
June 2007
Reidar Conradi, IDI
Carl-Fredrik Sørensen, IDI
Claudia Patricia Ayala Martinez, Technical University
of Catalunya

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

OTS-Wiki: A Web Community for
Fostering Evaluation and Selection of
Off-The-Shelf Software Components

Kristian Aaslund
Simon Larsen

Problem Description

The goal of this thesis is to start the implementation of OTS-Wiki, a web portal for fostering
evaluation and selection of Off-The-Shelf software components. The portal will provide users with
wiki-style collaboration to incrementally populate the information database. Both subjective and
objective information is needed to help users selecting the right component. OTS-Wiki will address
the problems and disadvantages of related OTS web portals and provide a usable starting point for
further development and research.

Assignment given: 20. January 2007
Supervisor: Reidar Conradi, IDI

OTS-Wiki: A Web Community for
Fostering Evaluation and Selection

of Off-The-Shelf Software
Components

Kristian Aaslund
Simon Larsen

{aaslund, simonl}@stud.ntnu.no

Supervisors: Carl-Fredrik Sørensen and Reidar Conradi
Co-advisor: Claudia Patricia Ayala Martinez

Department of Computer and Information
Science

Abstract

Many challenges arise when it comes to selection of Off-The-Shelf (OTS) software components
to use in software development. To make the selection process easier, other users’ experiences
on working out similar tasks could be of great value. Such experience data concerning the
selection, the use, and the integration of a component is often not available.

In this Master thesis, we describe the implementation of OTS-Wiki, a wiki based portal with
community driven content. OTS-Wiki is a web community fostering evaluation and selection
of OTS software components. The wiki provides basic functionality to support the process of
evaluating and selecting components for use in component-based software development.

The success of OTS-Wiki relies heavily on the quality and relevance of the content populating
the repository. There are also usually related heavy start-up costs to such repositories. A
wiki based portal, based on the open source collaboration principle where the users themselves
controls and populates the repository could be the solution to both these issues.

Keywords: Community Driven, Component Evaluation, Component Selection, Off-The-Shelf,
Open Source, OTS, OTS-Wiki, Social Computing, Web Communities, Web Technology, Wiki

Preface

This report is a result of the Master thesis project titled OTS-Wiki: A Web Community for
Fostering Evaluation and Selection of Off-The-Shelf Software Components. The project is
carried out as a co-operation project between the students Kristian Aaslund and Simon Larsen
at the Department of Computer and Information Science (IDI) at the Norwegian University of
Science and Technology (NTNU).

We would like to thank our supervisors Dr. Carl-Fredrik Sørensen and Professor Reidar Con-
radi, and our co-advisor Claudia Patricia Ayala Martinez for good advices through the project
period. A special thanks to Carl-Fredrik Sørensen who has given us valuable feedback and
guidance at our weekly meetings, and to Per Kristian Schanke for server hosting and adminis-
tration.

Trondheim, June 2007

Kristian Aaslund Simon Larsen

i

ii

Contents

I Introduction 1

1 Introduction 3

1.1 Background and Motivation . 3

1.2 The Goal of the Thesis . 4

1.3 Research Questions . 4

1.4 Contributions . 4

1.5 Report Outline . 5

2 The OTS-Wiki Vision 7

2.1 The Vision . 7

2.1.1 Component Metadata . 7

2.1.2 Exchanging Experience . 8

2.1.3 Using the Wiki Principle . 8

2.1.4 User Profiling . 9

2.1.5 Web-Intelligence . 9

2.1.6 Open Source Project . 9

2.2 Scenarios . 10

2.2.1 The OTS Developer . 10

2.2.2 EurOTS . 11

2.2.3 IT consultants for SMEs . 11

II Prestudy 13

3 Theoretical Background and State-of-the-Art 15

3.1 Component-Based Software Engineering . 15

3.1.1 COTS Components . 15

3.1.2 OSS Components . 16

iii

3.1.3 Risk Management in CBSE . 16

3.1.4 Summary . 19

3.2 GOThIC . 19

3.2.1 Summary . 21

3.3 DesCOTS . 21

3.3.1 The DesCOTS Tools . 22

3.3.2 Quality Models - Conceptual model . 23

3.3.3 Summary . 24

3.4 Open Source . 24

3.4.1 Examples of open source projects . 25

3.4.2 Open Source Licensing . 25

3.4.3 The Apache License . 27

3.4.4 Mozilla Public Licence . 27

3.5 Social Computing . 27

3.5.1 Wiki . 28

3.6 Software Development Processes . 28

3.6.1 Scrum . 28

3.6.2 eXtreme Programming (XP) . 29

3.6.3 Summary . 32

4 Related Work 33

4.1 Related Web Portals . 33

4.1.1 SourceForge.net . 33

4.1.2 Tigris.org . 34

4.1.3 Freshmeat.net . 34

4.1.4 Ohloh . 35

III The OTS-Wiki 37

5 System Introduction 39

5.1 Contribution Overview . 39

5.2 OTS-Wiki Starting Point . 39

5.2.1 Functionality Scenarios . 41

5.3 Usability . 43

5.3.1 Usability principles . 43

5.3.2 Usability in the OTS-Wiki . 43

iv

5.4 Enabling Technology - The Java Platform . 44

5.4.1 Java Introduction . 44

5.4.2 Web Development in Java . 45

5.4.3 Java Frameworks . 45

5.4.4 Security in Java Web Applications . 47

5.4.5 Java Development Tools . 48

5.4.6 Alternative Web Development Platforms 49

5.5 The Cosiportal Project . 50

5.5.1 Background . 50

5.5.2 The project . 51

6 Requirements Specification 53

6.1 Functional Requirements . 53

6.1.1 Actors . 53

6.1.2 Use Case Overview . 55

6.2 Non-Functional Requirements . 56

6.2.1 The non-functional requirements . 57

7 System Architecture 59

7.1 System Stakeholders . 59

7.2 Architectural Patterns . 60

7.2.1 Client-Server . 60

7.2.2 Model-View-Controller (MVC) . 60

7.2.3 POJO Controllers . 60

7.3 Data Model . 61

7.4 Technology Choices . 62

7.4.1 Java Platform . 62

IV Evaluation 65

8 Evaluation 67

8.1 The Implementation . 67

8.1.1 Implemented Use Cases . 67

8.1.2 Implemented Component Metadata . 69

8.1.3 The User Database . 70

8.2 Usability Evaluation . 70

8.2.1 Design . 70

v

8.2.2 Improving usability . 70

8.3 Evaluating the Development Process . 71

8.3.1 Front-End vs Back-End . 71

8.3.2 Vertical Development . 72

8.3.3 Refactoring . 72

8.3.4 Unit Testing . 72

8.4 Challenges and Success Factors . 73

8.5 Problems and Lessons Learned . 74

8.5.1 Server Administration . 74

8.5.2 Limited Time . 74

V Conclusion and Further Work 75

9 Conclusion 77

10 Further Work 79

10.1 Categorizing . 79

10.2 Selection Process Support . 79

10.3 User Profiling . 79

10.4 Automated Maintenance . 80

10.5 Evaluation Support . 80

10.6 Change Management . 80

10.7 User Levels . 81

10.8 Administration . 81

10.9 Co-Evaluation . 81

10.10Component Versioning . 81

10.11Other Improvements . 82

Bibliography 82

VI Appendices 87

A Use Case Specification 89

A.1 User Actions . 89

A.2 Provider Actions . 97

A.3 Evaluator Actions . 103

A.4 Selector Actions . 107

vi

A.5 Administrator Actions . 110

B OTS-Wiki Screenshots 115

vii

viii

List of Tables

1.1 Contributions vs Research Questions . 5

2.1 Tools enabling OSS collaboration . 10

3.1 Risks in CBSE . 17

3.2 Risk management strategies in CBSE . 18

3.3 An example of goal statement . 21

3.4 Role-related challenges supporting OTS selection 22

4.1 Web Resources Available for Supporting OTS Components Selection 34

5.1 Functionality scenarios . 41

6.1 Use Case Overview . 55

6.2 Non-functional requirements . 57

7.1 System stakeholders and their concerns . 59

7.2 Technologies used in OTS-Wiki . 63

8.1 Use Case Implementation Overview . 68

A.1 UC1.1 Register . 90

A.2 UC1.2 Login/Logout . 91

A.3 UC1.3 Edit User Information . 92

A.4 UC1.4 Make Forum Post . 93

A.5 UC1.5 Chat . 94

A.6 UC1.6 Browse Content . 95

A.7 UC1.7 Get Help . 96

A.8 UC2.1 Add Component . 98

A.9 UC2.2 Edit Component . 99

ix

A.10 UC2.3 Request Component . 100

A.11 UC2.4 Add Resource . 101

A.12 UC2.5 Edit Glossary . 102

A.13 UC3.1 Rate Component . 104

A.14 UC3.2 Comment Component . 105

A.15 UC3.3 Provide Detailed Evaluation . 106

A.16 UC4.1 Textual Search . 108

A.17 UC4.2 Advanced Search . 109

A.18 UC5.1 Log User Activity . 111

A.19 UC5.2 Handle Requests . 112

A.20 UC5.3 View Statistics . 113

A.21 UC5.4 Moderate Content . 114

x

List of Figures

3.1 Conceptual model of the GOThIC method . 19

3.2 Excerpts of the four types of artifacts . 20

3.3 Towards Internet Singularity . 28

3.4 The Scrum metamodel . 30

3.5 Extreme Programming project . 31

5.1 Suggested system interactions . 40

5.2 Suggested portal start page . 42

6.1 The system actors . 54

7.1 MVC structure . 61

7.2 MVC example . 62

7.3 The data model . 63

8.1 OTS-Wiki mainpage . 71

A.1 User Actions . 89

A.2 Provider Actions . 97

A.3 Evaluator Actions . 103

A.4 Selector Actions . 107

A.5 Administrator Actions . 110

B.1 Editing the glossary . 115

B.2 Adding a new component . 116

B.3 Viewing a component . 117

B.4 Rating and commenting a component . 118

B.5 Evaluating the installation process . 119

B.6 Evaluating the component’s documentation . 119

xi

B.7 Evaluating the integration process . 120

B.8 Evaluating the degree of goal achievement . 120

B.9 The advanced search . 121

B.10 Search results . 121

xii

Part I

Introduction

1

Chapter 1

Introduction

1.1 Background and Motivation

The use of prefabricated, off-the-shelf (OTS) software components has grown rapidly, espe-
cially in large-scale projects [Li et al., 2004]. OTS components are typically divided into two
categories: Commercial Off-The-Shelf (COTS) produced and sold by commercial vendors, and
Open Source Software (OSS) components provided by open source communities and made
freely available for reuse and further development.

Traditionally, software vendors have produced most of their software in-house, possibly mak-
ing entire systems from scratch. Over the years, software reuse has become an increasingly
important “best practice”. Making pieces of software (components) that easily can be reused
in other projects is a time-saving and effective means of developing software systems.

Using OTS components may introduce a number of additional risks and challenges in soft-
ware projects [Li et al., 2005]. As Component-Based Software Engineering (CBSE) grows in
popularity, the number of available OTS, both COTS and OSS components is ever increasing.
Identifying areas where an OTS component may benefit a project is perhaps the easiest part,
and a good place to start. Selecting the right component in a vast number of available OTS
may be far more difficult. Storing the knowledge and experiences of OTS projects is important
to support systematic use and reuse of components for future projects. Also, complete and
high-quality data concerning the available OTS is crucial to select the right component.

A major obstacle for CBSE is the lack of available, efficient, and quality-assuring means of
searching, selecting, and evaluating OTS components. Many organizations fail when using
OTS components due to high start-up costs of populating a repository of reusable information
and inadequate tools for storing the OTS knowledge and lessons learned.

To meet these challenges, [Ayala et al., 2007] propose the development of an open wiki-based
portal for sharing and reusing OTS information. The portal, named OTS-Wiki, has three
main goals:

G1 Fostering an OTS Community and Incremental Population of Content

G2 Federating Actual Efforts for Locating and Selecting OTS Components

G3 Enabling Systematic Support for Selecting and Evaluating OTS Components

3

4 1. Introduction

OTS-Wiki is based on open source like collaboration to encourage the OTS community to
share both subjective and objective information about available components, supporting the
processes of selecting, using, and evaluating OTS components.

1.2 The Goal of the Thesis

This thesis serves as an extention of the work of [Ayala et al., 2007], aiming to start the imple-
mentation of OTS-Wiki, evaluate the work in progress, and suggest changes and enhancements
to the portal. The effort needed to develop and deploy a complete portal, covering all the
visions and goals of OTS-Wiki, is beyond the scope of this thesis. The main goals is to de-
velop a starting point to test the ideas and suggestions in practice, and to be able to evaluate
the choices made. This will hopefully provide a valuable experience for further work on the
OTS-Wiki and the related research.

1.3 Research Questions

The thesis will address the following research questions:

RQ1 What OTS tools and communities exist today, and what are their advantages
and disadvantages?

RQ2 How can OTS-Wiki contribute to the OTS community?

RQ3 How can OTS-Wiki be implemented?

RQ3.1 What technologies can be used to develop OTS-Wiki?
RQ3.2 What are the key requirements of OTS-Wiki?
RQ3.3 How well does the implemented system support usability?

1.4 Contributions

This is the list of the contributions presented in this thesis. Table 1.1 shows which research
questions each contribution conforms to, and where to find them in the report.

C1 A description of work and projects related to the OTS community

C2 A vision for OTS-Wiki and potential user scenarios

C3 An initial implementation of OTS-Wiki, enabling usability testing and further
development

C3.1 A description of Java as an enabling technology for developing OTS-Wiki
C3.2 A requirements specification describing both the functional and the non-functional

requirements of OTS-Wiki
C3.3 An overall architecture supporting the development of a web portal
C3.4 An implementation evaluation describing what are actually implemented, and how
C3.5 A usability evaluation describing usability in OTS-Wiki

OTS-Wiki

1.5. Report Outline 5

Table 1.1: Contributions vs Research Questions

Research Questions Contributions Chapters/Sections
RQ1 C1 Chapter 4
RQ2 C2 Chapters 2, 8, and 9
RQ3 C3 and C3.4 Chapters 5, 6, and 7

and Section 8.1
RQ3.1 C3.1 Section 5.4
RQ3.2 C3.2 and C3.3 Chapters 6, and 7
RQ3.3 C3.5 Section 8.2

1.5 Report Outline

This report is divided into five parts. Part 1 consists of this introduction, with background
information, and the problem definition. Also included in this part are the research questions
and an overview of the contributions made in this thesis. Lastly, we present the OTS-Wiki
vision and describe some potential user scenarios.

Part 2 covers the project’s prestudy and presents the state-of-the-art of component-based
development, open source software, social computing, and agile software development processes.
This part also describes related work and presents some important challenges and issues related
projects have discovered.

Part 3 presents the OTS-Wiki, a web portal system developed to foster evaluation and selection
of off-the-shelf software components. We outline the system and its purpose, and describe the
development process used. The main contribution in Part 3 is the system specification and
software architecture. Here, we describe the system’s requirements, structure, and design.

Part 4 documents the evaluation work of the project. We evaluate the system’s usability and
functionality to answer the research questions and decide the future of the OTS-Wiki. We also
evaluate the development process and criticize the work done and choices made.

Part 5 presents the conclusion and recommendations for further work.

Master Thesis

6 1. Introduction

OTS-Wiki

Chapter 2

The OTS-Wiki Vision

2.1 The Vision

The main vision of OTS-Wiki is to foster evaluation and selection of off-the-shelf software
components. The system is a web-based portal, using the open Wiki principle with accessible
and editable data relevant for the OTS community. Implementing the entire vision of the
portal far exceeds the scope of this thesis, but ideas and plans are important to understand
why the OTS-Wiki is developed, and to guide the further development.

An important feature is the collection and presentation of both subjective and objective infor-
mation. The basic information about a component, such as name, description, and hyperlink,
as well as which categories, technologies, platforms, and tags the component belongs to, is
regarded objective information. The evaluation part of the portal is where the subjective in-
formation becomes important. An evaluation of a component can range from a simple rating,
like a diceroll or a grade 1-10, to a more comprehensive evaluation describing separate parts of
the component in detail. The important part is making both the objective and the subjective
data easy to enter, and equally easy to retrieve and use.

Below, we will discuss some of the important ideas and features of OTS-Wiki.

2.1.1 Component Metadata

OTS-Wiki will consist of information about a large number of different components. This
information has to be structured and easily accessible to the users. To achieve this, we suggest
establishing a schema of metadata attributes suitable of classifying the components. The
attributes are grouped into five categories:

Domain Function
What domain the component belongs to, and what function it has in that domain. This
may form the basis of a set of categories and subcategories the component can be placed
in. A component may belong to one or more category.

Quality
The quality attributes of the component, based on the ISO 9126 standard for evalua-
tion of software [Jaccheri and Torchiano, 2002, Torchiano et al., 2002]. This may include

7

8 2. The OTS-Wiki Vision

objective information, such as reported reliability, computed complexity, functionality,
efficiency, maintainability, and portability.

Technical Properties
Properties, such as technologies and programming languages used, platform, size (Source
Lines of code (SLOC)), software standard, and architectural patterns.

Non-Technical Properties
Properties, such as name, description, website, vendor, versions, dependencies on other
components/software, licenses, documentation, and history (when changed and by whom).

Experience Properties
This is the evaluation part of the portal, and may include ratings, comments, experience
reports, number of downloads, development activity, error rates, reputation, and future
prognosis.

2.1.2 Exchanging Experience

Many actors in the OTS community hold experiences and knowledge about certain compo-
nents, as users of the components, as developers of the components, or as other component
stakeholders. The experiences of these actors may play an important role in guiding OTS-
Wiki users during the OTS selection process. A user can be registered as a resource person
for a component, or a set of components. The experiences of this “component uncle” is made
available alongside the component for reference to interested users. The evaluations performed
by a component uncle may also be marked as more relevant because of the knowledge of this
person.

Consider the following analogy:
A prospective student at NTNU is wondering which graduate study to apply to. He has two
sources of information: The official information listed at the university’s webpage, and hands-
on experiences from a current or former student. In most cases, the experiences are far more
valuable than statistics and official statements.

A person’s experiences and impressions are often tacit information. The challenge lies in mak-
ing this information explicit and available to others. Solving this challenge may significantly
enhance the selection process in OTS-Wiki.

2.1.3 Using the Wiki Principle

The wiki principle is one of the main ideas behind OTS-Wiki [Ayala et al., 2007]. Enabling the
OTS community to collaboratively and incrementally build and maintain an open database of
OTS components will hopefully facilitate a growing and active community of users. Making
the content open and accessible to all, without the need to register, is an important principle
in OTS-Wiki. To make contributions, such as adding, editing, and evaluating the components,
registration is however required. This is done to ensure a certain degree of quality on the
content provided, and will enable users to sign the contributions, making the changes and
contributors more visible.

OTS-Wiki

2.1. The Vision 9

2.1.4 User Profiling

There exist OTS components for a large number of different purposes and tasks. This is also
reflected in the great diversity of the potential users of OTS-Wiki. User profiling is important
to serve the different needs of the users. User profiling may be implemented both explicit
and implicit. The explicit user profile is the information the user explicitly provides, such as
demographical information, interests, job and educational information, and other. The implicit
information is perhaps the most interesting source of user profiling. It includes user activity
in the system, popular components or searches, or specific patterns. This information must
be gathered automatically by the system. Implicit information from one or a few users might
not be enough to identify popular activities or patterns in the use of the system. When the
information source grows, patterns, and even bottlenecks may identify themselves.

One way of collecting the implicit information is to use logging. Logging can be applied at
multiple levels in an application. At source code level, logging can occur at specific points in
the program to report errors or usage of specific functions. On a higher level, logging can be
applied to collect statistics about clicks and visitor counts. This is typically implemented by a
web container.

Collecting relevant information about the users and their activities may enhance the portal,
both with usability and efficiency in mind. Shortcuts can be provided to popular components
or searches. Also, contributing users may earn higher status and be granted more rights in
the system based on the information provided. This increases the quality of the data in the
database, as posters of relevant information are rewarded, and “garbage posters” are ignored
or banned. This is known as a “gift economy”.

2.1.5 Web-Intelligence

Web-intelligence techniques may be used to analyze and extract actionable meaning from both
structured and unstructured data (mostly textual), e.g., from user-provided dialogs, comments
and ratings, experience and test reports, queries and query responses, actual component choices
etc. Such an advanced knowledge system will exploit re-users’ computer-tractable knowledge,
relying on a web protocol to inter-work with other systems, e.g., automatic reasoning engines,
ontology builders, classifiers, crawlers, search engines, even spy tools etc. This kind of open
tool architecture effectively facilitates decomposition of the proposed OTS-Wiki software into
independent pieces, i.e., constituting a Decision Support System with both new and existing
knowledge-processing tools. The techniques may be used to automatically populate and update
the portal’s data from the component’s webpage, and to perform intelligent searches both
internally and externally.

2.1.6 Open Source Project

A part of the vision for OTS-Wiki is to make the project available as open source and enable
further development by the OSS community. We believe that the open and collaborative
approach will benefit the future of OTS-Wiki significantly. Encouraging the portal users and
other developers to contribute to the portals’s evolution creates ownership to the portal and the
community. This will hopefully increase the quality and the level of functionality of OTS-Wiki
beyond what can be achieved in a closed environment within the two participating universities.

An important task in enabling the OSS community to contribute to the system, is to provide
suitable tools and infrastructure to support open source collaboration. Table 2.1 presents some

Master Thesis

10 2. The OTS-Wiki Vision

suitable tools. The task of making the project available as open source is beyond the scope of
this thesis, but some of the work will be performed by a related project1.

Table 2.1: Tools enabling OSS collaboration

Tool Concern Examples
Version control system Manage revisions and evolu-

tion of the source code
Subversion, CVS, CVSNT,
OpenCVS, GNU Arch, ArX,
Monotone

Bug and issue tracker Register and follow-up bugs,
issues, improvements, and
other changes in a structured
way

Bugzilla, JIRA, Request
Tracker, Roundup, itracker,
Argus

Project management tool Manage projects and provide
a platform for collaboration

activeCollab, TWiki, Medi-
aWiki, Open-Xchange

Open Services Gateway ini-
tiative (OSGi) framework

Tools to manage an applica-
tion’s life cycle, service reg-
istry, and modularity

Knopflerfish, Equinox,
Apache Felix, Spring-OSGi

2.2 Scenarios

What can the OTS-Wiki portal be used for? We suggest a user scenario for potential usage
of the portal. Also, we present two concrete user scenarios presented in a research proposal
(Community Collaboration and Web-Intelligence to Support Development with Off-The-Shelf
Software Components [NTNU, 2007]), using OTS-Wiki as an example, EurOTS and IT con-
sultants for SMEs.

2.2.1 The OTS Developer

Consider the work of a software developer in an organisation that has just started to use OTS
components in their work. Neither the developer nor the organisation has much knowledge
about component-based software engineering (CBSE). A set of requirements has been identified
as suitable for OTS adoptation, but no-one knows which components to use, or how to use
them.

The developer is put in charge of selecting the component or components that best match
the wanted requirements. As a beginner in CBSE, the developer searches the web for OTS
communities and selection support tools. OTS-Wiki appears as a matching portal for most his
searches. He decides to register at OTS-Wiki and start browsing the content for interesting
information. In the beginning, the browsing is performed randomly to get an overview of the
portal’s functionality and information base. After a while, the developer tries to perform a few
searches based on some requirements (wanted technologies and categories). The resulting list
of components is large, providing information about a wide range of different components. As
the familiarity with the portal and its features increases, the developer is capable of narrowing
the set of potential components down to a feasible list. To make the final decision, he reads the

1The Cosiportal Project

OTS-Wiki

2.2. Scenarios 11

reviews and evaluations performed by other users of the components. He also posts questions
regarding the components in the related forums and chat rooms. Suddenly, another devloper
with many years of OTS experience answers one of his messages, suggesting a strategy suitable
for a start-up OTS developer. He suggests using components with high ratings and positive
evaluations in the areas of installation and documentation, as they are quick to get up and
running and provide good support. Using the OTS-Wiki evaluations, the developer ranks his
findings based on the criterias suggested. The two top ranked components are then selected
for further study and trial.

The beginner OTS developer has found enough information, both on his own, and by talking
to other developers, to begin testing a few relevant components. A while later, the developer
posts his own experiences in OTS-Wiki to help others in his situation.

2.2.2 EurOTS

This scenario takes advantage of the OTS-Wiki infrastructure, developing a feasible and incre-
mental European Software Components Web-encyclopedia to foster the reuse of OTS compo-
nents produced by European Community funded projects. Such projects often produce many
software components suitable for reuse, including middleware, frameworks, libraries, testing
software, etc. CORDIS offers a powerful knowledge tool to report the generated results from
European funds2. OTS-Wiki can complement this technology in order to discover, search and
select new software pieces from the whole of these projects. Moreover, re-users and citizens will
have a powerful instrument to explain their needs and opinions about software. The specific
objectives of the EurOTS scenario are:

1. Obtain in an incremental and collaborative way a knowledge base of the software com-
ponents produced by projects funded by the European Community (NOT a software
repository, but a meta-data repository).

2. Provide users with intelligent methods to help in the hard task of searching, comparing,
evaluating and selecting OTS components developed in these projects.

3. Provide the European Council with new approaches to evaluate different dimensions as
the reliability, reusability, etc. of the OTS produced by projects funded by them.

4. Use the developed OTS-Wiki as a collaborative tool to incrementally obtain a general
knowledge base of non-European projects OTS from which the European society can
benefit.

2.2.3 IT consultants for SMEs

A community of IT consultants offering services in COTS selection has evolved in Luxembourg
and Belgium since 2001 (part of the CASSIS Network). The CASSIS Network3 is aimed at
developing a market for quality services in IT consultancy and promoting the quality of infor-
mation systems in companies, particularly in Small and Medium Enterprises (SME) and public
departments. In this context, the needs for knowledge sharing and knowledge reuse of OTS
solutions are identified. The principles of OTS-Wiki can be introduced in this community to
demonstrate knowledge sharing in selection of OTS software solutions. The specific objectives
are:

2http://istresults.cordis.europa.eu/index.cfm?section=home&tpl=home
3http://www.cassis.lu/

Master Thesis

12 2. The OTS-Wiki Vision

1. Identify consultants in the CASSIS Network who demonstrate an interest in using the
OTS-Wiki portal.

2. Provide training sessions to the selected consultants to help them understand the con-
cepts, processes, and rules for using OTS-Wiki.

3. Give early access to the tool to these consultants.

4. Provide support for using the tool during their mission (mainly authoring and consump-
tion of knowledge).

5. Analyze the impacts of the use of OTS-Wiki compared to other projects that do not use
the OTS-Wiki.

This scenario can also be extended outside Belgium and Luxembourg, since methods of the
CASSIS network are being promoted in other European countries4.

4www.eu-certificates.org

OTS-Wiki

Part II

Prestudy

13

Chapter 3

Theoretical Background and
State-of-the-Art

In this chapter, we will present the theoretical background of our master project. A State-Of-
The-Art (SOTA) is established to describe the terms and technologies relevant to our work.
In addition, SOTA can highlight relevant issues and challenges motivating the research and
development.

3.1 Component-Based Software Engineering

Component-based Software Engineering (CBSE) is a software engineering strategy where sys-
tems are developed using reusable parts (components). This includes developing compo-
nents, and maintaining and improving component-based systems (CBS) by means of com-
ponent replacement and customization [CBSE, 2006]. A software component is an encapsu-
lated piece of software with well-defined interfaces enabling cross-component communication
[Voas, 1998, Dean and Gravel, 2002]. The well-defined interfaces makes it possible to develop
the system using components acquired from different sources. This is known as Off-the-Shelf
(OTS) components. An OTS is defined as: “a software product that is publicly available
at some cost or with some licensing obligations, and other software projects can reuse and
integrate it into their own products” [Torchiano and Morisio, 2004].

Systematic reuse of OTS components may increase productivity and shorten time-to-market
(TTM) compared to traditional software engineering strategies [Li et al., 2004]. Reuse is a
recognized way to disseminate best-practice standards and expertise.

In this section we characterize both Commercial Off-The-Shelf (COTS) and Open Source Soft-
ware (OSS) components, and look at risk management in CBSE.

3.1.1 COTS Components

COTS components are software components that are developed by commercial vendors and
made available for lease or sale to the general public1 [Morisio and Torchiano, 2002]. Using

1http://en.wikipedia.org/wiki/Commercial_off-the-shelf

15

16 3. Theoretical Background and State-of-the-Art

COTS may be both time-saving and enhancing to a company’s systems. The COTS vendors
are experts in the area of functionality they offer, and may provide higher quality for a lower
price than in-house development of the equivalent components [Voas, 1998]. Another benefit
of COTS components is that commercial vendors often offer specific support programs and
differential price structures suitable for each customer.

While COTS often provide efficient solutions to generic problems, especially in large corporate
and government systems, the use of COTS may be problematic in some cases. The components
are made generally to provide functionality to a wide range of potential customers. Often,
different customers have slightly different requirements to the same components. The time
saved on developing the component’s functionality may then be consumed by integration and
adaptation tasks. Also, the COTS vendor are responsible for the maintenance and evolution
of their components, leaving the control of pieces of a company’s software in the hands of
third-party actors.

3.1.2 OSS Components

OSS components are software components developed by commercial vendors or open source
communities. The difference between COTS and OSS components is that OSS components are
released under some sort of open source license. Thus, the source code is available for anyone
to use or change [Øyvind Hauge and Røsdal, 2006]. The main advantages of OSS components
are:

• Free to acquire and use

• Available source code makes it possible to change the components

• Less vendor support risks

The main disadvantages of OSS components are:

• Changes are often needed as the components rarely come “good to go”

• Documentation and support may be lacking

More on open source in Section 3.4.

3.1.3 Risk Management in CBSE

Using OTS components introduces additional risks to a software development project. As
more and more IT companies start to use OTS components, new strategies are required to
manage the additional risks. Table 3.1 describes some possible risks in CBSE as presented by
[Li et al., 2005]’s survey on risk management in OTS component-based development.

OTS-Wiki

3.1. Component-Based Software Engineering 17

Table 3.1: Risks in CBSE

ID Possible risks
R1 The project is delivered long after schedule
R2 Effort to select OTS components is not satisfactory estimated
R3 Effort to integrate OTS components is not satisfactory esti-

mated
R4 Requirements are changed a lot
R5 OTS components are not sufficiently adapted to changing re-

quirements
R6 It is not possible to (re) negotiate requirements with the cus-

tomer, if OTS components are not satisfying all requirements
R7 OTS components negatively affect system reliability
R8 OTS components negatively affect system security
R9 OTS components negatively affect system performance
R10 OTS components are not satisfactory compatible with the pro-

duction environment when the system is deployed
R11 It is difficult to identify whether defects are inside or outside

the OTS components
R12 It is difficult to plan system maintenance, e.g., because different

OTS components has asynchronous release cycles
R13 It is difficult to update the system with the latest OTS compo-

nent version
R14 Provider do not provide enough technical support/training
R15 Information on the reputation and technical support ability of

the provider are inadequate

Master Thesis

18 3. Theoretical Background and State-of-the-Art

Further, [Li et al., 2005] summarize a set of typical risk management strategies to manage the
risks identified. Table 3.2 shows the strategies.

Table 3.2: Risk management strategies in CBSE

ID Strategy
M1 Customer is actively involved in the “acquire” vs. “build” deci-

sion of OTS components
M2 Customer is actively involved in OTS component selection
M3 OTS components should be selected mainly based on architec-

ture and standards compliance, instead of expected functional-
ity

M4 OTS components qualities (reliability, security etc.) are seri-
ously considered in the selection process

M5 Effort in learning OTS component is seriously considered in
effort estimation

M6 Effort in black-box testing of OTS components is seriously con-
sidered in effort estimation

M7 Unfamiliar OTS components are integrated first
M8 Do integration testing incrementally (after each OTS compo-

nent was integrated)
M9 Local OTS-experts actively follows updates of OTS components

and possible consequences
M10 Maintain a continual watch on the market and look for possible

substitute components
M11 Maintain a continual watch on provider support ability and

reputation

[Li et al., 2005] concluded that the risk management survey could be summarized into three
categories:

• Risk related to cost-estimation and changes in requirements happened more frequent
than quality risks regarding the OTS components.

• The most used risk management strategies used were those related to incremental testing
and trict OTS component quality evaluation.

• If the integrator seriously considered the possible effort on the quality evaluation of
OTS components, it helped to solve the effort estimation risks in the OTS selection and
integration.

Careful planning and resource-allocation are key requirements for successfully selecting and
using OTS components. This is backed up by a study of COTS-based software development
in the Norwegian IT industy in 2004 [Li et al., 2004]. The most important results were:

• Use of COTS can be done without changing or adapting existing software development
processes.

OTS-Wiki

3.2. GOThIC 19

• New activities, such as the build vs buy decision, the COTS component selection, and the
COTS component integration are required to ensure successful use of COTS components.

• A new role, the knowledge keeper, storing knowledge and lessons learned from previ-
ous COTS project, may considerably increase the efficiency and success of using COTS
components.

3.1.4 Summary

Developers that use OTS components in their work is the main potential user group of OTS-
Wiki. It is the real users of the components that has the “hands-on” experience and information
needed to evaluate the components. Thus, the quality of the content is dependent of the
involvement from CBSE developers, communities, and businesses. The risks described above
form some of the motivations for developing OTS-Wiki, providing a easy and predictable
integration of OTS components.

3.2 GOThIC

GOThIC (Goal- Oriented Taxonomy and reuse Infrastructure Construction) is a goal oriented
method for building and maintaining an infrastructure of Commercial-Off-The-Shelf (COTS)
components by organizing market segments as a taxonomy. [Ayala and Franch, 2006]

Figure 3.1 shows the conceptual model of how the knowledge is organized based on the GOThIC
method. The taxonomy is composed of two different types of nodes in this model. This is
market segments and categories. The market segments groups the basic types of COTS into
different domains, e.g., such as anti-virus tools and spreadsheet applications. The domains
covers a pretty large group of functionality to prevent too many domain groups with a limited
coverage area. A component may also cover more than one market segment. The category
groups related market segments and subcategories.

Figure 3.1: Conceptual model of the GOThIC method

The GOThIC method has been structured into seven activities:

Exploration of information sources
This activity consists of gathering relevant information, including type, supporting media,
cost, etc. Gathering of sources, Analysis of sources and Prioritisation of sources are the
three related sub-activities.

COTS marketplace domain analysis
The basic elements of the domain are identified during the domain analysis, and an

Master Thesis

20 3. Theoretical Background and State-of-the-Art

understanding of the relationships among these elements are organized and represented.
The lack of a standard terminology in COTS frameworks leads to confusion as similar
components are denoted differently by different vendors. The domain analysis should
help preventing these differences.

Four artifacts for recording and representing the knowledge from domain analysis are
proposed in GOThIC. These are Use Case Specification, Class Diagram, Quality Model,
and a Glossary of terms. Figure 3.2 illustrates these artifacts.

Figure 3.2: Excerpts of the four types of artifacts

Identification, refinement, and statement of goals
The activities in this stage are Identification, Refinement and Statement. These are
performed iteratively. The goal or objective is formulated through these activities. Table
3.3 [Ayala et al., 2007] shows an example of a goal statement.

Establishment of dependencies
A COTS component may need other components for several reasons. This may be to
enable its functionality, to complement its functionality, or to enhance its quality at-
tributes. The dependencies are identified from analyzing the goal information from the
previously performed activities.

Goal taxonomy structuring
The taxonomies in GOThIC are goal-driven. The goals are operationalized by variables
such as number of users and data processing profile. In this case, the variables represent
classifiers with values. A subcategory or marked segment applies to each possible value
these classifiers may have.

OTS-Wiki

3.3. DesCOTS 21

Table 3.3: An example of goal statement

Goal: Multiuser Textual Communication Established
Type Achievement
Description Provide RTSC in a Text Multi-user Environment
Agent Software Client
Stakeholder(s) Software Client, Software Server, Sender, Receiver
Precondition(s)

1. Users Communicated in Real Time;

2. Session Established;

3. Number of users >=2

Postcondition(s) Multiuser Textual Communication Established
Subgoal(s)

1. Software Client Provided;

2. Software Server Provided

Taxonomy validation
The taxonomy needs to be consistent, complete and not ambiguous to be useful in the
search process. This activity describes four steps to ensure these conditions.

Knowledge base management
The GOThIC method provides mechanisms for maintaining a knowledge repository through
the definition found in the UML class diagram. The infrastructure from this knowledge
base helps to ease the evolution and maintenance of the taxonomies.

3.2.1 Summary

Table 3.4 [Ayala et al., 2007] summarize many of the challenges of the OTS selection process.
By using the GOThIC method in OTS-Wiki, we are able to solve many problems related to
these challenges. The GOThIC method provides taxonomies to organize all information related
to a OTS component, and to reuse this information structure. [Ayala et al., 2007]

There are heavy start-up costs related to the GOThIC method. The article [Ayala et al., 2007]
proposes to combine the GOThIC method with the productive potential of open source col-
laboration principle. The OTS users can then work as a community building and maintaining
a OTS information repository, which is one of the visions of OTS-Wiki.

3.3 DesCOTS

DesCOTS (Description, evaluation, and selection of commercial-off the shelf (COTS) compo-
nents) is a software system with several tools interacting to provide support in the different
activities in the process of selecting COTS software components. This includes both functional
and non-functional aspects of the system. [Grau et al., 2004]

Master Thesis

22 3. Theoretical Background and State-of-the-Art

Table 3.4: Role-related challenges supporting OTS selection

OTS User
Role Current Practice Problem Challenge

Market
Watcher
(MW)

 Proliferation of cataloguing initiatives from
profit and non-profit organizations.

 Catalogues contain only brief and
unstructured descriptions of some inventoried
components.

 Components characterization usually presents
a hierarchy of items without a clear rationale
behind.

 Understanding and use of the categorization
proposals may be difficult.

 Several descriptions of the same component.

 Understandable
Taxonomies [18]

 Common Component
Description Metamodel
[6]

Quality
Engineer

(QE)

 COTS vendors and specially OSS community
projects do not provide structured and enough
information for supporting evaluation and
quality assessment of their products.

 Structuring and discovering important
information leads to rework, confusion,
missing critical information (as
interoperability) and possibly deterring the use
of some components.

 Component
Description Metamodel
embracing quality
characteristics [17]

Selector (S)
 Non-Technical information about the

components is even more difficult to be
located.

 Hard Requirements negotiation.

 Hard identification of mismatches among
components characteristics and the
requirements in order to support the final
decision

 Component
Description Metamodel
embracing non-
technical factors [19]

Knowledge
Keeper (KK)

 No support for organizations (mainly small
and medium) that needs to carry out
continuously OTS selection processes to reuse
their knowledge about them.

 Reuse of knowledge is usually tacit, leading to
be lost if people are replaced.

 Reuse Infrastructure
Support [20]

The selection process builds upon the principle of comparing user requirements with evalua-
tions of COTS components, with a focus on quality requirements. Quality Models are then
constructed of several quality factors. These factors may differ significantly between the dif-
ferent COTS domains, and therefore it is important to find the quality factors that are best
suited for the specific description task. [Grau et al., 2004]

3.3.1 The DesCOTS Tools

As introduced above, the DesCOTS system consists of several different tool to support the
OTS software component selection process. Below follows a short description of these.

Quality Model Tool
The Quality Model Tool provides functionality to define software quality factors to reuse
these in different models, to state relationship among the quality factors, to assign metrics
for their future evaluations, and to define Requirement Patterns to ease the final stage
of the selection process.

It is often a time demanding task to construct a Quality Model. The Quality Model is
not made from scratch, but is built upon the quality framework provided by the ISO/IEC
9126-1 quality standard.

COTS Evaluation Tool
The Evaluation Tool uses the Quality Model from the suited domain to evaluate the
COTS component candidates.

COTS Selection Tool
The Selection Tool provides support for two different processes. It first supports the
process of defining the selection requirements. Then it analyses these requirements and
the evaluations of the COTS components to assist the selection of a component.

OTS-Wiki

3.3. DesCOTS 23

The selection requirements are stated according to the Quality Model for the specific
COTS domain, either from the defined Requirement Patters or as new ones. When
the requirements list is ready, the selection process tool provides a result of possible
components matching these criteria.

Taxonomy Tool
Many quality factors may be used in the different COTS domains. The Taxonomy Tool
is integrated in the Quality Model Tool to provide support for reuse of Quality Models.
When introducing a new COTS domain to the tool, it is first placed at the right place in
the taxonomy. The tool then starts to create the Quality Model by adopting all quality
factors belonging to the category. The user may now add additional quality factors
belonging to that specific domain.

Other tools related to software component selection:

• MiniSQUID

• OPAL

• eCOTS

• IRqA

3.3.2 Quality Models - Conceptual model

The conceptual model of Quality Models is here divided into the nine following parts
[Franch et al., 2007]:

Arranging quality models in a taxonomy of categories and domains
The quality models are organized by using a taxonomy which is divided into domains
and categories. The domains are ordered into categories, and the categories are grouped
into other categories. Examples of categories is communication infrastructure and col-
laboration software. Domains may be workflow systems, mail servers, anti-virus, etc.

Classifying general objects
By introducing a class named Object, there are kept some common attributes between
the different elements. The general objects are Quality Pieces, Quality Entities, Metrics,
Quality Entity Metrics Assignments, Requirement Patterns, Families of Patterns, and
Relation Scales.

Defining and grouping of quality entities
Quality models contain quality entities to cope with a specific quality scope.

Quality entities are grouped into quality fragments.

Quality patterns are a collection of quality entities that appears in many quality models.
These patters are placed in a pattern catalog for reuse.

Defining hierarchies of quality entities
ISO/IEC 9126-1 is chosen as the standard for the quality framework. This standard uses
a hierarchical structure. The DesCOTS conceptual model does not restrict number of
levels in the hierarchy, and attributes or subcharacteristics may be associated to several
subcharacteristics.

Master Thesis

24 3. Theoretical Background and State-of-the-Art

Defining metrics
There are two types of metrics, global metrics and quality model specific metrics. The
metrics are classified to qualitative metrics and quantitative metrics. It is qualitative
when it is not possible to get a precise value but only a subjective estimate, and quanti-
tative if the measure is a specific value.

Assignment of metrics to quality entities
Metrics must be assigned to the quality entities so that the evaluation of a component
can follow a quality model.

Establishing relationships among quality entities
There should be established relationships among quality entities of a quality model ver-
sion to avoid conflicts between quality attributes.

Defining requirement patterns
A requirement pattern is used as a template to support the creation of software require-
ments. These patterns are put into so called families of patterns, and may also organized
in a hierarchical structure of many pattern families.

Defining a glossary
The glossary consists of terms used when constructing quality models. This glossary is
global.

3.3.3 Summary

The article [Ayala et al., 2007] suggests integrating the DesCOTS system into OTS-Wiki. De-
sCOTS includes a set of tools that interoperates to support the OTS selection process: the
Quality Model Tool, the COTS Evaluation Tool, the COTS Selection Tool, and the Taxon-
omy Tool. By integrating the DesCOTS system in OTS-Wiki, we could take advantage of
these tools and provide systematic support the whole OTS selection process. See Figure 5.1 in
Chapter 5 for OTS-Wiki interaction with the DesCOTS system.

3.4 Open Source

In the early age of the computers, most software were developed by scientists and engineers.
Sharing the code as well as research results was a normal practise among the these persons
[von Hippel and von Krogh, 2003]. The sharing of code allowed others to change and improve
code written by other developers. This code sharing practise from the early computer days
makes up the foundation of the open source community we know today.

Open source is defined by Wikipedia2 as the principles to provide open access to the production
and design process. The open source term is normally applied to the source code of computer
software. The Open Source Initiative (OSI)3 is a non-profit organization managing the Open
Source Definition (OSD)4. According to OSD, the distribution terms must follow ten criteria,
in addition to free access to the source code. The definition origins from “The Debian Free
Software Guidelines” written by Bruce Perens. The Debian spesific content was removed to
create the OSD. The definition is currently at version 1.9.

2http://en.wikipedia.org/wiki/Open_source
3http://www.opensource.org
4http://www.opensource.org/docs/definition.php

OTS-Wiki

3.4. Open Source 25

The Free Software Foundation (FSF)5 defines four kinds of freedom in the Free Software
Definition:

• The freedom to run the program, for any purpose (freedom 0).

• The freedom to study how the program works, and adapt it to your needs (freedom 1).
Access to the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbour (freedom 2).

• The freedom to improve the program, and release your improvements to the public, so
that the whole community benefits (freedom 3). Access to the source code is a precondi-
tion for this.

3.4.1 Examples of Open Source Projects

Many well know software products are released under open source licenses. Linus Thorvalds
started working on the Linux operating system in 1991, a Unix-like operating system for PCs.
Later the same year, he released the source code of the Linux kernel into a use-group on the
Internet [Weber, 2004]. He encouraged people to help by commiting modules and comments
to the kernel. This attracted a lot of attention, and led to the release of Linux 1.0 in 1994.
The model which Linux was developed by was at this time unique, with a large numbers
of volunteers contributing to the project through the Internet[Raymond, 2001]. The Linux
project is today one of the most successful open source projects, and the the popularity is
steadily increasing. The Linux kernel is licensed under GPL.

Another successful open source project is the Apache project. Apache is a web server appli-
cation with a market share of 56% [Netcraft, 2007]. Rob McCool left the development team
of the National Centre for Supercomputing Applications (NCSA) http server in 1998, and
the development of the server stopped. Many web masters had made their own patches and
contributions to the server. Some of these people later formed the Apache Group to coor-
dinate the distribution of the patches [Fielding, 1999]. All modifications made to the server
were controlled by the Apache Group through a voting system. The Apache Group were
later named Apache Software Foundation (ASF)6. This foundation is a non-profit organization
with several open source projects such as the Apache server, ANT, Tomcat and many others.
[Øyvind Hauge and Røsdal, 2006]

Netscape released the source code of their browser in 1998. The project was named Mozilla.
The code base for the Mozilla project was originally released under the Netscape Public license.
This license was updated and renamed Mozilla Public license7.

3.4.2 Open Source Licensing

Open source software uses a lot of different license types. These license types are to a large
extent based on GNU General Public License, the GNU Lesser General Public License, and
the Berkley Software Distribution License(s) .

5http://www.fsf.org/
6http://www.apache.org
7http://en.wikipedia.org/wiki/Mozilla

Master Thesis

26 3. Theoretical Background and State-of-the-Art

GNU General Public License (GPL v.2)

The GPL8 9 license is the most commonly used open source license today, and was introduced
by Richard Stallman in 1989 for the Free Software Foundation (FSF). The license intends to
guarantee the freedom to share and change the software code. This freedom is provided by the
following rights:

• The right to freely distribute copies, both as-is and in modified versions

• The right to modify the source code

• The right to run the program for any intended purpose

The GLP license imposes that all software using GPL licensed source code, must also be
licensed under GPL. Because of this restriction, it is almost impossible to incorporate GLP
licensed source code into proprietary closed source software. The license does allow anyone to
charge a fee for distributing GPL software.

GNU Lesser General Public License (LGPL v.2.1)

LGPL10 11 was introduced together with GPL v.2. LGPL is less restrictive than the GPL
license as it permits the linking of GPL licensed libraries into non-free programs. Section five
in the LGPL license states the following concerning this:

A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.

LGPL was introduced to give a larger group of users access to the GNU libraries.

Berkley Software Distribution License (BSD)

The BDS license was originally formulated at the University of California Berkley to use with
the Berkley Software Distribution, a Unix-like operating system. The first version was revised,
and the result of this revision is called a modified BSD licenses.

This BSD license12 has few restrictions compared to other free software licenses such as GPL
and LGPL. The BSD license allows proprietary commercial use, and there are for example
BSD networking code in Microsoft products, and FreeBSD13 components in Mac OSX.

The BSD license is sometimes referred to as copycenter, as in:“Take it down to the copy center
and make as many copies as you want.” This is in comparison to standard copyright and
copyleft14.

8http://www.gnu.org/licenses/gpl.html
9http://www.opensource.org/ licenses/gpl-license.php

10http://www.gnu.org/licenses/lgpl.html
11http://www.opensource.org/licenses/lgpl-license.php
12http://www.wikipedia.org/BSD_licenses
13http://www.freebsd.org/
14Wikipedia defintion: Copyleft is a play on the word copyright and is the practice of using copyright law

to remove restrictions on distributing copies and modified versions of a work for others and requiring that the
same freedoms be preserved in modified versions. (http://en.wikipedia.org/wiki/Copyleft)

OTS-Wiki

3.5. Social Computing 27

3.4.3 The Apache License

The Apache License is similar to the BSD license, and it allows the code to be copied, modi-
fied and redistributed with a few restrictions. This includes redistribution under other license
types, as long as the restrictions stated in the Apache License is followed
[Øyvind Hauge and Røsdal, 2006]. The Free Software Foundation considers the Apache Li-
cense to be incompatible with GPL15.

3.4.4 Mozilla Public Licence

Mozilla Public License (MPL) was created together with the release of the Netscape source
code. Unlike GPL, MPL allows code licensed under MPL to be released in combination with
code with other licenses [Øyvind Hauge and Røsdal, 2006]. Code copied or changed under
MPL must stay under the MPL. Some of the restrictions on MPL however, makes it incom-
patible with GPL16.

3.5 Social Computing

Recently, we are beginning to see vast and sudden changes in the way people are using the Web.
The evolution of Web 2.0 has introduced new and exciting opportunities for rich web applica-
tions [Hinchcliffe, 2006]. One important usage we see is Social Computing [Charron et al., 2006].
Microsoft’s Dr. Gary Flake referrs to this as Internet Singularity :

“The idea that a deeper and tighter coupling between the online and offline worlds
will accelerate science, business, society, and self-actualization.”

The evolution towards Internet Singularity is depicted in Figure 3.3.

IBM Social Computing Group [IBM, 2007] characterizes social computing thus:

“The central hallmark of social computing is that it relies on the notion of social
identity: that is, it is not just the data that matters, but who that data ’belongs to’,
and how the identity of the ’owner’ of that data is related to other identities in the
system. More generally, social computing systems are likely to contain components
that support and represent social constructs such as identity, reputation, trust,
accountability, presence, social roles, and ownership.”

Popular web sites, such as YouTube17, MySpace18, and Facebook19 have become vastly popular
and have shifted the way we interact socially on the web [Geelan, 2006]. Especially younger
people spend a significant part of their time using such social software. New web communities
and portals need to learn from this trend when hoping to gain popularity and a growing base of
re-users. Thus, OTS-Wiki will benefit from both Web 2.0 technologies, and social computing
principles.

15http://en.wikipedia.org/wiki/Apache_License
16http://en.wikipedia.org/wiki/Mozilla_Public_License
17http://www.youtube.com/
18http://www.myspace.com/
19http://www.facebook.com/

Master Thesis

28 3. Theoretical Background and State-of-the-Art

Figure 3.3: Towards Internet Singularity

3.5.1 Wiki

A wiki (from the Hawaiian Wikiwiki meaning “fast") is a web-site that allows visitors to add,
remove, edit, and change content, typically without the need for registration. It also allows for
linking among any number of pages20. This simplifies interaction and operation of such sites
and facilitates mass-collaboration on the web. With open collaboration across geographical
locations becoming more and more important, the wiki solution has grown in popularity.

The WikiWikiWeb21, introduced in 1994, was the first site to adopt the wiki principle. Since
then, the wiki engine has acted as a foundation for numerous web-sites and web communities.
Wikipedia, the free encyclopedia22 is perhaps the most well-known and widely used wiki so-
lution. Wikipedia has more than 7 million articles in over 250 languages worldwide (April,
2007). All the articles are written collaboratively by volunteers from all over the world.

3.6 Software Development Processes

3.6.1 Scrum

Scrum is an agile method for managing the system development process, with focus on being
flexible, adaptable and productive. The term “scrum” originates from a term in the sport of
rugby, where it means to get a ball which is out of play into the game again.

As a part of Scrum’s agile nature, it does not require specific engineering practices. It can
adopt to the development techniques already used in the organization. The Scrum idea builds
upon that the system is based on some environmental and technical variables (requirements,
resources, available time etc.). These variables are changing during project life-cycle, which
makes the development process complex and unpredictable. Scrum aims to improve the prac-

20http://en.wikipedia.org/wiki/Wiki
21http://c2.com/cgi/wiki
22http://www.wikipedia.org/

OTS-Wiki

3.6. Software Development Processes 29

tices by involving frequent managing activities. Scrum is best suitable for small project teams
consisting of less than 10 members. If more peoples are available, they should be divided
into multiple teams. Figure 3.4 illustrates the activities involved in Scrum-based software
development [Abrahamsson et al., 2002].

Processes

In Scrum there are three phases. These are as follows [Abrahamsson et al., 2002]:

The pre-game phase includes the two sub-phases planning and architecture/high level design.

A Product Backlog list is made in the planning phase. The Backlog contains all currently
known requirements. These are then prioritized and an estimate of the upcoming workload is
created. During the development the list is updated constantly. The Scrum Team reviews the
list after each iteration. Setting up a project team, resource needs, and required training are
also important activities in the planning phase.

The high level design based on the Product Backlog is set up during the architecture phase.
The design is reviewed in a meeting, and decisions are made, based on this. A preliminary
plan for the releases are also made.

The development phase or the game phase is treated as “black box”, meaning the unpre-
dictable is expected. During this phase the system is developed in Sprints. Sprints are an
important concept in the Scrum method. A Sprint is the procedure of accommodating to
the changing environmental variables such as time frame, quality, requirements, resources and
implementation technology and tools. It lasts approximately one month. Traditional phases
such as requirements, analysis, design, evolution, and delivery are also included in Sprint. The
duration is between one week and a month.

The project team uses tools such as Sprint Planning Meetings, Sprint Backlog and Daily Scrum
meetings. On the last day of the Sprint, a Sprint Review meeting is held, and the result is
presented to the persons involved.

The post-game phase is the end of the release, and is entered when it is agreed upon that
the requirements is fulfilled. Integration, testing and documentation are done in this phase.

Roles

The Scrum Master is responsible for following the practices and rules of Scrum during the
project, a sort of manager role. The Product Owner is selected by the Scrum Master, the
customer and the management, and is responsible for the project. He also makes the final
decisions when it comes to the Product Backlog list. The Scrum Team is the project team,
and is responsible for each Sprint. The customer takes part in things related to the Product
Backlog list. Management has the last word when it comes to decision making, and also
participates in the requirements process.

3.6.2 eXtreme Programming (XP)

Extreme Programming (XP) [Beck, 1999, Abrahamsson et al., 2002] is a lightweight, test driven
and low-risk way to develop software. XP emphasizes the simplest possible solutions. It is a
collection of practices taken from other methodologies. The business decisions are taken by
the customer, while the technical issues are in the hands of the programmers. XP fits when
the development team is small or medium sized, meaning a maximum of twenty project team

Master Thesis

30 3. Theoretical Background and State-of-the-Art

Figure 3.4: The Scrum metamodel

members. The short iterations make it ideal when the requirements are changed rapidly during
development. The interaction between the customer and the programmers is also an important
aspect of XP.

Figure 3.5 [Sørensen, 2002] illustrates the phases of XP.

Other features known from XP:

OTS-Wiki

3.6. Software Development Processes 31

Figure 3.5: Extreme Programming project

• Pair programming is important in XP, meaning two persons sitting together in front of
one computer when programming.

• Collective ownership so that anyone can make changes to anything in the code.

• Maximum of 40-hour work per week, and no overtime two weeks in a row.

• Communication between the members should be possible all the time, and the customer
should always be available to the team.

• The coding is based on rules and standards, so that communication through the code is
made easier.

Processes

The XP life cycle consists of six phases.

Exploration The customer tells the programmers what they want to be made by writing
stories. Each story tells a feature request that should be implemented in the system,
In parallel to this, the project team uses the time to get familiar with the needed tools,
technology and practices to be used in the project. Duration of this period is usually
between a few weeks to a few months, dependent on how well the team members know
the technology.

Planning In the planning phase the priority of the stories made in the exploration phase is
set, and a delivery schedule is set up. The first release should be delivered between two
and six month later. The phase takes a few days.

Iterations to release The schedule made in the planning phase is divided into several itera-
tions with an implementation length between one to four weeks. It is up to the customer
to choose which stories to be used for each iteration. When an iteration is ended, the
customer should run functional tests to verify the result of the iteration.

Master Thesis

32 3. Theoretical Background and State-of-the-Art

Productionizing In this phase the software typically goes through more testing to certify
that it is ready to be released to the customer, The iterations usually goes down to one
week length. Performance tuning may also be done in this phase.

Maintenance After delivering the first release to the customer, the system needs to be kept
running and simultaneously new iterations must be produced. The maintenance phase
may also include the incorporation of new members to the development team.

Death When the customer does not have any more stories, the death phase is introduced
to the project life cycle. The customer is satisfied with the product, also concerning
performance and reliability. No more changes are made, so the documentation is now
written. If the system cannot deliver what is needed, or the economic situation force it,
the death phase may occur before the system is completed.

Roles

During development, different roles apply to the XP method. The programmers write the
tests and make the code as simple as possible. The customers write the stories and prioritize
them, write the functional tests, and tell when the system is satisfactory. Testers help the
customer write the tests, and they run them. The feedback in XP is given by the tracker, e.g.,
on whether the goals are reachable. The one responsible for the process is the coach, and he
or she guides the other team members. The consultant is an external resource with specific
field knowledge to guide the team to resolve certain issues. Manager or Big Boss makes the
decisions in the project.

3.6.3 Summary

Agile software development methods are growing in popularity [Fraser et al., 2006]. Open
source and agile methodology will be important guidelines in the development of OTS-Wiki.
The software engineering part of this thesis will use elements from both Scrum and XP.

OTS-Wiki

Chapter 4

Related Work

This chapter will describe some work and projects related to this thesis. Other web portals in
the OTS community are important, but relevant student projects are also discussed.

4.1 Related Web Portals

There exists several web portals aiming to provide support in the process of selecting OTS
components. Table 4.1 [Ayala et al., 2007] shows a overview of existing resources to support
the OTS selection process. The abbreviations in the right column of the table means: Market
Watcher (MW), Quality Engineer (QE), Selector (S), and Knowledge Keeper (KK).

The resources listed in this table covers different areas of the selection process. Source-
forge.net, Tigris.org and Freshmeat are well known web-portals providing functionality
similar to the OTS-Wiki. Ohloh is another portal which gathers statistics related to the de-
velopment of different open source software projects. These four web resources are presented
in the following sections.

4.1.1 SourceForge.net

SourceForge.net1 is web portal hosting open source software projects, where software developers
can control and manage their projects free of charge. In January 2007, it had reached nearly
140000 hosted projects2.

SourceForge.net offers a variety of services to manage and control a development project. This
includes among others, source code version control systems like CVS and Subversion, file release
systems, forums, mailing lists, publicity by news and statistics, and donation systems.

1http://www.sourceforge.net/
2http://en.wikipedia.org/wiki/SourceForge.net

33

34 4. Related Work

Table 4.1: Web Resources Available for Supporting OTS Components Selection

Name Characteriz
ation

Retrieval
Schema

Scope
Compo

nent
Inform
ation

Additional
Information Intended Objective

Support to the
Roles

M
W

Q
E S K

K

COTS Vendors - - COTS
Non-

Structur
ed (NS)

Requests (R) Marketing * * * -

OSS Community
Project -

Browsing
(B)

Keyword
search (KS)

OSS NS

(R), Forums
(F),

Documentation
(D)

Open Source Development * * * -

SourceForge.net SC B, KS OSS NS Newsletter (N) Promote and hosting OSS
Community Projects √ - - -

ComponentSource.com -SC
-Platforms B, KS Mainly

COTS NS (N), (F), Demos Marketing √ - - -

Tigris.org -SC B OSS-SE NS

Messages from
community

owners, papers,
etc.

Promote and hosting OSS for
supporting Software

Engineering (SE)
√ * * -

OpenCores.org -SC B, KS OSS-IP NS (F), (N),
Articles

Promote, design and hosting
OSS for supporting IP-Core √ * - -

KnowledgeStorm.com
-IT

Solutions
(ITS)

B, KS Mainly
COTS NS

Case Studies
Forecasts

Vendor white
papers, Demos.

Marketing √ * - -

CMSmatrix.org Name List
Selection OTS-CMS

Semi-
Structur
ed (SS)

Comparison
table

Open and free collaboration for
indexing OTS-Content

Management Systems (CMS)
* * - -

Messangingmatrix.com Name List
Selection

OTS-
Messaging SS Comparison

table

Open and free collaboration for
indexing OTS-Messaging

related systems
* * - -

TheServerSide.com Name B, KS Java NS Papers, News Inform about trends in OTS-Java
and promote marketing √ - - -

Freshmeat.net SC B, KS Mainly OSS SS Papers, Chat,
(F)

Promote and hosting OSS
Community Projects * * - -

Forrester.com ITS B, KS Broad IT
Solutions NS IT Support/ Not

free Selling IT Strategic Support * - - -

Gartner.com ITS B, KS Broad IT
Solutions NS IT Support/ Not

free Selling IT Strategic Support * - - -

Incose.org SC B, KS COTS-SyE SS Research
Trends

Research Support in Systems
Engineering (SyE)

* * - -

4.1.2 Tigris.org

Tigris.org3 is a community hosting open source software projects. It offers services like web
hosting, mailing lists, issue tracking, and revision control with Subversion. Tigris.org has it’s
main focus on projects for collaborative software development4.

To get a project to be hosted by Tigris.org, it has to be approved by the administrators. It
has to fit he Tigris.org mission, which is the development of software engineering tools.

Tigris.org also aims to provide a portal with no dead projects, through a commitment made
by the developers to have a active developers cycle.

4.1.3 Freshmeat.net

Freshmeat5 is a large collection of Unix and cross-platform software. The main focus in on open
source software, but also closed-source and commercial software may be found on Freshmeat.

Developers register their project on Freshmeat, making it available for download. Users may
give feedback to the developers by rating or commenting the projects6.

3http://www.tigris.org/
4http://en.wikipedia.org/wiki/Tigris.org
5http://www.freshmeat.net/
6http://en.wikipedia.org/wiki/Freshmeat

OTS-Wiki

4.1. Related Web Portals 35

4.1.4 Ohloh

Ohloh7 Open Source Directory provides community driven content together with up-to-date
information on open source projects generated by sources such as source code crawlers. These
crawlers gathers project data based on the activity statistics in the revision control systems.
Examples of such data is proportion of different programming languages in the source code,
different licences, number of code lines in the code base.

Ohloh also provides a summary of this data, including project activity information and possible
licence conflicts in the code base.

Users may give feedback to the project owners by reviews and ratings, as well as adding useful
additional resources related to the different projects.

7http://www.ohloh.net/

Master Thesis

36 4. Related Work

OTS-Wiki

Part III

The OTS-Wiki

37

Chapter 5

System Introduction

This chapter will introduce the OTS-Wiki and the contributions made in this thesis. We look
at the starting point for the development, provided by [Ayala et al., 2007], and present the Java
platform as an enabling technology for the implementation. We also present the Cosiportal
Project, a related Master thesis by Per Kristian Schanke.

5.1 Contribution Overview

The main contribution of this thesis is the initial implementation of the OTS-Wiki portal. A
specification of the requirements, both functional and non-functional, is needed to guide the
implementation. The requirements specification (Chapter 6) will describe the functionality we
want to implement in this thesis, emphasizing on the basic features needed to start using the
portal. An overall architecture is presented in Chapter 7, including a data model to depict the
data structure of the implemented portal.

In short, OTS-Wiki is a web portal aimed at fostering evaluation and selection of OTS compo-
nents. The portal is enhanced by the wiki principle, allowing the community users to populate
and edit the portal content. The implemented version of the portal will try to show the benefits
of this enhancement and foster ideas and suggestions for further development of OTS-Wiki.

5.2 OTS-Wiki Starting Point

The initial work done by [Ayala et al., 2007] serves as a starting point for the work of this thesis.
Figure 5.1 depicts the suggested main interactions in the portal. Here, any OTS Community
user can use OTS-Wiki as a meta-portal for providing support to:

a) Locating OTS and information about them

b) Recording component information in a structured way

c) Maintaining and reusing such information

d) Getting tool support for performing selection processes

39

40 5. System Introduction

In addition, it integrates the DesCOTS system which includes a set of tools to support the
whole OTS selection process. DesCOTS is described in detail in Section 3.3.

Figure 5.1: Suggested system interactions

OTS-Wiki

5.2. OTS-Wiki Starting Point 41

5.2.1 Functionality Scenarios

[Ayala et al., 2007] define a set of scenarios to describe the wanted functionality in OTS-Wiki.
The suggested scenarios are presented in Table 5.1. A simple prototype has been developed
using a Wiki-based content management system from the Moddle community1. Figure 5.2
shows a screenshot of the prototype.

This thesis will use the suggested scenarios and prototype implementation as references in
the further development of OTS-Wiki. We emphasize that our work also has elements of
independent research, valuable to our field of study and interests, but that the principles of
the work of [Ayala et al., 2007] are very important.

Table 5.1: Functionality scenarios

ID Goal Description
S1 Fostering OTS Community OTS Technology users are encouraged

to work as a high performance team for
reusing and sharing OTS Components
Information in an Open and Freely ac-
cessible OTS-Wiki Portal

S2 Incremental Population of Content Users are encouraged to publish and
share content they considered helpful to
the OTS Community

S3 Federation of OTS Resources in OTS-
Wiki

Users are encouraged to publish content
that they consider may be helpful to the
Community (Hyperlinks, references or
files)

S4 Enabled Systematic Support for Selec-
tion Process

Tools are provided to support the OTS
selection activities automatically, using
the standardized data from the reposi-
tory (DesCOTS functionality)

S5 Enabled Active Communication Users are encouraged to maintain an ac-
tive and fruitful communication among
them using discussion boards and chat
rooms

S6 Enabled Assisted Search Users are provided with searching fa-
cilities to locate OTS components in-
formation using keywords or taxonomy
navigation

S7 New Functionality Requested to the
Community

Users are provided with a Requesting
Board area for requesting information
of components functionality that do not
already exist in OTS-Wiki (but maybe
in other portals) or new component
functionality to the Community

S8 Enabled a Glossary Construction Users are encouraged to detail the
meaning of unknown or confusing terms

1http://moddle.org/

Master Thesis

42 5. System Introduction

Figure 5.2: Suggested portal start page

OTS-Wiki

5.3. Usability 43

5.3 Usability

As with all web portals, usability is very important in OTS-Wiki. In today’s great variety of
web portals and communities, the ones that survive are those that keep their users coming
back over and over again. To grow and maintain a solid group of users, the portal must be
perceived as easy to use. Usability is a vast term. The literature about usability contains many
different definitions.

Wikipedia defines usability as follows2: “Usability is a term used to denote the ease with
which people can employ a particular tool or other human-made object in order to achieve a
particular goal. Usability can also refer to the methods of measuring usability and the study
of the principles behind an object’s perceived efficiency or elegance.”

Shneiderman and Plaisant identifies five usability measures: time to learn, speed of perfor-
mance, rate of errors by users, retention over time, and subjective satisfaction. The ISO
9241-11 standard identifies three aspects of usability: effectiveness, efficiency and satisfaction
[Hornbæk and Law, 2007].

5.3.1 Usability principles

Usability is to a certain degree a subjective matter, and may vary between different individuals
or groups of users. Gould and Lewis [Gould and Lewis, 1985] recommends three principles of
design to foster usability of a computer system.

Early focus on users and tasks
It is important to find out who the users are, and the type of work these users are going
to accomplish. This means understanding potential users, not only identifying them.
The developers should also be in direct contact with potential users such as interviews
and discussions. The user contact should be initialized before the system is designed.

Emiprical measurement
Users should be involved with testing of prototypes during development, so that their
reaction and to the system could be observed and analyzed. It is important that the
system is tested by the user, not demonstrated to them. A passive demonstration could
result in misleading conclusions when analysing their reaction to it.

Iterative design
The problems found during testing should be fixed, and this is best done when performing
iterative design and development.

5.3.2 Usability in the OTS-Wiki

The theory of usability factors related to OTS-Wiki may be summed up as follows:

Look and feel
The use of balanced colouring, styles, and images. These are important elements to give
the user of the portal the impression of a credible and reliable source of information.

Intuitive navigation
Site navigation and user activities use well-proven patterns to make the user recognise

2http://en.wikipedia.org/wiki/Usability

Master Thesis

44 5. System Introduction

in the system and use it as it is supposed to be used (use of well-known keywords, icons,
structures, and navigation rules).

Effective use
Easy and fast navigation, using a minimum number of clicks, without reaching “dead-
ends”.

Balanced data presentation
Presenting a balanced amount of data in a structural fashion.

User guidance
Available help functions and tips for optimal use of the site.

Eyecandy
“The little extra”, design or functions, to impress the users and make them return over
and over again.

5.4 Enabling Technology - The Java Platform

There exist many technologies suited for developing web-based applications. This section
describes the Java approach, using Java technology as the foundation for developing the OTS-
Wiki.

5.4.1 Java Introduction

Java3 is an object-oriented programming language developed by Sun Microsystems. The first
version was released in 1995, and has since then grown rapidly in both popularity and quality.
Portability, built-in networking support, and secure remote execution were some of the main
goals of creating the Java language. Platform independence, the idea of “Write Once, Run
Anywhere” (WORA), has been one of the main features supporting these goals.

Java source code is compiled into bytecode (Java bytecode) that contains simplified machine
instructions specific to the Java platform. The bytecode is then run on a Java Virtual Machine
(JVM) that is written in native code on the host machine. Platform independence is achieved
by implementing a JVM for each platform that need to run Java applications, making the same
source code run on a number of different platforms4.

Another important feature of the Java language is the automatic garbage collection. This
leaves the work of memory management, garbage collection, and handling object lifecycles to
the Java platform.

Since the release of version 2 of Java (Java 2), the technology was divided into three configura-
tions supporting different types of platforms. The Java Standard Edition (Java SE) is the main
configuration suitable for most common uses of Java. The Java 2 Enterprise Edition (Java EE)
supports development of distributed, mulitier enterprise applications. The Java Micro Edition
(Java ME) is a stripped down configuration aimed at limited and mobile platforms.

One of the main criticism of Java has been the perfomance issue. In the beginning, Java
applications were perceived as slower than applications written in natively compiled languages,
such as C or C++. Lately, the performance of Java has increased substantially, and the

3http://java.sun.com/
4http://en.wikipedia.org/wiki/Java_(programming_language)

OTS-Wiki

5.4. Enabling Technology - The Java Platform 45

difference between native compilers and Java compilers is no longer regarded as significant
[Heiss, 2007]. Also, the look and feel of Java graphical user interfaces (using the Swing toolkit)
has received some criticism. The difference in appearence between Java and native graphical
interfaces has been regarded as significantly large. Some criticism also points out that Java’s
primitive data types are not objects, and thus, Java is not considered to be a pure object-
oriented language.

The latest release of the Java Platform is the Java SE 6 (1.6.0).

5.4.2 Web Development in Java

One of the main goals of the Java technology was the built-in networking support. From there,
the step is short to including web development frameworks and standards to the Java platform.
Fundamentally, dynamic web content is supported by Java through the Java Servlet API5. A
servlet is a Java object that handles HTTP requests to generate HTML or XML responses
to a client web browser. Servlets need to run inside a web container to provide content to
remote clients. The most common web container enabling servlets is Apache Tomcat6. Other
popular web containers include Jetty, Geronimo Application Server, IBM WebSphere, JBoss,
BEA WebLogic, Borland Enterprise Server, and Oracle Application Server.

A servlet is a cumbersome way to generate web content. JavaServer Pages (JSP) is a Java
technology that enables dynamic scripts and Java code to be embedded directly into static
HTML documents to generate dynamic responses to web requests7. The developer then do not
have to worry about how to write the servlet code. When executed, a JSP is compiled into a
servlet by a JSP compiler. Thus, JSP can be viewed as a high-level abstraction of the servlet
API. Both servlets and JSP were originally developed by Sun Microsystems. Today, JSP is
included in the Java Enterprise Edition.

5.4.3 Java Frameworks

JSP and servlets serve as the foundation for Java web development. To ease the developer’s
job of developing large, multiuser systems, there exist a number of frameworks suitable for
web-based applications. Here, we will describe some important Java frameworks and how they
can be used in the development of OTS-Wiki.

JavaServer Faces (JSF)
JSF8 is a web application framework for simplified development of user interfaces (UI) for
JavaServer/Java EE applications. The framework provides a set of APIs for representing
reusable UI components and managing their state, handling events and input validation,
defining page navigation, and supporting internationalization and accessibility9. JSF also
provides wires from client-generated events to server-side event handlers/controllers and
connections between the UI components and the application’s data source. JSF adds a
custom JSP tag library for expressing JSF interfaces within a JSP page.

Hibernate
Hibernate10 is an object-relational mapping (ORM) solution for Java and .NET. The

5http://en.wikipedia.org/wiki/Servlet
6http://tomcat.apache.org/
7http://en.wikipedia.org/wiki/JavaServer_Pages
8http://java.sun.com/javaee/javaserverfaces/
9http://en.wikipedia.org/wiki/JavaServer_Faces

10http://www.hibernate.org/

Master Thesis

46 5. System Introduction

framework provides mapping between an object-oriented domain model to a traditional
relational database11. The goal is to relieve the developer from time-consuming data
persistence-related programming tasks, such as saving, updating, deleting, and querying
objects. Hibernate allows the developer to express queries in its own portable SQL exten-
sion (HQL), as well as in native SQL, or with an object-oriented Criteria and Example
API. This makes Hibernate a powerful and flexible object-persistance framework suited
for all non-trivial multitier applications [Hemrajani, 2006]. Hibernate is released under
the GNU Lesser General Public License (LGPL) and may be used in both commercial
and open source projects.

Spring
Spring12 is an open source application framework for Java. It has gained popularity
in the Java community as an alternative and replacement for the Enterprise JavaBean
(EJB) model13. Spring provides a number of frameworks and best-practice solutions
for building Java applications, especially for web-based applications on top of the Java
EE platform [Hemrajani, 2006]. One of the main ideas is the use of configuration over
system-specific coding for reusable tasks. The key features of Spring are:

• Configuration management based on JavaBeans, applying Inversion-of-Control (IoC)
principles, specifically using the Dependency Injection technique. This aims to re-
duce dependencies of components on specific implementations of other components.

• A global core bean factory.
• Generic abstraction layer for database transaction management.
• Built-in generic strategies for JTA and a single JDBC DataSource. This removes

the dependency on a Java EE environment for transaction support.
• Integration with persistence frameworks such as Hibernate, JDO and iBATIS.
• Model-Vew-Controller (MVC) web application framework, supporting many tech-

nologies for generating views, including JSP, FreeMarker, Velocity, Tiles, iText, and
POI.

• Extensive aspect-oriented programming framework to provide services such as trans-
action management. As with the Inversion-of-Control parts of the system, this aims
to improve the modularity of systems created using the framework.

The Spring Framework is licensed under the terms of the Apache License, Version 2.0.

Apache Struts
Apache Struts14 is an open-source framework for developing Java EE Web applications.
It uses and extends the Java Servlet API to encourage developers to adopt a MVC
architecture15. The goal is to clearly separate the model (datalayer tasks) from the view
(user interface), and the controller (mediator between the model and the view). Struts
provides the controller (a servlet known as ActionServlet) and facilitates the writing of
templates for the view or presentation layer (using JSP). The web application programmer
is responsible for writing the model code, and for creating a central configuration file
struts-config.xml which binds together model, view and controller. In December 2005,
Struts joined forces with another popular Java EE framework, WebWork. The merge of
Struts and WebWork is known as Struts 2. Apache Struts is licensed under the terms of
the Apache License, Version 2.0.

11http://en.wikipedia.org/wiki/Hibernate_(Java)
12http://www.springframework.org/
13http://en.wikipedia.org/wiki/Spring_framework
14http://struts.apache.org/
15http://en.wikipedia.org/wiki/Struts

OTS-Wiki

5.4. Enabling Technology - The Java Platform 47

Apache Tapestry
Apache Tapestry16 is a Java-based web programming toolkit that uses XML to imple-
ment applications in accordance with the MVC design pattern17. Its component-based
architecture provides strong bindings between the elements on a web page and the un-
derlying code to facilitate fast and straightforward development. Apache Tapestry is
licensed under the terms of the Apache License, Version 2.0.

Apache Lucene
Apache Lucene18 is an open source search engine library written in Java19. It provides
textual searches in an application’s domain model or documents using indexing. Lucene
is used in a wide range of applications and portals, and is well known for its flexibility,
scalability, and accuracy. It is also ported to other programming languages such as
Perl, C#, C++, Python, Ruby, and PHP. Apache Lucene is released under the Apache
Software License.

5.4.4 Security in Java Web Applications

Security is an important issue in all software applications. In web applications, security chal-
lenges are even more important. Evidence shows that perhaps as many as sixty percent of
attacks on enterprise web applications are facilitated by exploitable vulnerabilities present
in the source code [Lebanidze, 2006]. On the other hand, [Grossman, 2005] points out that
Pareto’s Principle or the 80/20 rule, suggesting that 20% of the defects causes 80% of the prob-
lems, applies in web application projects. Further, he suggests a number of countermeasures
to increase security without touching the source code. Since most of the countermeasures are
applied at the web server level, they are beyond the scope of this report to discuss in detail.
Here we focus on what security issues can be resolved in the application code, specifically in
Java.

When evaluating the security of web applications the core security services collectively known
as CI4A (Confidentiality, Integrity, Authentication, Authorization, Availability, and Account-
ability) [Lebanidze, 2006] are mentioned. Confidentiality is concerned with the privacy of
information that passes through or is stored inside the web application. Integrity ensures that
the data used is free from modification. Authentication addresses verification of identities.
Authentication can also be thought of in the context of source integrity. Authorization focuses
on access rights to various application subsystems, functionality, and data. Availability, an
often ignored aspect of security, is nevertheless an important metric for the security posture
of the web application. Many attacks that compromise application availability exploit coding
mistakes introduced at the application source level that could have been easily avoided. Non-
repudiation addresses the need to prove that a certain action has been taken by an identity
without plausible deniability. Accountability, tied with non-repudiation, allows holding people
accountable for their actions.

A major task, often neglected as trivial by developers, is the user authentication and authoriza-
tion. Today, enterprise applications often include a number of independent or semi-dependent
web applications that users access daily. Handling user credentials in these heterogeneous en-
vironments is a great challenge. Single sign-on (SSO) is a session/user authentication process
that allows a user to provide her credentials once in order to access multiple applications20.

16http://tapestry.apache.org/
17http://en.wikipedia.org/wiki/Apache_Tapestry
18http://lucene.apache.org/java/docs/
19http://en.wikipedia.org/wiki/Lucene
20http://en.wikipedia.org/wiki/Single_sign-on

Master Thesis

48 5. System Introduction

The single sign-on authenticates the user to access all the applications she has been authorized
to access. It eliminates future authenticaton requests when the user switches applications dur-
ing that particular session. Web Single sign-on works strictly with applications accessed with a
web browser. The request to access a web resource is intercepted either by a component in the
web server, or by the application itself. Unauthenticated users are diverted to an authenticaton
service and returned only after a successful authentication.

Here we briefly describe some of the frameworks and technologies related to web security and
single sign-on in Java.

Java Authentication and Authorization Service (JAAS)
JAAS21 s a set of APIs that enable services to authenticate and enforce access controls
upon users. It implements a Java technology version of the standard Pluggable Au-
thentication Module (PAM) framework, and supports user-based authorization. JAAS
is created by Sun Microsystems and is included in Java Runtime Environment 1.4 and
later.

JA-SIG Central Authentication Service (CAS)
CAS22 CAS is an authentication system originally created by Yale University to provide
a trusted way for an application to authenticate a user. It is implemented as an open
source Java server component and supports a library of clients for Java, PHP, Perl,
Apache, uPortal, and others. CAS serves as a foundation for several other security
frameworks and SSO solutions.

Acegi Security
Acegi Security23 is a Java-based security framework supporting authentication, autho-
rization, instance-based access control, channel security and human user detection. It is
especially well coupled with the Spring framework, and serves as a basis for CAS.

Java Open Single Sign-On (JOSSO)
JOSSO24 is an open source Java EE-based SSO infrastructure aimed to provide a solution
for centralized platform neutral user authentication. It is based on JAAS and uses Struts
and JSP, as well as web services (Axis) as the distributed infrastructure. The use of web
services allows integration of non-Java applications (i.e. ASP.NET or PHP).

5.4.5 Java Development Tools

There exist a number of development platforms and Integrated Development Environments
(IDE) for Java. An IDE includes most of the tools needed to write, debug, and run an appli-
cation. Below we descibe some of the most common Java IDEs and some other development
tools to ease the Java development.

Eclipse
Eclipse25 is an open source development platform and IDE comprised of extensible frame-
works, tools and runtimes for building, deploying and managing software across the life-
cycle. Eclipse has become the most popular open source IDE due to the extensive base
of plugins and third party applications, making almost every part of application devel-
opment possible within Eclipse [Hemrajani, 2006].

21http://java.sun.com/products/jaas/
22http://www.ja-sig.org/products/cas/
23http://www.acegisecurity.org/
24http://www.josso.org/
25http://www.eclipse.org/

OTS-Wiki

5.4. Enabling Technology - The Java Platform 49

NetBeans
NetBeans26 is an open source Java IDE owned by Sun Micosystems. It provides tools
needed to create cross-platform desktop, enterprise, web and mobile applications. Net-
Beans runs on Windows, Linux, MacOS, as well as Solaris.

JDeveloper
JDeveloper27 is a free IDE, made by Oracle, with end-to-end support for modeling,
developing, debugging, optimizing, and deploying applications and Web services. It relies
mainly on the Oracle platform and supports multiple technologies and programming
languages, such as Java, XML, SQL and PL/SQL, HTML, JavaScript, BPEL, and PHP.

JBuilder
JBuilder28 is a Java IDE from Borland/CodeGear. It has won several awards as the most
powerful IDE for professional Java Programming. JBuilder is available commercially, as
well as a free limited version for beginners.

JUnit
JUnit29 JUnit is an open source regression testing framework written by Erich Gamma
and Kent Beck. It has become the de-facto standard of performing unit tests in Java. Unit
testing the source code is regarded a mandatory task in modern software development.
JUnit is integrated into a number of frameworks and IDEs “out of the box”, and is also
available for a number of other programming languages.

Apache Ant
Ant30 is an open source software tool written in Java for automating software build
processes. Ant uses XML to decribe the build process and its dependencies.

Apache Maven
Maven31 Maven is an open source software project management and comprehension tool.
Based on the concept of a project object model (POM), Maven can manage a project’s
build, reporting and documentation from a central piece of information. Similar to
Ant, Maven uses XML to describe the build process. Maven is often regarded as Ant’s
successor, but both projects coexist and are widely used in the Java software industry.

Subversion
Subversion32 is an open source version control system for managing source code and
versions in projects with multiple developers. Subversion is not Java-specific, but the
tool is still important in any development project.

5.4.6 Alternative Web Development Platforms

Here, we briefly discuss some alternative web development platforms and technologies that
may perform the same tasks as the Java platform.

26http://www.netbeans.org/
27http://www.oracle.com/technology/products/jdev/
28http://www.codegear.com/products/jbuilder
29http://www.junit.org/
30http://ant.apache.org/
31http://maven.apache.org/
32http://subversion.tigris.org/

Master Thesis

50 5. System Introduction

PHP
PHP33 (recursive acronym for "PHP: Hypertext Preprocessor") is an open source general-
purpose scripting language that is especially suited for Web development and can be
embedded into HTML. PHP generally runs on a web server, taking PHP code as its input
and creating Web pages as output. A number of commercial and open source web servers
can run PHP, and it is compatible with most common database systems. Lately, the
LAMP platform has become popular in the open source web industry. PHP is commonly
used as the P in this bundle alongside Linux, Apache and MySQL. PHP as a scripting
language can be compared to JSP, but combined with frameworks, such as CakePHP,
PRADO, Symfony, or the Zend Framework, PHP may serve as a comprehensive web
development platform.

ASP.NET
ASP.NET34 is Microsoft’s web development platform. It can be used to build dynamic
web sites, web applications and XML web services. It is part of Microsoft’s .NET platform
and is the successor to Microsoft’s Active Server Pages (ASP) technology. ASP.NET
is built on the Common Language Runtime (CLR), meaning programmers can write
ASP.NET code using any Microsoft .NET language (C#, C++/CLI, Visual Basic, J#,
IronPython, IronRuby, and others).

Ruby on Rails
Ruby on Rails35 (RoR) is an open source project written in the Ruby programming
language and applications using the Rails framework are developed using the Model-
View-Controller design pattern. Rails provides out-of-the-box scaffolding, a skeleton code
framework which can quickly construct most of the logic and views needed for a basic
website. RoR has become popular due to its ability to enable quick and easy development
of database-driven web sites.

5.5 The Cosiportal Project

The student Per Kristian Schanke at the Norwegian University of Science and Technology
(NTNU) is working on a project to provide a portal for companies to manage projects after
they are released as Open Source. The Cosiportal Project will be hosted at the same server as
OTS-Wiki, and Schanke is currently responsible for administration and maintenance of all the
server applications, including the ones related to OTS-Wiki.

5.5.1 Background

Open Source is a field in Computer Science that grows steadily. With the success of Linux,
Mozilla and other projects is there a surge in interest among companies to release their com-
modity software as Open Source. There are different reasons for this; publicity and getting
others to improve on code that is not business critical are some of the major reasons. Another
reasons worth to mention is the fact that more and more companies use Open Source compo-
nents in their development. To be able to sell this software, they usually need to follow the
license that the components is released under and offer their finished product as Open Source.

33http://www.php.net/
34http://www.asp.net/
35http://www.rubyonrails.org/

OTS-Wiki

5.5. The Cosiportal Project 51

5.5.2 The project

Even though companies release software as Open Source, they want to keep some control of the
further development. The project aims to provide the portal to enable companies to release
their source code as Open Source and still keep control. The mission of the project is to
develop a portal companies can install on their web servers, to get all the tools they need to
enable external users to contribute to the project. The components used in the portal are
Open Source, and these are tied together into a package which should be easy to install and
upgrade. The portal do currently contain a SVN-repository, a mailing-list and a bug-tracker.
It will eventually also contain a forum.

Master Thesis

52 5. System Introduction

OTS-Wiki

Chapter 6

Requirements Specification

This chapter presents the functional and non-functional requirements of the OTS-Wiki portal.
A use case specification is used to show the actions and interactions of the system’s actors,
and to describe the most important functionality.

6.1 Functional Requirements

This section presents the functional requirements of OTS-Wiki. The goal is to describe the
functions and actions related to the actors in the system. Firstly, we present the actors and
their concerns. Lastly, we present an overview of the specified use cases. Each use case is given
a priority. This is done to guide the development and implementation of the system. The
highest prioritized use cases are implemented early in the incremental development process,
and the lower prioritized functions are implemented later. The complete use case specification
is presented in Appendix A.

The specified use cases represent the basic functionality we plan to implement in this project.
Due to time issues, all the features and functions mentioned in Section 2.1 are beyond the
scope of this thesis to implement. Our goal is to implement enough functionality to begin
populating and using the portal, and to evaluate the work done to guide the further evolution
of OTS-Wiki.

6.1.1 Actors

The use cases are specified using UML, as described by [Larman, 2001]. In UML, an actor
is something or someone who supplies stimulus to the system. The primary actors interact
directly with the system to achieve certain goals. The primary actors may be supported by
supporting actors, such as external persons or systems that indirectly contribute to the goals.
Often, the system stakeholder are modelled as actors. They do not interact directly with the
system, but have interests in the primary actor’s goals. Active actors provide input to the
system, while passive actors act as targets of information or requests. Passive actors may also
be activated by the system. Figure 6.1 shows the actors and their dependencies. The actors
are described below.

53

54 6. Requirements Specification

Figure 6.1: The system actors

User
The User is the superclass actor for all the end users in the system. The Provider, the
Evaluator, and the Selector are subclasses of the User. In the use case specification, the
User actor is used in cases where the user has not yet adopted one of the subclass roles.
All general portal utilities, such as the forum, the chat rooms, and general read-only
activities, are actions that belong to the User actor.

Provider
The Provider is the actor responsible for all the contributions not related to the evalua-
tions of the components. Adding, editing, and requesting components are the core tasks
of the Provider. Also adding resources and glossary items are important. The Provider
plays the main role of populating the community’s database. A user has to be registered
to become a Provider.

Evaluator
The Evaluator is the actor that performs the evaluations of the components in the com-
munity. The evaluation can be done on several detail levels. A user has to be registered
to become an Evaluator.

Selector
The Selector is the actor that is actively seeking candidate components and information.
The Selector uses the system as a selection support tool to find and use one or more
software components. A user do not have to be registered to become a Selector, but to
get full selection support, registration is needed.

Administrator
The Administrator is the actor that administers and maintains the system. The Admin-
istrator is also a superuser with all rights in the system. User handling, role assignment,
and statistics work are some of the tasks of the Administrator.

OTS-Wiki

6.1. Functional Requirements 55

6.1.2 Use Case Overview

Table 6.1 presents an overview of the specified use cases. The use cases are prioritized to guide
the implementation work. The complete use case specification is presented in Appendix A.

Table 6.1: Use Case Overview

ID Name Actor Priority
UC1.1 Register User High
UC1.2 Login/Logout User High
UC1.3 Edit User Information User Medium
UC1.4 Make Forum Post User Medium
UC1.5 Chat User Low
UC1.6 Browse Content User High
UC1.7 Get Help User Low
UC2.1 Add Component Provider High
UC2.2 Edit Component Provider High
UC2.3 Request Component Provider High
UC2.4 Add Resource Provider Medium
UC2.5 Edit Glossary Provider Medium
UC3.1 Rate Component Evaluator High
UC3.2 Comment Component Evaluator High
UC3.3 Provide Detailed Evaluation Evaluator High
UC4.1 Textual Search Selector High
UC4.2 Advanced Search Selector High
UC5.1 Log User Activity Administrator Medium
UC5.2 Handle Requests Administrator Low
UC5.3 View Statistics Administrator Low
UC5.4 Moderate Content Administrator Medium

Master Thesis

56 6. Requirements Specification

6.2 Non-Functional Requirements

The book Software Architecture in Practice [Bass et al., 2003] defines a set of quality attributes
related to the quality of the system.

Availability
Definition of availability: “Availability is concerned with system failure and its associate
consequences. A system failure occurs when the system no longer delivers a service
consistent with its specification” [Bass et al., 2003].
Availability is an important factor for the success of OTS-Wiki. This means that the
portal should handle all types of input from the user without producing a system failure,
but instead give the user informative feedback.

Modifiability
Definition of modifiability: “Modifiability is about the cost of change (..) 1. What
can change (the artefact)? (..) 2. When is the change made and who makes it (the
environment)?” [Bass et al., 2003]
OTS-Wiki is in an early development phase, which means that a lot of new functionality
and improvements are going to be made to it. The modifiability is naturally crucial when
developing the existing solution further, to avoid spending unnecessary time because of
complex design.

Performance
Definition of performance: “Performance is about timing. Events (interrupts, messages,
requests from users, or the passage of time) occur, and the system must respond to them”
[Bass et al., 2003].
OTS-Wiki should react in real-time to avoid frustrated users. This means waiting time
no longer than it usually takes to load a web site.

Security
Definition of security: “Security is the measure of the system’s ability to resist unautho-
rized usage while still providing its services to legitimate users” [Bass et al., 2003].
Users should only be able to get access to the functionality their user level gives them
authorization to.

Testability
Definition of testability: “Software testability refers to the ease with which software can
be made to demonstrate its faults through (typically execution-based) testing”
[Bass et al., 2003].
OTS-Wiki will use unit testing, using JUnit, to eliminate logical errors in the source
code. Unit testing is easily integrated in most IDEs and is supported by most common
web development platforms.

Usability
Definition of usability: “Usability is concerned with how easy it is for the user to accom-
plish a desired task and the kind of user support the system provides” [Bass et al., 2003].
Usability is one of the most important success factors when releasing OTS-Wiki. Without
satisfactory usability, people will probably not continue to use the portal after have tried
it once. Usability means intuitive user-interface, mostly self explaining functionality,
efficient use of the available functionality etc. More about usability in Section 5.3 in
Chapter 2.

OTS-Wiki

6.2. Non-Functional Requirements 57

6.2.1 The non-functional requirements

Table 6.2 presents the non-functional requirements of the system. Each requirement is identified
and linked to a specific quality attribute.

Table 6.2: Non-functional requirements

ID Quality Attribute Description
NFR1 Availability The system should handle all types of user input with-

out going down.
NFR2 Availability The system should be available for use in the most

common web browsers.
NFR3 Usability A user should be able to perform search and browse

the content of the OTS-Wiki without needing any in-
struction.

NFR4 Performance The system should handle user request fast enough for
real time interaction.

Master Thesis

58 6. Requirements Specification

OTS-Wiki

Chapter 7

System Architecture

This chapter will describe the overall architecture of OTS-Wiki. This includes a presentation
of the system stakeholders and their concerns. We also look at the most important quality
attributes and present some tactics to manage the system quality. Further we present the
Model-View-Controller (MVC) architectural pattern that the portal is based upon, and describe
the data model that serves as the foundation of the model-part (datalayer) of the architecture.
Lastly, we present the technological choices for the portal.

7.1 System Stakeholders

Table 7.1 presents the system stakekholders and their concerns.

Table 7.1: System stakeholders and their concerns

ID Stakeholder Concern
S1 IDI and NTNU, represented by Carl-

Fredrik Sørensen and Reidar Conradi
Implementation to support research
questions related to selection, search
and evaluation

S2 Technical University of Catalunya, rep-
resented by Claudia Ayala

Implementation to support research
questions related to Claudia Ayala’s
PhD work

S3 The OTS community Means for simplified and open support
for selection and evaluation of OTS
components

S4 The open source community Development of OSS components and
further development of OTS-Wiki

S5 The developers Specification and development of the
system

59

60 7. System Architecture

7.2 Architectural Patterns

Here, we present the most important architectural patterns [Bass et al., 2003] to use in OTS-
Wiki, the Client-Server, and the Model-View-Controller pattern. Lastly, we describe a specific
tactic for writing controllers in the MVC-structure.

7.2.1 Client-Server

The client-server pattern is the base architectural pattern used in most web applications. OTS-
Wiki will use the standard client-server configuration with a central web server serving clients
on the web accessing the portal using their web browser. The web server will be co-localized
with the database server, ensuring high performance and maintainability. The server will
initially be hosted at IDI, NTNU.

7.2.2 Model-View-Controller (MVC)

We have chosen a Model-View-Controller (MVC) architectural pattern as the foundation for
OTS-Wiki. The MVC-approach is well proven and widely used in web applications. A number
of suitable frameworks and best practice solutions and patterns for web development are based
on MVC [Hemrajani, 2006, Bass et al., 2003]. One of the main principles of the MVC pattern
is separation of concerns.

In web applications, which often present lots of data to the user, the separation of the data
(model) and the user interface (view) is often preferable. In this way, changes to the user
interface do not affect the data handling, and a reorganizing of the data is possible without
needing to change the user interface. The MVC pattern solves this problem by decoupling
data access and business logic from data presentation and user interaction, by introducing an
intermediate component: the controller.

Separating concerns means that changing one part/component do not affect the other parts
of the system significantly. This is positive for the system’s modifiability. Also, this makes
possible testing of each component or layer separately, increasing testability.

Figure 7.1 depicts the MVC structure of OTS-Wiki. The view is represented by JSP-pages,
using Java and basic web technologies, such as HTML and CSS, to present the content to
the user. The model consists of base Java objects and Data Access Objects (DAO) accessing
the database. This layer also includes mappings and configurations for data persistence and
transaction support (Using Hibernate, not depicted in the diagram). The controller classes are
described in detail below.

7.2.3 POJO Controllers

In Java web applications, the controller is often represented by a servlet that receives requests
from the user interface (JSP-pages), fetches the correct information from the data-layer, and
sends a response to a resulting JSP-page. The use of different MVC frameworks for Java,
such as Struts, Spring, and JSF, makes possible the use of other controller techniques. Hand
in hand with the growing popularity of lightweight/agile software engineering processes and
methods, such as Scrum and eXtreme Programming, the agile mindset is also influencing the
source code. An important trend is going back to using more and more Plain Old Java Objects
(POJOs) [Richardson, 2006] in the business logic of multitier applications. Using this approach,

OTS-Wiki

7.3. Data Model 61

Figure 7.1: MVC structure

controllers may be written as POJOs to ease the development and simplify the adaptation of
additional frameworks (Spring, Hibernate, JSF, and others).

We have chosen the POJO approach in the controller layer of OTS-Wiki. The functionality is
provided to the view layer through standard Java methods (get and set). The controllers group
the functionality logically to support the system’s use cases. Each JSP-page uses one or more
controller objects, which in turn use a set of base and DAO objects from the model layer to
fetch and store the data. Figure 7.2 shows an example of the linking between the JSP-pages,
the controller objects, and the data-layer.

7.3 Data Model

Figure 7.3 depicts the system’s data model. The model is represented as an normalized Entity
Relationship Diagram (ERD) [Larman, 2001] using the crows foot notation.

The system’s main entity is the Component. A component may belong to one or more Cat-
egories, use one or more Technologies, and run on one or more Platforms. In addition, the
components may be linked to one or more descriptive Tag. A component also has information
about the Vendor, the Versions, the Licenses, and a set of additional Component resources.
The other key entity is the User, which maintains a Glossary, the portal News, and a list of Re-
sources relevant to the OTS community. The user also rates (Rating), comments (Comment),
and evaluates (Evaluation) the components.

Master Thesis

62 7. System Architecture

Figure 7.2: MVC example

7.4 Technology Choices

7.4.1 Java Platform

OTS-Wiki will be developed using the Java platform, as described in detail in Section 5.4.
We have chosen Java because the platform offers complete and good solutions for developing,
testing, and running web applications. The availability and quality of open source tools, such
as Hibernate, Eclipse, JUnit, and Tomcat made the choice easy. We chose to buy licenses of
MyEclipse1, a commercial web development suite for Eclipse. MyEclipse simplifies integration
and use a number of common plug-ins and time-saving enhancements in Eclipse. The use of
open source tools and platforms has been an important principle in this project, and besides
MyEclipse, all the tools used are open source. Due to complexity and limited implementation
time, we have decided to use a minimum of Java frameworks. Hibernate is the only framework
we use now, but more frameworks, such as Spring, Acegi Security, Apache Lucene, and JSF
may benefit the system in the future. Table 7.2 presents an overview of the technologies used.

1http://www.myeclipseide.com/

OTS-Wiki

7.4. Technology Choices 63

Figure 7.3: The data model

Table 7.2: Technologies used in OTS-Wiki

Part Technology
Programming language Java (Java SE 1.5 and Java EE 1.4)
Object persistence Hibernate 3.1.3
Graphical user interface HTML, CSS, and JSP
Web container Apache Tomcat 5.5.20
Database MySQL 5.0.24
Development environment Eclipse 3.2 and MyEclipse 5.5 M1
Testing harness JUnit 4.1
Modeling tools DBDesigner 4 and Dia 0.95

Master Thesis

64 7. System Architecture

OTS-Wiki

Part IV

Evaluation

65

Chapter 8

Evaluation

This chapter documents and evaluates the implementation done in this thesis. We describe
what is implemented, and how. We look at the efforts for ensuring usability, and discuss
problems and lessons learned during the development.

8.1 The Implementation

We have developed OTS-Wiki with the specified architecture and use cases in mind. The
implementation of the entire set of features, as mentioned in the vision (Section 2.1), well
exceeds the scope of this thesis. The implementation mainly covers the basic functionality
needed to add, find, edit, and evaluate OTS components. These are the functions needed to
start using the portal and also to get users to form an opinion of the concept and the evolution
of OTS-Wiki. In this section, we describe in detail what is implemented so far. We discuss the
implemented use cases, the component metadata, and the user handling.

8.1.1 Implemented Use Cases

Table 8.1 shows which use cases have been fully implemented (FI), partly implemented (PI),
or not implemented (NI). A comment is provided to briefly explain the partly implementations
and the use cases not implemented.

The main parts that are not implemented are the administration tasks and the user profiling.
These will be important tasks in further work.

67

68 8. Evaluation

Table 8.1: Use Case Implementation Overview

Use Case FI PI NI Comment
User Actions
UC1.1 Register X
UC1.2 Login/Logout X
UC1.3 Edit User Information X Not prioritized due to time issues
UC1.4 Make Forum Post X Not prioritized due to time issues
UC1.5 Chat X Not prioritized due to time issues
UC1.6 Browse Content X Source code not available to the

user
UC1.7 Get Help X Not prioritized due to time issues
Provider Actions
UC2.1 Add Component X
UC2.2 Edit Component X
UC2.3 Request Component X Not prioritized due to time issues
UC2.4 Add Resource X
UC2.5 Edit Glossary X
Evaluator Actions
UC3.1 Rate Component X
UC3.2 Comment Component X
UC3.3 Provide Detailed Evalua-
tion

X

Selector Actions
UC4.1 Textual Search X No search framework/indexing

used
UC4.2 Advanced Search X
Administrator Actions
UC5.1 Log User Activity X Not prioritized due to time issues
UC5.2 Handle Requests X Not prioritized due to time issues
UC5.3 View Statistics X Not prioritized due to time issues
UC5.4 Moderate Content X Not prioritized due to time issues

OTS-Wiki

8.1. The Implementation 69

8.1.2 Implemented Component Metadata

Based on the component metadata descibed in Section 2.1.1, we have implemented a simple
classification and description of the components in OTS-Wiki. This work is not final, but the
base implementation is extensible with more metadata.

Domain Function
The domain function is mainly represented by a categorization of the components. A
component may belong to zero or more categories. The base categories are: Clustering,
Database, Desktop, Development, Enterprise, Financial, Games, Hardware, Multimedia,
Networking, Security, Storage, SysAdmin, and VoIP.

Quality
No metadata for quality measurements have been implemented. The integration of De-
sCOTS (Section 3.3) may provide means of determing component quality, but this has
not been prioritized in this thesis.

Technical Properties
The technical properties implemented are: Technology, Platform, and Tag. The technol-
ogy encapsluates the programming languages the component is developed in and suitable
for. The platform describes the component’s operating system requirements. Lastly, the
tag is a set of keywords describing the component. The technical properties, as well
as the categorization, are made searchable in the portal, enabling detailed component
selection support.

Non-Technical Properties
The component’s non-technical information includes the following properties:

• The name of the component
• A textual description
• A link to the component’s website
• The name of the vendor
• The component’s licensing information
• The component’s versions

These properties are editable by the users of the portal, enabling Wiki-style collaboration.

Experience Properties
The evaluation part of the portal has been divided into three levels. The lowest level of
evaluation is the rating. All users may rate a component (1-6) based on the general view
of the component. The rating is anonymous and used to calculate average rating. The
highest rated components are presented on the main page of the portal for quick access.
The middle level of evaluation is the comment. This is a general comment to describe
the user’s overall impression of the component and its functionality. The highest level of
evaluation includes both a rating and a comment aimed at distinct concerns or evaluation
types: Installation, Documentation, Integration, and Degree of Goal Achievement. The
installation evaluation describes and rates the effort of acquire and install the component.
The documentation evaluation describes the state and accessibility of the component’s
documentation. The integration evaluation describes the effort of integrating the compo-
nent with other components or systems. Lastly, the component is evaluated on how well
it achieves the goals and requirements. The portal can easily be extended with additional
evaluation types and concerns.

Master Thesis

70 8. Evaluation

8.1.3 The User Database

The user management is implemented in cooperation with the Cosiportal Project. The imple-
mentation is based on the single sign-on (SSO) idea, enabling a user of one portal to automat-
ically be registered on the other portal if needed. Ideally, a SSO framework, as descibed in
Section 5.4.4, should be used, but this was not prioritized. In stead, both portals shared a com-
mon user table, storing the user credentials and contact information. A custom authentication
controller was written in OTS-Wiki to access the user database in the Cosiportal to register
and authenticate users. A copy of the user object is stored locally to enable user profiling
specific to the needs of OTS-Wiki.

The user handling and profiling has not been prioritized in this thesis. This remains an im-
portant case for further work.

8.2 Usability Evaluation

One of the most important factors to succeed in competition with other web portals offering
much of the same functionality is good usability. To ensure usability, it is important to perform
tests. Usability testing is expensive, and the time has been limited when implementing the
OTS-Wiki. We have therefore chosen to put a little extra effort in the design process to ensure
a certain level of usability.

8.2.1 Design

Usability is defined as the ease of use of a certain tool. The design of OTS-Wiki is therefore
an important usability issue.

When designing the user interface of OTS-Wiki, we have tried to keep the design as simple
and clean as possible. The design is a standard three column layout with header and footer
illustrated in Figure 8.1. The navigation menu is placed in the left column, the main in the
middle, and other information such as component top-lists are placed in the right column. Most
web-users should be familiar with this positioning. Further, the log-in functionality is located at
the right side in the header, which is normal in many web-pages requiring user-authentication.

The central aspect of OTS-Wiki is component search. The search box providing this function-
ality is therefore placed at the top of the middle column, where it is easy accessible.

See Appendix B for more screenshots of the implemented portal.

8.2.2 Improving usability

The usability of OTS-Wiki is one concern where effort should be placed when developing the
concept further. This involves usability testing to identify possible problem areas such as
unintuitive navigation.

The user should be able to use the most common functionality in OTS-Wiki without the
need of reading documentation. Still, OTS-Wiki needs some help functionality. This includes
regular text documentation, a Frequently Asked Questions (FAQ) section, and wizards guiding
the user through specific tasks such as component evaluations. We will discuss some of these
issues further in Chapter 10, Further Work.

OTS-Wiki

8.3. Evaluating the Development Process 71

Figure 8.1: OTS-Wiki mainpage

8.3 Evaluating the Development Process

We have based the development process on an agile mindset, influenced by Scrum and XP
(Section 3.6). A team of only two developers is too small to fully apply Scrum, but the
principles of Scrum have still been important in the development process.

Collaborating development was made possible through the use of source code management and
version control with Subversion. This removed the need of co-locating the developers at all
times, and improved the efficiency of the implementation.

8.3.1 Front-End vs Back-End

In the initial phase of the implementation, we decided to divide the work into two parts: front-
end and back-end. The front-end part consists of the view layer of the MVC architecture,
including the design and implementation of the web pages using JSP, HTML, and CSS. The
back-end part is a regular Java task, implementing the controller and model layers of the archi-
tecture. Here, modifiability and availability have been important focus areas, while usability
has been the main focus of the front-end part.

Separating these tasks has made possible a more in-depth focus on the different layers of OTS-
Wiki, increasing the quality of the work done in each layer. Also, the prior experience of the
developers made this separation natural and easy. On one hand, the back-end developer makes
the data accessible and editable, and on the other hand, the front-end developer presents the
data to the user. The key to this work is a clean and understandable controller layer. A typical
work flow may look like this:

Master Thesis

72 8. Evaluation

1. The front-end developer implements a form in the user interface

2. The front-end developer requests a set of controller methods supporting the form actions

3. The back-end developer implements the controller methods and the needed model support
(Data access)

The main disadvantage of this separation has been the lack on insight in the other developer’s
code and work. An important principle in XP is pair programming, where all the code is
revised by both developers. This has proven to reduce error rate and increase the code quality
[Hemrajani, 2006]. This taken into account, we believe that the separation was the most
efficient way of conducting the implementation in this project.

8.3.2 Vertical Development

An important principle in agile methodology is vertical development. In a multitier application,
such as the MVC structure of OTS-Wiki, each visible function in the user interface has roots
down to the datalayer. Vertical development means developing a complete function, top-down
or bottom-up, with DAO connectivity, controller methods, and user interface before starting
on the next function.

8.3.3 Refactoring

Refactoring is important in XP. The principle of “start writing code, and refactor it later” has
worked well in this project. We started off with an initial data model and a set of use cases
to base the portal on. This differs slightly from the agile mindset, and is influenced by old
waterfall methods, but did provide a good foundation for the development1. After starting
writing code based on the initial plan, refactoring proved an excellent way of adapting to
changing requirements and new ideas.

A typical refactoring task starts with a new requirement or the need of a new function based
on testing of a working prototype of the portal. The affected views, controller classes, and
model classes/database tables are then refactored bottom-up. Coupled with unit testing, this
is a fast and easy way of evolving and changing the system, and it proved to work well together
with the other principles of work mentioned above.

8.3.4 Unit Testing

Unit testing is regarded as a mandatory in any agile software engineering. We have used JUnit
(Section 5.4.5) to unit test our code. A unit test is simply a test case where one or more
methods in the test object are run, and the output is compared to a correct predefined result.
The unit testing was mainly applied at the controller layer, testing the methods used by the
view layer without needing a finished user interface. In this way, the model layer classes were
tested implicitly as the controllers would not work correctly without the right DAO support.
Our unit testing has helped identify and correct many logical errors in the source code, and
has saved a lot of debugging time as the unit tests run fast and easy within the IDE (Eclipse).

1"If it’s working - Fine! If it’s not working - Fix it!" - Jens Østergaard, Scrum coach

OTS-Wiki

8.4. Challenges and Success Factors 73

8.4 Challenges and Success Factors

Reuse repositories like OTS-Wiki have a tendency to not being reused by targeted developers
due to under-critical relevance. Such repositories easily becomes “information graveyards” if
the information does not have high relevance and value to the potential users. Another issue
is potential heavy start-up costs related to initiate and populate a reuse repository.

In an article about populating software repositories, Poulin [Poulin, 1995] present IBM’s expe-
riences with a corporate Reusable Software Library (RSL). At the start the library is empty.
It is hard to convince developers to even look at it because of this, just like an “library without
books”. Launching an intensive program to populate the repository leads to fast increasing of
parts, but it is still hard to convince developers to use it because they know it mostly contains
software of variable and even poor quality.

Further, Poulin [Poulin, 1995] states the following typical three-phase progression:

• The repository contains very few parts

• The repository contains many parts of poor quality

• The repository contains many parts of little or no use

A well populated repository also leads to many challenges. Detailed classification is needed to
organize the large collection, but this could make the search confusing. In addition, it requires
training to use it [Poulin, 1995].

Further Polin writes, to succeed it is important not to measure the value of the system by
counting total lines of code, but instead focus on providing domain-specific content to ensure
the usefulness of the RSL.

Polin’s observations from the population of IBM’s RSL are highly relevant for OTS-Wiki. To
draw conclusions out of it, we must through OTS-Wiki try to offer:

Low start-up costs by incremental filling of the repository, and let search after not found
components act as requirements for components not yet added to the repository to encourage
and ease the process of adding new and relevant components.

Increased relevance for developers by providing references to actual users of the components
with relevant knowledge (component responsible), lessons-learned, FAQs, component quality
evaluations, integration cost, and development cases/scenarios etc.

A solution to both these issues could be a web based portal using wiki technology where
the developers and users themselves controls and populates the repository. As suggested in
[Ayala et al., 2007], this is done by using the open source collaboration principle. (See Social
Computing in Section 3.5 Chapter 2) The challenge is to convince potential users about the
potential in the OTS-Wiki, so that the portal gains a group of loyal and competently users to
participate in the population process of the repository at an early stage.

Master Thesis

74 8. Evaluation

8.5 Problems and Lessons Learned

8.5.1 Server Administration

The server applications, Subversion, Tomcat, and MySQL, have been hosted and administered
by an external actor2. This has resulted in some delay and problems during the development
of OTS-Wiki. The Tomcat web container has been especially problematic. We have run local
installations of Tomcat to enable quick debugging, but when publishing the portal on the
hosted server, some problems appeared. The main problem was related to refused connections
by the local combination of Tomcat and the MySQL database on the server. Due to other tasks
being prioritized above this problem, delays in the portal deployment appeared. We believe
that the development and deployment of OTS-Wiki would have been easier and more reliable
if the project had a dedicated server, free of other activity, to deploy the portal to. A server
administrator within the development team is also preferable.

8.5.2 Limited Time

Time is a scarce resource in all software engineering projects. This implementation has been
part of a Master thesis, where reporting work is widely important. Thus, the implementation
work has been even more influenced by time limits. We have implemented the most important
functionality, but have been forced to leave out many enhancing features.

An intial plan for the thesis was to use external actors as subjects for usability testing and
evaluation. This was not possible due to the time issues. Thus, we have been forced to
perform a simplified usability test internally. This has influenced the evaluation of the work,
but hopefully the most important aspects still have been covered.

2The Cosiportal Project by Per Kristian Schanke

OTS-Wiki

Part V

Conclusion and Further Work

75

Chapter 9

Conclusion

There exists a great variety of projects providing different functionality related to supporting
the process of OTS component selection. So what differs OTS-Wiki from, e.g, SourceForge.net,
Tigris.org, and Freshmeat?

One problem when selecting OTS software components is the the lack of structured docu-
mentation related to the selection and later the integration of the component. It would be
very useful to have access to such information to reduce the cost of the selection process. It
would also reduce the risk of using OTS components if the integration process already were
documented.

The OTS-Wiki aims to give a solution to these problems. All resources related to a component
is collected at one place. OTS-Wiki should provide references to actual users of the components,
a component responsible with experience and knowledge about the component. Further, it
should record and provide information about lessons-learned, FAQs, evaluation of component
quality, integration cost, and development cases/scenarios etc. This is information of high
value and relevance to the potential users of OTS-Wiki. This enables OTS-Wiki to act as a
platform for structuring unstructured OTS knowledge found in other portals and web-sites.

Populating a repository such as OTS-Wiki is very expensive. This could mean high start-up
costs. Another problem is the risk of not being reused. If the repository is populated by mostly
general components with low relevance, it could end up as a “information graveyard”; Write
once, never read.

To overcome these challenges, OTS-Wiki is using the wiki principle. OTS-Wiki will benefit from
the social computing principles. The developers and users themselves controls and populates
the repository, and the population is done in an incremental manner. This will probably lead
to lower start-up cost and higher relevance for the users.

77

78 9. Conclusion

OTS-Wiki

Chapter 10

Further Work

In this chapter we will outline and describe several suggestions on new functionality for OTS-
Wiki. The time frame of this master thesis is limited, and the implementation we have per-
formed only scratches the surface of the possible great potential which lies in OTS-Wiki concept.

10.1 Categorizing

The most important part of OTS-Wiki when it comes to usability is how easy it is for the
user to find the desired information. Categorization of the components plays a essential role
in the navigation efficiency. GOThIC (Section 3.2) is a method for building and maintaining
an infrastructure of COTS components, and could be helpful to improve the usability of OTS-
Wiki.

10.2 Selection Process Support

DesCOTS described in Section 3.3 is a system with several tools interacting to support the
COTS software component selection process. The OTS-Wiki aims to be a web-based tool
with much functionality provided by the DesCOTS system. DesCOTS functionality such as
quality patterns support could be of great value to OTS-Wiki users when searching for suited
components.

Such pattern-based search demands a certain structure on the evaluations so that the require-
ments could be compared and matched against the component evaluations to provide relevant
search results.

10.3 User Profiling

Different users have different needs. By implementing functionality for customization of each
user profile, each user could experience more efficient use of OTS-Wiki. Search results adjusted

79

80 10. Further Work

to the user profile so that the relevance is higher is one way of taking advantage of extended
profile functionality.

The user profile concept could be taken further by developing extensive logging functionality.
The users habits when using OTS-Wiki could also influence on the information presented to
the user. Data collected from users with similar profile settings and user habits are another
source for user customized information. In its simplest form, it could be a list such as: “Users
interested in this component were also browsing these components”.

10.4 Automated Maintenance

A great challenge in Wiki-based portals like OTS-Wiki is to keep the material up-to-date. First
of all it is dependent of the maintenance work to be done by OTS-Wiki users on a regular basis.

Some of this maintenance could possible be done without human interaction by the use if
different types of web-crawlers. The Open Source Directory Ohloh1 presented in Chapter 4,
uses a web-crawler to monitor the development activity of the different projects listed in the
directory.

10.5 Evaluation Support

The component evaluation functionality is one of the most important aspects of OTS-Wiki.
The users will be able to find and share user experience about the different components listed
in the wiki repository. The already implemented evaluation functionality are at this stage very
basic. To increase the value and quality of the evaluation work done by the user, it could be
very useful to develop extensive evaluation wizards to guide the user through the process. Not
only could this have a good influence on the quality, but it could also lower the barriers for
other users to contribute with their valuable experience and knowledge.

A evaluation wizard could contain detailed questions on different aspects concerning by example
the use, installation or integration of the component. By using wizard based evaluation instead
of free text evaluations, makes it easier to organize the experience data the user provides.

The wizards could also be customised to different component categories, as many evaluation
criteria are not relevant to al types of components.

10.6 Change Management

The present implementation of OTS-Wiki does only log the date of the last change made to
the component in the database. Of many reasons it would be useful to extend the change
management capabilities. Logging the change history of a component is a possible improve-
ment. Instead of overwriting the old version with a new one, both should be saved in the
database along with all previous versions. This adds rollback possibilities so that changes may
be undone if previous version is preferable. Storing this historical data may also become useful
if this information of any reason is needed at a later stage.

Wikipedia2 uses a version and revision control system. If changes made to an article are

1http://www.ohloh.net/
2http://en.wikipedia.org/wiki/Wikipedia:About

OTS-Wiki

10.7. User Levels 81

of poor quality or accidentally is changed, or someone tries to vandalise the content, it can
easily be reversed back to it’s original state. This is obviously functionality which should be
implemented in future versions of OTS-Wiki.

10.7 User Levels

One of the main challenges in wiki based web portals is to ensure the quality of the information.
There is always a risk of wrong or misleading information on the web, and the chance of errors
is even bigger when many different individuals contributes. One way of controlling this is by
introducing several levels of users.

The user hierarchy may look like this:

• User

• Trusted user

• Senior user

• Administrator

To contribute with any kind of information, one must create a user account and by this gain the
status as an User. By contributing quality information over a certain period, the user status is
upgraded to a Trusted user. Before the information provided by a regular User is published
on OTS-Wiki, it should be approved by a Trusted user, Senior user, or Administrator.
To become a Trusted user, a Senior user or higher has to grant this user level. The
Administrator role is given to the persons operating OTS-Wiki.

10.8 Administration

The administration abilities of the implemented OTS-Wiki is limited to basic functionality.
To ensure efficient administration of the wiki, there will be need for tools covering all aspects
concerning the maintenance of OTS-Wiki. This could be extensive user administration includ-
ing user level handling introduced in previous section. Another one is section administration
allowing the administrators to easily add and remove content such as menus and menu items,
and update the information in the different sections or add new sections.

10.9 Co-Evaluation

By co-evaluation we mean evaluating two or more components together. Related components
could be evaluated together by comparing different evaluation criteria step-by-step, and point-
ing out strengths and weaknesses of each component. This would make the process of finding
a suitable component easier when there are several similar alternatives.

10.10 Component Versioning

OTS components evolve continuously and new versions are released more or less regularly.
OTS-Wiki needs to handle the different versions of the components in the database. A version

Master Thesis

82 10. Further Work

of a component may behave like a standalone component, but inherit some overall information
common to all versions. Also, the linking of a component to other components or software
may require certain versions of each component to work. This information should be kept by
OTS-Wiki to ease the selection process.

10.11 Other Improvements

Other improvements and extra functionality:

• RSS-feed on news and newly added components

• Improve the presentation of component and component evaluations

• Customization of user-profile adding e.g. picture or different contact data

Extended user feedback possibilities:

• Mark components as deprecated

• Mark duplicated components or suggest merging when the same component appears two
or more times

• Rate the evaluations after how useful the user finds them

OTS-Wiki

Bibliography

[Abrahamsson et al., 2002] Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002).
Agile Software Development Methods: Review and Analysis.

[Ayala and Franch, 2006] Ayala, C. and Franch, X. (2006). A goal-oriented strategy for sup-
porting commercial off-the-shelf components selection. Lecture Notes in Computer Science
: Reuse of Off-the-Shelf Components, pages 1–15.

[Ayala et al., 2007] Ayala, C., Sørensen, C.-F., Franch, X., Conradi, R., and Li, J. (2007).
Open Source Collaboration for Fostering Off-The-Shelf Components Selection. OSS, June
2007, Limerick, Ireland.

[Bass et al., 2003] Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in
Practice, Second Edition. Addison-Wesley Professional.

[Beck, 1999] Beck, K. (1999). eXtreme Programming Explained: Embrace Change. The XP
series. Addison-Wesley, Reading, Mass., US.

[CBSE, 2006] CBSE (2006). The 9th International SIGSOFT Symposium on Component-
Based Software Engineering. Online: http://www.sei.cmu.edu/pacc/CBSE2006/, accessed:
2007-03-15.

[Charron et al., 2006] Charron, C., Favier, J., and Li, C. (2006). How Networks Erode Insti-
tutional Power, And What to Do About It. Forrester Research: Social Computing.

[Dean and Gravel, 2002] Dean, J. and Gravel, A., editors (2002). COTS-Based Software Sys-
tems, Orlando, Florida, USA. Springer-Verlag. LNCS 2255.

[Eide and Schanke, 2006] Eide, T. E. and Schanke, P. K. (2006). Going open: Guidelines for
commercial actors to release software as open source. Depth Project, IDI, NTNU.

[Fielding, 1999] Fielding, R. T. (1999). Shared leadership in the apache project. Commun.
ACM, 42(4):42–43.

[Franch et al., 2007] Franch, X., Grau, G., Quer, C., Lopez-Pelegrin, X., and Carvallo, J. P.
(2007). Descots: Qm conceptual model. UPC and NTNU.

[Fraser et al., 2006] Fraser, S., Ågerfalk, P. J., Eckstein, J., Korson, T., and Rainsberger, J.
(2006). Open Source Software in an Agile World. In 7th International Conference, XP 2006,
pages 217–220, Oulo, Finland. Springer. Panel at XP’2006. LNCS 4044.

[Geelan, 2006] Geelan, J. (2006). Social Computing: Oxymoron
- or the Biggest New Thing Since The Web Itself? Blog:
http://jeremy.linuxbloggers.com/social_computing_as_biggest_big_new_thing.htm,
accessed: 2007-06-07.

83

84 BIBLIOGRAPHY

[Gould and Lewis, 1985] Gould, J. D. and Lewis, C. (1985). Designing for usability: key
principles and what designers think. Commun. ACM, 28(3):300–311.

[Grau et al., 2004] Grau, G., Quer, C., Carvallo, J. P., and Franch, X. (2004). Descots: a
software system for selecting cots components. Euromicro Conference, 2004. Proceedings.
30th, pages 118–126.

[Grossman, 2005] Grossman, J. (2005). The 80/20 Rule for Web Application Security - Increase
your security without touching the source code. Web Application Security Consortium.

[Heiss, 2007] Heiss, J. J. (2007). Writing Better Code: A Conversation With Sun Microsystems
Technology Evangelist Brian Goetz. Sun Developer Network.

[Hemrajani, 2006] Hemrajani, A. (2006). Agile Java Development With Spring, Hibernate and
Eclipse. Sams.

[Hinchcliffe, 2006] Hinchcliffe, D. (2006). Thinking Beyond Web 2.0: Social Computing and
the Internet Singularity. Blog: http://web2.socialcomputingmagazine.com/thinking\
_beyond_web_20_social_computing_and_the_internet_sin.htm, accessed:
2007-06-07.

[Hornbæk and Law, 2007] Hornbæk, K. and Law, E. L.-C. (2007). Meta-analysis of correlations
among usability measures. In CHI ’07: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 617–626, New York, NY, USA. ACM Press.

[IBM, 2007] IBM (2007). Social Computing Group - Frequently Asked Questions. Online:
http://www.research.ibm.com/SocialComputing/SCGFAQs.htm, accessed: 2007-06-07.

[Jaccheri and Torchiano, 2002] Jaccheri, L. and Torchiano, M. (2002). Classifying COTS prod-
ucts. In European Conference on Software Quality, Helsinki, Finland.

[Larman, 2001] Larman, C. (2001). Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process (2nd Edition). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

[Lebanidze, 2006] Lebanidze, E. (2006). Securing Enterprise Web Applications at the Source:
An Application Security Perspective. OWASP - The Open Web Application Security Project.

[Li et al., 2004] Li, J., Bjørnson, F. O., Conradi, R., and Kampenes, V. B. (2004). An empiri-
cal study of variations in cots-based software development processes in norwegian it industry.
In METRICS ’04: 10th International Symposium on Software Metrics, pages 72–83, Wash-
ington, DC, USA. IEEE Computer Society.

[Li et al., 2005] Li, J., Conradi, R., Slyngstad, O. P. N., Torchiano, M., Morisio, M., and
Bunse, C. (2005). Preliminary Results from a State-of-Practice Survey on Risk Management
in Off-The-Shelf Component-Based Development. In Franch, X. and Port, D., editors, 4th
Int. Conf. on COTS-based Software System (ICCBSS’05), pages 278–288, Bilbao, Spain.
Springer-Verlag. LNCS 3412.

[Morisio and Torchiano, 2002] Morisio, M. and Torchiano, M. (2002). Definition and Classifi-
cation of COTS: a proposal. In [Dean and Gravel, 2002], pages 165–175.

[Netcraft, 2007] Netcraft (2007). May 2007 Web Server Survey. Online:
http://news.netcraft.com/archives/web_server_survey.html, accessed: 2007-06-07.

OTS-Wiki

BIBLIOGRAPHY 85

[NTNU, 2007] NTNU (2007). Community Collaboration and Web-Intelligence to Support De-
velopment with Off-The-Shelf Software Components. Small or medium-scale focused research
(STREP) proposal.

[Ochs et al., 2001] Ochs, M., Pfahl, D., and Chrobok-Diening, G. (2001). A Method for Effi-
cient Measurement-based COTS Assessment and Selection - Method Description and Eval-
uation Results. In IEEE 7th Int. Software Metrics Symposium, pages 285–296, London, UK.
IEEE.

[Poulin, 1995] Poulin, J. S. (1995). Populating software repositories: incentives and domain-
specific software. J. Syst. Softw., 30(3):187–199.

[Raymond, 2001] Raymond, E. S. (2001). The Cathedral & the Bazaar (paperback). O’Reilly.

[Richardson, 2006] Richardson, C. (2006). POJOs in Action - Developing Enterprise Applica-
tions with Lightweight Frameworks. Manning Publications inc.

[Sommerseth, 2006] Sommerseth, M. (2006). Component based system development in the
norwegian software industry. Master’s thesis, IDI, NTNU.

[Sørensen, 2002] Sørensen, C.-F. (2002). Extreme Programming - A Brief Introduction.
http://www.idi.ntnu.no/ carlfrs/.

[Torchiano et al., 2002] Torchiano, M., Jaccheri, L., Sørensen, C.-F., and Wang, A. I. (2002).
COTS Products Characterization. In 14th International Conference on Software Engineering
and Knowledge Engineering (SEKE’02), pages 335–338, Ischia, Italy. ACM Press.

[Torchiano and Morisio, 2004] Torchiano, M. and Morisio, M. (2004). Overlooked aspects of
cots-based development. IEEE Softw., 21(2):88–93.

[Voas, 1998] Voas, J. (March 1998). OTS: The Economical Choice? IEEE Software, 15(2):16–
19.

[von Hippel and von Krogh, 2003] von Hippel, E. and von Krogh, G. (2003). Open source
software and the "private-collective" innovation model: Issues for organization science. Or-
ganization Science, 14(2):209–223.

[Warsta and Abrahamsson, 2003] Warsta, J. and Abrahamsson, P. (2003). Is open source
software development essentially an agile method? In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Conference on Software Engineering,
pages 143–147, Portland, Oregon.

[Weber, 2004] Weber, S. (2004). The Success of Open Source. Harvard University Press.

[Wikipedia, 2007] Wikipedia (2007). Wikipedia - The Free Encyclopedia. Online:
http://www.wikipedia.org/, accessed: 2007-03-05.

[Øyvind Hauge and Røsdal, 2006] Øyvind Hauge and Røsdal, A. (2006). A survey of industrial
involvement in open source. Master’s Thesis/Depth Project, IDI, NTNU.

Master Thesis

86 BIBLIOGRAPHY

OTS-Wiki

Part VI

Appendices

87

Appendix A

Use Case Specification

A.1 User Actions

Figure A.1 depicts the use cases related to the User actor. Before a user adopts a role as a
Provider, an Evaluator, or a Selector, these actions are valid. The use cases are described
below.

Figure A.1: User Actions

89

90 A. Use Case Specification

UC1.1 Register

To become a member of the community, the user has to register. A registered user may
become a Provider, an Evaluator, or a Selector, depending on the tasks performed. The
system administrator assigns different roles to the users enabling multiple levels of access
rights. Table A.1 describes the use case.

Table A.1: UC1.1 Register

Name: UC1.1 Register Priority: High
Intent: Register as user of the system Actor: User
Precondition: None
Main Success Scenario:

1. The actor access the registration page

2. The actor provides a user profile (username, password, and
e-mail mandatory)

3. The actor chooses relevant interests from a list

4. The actor submits the information

5. The system validates the input

6. The system stores the actor in the database

7. The system sends an e-mail to the user confirming the reg-
istration

8. The actor can now login on the system

Alternative Scenarios:

A The chosen username exist

1 The actor is asked to provide a different username

B The actor has not provided the needed input

1 The actor is asked to provide the missing input

OTS-Wiki

A.1. User Actions 91

UC1.2 Login/Logout

Registered users may log in and out of the system. Table A.2 describes the use case.

Table A.2: UC1.2 Login/Logout

Name: UC1.2 Login/Logout Priority: High
Intent: Log in and out users Actor: User
Precondition: The actor is registered as a user
Main Success Scenario:

1. The actor enters username and password in the login dialog

2. The system looks up the user in the database

3. The system logs in the actor

4. The actor is logged in until the session is closed or the actor
manually logs out

Alternative Scenarios:

A Wrong username or password provided

1 The actor may retype the username and password or
follow the next steps:

2 The actor provides an e-mail address

3 If a user with the provided e-mail address exist, the
system sends a reminder to the user with the username
and password

Master Thesis

92 A. Use Case Specification

UC1.3 Edit User Information

This feature enables the registered users to maintain the user information. Table A.3 describes
the use case.

Table A.3: UC1.3 Edit User Information

Name: UC1.3 Edit User Information Priority: Medium
Intent: Maintain updated user information Actor: User
Precondition: The actor is logged in
Main Success Scenario:

1. The actor accesses the user profile

2. The actor updates the information and submits the changes

3. The system validates the input

4. The system stores the changes in the database

Alternative Scenarios:

A The actor has not provided the needed input

C1.1 The actor is asked to provide the missing input

OTS-Wiki

A.1. User Actions 93

UC1.4 Make Forum Post

A public forum is an important feature in a web community. Registered users may post new
topics or replies related to specific components or general discussions. Unregistered users have
read-only access to the forum. Table A.4 describes the use case.

Table A.4: UC1.4 Make Forum Post

Name: UC1.4 Make Forum Post Priority: Medium
Intent: Community and component forums Actor: User
Precondition: The actor is logged in
Main Success Scenario:

1. The actor may start a new topic

2. The actor may post a reply to existing topics

3. The actor may edit her own posts

4. The actor may delete her own posts

5. The system offers a textual search to find wanted topics and
posts

Alternative Scenarios:

A Read forum content

1 The actor may read forum content without being
logged in

Master Thesis

94 A. Use Case Specification

UC1.5 Chat

Registered users may chat with other users currently online. This feature enables quick flow
of information and helps building the community. Table A.5 describes the use case.

Table A.5: UC1.5 Chat

Name: UC1.5 Chat Priority: Low
Intent: Live chat rooms for online users Actor: User
Precondition: The actor is logged in
Main Success Scenario:

1. The actor access the chat lobby

2. The actor choses the wanted chat room (sorted by topic)

3. The actor may chat with the other users in the chat room

Alternative Scenarios:

A No chat activity

1 The chat rooms have no participants

2 The chat room is marked as activated when two or
more users are using it

OTS-Wiki

A.1. User Actions 95

UC1.6 Browse Content

This feature covers access to all information that is available read-only to all users, registered or
unregistered. As an open community, most of the content is commonly available read-only. All
links, resources, news, events, components, evaluations, ratings, documentations, and forum
posts are included. Table A.6 describes the use case.

Table A.6: UC1.6 Browse Content

Name: UC1.6 Browse Content Priority: High
Intent: Browse read-only content Actor: User
Precondition: None
Main Success Scenario:

1. All content is available read-only to unregistered users

2. The actor can browse the community, accessing links, re-
sources, news, events, and documentations

3. The actor can download the system’s source code

Alternative Scenarios:

A The actor wants to contribute to the community

1 The actor becomes a Provider (Section A.2)

B The actor wants to evaluate a component

1 The actor becomes an Evaluator (Section A.3)

C The actor wants to seek specific components

1 The actor becomes a Selector (Section A.4)

Master Thesis

96 A. Use Case Specification

UC1.7 Get Help

This feature provides help and information about the functions and features on each page in
the system. The actor has to be logged in to access the help feature. Table A.7 describes the
use case.

Table A.7: UC1.7 Get Help

Name: UC1.7 Get Help Priority: Low
Intent: Help to the functions and pages in the system Actor: User
Precondition: The actor is logged in
Main Success Scenario:

1. The actor accesses the help function on a page

2. The system presents a help dialog with descriptions of the
functions and features on the page

3. The actor may contact system administrator for further help

OTS-Wiki

A.2. Provider Actions 97

A.2 Provider Actions

Figure A.2 depicts the use cases related to the Provider actor. The use cases are described
below.

Figure A.2: Provider Actions

Master Thesis

98 A. Use Case Specification

UC2.1 Add Component

Adding new components is a crucial task in OTS-Wiki. Without a widely populated database,
the portal has little or no value to the users. The Provider actor adds new components,
including the information needed to find and start using the components. All component
information is available read-only to unregistered users. Table A.8 describes the use case.

Table A.8: UC2.1 Add Component

Name: UC2.1 Add Component Priority: High
Intent: Add new components to the community Actor: Provider
Precondition: The actor is logged in
Main Success Scenario:

1. The actor accesses the ’Add Component’ link from the menu

2. The actor provides the information about the component

3. The actor submits the new component

4. The system validates the input

5. The system stores the component in the database

Alternative Scenarios:

A The actor has not provided the needed input

1 The actor is asked to provide the missing input

B The component already exists

1 The actor may look at or edit the existing component

2 The actor may start registering another component

OTS-Wiki

A.2. Provider Actions 99

UC2.2 Edit Component

One of the main ideas of a Wiki-inspired system is that the content is user-editable. This
feature will enable the Provider actor to edit existing components, adding new versions, or
changing facts and information. Table A.9 describes the use case.

Table A.9: UC2.2 Edit Component

Name: UC2.2 Edit Component Priority: High
Intent: Edit an existing component Actor: Provider
Preconditions:

1. The actor is logged in

2. The component exists

3. The actor has access to edit the component

Main Success Scenario:

1. The actor accesses the component to edit

2. The actor accesses the ’Edit’ link

3. The actor edits the component information

4. The actor submits the edited component information

5. The system validates the input

6. The system stores the component in the database

7. The system maintains a log of the component’s history

Alternative Scenarios:

A The actor has not provided the needed input

1 The actor is asked to provide the missing input

Master Thesis

100 A. Use Case Specification

UC2.3 Request Component

We identify a constant need for new components. Many stakeholders may have ideas that
are not yet implemented as OTS components. This feature will enable the Provider actor
to request new components by providing wanted categories, requirements, and technologies.
Table A.10 describes the use case.

Table A.10: UC2.3 Request Component

Name: UC2.3 Request Component Priority: High
Intent: Request new components Actor: Provider
Precondition: The actor is logged in
Main Success Scenario:

1. The actor accesses the ’Request Component’ link from the
menu

2. The actor chooses the wanted categories

3. The actor chooses the wanted requirements

4. The actor chooses the wanted technologies

5. The actor provides a textual description of the wanted com-
ponent

6. The system validates the input

7. The system performs a search for candidate components in
the database

8. The system stores the request in the database

Alternative Scenarios:

A Candidate components already exist in the database

1 The system presents the candidate components

2 The actor is asked if the candidate components provide
adequate coverage

3 The actor either cancels or submits the request

OTS-Wiki

A.2. Provider Actions 101

UC2.4 Add Resource

The system maintains a list of additional resources not related to specific components, but
that are relevant to component based development or other software engineering topics. A
user acting as a Provider may add resources to the this list. The list is available read-only to
unregistered users. Table A.11 describes the use case.

Table A.11: UC2.4 Add Resource

Name: UC2.4 Add Resource Priority: Medium
Intent: Add external resources Actor: Provider
Precondition: The actor is logged in
Main Success Scenario:

1. The actor accesses the ’External Resources’ page from the
menu

2. The actor accesses the ’Add Resource’ link

3. The actor provides the name, hyperlink , and a description
of the resource

4. The system validates the input

5. The system stores the resource in the database

Alternative Scenarios:

A The resource with the given name already exists

1 The system compares the information of the existing
and the new resource

2 If the information is identical, the new resource is ig-
nored

3 If the information is different, the actor is asked to
merge the information

Master Thesis

102 A. Use Case Specification

UC2.5 Edit Glossary

The glossary is an open feature that a user acting as a Provider can edit. It contains descriptions
to terms and abbreviations that is relevant to the community in particular, and computer
engineering in general. Unregistered users have read-only access to the glossary. Table A.12
describes the use case.

Table A.12: UC2.5 Edit Glossary

Name: UC2.5 Edit Glossary Priority: Medium
Intent: Maintain a glossary of relevant terms Actor: Provider
Precondition: The actor is logged in
Main Success Scenario:

1. The actor accesses the ’Glossary’ link from the menu

2. The actor can edit existing items or add a new item

3. The actor provides a name and a description

4. The actor submits the new or edited item

5. The system validates the input

6. The system stores the glossary item in the database

Alternative Scenarios:

A The actor has not provided the needed input

1 The actor is asked to provide the missing input

OTS-Wiki

A.3. Evaluator Actions 103

A.3 Evaluator Actions

Figure A.3 depicts the use cases related to the Evaluator actor. The use cases are described
below.

Figure A.3: Evaluator Actions

Master Thesis

104 A. Use Case Specification

UC3.1 Rate Component

Rating is the lowest level of component evaluation. The actor rates the general impression of
the component on a scale 1-6. The actor has to be logged in to rate a component, but the
ratings are anonymous. The highest rated components are presented on the portal’s main page
for quick reference.

Table A.13: UC3.1 Rate Component

Name: UC3.1 Rate Component Priority: High
Intent: Rating - The lowest level of evaluation Actor: Evaluator
Precondition: The actor is logged in
Main Success Scenario:

1. The actor accesses the component to evaluate

2. The actor accesses the ’Rate Component’ link

3. The actor rates the component on a scale of 1-6

4. The system stores the rating in the database

OTS-Wiki

A.3. Evaluator Actions 105

UC3.2 Comment Component

Commenting a component is the middle level of evaluation. The comment is a general review
of the component, not related to a specific quality or feature. The actor is encouraged to write
some words about his or hers general impression of the portal that may be of interest to other
users.

Table A.14: UC3.2 Comment Component

Name: UC3.2 Comment Component Priority: High
Intent: Commenting - The middle level of evaluation Actor: Evaluator
Precondition: The actor is logged in
Main Success Scenario:

1. The actor accesses the component to evaluate

2. The actor accesses the ’Comment Component’ link

3. The actor provides a textual comment to describe the sub-
jective view of the component

4. The system validates the input

5. The system stores the comment in the database

Alternative Scenarios:

A The actor has not provided the needed input

1 The actor is asked to provide the missing input

Master Thesis

106 A. Use Case Specification

UC3.3 Provide Detailed Evaluation

The detailed evaluation includes both a rating and a comment aimed at specific concerns,
qualities, or features in the component. This makes possible a more comprehensive and detailed
evaluation.

Table A.15: UC3.3 Provide Detailed Evaluation

Name: UC3.3 Provide Detailed Evaluation Priority: High
Intent: Detailed evaluation - The highest level of evaluation Actor: Evaluator
Precondition: The actor is logged in
Main Success Scenario:

1. The actor accesses the component to evaluate

2. The actor accesses the ’Evaluate Component’ link

3. The actor provides a rating and/or a comment on the fol-
lowing criterias:

• Installation

• Documentation

• Integration

• Degree of goal achievement

4. The system validates the input

5. The system stores the evaluation in the database

Alternative Scenarios:

A The actor has not provided the needed input

1 The actor is asked to provide the missing input

OTS-Wiki

A.4. Selector Actions 107

A.4 Selector Actions

Figure A.4 depicts the use cases related to the Selector actor. This includes means to find
components and information stored in the portal. The use cases are described below.

Figure A.4: Selector Actions

Master Thesis

108 A. Use Case Specification

UC4.1 Textual Search

A textual search finds components based on a search string. The search may look in all text
fields in the database, or use some sort of indexing framework or algoritm.

Table A.16: UC4.1 Textual Search

Name: UC4.1 Textual Search Priority: High
Intent: Provide a textual search for components Actor: Selector
Precondition: None
Main Success Scenario:

1. The actor provides a search string

2. The actor presses the search button

3. The system performs a textual search for components using
the name and description

4. The system presents the matching components for the user
to access

Alternative Scenarios:

A No matching components found

1 The actor is informed and asked to provide a different
search string

OTS-Wiki

A.4. Selector Actions 109

UC4.2 Advanced Search

The advanced search performs a search based on given categories, technologies, platforms, or
tags, enabling the actor to define some basic requirements to find relevant components. An
additional search string may be included to narrow the search results.

Table A.17: UC4.2 Advanced Search

Name: UC4.2 Advanced Search Priority: High
Intent: Provide a more detailed search for components Actor: Selector
Precondition: None
Main Success Scenario:

1. The actor accesses the ’Advanced Search’ link

2. The actor picks the wanted criteria to base the search on
(category, technology, platform, or tag)

3. The actor pick one or more element from the list

4. The actor provides an additional search string (optional)

5. The system performs a search for components based on the
chosen categories, technologies, platforms, or tags. The ad-
ditional search string is used when applicable

6. The system presents the matching components for the user
to access

Alternative Scenarios:

A No matching components found

1 The actor is informed and asked to provide different
search criterias

Master Thesis

110 A. Use Case Specification

A.5 Administrator Actions

Figure A.5 depicts the use cases related to the Administrator actor. The use cases are described
below.

Figure A.5: Administrator Actions

OTS-Wiki

A.5. Administrator Actions 111

UC5.1 Log User Activity

Logging user activity can be done automatically by the portal. The task of the administrator
can be to customize and tune the logging to detect certain activities or trends.

Table A.18: UC5.1 Log User Activity

Name: UC5.1 Log User Activity Priority: Medium
Intent: Log and monitor user activity to enhance the portal Actor: Administrator
Precondition:

1. The actor is logged in

2. The actor is an administrator

Main Success Scenario:

1. The system logs user activity (accessed pages and compo-
nents)

2. The actor accesses the ’User Activity’ link

3. The system presents the user activity based on the following
criterias:

• Single user activities

• Grouped user activities

• Popular components

• Popular searches

Master Thesis

112 A. Use Case Specification

UC5.2 Handle Requests

Requests for new components and features must be handled by an administrator. A “case”
may be opened for each request to track the progress and status.

Table A.19: UC5.2 Handle Requests

Name: UC5.2 Handle Requests Priority: Low
Intent: Handle requests for new components and functionality Actor: Administrator
Precondition:

1. The actor is logged in

2. The actor is an administrator

Main Success Scenario:

1. The actor accesses the ’Handle Requests’ link

2. The system presents a list of unhandled requests from the
users

3. The actor accesses a request and performs the needed task

4. The system marks the request as handled

OTS-Wiki

A.5. Administrator Actions 113

UC5.3 View Statistics

Using portal statistics, needs for further improvements and changes mat be identified. This is
an important administrator task.

Table A.20: UC5.3 View Statistics

Name: UC5.3 View Statistics Priority: Low
Intent: View general portal statistics Actor: Administrator
Precondition:

1. The actor is logged in

2. The actor is an administrator

Main Success Scenario:

1. The actor accesses the ’View Statistics’ link

2. The system presents the statistics page containing data,
such as:

• Portal statistics - number of hits

• User statistics - counts and contributions

• Component statistics - number of hits, ratings, com-
ments, and evaluations

Master Thesis

114 A. Use Case Specification

UC5.4 Moderate Content

An administrator has write access to all the data in the portal, enabling moderation of incorrect,
broken, or illegal content. Such activities may increase the quality or the stored information.

Table A.21: UC5.4 Moderate Content

Name: UC5.4 Moderate Content Priority: Medium
Intent: Moderation of the portal content Actor: Administrator
Precondition:

1. The actor is logged in

2. The actor is an administrator

Main Success Scenario:

1. The actor has access to edit all the content in the portal

2. The actor may perform the following tasks:

• Change the component information (The administrator
activity is not recorded in the component’s history)

• Delete users, components, comments, evaluations, glos-
sary items, news, and resources

• Moderate forums and chat rooms for unwanted content

OTS-Wiki

Appendix B

OTS-Wiki Screenshots

Here, we present screenshots of some of the most important functionality of the implemented
version of OTS-Wiki.

Figure B.1: Editing the glossary

115

116 B. OTS-Wiki Screenshots

Figure B.2: Adding a new component

OTS-Wiki

117

Figure B.3: Viewing a component

Master Thesis

118 B. OTS-Wiki Screenshots

Figure B.4: Rating and commenting a component

OTS-Wiki

119

Figure B.5: Evaluating the installation process

Figure B.6: Evaluating the component’s documentation

Master Thesis

120 B. OTS-Wiki Screenshots

Figure B.7: Evaluating the integration process

Figure B.8: Evaluating the degree of goal achievement

OTS-Wiki

121

Figure B.9: The advanced search

Figure B.10: Search results

Master Thesis

