
July 2006
Øystein Nytrø, IDI
Ole Edsberg, IDI
Anders Grimsmo, NSEP
Tom Christensen, NSEP

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Information Visualisation and the
Electronic Health Record
Visualising Collections of Patient Histories from General Practice

Stein Jakob Nordbø

Problem Description
In the Norwegian health-care system, the general practitioner plays the role of a gate-keeper to
more specialised health services. Also, the list patient system makes patient-practitioner
relationships relatively stable. Because of these two factors, Norwegian general practitioner's
databases often contain patient histories that are long and relatively complete. There are several,
somewhat complementary, ways that knowledge can be extracted from these databases. 1) By
reading the journal directly. 2) By statistical analysis. 3) By Knowledge-Discovery and Data mining
(KDD). In this project, we are interested in a fourth way: By visualising information from the
database in a way that enables the GP (or other user) to use his or her own visual processing
system to get an overview and discover features in a collection of patient histories.

In this project, the candidate should design, implement and evaluate a prototype visualisation
system for at least one type of patient histories, for example by doing the following (not
necessarily in this order):

* Select one or more medical problems, for example hypertension or
 hypothereosis

 For each problem:

 * Choose a visualisation technique that will be suitable for the
 problem.

 * Extract, filter and represent data for the problem.

 * Implement a visualisation prototype for the problem.

 * Empirically evaluate the usefulness of the chosen visualisation technique for this particular
problem.

The candidate should consult both relevant literature and clinical
experts while undertaking the project.

Assignment given: 20. January 2006
Supervisor: Øystein Nytrø, IDI

Preface

¿is is a Master’s thesis written during the spring semester of 2006 at the Institute of
Computer and Information Sciences (idi) at the Norwegian University of Science
and Technology (ntnu), for the Norwegian Centre of Electronic Health Records
Research (nsep).¿e supervisor has beenØysteinNytrø, whileOle Edsberg has been
the main advisor. Other advisors have been Anders Grimsmo and TomChristensen.

Acknowledgements

¿e author wishes to thank Ole Edsberg for his guidance and advice, and for all the
interesting discussions we have had during this semester. Also, thanks to general
practitioner and advisorAndersGrimsmo,who kindly participated in our case study,
and supervisor Øystein Nytrø for encouraging feedback.

Summary

¿is thesis investigates the question:

How can we use information visualisation to support retrospective, explo-
rative analysis of collections of patient histories?

Building on experience from previous projects, we put forth our answer to the ques-
tion by making the following contributions:

• Reviewing relevant literature.
• Proposing a novel design for visual exploration of collections of histories, mo-
tivated in a speci�c problem within general practice health care and existing
work in the �eld of information visualisation. ¿is includes both presentation
and interactive navigation of the data.

• Describing a query language and associated algorithms for specifying tempo-
ral patterns in a patient history.

• Developing an interactive prototype to demonstrate our design, and perform-
ing a preliminary case study.¿is case study is not rigorous enough to conclude
about the feasibility of the design, but it forms a foundation for improvements
of the prototype and further evaluation at a later stage.

We envision that our design can be instrumental in exploring experiences in terms
of treatment processes. In addition, we believe that the visualisation can be useful
to researchers looking at data to be statistically evaluated, in order to discover new
hypotheses or get ideas for the best analysis strategies.

Our main conclusion is that the proposed design seems promising, and we will fur-
ther develop our results through a research project during the summer and autumn
of 2006.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Our approach to the problem . 3
1.3 Case to be investigated . 5
1.4 Method of evaluation . 5
1.5 Available data . 5

1.5.1 Data characteristics . 6
1.5.2 Problems . 7

1.6 Outline . 9

2 Background 11
2.1 Previous projects . 12

2.1.1 Visualisation of diagnosis histories: NSEPter 12
2.1.2 Depth project: Visualisation of collections of patient histories 13

2.2 Information visualisation . 15
2.2.1 Preattentive processing . 16
2.2.2 Choice of shapes . 16
2.2.3 Choice of colours . 18

2.3 Interactive computer graphics . 21
2.3.1 Cost of knowledge . 21
2.3.2 A cognitive interaction model 22
2.3.3 Interaction techniques . 23

2.4 Related visualisations . 25
2.4.1 Event charts . 26
2.4.2 Lexis pencils . 28
2.4.3 History visualisations . 29
2.4.4 Visualisation of temporal queries and results 31

i

Contents

2.4.5 Comparison . 33
2.5 Evaluation methods . 34

2.5.1 Empirical evaluation . 34
2.5.2 Expert reviews . 36
2.5.3 Relevant taxonomies . 38
2.5.4 Comparison . 40

3 Proposed design 43
3.1 Data model . 44

3.1.1 Conceptual hierarchies and regular expressions 44
3.1.2 Adoption of the available data 48

3.2 A static visualisation of patient histories 50
3.2.1 Events . 52
3.2.2 Intervals . 53
3.2.3 Axes . 54

3.3 Adding interaction . 54
3.3.1 Selecting information to visualise 56
3.3.2 Information availability: Details-on-demand 56
3.3.3 Query-based operations . 57

3.4 Temporal query language . 60
3.4.1 Language de�nition . 61
3.4.2 Algorithms . 66

4 Case study 91
4.1 Goals . 92
4.2 Performing the study . 92

4.2.1 Limitations . 93
4.3 Findings . 94

4.3.1 Introductory session . 94
4.3.2 Query 1: Starting medication . 95
4.3.3 Query 2: Prescribing ACE-inhibitors 97
4.3.4 Query 3: Complications of hypertension 99
4.3.5 General observations . 100

4.4 Summary of �ndings related to goals . 101

5 Discussion 103
5.1 About the informal evaluation . 104

5.1.1 Case study . 104
5.1.2 Indications of clinical relevance 106

5.2 Relating the proposed design to other work 107

ii

Contents

5.2.1 Heuristic evaluation . 107
5.2.2 Relation to information visualisation taxonomies 111
5.2.3 Relation to state of the art . 112

5.3 Suggested improvements . 114
5.3.1 Visualisation . 114
5.3.2 Interaction . 119
5.3.3 Query language . 127

6 Conclusion 135
6.1 Evaluation of our approach . 136
6.2 Summary of contributions . 137
6.3 Future work . 137

A Assignment text 139

B Abbreviations and terms 141

C Complete data model 143

D Paper 145

E Digital appendix 149
E.1 Running the prototype . 149
E.2 Command language . 150

iii

List of Figures

1.1 ¿e visualisation prototype . 4
1.2 Length of histories . 7

2.1 NSEPter prototype . 14
(a) View of a merged graph . 14
(b) Zoomed-out view of a merged graph 14

2.2 Preattentive search . 16
2.3 Visual grammar of diagrams . 17
2.4 CIEluv chromaticity diagram . 19
2.5 Basic event charts . 27

(a) Calendar event chart . 27
(b) Interval event chart . 27
(c) Goldman event chart . 27

2.6 Extended event charts . 28
(a) Plotting by continuous covariate 28
(b) Aligned event chart . 28

2.7 3D lexis pencil diagram . 29
2.8 2D lexis pencil diagram . 30
2.9 LifeLines . 31
2.10 Life course visualisation . 32
2.11 Query result visualisation . 33
2.12 Criteria for evaluating information visualisations 37
2.13 Criteria for evaluating interaction mechanisms 38

3.1 Data model . 45
3.2 Visual representations . 51
3.3 ¿e prototype user interface . 55

v

List of Figures

(a) ¿e prototype main window . 55
(b) ¿e information pane . 55
(c) ¿e colour legend . 55

3.4 Filtering . 57
(a) No �ltering . 57
(b) Filtered events . 57
(c) Filtered histories . 57

3.5 Health record viewer . 58
3.6 Alignment . 59

(a) Unaligned histories . 59
(b) Aligned on �rst hypertension . 59

3.7 Sorting . 59
3.8 Tokenizing and parsing a query . 61
3.9 Lazy execution of a query . 68

5.1 Distribution of cases . 106
5.2 Object displays . 118

(a) Cherno� faces . 118
(b) Star glyph . 118
(c) Another star glyph (radar plot) 118

C.1 Data model with all entities . 143

vi

List of Algorithms

1 Extraction of all matches . 72
2 Event search algorithm . 73
3 First-query algorithm . 73
4 Disjunction query algorithm . 75
5 Window-with query algorithm . 76
6 Merge query algorithm . 78
7 Caching proxy for ExecuteQuery . 80
8 Sequence query algorithm . 82
9 Conjunction query algorithm . 84
10 Window-without query algorithm . 86

vii

Introduction
[chapter one]

Most current tools for inspection of treatment histories focus on presenting infor-
mation about the individual patient. We believe that interesting knowledge can be
discovered by investigating groups of patients, and that information visualisation is
well suited for this task. Hence, our research question1 is as follows: 1Assignment in

appendix A.

How can we use information visualisation to support retrospective, explo-
rative analysis of collections of patient histories?

1.1 Motivation

Information visualisation enables visual inspection of the data in a way that “forces
us to notice what we never expected to see”2; the intuition is the same as behind 2Quote from [MM00],

quoting Playfair’s
political atlas from 1786;
the emphases are from
Playfair’s original.

statements as “I see what you mean”. Stuart Card gives a de�nition:

Information visualisation (. . .) is the use of interactive visual representa-
tions of abstract data to amplify cognition. [War04, Foreword]

1

Chapter 1. Introduction

¿is ampli�cation serves as an extension of our limited short-termmemory, allowing
a complex task to approached by analysing visual patterns. Also, a visualisation may
reveal artifacts in the data: In one instance, statisticians were analysing a data set for
a long time3 before one of them realised that they had mixed up part of the data – a3According to [MM00],

the data set was included
in “a number of statistics

texts”.

fact that was discovered using a visualisation [MM00]. From this example, it seems
that visualisations have the ability to generate insight.

One aspect of applying such techniques to a new domain is that of choosing appro-
priate graphical representations. ¿is is not entirely straight-forward, as illustrated
by an example [War04]: Traditionally, nautical charts with contour lines are used
to depict echo sounder scanning results (scanning of the sea-�oor). However, when
one such data set was plotted in a di�erent manner, as a height �eld4, new patterns4Drawing a 3D “terrain”

where the altitude of a
point corresponds a data

value.

emerged: First, the degree of noise induced by the rolling of the ship performing
the measurements was revealed, indicating that the models used for compensation
were insu�cient. Furthermore, the new visualisation displayed surprising geological
characteristics, leading to new insight and a scienti�c publication. Hence, the choice
of graphical arrangement is vital to the opportunities for gaining insight.

¿e above de�nition adds a second dimension: Interaction. Extending the static dia-
gram with interactive operations allows the analyst to see di�erent views of the same
data, helping to form a more complete understanding. Comparisons can be com-
posed, bringing di�erent parts of the chart together, and the level of detail can be
varied dynamically. ¿is allows the analyst to build up a mental model of the data,
using the visualisation as an extension of his short-time memory.

We believe that the application of information visualisation techniques to collections
of patient histories may be a valuable addition to the current repository of Elec-
tronic Health Record (ehr) tools: Current ehr tools constitute a computerisation
of the traditional health record, allowing the user to view and manipulate the in-
dividual record on the screen, mainly in text form. Projects such as the LifeLines
project [PHL+98, SSP+98, PMR+95] aim to enhance usability of the ehr through in-
formation visualisation. However, the emphasis is still on the individual patient.¿is
thesis addresses the issue of designing an information visualisation with accompany-
ing explorative tools, facilitating retrospective investigation of a collection of patient
histories.

2

1.2. Our approach to the problem

1.2 Our approach to the problem

Analysing the question posed at the very beginning of this chapter, we re�ne the
problem statement to the following questions:

• How can suitable information visualisation techniques be applied? ¿is in-
cludes both user interface design and usability considerations.

• What are the interesting properties of patient histories, and how can mean-
ingful groups of these be extracted? To answer this question, a relevant set of
operations must be devised, and e�cient algorithms must be proposed and
analysed. Also, database-technical issues may have to be considered.

• How can the visual representations of the di�erent elements in the histories
be designed to harness the capabilities of the visual processing system of the
user? ¿is question is related to cognitive psychology.

Each of these questions can be approached separately. However, since we are neither
physicians nor psychologists, we do not possess the speci�c knowledge needed to
perform cognitive experiments or to de�ne what constitutes “meaningful groups”.
Having previously performed two projects working towards the same goal as this
thesis ([ØHN05, Nor05]; see section 2.1), we have experienced the problems of gath-
ering requirements from our potential users: ¿ey are not aware of their needs, and
of how information visualisation techniques can be applied to enable them to view
data in a way that was not possible before.

In one of the earlier projects we built a prototype, and when we demonstrated that to
a physician, he provided valuable comments on the design.Motivated by this, and by
the ideas and insight we earned through the previous projects, we decided to build
a prototype system. ¿is implies that we must approach all questions at once, and
that each question cannot be treated with as much detail as if they were addressed
individually. On the other hand, we gain the opportunity to apply our experience
from the previous projects and obtain feedback from real users on a concrete idea.

¿e feedback will be generated from a test of the prototype: From this test, we hope
that we will gain more insight into the problem, and that we will be able to discuss
the usefulness of our design in order to improve it.¿us, our process consists of three
stages:

• With basis in the experiences from our previous work, design and implement

3

Chapter 1. Introduction

a visualisation prototype.¿is part is supported by studying relevant literature
and research.

• Perform a preliminary case study with a potential user to obtain feedback on
the design.

• Discuss the results of the case study as basis for improvement.¿is part is also
supported by the literature review.

¿is thesis has been written in parallel with the development process, and as a con-
sequence, it shows how the case study and our analysis of the prototype has resulted
in concrete suggestions for improvement.

Figure 1.1 shows the main window of the above-mentioned prototype, along with a
brief explanation of the elements in it (see chapter 3 for amore in-depth explanation).

Figure 1.1: The visualisation prototype (copy of figure 3.3(a)). Each gray bar in this figure
constitutes a patient history, with small rectangles and arrows indicating di-
agnoses and blood pressure measurements, respectively. The colours in the
background show different classes of medication. On the left-hand side and
bottom of the window, there are dynamic displays showing detailed infor-
mation about the history content under the mouse cursor.

4

1.3. Case to be investigated

1.3 Case to be investigated

To constrain the problem, we choose to concentrate on hypertension patients in pri-
mary care.Whenwe consulted a general practitioner onwhich problem area to focus
on, we were recommended to study hypertension, because:

• ¿ere are many medical guidelines that apply to this problem, making it pos-
sible to compare the data to recommended practice.

• ¿e data we have available for research, which is a database from a general
practitioner’s health centre (see section 1.5), contains a relatively large number
of hypertension patients, since this is a common diagnosis. Moreover, these
histories are typically long since the problem is chronical andmost of the treat-
ment happens at the primary doctor’s o�ce.

• ¿e question of when to start medical treatment of hypertension is somewhat
controversial, concerning both the actual conditions for when to begin, and
the pharmaceutic industry’s role. ¿is means that there could be interesting
facts to be discovered about this group of patients.

1.4 Method of evaluation

Since little is known about our design’s utility at the start of the project, we choose
to develop an interactive prototype and informally test it through a preliminary case
study. From the results of this study it ought to be possible to decide if further re-
search is warranted, and what paths of development seem the most promising. In
this study, we let a general practitioner examine known data (from his own health
centre), looking for both new and well-known information. From his initial com-
ments, we formulated three cases that we investigated more closely.

1.5 Available data

At the Norwegian Centre of Electronic Health Records Research (nsep), a relational
database of Electronic Health Records for 10,515 patients is available. ¿e records
contain contact diagnoses, prescriptions, notes taken at the consultations, sick-leaves,
and more. In the visualisation prototype, the following types of data are handled:

5

Chapter 1. Introduction

• Contacts: ¿ere are several ways in which the patient and physician maintain
contact, such as consultations, letters or by telephone. Each contact is typically
associated with contact diagnoses and possibly prescriptions and test results.
In addition, the physician makes notes about the contact. ¿ese are vital for
the understanding, but not suited for direct visualisation. Some information
(blood pressure measurements; see tests, below) can be extracted from these
text blocks.

• Diagnoses: Reasons for contact, the patient’s concerns and complaints, and ill-
ness diagnoses are coded in the International Classi�cation of Primary Care
(icpc) [WON98].

• Tests:¿is includes awide range ofmeasurements, such as blood pressuremea-
surements, allergy testing, and urine samples. Test results o en have one or
more scalar or categorical values, or the results can be categorised (i.e. normal
or high blood pressure). In the case of several tests of the same type appearing
in succession, it is relevant to discuss the trend as well. In the prototype, only
blood pressure measurements are visualised.

• Prescriptions/medications: Drugs are prescribed by the physician, and each pre-
scription is recorded in the database, coded in the Anatomical ¿erapeutic
Chemical Classi�cation System (atc) [WHO05]. A drug is meant to be taken
for a length of time, and this time interval (medication interval) can be guessed
from the data found in the prescription record. Around the time a medication
interval expires, the doctor may choose to renew the prescription, and this is
entered in the database as a separate prescription entry. From the sequence of
medication intervals for a given drug, the time interval the patient is treated
with that drug can be deduced.

1.5.1 Data characteristics

Part of the database is structured, i.e. the data is available in given �elds and coded
in a standard way. ¿is is the case for diagnoses and prescriptions. However, some
of the information related to prescriptions is missing or invalid, and it is necessary
to repair some of the data (see section 3.1.2). Other useful data items, such as blood
pressure measurements, are represented as part of the free-text in the contact notes.
We extract this data using regular expressions (see section 3.1.1). Since data coded in
free text is subject to typing errors and di�erentways of representing the information,
this extraction is likely to be incomplete (see section 1.5.2 for examples).

Figure 1.2 shows a plot of history length versus the number of histories with this
length, for 95% of the histories. It can be seen that most histories are relatively short.

6

1.5. Available data

Figure 1.2: Plot of the number of histories with a given length versus history length. The
plot shows the 95% shortest histories.

1.5.2 Problems

¿e available data poses at least two problems: Legal issues related to privacy con-
cerns in a personal data �ling system, and issues related to errors and noise in the
data.

Privacy concerns

An Electronic Health Record (ehr) is a private document, and handling of ehrs
is regulated by the Personal Data Act (Personopplysningsloven [Jop01]), the Health
Personnel Act (Helsepersonelloven [Hoo01]), and the Health Data Filing SystemAct
(Helseregisterloven [Hoo02]). ¿is implies that both information security and pri-
vacy issues must be considered when handling the data. To diminish such require-
ments, the data we are using has been anonymised and in the legal sense released.
In this process, identifying properties of the data, such as names, places, dates and

7

Chapter 1. Introduction

diagnoses of low frequency have been removed, and the person responsible for the
data has approved that we are free to use it and publish our results.

Errors and noise

ehrs are entered by hand, and this can be an error-prone process. Examples of this
include use of non-existent diagnosis codes, missing codi�cation of diagnoses and
medications, and wrong dates (such as patients seeing their doctor several decades
prior to their birth). In addition, part of the database was damaged during an up-
grade. ¿ere are several sources of noise in the data, as explained below.

People see the doctor for a variety of reasons, and the entries related to the problemDi�erent explanations
one is studying may very well be interleaved by totally unrelated ones. ¿is can be
partially remedied by �ltering out items that are not thought to be relevant, but static
�lters cannot handle all cases. For example: A patient that is treated for hypertension
falls and injuries a knee. For this injury, a diuretic drug is prescribed – a drug which
is also commonly used in the treatment of hypertension. In this case, domain knowl-
edge and inspection of the contact note for the prescription of the drug is needed to
decide that the diuretic is not related to the patient’s hypertension.

Some vital information is entered as part of free-text �elds, such as blood pressureFree-text
measurements and dosages for drugs. ¿is involves parsing of text with typing er-
rors and di�ering conventions for entering values. For instance, blood pressure mea-
surements appear as part of the contact note, most o en on the form “BT: <inte-
ger>/<integer>”.However, there are alsomany instances of constructs like “measured
the BT to be 195/100”, or even “BT was 195-210/100”, where the latter indicates that
several measurements were performed. It is di�cult to ensure that all text �elds have
been parsed correctly (and usually way toomany instances to read throughmanually
for control).

Data can be missing from the structured �elds, appearing in the free-text �elds only.Missing data
¿is is true for many prescriptions, where only the name of the drug is given, not the
code describing it. We remedy this by looking for other prescriptions with the same
drug name and an atc code (see section 3.1.2).

¿e system of paying for health services in Norway is organised so that the clinic getsVarying motivations
paid based on which diagnoses have been given. ¿is means that diagnosis codes
probably are chosen not only to describe the state of the patient, but for mercantile
reasons also – especially if di�erent codes may be used to describe the problem.

8

1.6. Outline

1.6 Outline

¿e rest of this thesis is organised as follows:

• Background: Previous projects thatwehave undertaken are quickly summarised.
Furthermore, this chapter reviews material on how humans perceive visual
structures, and how this in�uences on the choice of shapes and colours in in-
formation visualisations. Also, interactive operations are introduced in a con-
text of cognitive considerations.
As a basis for the discussion of our design, we describe related work and exist-
ing solutions. Also, we reviewdi�erent guidelines for information visualisation
and evaluation techniques.

• Proposed design: We describe a design for presenting collections of histories,
applied in the medical domain through an interactive prototype. ¿is chapter
introduces the data model we use, and the techniques we apply to repair the
data. A static visualisation is described, and interactive features are added to
it. We perform some of the operations on both diagram and data using a tem-
poral query language.¿is is described in the last section, along with a formal
de�nition of its operators and a set of algorithms implementing them.

• Case study: To evaluate our design, we performed a preliminary case study to
prepare the grounds for a more thorough evaluation later. In this study, a gen-
eral practitioner used our prototype to investigate a collection of hypertension
patients and comment on his �ndings. ¿ree di�erent cases were studied.

• Discussion:We discuss our design based on the experience from the case study,
and on theory and research. Furthermore, we position our solution in relation
to other work in the �eld. Finally, we suggest how the designmay be improved,
and we introduce alternative solutions to selected problems.

• Conclusion: In the �nal chapter, we conclude that our design seems promising
enough to warrant the commission of a research project during the summer
and autumn of 2006 to further investigate its feasibility.

• Appendices
– A:¿e original assignment text.
– B: Abbreviations and terms.
– C: A diagram of the complete model of the data being represented in the
system (as opposed to the partialmodel of what is being visualised shown
in section 3.1).

– D: A paper that was submitted to the idamap-2006 workshop.
– E: Description of the digital appendix, with a brief listing of the features
of the command language in the prototype.

9

Chapter 1. Introduction

¿roughout the thesis, de�nitions and detailed information will be shown in boxes
with grey background.Certain illustrations contain data froma real ElectronicHealth
Record (ehr); these have been approved for printing, in the sense that they do not
contain identifying information, by the responsible physician (Anders Grimsmo).

10

Background
[chapter two]

¿is chapter introduces our former work and describes theory and research related
to the interactive visualisation design proposed in this thesis. It treats the following
subjects:

1. Previous projects: During the summer and autumn of 2005, two projects aim-
ing to visualise collections of patient histories were performed. ¿ese projects
form the basis on which this work is founded.

2. Information visualisation: Using graphics to convey information or knowledge
and facilitate the possible discovery of unknown properties of the data. ¿is
section discusses the principles of preattentive processing and gives guidelines
for selecting shapes and colours for a visual representation.

3. Interactive computer graphics: Concerning how user interaction can be de-
signed to allow e�ective navigation of an information visualisation. ¿is sec-
tion introduces models for interaction founded in cognitive psychology and
then describes actual interaction techniques.

4. Related visualisations: Visualisation designs and tools that resemble or relate
to the design to be described in chapter 3.

5. Evaluation methods: Taxonomies and techniques for assessing the usefulness
of an information visualisation for a particular purpose.

11

Chapter 2. Background

2.1 Previous projects

Prior to this thesis, we had performed two projects: During the summer of 2005,
a prototype visualising diagnosis histories was built, and during the autumn of the
same year, we investigated several other designs. ¿is section summarises the prior
work and lists the most important results and experiences.

2.1.1 Visualisation of diagnosis histories: NSEPter

Two developers worked for eight weeks on the project named NSEPter, a visualisa-
tion prototype using directed graphs to portray collections of patient histories. ¿e
only information from the ehr that was utilised, was the diagnosis codes for each
patient.

NSEPter had the following functionality [ØHN05]:

• Each history was laid out on a horizontal line, and each diagnosis code was
represented by a node, with an edge between nodes representing diagnoses
adjacent to each other in the history.

• ¿e systemwas capable of searching for diagnosis instances based on a regular
expression over icpc codes.¿is search could be used to hide or show individ-
ual nodes, or it could operate on the level of histories, based on the presence
or absence of a given code.

• Nodes could bemerged: ¿e users speci�ed a regular expression over the icpc
codes, and the application merged nodes with codes matching the given ex-
pression into one. ¿is was performed serially from the beginning of the his-
tories, so that the �rst occurrence of a node from one history was merged with
the �rst from all the other histories, the second was merged with the second,
and so on. From each merged node, the process could be recursively applied
to neighbouring nodes in both directions, in a hope that the histories would
exhibit similar patterns before or a er an important event. Common edges
between merged nodes were scaled according to the number of histories ex-
hibiting the transition in question.

• NSEPter had a plug-in architecture in which �lters and visualisation engines
could be interchanged, all operating on the same data model.

12

2.1. Previous projects

Figure 2.1(a) shows the NSEPter prototype in action, showing a graph of diabetes
patients. Here, the thicker lines indicate that several patients follow the same path
before and a er the diabetes code, T90, which in this case is the �rst occurrence in
all the histories.

¿is prototype had several weaknesses:

• NSEPter’s main problem was the transformation from histories to graph rep-
resentation: ¿e dimension of time was lost. ¿is made medically vital infor-
mation absent in the visualisation, and it was no way of deciding if the time
that passed between two events was half an hour or a year.

• ¿e graphs quickly became crowded and virtually unreadable, and they used
a lot of screen space. If one zoomed out to see the big picture, the visualisation
was basically aweb of edges, andwith larger zoom factors, contextwas lost, and
it was di�cult to determine what one was looking at. Figure 2.1(b) illustrates
this.

• Ourmerging algorithmwas not very noise-resilient. It wouldmiss an opportu-
nity to merge nodes if two histories di�ered in one single position. Moreover,
the order in which the histories were merged, mattered.

2.1.2 Depth project: Visualisation of collections of patient histories

During the autumn of 2005, a depth project was performed [Nor05], focussing on
improving the basic idea of using directed graphs and merging similar paths. ¿is
project was mainly concerned with processing: Heuristics for multiple alignment
were employed, anddi�erentmeasures to reduce the amount of noisewere attempted.
Also, we calculated abstractions over sequences of diagnosis instances andmined for
relations between the diagnosis codes themselves.

From this project, we gained experience in processing the available data. In particu-
lar, the �ltering and selection techniques presented in this thesis build on this expe-
rience, but it could be interesting to include the abstractions as well at a later stage.
Among the future work listed in the conclusion of[Nor05], were goals such as to in-
corporate more information in the visualisation and to a greater degree exploit the
dimension of time.

13

Chapter 2. Background

(a) View of a merged graph

(b) Zoomed-out view of a merged graph

Figure 2.1: The NSEPter prototype showing (a) a small graph, merged around the first
incidenceof diabetes, (b) several hundredpatients, showing the entire graph.

14

2.2. Information visualisation

2.2 Information visualisation

¿e human brain possesses a considerable capacity of pattern recognition through
visual processing, while the ability for processing large amounts of text or numbers
is limited in comparison. For microcomputers, the situation is opposite: While pos-
sessing the ability for processing huge amounts of data, the algorithms for pattern-
recognition are limited, con�ned to �nding one or a few types of solutions, and o en
they are sensitive to noise and errors. Other bene�ts of human cognitive abilities are
access to creativity and the availability of domain knowledge, conscious or not, stored
in the heads of users [TSK05].

Our disposition to learn and understand through vision is an important motivation
for the development of the discipline of Information Visualisation, where the data is
presented in a visual form. One of the earliest uses of graphics for depicting statis-
tical data is found in a drawing from 1644 [Tuf97]. Using the computer for number
crunching and construction of a visual representation, the strength of man and ma-
chine are combined for extraction of interesting properties of the data being investi-
gated. ¿e high availability of computing power and high-resolution displays makes
information visualisation attractive and feasible, even on a low-end home computer.

When designing an information visualisation, knowledge of how di�erent visual
structures are perceived serves as a useful guideline in making the visualisation easy
to learn and understand. ¿is includes choosing graphical primitives that can be
quickly identi�ed, and arranging them for the best possible exploitation of the per-
ceptual system. If the visualisation is well cra ed, searching for speci�c information
becomes easy (can be done preattentively, see below), and patterns are revealed.

In addition, cognitive limitations must be observed: When an image becomes too
complex, it becomes di�cult to read and interpret. Also, the short-termmemory for
graphical elements is quite limited. In fact, experiments indicate that we are not able
to detect even large di�erences when a display changes abruptly [SA05].

¿roughout this section, the following topics are treated:

1. Preattentive processing: A brief introduction to themost e�cient cognitive pro-
cessing technique, preattentive processing, where elements are locatedwithout
consciously looking for them.

2. Choice of shapes: Suggestions on how di�erent shapes are perceived, to form a

15

Chapter 2. Background

basis for discussing the visual representations to be proposed in chapter 3.
3. Choice of colours: Relevant theory on the perception of colours, acting as a
guideline in choosing colours that contribute to the clarity of the communi-
cated information.

2.2.1 Preattentive processing

Sometimes, features seem to “pop out” of an image. For exam-

Figure 2.2: Find
the red circle
[Hea99]

ple, when trying to locate the red circle among the blue ones in
�gure 2.2, the di�ering colour is picked out by the visual pro-
cessing system before the signal reaches the centre of attention
– it is performed preattentively. ¿e time used to process the vi-
sualisation (search for the red circle) is independent of the num-
ber of distracting elements (blue circles). ¿ere are a number of
features that can be processed preattentively; for example is the
same e�ect evident when searching for circles in a �gure with
many squares or other angled forms [Hea99].

On the other hand: Searching for a red circle in a �gurewithmany blue circles and red
squares cannot be performed preattentively, and the time to do so increases linearly
with the number of distracting elements [Hea99,War04].¿is is called a conjunction
search, since two properties need to be processed in order to identify the target: It has
to be red, and it has to be circular. In general, conjunction search is not preattentive,
but there are important exceptions [War04].

Since preattentive processing is much faster than its counterpart, choosing a suitable
visual encoding is important for the e�ciency of the resulting presentation. ¿is in-
cludes choosing good colours and distinct forms, and avoiding the need for conjunc-
tion search.

2.2.2 Choice of shapes

Figure 2.3 shows a table from [War04] of the visual grammar of diagrams: A set of ab-
stractions common to node-link diagrams. Even though our design does not include
a node-link diagram, several of the properties (concerning containedness, distinct-
ness and spatial organisation) will be relevant as an aid in assessing the cognitive
quality of the chosen representation.

16

2.2. Information visualisation

Figure 2.3: The visual grammar of diagrams, copied from [War04, Figure 6.33].

17

Chapter 2. Background

In addition, preattentive concerns should be addressedwhen selecting shapes. Shapes
that are preattentively processed are o en simple shapes, and the di�erent shapes that
are chosen should be su�ciently distinct. Ware lists di�erent features that are preat-
tentively processed (in verbatim from [War04]):

• Line orientation
• Line length
• Line width
• Line collinearity
• Size
• Curvature

• Spatial grouping
• Blur
• Added marks
• Numerosity
• Colour hue
• Colour intensity

• Flicker
• Direction of motion
• 2D position
• Stereoscopic depth
• Convex/concave
shape from shading

2.2.3 Choice of colours

Edward Tu e describes the problem of choosing colours for information visualisa-
tions in his book “Envisioning information”:

“(...)even putting a good color in a good place is a complex matter. Indeed
so di�cult and subtle that avoiding catastrophe becomes the �rst principle
in bringing color to information: Above all, do no harm.” [Tuf90]

He lists four uses for colour in information design:

• Colour as noun: Labelling di�erent sorts of information.
• Colour as quantity: Encoding a quantity with colour.
• Colour as representation: Representing or imitating reality with colours, for
example representing water with the colour blue in a map.

• Colour as beauty: Using coloured decorations.

It is the �rst use of colour which is most relevant in this work, the second will also be
touched. Concerning the use of colour for labelling data, Healey [Hea96] conducted
an experiment concluding that preattentively distinguishable colours conform to the
following three properties:

• Colour distance: ¿e cartesian distance between any pair of colours in a per-
ceptually balanced colour model, such as CIEluv, should be su�ciently large.
CIEluv is a system devised by the International Commission on Illumination –
Commission Internationale de l’Eclairage (cie) – that codes colours with three
components: L� (luminosity) and (u�,v�) (together de�ning chromaticity)

18

2.2. Information visualisation

[Hea96]. (u�,v�) are de�ned in terms of the luminosity L� so that distances
decrease with decreasing luminosity. ¿is dependence on luminosity encodes
the fact that dark colours aremore di�cult to distinguish – in the limiting case
everything is black [War04]. Figure 2.4 shows the colours of this colour space
for one value of L�.

• Linear separation: ¿e shortest euclidean distance from a colour to a straight
line in colour space separating it from all other colours used in the visualisa-
tion should also be su�cient [Hea96]. Ware states this property by demand-
ing every colour to lie outside the convex hull of all the others in colour space
[War04].

• Colour category: Experiments show that it is possible to separate regions in
colour space within which colours are consistently named. Furthermore, this
subdivision seems to be culturally universal [War04]. Healey’s experiment in-
dicates that also colour category must be taken into account when selecting
colours that should be preattentively identi�ed together [Hea96].

Figure 2.4: CIEluv chromaticity diagram

In addition, there are some other useful guidelines:

• Contrast with background: ¿e background on which a colour is displayed can
alter the perceived colour. One way to reduce such e�ects is to make sure
there is a signi�cant di�erence in luminosity between foreground and back-
ground [Tuf90]. Another possibility is to use a white or black frame around
the coloured object [War04].

19

Chapter 2. Background

• Colour blindness: One model for the perception of colour is the opponent pro-
cessmodel. Here, colours are perceived along the axes of black-white, red-green
and blue-yellow. Colour-blind people have problems discerning colours that
di�er along the red-green axis. Tomake the displays readable for colour-blinds,
colours should rather vary along the blue-yellow axis. However, this limits the
design opportunities, and the red-green di�erence is considered the most ef-
fective (for people that are not colour-blind) [War04].

• Number: Only between �ve and ten colour codes may be used simultaneously
for e�ective information coding [War04].
Healey tries to determine this empirically by using sets of 3, 5, 7 and 9 colours
withmaximal colour distance and linear separation (ignoring colour category)
[Hea96]. In the experiments, subjects search for the presence of a rectangle of
a speci�c colour among a collection of di�erently coloured rectangles. Several
interesting observations are made:

– ¿e response time is dependent on which colour is searched.
– Searching among 7 or 9 di�erent colours is signi�cantly slower than search-
ing among 3 or 5.

– Most targets could be found preattentively, but with the sets with 7 and
9 colours, some colours triggered a serial (non-preattentive) search be-
haviour. ¿is was attributed to the fact that colour categories had not
been taken into account when choosing colours for the experiment.

In general, the number of colours that are practically usable in a single visu-
alisation if preattentive search is desired is quite limited. ¿is can be mathe-
matically explained by geometry in colour space:When the number of colours
increases, their pairwise distances will have to decrease, and so will their linear
separation value. Healey concludes: “It appears that seven isoluminant colours
is the maximum we can display at one time, while still allowing rapid and ac-
curate identi�cation of colours.” [Hea96] In this conclusion, isoluminant is the
word that will allow for more than seven colours (by choosing a second set
with a di�erent luminance), but it is not clear how this will interfere with the
already present colours, since there will be smaller di�erences in chromaticity.

• Conventions: It is useful to consider conventions in colour coding (e.g. green
means good), but it must be observed that these conventions are culturally
dependent (e.g. green signi�es death in China) [War04].

As a practical help in selecting colours,Ware [War04] lists 12 colours he recommends
for use in coding that are considered distinct in the sense of colour categories. ¿e
�rst six should normally be used before introducing any of the last six:

20

2.3. Interactive computer graphics

1. Red
2. Green
3. Yellow
4. Blue
5. Black
6. White

7. Pink
8. Cyan
9. Gray
10. Orange
11. Brown
12. Purple

2.3 Interactive computer graphics

Information visualisation techniques do not only concern the construction of a static
diagram, but also how to interact with the visualisation. Using these techniques, pa-
rameters can be varied interactively to achieve a view of the data highlighting the
properties the analyst is looking for. In addition, the level of detail may be varied, or
the full details may be presented in another view.

¿is section describes interaction techniques that will be relevant for the visualisa-
tion proposed in chapter 3, and it is organised as follows:

1. Cost of knowledge: ¿e notion of cost of knowledge is introduced and discussed
as a basis for choosing e�cient interaction techniques.

2. A cognitive interaction model: A model for how humans interact with visuali-
sations is referred.

3. Interaction techniques: Techniques supporting the cognitive interaction model
are presented. ¿ese techniques will be used in presentation of the chosen de-
sign in chapter 3 and in the discussion of it in chapter 5.

2.3.1 Cost of knowledge

An important measure in designing an e�ective interaction scheme is the cost of
knowledge: ¿e amount of energy that must be invested to extract a certain amount
of information. Pirolli and Card compare a human’s search for information to an an-
imal’s foraging for food; both seeking to minimise the amount of energy required
to cover their needs. It is noted that information o en appears in chunks or clusters
separated by long distances of uninteresting data, just like edible plants do in na-
ture. Furthermore, as scents may direct an animal to the food source, there may be

21

Chapter 2. Background

hints in a visualisation directing navigation towards the more interesting informa-
tion [PC95].

¿is leads to a design methodology of analysing and minimising the e�ort needed
to extract knowledge from a visualisation system. ¿e cost of knowledge is twofold:
First, there is the actual e�ort of locating and extracting the information. ¿en, one
also has to consider the cost of not being able to do something else during the infor-
mation search [War04].

To minimise the cognitive e�ort, two aspects should be addressed:

1. Reducing the cost of analysing the visual representation: Improving the visual-
isation to better support pre-attentive processing, and increasing compliance
with cognitive limitations.

2. Reducing the cost of navigating the visualisation by choosing e�cient interac-
tion techniques.

2.3.2 A cognitive interaction model

¿e process of working with an interactive visualisation can be described as three
nested loops that are being performed by the user [War04]: ¿e problem-solving
loop, the exploration and navigation loop, and the data manipulation loop. On the
highest level, the analyst forms hypotheses about the data and re�nes these through
revision of the visualisation. ¿is is supported by the exploration and navigation
loop, where the visualisation is navigated and the user builds a mental “map” of the
data that is presented. On the lowest level, data items are identi�ed and selected using
basic motoric actions (such as eye-hand coordination).

In order to support the �ow of the user’s work, the systemmust be responsive enough
to avoid interrupting the thinking process. Shneiderman states that response times
formouse and typing actions should be less than 0.1 second [Shn98].While lower re-
sponse times generally lead to higher user satisfaction, there is a danger that the fast
pace will increase the user’s error rate. When it comes to low-cost information seek-
ing, Ware lists estimated times for di�erent navigation tasks. For example, following
a hyperlink takes two seconds, while using brushing1 takes two seconds to relocate1Also known as

“mouse-over”
functionality, where the
mouse cursor is placed
over a representation to

trigger display of
detailed or related

information about that
representation.

the mouse to the point of interest, and then 250 ms for each successive query.

22

2.3. Interactive computer graphics

Another aspect of response time is related towhat is known as change blindness: If the
user blinks or changes focus, or if the screen brie�y blanks, between two successive
views, it is probable that the user will be unable to detect the di�erence between the
views. Even when searching actively for a di�erence, this task is di�cult [SA05].¿is
means that the visualisation should not presume that a user is able to detect changes
between views without a way of highlighting the change, such as with animation.

2.3.3 Interaction techniques

Given the cognitive interactionmodel described above, it must be a goal to �nd tech-
niques supporting the two inner loops: Exploration and navigation, and data manip-
ulation. ¿is calls for e�ective navigation techniques using simple manipulations to
�nd the information of interest, always supporting the higher-order goal of �nding,
re�ning or investigating a hypothesis.

Ben Schneiderman describes what he calls the Visual Information Seeking Mantra:
“Overview �rst, zoom and �lter, then details-on-demand” [Shn96], to which he de-
votes ten repeating lines in his article – once for each project in which it was redis-
covered. ¿is indicates the need for a visualisation that serves di�erent purposes at
di�erent stages in the user’s process of gaining understanding of the data: First, an
overview needs to be presented, to give the user a clue about what to look for. ¿en,
relevant information must be sorted out, and all details should be easily accessible
when the user needs them. It is interesting to noteColinWare’s [War04] comments to
this approach: He suggests that the process is not as directed as Shneiderman claims
it to be, but rather an iterative procedure where interesting features are spotted, the
view is zoomed out to get an overview, and then zoomed back in again for inspec-
tion of the details. Ware concludes that no matter how the process turns out to be
performed, it is highly important that the visualisation acts as an interface capable
of performing these operations.

¿e following paragraphs describe the tasks listed in a taxonomy by Shneiderman
(in [Shn96]2), but additions from other sources are used as supplements in the pre- 2¿e taxonomy is

described in section 2.5.3sentation. While the �rst four tasks (overview, zoom, �lter, details-on-demand) are
frequently found in prototypes, the three latter (relationships, history, extraction)
are more seldom [Shn96], since they do not add to the capability of the visualisa-
tion itself, “only” the user interface.¿ey are, however, important for the explorative
aspects of interaction and should be remembered when developing a prototype.

23

Chapter 2. Background

Overview

Looking at a new data set, the user would o en not know what to look for. A sim-
pli�ed view of the data could give clues of interesting parts or patterns that warrant
further investigation.

Zoom

Zooming is a magnifying process. Typically, this involves enlarging visual represen-
tation of items (geometrical zoom), but the term does also apply to controlling the
level of detail (semantical zoom) [HMM00, LA94]. ¿is represents the transition
from an overview to a more detailed view of a subset of the data. However, this
process will typically hide other parts of the data, and it might lead to confusion
regarding which subset of the data is actually shown. To remedy this, focus+context-
techniques try to combine the zoomed-in subset with a course-grained view of the
surrounding contextual data [LA94].

Filter

Filtering is the process of removing or hiding unwanted items, and it is applied to
draw attention to the items of interest and to avoid crowding.¿is process can be dy-
namic, such as by direct-manipulation controls [Shn96], or it can be speci�ed using
a query language. One problem of the latter is that of designing good user interfaces
for specifying complex queries without needing to learn the query language.

Details-on-demand

Details-on-demand refer to presentation of more detail when this is needed, o en
by clicking an item with the mouse, or simply by holding the mouse over the item of
interest.¿is gives the user an opportunity to see the full details that were abstracted
away in the visualisation, or the exact value of a data point.

Relate

Shneiderman points out the need for showing and exploiting relationships between
user interface and visualisation components: Clicking one component in the visu-

24

2.4. Related visualisations

alisation could trigger an update of a dynamic query control in the user interface
[Shn96].Ware also describes this concept, asserting that a visual representation should
not only be a “blob of color” on the screen, but also act as an interactive device
[War04]. ¿is form of relation should not be confused with “showing relationships
within the data” – which indeed is a goal of information visualisation, but not part
of relation as an interactive technique.

History

Keeping a history of actions to allow undo and redo encourage exploration by dimin-
ishing the consequences of choosing the wrong action, giving the user con�dence in
that he easily could get back to the current state if an action did not lead to satisfying
results. In addition, the sequence of steps taken could tell a user what the current
visualisation is showing. ¿is is also pointed out by Lidwell et al [LHB03], when ad-
dressing the more general concept of forgiveness in the system. A forgiving system
makes the user feel more secure in that he is warned before critical or irreversible
actions are performed, and that other actions easily can be un-done. Ware [War04]
cites a study showing that users work faster when they know that their actions can
be reversed if they accidentally make an error.

Extract

When the user has explored the visualisation and attained an interesting result, it is
important to have the opportunity to save the data being viewed or the parameters
used to extract it.¿e properties of the visualisation, such as colour mappings, could
also be saved. Another useful propertywould be extraction of an image �le that could
be viewed with any image viewer, put on a web page or included in an e-mail. We
implemented such a feature in an earlier visualisation prototype [ØHN05] (built on
a di�erent concept), and it proved to be a very useful feature.

2.4 Related visualisations

¿is section describes approaches to event or history visualisation that resemble the
design to be introduced in chapter 3.

25

Chapter 2. Background

2.4.1 Event charts

Event charts are used to visualise individual events for a number of histories. Do-
ing this may reveal correlations among events, and if the chart is constructed with
respect to a covariate (see below), correlations between the covariate and the events
can become evident. One important property of event charts is that they show the
actual events of the history – as opposed to aggregated data – to let the “raw” data
speak for itself.

An event chart depicts histories by showing one line for each history and plotting
events using various symbols along this line. ¿e horizontal axis is typically a time
axis, while the vertical axis index histories. Lee et al [LHD00] describe the three basic
types of event charts, shown in �gure 2.5:

(a) Calendar event chart: ¿e x-axis represents calendar time, while the y-axis in-
dex histories. ¿is gives a “raw” view of what happened.

(b) Interval event chart:¿e x-axis represents time relative to some common event
of the histories, while the y-axis index histories. Using this chart can give in-
sight into the development before and a er a given event, especially if the his-
tories are aligned on this event.

(c) Goldman event chart: ¿e x-axis represents time relative to some common
event of the histories, while the y-axis positions histories according to calen-
dar time of the common event. ¿is is thus a combination of the event charts
described above, showing two aspects of the data simultaneously.

Several extensions of the basic event charts exist [LHD00]:

• Sorting: Ordering the lines along the vertical axis can facilitate identi�cation
of patterns with respect to the ordering criterion.

• Grouping: Separating lines according to a categorical time-invariant attribute
(and possibly sorting each group separately) can highlight di�erences between
the groups.

• Plotting by continuous covariate: In this context, a covariate is a time-invariant
continuous attribute of the histories.¿e lines are placed along the vertical axis
according to the value of this attribute. Note that this is di�erent from sorting
and grouping in the sense that the lines are spaced according to the di�erence
in covariate, adding value over a mere sort. However, this raises the issue of

26

2.4. Related visualisations

(a) Calendar event chart (b) Interval event chart (c) Goldman event chart

Figure 2.5: Examples of the three basic event chart types described by Lee et al, taken
from [LHD00]. The various symbols signify different events or classes of
events.

how to handle the case where several lines have (nearly) the same value for
the covariate. ¿is could be solved by jittering (which would not be entirely
correct).
¿e resulting charts look a bit like Goldman event charts; see the example in
�gure 2.6(a), plotted by age at the time of registration in a cancer study. In this
plot, the lines seem to have been jittered around age 57 to avoid overdrawing.
Note how the distribution of age is revealed, and how a few patients fall outside
the main group.

• Alignment: Aligning the lines on a common eventmakes it possible to examine
variation in development around that common event. See �gure 2.6(b) for an
example.

• Changing line types: Di�erent line types can be used to show the value of a
categorical covariate. In �gure 2.6(b), solid lines signify that the patient is HIV-
positive.

Applications of event charts

Lee et al [LHD00] discusses the applicability of event charts as follow-up tools for
clinical trials, concluding that “Compared with data printouts or tables, event charts
provide a more e�cient andmore e�ective way of presenting data.” [LHD00], giving
a better overview. Furthermore, they state that event charts plotted against a covariate
can be useful in building models and choosing proper analysis techniques. Also, the

27

Chapter 2. Background

(a) Plotting by continuous co-
variate

(b) Aligned event chart

Figure 2.6: Examples of extended event charts, taken from [LHD00]. (a) shows cancer pa-
tients’ history in an interval event chart plotted by age of the patient (the ‘x’
signifies death, the box is the last follow-up). (b) shows AIDS-patients aligned
on the time they get the AIDS diagnosis (same symbols as (a); the filled-in
triangle is the first positive HIV test).

charts give a good opportunity for error checking (detecting outliers).

Atherton et al [AJN+03] use event charts to summarise changes in quality-of-life
data over time, and compare this technique to traditional scatter plots. ¿e event
charts used are interval event charts with di�erent line styles and colours, and in
some cases the lines are grouped according to a categorical attribute. ¿ey point out
that the strength of this technique is the ability to clearly present temporal data, and
conclude that application of event charts “has potential for use as a tracking device
in oncology clinical trials.” [AJN+03]

2.4.2 Lexis pencils

Francis and Pritchard describe an event-chart like visualisation in , “Visualization of
Event Histories” [FF96]. ¿e metaphor in use is that of a pencil with multiple sides,
with time running along the length of the pencil. Categorical variables aremapped to
the sides of the pencil using coloured areas.¿ese three-dimensional pencils are then
placed in a diagram, ordered by two time-dependent variables in a three-dimensional
coordinate system (see �gure 2.7). As the authors point out, 3D diagrams pose sig-

28

2.4. Related visualisations

ni�cant usability problems, and they propose a 2D variant shown in �gure 2.8 in a
later case study [FFP].

Several properties relate this visualisation to event charts, although not explicitly ex-
plained in the article:

• Lexis pencils show the raw data of the histories as marks on a linear represen-
tation, and several pencils are combined in a single diagram.

• Ranking and grouping of pencils are discussed, which is analogous to sorting
and grouping in the extended event charts described in [LHD00].

• Di�erent choices for the variables on each axis are discussed, which can be
seen as an extension of “plotting by continuous covariate”.

Figure 2.7: 3D lexis pencils showing employment histories of men and women in mar-
ried couples in Kirkaldy along with the presence of children (as age of
youngest child). These three variables aremapped to the three different faces
of the “pencils” shown. Light blue means employed, while dark blue means
unemployed. The diagram is from [FFP].

2.4.3 History visualisations

Visualisation of histories is an application of information visualisation that provides
the user with an overview of data that o en can be complex (life histories, health

29

Chapter 2. Background

Figure 2.8: 2D lexis pencils showing bigamists’ criminal record aligned on the time of
their conviction. Differently colouredmarkers are used to signify the different
sorts of crime they get convicted for. The diagram is from [FFP].

records, etc). ¿ese views can also facilitate navigation of such data, and retrieval of
the interesting parts from large amounts of data.

One such visualisation is LifeLines [PHL+98, SSP+98, PMR+95]: A LifeLine is an in-
teractive timeline visualisation, plotting events for a single history grouped into dif-
ferent facets. Each facet contains information that is semantically related, such as (in
a health record setting) diagnoses, medications, allergies, and general problems (e.g.
smoker, depression). ¿e visualisation can show information at di�erent levels of
abstraction: For example, medications can be shown using a name for the group of
drugs (beta blocker) or by the individual drug names (athenolol, propanolol).

Figure 2.9 shows the LifeLines prototype running in a web browser. ¿e upper part
of the main panel shows the current patient with name and photo, in addition to a
detail area showing detailed information about the elements under themouse cursor.
Most of the screen space is used for the LifeLine, which is subdivided into collapsible
facets (Notes, Hosps, Tests, etc). ¿e bottom panel possesses control functionality.
To the right of the visualisation, there is an area for opening detail views such as
X-ray images. ¿e prototype supports zooming, and searching for related items (i.e.
searching for “migraine” highlights all diagnoses and drugs related to migraine). In

30

2.4. Related visualisations

addition, attributes can be mapped to di�erent graphical representations by the user.

Figure 2.9: Screenshot of the LifeLines application retrieved from the project’s website,
http://www.cs.umd.edu/hcil/

Maltz andMullany [MM00] cite an unpublishedwork byKlosak from 1999 and print
a visualisation of a life course from it.¿is is given in �gure 2.10. Here, di�erent icons
are used to signify the di�erent events in the life of probationer “Megan”, and the
shade of the icons, bright or dark, indicates if the event was positive or negative.

2.4.4 Visualisation of temporal queries and results

Another direction that is relevant to our work, is temporal queries and their results.
Chittaro and Combi [CC01] describe several metaphors for describing intervals with
uncertain length: An elastic band, a spring, or a strip of paint. Representations of
physical objects constrain the length of these representations to appeal to the user’s
real-world experience. ¿eir studies include usability tests of the di�erent represen-
tations.

31

Chapter 2. Background

Figure 2.10: Visualisation of the life course of a female probationer, from [MM00].

32

2.4. Related visualisations

Arecent3 project at theUniversity ofMaryland describes a user interface for the spec- 3In fact so recent that it
has not yet been
published; we came
across this project, very
similar to ours, a er
having developed and
tested our solution, and
a er most of this thesis
was written.

i�cation of temporal queries and a visualisation of the query results. In the report,
the visualisation is described as a “graphical table of patternmatches” [FKSS06].¿is
table (see �gure 2.11) reminds of an event chart visualisation, where each line in the
event chart constitutes one hit of the query for a single patient.¿ere is thus one row
for each hit in the database, and these are sorted by patient.¿e background of the vi-
sualisation contains grey-scale rectangles representing non-matching events, where
the amount of greyness re�ects the number of events at a given point. A tabular view
of the results is also available.

Figure 2.11:Query result visualisation, from [FKSS06]. Hits of the queries are shown as
horizontal bars, vertically collected by patient. The background indicates
context by showing events: The darker the marker, the more events hap-
pen at that time.

2.4.5 Comparison

¿e visualisation used by Fails et al can remind of an event chart showing multiple
lines per history, one for each hit of a temporal query. However, the visualisation
shows only the time spanned by the search hits, as opposed to the traditional event
chart showing the entire histories. Also, events not part of a search hits are only
counted in the design of Fails et al, while an event chart typically treats all events
selected for display equally.

Concerning the relation between event charts and life course visualisations, both
show history information in a timeline view. While event charts (and the design of

33

Chapter 2. Background

Fails et al) show many histories in the same view, the life course visualisations show
much more information for the one history they show.

2.5 Evaluation methods

When proposing a new design, it needs to be evaluated with respect to its �tness for
the purpose forwhich it was proposed. Also, it is useful to relate the design to relevant
taxonomies. In such an evaluation, it is important, as pointed out by Freitas et al, to
be aware that an evaluation of an interactive information visualisation application
will end up testing three di�erent aspects [FLC+02]:

• Visual representation usability: ¿e �tness of the visual representation for a
given purpose.

• Interface usability: How well the user interface supports the objective of the
visualisation.

• Data usability: To what degree the data supports the tasks to be tested.

¿is section describes the following topics:

1. Empirical evaluation:Methods for performing controlled experiments for eval-
uating a visualisation or user interface.

2. Expert reviews: Evaluation by comparison to guidelines and recommended
practice.

3. Relevant taxonomies: Description of two taxonomies that will be used to posi-
tion the proposed design.

2.5.1 Empirical evaluation

In scienti�c studies, empirical evaluation plays an important role. It is possible to
perform such an evaluation of the usability of a computer system by measuring per-
formance on a set of tasks with or without the new system. However, this means
that there has to be a set of tasks to be performed. In the case of an explorative ap-
plication, like ours, the goals for interaction are di�cult to measure. ¿is section
introduces two relevant techniques: Usability tests, which are in common use, and
insight-based evaluation, a novel method for quantifying the insight gained into a
data set using an explorative tool.

34

2.5. Evaluation methods

Usability tests

Usability testing involves assigning tasks to a group of users and observing them
while solving these tasks using the interface to be evaluated [Shn98]. Typically the
users are directed to “think aloud”, explaining what they do, and why. ¿e sessions
are o en videotaped, and times and error rates for solving the tasks can bemeasures.

A similar approach could be used in the evaluation of visualisations, and Martins
et al report one such study evaluating a “Tool for Intelligent Query and Exploration
of Patient Data” [MS+04]. In this study, eight test subjects were asked to answer ten
questions of increasing di�culty related to a patient history. ¿e questions were an-
swered using a paper-based presentation, a spread-sheet program, and the new tool
to be evaluated. Answering times and error rates were measured, and the di�erences
tested for statistical signi�cance.

Insight-based evaluation

Saraiya et al [SND05] describe a method for evaluation of information visualisations
that strives to quantify insight into the data according to several criteria represent-
ing characteristics of insight. ¿ey de�ne an insight to be a single observation about
the data made by a user. For each insight reported, several characteristics are quanti-
�ed and recorded by domain and visualisation experts.¿ese characteristics include
measures such as time to acquire the insight, domain value (on a scale of 1-5), cor-
rectness, and detailedness of the observation. In this framework, the insights that
generate new hypotheses are regarded as the most valuable.

If such an evaluation is going to be carried out, the criteria for quantifying insight
must be adapted to the domain in questino; Saraiya et al performed their research
within the �eld of biology, wewould need to apply thismethod to the general practice
domain. One step in the process of adapting the criteria is to perform a pilot test to
discover relevant kinds of insights. ¿is thesis performs a small case study, which
may serve as a pre-pilot that equips us with the necessary knowledge to perform the
pilot.

35

Chapter 2. Background

2.5.2 Expert reviews

Anotherway to perform the evaluation, is to assess the product with respect to guide-
lines or heuristics. ¿is is an evaluation method o en used for evaluating user inter-
faces [Shn98], where a usability expert reviews the screens of a program to assess
their usability. Such experts ought to be external to the development team, but in
this thesis we will perform the evaluation ourselves, relating our prototype to a set
of criteria. ¿is will highlight missing functionality compared to other information
visualisation designs. At a later stage, a visualisation expert should be called for.

Freitas et al have developed heuristics for interactive information visualisations, en-
compassing both the visual representation and interactivity aspects [FLC+02].¿ese
criteria are aggregated into larger groups (see �gure 2.12):

Limitations
Geometric and visual constraints, such as the available display area or the
maximum number of visual items that can �t into the visualisation.

Cognitive complexity
¿e number of dimensions that are shown simultaneously, and the density
of the information displayed (e.g. number of items). Also, these criteria
include measuring the relevance of the data that is shown.

Spatial organisation
How information is laid out on the display is important, and the criteria
related to spatial organisation address how easy it is to �nd information,
and how the overall distribution of the elements is presented and related
to the surrounding context. As presented by [FLC+02], this point seems
to address what focus+context mechanisms (“Zoom” in section 2.3) try to
remedy.

Information coding
How the information to be displayed is mapped to visual representations.
Also, the use of realistic techniques such as depth cues or photo-realistic
rendering is assessed.

State transition
When the user interacts with the application, this may lead to a change in
the visualisation. How long this change takes to perform, and how much
the visual organisation changes both in�uence the user’s sense of orien-

36

2.5. Evaluation methods

tation in the data set and perception of what the change did to the visual
representation. It should be observed that even substantial changes can be
di�cult to detect, because of change blindness (section 2.3.2).

Figure 2.12: Heuristic criteria for evaluation of information visualisations, overview. Fig-
ure taken from [FLC+02].

Freitas et al also list criteria for evaluating interaction mechanisms, as shown in �g-
ure 2.13:

Orientation and help
¿e user should be given the control over the level of detail in a display,
and the system ought to be forgiving by providing undo functionality. Fur-
thermore, these criteria include control over the display of additional in-
formation; Freitas et al exemplify this by: “the path a user followed while
navigating in a complex structure” [FLC+02].

Navigation and querying
Several criteria are given that relate to navigation and querying functional-
ity, such as selection, manipulation of the point-of-view and the geometry
displayed, searching and querying, and zoom (“Growing” in �gure 2.13).

37

Chapter 2. Background

Data set reduction
¿ree evaluation criteria are given concern how the data set can be reduced:
Filtering (temporarily hiding information), clustering (aggregating visual
representations) and pruning (cutting o� information).

Figure 2.13: Heuristic criteria for evaluation of interactionmechanisms, overview. Figure
taken from [FLC+02].

2.5.3 Relevant taxonomies

Taxonomies are used for classi�cation, and they may help see the relation between
di�erent techniques as well as serving as useful tools in positioning a new design
among the existing. In addition, having the taxonomies in mind while developing a
new design can highlight missing functionality that should be included.

Shneiderman’s task by data type taxonomy

An o en cited taxonomy is provided by Ben Shneiderman in his article: ¿e eyes
have it: A Task by Data Type Taxonomy for Information Visualizations [Shn96]. ¿is
taxonomy describes seven data types:

• Linear data: Lists, sequences or text.
• 2- and 3-dimensional data: Spatial data, such as maps.
• Temporal data: Histories, where data items have start- and end times. ¿e en-
tries can be overlapping.

38

2.5. Evaluation methods

• Multidimensional data: Data where each data point have many values, such as
in a tuple from a relational database.

• Tree data: Hierarchal data, such as organisation charts.
• Network data: Data that are arbitrarily interrelated, such as computer network
interconnection diagrams.

In addition, seven basic tasks that ought to be possible are described (in verbatim
from [Shn96]; see the detailed description in section 2.3.3):

• Overview: Gain an overview of the entire collection.
• Zoom: Zoom in on items of interest.
• Filter: Filter out uninteresting items.
• Details-on-demand: Select an item or group and get details when needed.
• Relate: View relationships among items.
• History: Keep a history of actions to support undo, replay, and progressive re-
�nement.

• Extract: Allow extraction of sub-collections and of the query parameters.

More about the seven tasks can be found in section 2.3. According to Freitas et al,
this taxonomy has also been used in expert reviews of information visualisations
[FLC+02].

A taxonomy for visualisations of time dependent data

Müller and Schumann describe another taxonomy in their survey article from 2003
[MS03], where they classify data points as belonging to one of the following cate-
gories (or as tuples of di�erent types):

• Nominal: Data items belong to one of a set of named categories.
• Ordinal: Data items can be ordered, i.e. there is some kind of ordering that
applies to them.

• Quantitative: Data items have a numerical value.

In addition, the time axis itself is subject to characterisation4, as (italicised text copied 4¿e taxonomy is due to a
study by Frank from
1998.

in verbatim):

• Discrete time points vs. interval time: Discrete time points have no duration,
while intervals are de�ned from a start point to an end point.

39

Chapter 2. Background

• Linear time vs. cyclic time: Whether time is running from past to future or is
cyclical (as in a time axis showing the four seasons).

• Ordinal time vs. continuous time: If the time axis is scaled ordinal, only relative
ordering of events is possible. With a continuous time axis, the time di�erence
between events is possible to calculate.

• Ordered time vs. branching time vs. time with multiple perspectives: Ordered
time describes a single course of events, while branching time is capable of
describing multiple alternative scenarios. Time with multiple perspectives al-
lows multiple data points for each time step, enabling description of parallel
processes.

2.5.4 Comparison

¿eevaluationmethods introduced in this section represent three di�erent approaches
with individual strengths and weaknesses:

1. Empirical evaluation: ¿rough empirical evaluation, hypotheses can be con-
�rmed or rejected, and this is thus themost solid approach to evaluation.How-
ever, there are two serious drawbacks in our setting:¿e cost (both in time and
resources) of planning and carrying them out, and the di�culty of evaluat-
ing an explorative design quantitatively. Saraiya et al remedy this last problem
through their framework for insight-based evaluation, but this would in our
case require at least two studies: One to adapt the framework to our settings,
and another to do the actual evaluation.

2. Expert reviews: Comparing a design to guidelines can be useful in order to
detect weaknesses. Ideally, several external experts should be called upon, to
diminish the impact of biases.¿ese evaluations are considerably cheaper and
easier to perform than empirical, but they have less precision than usability
tests [GHS99].

3. Taxonomies: Although not an explicit form of evaluation, relating a design to
taxonomies can be useful to position a design among the existing, and the
process of assessing the design in relation to a taxonomymay reveal weak spots
in the same way as in an expert review.

Gabbard et al suggests a process of iterative evaluation and improvement, where ex-
pert reviews are performed �rst because of their low cost, followed by formative user-
centred evaluation.¿e formative evaluations are carried out by having users use the
program “thinking aloud”, while being observed by the developers.¿is is very simi-

40

2.5. Evaluation methods

lar to our case study. A er several iterations of expert reviews and formative evalua-
tions, a �nal empirical evaluation is performed, comparing the new system tomature
alternative tools to measure the improvement [GHS99].¿e work performed in this
thesis can be seen as one and a half iterations of the above: Development of a tool,
with guidelines in mind, followed by a case study with a user, and then a discussion
of the results from the case study and of the design with respect to di�erent sets of
guidelines. No empirical evaluation is performed at this stage.

41

Proposed design
[chapter three]

With basis in and references to the work described in the preceding chapter, this
chapter proposes a visualisation with accompanying interactive features. ¿e visu-
alisation shows each patient history as a bar annotated with symbols representing
the events in the history, and interval concepts shown by background colourings.
Interactive operations on this diagram include extraction of sub-collections, sort-
ing and aligning histories, �ltering events, and searching for temporal patterns. ¿e
proposed visualisation is implemented in a Java prototype; a screenshot of this pro-
totype is shown in �gure 3.3 (page 55), along with a description of its user interface.
Appendix E.1 explains how to run the program, which is provided as a digital ap-
pendix to this thesis.

¿is chapter is structured as follows:

1. Data model: An Entity-Relationship (er) model for the data that is to be visu-
alised, alongwith descriptions of how this is extracted from the patient database
described in section 1.5.

2. A static visualisation of patient histories: Explanation of the visualisation im-
plemented in the prototype in terms of its constituent visual elements.

3. Adding interaction: Exploration-supporting interactive features of the proto-
type.

4. Temporal query language: ¿e query language used to perform some of the
interactive operations, and a set of algorithms for its operators.

43

Chapter 3. Proposed design

3.1 Data model

To speed up drawing and become more independent of the database schema of the
ehr tool from which the data is collected, all content to be visualised or queried is
pre-loaded into a data structure of Java objects. ¿is structure is modelled in �g-
ure 3.1, as an Entity-Relationship (er) diagram describing which entities are repre-
sented, and how they relate. Note that the diagram only shows the entities that are
visualised. See appendix C, �gure C.1, for a complete diagram of all entities handled
by the system.

In �gure 3.1, a HistoryCollection represents the entire content of the visualisation,
consisting of a collection of History instances. Histories are de�ned by their entries
happening at given points in time, represented by Entry in the diagram.

¿e entries themselves are either intervals, de�ned by their start and end times, or
events that happen at a given time and have no duration. Medications are the only
intervals that are considered and visualised for the time being, but this could be ex-
tended to include more interval information from the database, such as sickleaves,
or medical abstractions. Concerning the latter, this could be notions such as “high
blood pressure”, “HIV positive”, or it could be intervals deduced from the other data;
a report by Nordbø shows how sequences of diagnosis codes can be abstracted into
intervals and visualised [Nor05]. Concerning point events, these are either contact
diagnoses or tests. Even thoughmany tests are read from the database, currently only
blood pressure measurements are shown in themain visualisation – the other results
are available by “details-on-demand”, in text form.

When it comes to the representation of time, it is worth pointing out that all times-
tamps from the database are truncated to the precision of days, and all events oc-
curring on the same day are assumed to occur simultaneously. ¿is is because one
day is the smallest granularity at which the database is accurate: Many of the entries
are dated correctly, but the time of day is midnight – which is unlikely to be correct.
Entries with a clearly invalid date (prior to the birth of the patient) are ignored.

3.1.1 Conceptual hierarchies and regular expressions

¿ere are two types of data that are categorised according to hierarchies in our data
model: Diagnoses andmedications. In the prototype, we select points in these hierar-

44

3.1. Data model

Figure 3.1: An ER model for the data represented and used by the visualisation proto-
type. The blue triangles indicate inheritance, and only the leaf nodes of the
“Entry” inheritance tree are instantiated in the visualisation. This diagram rep-
resents a simplification, and it does not show all detailed attributes (e.g. “pre-
scription” contains many sub-fields) or entities that are not being visualised.
See figure C.1 for a more complete diagram, also showing entities that are
not part of the visualisation.

45

Chapter 3. Proposed design

chies using regular expressions, but in a later version we should consider modelling
the hierarchies.

Diagnoses

¿e diagnoses in the database are coded in the International Classi�cation of Pri-
mary Care (icpc) [WON98], a system where all codes are given with a chapter (sin-
gle letter) and a two-digit code. In addition, another dimension is implied by the
categorisation of codes within each chapter into the categories:

• Process codes
• Symptoms/complaints
• Infections
• Neoplasms

• Injuries
• Congenital anomalies
• Other diagnoses

Another categorisation is given by Grimsmo [Gri], where the classi�cation is ori-
ented by problem rather than organ system. ¿is categorisation is not directly sup-
ported in the prototype, but the groups can be speci�ed with regular expressions. In
a later version, we should consider supporting speci�cation of these groups directly.

Parts of the icpc hierarchy are given below:

...
A General and unspecified
...

A07 - Coma
A08 - Swelling
A09 - Sweating problem

...
B Blood, Blood Forming Organs and Immune Mechanism
...

B73 - Leukaemia
B74 - Malignant neoplasm blood other

...
K Cardiovascular
...

K85 - Elevated blood pressure

46

3.1. Data model

K86 - Hypertension uncomplicated
K87 - Hypertension complicated

...
Z Social Problems

Z05 - Work problem
Z06 - Unemployment problem
Z07 - Education problem

...

Medications

Medications are coded in theAnatomical¿erapeuticChemical Classi�cation System
(atc) [WHO05]. ¿is is a �ve-level hierarchy with the following levels:

1. Anatomical group: One letter.
2. ¿erapeutic main group: Two digits.
3. ¿erapeutic/pharmacological subgroup: One letter.
4. ¿erapeutic/pharmacological/chemical subgroup: One letter.
5. Chemical substance subgroup: Two digits.

Parts of the atc hierarchy are given below:

...
C07 BETA BLOCKING AGENTS
C07A BETA BLOCKING AGENTS
C07A A Beta blocking agents, non-selective

C07AA01 Alprenolol
C07AA02 Oxprenolol
...

C07A B Beta blocking agents, selective
C07AB01 Practolol

...
C08G CALCIUM CHANNEL BLOCKERS AND DIURETICS
C08G A Calcium channel blockers and diuretics

C08GA01 Nifedipine and diuretics

C09 AGENTS ACTING ON THE RENIN-ANGIOTENSIN SYSTEM

47

Chapter 3. Proposed design

C09A ACE INHIBITORS, PLAIN
C09A A ACE inhibitors, plain
...

Regular expressions

We use regular expressions to describe subsets of the above hierarchies. ¿e main
motivation for this is simplicity: Regular expressions are readily supported by our
programming environment (Java), andwith a regular expression onemay easily refer
to any branch of the hierarchies by listing the �rst few letters or digits and appending
a wildcard. Such speci�cations may be combined using the disjunctive construct of
regular expressions; so to specify diagnoses concerning the eye (F) or ear (H) one
may specify the regular expression: F.*|H.*. While being a useful tool for computer
scientists, general practitioners cannot be expected to be acquainted with regular
expressions.¿is means that in a future version, a graphical user interface should be
built.

Regular expressions are also used for extraction of some of the available data, as ex-
plained below. However, this extraction is limited because of di�ering conventions
and many typing errors in the free-text.

3.1.2 Adoption of the available data

¿e database consists of more than 3,000 �elds, many of which are free-text. ¿is
means that, in addition to choosing a meaningful selection of �elds, parsing of free-
text is necessary. Also, there are several problems with the data (see section 1.5.2) that
need to be remedied prior to visualisation.

Extraction of blood pressure measurements

Blood pressure measurements are extracted using the regular expression:

[Bb][Tt][^0-9]*[0-9]+/[0-9]+

48

3.1. Data model

¿is expressionmatches the string “BT” (case-insensitively) followedby any sequence
of zero or more non-digits and a construct on the form “<integer>/<integer>”.

Filling in missing ATC codes

Some medications miss an atc encoding. Most of these are repaired by looking up
atc codes from other prescriptions with the same the medication name. In a few
cases, several codes are returned. ¿is is resolved by choosing the atc code most
frequently used to describe the drug. However, not all atc codes can be �lled in this
way, meaning that there will be medications that the prototype miss in the �ltering
and colouring process.

A er performing the procedure outlined above, 13,881 out of 241,307 prescriptions
(5.75%) lacked an atc code. ¿is is not an exact number, because many “prescrip-
tions” in the database are actually items like bandages and syringes, which do not
have an atc code. Filtering out the most common non-drugs brings the number of
prescriptions lacking atc code down to 9,445 (3.91%).

Deduction of missing medication cessation dates

Medications represent an interval concept: At a given day, the doctor prescribes a
medication for a patient. ¿is medication is limited in quantity, and its daily con-
sumption is generally predictable (e.g. “take two pills before dinner”).¿us, it should
be possible to deduct for how long the prescribedmedication would last.¿e box be-
low outlines our procedure for deducing cessation dates for medications.

Before any parsing is performed, the following rules are applied:

• If the medication has a given cessation date, this is used.
• Prescriptions meant to last a “long” time (they are stored in a separate table in
the database) are de�ned to last for one year.

• Medications that are taken by need are not processed, since they do not have
a predictable rate of consumption.

• Medications like ointments are not treated, because it is not possible to guess
how long for example 50 grams of ointment will last when it is applied to the
nose twice a day.

If none of the above rules apply, the following sequence is performed:

49

Chapter 3. Proposed design

• ¿e quantity �eld is a free-text �eld supposed to hold a single number. ¿is is
parsed. If the quantity is unparseable, the deduction is given up.

• ¿en, the daily consumption is attempted guessed from two free-text sources:
– Usage instructions: ¿e usage instructions listed on the packet handed
out to the patient is parsed and checked against a database of examples
of usage instructions.
¿is database is constructed by transforming all usage instructions in the
database to a “standard form”: For example, common abbreviations for
pill (“tablett”, “tab”, “tbl”, etc.) are transformed into one particular form.
¿e standard strings that are equal are collected, and these strings are
manually read and marked with the number of doses consumed each
day. Last, the usage instructions in the database are then updated with
the consumptions from their corresponding standard forms.

– Short instructions: ¿ere is also a �eld for listing usage on a short form,
such as “1+1+1”. If the standard usage instruction is unparseable, this �eld
is tried for some common short forms.

If the above fails, the medication is marked as un-parseable.

¿e above deduction scheme for prescription cessation dates has limited generalis-
ability because the example database used is �ne-tuned for our data. Whether our
transformation to a “standard form” is valid for other databases, is not known, and
would depend on the individual doctor’s documentation habits. Also, this process is
time-consuming – especially because of the many typing errors, making the trans-
formation to the “standard form” less e�cient by creating many more unique in-
stances. We consider the time spent to be acceptable for a proof-of-concept proto-
type like ours. ¿is would not be an issue if the database was more structured (�eld-
oriented), storing dosages and daily consuptions in a consistent manner. Hopefully,
future health record databases will be less free-text oriented than the present.

3.2 A static visualisation of patient histories

Given the available data and the data model, a suitable graphical representation was
to be found. Our requirements were as follows:

• It shall be possible to compare a group of patients: ¿is is directly derived from

50

3.2. A static visualisation of patient histories

the main goal of this thesis.
• ¿e dimension of time shall be preserved and shown along an axis: Our experi-
ence from the previous project was that the notion of time is very important,
and the lacking support for this was a weak spot for our previous prototypes.
Hence, this was a key feature for our new design.

• Both point events and intervals shall be represented: Previous prototypes had
been concerned with visualisation of point events. Since the ehr contains in-
terval concepts as well, it was natural to support this in order to include more
of the data that was available. ¿is relates to the future work listed in[Nor05].

To satisfy these requirements, we decided to depict the histories as timelines anno-
tated with icons for point events and background colourings for intervals. Di�erent
classes of events are plotted in separate vertical subdivisions of the bar. Time is spaced
evenly along the bar, and all bars share the same scaling constant.

An axis is also provided in the diagram. ¿is axis initially shows calendar time,
but when the bars are aligned on a common pattern (see section 3.3.3), the display
changes to re�ect time relative to the point in time onwhich the histories are aligned.

Figure 3.2 shows the visual representations to be explained in the subsequent sec-
tions.

Figure 3.2: The visual representations explained: Vertical rectangles represent contact
diagnoses, arrows represent blood pressure measurements, and the back-
ground colours signify the presence of medications. When several medica-
tions are in use at once, the space is divided evenly between themedications
(shown in the middle bar, patient 917).

51

Chapter 3. Proposed design

3.2.1 Events

Events appear at a given date and are assumed to have no or very short duration
(compared to the length of the history).¿e representation should thus be that of an
icon or glyph.

Diagnoses

During the development of the prototype, the question of how to represent contacts
with several diagnoses was raised. Simply drawing an iconic representation would
lead to overdrawing and only the last diagnosis drawn being visible. We considered
several alternative solutions to this problem, including jittering (moving each icon a
small, random amount) and subdividing the representation. In the end, the latter al-
ternative was chosen, and the �nal representation was decided to be a coloured rect-
angle.¿is rectangle is subdivided vertically into smaller rectangles coloured accord-
ing to the diagnoses occurring at the date in question. Colours are assigned based on
regular expressions on the icpc code.

Diagnoses are presented as follows:

Here, the colour blue signi�es stroke, while orange shows hypertension. Some of the
rectangles are subdivided to show that there are several diagnoses at that day – the
details are available in a separate display area when the mouse is placed over the
representation.

Tests

Assigning iconic representations to tests conveys the information that the test was
performed, or that its result was received. In an early stage of development, the pro-
totype used a small glyph to represent each test.

52

3.2. A static visualisation of patient histories

While this may be su�cient in some cases, it is bene�cial if as much information as
possible can be read from the diagram at a glance (as long cognitive limits are ob-
served). Incorporating more information means mapping test results, and possibly
trends, to features of the representation1. In light of this, the icon for blood pressure 1Section 5.3.1 discusses

this in more detail.tests was changed to an arrow whose direction shows the trend (up, down or un-
changed since the last measurement), while its colour re�ects a classi�cation of the
value (normal, mild hypertension or severe hypertension). ¿e angular di�erence
between any two trend indications is at least 45 degrees, which is above the cognitive
limit for absolute angle detection at 30 degrees.

Blood pressure measurements are represented as follows:

Here, red arrows signify moderate to severe hypertension, while yellow arrows show
mild hypertension. ¿e green arrows – normal blood pressure – at the end of the
bar indicate that the treatment of this patient’s hypertension was successful. ¿ese
colourings are based on Norwegian limits for classi�cation of hypertension [AS06].
¿e direction of the arrow indicates the trend in diastolic blood pressure.

3.2.2 Intervals

In the prototype, medications are the only intervals that are visualised. ¿ey are
shown using colouring of the background. Medications can be assigned a colour or
texture based on a regular expression on the atc found in their prescriptions.

Medications are represented as follows:

Here, a patient initially has nomedications.¿en, three medications are successively
prescribed. ¿e most recent medication is drawn at the top.

53

Chapter 3. Proposed design

3.2.3 Axes

To make it possible to address individual patients, patient ID numbers (taken from
the database) are shown along the vertical axis. ¿e horizontal axis has two modes:

1. When the diagram is not aligned, the axis shows calendar time (the actual
dates).

2. In an aligned diagram, the axis shows the number of months before and a er
the alignment point.

Showing calendar time:

Showing relative time:

3.3 Adding interaction

Computer visualisations become exploration-supportive frombeing interactive, rather
than just providing a static diagram; the diagram itself acts as a dynamic interface to
the data, and its parameters can be changed on the �y in response to the user’s ideas
and interests.

Figure 3.3 shows the main window prototype along with an explanation of its user
interface. In the following sections, di�erent interaction mechanisms are explained.

54

3.3. Adding interaction

(a) The prototype main window

(b) The information pane
(c) The colour legend

Figure 3.3: The prototype user interface. (a) shows the prototype running a visualisa-
tion of hypertension patients with complications, sorted on the time from
hypertension to complication. (b) shows a magnification of the information
pane that reflects the content under the mouse cursor, while (c) explains the
colours used in the diagram and provides a quick way of toggling filtering
on the event level. The text area in the lower part of the window displays the
contact note (if any) for the contact under the mouse cursor.

55

Chapter 3. Proposed design

3.3.1 Selecting information to visualise

Crowding causes a diagram to be become di�cult to interpret and canmake patterns
and abnormalities harder to spot; see �gure 3.4(a) for an example of how some his-
tories look without �ltering. To remedy this, �ltering is employed to remove or hide
certain parts of the visualisation. In our visualisation, �ltering can be employed on
the level of histories or on that of events.

On the event level, three sorts of �ltering are possible:

• Contact diagnoses: ¿e icpc coding system implies a hierarchy, and �ltering
can be applied at any point in this hierarchy using regular expressions. Fig-
ure 3.4(b) shows the histories in �gure 3.4(a) with all diagnoses and medica-
tions not related to hypertension removed.

• Prescriptions/medications:Medications can be classi�edwith respect to theatc
coding hierarchy. Regular expressions on this code are used in the prototype.

• Tests: Tests can be �ltered according to test type, possibly with constraints on
which values are considered interesting.¿e current prototype only allows �l-
tering on test type.

On the level of histories, the prototype allows inclusion or exclusion of histories based
on expressions in a temporal query language. See sections 3.3.3 and 3.4 for details. Fig-
ure 3.4(c) modi�es �gure 3.4(b) by removing histories not containing a hypertension
diagnosis, with the result of bringing more of the relevant patients into view.

3.3.2 Information availability: Details-on-demand

Having access to detailed information2 is crucial when inspecting a visualisation that2¿is represents the �nal
step in Shneiderman’s
information-seeking

process, see
sections 2.3.3 and 2.5.3.

represents a simpli�cation of the data. In the case of the Electronic Health Record
(ehr), this detailed information is found in the contact notes and in the �elds for
contact diagnoses, prescriptions and tests.

Since the user, a doctor, is used to read a textual record, the prototype provides an
interactive relation from the diagram to the record.¿is is realised by having the user
click in the diagram to open a record note view scrolled to the entry nearest the point
that was clicked (via a pop-up menu). Figure 3.5 shows the record viewer, modelled
a er the record view in ProfDoc, an ehr system in widespread use in Norway. ¿e
imitation of ProfDoc is believed to make the record easier to read for the test subject

56

3.3. Adding interaction

(a) No filtering (b) Filtered events (c) Filtered histories

Figure 3.4: Filtering illustrated: (a) shows a small part of the entire database, with all
events shown. Diagnoses and medications related to hypertension, and
bloodpressure tests, are coloured. (b) shows the result of hiding all diagnoses
and medications not related to hypertension. (c) shows the result of extract-
ing hypertension patients. Note that now five patients with hypertension are
displayed, compared to two in (a) and (b).

in our case study, who is familiar with the tool.

Furthermore, since the chosen iconic representations are not self-explanatory, and
their representations may overlap, a brushing technique is employed: A panel is dy-
namically updated to show the information represented at the point of the mouse
cursor. ¿is includes summary information such as diagnosis codes and medication
names, as well as the full contact note. In �gure 3.3, the lower panel shows the full
contact note for the contact that is pointed to with the mouse, while the upper le
area show a summary of all diagnosis codes, medications and tests assigned at that
contact.

3.3.3 Query-based operations

Making the visualisation dynamic and explorable involves de�ning how the presen-
tation can be changed by the user. For event charts, the extensions proposed by Lee et
al [LHD00] include aligning the histories on a common event, and sorting or group-
ing the histories. ¿is section describes and exempli�es these and other operations
that are speci�ed with a temporal query language, to be described in detail in sec-
tion 3.4.

57

Chapter 3. Proposed design

Figure 3.5: The record viewer showing parts of a health record. All contact notes have
been removed as part of anonomymisation – when using unanonymised
data they would appear after the text “Notat: [NN/NN]”, with the name of the
responsible physician instead of “NN”.

Alignment

Alignment is important in order to bring interesting patterns close to each other for
inspection of similarities and di�erences. ¿e align operation supports speci�cation
of complex temporal patterns, and the prototype automatically highlights the inter-
val matched by the alignment criterion. Besides being a tool in its own right, the
alignment operator is invoked by the other operations to align newly extracted sub-
collections, or to line up the sort criterion highlighting the di�erence between areas
of interest. Figure 3.6 illustrates the e�ect of alignment.

Sorting

Sorting adds more information to the diagram by ordering the histories according
to a user-speci�ed sort criterion.¿is order can be based on attributes of the patient,
such as age, or on properties of the histories, such as time from a diagnosis to the pre-
scription of a certain medication. A use for the latter kind of criterion, i.e. sorting on
the distance between two query hits, is to gather similar cases when the length of the

58

3.3. Adding interaction

(a) Unaligned histories (b) Aligned on first hypertension

Figure 3.6: Alignment illustrated: (a) shows five patients suffering from hypertension,
using calendar time. (b) shows the same five patients, now aligned so that
the first occurrence of a hypertension diagnosis is lined up, and the axis now
shows number of months before and after the diagnosis.

region of interest is important. ¿is is illustrated in �gure 3.7, showing patients suf-
fering from complications of hypertension sorted on the time between hypertension
and complication.

Figure 3.7: Result of applying the sort operation to a group of patients having diagnoses
known as complications to hypertension. The patients are sorted on the time
fromthe first hypertensiondiagnosis to the first complication.A red rectangle
indicates this period.

59

Chapter 3. Proposed design

Selection

Selection enables the user to isolate the histories of interest by extracting a sub-
collection, or by removing all histories matching a given query. ¿is reduces the
amount of information and is absolutely necessary to get down to a manageable
number of histories to view: In the available database, there are 10,515 histories, and
778 out of these contain a hypertension diagnosis. Even the latter represents a con-
siderable number of histories. In our case study (chapter 4), the analysed collections
contained from 5 to 35 histories. Selection is illustrated in �gure 3.4, as the di�erence
between �gures 3.4(b) and 3.4(c).

Search

Exploring the diagram also involves looking for patterns, or investigating the fre-
quency and position of an interesting pattern. For this purpose, there is a search tool
that locates all instances of a given pattern, highlights these with a red frame, and lets
the user examine them systematically. Such red frames are shown in �gure 3.7, and
the prototype enables cycling through the matches using keyboard shortcuts. ¿e
available navigation is: Next/previous hit in the current history (jumps to next/pre-
vious history if no such hit), and next/previous history (wraps from bottom to top if
“next history” is invoked with the last history, and vice versa).

3.4 Temporal query language

As described above, the prototype employs a temporal query language for speci�-
cation of several of its exploration-supporting operations. ¿is language enables the
user to specify patterns based on events and intervals in the histories, and on the
temporal relations between them.

Figure 3.8 shows how a simple query is tokenized and parsed: ¿e tokenizer splits
the query into primitive symbols that are interpreted by the parser to build a query
tree. Running a query amounts to extractingmatches from the root node of this tree.
¿e root node, and the internal nodes below it in the tree, will query its children
and combine the information to produce a match. On the leaf node level, the actual
searching in the histories is performed.

60

3.4. Temporal query language

We desired lazy execution of the queries, and as a consequence, the queries are actu-
ally run in a structure of iterators mirroring the query tree (see the section on algo-
rithms, section 3.4.2). Figure 3.9 shows an illustration of how the query constructed
in �gure 3.8 is run.

Figure 3.8: Tokenizing and parsing a query: The tokenizer transforms a string represent-
ing the query into a list of symbols that is interpreted by the parser to create
an object structure. See figure 3.9 for an illustration of how this query is run
on a history.

3.4.1 Language definition

¿equery language is recursively de�ned: At the bottom level, primitive elements are
capable of locating single events or intervals in the histories. ¿ese elements can act
as queries in their own right or be combined using compound elements that combine
or �lter the result of queries to express temporal relationships.¿is section describes
the query language, both in form of a grammar on Backus-Naur Form (bnf), and in
natural language. Each operator is illustratedwith an example, and the last subsection
contains an example of a more complex query. More examples are to be found in the
presentation of the case study, chapter 4.

Primitive elements

In the leaf nodes of a query tree, the primitive elements of the query language match
individual events.

¿e grammar for the primitive events is as follows:

<EType> ::= (icpc <RegEx>)
| (atc <RegEx>)
| (test <TestType>)

61

Chapter 3. Proposed design

| (birth)
| (now)
| (beginning)
| (end)

Here, <RegEx> refers to a regular expression, and <TestType> is a string denoting
the name of a test (e.g. bp for blood pressure measurements).

¿e following primitive elements are de�ned:

icpc Finds all diagnoses matching a regular expression on icpc code (described
in section 3.1.1). For example, the query (icpc K.*) �nds all codes related
to the cardiovascular system.

atc Finds all prescriptions matching a regular expression on atc code (de-
scribed in section 3.1.1). For example, the query (atc C07.*) �nds all beta
blockers (group 07 of the cardiovascular drugs (C)).

test Finds all tests of the given type. Currently only blood pressure measure-
ments are recognised; the query (test bp) �nds all blood pressure mea-
surements.

Dates Static information about the history or the environment are provided for
the following:

• ¿e patient’s date of birth: (birth).
• Current date: (now). ¿is is implemented by returning the latest date
in the entire collection of histories, since the database we use is no
longer being updated.

• Beginning of a history (registrationwith the physician’s o�ce):(beginning).
• End of a history (last recorded event in the history): (end).

Compound elements

Compound elements combine the results from primitive elements and other com-
pound elements to specify temporal properties of the pattern to be found.

62

3.4. Temporal query language

¿e grammar for compound operators is as follows:

<Pattern> ::= <Etype>
| (seq <Pattern> [<Int> <Int>] <Pattern>)
| (and <Pattern> <Pattern>)
| (or <Pattern> <Pattern>)
| (windowwith <Pattern> <Int>)
| (windowwithout <Pattern> <Int>)
| (first <Pattern>)
| (merge <Pattern> [<Int>])
| (startof <Pattern>)
| (endof <Pattern>)

Here, <Int> denotes an integer.

¿ere are three elements that can be described as compositional, used to combine
two queries:

seq Find a non-overlapping sequence of matches from two given queries, pos-
sibly with constraints on their separation. ¿e constraints must be zero or
positive, and it is required that the second constraint is equal to or larger
than the �rst. An example:(seq (icpc K90) 0 3 (icpc A96))willmatch
a patient that dies (code A96) within three days a er having a stroke (K90).
¿is operator can also be used to specify simultaneousness (two events oc-
curring on the same day) by setting both constraints to zero.

and Identify regions where parallel conditions hold, i.e. return the cartesian
product of the hits generated by two queries. Example usage: (and (icpc
K87) (icpc F83)) matches patients who have hypertension with organ
complications (K87) and retinopathy (F83; can be a complication of hyper-
tension).

or Identify regions of alternative courses of events, i.e. return all hits from
both queries. Example usage: (or (atc C07.*) (atc C03.*))matches
patients using beta blockers (C07) and/or diuretics (C03).

Two operators can be used to constrain the matches returned by a query:

63

Chapter 3. Proposed design

windowwith
Find all hits of a query not spanning more than a given time period. Ex-
ample use: (windowwith (atc C07.*) 364) �nds all periods where pa-
tients get prescriptions for a beta blocker that lasts for less than a year.

windowwithout
Find all windows of a given length in a history not matching a given query.
Example: (windowwithout (seq (test bp) (seq (test bp) (test
bp))) 365) �nds a period without three successive blood pressure mea-
surements within a year.

We have implemented one operator that calculates abstractions over intervals:

merge Find overlapping and adjacent hits from two queries andmake one hit from
all of these. An optional maximum spacing can be speci�ed to introduce
fuzziness of merging. ¿is operation is useful in deducing medication in-
tervals, i.e. periodswhen a patient is receiving a given drug, regardless of re-
newals of the prescription.¿emerge operation is then applied to all occur-
rences of a prescription of a given drug. Example: (merge (atc C07.*)
7) �nds all periods the patient is medicated with a beta blocker, ignoring
that the prescription has been renewed and allowing the patient to be one
week late in getting a new prescription when the old one expires.

Two operators deal with degeneration of intervals to points:

startof/endof
Degenerate interval hits to points by returning their start- or endpoints.
¿is is useful to reduce an atc query to the date of prescription. Example:
(startof (atc C07.*)) �nds all dates where a beta blocker was pre-
scribed.

Finally, we have implemented one operator that we believe is quite speci�c to our
domain:

�rst Find the �rst match of a given query in the entire history. For example,
the query (seq (icpc K86) 0 7 (first (icpc K77)))matches a di-
agnosis of hypertension followed by a diagnosis of infarctionwithin aweek,
but only if the infarction is the patient’s �rst ever.

In addition, the language de�nes shortcuts (“syntactic sugar”) for some usual con-

64

3.4. Temporal query language

structs.

¿e syntactic sugar is de�ned as follows (--> is used to indicate “translates to”):

(prescription A) --> (startof (atc A))
(medinterval A [I]) --> (merge (atc A) [I])
(medstart A [I]) --> (startof (medinterval A [I]))
(medend A [I]) --> (endof (medinterval A [I]))
(bp) --> (test bp)
(diag I) --> (icpc I)

¿ese constructs work as follows:

prescription
¿e date when a given drug was prescribed.

medinterval
Overlapping and adjacent prescriptions, merged to form longer intervals
of medication.¿is is more meaningful than looking at the individual pre-
scription, since the latter is an administrative concept used to control med-
ication usage.

medstart/medend
Start/end of the abovemedication period.¿is is useful for �nding the date
a patient starts or ends treatment with a given drug, as opposed to every
renewal of the prescription.

bp Simple alias for (test bp), to save some typing.

diag Simple alias for the diagnosis instance operator, using the term “diag” in-
stead of “icpc”, for symmetry with the medication period operator.

Example

One case found to be interesting during the case study, was the investigation of pa-
tients that aremedicated before their blood pressure has been controlled at least three

65

Chapter 3. Proposed design

times. ¿is is against recommended practice, unless there are other indications that
suggest medication (such as extremely high blood pressure).

In the query language, the above may be formulated as follows:

(seq (windowwithout (seq (bp) (seq (bp) (bp))) 365)
0 0
(first (medstart C0([2378]|9[ABCD]).*)))

¿is means that there should be a time window of one year (365 days) without three
sequential blood pressuremeasurements followed by the �rstmedicationwith a drug
from the classes used for treating hypertension. Note that this query also extracts
patients not su�ering fromhypertension (e.g. they have thesemedications prescribed
for other reasons).

3.4.2 Algorithms

¿is section describes the algorithms used in implementation of the query language.
It starts out describing the strategy of lazy execution and de�ning the terminology
that is necessary, before it introduces the operators.

Lazy execution

Lazy execution3 is a pattern of implementation where the results are calculated when3¿is is also called
demand-driven

computing.
needed [vRH04]. A lazy function typically returns its values one by one, always con-
tinuing calculation from the last result that was returned.¿e advantage is that if the
caller only need one or a few results, there is no need to calculate the entire set of re-
sults. Also, this technique may also allow the programmer to calculate with in�nite
data structures, although this is not exploited in our implementation.

Our prototype employs lazy execution for extraction of matches from a query. We
realise this through stateful objects that produce their results one by one as requested,
with an optional time constraint (amatch is required to be on or a er the given time).
In the description of the algorithms, a functional programming approach is taken to
ease the discussion of the algorithms: All state information is passed as parameters

66

3.4. Temporal query language

to the algorithms. Also, to simplify the presentation, no time constraints are passed
down the tree on execution.

Figure 3.9 shows the operation of a search for a sequence “A, B” with the constraint
that the gap between the “A” and the “B” should be between 3 and 9 units, inclu-
sive. ¿e illustration shows three entities in the query tree: ¿e sequence operator
(blue square) and two event matchers (red and green ovals). Along the bottom, the
history is shownwith time indicated below the timeline.¿e state of the eventmatch-
ers is shown by the arrows pointing into the history. When the application requests
an element (nextMatch()), the sequence operator instructs the “A” matcher to �nd
the �rst hit. ¿en, the “B” matcher is advanced until a hit is found that satis�es the
constraints of the sequence operator. As soon as this is returned, the compound hit
is returned to the application. When the application requests the next element, the
query continues from its current state, further advancing the “B” matcher until the
upper time constraint is exceeded.

An algorithm using lazy execution is likely to perform fewer steps than its eager
counterpart. However, the asymptotic analysis is identical, since in the worst case,
the algorithmmust calculate all results.¿e bene�ts from lazy execution is situation-
dependent: In our setting, the top-level operations select and sort only use in the
�rst hit from a query, and in this case it is likely that there are considerable sav-
ings in resource usage. In addition, the one- and �rst-operators e�ectively cut o�
branches in the query evaluation tree for additional savings.¿e size of these savings
are, however, di�cult to assess. Probably, we would have to run tests of “representa-
tive” queries (a er having �gured out what that would mean) on real data, and then
compare these to an eager implementation of the same algorithms.

Symbols and definitions

In the presentation of the algorithms, several de�nitions are needed. First, a query
needs to be de�ned:

Definition 3.1 (Query)
A query is an expression in the query language. It is writtenQ(p1, p2, . . . , pn), where
pi is parameter i.

Each query matches time intervals:

67

Chapter 3. Proposed design

Figure 3.9: How the first result of a simple query is found: Upon request for a match,
the request is passed down the query tree to the leaf nodes. In the exam-
ple, the “A” iterator returns its first match, at time 2. Then, the “B” iterator re-
turns matches after time 2 until a match satisfying the constraints of the seq
is found – in this case the B at time 7. When the seq has found amatch, this is
immediately returned. If the caller requests another match, the iterators will
continue from their current positions.

Definition 3.2 (Match)
A match is an ordered tuple (t1, t2) de�ning its start and end times. Operators that
return point matches (single dates), return (t1, t2) where t1 = t2.

Two functions are de�ned on a matchm = (t1, t2):

s(m) ¿e function s(m) returns the starting time of matchm, i.e. s(m) = t1.

e(m) ¿e function e(m) returns the ending time of matchm, i.e. e(m) = t2.

68

3.4. Temporal query language

¿roughout this thesis,match and hit are used interchangeably. From the de�nitions
of Query and Match, we are able to describe the result of a query:

Definition 3.3 (Query result)
A query result is a partially ordered set (poset) of matches resulting from the execu-
tion of a query on a given history, with the ordering of B on start time of each of its
constituent hits.

¿emapping of queries to results is de�ned by the function R(Q,h), which is a func-
tion from the query, Q(p1, p2, . . . , pn), and the ordered history, h, to the poset of
matches:

R(Q(p1, p2, . . . , pn),h) � �Q(p1, p2, . . . , pn)� � (�h�,B)� (�(t1, t2)�,B)

Set cardinality notation is used to denote the number of elements in a query result,
i.e. SrS denotes the number of elements in the result r.

With basis in the previous de�nitions, it is possible to de�ne the semantics of a query
as a function from the query and its parameters (other queries, constraints) to the
query result of that query. ¿is is done for each operator in the sections that fol-
low. For brevity of notation, the notation for partially ordered sets is omitted when
referring to query results in the following text.

In the algorithm listings, the following routines and symbols are used:

BinarySearch(M, t)
Return the index of the �rst match that starts a er time t in the set M of
matches. If no such match exists, return ª (which is an invalid index).
¿e binary search algorithm is given in most algorithm textbooks, such
as [CLRS01].

ExecuteQuery(Q, S, h)
Execute query Q over history h. ¿e parameter S represents a tuple that
is the state information needed to implement lazy execution. Implementa-
tions for each Q in the query language are given in the following sections.

Nothing ¿e symbol “Nothing” is used to indicate the absence of a value.

69

Chapter 3. Proposed design

Overlaps(a, b)
A function returning true if the two given matches overlap. If any of them
is “Nothing”, the result is de�ned to be true.

When analysing the algorithms, the following symbols are used (these functions rely
on the history h, but this is omitted for brevity of notation):

S(Q) ¿e space complexity of running ExecuteQuery(Q, . . .).

T(Q) ¿e time complexity of running ExecuteQuery(Q, . . .).

N(Q) ¿emaximum number of items returned by ExecuteQuery(Q, . . .).

Introduction to the algorithms

All algorithms are described with:

• ¿eir name, speci�ed as the �rst parameter to ExecuteQuery, which is a
polymorphic function: Which version of the function is executed depends
on which query is its �rst argument. For example, there are de�nitions for
ExecuteQuery(Qor,S,h) and ExecuteQuery(Qand,S,h). When calling
the function as ExecuteQueryQand(Q1,Q2),S,h where Q1 and Q2 repre-
sent queries, the implementation of the and-operator is run.

• A parameters de�nition. ¿is lists the parameters’ names and types. In partic-
ular, the state tuple used in the lazy execution is listed here. It is assumed a
sort of pattern-matching, mapping the contents of the state parameter to its
constituent variables; e.g. the state S = �a,b, c� means that the function ex-
pects a parameter which is an ordered tuple of three variables, and these are
referred to in the function body separately (a, b and c are referenced without
other declaration than appearing as part of S).

• ¿eir return value, in terms of what set the returned matches belong to. All
algorithms returnmatches in the order de�ned by the ordering relation on the
poset given by R(Q,h), i.e. they return their matches sorted on starting time.
¿is behaviour is relied upon in the implementations.

70

3.4. Temporal query language

¿esections that follow (except the two �rst, about the top-level extraction algorithm
and the bottom-level search) are organised in three parts:

• Introduction and de�nition: An introductory paragraph informally describes
the operator in question, and a de�nition in set notation, using the symbols
described above, is given.

• Algorithm: A textual description of the algorithm explains an accompanying
algorithm listing.

• Asymptotic analyses: Asymptotic running time- and space complexity is de-
duced. ¿e number of elements that may be returned by a query is also given,
since the other measures depend on this.

¿e algorithms to be described follow the same pattern of implementation:

• Initialisation: If the given state de�nition (always named S) does not exist, as-
sign initial values to all variables of the state de�nition. All state variables have
a short comment describing them.

• Search: For primitive operators: Traverse the history and �nd matching ele-
ments. For compound operators: Extract results from the sub-query/queries
and combine them in the manner prescribed by the de�nition of the operator
in question.

• Termination: Update state information to re�ect progress of the search, and
return a tuple with the match that was found in the �rst position and the (up-
dated) state de�nition in the second.¿e former is “Nothing” when no further
matches can be found.

Top-level algorithm: Extraction of matches

¿ealgorithmAllMatches(Q,h) returns allmatches resulting from running query
Q over history h.¿is algorithm hides the threading of states between invocations of
ExecuteQuery, and it is given in algorithm listing 1. It also serves as an illustration
of how ExecuteQuery is intended to be used.

¿is algorithm adds a constant amount to the space and running time complexities
of the query to be executed.

71

Chapter 3. Proposed design

Algorithm 1 Extraction of all matches
AllMatches(Q,h)
Parameters: Query Q; history h.
Return: ¿e returned set contains all matches of query Q over history h.
1: R� gR Accumulated result of Q
2: S � gR State of execution of Q
3: m,S � ExecuteQuery(Q,S,h)
4: whilem x Nothing do
5: R� R 8 �m�
6: m,S � ExecuteQuery(Q,S,h)
7: end while
8: Return R

Event search

On the lowest level of the query tree, events are searched for in the histories. ¿e
algorithm is shown in algorithm listing 2. Here, a function E is de�ned as a function
from the set of entries in histories to the set of matches. ¿is function determines if
a given entry is considered to be a match or not:

E(e) = � (t1, t2) if e is considered to be a match
Nothing otherwise

Asymptotic analyses ¿is algorithm visits all elements of the underlying history
once, and it may return up to all elements of the history:

N(Qev) = ShS

Its running time complexity is thus:

T(Qev) = O(ShS)

¿e space complexity is related to the storage of the variable i, which is constant:

S(Qev) = O(1)

72

3.4. Temporal query language

Algorithm 2 Event search algorithm
ExecuteQuery(Qev(E),S,h)
Parameters: Event matching function E; state information S = �i�;

history h.
Return: A match is returned if and only if it belongs to the set:
�m S E(e > h) = m ,m x Nothing�

1: if S = g thenR First time called: Initialise
2: i � 0R Progress in history h
3: end if
4: while i < ShS do
5: m� E(h[i])
6: i � i + 1
7: if m x Nothing thenR Check if a match was returned
8: Return �m,�i��
9: end if
10: end while
11: Return �Nothing,�i��

First

Sometimes, it is useful to search for the �rst occurrence of a pattern in a history. ¿e
�rst-operator does this, returning only the �rst hit from the underlying query. We
do not de�ne this operator in set notation. Algorithm listing 3 shows the algorithm
for extracting one hit, using an indicator variable as state information, which is set
to one when the one hit has been returned.

Algorithm 3 First-query algorithm
ExecuteQuery(Q�rst(Q),S,h)
Parameters: Query Q; state information S = �x�; history h.
Return: ¿e �rst match returned by Q is returned once.
1: m� Nothing
2: if S x g then
3: m,SQ � ExecuteQuery(Q,g,h) R Get one match, ignore returned state

value
4: end if
5: Return �m,�1��R Return with a non-g state to prevent execution next time

73

Chapter 3. Proposed design

Asymptotic analyses ¿e �rst-operator returns a single hit, i.e.:

N(Q�rst) = 1
It uses a single indicator variable as state information:

S(Q�rst) = O(1)
When it comes to running-time complexity, this is di�cult to estimate because of the
lazy evaluation: While only extracting one hit, this may involve a lot of computation
in the subtree represented by Q, but in general this will be much less than if all hits
from Q were extracted. Nevertheless, an upper limit is:

T(Q�rst) = T(Q)

Disjunction

A disjunction (i.e. the or operator) �nds alternative histories; it returns all matches
from its two sub-queries.

Definition 3.4 (Disjunction query)
¿e disjunction is de�ned over the sub-queries Q1 and Q2 as:

R(Qor(Q1,Q2),h) = �m S m > R(Q1,h) 8 R(Q2,h)�

Algorithm listing 4 shows the algorithm for �nding a disjunction of thematches from
two queries. ¿e algorithm merges (as in the “merge sort” algorithm [CLRS01]) the
matches of the two underlying queries.

Asymptoticanalyses ¿is algorithmalways returns allmatches fromboth queries.
¿is results in the following number of matches:

N(Qor) = N(Q1) + N(Q2)

Each sub-query is executed exactly once, and the running time complexity of the
algorithm is:

T(Qor) = T(Q1) + T(Q2) +O(N(Q1) + N(Q2))

74

3.4. Temporal query language

Algorithm 4Disjunction query algorithm
ExecuteQuery(Qor(Q1,Q2),S,h)
Parameters: Queries Q1 and Q2; state information S = �S1,S2,m1,m2�; history h.
Return: Amatch is returned if and only if it belongs to the set: R(Q1,h)8R(Q2,h)
1: if S = g thenR First time called: Initialise
2: S1 � gR State of execution of Q1

3: S2 � gR State of execution of Q2

4: m1,S1 � ExecuteQuery(Q1,S1,h)
5: m2,S2 � ExecuteQuery(Q2,S2,h)
6: end if
7: if (m1 = Nothing) , (m2 = Nothing) then
8: Return �Nothing,�S1,S2,m1,m2��
9: else if (m1 = Nothing) - (m2 B m1) then
10: m� m2
11: m2,S2 � ExecuteQuery(Q2,S2,h)
12: Return �m,�S1,S2,m1,m2��
13: elseR Know that (m1 x Nothing) - (m1 < m2)
14: m� m1
15: m1,S1 � ExecuteQuery(Q1,S1,h)
16: Return �m,�S1,S2,m1,m2��
17: end if

Its space usage is a constant plus the space used by each sub-query:

S(Qor) = S(Q1) + S(Q2) +O(1)

Window-with

¿e window-with operator returns all matches from a single query Q that do not
span more than a maximum time w.

Definition 3.5 (Window-with query)
¿e window with operator is de�ned as:

R(Qww(Q,w),h) = �m S (m > R(Q,h)) , (e(m) − s(m) B w)�

Algorithm listing 5 shows the algorithm for �nding hits within a given time window.

75

Chapter 3. Proposed design

¿e algorithm checks each match of the sub-query and returns the matches whose
extents are within the allowable window.

Algorithm 5Window-with query algorithm
ExecuteQuery(Qww(Q1,w),S,h)
Parameters: Query Q; window size w; state information S = �SQ�;

history h.
Return: A match is returned if and only if it belongs to the set:
�m S (m > R(Q,h)) , (e(m) − s(m) B w)�

1: if S = g thenR First time called: Initialise
2: SQ � gR State of execution of Q
3: end if
4: repeat
5: m,SQ � ExecuteQuery(Q,SQ,h)
6: if (m x Nothing) , (e(m) − s(m) B w) then
7: Return �m,�SQ��
8: end if
9: untilm = Nothing
10: Return �Nothing,�SQ��

Asymptoticanalyses In theworst case, all of the sub-query’s hits are passed through,
for a total number of matches of:

N(Qww) = N(Q)

¿e sub-query is executed exactly once, for a running time complexity of:

T(Qww) = T(Q) +O(N(Q))

Space usage is a constant, plus the space used by the sub-query:

S(Qww) = S(Q) +O(1)

Merge

In the data model, medications are represented by a series of prescriptions of each
drug. It may be interesting to extract the period in which a patient was treated with
given medication, ignoring renewals of the prescription.

76

3.4. Temporal query language

Definition 3.6 (Merge query)
First, de�ne a contiguous interval over a query with a maximum gap between adja-
cent intervals of δ:

D(Q,δ,h) = �(t1, t2) S ((m1 > D(Q,δ,h)) , (m2 > D(Q,δ,h)),
(s(m2) − e(m1) B δ) , (t1 = s(m1) , t2 = e(m2)))-

((t1, t2) > R(Q,h))�

¿en, the merge operator is de�ned to return the largest contiguous intervals:

R(Qmerge(Q,δ),h) = �(t1, t2) S (t1, t2) > D(Q,δ,h),
 §(u1,u2) > D(Q,δ,h).(((u1 < t1) , (u2 − t1 C δ))-
((u1 − t2 B δ) , (u2 A t2)))�

Algorithm listing 6 shows the algorithm for �nding the largest merged intervals.
Since the queries are de�ned to return their hits sorted on start time, the abstrac-
tion amounts to scanning the hits from the underlying query sequentially, merging
them to a single match until the gap between the latest end time seen so far and the
start time found is larger than δ.

Asymptoticanalyses In theworst case, all of the sub-query’s hits are passed through
separately, for a total number of matches of:

N(Qmerge) = N(Q)

¿e sub-query is executed exactly once, for a running time complexity of the algo-
rithm of:

T(Qmerge) = T(Q) +O(N(Q))

Its space usage is a constant plus the space used by the sub-query:

S(Qmerge) = S(Q) +O(1)

77

Chapter 3. Proposed design

Algorithm 6Merge query algorithm
ExecuteQuery(Qmerge(Q,w),S,h)
Parameters: Query Q; tolerance δ; state information S = �SQ,α�; history h.
Return: A match is returned if and only if it belongs to the set:

R(Qmerge(Q,δ),h) = �(t1, t2) S (t1, t2) > D(Q,δ,h),
 §(u1,u2) > D(Q,δ,h).(((u1 < t1) , (u2 − t1 C δ))-
((u1 − t2 B δ) , (u2 A t2)))�

1: if S = g thenR First time called: Initialise
2: SQ � gR State of execution of Q
3: α� NothingRMatch that is under construction
4: end if
5: m,SQ � ExecuteQuery(Q,SQ,h)
6: whilem x Nothing do
7: if α = Nothing then
8: α� m
9: else
10: if s(m) − e(α) B δ thenR Can extend α
11: α� (s(α),max(e(α), e(m)))
12: elseR Reset and return α, usingm for α next time
13: Return �α,�SQ,m��
14: end if
15: end if
16: m,SQ � ExecuteQuery(Q,SQ,h)
17: end while
18: if α x Nothing thenR Out of matches, return what we have
19: Return �α,�SQ,Nothing��
20: end if
21: Return �Nothing,�SQ,α��

78

3.4. Temporal query language

Avoiding re-running a query: A caching proxy

To avoid re-evaluation of a subtree of the query tree whenever an algorithm needs to
use the results of the subtreemore than once, a caching proxy4 function forExecute- 4We call this a proxy, as it

is a functional-
programming equivalent
of a virtual proxy in the
“Proxy” pattern
described in books on
design patterns (such as
[Coo98]). A virtual
proxy defers loading of a
large or complex object
until it is needed.

Query is employed. ¿is function, GetCached, returns all hits from a query, but
during the �rst access, the hits are cached. Regardless of which elements are sought,
all elements are stored for later. When the calling function seeks an element that has
already been cached, the proxy looks this up in the cache, avoiding to re-run the
subtree represented by the cached query.¿e proxy can �nd a new starting point for
sequential return of hits by using binary search. ¿is behaviour is triggered by pass-
ing a parameter t that is di�erent from “Nothing”, to the function. If t = Nothing,
the matches are returned sequentially from the last match returned. ¿e algorithm
is shown in algorithm listing 7.

¿e main use of this function is in the sequence operator. Here, the results from a
query Q2 is combined with all hits from query Q1. In this case, caching the hits from
Q2 avoids running the subtree represented by Q2 more than once. In addition, the
operator speci�es that the hits from Q2 should start a er the end of the hit from Q1.
¿ismeans that not all hits fromQ2 need to be processed for every hit fromQ1, hence
the binary search to �nd a new starting point.

Asymptotic analyses Considering the running time complexity, two cases must
be considered: If the elements that are searched have been extracted from the under-
lying query, or not. Furthermore, the running time di�ers between sequential return
of the elements, and search for a place to start.

If the elements have not been extracted, the matches are sequentially retrieved from
the underlying query, up to the point in time that is requested, yielding a time com-
plexity of T(Q)+O(N(Q)). ¿is is the case both when returning elements sequen-
tially and when seeking a starting point.

In the case of the presence of the elements in the cache (at least up to the requested
time, if any), the complexity depends on the value of t: If t x Nothing, the time to �nd
the nearest element is O(log2 SCS). Else, the lookup time is constant, θ(1), assuming
that the cache is random-access with uniform access time.

Considering space complexity, this is related to the size of the cache, SCS, the space
requirements of the underlying query, S(Q), plus a constant for the storage of local
variables and i. In sum: S(Q) + O(SCS). Assessing the size of the cache is di�cult

79

Chapter 3. Proposed design

Algorithm 7 Caching proxy for ExecuteQuery
GetCached(Q, t,S,h)
Parameters: Query Q; optional time t; state information S = �C,SQ, i�; history h.
Return: ¿e returned matches are all matches of query Q over history h.
1: if S = g thenR First time called: Initialise
2: C � gR Cache
3: SQ � gR State of execution of Q
4: i � 0R Index into C
5: end if
6: if (t x Nothing) , (C x g) , (t B s(C[SCS − 1])) thenR Find new index
7: i � BinarySearch(C, t)
8: else if i C SCS then
9: repeatR Linear search and cache construction/expansion
10: m,SQ � ExecuteQuery(Q,SQ,h)
11: if m = Nothing then
12: Return �Nothing,�C,SQ, i��
13: end if
14: C � C 8 �m�R Extend cache
15: until (t x Nothing)� (s(m) C t)
16: i � SCS − 1
17: end if
18: Return �C[i],�C,SQ, i + 1��

because of lazy evaluation, but an upper bound is the number of elements returned
by the underlying query: O(N(Q)).

¿e overall space and running time characteristics of the function will depend on
the usage pattern: Because of lazy evaluation, it may very well be the case that not
all of the underlying matches are extracted and cached, and the use of binary search
may vary according to the calling function’s requirements.

Sequence

A sequence query �nds matches from two queries, where the matches from the sec-
ond query or start on or a er the end of matches from the �rst. ¿e resulting match
from the sequence query spans the extent of bothmatches.¿eremay be a constraint
on the gap between the end of the �rst match and the start of the second. Consider-

80

3.4. Temporal query language

ing this constraint involves deciding on the semantics when the gap between events
can be zero, i.e. whether the operator accepts events that happened on the same day5 5Days is the unit of

resolution of the time
representation in the
system, because the
database is not accurate
at lower granularities.

as being “sequential”. We de�ne the sequence operator to behave this way, implying
the use of ‘B’ instead of ‘<’ in the de�nition below. Allowing c2 to be zero, extends
the possibilities: If c1 = c2 = 0, this makes the operator specify simultaneousness of
events. However, it must be a requirement that c1 B c2.

Definition 3.7 (Sequence query)
¿e sequence query is de�ned as:

R(Qseq(Q1,Q2, c1, c2),h) = �(s(m1), e(m2)) S
((m1,m2) > R(Q1,h) � R(Q2,h)),
(0 B c1 B (s(m2) − e(m1)) B c2)�

Here, the following symbols are used:

Q1,Q2 Sub-queries.

c1,c2 Constraints on the spacing between elements of the sequence.

Algorithm listing 8 shows the algorithm for �nding sequences.¿e algorithm returns
for each match in the �rst query, Q1, all matches from the second query, Q2, so that
the gap between the end of the �rst and start of the second is within the interval of
the constraints. Figure 3.9 shows an example of how the sequence search operates.

Asymptotic analyses ¿e worst-case complexity for this algorithm is exposed
when all hits from Q1 end prior to any hit from Q2 and the constraining window is
large enough to encompass any gap between the end of a hit fromQ1 and the start of
a hit from Q2. In this case, all hits from Q2 are returned for each hit of Q1, for a total
number of elements:

N(Qseq) = N(Q1) ċN(Q2)

Since the algorithm caches hits from Q2, each sub-query is executed only once. ¿e
caching proxy induces a binary search for each hit of Q1, and the total running time
complexity for the sequence query algorithm is thus:

T(Qseq) = T(Q1) + T(Q2) +O(N(Q1(N(Q2) + log2 N(Q2)))
= T(Q1) + T(Q2) +O(N(Q1) ċN(Q2))

81

Chapter 3. Proposed design

Algorithm 8 Sequence query algorithm
ExecuteQuery(Qseq(Q1,Q2, c1, c2),S,h)
Parameters: Queries Q1 and Q2; constraining times c1 and c2; state information S =
�m1,S1,C2�; history h.

Return: A match is returned if and only if it belongs to the set:

R(Qseq(Q1,Q2, c1, c2),h) = �(s(m1), e(m2)) S
((m1,m2) > R(Q1,h) � R(Q2,h)),
(0 B c1 B (s(m2) − e(m1)) B c2)�

1: if S = g thenR First time called: Initialise
2: m1 � NothingR Current match from Q1

3: S1 � gR State of execution of Q1

4: C2 � gR State of GetCache over Q2

5: end if
6: loopR For all matches from Q1

7: t� Nothing
8: if m1 = Nothing thenR Needs to find a newmatch from Q1

9: m1,S1 � ExecuteQuery(Q1,S1,h)
10: if m1 = Nothing thenR Termination: All of Q1 exhausted
11: Return �Nothing,�m1,S1,C2��
12: end if
13: t� e(m1) + c1 R Search from this time
14: end if
15: loopR Try all matches in Q2 against constraints
16: m2,C2 � GetCached(Q2, t,C2,h)
17: if (m2 = Nothing) - (s(m2) A e(m1) + c2) thenR No hit or out of range
18: m1 � Nothing
19: BreakR Break out of innermost loop
20: else if m2 x m1 thenR An event does not follow itself
21: Return �(s(m1), e(m2)),�m1,S1,C2��
22: end if
23: end loop
24: end loop

¿espace complexity is related to the cache of results forQ2 plus the space complexity
of the two queries:

S(Qseq) = S(Q1) + S(Q2) +O(N(Q2))

82

3.4. Temporal query language

Conjunction

A conjunction (i.e. the and operator) �nds parallel patterns; the cartesian product of
matches from two queries. ¿e resulting matches span from the start of the match
from the �rst query to the end of the match from the second. No parameters are
given apart from the sub-queries.

Definition 3.8 (Conjunction query)
¿e conjunction is de�ned over the sub-queries Q1 and Q2 as:

R(Qand(Q1,Q2),h) = �(s(m1), e(m2))S(m1,m2) > R(Q1,h) � R(Q2,h)�

Algorithm listing 9 shows the algorithm for �nding a conjunction, or cartesian prod-
uct, of the matches from two queries. ¿e algorithm returns for each match in the
�rst query, Q1, all matches from the second query, Q2.

Asymptotic analyses ¿is algorithm always return all hits from Q2 for each hit
of Q1, for a total number of returned elements of:

N(Qand) = N(Q1) ċN(Q2)

Basically, the algorithm is the same as the sequence query algorithm, except for the
constraints (both being based on the cartesian product), giving the same asymptotic
running time:

T(Qand) = T(Q1) + T(Q2) +O(N(Q1) ċN(Q2))

¿e last termwould include a logarithmic component from the binary search inGet-
Cached. ¿is may be avoided, for instance by adding a special case to GetCached
that starts from the beginning of the cache if t = −ª. Another possibility is to build
the caching into the implementation of the and operator.

Also, the space complexity is the same as for the sequence operator:

S(Qand) = S(Q1) + S(Q2) +O(N(Q2))

83

Chapter 3. Proposed design

Algorithm 9 Conjunction query algorithm
ExecuteQuery(Qand(Q1,Q2),S,h)
Parameters: Queries Q1 and Q2; state information S = �m1,S1,C2�;

history h.
Return: A match is returned if and only if it belongs to the set:
�(s(m1), e(m2))S(m1,m2) > R(Q1,h) � R(Q2,h)�

1: if S = g thenR First time called: Initialise
2: m1 � NothingR Current match from Q1

3: S1 � gR State of execution of Q1

4: C2 � gR State of GetCache over Q2

5: end if
6: loopR For all matches from Q1

7: t� Nothing
8: if m1 = Nothing thenR Needs to find a newmatch from Q1

9: m1,S1 � ExecuteQuery(Q1,S1,h)
10: if m1 = Nothing thenR Termination: All of Q1 exhausted
11: Return �Nothing,�m1,S1,C2��
12: end if
13: t� −ªR Start over enumerating Q2

14: end if
15: loop
16: m2 � GetCached(Q2, t,C2,h)
17: if m2 = Nothing thenR No hit
18: m1 � Nothing
19: BreakR Break out of innermost loop
20: else
21: Return �(s(m1), e(m2)),�m1,S1,C2��
22: end if
23: end loop
24: end loop

Window-without

¿ewindow-without operator �nds periods of a speci�ed length that do not contain
any matches of a given query. ¿is window may start at a date containing a match,
but not end at such a date.

84

3.4. Temporal query language

Definition 3.9 (Window-without query)
Formally, the window-without operator is de�ned as:

R(Qwwo(Q,w),h) = �(x, y) S §(m > R(Q)).(((s(m) < y) , (x < e(m)))-
((x < e(m)) , (s(m) < y))),
(y− x = w) , (x, y > �. . . ,−δ,0,δ,2δ, . . .�),
(s(h[0]) B x B y B s(h[ShS − 1]))�

Here, δ represent the granularity of the time representation (one day in the proto-
type).

In algorithm listing 10, the algorithm for the window-without operator is given. ¿e
algorithm begins at the start of the history and generates windows every δ time units
until the window meets a match. When this happens, the start of the window is
moved to the end of the match and the search continues. In the listing, the func-
tion Overlaps(m1,m2) is true if the intervals de�ned by m1 and m2 overlap. An
interval which is “Nothing” does not overlap any interval.

Asymptotic analyses For each window between matches m1 and m2 with width
∆m = s(m2)−e(m1) C w, the algorithm returns ∆m−w

δ +1matches.¿e time complex-
ity is di�cult to calculate exactly, but it will be dependent on T(Q) (�nding matches
of Q), the size of the time step, δ, and the data’s characteristics.

One limiting case is the case where no matches of Q exist in the history. In this case,
the number of windows returned equals the ratio of the length in time of the history
and the time granularity:

N(Qwwo) =
s(h[ShS − 1]) − s(h[0]) −w
δ

� + 1

An upper bound on the running time is thus (see further discussion in section 5.3.3):

T(Qwwo) = T(Q) +O �
s(h[ShS − 1]) − s(h[0]) −w
δ

��

85

Chapter 3. Proposed design

Algorithm 10Window-without query algorithm
ExecuteQuery(Qwwo(E),S,h)
Parameters: Query Q; window size w; state information S = �t,SQ,m�;

history h
Return: A match is returned if and only if it belongs to the set:

R(Qwwo(Q,w),h) = �(x, y) S §(m > R(Q)).(((s(m) < y) , (x < e(m)))-
((x < e(m)) , (s(m) < y))),
(y− x = w) , (x, y > �. . . ,−δ,0,δ,2δ, . . .�),
(s(h[0]) B x B y B s(h[ShS − 1]))�

1: if S = g thenR First time called: Initialise
2: t� s(h[0])R Start of window to be returned
3: SQ � gR State of execution of Q
4: m,SQ � ExecuteQuery(Q,SQ,h)RMatch we are checking against
5: end if
6: while t < s(h[ShS] − 1) −w doRWithin the bounds of the history
7: if Overlaps((t, t +w),m) then
8: mr � (t, t +w)
9: t� t + δ
10: Return �mr,�t,SQ,m��
11: else if m x Nothing then
12: m,SQ � ExecuteQuery(Q,SQ,h)
13: t� e(m)
14: else
15: t� t + δ
16: end if
17: end while
18: Return �Nothing,�t,SQ,m��

86

3.4. Temporal query language

Concerning space complexity, the algorithm does no caching and thus only adds a
constant amount of space to the total complexity of the combined query:

S(Qwwo) = S(Q) +O(1)

Summary

Table 3.1 shows the maximum number of elements generated by the di�erent algo-
rithms, in terms of the number of elements returned by their sub-queries. ¿is table
is needed when using table 3.2, showing algorithm time and space complexities, to
calculate the complexity of executing a given query.

For example, consider the query:

(seq (windowwith (seq (bp) (seq (bp) (bp))) 365)
0 0
(first (medstart C0([2378]|9[ABCD]).*)))

¿is query could be expressed as:

Q = Qseq(Qww(Qseq(Qev(ebp),Qseq(Qev(ebp),Qev(ebp))),365),
Q�rst(Qstartof(Qmerge(Qev(eatc)))),
0,0)

where ebp(x) is a function returning a match (t, t) if x is a blood pressure measure-
ment at time t. Correspondingly, eatc(y) returns a match (t1, t2) for a given prescrip-
tion y.

To �nd the asymptotic running time of this query, expressions from the tables 3.1
and 3.2 are applied to the outermost operator (seq):

T(Q) = T(Qww(. . .)) + T(Q�rst(. . .)) +O(N(Qww(. . .)) ċN(Q�rst(. . .)))

Continuing to apply expressions from the tables to the formula above yields a total
asymptotic complexity of O(ShS3).

From the example above, and from looking at the tables, it is possible to discuss the
complexities of di�erent queries. If we ignore the window-without operator, which

87

Chapter 3. Proposed design

is discussed in greater detail in section 5.3.3, the time complexities listed in table 3.2
fall into two categories: Linear time (event search, disjunction, window-with, �rst,
merge) andmultiplicative time (conjunction, sequence). Building a tree from linear-
time operations yields a total linear-time complexity. On the other hand, building a
tree from operators multiplying their sub-queries’ complexity functions results in a
total complexity exponential in the height of the query tree. A real-world query will
fall somewhere between these two extremes.

Query Symbol(Q) N(Q)
Event search Qev ShS
And Qand N(Q1) ċN(Q2)
Or Qor N(Q1) + N(Q2)
Sequence Qseq N(Q1) ċN(Q2)
Window-with Qww N(Q)
Window-without Qwwo � s(h[ShS−1])−s(h[0])−wδ � + 1
First Q�rst 1
Merge Qmerge N(Q)
Table 3.1: Number of matches produced by the algorithms

Q T(Q) S(Q)
Qev O(ShS) O(1)
Qand T(Q1) + T(Q2) +O(N(Q1) ċN(Q2)) S(Q1) + S(Q2) +O(N(Q2))
Qor T(Q1) + T(Q2) +O(N(Q1) + N(Q2)) S(Q1) + S(Q2) +O(1)
Qseq T(Q1) + T(Q2) +O(N(Q1) ċN(Q2)) S(Q1) + S(Q2) +O(N(Q2))
Qww T(Q) +O(N(Q)) S(Q) +O(1)
Qwwo T(Q) +O �� s(h[ShS−1])−s(h[0])−wδ �� S(Q) +O(1)
Q�rst T(Q) O(1)
Qmerge T(Q) +O(N(Q)) S(Q) +O(1)

Table 3.2: Algorithm complexities

Exactly what the complexity of a real-world querywill be is di�cult to predict, but we
can consider the theoretical extremes. Combining cartesian products will generate
a huge amount of matches, exponential in the height of the query tree (i.e. number
of nested operators). Searching in a collection of 778 hypertension histories yielded
the results shown in table 3.3. Here, the “—” means that the computer ran out of
memory. First, a test was run using a symmetrical tree of and-operators, and then
the experiments was repeated using a sequence. Both produced a large number of
results, even for fairly low trees. Comparing this to one of the linear-time operators,

88

3.4. Temporal query language

“or”, shows that the di�erence is signi�cant: Neither the number of matches nor the
execution time is anywhere near that of the operators based on cartesian products.

Query Results Time
(bp) 2,642 0.081
(and (bp) (bp)) 40,248 0.166
(and (and (bp) (bp)) (and (bp) (bp))) — —
(seq (bp) (bp)) 21,454 0.149
(seq (seq (bp) (bp)) (seq (bp) (bp))) 5,973,444 11.067
(or (bp) (bp)) 5,284 0.143
(or (or (bp) (bp)) (or (bp) (bp))) 10,568 0.283
(or (or (or . . .))) 21,136 0.553
(or (or (or (or . . .)))) 42,272 1.156
(or (or (or (or (or . . .))))) 84,544 1.902
(or (or (or (or (or (or . . .)))))) 169,088 3.554

Table 3.3: Running times for example queries. “—” means that the computer went out
ofmemory. The first part of the table indicates the exponential nature of com-
bining cartesian products in a tree. The second part shows that or-operator
does not have the same problem.

¿ese discussions are, however, theoretical. In our case study, all queries seemed
to execute instantly. To determine whether complexity really is a problem, relevant
queries must be gathered6 and their corresponding query trees analysed. If this anal- 6¿is is work that has

commenced, but not as
part of this thesis.

ysis shows that the current speci�cation is infeasible, the operators de�ned through
the cartesian product need to be rede�ned.

89

Case study
[chapter four]

Our experience from previous projects indicates that prototyping is a good approach
for getting feedback in our problem area. We chose to develop our solution as de-
scribed in the previous chapter, and then test it with a general practitioner.¿is helps
us to gain a better understanding of the problem, and to identify weak or missing
functionality in our design. Although the study recounted in this chapter is not suf-
�cient as a basis for drawing �rm conclusions about the success of our design, we
hope that the experiences will build a better foundation for performing more thor-
ough evaluations at a later stage.

¿roughout this chapter, the following topics are addressed:

1. Goals: What we were looking for during the case study.
2. Performing the study: How we proceeded during the study.
3. Findings: Observationsmade during the sessions with the general practitioner.
4. Summary of �ndings related to goals

91

Chapter 4. Case study

4.1 Goals

We decided upon the following goals, supporting the higher-order goal of investi-
gating the potential of our visualisation design:

• Find possible uses of our visualisation design.
• Investigate the usefulness of the interaction features of the prototype.
• Look for limitations and problems with, as well as possibilities for improve-
ments of, the prototype.

In the planning of such an experiment, one issue that needs to be addressed is its
scope:¿e of the number of cases to investigate and the number of persons involved.
We considered a small-scale study with a single general practitioner to be the best
option at this stage, because this would allow us to assess if our design at all is useful
and identify its most obvious shortcomings before embarking on larger studies. Sec-
tion 6.3 lists the preliminary plan for continued research, where the study referred
here is followed by several iterations of improvement and evaluation. ¿e experi-
ences from this case study will be important for design of the further evaluation, and
for improving the prototype before the actual evaluation process starts.

4.2 Performing the study

We conducted the study by letting a general practitioner explore a group of patients
from his own practice and comment on his �ndings, both of expected and unex-
pected cases. In advance, we had decided to investigate patients su�ering from hy-
pertension (see section 1.3).We consultedmedical guidelines, such as the Norwegian
Electronic Handbook for Physicians (nel) [AS06], and selected diagnosis codes and
medications that were relevant to our problem.¿ese were discussed with the physi-
cian, and the visualisation was parameterised accordingly.

¿ree persons were present during the experiment:

• General practitioner and leader of research at the Norwegian Centre of Elec-
tronic Health Records Research (nsep), Anders Grimsmo (secondary tutor of
this thesis).

92

4.2. Performing the study

• PhD student at the Institute of Computer and Information Sciences (idi), Ole
Edsberg (main tutor of this thesis).

• Master student at idi, Stein Jakob Nordbø (author of this thesis).

¿e study was performed in four sessions spanning three days:

1. Introduction: ¿e visualisation concept and prototype were introduced, and
interesting problemswere proposed. Also, missing features were spotted. A er
this session, the new features were implemented, and queries were constructed
for the most interesting problems that were proposed.

2. Query 1: Investigation of the case: “Patients being medicated for hypertension
without three preceding controls of blood pressure.” ¿e guideline states that
there should be at least three controls before drugs are prescribed, as a main
rule.

3. Query 2: Investigation of the case “Patients prescribed ACE-inhibitors without
any known indications of use of this kind of drug.” ACE-inhibitors represent a
costly form of treatment that should be avoided if there are other alternatives.

4. Query 3: Investigation of the case “Patients with diagnoses known as compli-
cations of hypertension, where the �rst such diagnosis occurs a er the �rst
hypertension diagnosis.” ¿ese patients were sorted on the time from the �rst
diagnosis of hypertension to the �rst complication.

4.2.1 Limitations

Besides measuring the e�ectiveness of the visualisation design, an evaluation of an
interactive prototype measures the interaction capabilities, since interaction is nec-
essary to explore the data. ¿is is not necessarily a disadvantage – the interaction
mechanisms are important – but it can be di�cult to tell if more insight into the
data could be generated with a di�erent interaction design. Another uncertainty fac-
tor would be whether the interactionmechanisms or the visualisation itself accounts
the most for the observations.

A problem with the evaluation being a�ected by the user interface is the lack of a
user-friendly interface in certain areas of our prototype. To minimise the impact of
this, the physician was assisted in carrying out tasks for which no user-friendly user
interface had been implemented: Loading data from the database and speci�cation
and execution of queries. ¿us, the physician ended up scrolling the visualisation,
inspecting it using the brushing (“mouse-over”) facilities, and changing between the

93

Chapter 4. Case study

visualisation and the record view. Another limitation stem from our helpfulness: It
is conceivable that the user would be less inclined to make use of the operations that
he was not able to carry out himself. ¿e general practitioner actually stated that he
would like to try out the tool for himself sometime.

In addition, an evaluation of a visualisation will be in�uenced by the data that is
inspected: At least, the data must contain some interesting information to discover,
and the user must possess the domain knowledge necessary to identify it when it
appears. We try to remedy this by choosing a test user that knows the data and has
long experience in the �eld of general practice medicine.

A third factor in�uencing this study is the motivation of its participants. Our test
subject is leader of research at a centre for electronic health records research and
is interested in technology. Besides, he participated as a co-author of the scienti�c
article resulting from this study (appendix D). For these reasons, we believe to have
found a motivated user. On the other hand, it is conceivable that the test subject can
have a certain bias.

4.3 Findings

¿is section lists �ndings from the four sessions outlined above. See section 5.1.1 for
a discussion of these results.

4.3.1 Introductory session

In the introductory session, the visualisation and prototypewere introduced through
a brief demonstration. Since we had prepared the visualisation for hypertension pa-
tients, we extracted this group from the database, and the align operation was used
to bring the �rst occurrence of a hypertension diagnosis for all the patients together.
¿en, we asked the general practitioner to come up with a relevant problem.¿is re-
sulted in the formulation of the queries discussed in the following sections. During
the study, help was given to the physician when requested.

94

4.3. Findings

Feature requests

During this session, the need for the following features was discovered:

• Improved accuracy in �nding blood pressuremeasurements: Bloodpressuremea-
surements are extracted from the free-text contact notes using a regular ex-
pression. ¿e original expression found all measurements on the form “BT:
xxx/yyy”, but many measurements were coded on di�erent forms, for exam-
ple: “...measured the BT to be xxx/yyy”.¿is needed to be remedied to improve
the quality of the query results, as one of the queries speci�cally searched for
patients without a given number of blood pressure measurements.

• Faster access to the contact notes: ¿e journal notes are vital in understanding
the reasons for coding diagnoses and prescribing drugs:¿ey give the grounds
for the decision from a medical point of view or through additional informa-
tion (such as a change of medications because the patient su�ered from side-
e�ects). Because of this, the general practitioner understood many cases sim-
ply by looking at the relevant contact note. Since he opened and closed the
record viewer window all the time, a panel showing the contact note under
the mouse pointer was proposed.

• Highlighting individual patients: Sometimes, certain indications might explain
treatment patterns, andmaking it easy to spot patients exhibiting these indica-
tions increases the value of the visualisation. In our study, this was discovered
when the general practitioner stated that diabetes patients o en were treated
di�erently. ¿is was proposed to be implemented using a colouring of those
patients’ id-numbers on the y-axis.

A er this session, the proposed features were implemented, and the agreed-upon
queries were prepared.

4.3.2 Query 1: Starting medication

¿e second session was devoted to exploring the case:

“Patients beingmedicated for hypertensionwithout three preceding con-
trols of blood pressure”

¿is was considered an interesting case because it is against recommended practise,
and a surprisingly high number of patients with this violation were found during

95

Chapter 4. Case study

the �rst inspection of the data. A er the �rst session, the extraction of blood pres-
sure measurements was improved, so that in the second session, it turned out to be
35 relevant cases. We discovered that many of these did not actually su�er from hy-
pertension (hence themissingmeasurements), and a er adding the requirement that
the patients should have been given the hypertension diagnosis, only �ve cases were
le . ¿is exempli�es the utility and importance of the ability to incrementally re�ne
the visualisation as it is explored.

¿e actual queries that were executed were as follows:

select (and (seq (windowwithout (seq (bp) (seq (bp) (bp))) 365)
0 0
(first (medstart C0([2378]|9[ABCD]).*)))

(seq (beginning)
365 1000000
(first (medstart C0([2378]|9[ABCD]).*))))

select (diag K7[567])

Here, the �rst part of the and-clause in the �rst select-query is the windowwithout
threemeasurementswithin a year (365 days) immediately followed by (“0 0”) the �rst
prescription of a hypertension-related drug (the medstart-clause). ¿e second part
of the and-clause ensures that the medication found in the �rst part does not start
before the beginning of the history (1000000 days, or almost 2740 years, is used to
approximate in�nity). ¿e second select picks out the patients actually having a
hypertension diagnosis.

Observations

Looking at the �ve patients thatmatched the �nal query, the explanations for starting
medication were as follows:

• Prototype-induced error: One patient had been given a diuretic drug (which
is o en used in the treatment of hypertension) for a di�erent reason than hy-
pertension.¿is is perfectly normal.¿e patient had beenmedicated with this
drug for quite some time before developing hypertension, but since hyperten-
sion was eventually developed, the patient was selected by the above query, in
error.

96

4.3. Findings

Nevertheless, the general practitioner found one surprising funding rule vio-
lation:¿e drug was prescribed as fully paid by the government1, even though 1Termed a “blue”

prescription in the
Norwegian system

this should only be done when treating hypertension.
• High risk patients: Two patients had very high blood pressure, a situation in
which it is normal to start medication immediately. In addition, one of them
had a history of heart problems in the family.

• Poor documentation: ¿e record of the fourth patient that was inspected did
not contain su�cient information about why the patient had been medicated.
¿is case may represent a deviation from the medication guideline.

• Prototype-induced error: One patient actually had enough controls of the blood
pressure, but the prototype had not been able to extract them (the measure-
ments were on the form “195-200/100”2, to indicate that the blood pressure 2Not an actual

measurement for this
patient.

had been measured several times at the same consultation).

Altogether, only one of the patients may be a violation of the guideline. ¿e results
show twodi�erentways the prototype can select patients in error: By failing to extract
information from free-text �elds (can be improved), and by selecting cases where
manual inspection of the record is necessary to decide that the case does not qualify.

4.3.3 Query 2: Prescribing ACE-inhibitors

In the third session, we mainly investigated the group:

“Patients prescribed ACE-inhibitors without any known indications of
use of this kind of drug.”

¿is was considered an interesting case because it is against recommended prac-
tice: ACE-inhibitors are expensive compared to other options, and there should be
a medical reason for choosing them (such as angina pectoris, myocardial infarction
or heart failure [oEHGDG04]).

¿e actual queries that were executed are given below:

select-not (diag T(89|90))
select (and (seq (windowwithout (diag K7[457]) 730)

0 0
(first (medstart C09[AB].*)))

(seq (beginning)

97

Chapter 4. Case study

730 1000000
(first (medstart C09[AB].*))))

Here, the �rst statement (select-not) eliminates the diabetes patients. ¿e next
statement is constructed in the sameway as query 1, above: An and-construct looking
for the condition to �nd (patients having two years (730 days) without indications
for ACE-inhibitors, and then an ACE-inhibitor), and ensuring that this window is
within the history.

Observations

Running the above query on the set of patients having hypertension resulted in a
collection of 17 histories. On his own initiative, the general practitioner examined
the histories as two separate groups: ¿ose having ACE-inhibitor as their only med-
ication, and those that also were receiving treatment with other drugs related to hy-
pertension. He did not feel that it was necessary to use another query to split the
groups.

• Patients without other medications:
– Missing codi�cation: One patient had had an infarction, but this was not
properly coded in the health record.

– Poor documentation: Another patient had no indications in the record
of why the ACE-inhibitor had been prescribed. ¿e physician suspected
that the patient could have had a heart failure that was not documented
in the record.

– Visitor: One of the patients belonged to another health centre, and the
main part of his/her record was stored in that centre’s ehr system.

– Missing codi�cation: ¿ere was a record where a heart failure had not
been coded properly.

– Hospitalised: One patient had been at the hospital and had the ACE-
inhibitor prescribed from there. ¿e notes from the hospitals were not
available.

• Patients with other medications:
– Side e�ects: Because of side e�ects from other drugs, four patients were
switched to ACE-inhibitors.

– Lack of e�ect: Due to the lack of e�ect from other drugs, three patients
were switched to ACE-inhibitors. One of these was also counted in the

98

4.3. Findings

above group of patients with side e�ects.
– Poor documentation:¿ree patientswere prescribedACE-inhibitorswith-
out su�cient documentation. One of these was counted under “Lack of
e�ect” above; in this case therewas a lack of e�ect, but the expected choice
of drug would be a beta-blocker.¿ere should have been documentation
of why an ACE-inhibitor was preferred.

– Hospitalised: ¿ree patients had been prescribed ACE-inhibitors at the
hospital, and the notes from these stays were not available.

– Prototype-induced error: In one case, the prototype had not been able to
deduct the cessation date for a medication, so this had not been taken
into account by the query algorithms.

4.3.4 Query 3: Complications of hypertension

During the fourth session, we concentrated on the case:

“Patientswith diagnoses knownas complications of hypertension,where
the �rst such diagnosis occurs a er the �rst hypertension diagnosis.”

In the visualisation of this group, the patients were sorted on the time between their
�rst hypertension diagnosis and the �rst complication.

¿e actual queries that were executed are given below:

select (seq (first (diag K8[567]))
(first (diag K(7[489]|8[079]|9[01]))))

sort (first (diag K8[567]))
(first (diag K(7[489]|8[079]|9[01])))

Here, the select query extracts all patients that have their �rst complication (second
regular expression) a er their �rst diagnosis of hypertension (diag K8[567]). ¿e
sort query sorts the histories on the time between the hypertension diagnosis and
the complication.

99

Chapter 4. Case study

Observations

¿e inspection of the result from this query was di�erent from that of the others,
and the �ndings were of a more general character. One very interesting observation
done by the general practitioner was that of how the visualisation can be used to
study “forwarnings”: When the time from the diagnosis of hypertension to the com-
plication is short (easily accessible because of the sort), is there anything in the near
past that should have warned the doctor of the upcoming critical event?¿e general
practitioner stated that he did not know of anybody who has studied this, and he
stated that he was inspired to investigate this statistically. Note that this is an insight
classi�ed by Saraiya et al [SND05] to be among the most valuable of insights – those
that generate a hypothesis (see section 2.5.1).

4.3.5 General observations

During the sessions, the following general observations were made by the user:

• Patterns:¿e visualisation gave the general practitioner a novel view of the fre-
quency of follow-up visits and the time spent controlling hypertension patients
before starting medication.

• Many deviations from recommended practice: Seeing the collection of patients
made the general practitioner interested in investigating guidelines.He discov-
ered that fewer patients than he thought were treated according to the guide-
line, but that most deviations were due to legitimate reasons.¿is observation
led to the formulation of queries 1 (section 4.3.2) and 2 (section 4.3.3).

• Overview: Using the visualisation parameterised for hypertension patients en-
abled the physician to review the hypertension-related parts of the history very
quickly, which could be useful in the treatment situation.

• Basis for discussion:¿e general practitioner suggested that such a visualisation
could be basis for a discussionwith his colleagues aboutwhat would be the best
treatment and coding practices.

• Professional pro�ling: If it had been possible to show only patients registered
with one doctor in particular (the user), it would give an indication of his pro-
fessional pro�le: How his patients usually are treated.

• Ideas: From exploring the patient material, the general practitioner got new
ideas, and he stated that this visualisation stimulated his curiosity.

• Di�ering practices: When inspecting the patients treated with ACE-inhibitors,
we discovered that these drugs were o en prescribed by hospitals. ¿e physi-

100

4.4. Summary of findings related to goals

cian commented that general practitioners o en complain that their patients
too o en get expensive medications prescribed during stays at the hospital.

Looking at the way the general practitioner used the prototype, we made the follow-
ing observations:

• Search:¿e general practitioner did not seem very interested in searching.¿is
might be because it is di�cult to understand the possibilities of this utility, or
because the align operation, bringing similar cases together, covers much of
the same needs.

• Queries: It seems that the concept of a query is hard to grasp. ¿is might be
related to that a query is used in many di�erent operations, and that the query
language is di�cult to understand for a non-technical user.

• Visibility: In some situations, the doctor preferred to turn o� event �ltering.
¿is was because it made it easier to know where to place the mouse pointer
to view preceding contact notes. It may be an indication that there should be
a possibility to show all contacts regardless of highlighting without showing
non-highlighted medications.

• Graphical User Interface (gui)-related:
– ¿e scrollbar is in an unexpected place for a Mac- or Windows-user,
whichmade the physician overlook the fact that there weremore patients
to be inspected than those shown in the initial view.

– At one time, the user had to be remindedwhat histories he had inspected.
One way to remedy this would be to include the possibility to “mark” a
history in a simple way (clicking on its ID number to make the number
appear in a di�erent colour or annotated with an icon, for instance).

– ¿e health record view scrolls to the nearest contact note previous to the
point clicked in the history. It might be that this behaviour should be
changed to scroll to the nearest point in time, because the user sometimes
looked at the wrong note when opening the record view (this was prior
to the implementation of the contact note brushing functionality).

4.4 Summary of findings related to goals

¿e �ndings from the case study met our goals as follows:

• Find possible uses of our design: ¿e general practitioner found several uses

101

Chapter 4. Case study

for this kind of visualisation, as explained in section 4.3.5: ¿e diagram as an
overview, as basis for discussion, for professional pro�ling, for comparison to
guidelines, for investigating forewarnings, and for getting ideas about interest-
ing properties of a data set.

• Investigate the usefulness of the interaction features of the prototype: Since we
were assisting the user in many operations, the foundations for such investiga-
tions are diminished. Nevertheless, we were able to realise the importance of
easy access to the contact notes, and we discovered interface design problems
related to the placement of the scrollbar and the auto-scrolling behaviour of
the contact viewer.

• Look for limitations and problems with, as well as possibilities for improvements
of, the prototype: We improved extraction of blood pressure measurements
during the course of the study.¿ere were problems related to usability, and to
interval deduction.

At large, we have performed a study that has increased our understanding of the
problem at hand and shed light upon some limitations of our current prototype.
However, the study is not of a character allowing us to draw conclusions about the
validity of our design.

102

Discussion
[chapter five]

¿is chapter discusses the results from the case study and positions the proposed
design implemented in the prototype in relation to similar work. Additionally, im-
provements are suggested. ¿e following topics are discussed:

1. About the informal evaluation: Discussion of the results from the case study,
and indications of the clinical relevance of the proposed design.

2. Relating the proposed design to other work: Relation of the proposed design to
taxonomies, and to the state of the art.

3. Suggested improvements: Concrete suggestions on how the proposed design
and the prototype can be improved.

103

Chapter 5. Discussion

5.1 About the informal evaluation

¿is section discusses the �ndings of the case study (chapter 4) and indicates the
clinical usefulness of this type of visualisation.

5.1.1 Case study

Concerning the case study, the discussion is split into two parts: A summary of how
the prototype was used, and a discussion of the observations made about the data.

Tool usage summarised

Primarily, it seemed that the general practitioner was using the prototype as a naviga-
tional aid to �rst locate interesting or abnormal situations, and then read the contact
notes in order to understand what was going on. ¿is was greatly helped by adding
a dynamically changing contact note view to the main window, so that he could in-
spect the notes without opening the record view. However, this view did not replace
the textual record view, as he sometimes still opened the full view – apparently to be
able view several notes at once.

It is interesting to note that the user did not think of using the search operation.
¿is might be because he simply forgot: ¿ere was a lot of information given in the
demonstration. Also, the align operation brought the interesting cases close to each
other, highlighting them with a box, rendering the search operation less important.
Another reason could be related to the observation we made that the general practi-
tioner had di�culties grasping the concept of a query.

While queries are a common sight in computer science, it could be expected that a
physician will have di�culties understanding, much less exploiting, queries in his
exploration of the data. Hence, there is a need for an e�ective metaphor that hides
the “queries” and emphasises the operations and medical aspects. We believe this
would promote result-oriented thinking and better exploitation of the full potential
of the system. It is important to build down technical barriers to free up the user’s
capacity for creativity and curiosity: When the user feels in control of the system,
to the extent that he forgets that he is using it, his focus shi s from interacting to
understanding, and he spends more time analysing and planning than e�ectuating
his plans. On the other hand, textual speci�cation of queries should still be easily

104

5.1. About the informal evaluation

available for the “power user”. Section 5.3.2 discusses various possibilities for user-
friendly query speci�cation.

Discussion of the observations

Systematising the �ndings in chapter 4 revealed eight categories of observations,
listed below. Not all categories were relevant for all queries. ¿e categories them-
selves can be aggregated to compound categories, forming a category hierarchy, as
indicated in the following listing:

• Prototype-induced errors: Cases where the prototype would extract patients
that were not supposed to go into the collection of interest. ¿is could be be-
cause of failure to extract blood pressure measurements, or because the time
intervals for the prescriptions were missing or not correctly deduced.

• Documentation practices: Categories related to how physicians document.
– Poor documentation: Sometimes, the physician does not properly docu-
ment why a speci�c action is taken. ¿is may be just sloppy documenta-
tion practice, but it could just as well be the actual cases where the physi-
cian did not observe the guideline.

– Missing codi�cation: In some cases, the physician does not enter the di-
agnosis codes into the correct �eld.

• Insu�cient documentation: Cases where the available information is insu�-
cient.

– Hospitalisations: When patients are treated at a hospital, their contact
notes from that stay are not included in the primary doctor’s health record.

– Visitors: Patients that belong to other health centres do not have their full
record present and are therefore di�cult to analyse.

• Non-deviations: Treatment that di�ers from the recommended practice for a
valid and well-documented reason.

– Medication-related
* Side e�ects: When a drug gives the patient unwanted side e�ects, an
alternative drug may be prescribed.

* Lack of e�ect: If the current treatment does not have the desired ef-
fect, another option must be tried.

– High risk patients: Some groups of patients need to be treated di�erently
for medical reasons.

We do not believe that deducing categories like the above from the results of our
limited study gives results that can act as a valid basis for a statistical analysis. Never-

105

Chapter 5. Discussion

theless is this kind of information important, since we intend to perform an insight-
based evaluation in the spirit of Saraiya et al [SND05] later on1. Before this is per-1A research project will

follow this thesis, further
developing and

evaluating the design,
see section 6.3.

formed, a pilot test should be run to discover relevant categories and other parame-
ters for classifying insight; the present classi�cation serves as an example of how this
might be approached.

Plotting the few results attained in the case study yields �gure 5.1, where the patients
examined in queries 1 and 2 are plotted according to their categorisations (some
patients are counted twice). ¿e interesting category in this plot is Documentation
practices, where the cases exhibiting non-compliance to treatment guidelines may
be present. In addition, that category may indicate that general practitioners have a
potential for improving their documentation practices.

Figure 5.1: Distribution of cases

In subsequent studies, it must be a goal to reduce the impact of prototype-induced
errors by improving the data processing parts of the program. Regarding the non-
deviations category, the number of patients being classi�ed in it can be reduced by
re�ning the query, but this must be based on the user’s tradeo� between query com-
plexity and the number of histories that are selected. In performing this tradeo�, the
user could bene�t from the ability to construct the queries incrementally.

5.1.2 Indications of clinical relevance

From the case study, three potential uses within retrospective analysis were discov-
ered:

1. Reviewing practice with respect to guidelines, assessing how o en, and why,
patients are treated in discord with recommendations.

106

5.2. Relating the proposed design to other work

2. Investigating possible uncaught signals from patients that show up in the of-
�ce getting one diagnosis, and then face a grave complication only short time
therea er.¿e general practitioner participating in our study pointed out that
there is little research in this area, and that it would be interesting to investigate
these situations in greater detail, maybe using statistical methods.

3. Reviewing one’s professional pro�le, i.e how one’s patients usually are treated.
¿is can heighten the general practitioner’s awareness of his own treatment
habits and facilitate comparison of these to guidelines and recommendations.

In addition, it was pointed out during the study that the presentation gave the physi-
cian a quick overview of the history of a single patient and an opportunity to review
the parts of the history related to a speci�c problem in very short time.¿is could be
useful in the clinical situation, where the physician could have a better overview of
the situation and thus an improved foundation to make the right decisions. In this
setting, our visualisation functions as a LifeLine [PHL+98] – a graphical represen-
tation of a life-course history – with contextual information in the form of patients
su�ering from the same problem.

5.2 Relating the proposed design to other work

To position our design with respect to the literature, we perform an informal assess-
ment with respect to design heuristics and relate it to taxonomies for information
visualisation. Furthermore, we discuss how our visualisation resembles and di�ers
from related solutions.

5.2.1 Heuristic evaluation

Referring to the evaluation criteria listed in section 2.5, this section presents an eval-
uation in terms of recommended practice for interactive visualisation systems. In
particular, see �gures 2.12 and 2.13 for graphical representations and summaries of
these criteria. We carry out the evaluation by describing the prototype in terms of
the above-mentioned criteria, to clarify di�erent aspects of the solution, as well as
positioning the design in relation to other work in the �eld.

107

Chapter 5. Discussion

Limitations

On amonitor with 1280x1024 resolution and a zoom resulting in each history bar be-
ing 20 pixels wide, the prototype is able to display 18 histories simultaneously when
no contact note is displayed. Enabling the dynamic journal note display brings this
number down to 15. ¿e zoom factor can be decreased, but this makes reading the
histories di�cult. With a zoom factor enabling one to read histories with up to three
medications (11 pixels wide), 45 histories may be read without the contact note. For
an overview, a large number of histories can be shown bymaking each bar only 5 pix-
els wide. In this mode, the overall distribution of events and medications is shown,
but it is di�cult to read the detailed medications if a patient has many of them si-
multaneously.

When zooming out maximally, the visualisation acts as an overview:

Cognitive complexity

¿e cognitive complexity is related to the data’s density and dimension, and to the
relevance of the displayed information. Regarding the latter point, the user is in con-
trol of which information is being rendered through the �ltering capabilities. Data
density is highly data dependent, and dependent on zoom factors. Histories are one-
dimensional phenomena, and the dimension of the data is thus unidimensional,
though it is multivariate because of the di�erent event types displayed.

Spatial organisation

Data is spatially gathered according to history, and the extents of a history is indicated
by a shaded background. Identifying the individual history and which elements be-
long to which history should therefore be a relatively simple task2. Elements may oc-2Containedness is a

strong cognitive
indication of relatedness;

see section 2.2.2.

clude each other when several blood pressure tests are performed on the same date.
Events cover medications, but the fact that most medications stretch out for some

108

5.2. Relating the proposed design to other work

timemakes this less of a problem. Horizontally, information is presented chronolog-
ically, which is believed to be a logical way to present a history. Vertically, the histories
can be ordered using the sort operator to achieve a logically meaningful order.When
it comes to focus+context viewing, the prototype lacks support for this, except for an
axis showing what time interval is being viewed.

Information coding

¿einformation is coded by di�erent symbols for each groupof events, and by colour-
ing the symbols di�erently within each such group. In addition, the icon for blood
pressure measurements shows the trend in diastolic blood pressure through the di-
rection of the arrow, and its colour signify whether the blood pressure is considered
“normal”, “elevated” or “moderately to severely high.” For the latter category, the in-
tensity of the colour varies according to the value of the test.

State transition

Following a user action, the visualisation is updated in real-time, at least on recent
hardware. Since no animation capabilities are present, actions that cause scrolling or
re-organisation can be di�cult to track.¿ese operations include: Selection (opens a
new visualisation with the selected histories), alignment (translates the histories and
automatically scrolls to the point of alignment), sorting (the order of the histories
is changed, and the chart is (re)aligned) and traversal of search results (the display
abruptly changes as new results are scrolled to be within the view). We consider the
�rst three (selection, alignment and sorting) to be operations that are fundamental
enough to warrant an abrupt change, since these change themeaning of the diagram.
For search, we should consider adding smooth scrolling or at least an indication of
when the search has wrapped. An overview (indication of what part of the diagram
that is shown) could also be used to aid orientation.

Orientation and help

In the prototype, the usermay control the level of detail by using the �ltering features,
both by adding new types of data to be shown, and by turning on and o� display of
non-highlighted items. When it comes to undo, there is no explicit support, but the
select operation creates a newwindow (tab) for the visualisation of the selected subset
and leaves the original visualisation unchanged. No additional information or help
is displayed.

109

Chapter 5. Discussion

Navigation and querying

Concerning navigation, simple panning techniques have been implemented through
the use of the scroll bars. In addition, there is a zooming feature that controls the
width of the history bars and the length of a month. Objects cannot be selected, but
object properties are shownwhen themouse pointer is positioned over an object, and
a detail view of the health record may be opened. Extensive search capabilities are
available through the query language, but information not representable as temporal
patterns is not available for search. Statistical summary information is not available.

Data set reduction

Initially, the data set is pruned through the fact that not all sorts of information
present in a patient record database are visualised. Filtering can be dynamically ad-
justed and is tied to the speci�cation of colours for elements in the visualisation.¿e
data set may also be �ltered on the level of histories, by using the select operation.
No clustering support is provided.

Summary

By the large, our prototype is best suited as a tool for navigating and inspecting a
limited number of histories, but zooming out provides an interesting overview of the
general properties of the data being inspected. It could be interesting to investigate
how even more histories could be combined with reduced cluttering of the display,
by letting the level-of-detail vary dynamically. For example, the diagram could de-
generate to a traditional event chart with only key events showing as marks on a thin
line. To achieve this, the di�erent events would need to be prioritised.

With event priorities in place, the semantic zoom could be extended to address is-
sues of cognitive complexity as well, mapping it to an interactive slider widget. ¿is
could be more valuable than the current on/o� toggle for �ltering. Focus+context
techniques should also be considered.

Concerning information coding, we currently represent a limited subset of the avail-
able information.¿ere is still work to do in determiningwhat parts of the remaining
information should be visualised, and in deciding on suitable representations for the
selected information.

110

5.2. Relating the proposed design to other work

In addition to standard zooming and panning capabilities, the prototype has a query
language for describing temporal patterns. ¿is language is used for speci�cation of
many of the operations applied to the visualisation. Filtering and selection is possible
to give control over the amount of data that is visible, but data cannot be clustered,
and statistical summary information is unavailable.¿e prototype also lacks support
for undo and help.

5.2.2 Relation to information visualisation taxonomies

It is useful to position the proposed design with respect to taxonomies, both to show
the relation to existing designs, and to gain inspiration from common features of
similar systems.

Looking to Shneiderman’s Task by Data Type Taxonomy (see section 2.5.3), we need
to describe what data types are being represented, and which operations the proto-
type allows on the various types of data (operations and data types are emphasised
in the following text).

¿e histories are composed of points and intervals in time. In Shneiderman’s vocab-
ulary, this is termed temporal data. A zoomed-out diagram gives an overview. Sec-
tion 3.3.1 discusses �ltering and extraction, while section 3.3.2 shows how details-on-
demand functionality is realised. Dynamically adjusting the width of the bars (sec-
tion 3.2) is a manifestation of zoom. Clicking a history in the visualisation to bring
up the health record relates the two views.

Text is considered to be 1-dimensional data, and the prototype displays text in the
contact note view, and in the journal viewer. ¿e only navigational aid provided is
scroll bars. ¿ere is a relation from the record view to details about prescriptions
when clicking a medication name.

From the taxonomy described in Müller and Schumann’s overview article [MS03],
the most signi�cant contribution in this setting would be the characterisation of the
time axis (section 2.5.3):

• Discrete time points vs. interval time: Both discrete time points (diagnoses,
tests) and intervals (medications) are represented in the prototype.

• Linear time vs. cyclic time: ¿ere is no support for cyclic time, but it could be
interesting to investigate how recurring diseases divided into episodes could

111

Chapter 5. Discussion

be visualised as separate “histories”.
• Ordinal time vs. continuous time: ¿e time representation is continuous, i.e.
absolute time di�erences can be computed. ¿is also holds when the histories
are aligned, for the individual history, since the time scaling is constant.

• Ordered time vs. branching time vs. multiple perspectives: Since the visualisation
shows histories from the past, no alternative scenarios are considered.

5.2.3 Relation to state of the art

¿e proposed visualisation can be seen as an extension of event charts (for example,
see [LHD00, AJN+03]) with more information shown for each history, not unlike
life course visualisation techniques (as in [PHL+98, MM00]). Looking at the display
of medications, this reminds of the faces of a lexis pencil [FFP, FF96], but di�ers in
the fact that variables (medications) not are assigned to a �xed vertical subdivision
(pencil face) of the representation.

In addition, the visualisation is made explorable and designed to be dynamically up-
dated in response to user input.¿ere is also a temporal query language that enables
speci�cation of complex patterns for the various data- and visualisation manipula-
tion tasks.

One signi�cant di�erence from the life course visualisation techniques referred in
section 2.4.3 is the density of the information: While the referred techniques use the
available screen space for displaying asmuch information possible about a single his-
tory, our design makes a tradeo� between showing relevant information for the in-
dividual history and showing a number of histories simultaneously.¿is implies that
our systemmay require more manual inspection of contact notes to get an overview
of a single history, but the brushing feature of the prototype alleviates this.We believe
that for retrospective analysis, the prototype may display su�cient information for
comparison of the most important aspects of the histories.

It is interesting to compare our design to the work by Fails et al [FKSS06] referred
in section 2.4.4, because of the similarity in visual representation3. ¿ere are several3[FKSS06] has not yet

been published; we came
across it at the end of the
project, a er �nishing

our implementation and
case study. Also, most of
this thesis was written at

that point.

di�erences that set the two designs apart:

• Fails et al include what they refer to as “contextual information”, the events that
did not match the query whose results are being visualised. ¿is amounts to
indication of the number of events at di�erent times. We choose to show the

112

5.2. Relating the proposed design to other work

actual kind of events, enabling more detailed study of relationships between
the pattern of interest and its surrounding context.

• Like a traditional event chart, our visualisation shows the entire histories, as
opposed to the design of Fails et al showing the time spanned by the hits of a
temporal query only. It does not seem clear how their prototype will cope with
a situation where the database spans several decades (like ours do), since they
do not support alignment of the histories.

• Our timelines can be sorted and aligned, and searches within them may be
performed, highlighting the query hits.

• ¿e temporal query language in our prototype is capable of handling parallel
and alternative patterns, and the deduction of medication intervals from the
individual prescriptions. Also, the window-with and window-without opera-
tors are supported to handle time constraints on any query construct. ¿ese
include features that seem not to be present in the prototype of Fails et al.

• Our diagram is designed to be a dynamic user interface to the data – like a
compressed LifeLine. It seems that the visualisation of Fails et al acts more like
a graphical rendering of a tabular search result. ¿ere is no possibilities for
displaying more information than the search results and the number of events
surrounding them.

• ¿epatient record is available for the user of our prototype.¿is was identi�ed
as an important feature during our case study, but it is not a feature of the
current prototype of Fails et al.

• While we present one patient on each line (focus on the histories), Fails et al
show onematch on each line to avoid overdrawing of overlapping results.

However, there are similarities between the two designs beyond that of graphical
resemblance:

• Both designs focus on providing insight into collections of patient histories.
• Temporal query languages play an important role in the exploration of patient
data. In both designs, query hits are indicated in the context of the other events
in the history.

• Zooming is possible by adjusting the time scale. In our design vertical scaling
is also possible.

• Details-on-demand is provided when moving the mouse over an object.

As explained above, the proposed design bears similarities to event charts and life
course visualisations. Temporal queries have also been investigated by others. How-
ever, we believe that our combination of event chart visualisation of life courses with
interactive techniques and temporal queries is novel, and that it is promising as a

113

Chapter 5. Discussion

helpful technique in the analysis of general practice electronic health records.

5.3 Suggested improvements

Wepropose several concrete suggestions for improvements that can be implemented.
¿ey are presented under the following headings:

1. Visualisation: ¿e static aspects of the visualisation, including discussion of
perceptual considerations and alternative visual representations.

2. Interaction: User interface and query-based operations.
3. Query language: Topics related to the query language.

5.3.1 Visualisation

¿is section discusses the visual aspects of the prototype, with respect to background
theory presented in chapter 2. Furthermore, suggestions for improvement are pre-
sented.

Perceptual considerations

Referring to �gure 2.3 (“A visual grammar of diagram elements”, page 17), the visuali-
sation can be evaluated with respect to howwell it follows the guidelines for intuitive
understanding of diagram elements:

• Entities are represented as closed regions, in accord with the grammar.
• Both shape and colour is used to distinguish between di�erent types of objects.
• Since the event representations are contained within the shaded background
of the histories, they classify as related in the language of the grammar.

• In addition to containment within the history, the shapes are ordered on hor-
izontal lines, further strengthening the impression of relation. ¿is also signi-
�es that there is a sequence of elements.¿e history bar is divided horizontally
into two areas; for diagnoses and tests, respectively.

• Concerning size, this is not used intentionally, but the chosen representation
for intervals allocates a larger area to each medication when there are few si-

114

5.3. Suggested improvements

multaneous medications, and this may wrongfully be perceived as re�ecting
dosage.

Concerning the colours used in the setup for the case study, there are four categories:

• Foreground colours: Bright, saturated colours are used to represent diagnoses
and tests. ¿ese colours include: Red, blue, orange and magenta.

• Background colours: Pale colours of low saturation are assigned tomedications.
¿ese were chosen using a web-designer’s tool [col] for creating variants of a
colour with the same saturation. A range of six colours are used.

• Background of the bar: A light grey is used to indicate the extents of each his-
tory.

• Background of the diagram: ¿e diagram is drawn on a white background.

It is probably possible to �nd a better selection of colours by paying closer attention
to the guidelines listed in section 2.2.3. Since this involves doing geometry and linear
algebra calculations with the colours, we should consider implementing function-
ality for colour selection in the prototype, or calculate and de�ne di�erent sets of
perceptually compatible colours. A quicker solution would be to apply the colours
recommended by Ware [War04], listed in the same section.

Background colours should also be given due attention: ¿e current con�guration
tends to activate the negative space created by the di�erence in contrast between the
brightwhite background and the grey bars,making thin rectangles stand out between
the histories4. ¿is could be alleviated by choosing a less bright colour for the back- 4¿is is named “1+1=3

e�ects” by Edward Tu e
[Tuf83].

ground and �nding a good balance of contrast between histories and backgrounds.
Also, thin outlines with minimal contrast di�erence to the colours of the bars could
be considered.

When it comes to shapes, the following are used:

• Long, horizontal rectangles or bars for the outline of the patient histories.
• Small, vertical rectangles for the diagnoses.
• Arrows for the tests.

It should be possible to identify the diagnoses by preattentive processing, at least if
they are large enough, since they di�er in both size and orientation from the other
rectangular elements of the diagram (see section 2.2.2 on choice of shapes). ¿e bars
are also distinct. Concerning the tests, it may be that the compound shapes are too

115

Chapter 5. Discussion

complex for preattentive vision. ¿is last point must be kept in mind when later ex-
tensions of the system adds new information to the chart.

On the other hand, whether preattentive processing is the most important concern
is context dependent: If the chart is going to be used in a presentation for people
unfamiliar with the visualisation, descriptive icons are likely to make it easier to in-
terpret. Also, form plays a stronger role in this setting, where a harmonious-looking
image probably will be preferred over an ugly one (as long as it communicates the
same information about the data).

One way to activate the preattentive system when wanting to investigate one kind of
events, even for icons, would be to blur or whiten everything else: When blurring
and/or fading, the remaining sharp and bright features stand out – the search is no
longer for speci�c shapes, but for sharpness and/or colour intensity.

Alternative visual representations

Based on the discussion above, it is useful to consider alternative visual representa-
tions and compare these to the ones chosen in the present prototype.

Visualrepresentations fortestsandtestresults: Whendepicting tests, there
are three properties that need to be communicated:

1. Test type: ¿ere are several kinds of tests, and these may be organised in hi-
erarchies, e.g. subdivisions of the various sorts of blood or urine samples. ¿e
user should be given control of the mapping of tests to representations. All the
available mappings should be easily, preferably preattentively, discernible.

2. Value(s): ¿e values of the di�erent tests can be categorised as scalar values
(a single number), multidimensional values (vector), nominal values (that be-
long to a category), or as a combination of these (multivariate). It is possible
for a test to have several types of values for the samemeasurement through ab-
stractions: For example, blood pressure (two scalars) can be classi�ed as low,
normal, elevated or high with respect to medical guidelines. ¿is represents a
transformation of a multidimensional attribute to a nominal value.

3. Trend: In some cases, it is relevant to represent the trend over successive tests.
For example, the blood pressure can have increased, remained stable or de-
creased since the last measurement.

116

5.3. Suggested improvements

In the case of multi-valued attributes, it may be di�cult, and potentially mis-
leading, to depict a change with a single attribute of the symbol: We show the
change in blood pressure through the orientation of the symbol (an arrow); the
orientation is calculated from changes in diastolic blood pressure only, which
means that the (systolic) blood pressure may change without a correspond-
ing change in orientation of the arrow. In our case this leads to confusion in
the cases where a change in systolic blood pressure makes the measurement
be classi�ed di�erently than the previous, changing the colour of the arrow
(e.g. yellow to red) without a corresponding indication of change of value (an
upwards-pointing arrow for increase in blood pressure).

For the display of scalar or nominal values, one possibility is to use glyphs or icons
and vary colour, position, orientation and shape according to the test results and
trends, or category.

In the case of multidimensional values, object displays may be appropriate. In these
displays, each variable ismapped to a feature of the representation: Star glyphs [FGW02]
map each variable to a ray emanating from the centre point of a star, and its value de-
cides the length of this ray. ¿e data points are connected by lines to form a star-like
�gure (�gures 5.2(b) and 5.2(c)). Cherno� faces (�gure 5.2(a)) use a face with varying
shape of head and facial features, such as curvature of the mouth [FGW02].

Ware points out that Cherno� faces may be perceptually unfortunate because hu-
mans would tend to interpret the facial features di�erently and pay more attention
to special constellations, such as a happy face [War04]. He suggests choosing object
representations where there is a natural or metaphorical relationship between the
data and the representation (must be tailored speci�cally for each type of test). Tu e
does, however, warn against misuse of this in his treatment of a graph depicting the
relation between launching temperature and damage to space shuttles [Tuf97]. Here,
small rockets are used to indicate what may be drawn as a simple bar chart, and it is
demonstrated how this clutters the presentation.

Visual representations for intervals: Intervals should be represented in away
that shows start and end points.¿e current representation does this. However, when
the number of medications changes, so does the width of the bars – without this
meaning that the dosage has changed. ¿is could be misleading. Alternatives to the
current colouring of background include getting inspiration fromLifeLines [PHL+98]
and the visualisations referenced in [MM00], where interval data is shown using line
segments with start and end markers. Another possibility is altering the line style, as

117

Chapter 5. Discussion

(a) Chernoff faces

(b) Star glyph

(c) Another star
glyph (radar
plot)

Figure 5.2:Object displays, featuring Chernoff faces (left) and star glyphs (right).

discussed in [LHD00], or combining the two: Using lines formedications and letting
the style of this line re�ect the dosage or other parameters of the medication, or to
set apart di�erent interval concepts (e.g. sick-leaves, HIV-status).

¿e following picture shows one alternative representation for intervals:

In this �gure, eachmedication is depicted by a coloured line, with diamondsmarking
start and end of the medication period and boxes indicating renewal of prescription.
¿e intervals are labelled, but these labels could be omitted to save space, possibly
dynamically, based on the available space. Also, the markers can be le out, giving
the following representation (the renewal mark is kept, as a vertical line):

118

5.3. Suggested improvements

¿is could be seen as an application of the principle of “Occam’s razor”, or an instance
of what Tu e terms “¿e Smallest E�ective Di�erence”:

“Make all visual distinctions as subtle as possible,
but still clear and e�ective.” [Tuf97]

When laying out these lines, one has to decide how they should be distributed verti-
cally. ¿ere are several possibilities:

• Let each medication have its own space, and never draw other medications
in that position.¿is is the most space-demanding option, but makes medica-
tions easy to identify and compare, as medications can be identi�ed by vertical
position as well as by colour.

• Assign the available space to di�erent medications as they begin. ¿is is the
simplest option, but the medications will be in a di�erent order at di�erent
times. With this choice, there is also the issue of what to do when a new med-
ication starts: Either, the lines for the currently active medications must be
broken, or one has to calculate a positioning for the entire history at once. An-
other option is to count the maximum number of simultaneous medications
and space them regularly according to this.

• As a compromise, medications can have a prede�ned order, and the order
shown will always be compatible with the given ordering. However, gives im-
plies the same problems as described above, concerning broken lines.

Another problem is related to cluttering of the diagram, since the bar also must con-
tain diagnoses and tests. ¿is can be solved by widening the bar and reserving an
area for medications. If the labels are omitted, it might be an alternative to use pale
colours and overdraw the lines.

5.3.2 Interaction

During the development of the prototype, the user interface was not prioritised in
areas where the developers could assist the general practitioner in the case study.
Before the further evaluations can be undertaken, it needs to be completed so that
a non-technical user can use the program unassisted. ¿e need for improvement is
most evident in the speci�cation of operations such as select and sort, where there is
a command language, and in the entering of queries, which is now performed using

119

Chapter 5. Discussion

a textual speci�cation. Ideally, the approaches presented here should be veri�ed by
low-�delity prototyping before they are implemented.

Alignment

¿e align operation has proven to be a crucial feature of the system: Bringing similar
patterns together enables the user to spot di�erences, similarities and trends. ¿is
operation is also used by the select and sort operations.

Presently, the histories are only transposed horizontally, leaving those not matching
the speci�ed pattern in their current vertical position.¿is can result in a diagram of
interleaving aligned and un-aligned histories. ¿e usefulness of the operation could
be improved if it could bring all histories without the speci�ed pattern out of the
way, either by �ltering out all histories that do not match, or by moving them to the
bottom of the diagram.

Selection

With a patient database of 10,515 patient histories, any diagramwould become crowded
without some form of data set reduction; selection was the �rst step of all investiga-
tions performed in the case study. Concerning the present implementation of the
operator, where a new window is opened for each selection, it could be considered
to simply delete histories from the current diagram. ¿is could have the advantage
of being simpler to understand for the user, but the possibility of quickly comparing
a collection with a subset of itself is lost.

Search

Searching was not performed during the case study.¿e search operation is not eas-
ily accessible in the prototype, as a query needs to be typed in. Tomake the operation
available for users, an easy-to-use search speci�cation user interface should be em-
ployed. It should be noted, however, that aligning histories serves much of the same
needs as a temporal search operator, bringing the search hits close to each other to
be inspected using scrolling. Also, the same boxes used to show search hits are used
to highlight the actual alignment criterion.

Free-text search could be a useful extension, highlighting all contacts where a given

120

5.3. Suggested improvements

string occurs in the contact note, and highlighting the search string within the it
when it is displayed. In order to realise this, an indexing structure (such as a su�x
tree) with appropriate links to the contacts should be employed to enable real-time
performance.

A further extension could be to consider indexing the medication names database
and transform each free-text search into a search for the corresponding atc codes
(at an appropriate level in the atc hierarchy). Also, additional information, such as
indications formedications, could be included.¿e same procedure could be applied
to all coded information for which natural-language de�nitions exist.

Another feature of interest could be to highlight search hits and other important
items (such as the alignment point) on the scroll-bars, making it easy to know how
far to scroll. ¿ese indications could also be clickable, scrolling to that point when
clicked. If the mouse was held over such a point, there could be a tool tip with a short
description of what is highlighted. ¿e horizontal scroll bar could also be extended
with small numbers re�ecting the content of the axis, so that the user easily can locate
any point in time that is of interest.

Query specification

Since the visualisation is intended for non-technical users, speci�cation of queries
ought to be done otherwise than by entering complex expressions in a query lan-
guage. One possibility is to have the user construct the queries graphically, using an
appropriate metaphor. We see several di�erent possibilities: Building a query tree,
specifying the query on a timeline, and speci�cation by example. Textual speci�ca-
tion of queries should, however, be available for the “power user”, with good syntax
support, encouraging error and feedback messages, and possibly constraints on en-
tering values and help in placing the parentheses right.

An interesting feature for all the following approacheswould be the possibility to save
a (partial) query to a “scrapbook” and retrieve it later for use in subsequent queries.
Another helpful feature would be to dynamically update the view as the search is
built (incremental search), so that the user does not need to specify more criteria
than necessary, and to speed up the cycle of trying and re�ning queries.

Building a query tree ¿e user can choose from a toolbox of operations, drag-
ging them to a drawing area. Compound operations are represented as boxes with

121

Chapter 5. Discussion

sub-queries represented as lines indicating that somethingneeds to be attached.Other
compound or primitive operators (represented as ovals) may be attached to such a
line, and this is used in building a tree. Parameters to the queries can be speci�ed
by selecting a node in the tree and adjusting the values that become available in an
accompanying display area.

A natural-language representation of the query can be constructed recursively and
displayed. However, when the nesting becomes deep, it can be hard to read such a
representation if it is not parenthesised (consider three levels of “or”-constructs 5).5¿is could be remedied

by letting “or” accept
more than two
sub-queries.

Alternatively, colour coding of the text could be used to clarify meaning. ¿is could
follow the selection in the diagram, so that a sub-query is highlighted when the user
clicks a node, or the elements could be coloured according to their level in the query
tree.

Building a query tree could look like:

Here, the user has speci�ed a query: (seq (or (diag K86) X) (medinterval
C07.*)), where X signi�es an unspeci�ed part of the query. In the interface, seq is
displayed as “followed by”, making it easy to read the tree from le to right, and to
create a link to the natural-language translation of the tree shown at the bottom.

A critique against this approach is that the notion of trees could not be expected to
be well-known amongst users, so that the relation between the tree and the histories
may be di�cult to grasp.

122

5.3. Suggested improvements

Specifying queries on a timeline When the user has learned to interpret the
visualisation, one possibility would be to reuse this representation in the speci�ca-
tion of a query. ¿e user could click and drag diagnoses, tests and medications to a
structural representation of the temporal operators.

¿is representation demands that a visual representation language is developed for
the di�erent operators. One advantage, in addition to the user’s familiarity with the
representation, is the �ow of time from le to right.

Building a query timeline could look like:

Here, the user has speci�ed the query: (seq (or (diag K86) (diag K89)) 0 7
(medinterval C07.*)) (the same query as in the query tree above, which lacks
the constraint on seq and the K89 diagnosis). ¿e lines that separate and meet again
depict the or-operator, and sequence is implied by the le -to-right ordering of the
objects. Diagnoses and medications are depicted with symbols similar to the visual-
isation.

A representation for the operators and and windowwith is shown in the following
�gure:

Here, the query (windowwith (and (diag K89) (medinterval C07.*)) 30)
is depicted. ¿e dotted box represents the windowwith, and the two vertical lines
signify and (compare to the representation of or, above).

123

Chapter 5. Discussion

As an abstraction of the representation outlined above, a petri net could be used
to represent the query. ¿is could produce tidier diagrams for large and complex
queries. Another, similar abstraction could be to use a UML activity diagram. How-
ever, the similarity to the representations used in the main visualisation is lost with
both approaches.

Specification by example Regardless of graphical query representation, the fol-
lowing approach could be used for speci�cation of the queries:When the user creates
a selection rectangle in the visualisation (by specifying its two opposite corners with
the mouse), a query could be constructed to match the contents of the history at that
point, possiblywith some fuzziness added by the program.¿euser could then adjust
this query using one of the interfaces mentioned above, to form a basis for searching
for or aligning at an interesting pattern that is encountered during inspection of the
diagram.

Record viewing

One speci�c observation that was made during the case study, was that when the
general practitioner opened the record view, he did not always read the correct con-
tact note. As an alternative to the present record view, a smaller window popping
up at the point of the mouse cursor could be employed. ¿is record could be highly
interactive, with the following features:

• Diagnoses, medications and tests are annotated with small icons that enable
quick jumping to the �rst, next, previous and last occurrences of that type in
the history.

• Clicking a diagnosis brings up the following menu:
– Next/Previous: Two buttons scrolling the record to the next or previous
occurrence of that diagnosis, respectively.

– Highlight or Remove highlighting: Change colouring preferences for this
type of diagnosis.

– Align on �rst occurrence: Apply an alignment operator to the diagram,
aligning all histories on their �rst occurrence of this diagnosis.

– Search for X: Execute a search for the given diagnosis type (“X” is replaced
with the code and name of the diagnosis).

– Statistics: An area of the menu with a di�erent background colour show-
ing key statistics such as prevalence and incidence for the diagnosis in
question. Clicking a button in this area generates more detailed statis-

124

5.3. Suggested improvements

tical reports, such as scatter plots for the distribution of values for the
entire collection of patients.

• Clicking a medication brings up a menu analogous to the one for diagnosis
codes, with an option to show the full prescription details.

• Clicking a test brings up amenu analogous to the one for diagnosis codes, with
an option to do the following: Collect all tests of this type in the current history
and draw a curve of values (if the test occurs a minimum number of times and
has a real-numbered result value).

• ¿e small record window is navigable with a scrollbar and/or buttons for next
and previous contact note. ¿ere is also a button to scroll back to the initially
viewed contact, which has a shaded background to indicate that it is special
(in that it corresponds to the point at which the window is shown).

• Clicking anywhere in the diagram dismisses the record window.
• A special button on the window border turns the mini-record into a separate
and persistent window, independent of the visualisation.

¿e re-designed record window could look like:

Here, the record of the �ctious patient “John Smith”, age 42, is shown. A small time-
line shows the extent of the history in years and indicates the contacts. Under this,
four buttons for navigation between contacts are shown, and the green button above
allows returning to the original contact, at the point of the mouse cursor. It is also
possible to click anywhere in the timeline to go to the nearest contact.

125

Chapter 5. Discussion

Below the timeline, the current contact is listed, with diagnoses and medications.
¿ese are annotated with actions for going to the First, Previous,Next or Last occur-
rence of the diagnosis in question (in an implementation, these could be icons). No
tests are shown. ¿e contact note is printed below.

At the bottom of the window, there is room for the user’s own comments (not part
of the patient record database, see “Annotation”, below).

Annotation

During the case study, the physician inspected the histories one by onewhen he came
across something that caught his attention. One way to help the user concentrate on
one history, is to blur or fade the others. ¿is is especially useful when switching
views, such as when using the textual record. Also, when a history has been inves-
tigated, it seems useful to have the possibility to annotate that history with an icon
categorising the patient, or at least marking it as seen.

Another interesting feature is the possibility of adding notes and annotations to his-
tories and history entries. ¿is could be inspired by concepts such as WikiMapia
[KS], a combination of Google Maps with Wikipedia where maps and satellite pho-
tos of the world can be annotated. In a similar manner, diagrams could be annotated
with notes showing up as clickable regions, and these notes could be using a Wiki
concept to link the information together.

General user interface improvements

¿e user interface could bene�t from having more linking of displays, and from the
exploitation of the visualisation as a user interface. Ideally, most of the frequent ex-
plorative operations should be possible to perform with as few mouse clicks as pos-
sible, and they should also be easily reversible. For the latter, it is possible to imitate
interfaces such as the imagemanipulation so wareGIMP[Com], where there is a list
of actions that have been performed, and where clicking an entry reverses all actions
back to that point.

More generally, the system should be extended to better support forgiveness [LHB03,
Nor99]:

126

5.3. Suggested improvements

• Conventions should be observed, so that the elements of the user interface
works as expected by users (some confuse this with the notion of a�ordances
[Nor99]). An example of violating this is noted in the case study: ¿e vertical
scroll bar is placed on the le side of the visualisation, and this is the usual
place of such a scroll bar (on windows/mac, at least). Placing the scroll bar in
an unexpected place confused the user and failed to inform him about that
more histories were available at the bottom of the diagram.

• Undo should be supported. Using undo makes users feel more safe, encourag-
ing exploration and a faster pace of work [War04].

• Catastrophic errors should have the minimum impact, creating a safety net if
anything should go wrong. An example of this could be to have the prototype
save its state regularly to a temporary �le, so that the amount of work lost in a
crash is minimised.

• Critical, irreversible operations should be preceded with a con�rmation. How-
ever, this must be used sparingly, as these dialogs can be annoying to the ad-
vanced user and introduces an extra step to perform the con�rmed operation.

• A help �le should be available, and the elements of the user interface should be
able to document themselves (through tool tips, for instance).

5.3.3 Query language

When we constructed the queries during the case study, we discovered the utility of
being able to refer to a sub-query. Several examples of this is shown in the case study
chapter, where medications are required to start at least two years a er the patients
were registered at the health centre. ¿is is solved by repeating the search for the
medication in two sub-queries: One to relate the medication to other events and one
to relate the it to the beginning of the history. ¿ere is a simple way to alleviate this:
Adding functionality for de�ning a name for a sub-query.

Another concern is the exponential complexity resulting from building query trees
from the operators de�ned through the cartesian product (see section 3.4.2).

One way to evaluate the usefulness of the query language would be to collect spec-
i�cations of “interesting cases” from domain experts, and see if these could be ex-
pressed in the query language. Also, this would give an impression of the complexity,
in terms of ease of speci�cation and running time, of real-world queries.

127

Chapter 5. Discussion

Complexity of the window-without operator

One operator needs to be addressed speci�cally: ¿e window-without operator. Its
de�nition implies the generation of a large amount ofmatches, related to the length in
time of the underlying history. ¿e running time complexity of the window without
operator is given in section 3.4.2 as:

T(Qwwo) = T(Q) +O �
s(h[ShS − 1]) − s(h[0]) −w
δ

��

¿is represents a problem, as the running time is not only dependent on the number
of elements returned by the underlying query, but on the time spanned by the history
and the time resolution in the system. From the preceding expression, it can be seen
that when δ decreases, the running time increases dramatically:

lim
δ�0+

T(Qwwo) =ª

Having a node in a query tree that can generate many solutions can be a di�culty,
especially when combined with operators with multiplicative complexity such as the
conjunction operator. Note that this is not a property of the implementation, but of
the speci�cation. Also note that for a �xed δ, the complexity is linear in the length of
the history.

One way to reduce the time complexity of the window-without operator would be
to change its speci�cation: Instead of �nding windows with a �xed length, it could
�nd windows with a minimum length. ¿is could, however, cause problems higher
up in the query tree, as operators could reject the longer windows when they would
accepted a shorter one in the right position. A possibility to remedy this would be
to de�ne some kind of fuzziness in the interval representation, stating that a match
would have a length of the given minimum up to the actual length of the window
found. Operators higher up the tree would then shrink the window in one or both
ends as new constraints were added, as long as theminimum size would be observed.
Alternatively, both forms of the operator could exist.

An important point to observe is that the histories are short, and that it does not
seem practical to operate with granularities smaller than a day. At least this holds in
a medical setting. If the complexity does not pose any practical problems (it did not
during the case study), it would not be worth investing a lot of e�ort into alleviating
this situation.

128

5.3. Suggested improvements

Predicate logic definition

An alternative approach to implementation would be to de�ne the query language
in predicate logic and implement it in prolog, using a deductive database for infor-
mation retrieval. ¿is would have the advantage that adding new operations would
amount to de�ning them as prolog predicates. In addition, this would allow more
�exibility in the speci�cation of queries: ¿e uni�cation mechanism erases the dif-
ference between parameters and return values, allowing speci�cation of the return
value for return of parameters that would give that result and vice versa.

A naïve prolog implementation of the query language is given in the box below, along
with an example database and some queries with results. Since prolog is quite close
to a predicate logic de�nition (as long no cuts are used and the order of the predicates
is not important), we do not list both the logic and its implementation.
%%%
% Imp l emen t a t i on o f que r y l an gua g e in p r o l o g .
%
% The da t a ba s e i s assumed t o be on t h e form :
% d i a g n o s i s (H i s t o r y I d , I cpcCode , Time) .
% t e s t (H i s t o r y I d , Te s tType , Time) .
% med i c a t i o n (H i s t o r y I d , AtcCode , FromTime , ToTime) .
%
% Query r e s u l t s a r e imp l ement ed v i a t h e p r e d i c a t e :
% h i t s (H i s t o r y I d , Query , FromTime , ToTime)
%
% Que r i e s a r e t h e p r e d i c a t e s t h a t end in a " q "
% (andq , orq , d iagq , e t c) .
%%%

% P r o l o g a dm i n i s t r a t i v a
: − d i s c o n t i g u o u s (h i t s / 4) .

%
% Concep t mappings (unused , f o r t h e t ime b e i n g)
%

% H i s t o r y
h i s t o r y (H i s t o r y I d) : − e n t r y (H i s t o r y Id , _ , _) .
% E n t r i e s : e n t r y (Name , EvTime)
e n t r y (H i s t o r y Id , EvTime) : − e v en t (H i s t o r y Id , EvTime , _) .
e n t r y (H i s t o r y Id , EvTime) : − i n t e r v a l (H i s t o r y Id , EvTime , _ , _) .

129

Chapter 5. Discussion

% Ev en t s : e v e n t (Name , EvTime , Type)
e v en t (H i s t o r y Id , EvTime , d i a g n o s i s) : −

d i a g n o s i s (H i s t o r y Id , _ , EvTime) .
e v en t (H i s t o r y Id , EvTime , t e s t) : −

t e s t (H i s t o r y Id , _ , EvTime) .
e v en t (H i s t o r y Id , EvTime , p r e s c r i p t i o n) : −

med i c a t i on (H i s t o r y Id , _ , EvTime , _) .
% I n t e r v a l s
i n t e r v a l (H i s t o r y Id , FromTime , ToTime , med i c a t i on) : −

med i c a t i on (H i s t o r y Id , _ , FromTime , ToTime) .

%
% P r im i t i v e o p e r a t o r s
%

% Po i n t q u e r i e s
h i t s (H i s t o r y Id , d i a gq (IcpcCode) , EvTime , EvTime) : −

d i a g n o s i s (H i s t o r y Id , IcpcCode , EvTime) .
h i t s (H i s t o r y Id , t e s t q (Tes tType) , EvTime , EvTime) : −

t e s t (H i s t o r y Id , TestType , EvTime) .
h i t s (H i s t o r y Id , p r e s c r i p t i o n q (AtcCode) , EvTime , EvTime) : −

med i c a t i on (H i s t o r y Id , AtcCode , EvTime , _) .
% I n t e r v a l q u e r i e s
h i t s (H i s t o r y Id , med i c a t i onq (AtcCode) , FromTime , ToTime) : −

med i c a t i on (H i s t o r y Id , AtcCode , FromTime , ToTime) .

%
% Compund o p e r a t o r s
%

% Sequence , no t c o n s t r a i n e d
h i t s (H i s t o r y Id , s eqq (Q1 , Q2) , T1 , T2) : −

h i t s (H i s t o r y Id , Q1 , T1 , T3) ,
h i t s (H i s t o r y Id , Q2 , T4 , T2) ,
(T3 < T4) , (T1 < T2) .

% Sequence , c o n s t r a i n e d
h i t s (H i s t o r y Id , s eqq (Q1 , Q2 , C1 , C2) , T1 , T2) : −

h i t s (H i s t o r y Id , Q1 , T1 , T3) ,
h i t s (H i s t o r y Id , Q2 , T4 , T2) ,
(T3 < T4) , (T1 < T2) ,
(T4−T3=T5) , (T5 >= C1) , (T5 =< C2) .

130

5.3. Suggested improvements

% Or
h i t s (H i s t o r y Id , orq (Q1 , _) , T1 , T2) : −

h i t s (H i s t o r y Id , Q1 , T1 , T2) .
h i t s (H i s t o r y Id , orq (_ , Q2) , T1 , T2) : −

h i t s (H i s t o r y Id , Q2 , T1 , T2) .

% And
h i t s (H i s t o r y Id , andq (Q1 , Q2) , T1 , T2) : −

h i t s (H i s t o r y Id , Q1 , T1 , _) ,
h i t s (H i s t o r y Id , Q2 , _ , T2) .

% WindowWith
h i t s (H i s t o r y Id , wwq(Q, W) , T1 , T2) : −

h i t s (H i s t o r y Id , Q, T1 , T2) ,
(T2−T1=<W) .

% WindowWithout
% (a s sumes t ime t o run from −10000 t o 10000
% in 1− i n c r emen t s t e p s)
h i t s (H i s t o r y Id , wwoq(Q, W) , T1 , T2) : −

h i t s (H i s t o r y Id , Q, X , Y) ,
be tween (− 10000 , 10000 , T1) , p l u s (T1 ,W, T2) ,
\+ o v e r l a p s (T1 , T2 , X , Y) .

o v e r l a p s (T1 , T2 , X , _) : − between (T1 , T2 , X) .
o v e r l a p s (T1 , T2 , _ , Y) : − between (T1 , T2 , Y) .

% F i r s t
h i t s (H i s t o r y Id , f i r s t q (Q) , T1 , T2) : −

s e t o f ([A | B] , h i t s (H i s t o r y Id , Q, A , B) , R) ,
s m a l l e s t (R , [T1 | T2] , [1 0 00000 | 0]) , ! .

s m a l l e s t ([] , A , A) .
sm a l l e s t ([[X |Y] | R] , S , [A | _]) : −

X < A −> sm a l l e s t (R , S , [X | Y]) .
s m a l l e s t ([_ | R] , S , A) : − sm a l l e s t (R , S , A) .

% Merge
h i t s (H i s t o r y Id , mergeq (Q, D) , T1 , T2) : −

c on t i guou s (H i s t o r y Id , Q, D, T1 , T2) ,
\ + ((h i t s (H i s t o r y Id , Q, A1 , A2) ,

131

Chapter 5. Discussion

((A1<T1 , T1−A2=<D) ; (A1−T2=<D, A2>T2)))) .

c on t i g uou s (H i s t o r y Id , Q, _ , T1 , T2) : −
h i t s (H i s t o r y Id , Q, T1 , T2) .

c on t i g uou s (H i s t o r y Id , Q, D, T1 , T2) : −
c on t i guou s (H i s t o r y Id , Q, D, T1 , A2) −>
h i t s (H i s t o r y Id , Q, B1 , T2) , B1 >T1 , D>=B1−A2 .

%
% Databas e
%

d i a g n o s i s (1 , a , 2) .
d i a g n o s i s (1 , b , 3) .
d i a g n o s i s (1 , c , 4) .
t e s t (1 , d , 4) .
t e s t (1 , e , 5) .

med i c a t i on (1 , p i l l s , 1 , 3) .
med i c a t i on (1 , p i l l s , 3 , 4) .
med i c a t i on (1 , p i l l s , 5 , 7) .

%
% Example q u e r i e s and r e s u l t s :
%

%% f i n d a l l ([T1 | T2] ,
%% h i t s (1 , s e q q (d i a g q (E) , med i c a t i o nq (I)) , T1 , T2) ,
%% Ts) .
% r e s u l t : Ts = [[2 | 4] , [2 | 7] , [3 | 7] , [4 | 7]]
%% f i n d a l l ([A | B] ,
%% h i t s (1 , mergeq (med i c a t i o nq (p i l l s) , 0) , A , B) ,
%% Xs)
% r e s u l t : Xs = [[5 | 7] , [1 | 4]]
%% h i t s (1 , mergeq (med i c a t i o nq (p i l l s) , 3) , A , B) .
% r e s u l t : A = 1 ; B = 7

Using the above implementation, we converted our database to a �le of prolog facts
(on the form of the database in the listing above). icpc and atc codes were repre-
sented as atoms.We investigatedmemory requirements. UsingGNUprolog [DC00],
the requirementsweremore than 200megabytes – at this point, the interpreter crashed.

132

5.3. Suggested improvements

With SWI prolog [SWI99], we were able to load the database and perform queries
on it.¿ememory requirements were about 43megabytes for the database, and the it
took approximately 6 seconds to load.We ran a simple query, extracting all results us-
ing the findall predicate, and there was a noticeable delay before the results arrived
– we measured the CPU time spent to be around 1 second. On the same computer,
the query appeared to be executed instantly in the Java implementation.

133

Conclusion
[chapter six]

¿is thesis has addressed the following question:

How can we use information visualisation to support retrospective, explo-
rative analysis of collections of patient histories?

In answer to this question, we have put forth a visualisation design and applied it
in the general practice domain. ¿e visualisation renders each history as a timeline,
indicating events with icons and intervals with the colour of the background. In ad-
dition, a set of operations are de�ned, both on the diagram and the data, supported
by direct interaction and a temporal query language.

Our visual representation can be regarded as an extension of event charts with life-
course visualisation techniques, such as LifeLines. What we seek can be seen as a
middle road between these techniques, incorporating more information into the di-
agram than a traditional event chart, without going for the complete LifeLine. ¿e
extensions applicable for event charts (aligning, sorting, grouping) apply to our de-
sign as well.

135

Chapter 6. Conclusion

To investigate the merits of our design, a small case study has been carried out, and
its results have led to the formulation of a research project a er this thesis is �nished.
¿ere is still a considerable amount of research and evaluation to be performed be-
fore we will have conclusive evidence regarding the proposed design’s success in an-
swering the above question.

From the case study, we would like to highlight three �ndings of the participating
general practitioner:

• ¿is kind of visualisation was entirely new to him, enabling him tomake com-
parisons that were not previously possible.

• While investigating the time from diagnostisation of hypertension to the �rst
serious complication, the general practitioner remarked that the visualisation
inspired him to form a new hypothesis concerning the forewarnings of such
grave events.

• ¿e general practitioner stated that this visualisation gave him a new oppor-
tunity to review his professional pro�le.

6.1 Evaluation of our approach

¿is thesis was approached by early prototyping rather than going through the more
common development process of requirements gathering, design, implementation
and testing. We chose this path with background in our experiences from previous
projects, seeking to realise an idea and collect feedback fromusers as basis for further
improvement. ¿rough this process, we have been able to:

• Develop an idea to a level that enabled us to publish our results1.1¿e paper, submitted to
idamap-06 is printed in

appendix D.
• Decide that the concept is promising enough to be worth the investment in
a six-month research project a er the work on this thesis has ended (see the
next section).

• Obtain valuable feedback from a user, guiding the process ahead.
• Discuss shortcomings of our �rst attempt, and measures to alleviate these.

136

6.2. Summary of contributions

6.2 Summary of contributions

¿is thesis has made the following contributions:

• We have proposed a novel design for visual exploration of collections of his-
tories, motivated in a speci�c problem within general practice health care and
existing work in the �eld of information visualisation. ¿is includes both pre-
sentation and interactive navigation of the data.

• We have described a query language and associated algorithms for specifying
temporal patterns in a patient history.

• We have developed an interactive prototype to demonstrate our design, and
performed a preliminary case study. ¿is case study is not rigorous enough
to conclude about the feasibility of the design, but it forms a foundation for
improvements of the prototype and further evaluation at a later stage.

6.3 Future work

When it comes to describing the future work, this is treated in two di�erent places:
Concrete suggestions for improvement are given in the discussion chapter (section 5.3),
while general directions for future research are discussed below.

A research project has been scheduled to develop the design described in this thesis
further. ¿is section lists possible directions for that research, whose goals include
to perform a more thorough evaluation based on recording of the insights gained
through the use of the visualisation, in the spirit of the insight-based evaluation of
Saraiya et al [SND05]. ¿e preliminary research plan outlines a process with three
iterations, where the prototype is improved based on the experiences from:

• ¿is thesis.
• A small-scale pilot test, to reveal relevant measures for insight in cooperation
with a domain expert (see section 5.1.1).

• ¿e �nal, more complete, evaluation.

137

Chapter 6. Conclusion

In order to ful�l its goal, the future research must address the following issues:

• Investigate relevant clinical problems to be addressed by the design. An e-mail
invitation has already been sent to amailing list for general practitioners, invit-
ing them to submit descriptions of relevant groups of patients that they would
like to investigate. Another way to gather requirements would be to arrange a
workshop with general practitioners, epidemologists and computer scientists.
¿e results of this requirements-gathering process would provide a basis for
design and evaluation of both the visualisation and the query language.

• Update existing structures (i.e. query language) to enable a stronger relation to
established theory.¿is is important tomake the foundations for a publication
of the research results more solid. One candidate for a theoretical foundation
is the event calculus [KS86].

• Extend and improve the prototype iteratively: Enhance clinical usefulness based
on the experiences already gained, and the results from the tests that are per-
formed during the course of the research. Among others, the following topics
could be addressed:

– Improve the prototype’s graphical user interface to a level where a gen-
eral practitioner can use the so ware without assistance from a computer
scientist. In particular, the speci�cation of queries must be addressed.

– Improve the visualisation and interactionwith respect to cognitive issues.
– Add new features to the visualisation.
– Improve the interaction scheme, adding new operations and better nav-
igation support, such as focus+context techniques. Also, linking of dis-
plays should be considered, and it should be a goal to make use of the
diagram as an extension of the user interface.

– Add complementary analysis techniques, such as statistics and report
generation. ¿is could include traditional views of the data such as ta-
bles, scatter-plots and curves. Probably, the reports should be generated
as results of interactive operations with as little speci�cation of parame-
ters as possible.

Another interesting direction for future research would be to generalise the design
and prototype to visualise general histories. ¿e present design does not hinder this.
In fact, the prototype handles the information on an abstract level (i.e. histories con-
taining events and intervals) most of the time. However, it should be observed that at
one point, specialisation will be needed to address the unique aspect of the di�erent
problems. For example, a display tailored for the general practice electronic health
record is likely to be easier to read than a display dumping whatever information is
present in the history entries that are inspected on a general basis. In practice, this
could be approached by using plug-in functionality.

138

Assignment text
[appendix A]

Visualising collections of patient histories from general practise

In the Norwegian health-care system, the general practitioner plays the role of a
gate-keeper to more specialised health services. Also, the list patient system makes
patient-practitioner relationships relatively stable. Because of these two factors, Nor-
wegian general practitioner’s databases o en contain patient histories that are long
and relatively complete.¿ere are several, somewhat complementary,ways that knowl-
edge can be extracted from these databases. 1) By reading the journal directly. 2) By
statistical analysis. 3) ByKnowledge-Discovery andDataMining (kdd). In this project,
we are interested in a fourth way: By visualising information from the database in a
way that enables the General Practitioner (gp) (or other user) to use his or her own
visual processing system to get an overview and discover features in a collection of
patient histories.

In this project, the candidate should design, implement and evaluate a prototype
visualisation system for at least one type of patient histories, for example by doing
the following (not necessarily in this order):

Select one or more medical problems, for example hypertension or hypothereosis.
For each problem:

• Choose a visualisation technique that will be suitable for the problem.
• Extract, �lter and represent data for the problem.
• Implement a visualisation prototype for the problem.
• Empirically evaluate the usefulness of the chosen visualisation technique for
this particular problem.

139

Appendix A. Assignment text

¿e candidate should consult both relevant literature and clinical experts (see other
advisors, below) while undertaking the project.

• Supervisor: Øystein Nytrø
• Main advisor: Ole Edsberg
• Other advisors: General practitioners Anders Grimsmo and Tom Christensen

140

Abbreviations and terms
[appendix B]

api Application programming interface

atc Anatomical ¿erapeutic Chemical Classi�cation System

bnf Backus-Naur Form

cie Commission Internationale de l’Eclairage

ehr Electronic Health Record

er Entity-Relationship

gp General Practitioner

gui Graphical User Interface

icpc International Classi�cation of Primary Care

idi Institute of Computer and Information Sciences

kdd Knowledge-Discovery and Data Mining

nel Norwegian Electronic Handbook for Physicians

nsep Norwegian Centre of Electronic Health Records Research

ntnu Norwegian University of Science and Technology

141

Complete data model
[appendix C]

Figure C.1 shows the full Entity-Relationship (er) diagram for the data model of the
system. Compare this to �gure 3.1, showing the visualised entities only. ¿is �gure
includes the linking of Entry to Contact and SystemTest.

Figure C.1: Entity-Relationship (er) diagram with all entities stored in the system.

143

Paper
[appendix D]

¿is appendix contains our paper that has been accepted at idamap-06.

145

Event Chart Explorer: A Prototype for Visualizing and Querying Collections of
Patient Histories

Ole Edsberg1),3)∗, Stein Jakob Nordbø1),3), Øystein Nytrø1),3) and Anders Grimsmo2),3)

1) Department of Computer and Information Science
2) Department of Community Medicine and General Practice

3) Centre for EHR Research
Norwegian University of Science and Technology, Trondheim, Norway

Abstract

We present our work in progress on a system for
visualizing and querying collections of patient
histories. The main features of the system are: 1)
Compact LifeLines-like visualization of histories
as explorable and configurable time lines above
a common time axis, with any query hits outlined,
and 2) Operations for search, selection, sorting
and alignment of the histories based on temporal
queries.

1 Introduction
The ability to query and visually explore collections of pa-
tient histories is potentially useful in several types of tasks:
When faced with a difficult clinical decision, one could
search for similar fragments from other histories in the
database and explore them to learn from what happened in
other cases. In quality assurance of a clinical practice, one
could search for deviations from guidelines and explore the
result to see if the deviations were justified. In preparing re-
search on clinical processes, one could search for relevant
history fragments and explore them to improve one’s un-
derstanding of the subject matter and get ideas for research
hypotheses and analysis methods.

The well-known LifeLines system [Plaisant et al., 1998]
provides a time line visualization of the elements of a his-
tory. Event charts [Lee et al., 2000] provide a static vi-
sualization of a collection of histories as a set of stacked
and possibly aligned lines above a common time axis, with
events represented by glyphs on the lines. The visualiza-
tion part of our approach can be seen as an attempt to com-
bine the information rich, interactive LifeLines visualiza-
tion with the event charts’ ability to visualize many histo-
ries. Related to the query part of our system, the literature
describes a query system based on the event calculus that
allows users to query collections of series of measurements
for patterns of temporal abstractions [Combi and Chittaro,
1999]. Our query language is mainly intended for search-
ing for patterns in the categorical event and interval data
of the patient record, and it consequently contains a differ-
ent set of constructs. We also have a different approach to
result visualization.

∗Contact email: edsberg@idi.ntnu.no

2 The visualization and query system
Our data model contains point events for contacts, diag-
noses and lab results, and interval events for prescriptions.
(Our data source unfortunately often requires some guess-
work in determining end points of prescriptions.) Figure
1 shows and explains the main view of our system, leav-
ing the query language and query-based operations for the
rest of this section. Applying a query to a history results in
a set of matches, where a match is defined by its starting
and ending points in time. The query language consists of
primitive constructs matching data elements in themselves
and composite constructs specifying temporal constraints
on their sub-queries. Recursively, a query may match:

• a point event, such as a diagnosis, lab test or prescrip-
tion, or

• an interval of medication with a specified drug type,
or the beginning or end of such an interval, or

• a sequence of the matches of two sub-queries, with
possible constraints on the time that can pass between
them, or

• the parallel or alternative occurrences of the matches
of two sub-queries, or

• a window of a specified length, within which a sub-
query does, or does not, match, or

• a sub-query’s first match in the entire history.

Here is an informal description of an example query: Find
all history fragments where the patient first has a one-year
time window without at least three positive blood pres-
sure measurements, and then is prescribed blood pressure-
related medication for the first time in the history. (We omit
the syntax, since it is currently under revision.)

The prototype provides the following query-based op-
erations: With the search operation, the user submits a
query, and red boxes are drawn around the matches of the
query. The user can cycle through the matches. With the
select operation, the user submits a query, and a new
tab is opened, containing a visualization of only those his-
tories that contained a match of the query. With the align
operation, the user submits a query, and the histories are
synchronized so that the start points of the matches line up
vertically. The time axis changes to shows the number of
time units relative to the alignment point. With the sort
operation, the user submits a query with a sequence as the

Figure 1: Screenshot of the main view in the prototype. Each of the horizontal bands corresponds to a history. The lower
left panel contains a legend of the information types selected to be displayed, in this case specialized for hypertension.
In the bands, tall, narrow rectangles indicate diagnoses, coloured subdivision of the background medication, and arrows
blood pressure measurements, with colour showing value category and orientation showing trend. The bottom panel
shows the journal note and the upper left panel shows details about the events at the current position of the cursor. The
search operation has been used to mark the hits of the query informally described as Find all history fragments where
the patient get his first hypertension diagnosis and then, sometime later, gets his first diagnosis for a hypertension-related
complication. The select operation has been used to extract the 359 histories containing a hit of this query. Then, the
align operation has been used to synchronize the histories on the first part of the query. Finally, the sort operation
has been used to sort the histories according to the distance between first and second part of the query. Menus not shown
provide other possibilities, such as zooming, jumping to a journal-like view or changing the information types shown.

top-level construct, and the histories are sorted according
to the distance between the matches of the sub-queries. By
using these four operations, the visualization can be incre-
mentally narrowed down and adapted to suit the problem at
hand. Figure 1 shows a screen shot from our application of
the prototype to a data set of about 10000 patient records,
in collaboration with a general practitioner wanting to in-
vestigate the treatment of hypertension at his health centre.

3 Current work
We are currently working on 1) refining the query language
according to our improved understanding of the users’
needs, 2) grounding its semantics in the event calculus, and
3) creating a query editor that allows users to design queries
in a flowchart-like visual language.

References
[Combi and Chittaro, 1999] Carlo Combi and Luca Chit-

taro. Abstraction on clinical data sequences: object-
oriented data model and a query language based on
the event calculus. Artificial Intelligence in Medicine,
17:271–301, 1999.

[Lee et al., 2000] J. Jack Lee, Kenneth R. Hess, and
Joel A. Dubin. Extensions and applications of event
charts. The American Statistician, 54(1):63–70, 2000.

[Plaisant et al., 1998] Catherine Plaisant, Richard Mush-
lin, Aaron Snyder, Jia Li, Dan Heller, and Ben Shnei-
derman. Lifelines: Using visualization to enhance nav-
igation and analysis of patient records. In Proc AMIA
Annual Fall Symp., pages 76–80, 1998.

Digital appendix
[appendix E]

¿e so ware prototype that was developed as part of this project is provided as a dig-
ital appendix to the thesis. As part of this package, a single directory, epic, is provided,
containing:

bin Binary �les (Java class �les).

doc Application programming interface (api) documentation.

etc Data, con�guration �les and query scripts.

lib External libraries.

src Java source code (6254 lines1 in 119 classes, including inner classes). 1Generated using David
A. Wheeler’s
‘SLOCcount’.build.xml

Apache Ant build �le.

epic.bat Microso Windows batch script for starting the prototype.

epic.sh unix shell script for starting the prototype.

E.1 Running the prototype

To run the prototype, make sure the version of Java installed is at least 1.5.0. ¿en
execute one of the scripts:

149

Appendix E. Digital appendix

Windows
Double-click the “epic” icon, or execute epic at the command prompt a er
changing to the “epic” directory.

Unix Run sh epic.sh from the command line.

Other It is possible to start the program by invoking Java from the command line
as follows: java -Xmx512m -cp bin no.nsep.epic.ESCviz (when the
current working directory is the “epic” directory).

When the prototype starts, a collection of hypertension patients is loaded, and a
query is automatically executed. ¿is query is identical to “Query 3” described in
section 4.3.4. Here, patients are sorted on the time from their hypertension diagno-
sis to the �rst occurrence of a complication of hypertension. If the visualisation is
scrolled vertically, it should produce the same image as in �gure 3.3(a), except for the
contact note2. When moving the mouse cursor over the visualisation, the dynamic2Because of privacy

concerns, we cannot
distribute free-text parts

of the ehr. We have,
however, inserted the

blood pressure
measurements that were

extracted into the
contact note �elds.

detail views on the side and the bottom of the window should be updated.

E.2 Command language

Some of the actions are controlled by entering textual commands and queries into
the text �eld next to the word “Command”:

align <Query>
Align the diagram on the �rst match of the given query and highlight the
match of the alignment criterion.

search <Query>
Highlight (with red frames) all matches of the given query.

select <Query>
Create a new visualisation tab with the histories containing a match of the
given query, and align the histories on the �rst match.

select-not <Query>
Create a new visualisation tab with the histories not matching the given
query.

150

E.2. Command language

sort <Query> <Query>
Sort the histories on the length of the interval between the �rst matches
of the two queries. If one of the queries does not match, or if the second
query has a match before all matches from the �rst, the history in question
is moved to the bottom of the diagram.

highlight <RegEx> <Colour>
Highlight all contacts with diagnoses matching the given regular expres-
sion, with the given colour. ¿e colour can be speci�ed with a mnemonic
name (one of: red, orange, green, blue, magenta, pink, cyan, yellow) or as
a hex triplet (“html colour”; e.g. “#44�44” gives a shade of green).

markids <Query> <Colour>
Highlight patient id numbers with the given colour, for patients matched
by the given query.

restart Clear all colour mappings.

loadcon�g <Filename>
Load a pre-de�ned set of highlightmappings.¿emapping loaded on startup
of the prototype is “etc/hypcon�g.dark”.

open <Filename>
Read a �le of patient histories (located in the “etc” directory, named with
su�x “.dat”).

fromdb <Database> <Username>
Load patient histories from a PostgreSQL database with the given name,
logging inwith the givenuser name (nopassword can be set, and the database
must have the structure of a ProfDoc Vision database).

fromcache <Filename>
Load patient histories from a binary �le of serialised Java objects (cache
�les are located in the “etc” directory, named with su�x “.cache”).

tocache <Filename>
Write the current collection of histories to a binary �lewith the given name.

show Show the main window (called by the startup script, enables us to run
database caching operations without a graphical user interface).

151

Appendix E. Digital appendix

close Close the currently active visualisation tab.

quit Exit the prototype.

source <Filename>
Execute all lines of a given text �le.

¿e status line in the bottom of the window shows information about the execution
of the commands.

152

Bibliography

[AJN+03] Pamela J. Atherton, Britta Jasperson, Andrea Nibbe, Kate A.
Clement-Brown, Cristine Allmer, Paul Novotny, Charles Erlichman,
and Je� A. Sloan. What happened to all the patients? Event charts for
summarizing individual patient data and displaying clinically signif-
icant changes in quality of life data. Drug Information Journal, 37:11–
21, 2003.

[AS06] Norsk Helseinformatikk AS. Norsk elektronisk legehåndbok, 2006.
Web-based resource: http://www.legehandboka.no/.

[CC01] Luca Chittaro and Carlo Combi. Representation of temporal inter-
vals and relations: Information visualization aspects and their evalu-
ation. In TIME, pages 13–20, 2001.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2001.

[col] colorsontheweb.com. ¿e color wizard. Web-based service:
http://www.colorsontheweb.com/colorwizard.asp.

[Com] Gimp Developer Community. Gnu image manipulation program
(gimp). Community website at http://www.gimp.org/.

[Coo98] JamesW. Cooper. Design Patterns Java Companion. Addison-Wesley,
1998.

153

Bibliography

[DC00] Daniel Diaz and Philippe Codognet. ¿e gnu prolog system and
its implementation. In SAC ’00: Proceedings of the 2000 ACM sym-
posium on Applied computing, pages 728–732, New York, NY, USA,
2000. ACM Press.

[FF96] Brian Francis andMark Fuller. Visualization of event histories. Jour-
nal of the Royal Statistical Society, 159(2):301–308, 1996.

[FFP] Brian Francis, Mark Fuller, and John Pritchard. Visualisa-
tion of historical events using lexis pencils. Available at
http://www.cas.lancs.ac.uk/alcd/visual/.

[FGW02] UsamaM. Fayyad, Georges G. Grinstein, and AndreasWierse. Infor-
mation Visualization in DataMining and Knowledge Discovery. Mor-
gan Kaufmann, 2002.

[FKSS06] Jerry Alan Fails, Amy Karlson, Layla Shahamat, and Ben Shneider-
man. A visual interface for multivariate temporal data: Finding pat-
terns of events across multiple histories. In IEEE Symposium on Vi-
sual Analytics Science and Technology (VAST), 2006. Not yet pub-
lished.

[FLC+02] Carla M. D. S. Freitas, Paulo R. G. Luzzardi, Ricardo A. Cava, Marco
A. A. Winckler, Marcelo S. Pimenta, and Luciana Nedel. Evaluating
usability of information visualization techniques. In 5th Symposium
on Human Factors in Computer Systems (IHC), 2002.

[GHS99] Joseph L. Gabbard, Deborah Hix, and J. Edward Swan II. User-
centered design and evaluation of virtual environments. IEEE Com-
puter Graphics and Applications, 19(6):51–59, November/December
1999.

[Gri] Anders Grimsmo. Aggregering av icpc-1 koder til større diagnoseg-
rupper. Document received on email August 22nd 2005.

[Hea96] Christopher G. Healey. Choosing e�ective colours for data visualiza-
tion. In Proceedings IEEE Visualization ’96, pages 263–270, 1996.

[Hea99] Christopher G. Healey. Fundamental issues of visual perception for
e�ective image generation. In SIGGRAPH 99 Course 6, 1999.

154

Bibliography

[HMM00] Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. In Hans Hagen,
editor, IEEE Transactions on Visualization and Computer Graphics,
volume 6 (1), pages 24–43. IEEE Computer Society, 2000.

[Hoo01] Helse-og omsorgsdepartementet. Lov om helseper-
sonell m.v. (helsepersonelloven), 2001. Available at
http://www.lovdata.no/all/hl-19990702-064.html.

[Hoo02] Helse-og omsorgsdepartementet. Lov om helseregistre og behan-
dling av helseopplysninger (helseregisterloven), 2002. Available at
http://www.lovdata.no/all/hl-20010518-024.html.

[Jop01] Justis-og politidepartementet. Lov om behandling av per-
sonopplysninger (personopplysningsloven), 2001. Available at
http://www.lovdata.no/all/hl-20000414-031.html.

[KS] Alexandre Koriakine and Evgeniy Saveliev. Wikimapia. Website:
http://www.wikimapia.org/.

[KS86] R. Kowalski and M. Sergot. A logic-based calculus of events. New
Generation Computing, 4(1):67–95, 1986.

[LA94] Y. K. Leung and M. D. Apperley. A review and taxonomy of
distortion-oriented presentation techniques. ACM Transactions on
Computer-Human Interaction, 1(2):126–160, 1994.

[LHB03] William Lidwell, Kritina Holden, and Jill Butler. Universal Princi-
ples of Design – 100 Ways to Enhance Usability, Infuence Perception,
Increase Appeal, Make Better Design Decisions, and Teach ¿rough
Design. Rockport, 2003.

[LHD00] J. Jack Lee, Kenneth R. Hess, and Joel A. Dubin. Extensions and ap-
plications of event charts. ¿e American Statistician, 54(1), February
2000.

[MM00] Michael D. Maltz and Jacqueline M Mullany. Visualizing lives: New
pathways for analyzing life course trajectories. Journal of Quantita-
tive Criminology, 16(2):255–281, 2000.

155

Bibliography

[MS03] Wolfgang Muller and Heidrun Schumann. Visualization methods
for time-dependent data - an overview. In Proceedings of the 2003
Winter Simulation Conference, 2003.

[MS+04] Susan B. Martins, Yuval Shahar, et al. Evaluation of knave-ii: a tool
for intelligent query and exploration of patient data. InMedinfo 2004,
2004.

[Nor99] Donald A. Norman. A�ordance, conventions, and design. Interac-
tions, 6(3):38–43, 1999.

[Nor05] Stein Jakob Nordbø. Visualising collections of event sequences from
general practice patient records. Technical report, NTNU, 2005.

[oEHGDG04] North of England Hypertension Guideline Development Group. Es-
sential hypertension: managing adult patients in primary care. New-
castle upon Tyne (UK): Centre for Health Services Research, Univer-
sity of Newcastle, 2004.

[PC95] Peter Pirolli and Stuart K. Card. Information foraging in information
access environments. In CHI, pages 51–58, 1995.

[PHL+98] Catherine Plaisant, Daniel Heller, Jia Li, Ben Shneiderman, Rich
Mushlin, and John Karat. Visualizing medical records with lifelines.
In Proceedings of ACMCHI 98 Conference onHuman Factors in Com-
puting Systems (Summary), volume 2 of Demonstrations: Interactive
Medicine, pages 28–29, 1998.

[PMR+95] Catherine Plaisant, Brett Milash, Anne Rose, Seth Wido�, and Ben
Shneiderman. Lifelines: Visualizing personal histories. Technical
report, October 15 1995.

[SA05] Daniel J. Simons and Michael S. Ambinder. Change blindness. the-
ory and consequences. Current Directions in Psychological Science,
14(1):44–48, 2005.

[Shn96] Ben Shneiderman. ¿e eyes have it: A task by data type taxonomy
for information visualizations, September 05 1996.

[Shn98] Ben Shneiderman. Designing the User Interface: Strategies for E�ec-

156

Bibliography

tive Human-Computer Interaction. Addison Wesley Longman, third
edition, 1998.

[SND05] Purvi Saraiya, Chris North, and Karen Duca. An insight-based
methodology for evaluating bioinformatics visualizations. IEEE
Trans. Vis. Comput. Graph, 11(4):443–456, 2005.

[SSP+98] Aaron Snyder, Ben Shneiderman, Catherine Plaisant, Dan Heller, Jia
Li, Kaiser Permanente Colorado, and Richard Mushlin. Lifelines:
Using visualization to enhance navigation and analysis of patient
records, November 18 1998.

[SWI99] SWI-prolog 3.2, February 11 1999.

[TSK05] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction
to Data Mining. Addison-Wesley, 2005.

[Tuf83] Edward R. Tu e. ¿e Visual Display of Quantitative Information.
Graphics Press, Cheshire, Connecticut, 1983.

[Tuf90] Edward R. Tu e. Envisioning Information. Graphics Press, Chechire,
Connecticut, 1990.

[Tuf97] Edward R. Tu e. Visual Explanations. Graphics Press, 1997.

[vRH04] Peter van Roy and Seif Haridi. Concepts, Techniques, and Models of
Computer Programming. MIT Press, 2004.

[War04] Colin Ware. Information Visualization: Perception for Design. Mor-
gan Kaufmann Publishers, 2004.

[WHO05] WHO. Atc index with DDDs, 2005. WHO Collaborating Centre for
Drugs Statistics Methodology (Norway).

[WON98] WONCA. ICPC-2: International Classi�cation of Primary Care. Ox-
ford University Press, 1998. WONCA International Classi�cation
Committee.

[ØHN05] Øyvind Hauge and Stein Jakob Nordbø. Nsepter implementation

157

Bibliography

documentation. Technical report, Norwegian Centre of Electronic
Patient Records Research, 2005.

158

