to the index performs several operations.
It inserts the mapping between URI and document number in the B-tree in the document man-
ager, and inserts one entry and increment or insert another entry for each unique term in the
document. It also calculates the document length for the inserted document. This section will
estimate the expected processing time needed to perform these operations, in addition to the
possible time needed to access disk to read in needed parts of the index files.

According to our previous estimates of time spent inserting the mapping between document
number and URI in the document manager, it should fake,; seconds to add the mappings for

all documents. Likewise, calculating the rank for each document is expected W take, - ¢,
seconds in total.

Finally each index entry is inserted into the B-tree index, along with an inc-or-insert operation
for the entry describing the occurrences of this term. We have not estimated the average cost
of an inc-or-insert operation, but its locking scheme is identical to an insert. It therefore seems
likely that its cost is also quite similar to the cost of an insert. We make this assumption, and
thus expect to spertd N -n,4, -t,; S€conds inserting into the tree. As mentioned in the beginning

of this section, we might have to wait while reading in a block that is not currently cached. The
number of times we have to read in a block depends on the hit ratio. As mentioned above, itis
difficult to estimate the hit ratio.

Even if we do not have an estimate for the hit ratio, we can calculate the expected time used to
construct a naive B-tree index with the hit ratio as a variable. We know that we can calculate
the expected average height of the B-tree in a naive B-tree index as shown in Equation 6.45.
If we assume that the B-tree has the same size through the whole construction phase, we can
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easily estimate the number of nodes accessed. Note that the height will obviously grow during
construction, making this assumption incorrect. The height of a B-tree grows slower and slower
however. It will thus grow fast at the beginning, and will probably quickly reach its final height.
The assumption is thus not as crude as it may seem. With such an assumption, we can estimate
the total number of B-tree nodes accessefl-a¥ - ng,, - (1 + log%(nOdesleaf)).

Denoting the hit ratio by, we get the estimated time spent in a thread adding parsed documents
to the index as shown in Equation 6.47.

tepupt = N-(1+2-ngy) toi + N Ngy tur+2-N-ngy- (1 + he)-(ts+B-t) - (1—h) (6.47)

6.6.4 Disk accesses in the naive B-tree index

The B-tree is updated times per unique term in each document. When entries are inserted

or updated, the buffers representing the updated nodes are eventually unpinned and appended
to the queue of dirty buffers in the buffer pool. At regular intervals, the queue of dirty buffers

is traversed, and they are all written to their respediieChannes. Before a dirty buffer is

written to itsFileChanne] it might be pinned again, and is thus no longer part of the queue.

In addition, we do not know exactly when the changes kl@Channelare written to disk. It

is therefore very hard to estimate the exact number of times the buffer representing a node in
the B-tree is written to disk before its final version is represented at disk. It is even harder to
estimate the amount of disk accesses these 1/0 operations will lead to, becakiteCQhannel

might be able to write out several changes parts in only one disk access.

In Section 6.2.1.1, we concluded that during a complete run, we will at least write all nodes in
the B-tree to disk once. The best imaginable case is that all buffers representing the nodes are
written to disk in one single access, but we note that this behaviour is very unlikely. If we can
not store the complete B-tree in memory, it is probably impossible. The worst case is that all
buffers are written to disk each time there is a change in the node the buffer represents, and if
each write requires a disk access.

How we should obtain a reasonable estimate on the amount of time spent writing in the B-tree
index is at best unclear. We thus only make a choice, and will have to evaluate whether this
choice was appropriate or not when we get the results from the actual experiments in Chapter 7.
We therefore assume that each buffer in the B-tree index will be written only once, but that each
of these writes will require a disk access. It is very likely that each buffer will be written more
than once, but it is difficult to quantify, as explained above. On the other hand, it is unlikely that

a disk access is required for each of the actual writes, so the estimated number of disk accesses
Is thus not necessarily that far from reality. In addition, all these writes are within the same file.

A file system will usually try to store a single file sequentially on the disk, and the disk accesses
within one file will thus typically not be as costly as an average one on the disk.

The above assumption has another important benefit, namely that it makes the calculation of
our estimated time spent accessing disk quite simple. The estimated time spent writing to the
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B-tree index is calculated as shown in Equation 6.48.

nodesy - ts + nodesy - B - t; (6.48)

In addition to the disk writes considered above, we have to store the mappings between doc-
ument number and URI at the same disk as our B-tree index. Using the same assumptions as
in Section 6.2.1.1, we estimate the size of the B-tree in the document manager as shown in
equations 6.49 and 6.50.

26-N -3
deSieatdm = | ———— 6.49
nodesieqf,d [ 5 B -‘ ( )
desgm = 1+ nod B (6.50)
noaes gy, = noaesSieqf,dm B_18 .

We have previously made the same assumptions about writes to the B-tree in the document
manager as we did for the B-tree index above. We make the same assumption here.

To obtain the estimated time spent accessing the disk with the index files, we also need to con-
sider the possible reads from the B-tree index. The time spent performing these, as a function
of the hit ratio, was calculated in the previous section. We do not consider possible reads from
the B-tree in the document manager because each new document number is strictly larger than
the previous, as explained in Section 6.2.1.1.

With the above assumptions, we estimate the time spent accessing the disk containing the index
files to be as given in Equation 6.51.

tq = (nodesgm + nodesp +2 - N -ngy - (1 —h) - (14 he)) - (ts + -B - t;) (6.51)

6.6.5 Estimates forN = 300000

We have now calculated estimates for all of the possible bottlenecks in the naive B-tree index
introduced at the beginning of this section. All estimates are a functiod ahdh. As ex-
plained above, we will not estimate but rather plot a graph representing the expected time
spent constructing an index wig0000 documents for varying. The reason why we estimate

with N = 300000 for the naive B-tree index, is that this is the largest index size for which we
have run the experimen® times.

Our final estimate is, for a given hit ratio, the maximum time we expect to spend in any of the
3 different possible bottlenecks. We will now carry out the calculations for each of the possible
bottlenecks. The resulting value for reading and parsing documents is as shown in Equation
6.52.
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N -ngy - t, = 459.82 (6.52)

Parsing all documents is thus expected to take approxim&®élg2 seconds. The time spent
adding all documents to the index when we Uise- 4096 is calculated below with the answer
in Equation 6.53.

(Se+ N -ngy + (I +20) - 16.24 - (N - 14)*"") - 3
B-2

nodesieqf bt = |V w = 980631

he = [logg4 (nOdeSleaf)—‘ =3
tcpu,bt :N-(1+2-nd7u)-tbﬁ—N-ndvu-tw+2-N-nd7u-(1—|—he)-(t5+B-tt)-(1—h) =
14598.49 + 8834652.25 - (1 — h) = 8849250.74 — 8834652.25 - h (6.53)

Equation 6.54 gives the expected time spent adding documents to the indexXbwhea6384.

(Se+ N - ngy + (I, +20) - 16.24 - (N - 1)) - 3
B-2

nodesieqf,pt = |7 w = 245158

he = [log%(nodesleaf)-‘ =3

tepupt =N - (1 +2-ngy) -t + N -ngy -tur +2-N-ngy - (L+he)- (ts+B-t) - (1—h) =
14598.49 + 8933724.98 - (1 — h) = 8948323.47 — 8933724.98 - h (6.54)

From the above calculations, we can already estimate that the time spent processing to parse
the documents will never be the bottleneck, regardless of the actual value of the hit.rdio,
consider whether the time spent adding documents to the index or the time spent accessing the
index files is the bottleneck, we calculate our estimates for the latter below. We start with the
case wherd3 = 4096, and the answer for this case is given in Equation 6.55.

B
nodesy, = 1 + nodesjeqfpt - T 986412

26-N-3

=2
7 5 —‘ 857

nodesieq f,dm = [

B
nodesqm, = 1 4+ nodesieqt,dm 518 = 2871

tqa = (nodesgm, +nodesp +2 - N -ng, - (1 —h)- (14 he)) - (ts+-B-t;) =
13008.23 + 8834652.25 - (1 — h) = 8847660.48 — 8834652.25 - h (6.55)

Here follows the same calculation whéh= 16384, and the answer is given in Equation 6.56.
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B
nodesy, = 1 + nodesieq fpt - T 245519

26-N -3

=171
L

nOdeSleaf,dm = ’V

=718

d m =1 d eaf,dm *
nodesg + nodesieqf,q 5 _ 18

tq = (nodesgm + nodesp +2+- N -ngy - (1 —h)- (14 he)) - (ts+-B-t;) =
3274.12 4 8933724.98 - (1 — h) = 8936999.10 — 8933724.98 - h (6.56)

The calculations above suggest that adding documents to the index is the bottleneck. We note
however, that even with our optimistic estimate regarding the number of times the contents of
a node is written to disk, the time spent accessing disk is estimated to be relatively close to the
time spent adding the documents to the index. This is especially true when we use the smallest
buffers. We will keep this optimistic assumption however, but keep in mind that is relatively
likely that constructing naive B-tree indexes is disk bound, at least when the size of the index
becomes reasonably large.

1le+07 T T T T

1e+06 |- . ,

100000

Estimated index construction time (s)
/

10000 L L L L
0 0.2 0.4 0.6 0.8 1

hit ratio

B=4096 — B=16384

Figure 6.4: Expected construction time for naive B-tree index as a function of hit ratio

Figure 6.4 shows the resulting estimates for constructing a naive B-tree index®iho
documents. These estimates show that it is crucial to have a decent hit ratio to obtain reasonable
performance. With a hit ratio of.0, we are able to index approximatel9.55 documents per
second according to our estimates. If there was no buffering involved and all accessed nodes
had to be read from disk at every access, we would not be able to index more than approximately
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0.034 documents per second regardless of the buffer size used. We should also note that even
if the height of the B-tree is similar for both buffer sizes. The B-tree whith= 16KB will

reach this height later in the construction process. The estimates for this case are thus more
pessimistic than the estimates for time spent constructing with small buffers.

We have decided not to estimate the hit ratio, but we note that there are some aspects that
make it likely that it is relatively high. Because of the assumed Zipf distribution of terms

in the collection, there are some very frequently occurring terms. When new documents are

added, they usually contain several of these frequent terms. Inserting the resulting index entries
involves one access at the beginning of the list of entries for the term, and one at the end. For
frequent terms, it seems very likely that the paths to the nodes to update are already cached. It
is of course also likely that the nodes at the top of the tree are cached most of the time, because
they are accessed by many operations.

It should also be noted that the hit ratio is dependent on the size of the complete B-tree index.
When we have free buffers to cache the complete index, the hit ratio wilDb&V/hen the index

size grows beyond this limit however, the hit ratio will decrease. How much it will decrease
depends on the replacement policy. We thus expect the number of documents indexed per
second to drop gradually as the size of the index increases beyond the total size of the buffers
in our buffer pool.

We have not estimated the time spent constructing a naive B-tree index when the number of
feeding threads is set tbinstead ofl, but we will discuss it in a less formal way now. We
concluded above that the time spent constructing the index seems to be the major bottleneck.
By using several feeding threads, we might be able to do some of this work in parallel. Because
we have a processor with CPUs, we can never expect to run more than two such threads
simultaneously though. It might seem like there is no point in ugifigeding threads, but we
expect this to have an effect when the hit ratio drops beldw When this happens, some of

the feeding threads will from time to time be forced to wait while the next node they should
access is read from disk. When we have multiple feeding threads, it is likely that some of them
can perform useful work while the others are waiting for disk operations. We thus expect the
performance to improve when we uséeding threads.

6.7 Expected search performance

This section will estimate the expected time spent performing a search in each of the tested
index structures. We test searching for terms with varying number of hits in this report, and we
expect the search performance in all structures to be dependent on the frequency of the terms.
We will therefore provide estimates for all three groups of tested terms in each index structure.

In all tested searches, we only retrieve the tOpranked results. We thus typically look up

10 mappings between document number and URI in the document manager. If there are fewer
than 10 hits, we will only look up the number of actual hits. Because it is unlikely that the
complete B-tree in the document manager is cached when we perform the searches, looking up

118



CHAPTER 6. EFFICIENCY MODEL

the mappings between document number and URI will typically involve some disk accesses.
We will not estimate the cost of these however, because this part does not discriminate between
the different kinds of index structures. This means that our estimate for time spent searching
for terms with various frequency is likely to be lower than the actual time spent, but we will
hopefully be able to estimate the difference in performance between the various structures.

For each of the index structures tested in this report, we will estimate the search performance
for the same configuration for which we estimated construction time in the previous sections of
this chapter. To be able to estimate time spent searching for terms with various frequency, some
statistics for the different groups of terms are given in Table 6.7.

Frequency of terms | Averagen; | Averageocc;
high 349684.82 | 3362359.01
medium 1088.17 1849.79
low 1.00 1.00

Table 6.7: Statistics for various groups of terms

The following subsections will estimate the time spent performing a search for terms with vari-
ous frequency in all tested index structures.

6.7.1 Remerge

Regardless of whether we use remerge as an off-line construction method or with immediate
merge, the search performance is equivalent. A search in the structure involves a look-up in the
dictionary, which will give us a pointer into an inverted file from where we will have to read.
The read inverted list is then processed to find theltopanked documents. The amount of
processing involved for each index entry is small, there are only a few additions and multiplica-
tions. We thus make the simplifying assumption that after the initial look-up in the dictionary,
the disk operations are the bottleneck.

We have estimated the time it takes to perform a look-up in the dictioharyn addition, the
look-up might involve a disk access and a read of one buffer. This will happen if the disk block
containing the entry in the dictionary for the term searched for is not currently cached. Next, if
the term occurs in the document collection, its inverted list is read. We assume that the list is
read in one disk access. How many bytes an inverted list consistsieflependent on; and

occ; for the particular term. We can calculdtas shown in Equation 6.57.

b=8-n;+4-occ (6.57)

The rationale behind Equation 6.57 is that for each document containing a term, we store the
document number and the length of the occurrence list as integers. The occurrences of the term
within a document are also stored as integers.
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If we assume that all searches involves a disk access in the dictionary, we can estimate that the
time spent searching for a term in remerge is as given in Equation 6.58. Note that in our imple-
mentation, we will always read an intregral number of buffers. This means that we will typically
read slightly more thah bytes when reading an inverted list. We choose to not consider this
aspect however, because its effect on the overall time spent is relatively small compared to the
disk access.

tsearch,r - tlu +2. ts + (b + B) . tt (658)

Note that assuming that each search requires a disk access in the dictionary is the same as
expecting worst-case performance in each search. We choose to make this assumption, even
though it is not likely to be accurate for the average case. By using the statistics given in Table
6.7, we are now able to calculate the expected time for a term with average frequency within
each of our three groups of terms. The results are shown in Table 6.8. Note that these calcula-
tions are only applicable for the case when we have an indexMWith 1 million documents.

6.7.2 Hierarchical index

To estimate the search performance in the hierarchical index, we will consider how the hierarchy
will look like when the construction phase is done. By adding b batch after the final
merge in Figure 6.3, we end up with the hierarchy shown in Figure 6.5.

[ e

Figure 6.5: Resulting hierarchical index with= 2, 7 = 1 and N = 1 million
We notice from figure 6.5 that there asenon-empty indexes in the hierarchy. Each of these
three indexes are similar to the single searchable index in remerge, except that these indexes
are smaller. To search for a term in this hierarchy, we have to perform a look-up in each of
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the dictionaries. We again assume worst-case performance, namely that this look-up involves
a disk access. For all of the indexes that contains the term searched for, we need to access the
inverted list. If we assume that all indexes in the hierarchy contains occurrences of the term,
we will have to perform three times as many disk accesses as with remerge. We will not read
more data from the inverted files than we did with remerge however. This means that we can
calculateb just like we did in Equation 6.57.

For the terms with high and medium frequency, we assume that there exist occurrences for all
of these terms in all indexes. For these groups of terms, we can calculate the expected time
spent searching as in Equation 6.59.

tsearch,h =3 (tlu +2- ts) + (b +3- B) -t (659)

For the group of terms with only one occurrence each, it is not reasonable to assume that all
indexes contains an inverted list for all terms. When there is only one occurrence of a term in
the document collection, it can never have an inverted list in more than one of the indexes in the
hierarchy. We have to look up in all dictionaries however, and the expected time spent searching
for a term with one occurrence is calculated as in Equation 6.60

tsearch,h =3t +4-ts+ (b +3- B) 1y (660)

The results from calculating the expected search time based on equations 6.59 and 6.60 is shown
in table 6.8.

Term frequency Remerge Hierarchical index
B=4KB | B=16KB | B=4KB | B = 16KB
high 0.221 0.221 0.274 0.274
medium 0.026 0.027 0.079 0.079
low 0.026 0.026 0.052 0.053

Table 6.8: Expected average time for searches for terms with various frequéneyl (million)

Note that the calculation was only carried out for the special case Mith 1 million docu-
ments,K = 2 and7 = 1. With other configurations, the expected time is different. In general,
the maximum number of indexes we need to search in When 1 is [log(pi)] + 1, where

pi is the expected number of partial indexes as previously. Whenlarger thant, we might

have to search in the additional small indexes as well. We also note that the number of bytes
read from all inverted files in a hierarchical index is similar to the number of bytes read from
the single index in remerge. This implies that regardless of whether theté@rer 1 million
occurrences of the term searched for, the difference in expected time between remerge and the
hierarchical index is constant. If the frequency of the term is very low, the difference in ex-
pected time is even lower, because we may not need to look up inverted lists in all indexes in
the hierarchy.
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6.7.3 Naive B-tree index

For the naive B-tree index, we will estimate the search performance for an index0WiiH0
documents, for the same reasons why we estimated construction time with this index size. The
statistics in Table 6.7 are thus not correct for this particular case. To find more appropriate
values, we assume that all terms are uniformly distributed in the document collection. This
implies that we will have30% of the occurrences of the terms in the fiB§l0000 of the 1

million documents. Table 6.9 shows the adjusted values.

Frequency of terms | Averagen; | Average occ;
high 104905.45 | 1008707.70
medium 326.45 554.94
low 0.30 0.30

Table 6.9: Adjusted statistics for the groups of terms

A search in the naive B-tree index is just like a search in a normal B-tree. It starts from the root,
and proceeds downwards through the tree by performing a binary search in each node. We have
estimated the time it takes to search in a B-tree in terms of processing spe&de make the

same assumption here as we did for the two other methods, namely that the time spent reading
an inverted list from disk dominates the time spent processing it.

When analyzing the other methods in the previous subsections, we assumed worst-case be-
haviour with respect to the number of disk accesses performed in the dictionary. The worst case
number of disk accesses when searching for a single entry in a B-theeHd. The root will
obviously be cached, at least after the first search, and it is also highly likely that most of the
nodes on the next level are cached. Even so, to follow the same overall approach we did for the
other methods, we assume that all nodes will have to be read. This implie$ disk accesses

for each search.

Each entry in a B-tree will be stored within a single node. A search for a term that exists in
our B-tree index will however always have to read at least two entries. The first entry is the
one storing statistics about the approximate number of documents containing the term, and the
total number of occurrences of the term. The following entries will contain the actual entries
in the inverted list. Even if our above calculations suggest that the average rare tetm has
occurrences in the collection considered, we assume that all terms exist in the index when we
calculate. This implies that we can find an upper bound on the number of nodes read from disk
as given in Equation 6.61.

b
he + 1+ {EW (6.61)

The variableb in Equation 6.61 is the expected number of bytes used to store the inverted list,
not including the entry with statistics for the occurrences of the term. The rationale behind
Equation 6.61 is that we might need to réad+ 1 nodes to find the one with the entry with

statistics. If the expected number of bytes in the inverted list is larger than zero, we might
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have to acces&%} more nodes to read the whole inverted list. We should note that we have
no guarantee that the leaf nodes are stored sequentially on disk, it is actually very unlikely. It
therefore seems reasonable to assume that we need one disk access per node read.

We also need to estimake For each index entry, there is one entry in the B-tree containing the
actual term, the document number, and all occurrences of the term within the document. Each
entry also has a pointer to it within the node, to enable binary searches when the entries have
variable lengths. As we did when we considered the expected construction time for the B-tree,
we will assume that the space efficiency in the B-treé. iBased on these considerations, the
calculation oft is shown in Equation 6.62.

b=

Do o

The calculation of the complete time spent searching for a term in a naive B-tree index is as
shown in Equation 6.63.

b
tsearch,bt = tps + (he + 1+ ’VE—‘> : (ts + B - tt) (663)

By substituting the average values for each group of terms from Table 6.9 into equations 6.62
and 6.63, we obtain the results shown in Table 6.10.

Naive B-tree index
Term frequency

B=4KB | B = 16KB
high 23.08 751
medium 0.092 0.066
low 0.066 0.066

Table 6.10: Expected average time for searches for terms with various frequéreyp(0000)

We note that the B-tree is expected to provide slower searches than hierarchical indexes and in-
dexes constructed with remerge. The difference is most significant when searching for frequent
terms. We keep in mind that the index we estimate for here contaiit¥)0 documents, while

the one considered for the other two methods contaimgdlion documents.
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Chapter 7

Results

This chapter presents the results from the experiments performed in this project. We start by
introducing the experiment environment in Section 7.1. In the following three sections, we go
through the results with each of the structures. We will also evaluate to which extent the actual
results fit in with our efficiency model developed in Chapter 6.

The results obtained for each method will be used to declare the best tested configurations for
each method, as the author sees it. The chosen configurations for each method will be com-
pared in Section 7.5. In Section 7.6, we will discuss the reliability of the results, by evaluating
the intrusiveness of the output generated by the test runs. We will consider possible future
improvements of our implementation in Section 7.7.

7.1 Experiment environment

CPU: Intel Core 2 Duo E6700 2.67GHz CPU, FSB1066, 4MB cache

Memory: 2 x 1 GB DDR2 Dual Channel DIMM, PC6400 (DDR2-800)

Disk: 2 x 500 GB Samsung HD501LJ, 7200 RPM, 16 MB, Serial ATA Il (NCQ)
OS: Ubuntu server 7.04

Java version] 5.0

Table 7.1: Characteristics for experiment environment

Table 7.1 gives the characteristics of the experiment environment used in all experiments in this
report.
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7.2 Remerge

This section provides the results obtained when testing remerge, both as an off-line construction
method and with immediate merges. All the planned experiments for this method, as presented
in Section 5.3, were completed successfully.

The following subsections compare the different configurations tested for remerge based on
update speed, update latency and search performance. Section 7.2.4 compares the obtained
results with the estimates developed in Chapter 6, while Section 7.2.5 gives a deeper analysis
of interesting aspects in the obtained results. We will then choose one configuration of remerge
to compare with representatives from the other tested methods in Section 7.2.6

7.2.1 Update speed

As mentioned in Section 5.3.1, we construct indexes from scratch to measure the update speed
for different methods. All but the largest experiments areliutimes. Based on thedé runs,

we calculate the average time spent constructing the index, and the sample standard deviation.
Denoting the time spent constructing the index iniasz;, and the average as we calculate

the sample standard deviation as shown in Equation 7.1.

10

1 2
52 (@i —7) (7.1)

=1

Figure 7.1 shows the average time spent constructing an index with remerge for various sizes
of the index and various configurations, and Figure 7.2 shows the calculated sample standard
deviation. The average construction times are also given in Table 7.2, to faciliate reading precise
values.

Off-line construction Immediate merge
B = 16KB B =4KB | B = 16KB B = 4KB
100000.0 Oh 5m 52s Oh6m29s| Oh6m1ls Oh 6m 43s
300000.0 | Oh19m 18s | 0Oh19m 23s | 0h22m 16s Oh 23m 58s
1000000.0 1h 8m 25s 1h9m43s| 1h43m5s 1h48m 1s
10000000.0 | 8h 55m 39s | 10h 44m 46s | 45h39m 2s | 151h 11m 42s

Documents

Table 7.2: Average time spent constructing indexes with remerge

We note that off-line construction with large buffers is the fastest configuration for all index
sizes. It constructs the index witld million documents in less that hours, which implies

that more thar311 documents are indexed each second. Ud4iKB buffers instead ofl6KB

makes off-line construction slightly slower on average, but the difference is relatively small.
We keep in mind that the largest experiments were only run once. We should thus be careful
not to conclude much based on the largest experiments. Even though the difference between
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Figure 7.1: Average construction time with remerge for indexes with various size
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Figure 7.2: Sample standard deviation for construction in remerge with indexes of various size

small and large buffer sizes for off-line construction is nearhpours there, the sample standard
deviations from the other index sizes suggest that there is a significant variance.
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When using immediate merge, the construction seems to be significantly slower, at least for
larger index sizes. This configuration will perform a merge each time we have filled our mem-
ory. The total size of all files we merge is thus proportional to the square of the size of a partial
index. This quadratic factor is not much noticeable for small indexes, but for large ones, it plays
a significant role. We also note that the difference in construction time when using small instead
of large buffers is overwhelming for the index witld million documents. Regardless of the
buffer size used, both versions of remerge with immediate merge will merge the same files. It
Is possible that merges are faster when using larger buffers, but according to the results with
off-line construction, it seems unlikely that the difference is significant enough to fully explain
this behaviour. We will analyze the cause of this unexpected result in more detail in Section
7.2.5.

The sample standard deviation is quite similar for all methods. Itincreases with increasing index
size, as expected, and is slightly lower for the fastest methods. There are of course several
causes of variability in our implementation. When running a multi-threaded application, the
scheduling of threads within the application is an obvious cause. In addition, the operating
system and other applications are running on the experiment computer, and this may of course
also have effects on the running time of our application.

7.2.2 Update latency

In Section 5.3.1, we decided not to test update latency by simulating a process where new
documents arrive at a given rate. We rather let each method index as fast as possible, and note
the time passed from the documents are read until they are searchable. We measure disk and
CPU utilization in all phases of construction. In the first phase of constructing a partial index,
the documents are read. When this phase ends, we record the number of read documents. We
thus know when we have read the first batch, but we do not know exactly when each particular
document is read. We therefore assume that we read a constant number of documents per second
within each accumulation phase.

We also record the time at which documents become searchable. Based on the information about
when documents are read and become searchable, we are able to construct two graphs. One of
the graphs describes when the documents are read, and the other when they are searchable. The
area between these two graphs provides a visualization of the average update latency.

Figure 7.3 shows the graphs describing when documents are read and become searchable when
using off-line construction and6KB buffers. A similar graph for remerge with immediate
merge andiKB buffers is shown in Figure 7.4.

From Figure 7.3, we notice that all documents are read before any of them become searchable.
The stair-case function for the graph describing when documents are read shows that documents
are read while we fill the in-memory index. The phases where the number of read documents
does not increase are when the partial index is written out to disk, and at the end when all partial
indexes are merged. The area between the two graphs in Figure 7.3 shows that the average
update latency is large. We are also able to state the worst-case update latency for this method,
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Figure 7.3: Read and searchable documents over time using off-line constru6kBrijuffers
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which is actually equal to the total construction time. Even though constructing an inverted
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index with off-line construction is reasonably efficient; the update latency is a drawback.

When using immediate merge, the new partial indexes are merged into the main index immedi-
ately. When a partial index is merged into the main index, the document lengths are calculated
and the documents are searchable when the merge finishes. Figure 7.4 shows that this gives us
a much more attractive average update latency. We note however, that the update latency seems
to be larger and larger as more and more documents are added. This observation fits well with
the results from Section 7.2.1.

7.2.3 Search performance

This section presents the results from the experiments with search performance for the differ-
ent configurations of remerge. As explained in Section 5.3.2, we test search performance by
measuring the time spent performih@0 searches for terms with either high, medium or low
frequency. The same searches are carried out in all tested index sizes.
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Figure 7.5: Average time spent performiti@f) searches for terms with low frequency in indexes
constructed by remerge

Figure 7.5 shows the average time spent performirigsearches for terms with low frequency

in various configurations of remerge. Note the logarithmic scale used on the x-axis. For all but
the largest index size, the configurations show quite similar performance. For the largest index
size, the configurations with immediate merge are significantly slower than the others. We keep
in mind that the largest experiments are only run once.

Figure 7.6 shows the results from searching for terms with medium frequency. Again, the con-
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Figure 7.6: Average time spent performih@) searches for terms with medium frequency in
indexes constructed by remerge
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dexes constructed by remerge
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figurations with immediate merge are slower than the others, especially for the larger indexes.
The differences are not that significant in this case however. The average time spent searching
for frequent terms in the different configurations is shown in Figure 7.7. In this case, all meth-
ods show quite similar performance, with the exception that the configurationBrith4KB

in off-line construction is slightly slower than the others. Because the largest experiments are
only run once, we should be careful not to overanalyze these results. Without further empirical
basis, we thus assume that the slow search speed in the largest index for off-line construction
with small buffers is caused by variability. It is interesting to note however, that the methods
with immediate merge performs well in this case.

7.2.4 Actual results versus estimates

In Chapter 6, we developed estimates for how much time we expected to spend constructing
indexes with the different methods tested. This section will compare the actual results with our
estimates. We will first analyze off-line construction; before we consider building indexes with
remerge with immediate merge. Section 7.2.4.3 will consider the search performance for all
configurations.

7.2.4.1 Off-line construction

In Section 6.4.1, we estimated how much time we would spend constructing an index with
N = 1 million documents using off-line construction. We used two different estimates for time
spent accessing disk during a merge. The first estimate assumed that each buffer read from or
written to a file required a disk access. Estimate 2 on the other hand, noted that the operating
system and the disk controller will probably employ read ahead. The number of disk accesses
Is thus probably significantly lower, and estimate 2 assumed that we only use one disk access
per partial file.

Both estimates expect the construction of the partial indexes to take approxigt#tely/7 sec-
onds. Their estimate for time spent during the merge differs a lot however, leading to different
final estimates. The final estimates are given in Table 7.3.

Estimate 1
B =4KB | B =16KB
11h 59m 25s | 3h47m 52s | 1h7m 25s |

Estimate 2

Table 7.3: Final estimates for time spent constructing an index With 1 million documents
with off-line construction

It should also be noted that according to estimate 1, the process of merging indexes is disk
bound regardless of the size of the buffers, while the calculations in estimate 2 suggest that
merges are CPU bound.
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The results we should compare these estimates with are found in Table 7.2. We note that con-
structing an index with million documents takes on averagéour,8 minutes an®5 seconds

when we use large buffers, andhour, 9 minutes andt3 seconds with small buffers. It thus
seems obvious that estimate 2 is far more accurate than estimate 1. We will not jump to such
a conclusion however, but rather investigate how the structure behaves in each of the phases of
construction.

To analyze the different phases in construction, we have included a log from one of the ex-
periment runs in Appendix B.1. Even if this log is from a single run, it provides some insight
regarding the bottleneck during different phases.

All of our estimates suggest that both the phase accumulating an index in memory, and the phase
sorting the entries and writing the index to disk are CPU bound. To consider whether this is true,
we look at the CPU utilization in each phase in the log. For the phase accumulating an index in
memory, the user time is typically aroufid — 85% in the most active CPU. According to our
estimates, it is likely that this CPU is running the thread that reads in and parses documents. In
one accumulation phase, the user time is as 06586 on the most active CPU. This should
make us doubt to which extent the phase is actually CPU bound. The time spent waiting for
I/O is typically 0 or 1% however. We thus conclude that it is likely that this phase is actually
CPU bound. We have carried out some unreported experiments to investigate this further. We
changed the organization of how documents are read slightly, and the user time in the CPU was
then nearlyl00% each time. We are therefore fairly confident with this conclusion.

In some of the phases sorting entries and writing the partial index to disk, the user time on the
CPU is reported to be close 100%. There are some phases however, where the user time is
much lower on the most active CPU. An important observation here is that the user time on the
other CPU is typically also substantial in these phases. The sum of the user time on both CPUs
Is typically quite close td00. It is clearly possible that the thread sorting the entries switches
which core it runs on during this phase. It thus seems reasonable to assume that this phase is
also in fact, CPU bound. The fact that we have two phases of constructing partial indexes that
seems to be CPU bound is discussed in Section 7.7.

As noted above, our estimates expect all phases constructing partial indexes to take approxi-
mately3693.17 seconds, or slightly more than an hour. The actual results show that the process
takes approximatelg697 seconds when using large buffers, a&¥0 seconds using small
buffers. For large buffers, the estimate is thus very close. It is a small surprise that construc-
tion of partial indexes is faster when using small buffers however, because it involirass

as many calls to the buffer pool to pin new buffers. We will not go into more detail on this
issue here, but we present an aspect that might explain the observed behaviour to some extent
in Section 7.3.4.1. Despite this slightly unexpected result, we conclude that our estimates for
construction of partial indexes seem to be accurate when using off-line construction.

The comparison above suggested that estimate 2 was the most accurate estimate for the time
spent merging. According to estimate 2, the merging process is also CPU bound. This seems
unlikely when we consider the log in Appendix B.1 however. In the merging phase, the user
time on one processor cored8%, and it is2% on the other. The CPUs spestt and28% of

their time waiting for 1/0 however. This makes it reasonable to assume that the phase is disk
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bound. A further investigation of the number of reads and writes completed on the disk with
the index files supports this theory.

This is a quite interesting result. Even though estimate 2 was quite accurate when estimating
the time spent merging the partial indexes, its conclusion that the phase is CPU bound is not
correct. This suggests that there are actually two problems with our estimates for the time spent
merging. We are probably overestimating the time spent processing during the merge, and the
actual time spent accessing disk is significantly larger than estimate 2 assumes.

It is not straight-forward to see the cause of the first of these problems. The merge involves
a merge of the dictionaries and of the inverted lists. In addition, the document lengths of all
documents are calculated. Both the estimate for time spent processing during the actual merges
and the estimate for time spent processing to calculate the length of all documents may be inac-
curate. We consider it likely that the estimated constant in a multi-way merge,naccurate,
because we had problems finding a reliable estimate for it, as explained in Section 6.1.2.2. The
difference between estimated and actual processing time may of course also be explained by
the fact that we estimated that a merge of dictionaries will have worst-case complexity on av-
erage. Unfortunately, we are in no position to pinpoint the problem at this point. To obtain
more reliable estimates for variables likg, we should probably avoid measuring them in a
multi-threaded environment. It is of course possible to extract parts of the code, and only run it
in one thread. In future work, we should probably follow such a strategy.

The second problem with our estimates for merging is not a surprise. We indicated in Section
6.3.1 that estimate 1 is probably an upper bound on the time spent accessing disk, while estimate
2 is probably a lower bound. The results presented here support this belief. To enable more
accurate estimates in the future however, we should compare the actual number of disk reads
and writes to the estimated number of disk accesses for merges of different sizes. According
to results of our experiments, we will haté batches with sizes close to the estimated ones
from Section 6.3.1 when constructing an index fér= 1 million documents. ForV = 10

million documents, there arel0 batches, and the last is aboénfull. When N = 300000
documents, we hawgbatches, and the last one has approximately the same size as the last one
when N = 10 million documents. We are thus able to calculate the estimated size of all files
read and written in each of these cases following the same strategy as in Section 6.2.2.1. The
results are shown in Table 7.4.

N = 300000 N = 1 million N = 10 million
Files read| Files written| Files read| Files written| Files read| Files written
1.71GB 1.68GB 5.79GB 5.66GB | 44.31GB 43.13GB

Table 7.4: Estimated total size of files read and written in the merge in off-line construction

To get a clearer idea of the average amount of data read and written in one operation we provide
the average number of disk operations with different buffer sizes in Table 7.5.

From Table 7.5, we note that the writes are on average larger than the reads. We calculate
the average size of both reads and writes in the different merges in Table 7.6. We should note
however, that our implementation does not guarantee that all required disk writes are performed
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N = 300000 N =1 million N = 10 million
#reads| #writes | #reads| #writes #reads| #writes
4KB 15059.4 | 5104.1 | 59578.6 | 19644.5 | 1310558.0 | 336041.0
16KB 14377.1 | 5260.1 | 57809.5 | 19083.8 | 701248.0 | 129304.0

Buffer size

Table 7.5: Average number of disk operations during merges in off-line construction

when the phase is done. We only know that all dirty buffers are unpinned in the buffer pool,

not that the flushing thread has written them to disk. Because we are not able to find the exact
number of disk writes performed after the phase is done, we will assume that all of them are
performed within this phase. We keep in mind however, that this assumption may be inaccurate.

N = 300000 N = 1 million N = 10 million

Reads| Writes Reads| Writes| Reads| Writes
4KB 119.1KB | 345.1KB | 101.9KB | 302.1KB | 35.5KB | 134.6KB
16KB 124.7KB | 334.9KB | 105.0KB | 311.0KB | 66.3KB | 349.8KB

Buffer size

Table 7.6: Average amount of moved data in disk operations during merges in off-line construc-
tion

Table 7.6 shows that the average size of both reads and writes is significantly higher than our
buffer size in all cases. It also seems to be a general tendency that the size of the operations drop
when the total size of the partial files to merge increases, even though this observation does not
fit for the writes in the largest index with large buffers. We should keep in mind however, that
this experiment was only run once, and we should be careful not to draw conclusions on such a
limited empirical basis.

We should also note that the estimated sizes of the inverted files are reasonably accurate, but that
the sizes of the dictionaries are typically larger in practice than in our estimates. This implies
that the average sizes of the reads and writes are in fact slightly larger than Table 7.6 suggests.
It is hard to draw conclusions for how the size of the writes behaves in general, especially when
we take the observation above into account. We note however, that the average size of the reads
Is never larger tham28KB. As the number of files to merge increse, the average size of a read
decrease. We might get tempted to assume that regardless of the size of a read, the read-ahead
in the disk controller and/or in the operating system will ensure that we actuallyl p8&dB.

If the amount of 1/O to other files is large, we will typically not be able to take advantage of
the read ahead to the same extent. The reason is that the contents buffered for a specific file
may have been replaced before we access the next buffer. This might explain the drop in the
size of average reads as the number of files to merge increases. To be able to make such a
conclusion however, we need more thorough experiments. An interesting experiment would be
to usel128KB as the buffer size in our implementation. If this makes the average size of reads
very close tal 28KB, our theory is more likely to be correct. We defer such an investigation to
further work.
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7.2.4.2 Immediate merge

Section 6.4.2 provided estimates for expected time spent constructing an inderfiion
documents using remerge with immediate merge. The final estimates are repeated in Table 7.7.

Estimate 1
B = 4KB B = 16KB
113h44m 51s | 29h 31m 18s | 1h 59m 56s

Estimate 2

Table 7.7: Final estimates for time spent constructing an index &ith 1 million documents
using remerge with immediate merge

The actual results are found in Table 7.2. We again notice that the expected time according
to estimate 1 is too pessimistic regardless of the size of the buffers. Estimate 2 is closer, but
this is actually also too pessimistic in this case. When using large buffers, the actual average
time spent constructing an index with = 1 million documents isl houe,43 minutes and
seconds. When using small buffers, the time spenthsur, 48 minutes andl second. The
actual results are thus approximatéliyand12 minutes faster than expected when using large
and small buffers, respectively. To analyze the cause of this result, we have included a log from
one of the experiment runs in Appendix B.2. The log is from an experimentavith16KB.

To figure out the cause of the difference between the estimate and the actual time spent, we
consider the differences in each phase. In the log in Appendix B.2, the time spent constructing
partial indexes is approximateBg837 seconds, which is slightly higher than when using off-

line construction. There are several runs where we spend less time constructing partial indexes
however. The average over all runs is close to the average when using off-line construction.

The above observation implies that the difference between estimated and observed time spent
when constructing an index with remerge with immediate merge is likely to be caused by the
merges. This assumption is confirmed by analyzing the log. We spend approximately the same
time in the first merges as our estimates from Section 6.4.2 suggest. As the merges become
larger and larger however, the difference between estimated and observed time spent seems to
grow. For the small9th batch, estimate 2 assumed that the process was CPU bound, and that it
would take approximately37.33 seconds. In the experiment with the log included in Appendix

B.2, this merge take®h9 seconds. As for off-line construction, the disk statistics for the merges
shows that they are disk bound. We thus experience the same problems with the estimates for
the merges in remerge with immediate merge as we did when using off-line construction. We
discussed these problems in the previous section, and will thus not analyze them further here.

7.2.4.3 Search performance

In Section 6.7.1, we calculated the worst-case time we expected to spend searching for a term
with average frequency in all the groups of terms we test searching for. We did not consider the
look-ups of URIs in the document manager for the matching documents however. We argued
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that the search performance for all configurations of remerge were likely to be similar, and the
estimated time spent on each search is summarized in Table 7.8.

Frequency| B = 4KB | B = 16KB
Low 0.026 s 0.026 s
Medium 0.026 s 0.027 s
High 0.221s 0.221s

Table 7.8: Expected time spent searching for terms with different frequencies in remerge

We presented the results from the experiments testing search performance in Section 7.2.3. The
plots presented there show the average time spent perforttiingearches. To make it easier
to compare the estimated values and the obtained results, we repeat the results in Table 7.9. All

values are divided by00 before they are inserted into the table, to obtain the average time spent
searching for a single term.

Frequency Off-line construction Immediate merge
B=4KB | B=16KB | B=4KB | B = 16KB
Low 0.039 s 0.036 s 0.048 s 0.040 s
Medium 0.093 s 0.081s 0.112s 0.089s
High 0.332's 0.307 s 0.344 s 0.315s

Table 7.9: Average time spent searching for terms with different frequencies in remerge

The are several interesting observations in tables 7.8 and 7.9. The most important is that the es-
timated values are generally smaller than the observed values. This is especially true in searches
for terms with medium frequency, while searches for terms with low frequency are only slightly
slower than expected. For the most frequent terms, it is also slower to search in practice than
our estimates suggest. As noted above, we have argued that it is irrelevant for the search per-
formance whether the index has been constructed with off-line construction or remerge with
immediate merge. This theory is not supported by the results, although the differences are rela-

tively small. We believe that there are three aspects that might help explaining these unexpected
results:

1. Accesses to document manager not included in estimatefss mentioned above, our
estimates for time spent searching for terms did not consider the accesses to the B-tree in
the document manager to retrieve the URI for the documents to return. When searching
for the terms with medium or high frequency, we will typically look up the URI for the
top ten ranked documents. In searches for terms with low frequency, there is never more
than1 document that matches the query. We thus only have to look up one URI. This

might require several disk accesses however, because the mappings between document
number and URI are stored in a B-tree.

We always perform the searches for the least common terms first. This will typically
imply that no parts of the B-tree in the document manager are buffered when we search
for these terms. This is because we have just completed a merge of significant size in
both variations of the method. Performing a large merge will typically fill the buffer pool
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with parts from the files involved in the merge. If we actually require one disk access
per look-up of for each URI in the searches for terms with low frequency, the difference
between the estimated and actual value is explained.

For the searches for more frequent terms, we will typically perfotniook-ups in the
B-tree, which might of course involve several disk accesses. We search for the terms with
medium frequency before we the high frequency terms. It is thus more likely that we will
have several disk accesses in the B-tree when searching for terms with medium frequency.
When we start searching for the terms with high frequency, it seems likely that significant
parts of the B-tree in the document manager are already buffered.

2. Unnecessary disk writes:During the development of Brille, a lot of debugging infor-
mation has been printed. Unfortunately, there was one single form of debugging output
we forgot to remove before running the experiments, namely a line printing the term we
initiate a search for. We did not notice this glitch during the first experiments, and when
we noticed it, the time-frame of this project did not allow us to rerun all experiments. Be-
cause the log from an experiment is stored in a file, these prints will initiate disk accesses,
and this may obviously affect the result. This is of course very unfortunate. Instead of
removing the statement when we discovered it, we chose to run all experiments with it to
avoid discriminating between the various structures.

3. Disk writes from recent merge not processed when the merge phase ends:merge
phase ends when all the buffers containing parts of the merged index are unpinned in the
buffer pool. This does not imply that they have been written to disk however. We have
assumed that the searches are disk bound. Because the small tests of search speed initiate
immediately after the construction is done, their performance will suffer if several disk
writes are processed after the construction phase is done.

We attempt to analyze to which extent the possible causes mentioned above have any effect on
the result by looking at the logs in appendixes B.1 and B.2. In the log for off-line construction,
we notice that there are no disk writes while searching for the terms with low frequency. This
implies that the two last possible effects mentioned above are probably not dominant here. We
assumed in the estimates that there would never be more2tdask accesses in each actual
search. There arg@l8 completed reads while searching for the terms with low frequency, in
addition to73 merged reads. The most likely explanation for this high number is that the
searches in the B-tree in the document manager require several disk accesses. The number of
disk accesses in this phase is quite similar in the log for remerge with immediate merge given
in Appendix B.2.

For terms with medium frequency, there are also significantly more disk accesses than we as-
sumed in both configurations, typically arouthtd0. This is far more than what should be
required to perform the actual searches. The reads are thus probably from the B-tree in the
document manager, and these reads seem to be the reason why our actual results are signifi-
cantly slower than expected when searching for terms with medium frequency. We also note
that in this phase, there are some write operations as well. Some of these are probably caused
by our debug output. The fact that there are significantly more writes in immediate merge than

in off-line construction in this phase is not likely to be caused by our debug output however.
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This might support our theory that it is the previous merge that causes the searches in the index
constructed with immediate merges to be slightly slower. That this supposedly happens when
using immediate merge, and not when using off-line construction should imply that there is
typically a higher fraction of dirty buffers in the buffer pool after the last merge in remerge with
immediate merge than with off-line construction. We do not have specific results supporting
such a theory.

In the phase searching for frequent terms, the disk characteristics of both methods are quite
similar, and there is a significant number of reads in both methods. As mentioned above, it

is unlikely that this phase should include a lot of disk accesses in the B-tree. It is thus not

straight-forward to explain the high number of reads. It is possible that we are not able to read

the complete inverted lists in one read operation, but we can not draw this conclusion on such a
limited empirical basis.

We thus conclude that it is likely that the accesses to the B-tree in the document manager is

the most important source of the differences between expected and actual performance. The
unfortunate debugging information seems to have limited effect. We are not able to reach a

conclusion about the reason why indexes constructed by remerge with immediate merge seem
to process searches slightly slower than indexes constructed with off-line construction, but the

cause suggested above is at least a possibility.

7.2.5 Discussion of results

The presentation of the results from experiments with remerge given above, has explained most
of the unexpected results. There is however, one aspect we believe deserve some more attention.
That is the large difference in construction speed between using small and large buffers when
constructing an index far0 million documents using remerge with immediate merge.

It is not straight-forward analyze the causes of this behaviour. While remerge with immediate
merge spends approximately.5 hours constructing an index witly million documents when

using large buffers, it more tharb1 hours when using small buffers. By switching to large
buffers, we are thus able to construct the indexnes as fast. Even if the other results suggest
that it is slightly more efficient to merge when using large buffers, there is definitely another
cause of this behaviour. We should find the cause to be able to avoid such problems in future
implementations. To do so, we will look at some figures. Figure 7.8 shows plots of when
documents are parsed, and searchable for remerge with immediate merge-a#idB. Figure

7.9 shows the same plot when usiBg= 16KB.

It is obvious that the curves in Figure 7.9 grows much more steadily than the curves in Figure
7.8. This observation is confirmed by analyzing the logs of these two experiments. The major
cause of the differences is that some merges are extremely slow when using small buffers, while
others are reasonably fast. We need to figure out why we experience such behaviour when using
small buffers.

The slow merges in the experiment with small buffers typically have at2@dshes the number
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Figure 7.8: Read and searchable documents over time using remerge with immediate merge,
4kB buffers andl 0000000 documents

of disk accesses we find in reasonably fast merges with comparable size. It is not straight-
forward to understand why just by looking at the logs. While this experiment was running,
we made an interesting observation however. In a typical run, our application uses between
65% and75% of the available memory on the experiment computer. During slow merges, this
number suddenly increased to more thg%. This initiated the swap process. The swap
process typically used betweef and50 percent of the user time on the CPU in such phases.
How long the swap process kept running varied, but during this experiment, it had been running
for more thart hours in total according to the totap.

It is of course surprising that we should require any swapping while running our application. As
explained in Section 4.2.1, we have tried to have a conscious approach to memory consumption
in the implementation. We thus need to figure out where this memory is used. The only parts
of our application that do not use constant memory are the document manager that stores the
document length of all documents, and the memory resident part of the dictionary. Storing these
values in memory is not a problem in any other configurations, and we thus do not believe that
it causes problems for this configuration either.

It is certainly not obvious what causes this excessive use of memory, but we have a theory.
As mentioned in Section 4.2.7, we never forc&ieChannelto flush its changed values to

disk. It is possible that the rate at which the small buffers are written to it exceeds its capacity
to write the changes to disk. This will force it to store many changes in memory. If it does
not force the thread writing buffers to it to wait before swapping is required, we might end
up in a hopeless situation. The swapping process will obviously have to choose some parts of
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Figure 7.9: Read and searchable documents over time using remerge with immediate merge,
16kB buffers andl 0000000 documents

main memory to move to disk. If some of the values stored as changes ile¢kdannelare
chosen, thd-ileChannelwill have to read them in before they are written to disk again. This
will actually triple the number of disk operations, and the amount of data moved between disk
and memory. Even if this explanation might seem far fetched, it is consistent with the disk
operations performed at the experiment computer during very slow merges. After the swap
process has been running for a while, the merged index files suddenly starts growing again, and
the merge continues with a far more decent speed.

If the theory presented above is correct, it was obviously naive to never force the changes in
FileChanne$ to be written out to disk. Even if the theory is wrong, it is definitely a good
idea to force the changes to disk from time to time, because it makes it simpler to estimate the
occurrence of disk accesses in our implementation. This will obviously be a future improvement
of our system.

7.2.6 Chosen configuration

This section aims to choose the configuration for remerge which we believe performs best over-
all. This configuration will be compared with representatives from the other methods in Section
7.5.

From the presentation of results given above, it is obvious that off-line construction is faster
than remerge with immediate merge when it comes to update speed. The indexed documents
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are unfortunately not searchable until all documents have been added to the index however, as
opposed to when using immediate merge.

This choice between off-line construction and remerge with immediate merge is essentially a
choice between update speed and update latency. Because the difference with respect to update
speed is relatively small compared to the difference with respect to update latency, we prefer
immediate merge. We will however also include the results from off-line construction in the
comparison in Section 7.5, because it provides a reasonable baseline for update speed. We
choose to use large buffers in both configurations, because this seems to give better update
speed and search performance in both cases.

7.3 Hierarchical indexes

This section presents the results from the experiments with hierarchical indexes. Its structure is
similar to the previous section.

We were unfortunately not able to run all the planned experiments with the hierarchical indexes.
While all configurations worked well for the smaller index sizes, there were problems when
indexing 10 million documents. The errors were similar in all the configurations we tested,
and the biggest problem was that we were not able to find any clues telling us why the error
occurred. We will now explain how the application behaved when the error occurred.

In the configurations we tested, the problem typically occurred after approxindat&lgnillion
documents had been added to the index. When the problem occurred, our application would
never use more CPU. It was thus idle, and eventually becaseéuaictprocess.

We have tried to investigate this problem quite thoroughly. We expected to find some sort
of error message in our system, but we were unfortunately not able to find any. We tried to
catch bothExceptionandError around theun-method in all running threads, but nothing was
thrown. We also tried to evaluate whether the application used a lot of resources when the
problem occurred, to consider whether the operating system forced it to become idle because
it used too much resources. When the problem occurred, our application used approximately
61% of the memory available on our experiment computer. The user time on the CPU was also
reasonably low. It therefore seems unlikely that the operating system would shut the application
down. If it did, we should probably have gotten &rmor in the master thread.

Such a problem can of course have several causes. The most obvious ones are listed below:

e A bug in our implementation
e A bug in the Java virtual machine
e The operating system forces the application to become idle

The most likely cause is of course a bug in our implementation. The only kind of bug we can
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think of that would cause our implementation to stop without giving any error messages is a
synchronization issue. This does however not fit in well with the fact that the problem occurs at
almost exactly the same time in each run. In addition, most of the code run when constructing a
hierarchical index is also run in remerge. All configurations run without problems in remerge.
If the problem is caused by a bug that is not associated with synchronizati&xcaptionor

Error should have been thrown in one of the running threads.

We concluded above that it was not likely that the operating system forces the process to become
idle anddefunctbecause of excessive use of resources. We can not find any other explanation
for why the operating system should not allow our process to run.

To evaluate whether this problem is caused by a bug inJéva virtual machine (jvmis not
straight-forward. The simplest approach is to test a newer version g¥ieand see if the
application works then. We tried with versiar6, but experienced the same problem.

In conclusion, the most likely cause of this behaviour is a bug in our implementation. It is not
straight-forward to come up with what part of our implementation that could cause the process
to becomedefuncthowever. It seems likely that it is some sort of synchronization issue, but
this does not fit well with the fact that it happens at almost exactly the same time in each run, as
mentioned above. If this is not a synchronization issue, we believe that it is a bug that no sort
of error message is thrown in tiem. We believe that it is not very fruitful to speculate more

on the possible cause of this error however. Regardless of what causes the problem, the end
result is that we are unfortunately unable to run the experiments with the largest index size for
hierarchical indexes. We will have to defer a fix for this problem to future work.

7.3.1 Update speed

To test update speed, we construct indexes for document collections with various number of
documents. The time spent constructing an index tells us at which rate we can insert new
documents into the index.

For hierarchical indexes, we consider the effect of changing several variables in our experi-
ments. We test with the same buffer sizes as for remerge, in addition to vakyiagd 7.

This gives us8 different configurations. To make the presentation as clear as possible, we have
partitioned the configurations into two groups based on the buffer size used. Figure 7.10 shows
the average construction times for all configurations when uBirg 16KB, while Figure 7.11

shows the results when usirdg) = 4KB. Table 7.10 repeats all the results in a format where it

is easier to read the exact values.

From figures 7.10 and 7.11, it is clear that regardless of the buffer size, the variable with the
most significant effect on performancelis SettingT to 4 instead ofl is more efficient in all

tests. This is an expected result, because allowing more small indexes ensures that the thread
adding documents to the index does not have to wait as often for merges.

It is not as clear which choice dk that gives the most efficient construction. For the case
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where N = 100000 documents, using’ = 2 or K = 4 is basically equivalent, because there
are just2 batches in this case. Fof = 300000, K = 2 is the most efficient configuration in
three cases, while fav = 1 million, K = 4 is the most efficient configuration in three cases.
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B = 16KB B = 4KB

Documents T=1 T=4 T=1 T =4
K=2 K =4 K=2 K =4 K =2 K =4 K=2 K =4
100000.0 6m27s| 6m25s| 6m10s| 5mMb6s| TMm1d5s| 6mM58s| 6M39s | 6m 39s
300000.0 2Im7s | 22m12s | 18m31s | 19m39s | 2Im27s | 22m 38s | 20m 17s | 19m 42s
1000000.0 | 79m26s | 77/m1s | 66m 30s | 66m48s | 77/m20s | 79m47s | 70m 44s | 68m 57s

Table 7.10: Average time spent constructing hierarchical indexes

The differences are not significant in any of these cases. It is a surprise howevéy, that

Is not more efficient thak = 4. We will try to explain why we experience this behaviour in
Section 7.3.5, by considering the case whEre 4 and N = 1 million documents. This case
is chosen because our results suggests that usirg4 gives better performance regardless of
the buffer size used.

Our results also suggest that it is marginally more efficient to use large buffers than small ones,
especially when we usg = 4.
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Figure 7.12: Sample standard deviation for construction of hierarchical indexes with various
sizes B = 16KB)

To get an impression of the variability in the experiments, Figure 7.12 shows a plot of the sample
standard deviation for the configurations with large buffers, while Figure 7.13 shows a similar
plot for configurations with small buffers. The sample standard deviation is calculated as shown
in Equation 7.1.

We note from the figures that most configurations have similar sample standard deviation, but
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that there are two outliers. When running the experiment with- 1 million documents, the
configuration withB = 16KB, K = 2 and7 = 1 has a sample standard deviation of only
160, while all other configurations in this case have values between approxirR@atesnd370.

The same configuration with small buffers has a very small sample standard deviation with
N = 100000 documents as well.

We see no particular reason why the standard deviation should be as small as our measurements
suggest in these particular settings. In general however, it is not unexpected that the configura-
tions withT = 1 have less variability than whehi = 4. WhenT' = 4, there will more often

be several threads running. How these threads are scheduled may have a significant impact on
the time it takes to finish construction. Whé&h= 1, the thread constructing partial indexes

will wait until the merge is done each time a new partial index is added. We will thus never
construct partial indexes while we are merging, and the time spent is thus expected to be less
dependent on the scheduling. Following this theory however, we should have experienced low
variability for all cases wheré& = 1, including whenK = 4. This is obviously not the case.

Even if we can not fully explain the behaviour at this point, we choose not to go into a more
thorough analysis.

7.3.2 Update latency

As for remerge, the update latency in various configurations for hierarchical indexes can be
visualized by plotting two graphs. One of the graphs shows when the documents are read, while
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the other describes when they are searchable. Figure 7.14 shows such plots for a hierarchical
index with B = 16384, K = 2 andT = 1.
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Figure 7.14: Read and searchable documents over time using hierarchicalingeX, T' = 1,
16kB buffers andl million documents

The plot in figure 7.14, is not unlike the plot for remerge with immediate merge given in Figure
7.4. There is one significant difference however, namely that while remerge with immediate
merge will have to wait until a merge is done before the documents are searchable, the doc-
uments in a batch are made searchable before the merge in the hierarchical index. When the
partial index is constructed, we perform look-ups in the largest dictionary in the hierarchy to
calculate reasonably accurate document lengths after the tf-idf ranking scheme. When this pro-
cess is done, the partial index is searchable. The fact that we do not need to wait for a merge
to make documents searchable makes it is much simpler to determine the worst-case update
latency for this method than for remerge with immediate merge. The worst-case is the actual
case for the first document read in a new batch. This makes the worst-case equal to the amount
of time spent reading and parsing all documents in a batch, sorting and writing out the partial
index, and updating the document lengths. The time spent in the last phase is dependent on the
size of the largest dictionary in the hierarchy however. The worst-case update latency is thus
unfortunately not constant, but it is less dependent on the total size of the index than remerge
with immediate merge.

The update latency for hierarchical indexes is relatively similar for all configurations. Figure
7.15 shows an example of a construction process whea 4KB, K = 2 and7T = 4. The

only difference from Figure 7.14, apart from the fact that= 300000 instead ofl million,

Is that the process constructing partial indexes never waits When4. The update latency

is comparable. Figures 7.16 and 7.17 shows similar plots for construction Whent. The
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conclusion of this section is that the update latency for hierarchical indexes is similar for all
configurations and on average lower than for remerge with immediate merge.
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Figure 7.15: Read and searchable documents over time using hierarchicalindeX, 7' = 4,
4kB buffers and300000 documents

7.3.3 Search performance

This section will present the results from testing the search performance in various configura-
tions for hierarchical indexes. As explained in Section 5.3.2, we test search performance by
measuring the time spent performih@) searches for terms with various frequencies. The re-
sults from these experiments for hierarchical indexes are given in figures 7.18, 7.19 and 7.20.
These figures show the average time spent searchingféaerms with low, medium and high
frequency, respectively.

Figure 7.18 shows that the time spent searching for terms with low frequency is quite similar for
all configurations, except whéh = 4 and K’ = 4. This configuration is actually significantly
slower than the others for both buffer sizes. The configuration Witk 2 and7 = 4 is also
slightly slower than the others in the index with0000 documents, but for larger indexes, it is
similar to the configurations wheife = 1.

When using large buffers in the hierarchical indexes, we observe the same tendency in searches
for terms with medium frequency as we did when searching for terms with low frequency. The
difference in time spent performing the search between the index3@00 documents and

the one withl million documents is relatively small however. For the small buffer size, it is
actually faster to perform the searches in the largest rather than the medium sized index for the
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Figure 7.16: Read and searchable documents over time using hierarchicalingex, T' = 1,
4kB buffers andl million documents

configuration wherek' = 4 and7T = 1 and especially for the one whefé = 2 and7T =

4. This observation might indicate that the number of occurrences of the terms with medium
frequency does not change much between the two index sizes. We believe that the explanation
of this behaviour is slightly more complicated however. We will provide an explanation of this
behaviour in Section 7.3.5, together with an explanation of why the configuratioriZinthi

andK = 4 is slower than the other configurations.

The general tendencies in Figure 7.20 are very similar to the results from searching for terms
with low frequency in Figure 7.18. Again, the configuration with= 4 andT" = 4 is signifi-
cantly slower than the others.

7.3.4 Actual results versus experiments

This section will analyze to what extent our estimates for hierarchical indexes are accurate. We
will consider the update speed first, before search performance is analyzed in Section 7.3.4.2.

7.3.4.1 Update speed

In Section 6.5, we estimated the time spent constructing a hierarchical indeX'with million
documents wheff’ = 1 and K = 2. The final estimate differs based on which method we use
for estimating the time spent accessing disk, and the results are summarized in Table 7.11.
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Figure 7.17: Read and searchable documents over time using hierarchicalingex, T' = 4,
16kB buffers andl million documents

Estimate 1
B =4KB | B = 16KB
32h 29m 51s | 8h 58m 56s | 1h 19m 48s

Estimate 2

Table 7.11: Final estimates for time spent constructing a hierarchical index\nthl million
documents

The actual results are found in Table 7.10. When uging 16KB, we on average sperdour,
19 minutes and@6 seconds constructing a hierarchical index with= 2 and7 = 1. When
B = 4KB, the average construction timelisiours,17 minutes an®0 seconds.

It is again clear that estimate 2 is much closer than estimate 1 to the actual obtained result.
Even if estimate 2 seems to be very accurate, we have included a log from an experiment with
a hierarchical index in Appendix B.3. We will go through each of the phases in the log, and
compare the time spent with our estimates.

Both the phase accumulating the index in memory and the phase sorting entries and flushing a
partial index seem to perform as expected in all phases. By looking at the CPU utilization, it is
obvious that both phases are CPU bound. According to estimate 2, the phase making a partial
index searchable is also CPU bound. The phase was estimated tolgp#hdeconds for the

first batch,3.99 seconds for the last batch, amdl.24 for all the other batches. According to

the log, these estimates are more or less correct, even though the exact time varies slightly. The
actual time spent is typically higher when the largest index in the hierarchy is just constructed.
In such cases, we also note that the time spent waiting for I/O is typically noticeable. Even so,
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Figure 7.18: Average time spent performih@0 searches for terms with low frequency in
hierarchical indexes. The figure on top is 8= 16KB, and the lower figure is foB = 4KB

both the expected time and the assumption that this phase is CPU bound seem reasonable when
we analyze the log.

The total time spent constructing partial indexes and making them searchable is thus as ex-
pected. The only phases we have not analyzed yet are the merges. From the log, we see that
the time spent during the merges is slightly lower than expected. This observation is similar to
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Figure 7.19: Average time spent performiti@gf) searches for terms with medium frequency in
hierarchical indexes. The figure on top is 8= 16KB, and the lower figure is foB = 4KB

what we noticed for remerge in Section 7.2.4. We observed that the merges in remerge were
typically 1/0 bound as opposed to what estimate 2 assumes. We do not measure disk and CPU
utilization in the merges in hierarchical indexes, because When 4, the merges will go on

in parallel with construction of partial indexes. We have no reason to believe however, that the
merges should not be I/0O bound here as well.

152



CHAPTER 7. RESULTS

80
w 70 v
Q
<
<]
$ 60 -
o
S
—
El 50 -
£
o
© 40 B
o
= .
[0} e
& 30 — 4
) L
£ g T
L 20 /ﬁ// 4
g -
q>) . St
< 10t e T -
e
0
100000 1e+06
Number of documents in index
Hierarchical index, T=1, K=2, B=16384 —+—
Hierarchical index, T=1,K=4, B=16384
Hierarchical index, T=4, K=2, B=16384 ---%---
Hierarchical index, T=4, K=4, B=16384 =l
80
q
w 70 B
Q
<
o
I
@ 60 [ -
o
o
—
2 sof -
E
o
5 40 E
Q L
€ L
o L
& 30 . e -
[} T
£
% 20 ] e -
5 LT
= e
< 10} .
O T n
100000 1e+06

Number of documents in index

Hierarchical index, T=1, K=2, B=4096 —+—
Hierarchical index, T=1,K=4, B=4096
Hierarchical index, T=4, K=2, B=4096 ---*---
Hierarchical index, T=4, K=4, B=4096 £

Figure 7.20: Average time spent performih@0 searches for terms with high frequency in
hierarchical indexes. The figure on top is 8= 16KB, and the lower figure is foB = 4KB

We thus conclude that most phases of construction of hierarchical indexes perform as expected,
although the merges are marginally faster than expected. We experienced the same behaviour
for remerge, and we have analyzed the reasons for this behaviour in Section 7.2.4. It is however
slightly unexpected that the configuration with small buffers on average performs better than
the configuration with large buffers. In Section 7.3.1, we noticed that the configuration with

B = 16KB had significantly lower variance than the others in this particular case. By analyzing
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the results from each run, we notice that wher= 4KB, half the runs are actually slower than

the average foB = 16KB. Some of the runs with small buffers are very fast however, making
the average for this configuration lower than with larger buffers. The fastest runs are typically
very efficient in the phase where the entries are sorted and written to disk. We have concluded
that this phase is typically CPU bound. The batches contain slightly fewer documents when
using small buffers, because of more fragmentation. When the buffers are smaller, we more
often waste a few bytes because we can not fit an integer at the end of a buffer if there is less
than4 bytes left. With fewer documents, the sorting is typically more efficient and this may
cause the improved efficiency. Even though the differences between the batch sizes here are
relatively small, this aspect is generally important. Because of the non-linear complexity of
the sorting process, the time spent in this phase is expected to be les®tharwe reduce

the size of the batches 3 %. We will use this observation when we consider possible future
improvements of our implementation in Section 7.7.

7.3.4.2 Search performance

This section will compare the estimated search performance for hierarchical indexes given in
Section 6.7.2 with the obtained results presented above. The estimates are repeated in Table
7.12, while Table 7.13 shows the actual results. We originally measured the average time spent
performing100 searches for terms with different frequencies. This average is dividedtoyp

obtain the average time spent performing a search for a single term given in Table 7.13.

Frequency| B = 4KB | B = 16KB
Low 0.052 s 0.053 s
Medium 0.079 s 0.079 s
High 0.274 s 0.274's

Table 7.12: Expected time spent searching for terms with different frequencies in a hierarchical
index with K =2 and7T =1

Frequency| B = 4KB | B = 16KB
Low 0.039 s 0.033 s
Medium 0.110s 0.093 s
High 0.335s 0.361 s

Table 7.13: Average time spent searching for terms with different frequencies in a hierarchical
index with K =2 and7 =1

Tables 7.12 and 7.13 show that for terms with medium and high frequency, the actual results
are slower than we expected. We noticed the same tendency for remerge in Section 7.2.4.3.
We mentioned three possible causes for this behaviour, and concluded that the disk accesses
required to read in buffers from the B-tree in the document manager is likely to be the major
contributor to the difference. The third possible reason mentioned there is not likely to have any
effect for the configuration of the hierarchical index considered here. According to the expected
merges we presented in Section 6.5.1, the last batch will not initiate a merge. These expected
merges are to a large extent confirmed by Figure 7.14, where we can see that the largest merges
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are performed after th&th and thel6th batch. We thus conclude that the accesses to the B-tree
in the document manager is likely to be the most significant cause of the slow search speed, just
like for remerge.

For terms with low frequency however, the actual results are faster than our estimates suggested,
even though we know that these searches are likely to require disk accesses in the B-tree in the
document manager. To find the cause of this behaviour, we analyze the last phase before the
searches initiate. This phase makes the small partial index ih9thebatch searchable. This
process involves reading the complete partial index fot file batch, and looking up all unique

terms in the largest dictionary. After this process we may thus expect that the complete partial
index from thel9th batch is buffered, in addition to most parts of the largest dictionary.

When searching for terms with only one occurrence, we only have to look up the inverted list
in one inverted file. In the others, we stop searching when we have determined that the term is
not represented in the index. Because it is likely that both the partial index created I8jtthe
batch and most parts of the largest dictionary is buffered, we are likely to avoid the two possible
disk accesses to these dictionaries. If some of the terms are only found lifitthkatch, we

will probably not require a disk access to look up the inverted list either. This may explain
why the searches for terms with low frequency are more efficient than expected. This theory is
supported by the log included in Appendix B.3. There are less4h@mead operations on the

disk containing the index files when searching for terms with low frequency. When we know
that there are probably several accesses to the B-tree in the document manager, it is obvious
that not all searches in the hierarchy requirdisk accesses, as we assumed in the estimates.
We thus conclude that the reason why the searches for terms with low frequency are faster than
expected is probably that the largest dictionary and the smallest partial index are buffered when
we start searching.

7.3.5 Discussion of results

We have presented the results from all experiments with hierarchical indexes above. Most of the
results are as expected, and some of the unexpected results are analyzed and explained above.
There are still a few aspects of the results that are not explained however, and this section will
try to explain them. We will focus on the three following observations:

e We expected that using = 2 would give faster construction of hierarchical indexes than
with K = 4. Table 7.10 suggests that it is the other way around When4 and N =1
million documents however.

e When testing search performance, we expected it to be more efficient 6 usé than
K = 2. When usingl’ = 4, the figures in Section 7.3.3 clearly show that it is more
efficient to search wheR = 2 in our experiments.

e When usingl" = 4 andK = 2, the bottom plot in Figure 7.19 shows that it is significantly
more efficient to search for the terms with medium frequency in the largest index than in
the index with300000 documents. Even though the time spent is quite similar for the two
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index sizes for the other methods, it is unexpected that the time spent decreases for one
of the configurations.

We will analyze the causes for the last item above first. By analyzing the log from an experiment
with K = 2, T = 4 and N = 300000, we realize that the first three of the expected merges
presented in Section 6.5.1 occur in this configuration. Theré aegches in total, and the last

one is quite small. When this index is searchable, a merge of the two smallest indexes will start.
This merge finishes just before the searches start. After this merge is completed, most of the
buffers in the buffer pool will be used to store the two small indexes that are not searchable
any more, and the new index merged from these two. It is unlikely that significant parts of
the largest index in the hierarchy or the B-tree in the document manager are buffered. The
search performance will obviously suffer, because we will require several disk accesses to read
in needed parts of the largest index and the B-tree in the document manager. In addition, we
have no guarantee that all the dirty buffers are written out when the phase ends. There might
thus be some disk accesses caused by the merge after the merge process has ended. This may
also make the search performance slower.

When N = 1 million documents however, the last batch in the configuration Wita 4 and

K = 2 will be a small index that is just moved in as the smallest index in the hierarchy. We
will thus not have any merge, and the effects mentioned above will not occur in this setting.
This explains the fact that it is more efficient to search for terms with medium frequency in the
largest index than in the index with medium size.

A similar effect explains why we for all searches see that the configurationsiwith1 are
more efficient whenV 