& NTNU

Innovation and Creativity

Social Tagging of Services to Support
End User Development in Ubiquitous
Collaborative Environments

Christian Laverton

Master of Science in Computer Science
Submission date: June 2007
Supervisor: Monica Divitini, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

The task is within the context of Ubicollab, a platform for the development of ubiquitous
collaborative applications, and ASTRA, a European project for supporting end-user development of
pervasive awareness applications, i.e. applications that help the members of a distributed
community to feel connected. The task focuses on end user development in terms of support to
end users in selecting the right services to compose in order to create their applications. Different
languages have been proposed for identifying Web services and then compose them. Standards for
web service descriptions are also available. However, the resulting descriptions are generally not
intended nor understandable to end-users. The task investigates the usage of social tagging for
supporting a community of users in associating a meaning to services that they discover in the
spaces that they inhabit. The task aims at extending Ubicollab to support tagging of services.

Assignment given: 20. January 2007
Supervisor: Monica Divitini, IDI

Abstract

Tailorability in ubiquitous computing systems is needed at different levels, de-
pending on the targeted end users. For inexperienced end users lacking computer
competency, high level mechanisms for tailoring are needed. Systems such as
Awareness Services and Systems - Towards theory and ReAlization (ASTRA),
which use a Service Oriented Architecture (SOA), can provide such high level
tailorability through service composition. With service composition, services can
be combined and configured to form applications.

However, using service composition introduces new challenges for end users. To
find appropriate services, users need mechanisms for searching and browsing ser-
vices. Equally important is it that users are able to understand how services
work and what functionality they offer. Service descriptions can ease this task,
but the problem with existing approaches to service descriptions is that they are
not intended for end users and are hard to understand.

This work looks at social tagging, which is a collaborative process where users
attach labels or tags to items. This leads to user created metadata, as opposed to
metadata created by experts. By introducing social tagging in ASTRA to describe
services, users are provided with a framework for sharing their understanding of
services with fellow users.

To create a solution for social tagging for service descriptions, a thorough problem
analysis was performed. The analysis considered the design space of tagging
systems to find appropriate design choices in the problem context. Providing
several tag visibility levels was identified as important, especially community
tagging. The quality of tags as seen from the community members’ perspective
is likely to increase, as members of communities often share similar opinions
and understandings. An important difference identified between existing tagging
systems and tagging of services is that services can be embedded in physical
devices. Thus, services can be discovered and accessed physically, which means
that physical access to the services’ tags should be supported.

A requirements specification for a tagging system was specified, focusing on the
platform requirements for basic tagging mechanisms, tag based navigation, and
searching. The requirements lead to a design of platform architecture, aiming at
extending the UbiCollab platform with social tagging functionality. The archi-
tecture uses a client/server solution, where the server service is shared among a
network of users and handles public and community level tags. The client service

is a local service which handles private tags, and acts as an intermediary between
end user tools and the server service. A prototype of the platform services and
an end user tool was implemented. The implementation is demonstrated through
scenarios, showing possible uses of the tagging system.

Keywords: social tagging, folksonomy, services, service composition, ubiquitous
computing, ASTRA, UbiCollab

Preface

This report was written for the work done as a Master’s thesis at the Department
of Computer and Information Science (IDI), Norwegian University of Science and
Technology (NTNU). The work was done during spring 2006.

The task description for the thesis was the following:

The task is within the context of Ubicollab, a platform for the development
of ubiquitous collaborative applications, and ASTRA, a Furopean project
for supporting end-user development of pervasive awareness applications,
i.e. applications that help the members of a distributed community to feel
connected. The task focuses on end user development in terms of support to
end users in selecting the right services to compose in order to create their
applications. Different languages have been proposed for identifying Web
services and then compose them. Standards for web service descriptions
are also available. However, the resulting descriptions are generally not
intended nor understandable to end-users. The task investigates the usage of
social tagging for supporting a community of users in associating a meaning
to services that they discover in the spaces that they inhabit. The task aims
at extending Ubicollab to support tagging of services.

I would like to thank my supervisor, Professor Monica Divitini. Also thanks to
Professor Babak Farshchian and Kim Steve Johansen for valuable input regarding
UbiCollab.

Trondheim, June 17th, 2007

Christian Laverton

vil

Contents

1 Introduction 1
1.1 Services and service composition 1
1.2 Describing services oo 2
1.3 Research context 2

1.3.1 ASTRA 3
1.3.2 UbiCollab 3
1.4 Project goals 3
1.5 Contributions 4
1.6 Research method 4
1.7 Report structure L 5

2 Problem elaboration 7
2.1 Users helping each other 7
2.2 Social tagging 8

2.2.1 Social tagging and tailoring 8

2.2.2 Social tagging in ubiquitous computing 9

2.3 Folksonomies 10
2.3.1 Advantages 10

2.3.2 Disadvantages oo 11

2.3.3 Tagging characteristics 11

2.4 Ontologies 12
2.5 Scenario 12
2.6 Subgoals 14

3 Problem analysis 15

X

CONTENTS

3.1 Tagpurpose 15
3.2 Social tagging design issueso 16
321 Tagsharing 16
3.22 Tagselection L 0. 17
3.23 Taggingrights oo 18
3.24 Tagscope 19
3.25 Tagsupport 19
326 Tagformat 20
3.2.7 Generic or specific tagging 21
3.2.8 Summary 22
3.3 Finding services 23
3.3.1 Searching 23
3.32 Browsing. 24
3.4 Physical access 25
State-of-the-Art analysis 27
4.1 deliciouso 27
4.2 Flickro 28
4.3 YouTube 29
4.4 Comparison 29
Requirements specification 31
5.1 Use Case diagrams 31
5.2 Textual Use Cases 32
5.2.1 Managemento 34
5.22 DBrowsing. 35
5.2.3 Searching 36
5.3 Functional requirements, 37
5.3.1 Requirement types 38
5.3.2 Basic tagging functionality 38
5.3.3 Browse and search functionality 39

CONTENTS

6 Design
6.1 UbiCollab concepts
6.1.1 Collaboration spaces and instances
6.1.2 Services
6.1.3 Service Registry oo
6.1.4 Deployment L
6.2 Tagsin UbiCollab L.
6.2.1 Private taggingo
6.2.2 Collaborative tagging
6.3 Tag representation,
6.4 Deployment
6.4.1 Modularity
6.4.2 Client and server L.
6.4.3 Communication with other services
6.5 Architecture
6.5.1 Tag Manager Server
6.5.2 Tag Manager Client
6.5.3 Tag Manager Tool

7 Implementation

7.1 Tag Manager platform services.
711 OSGi. . ..
7.1.2 Tagstorage
7.1.3 Type representation
7.1.4 TMServer bundle
7.1.5 TMClient bundle

7.2 Tag Manager Tool
7.2.1 Implementation details
722 RFIDreader.
723 GUIL

8 Demonstration

X1

41
41
41
42
43
43
44
44
45
45
46
46
46
47
47
49
20
20

52
52
52
23
53
23
26
57
57
o8
o8

62

CONTENTS

8.1 ScenarioS. 62
8.1.1 Service discovery 62

8.1.2 Creating tags 64

8.1.3 Tag-based navigation 65

8.1.4 Searching 67

8.2 Evaluation of design and implementation 68
8.2.1 Platform services L. 68

822 Tool 68

8.2.3 Possible improvements 69

9 Conclusions 72
9.1 Contributions 72
9.2 Evaluation 73
9.3 Further work 74

10 References 76

xii

List of Figures

1.1

2.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

Research method oo)
Example of services with tags 9
Tag suggestions in del.icious 20
Tagging generic serviceso 21
Tagging specific services 22
Relationships o 24
Relationships in ASTRA 25
Tag list o 28
Tagcloud 28
Top level Use Case diagram 32
Management Use Case diagram 32
Browsing Use Case diagram 33
Searching Use Case diagram 33
Human grid 42
Service domain Lo 43
ER diagram of tag representation 46
Tagging system architecture 48
Component interaction 48
TM Server service APT o 49
TM Client service APT, 50
TMServer class diagram 54

xiii

LIST OF FIGURES

7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5

TMClient class diagram 56
Servicetabo 59
Tagtabo 60
Search tab 61
Service discovery with RFID 63
Viewing the discovered service’s details and tags 64
Creating a private tago 65
Tag-based navigation 66
Searching 67

Xiv

List of Tables

3.1 Summary of design choices 23
4.1 Comparison of design choices 29
5.1 UseCase 1l: Addtag 34
5.2 Use Case 2: Remove tag 34
5.3 Use Case 3: View service 35
54 Use Case 4: View tags 36
5.5 Use Case 5: View tag information 36
5.6 Use Case 6: View user 36
5.7 Use Case 7: Search by keywords 37
5.8 Use Case 8: Find similar services 37
5.9 Basic tagging requirements 39
5.10 Browse and search requirements 0L 40
8.1 Evaluation of basic tagging requirements 70
8.2 Evaluation of search and browse requirements 71

XV

LIST OF TABLES

Xvi

Acronyms

API Application Programming Interface

ASTRA Awareness Services and Systems - Towards theory and ReAlization

Cl Collaboration Instance

CS Collaboration Space

CSCW Computer Supported Cooperative Work

ER Entity Relationship

GUI Graphical User Interface

IDI Department of Computer and Information Science
NTNU Norwegian University of Science and Technology
P2P Peer-to-peer

PDA Personal Digital Assistant

RFID Radio Frequency Identification

SOA Service Oriented Architecture

SP Service Proxy

SD Service Domain

SDM Service Discovery Manager

SR Service Registry

TM Tag Manager

UDDI Universal Description, Discovery and Integration
UPnP Universal Plug and Play

URI Uniform Resource Identifier

XML Extensible Markup Language

XVil

Chapter 1

Introduction

Ubiquitous computing systems are largely characterised by change and diversity.
A similar characterisation can be given of the users. Different levels of competency
and different tasks and interests are only some of the factors that lead to users
having different requirements to systems. This means that it is hard or even
impossible for developers to create systems that fit all users’ needs, and foresee
future requirements. This has lead to a need for systems to be changeable, or
tailorable, by users. Tailoring means to modify the behaviour of the system,
and usually involves more radical changes than the simple changing of options
and parameters. These changes must be possible to do without programming
knowledge [8].

1.1 Services and service composition

The need for tailorability in ubiquitous computing has lead to the need for tools
supporting end user development and tailoring. An important requirement for
such tools is that different levels of tailorability are provided to support different
groups of users [1]. End users could be experienced programmers, thus requiring
low level mechanisms for developing applications. But in many cases end users
will not have the required competency, which means higher level mechanisms are
needed.

A ubiquitous computing system is filled with a multitude of services of various
kinds. A service can be a physical device with capabilities such as audio, video,
light and movement, or an application that does not reside in the physical world.
In any case, the service provides some sort of functionality, able to support the
user in performing a certain task. By adopting a SOA, a system can provide such
high level mechanisms for end user development, by enabling end users to compose
applications from a selection of services. This is called service composition.

CHAPTER 1. INTRODUCTION

1.2 Describing services

Given tools for service composition, the user’s challenge is to find and select
appropriate services. With the large amount of services and diversity in service
types and usage, this is not a trivial task. To make it easier, one of the most
important challenges is how services can be described, in a way suitable for the
user.

The need for service descriptions first arises when the user wants to search for
appropriate services. The number of services is often too large for the user to look
through each and every one, so filtering mechanisms for limiting the number of
candidates are obviously needed. Here, it is natural for the user to supply a text
string or a list of keywords, indicating service characteristics and functionality.
In other words text that he would expect an appropriate service’s description to
contain.

In addition to finding services, users need to understand them. Without know-
ing what functionality a service offers, where it is located and if it is accessible,
users would have no way of knowing if the service is worth using. Traditionally,
software and hardware have been described by the manufacturers, by providing
a specification and description of why users should choose their product. A sim-
ilar approach could be used to describe services, with service creators or owners
publishing services accompanied by specifications, textual descriptions, or simi-
lar. Also, formal languages such as ontologies are commonly used to describe and
classify services. But formal languages are complex and difficult to use, which
means they are best suited for expert use. A problem with such expert descrip-
tions or classifications is that there is often quite a signficant gap between the
experts’ and the users’ views and understandings. This can be referred to as a
semantic gap [15].

A solution to filling the semantic gap could be to let users collaboratively describe
services, thus helping each other to increase their understanding and choose the
right services.

1.3 Research context

The research context of this work is ASTRA and UbiCollab. The problem elab-
oration, analysis and requirements specification focus on the problem in relation
to the ubiquitous computing system ASTRA. In the design and implementation
phases however, the work will be based on UbiCollab. This means that the design
proposed here, as well as the actual implementation, will be part of the UbiCollab
system. The reason for this transition is that UbiCollab is currently being used
as a starting point for the development of the ASTRA platform [11].

CHAPTER 1. INTRODUCTION

1.3.1 ASTRA

The ASTRA project is aimed at researching the concept and theory of pervasive
awareness. Awareness systems, as described in [1] are systems that help individ-
uals or groups to build and maintain peripheral awareness of each other. Further,
pervasive awareness is where awareness information is generated from personal
and home devices, which capture and exchange information about users.

While quite a lot of studies have been performed in work-related contexts, very
little has been done in social contexts. Awareness in the social context, or in-
terpersonal awareness, is characterised as the understanding of the activities and
status of one’s social relations. The need to stay in touch or the need to be as-
sured of other’s well-being are both examples of interpersonal awareness outside
the work-context. ASTRA is not aimed at individuals, but communities. The
intent is to support communication within a community, to increase the feeling
of connectedness between members of the community.

ASTRA aims to contribute to our knowledge in this area through a theory and
supporting technology for creating pervasive awareness systems.

1.3.2 TUbiCollab

UbiCollab is a platform for supporting collaboration on the internet. The main
idea of the platform is to combine mobility and ubiquity with traditional Com-
puter Supported Cooperative Work (CSCW) and groupware technologies. In this
way, UbiCollab attempts to naturally support collaboration in any situation the
users are in [3]. This means that UbiCollab supports collaboration in general,
while ASTRA can be seen as a specific use of UbiCollab, mainly concerned with
communities.

Similar to ASTRA, the UbiCollab platform is meant to capture common func-
tionality in collaborative applications. The common functionality provided by
the platform can be used to build applications without extensive coding [3].

The UbiCollab platform has been partially implemented, and improved in several
newer versions. This means that UbiCollab provides an architecture and code
which can be used in this work’s design and implementation.

1.4 Project goals

This work aims to support users in understanding services as well as search for
and find appropriate services in a ubiquitous computing environment. These are
important criteria for the success of service composition, a mechanism for end
user development based on SOAs. To accomplish this, the focus will be on how
users can share user-generated service descriptions and information regarding
services in a collaborative manner, using social tagging. Thus, the main goal of

CHAPTER 1. INTRODUCTION

this project is to design and implement a framework for social tagging of services
in a ubiquitous computing context. This framework will be designed in form of
services and tools to extend the UbiCollab platform.

1.5 Contributions

This project presents the following contributions:

« Problem analysis

« Requirements specification

« Design of platform architecture

. Platform service APIs

. Implementation of platform services

« Demonstrator tool

In the problem analysis, important design issues for tagging systems are identified
and discussed within the context of ASTRA and the problem elaborated in earlier
chapters. The analysis should lead to a set of design choices, which can be used
as a base for specifying requirements.

The requirements specification is based on the problem analysis. This results
in requirements aimed at specifying a social tagging system in the context of
ASTRA. The requirements are presented through Use Case diagrams and textual
Use Cases, and finally a detailed requirements list.

The remaining contributions are made in the context of UbiCollab, and thus are
contributions to the UbiCollab platform. The design of platform architecture
proposes an architecture which aims at fulfilling the requirements, as well as
integrating with existing concepts and services of the UbiCollab platform.

The platform service APIs contribution consists of the specification of Application
Programming Interface (API)s for the platform services identified in the design
part. These are the Tag Manager Client service and the Tag Manager Server
service. Both services are implemented to work in the UbiCollab platform, thus
constituting the implementation of platform services contribution. Finally, a
demonstrator tool is made to demonstrate the platform services’ functionality
through the use of scenarios.

1.6 Research method

A diagram illustrating the research method used in this project is shown in Fig-
ure 1.1. The first part of the project is performed within the context of ASTRA.
The work starts with a problem elaboration which discusses the problem domain

4

CHAPTER 1. INTRODUCTION

and introduces important concepts, supported by related research. A scenario is
also used, to further illustrate the problem domain. The next step is the prob-
lem analysis, which analyses the problem with a specific focus on identifying and
discussing design issues for social tagging systems. This leads to a requirements
specification, where Use Case diagrams and textual Use Cases are used and result
in a detailed list of platform requirements. The problem analysis together with
the requirements specification constitute the starting point for the design phase.
At this stage, important UbiCollab concepts and platform architecture are intro-
duced, as the design and implementation of the tagging system is meant to extend
the UbiCollab platform. Next, an implementation of the design is created, and
the functionality of the implementation is shown through a demonstration using
scenarios. Finally, an evaluation of the work done in this project is performed.

Problem elaboration

Related

ASTRA, research

Y

Problem analysis

T~

Requiremeants

Design

UbiCollak

Y
Implementation and
demonstration

Y
Evaluation

Figure 1.1: Research method

1.7 Report structure

The rest of the report is structured into the following chapters:

Problem elaboration - The problem elaboration introduces important concepts
related to social tagging, and discusses these in the context of this project. A
scenario is presented to further illustrate the problem and possible uses of social
tagging. The chapter ends with dividing the project’s main goal into subgoals.

Problem analysis - In the problem analysis, several important design issues for
tagging systems are identified. Each issue is discussed in relation to the problem,
and lead to a set of design choices. The second part of the chapter looks at

CHAPTER 1. INTRODUCTION

how the tagging system can provide mechanisms for browsing and searching for
services.

State-of-the-Art analysis - The State-of-the-Art analysis looks at related projects
and presents a comparison of the design choices made for each of these.

Requirements specification - This chapter presents the requirements found,
based on previous chapters. First, Use Case diagrams and textual Use Cases are
presented. This is followed by a discussion of requirement types and a detailed
requirements list.

Design - The design chapter starts by introducing UbiCollab concepts which
are important for the design and implementation of a social tagging system in
UbiCollab. The concepts are discussed to find how the tagging system best
can be integrated with UbiCollab. This results in an overall architecture, based
on a client/server solution. The components of the architecture are presented,
including APIs for the platform services.

Implementation - In this chapter, the actual implementation of the platform
services is presented. Also the implementation of a tool for providing access to
the platform tagging functionality is presented.

Demonstration - This chapter demonstrates and evaluates the design and im-
plementation. The demonstration is given through scenarios, showing possible
uses of the tagging system and how these are supported by the implementation.
The second part of the chapter evaluates the design and implementation.

Conclusions - This chapter concludes the report. A discussion of the work’s
contributions is given and an evaluation of the project work. Also, suggestions
for further work are presented.

Chapter 2

Problem elaboration

The purpose of this chapter is to get a better understanding of the problem
domain. To do this, important concepts and related research is discussed in the
context of the problem domain introduced in the previous chapter. A scenario
is presented and discussed to further elaborate the problem and to illustrate
possible uses of social tagging. Finally, the project’s main goal, presented in the
introduction, is divided into a set of subgoals.

The chapter starts with a brief look at why users tend to benefit from helping
each other rather than using expert information, in Section 2.1.

Section 2.2 continues with social tagging, which is a method where users help each
other, collaboratively creating and sharing metadata. Social tagging is discussed
in relation to ASTRA, with an emphasis on tailoring and ubiquitous computing.

Section 2.3 introduces and discusses folksonomies, which is a possible use of social
tagging where the purpose is to create a folk taxonomy of the tagged items.

Section 2.4 discusses the relations between social tagging and ontologies, and why
ontologies are important even when introducing a social tagging system.

In Section 2.5, a scenario is presented and discussed, to illustrate social tagging
in the context of end user development in ubiquitous collaborative settings.

Finally, Section 2.6 defines a set of project subgoals.

2.1 Users helping each other

Examples of users helping each other out, sharing their experiences, are evident in
many different settings. Within software development, users of a programming
environment more than often share code snippets, tips and tricks with others.
Among users, forums and other types of discussion tools are very common for
sharing opinions and solutions to problems. Often, users ask each other for help,
rather than exploring the problem on their own. For example when wanting to
create a macro in a word processor, a user will often turn to friends or colleagues

CHAPTER 2. PROBLEM ELABORATION

to borrow “their” macro, and then possibly tune it to his specific needs. One of the
key advantages and reasons for why users choose this approach is the potential of
saving time, not having to spend time on things that are not relevant and rather
focus on their activities and interests [2]. Also, the semantic gap mentioned
earlier means that fellow users are more likely to have a similar perspective to
the problem domain, making it easier to understand each other than using expert
information.

2.2 Social tagging

Metadata is information about data, usually meant to serve functions such as
administration, structuring or description of the target data. In large collections
of items, such as libraries, document repositories and photographic databases,
metadata plays a vital role in organising the items, facilitating effective search
techniques.

Traditionally, the creation of such metadata has been done by professionals [12].
Although this usually gives high quality metadata, there are important problems
such as the cost of production and keeping up with large amounts of new content
[10]. Maybe even more important is the semantic gap that can occur. An al-
ternative to professionally created metadata is metadata created by authors, the
original creators of the target data. Again there are important problems, such as
inadequate or inaccurate descriptions, or outright deception [10].

A common problem for professional and author created metadata is that the even-
tual users of the information are not part of the creation process [10]. This leads
to a third approach, focusing on users and the possibility of users collaboratively
creating metadata. With user created metadata, the eventual users themselves
can create the metadata, both for individual use and for sharing with each other.

Social tagging is a way of enabling user created metadata through a simple process
where users attach labels, popularly called tags, to the items of interest. The
metadata collected is referred to as democratic metadata, since it is generated by
both creators and consumers of the content [18].

2.2.1 Social tagging and tailoring

Service composition is a high level approach to tailoring, which relies on service
descriptions for users to understand and find appropriate services. A common
way of describing services is to use a formal language, such as an ontology.

To describe services with a formal language, one would first define the language’s
vocabulary and structure, and then define services within the language. This
gives a formal, structured classification of services, especially suited for computer
interpretation. However, there are important disadvantages with this approach.
Maybe most important is that users most likely don’t have sufficient knowledge

CHAPTER 2. PROBLEM ELABORATION

about formal languages and find them difficult to use. Thus, formal languages
tend to be an expert approach. Also, it could be a difficult task to create a formal
language for a large number of different services, which matches different people’s
and the system’s view [19].

An alternative to using a formal language is to use social tagging, which would
allow users to collaboratively describe services by tagging them. Reading a ser-
vice’s tags, a user would most likely get a better understanding of the service and
be better able to decide if the service is appropriate for his needs. An example
of tagged services is shown in Figure 2.1.

Rabbit
Bunny
| Move
|
! Ears Display Graphical
Cuto Touch
Colour
Voice Monitor
Sound Screen
| &
Music

Speaker

Figure 2.1: Example of services with tags

2.2.2 Social tagging in ubiquitous computing

Because ASTRA is a ubiquitous computing system, the use of social tagging
would naturally be different in some ways compared to systems such as del.icio.us*
and flickr?2. For these systems, the objects being tagged are Internet resources
(webpages or photographs), that do not reside in the physical world. Although
services in ASTRA can be non-physical, they will in many cases involve some

Thttp://del.icio.us/
http:/ /www.flickr.com/

CHAPTER 2. PROBLEM ELABORATION

sort of physical device. For example, a service could be a touch screen monitor at
the train station providing the possibility of browsing through train timetables.

Because many services will have some sort of relation to the physical world, the
tags created might be affected. For example, a service’s tags could be affected by
its physical location. It seems natural that users would tag a service located in
the library with the tag “library”. Although a tag like this would not say anything
about the service itself, it gives valuable information to the user. Also, tags such
as this one would enable searching based on location.

As well as affecting the tags created, services’ relation to the physical world also
give new possibilities of interaction with the tagging system. For example, the
tags describing the service could also be to some degree physical, by making them
available through a Radio Frequency Identification (RFID) type of interface. This
would mean that users could interact with a service by walking over to it, using
a tool to read the tag interface, and then be presented with the service’s tags.

2.3 Folksonomies

Social tagging provides a way of collaboratively describing items by applying tags.
However, as social tagging can occur in many forms and types, it is necessary to
consider the purpose of using social tagging. Folksonomies can be seen as a type
or a purpose of social tagging, where the idea is to classify or categorise items.

The term folksonomy is a combination of the words “folk” and “taxonomy”, and
was first used by Thomas Vander Wal in a mailing list discussion [14]. Although
there are debates on the definition and use of the term, there seems to be an
agreement on its relation to classification or categorisation of items. For example,
(6] defines folksonomy as a type of distributed classification system. In [10], a
folksonomy is referred to as an organic system of organisation. Further, it is
argued that folksonomies are more a way of categorisation than classification,
because categorisation is generally less rigorous and boundaries are less clear.

2.3.1 Advantages

One of the most important benefits of folksonomies, and social tagging in general,
is the simplicity of tagging. There is no complicated structure that needs to be
learned, which means that even users with little or no competency can use the
tagging system. This is one of the main motivations for introducing a tagging
system, because formal languages are hard to use and learn, thus excluding the
average user from the creation of metadata.

The metadata created by tagging naturally supports various searching techniques
based on the tags. But in addition to traditional searching, an interesting pos-
sibility is what is referred to as tag-based navigation. Although folksonomies do
not provide a formal, structured classification, there are relations that can be

10

CHAPTER 2. PROBLEM ELABORATION

identified between items, tags and users. These relations can be used to provide
navigation links. For example, a user can see who has tagged a given resource, and
then check which other tags this person has created. In this way, it is possible to
discover other users with similar interests and perspectives [18]. Since resources
most often will have several tags attached to them, it is possible to compare the
items’ tag sets and find similar, related items. Links to related items give users
a way of navigating among items, possibly leading to serendipitous discoveries.

2.3.2 Disadvantages

Although folksonomies have some clear advantages over formal languages, this
does not come without a price. For example, folksonomies have been criticised
because of flaws that are not inherent in formal classification systems. Exam-
ples of such flaws are homonyms and synonyms. Homonyms are words that have
multiple meanings, while synonyms are words that have the same or similar mean-
ings. Another problem is that tags can sometimes have subjective meanings. For
example the tag “useful” indicates that the tagged resource is somehow useful for
the person adding the tag, but the resource is not necessarily useful for other
people. These problems can lead to low quality of tags. Combined with the fact
that the amount of tags can become very large, the system can simply become
non-navigable [18].

2.3.3 Tagging characteristics

A critical characteristic of tagging systems is that vocabularies emerge organi-
cally from the tags chosen by individual users, rather than imposing controlled
vocabularies [13].

Personal tendency and community influence are important factors that most likely
affect how people apply tags [13]. Users have preferences and beliefs about the
tags they apply. A new user has an initial personal tendency based on previous
experiences, interests and knowledge. But this personal tendency evolves as the
user interacts with the tagging system. Communities influence tag selection by
changing a user’s personal tendency.

One might think that as a resource is tagged over a longer period of time, with
new users emerging and adding their tags, the result is a chaotic pattern of
tags. But research shows that the combination of many users’ tags leads to a
stable pattern, where the proportions of each tag used remains close to the same.
Further, a stable pattern emerges at as low a number of tags as around 100 [5].
Part of the reason for this convergence is that users tend to negotiate and agree
on which tags to use [19].

11

CHAPTER 2. PROBLEM ELABORATION

2.4 Ontologies

So far, social tagging and folksonomies have been discussed in relation to service
descriptions. A tagging system can provide a simple method of collaboratively
describing services, which is more suitable for users than formal languages. Al-
though this has been presented as an alternative to formal language approaches
to describing services, formal languages still play an important and necessary
role. For service composition to work in the first place, the system must be able
to decide which services can be composed together. And when services are com-
posed together, how do they function and interact? To answer these questions, a
structured formal language such as an ontology is needed.

This means that the idea of introducing a tagging system for describing services
is not meant as a replacement of formal language descriptions, but rather as a
complementing tool aimed at users.

2.5 Scenario

In this section, a scenario is presented together with a short discussion for each
of the scenario’s main actions. The idea is to relate the problem elaboration to a
real scenario, showing possible uses of social tagging in the context of this work.

Action 1 Marius has moved into a new house and he gets an electronic rabbit
from Pamela. Well, it’s kind of cute... but what to do with it.

Because services differ a lot in type and functionality, understanding a service is
not necessarily trivial. What can the service do and how does one use it? Services
embedded in physical devices can be even worse to understand, as these introduce
the extra dimension of the physical world. The user might find help in reading the
service specification, but this is not very likely if he lacks the necessary computer
skills.

Action 2

He reads the official information describing the service but he cannot figure out
anything more innovative than using it as an advanced alarm clock.

As discussed earlier, a major problem with professional descriptions of services is
that they’re seldom written from the user’s perspective and often miss information
which is important for the average user. Services, especially physical devices, can
often be used in many different ways which are hard to foresee by service creators
and authors of official descriptions. This means that the official information would
probably only suggest a fraction of the multitude of ways the service can be used
and ways the service can be combined with other services to form applications.
Thus it can be more interesting and helpful to read about other users’ experiences
and creative solutions.

Action 3

12

CHAPTER 2. PROBLEM ELABORATION

He then checks if anybody has tagged the service in his community. None of his
closest friends seem to have used that device before or at least nobody has bothered
to add a tag. So, he searches for tags left by a community of students who share
a passion for innovative technology.

Providing different levels of tagging can help the user to easier find information
he is looking for. Users within a community often share or have similar opinions.
Thus, browsing tags in one of the user’s communities can increase the quality and
relevance of tags seen from the user’s perspective.

Action 4

There he finds an annotation that points out that the service can be used as output
device for an awareness service that he also uses with his friends. He follows the
link provided in the annotation and finds out how to set up his new device to do
it. Now the rabbit will blink every time that Pamela is online. Much more fun
than the usual icon on his desktop.

There are many possibilities for tag types and formats used in social tagging
systems, ranging from simple to complex types of tags. Video, audio, images
and text are just some examples of the many possibilities to choose from. The
scenario shows an example where the tag is a link pointing to a resource. The
type of tag used naturally depends on the purpose of the social tagging system.
If the purpose is to classify, it is natural to use simple text labels, possibly only
consisting of a single word. If the purpose is to give suggestions and comments,
tags consisting of several words and sentences are more appropriate.

Action 5

There’s only half an hour left until the deadline of Marius’s report, and he urgently
needs to find a suitable printer. He’s in the main building of the university, but
has no clue where the nearest printer is. He brings out his PDA and searches for
“printer”. The results show there are two printers near him, but looking closer he
sees that one of them has been given tags such as “slow” and “unstable”. Obviously,
he chooses the other one.

In this part of the scenario, a typical use of tags is shown. The user is provided
with a searching mechanism which finds services with tags matching the search
keywords. This also illustrates a different way to find services compared to finding
services through service discovery mechanisms.

The scenario also suggests the use of tags for a rating system, which could also
be considered as a sort of social tagging. The tags can be numbers or words
indicating how good or bad the item is, thus serving an evaluative function. The
Internet Movie Database® is an example of a popular rating system for movies,
where users can rate a movie on a scale from 1 to 10.

Swww.imdb.com

13

CHAPTER 2. PROBLEM ELABORATION

2.6 Subgoals

The main goal of this project is to design and implement a framework for social
tagging of services in a ubiquitous computing context, as stated in the introduc-
tion chapter. Based on the problem elaboration, the goal has been further divided
into subgoals:

« Subgoal 1: Identify design space of social tagging and define design choices
. Subgoal 2: Identify mechanisms for tag based navigation and search
. Subgoal 3: Define requirements for a social tagging system

. Subgoal 4: Propose a design solution in the form of services and tools,
extending the UbiCollab platform

« Subgoal 5: Implement, demonstrate and evaluate a prototype of the solu-
tion

The first subgoal involves analysing the design space of social tagging of services
(subgoal 1). By identifying design issues and discussing these in the context of
ASTRA, appropriate design choices can be made. It is also important to look
at how the basic social tagging functionality can provide mechanisms for tag
based navigation and search (subgoal 2). The design choices and identification
of tag based mechanisms for navigation and search form high level requirements,
which can be used to define a detailed requirements specification for a social
tagging system (subgoal 8). This is an important step for the success of designing
and implementing the system. The next goal is to propose a design solution
which extends the UbiCollab platform and fulfils the requirements specified earlier
(subgoal 4). Finally, the last goal (subgoal 5) involves implementing a prototype
of the designed solution. The implementation can then be used for demonstrating
and evaluating the solution.

14

Chapter 3

Problem analysis

This chapter analyses and discusses important aspects of the problem which was
elaborated in Chapter 2. The purpose of the discussion is to find high-level re-
quirements for providing social tagging by considering the design space of tagging
systems. The analysis of design issues is based on the elaboration, relevant re-
search and own knowledge. The findings presented here are further used in the
requirements specification in Chapter 5.

Section 3.1 starts by refining the purpose of the social tagging system.
Basic mechanisms in a social tagging system are looked into in Section 3.2.

Section 3.3 continues by looking at how functionality for searching and browsing
can be provided based on the tagging system.

Finally, Section 3.4 discusses physical access to tags and how this can be provided.

3.1 Tag purpose

The problem elaboration identified several types of tags that can be part of a
social tagging system, such as comments, ratings and pointers to resources. In
many ways, the type of tag depends on the purpose of the tagging system. While
rating tags mainly serve an evaluative function, short textual labels can be used
for classification purposes.

Although all tag types discussed earlier could be relevant and worth supporting in
ASTRA, the rest of this work will focus on tags for classification purposes. This
choice was made to avoid the scope of the task becoming too large. However, as
the process of social tagging is in many ways the same, regardless of tag type, it
should be possible to extend this work to support other tag types.

15

CHAPTER 3. PROBLEM ANALYSIS

3.2 Social tagging design issues

This section looks at how the basic mechanisms of a social tagging system can
be provided. To do this, several important design issues have to be addressed,
such as how tags can be added to a service, who is allowed to add tags and which
tags are displayed to users. The following subsections are based on design space
issues presented by [13] and [9], as well as own contributions. For each issue, an
explanation of the issue and possible choices is given, followed by a discussion of
the issue in relation to ASTRA. The choices resulting from the discussions are
summarised in Subsection 3.2.8.

3.2.1 Tag sharing

This issue regards whether a tag created by one user is available to other users
and if so, to whom. In other words who has access to view the tag.

Possible choices

There are three main levels of tag sharing:

. Public
« Community/Group

. Private

A private tag is strictly personal, only available to the user who created it. On
the other hand, a public tag is fully shared, which means it is available to all
users. These cases represent the extremities, and do not rule out the possibility
of having something in between. This could be a network or community of users,
or simply a group of users that the tag owner selects. Although a single tag can
only be at one of these levels, the tagging system can still provide more than one
level of tag sharing.

Discussion

There are several reasons why private tagging should be included in ASTRA.
First, when a service is only available to the owner, it does not make sense to
share tags with other users. Second, privacy should be considered. Maybe a user
could be intimidated by the fact that other users will see his tags, thus preferring
to keep them secret. Finally, an important point that applies to tagging systems
in general is that tags can have a personal meaning, such as “me” and “toread”.
Users tend to dislike seeing other people’s personal tags of this kind [13]. Although
they can be very useful for the creator, they are seldom useful for other users and
are more likely to be distracting.

In ASTRA, communities play a central role. This means that a natural choice is
to let users limit tag sharing to one or more communities. Generally, one should
consider that services will often be limited and only accessible by a group of

16

CHAPTER 3. PROBLEM ANALYSIS

people. In these cases it would not make much sense to share tags with users
outside the group.

An important motivation for sharing tags within a community is the potential
increase in quality of tags. In communities, where users tend to have similar
views, the agreement on appropriate tags would probably come about easier and
faster. Similarly, ambiguities should be less likely to occur because the users to
some degree have a shared understanding within the community. Because of this,
research such as [18] discuss the possibility of identifying communities in tagging
systems based on users’ tagging behaviour. However, in ASTRA communities
are already present and can be taken advantage of.

The possibility of selecting individual users to form a group of users who share the
tag can also be considered. But a problem in doing so is the increase in complexity
and difficulty of sharing tags. It is hard to see that a group sharing feature like
this would add much value that is not already provided by supporting community
sharing. Thus, the minor benefits, if any, of this extra feature are outweighed by
the added complexity.

In addition to the cases of limited tag sharing, it should be possible to share
tags publicly. Especially when a type of service is tagged rather than a specific
instance, it makes more sense to share with everyone, since the service is not
connected to a specific group of people or a specific location.

This discussion has shown that ASTRA should provide all three levels of tag
sharing. For the community level, the tagging system should take advantage of
communities in ASTRA.

3.2.2 Tag selection

Because a tagging system could potentially have a very large number of tags, it
might be necessary to limit the number of tags displayed to users. This leads to
the question of which tags to select. Should the user participate somehow in the
selection, or should the system handle the selection automatically?

Possible choices

If the system provides more than one level of tag sharing, tag selection could be
based on these levels. One possibility is that the user is given a choice of which
level tags are selected from. Another possibility is that the system separates tags
for the different levels, for example showing one set of private tags and one set
of public tags. If broad tagging is used (see Section 3.2.4), the tags’ popularity
(number of times added) can be used to select a subset representing the most
popular tags.

Discussion

This design choice is important in relation to ASTRA because a major part
of devices in a ubiquitous computing system have small displays and limited
network connections. This means that the trivial solution of displaying a full list

17

CHAPTER 3. PROBLEM ANALYSIS

of tags can be too expensive, both in display size required and the amount of
network data that needs to be received. Thus, ways of limiting the number of
tags displayed are needed.

Two main cases should be considered. The first occurs when a user is viewing
service information, or browsing/searching for services. In this case, the tags
are not necessarily the main focus of the user and should come second to service
information and browsing and searching functionality. For similar reasons, it may
be best not to require the user to help select which tags are shown. Thus, the
system should select the subset of tags itself, preferably based on the popularity
of each tag rather than choosing at random.

The second case is when the user explicitly requests to view a service’s tags. This
means that the tags are the main focus, and the user most likely wants to have
the possibility of viewing all tags. However, as the user might still want to view
tags at a specific level of sharing, this option should be provided. Note that
although selecting a subset of tags is not needed in this case, tag popularity can
still be relevant, for example to order the list of tags.

3.2.3 Tagging rights

The system can restrict who is allowed to add tags to an item. In some systems it
might be most common for users to only tag items they own themselves, while in
other systems the items that are tagged are not created and owned by the users.

Possible choices

One possibility is to restrict tagging to the owner of the item, which is called self
tagging. Naturally, this only makes sense if the owner is a user of the tagging
system. Otherwise, the item would not be taggable. On the other hand, tagging
can be independent of who owns the item, possibly only restricted to users who
have access to the item itself. This is referred to as free for all tagging. A
mixture of these choices is permission based tagging, where the owner of an item
can decide who is allowed to tag the item.

Discussion

Services in ASTRA can be owned by a user or a community of users. Logically, the
owner or owners of a service should be able to decide who is allowed access to it.
The question is, when a user has access to the service, should this automatically
allow him to tag the service?

To answer this question, it is necessary to consider that the idea of introducing a
tagging system in the first place was to help users collaboratively describe services.
Once tagging is limited to the service owner, it is no longer a collaborative process,
thus limiting the value of the tagging system. One of the reasons why a service
owner might want such a restriction, is that he wishes to tag his service without
other users interfering. But in that case, he can simply use the private tagging
functionality. For a service owned by a community, it is possible to use community

18

CHAPTER 3. PROBLEM ANALYSIS

tags, which are not accessible by users outside the community.

3.2.4 Tag scope

The scope of a tag describes if the tag belongs to individual users or is shared by
a community. The scope affects the aggregation of tags around items, by deciding
how the system reponds to the same tag being added to an item by more than
one user.

Possible choices

There are two possible choices for tag scope, called broad tagging and narrow
tagging [13]. Broad tagging means that each user can add his own tags, with
each tag being treated as unique. This implies that each tag has a connection
to the user who created it, and in a sense belongs to the user. Narrow tagging
however means that users share a common set of tags for each item, which means
that tags have no connection to users. Usually tags in narrow tagging systems
are created by one or a few persons.

Discussion

It is again important to point out that the goal of the tagging system is to provide
mechanisms for collaboratively describing services. When only one person or a
few persons provide the tags for an item, it can hardly be called a collaborative
process. This suggests that broad tagging is the better choice. Another reason
is that broad tagging enables additional tag based navigation possibilities (see
Section 3.3), due to the connection between tags and users. This is important,
as one of the aims of the tagging system is to help users find services more easily.
Finally, for the purpose of classification, the number of times a tag has been
added is an important indicator of the importance and relevance of the tag.

3.2.5 Tag support

This issue regards whether the user is given help or suggestions when adding tags.
Possible choices

There are three levels of tag support. Blind tagging is when a user cannot see
tags entered by other users while tagging. With wviewable tagging, the user can
see tags added to an item by other users while tagging. The last category is
suggestive tagging, where the system suggests appropriate tags to the user. An
example of suggestive tagging is shown in Figure 3.1.

Discussion

Research has shown that existing tags affect future tagging behaviour, thus mak-
ing it possible to steer users towards creating tags of the preferred type [13]. This
can be done by seeding the system or by giving suggestions of tags of the pre-
ferred type. When the purpose of the tagging system is to classify or categorise,

19

CHAPTER 3. PROBLEM ANALYSIS

url | hitp:fmoney.cnn.com/madg

description |Microsoft claims software |
nmotes

tags |mid
suUghestions [ylldki

Figure 3.1: Tag suggestions in del.icio.us

these measures can be used to help improve the quality of tags, and get a quicker
convergence towards a folksonomy [5]. In the case of service composition in AS-
TRA, it is already clear that ontologies describing services are needed. These
ontologies can also be used as a base for providing tag suggestions.

3.2.6 Tag format

One of the questions that has to be answered for any tagging system is which
restrictions that should be placed on the format of tags allowed. Format here
means what type of characters the tag contains, and if the tag contains one or
more words or even one or more sentences.

Possible choices Giving a list of possible tag formats is impossible, because
an endless list of formats can be made simply by making small changes to the
allowed character set. However, it is possible to give some general categories,
focusing on the degree of restriction.

A liberal approach is to let users compose tags in any way they want, placing no
constraints on the number of words or the type of characters allowed. This means
that tags can be full sentences, such as “a very nice but slow device”. In con-
trast to this approach, tags can be limited to single words and only alphabetical
characters.

Discussion

Because the goal of the tagging system is to classify or categorise services, tags of
any length and any number of words are not suitable. If tags take on the form of
comments, it is harder or even impossible to identify relations between services’
tags. This also reduces the possibility of tag based navigation. Thus, it is clear
that a more restricted tag format is needed. There is however no clear indication
of exactly what format is the best for classification. Most other tagging systems

20

CHAPTER 3. PROBLEM ANALYSIS

do not allow spaces and limit the tag length, thus limiting tags to a single word
or a few words seperated by a “-”. The same approach will be used here.

For private tags however, it is not necessary to place such a restriction on tag
names. Private tags are only visible to the creator and are not part of the folk-
sonomy which the tagging system aims to create.

3.2.7 Generic or specific tagging

Looking closer at what a service is, it is seen that there are two possibilities for
how services can be tagged. First, one specific service can be tagged, for example
a public monitor in the library. Secondly, it is possible to tag a type of service,
rather than one specific instance. For example the type of monitor used in the
library, which could also be in the office, canteen, and so on. This means that
to implement a tagging system, it is necessary to make a distinction between the
two cases.

Possible choices

The choice that has to be made in this category is whether to support tagging
instances or types, or both. An illustration of the difference between tagging
specific services and generic services is given in Figures 3.2 and 3.3. Both figures
show a generic Nabaztag!, which represents the type of service rather than a
specific instance. In addition there are three instances, which are specific services
of type Nabaztag. In Figure 3.2, only the generic service is tagged, while in Figure
3.3 each instance has its own tags.

Rabbit Bunny

|
Light - Cute

Ears Move
e A
,f”ﬁ \
~
%‘I |... -l [By
- L s

Figure 3.2: Tagging generic services

Discussion

thttp:/ /www.nabaztag.com

21

CHAPTER 3. PROBLEM ANALYSIS

w |
'n
" \\"H.
o T
.-'"'..- ™ -
Rabbit
Ugly - iy . '_rril "yt Plain
Pink
Rabbit Buniy
Stri Bori
riped Fink Bluse Rabbit s

Figure 3.3: Tagging specific services

One of the main factors that could influence the choice between generic and
specific tagging is whether instances of a service type differ a lot. In the case
that service instances only have minor and not very important differences, using
generic tagging is most likely sufficient and the simplest approach. Tagging each
instance would only lead to several almost equal tag sets. But in a ubiquitous
computing environment like ASTRA, service instances of the same type are more
likely to differ. This is especially due to the fact that services can be embedded
in physical devices, giving a multitude of possibilities for service behaviour and
functionality. This means that generic tagging would only cover parts of the tags
that are relevant for each instance. Important tags could be missing, and users
might have problems finding an appropriate service instance.

This does not mean that generic tags are not of any value. For example, generic
tags could be used to create a classification of service types. One approach would
be to deduce the service type tag set from the tag sets of service instances of this
type. However, this is outside the scope of this work, and should be considered
in future work.

3.2.8 Summary

The design choices made are listed in Table 3.1. These can be seen as high
level requirements for the proposed solution. Each design issue is presented with
possible choices and the choice made.

] Design issue ‘ Possible choices ‘ Choice
Tag sharing Public, community, | All levels should be provided
private
Continues next page

22

CHAPTER 3. PROBLEM ANALYSIS

] Design issue ‘ Possible choices ‘ Choice ‘

Tag selection All, limited Both should be possible. Tag re-
trieval could be limited by tag
level and/or tag popularity

Tagging rights Self tagging, permis- | Free for all
sion based, free for all

Tag scope Broad, narrow Broad tagging system

Tag support Blind, viewable, sug- | Suggestive tagging based on un-
gestive derlying service ontologies

Tag format Open, Semi- | Restricted

restricted, restricted
Generic or specific | Type, instance, both | Instance

Table 3.1: Summary of design choices

3.3 Finding services

The previous section looked at how the basic tagging mechanisms can be provided
and important design issues regarding these. Once the mechanisms are in place,
users can collaboratively describe the multitude of services in ASTRA. The next
step is to look at what functionality could be provided to take advantage of the
tags created through the tagging system.

The idea and motivation behind introducing a tagging system for services was
to help users understand and find appropriate services. In a system like ASTRA
there will be a very high, constantly growing, number of services of different
types. Because of this, users need to be supported by convenient and easy-to-use
mechanisms for finding services.

The following subsections discuss searching and browsing for services, and phys-
ical access to services. Note that although searching and browsing are discussed
seperately, they are closely related. For example, when a user is viewing a search
result, browsing options such as viewing other users’ tags or finding similar ser-
vices can be displayed.

3.3.1 Searching

One of the most powerful and important functions enabled by the tagging sys-
tem, and metadata in general, is the possibility to search. By simply entering a
keyword or a list of keywords, the user can easily search for services with tags
matching one or more of the keywords.

It is also possible to extend and combine searching based on tags with other
attributes, such as service location. By specifying a location, the user can search
for services in the given location, with tags matching the search string.

23

CHAPTER 3. PROBLEM ANALYSIS

3.3.2 Browsing

What is meant by browsing services is similar to browsing webpages on the In-
ternet. The user wants to find a service matching his requirements or simply one
that looks interesting and worth trying. Although browsing is similar to search-
ing, there is an important difference. When searching, the user explicitly asks
the system to find all services matching his search parameters or query. Browsing
however is not based on a formulated query. Instead, the user explores the service
space by following relations between services, finding relevant information.

To enable browsing, relationships between services need to be identified. Can
tags help provide these relationships? A folksonomy is not a structured formal
language like an ontology. Still there are certain relationships that can be iden-
tified between the parts of the folksonomy. [9] illustrates possible relationships
with Figure 3.4. First, users can add tags to items, which means there are con-
nections between users and items. Second, users can also be connected in some
way, for example by being members of the same community. A last possibility is
that items are somehow related.

Resources Tags Users
: '. el, td &S vl F

.

PR
L

an il

Figure 3.4: Relationships

For ASTRA, the items being tagged are services, which means there are rela-
tions between services and tags. Next, due to the importance of communities in
ASTRA, a possible connection between users is that they are in the same com-
munity. Services can also be related, for example by one using information from
the other, or services being in the same location. The relations identified are
illustrated with an Entity Relationship (ER) diagram in Figure 3.5. With these

24

CHAPTER 3. PROBLEM ANALYSIS

relations identified, the next step is to look at how they can be used for browsing
services.

MemberOf
on N (0,n) .
User Communi
\\/ ty

(0,n)

<>Created
(1.n AddedTo . (0,n)

an - a.n

Tag E1,n; i :: (0, Service (0,n}

Figure 3.5: Relationships in ASTRA

Uses

View user

When viewing a service and the accompanying tags, one option is to allow viewing
the user that has added a certain tag. Information, such as which other tags that
user has added and which other services the user has tagged, can be given. The
idea here is not to expose the creators of tags, but rather to give users additional
navigation possibilities. For example, it would make it possible to find users with
similar perspectives and interests [18], and also find services that these users have
used. Generally these additional navigation possibilities allow casual browsing
and could lead to serendipitous discoveries [18].

Related services

Although tags do not describe a service in a structured, formal way, the tagging
system can still use the tags to suggest the similarity of services. By comparing
services’ tag sets, the system can find the services that best match, and thus
present links to related services. Depending on the choice of the user, the com-
parison can be done at public, community, or private level. For example, the
user’s private tags for a service can be compared with services’ public tags.

3.4 Physical access

Search and browse features of the tagging system help users find services by
specifying a query or by navigating with links between services, tags and users.
An alternative use of a tagging system is when the service has already been found
by the user. When the user finds a service, it is likely that he is interested in

25

CHAPTER 3. PROBLEM ANALYSIS

knowing more about the service, what functionality it has and what it can be
used for.

In a ubiquitous computing system, services are often physical devices. This means
that they can be physically discovered by users or automatically discovered by
the system when the user is nearby. When a user finds a service this way, the
system should be able to recognise the service and present the service’s tags to
the user, thus giving the user a kind of physical access to service information
and tags. A similar approach is used in the Tokyo Ubiquitous Network Project
[4], where collaboratively created tags help people find their way around Tokyo.
Users are given physical access to the tags through a simple pocket device. This
means information, videos, pictures and other types of content regarding a specific
location can be read using the pocket device.

For services, physical access to service tags can be given by integrating the tagging
functionality with service discovery mechanisms of the system. Examples of such
mechanisms are RFID readers and discovery protocols such as Universal Plug
and Play (UPnP). Once a service has been recognised through service discovery,
the tagging system can provide functionality for reading and creating tags.

26

Chapter 4

State-of-the-Art analysis

This chapter looks into state-of-the-art within social tagging systems. The idea
of this analysis is to get a better understanding of tagging systems in general,
and to see how specific tagging systems have solved common design issues.

The tagging systems del.icious, Flickr and Youtube are presented in sections 4.1,
4.2 and 4.3 respectively.

Section 4.4 presents the comparison of the tagging systems together with a short
discussion of important differences.

4.1 del.icio.us

del.icio.us! is a social bookmarking web service which was launched in 2003. Each

user can create bookmarks for webpages, as well as search and browse through
bookmarks created by other users. What makes del.icio.us interesting in relation
to this work, is the use of a tagging system. Not only can users add descriptions
to their bookmarks, they can also add tags.

Users can create private bookmarks not available to other users, but the main em-
phasis of del.icio.us is to publicly share bookmarks as well as their accompanying
tags.

For a large number of webpages bookmarked in del.icio.us, the webpage has been
bookmarked by more than one user. In these cases, the system combines each
user’s tags into a list of common tags. By presenting the number of times a
tag has been used compared to other tags, the popularity and relevance of the
tag is indicated. As well as the straightforward list of tags shown in Figure 4.1,
del.icio.us also has the option of displaying tags as a tag cloud. Here, the number
of times a tag has been added is indicated by the font size and weight. An
example tag cloud is shown in Figure 4.2. Note however that Flickr was the first
website to implement tag clouds [17].

thttp://del.icio.us/

27

CHAPTER 4. STATE-OF-THE-ART ANALYSIS

common tags cloud | list

176 encyclopedia
161 reference
161 science
116 bialogy

113 nature

105 life
Figure 4.1: Tag list

common tags cloud| list

animals archive bDi0loQy database earth education

Eﬂﬂ}’ﬂ'ﬂp&dia environment evolution interesting
learning library life nature online photos

reference research resource SCIENCE species

taxonormy weh2. 0 wiki waorld

Figure 4.2: Tag cloud
4.2 Flickr

Flickr? is a photo sharing web service, launched in 2004. A fundamental difference
between Flickr and other social tagging systems is that tag creation is limited to
the owner of an item. Although tags added to a public photo can be viewed by
everyone as well as being searchable, it is only the user who uploaded the photo
who can create and edit these tags.

Flickr provides multiple levels of access control to photos. First, a photo can be
given private or public access. Private means that only the owner can view the
photo, while public allows everyone access. There is also the option of making a
photo part of a group. In this case, if the group is private then the photo can
only be viewed by members of the group. If the group is public, the photo can
be viewed by everyone.

http://www.flickr.com/

28

CHAPTER 4. STATE-OF-THE-ART ANALYSIS

4.3 YouTube

YouTube? is a video sharing website which has had an extreme increase in use
and popularity since it was launched in 2005. YouTube is an example of a system
which does not put much emphasis on the tagging features, but rather uses tags
to complement descriptions, comments, ratings and video categories.

Similar to Flickr, YouTube videos can only be tagged by the users who upload
them. Because of this, the video’s tags do not necessarily represent users’ general
understanding of how the video is best described. Also, the number of tags per
video is usually rather limited. This means there is no need for the system to
apply a tag selection algorithm to show a subset of the video’s tags.

Several mechanisms for tag-based navigation and search are provided. When
finding an interesting tag, one can click the tag to search for other videos with
the same tag. When a video is viewed, a list of other videos with similar tags are
shown, meaning that users can easily navigate from one video to another.

Although YouTube does not have a strong emphasis on communities, certain
features are provided to help users connect. For example, a user can subscribe to
another user, which means that when the second user uploads a new video, the
first user is notified.

4.4 Comparison

This section compares the design choices made for each of the presented tagging
systems. The comparison is shown in Table 4.1.

] Design issue ‘ del.icio.us ‘ Flickr ‘ YouTube ‘
Type of item Webpages Photos Videos
Tag sharing Public Public Public
Tag selection All All All
Limited by pop-
ularity
Private
Tagging rights Free for all Permission Self tagging
based
Tag scope Broad Narrow Narrow
Tag support Suggestive Blind Blind
Tag format Semi-restricted | Open Semi-restricted
Generic or specific | Instance Instance Instance

Table 4.1: Comparison of design choices

3http://www.youtube.com/

29

CHAPTER 4. STATE-OF-THE-ART ANALYSIS

One important observation regarding all these systems is that private and com-
munity tag sharing is not provided. Instead of separating into several levels, the
tag sharing only relies on the item which is tagged. This means that the item’s
tags are publicly available to all users that have access to the item. All in all,
the concept of communities is hardly used in any of the systems and only minor
features for connecting to other users are provided. This means that the potential
increase in quality of tags within communities, suggested by research [13], is not
taken advantage of.

The difference in degree of collaboration in the systems should be noted. Both
Flickr and Youtube are more in the direction of users tagging their own items,
rather than users collaboratively tagging each other’s items. This can be seen
from the design choices “tagging rights” and “tagging scope”. del.icio.us on the
other hand uses broad and free-for-all tagging, which means each user can give
his opinion by creating his own tags to an item. This is more of a collaborative
approach, and is more suitable if the aim is to create a folksonomy [16].

30

Chapter 5

Requirements specification

This chapter defines and formulates requirements, based on the findings of the
problem analysis. The problem analysis started by discussing how basic tagging
functionality can be provided and the design issues this involves. Next it looked
at how search and browse functionality can make use of the basic tagging features.
This chapter uses the same separation to structure the functional requirements.

First the functional requirements of the system are presented with Use Case
diagrams in Section 5.1 and further detailed with textual Use Cases in Section
5.2. Section 5.3 discusses requirement types, and presents a detailed requirements
specification.

5.1 Use Case diagrams

From the problem analysis, three main categories of functionality can be identifed;
Management, Browsing and Searching. This leads to the top level Use Case
diagram shown in Figure 5.1.

The Management category contains the basic tagging functionality identified
in the problem analysis. The Use Case diagram for Management is shown in
Figure 5.2.

The Browsing category is responsible for functionality related to browsing ser-
vices based on tags, also called tag based navigation. The Use Case diagram for
Browsing is shown in Figure 5.3.

Finally, the Searching category contains functionality for searching for services
based on tags. The Use Case diagram for Searching is shown in Figure 5.4.

31

CHAPTER 5. REQUIREMENTS SPECIFICATION

Lser

i

System

Management

Browse

Figure 5.1: Top level Use Case diagram

user

System

Add public tag

Add community tag

Add private tag

Remove tag

Figure 5.2: Management Use Case diagram

5.2 Textual Use Cases

This section presents the textual Use Cases. Each textual Use Case has a Main
Success Scenario, abbreviated “MSS”, which shows the main path of the Use

32

CHAPTER 5. REQUIREMENTS SPECIFICATION

System

View tag
information

User

Figure 5.3: Browsing Use Case diagram

System

Find similar
services

Search by keyword

User

Figure 5.4: Searching Use Case diagram

Case. In addition, there can be alternativate paths, given under “Extensions”.
Underlined text is a reference to another Use Case.

33

CHAPTER 5. REQUIREMENTS SPECIFICATION

5.2.1 Management

This subsection contains textual Use Cases for the Management category. Table
5.1 presents the Use Case Add tag and Table 5.2 presents the Use Case Remove
tag.

] ucCi1 | Add tag
Description The user adds a tag to a service
Primary actor | User
Preconditions | User has found a service
MSS
1 User selects tag visibility
2 User enters a tag name
3 System validates the tag name
4 System confirms that the tag has been added
Extensions
4a Tag is not valid
.1 System tells the user why the tag is not valid, return to MSS
at step 3
Table 5.1: Use Case 1: Add tag
] ucC2 | Remove tag
Description The user removes a tag he has previously created

Primary actor | User

Preconditions | User has previously added a tag to a service

MSS
User selects a tag

System displays option for removing tag

User chooses to remove the tag

System confirms that the tag has been removed

=W N

Extensions
2a Selected tag was not created by the user
.1 System does not display option for removing tag

Table 5.2: Use Case 2: Remove tag

34

CHAPTER 5. REQUIREMENTS SPECIFICATION

5.2.2 Browsing

This subsection contains textual Use Cases for the Browsing category. Table
5.3 presents the textual Use Case for View service. Table 5.4 presents the textual
Use Case for View tags. Table 5.5 presents the textual Use Case for View tag
information. Finally, Table 5.6 presents the textual Use Case for View user.

’ UucCs3 | View service
Description The user views a service
Primary actor | User
Preconditions
MSS

1 User selects a service to view
2 System displays service information and a list of the most
popular tags

Extensions
Table 5.3: Use Case 3: View service
] ucC4 | View tags
Description The user is viewing a service and wants to view a

complete list of the service’s tags

Primary actor | User

Preconditions | User is viewing a service

MSS
1 User chooses to view the service’s tags
2 System finds all the service’s public tags
3 System displays a list of the tags found, with the number of
times each tag has been added
Extensions

2a User wants to view only private tags
.1 System finds all the service’s tags created by the user, return
to MSS at step 3

2b User wants to view community tags

System displays a list of communities

User selects a community

System finds all the service’s tags that have been created by
members of the selected community, return to MSS at step
3

LW o =

Continues next page

35

CHAPTER 5. REQUIREMENTS SPECIFICATION

] ucC4 | View tags

Table 5.4: Use Case 4: View tags

] UCs | View tag information
Description The user is viewing tags of a service, and wants to
view more detailed information of a specific tag
Primary actor | User
Preconditions | User is viewing a service’s tags
MSS
1 User selects a tag
2 System displays a list of users that have added this tag
3 System displays a list of other services with the same tag
Extensions
Table 5.5: Use Case 5: View tag information
’ uUcCe | View user
Description The user is viewing a tag of a service, and wants to

view more detailed information of one of the users
that have added the tag

Primary actor | User

Preconditions | User is viewing a tag

MSS
1 User selects a user that has added the tag
2 System displays a list of other tags the selected user has
added
3 System displays a list of other services the selected user has
tagged
Extensions

Table 5.6: Use Case 6: View user

5.2.3 Searching

This subsection contains textual Use Cases for the Searching category. Table
5.7 presents the textual Use Case for Search by keywords and Table 5.8 presents
the textual Use Case for Find similar services.

36

CHAPTER 5. REQUIREMENTS SPECIFICATION

] ucr | Search by keywords
Description The user searches for services with tags matching the
given keywords
Primary actor | User
Preconditions
MSS
1 User enters one or more keywords
System compares services’ tag sets with the keywords to find
matching services
3 System displays services that matched
Extensions
Table 5.7: Use Case 7: Search by keywords
] ucCs | Find similar services
Description The user wants to find services that are similar to

the selected service

Primary actor | User

Preconditions | User has selected a service

MSS
1 User chooses to find similar services
2 System finds similar services by comparing the services’ tag
sets with the selected service’s tag set
3 System displays the resulting services
Extensions

Table 5.8: Use Case 8: Find similar services

5.3 Functional requirements

This section formulates and presents the functional requirements found through
problem analysis and Use Cases. The aim is to come closer to a system specifi-
cation, which can be used as a base for design and implementation. The section
starts with an explanation of different requirement types, in Section 5.3.1. Then
requirements for basic tagging functionality are presented in Subsection 5.3.2
and requirements for search and browse functionality are presented in Subsection
5.3.3.

37

CHAPTER 5. REQUIREMENTS SPECIFICATION

5.3.1 Requirement types

When analysing requirements for ASTRA, it is important to decide and clarify
what type of requirements are sought. Requirements can be categorised based
on which part of the system they apply to. One of the main challenges is to
make the platform provide sufficient functionality to serve as intended, without
it growing out of proportions. Too little functionality, and the platform is pretty
much useless. Too much, and the platform could end up being too complex and
hard to use. In other words, requirements that are only relevant in a few settings
most likely belong to specific applications built on top of the platform.

Based on the aim of ASTRA to develop a platform with accompanying end user
tools, requirement types can be divided into three categories:

Platform

The platform is the core of ASTRA, which contains the base functionality needed
for ASTRA applications. Essential and often used functionality should be part
of the platform.

End user tools

End user tools are software mechanisms that will help end users create awareness
applications [1]. Thus, requirements in this category are requirements for these
software mechanisms.

Applications

This category consists of requirements for specific applications, built to function
on top of the platform.

This project focuses on the platform and accompanying end user tools, rather
than specific applications. This means that the requirements sought are not
limited to one application or one possible use of ASTRA, but general requirements
needed for ASTRA to serve as a base for building a multitude of applications.

5.3.2 Basic tagging functionality

This subsection presents the requirements for basic tagging functionality. The
requirements are listed in Table 5.9.

] ID ‘ Description

FA1 It should be possible to create new tags for service in-
stances

FA2 Tag name suggestions should be given based on the un-
derlying service ontologies

FA3 A tag should be possible to remove by the user who
created it

Continues next page

38

CHAPTER 5. REQUIREMENTS SPECIFICATION

] ID ‘ Description

FA4 A tag’s visibility level should be possible to set when
creating it

FA4.1 | Tt should be possible to set the tag as private

FA4.2 | Tt should be possible to set the tag as public

FA4.3 | It should be possible to set the tag as visible to one or
more communities

FA5 Different users should be allowed to create the same
tag to the same service. The tags should be treated
as unique

FA6 | A user should be prevented from creating the same tag
more than once for a service, within the same visibility
level. For communities, this means once per community
FAT7 Public and community tags should not be allowed to
contain spaces and should not exceed a maxium length
FA8 It should be possible to query the system for a service’s
tags

FAS8.1 | It should be possible to retrieve tags at level public,
private or community

FAS8.2 | It should be possible to retrieve only a part of the re-
sulting tag set

FAR.3 | It should be possible to retrieve only the most popular
tags in the resulting tag set

FAS8.4 | It should be possible to find the number of times each
tag name has been added at public or community level
FA9 The platform must provide a suitable, platform indepen-
dent, interface to the platform functionality

Table 5.9: Basic tagging requirements

5.3.3 Browse and search functionality

This subsection presents the requirements for search and browse functionality.
The requirements are listed in Table 5.10.

] ID ‘ Description ‘

FB1 | It should be possible to query the system for the users
who have tagged a service with a given tag

FB2 | It should be possible to query the system for other ser-
vices tagged by a given user

FB3 | It should be possible to find who has added a tag

FB4 | It should be possible to find which other tags a user has
added

Continues next page

39

CHAPTER 5. REQUIREMENTS SPECIFICATION

] ID ‘ Description ‘

FB5 | It should be possible to find which other services a user
has tagged

FB6 | It should be possible to retrieve services that have been
tagged with a given tag

FBT7 | It should be possible to search for services by keywords.
FBS8 | It should be possible to find services that are similar to
a given service, based on the services’ tag sets.

Table 5.10: Browse and search requirements

40

Chapter 6

Design

This chapter proposes a design solution for the tagging system. The aim of the
design is to fulfil the requirements presented in the previous chapter, within the
framework of UbiCollab. This should lead to an overall tagging system architec-
ture.

Section 6.1 introduces relevant UbiCollab concepts.

Next, Section 6.2 discusses how the tagging system can extend UbiCollab.
Section 6.3 discusses the representation of tags.

Section 6.4 looks at deployment issues.

Finally, the architecture resulting from the discussions is presented in Section 6.5

6.1 UbiCollab concepts

This section discusses important UbiCollab concepts, as presented by the Ubi-
Collab whitepaper [3]. The concepts are essential for the design and integration
of a tagging system into UbiCollab.

6.1.1 Collaboration spaces and instances

Collaboration Space (CS) and Collaboration Instance (CI) are important terms
used by the UbiCollab architecture [3]. A CS is a physical location that could
contain a number of users and physical devices. Examples are the office and the
home. Cls are virtual contexts for collaboration among users from one or more
CSs. A CI could contain information such as participant details and collaboration
history. Simply put, the CI is where users communciate and share information.

These concepts are illustrated in what UbiCollab calls the human grid, shown
in Figure 6.1. Physical locations are represented by CSs, each with one or more
users. The CI in the middle is the virtual context for collaboration between the

41

CHAPTER 6. DESIGN

users.

Collaboration Collaboration
Space 1 Space 2

Collaboration

instance

Collaboration Collaboration
Space 3 Space 4

Figure 6.1: Human grid

In many ways, the CI is similar to a community. When users participate in a
CI, they are part of a group of people, most likely with common interests. This
could be a group of students working on the same project, company colleagues,
or family members.

6.1.2 Services

Services in UbiCollab are external devices, artifacts or web services, represented
by Service Proxy (SP)s. A SP is an API that describes how to interact with the
service, and can be seen as a sort of service driver.

One of the main ideas in UbiCollab is that services can be shared with other
users through publishing them to Cls. For this to happen, first the service has
to be discovered using a discovery protocol such as RFID or Universal Descrip-
tion, Discovery and Integration (UDDI). Next a SP representing the service can
be installed in the user’s Service Domain (SD). At this point the service, as
well as other services in the user’s SD, can be published to Cls that the user is
participating in. Figure 6.2 illustrates the concept of a SD.

42

CHAPTER 6. DESIGN

Senvice domain

Collaboration space Collaboration space -\|

@ &

Installing Service represented
a sernvice by a proxy
k4
€20
Service Service

Figure 6.2: Service domain

6.1.3 Service Registry

The Service Registry (SR) is a repository of services. The idea in UbiCollab is
to have one SR for each UbiNetwork. In other words one SR acts as a repository
of all services within a UbiNetwork. Each service has several attributes which
are stored as service details in the SR. Among these are name, owner and loca-
tion. In addition each service has two pointers, the description Uniform Resource
Identifier (URI) and the service URI. The description URI is a pointer to the
service’s description. The service URI is a pointer to the invocation point of the
service, or in other words the service’s address. As this address is unique, it can
be used as an identifier for the service.

There is no tight coupling between SR and SD, however there are a few relations.
First, it is possible to find services in the SR which can be installed in the SD.
Further, it is possible to “advertise” your services (installed in SD) in the SR.

6.1.3.1 Service Discovery Manager

The Service Discovery Manager (SDM) service, which runs locally on a user’s
UbiNode, handles discovery of services. It supports different discovery protocols,
such as RFID, Bluetooth and UPnP. It is possible to register as a client to SDM,
“listening ” to service discoveries. This means that whenever SDM discovers a
service, clients are notified. SDM also supports the use of SR, which means access
to SR is gained through SDM.

6.1.4 Deployment

Two concepts are important regarding the deployment of UbiCollab components:

43

CHAPTER 6. DESIGN

UbiNode

A UbiNode is a mobile device which acts as a user’s personal server. Typically,
a UbiNode will run central UbiCollab services such as the SD-Manager and CI-
Manager.

UbiNetwork

A UbiNetwork is a network of users sharing the same user management infras-
tructure. In most cases, UbiNetwork will have a special node called UbiHome,
which runs shared services. This means that UbiHome acts as a sort of server
within the UbiNetwork.

6.2 Tags in UbiCollab

This section looks at how the analysis and requirements found in previous chap-
ters can be used to extend UbiCollab with support for social tagging. From the
UbiCollab architecture and concepts introduced in the previous section, two main
cases of tagging have been identified. These will be discussed in the following sub-
sections.

6.2.1 Private tagging

Private or personal tags are tags added by a user that are not visible to other
users. As can be seen from the introduction to the concepts of SD and SP,
services are available in a user’s SD once they have been installed. One approach
to providing private tagging functionality would be to manage and store private
tags within the user’s SD. In other words, private tags could be added by the user
to services present in his SD. A major probem with this approach is that installed
services, represented by their SPs, are not necessarily permanently located in the
user’s SD. For example services that are never used could be removed. What
happens to the services’ tags in this case? To rephrase the problem; it is not
favourable that all services that are to be tagged privately have to be installed in
the user’s SD.

A SR manages a repository of services within one UbiNetwork. Once a service
has been registered, it is permanently in the SR, unless of course the service is
not in use anymore. This means that service representations in the SR are not
exposed to frequent installation and uninstallation such as in a user’s SD. Thus
a better approach would be to associate tags with the representation of services

in the SR.

44

CHAPTER 6. DESIGN

6.2.2 Collaborative tagging

While the previous section considered tags created and viewed privately, this cat-
egory involves a community of users or everyone collaboratively tagging services.
The main difference between collaborative and private tagging is that collabora-
tive tags are shared between users. This means that when one user creates a tag
to a service, the tag is automatically available to other users. UbiCollab supports
communities by providing collaboration instances. This means that the basic
mechanisms needed for community tagging are already in place. Public tagging
is simply a sub-case of community tagging, where the collaboration instance is
open to everyone. The connection between community tags and Cls can simply
be implemented by using the CI ID.

For the same reasons as with private tagging, it is not appropriate to associate
collaborative tags with a user’s SD. For collaborative tags this would also mean
that tags would be spread among different users’ SDs, making tag sharing difficult.
Thus, a more centralised solution is needed, which will be discussed further in
Section 6.4.

Another difference between collaborative tagging and private tagging is that a
connection to the tag creator is needed. This is needed to fulfil the requirement
that more than one user can add the same tag to the same service. Also, the list
of users who created a tag can be retrieved for tag-based navigation purposes.
Again, this connection can simply be implemented by using a user ID.

6.3 Tag representation

From the previous sections, three relations between tags and other entities are
identified

Service

Because a tag is applied to a service instance, there is a connection between tag
and service. ServiceURI is the service identifier.

User

A tag is created and owned by a user, which means there is a connection between
tag and user. Also, equal tags created by different users are treated separately.
UserID is the user identifier.

Collaboration Instance

If a tag is created at community level, there is a connection between tag and
collaboration instance. This relation can be seen as optional, since it doesn’t
apply for public and private level. CiID is the collaboration instance identifier.

In addition to the identified relations, a tag has the attributes ID and name. ID is
a unique identifier for the tag, while name is the tag’s text string representation.

45

CHAPTER 6. DESIGN

The resulting ER diagram is shown in Figure 6.3, including cardinalities between
the entities.

Ta
1.1 g .
1D
name
(0.1
<>|:ur <>Within <>CreatedBy
(0.n) (0.n) (@.n
Service Collaboration Instance User
SenvicelJR| CilD UserlD

Figure 6.3: ER diagram of tag representation

6.4 Deployment

This section looks at how the tagging functionality can be deployed into one or
more platform services.

6.4.1 Modularity

An important question that comes from the discussion so far is whether to extend
existing UbiCollab services, such as SD-Manager and SR with tagging function-
ality. In order to keep UbiCollab modular and simple, which is an important part
of a SOA, it is better to separate the tagging functionality into its own service
or services. This solution provides a loose coupling between the tagging system
and other UbiCollab components. Also, it helps avoid overloading existing Ubi-
Collab services and also gives the possibility of having the tagging functionality
as optional functionality.

6.4.2 Client and server

The choice of where to handle and store tags mainly relies on which part of the
system the tags should be available to. Also, the problem of large amounts of
tags needs to be considered, and how a centralised solution implies a potential
bottleneck.

Private tags have the advantage of only needing to be available to the tag owner.
This means that private tags can and should be handled locally, for example in

46

CHAPTER 6. DESIGN

the user’s UbiNode. Public and community tags however need to be available to
many users. Here it is possible to make use of the fact that services belong to
and are registered in one UbiNetwork. This means that tags can be handled by
UbiHome within a UbiNetwork rather than globally, which gives a distributed
solution where each UbiNetwork takes care of its services’ tags.

This suggests a separation of tagging functionality into two services, a server
service running on UbiHome and client services that run on users’ UbiNodes.
The server service handles public and community tags, while the client service
handles private tags.

In addition to the separation of tag visibility levels, the idea is that end user
tools and applications communicate with the client service, rather than directly
with the server service. When needed, the client communicates with the server
service, for example when handling community or public tags.

One of the benefits of this solution is that it opens up for the possibility of
local processing. For example the client and server can communicate in the
background, without requiring the user to have a Graphical User Interface (GUT)
running. As a scenario, consider a user coming into a room filled with several
services. The client service could automatically get the services’ public tags from
the server service, anticipating that the user will want to view these.

6.4.3 Communication with other services

As has been talked about, there is a connection between the tag management part
of the system and the SR. This is because each tag is connected to a registered
service. Information about the service a tag is connected to can be retrieved by
invoking appropriate functionality in SR through Service Discovery Manager. In a
similar way, tag management is connected to user management and collaboration
instance management, because each tag is connected to a user and possibly also
a collaboration instance.

For all these connections between tag management and other parts of UbiCollab,
there is the question of whether they should be handled by the tag management
platform functionality. Alternatively, the connections can be “abstract” on the
platform level, and then it’s up to the end user tools and applications to integrate
the parts. For the major part the latter should be the preferred choice, because
the platform should not decide how the end user tool or application implements
the integration. Another important argument is that couplings between modules
of the platform should be minimalised.

6.5 Architecture

The overall architecture resulting from this chapter is shown in Figure 6.4. This
shows the relations between the main components. The components are presented

47

CHAPTER 6. DESIGN

—Gag Manager TDL‘D—

. Tag Manager Service Discovery
Private tags Client) (Manager
Public tags Tag Manager

. Persistent g g
Community tags Server)
Figure 6.4: Tagging system architecture
| i | i
: : getSeniceDetails(sarvicelri) : :
] i Service sarvice ' T
A e IR

getPublicTags(servicallri) I

Tag(] tagList

LI T

Fetch tags

Figure 6.5: Component interaction

in the following subsections.

For the platform services, APIs of the methods

needed to implement the functionality are presented.

48

CHAPTER 6. DESIGN

To illustrate how the components interact, a sequence diagram is shown in Figure
6.5. The diagram shows the interaction that could occur when Tag Manager
Tool wishes to find a service’s information and associated tags. Given a service
URI, Tag Manager Tool queries Service Discovery Manager to get the
service details. Next, Tag Manager Tool queries Tag Manager Client to
retrieve the service’s public tags. Because public tags are handled by the server,
Tag Manager Client gets the public tags by calling Tag Manager Server,
and does necessary local processing if any, before the list of tags is returned to
the Tag Manager Tool.

6.5.1 Tag Manager Server

Tag Manager Server handles and stores public and community tags. The
service is meant to act as a server for instances of Tag Manager Client. This
means that the service should run on a shared node in UbiCollab, for example
UbiHome.

6.5.1.1 API

ZZintefaces=

TMSerrerSenice

addCommunityTag
addPublicTagd
deletePubQrComTag
getCommunityT aga))
getPublicTags)
getServicesByTagl
getSernvicesBylzem)
getUsersByTagll
findSenices
findRelatedSenvices)

Figure 6.6: TM Server service API

The functionality provided by the service’s API can roughly be divided into two
categories, one for creating and removing tags and one for finding and retrieving
tags, users and services. The API is shown in Figure 6.6.

The methods addPublicTag and addCommunityTag create new public and com-
munity tags respectively, while the method deletePubOrComTag provides the
user with the possibility of deleting a public or community tag he has created.

Functionality for retrieving tags for a service is provided by the methods getPub-
licTags and getCommunityTags. The methods getServicesByTag and getSeruvices-
ByUser provide two ways of finding services. The first method finds and returns
all services that have been tagged with a certain tag, while the latter finds all

49

CHAPTER 6. DESIGN

services that have been tagged by a certain user. The method getUsersByTag
finds and returns all users that have added a certain tag to the a certain service.
Finally, two methods provide functionality for searching. findServices searches
for services matching keywords, while findRelatedServices searches for services
with tags similar to the tags of a certain service.

6.5.2 Tag Manager Client

Tag Manager Client is the local service which end user tools and applications
should communicate with, rather than communicating directly with Tag Man-
ager Server. The main reason for this is to open up for possible local processing
in future implementations, as discussed in Subsection 6.4.2.

6.5.2.1 API

<<intefaces>
ThMClientService

addFrivateTag
addCammunityTagd
addPublicTagl
deletePrivateTag
deletePubOrComTagl
getPrivateT aga]
getCommunityTags])
getPublicTagal
getSenvicesByTagd
getSensicesBylzan])
getlzersByTagl
findSenices)
findRelatedSemwices)

Figure 6.7: TM Client service API

In addition to the methods dervied from the server service, the client service’s
API provides functionality for handling and storing private tags. The API is
shown in Figure 6.7.

The method addPrivateTag creates a new private tag. deletePrivateTag provides
the user with the possibility of deleting a private tag he has created. Finally, the
method getPrivateTags finds and returns private tags for a service.

6.5.3 Tag Manager Tool

The Tag Manager Tool component provides users or applications with access
to the underlying platform components. To do this, the tool communicates with

20

CHAPTER 6. DESIGN

Tag Manager Client and indirectly with Tag Manager Server through Tag
Manager Client.

In addition to providing the tagging functionality, the tool combines and inte-
grates other UbiCollab services. To retrieve service details, the tool communi-
cates with Service Discovery Manager. An example of this was given in the
sequence diagram earlier (see Figure 6.5). In a similar way, the tool needs to
communicate with other UbiCollab services to retrieve user and CI information.

Finally, this component can be used as a demonstrator tool for demonstrating
and evaluating the implemented solution.

51

Chapter 7

Implementation

This chapter describes the implementation of the social tagging system design
solution presented in the design chapter. The platform services Tag Manager
Client and Tag Manager Server were implemented and are presened with class
diagrams, explanations of service methods, and discussions on implementation
details. A Tag Manager Tool was also implemented, to provide access to the
platform services’ functionality and for demonstration purposes. A presentation
of the tool’s GUI is given, and various implementation details are discussed.

Section 7.1 presents the implementation of the platform services.

Section 7.2 presents the implementation of the tool.

7.1 Tag Manager platform services

This section presents the implementation of the server service and client service
bundles.

7.1.1 OSGi

Both services were implemented as OSGi bundles for the Knopflerfish framework!
which UbiCollab uses. This means that the services can be installed, started,
stopped and uninstalled in the same way as other UbiCollab services, on devices
running the framework. Knopflerfish is based on the Java programming language,
which means that the bundles were implemented using Java. The bundles were
named TMClient and TMServer, using the abbreviation TM to denote “Tag
Manager”.

Service functionality was provided as a web service interface by using the osgi-axis
bundle in Knopflerfish. When this bundle is installed and started, it automatically
takes care of publishing bundles’ service interfaces as web service interfaces.

Thttps:/ /www.knopflerfish.org/

52

CHAPTER 7. IMPLEMENTATION

7.1.2 Tag storage

The method used to store tags for both services is a MySql? database. For each
service, a “Tag” table is used, with the attributes needed to represent a tag. For
the client service, this is simply the tag name and the service URI. The server
service uses additional fields for user and collaboration instance IDs. To represent
public tags, the collaboration instance ID is set to the value “0”.

7.1.3 Type representation

Several of the services’ methods return tags, users or services. The natural way of
implementing this is to represent a type with a class, and then return an instance
or an array of instances of the class. However, the Knopflerfish osgi-axis bundle
does not currently support the conversion (deserialising) of class instances to a
suitable representation when returning data from a web service call. This means
that service methods have to “manually” return an appropriate representation of
types. To do this, strings of Extensible Markup Language (XML) were used. A
consequence of this was that service methods returning types such as Tag or Tag]]
had to be changed to String. An example of a list of tags is given below.

<TagList>

<Tag ServiceUri="http://nabaztag.no" UserId="56" CiId="45" Name="messaging"/>
<Tag ServiceUri="http://nabaztag.no" UserId="103" CiId="70" Name="friends"/>
</Taglist>

7.1.4 'TMServer bundle

This section describes the implementation of the Tag Manager Server service
bundle, named TMServer. The service was implemented as an OSGi bundle,
providing its functionality through a web service interface. The main responsibil-
ity of the service is to handle public and community tags by providing appropriate
methods for creating tags and retrieving tags, users and services.

7.1.4.1 Class diagram

The bundle’s class diagram is shown in Figure 7.1. The diagram shows the main
classes and methods, and relations between classes.

The class Activator implements the Knopflerfish interface BundleActivator,
thus implementing the methods start and stop which are called when the bundle
is started or stopped. The main job of start is to register and publish the service
interface represented by the interface TMServerService, while stop performs
necessary resource cleanup.

2www.mysql.org

93

CHAPTER 7. IMPLEMENTATION

<<interfaces>

ThiSenerSemice

addCommunityTaginame : String,zenvicelni : String,userld : int,cild : int) : String
addPublicTaginame : String.sendcelri : String,userld : inf) : String
getCommunityTagslservicelri : String,userld : int,cild : intlimit : int,group : boolean) : String
getPublicTagazervicelri : String,userld : int,limit : int,group : boolean) : String
getSemwicesByTaginame : String,cild : intlimit : int) : String

getSenicesBylzenuzerld :intlimit : int): String

getlizersByTaginame : String.sendcelrni : String,cild : int): String

findSenicesbeyward : String,cild : int): String

Senrice

senricelri @ String

toX ML - String

& Servicelist
| . senricelist : Araylist<Senice>
| “<realizexs
: ThSerermpl addSenicelsenice | Service) : woid
Activator toX ML - String
connectTolratabase() : Connection User
T i : i :
! walidateTaginame : String) : boolean id - int
|
=<realizes>=
‘R'? realize toMLC : String
“dinterfaces>
BundleActivatar
Tag TaglList .
starfcontext : BundleContexd) : woid - - i R Hserlist
stop{zontext : BundleContexd) : woid id :int taglist : Amaylist<Tag> ugarlist : ArrayList<Uzars
name : String)
servicelrn : String addTagitag : Tag): veid addUseruser : User) : void
userld @ int toXMLE : String toXMLE : String
cild - int tosbLC ount() : String
count :int
tohALD) : String
toXMLCount] : String

Figure 7.1: TMServer class diagram

Tags, users and services are represented internally with the classes Tag, User and
Service. To convert an instance to XML, each class has a toXML method which
returns a string of XML. For each class there is an associated class for containing
a list of instances. When the to XML method is called on a list class, a string
of XML representing the list is generated by calling the toXML on each of the
list members. The classes Tag and TagList also have the method toXMLCount
which is used in the case of duplicate tags being merged. In that case, the number
of copies (count) of each tag is included.

TMServerService is the interface published and available through web service
calls. It is is almost identical to the one presented in the design, except that the
method for deleting tags was not implemented due to time constraints. Also, the
method for finding related services was not implemented. The implementation
of the interface is done by the class TMServerImpl. A presentation of the
implementation of each method is given in the following subsection. In addition
to these methods, TMServerImpl has methods for connecting to the database
and for validating a tag.

7.1.4.2 Implementation of service methods

Following is a presentation of TMServerService’s methods. For all methods,
errors due to missing or invalid parameters are handled by returning an appro-

o4

CHAPTER 7. IMPLEMENTATION

priate message describing the error, for example “UserID missing”. Some of the
methods have a “limit” parameter, which limits the number of objects (tags, ser-
vices or users) to the given number.

addPublicTag

This method creates a new public tag with the specified name, associated with the
given service URI and user ID. To create the tag, a database query is performed.
The method returns a message with the result of the operation.

addCommunityTag

The implementation of this method is identical to addPublic Tags, apart from the
additional CI ID specifying which CI the tag belongs to.

getPublicTags

This method performs a database query to find public tags matching the service
URI, and returns a list of tags. If the optional user ID parameter is specified,
only public tags created by the given user are returned. The method also has a
“oroup” parameter which decides if tags with the same name should be merged.
If the parameter is true, duplicate tag names are returned as one, including the
number of times the tag name occurred.

getCommunityTags

The implementation of this method is identical to getPublic Tags, apart from the
additional CI ID. Only tags within the specified CI are returned.

getServicesByTag

This method generates a list of services represented by service URIs, by perform-
ing a database query for services that have been tagged with the given tag name.
The method also has a parameter for limiting services to a CI.

getServicesByUser

This method generates a list of services represented by service URIs, by perform-
ing a database query for services that have been tagged by the given user.

getUsersByTag

This method generates a list of users represented by user IDs, by performing a
database query for users that have added the given tag to the given service. The
method also has a parameter for limiting services to a CI.

findServices

Finally, this method implements a simple search. The method only accepts a
single keyword, and finds services with tag names exactly matching the keyword.
The services found can be limited to a CI by using the CI ID parameter. The
method returns a list of services represented by service URIs.

95

CHAPTER 7. IMPLEMENTATION

7.1.5 TMClient bundle

This section looks at the implementation of the Tag Manager Client service bun-
dle, named TMClient. The service was implemented as an OSGi bundle, provid-
ing its functionality through a web service interface. The service handles private
tags, and acts as an intermediatery between tag management tools and the server
service.

In the current implementation, the client service does not perform any local
processing for public and community tags. This means that web service calls
regarding public and community tags are simply passed on to the server service.
Because the client and server services do not run in the same OSGI context, it
is not possible for the client service to use local OSGI method calls to do this.
Instead, a proxy had to be generated, which is a set of classes and methods for
handling method calls to a remote web service. The proxy was generated using
a tool in the axis-osgi bundle.

7.1.5.1 Class diagram

<<interfaces=>
ThClientService

addPrivate Taginame : String.servicellri @ String): String

addCammunityTaginame : String,zervicelni : String,userd : int.cild : int): String
addPublicTaginame : String.servicelri : String,userld : inf): String

getPrivate Tags(zenicelri : String.limit: int): String

getCommunityTagazervicellri @ String,userld @ int,zild @ int,limit : int,group : boolean): String
getPublicTagsserviceUri : String,userld : int,limit : int,group : boolean) : String
getSenvicesByTaglname : String,cild @ intlimit : int) : String

getSenvicesByUseruserld : int,limit : inf): String

getlsersByTaglname : String,servicellri : String,cild @ inf): Sting

findSenicesbeywward : String,cild : int) : String

Py
: <<realizes> Taglist
Activator ThiClientimpl taglist: AmayList<Tags
addTagrtag : Tag): void
toXhALD) : String
X connectTolatabase(): Connection
: Tag
1 <<realizes»
\-\7 id :int
name : String
Z2intefaces> ThiSemerlmplSenicelocatar sericelri : String
BundleActivator
toXhALD) : String
starfcontext : BundleConte:t) : woid
stoploontext : BundleConte:t) : woid

Figure 7.2: TMClient class diagram

The bundle’s class diagram is shown in 7.2

Similar to the server service, a Tag class is used to represent a Tag, with an
associated list class. The difference is that no method for including tag count is
used, as duplicate private tags cannot exist. Classes for representing services and
users are not needed, since all method calls that need to represent these types
are passed on to the server service.

26

CHAPTER 7. IMPLEMENTATION

TMServerImplServiceLocator is the proxy class used to retrieve a server
service object through which web service calls can be invoked.

TMClientService is the interface published and available through web service
calls. Similar to the server service, the interface is identical to the design, except
for delete methods not being implemented. The implementation of the TM-
ClientService interface is done by the class TMClientImpl. A presentation
of the implementation of each method is given in the following subsection. In
addition to these methods, TMClientImpl has a method connecting to the
database.

7.1.5.2 Implementation of service methods

Following is a presentation of TMClientService’s methods. Because all meth-
ods regarding public and community tags are passed on to the server service,
these methods are not repeated here.

addPrivateTag

This method creates a new private tag with the specified name, associated with
the given service URI. The tag is created through a database query.

getPrivateTags

This method performs a database query to find private tags matching the service
URI, and returns a list representing the tags.

7.2 Tag Manager Tool

To provide access to the platform services’ functionality, a Tag Manager Tool
was implemented. This section describes implementation details of the tool, and
presents the tool’s GUI.

7.2.1 Implementation details

First, the following subsections look at some details of the implementation.

7.2.1.1 Microsoft . NET

The implementation of the tool was done using Microsoft’s .NET platform and
the programming language C#. The reason for choosing .NET is that making
GUlIs is easier compared to many other platforms and programming languages.
Also, by using a different language than Java, the platform and programming
language independency of the implementation is shown.

o7

CHAPTER 7. IMPLEMENTATION

7.2.1.2 Combining platform services

To communicate with other UbiCollab platform services, web service references
were created using a tool in Microsoft’s Visual Studio programming environment.
This automatically created the necessary functions for invoking methods on re-
mote web services.

To provide the tagging system’s functionality, a web service reference was created
to the TMClient service. Through this reference, the application is able to
invoke the TMClient service’s methods.

To retrieve service details, the idea was to communicate with Service Domain
Manager. However, the needed functionality to find and get a service’s details
based on the service URI had not yet been implemented. This meant that a
reference directly to the Service Registry service had to be created. Through
the reference, appropriate methods can be invoked to retrieve service details by
specifying a service URI.

Finally, the tool integrates with the service discovery part of UbiCollab. By
creating a web reference to the Service Discovery Manager service, the application
can register as a client interested in discovered services. Whenever a service is
discovered, the tool is notified.

The tool should also communicate with platform services regarding user and CI
details. But as these services are not yet implemented, this was not possible.
Instead, dummy values for user and CI names and IDs were used.

7.2.2 RFID reader

To discover services using an RFID reader, the tool SDPluginRFID needs to be
run in parallell to Tag Manager Tool. The plugin has been developed as part
of the service discovery implementation by a fellow UbiCollab team member [7].
It uses bluetooth to connect to the RFID pen. Whenever the pen reads an RFID
tag, the tag data is registered by the plugin and passed on to Service Discovery
Manager. At this point, Tag Manager Tool is notified of the discovery.

7.2.3 GUI

The tool’s GUI is separated into three main tabs (sections). For each tab, an
explanation of what the tab does is given accompanied by a screenshot with
labels explaining what each part of the tab does.

7.2.3.1 Service

The Service tab displays a service’s name, description and other information.
In addition to service details, a list of the service’s tags is shown. The level of

o8

CHAPTER 7. IMPLEMENTATION

EB Tag Manager

CEX

Service |Tag | Search [Shows service details and the

service description

Service information

e
Type
Lacation
Owiner

A list of the service's tags. If level public or|
) community, the number of times each tag
Service's lags has been added is shown,

Select tag level T aqg list

Public v P

This drop-down list is used to
select if tags at public, private or =
community lags are shown.

Yiew tag
Create new tag
I - A lag can be selected and viewed,
) m which means the tag is loaded in the
"Tag" tab.
A new tag can be created 1

by entering the tag name
and submitting

Figure 7.3: Service tab

tags shown can be selected in a drop-down list. For each of the tags it is possible
to select the action “view tag”, which will load the tag in the Tag tab. Finally,
a new tag can be created by entering a tag name and submitting. The Service
tab is shown in Figure 7.3.

7.2.3.2 Tag

When a tag is selected, the Tag tab displays the tag’s name and the name of the
service which the tag belongs to. The main purpose of this part of the application
is to show possible ways of providing tag based navigation. Therefore, a list of
users who have added the tag to the service is displayed. When a user is selected,
two more lists are shown. One displays other tags the selected user has added to
the service. The other shows other services the selected user has tagged. In both
cases it is possible to continue navigating by selecting items in the lists. The Tag
tab is shown in Figure 7.4.

7.2.3.3 Search

The last part of the application is the Search tab. It provides a simple search
feature, where a keyword can be entered and submitted, and a list of services

29

CHAPTER 7. IMPLEMENTATION

[‘EJ Tag Manager Shows the tag's name and the
sarvica it balongs to

| Servicej Tag Search|
Tag infarmation
Tag name
Service
Dsnty A list of users that have
added this tag to the service
1 ———— isshown. Ausercanbe
selected.
Uger tags User services
. When a user is selected in
When a user is selected in Other tags created by the Other services tagged by the list above, a list of other
. A selected user the selected user)
tha list above, a list of other services the user has
1 [/ lagged is shown.

tags the user has added to
the service is shown.

View tag View service

A sarvica can be selected and
viewed, which means the service
is loaded in the "Service" tab

A tag can be selected and viewed,
4 which means the tag is loaded in
this tab.

Figure 7.4: Tag tab

with tags matching the keyword is shown. For each of the resulting services it
is possible to select the action “view service”, which will load the service in the

Service tab. The Search tab is shown in Figure 7.5.

60

CHAPTER 7. IMPLEMENTATION

Search keyword can be entered and

! Tag Manager submitted to perform a search for
Service || Tag [Saarch sarvices with tags matching the
| |] I";E}"'I'I'Drd

Search

-)

Results
Name Type Location Tags
\ When a search has been performed,
a list of resulting services is shown.
Each servica is shown with the most
important details, and a list of popular
public tags.
View service

A service can be selected and
viewed, which means the service will

be loaded in the "Service” tab,

Figure 7.5: Search tab

61

Chapter 8

Demonstration

This chapter first presents the demonstration of the implementation. The demon-
stration was made using scenarios, with the purpose of showing the functionality
and possible uses of the tagging system. Also, the system was demonstrated
informally to several members of the UbiCollab team.

Next, the design and implementation is evaluated. Strengths and weaknesses
of the solution are discussed, and the platform services are compared to the
requirements specification.

Section 8.1 demonstrates the implementation.

Section 8.2 evaluates the solution.

8.1 Scenarios

The functionality of the implementation is illustrated with several scenarios, each
showing different features. Each scenario is accompanied by screenshots, to show
how information is presented to the user and how interaction with the application
occurs. Also, a walkthrough of component activation and communication between
components is given. The bundle names TMClient and TMServer are used to
denote the platform services, while Tag Manager Tool is abbreviated TMTool.

8.1.1 Service discovery

Katia has just walked into one of the reading rooms at her university. She’s
looking for a service to help her communicate with her family. She’s carrying her
PDA, which is running the TM Tool.

« TMTool has registered as a client with Service Discovery Manager

In the corner of the room is a device which looks like a rabbit. Curious to find
out if the device could be of any use to her, she walks over to it. She uses her

62

CHAPTER 8. DEMONSTRATION

Figure 8.1: Service discovery with RFID

RFID pen to scan the label next to the device (see Figure 8.1), and after a few
seconds the tag application notifies her that a service has been identified.

. Service Discovery Manager notifies TMTool that a service has been discov-
ered and gives the serviceUri “http://nabaztag.no/”

. TMTool displays a question asking whether to load the service or not

She confirms that she wants to view the service’s details, and is presented with
service name, description and other information. Also, a list of tags created by
others is shown.

« TMTool calls the method getServiceDetails on Service Registry, with ser-
viceUri “http://nabaztag.no/”

. Service Registry returns the service’s details

« TMTool calls getPublic Tags on TMClient with serviceUri “http://nabaztag.no/”,
userld 0, limit 10 and group true, on TMClient

. TMClient passes the method call on to TMServer

. TMServer returns a list of grouped public tags of the service, including tag
count

. TMTool displays the service details and tag list

63

CHAPTER 8. DEMONSTRATION

Tag Manager |Z| |E| [5__<|

Service | Tag Search

Service information

Mame M abbzy
Type Mabaztag
Loc:ation w002
COwrer n]l

A rabbit-shaped device with moveable ears. Can
zend text and audio mezsages, az well az
movement-messages

Service's tags

Select tag level Tang list

Public w Burirg [3)
rabbit [2]
friends (2]
arimal [1]
zmall [1]
white-rabbit [1]
maving-ears [1) bl

>

Create new tag

(—

Figure 8.2: Viewing the discovered service’s details and tags

8.1.2 Creating tags

Katia is very happy with the Nabaztag rabbit, especially the moving ears. They
are perfect for sending discreet messages. Wanting to share her experience with
her collaboration instance of friends and family, she decides to create the tag
“discreet-message”.

« TMTool calls addCommunityTag on TMClient, with tag name “discreet-
message”, serviceUri “http://nabaztag.no/” and the userld of Katia and
the collaboration instance ID of her community

« TMClient passes the call on to TMServer

« TMServer validates and stores the tag and returns a message saying the tag
was succesfully added

She’s so happy with the rabbit that she considers buying one to put in her apart-
ment. She will look more into how she can get one when she comes home. There-
fore she creates the private tag “to-buy”, so she doesn’t forget (see Figure 8.3).

64

CHAPTER 8. DEMONSTRATION

Semvice's bags

Select tag level Tag list

Private L to-by

Create new tag

Figure 8.3: Creating a private tag

« TMTool calls addPrivateTag on TMClient, with tag name “to-buy” and
serviceUri “http://nabaztag.no/”

. TMClient stores the tag and returns a message saying the tag was succes-
fully added

8.1.3 Tag-based navigation

John is looking through the list of tags for a service he found, but the list is rather
large and cumbersome to read. Therefore he chooses to view tags only within his
collaboration instance of fellow students, whom he also thinks are more likely to
share his opinions.

. TMTool calls getCommunityTags on TMClient. Parameters are serviceUri
“http://www.ntnu.no/bulb”; userld 0, limit 10, group true, and the collab-
oration instance ID

« TMClient passes the call on to TMServer

. TMServer returns a list of grouped community tags for the service, including
tag count

. TMTool displays the tags

One of the tags is “no-messaging”. Wanting to find a service with messaging
capabilities, he selects the tag, and a list of users who have added this tag is
shown.

« TMTool calls getUsersByTag on TMClient, with tag name “no-messaging”,
serviceUri “http://www.ntnu.no/bulb”; limit 10 and the collaboration in-
stance ID

65

CHAPTER 8. DEMONSTRATION

. TMClient passes the call on to TMServer

« TMServer returns a list of users that have added the tag “no-messaging” to
the service

« TMTool displays the users

One of the users who added the tag is his friend Camilla. Selecting her name, a
list of other services tagged by her is shown (see Figure 8.4). It turns out that
one of the services is exactly what he’s looking for.

« TMTool calls getServicesByUser on TMClient, with the userld of Camilla
and limit 10

« TMClient passes the call on to TMServer

« TMServer returns a list of services that have been tagged by Camilla
. TMTool displays the services
Tag Manager EIEX

Sewiu:e.| Tag |Searu:h

T ag information

Tag name no-Mmessaging
Service Bulb
lzers

Carmilla

Idzer tags

Other tags created by the

| zer services

Other zervices tagged by

zelected user the selected user
light Mabbzy

zimple Bulb

easytouse

Wiew service

Figure 8.4: Tag-based navigation

66

CHAPTER 8. DEMONSTRATION

8.1.4 Searching

Paul is looking for a nearby messaging service for communicating with a colleague.
He doesn’t know about any or where to look, so he uses the search feature of Tag
Manager. He uses the keyword “messaging”, which gives him two services (see
Figure 8.5). One of them looks promising, so he installs it in his service domain
and publishes it to the collaboration instance where both he and his colleague are
members.

« TMTool calls findServices on TMClient, with keyword “messaging”
« TMClient passes the call on to TMServer
. TMServer finds and returns a list of services with the tag “messaging”

. TMTool displays the list of services

Tag Manager S[=/E9

Service | Tag Search

Search
K.epmords |messaging | [Search
Rezults
M ame Type Location | Tags
IbiBuddy Ik Telenor mMEszaging

Mabbzy Mabaztag kw002 bunry rabbit friends cute radio

Wigw gervice

Figure 8.5: Searching

67

CHAPTER 8. DEMONSTRATION

8.2 Evaluation of design and implementation

In this section the design and implementation of the platform services and the tool
is evaluated. Strenghts and weaknesses of the solution are highlighted. Finally,
possible improvements are suggested.

8.2.1 Platform services

In Table 8.1 and Table 8.2 the requirements from the requirements specification
chapter are listed, together with the current status of the requirements in the
implementation. Most of the requirements were implemented and fulfilled by the
platform services. But due to time constraints, some were not implemented or
only partially implemented.

Suggestions based on underlying ontologies (FA2) were not implemented. This is
mostly because there currently is no ontology management in UbiCollab, making
it hard to fulfil the requirement. The requirement for deleting tags (FA3) was
not seen as critical and therefore not prioritised.

All requirements for browse and search functionality were implemented, except
the possibility of finding related services (FBS8). Also, only a limited search was
implemented (FB9), supporting a single keyword. This was mainly due to limited
resources, and the focus of this project not being on advanced search techniques.

The resulting platform services provide the functionality through a web service
interface, supported by OSGi’s web service publishing mechanisms. A very im-
portant consequence of this is that the interface provided is platform independent.
This is shown by using a different programming language/platform in the tool
implementation.

The platform services also fulfil the key aspect in SOA of being modular and
loosely coupled with other components, meaning that there are no dependencies
between the services and other UbiCollab platform services. First this means
that the tagging functionality is optional. Second, the tagging services can be
combined with other components of UbiCollab in any kind of way. A final and
important consequence is that the platform services are not affected by changes
made to other components.

8.2.2 Tool

A Tag Manager Tool was implemented, to give an example of a tool using the
platform services and show the tagging functionality. The tool showed all func-
tionality of the platform services, and demonstrated many of the ideas presented
throughout this report. Demonstration of the tool to other UbiCollab team mem-
bers resulted in positive feedback.

Although the tool served well for the purpose of demonstration, a limitation is

68

CHAPTER 8. DEMONSTRATION

that it is not easily integrated with other tools and applications. For example
it could be natural to integrate it with a service domain tool, so that tagging
support can be given when searching for and installing services in the service
domain. In this case, the service domain tool will have to reimplement what is
done by the tag manager tool. A better solution would be to implement a tag
manager tool as a set of programming libraries/APIs, which could then be used
when integrating tagging support in other tools and applications.

When implementing the tool, the challenge of providing a user friendly GUI
became apparent. Positive feedback was given by other UbiCollab team members,
but it was clear that the added complexity of separate levels of tagging could be
hard to understand and use.

8.2.3 Possible improvements

Although a database was used in the implementation of the platform services,
other storage methods are possible and could be considered in future implemen-
tations. For the server the additional performance and flexibility of a database is
needed due to large amounts of tags. However on the client, it could be advan-
tageous to use a simpler approach putting less requirements on the client. For
example one could simply use the file system, with tags stored as files using XML.

The requirement for finding related services (FB8) presents a challenge in finding
a suitable technique for comparing services and which criteria should be used. The
number of tags matching, the tag count of the tags matching and the number
of users that have tagged both are just some criteria that could be used when
comparing two services. For the search requirement (FB9), the challenge is in
finding a suitable and effective search technique, especially for searches using
several keywords. Both cases could be looked at in future improvements, to
improve the search mechanisms of the system.

In future implementations, Tag Manager Tool should communicate with Service
Discovery Manager, rather than directly with Service Registry. This was part of
the design solution, but due to missing functionality in Service Discovery Manager
at the time of implementation meant that direct communication with Service
Registry had to be implemented.

| ID | Description | Status |

FA1 It should be possible to create new tags | Implemented
for service instances
FA2 Tag name suggestions should be given | Not implemented
based on the underlying service ontolo-
gies

FA3 A tag should be possible to remove by | Not implemented
the user who created it

Continues next page

69

CHAPTER 8. DEMONSTRATION

] ID ‘ Description ‘ Status
FA4 A tag’s visibility level should be possi-
ble to set when creating it
FA4.1 | Tt should be possible to set the tag as | Implemented
private
FA4.2 | Tt should be possible to set the tag as | Implemented
public
FA4.3 | Tt should be possible to set the tag as | Implemented by requiring
visible to one or more communities the tag to be added once to
each community
FA5 Different users should be allowed to cre- | Implemented
ate the same tag to the same service.
The tags should be treated as unique
FAG6 A user should be prevented from creat- | Implemented
ing the same tag more than once for a
service, within the same visibility level.
For communities, this means once per
community
FAT Public and community tags should not | Implemented
be allowed to contain spaces and should
not exceed a maximum length
FAS It should be possible to query the sys-
tem for a service’s tags
FAS.1 | It should be possible to retrieve tags at | Implemented
level public, private or community
FA8.2 | It should be possible to retrieve only a | Not implemented
part of the resulting tag set
FA8.3 | It should be possible to retrieve only | Implemented with the
the most popular tags in the resulting | “limit” parameter, limiting
tag set tags to the given number of
the most popular tags
FAS8.4 | Tt should be possible to find the number | Implemented — with the
of times each tag name has been added | “group” paramater. This
at public or community level merges and counts duplicate
tags
FA9 The platform must provide a suitable, | Implemented as a web ser-
platform independent, interface to the | vice interface
platform functionality

Table 8.1: Evaluation of basic tagging requirements

70

CHAPTER 8. DEMONSTRATION

] 1D ‘ Description ‘ Status
FB1 | It should be possible to query the sys- | Implemented
tem for the users who have tagged a
service with a given tag
FB2 | It should be possible to query the sys- | Implemented
tem for other services tagged by a given
user
FB3 | It should be possible to find who has | Implemented
added a tag
FB4 | It should be possible to find which other | Implemented
tags a user has added
FB5 | It should be possible to find which other | Implemented
services a user has tagged
FB6 | It should be possible to retrieve services | Implemented
that have been tagged with a given tag
FB7 | It should be possible to search for ser- | A simple search is imple-
vices by keywords. mented, where a search can
be performed using only a
single keyword
FBS8 | It should be possible to find services | Not implemented
that are similar to a given service,
based on the services’ tag sets.

Table 8.2: Evaluation of search and browse requirements

71

Chapter 9

Conclusions

This chapter concludes the work done in this project. First the contributions
of the project and the fulfilment of the project goals is discussed in Section 9.1.
Next, an overall evaluation of the work and the work process is given in Section
9.2. Finally, Section 9.3 presents suggestions for future work.

9.1 Contributions

The work done in this project has been a contribution to ASTRA and UbiCollab,
and should also be of value to similar projects. The main goal of the project was
to design and implement a framework for social tagging of services in a ubiquitous
computing context. The goal was further divided into subgoals in the problem
elaboration:

. Subgoal 1: Identify design space of social tagging and define design choices
. Subgoal 2: Identify mechanisms for tag based navigation and search
. Subgoal 3: Define requirements for a social tagging system

. Subgoal 4: Propose a design solution in the form of services and tools,
extending the UbiCollab platform

. Subgoal 5: Implement, demonstrate and evaluate a prototype of the solu-
tion

Important design issues for tagging systems were identified and analysed in the
problem analysis chapter, with a focus on how the choices made are affected by the
problem context. Especially the physical nature of services embedded in devices
was identified as an important difference compared to other tagging systems. This
lead to the conclusion that physical access to tags should be provided. Also, a
strong emphasis was put on providing community tagging. Although supporting
community tagging is not entirely new, most tagging systems put little emphasis
on group or community aspects. Often, such features are mainly for finding other

72

CHAPTER 9. CONCLUSIONS

users and connecting. This work has focused on providing three different visibility
levels for tags; private, community and public. The community level is especially
important, as this should help improve the quality and relevance of tags within
a community. By viewing tags within one of his communities, the user is more
likely to find what he is looking for. The analysis of design issues lead to a set of
design choices, thus fulfilling subgoal 1.

For subgoal 2, the problem analysis discussed how the basic tagging mechanisms
can be used. Relations between tags, services and users were identified, and how
these relations can support tag based navigation. Also, searching mechanisms
were discussed, and interaction with tags through physical access to services.

The problem analysis resulted in a requirements specification for a social tagging
system, fulfilling subgoal 3. The requirements covered both basic tagging func-
tionality and the use of the functionality for browsing and searching. The focus
of the requirements was on the platform level, in other words how the UbiCollab
platform can provide common functionality needed for end user tools and appli-
cations. The requirements were presented with Use Case diagrams, textual Use
Cases and a detailed list of requirements.

For subgoal 4, a design solution was proposed to fulfil the specified requirements,
in the context of UbiCollab. This meant that important UbiCollab concepts had
to be discussed, and how the solution could be integrated with the concepts and
existing services of UbiCollab. The design separates tagging functionality into
two platform services, a client and a server service. This allows for private tags to
be stored locally, while community and public tags are shared through the shared
server service. Several advantages were shown with this solution, which enable a
wider specter of possibilities for future implementations. In addition, the design
consists of a tool for providing access to the platform services.

A prototype of the proposed design solution was implemented. This consisted of
platform services implemented as OSGi service bundles, conforming to UbiCol-
lab’s SOA. The services can be integrated with other parts of the UbiCollab plat-
form, and the APIs are provided through web service interfaces which can be used
by end user tools and applications. A demonstrator tool was also implemented,
which demonstrates the platform services’ functionality. The demonstration was
given with scenarios, showing possible uses of the system. This included the ba-
sic features of creating tags, as well as using tags for navigating and searching
services. Finally, both strengths and weaknesses of the solution were pointed out
in the evaluation, and suggestions for improving the solution. This means that
subgoal 5 was also fulfilled.

9.2 Evaluation

The previous section showed that this work has accomplished the goal of creating
a framework for social tagging of services in a ubiquitous computing context. The
value of the work has been evaluated through a demonstration using scenarios

73

CHAPTER 9. CONCLUSIONS

which illustrate cases where the tagging system helps users to find and understand
services. The solution was also sucessfully integrated with UbiCollab, extending
the UbiCollab platform with social tagging support and conforming to the SOA’s
key aspects of modularity and simplicity.

The main focus of the work was narrowed down to how a social tagging system
can be used to create a folksonomy for services. Thus, the proposed solution has
the limitation of only considering this type and purpose of tags. The problem
elaboration identified several other ideas and purposes of tags. Examples are
evaluative tags (ratings), general comments, and tags pointing to resources. In
hindsight, a solution which is more general and thus combines the different types
of tags should maybe have been considered. Though, such a solution could easily
become so complex that the advantage of simplicity in social tagging is lost. In
any case, adding support for other tag types would not mean that the tagging
system would have to be completely redesigned, as a major part of the analysis
and decisions done in this work should apply in the case of other tag types.

A regret with the chosen work process was to start the implemention at a rela-
tively late stage in the project. When starting to implement, many new ideas were
found which helped get a better understanding of the problem and improve the
analysis and requirements specification. This suggests that an iterative approach
could have been better, rather than the classical waterfall model.

An important part of the work was to integrate the design and implementation
of the tagging system with other parts of UbiCollab. This involved collaborating
with other UbiCollab team members. Although the collaboration throughout
the project could have been better, a clear improvement was seen towards the
end. This resulted in successful integration of the tagging system with other
components such as Service Discovery Manager and Service Registry. Especially
the integration with Service Discovery Manager was successful and valuable, as
this enabled the implementation and demonstration of physical access to tags.

9.3 Further work

In future work alternative uses of social tagging should be considered and how
they can be incorporated in a tagging system. One of the main challenges is
most likely to avoid the tagging mechanisms becoming too complex. Combining
several types of tags could easily confuse users and discourage them from using
the tagging system, which would obviously reduce the system’s value.

The proposed design of architecture uses a client service as an intermediary be-
tween end user applications and the server service. This enables several future
improvements, based on the possibility of local processing in the client service.
Possibilities such as background processing and Peer-to-peer (P2P) communcica-
tion should be considered to further improve the tagging system.

One of the problems with the current implementation of the tagging services is

74

CHAPTER 9. CONCLUSIONS

that privacy and security issues are not handled. For example, an application can
submit a tag giving any user and collaboration instance identifier. The tagging
system does not validate the correctness of either identifiers. In future implemen-
tations applications should be authenticated, ensuring that the user identifier
is valid and that the user is only given access to create and read tags within
collaboration instances he is a member of.

This work focused on tagging of service instances, arguing that tagging of both
service instances and types would make the system too complex for the user.
But as suggested, this does not mean that generic tags are not of any value. An
interesting task could be to look at tags in relation to ontology management and
how instance tags can be used to deduce service type tags.

75

Chapter 10

References

1]

2]

ASTRA, Annex i, description of work (Contract for specific targeted re-
search or innovation project, September 2005).

M. Bell, M. Hall, M. Chalmers, P. Gray, and B. Brown, ‘Domino: Exploring
mobile collaborative software adaptation’, Pervasive Computing Vol. 3968
(2006), pp. 153-168.

B. A. Farshchian and M. Divitini, ‘Ubicollab - white paper’, IDI Techni-
cal Report 07/07 (2007). http://mediawiki.idi.ntnu.no/wiki/ubicollab/
index.php/UbiCollab:Publications.

M. Fitzpatrick, Tagging tokyo’s streets with no name (Published online,
2007). http://technology.guardian.co.uk/weekly/story/0, ,2075537,00.
html.

S. Golder and B. A. Huberman, ‘The structure of collaborative tagging sys-
tems’, The Structure of Collaborative Tagging Systems Vol. 32 (2006), pp.
198-208.

M. Guy and E. Tonkin, Folksonomies: Tidying up tags?, in D-Lib Magazine
(Corporation for National Research Initiatives, 2006).

K.-S. Johansen, ‘User-centered and collaborative service management in ubi-
collab: Design and implementation’, Master’s thesis, Norwegian University
of Science and Technology, Trondheim, Norway (Spring 2007).

T. W. Malone, K.-Y. Lai, and C. Fry, ‘Experiments with oval: A radically
tailorable tool for cooperative work’, ACM Transactions on Information Sys-
tems (TOIS) Vol. 13 (1995), pp. 177-205.

C. Marlow, M. Naaman, D. Boyd, and M. Davis, ‘Ht06, tagging paper,
taxonomy, flickr, academic article, to read’, in Proceedings of the seventeenth
conference on Hypertext and hypermedia (ACM Press, 2006), pp. 31-40.

76

http://mediawiki.idi.ntnu.no/wiki/ubicollab/index.php/UbiCollab:Publications
http://mediawiki.idi.ntnu.no/wiki/ubicollab/index.php/UbiCollab:Publications
http://technology.guardian.co.uk/weekly/story/0,,2075537,00.html
http://technology.guardian.co.uk/weekly/story/0,,2075537,00.html

CHAPTER 10. REFERENCES

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. Mathes, Folksonomies - cooperative classification and communication
through shared metadata (Published online, 2004). http://www.adammathes.
com/academic/computer-mediated-communication/folksonomies.html.

O. H. Nygard, ‘Scenario and system specification’, D.2. ASTRA EU-
IST29266 Technical Deliverable (2007).

B. Schneiderman, B. B. Bederson, and S. M. Drucker, ‘Find that photo!
interface strategies to annotate, browse and share’, Communications of the
ACM Vol. 49 (2006), no. No. 4, pp. 69-71.

S. Sen, S. K. Lam, A. M. Rashid, D. Cosley, D. Frankowski, J. Osterhouse,
F. M. Harper, and J. Riedl, ‘tagging, communities, vocabulary, evolution’, in
Proceedings of the 2006 20th anniversary conference on Computer supported
cooperative work (ACM Press, 2006), pp. 181-190.

G. Smith, Atomiq: Folksonomy: social classification (Published on-
line, 2004). http://atomiq.org/archives/2004/08/folksonomy_social_
classification.html.

J. Trant and B. Wyman, Investigating social tagging and folksonomy in art
museums with steve.museum, in Proceedings of the WWW 2006 Collaborative
Web Tagging Workshop (2006).

T. V. Wal, Ezplaining and showing broad and narrow folksonomies (Pub-
lished online). http://www.personalinfocloud.com/2005/02/explaining_
and_.html.

Wikipedia, Flickr (Published on Wikipedia, 2006). http://en.wikipedia.
org/wiki/Flickr.

H. Wu, M. Zubair, and K. Maly, ‘Harvesting social knowledge from folk-
sonomies’, in Proceedings of the seventeenth conference on Hypertext and
hypermedia (ACM Press, 2006), pp. 111-114.

X. Wu, L. Zhang, and Y. Yu, ‘Exploring social annotations for the semantic
web’, in Proceedings of the 15th international conference on World Wide
Web (ACM Press, 2006), pp. 417-426.

77

http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
http://atomiq.org/archives/2004/08/folksonomy_social_classification.html
http://atomiq.org/archives/2004/08/folksonomy_social_classification.html
http://www.personalinfocloud.com/2005/02/explaining_and_.html
http://www.personalinfocloud.com/2005/02/explaining_and_.html
http://en.wikipedia.org/wiki/Flickr
http://en.wikipedia.org/wiki/Flickr

