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Problem Description

Genetic programming for remote homology prediction

Homology prediction is the problem of deciding whether two protein
sequences have evolved from a common ancestor protein. Predicting
homology becomes increasingly difficult as sequence similarities
decrease and predicting remote homologies remains one of the most
challenging problems in computational biology.

The best and most recent methods for predicting remote homology are
discriminative and often use support vector machines to train
classifiers that recognize sequences of common evolutionary origin.
One such method uses occurrences of pregenerated motifs to measure
similarities between sequences. The method, called eMOTIF, gives
promising results, but its performance might be improved by using
motifs that specifically characterize the sequences to be classified.
This project will test whether using genetic programming to create
specialized motifs improves the performance of motif-based similarity
measures in remote homology prediction.
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Abstract

A central problem in computational biology is the classification of related
proteins into functional and structural classes based on their amino acid
sequences. Several methods exist to detect related sequences when the level
of sequence similarity is high, but for very low levels of sequence similar-
ity the problem remains an unsolved challenge. Most recent methods use
a discriminative approach and train support vector machines to distinguish
related sequences from unrelated sequences. One successful approach is to
base a kernel function for a support vector machine on shared occurrences of
discrete sequence motifs. Still, many protein sequences fail to be classified
correctly for a lack of a suitable set of motifs for these sequences.

We introduce a motif kernel based on discrete sequence motifs where the
motifs are synthesised using genetic programming. The motifs are evolved
to discriminate between different families of evolutionary origin. The mo-
tif matches in the sequence data sets are then used to compute kernels for
support vector machine classifiers that are trained to discriminate between
related and unrelated sequences.

When tested on two updated benchmarks, the method yields significantly
better results compared to several other proven methods of remote homology
detection. The superiority of the kernel is especially visible on the problem
of classifying sequences to the correct fold. A rich set of motifs made specifi-
cally for each SCOP superfamily makes it possible to classify more sequences
correctly than with previous motif-based methods.






Preface

The picture on the front page of this thesis illustrates the three dimen-
sional structure of a protein. These molecules, whose form could easily be
taken for pieces of modern art, play crucial roles in all biological systems. A
central element in the understanding of cells is to understand the structure
and function of these key building blocks of nature. In the recent years,
breakthrough developments in large-scale sequencing have led to a surge of
available protein sequence information, but this leap in sequence information
has not been matched by the number of protein structures available in the
Protein Data Bank. It is therefore a great need for new automatic methods
that can cluster proteins into categories of structure and functionality.

This thesis presents the results of our work on the problem of protein remote
homology detection. Our main contribution is a method that uses discrete
sequence motifs generated using genetic programming as a basis for an SVM
kernel. The genetic programming process is accelerated by special-purpose
hardware from Interagon AS. The thesis is divided into six chapters. After
the introduction in chapter one, a theoretical basis is given in chapter two.
Chapter three explains the ideas behind our contributions. Chapter four
presents the results and chapter five gives an additional discussion on some
of the findings. Chapter six is a conclusion. An article based on our main
findings are currently in the review process for BMC Bioinformatics. The
article is included in appendix C.

Many thanks to supervisor Pal Ssetrom for his interest and outstanding
guidance with this thesis.

TRONDHEIM, 4. JULY, 2006

TONY HANDSTAD
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Chapter 1

Introduction

The sciences of biology is nowadays witnessing a major paradigm shift. New
techniques in molecular biology are helping researchers transform biology
from a qualitative and descriptive science to a quantitative and predictive
engineering science. These new high-throughput techniques are also mak-
ing molecular biology a special information-rich science. The analysis and
handling of this information, being insurmountable without computers, has
spawned the field of bioinformatics whose ultimate goal is to aid the re-
searchers in viewing molecular biology in a bottom-up manner as complex
systems whose properties can be simulated and predicted in silico.

The information overload currently experienced is especially evident in the
very high quantities of sequence information being made available at a rapid
rate through the public databases. This is widening an already existing gap
between the number of protein sequences and the much smaller number of
proteins whose structure and function has been experimentally determined.
Researchers are therefore relying on automatic methods to classify new pro-
tein sequences into functional and structural families. This is feasible be-
cause even though there exists an enormous amount of different proteins,
most of them share some of the smaller number of structural motifs or folds,
partly as a result of evolution conserving certain successful structures.

So because protein structure is more conserved in evolution than sequence is,
proteins that have diverged from a common ancestor often share structural
and functional similarities while retaining only small amounts of sequence
similarity. An important problem in bioinformatics is the problem of detect-
ing these subtle sequence similarities as this might imply that the sequences
are homologues and thus possibly share structural and functional similari-
ties as well.

Much progress has been made on detecting subtle sequence similarities since
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the first solutions that compared a new sequence to another by alignment
appeared in the 1970s. Because the sequence similarities between to ho-
mologue sequences often are very small, it becomes challenging to separate
these similarities from the possible false positives, that is, sequences that
share small similar regions by chance. More recent efforts have thus looked
for better opportunities to distinguish homologues from other sequences.
Discriminative methods, such as the very successful support vector machine
learning algorithm, have proven to give the best results.

The support vector machine learning algorithm is trained on both homologue
and non-homologue sequences by using only a similarity measure between
the sequences. The similarity measure comes in form of kernel functions
and most recent research has been looking for better methods to compare
sequences and produce more discriminative kernels. Alignment scores, string
patterns content, and motif content are some of the types that have been
explored.

Protein sequence motifs are conserved regions in related sequences with a
high degree of sequence similarity and often represent active domains in the
proteins. One way to build a kernel for a support vector machine classifier
is to base it on the motif content of two sequences and simply count the
number of common motifs. A problem with this approach is the availability
of motifs. Even though there exist many motif databases, most of these can-
not be used to test a motif based kernel because of the fact that the motifs
are made from the sequences that would have participated in the test, and
those who can be used may not have a sufficient suitable set of motifs to
classify all sequences correctly.

We therefore propose a method to automatically synthesise discrete sequence
motifs by looking for sequence similarities in the training sets of the classi-
fier. The motifs are produced with genetic programming and rated based
on their ability to describe similarities in the positive training set and not
match other sequences. We then check all the sequences for their motif con-
tent and compute a kernel from the resulting feature vectors. We compare
our method to several other standard methods in homologue detection on
two benchmarks and find that our method performs significantly better.

This thesis is divided into six chapters. Chapter one is this introduction.
Chapter two gives a background on the theory behind the main methods
used in the thesis and describes earlier work on the problem of remote ho-
mology detection and automatic motif synthesis. Chapter three tells how
experiments are conducted and explains what methods are used to validate
the results. The results themselves are presented in chapter four. Chapter
four discusses some of the details behind the results, but a more conclusive



discussion is found in chapter five. Chapter six gives the conclusion reached
in this thesis.
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Chapter 2

Background

This chapter gives a theoretic basis needed for understanding the rest of
the thesis. The first section explains the nature of proteins. The following
sections explain techniques in the field of machine learning with emphasis on
genetic programming, boosting and kernel methods. A quick overview of the
special-purpose hardware used is given in section 2.7. The last sections of
the chapter are devoted to a small guide to sequence alignment, earlier work
on automatic motif synthesis by genetic programming, and earlier work on
remote homology detection.

2.1 Proteins

2.1.1 Proteins are amino acid polymers

Proteins are the most versatile macromulecules in living systems and serve
crucial functions in essentially all biological processes [1]. This diversity
in function is a result of the vast space of potential proteins available. As
many other biological macromolecules, proteins are constructed from a lim-
ited number of building blocks.

Proteins are built from a repertoire of 20 different amino acids. These
molecules have a common core and differ in only one part called the side
chain, which gives the amino acids their specific chemical properties. These
properties are crucial for how the amino acids react with other molecules,
including water. Through a polymerization reaction, amino acids may cre-
ate a chemical bond between the core parts and form a chain of amino acids,
a polypeptide. A protein is such a long chain, folded into a 3-dimensional
structure due to the different amino acid’s reactions with themselves and
the surrounding water molecules.
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A protein’s biological function is determined by its 3-dimensional structure.
This structure is again in principle only determined by the sequence of the
amino acids in the chain [2], often referred to as the protein’s primary struc-
ture. Because of interactions between the core parts of close amino acids,
nearby parts of the chain will form regularly repeating substructures such
as alpha helixes and pleated sheats. The placement and relationships of
these along the amino acid chain constitute the protein’s secondary struc-
ture. The tertiary structure refers to the structure of the fully folded protein
as a result of all interactions between amino acids and their environment.
Further, if the protein also consists of several sub-units of amino acid chains,
the quaternary structure refers to the spatial arrangement of the sub-units
and the nature of their interactions. Figure 2.1 gives an overview of the
different levels of protein structure.

Because the function of a protein depends on its structure, an important
issue in biology is determining the structure of proteins. The two most com-
mon forms of determining structure experimentally is X-ray crystallography
and NMR spectroscopy, but since these methods are very resource demand-
ing, alternatives for determining tertiary structure from primary structure
are necessary. Automatically determining protein structure from the amino
acid sequence has only become more important after the breakthrough de-
velopments in high throughput sequencing in the last years. Though much
research has been done, inferring a protein structure ab inito by calculating
the folding process using physics is difficult and also very costly compu-
tationally. A more common approach is to compare a new sequence to a
database of existing structures in a process known as threading, or to com-
pare the sequence to an existing related sequence whose structure is already
known. The last method is known as homology detection.

2.1.2 Sequence similarity imply homology

Two proteins are said to be homologous if they have evolved from the same
common ancestor. Homologue proteins often have similar structure, but be-
cause there is less pressure to maintain sequence than structure similarity,
homologue sequences are often only vaguely similar. Detecting this sequence
similarity and clustering new sequences into homologue groups of structural
likeness is therefore a challenging and important problem. Like many prob-
lems in bioinformatics, it is impossible to create a definite traditional algo-
rithm that easily solves the problem of homology detection. Instead, what is
sought is to let the computer learn to recognise what constitute homology,
and thus modern techniques for protein homology detection are based on
machine learning algorithms.
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Often, a set of related proteins will be more similar in some areas and less in
others. A protein sequence motif is a part of an amino acid sequence which
is conserved across many different proteins. The motif is often an important
part of a protein, such as an active site which cannot be modified without
loss of function. Due to evolutionary pressure to maintain the motif, it will
be conserved to a higher degree than the other parts of the proteins. The
fact that homologue sequences often share sequence motifs is something we
take advantage of in this thesis, as we use machine learning algorithms to
classify sequences as homologues or non-homologues based on their sequence
motif content.

2.2 Machine learning

2.2.1 Supervised learning for classification

Machine learning can be described as the study of computer algorithms
that improve automatically through experience [4]. The two most impor-
tant techniques used in this thesis are Boosted Genetic Programming and
Support Vector Machines. Both of these are examples of supervised learning
algorithms.

When using supervised learning for classification, the learning system is
during training given pairs of patterns and labels. That is, the training set
consists of a set of n pairs {(x1,y1) ..., (Tis¥i),-- -, (Tn,yn)} where z; is a
pattern and y; is the corresponding label. If y can only take on two values,
we have a binary pattern recognition problem. The goal for the learning
system is to approximate a function f modelling the unknown probability
distribution P(x,y) so that the function is able to generalise and classify
new patterns with the correct y value.

In other words, the machine learning algorithm is presented with a number
of training examples and will from these learn to predict correct outputs
to new inputs that may not have been encountered previously. Because
the learning algorithm does not fully know the distribution P(z,y) for all
possible inputs z, it has to minimise the risk of predicting wrong labels by
selecting the function that minimises errors on the training data. It is es-
sential though, to limit the complexity of the function or else the problem
of overfitting might occur.
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2.2.2 Overfitting reduces performance of classifiers

A problem that may occur in machine learning is the phenomenon of over-
fitting. This implies that the learning system optimises on classifying the
training set correctly, thereby sacrificing its generalisation power. The re-
sult is a more complex function tuned to the peculiarities of the training set
and worse performance on unseen data. Overfitting can be countered by re-
stricting the class of functions a learning machine can implement. How this
is done, depends on the learning paradigm and the learning machine. If the
risk of overfitting depends on the amount of training as in neural networks,
one way to avoid it is to use validation techniques like cross validation and
early stopping [5]. In the simple Figure 2.2, one of the alternative functions
has overfitted to the training set, giving an error on unseen data.

Figure 2.2: The more complex function has overfitted to the training set.

2.2.3 Validation methods for verifying performance

It is important to have a good procedure for verifying the quality of a clas-
sifier after training. In the simplest one, the dataset is split in two parts.
One part is for training the classifier and one part for is for testing. It is im-
portant that the two parts are disjunct. A common error is to optimise the
learning system’s performance on the test set, which will give a wrong esti-
mate of the performance of the classifier. If the learning algorithm requires
additional parameters as input, an evaluation set may be used to optimise
the parameter values. This is illustrated in Figure 2.3.

Another form of validation is K-fold cross validation. Here, a set of m exam-
ples are partioned into K sets (folds) of size m/K. For each fold, a classifier
is trained on the other folds combined and then tested on the fold. The
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Figure 2.3: The different stages of the machine learning process have distinct
data sets.

average error over all K partions is the cross-validated error rate. In a more
computationally expensive variant called leave-one out validation, the value
of K is equal to m.

2.3 Boosting improves accuracy

Boosting [6] is a way of improving the accuracy of any given learning algo-
rithm. The idea is to combine the weighted results of several less complex
classifiers (called weak learners) into one prediction for better accuracy. The
weight of a weak learner is proportional to how accurate it is. To make the
weak learners, the learning algorithm is repeatedly given the training set
data with different weights on every example. One way to set the weights of
the examples is to give highest weight to the training examples most often
misclassified by previous runs. This is the approach taken by the algorithm
AdaBoost [7], given in Algorithm 1.
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Algorithm 1 The AdaBoost algorithm.
Input: S = {(z1,11), ..., (xn,yn)}, Iterations T'
1: Initialize: dY) = 1/N foralln=1,...N
2: for t =1 to T do
3:  Train classifier with respect to the weighted sample set {S,d(t)} and
obtain hypothesis hy : z — {—1,+1}, i.e. hy = L(S,d®)
4:  Calculate the weighted training error €; of hy: € = Zi\le dg ) I(y, #

ht(2n))
5. Set: oy = %logl%:t
(t+1) _ 4 /Zy where Z, is a nor-

6:  Update weights: dy, " ' = dp’ exp(—aqynhi(zy)

malisation constant, such that Z’Z'LVZI dg 1)

7. if et:00ret2%then

)
1

8: Break and set T =1¢ — 1.

9: end if

10: end for

11: Output: fi(z) = >/ =f—hy()
Zr:l Qr

2.4 Genetic programming

2.4.1 GP is a variant of evolutionary algorithms

A genetic programming algorithm [8] is a variant of evolutionary algorithms,
metaheuristic optimisation algoritms that use mechanisms inspired by nat-
ural evolution to do a parallell search using a population of candidate solu-
tions. In genetic programming, the candidate solutions are variable length
computer programs or data that may be interpreted as computer programs.
These are traditionally represented as parse trees. A simple description of
a genetic programming algorithm is given in Algorithm 2.

Algorithm 2 A basic genetic programming algorithm.

1: Initialise population with random candidate solutions
2: Evaluate each candidate

3: repeat

4:  Select parents

5 Recombine pairs of parents

6:  Mutate the resulting offspring

7 Evaluate new candidates

8:  Select individuals for the next generation

9: until Termination criteria satisfied

The evolution normally starts with a randomly generated population. In
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each iteration of the algorithm (referred to as a generation), each candidate
solution is evaluated by a fitness function. The candidate solutions with the
highest fitness have a higher probability of being selected to continue to the
next iteration.

The following operators work on the candidate solutions in every iteration
in order to move the search forward:

e Mutation The mutation operator brings novelty into the population
by randomly altering a solution. This helps the search avoid getting
stuck in local maxima.

e Crossover This operator, illustrated in Figure 2.4, makes new solu-
tions by combining parts of two or more solutions.

e Selection The selection operator selects which of the candidate solu-
tions that will be the basis for the next generation. Several variants
exists, and all work by giving a higher selection probability to candi-
date solutions with a better fitness. In this way, the selection operator
pushes the search in the direction of the search space where good so-
lutions have been seen previously.

Figure 2.4: The crossover genetic operator.

2.4.2 GP is faster at finding optimal solutions than pure ran-
dom search

Genetic programming is related to an earlier technique, genetic algorithms
[9], where the candidate solutions are represented as fixed length bit strings
encoding a domain specific phenotype. The Schema theorem of Holland [9]
gives a theoretic analysis of how genetic algorithms differ from a parallell
random search. Holland argues that each candidate solution in the pop-
ulation participates in numerous ways in the search process by containing
schemata (partial building blocks of a good solution) and exposing these to
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the evaluation function. As the search progresses, good schemata will tend
to multiply in the population and the crossover operator will combine these
good partial solutions into better solutions. This will speed up the search
process. The building block hypothesis [8] is a similar, but more complex
hypothesis for genetic programming.

2.5 Kernel methods

Many linear classifiers exist for classifying data, but they are unable to han-
dle non linearly separable data. Omne solution for this problem is to map
the data into a richer mathematical space where the data become linearly
separable, and use a linear classifier in this space. Kernel methods [10] are
a class of machine learning methods that uses mathematical kernel func-
tions to implicitly map the data, thereby avoiding computational problems
related to working in high dimensional spaces.

A kernel function is a function that returns the value of the dot product
of two arguments projected into the space induced by the kernel function.
The dot product might be seen as a measurement of similarity between the
arguments. Kernel methods work by comparing all data instances with each
other, thereby producing a matrix of pairwise comparisons which is the basis
for several learning algorithms that can be written in terms of dot products.
The matrix made from a kernel function must be positive definitive and
symmetrical. As long as these restrictions are followed, the mathematical
rewriting known as the ”kernel trick” makes it possible to implicitly calculate
in the more complex space where data are linearly separable. This enable
non linearity for linear algorithms, as illustrated in Figure 2.5. All kernel
methods build on these same principles, so the making of a kernel function
and using the kernel output are two independent steps. This modularism
means that using kernel methods for classification consists in choosing a
specific kernel function and choosing a kernel based classifier.

Several standard kernel functions exist, from the simplest linear kernel to
the more complex gaussian radial basis kernel. Of course, a problem specific
kernel function is preferable compared to any general solution. Regardless
of kernel used, the resulting matrix can be used with kernel methods such
as the k-nearest neighbour classifer that classifies according to the majority
of the class of the k nearest training instances in the feature space, or the
more advanced support vector machine algorithm.



14 CHAPTER 2. BACKGROUND
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Figure 2.5: Kernel mapping makes data linearly separable in feature space.

2.6 Support Vector Machines

A support vector machine (SVM) is a linear learning machine that can be
used for classification and regression [11]. In the simplest case of classifica-
tion, the SVM tries to build as a decision function a linear hyperplane in the
input space. In general there are several such possible hyperplanes to choose
from. The SVM will select a number of data examples that lie close to the
hyperplane, called support vectors. The SVM then chooses the hyperplane
which lies in equal distance between the two classes of selected data, giving
the maximal margin between the support vectors (Figure 2.6). This is moti-
vated by the results of statistical learning theory [12] which give a minimised
probabilistic generalisation error bound when the margin is maximised.

The real power of Support vector machines comes into play when they are
used in combination with kernels. This makes the SVM a non linear classifier
by replacing dot products in the algorithm with kernel evaluations. By
choosing the maximum margin hyperplane, the SVM also minimises the
risk of overfitting in the kernel induced space.

In the case when the data are linearly nonseparable, because of noise or mis-
classified data in the training set, the SVM can handle this by introducing
soft margins [13]. The SVM will then still try to maximise the hyperplane
margin between the support vectors as much as possible, but accept wrongly
classified instances with a penalty. A penalty constant is then needed as a
parameter to the SVM algorithm, controlling the tradeoff between achieving
a large margin and the number of misclassifications.
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Support vector

Margin

Hyperplane

Figure 2.6: The margin between the hyperplane and the support vectors is
maximised.

In every case, the decision function depends on a weighted sum of the sup-
port vectors and finding these weights is a quadratic optimisation problem.
One solution to this problem is sequential minimal optimisation [11].

2.7 Hardware acceleration

The Interagon pattern matching chip [14] (PMC) is a special purpose VLSI
architecture developed for rapid searching for multiple patterns in large
datasets. The multiple instruction, single data stream architecture allows
in theory up to 127 patterns to be searched simultaneously in up to 100MB
of unstructured data pr second, when running on a clock speed of 100MHz.
The patterns are similar to regular expressions but with additional function-
ality such as proximity, adjacency and order conditions on subpatterns and
the ability to allow approximate matching until a certain error threshold.
Up to 16 PMCs, each with dedicated memory, can be mounted on a stan-
dard PCI card giving the opportunity to search 1600MB of data pr second.

Programming of the PMC is facilitated by a special purpose query language,
developed by Interagon AS [15]. The Interagon Query Language (IQL) is
a superset of regular expressions with extensions to facilitate queries with
features like those described above. Table 2.1 gives an overview of the IQL
operators used for this thesis.
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Table 2.1: IQL operators used.

Operator Use Example
Atomic characters Terminals ABC matches ABC
{<g>p>= Minimum matches | {AA : p >= 1} matches
AB and BA
Wildcard A.C  matches AAC,
ABC etc.
Disjunction ABC|AAC matches
both ABC and AAC

2.8 Bioinformatics

Like we already have discussed in the introduction and in section 2.1, the
field of molecular biology is producing information at an astounding rate. A
big part of this information is in the form of genome and protein sequences
and one of the most common operations is to compare one sequence with
another.

2.8.1 Pairwise sequence alignment

In pairwise sequence alignment, one tries to find the optimal alignment of
two sequences so that the sequences have identical or similar characters on as
many positions as possible. The reason for doing an alignment is to discover
how similar two sequences are and also where they are similar. A scoring
function is used to evaluate alternative alignments. Gaps, corresponding to
possible character insertions or deletions, are inserted in the sequences at a
cost to the score. When aligning protein sequences, one takes into account
that it is more probable for a mutated amino acid to be retained during
evolution if it has properties similar to the original amino acid. Thus the
mismatches produced are also often variably penalised according to a sub-
stitution matrix.

In a global alignment, the complete sequences are aligned. The Needleman
and Wunsch algorithm [16] is an example of an algorithm that does a global
alignment. In a local alignment, the algorithm tries to align the most similar
regions of the sequences. The Smith-Waterman algorithm [17] is an exam-
ple of a local alignment algorithm. Despite that both of these algorithms
use dynamic programming to find the optimal alignment, their exhaustive
approach is considered too slow to be used in for example database searches,
so heuristical alternatives like BLAST [18] and FASTA [19] that trade some
sensitivity for speed are used instead.
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The BLAST algorithm operates in three stages. In the first, short subwords
of the search sequence is looked up in a pre-computed index of the database.
In the second stage, the alignment of the subwords are extended in both di-
rections without considering gaps or insertions. In the final stage, the high
scoring alignments of the second stage are aligned with gaps using a vari-
ant of the Smith-Waterman algorithm and then these alignments are finally
sorted and reported according to statistical relevance.

2.8.2 Multiple sequence alignment finds patterns among sev-
eral sequences

The idea of aligning two sequences can be extended to alignment of multiple
sequences. Because the problem of finding the optimal alignment of several
sequences is NP-complete, the sequences are usually progressively aligned:
Two and two sequences are aligned and then their alignment is aligned with
that of two other sequences, building a tree structure where the root at the
end is the alignment of all the sequences in the set. Clustal [20] is a popular
algorithm that uses the progressive approach.

After alignment, the regions with the best alignments are of special interest.
These are the regions in related sequences that, because of their biological
relevance, are most conserved by evolution. They constitute a common
pattern, or sequence motif, which can be represented in several ways.

The most simple model is the consensus sequence that for each position
stores the most common character in the alignment. A more powerful
method is to store a motif as a form of regular expression where for ex-
ample each position can have alternative characters that match. A more
quantitative model is the position specific weight matrix, or profile, which
gives the relative frequency of every amino acid at every position. Further
sequences can then be aligned to the profile and all alignments will produce
a continuous value describing the fit, instead of just the binary match or
no-match that is the result with a regular expression.

The PSI-BLAST algorithm [21] uses profiles to do iterative BLAST searches.
In each iteration, the sequences of profile alignments scoring below a thresh-
old value are added to the profile to give a more general model that can find
more distant homologues than ordinary BLAST.
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2.9 Earlier work on genetic programming for bio-
logical motif discovery

Another method that has been used to find motifs in sequences is genetic
programming. The first well known use of genetic programming in biological
motif discovery was that of Koza and Andre [22]. They evolved motifs using
a small subset of the Prosite [23] pattern format, allowing only for character
sets matching one or more residues in addition to the exact matching of
residues. Olson [24] used genetic algorithms to evolve more Prosite-like pat-
terns from multiple aligned sequences. Hu [25] used genetic progamming on
unaligned sequences to evolve Prosite motifs. His algorithm also had a local
optimisation step which refined expression terms denoting gaps and used
an expanded set of terminals with domain specific amino acid substitution
groups. Ross [26] used genetic programming with stochastic regular expres-
sions to generate motifs on unaligned sequences. Finally, Seehuus et al. [27]
showed with a larger study that a linear based genome might be better than
a tree based genome when using genetic programming on automatic motif
synthesis.

It is hard to compare these methods as their setup and data sets are very
different to one another. Still, many of the methods evolved motifs com-
parable to or even better than Prosite motifs, illustrating the potential of
genetic programming in automatic motif discovery.

2.10 Earlier work on remote homology detection

2.10.1 A development in four stages

The development of methods for detecting protein sequence similarities can
be broken into four stages [28]. The most early methods looked for sim-
ilarities between single pairs of proteins. In 1970, the very first method
was developed by Needleman and Wunsch [16]. They introduced a dy-
namic programming algorithm that performed a global alignment of two
sequences, giving a similarity score for the optimal alignment. The later
Smith-Waterman [17] algorithm is a variation of the algorithm by Needle-
man and Wunsch, performing an optimal local alignment. Both these algo-
rithms are guaranteed to find the optimal global or local alignment, but they
also have a quadratic running cost. Therefore, heuristic alternatives have
been developed and BLAST [18] and FASTA [19] are well known examples
of this type. Both BLAST and FASTA are local alignment algorithms.

In the second stage, further accuracy was obtained by using profiles [29] and
hidden Markov models [30] for representing aggregate statistics taken from
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a set of similar sequences, and using these models to compare the statistics
to a new protein of interest. These two models were later used in the third
phase in combination with information in large databases of unlabelled pro-
tein sequences to iteratively collect homologous sequences and incorporate
statistics into a single model. But these methods, such as PSI-BLAST [21]
and SAM-T98 [31], used only statistics based on sequences that were known
to be evolutionary related. The fourth stage was introduced with the idea of
using both related and unrelated sequences and letting a machine learning
method learn the differences between the related and unrelated sequences.
This idea represented a big leap forward for the field of homology detection.

2.10.2 Discriminative modelling improves accuracy

The fourth stage was introduced in 1999. In their award winning paper,
Jaakkola et al. [32] showed that better accuracy could be obtained by mod-
elling the difference between positive and negative examples, that is, related
and unrelated sequences. Their method, the Fisher kernel, trained a hid-
den Markov model on positive examples and also extra sequences taken
from unlabelled databases for each family of related proteins. These models
were later used for computing fixed length gradient vectors on every pro-
tein, positive or negative, and the labelled gradient vectors were then used
in combination with a Support Vector Machine to give a very good result
compared to earlier methods.

After the introduction of the Fisher kernel by Jaakkola, several other kernels
have been developed for protein remote homology detection. Logan et al.
[33] introduced the idea of using protein motifs as features for an SVM. A
different motif kernel was described in 2003 by Ben-Hur and Brutlag [34].
Using the e BLOCKS database [35] and the eMOTIF method [36] to create
discrete sequence motifs, they calculate their kernel by representing each
protein sequence as a sparse vector of the eMOTIF content and then taking
the dot product between all such vectors.

Liao and Noble described in 2002 [28] a kernel generated from pairwise
sequence comparison scores from the Smith-Waterman algorithm. Several
string kernels have also been developed. The spectrum kernel [37] uses a
similarity score based on how many k-length substrings, called k-mers, two
sequences share. The kernel is efficiently computed using a trie data struc-
ture instead of explicitly representing the protein sequences as vectors of
k-mers. The spectrum kernel was later generalised to allow each k-mer to
contain a specific number of mismatches. The resulting mismatch kernel [38]
is more adapted to modelling biological phenomena in protein sequences,
such as mutation.
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2.10.3 Performance comparison of early kernel methods

There are two primary benchmarks normally used for evaluating the recent
kernel methods, based on the SCOP database (see section 3.1 for more infor-
mation). One benchmark includes in the training set additional non-SCOP
homologs identified via a hidden Markov model as introduced in Jaakkola
et al. [32], the other benchmark uses only SCOP domains [28]. The SVM-
Fisher method has good performance when used with the first benchmark,
but performs less well on the second [28], presumably because the hidden
Markov models are undertrained. The SVM-Pairwise algorithm of Liao and
Noble thus performs better than SVM-Fisher with trainingsets made only
of SCOP domains [28].

The eMOTIF kernel of Ben-Hur and Brutlag seems to outperform SVM-
Pairwise on the benchmark not including additional homologs [34]. How-
ever, later results [39] show that on different datasets and with different
parameters, the SVM-pairwise can achieve equal or even superior perfor-
mance. Even though the spectrum kernel does not perform as well as SVM-
Fisher [37], its mismatch variant is comparable to SVM-Fisher on the first
benchmark which includes extra homologs and to SVM-pairwise on the sec-
ond benchmark [40]. In summary, this means that of the methods already
mentioned in this section, the eMOTIF kernel and the SVM-Pairwise is
considered to give the best classification performance on remote homology
detection. It is surprising though, that the general spectrum and mismatch
string kernels show such good performance compared to more biological rel-
evant kernels.

2.10.4 Newer approaches use more powerful and biological
relevant sequence models

There is continuous development in the field of remote homology detec-
tion and several new approaches have been introduced since the first kernel
methods appeared. Though most methods are still based on kernels used
in combination with a support vector machine, other approaches are also
being investigated. Plétz and Fink [41] use profile hidden Markov models
with features that better capture the biochemical properties of the amino
acid residues in a local context, giving semi-continuous models that outper-
form earlier models based on hidden Markov models. Hou et al. [42] also
try a more biological intuitive solution to the problem by using local struc-
ture motifs based on the I-sites library of 262 sequence-structure correlation
patterns. Their extended work [43] also takes into account the sequence
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of the structure motifs by using a previously made hidden Markov model
[44], thereby greatly improving performance. Both methods have rather
elaborate methods for creating feature vectors which they use to train a
support vector machine. The first I-sites method performs comparable to
SVM-Pairwise but with lower computational cost, the second method us-
ing HMMs has significant better performance than the SVM-Pairwise and
Fisher kernel.

Another method that is based on the mismatch kernel is the profile kernel
of Kuang et al. [39]. Instead of letting the k-mers have a certain number
of mismatches as in the mismatch kernel, a distinct profile is computed for
every sequence using PSI-BLAST and the k-mer is said to be present in the
sequence if it achieves a summed log odds profile score along the whole pro-
file length that is lower than a given threshold. The result is significantly
better than earlier methods such as the eMOTIF kernel of Ben-Hur and
SVM-Pairwise.

Weston et al. [45] investigate a way to incorporate the large quantities of
unlabelled sequence data available into a base kernel to improve classifica-
tion accuracy. The mismatch kernel [38] is here chosen as a base kernel.
Using the feature vectors of the mismatch kernel, a BLAST or PSI-BLAST
E-value neighbourhood is computed for each sequence, the feature vectors of
the sequence are averaged with the neighbourhood and a kernel computed
from such averaged pairs of sequences. The method yields very good results,
comparable with that of Kuang et al. [39]; it scales worse as the number of
sequences rise, but is very flexible regarding the choice of a base kernel.

2.10.5 State of the art sees a return to alignment methods

The latest methods to enter the field of remote homology detection take a
different approach for creating kernels. Instead of coding the sequences as a
set of feature vectors and then using a standard kernel function such as the
dot product on these vectors to compute the Gram matrix, a more direct
comparison between the sequences is sought. The local alignment kernel
of Saigo et al. [46] measures the similarity of two sequences directly by
computing all optimal local alignment scores with gaps between all of their
possible subsequences. To make valid Mercer kernels, the smallest negative
eigenvalue is subtracted from the diagonal of the similarity measure matri-
ces. The performance of the method is found to be better than all earlier
kernels not based on the use of sequence profiles.

Rangwala and Karypis borrow several earlier ideas when they introduce two
classes of kernels in their 2005 paper [47]. They generate profiles for every
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sequence and use a direct profile-to-profile similarity measure to examine
the similarity of two sequences. The first class of kernels combines the un-
gapped alignment of subsequences found in the two sequences and produces
a similarity measure by combining the sums of the direct profile comparisons
between these subsequences. The other class finds the optimal local align-
ment (with gaps) that optimises a scoring function taking into account the
profile-to-profile scores and gap costs. All similarity measures are converted
to valid Mercer kernels using the same approach as the local alignment ker-
nel [46].

2.10.6 Conclusion

Remote homology detection has seen a great improvement since the first
methods appeared in the 1980s. Currently, the state of the art is based on
an optimised local alignment, combined with a direct profile-based scoring
scheme that creates a very good similarity measure for a support vector
machine. The superiority of this method can be witnessed in the fact that
even when using substitution matrices instead of profiles, the method still
yields better results than other recent methods when classifying unknown
sequences to the superfamily level or the fold level of SCOP [47]. Still,
the good performance comes at a cost. Rangwala and Karypis run the PSI-
BLAST on the entire non-redundant NCBI database for a full five iterations,
a parameter study is done for optimisation and the local alignment also re-
quires considerable running time, something the authors do not mention in
their article. It is therefore still ample opportunity to improve the methods
of remote homology detection, both in computational and biological perfor-
mance.
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Methods

Our main contribution is to test a kernel based on motifs generated with
genetic programming and see how this method compares with related and
other methods on the problem of detecting protein homologues. This chapter
explains the approach taken for all the experiments and shows how the
results are generated and validated.

3.1 Validation methods and data sources

To simulate the problem of remote homology detection, the SCOP database’s
[48] classification of protein sequences is used as the basis for two bench-
marks. The SCOP database aims to classify all proteins whose structure is
known in a hierarchy based on structural and evolutionary relatedness. The
major levels in the hierarchy are:

e Family Proteins clustered in a family have clear evolutionary rela-
tionship, meaning that pairwise residue identities between proteins
are 30% and greater.

e Superfamily Proteins in superfamiles show low degrees of sequence
identities, but structural and functional features in the proteins gives
them a probable common evolutionary origin.

e Fold Proteins have the same common fold if they have the same ma-
jor secondary structures in the same arrangement and with the same
topological connections. This does not necessarily mean they have the
same evolutionary origin.

The first benchmark is the one originally introduced by Jaakkola et al. [32].
The objective is to learn to classify an unknown protein sequence to the
correct SCOP superfamily. The benchmark is modified as in the article of
Liao and Noble [28] so that additional homologue proteins are not included.
The classification is used in the following way (see Figure 3.1): For each

23
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family, the protein domains within the family constitute a positive test set.
Protein domains from the other families in the same superfamily constitute
a positive training set. The other superfamilies are negative trainingsets
with one randomly chosen family in every superfamily as the negative test
set.

The second benchmark follows that of Rangwala and Karypis [47]. The
benchmark is similar to the first, except that we move one level up in the
SCOP hierarchy. The objective is thus to classify a sequence to the correct
fold. A superfamily in a fold is a positive test set. The other superfamilies
within the same fold go in the positive training set. Superfamilies in other
folds constitute the negative training set, except for one random superfamily
in every fold that will be added to the negative test set. At the fold level,
the sequence similarity is very low and the sequences do not necessarily have
the same evolutionary origin. This makes it considerably harder to classify
a sequence correctly.

The two benchmarks make two datasets. Both sets use data from SCOP ver-
sion 1.67 as released in February 2005. The sequences are first filtered using
the Astral database [49], keeping only sequences having less than 95% iden-
tity. They are then filtered according to the principle that there should be
at least 10 sequences for training and 10 sequences for testing each classifier.
The first dataset will therefore be built from all families in a superfamily
having one family with more than 10 sequences and 10 more sequences in
total in the other families of the superfamily. The second dataset used for
fold detection is built from all superfamilies in a fold having one superfam-
ily with more than 10 sequences and 10 more sequnces in total in the other
superfamilies of the fold.

This means that for the first dataset, 102 classificators will be trained using
a total of 4019 sequences from 397 families in 53 superfamilies. For the
second dataset, 86 classificators will be trained from 34 distinct folds. Here,
3840 sequences in a total of 374 superfamilies make up the dataset. Of the
3840 sequences in the fold benchmark, 2076 do not participate in the su-
perfamiliy benchmark. The 102 families and 86 superfamilies tested in our
superfamily and fold benchmarks are almost twice the number of families
and superfamilies used in previous benchmark studies. The datasets are
generated with Perl scripts from the Astral filtered FASTA file. Table 3.1
gives an overview of the two datasets.



3.1. VALIDATION METHODS AND DATA SOURCES 25
Table 3.1: Summary of the two datasets.
Set | Classificators | Folds | Superfamilies | Families | Sequences
SF 102 45 53 397 4019
Fold 86 34 374 784 3840
Family

Figure 3.1:

SCOP database superfamily benchmark
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3.2 Methods explored

This section describes the different methods used to investigate remote ho-
mology detection. The section first introduces the e MOTIF kernel and shows
how the idea of a motif kernel is extended further with additional motifs gen-
erated automatically. Then we look at how these methods compare against
a boosted classifier, string and alignment based kernels and profile based
methods.

3.2.1 The eMOTIF kernel

In their 2003 paper [34], Asa Ben-Hur and Douglas Brutlag introduced their
eMOTIF kernel for detecting protein homologues. This kernel gives a se-
quence similarity measure based on the motif content of a pair of sequences.
A sequence x can in this context be represented in a vector space indexed
by a set of motifs M as ® (z) = (¢m (€)),,cas» Where ¢p, () is the number
of occurrences of the motif m in . The motif kernel is then defined as a
linear kernel over the motif contents: K (z,z') = ®(z) - ®(2’) In most cases
a motif appears only once in a sequence so this kernel essentially counts the
number of motifs that are common to both sequences.

The motivation behind a kernel based on discrete sequence motifs is that
because of their conserved nature, motifs can be used as a similarity mea-
sure even if the sequences are so distantly related that no sequence similarity
outside the motifs are found [36]. Unlike other general string kernels and
similarity search methods that weigh every position in a sequence equally,
the motif kernel focus on parts of the sequences that are most conserved.

There are several databases available containing protein motifs that can
be used for such a motif kernel. The eMOTIF kernel uses the eBLOCKS
database [50]. This database uses PSI-BLAST [21] in a systematic fashion.
For every protein sequence in the SwissProt database [51], a PSI-BLAST
query is generated and run against SwissProt. The results are clustered
and groups made that share the same levels of similarity. These groups are
aligned and trimmed into blocks. The eMOTIF kernel extracts motifs from
eBLOCKS using the eMOTIF method [36]. This method makes it possi-
ble to construct motifs with variable specificity and sensitivity. Table 3.2
provides some examples of eMOTIFs. In addition to ordinary amino acid
characters, the motifs can also have alternative characters at each position,
including a wildcard that will match any amino acid.

In this thesis, the eMOTIF content in the datasets is computed with a pro-
gram provided by Asa Ben-Hur. We use the eMOTIFs in eBLOCKS version
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Table 3.2: Examples of eMOTIFs.

L.E.[kr]..l[eq]

[ast]..[iv][ilv]....[as]i]st]

[fwy].[filmv]..[filmv]...p........ el filmu]

[ilmo]..[kr].l....[ fwy]q[ilv]a[kqr]gm.] fy]las[kqr][kr].ihrdlaarnvlv.[de]..
[iv][ilmu]kias|df gl[as|rd]iv]...[de]yy|kr]k. ngrip[iv]kwma.e[as]l....y..[eq]
sdvws| fylgvl[ilmv]wei[ filmvlt.g

1.0 of July 2002. This release contains over 520.000 different motifs. The
program builds a trie data structure of these motifs, scans each sequence for
the motifs by traversing this structure and outputs the motif hits for each
sequence. We process the results and the kernel is computed by comparing
the motif content of two and two sequences. While there are over 520.000
motifs in the e BLOCKS relase, the typical number of motif hits pr sequence
is 100. Most motifs only occur once in a sequence. This means that the
feature vectors of the sequences are very sparse.

3.2.2 Extending eMOTIF with additional positive motifs

The sparseness of the eMOTIF kernel suggests that homologous proteins
will share very few motifs. As Ben-Hur reports, often a single motif is suf-
ficient to classify a sequence [34]. But there are also many sequences that
are not classified correctly, probably as a result of a lack of motifs shared
between related sequences. This motivates the following experiment, where
we try to increase the similarity information for the kernel by making addi-
tional motifs from the datasets. Each classifier for a SCOP superfamily or
fold is given an additional set of motifs made to discriminately target the
sequences of the superfamily/fold. The motifs are, using genetic program-
ming, evolved as patterns that will match the proteins we want to recognise
as coming from one specific superfamily /fold, while not match proteins in
the others.

The program ”GPboost” [52] is used for creating the motif patterns. In
GPboost, each candidate solution is a variable length syntax tree written in
the formal query language IQL [15]. The program uses sub-tree swapping
crossover, tree generating mutation and reproduction as genetic operators
and is trained with a positive and negative training set that in our case con-
sist of labelled protein sequences. The IQL sentences produced are fed to the
Interagon search hardware which quickly can find the number of matches in
the data sets. The fitness of each IQL sentence is a function of the matches
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in the positive and negative training sets.

The hardware supports several regular expression-like operators; we use only
a small subset of these for building the motifs. Our solution language is
formally defined in [52], but has previously been modified in the master
thesis of Arne Johan Hestnes [53] to handle the protein alphabet of amino
acids. At the basis, the solution language permits the use of amino acids
and the wildcard operator that matches any amino acid. The pattern

GL.A

will for example match GLAA, GLCA, GLDA etc. Patterns can be ex-
tended with the logical disjunction operator that returns a match if at least
one of its two subpatterns finds a match. This makes it possible to give al-
ternative amino acids at specific positions. The following pattern will match
GLAA and GLCA:

GL(A|IC) A

Finally, the Hamming distance operator specifies the minimum number of
amino acids that must match in the pattern. The pattern

{GLAA}: (p = 3)

will for example match GLAA, GLAC and ELAA, but for example not
match GLCC or GCAQ.

Note that the last operator makes it possible to specify that a pattern can
have a certain number of mismatches. It is also possible to boost the im-
portance of certain amino acid residues by using the Hamming operator in
combination with the disjunction operator having the same residue as both
inputs. For example, it is possible to double the weight of the Leucine residue
in the current example so that a Leucine matching at the given position will
count as two matches:

{G(LIL) AA}: (p = 3)

This pattern will for example match GLAA, GLCC and ELCA.

The basic training sets made for GPboost include the same sequences as
the training sets for the classifiers. But for each superfamily classifier, in
addition to generate GPboost motifs with basis in the whole positive and
negative trainingset, motifs will be made with one of the families left out of
the positive training set. See Figure 3.2 for an example with three families.
This is done to narrow the structural range each motif has to cover. Ten
motifs are made for each such combination, so the total number of motifs
made for each classifier will vary according to the number of families in the
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superfamily.

For the fold benchmark, it is neither practical nor beneficial to generate
motifs for all subsets excluding one superfamily because of the very high
number of superfamilies pr fold. As we would like to base our kernel on ap-
proximately the same number of motifs as for the superfamily benchmark,
we adopt a slightly different solution. The sequences of a fold are grouped
into superfamilies and ten sets are made for the fold that each exclude one
tenth of the sequences. All the motifs are created after running the GPboost
on a population of 100 syntax trees for 50 generations. These parameters to
GPboost are chosen based on earlier experience.

Superfamily

Figure 3.2: Subsets of the positive training set that each exclude one SCOP
family are used when making GP motifs for the superfamily benchmark.

The IQL sentences generated with GPboost are matched against all of the
protein sequences. This builds a motif matrix A (M, N) of feature vectors
which is the basis for computing the new kernel. The motif matrix contains
a 1 at position (m,n) if motif m matches protein n, and a 0 if not. A
preliminary linear kernel is then computed from this matrix by taking the
dot product between two and two vectors. Since the sum of any two valid
kernels is a valid kernel [10], the preliminary kernel is added to the earlier
computed eMOTIF kernel and the resulting new kernel is used to train and
test the support vector machine.

3.2.3 GP kernel

The excellent speed of the Interagon pattern matching chip allows us to
take the previous idea a step further. Instead of just making positive mo-
tifs from the positive training set, the entire motif kernel can be based on
motifs evolved using genetic programming. For each classifier, we generate
motifs for all superfamilies, or for all folds when using the fold dataset. The
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idea is that such a motif kernel, where each motif is trained to discriminate
between protein domains of a given superfamily/fold and others, will give
a much better discriminative representation of the protein sequences for a
support vector machine, than if we for example only use motifs trained to
discriminate the positive and negative sequences.

To get a correct validation of the performance, it is important to keep the
test data untouched until testing. Since each classifier has different test sets,
many different training sets for GPboost must be made that do not include
data in the classifier’s test set. This also includes the negative test set, so
when making motifs for one superfamily, its positive training set does not in-
clude the classifer’s negative test family in this superfamily and its negative
training set does not include the classifier’s positive and negative test set
in other superfamilies. Also, the same method of leaving one family or one
tenth of the sequences out, as used when making the GP extended eMOTIF
kernel, is also used here on all training sets. The number of motifs generated
for each classifier is constant. This means that the SVM classifiers for the
superfamily benchmark will be based on 3350 different motifs. 3300 motifs
are made for each classifier in the fold benchmark.

3.2.4 Genetic programming with boosting

Another opportunity available is to use the GPboost program to create
boosted classifiers. While the GPkernel method use GP motifs as a basis
for a kernel for a support vector machine, we would like to see how able
boosted classifiers based on sequence motifs alone are to classify homologue
sequences.

Each motif made previously gives a binary classification to every protein
sequence. Using boosting, it is possible to combine several weighted mo-
tifs into one classification with extra attention given to the sequences that
during training are hardest to classify correctly. We therefore build boosted
motif classifiers that we train on the training set for 100 generations us-
ing a population of 100 in each generation and use 100 boosting iterations
for each classifier. Each classifier will then produce discriminators for each
protein sequence ¢ that are the sum of the T weighted lesser hypothesises,
Zle ay - hy (1), where ay is the weight of hypothesis h; on protein sequence
1, and T is the number of boosting iterations.

To further improve the accuracy of a classifier, majority voting is used. 10
sub-classifiers will be trained for each training set and the final discrimina-
tors for each sequence are the average of the 10 sub-classifiers. Figure 3.3
illustrates the setup of one GPboost classifier.
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C Protein Sequence )

Classifier 1 Classifier 2 Classifier 10
[ Motif 1 Weight Prediction | [ Motif 1 Weight Prediction | [ Motif 1 Weight Prediction |
Motif 2 Weight Prediction Motif 2 Weight Prediction Motif 2 Weight Prediction
Motif 3 Weight Prediction Motif 3 Weight Prediction Motif 3 Weight Prediction
|_Motif 100 Weight Prediction | |_Motif 100 Weight Prediction | |_Motif 100 Weight Prediction |
> Predictions > Predictions > Predictions
Average

CCIassification )

Figure 3.3: One boosted classifier consists of 10 sub classifiers that each are
made from 100 boosted GP motifs.

3.2.5 The spectrum kernel

The spectrum kernel was presented in an article in 2001 [37]. This string
kernel, while being conceptually simple and efficient to compute, was at the
time shown to give reasonably good results despite its general nature. The
basic idea is that two sequences can be said to be similar if they share many
short subsequences, here called k-mers.

The k-spectrum of a of a sequence z, where k > 1, is the set of all k-length
subsequences in x. The kernel is based on a feature representation where the
dimension of a vector is equal to the number of all possible subsequences a
of length k from the protein alphabet A. A feature map can then be defined
on a sequence x of the input space X of all sequences to be

P (2) = (a (7)) gear
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where ¢, (z) is the number of times that a occurs in z. The kernel is then
defined as the linear kernel in this feature space of k-mers: Kj(z,2') =
Oy (x) - Di(a')

A binary variant of the spectrum kernel is also possible. In this variant,
¢q () is equal to 1 if a occurs in & and otherwise equal to 0. This variant
mentioned in the original article will not be used here. The original arti-
cle also shows how the spectrum kernel can be computed efficiently using a
suffix tree data structure. Because we in the current context are more inter-
ested in kernel performance than efficiency, the spectrum kernel is computed
as a simple Python program that compares the k-mer content of two and
two sequences and adds the dot product scores to a kernel matrix.

3.2.6 The mismatch kernel

The mismatch kernel [38] method has, since it was published in 2003/2004,
been given a lot of attention as a benchmark method with which to compare
other classifiers. The reason is its efficiency combined with a surprisingly
good performance for being a general string kernel. The mismatch kernel is
similar to the spectrum kernel described in section 3.2.5, except that each
k-mer is allowed to have a given number of mismatches. This gives the pos-
sibility of using longer k-mer subsequences, thus increasing the information
value of each feature.

The original variant of the mismatch kernel is computed efficiently using
a mismatch tree structure, a variant of a suffix tree. We will instead use
the Interagon pattern matching chip to compute the kernel. The Interagon
Query Language makes it possible to search for patterns with an upper
bound on the Hamming distance of the patterns. It is therefore possible to
make a query of each k-mer and rapidly search the entire dataset for matches
of this k-mer with a certain number of mismatches. The IQL query

{abede} :p >3
can for example be used to search for the pattern abcde with 1 mismatch.

Programming the pattern matching chip is facilitated by the PMC applica-
tion programming interface. The API is fed IQL queries and uses call-back
to a user-defined result processor when results are ready for processing. We
do not compute the kernel explicitly using a matrix of feature values as this
would yield a memory problem when dealing with a very high dimensional
feature space (and also be inefficient). Instead, the results are stored in
memory and when all the results for one k-mer are ready, the k-mer contri-
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bution to the Gram matrix is calculated and added to the matrix.

If the number of queries in one batch is too high, the API will run out
of memory. Therefore, we split the queries into batches of 10.000 and load
these into the PMC when the results of the previous queries are ready. With
this configuration, the single threaded C++ program for extracting k-mers
from the dataset and computing a (5, 1)-mismatch kernel is finished in un-
der 7 minutes when running on the first dataset of 4019 sequences, handling
over 540.000 IQL queries.

3.2.7 PSI-BLAST and BLAST

The position-specific iterative BLAST [21] algorithm was released in 1997
and is one of the methods that may be called a standard method in remote
homology detection. The algorithm is an extension of the more familiar
BLAST algorithm. PSI-BLAST takes one sequence as input and, through
iterative searches against a database, builds a profile of the input sequence
using a multiple alignment of the highest scoring hits in each BLAST it-
eration. The profile is updated on each iteration, which means that PSI-
BLAST can find additional homologs not found in previous iterations. In
other words, the end result is a better sensitivity than standard BLAST.

There are several different variations on how to use PSI-BLAST experimen-
tally for remote homology detection. Liao and Noble [28] used a random
sequence in the positive training set and a multiple alignment of the same
set as input. They then ran PSI-BLAST against the test set as a database
for one iteration to align the test set to the training set profile. Another
scheme is that by Kuang et al. [39]. Here, one profile is made for each
sequence in the positive training set by searching against the NCBI non-
redundant database [54]. The score reported for a test set is the average of
all the scores for the profiles in the corresponding positive training set.

Because it is unclear to us which of these methods that actually gives the
best results, we try both and also experiment with two different alternatives
for combining classifiers. In the first method, we make profiles by letting
Clustal version 1.83 create a multiple alignment of the positive training set
and give this as input to PSI-BLAST. This gives one profile for each training
set. We make a second set of profiles, one for each sequence in the data set,
by running PSI-BLAST with each sequence as input for 10 iterations against
the NCBI non-redundant (NR) database downloaded on 28. of March 2006.

The most important parameters to PSI-BLAST are the number of iterations
and the two different E-value settings. The first E-value parameter sets the
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threshold for the initial BLAST search while the second sets the threshold
for the sequences that will be automatically included in the calculation of
the profile. We use the standard settings (e=10.0 and h=0.002) for both
methods.

To align sequences to a profile, a BLAST format database is generated from
our data sets and PSI-BLAST is run with a profile and the database as
input for 1 iteration. The E-values are extracted from the output and used
as basis for discriminants to rank the test sequences when calculating the
results. The diagram in Figure 3.4 shows how we conduct the experiments.
We report results for four different PSI-BLAST and BLAST based methods:

I/ Using the Clustal based profiles and ranking a test set based on the
alignment to the corresponding training set profile. This is the method
most often used for PSI-BLAST.

II/ Using the NR profiles and reporting the average score resulting from
aligning the positive training set profiles with the test set. This is the
same method as used in [39].

ITI/ Using the NR profiles and reporting the score resulting from averaging
the E-values made from aligning the positive training set profiles with
the test set.

IV/ As method III, but with a pure pairwise BLAST search for each pos-
itive training set sequence against the test set. BLAST is run with
default parameters expect for the expectation value threshold of 0.1

3.2.8 SVM-Pairwise

SVM-Pairwise [28] was the second method to use the support vector machine
and was for a time the method yielding the best performance of all methods.
SVM-Pairwise uses a direct comparison with each sequence in the classifier’s
whole training set to make the set of features for a support vector machine.
The original method used the E-value of the Smith-Waterman algorithm [17]
to compare a sequence to another. We make two versions of SVM-Pairwise.
In the first, we gain a speedup for a minor loss in accuracy by using the E-
value from BLAST pairwise alignments instead of using Smith-Waterman.
Previous experiments have shown that using BLAST gives approximately
the same accuracy as using Smith-Waterman for SVM-Pairwise [34]. BLAST
is run with default parameters expect for the expectation value threshold of
0.1.

For the second version of SVM-Pairwise we utilise the second set of profiles
made for the PSI-BLAST experiment. Instead of aligning a sequence against
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Figure 3.4: The rather extensive PSI-BLAST and BLAST experiments.
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the sequences of a training set, a sequence is aligned to the NR profiles of
the training set. The motivation for doing this is to see what can be gained
by using profiles; it is expected that more and better alignments can be
made to the profiles, giving a more accurate classifier. For both versions,
the negative logarithm of the E-values are used as features.

The feature vectors obtained are used with the radial basis kernel. This
kernel is defined as

_ {z@)—2(z,y) +(y,y)

K(z,y) =e 20

Here, (x,y) means the linear kernel (the dot product of the feature vectors)
and o is the median of the distance from each positive training point to the
nearest negative training point. The last is a heuristic for setting the width
of the radial basis kernel. An asymmetric soft margin is implemented by
adding to the diagonal of the kernel matrix 0.02 times the fraction of the
training set with the same label as the current sequence. This is completely
the same setup as the original by Liao and Noble [28].

3.3 Training and testing the SVM classifier

The Gist package [55] version 2.2 is chosen as the preferred support vector
machine classifier. The Gist package contains software tools for support
vector machine classification and for kernel principal component analysis.
Gist makes it possible to compute a kernel matrix manually and give it as
input to the classifier. The support vector machine requires several different
kernel matrices pr family when training and testing. Instead of computing
all these separately for each family, one big kernel matrix for all proteins is
computed and the smaller matrices are made from this by looking up the
right numbers from the big matrix using the sequences in the training and
testsets.

Because there are many more negative examples than positives, the classi-
fier’s accuracy does not give a good measure of the performance. Instead,
we use the area under the ROC curve [56], which is a plot of sensitivity
vs l-specificity for varying classification thresholds. It shows the trade-off
between sensitivity and specificity and the area under the curve is a sim-
plified summary of how sensitive and specific the classifier is overall. We
also calculate the ROCS50 score, which is equal to the area under the stan-
dard ROC curve, but where we only count true positives until the 50 first
false positives are found. This gives a better measurement of the practical
usefulness of a method than the standard ROC. To do a family by family
comparison between the different classifiers, a non-parametric alternative to
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the paired student’s t-test, the Wilcoxon signed rank test [57] is used. The
Wilcoxon test does not only count the number of better classifications as a
sign test does, but also takes into account the value of the absolute differ-
ences between measurements and is not based on any assumption about the
underlying distribution of differences. A p-value lower than 0.05 is consid-
ered a significant difference between compared methods.
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Chapter 4

Results

This chapter presents the results of all experiments. The chapter is divided
into four sections. In the first section, we look at how the motif-based meth-
ods compare to one another. We also look at some of the properties of the
GPkernel. In the second section, we compare the best performing motif
method, the GPkernel, with the string and alignment-based kernels. In the
third section, we look at a specific data set and try to find out how the
GPkernel achieves its good performance. In the final section, we look at
some additional results of the competing methods.

The results are based on the ROC and ROC-50 scores that the classifiers
achieve on the remote homology detection benchmark and the fold detection
benchmark. We present the results as the cumulative number of test sets for
which we achieve a score higher than a given value. Some additional results
are also reported in appendix A.

4.1 The GPkernel has the best performance of the
motif methods

The motif-based methods, GPkernel, eMOTIF, GPextended and GPboost,
have huge differences in performance on the two benchmarks. Figures 4.1
and 4.2 show the performance of the motif-based methods on the superfamily
benchmark. The figures show that the GPkernel has the best performance
of the motif methods. On the ROC scores, the GPkernel is significantly
better than eMOTIF, with a p-value of 6.95 - 107° on a Wilcoxon signed
rank test. On the ROC-50 score, the GPkernel is slightly better than the
eMOTIF kernel, with a p-value of 1.27-10~! on a Wilcoxon signed rank test.

Judging by the ROC-50 scores, the eMOTIF kernel does not seem to benefit
from extra positive GP motifs on the superfamily benchmark. The GPex-
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tended kernel actually perform a bit worse than the eMOTTIF kernel on some
of the best classified families and the eMOTIF is perhaps slightly better (p-
value 3.19 - 1071). But if we look at the whole ROC curve, we see that the
GPextended is better than eMOTIF (p-value 5.37-1072). The performance
gain by adding extra GP motifs to the eMOTIF kernel is smaller than ex-
pected. The small differences between GPextended and eMOTIF gives a
hint about the discriminative properties of the GP motifs and suggests that
the eMOTIF kernel has a sufficient set of motifs for the superfamily bench-
mark. It would require many more GP motifs to further improve the results
of the GPextended kernel. The boosted classifiers have a poorer perfor-
mance than the kernel-based classifiers. No true positives are found before
50 negatives for 20 of the families on the ROC-50 score, but the boosted
classifiers show the same tendency as the other motif-based methods.

Figures 4.3 and 4.4 plot in a similar way the performance on the fold bench-
mark. All methods show some drop in performance, compared with the
superfamily benchmark. Most evident is the performance drop for the eMO-
TIF kernel. Because most of the eMOTIFs are relatively specific, the se-
quences that belong to a fold will on average share few eMOTIFs, giving a
very sparse kernel. As will be discussed in section 4.3, this might explain
the huge performance drop for the eMOTIF method compared with its per-
formance on the superfamily benchmark.

The GPextended method adds several GP motifs to each classifier and this
gives a much better performance on the fold benchmark. There is substan-
tial improvement in ROC and ROC-50 performance (p-values 3.30-1075 and
7.23-107° respectively) on the fold benchmark with the additional set of GP
motifs compared to the eMOTIF kernel. According to the ROC-50 scores,
the GPboost method is not able to classify 20 of the superfamilies to the
correct fold. Except for one, these 20 superfamilies belong to different folds
than the 20 families not correctly classified by GPboost in the superfamily
benchmark. Though it might seem otherwise from the figures, according to
a Wilcoxon signed rank test there is little difference between GPboost and
eMOTIF on ROC score (p-value 0.15) and the eMOTIF is better on ROC-50
score (5.26-1072). On a sign test however, GPboost is better than eMOTIF
on ROC score (0.08) and significantly better on ROC-50 score (5.16 - 1073).

The GPkernel has a very good performance on fold detection. With a unique
set of motifs made for each fold, it has a better basis for discriminating be-
tween sequences of different folds. Figure 4.5 gives an idea of how important
the motifs trained on the negative sequences are for the GPkernel classifier.
If we test the GPkernel with an equal number of positive motifs only, the
average ROC-50 score on the superfamily benchmark falls by 30%, but the
results vary from family to family. The importance of the negative motifs
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is also evident in the performance differences between the GPkernel, the
GPboost and GPextended methods. The boosted classifiers base their pre-
dictions only on motifs trained to match the classifier’s positive training
set, and the GPextended method also adds only positive GP motifs. Both
methods are much less accurate compared to the GPkernel.

GPkernel

2 0.5 4
0 M GPkernel positive

SCOP Family

Figure 4.5: A GPkernel trained with only positive motifs will on average
lose discriminative power, but the result varies from family to family. The
figure shows some example families taken from the superfamily benchmark.

4.2 The GPkernel is best on the most difficult fold
benchmark

Figures 4.7, 4.6, 4.8 and 4.9 show the performance of the GPkernel, in com-
parison with the eMOTIF, Mismatch, Spectrum, and SVM-Pairwise kernels
and PSI-BLAST. The SVM-Pairwise kernel is based on E-values from pair-
wise BLAST alignments and the PSI-BLAST shown is based on average
E-values obtained from using the profiles made by searching the NCBI non-
redundant database. The Mismatch kernel has been computed with k-mers
of length 5 and with 1 mismatch, the Spectrum kernel with k-mers of length
3. Results for Spectrum kernels of other k-mer lengths can be found in
appendix A. Results from the other variants of SVM-Pairwise, PSI-BLAST
and BLAST are discussed in section 4.4.

On the superfamily benchmark, GPkernel has the best overall performance.
It has significantly better ROC scores than the other methods (all p-values
less than 8.4 - 107° on Wilcoxon signed rank tests). GPkernel also has
better ROC-50 scores than eMOTIF (p-value 1.27 - 1071), SVM-Pairwise
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(1.23-1071), and PSI-BLAST (9.34-1072) and has significantly better ROC-
50 performance than the Spectrum kernel (2.65 - 1071%) and the Mismatch
kernel (3.36-1073). On a sign test, the GPkernel is also significantly better
than SVM-Pairwise (p-value 0.05) on ROC-50 performance).

Figures 4.8 and 4.9 show how the methods compare on the fold benchmark.
As would be expected, there seems to be a bigger difference between the
methods when the level of sequence similarity is very low. The BLAST-
based methods have a hard time producing effective alignments between
sequences related at the fold level. The performance of SVM-Pairwise is
poor compared with its performance on the superfamily benchmark. For
PSI-BLAST, only a fourth of the test sets have a ROC-50 score higher than
0.2. Clearly PSI-BLAST is not suited as a method for fold detection. The
Mismatch kernel has a stable performance on both benchmarks. The GP-
kernel has the best performance on the fold benchmark, with significantly
better ROC-50 scores than the second best performing Mismatch kernel
(with p-value 5.57 - 10~* on a Wilcoxon signed rank test). The GPkernel is
also significantly better than SVM-Pairwise (2.81 - 10~8) and PSI-BLAST
(1.80-107'1) on ROC-50 scores. The GPkernel has significantly better ROC
scores than all other methods, with highest p-value in comparison with the
Mismatch kernel (2.72-1077).

4.3 General motifs are beneficial for fold detection

One of the SCOP superfamilies (b.68.1) that participate as a test set in the
fold detection benchmark is classified well by the GPkernel method (ROC-50
score of 0.903) but achieves a lower score with the eMOTIF method (0.128).
Even though there seems to be a mild correlation (0.16) between the number
of eMOTIF matches for a fold and the ROC-50 score achieved, the training
and test sets for this superfamily do not have significantly fewer eMOTIF
matches than other training and test sets. More important is the number
of eMOTIFs shared between sequences. This number varies a lot between
different pairs of sequences. By simple inspection of the eMOTIF kernel
matrix, it can be seen that most sequences share zero or very few eMOTIFs.

If we calculate the average number of eMOTIFs shared between sequences,
we find that the sequences in the b.68 fold on average share 0.73 eMOTTFs.
This is barely more than the average number of eMOTIFs shared between
two random sequences in the dataset (0.52). It is less than the average
number for sequences within a fold (2.41) which again is much less than the
average shared between sequences of a superfamily (11.92). This shows that
because sequences at the fold level have a very low sequence similarity, and
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because of the specificity of most of the eMOTIFs, the number of eMOTIFs
shared between sequences in a fold will also be low. There is a correlation
(0.20) between the average number of shared eMOTIFs in the training sets
and the ROC-50 score achieved on the superfamily benchmark, but to our
surprise, on the fold benchmark the same correlation is negative (-0.12).
Because of the very small number of averaged shared eMOTIF's for the fold
data, the fold correlation might be more inaccurate than the superfamily
correlation. Assumably, the low number of shared motifs in the b.68 fold is
the biggest factor that influences the classification result.

Table 4.1 shows examples of GP motifs trained on the training set for the
b.68 fold classifier. The GP motifs do in general not share any huge simi-
larities with the eMOTIFs that match the sequences of the fold. For each
motif, the table shows the percentage of sequences matched in the train-
ing and test sets. The positive training set has 12 sequences, the negative
3590 sequences. The positive test set also has 12 sequences, the negative
226 sequences. The GP motifs do match a higher percentage of the posi-
tive sequences than the negatives, but the considerable number of negative
sequences that are matched shows the difficulty of finding simple discrete
sequence motifs that cover many sequences of a fold while also being as spe-
cific as possible. The best GP motifs tend to be either very short sequences
or very long complicated expressions with multiple alternative amino acids
at each position in the motif.

Table 4.1: Examples of GP motifs for b.68 fold classifier.

Motif PTr | NTr | PTe | NTe
{MEEIEIT : p >= 3} 67 | 41 | 67 | 55
{IQIIIEE : p >= 3} 83 38 92 50
{(IIDHE(E|I|E)) : p >= 4} 58 37 83 51
{(TQ(D|H)(K|C)(DIH)((((DIH)[A)[A)|A) 33 | 20 | 33 | 23
TQ((H[A)A)TQ((D|H)[A)I]A) : p>=T}
{M(L|LYCARACAARAA(L|IL)YRACAA : p >= 8 28 50 44
6}

{AALAALA(AIM)AAILAL(A|M)AA(C|M) 50 | 28 | 25 | 45
AV.IL(|T)A.ILAAALA(.|(A|M))V.IL
VAAILL(.|T).TA(AM)AALA
(AIM)V.ILV(R|M) : p >= 20}
{(LI(M|A))(LI(L|(M]A)))(LI(M]A))(LI((L]A) 83 | 37 | 67 | 54
|A))M :p >=5}
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When looking at all GP motifs made, we find that each motif on average
matches nearly a fourth of all sequences. All sequences will therefore share
many GP motifs, which means that there will be many ”erroneous” motif
predictions. To achieve good accuracy with ensemble classifiers, that is,
classifiers that combine several predictions (motifs), it is important that the
whole solution space is covered and that the erroneous predictions do not
correlate too much so that the level of noise is kept to a minimum. To test
the level of correlation, we compute all possible correlations between pos-
itive motifs on negative sequences. We then check for correlation between
the average correlation for each classifier and the ROC-50 score it has ob-
tained. Oddly, we then get a weak positive correlation (0.13) which means
that the amount of correlation for motif matches on negative sequences does
not determine the result of the GPkernel.

If we compare the related sequences of a superfamily or fold with randomly
chosen sequences, we find that related sequences share more motifs than
randomly chosen sequences. On average, sequences in a superfamily have
a higher correlation in their motif matches than other sequences. This in-
cludes both the positive motifs made to match the given classifier’s positive
training set and the other motifs. On the positive motifs, the average corre-
lation coefficient for related sequences is 0.25 versus only 0.16 for unrelated
sequences and on the other motifs the average correlation coefficient is 0.33
for related sequences versus 0.21 for unrelated sequences. Related sequences
therefore share more of all available motifs than unrelated sequences, ex-
plaining the GPkernel’s performance.

Another kernel that also has a good performance on fold detection is the
mismatch kernel. This kernel is based on a much larger feature set of even
more unspecific patterns than the GPkernel. For the mismatch kernel, the
generality of the patterns ensures that the whole solution space of sequences
is covered and that most sequences share at least a few patterns. The GP-
kernel achieves good coverage by training a certain amount of motifs pr
superfamily or fold. The GP motifs, while not being too specific, are still
more tuned to discriminate between sequences of different folds than the
completely general mismatch k-mer patterns. This suggests that to capture
the small sequence similarity that exists at the fold level, motif-based classi-
fiers may benefit from motifs that are general enough to match a significant
number of the weakly similar sequences of a fold.
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4.4 Averaged-BLAST is almost comparable to SVM-
Pairwise

PSI-BLAST has been used as a reference method in many other experi-
ments in the past [28, 32, 38, 39, 43]. It is not straightforward to compare
PSI-BLAST, which is an iterative method that requires a single sequence
as input, with other methods that require multiple input sequences. One
of the most common approaches is to use a multiple alignment as input,
but as seen in Figures 4.10 and 4.11, this gives poor results on our two
benchmarks. We have therefore investigated other possibilities for finding
homologues with PSI-BLAST and other alignment-based methods.

Figures 4.10 and 4.11 show how all the different alignment-based meth-
ods explained in sections 3.2.7 and 3.2.8 compare to one another. It can
be seen that most of the PSI-BLAST alternatives show poor performance,
including both the Clustal-based profiles and the profiles made from the
NCBI non-redundant (NR) database. It has been reported [39] that SVM-
Pairwise based on alignment to multiple PSI-BLAST profiles might give
better results than using pairwise Smith-Waterman or BLAST alignments.
Our results do not support this hypothesis. We do get 5% more pairwise
alignments with NR profiles than with pure BLAST, but still the BLAST-
based SVM-Pairwise is better than the profile-based SVM-Pairwise on the
superfamily benchmark (p-value 3.85 - 10~!) and significantly better on the
fold benchmark (p-value 1.90 - 1078) .

The NR profiles are made by running PSI-BLAST for ten iterations against
the NCBI non-redundant database. While profile models should give a bet-
ter representation of the similarities and variance in related sequences, it
is possible that the resulting profiles will tend to be too equal and general
to produce good alignments to the whole solution space of homologues. By
looking at some of the alignments made between NR profiles and sequences,
we find that sometimes, other related sequences achieve a better alignment
to a NR profile than the sequence that was used as the starting point for
creating the profile. The profiles might gravitate to the centre of the major-
ity and align worse to the related sequences that differ from the majority.

The two benchmarks used in this thesis are much larger than previous bench-
marks. We note that most of the recent publications have stopped using
PSI-BLAST as a benchmark method and we do not know of any extensive
tests on PSI-BLAST as a method for fold detection. It is possible that our
larger data sets give a more proper estimate of the method’s capability.

Figures 4.10 and 4.11 show the results of two new methods, one using the
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average BLAST E-value of alignment against the positive training set and
the other using the average PSI-BLAST E-value to classify sequences. While
SVM-Pairwise is significantly better than Averaged-BLAST on both the su-
perfamily and fold benchmarks (p-values 1.39 - 103 and 6.21 - 10~3 respec-
tively), the Averaged-BLAST method does not require training an SVM.
The reason for the good results is that, given standard parameter settings,
BLAST will usually not be able to align unrelated sequences. Even if BLAST
is able to align only one of the sequences of the positive training set to an
unknown sequence, the sequence will be reported as positive, but with a low
value discriminant. This gives an opportunity to get many false positives,
but by averaging all BLAST E-values, the true positives will dominate with
higher discriminants. With a suitable classification threshold, the method
can give good results. The PSI-BLAST version with average E-values is the
PSI-BLAST method getting the best results on our benchmarks, but is still
poorer compared to average BLAST.
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Figure 4.10: ROC-50 results on superfamily benchmark for alignment-based
methods.

80 % —— Blast E-value Average
"5& x Pairwise Blast
70 &~ Pairwise NR Profiles
ﬂ —— PSI NR E-value Average
i 60 Fa., A —— PSI NR Score Average
.E i = PS] Clustal
g
3
“
]
2
s
2
3
E
=
(5}

ROC-50

Figure 4.11: ROC-50 results on fold benchmark for alignment-based meth-
ods.



52

CHAPTER 4. RESULTS



Chapter 5

Discussion

This chapter gives an additional discussion of the results obtained in the
experiments.

5.1 The fold benchmark is considerable harder than
the superfamily benchmark

We have used two benchmarks based on the SCOP database [48] in this
thesis. The superfamily benchmark measures a method’s ability to recog-
nise remote homologues, the fold benchmark measures a method’s ability to
assign sequences into correct folds. Proteins are defined as having a com-
mon fold in SCOP if they have the same major secondary structures in the
same arrangement and with the same topological connections. Unlike the
majority of the sequences of a SCOP superfamily, proteins placed together
in the same fold category may not have a common evolutionary origin and
their sequence similarities are very small. This makes fold detection a con-
siderably tougher benchmark than the superfamily benchmark.

Both our benchmarks are extensive and test almost twice the number of
families and superfamilies than earlier used benchmarks [47]. We also re-
quire that there be at least ten sequences in both the positive training set
and the positive test set, so that each classifier is thoroughly trained and
tested. This should give a proper view of the performance of each method.
Table 5.1 shows the average ROC and ROC-50 scores for all the methods.
It can be seen from the table that the GPkernel has the highest and most
stable performance on both benchmarks.

Figure 5.1 illustrates the differences in ROC-50 scores between the methods
on the two benchmarks. All methods have a better average ROC-50 score
on the superfamily benchmark than on the fold benchmark, but it is inter-
esting to see how some methods show much larger performance differences
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Table 5.1: Average ROC and ROC-50 scores of all methods.

Method Superfamily level Fold level
ROC | ROC-50 | ROC | ROC-50

GPkernel 0.902 0.590 0.844 0.514
GPextended 0.869 0.542 0.753 0.371
GPboost 0.797 0.375 0.688 0.298
eMOTIF 0.857 0.551 0.698 0.308
Mismatch 0.878 0.543 0.814 0.467
Spectrum K3 0.858 0.477 0.788 0.421

SVM-Pairwise Blast | 0.849 0.555 0.724 0.359
SVM-Pairwise NR 0.860 0.527 0.608 0.182
PSI Clustal 0.575 0.175 0.501 0.010
PSI NR score avg 0.558 0.128 0.506 0.016
PSI NR E-val avg 0.747 0.505 0.569 0.172
BLAST E-val avg 0.830 0.527 0.708 0.332
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Figure 5.1: Average ROC-50 results for all methods on superfamily and fold
benchmarks.
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between the two benchmarks than others. The general string based kernels,
Spectrum and Mismatch, have small differences. This is also true for the GP
motif based methods, which have relative general motifs. The string kernels
and the GPkernel are also the methods with the best performance on the
fold detection benchmark. This suggests that capturing the tiny sequence
similarities at the fold level requires a broad set of general patterns.

It is also easy to see how the alignment based methods fail on the fold bench-
mark. BLAST and PSI-BLAST do not seem to be able to align sequences at
this level, even with E-value thresholds of 10.0. PSI-BLAST gives especially
poor results. In the Clustal version, the positive training set is aligned with
Clustal before given as input to PSI-BLAST. This should result in a good
profile description of the training set sequences. Indeed, on the superfamily
benchmark, there is a small positive correlation (0.10) between the size of
the positive training set and the ROC-50 score achieved. It might be that
the positive training sets from the fold benchmark, having a large group of
relatively dissimilar sequences, will give a ”diluted” profile. We note that on
the fold benchmark, the Clustal based PSI-BLAST was very often not able
to align a single sequence in the test set to a given profile that was based on
the alignment of the positive training set of a fold. One might argue that
using Clustal first may not give the best impression of PSI-BLAST perfor-
mance, but from the other PSI-BLAST results we can still conclude that
the method does not seem suited for fold detection.

Earlier work [58] has reported an average ROC score of 0.675 on Clustal
based PSI-BLAST for a superfamily benchmark based on 54 families from
SCOP version 1.53. This is an average ROC score that is 17% higher than
our average ROC score on 102 families from SCOP 1.67. Liao and Noble
reported [28], using the same method on the same SCOP 1.53 benchmark,
that of 54 families, 30 have a ROC score higher than 0.5 and 10 have a
ROC score higher than 0.7. Of our 102 families, 40 families have a ROC
score higher than 0.5 and 19 families have a ROC score higher than 0.7. We
therefore suspect that our benchmark based on SCOP 1.67 must be harder
than the previous 1.53 benchmark.

5.2 Motif based methods perform well on homol-
ogy detection

To recognise remote protein homologues from amino acid sequences means
to compare sequences for similarities that often are so weak that their sim-
ilarities can mistakenly be taken for random similarities. It is therefore a
sound idea to investigate similarity measures that focus on the most con-
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served regions in sequences, the motif regions, since these are the regions
where homologue sequences are most likely to be similar. It has earlier been
claimed that the eMOTIF kernel gives very good results on remote homol-
ogy detection [34], something our results seem to support. The eMOTIF
approach to making motifs makes it possible to generate motifs with vari-
able sensitivity and specificity [36], but most of the motifs are still relatively
specific. The eMOTIF kernel we have computed is based on over 520.000
eMOTIFs, but despite the abundance of eMOTIFs, several sequences are
not correctly classified by the kernel. This is especially true for the fold
benchmark. This has motivated our effort to produce a better set of motifs
for a motif based kernel.

This thesis has presented methods for remote homology detection and fold
detection founded on automatic motif synthesis. Our main contribution,
the GPkernel, is a similarity measure based on the motif content of two
sequences where the motifs are generated by hardware accelerated genetic
programming. This represents a very different approach to motif synthesis
than the eMOTIF method. The GP motifs are trained on both positive
and negative training sets to distinguish related sequences from unrelated
sequences. The genetic programming process might find motifs that other
motif synthesising methods do not find. A search in Interpro [59] with some
of the sequences of the b.68 fold did not give any obvious similar motifs
to the GP motifs shown in Table 4.1. As discussed in section 4.3, the GP
motifs tend to be quite unspecific compared to for example Prosite patterns
[23] and perhaps it therefore would be more precise to refer to the GP motifs
as patterns and not as motifs.

The Mismatch kernel is computed efficiently by the Interagon pattern match-
ing chip and the method has good performance on both the superfamily and
the fold benchmark. While some of the GP motifs might appear similar to
mismatch k-mers, the GP motifs are more than just mismatch k-mers with
syntactic sugar. The GPkernel has better ROC-50 performance than the
Mismatch kernel on 63 of 102 test families on the superfamily benchmark
and is better on 55 of the 86 test superfamilies of the fold benchmark. The
GPkernel is based only on the motifs that the GP algorithm finds to give the
best description of the different superfamilies and folds. Combining the GP
motifs with a discriminative classifier like the support vector machine, gives
a powerful discrimination-based learner. Like already seen in the previous
chapter, the GPkernel is able to correctly classify a higher number of new
sequences to the correct superfamily and to the correct fold than the other
methods.
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5.3 The GPkernel can still be improved

While noise reduction and feature extraction, such as Latent semantic anal-
ysis (see appendix A), might be a possibility for the GPkernel, there is more
work that could be done directly on the GPkernel as a method. The GP
motifs are currently made from training sets that span almost an entire
superfamily or fold. We have tried to reduce the taxonomical distance by
leaving one family out for the superfamily benchmark and leaving one tenth
of the sequences out for the fold benchmark motifs. It could be interesting
to see if much smaller positive training sets would produce more specific GP
motifs, and what this could mean for the performance of the method.

Another thing that could improve the GPkernel is to use boosted motifs.
The GPboost method gives good results compared with the other non-SVM
based methods. It is expected that a GPkernel based on boosted motifs
could give better classification accuracy. It could then be interesting to use
our updated benchmarks to compare the results of a GPkernel based on
boosted motifs with some of the most recent methods to enter the field of
remote homology detection.
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Chapter 6

Conclusion

This thesis has explored methods in remote homology and fold detection
based on automatic motif synthesis. The GPkernel is a motif-based method
that uses motifs evolved by genetic programming for remote homology and
fold detection. Tested on two updated benchmarks, the GPkernel has sig-
nificantly better ROC scores than all other competing methods and also
has significantly better ROC-50 scores than the majority of the competing
methods.

The motifs trained on the different classes of negative sequences are impor-
tant to the GP-kernel’s predictive power. While the positive motifs match
more positive sequences than negative sequences, they do not necessarily
alone predict the superfamily or fold of a protein. But combined with the
relative absence of negative motifs from the positive sequences, this gives a
better differentiation between related and unrelated sequences than many
other methods. This is also visible when comparing the GPkernel with the
related GPboost method that has a good set of motifs, but lack the extra
discriminative power of a support vector machine trained with both positive
and negative motifs that capture different aspects of the training set. While
each single motif alone will not discriminate between different sets of ho-
mologues, overall, related sequences will share more motifs than unrelated
sequences.

Most of the motifs that result from the genetic programming process show
relatively little specificity, but not having too specific motifs seems to be
beneficial on the fold detection benchmark. The nature of the genetic pro-
gramming process also means that some of the motifs produced will act more
as noise than contribute to sequence discrimination. This means that the
GPkernel could be improved by techniques for feature extraction and noise
removal. A preliminary study of noise removal on the GPkernel is given in
appendix A.
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It is still possible to improve the GPkernel. For example could boosting be
used to improve the accuracy and discriminative power of the motifs. An-
other opportunity could be to combine different types of kernels. No single
method works best in all cases. It could therefore be an idea to combine for
example alignment based kernels with motif based kernels. In that case, the
GPkernel would be a natural representative for the motif based kernels.
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Appendix A

Additional results

This appendix gives additional results and illustrations not included in the
Result and Discussion chapters. The first section discusses the use of Latent
semantic analysis on the GPkernel and the Spectrum kernel to improve clas-
sification performance. The second section gives the ROC-50 results for the
Spectrum kernel with different k-mer lengths. The third section gives the
ROC-50 scores on the superfamily benchmark for all test families and for a
selection of the methods while the fourth section gives the ROC-50 scores
for all test superfamilies in the fold benchmark for the same set of methods.

A.1 Latent semantic analysis for noise removal

The motifs produced for the GPkernel have a variable quality and the motif
matrix for a classifier will have several identical or equal motifs, due to the
nature of the genetic programming process. Based on this observation, we
propose to use a technique for feature extraction and noise removal to get
more efficient feature representations of the proteins. This section discusses
the use of Latent semantic analysis [60] on the GPkernel and the Spectrum
kernel.

A.1.1 The technique of Latent semantic analysis

Latent semantic analysis [60] is a technique in natural language processing
that has recently been used with success in remote homology detection [58].
The basic idea is, given a matrix describing the occurrences of patterns in
the training set of proteins, to find a low-rank approximation to the matrix
by using singular value decomposition and removing the smallest singular
values in the diagonal matrix and the corresponding rows and columns in
the two other matrices that result from the decomposition. This condenses
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correlated features, resulting in a smaller feature space with less noise than
the original vector representation. The latent semantic analysis process is
only performed on the training data; the test data are thereafter converted
to the smaller feature space.

Using our motif matrix A (M, N) giving the number of motif matches for
motif m in protein sequence n, we split this into a training matrix W (M, I)
and a test matrix T (M, J) where the training matrix has all instances of
the training set and the test matrix has all instances of the test set. The
training matrix is then decomposed by singular value decomposition into
three matrices:

W=UxS8xV"

U is left singular matrix having M rows and K columns, S is the K x K
diagonal matrix and V7 is the right singular matrix having K rows and
I columns. Only a given number of the largest values from the diagonal
matrix and the corresponding columns of matrix U and rows of matrix V7'
are then kept. The rest of S, U and V7 is ignored.

A new training matrix is then computed from the column vectors of the
reduced matrix V7, which are equal to S~! x UT x W;, where W; denotes
column ¢ in the training matrix. The vectors of the new training matrix are
of a smaller dimension than the original vectors of the training matrix. To
convert the test vectors to this smaller feature space, each column vector T
is multiplied with S=% x UT.

It has been reported that keeping only 200-300 features is typical and gives
good results [58]. Our motif matrix for the GPkernel has 3350 motifs. Com-
puting a new feature matrix with only 300 features therefore means to re-
duce the number of feature space dimensions to one tenth of the original.
For comparison, LSA is also performed on a Spectrum kernel [37] with k-mer
length 3.

A.1.2 Performance for GPkernel and Spectrum is reduced
with LSA

Figures A.1 and A.2 show the result of using the process of latent semantic
analysis (LSA) on the motif matrix of the GPkernel. Figure A.2 is a family
by family comparison of the ROC-50 scores for the GPkernel and for the
GPkernel with LSA. All LSA results are based on reducing the number of
features to 300. A few test sets are better classified with LSA, but overall
the GPkernel is significantly better without LSA (p-value 1.07 - 1071% on a
Wilcoxon signed rank test).
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Figures A.3 and A.4 show the results of using LSA on the Spectrum kernel
with k-mer length 3. The results show that also the Spectrum kernel is
significantly better without LSA (p-value 4.98 - 10719),
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A.1.3 Initial experiments with LSA are inconclusive

Because genetic programming is a stochastic process, the GP algorithm will
sometimes produce motifs of a quality that are not helpful to the GPker-
nel. The fact that many of the GP motifs may be redundant or be inferior
compared to the better motifs motivated the use of latent semantic analysis
(LSA) on the GPkernel motif matrix to remove noise and improve classi-
fication accuracy. But as seen in section A.1.2, the original GPkernel is
significantly better than the alternative GPkernel after using LSA. It might
be that the GP motif matrix is too dense or that the GP motifs do not cor-
relate into meaningful concepts suitable for discovery of the LSA process.
Instead of removing noise, LSA might be removing too much important in-
formation from the kernel.

The number of dimensions retained in LSA is an empirical issue. Our choice
of 300 features is based on the recommendations in the original article of
LSA in protein remote homology detection [58]. Instead of trying to opti-
mise this parameter, we have investigated the results of performing LSA on
the Spectrum kernel. Our results on the Spectrum kernel do not concede
with previous findings, where LSA improved average ROC score by almost
9% on a smaller superfamily benchmark based on the 1.53 version of the
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SCOP database [58]. On our bigger superfamily benchmark, the average
ROC score is almost 7% higher for the Spectrum kernel without LSA than
for Spectrum with LSA and the differences are significant on both ROC
scores (1.37 - 107!2) and ROC-50 scores (p-value 8.85 - 10711),

It should be noted that the original article on LSA in protein remote ho-
mology detection [58] is poorly written and has unfortunate many errors.
Our setup for the computation of the Spectrum kernel is the same as in [58],
but since following the article’s description of the LSA method did not yield
good results and since we were unable to get in contact with the correspond-
ing author of the article, we based the setup for the LSA step on two other
sources [61] [62]. This yielded the results reported in the previous section. It
has later come to our attention that a third alternative description of LSA
exist [60] and we therefore conclude that the results reported here should be
viewed as preliminary results and that additional experiments are needed to
reach any conclusions.

Hypothetically, it could be interesting to see the effect of LSA on the eMO-
TIF kernel. The eMOTIF kernel is a much more sparse kernel than the
GPkernel and it is possible that this would be favourable for LSA. Unfortu-
nately, performing LSA is quite memory demanding. Our current implemen-
tation requires the explicit storage of the motif occurrence matrix. While
this is not strictly necessary, the matrices resulting from the decomposition
would have to be stored explicitly. With 500000 eMOTIF's, the U matrix
would then be of dimensions 500000 x K, where K is the rank of the occur-
rence matrix. In this case the rank would not be more than the number of
sequences, approximately 4000. With single precision floating point numbers
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(8 bytes), the U matrix alone could in theory require (500000 * 4000 * 8 B)
= 16GB of storage space before feature reduction. Because different matri-
ces must be made for each classifier, performing LSA on the eMOTIF data
would therefore not be practical.

A.2 ROC-50 results for Spectrum kernel

Figures A.5 and A.6 shows how different k-mer lengths affect the perfor-
mance of the spectrum kernel. The figures show that k-mers of 3 characters
gives the best results for the Spectrum kernel. The Mismatch kernel makes
it possible to use longer k-mers, giving more relevant features and better
results [38]. The potential feature space of the Spectrum kernel decreases
rapidly with shorter k-mer lengths and the variance in the value range of
each feature increases. This gives better results, and is consistent with what
was found in the original article [37].
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Figure A.5: ROC-50 results Figure A.6: ROC-50 results
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different k-mer lengths. k-mer lengths.

A.3 Results for superfamily benchmark

Table A.1 gives the ROC-50 results of a selection of the methods for the
superfamily benchmark. PSI-BLAST is based on the average E-value of the
profiles made from the NCBI non-redundant database. SVM-Pairwise is
made from pairwise BLAST alignments.
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Table A.1: ROC-50 results for all test sets on superfamily benchmark

Family
GPKernel
GPboost
eMOTIF
Mismatch
SpectrumK3
SVM-Pairwise
PSI-Blast

a.1.1.2 0.270 | 0.000 | 0.785 | 0.284 | 0.253 | 0.365 | 0.888
a.l.1.3 0.193 | 0.000 | 0.058 | 0.152 | 0.196 | 0.058 | 0.000
a.3.1.1 0.999 | 0.831 | 0.933 | 0.771 | 0.404 | 0.922 | 1.000
a.4.1.1 0.942 | 0.056 | 0.287 | 0.516 | 0.477 | 0.386 | 0.000
a.22.1.1 0.932 | 0.086 | 1.000 | 0.832 | 0.744 | 0.953 | 1.000
a.22.1.3 0.595 | 0.000 | 0.818 | 0.478 | 0.373 | 0.974 | 0.825
a.25.1.1 0.482 | 0.047 | 0.148 | 0.133 | 0.130 | 0.300 | 0.684
a.25.1.2 0.127 | 0.473 | 0.116 | 0.232 | 0.128 | 0.203 | 0.113
a.26.1.1 0.877 | 0.535 | 0.218 | 0.697 | 0.398 | 0.374 | 0.000
a.26.1.2 0.871 | 0.000 | 0.403 | 0.748 | 0.513 | 0.352 | 0.050
a.26.1.3 0.685 | 0.315 | 0.337 | 0.724 | 0.453 | 0.448 | 0.059
a.39.1.2 0.971 | 0.377 | 0.990 | 0.929 | 0.650 | 0.999 | 1.000
a.39.1.5 0.851 | 0.756 | 0.960 | 0.901 | 0.718 | 0.976 | 1.000
a.39.1.8 0.915 | 0.960 | 1.000 | 0.995 | 0.829 | 1.000 | 1.000
a.138.1.1 | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 1.000 | 0.292
a.138.1.3 | 0.998 | 0.912 | 1.000 | 0.905 | 0.837 | 0.983 | 0.784
b.1.1.1 0.691 | 0.287 | 0.993 | 0.733 | 0.568 | 0.986 | 0.976
b.1.1.2 0.973 | 0.547 | 0.923 | 0.932 | 0.937 | 0.968 | 0.949
b.1.1.3 0.650 | 0.056 | 0.909 | 0.790 | 0.737 | 0.846 | 0.732
b.1.14 0.892 | 0.112 | 0.966 | 0.651 | 0.601 | 0.891 | 0.879
b.1.18.2 0.043 | 0.000 | 0.180 | 0.048 | 0.069 | 0.164 | 0.378
b.6.1.1 0.317 | 0.000 | 0.889 | 0.465 | 0.504 | 0.708 | 0.457
b.6.1.3 0.471 | 0.112 | 0.269 | 0.267 | 0.229 | 0.572 | 0.844
b.121.4.1 | 0.325 | 0.567 | 0.460 | 0.204 | 0.284 | 0.260 | 0.674
b.121.4.7 | 0.879 | 0.236 | 0.302 | 0.808 | 0.834 | 0.112 | 0.000
b.29.1.1 0.652 | 0.187 | 0.125 | 0.516 | 0.375 | 0.284 | 1.000
b.29.1.2 0.614 | 0.055 | 0.057 | 0.193 | 0.334 | 0.417 | 0.561
b.29.1.3 0.000 | 0.000 | 0.194 | 0.097 | 0.075 | 0.107 | 0.000
b.29.1.11 | 0.782 | 0.000 | 0.369 | 0.662 | 0.491 | 0.333 | 0.530
b.40.2.1 0.194 | 0.000 | 0.053 | 0.083 | 0.157 | 0.052 | 0.047
b.40.2.2 0.184 | 0.000 | 0.069 | 0.215 | 0.157 | 0.117 | 0.061
b.40.4.3 0.395 | 0.068 | 0.177 | 0.151 | 0.065 | 0.085 | 0.139
b.40.4.5 0.540 | 0.0567 | 0.172 | 0.438 | 0.346 | 0.346 | 0.000
b.47.1.1 0.725 | 0.650 | 0.784 | 0.889 | 0.757 | 0.913 | 0.866
b.47.1.2 0.641 | 0.879 | 1.000 | 0.988 | 0.774 | 0.989 | 1.000
b.47.1.3 0.665 | 0.547 | 0.901 | 0.928 | 0.453 | 0.960 | 0.636
b.50.1.1 0.225 | 0.000 | 0.924 | 0.569 | 0.784 | 0.436 | 0.000
b.50.1.2 0.031 | 0.300 | 0.826 | 0.149 | 0.297 | 0.285 | 0.048

Continued on next page
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b.55.1.1 0.266 | 0.000 | 0.183 | 0.196 | 0.055 | 0.299 | 0.944
b.60.1.1 0.510 | 0.000 | 0.240 | 0.210 | 0.229 | 0.420 | 0.832
b.60.1.2 0.498 | 0.000 | 0.065 | 0.277 | 0.231 | 0.344 | 0.000
b.82.1.2 0.361 | 0.071 | 0.069 | 0.475 | 0.470 | 0.599 | 0.932
c.l1l.24 0.542 | 0.358 | 0.420 | 0.785 | 0.529 | 0.800 | 0.736
c.1.8.1 0.960 | 0.937 | 0.219 | 0.726 | 0.861 | 0.431 | 0.775
c.1.8.3 0.700 | 0.740 | 0.222 | 0.619 | 0.633 | 0.346 | 0.332
c.1.84 0.946 | 0.911 | 0.789 | 0.905 | 0.955 | 0.706 | 1.000
c.1.8.5 0.774 | 0.710 | 0.261 | 0.627 | 0.798 | 0.328 | 0.122
c.1.10.1 0.411 | 0.126 | 0.238 | 0.558 | 0.400 | 0.358 | 0.126
c.2.1.1 0.814 | 0.448 | 0.833 | 0.626 | 0.597 | 0.583 | 0.899
c.2.1.2 0.313 | 0.432 | 0.437 | 0.404 | 0.279 | 0.348 | 0.707
c.2.1.3 0.144 | 0.061 | 0.473 | 0.098 | 0.126 | 0.439 | 0.485
c.2.14 0.714 | 0.499 | 0.857 | 0.615 | 0.507 | 0.900 | 0.855
c.2.1.5 0.894 | 0.282 | 0.868 | 0.555 | 0.369 | 0.531 | 0.728
c.2.1.6 0.737 | 0.431 | 0.787 | 0.318 | 0.439 | 0.789 | 0.853
c.2.1.7 0.328 | 0.195 | 0.330 | 0.383 | 0.340 | 0.506 | 0.651
c.3.1.2 0.810 | 0.995 | 0.993 | 0.860 | 0.486 | 0.763 | 0.944
c.3.1.5 0.339 | 0.281 | 0.814 | 0.758 | 0.376 | 0.802 | 0.937
c.26.1.1 0.613 | 0.735 | 0.401 | 0.279 | 0.264 | 0.323 | 0.141
c.26.1.3 0.502 | 0.356 | 0.593 | 0.256 | 0.252 | 0.648 | 1.000
c.37.1.1 0.704 | 0.790 | 0.945 | 0.711 | 0.389 | 0.862 | 0.850
c.37.1.8 0.448 | 0.404 | 0.994 | 0.780 | 0.608 | 0.730 | 0.349
c.37.1.9 0.754 | 0.964 | 0.892 | 0.945 | 0.719 | 0.714 | 0.290
¢.37.1.10 | 0.769 | 0.930 | 0.738 | 0.897 | 0.724 | 0.820 | 0.775
c.37.1.11 | 0.889 | 0.938 | 0.992 | 0.868 | 0.750 | 0.768 | 0.570
c.37.1.12 | 0.873 | 0.981 | 0.999 | 0.984 | 0.817 | 0.999 | 0.896
c.37.1.19 | 0.689 | 0.348 | 0.623 | 0.617 | 0.708 | 0.467 | 0.702
c.37.1.20 | 0.836 | 0.851 | 0.856 | 0.904 | 0.716 | 0.878 | 0.765
c.45.1.2 0.142 | 0.458 | 0.916 | 0.565 | 0.072 | 1.000 | 1.000
c47.1.1 0.722 | 0.023 | 0.807 | 0.308 | 0.305 | 0.910 | 0.963
c.47.1.5 0.095 | 0.000 | 0.130 | 0.109 | 0.142 | 0.209 | 0.204
c.47.1.10 | 0.243 | 0.108 | 0.323 | 0.140 | 0.198 | 0.444 | 0.362
c.55.1.1 0.362 | 0.026 | 0.352 | 0.202 | 0.098 | 0.209 | 0.170
¢.55.1.3 0.299 | 0.071 | 0.343 | 0.162 | 0.000 | 0.104 | 0.189
c.55.3.1 0.264 | 0.067 | 0.070 | 0.281 | 0.066 | 0.048 | 0.000
€.53.3.5 0.349 | 0.221 | 0.118 | 0.303 | 0.245 | 0.142 | 0.115
c.56.5.4 0.229 | 0.076 | 0.252 | 0.204 | 0.000 | 0.309 | 0.744
c.67.1.1 0.582 | 0.626 | 0.595 | 0.626 | 0.489 | 0.639 | 1.000
Continued on next page
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Table A.1 — continued from previous page
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GPKernel
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c.67.1.3 0.859 | 0.812 | 0.456 | 0.834 | 0.769 | 0.832 | 1.000
c.67.1.4 0.910 | 0.906 | 0.621 | 0.837 | 0.822 | 0.746 | 1.000
c.94.1.1 0.368 | 0.130 | 0.112 | 0.278 | 0.238 | 0.036 | 0.184
c.94.1.2 0.102 | 0.253 | 0.133 | 0.413 | 0.485 | 0.000 | 0.265
d.2.1.2 0.141 | 0.000 | 0.247 | 0.040 | 0.000 | 0.110 | 0.000
d.2.1.3 0.805 | 0.000 | 0.045 | 0.295 | 0.209 | 0.000 | 0.000
d.3.1.1 0.102 | 0.159 | 0.046 | 0.075 | 0.047 | 0.349 | 0.074
d.15.1.1 | 0.344 | 0.000 | 0.174 | 0.216 | 0.411 | 0.202 | 0.095
d.15.4.1 | 0.964 | 0.851 | 0.889 | 0.738 | 0.792 | 0.771 | 1.000
d.15.4.2 | 0.891 | 0.565 | 0.890 | 0.558 | 0.522 | 0.603 | 0.785
d.32.1.3 | 0.631 | 0.175 | 0.645 | 0.752 | 0.604 | 0.892 | 1.000
d.81.1.1 | 0.000 | 0.000 | 0.000 | 0.107 | 0.127 | 0.100 | 0.000
d.92.1.11 | 0.906 | 0.885 | 0.888 | 0.922 | 0.732 | 1.000 | 1.000
d.108.1.1 | 0.193 | 0.089 | 0.413 | 0.139 | 0.174 | 0.122 | 0.850
d.153.1.4 | 0.093 | 0.000 | 0.120 | 0.159 | 0.093 | 0.111 | 0.000
d.169.1.1 | 0.354 | 0.000 | 0.395 | 0.285 | 0.200 | 0.323 | 0.096
g.3.6.1 0.998 | 0.954 | 0.906 | 0.948 | 0.978 | 0.974 | 0.000
g.3.6.2 0.999 | 0.947 | 0.811 | 0.848 | 0.941 | 0.842 | 0.000
g.3.7.1 0.981 | 0.964 | 0.976 | 0.947 | 0.893 | 0.966 | 0.000
g.3.7.2 0.966 | 0.728 | 0.956 | 0.951 | 0.955 | 0.995 | 0.000
g.3.11.1 0.862 | 0.405 | 0.960 | 0.627 | 0.484 | 0.768 | 0.335
g.14.1.1 0.975 | 0.738 | 0.729 | 0.882 | 0.574 | 0.811 | 0.138
g.14.1.2 | 0.882 | 0.215 | 0.333 | 0.661 | 0.372 | 0.742 | 0.000
g.39.1.2 | 0.902 | 0.961 | 0.817 | 0.863 | 0.632 | 0.783 | 0.000
g.39.1.3 | 0.985 | 0.061 | 0.976 | 0.842 | 0.702 | 0.923 | 0.303

A.4 Results for fold benchmark

Table A.2 gives the ROC-50 results of a selection of the methods for the
fold benchmark. PSI-BLAST is based on the average E-value of the profiles
made from the NCBI non-redundant database. SVM-Pairwise is made from
pairwise BLAST alignments.
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Table A.2: ROC-50 results for all test sets on fold benchmark

Superfamily
GPKernel
GPboost
eMOTIF
Mismatch
SpectrumK3
SVM-Pairwise
PSI-Blast

a.2.11 0.322 | 0.000 | 0.039 | 0.214 | 0.203 | 0.224 | 0.000

a.4.1 0.782 | 0.006 | 0.239 | 0.699 | 0.640 | 0.458 | 0.130

a.4.5 0.487 | 0.029 | 0.192 | 0.440 | 0.422 | 0.265 | 0.106

a.4.6 0.799 | 0.220 | 0.520 | 0.710 | 0.789 | 0.573 | 0.380

a.b.2 0.597 | 0.000 | 0.265 | 0.388 | 0.244 | 0.307 | 0.000

a.7.1 0.760 | 0.116 | 0.472 | 0.585 | 0.668 | 0.512 | 0.000

a.60.1 | 0.452 | 0.000 | 0.071 | 0.192 | 0.168 | 0.158 | 0.000

a.102.1 | 0.927 | 0.975 | 0.470 | 0.822 | 0.848 | 0.556 | 0.329

a.102.4 | 0.797 | 0.811 | 0.264 | 0.727 | 0.755 | 0.648 | 0.837

a.118.1 | 0.393 | 0.646 | 0.106 | 0.407 | 0.259 | 0.139 | 0.475

a.118.8 | 0.730 | 0.394 | 0.301 | 0.826 | 0.742 | 0.527 | 0.801

b.1.1 0.645 | 0.135 | 0.463 | 0.608 | 0.546 | 0.406 | 0.114

b.1.18 | 0.552 | 0.104 | 0.283 | 0.525 | 0.547 | 0.405 | 0.132

b.1.2 0.671 | 0.083 | 0.261 | 0.494 | 0.469 | 0.291 | 0.480

b.1.6 0.788 | 0.119 | 0.292 | 0.545 | 0.436 | 0.405 | 0.068

b.1.8 0.504 | 0.000 | 0.283 | 0.188 | 0.220 | 0.255 | 0.000

b.2.2 0.444 | 0.061 | 0.063 | 0.488 | 0.475 | 0.215 | 0.000

b.2.3 0.744 | 0.152 | 0.171 | 0.554 | 0.343 | 0.254 | 0.075

b.2.5 0.305 | 0.000 | 0.162 | 0.065 | 0.137 | 0.000 | 0.000

b.121.4 | 0.736 | 0.678 | 0.126 | 0.573 | 0.529 | 0.125 | 0.000

b.121.5 | 0.943 | 0.856 | 0.282 | 0.941 | 0.868 | 0.166 | 0.000

b.34.2 | 0.520 | 0.000 | 0.083 | 0.196 | 0.153 | 0.210 | 0.000

b.34.5 | 0.508 | 0.000 | 0.344 | 0.221 | 0.116 | 0.183 | 0.000

b.40.2 | 0.057 | 0.000 | 0.048 | 0.106 | 0.065 | 0.076 | 0.079

b.40.4 | 0.401 | 0.018 | 0.211 | 0.287 | 0.197 | 0.200 | 0.000

b.40.6 | 0.512 | 0.073 | 0.266 | 0.602 | 0.367 | 0.255 | 0.000

b.42.1 | 0.471 | 0.000 | 0.000 | 0.500 | 0.444 | 0.559 | 0.724

b.42.2 | 0.260 | 0.000 | 0.039 | 0.139 | 0.191 | 0.166 | 0.000

b.43.4 | 0.121 | 0.054 | 0.057 | 0.267 | 0.157 | 0.033 | 0.066

b.43.3 | 0.392 | 0.076 | 0.122 | 0.508 | 0.376 | 0.265 | 0.000

b.68.1 | 0.903 | 0.945 | 0.128 | 0.720 | 0.832 | 0.248 | 0.111

b.69.4 | 0.799 | 0.772 | 0.731 | 0.669 | 0.624 | 0.468 | 1.000

b.80.1 | 0.885 | 0.958 | 0.249 | 0.679 | 0.493 | 0.170 | 0.000

b.82.1 | 0.315 | 0.099 | 0.127 | 0.188 | 0.219 | 0.202 | 0.577

b.82.2 | 0.367 | 0.643 | 0.167 | 0.164 | 0.223 | 0.321 | 0.267

b.82.3 | 0.192 | 0.000 | 0.128 | 0.178 | 0.372 | 0.213 | 0.236

b.84.1 | 0.576 | 0.000 | 0.215 | 0.625 | 0.412 | 0.825 | 0.721

c.l.1 0.204 | 0.161 | 0.154 | 0.485 | 0.175 | 0.595 | 0.260

Continued on next page
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c.1.2 0.396 | 0.179 | 0.624 | 0.729 | 0.567 | 0.793 | 0.929
c.l4 0.666 | 0.609 | 0.657 | 0.834 | 0.727 | 0.726 | 0.784

c.1.7 0.376 | 0.301 | 0.438 | 0.489 | 0.430 | 0.475 | 0.318

c.1.8 0.201 | 0.483 | 0.266 | 0.346 | 0.309 | 0.143 | 0.283

c.1.9 0.764 | 0.851 | 0.659 | 0.731 | 0.624 | 0.262 | 0.294

c.1.10 | 0.685 | 0.600 | 0.477 | 0.826 | 0.787 | 0.470 | 0.439

c.l.11 0.716 | 0.478 | 0.281 | 0.644 | 0.501 | 0.258 | 0.474

c.1.12 0.852 | 0.714 | 0.506 | 0.847 | 0.768 | 0.352 | 0.744

c.1.15 | 0.967 | 0.931 | 0.670 | 0.949 | 0.956 | 0.476 | 0.544

c.23.1 0.240 | 0.000 | 0.110 | 0.313 | 0.357 | 0.198 | 0.609

c.23.5 | 0.258 | 0.140 | 0.070 | 0.358 | 0.422 | 0.168 | 0.128

c.23.12 | 0.499 | 0.045 | 0.078 | 0.472 | 0.202 | 0.277 | 0.000

c.23.16 | 0.386 | 0.247 | 0.209 | 0.363 | 0.407 | 0.265 | 0.180

c.26.1 0.305 | 0.472 | 0.112 | 0.324 | 0.216 | 0.178 | 0.000

c.26.2 0.341 | 0.099 | 0.154 | 0.437 | 0.161 | 0.142 | 0.093

c.55.1 0.295 | 0.240 | 0.126 | 0.134 | 0.115 | 0.081 | 0.000

c.595.3 | 0.339 | 0.425 | 0.240 | 0.155 | 0.277 | 0.276 | 0.000

c.56.2 0.858 | 0.890 | 0.334 | 0.625 | 0.494 | 0.267 | 0.000

c.56.5 | 0.293 | 0.234 | 0.076 | 0.116 | 0.196 | 0.030 | 0.020

d.15.1 | 0.491 | 0.000 | 0.170 | 0.281 | 0.183 | 0.237 | 0.056

d.15.2 | 0.338 | 0.000 | 0.324 | 0.140 | 0.083 | 0.313 | 0.000

d.15.4 | 0.362 | 0.000 | 0.149 | 0.105 | 0.159 | 0.112 | 0.140

d.15.6 | 0.358 | 0.000 | 0.221 | 0.248 | 0.310 | 0.158 | 0.000

d.15.7 | 0.041 | 0.000 | 0.445 | 0.657 | 0.504 | 0.638 | 0.084

d.17.2 | 0.141 | 0.000 | 0.137 | 0.229 | 0.187 | 0.145 | 0.000

d.17.4 | 0.094 | 0.000 | 0.099 | 0.050 | 0.146 | 0.106 | 0.069

d.26.1 | 0.363 | 0.021 | 0.480 | 0.338 | 0.224 | 0.181 | 0.000

d.26.3 | 0.395 | 0.000 | 0.164 | 0.211 | 0.129 | 0.161 | 0.000

d.58.1 | 0.123 | 0.043 | 0.000 | 0.275 | 0.128 | 0.145 | 0.080

d.58.3 | 0.351 | 0.000 | 0.051 | 0.263 | 0.078 | 0.458 | 0.066

d.58.5 | 0.324 | 0.000 | 0.289 | 0.436 | 0.296 | 0.137 | 0.103

d.58.7 | 0.172 | 0.000 | 0.080 | 0.104 | 0.106 | 0.218 | 0.059

d.58.17 | 0.129 | 0.000 | 0.041 | 0.251 | 0.127 | 0.165 | 0.077

d.58.26 | 0.000 | 0.133 | 0.215 | 0.070 | 0.082 | 0.391 | 0.169

d.79.1 | 0.415 | 0.000 | 0.081 | 0.198 | 0.085 | 0.169 | 0.000

d.110.3 | 0.293 | 0.000 | 0.343 | 0.126 | 0.362 | 0.420 | 0.000

d.129.1 | 0.109 | 0.000 | 0.209 | 0.000 | 0.052 | 0.060 | 0.000

d.129.3 | 0.050 | 0.000 | 0.000 | 0.000 | 0.052 | 0.102 | 0.000

f1.4 0.365 | 0.178 | 0.053 | 0.182 | 0.206 | 0.192 | 0.000

Continued on next page
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g.3.1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000

g.3.2 1.000 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000

g.3.6 1.000 | 0.988 | 0.999 | 0.993 | 0.998 | 0.983 | 0.000

g.3.7 1.000 | 1.000 | 0.997 | 1.000 | 1.000 | 1.000 | 0.000

g.3.9 1.000 | 0.913 | 0.923 | 1.000 | 1.000 | 0.992 | 0.000

g.3.11 1.000 | 0.981 | 0.997 | 1.000 | 1.000 | 1.000 | 0.000

g.3.13 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000

g.41.3 | 0.977 | 0.595 | 0.567 | 0.914 | 0.686 | 0.766 | 0.000

g.41.5 | 0.995 | 0.686 | 0.941 | 0.898 | 0.812 | 0.941 | 0.063
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Appendix B

Programming methodology

This appendix explains the methodology used for a substantial part of the
programming done during the work on this thesis.

B.1 Test-driven development

Test-driven development (TDD) [63] is a methodology meant to improve
the process of software development and in the end, the quality of software,
by providing the programmer with rapid feedback through the development
process. The idea is to repeatedly first write a simple test case and then
write the code necessary to pass the test. The development process is aided
by some form of automatic unit testing framework so it is possible to easily
run a series of tests in each cycle. A test driven development cycle consists
of the following steps:

1. Make a test - The first step of TDD is to write a test that uses the
functionality that is to be implemented in the next steps.

2. Run all tests - By running all tests, the programmer verifies that the
new test actually tests something. If the new test does not fail, this
informs the programmer that the desired functionality is somehow al-
ready implemented, which probably means there is an error somewhere
in the code or in the programmer’s understanding of the code.

3. Implement some code to pass the test - The main point of the
next step is to write just enough code that the programmer thinks is
necessary to pass the test. The programmer is for the moment allowed
to "fake” a solution, by for example hard-coding return values so the
test will run and pass.

4. Run all tests again - All the tests should now pass.
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5. Refactor code - The final step is to refactor and clean up code so
that the program really implements the desired functionality. Tests
are run when necessary so that the programmer is confident that the
results of the refactoring do not make the code fail.

This cycle is repeated continuously. Writing a test before implementing
functionality ensures that the programmer has a clear idea of what the next
action he needs to take is, which is beneficial to the development speed.
It is not necessary to write tests for every line of code, the amount of tests
written in each cycle depends on the complexity of the problem being solved
and the competence of the programmer.

The result of TDD is increased confidence in the correctness of the code.
TDD can also improve the design of code since writing a test first forces the
programmer to start from the interface perspective of the program, by con-
centrating on how the desired functionality will be used. The development
process also ensures that a substantial part of the code has unit tests, which
means that problems and errors in the code will be discovered in an early
phase of development instead of in later stages through tedious debugging.

In this thesis, the xUnit framework [64] has been used to automate unit test-
ing in C++, Java and Python. It is especially valuable to use unit testing to
test program behaviour with boundary values in input. For example, when
making the program to calculate ROC-50 scores, testing what the ROC-50
score is when the 50 highest discriminators are all equal, clarifies both the
code and provides interesting reasoning regarding the nature of the ROC
curve.



Appendix C

Article

The following pages of this appendix give the article that currently is in the
review process at BMC Bioinformatics.
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Abstract

Background: Protein remote homology detection is a central problem in computational biology. Most recent
methods train support vector machines to discriminate between related and unrelated sequences and these
studies have introduced several types of kernels. One successful approach is to base a kernel on shared
occurrences of discrete sequence motifs. Still, many protein sequences fail to be classified correctly for a lack of

a suitable set of motifs for these sequences.

Results: We introduce the GPkernel, which is a motif kernel based on discrete sequence motifs where the motifs
are evolved using genetic programming. All proteins can be grouped according to evolutionary relations and
structure, and the method uses this inherent structure to create groups of motifs that discriminate between
different families of evolutionary origin. When tested on two SCOP benchmarks, the superfamily and fold
recognition problems, the GPkernel gives significantly better results compared to related methods of remote
homology detection.

Conclusions: The GPkernel gives particularly good results on the more difficult fold recognition problem
compared to the other methods. This is mainly because the method creates motifs that not only describe
similarities among the related proteins, but also similarities among subgroups of the unrelated proteins. This rich
set of motifs gives a better description of the similarities and differences between different folds than do previous

motif-based methods.



Background

A huge gap exists between the number of protein sequences and the number of proteins with a known
structure and function. The exponential growth in sequence information means that better methods to
automatically annotate new sequences are needed. An important problem in computational biology is
therefore the detection of subtle sequence similarities, as this might imply that the sequences share a
common ancestor — that is, they are remote homologues — suggesting structural and functional
similarities. Several good solutions exist when the level of sequence similarity is high, but when the
sequences are highly divergent it is still difficult to distinguish remotely homologue sequences from
sequences that are similar by chance.

Early solutions to the problem of finding remote homologues, such as the Smith-Waterman algorithm [1]
and heuristic alternatives like BLAST [2] and FASTA [3], looked for sequence similarity between pairs of
proteins. Later solutions used aggregated statistics of related proteins to generate more complex models
that a protein with unknown function could be compared to. These methods, including profiles [2,4] and
hidden Markov models (HMMs) [5-7] used only related sequences for model generation.

The most successful recent methods have been discriminative. Classifiers are trained on both related and
unrelated proteins to recognize what distinguishes the related proteins from the unrelated ones. Kernel
methods such as the support vector machine [8] have proven to give particularly good results and several
different types of kernel functions have been introduced [9-17]. Most of these kernel functions are typically

either based on profiles and sequence alignments or based on the occurrences of discrete motifs.

Kernels based on profiles and sequence alignments

The first method that used support vector machines was the Fisher kernel [9]. This method trains profile
HMDMs on related proteins and produces feature vectors from sequences by aligning them to the HMMs.
Another alignment-based kernel is SVM-Pairwise [10], which represents each sequence as a vector of
pairwise similarities to all sequences of the training set. The SVM-I-sites method [11] compares sequence
profiles to the I-sites library of local structural motifs for feature extraction and this method has also been

improved to take into account the order and relationships of the I-site motifs [12].



A relatively simple but efficient kernel is the Mismatch kernel [13] in which the feature space consists of all
short subsequences of length k, called k-mers. A k-mer is said to be present in a sequence if the sequence
contains a substring that has at most n mismatches to the k-mer. In the profile kernel of Kuang et al. [14],
the mismatch kernel is combined with profiles; a k-mer is said to be present in a sequence if the sequence
contains a substring that when aligned to the profile gives a score above a given threshold. Later methods,
such as the LA-kernel [15] and SVM-SW [16] are also alignment-based, but instead of representing the
sequences as a vector of features they calculate the kernels directly by an explicit protein similarity
measure. The LA-kernel uses all optimal gapped local alignment scores for all possible subsequences of two

sequences, while SVM-SW uses the optimal local alignment that maximizes a direct profile-profile score.

Kernels based on discrete sequence motif content

Motif kernels are based on the idea of using motif content to measure sequence similarity. Protein sequence
motifs describe some common sequence pattern that is conserved over greater evolutionary distance than
the rest of the sequences. Focusing on sequence motifs therefore means focusing on the most conserved
parts of a sequence, where remote homologues are most likely to share similarities.

Although there are many databases of sequence motifs available [18-21], these databases were created in a
supervised way to have motifs that characterize different known protein families, domains, or functional
sites. Consequently, a motif kernel based on these databases will be biased towards correctly classifying
known functions or families. This also makes such motifs kernels inappropriate in benchmark studies. The
eMOTIF kernel of Ben-Hur and Brutlag [17] avoids these problems by using motifs extracted with the
unsupervised eMOTIF method [22] from the eBLOCKS database [23]. The eMOTIF kernel has good
performance when classifying sequences in classes for which several motifs are available, but the
performance decreases when related sequences share few or no motifs [14].

An alternative to using motifs from an existing database is to generate the motifs from the available data.
We introduce a motif kernel where genetic programming is used to find discriminative sequence patterns
matching the positive training set sequences while not matching the negative training set sequences. The
motifs are made from a simple regular expression-like grammar and the resulting matches against the data
set is used to build feature vectors for a support vector machine.

We benchmark our GPkernel on updated versions of two commonly used benchmarks [16] based on the
SCOP database [24] and compare its performance to the eMOTIF, Mismatch, and SVM-Pairwise kernels

as well as with the PSI-BLAST method. We find that our method gives significantly better results than all



these. We also find, when comparing the GPkernel to related motif methods, that motifs trained on the

different classes of negative sequences are vital for the method’s predictive power.

Results and Discussion
Genetic programming for protein motif discovery

There are several methods that use genetic programming (GP) [25] to evolve Prosite motifs from multiple
unaligned [26-28] or aligned [29] sequences. Genetic programming have also been used to create stochastic
regular expression motifs [30]. We use GP to evolve the discrete sequence motifs that serve as a basis for
our methods.

Our GP algorithm is trained on a positive and negative training set and the fitness of a candidate solution
is a function of its matches in the two sets. The fitness evaluation is accelerated by special purpose search
hardware [31], which reduces the training time.

The hardware supports several regular expression-like operators, but we use only a small subset of these.
Our solution language is formally defined elsewhere [32], but is here modified to handle the protein
alphabet of amino acids. The language’s basic elements are the amino acid symbols and the wildcard

operator that matches any amino acid. The pattern
GL.A

will for example match GLAA, GLC'A, GLDA and so forth. To allow alternative amino acids at specific
positions, patterns can be extended with the logical disjunction operator; for example, the following
pattern will match GLAA and GLC A:

GL(A|ICH A

Finally, the Hamming distance operator specifies the minimum number of amino acids that must match in
the pattern. The pattern
{GLAA :p >3}

will for example match GLAA, GCAA, and ELAA, but not match GLCC and GC AQ.

Note that the Hamming distance operator makes it possible to specify that a pattern can have a certain
number of mismatches. It is also possible to boost the importance of certain amino acid residues by using
the Hamming operator in combination with the disjunction operator. For example, it is possible to double

the weight of the Leucine residue in the above example so that a Leucine matching at the given position



will count as two matches:

{G(LIL)AA: p>4)

This pattern will now only match sequences that contain Leucine and two of the three other amino acids,
such as ALAA, GLCA, and GLAE. This position specific weighting of amino acids can be used to define

patterns that approximate position weight matrices.

The GPkernel uses diverse motifs

The problem of protein remote homology detection has an inherent structure as all proteins can be
grouped according to evolutionary relations and structure. This is the basis for the SCOP hierarchy [24].
Our method uses this inherent structure to create a kernel based on a rich set of motifs that tries to
capture information about all related sequences in a particular dataset.

To compute the kernel, we use the GP algorithm to produce motifs from the SCOP training set. The
kernel is therefore referred to as the GPkernel. For each superfamily classifier, we make both positive and
negative motifs; that is, motifs trained to match the classifier’s superfamily as well as motifs trained to
match the other superfamilies. Correspondingly, we do the same for the fold benchmark and train motifs
for all folds. This is done based on the hypothesis that motifs trained to recognize the different aspects of
the negative data will increase the discriminative power of the GPkernel.

The basic positive training sets for GP include all members of a superfamily or fold, except for the
sequences forming the positive test set. This means that all the motifs will have to cover a large taxonomic
distance. To narrow the structural range each motif has to cover, we also split the positive training set into
subsets, as shown and explained in Figure 1. For the superfamily benchmark, the subsets exclude one
family from the superfamily sequences. For each such subset, we make ten motifs. We also make ten motifs
trained on all the sequences of the superfamily. As a consequence, the number of motifs produced for each
superfamily will be ten times the number of families in the superfamily. In total, this produces 3350 motifs
for every classifier in the superfamily benchmark.

For the fold benchmark, it is neither practical nor beneficial to generate motifs for all subsets excluding one
superfamily because of the very high number of superfamilies in each fold. Because we would like to base
our kernel on approximately the same number of motifs as for the superfamily benchmark, we adopt a
slightly different solution. The sequences of a fold are grouped into superfamilies and ten sets are made for
each fold that each exclude one tenth of the sequences. This gives 3300 motifs for the fold benchmark.

For both benchmarks, we run GP with a population of 100 candidate solutions for 50 generations. The



resulting motifs are matched against all the sequences to produce a matrix of binary feature vectors. This
matrix contains a 1 at position (i, j) if sequence 4 contains motif j and a 0 otherwise. The Gram matrix is
then produced by taking the dot product between the vectors of the sequences; see Methods for additional

details.

Boosted classifiers and an extended eMOTIF kernel

The GPkernel, uses motifs made from genetic programming as a basis for a kernel for a support vector
machine. We also propose another method in which we use the GPboost program [32] to build boosted
classifiers [33]. Each such classifier is based on 100 weighted sub-motifs where each sub-motif is made by
running genetic programming on the SCOP training sets with a population of 100 candidate motifs for 100
generations. The prediction of a boosted classifier is a sum of the predictions from the weighted sub-motifs.
In addition, 10 boosted classifiers are made and combined so that the final prediction for a new sequence
will be the average of 10 boosted classifiers. The setup is explained in Figure 2.

The eMOTIF kernel has shown good performance on protein families that share many eMOTIFs, but the
performance decreases for families that are not covered well by the eMOTIFs. We propose to extend the
eMOTIF kernel with an additional small set of GP motifs in hope that this will give a better performance
when classifying the sequences that share fewer eMOTIFs. The extended eMOTIF kernel, called
GPextended, is made from an eMOTIF kernel with additional GP motifs trained to target the positive
training set. The motifs are made in exactly the same way as for the GPkernel, but only the positive
motifs — the motifs trained on the subsets of a given classifier’s training set — are added to an eMOTIF

kernel to create the GPextended kernel.

The GPkernel performs significantly better than the other motif-based methods

Figure 3 shows the performance of the GPkernel, GPboost classifier, the eMOTIF kernel, and the
GPextended kernel on the superfamily benchmark. The GPkernel has the best overall performance in
terms of both the cumulative ROC and ROC-50 scores, and the differences to the eMOTIF kernel are
significant for the cumulative ROC-score (p = 4-10~* and p = 0.7 on ROC and ROC-50 results with
signed rank tests corrected for multiple testing). The results also indicate that extending the eMOTIF
kernel with GP motifs improves the performance of the eMOTIF kernel. Even though the performance
differences between the GPextended and eMOTIF kernel are not significant (p = 0.3 and p = 0.9 on ROC

and ROC-50), the GP motifs boost the performance of the eMOTIF kernel such that the GPextended



kernel’s ROC-scores are not significantly worse than those of the GPkernel (p = 0.06).

As Figure 4 shows, the gain of adding additional motifs to the eMOTIF kernel is more evident on the fold
benchmark. Because most of the eMOTIF's are relatively specific, the sequences that belong to a fold will
on average share few eMOTIFs, giving a very sparse kernel. This might explain the huge performance drop
for the eMOTIF method compared with its performance on the superfamily benchmark. If the eMOTIF
method has a lack of a suitable set of eMOTIF's for fold detection, the additional motifs made for the
GPextended kernel can compensate for this. Both the GPextended kernel’s ROC and ROC-50 scores are
significantly better than the eMOTIF scores (p =2-10"* and p =2-107%).

The GPkernel has a very good performance on fold detection compared to the other motif methods (all
p-values < 1078). The key to the GPkernel’s increased performance are the motifs trained on the different
negative folds. When we tested a kernel that consisted of an equal number of positive motifs only, the
average ROC-50 score fell by 30% (data not shown). Similarly, GPboost and the GPextended kernel only
use motifs trained to recognize the positive training set and are much less accurate than the GPkernel is.
As the above experiments have shown, the negative motifs are more useful on the fold than on the
superfamily recognition problem. Because the positive sequences are more similar on the superfamily than
on the fold benchmark, methods that only focus on recognizing the positive sequences can more easily find
motifs that characterize the positive sequences than they can on the fold benchmark. On the fold
benchmark, the motifs that characterize the positive sequences do not confidently predict a protein’s
correct fold, but an absence of motifs common to some of the negative folds may complement the
occurrence of positive motifs. This complementarity probably explains the GPkernel’s higher relative

performance on the fold than on the superfamily benchmark compared to the other motif methods.

The GPkernel has better overall performance than existing methods

To further assess the GPkernel’s performance, we evaluated the performance of three other popular
methods for remote homology detection; PSI-BLAST and the Mismatch and SVM-Pairwise kernels. Figure
5 summarizes the performances of the four methods on the superfamily benchmark. Again, the GPkernel is
significantly better than the other methods in terms of ROC scores (p-values of 0.001, 0.0004, and < 10~°
for Mismatch, SVM-Pairwise, and PSI-BLAST). The GPkernel also has significantly higher ROC-50 scores
than Mismatch and PSI-BLAST (p = 0.03 and p < 10719), but the GPkernel and SVM-Pairwise’s ROC-50
scores are not significantly different (p = 0.7).

Figure 6 shows how the methods compare on the fold benchmark. As would be expected, there is a bigger



difference between the methods when the level of sequence similarity is very low. Especially, the
BLAST-based methods have difficulties producing effective alignments between related sequences at the
fold level. SVM-Pairwise has a much lower performance on the fold than on the superfamily benchmark,
and the scores for PSI-BLAST on fold detection are not reported due to the very poor results achieved.
The mismatch kernel, using more general string patterns than the eMOTIF kernel has a stable performance
on both benchmarks and is significantly better than SVM-Pairwise on the fold benchmark (p = 6-10~8
and p =1-1075 for ROC and ROC-50). The GPkernel has the best performance on the fold benchmark;
significantly better than the second best performing Mismatch kernel (p =2-10"% and p =7-1073 for
ROC and ROC-50). Table 1 gives the average ROC and ROC-50 scores for all of the methods.

Motif based classifiers for fold detection perform better with many motifs of low specificity

One of the SCOP superfamilies (b.68.1) that participate as a test set in the fold detection benchmark is
classified well with the GPkernel method (ROC-50 score of 0.903) but achieves a lower score with the
eMOTTIF method (0.128). Even though there seems to be a mild correlation (0.16) between the number of
eMOTIF matches for a fold and the ROC-50 score achieved, the training and test sets for this superfamily
do not have significantly fewer eMOTIF matches than other superfamilies. More important is the number
of eMOTIFs shared between sequences. This number varies a lot between different pairs of sequences, but
if we calculate the average number of eMOTIFs shared between sequences in the b.68 fold, we find that the
sequences on average share 0.73 eMOTIFs. This is less than the average for all folds (2.41) which again is
much less than the average shared between sequences of a superfamily (11.92). This shows that because
sequences at the fold level have a very low sequence similarity, and because of the specificity of most of the
eMOTTIFs, the number of eMOTIFs shared between sequences in a fold will also be low. This will in turn
influence the performance of the eMOTIF kernel.

Table 2 shows examples of GP motifs trained on the training set for the b.68.1 fold classifier. The GP
motifs varies and do in general not share any huge similarities with the eMOTIFs that match the sequences
of the fold. The table also shows the relative percentage of matches in the positive and negative training
and test sets for the fold. The GP motifs do match a higher percentage of the positive sequences than the
negatives, but the considerable number of negative sequences that are matched shows the difficulty of
finding simple discrete sequence motifs that cover many sequences of a fold while also being as specific as
possible. The best GP motifs tend to be either very short sequences or very long complicated expressions

with multiple alternative amino acids at each position in the motif.



When looking at all motifs made, we find that each motif on average matches nearly a fourth of all
sequences. All sequences will therefore share many GP motifs. If we compare the related sequences of a
superfamily or fold with randomly chosen sequences, we find that related sequences share more motifs than
randomly chosen sequences. On average, sequences in a superfamily have a higher correlation in their motif
matches than other sequences on the positive motifs (correlation coefficient 0.25 versus 0.16) and they also
correlate more on the other motifs (0.33 versus 0.21). This means that related sequences share more of all
motifs than unrelated sequences, explaining the GPkernel’s performance.

Another kernel that also has a good performance on fold detection is the mismatch kernel. This kernel is
based on a much larger feature set of even more unspecific patterns than the GPkernel. For the mismatch
kernel, the generality of the patterns ensures that the whole solution space of sequences is covered and that
most sequences share at least a few patterns. The GPkernel achieves good coverage by training a certain
amount of motifs for each superfamily or fold. The GP motifs, while not being too specific, are still more
tuned to discriminate between sequences of different folds than the completely general mismatch k-mer
patterns. This suggests that to capture the small sequence similarity that exists at the fold level,
motif-based classifiers benefit from motifs that are general enough to match a significant number of the
weakly similar sequences of a fold. In summary, it seems that good motif-based classifiers on the fold
recognition problem need to strike a balance between specificity (eMOTIF) and generality (mismatch).

The GPkernel is one step in that direction.

Conclusion

We have introduced a motif kernel with discrete sequence motifs trained with genetic programming. Motifs
are evolved using a subset of regular expressions to describe sequences in a superfamily or fold, and
discriminate between these and sequences in other superfamilies (folds). The method gives very good
results on two SCOP benchmarks when compared to other relevant methods.

In addition, we have established two new and updated benchmark sets. These sets, which are nearly twice
as large as previously used benchmarks, should prove useful for future studies on remote homology

detection.



Methods

Genetic programming

Genetic programming [25] is a form of automatic programming that aims to find an optimal solution to a
problem using a population of candidate solutions and techniques inspired by biological evolution. In
genetic programming, the solutions are usually variable sized syntax trees whose structure is defined by the
solution language. An example of such a language is regular expressions where the set of terminals are the
20 amino acid characters.

Our algorithm, which is based on the GP-component of the GPboost algorithm [32], uses a standard
tree-based representation of individuals. It uses subtree swapping crossover, tree generating mutation and
reproduction as genetic operators and uses tournament selection to select individuals for the next

generation.

Motif kernels

A motif kernel gives a sequence similarity measure based on the motif content of a pair of sequences [17]. A
sequence x can in this context be represented in a vector space indexed by a set of motifs M as

O(z) = (Om(x))menm- In the eMOTIF kernel, 6,,(x) is the number of occurrences of the motif m in z. The
motif kernel is then defined as a linear kernel over the motif contents: K(z,z') = O(z) - ©(2’). In most
cases a motif appears only once in a sequence so this kernel essentially counts the number of motifs that
are common to both sequences. This is always the case for the GPkernel, as 0,,(z) here is 1 if the motif

occurs in « and 0 otherwise.

Results benchmarking

To benchmark our method we simulate the process of remote homology detection and fold detection by
using the SCOP database [24] as a basis for two benchmarks. The SCOP database aims to classify all
proteins of known structure in a hierarchy based on structural and evolutionary relatedness. At the lowest
level of the hierarchy, proteins clustered in a SCOP family have clear evolutionary relationship, meaning
that pairwise residue identities between proteins are 30% and greater. Proteins in SCOP superfamilies
show low degrees of sequence identities, but structural and functional features in the proteins give them a
probable common evolutionary origin, meaning that proteins clustered in superfamilies are likely to be
homologues. Proteins have the same common fold if they have the same major secondary structures in the

same arrangement and with the same topological connections. This does not necessarily mean they have
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the same evolutionary origin.

The first benchmark is the now classic benchmark where the goal is to classify a new protein sequence to
the correct SCOP superfamily. Here, one family in the superfamily is kept as a positive test set. The other
families in the same superfamily constitute the positive training set. The negative test set is made up of
one random family from all the other superfamilies and the negative training set has the rest of the families
in these superfamilies. Figure 7 illustrates the setup for this benchmark.

For the other benchmark, we follow that of Rangwala and Karypis [16]. We move up one level in the SCOP
hierarchy; the objective is to classify an unknown sequence to the correct fold. One superfamily is used as
positive test set, while the others in the same fold constitute the positive training set. Negative test and
training set are made from the superfamilies of the other folds. This benchmark is considerably harder as
most of the sequences within a fold have a very low degree of similarity.

We use sequences from SCOP version 1.67, filtered with Astral [34] to remove sequences that share more
than 95% similarity. The data are further filtered according to the principle that each classifier should have
at least 10 sequences for testing and training, that is, every classifier should have at least 10 sequences in
its positive training and test set. For the superfamily benchmark, this leaves us with 4019 sequences in 392
SCOP families. 102 of these families match the conditions above. The fold benchmark has 3840 sequences
from 374 superfamilies and classifiers are made for 86 of these. Of the 3840 sequences in the fold
benchmark, 2076 do not participate in the superfamily benchmark. Note that the 102 families and 86
superfamilies tested in our superfamily and fold benchmarks are almost twice the number of families and

superfamilies used in previous benchmark studies.

Statistical tests
To determine whether two methods have statistically different ROC or ROC-50 scores on a particular
benchmark, we use signed rank tests. All p-values reported are double-sided p-values that have been

Bonferroni-corrected for multiple comparisons.

Other methods

We computed the eMOTIF kernel based on the eMOTIFs generated from version 1.0 of the e BLOCKS
database. This database contains 522.321 motifs and is the same that was used in the original article [17].
The mismatch kernel is computed by extracting all subsequences of length 5 from the dataset and using

the Interagon PMC to search for these subsequences in the data sets, allowing for one mismatch.
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We use Clustal version 1.83 to create a multiple alignment of the positive training set and give this as
input to PSI-BLAST version 2.2.13. PSI-BLAST is then run with standard parameter values for 1
iteration against the test set. The e-value of the resulting alignments are used to rank the test set.
SVM-pairwise is calculated by using the negative logarithm of pairwise BLAST e-values to generate a
radial basis kernel with the same parameters as in the original article of Liao and Noble [10].

The Gist package version 2.2 [35] is used to train and test the kernels. Because the test sets have many
more negative than positive instances, simply measuring error-rates will not give a good evaluation of
performance. Instead we evaluate our results by computing the ROC and ROC-50 scores [36]. A ROC
curve is a plot of a classifier’s sensitivity as a function of its specificity for different classification thresholds.
The ROC score is the area under the ROC curve. The ROC-50 curve is the same as a ROC curve, except

the positives are only counted up to the first 50 negatives.
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Figures
Figure 1 - Splitting of training sets for GP algorithm

The figure shows three families from an example superfamily that constitute the positive training set for

GP. The positive test set and the negative training and test set are not shown in this figure. In addition to

train motifs to cover the sequences of all three families (large broken blue oval), we also train GP on all the

possible subsets of this superfamily that exclude one family of the positive training set. This is indicated

by the red, green, and yellow dashed ovals in the figure. Ten motifs are made for each subset.

Figure 2 - Boosted classifiers

The figure shows the setup of the boosted classifiers. For each test set, we create 10 boosted classifiers

whose predictions are averaged to give a final classification. Each classifier is made from 100 boosted GP

motifs.

14



Figure 3 - GPkernel has highest overall performance of motif methods on superfamily benchmark.
The graphs show the cumulative number of families with a ROC (top) and ROC-50 (bottom) score greater
than a given value for the GPkernel, GPboost, GPextended, and eMOTIF methods.

Figure 4 - GPkernel outperforms other motif methods on SCOP fold benchmark
The graphs plot the cumulative number of superfamilies with a ROC (top) and ROC-50 (bottom) score
greater than a given value for the GPkernel, GPboost, GPextended and eMOTIF methods.

Figure 5 - GPkernel compares favorably to common methods for remote homology detection on
superfamily benchmark.

The figure plots the cumulative number of families with a ROC (top) and ROC-50 (bottom) score greater
than a given value for the GPkernel, eMOTIF, Mismatch, SVM-Pairwise and PSI-BLAST methods.

Figure 6 - Large differences in performance on fold detection
Figure 6 plots the cumulative number of superfamilies with a ROC (top) and ROC-50 (bottom) score
greater than a given value for the GPkernel, eMOTIF, Mismatch and SVM-Pairwise methods. PSI-BLAST

is omitted in this context due to the method’s very poor results on fold detection.

Figure 7 - SCOP superfamily benchmark

The figure shows how the SCOP database is divided into training and test sets. For each classifier tested
on the superfamily benchmark, the sequences of the SCOP database are divided into positive and negative
training and test sets. One SCOP family is used as a positive test set. The negative test set is made from
one random family from each of the other superfamilies. The positive training set is made from the
superfamily of the classifier, excluding the positive test set family. The negative training set is made from

the other superfamilies, excluding the negative test sets.

Tables
Table 1 - Average ROC/ROC-50 scores

Table 1 shows the average ROC and ROC-50 scores obtained by the different methods on the superfamily

benchmark and the fold benchmark.
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Average ROC and ROC-50 scores

Superfamily level Fold level

ROC ROC-50 ROC ROC-50
GPkernel 0.902 0.590 0.844 0.514
GPextended 0.869 0.542 0.753 0.371
GPboost 0.797 0.375 0.688 0.298
SVM-Pairwise 0.849 0.555 0.724 0.359
Mismatch 0.878 0.543 0.814 0.467
eMOTIF 0.857 0.551 0.698 0.308

PSI-BLAST 0.575 0.175 0.501 0.010

Table 2 - Examples of GP motifs

The table shows examples of the motifs evolved by the genetic programming process targeting the SCOP

b.68 fold. In addition to amino acid characters, the motifs are also made from the disjunction operator (|),

the wildcard operator (.), and the Hamming distance operator {: p >= x} that specifies the minimum

number of characters that must match in the pattern. For each motif, the table shows the relative

percentage of sequences matched in the training and test sets. The positive training set has 12 sequences,

the negative 3590 sequences. The positive test set also has 12 sequences; the negative set has 226 sequences.

Examples of GP motifs

Motif PTr NIr DPTe NTe
{(MEEIEII : p >= 3} 67 41 67 55
{IQIIIEE : p >= 3} 83 38 92 50
{(I|DE(E|(I|E)) : p >= 4} 58 37 8 51
TQUIEIOPIMCHDINTAHTAPIIANA p >= 33 20 35 23
{M(L|L)YCARACAARAA(L|L)RACAA : p >= 6} 8 28 50 44
{AALAALA(A|M)AA.ILAL(A|M)AA(C|M)AV.IL(.|T)AILAAALA(.|(AM)) 50 28 25 45
VILVAAILL(.|T).IA(AM)AALA(A|M)V.ILV(R|M) : p >= 20}

{(LI(M]A)) (LI(L|(M]A))) (L|(M]A)(LI(LIA)A)M : p >= 5} 83 37 67 54
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