
June 2006
Maria Letizia Jaccheri, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Documentation Practices in Open
Source - A Study of Apache Derby

Håvard Mork

Problem Description
Candidates will have to participate to one open source software (OSS) project for the purpose of
learning about the specific project and to acquire general knowledge about OSS. Students will
influence the choice of the project they want to work with. The candidate can propose a project she
is already working with. The main constraint and source of feedbacks, in addition to teacher
supervision, will be the interaction with one or more existing OSS projects. The research question
will have to be grounded in OSS literature and constitute a contribution to the discussion around
OSS from a software engineering perspective.

Assignment given: 20. January 2006
Supervisor: Maria Letizia Jaccheri, IDI

Documentation Practices in Open Source – A
Study of Apache Derby

Master’s Thesis

Håvard Mork

ii

Abstract

Open source is one of the more interesting trends in software engineering today. The
goal of the software engineering discipline is to increase efficiency in the development
process, and maximize quality of the product. Open source development processes offer
the potential for reducing costs for commercial enterprises.

This master’s thesis addresses how open source documents architecture, and how it
uses documentation in general. Open source has a reputation of creating high quality
software, but documentation of process and product is weak. This may be a hurdle for
wider adoption of open source processes, as a thorough understanding of a product’s
qualities is central to its success. The goal is to better understand documentation re-
quirements in open source. The study is based on participation to the Apache Derby
open source project. Action research is the research method.

The findings show that the Apache Derby documents its artifacts in a number of
ways, but fails to aggregate it in a meaningful way. A rich set of written communication
mediums compensate for this by giving developers the ability to understand the product
over time. The study suggests the popularity and diffusion of an open source project may
affect requirements for documentation.

iii

iv

Preface

This master’s thesis is the result of one semester’s work, from January to June 2006, and
concludes the requirements for a master’s degree in computer science at the Norwegian
University of Science and Technology (NTNU), Department of Computer and Information
Science (IDI).

In this thesis, I have used participation to an open source project to better under-
stand open source development processes, getting experience in software engineering
practices, while also trying to enhance programming skills through observing and work-
ing with the community. The work in this thesis follows in the footsteps of a directed
study from autumn 2005 which aimed to investigate leadership issues in commercially
controlled open source projects [Mor05].

The precise focus of the thesis is investigating which documentation practices exist
in one open source project, and through participation to this project also reflecting on
the challenges for documentation or architectural descriptions in open source. Software
engineering literature presses the need for documenting software, not only for its users,
but notably also for the developers that will maintain the software, i.e. [CBB+02].

This master’s thesis is based on the following assignment text, modified to encompass
my understanding of the task:

Candidates will have to participate to one open source software (OSS) project
in order to learn about open source in a software engineering context, improve
programming skills, and contribute to the discussion around OSS. The candidate
can influence the research focus, as well as the project to work with. The research
questions will have to be grounded in OSS literature.

I would like to thank my supervisor, Professor Letizia Jaccheri for her guidance
through my work on the master’s thesis. Also thanks to the many people at the De-
partment of Computer and Information Science who have contributed through valuable
discussion, and helped make this a memorable semester.

Trondheim, 22nd June 2006

Håvard Mork
havard.mork@gmail.com

v

vi

Contents

Abstract iii

Preface v

1 Introduction 9
1.1 Open source . 9
1.2 The software engineering context . 10
1.3 Problem description . 11
1.4 Overview . 13

2 Research method 15
2.1 Action research . 15

2.1.1 Researcher-client agreement . 16
2.1.2 Cyclical process model . 16
2.1.3 Theory and reflection . 18

2.2 Research and education in open source . 18
2.3 Previous action research experience . 19
2.4 Data collection strategy . 19
2.5 Data analysis strategy . 20

3 Open source 23
3.1 Definition . 23

3.1.1 Communities . 24
3.1.2 Management styles . 24

3.2 History . 25
3.3 Principles . 26
3.4 Licenses . 26

4 Apache Derby 29
4.1 History . 29
4.2 Standards compliance . 30

4.2.1 Structured Query Language . 30
4.2.2 Java Database Connectivity . 31

vii

4.3 Features . 33
4.4 Community and infrastructure . 33
4.5 Architecture . 34

5 Software documentation 37
5.1 Software architecture . 37

5.1.1 Software design . 39
5.1.2 Views . 39

5.2 Issues with documentation . 40
5.3 Open source relation . 41

6 Participation 43
6.1 Overview . 43
6.2 First iteration . 44

6.2.1 Intervention . 45
6.2.2 Evaluation . 46
6.2.3 Reflection . 47

6.3 Second iteration . 47
6.3.1 Intervention . 48
6.3.2 Evaluation and reflection . 49

6.4 Third iteration . 50
6.4.1 Intervention . 50
6.4.2 Evaluation . 52
6.4.3 Reflection . 52

7 Discussion 53
7.1 Success factors for open source documentation 53
7.2 Apache Derby . 54
7.3 Documenting software for newcomers . 56
7.4 Comparing findings to other literature . 57

8 Conclusions 59

Bibliography 67

A Issue log for Derby-1164 69

B Article: Studying Open Source with Action Research 73

viii

Chapter 1

Introduction

Software engineering research addresses the need to find ways to make software devel-
opment more efficient and create higher quality software systems. The set of disciplined
methods used in software engineering development processes aim to allow a software
system to grow and develop into a final form that is useful for the stakeholders of the
system. The open source software engineering process is the focus in this master’s thesis.

Documentation is commonly viewed as artifacts only necessary for users of software.
Looking beyond this, it can be observed that documentation is a separate project artifacts
that needs development and maintenance in order to be useful and survive. Documenta-
tion has both prescriptive and descriptive purposes in a software system [CBB+02], and
is in most development processes regarded as essential. However, while the production
of documentation is seen as axiomatic, little is known about what type of documentation
is regarded as useful for developers [STT01].

The research goal of the master’s thesis is to highlight relations between how software
documentation and architectural descriptions relate to the success of the open source
development method. Certain aspects of this will be highlighted through participation to
an open source project, the Apache Derby database system.

This chapter will further define the goals of this project, its context, and how this
report is structured.

1.1 Open source

Open source has become a cultural phenomenon which also is becoming common in cor-
porate environments. It stems from a hacker culture in the 1960s and 70s, where it was
created out of the need for computer enthusiasts (hackers) to share code among them-
selves. In the mid-80s, the Free Software Foundation was started in order to promote
distribution and production of free software. The early efforts were primarily founded
in idealistic motives, that software should be free for users. This was a response to the
increasing commercialization of computer software and operating systems.

In many ways, open source is light-weight in comparison to commercially used soft-

9

ware development processes. The primary characteristic of open source development
processes is the openness. Many features of commercial software development are lack-
ing in open source, such as requirements engineering with the intended customers, for-
mal use of architecture descriptions, and formal release planning. Open source travels
light by not requiring some of the control mechanisms typically associated with soft-
ware engineering, but still accomplishes acceptable results through a ’scratch-own-itch’,
peer-recognizing culture of sharing.

Successes of the open source development method, according to the number of users,
include operating systems such as Linux and FreeBSD. Popular desktop applications
have also gained widespread diffusion such as Eclipse, OpenOffice, and the Firefox web
browser. Open source is traditionally used to develop software by developers, for devel-
opers. The trend is now moving towards development of end-user software in a market
which is already saturated with commercial alternatives. This trend of commoditiza-
tion is in some ways an effect of open source, but it is also the goal of the original free
software movement, which is giving freedom to the users.

Open source development usually is centered around a community of people working
on a common goal. The community may be composed both of volunteers that work
on open source out of a personal need or interest, and professionals that are paid to
work on it. The economic foundation can therefore not be explained with only a private
investment model, but must include the deeper cultural and social roots [HNH03].

In order to use open source in a commercial context, it is not only necessary to un-
derstand how code is produced, but in order to be successful it is also necessary to make
the adaptions to the cultural and social aspects of open source.

1.2 The software engineering context

Software engineering is according to IEEE Standard 610.12 defined as “the application
of a systematic, disciplined, quantifiable approach to development, operation, and mainte-
nance of software”, and also the study of approaches for applying this [IEE90]. It is an
engineering discipline incepted in the 1960s from the need to address problems like cost
overruns, quality and schedule problems [WRH+00].

Various approaches exist for applying software engineering to real-world projects in
order to accomplish the goals of quality and cost saving. These are referred to as develop-
ment processes. Some software development processes that are commonly used are the
Waterfall model, Extreme Programming, and Agile programming [Koc04]. These models
have in common that they support the software development through introducing well-
defined phases, force programmers to drop their tendency to go on coding with no plan,
and instead follow through with a rigorous set of activities like planning, testing, and
deployment.

Open source is strictly speaking not in itself a software development process like the
waterfall model. Strictly speaking, most implementations of open source will even strug-
gle to fit into IEEE’s definition of software engineering. It does not prescribe the phases

10

the software should go through, or its planning or testing practices. Open source is a set
of principles for a development process [Koc04]. These are that the software’s license
should abide by the Open Source Definition [Ini05], which i.e. requires the software’s
source code should be freely available together with any copies of the program.

The freedom of open source the most distinctive factor when comparing commercial
and open source software. This does not imply they are opposites in a software engineer-
ing context, but merely two approaches for reaching software objectives. Open source
has been described as a cycle of innovation in which those that have the skills share ideas
and build on each other’s work [Woo05]. The Open Source Initiative, however, claims
that “[Open source] produces better software than the traditional closed model, in which
only a very few programmers can see the source and everybody else must blindly use an
opaque block of bits.” 1. Whether this is true or not, a discussion of which is the better
development process is meaningless in an industry where there is a need for both.

Other aspects that are important for software engineering include themes such as ar-
chitecture, development environments, programming languages, databases technology,
software evolution, and configuration management. For this thesis, the focus will be
documentation artifacts in software development. The production and maintenance of
documentation as separate deliverables in a project is important for adoption of software
[BCK03, MD04]. Documentation for developers is the primary concern of this thesis.

1.3 Problem description

This master’s thesis aims to determine how open source software projects produce and
maintain documentation. Freely available open source programs are increasingly be-
ing used as off-the-shelf components in commercial software development in order to
reduce cost and time-to-market. The requirements for such off-the-shelf reuse include
documenting the software thoroughly, following open standards, and easing the evalua-
tion and adoption of the open source software component.

The study is based on participation to the Java database system Apache Derby2. The
participation will aid in understanding these practices in open source. A better under-
standing of how Apache Derby implements the open source development method is ex-
pected from the study, as well as experience in contributing to an open source project.
Apache Derby has been considered interesting for the purposes of this thesis due to its
code complexity, and its relatively widespread usage.

The typical goal for open source software is to create a system which is useful or
interesting to those who are working on it, while still allowing its users to adapt or
evolve the system into their needs [GT00]. For embedded components such as Apache
Derby, its success is dependent on having an API3 that simplifies integration with other

1http://www.opensource.org/
2http://db.apache.org/derby/
3Application Programming Interface, a structure or interface that allows communication between parts

of a system.

11

systems. Having standardized interfaces with proper specifications is necessary in order
for the component to be usable for adopters [CBB+02]. New contributors to open source
will also benefit from the existence of specifications.

Open source literature has previously pressed the need to highlight what characteris-
tics is conductive to smooth open source development [LT00]. Models and frameworks
in literature highlight the process aspects of open source development [DSV03], as well
as structural and cultural [SSR02]. This thesis is an effort to understand the gap between
open source and software architecture by focusing on how documentation practices in
open source is affected by adopters’ and developers’ needs.

Participation and contribution to the Apache Derby project is expected to aid in the
understanding of existing practices in open source on these matters. The practical take
on this issue can also give insight into other problems facing the open source develop-
ment method with regard to documentation. Research questions posed in this study are:

How is documentation maintained in the Apache Derby project?
The existence of documentation in open source projects may be a requirement for both
adopters and developers of open source components. Developers choosing to extend or
adopt open source components may require sources of documentation that explains the
architecture and design choices.

Using a documented software architecture throughout the lifetime of a software sys-
tem can improve the quality and maintainability of the system [BHB99], and thereby
reduce cost and avoid inconsistencies in the software. Importance of documentation in
open source development is also briefly addressed by [BR02, VV04].

Studying how open source deals with documentation further may be helpful to pre-
dict success criteria for the use of an open source component. Open source may by
experts be regarded as black box systems that needs no further explanation, but doc-
umentation, especially architectural documentation holds the key to post-deployment
system understanding [CBB+02, BCK03]. Understanding the architecture is for instance
the key to understand performance and reliability.

What kind of documentation is needed for newcomers to open source projects?
One study in [MFH02] presents the example of the Mozilla project, where documenta-
tion may have been a contributing factor for the lack of outside contribution in its first
years. Complex software developed with open source may need to take measures in
order to reduce barriers for newcomers to contribute.

Properties of architecture that are important for both adopters and developers are i.e.
design patterns, rationales for design choices, performance and scalability of modules,
and API compatibility and adherence to standards. Documentation may also serve as a
vehicle for learning for various types of stakeholders.

Maintaining consistent architecture in open source projects are difficult for specific
reasons. Commercial development rarely has significant drift between architectural plans
and their implementations, while the contrary generally is true in open source due to its
distributive nature [PC04]. A cycle of reinvention [Sca04] that is typical for many open

12

source projects may be the cause.
Participation to an open source project may be helpful to highlight the difficulties

in participating due to the existence or non-existence of documentation. Open source
projects are known to generally provide little documentation [VV04]. It is interesting
to look at reasons for this tendency, and the extent to which the assertion is true in the
Apache Derby project.

1.4 Overview

Chapter 2 presents the research method used in this project, the time schedule for various
activities, and data collection. Chapter 3 presents open source in greater detail. The
database system Apache Derby is then presented in Chapter 4, which is the instance of
an open source project that this research primarily will focus on. Chapter 5 will present
the state-of-the-art of documentation in open source communities.

Activities in this project that relates to the participation to the Apache Derby project is
presented in Chapter 6, followed by a discussion of the research questions in Chapter 7,
and conclusions in Chapter 8.

13

14

Chapter 2

Research method

Using a rigorous research method is important in order to ensure that results will follow
from the premises of the research situation. Work in this thesis is based on Canonical
Action Research [DMK04].

This chapter will further explain the Action Research method, and how this research
method will help to accomplish the goal of this thesis.

2.1 Action research

The role of a research method is to provide a basis for interpreting the world, and serve
as a framework to collect and analyze data. Methods consist of a series of rules or
guidelines to ensure that conclusions follow from the premises.

Action research is a research method that is iterative and collaborative in nature. The
brand of action research used here, Canonical Action Research (CAR), is based on the
principles of working with an organization, and observe an organizational change pro-
cess. The problem being examined is understood through interacting with or changing
the organization through well-planned actions. It is similar to ethnographic methods,
such as participant observation, in that it studies the phenomenon in the context it nat-
urally appears in.

The iterative nature of Canonical Action Research is intended to provide a systematic
approach to the problem. Having well-defined phases ensures that the understanding
of the problem may be evolved in several stages, and that success criteria of the re-
search may be properly addressed. Iterating towards a goal with planning, execution
and evaluation phases also allows for brief pauses where results of the research may be
communicated and discussed.

In organizations, information is provided at different levels. Information may be
known privately or collectively, implicitly or explicitly [Dic93]. This relationship is illus-
trated in figure 2.1. Being a participant in the organization is then helpful to gain insight
into the practices used by the members. Rationales for practices and their benefits and
drawbacks can then be documented from an outside perspective, from a researcher that

15

is part of the system, but remains committed to the research goals.

Figure 2.1: Knowledge assets: Tacit and explicit knowledge (Nonaka and Takeuchi)

In comparison to Grounded Theory [Pan96] research, which reverses the order of
hypothesis generation and data collection, action research focuses on the evolution of
a theory or understanding, or even evolution of research questions. Also comparing
to classical research, action research may be an “upstream” method, where creativity
and analytic skills of the researcher are vital for reaching the goals [Dic93]. The CAR
process also depends on the researcher’s abilities for thorough interpretations of the
situation, the analysis of causes and effects, or proper communication of the facts and
their interpretations.

The technical skills and ability the researcher has to participate to and change the or-
ganization is helpful, but not the only factor determining the success of the intervention.

2.1.1 Researcher-client agreement

One of the prerequisites for using Action Research is that the researcher is able to be
part of the studied organization. Being able to observe an organizational change process
involves being able to observe outcomes, and interact with it.

The researcher should have some sort of agreement with the organization, or better
yet, a written agreement on the expectations and goals of the research. For research in
open source, where consensus is the main control variable, this agreement can take the
form of an introduction about the researcher’s intentions, or may be dropped altogether
if it is found ethically and functionally feasible. An agreement will for open source, in
the understanding of this thesis, be the social contract in which work towards a common
goal is done.

2.1.2 Cyclical process model

The cyclical process model of CAR consists of the following phrases, as found in [DMK04]:

16

1. Diagnosis: The purpose of the diagnosis phase is continuosly making sure the
activities in the research are relevant to the problem being examined. In an action
research project that spans several iterations, the diagnosis will take the current
situation understanding and integrate it into the research agenda. For instance,
research questions may be further refined or elaborated upon.

2. Planning: As CAR involves participating to an organizational system, the plan-
ning of actions should be done carefully so the correct data can be collected. The
planned actions need to be accompanied with an assessment of what the expected
outcome will be. The planning phase is informed directly by the Diagnosis phase.

3. Intervention: CAR interventions may be restricted to days, or even months in
length. The planned actions are implemented as they are planned. Data collection
should collect all the relevant observations from the intervention, but also thoughts
and reflections during planning and evaluation phases.

4. Evaluation: The results from the intervention should be subsequently analyzed
with regard to the expected output, and what has been learned. The evalua-
tion phase should be performed to determine whether the intervention was im-
plemented as planned, in order to document what has been learned, and if any
cause/effect relationships are correct.

5. Reflection: The researcher should reflect upon his own actions for the purpose of
learning from them. Outcomes from the project should be evaluated in context of
the project goals. If project goals have been accomplished, then a decision should
be made to exit the project.

Figure 2.2: The Canonical Action Research cyclical process model, [DMK04]

Figure 2.2 shows a typical action research execution. The strength of the CAR ap-
proach is that it responds to the continually changing environment. The researcher grows
a better understanding of the situation, while providing suggestions or analyzes that are
relevant for practitioners.

17

2.1.3 Theory and reflection

Theory and reflection have critical roles in action research. Action research addresses a
problematic situation in an organization, combining theory and practice through change
and reflection in order to contribute knowledge within and outside the confines of the
project [DMK04]. Action research without theory is simply action learning, and only
regarded as research in a positivist tradition.

The reflection principle of action research allows learning through understanding
organizational norms, and “the advancement of knowledge by generating new theory or
informing/re-informing existing theory.” [DMK04]. This demonstrates that theory and
reflection are in fact related, and that action research can extend existing knowledge in
a scholarly tradition.

2.2 Research and education in open source

Open source has by definition some degree of transparency to the outside world. Open
source communities are usually open for contributions and observers from the outside,
which makes them good candidates for empirical research. The transparency allows as-
sessment of the quality of open source projects by evaluating their activity levels and
popularity. These are in many ways conductive to the level of innovation, and ability to
provide corrections to the software. For open source projects that are alive and undergo-
ing active development, it is simpler to participate in a research situation.

Research in open source allows a student to learn both scientific methods, technical
skills, while contributing to scholarly knowledge. Action research allows the student to
start with basic understanding gained from literature, and consciously reflect on her or
his learning. Observing how software development is done in practice further allows the
student to reflect on how the software engineering profession is implemented in practice.

Research that aims to provide practical guidelines should concentrate on organiza-
tional problems and challenges in the profession. Methods to provide relevance in re-
search include selecting a topic that is directly relevant for practitioners, basing the re-
search on context-rich theories and a cumulative research tradition, and portraying the
research output so that it can be used to rationalize decisions in an organization [BZ99].
In addition to the relevance of research, the rigor1 is also important especially for re-
viewers of research.

This thesis is based on using action research, and aims to extract knowledge about
open source through participation to one open source project. The relevance of this re-
search for practitioners will be in that it provides suggestions for improving open source
practices, or may represent a useful case study for implementers of open source projects.

1Rigor means “Strict ’precision’ and ’exactness’,” [DMK04], or “the correct use of methods and analyses
appropriate to the tasks at hand” [BZ99]

18

2.3 Previous action research experience

There have earlier been studies involving the use of action research to study open source.
A master’s thesis in 2003 uses action research to study acceptance and integration of
newcomers in small open source projects [TT03]. More recently, the undersigned did a
directed study in the Netbeans community in autumn 2005, looking for effects of com-
mercial maintainers of open source communities [Mor05]. Using action research and
open source in the context of education is further explored in the article in Appendix B.

A number of lessons were drawn from the directed study reported on in [Mor05].
For instance, it was found that selection of an open source project to study should also
consider the researcher’s abilities and interests. If the research design is dependent on
contributing to the project, it imposes demands to the researcher on technical proficiency
and interest in the project’s goals.

Some of the issues that action research itself introduces, which should be expected in
such a project, included:

• Entering: What does it mean to enter an open source project? CAR literature has a
Researcher-Client agreement as one of its principles. Such an agreement is difficult
in decentralized open source projects, and poses ethical challenges such as whether
or not the researcher should introduce himself to the community as a researcher.

• Collaboration: The researcher should attempt to discuss findings with other par-
ticipants or peers in order to understand and evolve theories. Multiple viewpoints
eases the critical interpretation of findings. Further asserted by Davison et al. in
[DMK04]: “[t]he researcher must account for the values, beliefs and intentions of the
client employees, and treat them as collaborators rather than mere research objects”.
This may imply that community members should be introduced to findings, or it
may involve investigation of historic communication on the topics of interest, such
as mailing list archives.

• Learning through reflection: Explicitly stating what has been learnt is the most
critical activity of CAR [DMK04]. A requirement for the reflection to be efficient,
the researcher should have performed a thorough and systematic literature review
in advance. This shouldn’t be neglected unless the goal focuses on learning alone.
The researcher should in advance have thought about which results can be an-
ticipated, the possible consequences of these, and how to prepare for the conse-
quences.

2.4 Data collection strategy

Using action research in the context of open source research imposes constraints on
which data is available for collection. The cyclical process model of action research re-
quires that actions are planned ahead of each research iteration. The evolving knowledge
of the studied topic will thus influence what data is collected.

19

Research questions are the primary guides for which activities that will be under-
taken. The activities should in accordance to CAR be directed towards answering the
problem at the current level of knowledge. What types of data that may be useful for
future analysis include, but is not limited to:

• Descriptions of project artifacts, their design principles, and overall functionality of
them, which constitute the frame of the study.

• What kind of documentation exist, in what form, how updated it is, thoroughness,
availability, and communication relating to it.

• Any practices related to architecture descriptions and documentation. How impor-
tant is documentation regarded (“culture”), and how important are open standards
in this regard.

• What kinds of problems are frequently discussed in the community, what are the
developers worried about?

• A journal is maintained with all activities, the progress of tasks, and information
on the outcomes of action research interventions.

The collected data will be in the form of a log of activities, rationales for the activities,
and their outcomes. An attempt will be made to collect as much relevant information
as possible. This will contribute to enhance the understanding of the problem, and
subsequent qualitative analysis may help render the observations into knowledge.

2.5 Data analysis strategy

The data collected during the participation phase will be analyzed to find theoretical
interpretations in the context of the research questions. This research is based on ob-
serving how an open source community works both on the technical and community
level, which also involves understanding the social dimension. Research based on par-
ticipation is appropriate to generate theoretical interpretations [Jor89], but may be less
suited for testing hypotheses.

It is interesting to compare findings from open source to more elaborate software
development processes that typically are used commercially.

Methods employed to analyze the data will be the following:

• Compare the interaction journal with other sources, like Apache Derby’s web pages,
other literature, and written communication of developers. This is to try to address
the one-sidedness of focus, and reduce the possibility of misconceptions.

• Findings can be evaluated according to smaller dimensions of the problem. Divid-
ing the problems into subproblems will reduce complexity, and allow more intuitive
analyzes.

20

• A theorization process will be based on intuition, and thinking aids. Other litera-
ture can be studied to create alternative viewpoints to the problems, but literature
should for the sake of rigor not serve as explanations. This is a creative process.

21

22

Chapter 3

Open source

The purpose of this chapter is to provide a brief overview of open source. When dis-
cussing this concept, it should be recognized that there are no single ideal implementa-
tion of the open source principles. Development processes are not strictly enforced, and
are often particular to the system being developed. For instance, the FreeBSD project has
a defined process for dealing with releases 1.

Basic principles of open source requires that software must be freely redistributed
to any interested party. Ownership of the code is still based on who wrote the original
code, but through applying an open source license to computer code, the right is given
to anyone to make derivative versions of it. Open source is light-weight in its process
requirements, but requires implementations to emphasis code sharing, and transparency.

3.1 Definition

The official definition of open source is controlled by the Open Source Initiative (OSI)
[Ini05], which has trademarked the term in order to protect its meaning. The definition
concerns the distribution terms of open source software, essentially their license agree-
ments, and amongst others requires that source code is distributed together with any
copies of the software.

For a software development project to be open source, Bleek and Finck presents three
criteria they regard as essential for it to be called open source [BF04]:

1. Openness: The project must allow new developers, and that anyone can use the
product.

2. Agility: The development must follow short cycles, and the process may be easily
changed.

3. Distributed: The developers are not located physically at the same place.

1http://www.freebsd.org/doc/en_US.ISO8859-1/articles/releng/release-proc.html

23

These requirements are compatible with the open source definition.
Scacchi presents in [Sca04] a comparison of phases in modern software development

processes and its corresponding mechanisms in open source. His findings are used to
try to create an overview of how open source communities actually produce software.
Requirements elicitation is found to be a by-product of a community discourse on what
the product should or should not do. Maintenance of software is based on evolutionary
redevelopment. Furthermore, a larger community will have the opportunity to maintain
an increasingly complex system, reflecting on a co-evolution of product and community.

3.1.1 Communities

An open source project is a community of people who share interests, and work together
in order to solve a common itch. The individuals that participate may have various
motives for participating, but the individuals motives are hardly ever questioned. One
typical motivation for organizations engaging in open source development is the need
for some particular type of software for in-house use, i.e. middleware for offering on-
demand web services.

The development communities may be characterized as virtual. Participants are usu-
ally spread out across various time zones, and communicate typically only through vir-
tual, open forums on the Internet. These virtual teams have inherited cultural and orga-
nizational schemes from the scientific community, but progressively enriched those to fit
open source development processes [Maa04].

People participating in such development communities can be said to enter various
self-assigned roles, based on which interest they have in the project, their skills and
desires to improve the product, and how much time they are willing to invest. Most
people affiliated with an open source project will be reporting problem, while a signifi-
cantly smaller group will be working on fixing defects or implementing new functionality
[MFH02].

3.1.2 Management styles

Also pointed out by Scacchi in [Sca04] is the differences in management styles. Leader-
ship usually takes the form of an interlinked and layered meritocracy. People with merits
can get roles as committers, meaning they have access to change the project artifacts
stored in a central repository. Communities like the Apache Software Foundation (ASF)
also embrace the roles enabled by a meritocratic leadership [Fou99]. ASF also operates
with the notion of “do-ocracy” – the power of those who do, to recognize the decision
making power given to people that volunteer to get a task done.

Implementations of open source development processes can have different views on
how open source communities are lead. Projects managed under the Apache charter
makes important decisions through voting. Votes are either +1, a positive vote, 0, mean-
ing no opinion, or -1 [Fou99], the latter which in essence is a veto to the proposal. This

24

is referred to as the lazy consensus approach. Other open source processes may impose
less strict management, such as all with CVS/SVN2 write access can make decisions from
their discretion. Another instance is the Mozilla.org project, where project management
related to specific releases are managed by drivers [Moz06], who on a patch-by-patch
basis decides what is included.

Other open source projects can have more rigid leadership styles, like the Linux kernel
development lead by Linus Torvalds, where one dictator makes decisions on acceptance
or rejection of code changes [Sen04].

It is not obvious that any software development will work with open source. Using
open source has benefits for attracting free testing and free development help, but only if
there are incentives for people to contribute. Jamie Zawinski, the original founder of the
Mozilla.org web site, observed in 1999 as he resigned from Netscape Communications
and Mozilla.org work, that “you can’t take a dying project, sprinkle it with the magic pixie
dust of ’open source,’ and have everything magically work out.” [Zaw99].

3.2 History

The tradition of sharing source code is one that has been around since it was in the
laboratory stage at universities. Some notable communities of so-called hackers existed
in the 1960s and 1970s in the USA [Ras00], where sharing of code was as natural as
how scientific communities today share knowledge.

The notion of freely accessible source code were in the following decades going to
be challenged by an increasing commercialization of the computer science field. Bright
minds were hired by large corporations, and the hacker culture was in decline. The
seminal writing of Richard M. Stallman illustrates this process, as well as his work to
promote free software through his very own GNU Project [Sta99].

One model of software development that is closely related to open source is the free
software movement. The open source versus free software terminology has long been
a source for confusion for many. While they in most aspects are identical, there are
some open source projects that would not fit the ideas of the free software movement.
The biggest problem with the free software concept has been the word free, which in
this context is not synonymous with being free of charge, but rather the freedom that
opposes to secrecy of computer code. Free software also have other reservations against
being commercially exploited.

Some proponents of free software now accept the open source term also to cover free
software, in order to avoid confusion, i.e. in [Ray01]. Idealization of the open source
movement is however usual, presenting open source software developers as hackers fight-
ing for software freedom, being people that are naturally anti-authoritarian (ibid):

Hackers are naturally anti-authoritarian. Anyone who can give you orders can

2CVS and SVN are two popular versioning systems, that allows multiple versions and changes to them
to be represented.

25

stop you from solving whatever problem you’re being fascinated by – and, given
the way authoritarian minds work, will generally find some appallingly stupid
reason to do so. So the authoritarian attitude has to be fought wherever you
find it, lest it smother you and other hackers.

3.3 Principles

Eric S. Raymond’s treatise from 1997, The cathedral and the Bazaar [Ray00] presents
interesting examples on advantages of an open source development model, and how
hacker culture fits into this picture. Here, Raymond presents advice for open source
development through examples. His advice include i.e. “Release early. Release often. And
listen to your customers.”, and “Any tool should be useful in the expected way, but a truly
great tool lends itself to uses you never expected.”

No matter how one looks at the free/open source phenomenon, it is a complex social
discipline with several success stories. The Internet is built on free software. More
recently, notable desktop applications such as OpenOffice have become famous for being
freely available. The web browser Mozilla Firefox is the product of a full remake of the
older Netscape browser [Moz06].

The recent success of open source has often been attributed to the “many eyeballs”
nature of open source development. Developers of open source software benefits from
a large community that provides feedback and bug reports, and through that improv-
ing the product. The success from the debugging perspective can be attributed to the
activities developers undertake for reporting, understanding and resolving bug reports
[Østerlie06].

3.4 Licenses

Software licenses are the reason why open source is a viable system. The gift culture
which open source is based on, relies on that developers and companies are willing to
share their work. In order to prevent freeloaders to utilize volunteer effort to make
money, there are restrictions on combining purely commercial and open source code.

Perhaps the most used license in the open source world is the GNU General Public
License (GPL)3. Software authors applying this license to their programs gives users the
right to redistribute the software freely, as long as the code and license terms follow it.
The copyright to the source code remains with the author, but anyone can potentially
make alterations to the program and release it under a new name. However, this also
requires that the GPL follows it.

The incentives firms have for participating in open source are by Henkel found to
be based on license requirements, the company’s reputation, and getting bugfixes and

3http://www.gnu.org/copyleft/gpl.html

26

http://www.gnu.org/copyleft/gpl.html

maintenance for no additional cost [Hen05]. However, following open source licensing
schemes have the disadvantage of potentially strengthening a competitor’s position in
the market: “Firms can and should balance revealing and protection in such a way as to
optimize their pattern of free revealing.” [Hen05]

27

28

Chapter 4

Apache Derby

The research in this thesis is focused on participation to the Java database system Apache
Derby. This chapter will give an overview of the main functions of this system, its archi-
tecture, and how the development of the system is done.

4.1 History

The history of Apache Derby starts in September 1996 with a small start-up company
in Oakland, California, namely Cloudscape, Inc., who developed a Java database system
dubbed JBMS. JBMS, which later was renamed Cloudscape, was then an embeddable
database engine much like its descendant is today. It supported a small subset of the
SQL-92 query language standard. Some of the features used to sell it was its small
footprint, zero administration, and embeddable qualities.

Cloudscape was developed years before Java had become widespread. In 1999,
Cloudscape Inc. was purchased by Informix, another database vendor. In 2001, IBM
purchased the database assets of Informix, which also included the Cloudscape database
system. IBM continued to develop the product in addition to its new Informix database,
and its flagship database product IBM DB2.

The more recent history starts on August 3, 2004, when IBM released version 10 of
Cloudscape, and simultaneously released the product with an open source license. The
Apache Software Foundation subsequently accepted the system as one of its projects,
which now became Apache Derby. Today, Apache Derby is supported by major corpo-
rations interested in its development, mainly IBM and Sun Microsystems. This support
takes the form of contributions to the Apache Derby code, funding developers working on
the project, and providing hardware resources for the development [ZSB05]. Products
like IBM Cloudscape and Sun Java DB are released as derivatives of the Apache Derby
code, and their respective companies sell support services for them.

Apache Derby is currently being maintained with the collaborative framework that
open source and the Apache Software Foundation provides.

29

4.2 Standards compliance

Innovation has long been one of the acclaimed hallmarks of open source. Innovation
is the result of hackers getting free leashes to implement solutions as they prefer them
to be. However, in order to reduce the number and scope of implementations, open
standards and standard compliance also has a significant role. Standards allow multiple
implementations of the same concept [Wal06], and also allows related products to talk
with each other.

Apache Derby is in this regard not different. Participants of the Apache Derby project
value standards, and decisions are often based on their adherence to them. Apache Derby
is based on two main standards: That of JDBC (Java Database Connectivity), and that of
SQL (Structured Query Language).

4.2.1 Structured Query Language

Perhaps the most widely used querying language in use is SQL, which is used to retrieve
information from relational database systems. The SQL language has undergone various
revisions, from the original standard in 1986 (by ANSI) until 2003. Features such as
identity columns and triggers are added in the more recent revisions. An example use of
SQL is shown in figure 4.1.

Figure 4.1: Example SQL query in Derby’s command line tool, IJ.

The purpose of SQL is basically to manage data or meta data in a centrally stored
database. Having a standardized language to retrieve this information allows for database
systems to be replaced with little or no changes in the query specifications.

There are three major types of queries. Select statements are used to retrieve informa-
tion from the database in the form of a set of matching rows. Data Definition Language

30

(DDL) statements are used to change the structure of the stored data, specify constraints
on it, or specify the layout of the database itself. The last type, Update statements, allow
for changing the stored data.

4.2.2 Java Database Connectivity

Java Database Connectivity (JDBC) is a set of APIs, or interfaces, that define the behavior
and operation of a JDBC-compatible database system [Mic05]. The API may contain
functionality such as executing queries against the database, retrieving meta information,
transaction management, and handling of various SQL data types. JDBC API allows for
SQL queries to be executed on the database, without the programmer needing to know
detailed inner workings of the database system that is being queried.

Another advantage of the architecture of the JDBC API is that it does not make design
decisions on the system. Database systems may be embedded in the same run-time
environment as the application, or may be operated as a network server over the Internet.
It may as well be implemented in a different language or platform. Figure 4.2 shows an
application’s relation to Apache Derby, and how JDBC is used for communication (JDBC
includes also the ResultSet and Statement interfaces).

While SQL queries are being fed to the database system unchanged, the resulting
data from queries are embedded in ResultSet objects. Result sets are objects that allow
the caller to fetch any rows that match the query. The result sets represent cursors to the
database data on the server, and rows are returned on demand.

Figure 4.2: Conceptual module diagram (layered view) and sequence diagram for appli-
cation/Derby relation to JDBC.

The JDBC standard also undergoes changes. At the time of writing, JDBC 4.0 is cur-
rently under review, which is a minor revision of previous JDBC versions. The binary
compatibility between versions is important. Users of the Java platform can have widely
differing versions of the Java platform installed, thus one of the issues of new versions

31

of standards is to ensure that older applications still works on newer Java Runtime Envi-
ronments.

As JDBC depends on the SQL standard as a query language, the standard does not in
itself decide how a database system operates. For instance, Microsoft’s implementation
of SQL used in products such as SQL Server 2000, Transact-SQL, has a fundamentally
different method for accessing database meta data than SQL-J, which is used in Apache
Derby. SQL-J relies on JDBC’s implementation of DatabaseMetaData for this purpose.
Differences like these, however, often have annoying consequences like the need to create
several implementations of a database access mechanism for applications that should
operate with different database systems.

Some of the important elements of JDBC are:

Driver The driver interface typically will represent a database system, or an access
method to a database. Database systems will need to implement the driver, and applica-
tions need to instantiate them when database connectivity is needed. Apache Derby has
two drivers, namely EmbeddedDriver and ClientDriver, that represent running Apache
Derby as part of the application, and running it as a stand-alone network server respec-
tively.

DriverManager The driver manager is the Java entity that loads JDBC drivers. The
loading of drivers are based on URLs that specify which database system and database to
connect to, including properties such as whether the database should be encrypted, user
name, passwords, etc.

Statement Statements are used for executing SQL statements. The Statement interface
distinguishes between the execution of statements returning data, and those updating
data or meta data. A special case of the Statement interface is PreparedStatement, which
is a pre-compiled SQL statement that allows JDBC database systems to optimize repeated
similar operations. Apache Derby optimizes statements by generating executable Java
byte code for the SQL, which the Java Runtime Environment may further optimize into
platform-dependent byte code when repeated calls are made.

ResultSet Result sets are tables of data that represents the result from a query on the
database. The result set will allow the application to fetch rows, or tuples, from the
database in the order specified by the query description. Apache Derby provides several
implementations of result sets for internal use, which serves the purpose of handling
functions such as sorting, index look-ups, and table scans.

Types JDBC stores information on the data types of columns as part of its meta data.
The data types of JDBC are similar to those of SQL, and are referred to as standardized
names such as INTEGER, FLOAT, DATE, and VARCHAR. The implementations of the data

32

types in Apache Derby are all based on a generic SQL data type, so they are able to offer
a type conversion and comparison operations.

DatabaseMetaData, ResultSetMetaData The meta data classes allows for an applica-
tion to determine the structure of the data in a given table name, a view, what SQL
procedures are accessible, or for result sets which columns are included in the result set.

4.3 Features

In addition to being a database system implemented in pure Java, Apache Derby also
advertise having good performance in comparison to its siblings implemented in native
languages. Apache Derby also is based on the ACID1 principle, which means that it
ensures the correct execution of transactions.

Embedded As already mentioned, one of the most useful features of Apache Derby is
the possibility to bundle it with any application, without the application being required
to follow the same license. This conveniently allows the database to be combined with
open source middleware systems such as Hibernate and JBoss.

Tool support Tools such as ij and dblook are JDBC-compliant tools that can be used
with Apache Derby. ij is a scripting tool for automating operations related to testing, and
creation/maintenance of databases. SQL-J queries are taken as inputs, and the resulting
data from the queries are displayed.

4.4 Community and infrastructure

The Apache Derby community is composed of the persons participating to the project,
and supported by a network of communication mediums. These mediums most impor-
tantly involve storage for source code (a SVN repository), an issue tracking system, and
mailing lists. There are also various web pages that are useful for users.

These infrastructure services are being offered by the Apache Software Foundation
(ASF), which is a non-profit organization formed in 1999 to provide a technical and
legal foundation for “open, collaborative software development projects” [Fou99].

Projects operating under ASF’s umbrella have full autonomy, run by consensus of its
members, but an officer of the ASF needs to be present in each project’s Project Manage-
ment Committee (PMC). The role of the PMC is to ensure the health of the community,
and that development happens in an orderly fashion. Furthermore, the presence of an
ASF-appointed officer in the individual projects is a key to litigation protection, as the
foundation as a whole will be implicated in case of any lawsuits.

1Atomicity, Consistency, Isolation, and Durability (of database transactions)

33

4.5 Architecture

The logical architecture of a software system is the structures which the software is built
on. It is independent of technology. This differs from the physical architecture, which is
the set of modules and classes that communicate together. This section briefly shows the
principles of Derby’s architecture. A conceptual sketch is shown in figure 4.3.

Figure 4.3: Logical architecture of Derby, from [Deb04]

Monitor The monitor2 is the object that loads and instantiates services and modules
(explained below, and shown in figure 4.4) in the system. When i.e. a new database
should be loaded, the request is handled by the monitor.

Service Services are sets of well-defined functionality used in the system. A database is
in itself a service. They consist of one or more modules, where one of the modules must
be the factory class for the service.

Modules Modules are isolated parts of functionality, such as a lock manager, or data
access/indexing method. Modules can be either embedded in a service, or they can be
system-wide, such as error logging.

Query processing The processing of SQL queries is a multi-phase process which pro-
ceeds from the textual input of the query string, to the return of data and state from
the database. Important for the query processing are factors such as standard compliant
behavior of the API, the reliability, and the performance at which data can be returned.

Data retrieval queries go through the following phases:

• Parsing: The query string is parsed with a JavaCC parser, which traverses the query
from left to right, generating a hierarchy of nodes of the input. Constant values are
also bound to their respective query tree nodes.

2http://db.apache.org/derby/javadoc/engine/org/apache/derby/iapi/services/monitor/
Monitor.html

34

http://db.apache.org/derby/javadoc/engine/org/apache/derby/iapi/services/monitor/Monitor.html
http://db.apache.org/derby/javadoc/engine/org/apache/derby/iapi/services/monitor/Monitor.html

Figure 4.4: Relationship between services, modules and the monitor.

• Optimization: Preprocessing can eliminate unnecessary constructs, or optimize
queries by prioritizing more selective constraints to reduce the number of com-
parisons. In cases where the entire query is not known, such as when using pre-
compiled PreparedStatements, query optimization is often not possible.

• Compilation: The query tree nodes are used to generate runnable Java byte code
for the query. The purpose of this is to optimize the execution and comparisons
of queries. Especially when using pre-compiled SQL statements, the performance
benefits of this step are large. The generated code is based on a Activation inter-
face, and uses public Derby API for data type access, comparisons, database store
access etc.

• Execution: Execution of queries involve running the compiled query. A hierarchy
of result sets are generated by the execution. The returned set of matching rows
may be piped through i.e. both an index scan result set, and sorting result sets. This
allow Derby to efficiently manage memory, while avoiding a very complex query
processor. The result will be presented to the user in a ResultSet object, which
allows for retrieval of one row at the time.

Figure 4.5 shows how the query processing works in six stages, starting with the
original query and ending with returned data. The purpose of this illustration is to
demonstrate the complexity of the query processing pipeline.

35

Figure 4.5: Overview of parsing and execution of SQL queries in Apache Derby (note:
node hierarchies only examples, not necessarily factual).

36

Chapter 5

Software documentation

The common perception of software documentation is that it is written for users, in order
to make the software easier to understand. It enables the users to accomplish their goals
for using the software. User documentation is not addressed in this study, but it is worth
pointing out the distinction.

Software documentation is by [For02] described as “an artefact whose purpose is to
communicate information about the software system to which it belongs”. This definition
encompasses documentation for users and developers, and equates it with communica-
tion.

The documentation is supposed to demonstrate parts of the software that is not im-
mediately understandable, while leaving out the internals that does not help the under-
standing of the reader. For developer documentation, or architecture descriptions, it can
typically be used to simplify the task of doing maintenance operations on the source
code, or integration with other systems.

As an effect of the status-driven, volunteer culture of open source, any kind of doc-
umentation in open source processes is traditionally the last element to be developed.
That is, if it is ever developed. Raymond describes this problem in [Ray00]:

It is a hallowed given that programmers hate documenting; how is it, then, that
Linux hackers generate so much documentation? Evidently Linux’s free market
in egoboo works better to produce virtuous, other-directed behavior than the
massively-funded documentation shops of commercial software producers.

This chapter explores the idiosyncrasies of architectural documentation, and its vari-
ous forms as used in the software engineering discipline.

5.1 Software architecture

Software architecture is by Bass et al. defined as follows [BCK03]:

37

The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them.

In addition to the structure or structures of a program or computing system, it is
also important to have a method for representing these in a manner that is understand-
able for humans. The software architecture discipline accomplishes this by reducing the
complexity through looking at the software through various viewpoints. Distinguishing
between high-level perspectives of the system and lower-level detailed architecture also
helps reduce complexity for a reader.

Figure 5.1 shows an example of a software architecture. The description shows which
parts of the system communicate. A full description would typically detail each of the
modules in greater detail, and give rationales for design considerations.

Figure 5.1: Example of a logical architectural description, the file system in the Linux
kernel, from [BHB99]

In a system’s lifetime, the software architecture is continuously evolving and changing
with the new requirements. New technologies emerge, and infrastructure supporting
software need to be adapted to the new environment. The software documentation
here plays the role of a human-readable representation of the architecture, which allows
developers to identify design principles and potential modifications made necessary by a
new requirement.

38

Using a documented software architecture throughout the lifetime of a software sys-
tem can improve the quality and maintainability of the system [BHB99]. The conse-
quence of not having a documented architecture are higher maintenance costs, and po-
tential problems with consistency in the software.

5.1.1 Software design

An important distinction to make is that of between design decisions, and software ar-
chitecture. Software architecture deals with externally visible elements of the software
elements. Elements that have no interest outside of its module are not considered sub-
jects of architectural decisions. How elements are implemented, or which technology
they use to accomplish their goals, should be up to the implementer to decide.

The meaning of this is that architecture is a high-level abstraction of the system.
This addresses the distinction between conceptual and concrete architecture [BHB99].
A software architecture can describe the ideas behind the system’s design. However, the
concrete architecture may differ because of performance optimizations, and other design
decisions.

5.1.2 Views

One proposal to simplify the organization of software architecture documentation is the
4+1 view model by Kruchten [Kru95]. The purpose of the 4+1 view model is to organize
descriptions of architectures in five concurrent views, which isolates concerns. The views
are the following, as described by [Kru95]:

• Logical The logical view describes the classes in the system, or the relevant entities
that work together. This description can be a class diagram, or i.e. an Entity-
Relationship diagram.

• Process The process view shows concurrent processes or threads, and how these
are synchronized to each other.

• Physical The physical view shows how the software is deployed to hardware, and
the distributed nature of any components.

• Development The development view describes how the software is developed by
the organization. The various personnel working on the software is relevant. This
is in accord with Conway’s law, which suggests that the organization of a software
system will be congruent to the organization of the team that designed the system
[BH99].

In addition to these four viewpoints, Kruchten also recommends having a set of usage
scenarios, or use cases, that describe the intended use of the system. These views are
illustrated in figure 5.2, together with which stakeholders and concerns are important
for each of the dimensions.

39

Each view in a documented software architecture are in themselves not sufficient
to understand the system, but together enough to understand how the system works.
Kruchten also argues the need for a design document should accopagny the software
architecture, to explain lower-level design decisions that are needed to understand the
system throughout its lifetime.

Figure 5.2: Kruchten’s 4+1 view model, [DMK04]

The people that are affected by the software architecture process or the resulting
system are referred to as stakeholders. This title implies that they have interest in how
the system is developed, like the cost and end-user support requirements, or how the
completed product affects their job.

5.2 Issues with documentation

Smith et al. in [STT01] points out the confusion surrounding documentation of view-
points of the software. Little is known about which type of documentation is useful, how
it should be written, while also questioning motives for having documentation at all.
This is by Smith et al. exemplified by light-weight processes like Extreme Programming
(XP), where documentation is done away with completely.

Criticism of the agile software development processes like XP include that it can bor-
der to the irresponsible with regard to formality, and an undue reliance on individual
competency, as cited in [Koc04]. These problems may also be present in open source.

The IEEE Recommended Practice for Architectural Descriptions positions the archi-
tecture of a system as an activity which has the purpose of reducing the formidable risks
and difficulties of design, construction, deployment, and evolution of software-intensive
systems [IEE00]. This reflects on a consensus among IT professionals that architectural

40

descriptions should be made. It does not, however, distinguish between technologies or
development processes used for creating the software. In other words, properties of the
open source development process may in itself be enough to document architecture.

5.3 Open source relation

It is widely recognized that large software systems should have a documented software
architecture [Kru95, BHB99]. This assertion is easily understood in the context of com-
mercial software development. However, for open source development processes, this
brings some problems.

The production of user documentation in open source has historically known to be
insufficient for many uses, such as described by Richard Stallman in [Sta99]. Here, it is
asserted that the development of documentation should be parallel to the software, and
encourage its maintenance by offering the same freedom to modify it, as open source
software allows.

In much contemporary open source literature, the issue of software architecture doc-
umentation is ignored. such as in [BP01]. A reason for this may be that open source
development processes traditionally have no requirements for documenting software ar-
chitecture, and it is simply not given a thought. Commercial software development uses
architectural documentation in order to attain high maintainability and overall qual-
ity [BHB99]. The same effect is attained in open source through its highly distributed
nature, and access to enormous availability of free labor force. There are not many in-
centives for the average open source project to be trying to close the gap to commercial
development with regard to architecture documentation.

One situation where the current open source practices on documenting software ar-
chitectures is insufficient, is when it is used in narrow, specialized domains where there
are fewer interested developers. If an open source process is to be used here, then bet-
ter consideration needs to be given to the documentation aspects. This is however a
non-issue in the software engineering community.

Bowman et al. [BH99] has suggested that analyzing the relationship between de-
velopers and code can be visualized and used to reconstruct the architecture. This is
not unlike existing open source practices, where bug tracking systems and mailing list
provide vital clues to who-knows-what.

41

42

Chapter 6

Participation

This chapter presents the research activities done in this project, and the evolution of the
theory. The purpose is to allow reviewers to see how the results are found. Section 6.1
gives an overview of the participation phases and the philosophy behind their planning.
Sections 6.2, 6.3 and 6.4 shows the processes for the three executed action research
iterations.

6.1 Overview

Participation was used in this project in order to determine how documentation affects
participation to open source projects. Activities reflect an effort to improve Apache Derby,
through participating to it by contributing code and following the project’s development.

The time used in the various phases of the participation is shown in table 6.1.

Phase Planning Intervention Evaluation
Iteration 1 08.03 12.03 27.03
Iteration 2 28.03 28.03 19.04
Iteration 3 20.04 22.04 08.05

Table 6.1: Starting dates used for the various action research iterations

In addition to work on resolving issues, the researcher also followed mailing lists and
IRC1 channels for Apache Derby. Following the mailing lists imply a certain overview of
project activity, as source code changes are automatically posted on a mailing list.

1Internet Relay Chat, a real-time text-based chat service

43

6.2 First iteration

The first phrase started with an understanding as stated in the problem description in
the introduction. It was assumed that there are differences between what users and
developers need from documentation of a product, and what kinds of documentation
exists. This may be a consequence of that working on documentation can be viewed as
an unrewarding task by the technicians who have learned the system from scratch.

The lack of sufficient documentation may hurt the adoption of open source, as prod-
ucts can be perceived as less mature, and as having less activity. Publicly available articles
provide valuable exposure, and is one method to counteract this. In addition to docu-
mentation, it is important to have a strong community that can answer questions and
react to changing demands.

As the development of Apache Derby is supported by major corporations, it has good
premises for studying how open source meet market demands. Through its commercial
ties it is expected to provide an active and resourceful community to do research in.

Interesting for this research phase it to firstly get acquaint with the project, find out
which types of documentation is produced, and how it is maintained.

Actions that will be included in this phrase include:

1. Examine mailing lists. If this is a mature project, there will be activity from a
significant base of developers, and also users. If many have use from this project,
both users and Derby developers may be participants in discussions.

2. Examine project artifacts. This involves getting familiar with the structure of the
source code and the main features. If there are good documentation for newcomer
developers, it might indicate that either:

(a) they have a healthy focus on getting new developers to participate, or
(b) there are excess developers in the project that are willing to do these kinds of

boring tasks.

3. Do work in the project by looking for tasks that may be fixable with outside contrib-
utors. The researcher may additionally find tasks to work on from own, practical
experiences with using Derby. Examine the process of including and/or discussing
features in the project.

4. Entering the project will not include an introduction of the researcher. Since per-
sons are not studied, this will be regarded as a research-ethical choice.

5. Special care should be exercised with regard to how difficult it is to understand
principles of the Derby machine, and why it is difficult or not difficult to under-
stand. This will document the hypothesis on documentation’s effect on newcomers.

The theory is that much end-user documentation is available, which is the result of
the aggressive publicity Apache Derby has received, and also its use in different com-
mercial products (IBM Cloudscape and Sun Java DB). Documenting it is therefore easy,

44

because it is tied to a market model. It is assumed that the project is affected by a lack
of architectural documentation, as is common in open source. The code is viewed as suf-
ficient to understand the system, and architecture descriptions are not formalized. This
is similar to that the requirements engineering process is an informal process in open
source. The effort of getting acquaint with project artifacts will probably include mostly
reading code to understand the structure.

6.2.1 Intervention

The social code that the community follows is very evident when observing an open
source project. Guidelines on how to communicate in mailing lists is one form of codifi-
cation of this:

Respectful and considerate communities are one of the pillars of the Apache way.
Please aim to provide constructive comments and do not denigrate others.
...
Every contribution is worthwhile. Even if the ensuing discussion proves it to be
off-beam, then it may jog ideas for other people.

Complaints in the community addresses that user documentation in Apache Derby
is insufficient for beginners. One user comments in the mailing list that the installation
guide is “extremely buggy”. As a response to this, a community member mentions a few
efforts that are underway for improving user documentation, namely issues Derby-8792

and Derby-9133

Issue Derby-909 Derby-909 is an issue that is marked as a newcomer entry, which
encourages newcomers to the project to look at it. The problem is that SQL queries
containing string literals have suboptimal performance. For the researcher, it was difficult
to find a method to approach this issue, due to problems understanding how querying
works, and a solution would require a rather creative approach to the optimization.

Issue Derby-1062 Issue 1062 concerns a built-in Derby function to compress a table.
Compressing a database table becomes necessary if rows of varying sizes are inserted
and deleted in the table, leaving unused space between table rows. The issue involves
combining this functionality with a similar function, in order to reduce code. Still, the
investigation of this problem serves mostly education, as it is difficult to understand.

The use of Derby- or database-specific terminology is a problem. The use of locks and
row handling makes this an issue that requires some more experience with working with
the system first.

2Derby-879: “The Getting Started Guide is incomplete (section: Installing and working with Derby) and so
not helpful to new users”

3Derby-913: “[WWD] Proposal to create and add Working With Derby, an activity-based tutorial docu-
ment, to the Derby documentation set”

45

Derby-836 Issue 836 was also worked on, which is related to the calculation of display
widths of decimal columns. As this bug also requires a great deal of work with updating
test cases, this is a lot of work. Finding the location of the error also proves to be difficult
with little knowledge of the API. Working with this issue furthermore involves consulting
ODBC, JDBC and SQL specifications on what the proper use of decimal columns are.

A fix is implemented. However, one problem that occurs is that a huge number of test
cases will fail if the patch is applied. For this reason, the patch is not submitted at this
point.

Derby-1136 The issue Derby-1136 is about data types, which also is addressed in previ-
ous work of the researcher. This makes the work easier. The problem is loss of precision
in floating-point numbers due to internal conversion between 32- and 64-bit floating
point numbers. This issue is easily resolved, and a patch is submitted to the bug tracking
system, Jira.

One mailing list thread from January 2005 addresses the problems with architecture
documentation, and demonstrates awareness of such issues:

The Cloudscape development model has always been light on design documents,
the design was intended to be captured in the code, its JavaDoc and general
comments in the code. Functional specifications were written and they are all
reflected in the user documentation.
...
My guess is that there is nothing that exists that would help people understand
an overall view of the system, they may be some focused papers on certain “edge”
areas.

6.2.2 Evaluation

During the intervention, the biggest problem was understanding the overall structure of
the project, and its classes and Java packages. Understanding the program flow requires
a lot of study, especially in an architecture with many links between modules. Evaluating
the quality of the code is also difficult when being in the role as an outsider, with little
reference material to consult.

There are some birds-eye views on the Internet that presents some of the higher-level
aspects of Apache Derby. These are, however scarce, helpful to understand some of the
basic concepts of the architecture, but are insufficient on their own.

The documentation for users is through discussions on mailing lists and regular up-
dates shown to be regularly updated. Efforts to document the architecture of Apache
Derby are also being worked on, are generally supported by many community members,
but insufficient to create any good architectural overviews. Why are there many small
efforts to document isolated pieces of the software, and no effort to bring this into an
unified description?

46

Basing on the activities of this phase, it appears that there is a lot of documentation
available to developers in this open source community. Documentation for users and
developers have different motivations, but architecture documentation may also be rel-
evant for evaluators. The architecture descriptions are spread out over several sources,
with different authors and focuses. This makes it difficult to assess which assistance the
documentation offers for the developers, as the developers can not be considered one
homogeneous group.

6.2.3 Reflection

Taking the role as a contributor in the project was difficult, mostly due to the complexities
of the code. Documentation that could aid the participation was scarce. In an attempt
to get better understanding, suggesting new features could be useful. More thorough
investigation of documentation shows no surprising findings. Both JavaDoc, test cases
(functional and regression tests), and bug tracking system specify the expected behavior
of the system, but they are neither easily readable nor accessible.

Another cycle of action research will be done to try harder to contribute with code.
The motivation will still be to take the role of a developer, while revealing information
on the research questions. Also interesting to understand is what is needed to make the
job of newcomers easier to join open source projects, and what support could make their
jobs easier.

6.3 Second iteration

Documentation in the Derby project may be a second-rated activity, which is overshad-
owed by the desire to provide “documentation” through tests and JavaDoc. Much docu-
mentation, and even printed literature exist for Derby users. The need for architectural
documentation, which is need to post-system development understanding, and for new-
comers to open source projects, however, is not properly addressed according to the
researcher’s observations.

The complexity of a database system can be overwhelming for a newcomer to such
a project. There seems to be a “critical mass” of developers working regularly on the
project, which makes it interesting to join. Newcomers can here enhance programming
skills, get feedback on their contributions, and participate in discussion around the di-
rection of the product.

Theory started with documentation is made mostly for end-users, with little or no ar-
chitectural descriptions being present. The current understanding is that documentation
is JavaDoc plus tests, and smaller text-only descriptions of various concepts of the Derby
engine spread among Wiki, web pages, and mailing list threads.

Theory for this iteration will be that the community will focus mostly on assistance on
process issues, like i.e. how to create patches, and how to go by to get assistance. These
are the community rules which control how everyone works. Through such a system,

47

getting familiar with the system is harder because the user need to look a lot of places
to find relevant information. The distributed nature of the documentation may confuse
developers that need to get an overview. Examining code is the only way to get a proper
overview, as getting a thorough overview through mailing lists, bug system, sporadic
articles and code comments is costly.

Actions for this phrase include primarily looking at reasons for the found data in the
previous phase:

• Suggest functionality to add to Apache Derby, i.e. SHOW TABLES functionality. The
purpose will be to continue learning more about the system, and also try to improve
it.

• Get a proper list of all documentation resources, and to whom they are useful.

• Main focus: Why is documentation not aggregated in one source? Why is every-
thing spread out?

6.3.1 Intervention

Issue Derby-1164 A tool that accompany Apache Derby is the ij command-line script-
ing tool. This tool allows users to connect to a database, run upgrades or other opera-
tions, and execute queries. One feature that is missing from this tool, which is suggested
implemented by Derby-1164, is the ability to display lists of existing tables, views, pro-
cedures etc.

Implementing this involves first being able to modify command parsing. Commands
and SQL statements are in Derby parsed using the JavaCC parser generator. This essen-
tially generates a tree structure of an entered command, according to a grammar.

After some discussion and patch suggestions in the bug tracking system, a workable
implementation is made. Most of the work on the patch is spent on finding the most
efficient and maintainable problem solutions. In addition, some Derby participants also
highlighted the need that the ij tool also has to be compatible with other database man-
agement systems, which involved additional work on the patch.

The complete interaction log for Derby-1164 is attached in appendix A.

Derby-722 Working on more maintenance issues. Derby-722 is about functionality that
differs in various forms of result sets. Interesting here is to observe how test cases can
relate to the project artifacts. The role of tests is to discover differences that occur during
the evolution of the system, in order to bring small behavioral differences to the attention
of the programmer. Tests are this way forced to be alive, and can not be ignored. This
way, they are not prone to aging in the same way as any architectural description would.

Derby-1208 A simple fix for issue 1208 is submitted to the bug tracking system. This
is an issue that is a minor inconvenience when testing. The nature of the bug report was
that a Derby object got an invalid state in the case of SQL statements that emitted errors.

48

The biggest problem as a developer was again to locate the precise code block that
the error occurred in. With practice, this task is easier, but still keeping track of all
interdependencies proves to be a daunting task.

Documentation sources As an attempt to find which documentation sources are gen-
erally used in open source, a brief search of available resources is made. The following
resources are found in the Apache Derby project, and found important to participation:

1. Wiki, http://wiki.apache.org/db-derby/. Contains i.e. discussion around pri-
oritization of bugs, brief architecture overviews, links to articles and resources,
proposals, and information for newcomers.

2. Web pages, http://db.apache.org/derby/. Contains i.e. information on the
product, downloading, license, quick start, brief architecture overviews, and project
news.

3. Manuals, http://db.apache.org/derby/manuals/index.html, API, getting started,
reference manual, developer’s guide, tuning guide, administration guide, tools/u-
tilities guide, working with derby.

4. JIRA bug tracking system, https://issues.apache.org/jira/secure/BrowseProject.
jspa, with discussion around bugs, and suggested solutions.

5. SVN repository logs, http://svn.apache.org/viewcvs.cgi/db/. Also include
commit logs.

6. Mailing lists, http://db.apache.org/derby/derby_mail.html

The purposes of these are different. Web pages serve as a presentation tool to the
outside. Wiki allows easy update of knowledge in the community. Bug tracking system
carries information on the process for resolving bugs. SVN commit logs traces all the
changes, the rationale for the changes, together with the bug tracking system, and so on.
The mailing lists are in many ways the glue that keeps the community together, through
discussion around project control and an informal requirements engineering process.

6.3.2 Evaluation and reflection

There seems to be basis for the hypothesis, after only working in the project, but not
studying in-depth, that documentation seem to be good for the process issues, which is
necessary to attract new developers. There is no lack of information, but the documen-
tation that exists is rarely relevant for detailed work.

Action planned and performed in the project seems to take unreasonably long time,
and much effort. This will not be sustainable if someone were to i.e. do the same work
while employed in an organization. Using open source in a commercial context then is

49

http://wiki.apache.org/db-derby/
http://db.apache.org/derby/
http://db.apache.org/derby/manuals/index.html
https://issues.apache.org/jira/secure/BrowseProject.jspa
https://issues.apache.org/jira/secure/BrowseProject.jspa
http://svn.apache.org/viewcvs.cgi/db/
http://db.apache.org/derby/derby_mail.html

difficult – more documentation should be available if they expect other organizations to
start efforts to participate in the development. Anything else may lead to costly develop-
ment for organizations that possess little knowledge of the product from before.

6.4 Third iteration

People, at least the researcher, don’t know where to look for documentation. Impres-
sion that the production of documentation is very much ad-hoc, put into a framework,
“because they must”, and because it is a rule that documentation should be produced.
For elitism cultures it is easy to ignore the rest of the community, especially when the
community is tight-knit and there are few benefits from the openness.

The distributed nature of documentation makes it harder to understand the project
at a first glance. Interested developers must follow the project for some time in order to
understand where the development is heading. There is a very well-developed documen-
tation structure for the users, but for developers participating it is important to utilize
the time perspective to get familiarized.

For individuals are participating to open source, lack of open source experience is
probably reducing performance. Theory is that it is a learning process, and when expe-
rience is built, the individual will get self-confidence and know what requirements are
set to the code, including what requirements are set to participating in the planning of
releases, and thereby acquiring the knowledge required to work efficiently.

The following actions are planned:

1. Suggest issues necessary for making a documentation framework in open source.
The type of architecture documentation, the extent, and the purpose are all relevant
to mention.

2. Reflect on if newbies need more than process support, in light of the participation
that the researcher is doing himself.

3. Continue normal participation.

6.4.1 Intervention

Derby-1164 The iteration started with continuing the work on Derby-1164, which was
an issue related to the introduction of SHOW TABLES-alike functionality. Some problems
are discovered, i.e. that there are no uniform ways of returning the currently active
schema in database management systems. This addresses the cross-platform compati-
bility of Derby, which appears to be a sore issue in the community. Also, returning the
correct subset of data to the user, is choices that there are no good answers to.

50

Suggestions for documentation production The researcher’s suggestion for how doc-
umentation, in particular architecture documentation can be viewed in an open source
community:

• Social dimension: Following the development on the mailing list is an interest-
ing activity, and probably something that most open source developers interested
in contributing should do. What is provided here is necessary in order to under-
stand the social dimension – why people participate, how they participate, normal
politeness, etc.

• Process dimension: CVS/SVN4 Commit logs and bugs and the likes are also a vital
part of understanding what is going on, why it is happening, and the progress.
These are open to the outside to provide evidence for activity and health of the
community. Also, information on how to contribute, and the extent to which the
community values contributions from outside, is here good.

• Technical dimension: Models, technical overviews, design rationales. These may
be spread across multiple sources, such as bug tracking systems, mailing lists, etc.
This is for the purpose of understandability not a good solution, but simplifies the
maintenance and gives participants a streamlined approach to their code work.

Who should create the documentation? Documentation is an intermediary whose
purpose is to support the primary goal, the software, and its development and mainte-
nance should be integrated with the software’s development [For02]. Existing practices
are sufficient for the participants, but it might be advantageous for newcomers to have
something that enables them to ’speed up’ the learning process. This could be i.e. bet-
ter overview, a developer manual that documents all aspects of the system, schematic
overviews, dependency diagrams or the like.

Derby-1262 The derby-1262 issue was regarding incorrect behavior of LIKE state-
ments. The optimization of SQL statements containing LIKE would result in that control
characters be handled incorrectly. If strings had a tab character (ascii 0x09) on the place
where the string matching occur i.e. "asdfTABjkl" LIKE "asdf%", then it fails.

The bug is approached by trying to find out which function actually fails. The error is
located by following the call hierarchy in the code, a process that was time-consuming.
The steps are the following, included to demonstrate a point:

1. LIKE-optimizations are evaluated in the LikeEscapeOperatorNode class.
2. Various uses of LIKE uses different kinds of optimizations. Some of them involves

replacing the LIKE statement with the faster LessThan and GreaterThan operators.
3. When LessThan and GreaterThan operators are used, BinaryComparisonOperator

nodes are used to indicate comparisons in the query tree.

4CVS and SVN are common version control systems.

51

4. When the statement compiler runs, the comparison operator is serialized into the
compiled statement class. The constraints (LessThan/GreaterThan value) of the
comparisons are written in order of selectivity, that is, constraints that selects the
fewest rows are prioritized.

5. When the compiled code runs, a BulkTableScanResultSet is generated (or index
scan result set, in case the table column is indexed).

6. The BulkTableScanResultSet passes on qualifiers (constraints) to scan controllers.
Scan controllers return rows to the table scan class, and ignores rows that does not
satisfy the constraints.

7. SQLChar.stringCompare seems to be manifesting the failure.

What is worth noting here is the complexity of a process to resolve bugs when prior
knowledge is weak.

A fix for this is implemented, and submitted. In order to increase the chances of the
patch being accepted, the number of changes is kept to a minimum, and test cases are
updated and verified to run correctly.

6.4.2 Evaluation

Newcomers to advanced open source projects should have additional support, as this is a
costly activity. Newcomers can have a lot of motivation to get into the project, may also
be very talented, and easily understand how things work. A larger group of not-so-savvy
people may need support in the form of mentoring, or maybe better for larger numbers,
proper documentation on architecture.

There may be properties of open source projects that make them more or less sus-
ceptible to problems with attracting newcomers. It may be unwise to apply practices
in open source without good reasons. Limiting the freedom in an open source project
may work counter-productive, taking away the freedom to work in an agile manner.
Documentation should for most purposes therefore be regarded as a supporting activity.

6.4.3 Reflection

There are many implementations of open source where documentation for developers
will not have a good effect at all. Documentation may be something only beneficial in
hi-tech environments, with little user interface, where work is done on a component
that is valued for its reusability. Requiring that open source produce documentation in a
certain way is not meaningful, as the agility of open source processes are vital for their
success. Improvements to practice need to be the product of measurable improvements
to the development process and post-deployment maintenance.

The decision to end the action research process in Apache Derby is made, since the
findings are sufficient for discussing the research questions. Further activity in Apache
Derby would probably not uncover more.

52

Chapter 7

Discussion

This chapter summarizes and analyzes the findings of this thesis, and will further explain
what information is the foundation for answering the research questions. The findings
will be analyzed using the following axes:

• How knowledge is shared in the open source community.
• What issues are perceived to exist in participation, as researcher observes from own

participation, or discussed on mailing lists.
• What other open source literature says on the same topic.
• How an inexperienced developer’s expectations conform to the documentation ar-

tifacts that already exists.

These axes are not in themselves the subject of the study, but are aspects that the
research may address, and may contribute to understanding the research questions.

7.1 Success factors for open source documentation

Wohlin summarizes in [WRH+00] the basic requirements for being successful in software
development. These include:

1. Understanding the software process and product.
2. Definition of process and product qualities.
3. Evaluation of successes and failures.
4. Information feedback for project control.
5. Learning from experience.
6. Packaging and reuse of relevant experience.

These goals address how the software development process learn from its experi-
ences, and manage information regarding the product. In software engineering, a sep-
arate organizational entity called a Experience Factory can be used for capturing experi-
ence. Its motivation is to make previous experience available to software development
projects [Din02].

53

Open source implements an ad-hoc knowledge factory. Knowledge is implicitly codi-
fied in mailing list discussions, and issue tracking. As an effect of the distributed nature
of open source, there is vast amounts of information on which persons have worked on
which issues. This enables expertise on a particular issue to be located through find-
ing who has worked on a particular part of the program before. Dingsøyr in [Din02]
compares this type of knowledge management to a “yellow pages” of who knows about
what.

The activities in the researcher’s Derby participation also faced similar problems,
when working with extensions to the IJ tool. While working on the issue Derby-1164,
some negative feedback was received as the extensions broke features of the IJ tool which
they found useful. Little codified documentation, if any, would help in getting the correct
understanding. The feedback was a social process in which knowledge is stored in the
network of developers.

A premise for efficient open source development is outside contributions. Knowl-
edge accumulated through the development process may be available to the community
through other participants in the community, and some knowledge available codified
in textual sources. Either of these are not necessarily easily accessible, and recovering
design decisions becomes either a social or a creative effort.

Understanding success criteria for documentation in open source is difficult because
it requires knowing open source’s ability to retain its base of expertise, and knowledge
of design decisions that have been taken. Open source retains this inside-knowledge in
the community through that the original authors of the product often stick around. They
are the senior members who review and give feedback to new developments, ensuring
the architecture and community remains healthy.

It is evident that larger open source projects are doing well with their usage and their
innovation, measured from the popularity of the system. Larger open source systems
easily attract volunteers, while smaller and more specialized domains may struggle. This
has i.e. been shown in [Mor05]. This may involve higher requirements for codifying
knowledge in the form of architecture descriptions, and not only in the typical network
of communications that traditionally follows open source.

7.2 Apache Derby

There are several sources of documentation in the Apache Derby community, of which
few resemble design or architecture descriptions in the traditional sense. These are:

• Mailing lists. Mailing lists are one of the primary sources of knowledge sharing.
The mailing lists are used by developers to communicate the activities being worked
on. Questions regarding how various functions of Apache Derby works is common.

When users ask for help on the mailing lists, they are often directed to relevant web
resources that provide the information they are looking for. Following the mailing
lists for a short period of time leads to a good impression of where information

54

is located. In addition to addressing user problems directly, the mailing lists are
also excellent sources for growing the amount of information available to Internet
search engines.

As a consequence of that discussions in mailing lists are the core of understanding
what is happening, the developers need to pay attention to them for a longer period
of time to understand what the current goals of the development is. This allows
observers to see who is working on what, and participate in discussions on what
next releases should contain.

• Wiki. The name Wiki means a web site that is easily modifiable by its users, and
where each modification of the page is tracked. Information stored in Wikis are
typically changing more often than other information. Apache Derby uses Wiki for:

• Bug lists, such as high priority issues, or tracking the compatibility to JDBC
and SQL.

• Information on how to contribute, and how code contributions should be for-
matted.

• Information on proposals, sub-projects, and brief overviews of design and ar-
chitecture.

This is knowledge that mostly support the development process, and to assist in
understanding specific aspects of the code. The purpose of Wiki appears to be
to transfer know-how inside the community, much like an Experience Factory, but
completely optional. An example wiki page is shown in figure 7.1.

Figure 7.1: A wiki page for Apache Derby, editable by anyone.

• Project artifacts. The source code in Apache Derby constitute around 2.5MB of
data, a number which also includes test cases and tools. JavaDoc in the code
describes the interfaces between modules, and also some design- and architecture
aspects. Through participation, this was found not to be sufficient to understand in-
terdependencies between classes easily. An instance of this was Derby-1262, where

55

the researcher used considerable time to find execution paths through the program.
The documentation describes design choices and explains classes, functions and al-
gorithms, but fails to describe larger aspects.

Open source code is based on the principle that code can speak for itself. While
intelligently written code has some ability to speak for itself, being a masterpiece
doesn’t necessarily make it easier to understand. Documentation inside the code is
therefore easy to use if you know where to look, but is in itself insufficient.

• User documentation. Apache Derby provides considerable user documentation
resources with information on installing and using the Apache Derby database sys-
tem.

• Test cases. The expected behavior of the system is partly documented through
its test cases. These are sets of programs or SQL statements, and their respective
outputs. Before each check-in to the Apache Derby code, developers are required
to run suites of tests that will verify that the changes doesn’t break existing func-
tionality.

These are important in order to ensure that a compiled version of Apache Derby will
be binary compatible with other programs. Binary compatibility means that a new
version behaves similarly as an older version, with the exception of any additions
to the interface.

With regard to their relevance as documentation for developers, the test cases may
be cursory for how the software should work. They address the historically evolving
system, preventing changes that breaks existing functionality, while showing what
different components of the system needs to support.

• Bug tracking system. JIRA, the bug tracking system used by Apache Derby, binds
the source code to the implemented changes. This is another of the primary contact
points with users. Entries in the bug system consist of a short description, problem
description, and a participants’ discussion of the issue.

7.3 Documenting software for newcomers

Especially through the work with issue Derby-1262, the researcher used a lot of extra
time in trying to figure out architectures and execution paths through the program. This
was a problem, there were no easy ways of getting an overview of the code except for
relying on creativity, or asking experienced developers.

The lesson learned after the Apache Derby participation is that it requires a lot of
time and motivation to learn the various aspects of a system. The workload required
to learn a system may be a deterrent for contributors, especially those without well-
defined incentives to contribute. Learning the open source process is easy enough even
to learn through observation, but understanding deep function call hierarchies has some

56

problems. An hour spent on describing these can hypothetically save an hour for a lot of
other developers.

Les Gasser et al. described the knowledge development/transformation process in
open source as having “extreme multiplicity of viewpoints, representations, experiences,
and usages” [GRSP03]. This multiplicity has been observed also in this study. Is this
positive for a newcomer developer in open source? A likely effect is that parts of the
software that evolves rapidly will through this be well documented or explained in bug
tracking system or i.e. Wiki, while stable parts of the code will have no documentation
usable for later maintenance.

From the study, Apache Derby and possibly other open source projects have a dif-
ferent idea of the requirements to document software. Software architecture literature
[CBB+02] cites its decisive role in software development: “[documentation] is the con-
ceptual glue that holds every phase of the project together for its stakeholders”. The
notion of open source being weak on producing documentation observed in this work
and by others [PC04, Sta99, Ols06] is something that need to be recognized. How-
ever, there are counter-examples in open source, i.e. the Mozilla project described in
[MFH02].

While code reading and tool support for retrieving architecture offers some help,
the mental knife sharpening and rigor introduced to the development process through
architectural descriptions and traceable requirements is a possibility that should get more
focus.

7.4 Comparing findings to other literature

Development of software with open source can be more productive, give higher quality,
and cost less than counterparts in commercial software development [GRSP03]. This
suggests that while open source is light in its process, it still delivers successful soft-
ware. However, there are good arguments for bringing open source closer to software
engineering practices, which involves a disciplined approach. Having a rational software
development process involves that architectural descriptions and planning is done in ad-
vance of implementation, that the system is open to easier reviews and transfer of people
and ideas, and that progress can be more easily tracked [PC86].

The complexity of software-intensive systems are dependent on the number of pro-
grammers working on it [Web06]. The product is not necessarily the the sum of all devel-
opers’ work, as human communication diminishes when traveling between large num-
bers of people (ibid). Coping with this problem requires effective communication where
perspectives from inside and outside both are regarded. Traditional open source devel-
opment manages communication well, but there is potential for improvement through
educating participants on the need for storing knowledge and documenting architecture.

57

58

Chapter 8

Conclusions

In this work we have studied how open source relates to production and maintenance
of documentation. Understanding the properties of the products being developed, as
well as the process, are success factors for any software engineering project. For open
source, understanding the product requires a long track record of following the product’s
development.

The participation to Apache Derby, in addition to experience in participating to open
source, resulted in good information on how the system is documented. Relations be-
tween the different artifacts that are managed in the project were found, like Wiki, issue
tracking and test cases. All serve the purpose of tracking changes, and sharing knowl-
edge among the participants. The artifacts were also found to be categorizable into
social, process, and technical dimensions.

The core of this discussion, the lack of architectural documentation, is an issue that
concerns large open source projects. While Apache Derby is strong on providing informa-
tion for its users, the lack of a documented architecture leads to higher learning costs for
newcomers. This does not constitute a problem unless central actors leave the project.
The product’s maintainability and quality would be jeopardized if code reviewers have
little knowledge of the architecture and design considerations.

Open source managers should be aware that running a process light on documented
architecture may have negative consequences in projects with marginal diffusion. The
luxury of agility and document-less development may be better suited to high-status,
high-profile open source projects, where there are greater social incentives for experi-
enced developers to stay. Furthermore, any documentation efforts in open source should
be integrated in the development process itself, in a manner similar to the integration of
the issue tracking system or test cases in Apache Derby.

We have discussed the use of documentation in context of an action research study.
Knowledge and self-consciousness about open source development processes is based on
maturation, and is a prerequisite for experimenting with open source. These findings are
based on hands-on experience, but are only one person’s opinions in context of one open
source project.

Current practice in open source is evidently sufficient for creating creating innovative,

59

new software. Experimenting with the production of birds-eye views on architecture,
or design documents, would be interesting. This could ease contribution barriers for
newcomers, and allow easier understanding of the product qualities that the community
values. Apache Derby has many efforts to document its intricate architecture, but they
are not aggregated.

It would be unwise to prescribe practice for open source communities. However, the
awareness of how knowledge is shared would remove some of the fuzziness of open
source, and bring it closer to formal software development processes.

Further work

Using action research for learning and researching open source has been a successful en-
deavor. In an educational context, it gives the student opportunity to reflect on software
engineering, work on technical challenges, and also contribute to knowledge.

The findings in this work are based a qualitative study of the Apache Derby project.
There is a need to investigate how other open source projects manage knowledge and
documentation in general. Making quantitative studies on this would increase confidence
in the results.

Based on experiences from this work, or from ideas from using the research approach
in this study, here are some suggestions for future research:

1. This work suggests that some open source projects have a need for a documented
software architecture. For existing projects, recovering the architecture may involve
understanding both how the development is performed (a development view), and
recovering a logical structure of the software. It may be interesting to devise meth-
ods for architecture recovery in the context of open source.

2. Suggested in this work is that documentation should be integrated with the open
source development process in cases where documentation is regarded as impor-
tant. How can this best be done, and what cost will such an integration have?

3. What risk factors are there for companies wanting to use open source as a devel-
opment model? Adopting open source processes involves some risk, notably the
risk of giving away code with no benefits for the owner. Which factors need to be
in place for a company wanting to reach a particular goal through maintaining an
open source project? Is open source predictable enough to be called an engineering
tradition?

4. Larger open source communities can be divided into virtual work groups that work
on isolated parts of the code. For instance, the Mozilla project consist of teams
managing various technologies such as RDF, XPFE, XUL, JavaScript, and HTML
rendering. It also manages 50+ localization teams. How is knowledge shared
among such sub-groups, and how do they ensure that the product is coherent?
How does the development process encourage cross-team communication?

60

5. A participatory study in open source could also address how quality attributes are
manifested in open source projects, as they otherwise are presented in software
architecture literature. Are software designed with modifiabilty and reliability in
mind, or is this a result of an imminent need for some party in the community?

61

62

Bibliography

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Prac-
tice. Addison-Wesley, 2003.

[BF04] Wolf-Gideon Bleek and Matthias Finck. Migrating a development project to
open source software development. In Joseph Feller, Brian Fitzgerald, Scott
Hissam, and Karim Lakhani, editors, Collaboration, Conflict and Control –
Proceedings of the 4th Workshop on Open Source Software Engineering, pages
9–13. International Conference on Software Engineering, May 2004.

[BH99] Ivan T. Bowman and Richard C. Holt. Reconstructing Ownership Archi-
tectures To Help Understand Software Systems. In Seventh International
Workshop on Program Comprehension, pages 28–37, 1999.

[BHB99] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a case
study: its extracted software architecture. In Proceedings of the 1999 Inter-
national Conference on Software Engineering, pages 555–563. International
Conference on Software Engineering, May 1999.

[BP01] Erik Berglund and Michael Priestley. Open-source documentation: in search
of user-driven, just-in-time writing. In Proceedings of the 1999 International
Conference on Software Engineering, pages 132–141. ACM Special Interest
Group for Design of Communications, May 2001.

[BR02] Andrea Bonaccorsi and Christina Rossi. Why open source software can
succeed. Research Policy, 32(7):1243–1258, July 2002.

[BZ99] Izak Benbasat and Robert W. Zmud. Empirical Research in Information
Systems: The Practice of Relevance. MIS Quarterly, 23(1):3–16, March
1999.

[CBB+02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafford. Documenting Software Architec-
tures. Addison-Wesley, 2002.

[Deb04] Daniel J. Debrunner. Internals of Derby. http://www.softwaresummit.

com/2004/speakers/DebrunnerDerbyInternals.pdf, 2004.

63

http://www.softwaresummit.com/2004/speakers/DebrunnerDerbyInternals.pdf
http://www.softwaresummit.com/2004/speakers/DebrunnerDerbyInternals.pdf

[Dic93] Bob Dick. You want to do an action research thesis? http://www.scu.edu.

au/schools/gcm/ar/art/arthesis.html, 1993.

[Din02] Torgeir Dingsøyr. Knowledge Management in Medium-Sized Software Con-
sulting Companies. PhD thesis, Norges Teknisk-Naturvitenskapelige Univer-
sitet, 2002.

[DMK04] Robert M Davison, Maris G Martinsons, and Ned Kock. Principles of Canon-
ical Action Research. Information Systems Journal, 14(1):65–86, Jan 2004.

[DSV03] Jianjun Deng, Tilman Seifert, and Sascha Vogel. Towards a Product Model
of Open Source Software in a Commercial Environment. In Joseph Feller,
Brian Fitzgerald, Scott Hissam, and Karim Lakhani, editors, Proceedings of
the 3rd Workshop on Open Source Software Engineering, pages 31–37. Inter-
national Conference on Software Engineering, May 2003.

[For02] Andrew Forward. Software Documentation – Building and Maintaining
Artefacts of Communication. Master’s thesis, University of Ottawa, Ottawa,
Ontario, K1N 6N5, Canada, 2002.

[Fou99] The Apache Software Foundation. How the ASF works. http://www.

apache.org/foundation/how-it-works.html, 1999.

[GRSP03] Les Gasser, Gabriel Ripoche, Walt Scacchi, and Bryan Penne. Understanding
Continuous Design in F/OSS Projects. 16th. Intern. Conf. Software & Systems
Engineering and their Applications, Dec 2003.

[GT00] Michael W. Godfrey and Qiang Tu. Evolution in open source software: A
case study. In Proceedings of the 2000 International Conference on Software
Maintenance (ICSM ’00), pages 131–142, San Jose, California, USA, Oct
2000. IEEE Computer Society.

[Hen05] Joachim Henkel. Patterns of Free Revealing – Balancing Code Sharing and
Protection in Commercial Open Source Development. EURAM Conference
2005, Aug 2005.

[HNH03] Guido Hertel, Sven Niedner, and Stefanie Herrmann. Motivation of soft-
ware developers in Open Source projects: an Internet-based survey of con-
tributors to the Linux kernel. Research Policy, 32:1159–1177, 2003.

[IEE90] IEEE. IEEE 90: IEEE Standard Glossary of Software Engineering Terminology,
1990. IEEE Std 610.12–1990.

[IEE00] IEEE. IEEE Std 1471 Recommended Practice for Architectural Description,
2000. IEEE Std 1471–2000.

64

http://www.scu.edu.au/schools/gcm/ar/art/arthesis.html
http://www.scu.edu.au/schools/gcm/ar/art/arthesis.html
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html

[Ini05] Open Source Initiative. Open Source Definition. http://www.opensource.
org/docs/definition.php, 2005.

[Jor89] Danny L. Jorgensen. Participant Observation – A Methodology for Human
Studies. Sage Publications Ltd., 1 Oliver’s Yard, 55 City Road, London,
EC1Y 1SP, UK, April 1989.

[Koc04] Stefan Koch. Agile Principles and Open Source Software Development: A
Theoretical and Empirical Discussion. Lecture Notes in Computer Science,
3092:85–93, Jan 2004.

[Kru95] Philippe Kruchten. The 4+1 View Model of Architecture. IEEE Software,
12(6):42–50, Nov 1995.

[LT00] Josh Lerner and Jean Tirole. The Simple Economics of Open Source. The
Journal of Industrial Economics, 2:197–234, Dec 2000.

[Maa04] Wolfgang Maass. Inside an Open Source Software Community: Empirical
Analysis on Individual and Group Level. In Joseph Feller, Brian Fitzger-
ald, Scott Hissam, and Karim Lakhani, editors, Collaboration, Conflict and
Control – Proceedings of the 4th Workshop on Open Source Software Engi-
neering, pages 65–69. International Conference on Software Engineering,
May 2004.

[MD04] T.R. Madanmohan and Rahul De. Open Source Reuse in Commercial Firms.
IEEE Software, 21(6):62–69, Nov 2004.

[MFH02] Audris Mockus, Roy T Fielding, and James D Herbsleb. Two Case Studies
of Open Source Software Development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 11(3):309–346,
2002.

[Mic05] Sun Microsystems. JSR 221: JDBC 4.0 Specification, public draft. http:

//java.sun.com/products/jdbc/, 2005.

[Mor05] Håvard Mork. Leadership in Hybrid Commercial-Open Source Software
Development. Directed study, Norwegian University of Science and Tech-
nology (NTNU), Trondheim, Norway, Dec 2005.

[Moz06] Mozilla.org. About Mozilla. http://www.mozilla.org/about/, 1998-2006.

[Ols06] Michael Olson. Dual Licensing. In Chris DiBona, Danese Cooper, and Mark
Stone, editors, Open Sources 2.0: The continuing evolution, pages 71–90.
O’Reilly, 2006.

[Østerlie06] Thomas Østerlie. Producing and Interpreting Debug Texts. In Proceedings
of the 2006 Open Source Software Conference, 2006.

65

http://www.opensource.org/docs/definition.php
http://www.opensource.org/docs/definition.php
http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/

[Pan96] Naresh R. Pandit. The Creation of Theory: A Recent Application of the
Grounded Theory Method. The Qualitative Report, 2(4), Dec 1996.

[PC86] David L. Parnas and Paul C. Clements. A Rational Design Process: How and
Why to Fake it. IEEE Transactions on Software Engineering, 12:251–257, Feb
1986.

[PC04] Vidyasagar Potdar and Elizabeth Chang. Open Source and Closed Source
Software Development Methodologies. Collaboration, Conflict and Control –
Proceedings of the 4th Workshop on Open Source Software Engineering, pages
105–109, May 2004.

[Ras00] Chris Rasch. A Brief History of Free/Open Source Software
Movement. http://www.openknowledge.org/writing/open-source/scb/
brief-open-source-history.html, 2000.

[Ray00] Eric Steven Raymond. The Cathedral and the Bazaar. http://www.catb.

org/~esr/writings/cathedral-bazaar/cathedral-bazaar/, 2000. Revi-
sion 1.57, 2000.

[Ray01] Eric Steven Raymond. How To Become a Hacker. http://www.catb.org/

~esr/faqs/hacker-howto.html, 2001. Revision 1.34, 2006.

[Sca04] Walt Scacchi. Free and Open Source Development Pratices in the Game
Community. IEEE Software, 21(1):59–66, Feb 2004.

[Sen04] M. Senyard, A.; Michlmayr. How to Have a Successful Free Software
Project. In Software Engineering Conference, pages 84–91, Dec 2004.

[SSR02] Srinarayan Sharma, Vijayan Sugumaran, and Balaji Rajagopalan. A frame-
work for creating hybrid-open source software communities. Information
Systems Journal, 12(1):7–25, 2002.

[Sta99] Richard M. Stallman. The GNU Operating System and the Free Software
Movement. In Chris DiBona, Sam Ockman, and Mark Stone, editors, Open
Sources: Voices from the Open Source Revolution. O’Reilly, 1999.

[STT01] Dennis Smith, Bill Thomas, and Scott Tilley. Documentation for Software
Engineers: What is Needed to Aid System Understanding? The 19th Annual
International Conference on Systems Documentation (SIGDOC 2001), 2001.

[TT03] Sigurd Tjøstheim and Morten Tokle. Acceptance of new developers in oss
projects. Master’s thesis, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway, June 2003.

66

http://www.openknowledge.org/writing/open-source/scb/brief-open-source-history.html
http://www.openknowledge.org/writing/open-source/scb/brief-open-source-history.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/faqs/hacker-howto.html
http://www.catb.org/~esr/faqs/hacker-howto.html

[VV04] Kris Ven and Jan Verelst. Control Objectives in Open Source Projects. In
Joseph Feller, Brian Fitzgerald, Scott Hissam, and Karim Lakhani, editors,
Collaboration, Conflict and Control – Proceedings of the 4th Workshop on
Open Source Software Engineering, pages 100–104. International Confer-
ence on Software Engineering, May 2004.

[Wal06] Stephen R. Walli. Under the Hood: Open Source and Open Standards
Business Models in Context. In Chris DiBona, Danese Cooper, and Mark
Stone, editors, Open Sources 2.0: The continuing evolution, pages 121–135.
O’Reilly, 2006.

[Web06] Steven Weber. Patterns of Governance in Open Source. In Chris DiBona,
Danese Cooper, and Mark Stone, editors, Open Sources 2.0: The continuing
evolution, pages 361–372. O’Reilly, 2006.

[Woo05] Woods, Dan and Guliani, Gautam. Open source for the enterprise. O’Reilly &
Associates, Inc., 981 Chestnut Street, Newton, MA 02164, USA, Aug 2005.

[WRH+00] Claes Wohlin, Per Runeson, Martin Hőst, Magnus C. Ohlsson, Bjőrn Regnell,
and Anders Wesslén. Experimentation in Software Engineering: an Introduc-
tion. Kluwer Academic Publishers, 2000.

[Zaw99] Jamie Zawinski. Resignation and Postmortem. http://www.jwz.org/

gruntle/nomo.html, 1999.

[ZSB05] Paul C. Zikopoulos, Dan Scott, and George Baklarz. Apache Derby – Off to
the races. Pearson Education, Inc., 2005.

67

http://www.jwz.org/gruntle/nomo.html
http://www.jwz.org/gruntle/nomo.html

68

Appendix A

Issue log for Derby-1164

Names are anonymized due to only the process is of significance, and not the persons.

Description

New users migrating from mysql are familiar with commands ’show tables’ and

’describe’ to respectively display all permanent tables, and show fields in

a given table. These are not standard sql, but I suggest to implement them

only in the IJ tool for user-friendliness.

As suggested in db-dev, using DatabaseMetaData should provide the necessary

query strings.

Comment by Håvard Mork [30/Mar/06 12:41 PM]

Attached suggested patch. I am thinking outputting only a minimal information

may be sufficient, and very convenient in order to reuse existing code.

Alternatively, for ’describe’, separate SQL queries could be made (with

ijStatementResult) to output data in a table format.

Feedback is appreciated.

Comment by C1 [30/Mar/06 05:07 PM]

Hi Håvard,

Thanks for this useful patch. The parser productions look good to me. However,

I’m hesitant about modelling the result as a vector. I think it would be

better to return results which look more like tables rather than coalescing

all the information into a single column. I think you will end up with

something more powerful if you write an implementation of ijResult which

wraps a ResultSet. This will let you rapidly display all sorts of

DatabaseMetaData calls.

69

Comment by C2 [31/Mar/06 01:41 AM]

Thanks for this useful patch!

Did a quick review, with following comments:

1) Should IJ help be modified to show new commands?

2) If you have the itch, more could be added... to display

procedures/functions, indexes, views, synonyms...

3) Should a test be added to function tests? It may be little more involved

to add test than to code this!

Comment by C3 [31/Mar/06 09:44 AM]

Nice start. I think some more work is needed to make this really useful:

1. Display length for character types, precision for numerics

2. Display information on primary keys and nullability

3. Not require schema name, and look for tables in current schema in that

case. I think many of those who will benefit the most from this command,

may not necessarily know much about schemas. They just use the default

schema.

4. Would be nice to have a ’show schemas’ command

5. Would ne nice to be able to list tables within a given schema.

Comment by Håvard Mork [06/Apr/06 05:51 PM]

Thank you for all your feedback. I’ve thought more about this, but I’ve

been unable to find a good way to using the returned resultsets from

DatabaseMetaData directly, while still getting a nice layout.

In the attached patch, I have made local versions of the DatabaseMetaData

query strings. Where possible, I’ve tried to cast data types so rows will

fit on 80-char display widths. As for the querying parts, I’m unsure

whether this is the best approach.

Comment by C4 [06/Apr/06 06:24 PM]

Copying the meta data queries into ij ties ij directly to a specific

version of the database engine. I don’t believe this is a good direction.

ij is intended as a fairly neutral JDBC client that works against any

database engine. While it may be ok to tailor ij for Derby, having to

need a specific version of ij to talk to a specific version of Derby

will cause problems.

70

It would be interesting for you to provide a patch that uses the

DatabaseMetData methods directly and displays the resultant ResultSets

using the standard ij code. The we could think about the "nice layout",

what’s nice to you maybe horrible to someone else.

Comment by Håvard Mork [07/Apr/06 11:52 PM]

Thanks for the review. I agree with what was pointed out regarding the

intended use of ij.

One thing that puzzled me was the ’getTableTypes’ and ’getTable’ entries

in metadata.properties. They both mention tables, system tables, and views,

but they have no entries for synonyms. I don’t understand issues regarding

version compatibility of metadata.properties well, so please say if there

are any problems.

Comment by Andrew McIntyre [20/Apr/06 05:07 AM]

Hi Håvard,

This patch is looking pretty good. A few comments:

- the ij help command should be updated to include a description of the

DESCRIBE command.

- better error handling for bad syntax and validating proper input of table

names would be nice, but not a necessity. For example, try entering in bad

schema or table names: ’show tables in blah;’ or ’describe blah;’ where

blah doesn’t exist. Again, not a necessity. It might be more trouble than

it is worth.

- a ’show indexes’ command (corresponding to DatabaseMetadata.getIndexInfo)

for a table would be nice, but not a necessity for the patch to be

committed. That could be added later, same for showing primary/foreign

keys on a table.

- as for displaying the results nicely, perhaps you could alter

ijResultSetResult so that it takes two arrays, one which specifies which

columns from the metadata query to present, and the second which contains

the width at which to print the corresponding column. These arrays could

then be set appropriately from the show* methods in ij.jj as needed. Then

you could alter JDBCDisplayUtil so that when it takes an ijResultSetResult

to display, it gets the arrays it should display from the columns array of

71

the ijResultSetResult (or all columns if the column array is null), and

only displays them at the width specified in the second array (or the

default width if no width is specified in the second array). I realize that

this could end up being a fair piece of work, but it might be worth the

effort. Does anyone else have any good ideas (meaning simpler) for

presenting the results nicely?

C2, the change to the metadata query looks ok. Is there a reason why

synonyms where not added to the results returned by getTableTypes()

earlier?

Comment by Håvard Mork [26/Apr/06 09:08 PM]

Your suggestions are very helpful. I am attaching a new patch (1164_4.diff)

with some changes:

* Modified JDBCDisplayUtil to display a selection of columns, with column

widths set by ij.jj

* Added ’show indexes’

* Verifying that tables exist

There are still some problems:

* There are no standard way of getting current schema. Now using ’values

current schema’. For non-Derby dbms-es, the failure to return current

schema will lead to that i.e. DESCRIBE will return matching table names

in all schemas (with a SCHEMA column, though). Any smarter way to solve

this?

* What information to print and column size is a subjective matter. It is

difficult to choose between one-line-fits-all, and ensuring that column

values are output fully.

As for viewing fk/pk in tables, I’ve chosen not to implement it now, but

that could be implemented later.

The patch passes derbytools and derbylang.

72

Appendix B

Article: Studying Open Source with
Action Research

The following article was written in conjunction with the candidate’s autumn project and
master’s thesis. The chapters 2.1, 2.2 and 3 are written by the candidate.

73

Studying Open Source Software with Action Research

Letizia Jaccheri
Department of Computer and Information

Science
Norwegian University of Science and Technology

7491 Trondheim, Norway

letizia@idi.ntnu.no

Håvard Mork
Department of Computer and Information

Science
Norwegian University of Science and Technology

7491 Trondheim, Norway

havard.mork@gmail.com

ABSTRACT
Open source projects can be regarded as interesting sources
for software engineering education and research. By partic-
ipating in open source projects, students can improve their
programming and design capabilities. Master’s students can
also contribute to increased knowledge concerning research
questions by reflecting on their own participation with an es-
tablished research method and plan. This work reports on
a study in the context of the Netbeans open source project,
which serves as a successful example of using students for
educational and research purposes. The research method
used is action research.

Categories and Subject Descriptors
D.2 [Software Engineering]: Management
; K.3.2 [Computer and Information Science Educa-
tion]: Computer science education

General Terms
Experimentation

Keywords
Open source software

1. INTRODUCTION
Open source software development poses serious challenges

not only to the commercial software industry but also to aca-
demic institutions that have the mission to educate software
engineers. Some of our students love to participate in open
source projects and some of them have been participating in
open source projects for years, motivated by their passion
for programming. How do we, as software engineering teach-
ers and researchers, tackle this challenge so that we provide
a sound and motivating milieu for software engineering ed-
ucation?

Open source software projects have been exploited for suc-
cessful empirical software engineering research [15]. At the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 5th International Symposium on Empirical Software Engineering ISESE
2006 Conference September 21st-22nd, 2006 Rio de Janeiro
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

same time, the importance of open source software as a trend
which should shape our education program is well accepted
[20].

There is a tradition for combining empirical software en-
gineering research and education [4]. In this work we aim
to exploit open source software for education and empirical
purposes.

This article discusses the use of action research [6] in the
context of empirical open source software research. We use
action research for organizing open source education and
empirical research. Assignments are designed for fifth year
students, who act as both researchers and developers in open
source projects. The assignment is to participate in one open
source project. The main constraint and source of feedback,
in addition to teacher supervision, is the interaction with
one existing open source project. The student influences
what kind of technology that is worked with. The goals
of the project include defining relevant research questions.
The candidate will have to study existing literature on open
source development, select an open source project by de-
fined characteristics, and participate actively in this project.
Students can choose this assignment as part of their ninth
semester project (500 hours, which counts half of the teach-
ing load that semester) or tenth semester master’s thesis
(1000 hour project, which is the total teaching load for the
semester).

Students who are admitted to these projects must attend
two supporting courses (with exam). The first course pro-
vides a bulk of open source literature ([2, 3, 9, 10, 15, 17,
19, 22, 23, 24]), and they have access to the reports of the
students who have previously worked on similar projects.
The second course is an introduction to empirical software
engineering [5].

In this paper, we will present a case that will provide the
choice of the project, the research questions and the answers
we found to them. More important, we will summarize some
lessons we learnt from action research and open source soft-
ware. We discuss how the choice of the research questions,
the research methods, the literature, and the choice of the
open source project are dependent on each other.

The structure of this paper is as follows: Section 2 pro-
vides the foundations of this work in three fields which are
open source software, action research, and the intersection
between software engineering education and empirical soft-
ware engineering. Section 3 presents our case and Section 4
provides discussion and our conclusions.

2. BACKGROUND

2.1 Open Source Software
Open Source Software (OSS) is a concept that does not

represent one particular software engineering method, but
can be more accurately described as a set of principles, or
a philosophy. Open Source (OS) means software that is
developed according to a license model that conforms to the
open source definition1.

Software developed as OSS differs from commercial soft-
ware in both how the product undergoes changes, and the
economic incentives for the development. Commercial soft-
ware is developed with private benefits in mind. The prod-
uct is then the result of a requirements engineering process,
which is aimed at creating value for potential customers. On
the other hand, open source operates with the goal that any-
one can alter and redistribute the software with no economic
compensation to copyright holders.

The success of open source can largely be attributed to
the “scratch your own itch” ethos. Developers who need to
solve a particular problem may turn to open source in order
to see if a similar problem has previously been addressed.
If not, and they think the problem is shared with others, a
new open source effort may be the solution, so the developer
can benefit from contributions from people working with the
same issues. Open source can thus be a solution for the need
for a common toolbox.

2.1.1 History
The history of open source begins with the hacker cul-

ture of the 1970s and 1980s where making source code freely
available was common in academic communities. In 1985,
the Free Software Foundation (FSF) was established by Richard
Stallman as a reaction to the “closed source” culture of com-
mercial software vendors. The intentions were to bring free-
dom to copy and modify software back to the average user.
Finally, in 1998, the term “Open Source” was introduced as
a concept that disassociated itself with the anti-commercial
ties of “free software”. The difference between these two
terms are mostly ideological.

2.1.2 Volunteer culture
Developers who participate in open source projects con-

sist of a very diverse group of people, both professionals and
hobbyists. Their mutual interest in the product of a specific
OS project is what connects them. For many developers,
OSS represents a proving ground where they can have vary-
ing learning goals, enhance social relationships, and gain
privileged access to a community [22].

On a group level, trust and collaboration are basic prin-
ciples. Members collaborate on the basis of mutual expec-
tation, which either leads to trust or suspicion [14].

The potential for commercial use of the open source phe-
nomenon is also apparent. OSS represents an easily acces-
sible platform for innovation [7]. With open source, small
firms can reduce the cost of innovation, with the possible dis-
advantage of sharing their own ideas with competitors. It
also enables service-oriented architectures to spread on the
web, where content of different nature can be integrated, like
human-readable text, pictures, and interactive components.

1The Open Source Definition is available at
http://www.OpenSource.org/. The term “Open Source” is
a trademark of the Open Source Initiative.

Perhaps the greatest economic contribution of open source
is the new services it enables [17].

OSS is traditionally developed by communities of devel-
opers. These communities consist of individuals with a com-
mon goal, but with varying reasons for participating. The
participants are typically not assigned to tasks, but focus
on aspects of the product in which they have interest or ex-
pertise. The fact that the developers generally also are the
users of the software implies that the requirements elicita-
tion process in open source will be the result of the personal
agendas of the contributors [19].

2.1.3 Development practices
Development in open source is characterized by being an

evolutionary process, which differs considerably from com-
mercial processes. Typical commercial models involve life-
cycle models where phases in the development are sequenced.
A different approach is taken in open source, where develop-
ment consists of concurrent processes that all work towards
a goal [19].

The highly distributed nature of OSS also has implications
for how OSS works. Developers may live in different time
zones, may have day jobs to attend to, while other develop-
ers may be paid by an employer to do OSS work full-time.
With the various time slots generally available to individu-
als, asynchronous communication is necessary. Mailing lists
and newsgroups are commonly used to coordinate commu-
nication.

Deng et al. points out that project management in open
source is reduced to a minimal set of “technical” activities,
that revolves around which code to include and not include
in the main product [7]. The decision power in OSS gener-
ally arises from the merits and previous contributions of the
members.

2.1.4 Licenses
Unlike commercial, non-free software, open source gains

much of its momentum in that it is available for no cost to
adopters. Some firms have managed to create commercial
models around OSS, by offering complementary products
and services. The role of software licenses is here to protect
open source from opportunistic behaviour. Licenses pro-
tects the ownership of the code, limiting how the product
is distributed and ensuring that it stays free. The licenses
are furthermore required by the open source trademark to
abide by the principles of the open source definition.

The GNU Public License2 is one license that conforms to
the open source definition. This license commands that the
source code needs to accompany all versions of the software,
that anyone can make changes to the code, and that the
altered version must carry the same license agreement.

2.1.5 Leadership
The basic principle of open source is that anyone can

download, use, and modify software without having to pay.
This philosophy works because the product will be improved
through collaboration and adapted to other needs [3]. De-
ciding which improvements and changes that should be im-
plemented into the main version is up to members of the
community to decide.

Authority in open source communities is based on mem-
ber’s merits. Developers that have contributed a lot to a

2http://www.gnu.org/copyleft/gpl.html

Figure 1: The cyclical process model (CPM) of
CAR.

project will have significantly more influence than users that
just participate on mailing lists. Only a limited number of
persons will typically have access to make changes in the
source code, in order for the quality of any changes to the
software to be controllable.

2.2 Action Research
The empirical study that is reported on in this work is

based on the action research (AR) method. AR originates
from social sciences, and is used for learning from experi-
ence by intervening in a system. One orientation of AR is
Canonical Action Research (CAR), proposed by Davison et
al. [6].

CAR, according to Davison’s description, is an iterative
process which consists of two main components: carefully
planned and executed cycles of activities, and a continu-
ous process of problem diagnosis. It has a dual intention
of improving practice in an organization through a change
process, while contributing to knowledge about the object
of the study.

A principle of applying CAR is having a theory in advance
for doing CAR research [6]. This is helpful to position the
work in a cumulative research tradition, narrow the scope of
the research, and ensure that the work has scholarly as well
as practical interest. While CAR may be applied without
theory (“action learning”), the amount of collected data may
be reduced if a theoretical framework is already established.

The various phases of a Canonical Action Research itera-
tion are shown in Figure 2.2. The phases are:

1. Diagnosis: This phase involves the researcher diagnos-
ing the organizational situation and reflecting on its
causes. The objectives of the CAR project will con-
trol what is studied here, along with experiences from
previous CAR iterations. Goals of the diagnosis phase
include determining causes of a problem, and study
the environment in order to allow a thorough action
planning phase.

2. Planning: The planning phase should generate a course
of action for examining the subject and collecting data.
The actions that are planned should be related to the
objectives of the AR project, as well as the current
understanding of the problem being examined. The
motivation for the actions will be to better understand
the problem at hand.

3. Intervention: The purpose of the intervention phase is
to apply change, and observe the outcome. Together

with theories and expected results, this represents the
main data source for later evaluation stages. Interven-
ing in an organization requires that a plan for collect-
ing data is present. Data collection techniques should
be applied before, during, and after the intervention,
in order to ensure a large volume of data is available
for later analysis.

4. Evaluation: Results from the intervention phase should
be analysed in the context of the current understand-
ing of the problem and the goals of the research.

5. Reflection: Reflecting on the results of an iteration can
determine whether additional iterations are necessary,
or the lessons learned can be used to further refine re-
search questions. If the goals of the project have been
accomplished, then it could be decided to terminate
further investigation.

2.3 Software engineering education and em-
pirical software engineering

The software engineering education community values in-
dustry interaction and dialogue about what and how we
should teach to our students [13]. At NTNU3, IDI4, we
have 30 years experience of working in cooperation with the
Norwegian software industry [1, 11] in the context of student
projects.

Open source software development is relevant to industry
as many companies are participating in open source projects
and using open source software. The education community
accepts this trend and recognizes open source software as a
source of inspiration and influence for software engineering
education [20].

In [4] we propose a framework in which empirical software
engineering and software engineering education can co-exist
by defining four roles that have some interest for student
projects. These roles are: teachers, students, researchers
and industry. A similar perspective about synergic aspects
of empirical software engineering and software education is
discussed in [18].

3The Norwegian University of Science and Technology
4The Department of Computer and Information Science

3. THE CASE
The directed study reported on in this work, which is

available in [16], was based on an assignment that did not
constrain the student with regard to what research questions
would be posed. Only that Action Research should be used,
and participation to an open source project was mandatory.
This study was carried out by one student.

Previously at NTNU, there has been one master’s thesis
following the same kind of assignment [21]. This master’s
thesis was carried out by two students working together,
and served as an example for participatory research for the
student reported on in this case.

3.1 Diagnosis
The project aimed to participate in and contribute to open

source software development in order to better understand
how firms use open source for their own software develop-
ment. The goal was to determine the effects of using formal
techniques in open source projects, like explicit planning,
ownership, inspection and testing in open source projects, as
they occur in commercially controlled open source projects.
Through the study, it was intended to see if the commercial
use of OSS leads to a more manageable process.

The research goal and questions were created from a lit-
erature survey that was done in the first two months of the
project.

3.1.1 Research questions
Two research questions were formed:
Q1: Are developers who are not directly hired by the con-

trolling organization able to affect the decision processes?
The rationale for this research question was to uncover how
commercially operated OSS projects view volunteer develop-
ers. In case of any confusion of roles, especially with regard
to paid vs. non-paid developers, the current OSS develop-
ment process may not be well implemented.

Q2: How much of the decision process is open to the whole
community, and to what extent are decisions taken inside the
organization that is controlling the open source project?
For OSS projects where decisions are not multilateral, par-
ticipants may feel there are conflicts in the community, as
described in [12].

3.1.2 Project selection
As the number of potential open source projects to choose

from was large, a project selection phase was initiated in
order to find a project that suited the study well. Project
selection and research questions are related, as the studied
artifact must be suitable for the research goal. Open source
communities have widely different differing characteristics;
they have varying size, different goals, and can accomplish
higher levels of maturity. As the project aimed to investigate
commercial ties in OSS, the selection process aimed to find
a project in which this connection was prevalent.

A list of OSS projects where the project maintainers were
known to be commercial firms was generated from Internet
searches. These were Jetty, JBoss, PHP, Mozilla, MySQL,
JINI, SugarCRM, and the one later selected, the Netbeans
IDE. The projects were subsequently evaluated in context
of a set of selection criteria:

• Should consist of 10-50 active developers, observed
from public mailing lists or bug tracking system.

• Community allows entrance in a supporting role.

• Formal techniques (project planning, etc.) are used in
the OSS development.

• Implementation is done in either Java or C++, to
which the student is acquainted.

• Available public mailing lists, chat, and bug tracking.

• Software has general usefulness for student.

From the student’s evaluations, Netbeans, Mozilla, and
JINI accomplished similar scores. Mozilla was not selected
because the student already was active in this community.
Prior experience in an OSS community, however, should not
pose any problems with the possible exception of reduced
personal learning. Netbeans was subjectively evaluated to
be more interesting than JINI, and therefore Netbeans was
selected to be the subject of the study.

3.2 Planning
During the initial planning phase of the project, a data

collection strategy was developed. With qualitative data
analysis, the goal was to capture as much interaction with
other participants as possible, thoughts and opinions during
the project. The following elements were emphasized in the
plan:

1. Which people that participated in discussions in the
community.

2. The process which is used for accepting or discussing
contributions, and how decisions for accepting code
changes are made.

3. Communication between developers regarding changes
will be useful for later analysis, to see how decision-
making processes work.

4. Information about how source code contributions fit
into schedules and personnel allocation.

The initial theory for the project was based on an assump-
tion that the commercial use of open source will include
practices from both commercial and open source develop-
ment processes.

3.3 Intervention
The study was executed with two iterations of Action Re-

search. The student started with little knowledge of the
decision processes in the Netbeans project. A meritocratic5

leadership was assumed to exist in addition to the main-
tainer organization’s influence on the product. Actions that
were planned for the first iteration included finding open
bugs6, making significant changes in order to fix the issue,
and following through the inclusion of the change into the
main version.

5A leadership structure based on that contributors with
more contributions and experience have a larger say in de-
cisions. [8]
6A “bug” means a defect report or issue that needs attention
in the source code, either by changing the source code, or
by dismissing the defect/issue with some good reason. That
a bug is “open” means that noone has claimed it as their
responsibility.

Finding bugs that were easy to work with was harder than
expected. Three bugs were addressed in this phase, but
with regard to the number of code lines the contribution
was small.

From the interactions in this process, Netbeans was found
not to significantly differ from meritocratic hierarchies in
other OS communities. However, one surprising discovery
was that most contributors seemed to be employees of the
maintainer organization.

3.4 Evaluation
Analysis of data was done with a pre-defined plan that

involved considering the observations in context of a theory.
Davison et al. state that theory provides a basis for delineat-
ing the scope of data collection and analysis [6]. Assessing
findings in a broader context also increases confidence in the
results.

Thought maps and categorization of the findings was also
used to manage own interpretations in a more creative way.
Distinguishing between what are facts and what are judge-
ments must be done to allow any reader to make up their
own assessments and interpretations [6].

Tangible results that were found from the project included
findings in the Netbeans community that there may be prob-
lems in attracting a large volunteer workforce. However, the
Netbeans project does implement the Open Source model
well, and values all outside contribution. Further investiga-
tion will be needed to see if these tendencies are universal
to other OSS projects where commercial organizations are
maintainers.

The project described here has been evaluated by a pro-
fessional who works in a software company and who has long
experience with open source projects both as member of his
organization and as volunteer. This professional is positive
to the results of the project. Both during the formal eval-
uation meeting and during informal conversations, this and
other professionals recognize the importance of the project
in particular and the assigment in general as a way to edu-
cate software engineers and to accumulate knowledge about
open source projects. He criticises the nature of the research
questions which are not enough related to the software en-
gineering domain.

During the project, the time schedule was found to be
unproblematic. However, more time during the project par-
ticipation part would be preferable. Joining a OSS project,
getting familiarised with the project artifacts, while also
contributing to it, takes considerable effort.

3.5 Reflection
Actions for the second iteration would focus on partici-

pating to one module within Netbeans, and looking closer
at the artifacts surrounding it. The “JavaCVS” module was
selected. Only one bug lead to a successful resolution dur-
ing this iteration, which incidentally was unrelated to the
JavaCVS module. What was learnt from this iteration, was
support for the notion that few participants outside of Net-
beans were active.

After this iteration, the action research cycle was ended,
as the time constraints were exhausted, and sufficient infor-
mation to discuss research questions had been collected.

In retrospect, there are many ways in which participation
to OSS for education can be made smoother. First, focus-
ing on OSS as a social discipline can help the researcher to

get access to the project artifacts, and contribute to valu-
able knowledge both about culture and product. Following
the Action Research discipline, the researcher should go to
length to collaborate with other people during the project
execution, for instance through discussing ideas and techni-
cal solutions in mailing lists or newsgroups. In the study re-
ported here, however, collaboration was not easy and there-
fore not practiced much.

Second, a good recommendation is to focus research on
one restricted domain, like a particular module or functional
area. While this was not extensively practiced in this case,
it is beneficial to commit to one particular role in order to
get a more likely “open source situation”.

At the end of the project there were no problems conclud-
ing the research activities. Participating in a social system
with other individuals always carries the danger of “going
native”, which should be avoided [6]. This was not perceived
to be a problem in this case.

Netbeans is evaluated to be a good choice as it is main-
tained by a larger software company, Sun Microsystems,
that also invests significant resources to sustain it. Netbeans
is a development tool that is used to aid in the development
of Java-based applications.

Experience from the project, however, show that the project
selection criteria may not have been optimal. The following
was noted after the completion of the project:

Maturity: Selecting an OSS project that has a low level
of maturity may have the disadvantage of being significantly
different from an ideally run OSS project. However, if an
OSS project is mature, well-tested, and close to a release,
much of the remaining tasks will be polish. If the goal of
the project is to contribute to an OSS project, the researcher
should at least be aware of possible difficulties. In this case
with Netbeans, contributing to it was difficult due to the
difficulty of understanding complex bug reports.

Size of project: Larger OSS projects may suffer from
awareness problems. Entering an open source project con-
sisting of thousands of source files requires either excellent
skill, or good documentation.

4. DISCUSSION AND CONCLUSIONS
The final goal of this work is providing guidelines on how

to exploit open source software for education and empiri-
cal purposes. At the time of writing we can provide two
examples of projects that exploit open source software for
education and empirical purposes [21] [16]. The first [21]
was a 1000 hour final master’s project where two students
participated. The second project which is described in Sec-
tion 3 was a 500 hour project with one student. There is
an ongoing third project (1000 hour) in which the same stu-
dent who participated to the case reported in Section 3 is
involved.

There are four main axes around which to organize an
evaluation of our goal:

1. Research questions:
Working on the research questions is a time-consuming
task that required a good understanding of the do-
main. Here there is a tradeoff between learning and
research issues. While students appreciate the free-
dom of the assignment as a positive learning experi-
ence, it is more effective from a research perspective
to provide students with predefined research questions.

These can be taken from related literature or from pre-
vious research projects the teacher/researcher has been
working with. There is a relationship between research
questions and projects. For example in the case re-
ported in this paper, the research questions are about
the interaction between professionals and volunteers
in the OSS projects and this makes it necessary to
select a project in which commercial actors play a sig-
nificant role. From the point of view of the industrial
professional who evaluated our work and also from dis-
cussions with other researchers, it was found that it is
better not let students to choose research questions.

2. Research methods:
Action research has worked well to balance student’s
learning, and the output of the study. A deep under-
standing of the problem itself is not necessary before
intervention in projects.

The effort necessary to contribute to an open source
project should not be underestimated. A common
problem for both projects, was that the students started
with too ambitious goals, and therefore may have run
into some difficulties.

The different iterations used by the researcher to eval-
uate the problem may take considerable time and en-
ergy. The effect of this, is that learning about open
source development in general, will be a continuous
process throughout the entire intervention period.

For the sake of presentation and discussion we have
presented our case according to the five phases in ac-
tion research (diagnosis, planning, intervention, eval-
uation, and reflection). We are still discussing how
the different phases overlap with each other. Take for
example the project selection phase which we regard
as a sub-phase of diagnosis. In other action research
projects, the choice of the projects to work with may
happen before the whole research process is started.
The same is valid for research questions (or goals)
which can be less open to be decided inside the AR
cycle than in our case. Evaluation and reflection are
two related phases that could be merged together.

3. Literature: The open source literature ([19, 24, 17, 9,
2, 3, 10, 22, 23, 15]) is oriented toward the social side
of open source software. This influenced the choice of
the research questions which in turn influenced the size
and the nature of the project.

A literature review must be performed to update the
content of the supporting course and provide a the-
oretical background that reflects the evolution of the
OSS research field. This is an ambitious task as OSS
research efforts have been published in the main soft-
ware engineering conferences and journals in the last
few years. There is also an increasing number of books
on this subject that have been published in the last
couple of years. This makes the task of maintaining a
map of open source literature a challenging one.

4. Choice of the open source project: In communicat-
ing with OSS projects, problems in the last project
included entry difficulties and problems handling the
size of the project. The technical competence needed
to contribute was here higher than anticipated. More

participation in mailing lists and newsgroups may have
been helpful to respond to this problem.

For students who already engage in open source devel-
opment, encouraging them to choose project they are
already familiar with may reduce the time necessary
to get acquaint with source code and the development
process.

Guidelines for using OSS in education should stress that it
is a social and complex discipline. Learning both empirical
methods and getting an introduction to the open source is
difficult. As mentioned, we have an ongoing project that is
run according to the same principles in the case reported
here and we plan to propose the same kind of projects, both
500 hour and 1000 hour projects in the next academic year.

Concerning the research method, we are satisfied with the
use of action research and we believe that this paper is a
valuable description of the exploitation of this method. Con-
cerning the research questions there will always be a phase
in which the student and the supervising researcher select
new ones starting from consolidated questions in the gen-
eral literature or provided by this family of projects. The
choice of the open source project is an interesting topic of
discussion. While it is in the interest of the teacher/research
to decide the project in which the student work, we have to
keep in mind that one of the principles of OSS participa-
tion is motivation and interest. Students who choose these
projects are students who love participating in open source
projects and that may have good experience with a specific
issue. By letting the student participate in this project, the
teacher/researcher could get valuable insights in the specific
project.

The perspectives of the industry here is similar to that of
the researcher in that industrial actors are naturally inter-
ested in letting students work on the OSS projects they sup-
port to increase activities in these projects. By replicating
these kinds of projects we aim to develop a characterization
of both open source projects and research issues.

5. REFERENCES
[1] Rudolf Andersen, Reidar Conradi, John Krogstie,

Guttorm Sindre, and Arne Sølvberg. Project Courses
at the NTH: 20 years of Experience. In J. L.
Diaz-Herrera (ed.): “7th Conference on Software
Engineering Education (CSEE’7)”, pages 177–188,
San Antonio, USA, 5–7 Jan. 1994. Springer Verlag
LNCS 750.

[2] Magnus Bergquist and Jan Ljungberg. The power of
gifts: organizing social relationships in open source
communities. Information Systems Journal,
11:305–321, October 2001.

[3] Andrea Bonaccorsi and Christina Rossi. Why open
source software can succeed. Research Policy,
32(7):1243–1258, July 2002.

[4] Jeffrey Carver, Maria Letizia Jaccheri, Sandro
Morasca, and Forrest Shull. Issues in using students in
empirical studies in software engineering education. In
IEEE METRICS, pages 239–, 2003.

[5] Claes Wohlin and Per Runeson and Martin Hőst and
Magnus C. Ohlsson and Bjőrn Regnell and Anders
Wesslén. Experimentation in Software Engineering: an
Introduction. Kluwer Academic Publishers, 2000.

[6] Robert M. Davison, Maris G. Martinsons, and
N. Kock. Principles of Canonical Action Research.
Information System Journal, 14(1):65–86, 2004.

[7] Jianjun Deng, Tilman Seifert, and Sascha Vogel.
Towards a product model of open source software in a
commercial environment. In Joseph Feller, Brian
Fitzgerald, Scott Hissam, and Karim Lakhani, editors,
Proceedings of the 3rd Workshop on Open Source
Software Engineering, pages 31–37. International
Conference on Software Engineering, May 2003.

[8] Roy T. Fielding. Shared leadership in the apache
project. Communications of the ACM, 42(4):42–43,
April 1999.

[9] Nicolas Gold, Claire Knight, Andrew Mohan, and
Malcolm Munro. Understanding service-oriented
software. IEEE Software, 21(2):71–77, March 2004.

[10] Carl Gutwin, Reagan Penner, and Kevin Schneider.
Group awareness in distributed software development.
In Proceedings of the 2004 ACM conference on
Computer supported cooperative work, pages 72–81,
New York, NY, USA, 2004. ACM Press.

[11] M. Letizia Jaccheri. Software quality and software
process improvement course based on interaction with
the local software industry. Computer Applications in
Engineering Education, 9(4):265–272, 2001.

[12] Chris Jensen and Walt Scacchi. Collaboration,
leadership, control, and conflict negotiation in the
netbeans.org community. In Proceedings of the 38th
Annual Hawaii International Conference on System
Sciences (HICSS 05), page 196b, 2005.

[13] Timothy C. Lethbridge. The Relevance of Software
Education: A survey and some Recommendations.
Annals of Software Engineering, 6:91–110, 1998.

[14] Wolfgang Maass. Inside an open source software
community: Empirical analysis on individual and
group level. pages 65–69. International Conference on
Software Engineering, May 2004.

[15] Audris Mockus, Roy T Fielding, and James D
Herbsleb. Two case studies of open source software
development: Apache and mozilla. ACM Transactions
on Software Engineering and Methodology (TOSEM),
11(3):309–346, 2002.

[16] H̊avard Mork. Leadership in hybrid commercial-open
source software development. Directed study,
Norwegian University of Science and Technology
(NTNU), Trondheim, Norway, December 2005.

[17] Tim O’Reilly. Lessons from open source software
development. Communications of the ACM,
42(4):32–37, April 1999.

[18] Daniel Port and David Klappholz. Empirical research
in the software engineering classroom. In CSEE&T,
pages 132–137, 2004.

[19] Walt Scacchi. Free and open source development
pratices in the game community. IEEE Software,
21(1):59–66, February 2004.

[20] Mary Shaw. Software engineering education: a
roadmap. In ICSE - Future of SE Track, pages
371–380, 2000.

[21] Sigurd Tjøstheim and Morten Tokle. Acceptance of
new developers in oss projects. Master’s thesis,
Norwegian University of Science and Technology
(NTNU), Trondheim, Norway, June 2003.

[22] Eric von Hippel and Georg von Krogh. Open source
software and the ’private–collective’ innovation model:
Issues for organizational science. Organization Science,
14(2):209–223, March 2003.

[23] Georg von Krogh, Sebastian Spaeth, and Karim R.
Lakhani. Community, joining, and specialization in
open source software innovation: A case study.
Research Policy, 32:1217–1241, July 2002.

[24] Huaiqing Wang and Chen Wang. Open source
software adoption: A status report. IEEE Software,
18(2):90–95, March 2001.

