
June 2006
Trond Aalberg, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Development of a Demand Driven Dom
Parser

Gaute Odin Alvestad
Ole Martin Gausnes
Ole-Jakob Kråkenes

Problem Description
Today XML is a widely known markup language for a number of purposes, for example to store
and transfer data over the internet. W3C DOM is a popular API for accessing XML documents. In
traditional W3C DOM implementations, the entire XML document is loaded to memory and
accessed as objects. The limitation however, is that the object representation have high memory
requirements. By using traditional W3C DOM, the memory requirements can reach up to 4-10
times the size of the XML document. An alternative W3C DOM implementation which can handle
large XML documents with lower memory requirements is needed. This thesis includes evaluation
of a demand driven DOM parser with lower memory consumption requirements than existing
solutions.

Assignment given: 20. January 2006
Supervisor: Trond Aalberg, IDI

Preface

This report presents the final thesis for the Master of Science in Technology at NTNU. The idea
was elaborated by the group members and the thesis was supervised by Trond Aalberg at the
Department of Information and Computer Science.

The project was carried out by the following group members Ole-Jakob Kråkenes, Ole Martin
Gausnes and Gaute Odin Alvestad. The work and struggle with this master thesis has been long
and challenging, but has also a very inspiring process. Through this period we have had many
problems but in the end we came up with a result we are pleased to present. We have also grown
through this process, both on a personal and a technical level. Throughout the work with this
thesis, the collaboration between the participants has been good. We have successfully developed
a prototype, which we think has a growing demand in the industry. The thesis has been based
on existing research, implementations and our own contribution.

We would like to thank supervisor Trond Aalberg for his support and help during the process.

Abstract

XML is a tremendous popular markup language in internet applications as well as a
storage format. XML document access is often done through an API, and perhaps the
most important of these is the W3C DOM. The recommendation from W3C defines a
number of interfaces for a developer to access and manipulate XML documents. The
recommendation does not define implementation specific approaches used behind the
interfaces.

A problem with the W3C DOM approach however, is that documents often are loaded
in to memory as a node tree of objects, representing the structure of the XML document.
This tree is memory consuming and can take up to 4-10 times the document size. Lazy
processing have been proposed, building the node tree as it accesses new parts of the
document. But when the whole document has been accessed, the overhead compared
to traditional parsers, both in terms of memory usage and performance, is high.

In this thesis a new approach is introduced. With the use of well known indexing
schemes for XML, basic techniques for reducing memory consumption, and principles
for memoryhandling in operation systems, a new and alternative approach is intro-
duced. By using a memory cache repository for DOM nodes and simultaneous utilize
principles for lazy processing, the proposed implementation has full control over mem-
ory consumption. The proposed prototype is called Demand Driven Dom Parser, D3P.

The proposed approach removes least recently used nodes from the memory when the
cache has exceeded its memory limit. This makes the D3P able to process the document
with low memory requirements. An advantage with this approach is that the parser is
able to process documents that exceed the size of the main memory, which is impossible
with traditional approaches.

The implementation is evaluated and compared with other implementations, both lazy
and traditional parsers that builds everything in memory on load. The proposed imple-
mentation performs well when the bottleneck is memory usage, because the user can
set the desired amount of memory to be used by the XML node tree. On the other hand,
as the coverage of the document increases, time spend processing the node tree grows
beyond what is used by traditional approaches.

CONTENTS

Contents

1 Introduction 1

1.1 Motivation . 1
1.1.1 Scenario . 1

1.2 Problem Identification . 1
1.3 Problem Text . 2
1.4 Approach . 2
1.5 Solution . 2
1.6 Result . 2
1.7 Report Outline . 3

1.7.1 Prestudy . 3
1.7.2 Solution . 3
1.7.3 Evaluation and Discussion . 3
1.7.4 Conclusion and Further Work . 4

I Prestudy 5

2 XML 6

2.1 Introduction to XML . 6
2.2 History . 7
2.3 XPath . 8
2.4 XSLT . 8
2.5 XQuery . 9
2.6 Data and Document Centric XML . 9

3 Handling XML 11

3.1 Parsing XML . 11
3.1.1 Parsing control . 11
3.1.2 XML Data Extraction . 11

3.2 XML Processing . 12
3.3 DOM - The Document Object Model . 14

3.3.1 DOM Development . 14
3.3.2 W3C DOM Example . 17
3.3.3 Pros and Cons of the W3C DOM 18

3.4 Updating XML Documents . 18
3.5 XML Databases . 19

4 Memory Handling 20

4.1 Introduction to Memory handling . 20
4.2 Caching and Virtual Memory . 20

4.2.1 Cache . 20
4.2.2 Virtual Memory . 20

ii

CONTENTS

4.3 Replacement Strategies . 22
4.3.1 Random . 22
4.3.2 FIFO . 22
4.3.3 LRU - Least Recently Used . 22
4.3.4 Clock Algorithm (Second Chance) 23

4.4 Trashing . 24
4.5 Load Control . 24
4.6 Managed Memory Model . 24

5 Indexing and Information Retrieval for XML 26

5.1 Introduction to XML Indexing . 26
5.2 Retrieval Directions . 26
5.3 Index Representation of XML Data . 26

5.3.1 Index Types . 27
5.3.2 Extent . 30
5.3.3 Target . 31
5.3.4 Control . 32

6 State of the Art 34

6.1 A Classification of Products . 34
6.2 Apache Xerces2 . 34

6.2.1 Xerces2 Parser Components . 35
6.2.2 Use of Symbol Table . 35

6.3 VTD-XML . 36
6.3.1 The VTD Processing Model . 38
6.3.2 Properties of the Processing Model 39
6.3.3 Navigating VTD-XML, User Level 41
6.3.4 VTD-XML Performance . 42
6.3.5 Limitations . 42

6.4 Other Traditional Implementation . 42

II Solution 45

7 Design 46

7.1 Demand Driven Dom Parser (D3P) . 46
7.1.1 W3C DOM Support . 46
7.1.2 The D3P Library API . 46

7.2 Architecture . 47
7.3 Use of Index . 48

7.3.1 XML Node Collapsing . 48
7.3.2 Symboltable . 50
7.3.3 The Structure Index . 50
7.3.4 The Value Index (Name Tag) . 54

7.4 Loading and Unloading XML Nodes - Lazy Loading 59
7.4.1 Cache Algorithm for XML Structure 59
7.4.2 Linear Structured Cache . 60
7.4.3 Tree Structured Cache . 61
7.4.4 Behavior of the Cache Algorithms 61

iii

CONTENTS

7.5 Utilizing the Managed Memory Model . 63
7.6 Updating the XML Document - Lazy Approach 64

8 Implemetation 67

8.1 Component Overview . 67
8.2 Cache . 68
8.3 DomProducer . 69
8.4 XML Data Source . 71
8.5 XML Index Storage . 72
8.6 Parser . 72
8.7 XmlWriter . 73

9 Configuration 76

9.1 Configuration Tool . 76
9.2 CollapseLimit . 77
9.3 Max Cache Size . 79
9.4 Use Cache . 80
9.5 Data Storage . 80
9.6 Xml Reader . 80
9.7 Cache Algorithm . 80

III Evaluation and Discussion 83

10 Testing 84

10.1 Software Performance Testing . 84
10.2 Testing DOM Performance . 85
10.3 Test Harness . 86

10.3.1 Compared W3C DOM Parsers . 86
10.3.2 Test Files . 87
10.3.3 The Tests . 88
10.3.4 Test Technique . 89

10.4 Test Preparations and Configuration . 90
10.4.1 Index Storage . 91
10.4.2 XML Data Reader . 91
10.4.3 Cache Algorithm . 91
10.4.4 Cache Size Impact on Performance 92

10.5 Test Result . 92
10.5.1 Document Build Time . 94
10.5.2 Tree Walk Time . 94
10.5.3 Document Memory Usage Before and After Walk 96
10.5.4 Partial Traversal Test . 96
10.5.5 Partial Traversal Test Repeat . 96
10.5.6 Remove Test . 99
10.5.7 GetElementsByTagName Test . 99
10.5.8 Document Walk Time and Memory, Percentage Coverage 99

iv

CONTENTS

11 Discussion 103

11.1 Evaluation of the Implementation . 104
11.2 Application Strength . 104

11.2.1 API . 104
11.2.2 Memory Consumption . 105

11.3 Application Weakness . 105
11.3.1 Performance . 105
11.3.2 Finding Optimal Configuration . 105

11.4 Deferred Overhead . 105

IV Conclusion And Further Work 107

12 Conclusion 108

12.1 Comparison with Others . 108
12.2 Summary . 108
12.3 Conclusion . 108

13 Further Work 110

13.1 Analysis Tool . 110
13.2 Update Index . 110
13.3 Extended DOM Support . 110
13.4 Perfect Writing . 110
13.5 Switch Memory Model . 111
13.6 Serialize Dirty Nodes . 111
13.7 Save State . 111
13.8 More Test Results for Evaluation . 112

V Appendix 117

A Glossary 117

B Document Object Model 119

C Sample Documents 120

C.1 Sample XML Document 1 . 120
C.2 Sample XML Document 2 . 121
C.3 Sample XML Document 3 . 122

D D3P UML Diagrams 123

E W3C Standard 126

F Testing 128

F.1 Test Preliminary Settings . 128
F.2 Internal Performance Tests . 129
F.3 General Tests . 130
F.4 Special Tests . 141
F.5 Percentage Tests . 143

v

CONTENTS

F.6 Deferred Overhead . 144

G CD content 145
G.1 D3P library . 145
G.2 .NET Test Suite . 147
G.3 Java Test Suite . 147
G.4 D3P Console Parser . 147
G.5 D3P GUI Parser . 148
G.6 XML File Generator . 148
G.7 D3P Library Documentation . 148
G.8 Testfiles . 148

vi

LIST OF FIGURES

List of Figures

1 Sample XML document . 6
2 XML with CDATA . 8
3 XQuery example . 9
4 Loosely structured XML file, document centric 9
5 Four approaches to reading XML data . 13
6 DOM representation tree . 15
7 Example of using W3C DOM interfaces 17
8 Reading values from a XML document . 18
9 CPU cache methods . 20
10 Virtual memory . 21
11 First In First Out algorithm . 23
12 Least Recently Used algorithm . 23
13 Clock algorithm . 24
14 The garbage collection . 25
15 Li and Moon numbering scheme . 28
16 Hu and Tang numbering scheme . 28
17 Hu and Tang inverted index . 29
18 Indexing with addresses . 29
19 CD node tree . 30
20 Range on CD node tree . 31
21 2-level indexing scheme, selection process 32
22 Xerces2 components . 36
23 XNI parser configuration . 36
24 Xerces2 symbol table . 37
25 VTD vs DOM and SAX . 37
26 VTD record . 38
27 Location cache representation . 39
28 VTD context object . 40
29 VTD navigation examples . 41
30 Architectural overview . 47
31 Sample XML node tree . 49
32 Symbol table . 50
33 Sample index table . 51
34 Resulting index table . 51
35 NodeList with no and one node visited 52
36 Partial constructed DOM tree . 53
37 Tag name index, example entry . 55
38 Tag name index construction . 55
39 Resulting tag name index . 56
40 NodeList before creating nodes . 57
41 NodeList, single node created . 57
42 NodeList, multiple nodes created . 58
43 Static linear structured cache . 60
44 Cached nodes in the tree . 62
45 Node tree before cleaning . 64
46 Node tree after cleaning . 64

vii

LIST OF FIGURES

47 Altered nodeList . 65
48 Component overview . 67
49 Class Diagram: Cache . 68
50 pseudo code for consulting weak references 69
51 pseudo code for the node cleaner . 69
52 Class diagram: DomProducer . 70
53 Pseudo code for constructing nodes . 70
54 Class diagram: XML data source . 71
55 Class diagram: XML index storage . 72
56 Class diagram: Parser . 73
57 Pseudo code for initial parsing of XML . 74
58 Class Diagram: DomWriter . 75
59 Pseudo code for writing back XML . 75
60 Indexing tool, index tab . 76
61 Indexing command line tool . 77
62 Indexing tool, settings tab . 78
63 Cache size impact, time usage . 93
64 Cache size impact, memory usage . 93
65 Full traversal, file 5 time usage . 95
66 Full traversal, file 5 memory usage . 95
67 Partial traversal, file 16 time usage . 97
68 Partial traversal, file 16 memory usage . 97
69 Partial traversal repeat, file 16 time usage 98
70 Partial traversal repeat, file 16 memory usage 98
71 RemoveTest, File 16 time usage . 100
72 RemoveTest, File 16 memory usage . 100
73 GetElementByTagName, file 16, measured time 101
74 GetElementByTagName, file 16 memory consumed 101
75 Traverse time for percentage document cover 102
76 Memory consumed for percentage document cover 102
77 XML DOM core level one . 119
78 Xml sample document #1 . 120
79 Xml sample document #2 . 121
80 Xml sample document #3 . 122
81 UML cache diagram . 123
82 UML parser diagram . 124
83 Generic example to get a node in the hierarchy 125
84 Internal tests . 129
85 Deferred overhead . 144

viii

LIST OF TABLES

List of Tables

1 State of the art implementations . 34
2 Test files . 87
3 Document build time. test file 5 . 94
4 Document build time. test file 2 . 94
5 Document walk time. test file 5 . 96
6 Testfiles for the XML parser test harness 128
7 Test settings . 128

ix

INTRODUCTION

1 Introduction

1.1 Motivation

Today XML is a widely known document standard for a number of purposes, for
example storing data and transferring data over the internet. W3C DOM is a popular
API for accessing XML documents. In traditional W3C DOM implementations, the
entire XML document is loaded to memory and accessed as objects. The limitation
however, is that the object representation have high memory requirements. By using
traditional W3C DOM, the memory requirements can reach up to 4-10 times the size of
the XML document. An alternative W3C DOM implementation which can handle large
XML documents with lower memory requirements is needed.

1.1.1 Scenario

W3C DOM is commonly used because of its benefits, but it also has some disadvantages.
In these scenarios, problems with traditional DOM parsers are presented. Our solution
is aimed to solve the problems which appears.

• A user only utilizes 10% of a large XML document. By using a W3C DOM im-
plementation which only loads the necessary parts of the document, the memory
requirements will be reduced.

• A user has a XML document which will, when using traditional W3C DOM
parsers exceed the limits of the internal memory when parsed. The user needs
the functionality provided by the W3C DOM, but at the same time a parser which
has low memory consumption independent of the XML document size.

1.2 Problem Identification

Traditional W3C DOM implementations load the entire XML document to memory,
represented as objects. This approach has high memory requirements, hence the size of
the XML document limited by the internal memory available on the computer used.

By implementing a W3C DOM, which only loads nodes actually used, we give the
opportunity to omit the high memory requirements. To accomplish this, the imple-
mentation must have knowledge regarding the structure of the XML document. This
enables the option to have a controlled memory consumption, by holding a low number
of node objects in memory at a time.

1

INTRODUCTION

1.3 Problem Text

By the discussion in the Problem Identifiction, the basis for this thesis which can be de-
scribed as:

“Development of a demand driven DOM parser with lower memory
consumption requirements than existing solutions.”

1.4 Approach

To get a foundation for the subject of this thesis, the basics of XML and XML handling
techniques has been firmly examined. To accommodate the needs in memory handling,
basic concepts has been reviewed. In particular, the understanding of how the managed
memory model works was of interest. Indexing and caching has also been a part of the
foundation for the implementation.

To get an overview of the state of the art, a number of XML processors have been exam-
ined. Both W3C DOM based implementations and others with alternative approaches,
regarding improved memory consumption, have been reviewed. Concepts from these
implementations have been taken to consideration when developing the prototype.

The implementation has been under constant development since the start, always per-
forming better, both in terms of memory consumption and processing time. Techniques
have been tested. As a result of constantly improving the prototype, much testing has
been done over and over again, resulting in the outcome of this thesis.

1.5 Solution

A number of components have been assembled to construct a W3C DOM implementa-
tion which does not have the limitation of high memory consumption.

The proposed solution has a memory cache for holding XML nodes currently in use.
The size of this cache can be dynamically altered at runtime. An index which describes
the structure of the XML document is actively used when navigating the object node
tree. Only accessed objects are constructed in memory. When the memory used by
the application is exceeding the memory cache size, memory has to be reclaimed by
removing node objects from memory. A decision of which nodes to remove are done
by a least recently used algorithm (LRU), which selects the node which has not been
visited for the longest period of time.

1.6 Result

This thesis describes the implementation and evaluation of a demand driven DOM
parser. The implementation has been compared to other implementations, both tradi-
tional implementations and others with techniques for using less memory.

The proposed prototype performs well when the bottleneck is memory usage, since the
user can adjust the amount of memory used by the application. On the other hand, as
the document coverage increases, time spent processing grows beyond what is used by

2

INTRODUCTION

traditional approaches. This is expected through theory of lazy loading, and confirmed
by the result of this work.

1.7 Report Outline

This report is organized in the following matter:

• Prestudy (ch 2 - 6).

• Solution (ch 7 - 9).

• Evaluation and Discussion (ch 10 - 11).

• Conclusion and Further Work (ch 12 -13).

1.7.1 Prestudy

In chapter 2 and 3, XML and techniques used for parsing and processing XML is pre-
sented. Special attention is aimed towards W3C DOM which represents much of the
basis for this thesis.

Chapter 4 presents techniques for handling memory, such as caching, virtual memory
and the managed memory model. Knowledge of these techniques is important for the
basis of controlling memory consumption.

Chapter 5 contains background knowledge of indexing and retrieval techniques for
XML in particular. This chapter is important for making the right decision about the
construction of indexes.

Chapter 6 deals with the state of the art. A number of existing solutions are presented
and examined. Implementations which utilize techniques for controlling and minimiz-
ing memory consumption are particularly emphasized.

1.7.2 Solution

Chapter 7 introduces the design of the proposed prototype. All approaches used in
the solution are discussed and thorough accounted for. In particular the indexing ap-
proaches and memory handling techniques are issued.

Chapter 8 deals with implementation specifics. Here, a component overview is pre-
sented and each component of the proposed prototype is presented in a technical man-
ner.

Chapter 9 presents configuration of the implementation. The implementation has a
number of configuration alternatives which can have impact on performance.

1.7.3 Evaluation and Discussion

Chapter 10 presents both the purpose of basic software testing and testing of the Doc-
ument Object Model in particular. To evaluate the prototype, a number of tests are

3

INTRODUCTION

adapted from other sources, but some are also constructed for the purpose. A test
harness for the solution is presented.

Chapter 11 discussed both the proposed solution and test results and. Strength and
weaknesses of the proposed approaches is presented.s

1.7.4 Conclusion and Further Work

Chapter 12 and 13 presents a summary, conclusion and further work for this thesis.
Further work deals with aspects of this thesis which still has potential for improvement,
both in development and implementation.

4

Part I

Prestudy

In this part we present research and state of the art in the field of this thesis. As this thesis leads to
an XML processing library we start with a introduction to basic XML in chapter 2. We further
move on to techniques for handling XML in chapter 3 with special attention to W3C DOM in
chapter 3.3. W3C DOM is the object model used as a basis for the proposed prototype implemen-
tation. Memory handling, presented next is essential for controlling the memory consumption
and lower the memory requirements. With approach to create a demand driven DOM parser, an
index is required to hold information regarding the structure of the XML document. To make
the right decisions when constructing the index for our need, thorough background knowledge
is required, therefore XML indexing techniques are presented in chapter 5.

It is highly recommended to examine this part to get a deeper understanding on the subjects,
which is later on put further in relation in the solution presented in section 2.

5

XML

2 XML

2.1 Introduction to XML

XML [5] (eXtensible Markup Language) is a markup language developed by the W3C1 [4]
in 1998. It is a human readable format which is widely used for exchanging information
in internet based applications. XML is a self describing and hierarchical markup lan-
guage, which do not require pre defined tags. Example of an XML document is shown
in figure 1. Sample document 2 is used.

<?XML version=" 1 . 0 " encoding="UTF−8 " ?>
<books>
<bookstore>
<book>
< t i t l e lang=" eng ">Harry P o t t e r</ t i t l e>
<p r i c e>29 . 99</ p r i c e>

</ book>
<book>
< t i t l e lang=" eng ">Learning XML</ t i t l e>
<p r i c e>39 . 95</ p r i c e>

</ book>
</ bookstore>
<s torage>
<book>
< t i t l e lang=" eng ">XML f o r r e a l programmers</ t i t l e>
<p r i c e>34 . 50</ p r i c e>

</ book>
.
<book>

. . . .
</ book>

</ s torage>
</ books>

Figure 1: Sample XML document

As the XML document in figure 1 shows, the first line provides process instruction in-
formation about the document. In this case it informs that this document is of type XML
version 1.0, and is encoded in UTF-8. If no encoding is provided, UTF-8 is used by de-
fault. This document provides a set of self describing data, which describes a bookstore
containing multiple books. Each book contains a title and a price element. Note that
the title element has an attribute assigned to it (lang = "eng"), which is used to provide
additional information about an element. XML has a number of advantages [24]:

• Simplicity: The XML standard is short (50 pages) and XML is a human readable
markup language.

• Open standard: XML is both platform and system independent. It builds on prior
ISO standards, and supports all languages in the world.

1W3C (World Wide Web Consortium) founded, in 1994, is an international consortium working together
to develop Web standards. They developing protocols and guidelines that ensure long-term growth for
the Web.

6

XML

• Scalability: The users can define tags themselves, making the markup language
highly flexible.

• Divide between data and presentation: XML is a write once, run everywhere markup
language. XML contains the data, but the data can be presented in various ways,
by the use of style sheets and/or transformations.

• Load balancing: XML is not dependent on an on-line data source. The user can use
the XML locally.

• Integrations: XML integrates with different data sources.

The W3C proposal for the XML document standard defines of requirement, in order to
determine if an XML document is valid. Some of the most important requirements are:

• The documents must only have one root.

• All elements must have a start and end tag, or the element must be self-closing.

• Elements must be logically nested. In example: <this><that></this></that> is
not valid, but <this><that></that></this> is valid XML syntax

• The reserved character <, > and & is in use of the XML and cannot be used for
other purposes. Instead, < , > and & respectively must substitute for
these.

• Attributes are in quotes (“ or ’. The user can choose, but the end quote must
match the start quote.

All documents satisfying these requirements are in definition well-formed XML doc-
uments. Since XML is so flexible, the need for constructing sets of restrictions was
announced. The XML standard includes restrictions in the sense of a DTD [6] (Docu-
ment Type Definition). An XML document is considered valid if the content matches its
definitions in the DTD. The DTD specifies which tags and attributes are allowed in the
XML document. For example, a DTD can say that the “this” tag may be inside “that”
tag, but not the other way around. The benefit of DTD is that applications using the
XML document has knowledge of how the document is structured. A parser which
perform validity checking using DTD, can verify the structure of the XML document.
This way, content and error checking in the application is not necessary. The DTD is
fairly simple, and more flexible restriction frameworks has later been released, such as
the XML Schema [6].

Reserved characters might cause problems when the data stored in an element explicit
uses these characters. For example, when documenting software code or mathematical
equations. To deal with this eventualitet, data containing reserved data is encapsulated
in a CDATA[] clause. An example of CDATA usage is shown is figure 2.

2.2 History

Already in the sixties, the task of developing a standard markup language for docu-
ments started. The first result was SGML (Standard Generalized Markup Language -
ISO 8879) [16]. The SGML was a comprehensive and complex framework built on IBM’s

7

XML

<math− l e sson week=" 43 ">
<math−for−dummys>
< ! [CDATA[f o r N > 0 , N i s p o s i t i v e]]>

</math−for−dummys>
</math− l e sson>

Figure 2: XML with CDATA

own markup language, GML. SGML never made it to the top; it was too difficult to
use. Many markup languages have been developed on the basics of SGML, including
HTML and XML.

HTML is an immensely popular markup language on the internet, developed by the
W3C. However, it has its limitations. When first introduced, HTML contained approx-
imately 100 predefined tags. As time passed more tags were added to satisfy needs in
the industry. As applications on the internet became more popular, a need for a more
dynamic markup language grew. Developer wanted their own tags added to the HTML,
and the W3C could obviously not satisfy everyone. XML was a result of the limitations
of HTML. With the basics of HTML and a framework like SGML, W3C developed XML
as the best of both worlds. XML is described as 20% of the specification size and 80% of
the functionality of SGML. In other words, it should be easy to use.

2.3 XPath

XPath is a query language to make it easier to select specific parts of an XML document.
It can also used to define navigation in an XML tree, using 13 different axes. The
functionality of selection data with XPath is divided into three parts:

Xpath expression: Selects the path in the node tree. For example, “/bookstore/book”
selects all elements named “book” which is child of “bookstore”, and “bookstore”
is the root-element.

Xpath functions: Selects an operation to be performed on the selected node set. The
“count()” function, for example, returns the number of nodes in the set.

Predicates: Acts as a filter for the selected node set. Only nodes which are returned
from the filter are part of the new returned node set. Using the same example
as in the XPath expression, only books which cost over $30 are selected: “/book-
store/book[price > 30] ”.

2.4 XSLT

XSLT [6], eXtensible Stylesheet Language Transformations, is a programming language
used to convert XML to other outputs, i.e. another XML document, HTML or any other
text based formats. XSLT uses XPath for selection of data to be transformed For example
if a company wants XML data formatted in a specific manner, in order to integrate with
their system. If existing XML data does not already have the correct format, an XSLT
document describing the transformation can be applied to the XML document. A XSLT

8

XML

processor is needed to transform the XML document using the XSLT style sheet. XSLT
is also written in XML, making XSLT integrate perfectly in legacy XML based systems.

2.5 XQuery

XQuery is for XML what SQL is for RDBMS (Relational Data Base Management System),
a query language for retrieving data from XML Documents. XQuery is a superset of
XPath, and aims to overtake the role of XPath. However, both these are used today.
XQuery is in contrast to XPath not XML based, and utilize the benefit of XML Schema to
optimize querying. XQuery does not support for updating XML documents in version
1.0, but future versions (version 2.0) will have this support. The benefit of XQuery is
its ability to query a collection of documents, and not limited to one document as with
XPath. This makes XQuery the perfect XML Query language for XML databases. The
XQuery syntax is based on the phrase FLWOR or For Let Where Order by Return. An
example XQuery expression using example XML document 2 is:

{
f o r $x in doc (" books . xml ") / bookstore / book
where $x / price >30
order by $x
return $x / t i t l e

}

Figure 3: XQuery example

2.6 Data and Document Centric XML

XML documents are typically divided in two types [7]; data centric and document
centric XML. Data centric XML has a strict schema, defined by a rule set like DTD
or XML Schema. These types of documents are ideal for communication in which
data has a predefined structure. Documents of this type have less requirements for
self-describing tags, because humans are less likely to read these documents.

<?XML version=" 1 . 0 " ?>
<s torage>
<product><d e s c r i p t i o n><productname>W800i</ productname> from

<manufacturer>Sony
Er icsson</manufacturer> has rece ived a mark of <evaluat ion>4</ evaluat ion>
from <r e f e r e n c e>www. amobil . com</ r e f e r e n c e></ d e s c r i p t i o n>
</ product>

. . .

. . .
</ s torage>

Figure 4: Loosely structured XML file, document centric

Document centric XML has a more loosely structured schema. Actually, the document
is likely to not have an associated schema at all. This means data can be registered in

9

XML

the XML document with no regards to rules, other than it must be a well-formed XML
document. Figure 4 shows an example of loosely structured XML. Document centric
XML are usually more difficult to handle than data centric, especially if no schema is
associated.

10

HANDLING XML

3 Handling XML

3.1 Parsing XML

Parsing XML documents is more than just reading character data. The purpose of the
parser is to abstract the process of reading and interpreting of data streams, presenting
the interpreted data to the user through an API. There are different approaches for how
data is read to the parser, and how reading is controlled. Another aspect of parsing is
the decision of how to use the XML data once it is read. Chapter 3.1.1 and 3.1.2 address
there two aspects.

3.1.1 Parsing control

There are basically two approaches for controlling parsing of XML data [2]. Push and
pull based parsers:

Push Parser: Runs through the entire document, triggering events as it encounter
nodes. The developer however, has limited control over the data stream, and
the approach can produce complex code. This is the most used XML streaming
approach today, and is generally referred to as SAX [17, 6] (Simple API for Xml).
SAX was developed as an initiative from the xml-dev mailing list. Even though
SAX is the fastest approach, it has a number of disadvantages as well. To retrieve
specific parts of a large XML document, the user has to wait until the parser
reaches this part. There is no opportunity to ’skip’ parts of the document, for fast
forwarding. Nor can SAX parse backward from the current position in the file.
This means that finding a small part of the document can time consuming. The
entire document has to be parsed again and again if the user wants to use the
same part of the document many times, because nothing is loaded permanently
to memory. By default, SAX does not permit any update of data. It is merely a
parser for retrieving data.

Pull Parser: This is the most basic approach to parsing, and the developer is always
in control of the stream. The entire file is read, one character at a time. When it
encounters a node, the control is passed to the application, which can take further
action. For example, when an element is found, the developer can ask what type
of node comes next. This is impossible in a traditional push parser; the next node
must be triggered as an own event, providing less control. As with Push parser,
there are no going back in the stream with a pull parser.

3.1.2 XML Data Extraction

When the parser has read and interpreted the data, it is ready for further processing.
Both with push and pull based parsing, events are triggered when the interpreted data is
found to have a structure or context which is defined in a rule set. The action performed
is often referred to as a part of the parsing process, but at a higher level of abstraction.

The most common method for extracting XML data from a parser is called extractive
parsing [1]. This method parses through the XML document, extracting relevant node
information, and builds an in memory object of the data. After the parser is done,
the source document can be discarded, as the object in memory represents the XML

11

HANDLING XML

document. This is the most established and well-known approach for processing XML
documents. This is also the basics of the Document Object Model further discussed in
chapter 3.3.

In recent years, an alternative approach has been introduced to process XML, know as
non-extractive parsing [1]. This approach also parses through the XML document, but
does not extract all the information as the extractive approach does. Instead tokens2

are created by the start offset and length of each node and is stored in some sort of
table/index. When data is to be used, the nodes are extracted on-the-fly from the source
document with the help of the start offsets and length values. This means that the
document source can not be discarded, as the data still is required. Some new and
untraditional XML retrieval implementations has utilized this approach, such as VTD-
XML [38]. VTD-XML is later introduced in chapter 6.3. The advantages by using
non-extractive may not be evident, but this approach has some interesting features:

Memory consumption
The non-extractive approach will potentially consume less memory, as it does not
require a complex representation of the nodes within a XML document.

Selection And Modifiability
One of the most interesting features is the improved abilities for selecting, modi-
fying and writing nodes. Some of these are:

• Any token can be removed, added or updated without re serializing the
file. Using the traditional “extractive” style of parsing, a number of string
concatenations might need to be performed in order to compose an updated
document. The “non-extractive” style allows unmodified regions of the
content to be directly copied to a new file. Only parts which are modified are
constructed and rewritten.

• Any fragment of the source data can be addressed by a pair of integer (offset
+ length). Because a fragment in a source data consists of a group of adjacent
tokens, a fragment of the source data can be addressed or even removed by
calculation the starting offset and length of the fragment.

• Fragments from multiple sources can efficiently be pulled out and splices
together to compose a new document, as long as all sources are tokenized
non-extractively.

• The original data is fully preserved and dealing with whitespace is easier. The
original document is maintained in memory or on disk and no information
is lost after the “non-extractive” tokenization.

• The integer pairs for every token in the source data can be written to a binary
file, making it possible to reuse the tokens, or “parse once, use many times”.

3.2 XML Processing

When processing XML, text has to be transformed to format known to the user. Typically,
this implies parsing and interpreting an XML stream. As discussed in chapter 3.1.1,

2A token is an categorized block of text

12

HANDLING XML

there are two approaches to control the XML data reading [36]: push or pull-based. To
sum up, when using a push based parser, the activity resides with the XML source. Data
is pushed to the parser, forcing the parser to precede the reading without stop. With
pull-based controlled parsers, the parser is in control and pulls out of the document
what it requires.

On the other hand, the type information about the document can either be interpreted
or compiled. When interpreted, the parser must interpret the data at run time, with
no previous knowledge about its content. For example, the XML data source can be
an XSLT processor, giving different XML data due to input parameters. When us-
ing compiled typing, the document can be pre processed to give the parser additonal
knowledge of the document structure or content. The non-extractive parsing discussed
in chapter 3.1.2 is an example of a compiled approach.

Combinations of the different control and type information approaches give four clas-
sifications of how to extract data from XML document [36], shown in figure 5.

Interpreted Compiled
Type information

C
on

tro
l f

lo
w

Pu
ll

Pu
sh

Lazy Demand-driven

Eager
(traditonal) Data-driven

Figure 5: Four approaches to reading XML data

Eager is the traditional approach, where the source is in control of the data, and the
receiver interprets all data when it has been delivered. When reading the entire
document, this approach is expected to have the best performance. If only a part
of the document is addressed, this approach will deliver too much data, which in
turn can decrease performance.

Lazy Evaluation pulls out data needed and interpreting it at runtime. When smaller
parts of the document are addressed, this will result in increased performance,
compared to the eager approach.

Data-driven only implements pre processing3, but all data is still delivered. When
preprocessing, data accesses can be done faster.

Demand-driven combines both pull processing and pre processing. Data access is
done faster, and data is delivered at request.

Selecting a XML processing fitted for the needs in the application is crucial for perfor-
mance. Generally, push based approaches are best when the entire document is to be
addressed. Pull based approaches will carry performance penalty because it must fetch

3Pre processing is the act of processing data before it is parsed for final usage

13

HANDLING XML

data as it goes. As document coverage decreases, pull based approaches is preferred. If
compiled approach is an available option, it will generally deliver higher performance
than interpreted.

3.3 DOM - The Document Object Model

Perhaps the most common line of action when processing tree structured documents
like HTML and XML is using a Document Object Model (DOM). DOM makes a tree
structure representing the document and provides an API for accessing the content
and structure of the document. DOM originates from the model that describes how
elements in a HTML page, like input fields, images, paragraphs etc. are related to the
topmost structure; the document. Document object models were created at the time
browsers started to support JavaScript, giving programmers necessary access to the
HTML through an object model API.

Many vendors have implemented this concept, both for HTML and XML. W3C [4]
developed a recommendation for a DOM in 1998, referred to as W3C DOM. It is a
platform and language independent object model, stating interfaces and functionality
to be implemented.

The W3C DOM [6, 11, 14] transforms documents into a logical object oriented tree struc-
ture of nodes. All nodes can be accessed through the DOM node tree. Their contents
can be extracted, modified or deleted, and new nodes can be created. All of the struc-
tures in a DOM tree inherit from a mutual interface called Node. From this interface,
specialized types of nodes are created and inherit all of the methods and properties of
the Node interface. Like CDATA, Element, Text, Attributes. The complete chart over the
different interfaces in DOM can be seen in appendix B. The specialized node types have
methods and properties suitable for their purpose. For example, the text node do not
need methods like GetAttribute, so this is only included in the Element interface. Figure 6
shows the mapping between the DOM structure and an XML document. The DOM tree
is based on XML sample document 1.

3.3.1 DOM Development

As development of document object models passed, a number of models have been
proposed. DOM is currently divided into 5 levels:

• The Level 0 DOM, supported from Netscape 2 onwards by all browsers.

• The two Intermediate DOMs.

• The Level 1 DOM, or W3C DOM.

• The Level 2 DOM. Also a W3C DOM. Supported by all newer browsers.

• The Level 3 DOM. Last recommendations from W3C.

Level 0 DOM
The first DOM [12] was invented by Netscape at the introduction of JavaScript.
This offers access to a few HTML elements. Most important perhaps, the access to

14

HANDLING XML

Document

-<?xml version="1.0" encoding="utf-8"?>
ProcessingInstruction

NodeList

NodeList

-Title
Element

NodeList

-Name
Element

-U2
Text

NodeList

-CD
Element

-Artist
Element

NodeList

NamedNodeList

NamedNodeList
-Name="type"
-Value="music"

Attribute

-Name="type"
-Value="group"

Attribute

-Best of U2
Text

Figure 6: DOM representation tree

HTML forms. Microsoft introduced the JavaScript and DOM Level 0 in Internet
Explorer 3.0. The DOM offers backwards capability and newer versions still offer
support for the DOM Level 0 specifications.

Intermediate DOMs
The browsers used at the introduction of DHTML (Dynamic HTML) needed a
tool to access properties on the page. DHTML needs to access the different layers
on the page. These layers have properties used to manipulate the page. Like
for example moving the layers. At the time, Netscape and Microsoft with their
Internet Explorer decided to make their own proprietary versions.

Level 1 DOM
While Microsoft and Netscape developed proprietary versions of the DOM, W3C
developed a recommendation for a standardized DOM interface. The first re-

15

HANDLING XML

comendation of the DOM was called the Level 1 DOM [13]. W3C DOM Level 1
concentrates on the actual core of DOM, and contains functionality for document
navigation and manipulation. The purpose of the specification is to define an
interface that is language independent and that can update structure content of
documents. Vendors can implement the W3C DOM with their own proprietary
data structures and the developers only need to be concerned about the standard
interfaces defined in the W3C recommendations.

The goal of the DOM Level 1 is to define a programmatic interface for XML and
HTML. The DOM Level 1 specification is separated into two parts; the Core and
HTML version. The Level 1 specification provides a set of low level interfaces
to represent a structured document and some additional functionality for XML
documents. The HTML Level 1 provides higher level interfaces which are used
with the fundamental interfaces defined in the Core Level 1.

Level 2 DOM
The W3C DOM Level 2 Core [14] builds upon the DOM Level 1 Core, hence it is
backwards compatible. DOM Level 2 includes a style sheet object model, and de-
fines functionality for manipulating the style information attached to documents.
It also enables advanced traversal functions, defines an event model and provides
support for XML namespaces.

Level 3 DOM
The W3C DOM Level 3 Core [15] introduces a set of new tasks, amongst other
document-loading and -saving, as well as content models (such as DTDs and
schemas) with document validation support. In addition, it also addresses docu-
ment views and formatting, key events and event groups.

In earlier W3C DOM recomendations, renaming elements was not allowed. A
new element had to be made, and all data had to be copied. With the DOM Core
3, the Document interface contains a rename method to accomplish this in a single
operation. One of the new features for comparing nodes is introduced, which
differs between identity and equality. For two objects to be identical they have to
be the same objects in memory. Equality compares the actual data in the nodes.
DOM Level 3 brings new set of methods for just this purpose. Two nodes can be
compared and the value offset in respect to each other can be found.

Another new feature is methods to query XML infoset information. For example,
users can now query and modify information in the XML declaration like version,
standalone and encoding. Also, a new property is available in the Node inter-
face, which indicates whether a text node only contains ignorable whitespace. In
early versions of W3C DOM there was no opportunity to choose which features
should be a part of the implementation. Vendors of DOM APIs might have many
additional features in their implementation, which most users do not need. W3C
DOM core 3 supports choosing which modules should be utilized, so users do not
have to suffer unnecessary performance overhead and memory consumption. A
new feature in the Document interface is called normalizeDocument. By default
the operation performs these actions:

16

HANDLING XML

• Consolidates adjacent text nodes into a single one.

• Updates content of entity references according to entities they
refer to.

• Verifies and fixes namespace information, making namespaces
well formed.

Future versions
Future versions of DOM may specify interfaces with a underlying window sys-
tems to prompt the user. It may contain a language interface, address multithread-
ing and synchronization, security and repository.

3.3.2 W3C DOM Example

A W3C DOM core specification defines a number of interfaces to access XML data. These
interfaces are defined by an IDL (Interface Definition Language), That can be translated
into several language specific versions. The example code in figure 7 shows Microsoft
DOM in the .NET framework 2.0 programmed in C#. The MS DOM implements W3C
DOM.

XmlDocument xdoc = new XmlDocument () ;
XmlElement docElem = xdoc . CreateElement ("XML−example ") ;
XmlElement nameElem = xdoc . CreateElement (" Parser−Name") ;
nameElem . S e t A t t r i b u t e ("Name" , "D3P") ;
XmlText textNode = xdoc . CreateTextNode ("Demand�Driven�DOM�Parser ") ;
nameElem . AppendChild (textNode) ;
docElem . AppendChild (nameElem) ;
xdoc . AppendChild (docElem) ;
xdoc . Save (t e s t F i l e) ;

Figure 7: Example of using W3C DOM interfaces

The example code in figure 7 does this:

1. Create a document with a rootnode. In DOM, this node is re-
ferred to as the DocumentElement.

2. Makes a element node and appends an attribute to it.

3. Makes a text node with content.

4. Appends the text node as child of the element

5. Appends the element to the rootnode.

6. Appends the rootnode to the document.

7. Saves the document.

17

HANDLING XML

Accordingly, the XML document is created as an internal node tree structure. The struc-
ture is written to disk as XML, when the save command is issued. Note that opening and
saving documents are not a part of the W3C DOM Core 1 and 2, but first implemented
in the DOM Core 3 recommendations.

To retrive data from a serialized XML document, the file has to be loaded, as shown in
figure 8. This C# code will make a popup box displaying the content of the text node
made in figure 7.

XmlDocument xdoc = new XmlDocument () ;
xdoc . Load (t e s t F i l e) ;
MessageBox . Show(xdoc . DocumentElement . F i r s t C h i l d . F i r s t C h i l d . Value) ;

Figure 8: Reading values from a XML document

3.3.3 Pros and Cons of the W3C DOM

The W3C interface definition can potentially improve productivity, since developers
only have to be familiar with one common set of interfaces. A number of implementation
of the W3C DOM has been developed based on these interfaces. This, of course makes
development easier. Since most DOM implementations build the whole tree in memory
in some sense of a hierarchy of objects, the object representation will be significant
larger than the XML file itself. The object representation is not an ideal approach in
managed memory models such as Java and .Net, where object creation is the single
most expensive operation. The size of the in memory node tree is determined by
implementation-specific techniques and algorithms, but often the DOM tree can be 4 to
10 times the size of the XML doucment. This sets a constraint on how large files can be
processed in memory. This is of course not scalable for large documents.

3.4 Updating XML Documents

The W3C DOM includes methods for updating the XML structure. The document is
altered in memory, and a completely new file must be written from the object represen-
tation in memory. An alternative approach of updating an XML document is to run it
through a XSLT processor, writing changes to a new file as the document is traversed.
An update facility for the XML Query Language (XQuery) [3] is under development,
and exists now as a working draft. When completed, XQuery can be used for altering
XML documents, independent of storage format. Another query language which aims
for updating XML data is the XUpdate [19] from the XML:DB initiative [20]. This lan-
guage was developed due to lack of update support in XQuery.

A proposal for lazy updating has been done by Cantania [18], describing how to use
an update log to build the structure of the new XML file. They propose a dynamic
indexing scheme built on segmentations, which makes it possible to easily update the
index. It uses a hybrid between static and dynamic index identification mapping; using
local offsets in each segment, and the segment has dynamic, global addressing. This

18

HANDLING XML

makes it necessary only to update the global numbering for those segments not changes
during index update.

3.5 XML Databases

XML databases [7, 8, 9] might be the most obvious choice for handling large XML
documents. Many XML databases have W3C DOM interfaces as one of many access
methods, making it possible to use the database the same manner as any W3C DOM im-
plementation. XML databases has various approaches for storing XML. XML enabled
databases are traditional relation databases which through a plug-in are extended to
support XML structures. These databases usually shred the XML document in rows and
columns, putting the data in a relational database. Native XML databases use XML as
their native logical storage. It can still be stored in plain XML text or in a proprietarily
format. Some XML databases uses PDOM (Persistent DOM) [9], which is serialized
DOM objects, making DOM the natural access method since objects does not have to
be converted to other representations before usage. Also, XML databases are tuned for
the purpose of handling a repository of XML data, making it ideal for accessing huge
amounts of XML.

However, a database often represents yet another service on the computer. Some
databases communicate in a client-server architecture matter, making it slower for small
user applications. Servers like this can require administrator or extended user rights to
install or use, possible making this option harder.

19

MEMORY HANDLING

4 Memory Handling

4.1 Introduction to Memory handling

Memory handling is crucial for any performance critical application. Incorrect use of
memory or misconstruction in the understanding of basic techniques can result in ter-
rible performance. Memory is a resource which are limited in size, which means that
the memory available must be handled with care to get the most out of it.

In this chapter, many of these techniques are extracted from their context to get into
depth with each one of them. Starting with the basics of caching and virtual memory,
known from operation systems. Further, examining at replacement strategies for hold-
ing the right data in memory at all times, load control and trashing. Finally presenting
how the managed memory model works, and pros and cons of this model.

4.2 Caching and Virtual Memory

4.2.1 Cache

When caching data [21], a copy of the data are moved closer to the user. This results
in less access time when data is referred to next time, because the user can use its local
copy, and does not have to get all data from the original source. This principle is not
only used in computer hardware, but also in operating systems, as well as web browsers.

In computer hardware, the data copy is kept in a faster memory which resides closer to
the CPU (Central Processing Unit). This memory gets more expensive the faster it gets,
making it necessary to limit the size of the fast memory. There can be many levels of
cache, each one smaller and faster than the next. Moving from right to left in figure 9,
the address space of the component is decreasing.

Registers CPU
Cache Memory Disk

Figure 9: CPU cache methods

In figure 9, only parts of the data needed by the application is copied from the disk to
the memory. This carries on for all levels; the CPU cache only has copies of parts of the
data which is in memory.

4.2.2 Virtual Memory

Virtual Memory [21] is a memory management technique which utilize caching, making
a large virtual memory address space. The size of the virtual address space does not
have any relations to the size of the physical internal memory. Basically, data which are
not needed at the time are temporarily stored on the disk, but data currently needed
by the CPU resides in memory. The user however, does not know where the psychical
data is; only the virtual memory space is visible. Most modern operating system has

20

MEMORY HANDLING

some sort of virtual memory management.

Physical memory space is limited, forcing the system to decide which data should be
allowed in memory and which can be written temporarily to disk. Data are handled in
chunks of data called pages. A page in a modern operation system is from 512 to 8192
bytes. To copy data pages from memory to disk (and back) is called swapping, hence
the area which the pages are written to on the disk is a swap file or a swap hard disk
partition controlled by the operating system.

Virtual Adress Space

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

Primary storage

Primary storage blocks

Secondary storage

Virtual Memory Blocks

Storage Blocks

Figure 10: Virtual memory

In figure 10, the data at address 0x5000 and 0x6000 are not currently in use, and are
stored on the disk. If any of these pages are referred to, they must be loaded to memory
before it can be used. When an address which is referred to is found in cache, data
can be used directly. This is called a cache hit. A cache miss is issued when the referred
address is found to be in a page on secondary storage. If the memory is full, other
pages must be removed for the newly referred page to fit. The decision of what page
should be removed from memory is called a replacement strategy, further discussed in
chapter 4.3. When implementing virtual memory, these issues has to be addressed [21]:
Address Mapping Mechanisms, Placement Strategies, Replacement Strategies, Load Control
and Sharing. For modern operating systems, all of this is already implemented as a part
of the system. Users of the OS do not have to address these issues, it is already done.
The page size is crucial for performance. The page size will determine how much data
should be loaded in or swapped out of memory at a time. If the page size is small, there

21

MEMORY HANDLING

will obvious be more expensive disk accesses. If the page size is larger, there will be
fewer accesses, but if only a small portion of the data is used, the effort of reading the
large page would be a waste. The two most important issues, replacement strategies
and load control are issued in chapter 4.3 and 4.5 respectively.

4.3 Replacement Strategies

As discussed in chapter 4.2.2, physical memory is of limited size, and pages of data has
to be removed from memory when another data page is due to enter memory. When
selecting a page to remove from memory, it is desirable to select the one which gives
the best performance. In theory this is [21]:

Select for replacement that page which will not be referenced for the longest time in the future.

It is however, not als intuitive which page will not be used in the near future. To help
decide, the Principle of Locality [21] can be used:

Locality in time : If an item is referenced to, it will tend to be referenced to again soon.

Locality in space : If an item is referenced, items whose address is close by tend to be referenced
soon.

The principle of locality in time argue that a page which has just been referred to should
not be selected for replacement and the locality in space argue that other addresses in
this same page are also likely to be referred to. Several replacement strategies are used
in caches. This chapter issues four of them, from the least common used; the random
replacement algorithm to the most used; the Least Recently Used (LRU) algorithm.

4.3.1 Random

Random replacement [21] means replacing pages in a random matter. This completely
contradicts the Principle of Locality, where no assumption about whether the replace-
ment will improve performance.

4.3.2 FIFO

The FIFO [21] (First In First Out) algorithm says that once a data page is loaded it is
placed on top of a stack. The stack has a limited size, so when the stack is full, the page
on the bottom of the stack is selected for replacement as shown in figure 11. It has no
respect to whether a page is referred to again or not during its lifetime on the stack.
This is only advantageous when a data page is used over a very small period of time.
So when unloading, it is not referred to again in near future.

4.3.3 LRU - Least Recently Used

The LRU [21, 23] algorithm states that once a page is loaded it is pushed on a stack.
So far, it is equally to FIFO discussed in chapter 4.3.2. The difference is that the LRU
algorithm will put the page back on top if it is referred to again during its lifetime on
the stack. Therefore, a frequently used page will als remain on top of the stack and in
memory. This is showed in figure 12. Those pages not referred to in its lifetime in the

22

MEMORY HANDLING

FI
FO

Figure 11: First In First Out algorithm

stack will be considered unlikely to be referred to again in the nearest future. Therefore,
the page on the bottom of the stack is chosen for replacement.

An LRU algorithm implemented in software applications can be expensive in terms of
performance. Moving objects around in a stack or list every time it is used consumes
resources. A number of approaches have been suggested. For example, using time
stamp for each page and update this on each reference. On replacement, the page with
the oldest timestamp must be found.

Figure 12: Least Recently Used algorithm

The LRU algorithm are considered the most accurate in terms of making the best
decision of which page to replace, consequently the LRU and versions of it is used in
many database systems and operation systems.

4.3.4 Clock Algorithm (Second Chance)

The Clock algorithm [21] approximates the LRU algorithm and is more cost- efficient,
but is more complex to implement. All pages starts with a used-bit set to 0. When a
page is referred to or loaded, the used-bit is set to 1, which means it is used and not
replaceable. The list of pages is continuous cyclic scanned, looking for replacement

23

MEMORY HANDLING

candidates. When a used-bit set to 1 is found, it is reset to 0. If a used-bit is found to be
0, it has not been referred to since the last scan, making it a candidate for replacement.
This gives the pages a second chance of surviving. Once referred to, it must be scanned
twice before assumed to be a candidate for replacement.

Last frame replaced

Not replaceable

Not replaceable
Not replaceable

Not replaceable

Replaceable

Figure 13: Clock algorithm

4.4 Trashing

The term trashing [21] indicates an operation on a computer that has no or limited
progress, often because a resource is exhausted. For example, a running process is
assigned a resource which another process are about to use. When this pattern repeats
itself, much time is wasted delegating resources, and none of the processes have good
progress. Trashing is known to be the worst scenario when replacing pages. That is, a
page is removed from main memory, which is soon to be used by the same or another
process. The purpose of any good replacement strategy is to limit trashing, in selecting
pages to replace which are less likely to be addressed in near future.

4.5 Load Control

Load control [21] gives the ability to make a decision whether to use static or dynamic
loading. By using static loading, all data will be loaded into memory in advance. This
means that the process als has data ready and no additional I/O operations have to be
performed. A static loading can be advantageous when all of the data is due to be used,
but will carry performance penalty when only some of the loaded data are referred
to. On the other hand, dynamically loading data will load data into memory as it is
required by the application. That is, the system checks whether the required data is in
memory or not. If not, only the required data is loaded to memory. This cause more
I/O operations, hence will lower performance. The advantage of loading just what is
required is that no operations will be performed on data which is not used. Dynamic
loading is often called lazy loading or demand paging, because it loads data when it is
demanded.

4.6 Managed Memory Model

Frameworks which utilize a Managed Memory Model [35], releases the developer from
the responsibility of releasing memory for created objects. The memory management

24

MEMORY HANDLING

does this for all objects no longer in use by the application. Examples of frameworks
implementing the managed memory model are the Microsoft .Net framework and Java.
In both these frameworks, applications are executed from a virtual machine4 which is
responsible for the memory management. A Garbage Collector (GC) is an functionality
within the virtual machine, which is responsible for removing objects which are not
referred to either by the call stack, the current context or the application root.

The basics of managed memory management are as follows: All created objects are
allocated of a heap5. In the sense of the virtual machine, the heap has a limited size. If
the heap is full or nearly full, the Garbage Collector (GC) is issued and starts to remove
objects from the heap which are no longer referred to. Figure 4.6 shows a heap which is
full, with both live and dead (no longer referred to) objects. After the collector is done,
all dead nodes are removed from the heap, leaving space for new objects to be created.
If the heap is full and the GC does not find any objects to remove, no more memory can
be claimed by the application. If the application tries to allocate memory at this time,
the application will crash. It simply has no more memory resources available.

Before After

Object C (Live)

Object B (Dead)

Object A (Live)

Object G

Object E

Object C

Object A

Object G (Live)

Object F (Dead)

Object E (Live)

Object D (Dead)

Free space

Next Object Pointer

Figure 14: The garbage collection

Using the managed memory model, the developer only has to make an object unreach-
able, so the GC to collect it and release it from memory. The Garbage Collector can be
forced to run, even though the heap is not full, but in most cases, it is best to let the GC
run only when necessary.

4Virtual Machine (VM) is a generic emulator, executing byte code. The VM can be implemented for
many platforms, hence the code can be “Written once, run anywhere”.

5A heap is a specialized tree-based data structure.

25

INDEXING AND INFORMATION RETRIEVAL FOR XML

5 Indexing and Information Retrieval for XML

5.1 Introduction to XML Indexing

Document indexing techniques provides the possibility for faster retrieval, but when
indexing a document, a number of alternatives have to be addressed. Accuracy, speed
and index size are contrasts which must be taken into concern when developing an
index. XML, which is a hierarchical structure represented as text coded files, can be
a challenge to index for all purposes. When implementing an on demand framework
from W3C DOM, an index will compensate for some of the information regarding struc-
ture and content in the XML document.

A number of XML indexing and numbering schemes are developed in the recent years
to compensate for the growing interests in use of XML. Numbering schemes for XML
are most used in XML databases, where the documents and collections of XML data are
huge. Indexing has the objective of reducing the overall recall time when querying the
whole, parts of or a collection of documents.

5.2 Retrieval Directions

Dealing with large collections of data makes information retrieval strategies important.
By defining search and retrieve criteria’s, a custom index structure can be designed.

There are two directions for information retrieval [25], namely information retrieval (IR)
and data retrieval (DR).

IR deals mostly with text documents with information that may or may not be rele-
vant to a submitted keyword query. It uses methods such as stemming, stop-words,
n-gram and synonym lists [25] to analyze keywords. Further algorithms, such as bool,
vector and probability are used to determine the relevance of information (based on
submitted keywords), and retrieve them in a ranking order based on relevance. A
typically example of IR is web search engines like Google. For example, the query
can be “Car Dealership” and the response could include documents containing phrases
such as “Bob’s Car-Dealerships in Las Vegas”, or “Crazy Carl deals out free spaceships
to NASA” or even “Bubba’s Automobile Marked” depending on which methods and
algorithms the search engine is using.

DR deals with retrieval of concrete data from a specific query. It returns only requested
data and nothing more. In contrast to IR, where additional information can be retrieved,
DR only retrieves data in a known format that matches the query. There is no relevance
factor to whether data can be found or not; either it is present or it is not. A database
using SQL query is a typical example of DR. For example the SQL query “SELECT
car_dealership FROM dealer WHERE location = Las_Vegas” would only retrieve the
car dealerships located in Las Vegas, if any.

5.3 Index Representation of XML Data

As discussed in chapter 2.1, XML is a self describing semi structured hierarchic markup
language. The structure makes it a challenge to decide what, how and at which extent

26

INDEXING AND INFORMATION RETRIEVAL FOR XML

to design an index. An index is often related to the addressability the indexed data [10].
That is, for an index to be able to refer to data, it must be addressable. Even when data
is not directly addressable, it is still possible to access the data. This is accomplished
through further searching within addressable units.

The term granularity is often used as a measurement for the extent of an index. A very
granular index takes concern of everything addressable by access, representing a larger
aspect of the data. A more course grained index might use other high level addressable
units. For example, a very granular index might have references to every node in a
XML document, while a coarse grained index could refer to a XML document.

Index occupies space, both on disk and in cache, but generally it makes retrieval
faster [10]. Indexes are also often slower on updates than retrieval. If too much time is
spent updating the index, the overall benefit of using an index can be eliminated. This
means that a static index which never changes, is to prefer when possible. The design
of an index depends on various parts, such as structure, extent, target and control.

5.3.1 Index Types

An index should be structured to accommodate for the context in which it is used [27].
Since XML documents have a hierarchic structure, an XML index must be designed
accordingly. This type of index are clearly related to Data Retrieval (DR) discussed in
chapter 5.2. A number of XML indexes have been proposed, both static and dynamic
and with different levels of information and granularity. XML can make use of both
structured index (for navigation) and value index (for value retrieval). To make value
and structural searches possible, each node must have knowledge of: Parent to children
relationships and General relationships (siblings). This is the basics to make it possible to
navigate the XML tree.

Structured Index
Li and Moon [27] proposed a structure index which has long been considered
to be the ruling numbering scheme. The numbering scheme is based on Dietz’s
scheme [26] which defined: for two given nodes x and y of a tree T, x is an ancestor of
y if and only if x occurs before y in the preorder traversal of T and after y in the postorder
traversal. Based on this knowledge, the scheme in figure 15 was introduced.

In this scheme, each node is associated with a pair of numbers, <order, size>.
This is an identifier which can pinpoint physical nodes. With this knowledge
relationships among nodes can be determined:

Parent relationships
Node A is a parent of another node B if order(B) > order(A) and (or-
der(B) + size(B)) < (order(A) + size(A)). This means that node B is within
node A’s interval.

Sibling relationships
For two nodes A and B which has the same parent, would node A be the
predecessor if (order(A) + size(A)) < (order(B)).

27

INDEXING AND INFORMATION RETRIEVAL FOR XML

(1,100)

(10,30) (41,10)

(25,5)(11,5)
(17,5)

(45,5)

Figure 15: Li and Moon numbering scheme

Based on this, the node in figure 15 with order 10 and size 30 (10 , 30) contains all
nodes with order from 11 to 30. There are unused values in the range, which is
available for new node to be inserted to the XML node tree. However, there are
limitations in this approach. When all reserved values are used by new nodes, no
new nodes can be added to the numbering scheme. To get avoid this, an alternative
indexing scheme has been suggested by Hu and Tang [28]. This suggestion takes
consideration of frequent node insertions and uses a dynamic scheme that does
not limit the space for new nodes.

(1,1)

(2,1:1) (2,1:2)

(3,1:2:1)(3,1:1:2) (3,1:2:3)(3,1:1:1) (3,1:2:2)

A

B C

Figure 16: Hu and Tang numbering scheme

In this scheme, each node is associated with <level, path>, where level indicates
which level in the hieratic structure a node resides and path is of type “path to
parent : current sequence number ” as shown in figure 16. The root node has als
the identifier (1,1). For example, for node C in figure 16 the level is 3, path to parent
is 1:2 and the current sibling-number is 2 resulting in the identifier <3,1:2:2>. This
scheme provides the opportunity to add new nodes, but only as the last sibling.
Inserting nodes which are not the last sibling would require reorganizing of the
numbering scheme. Similar, when deleting nodes which are not the last sibling,
reorganizing of the numbering scheme is required.

As shown, flexible indexing schemes for hieratic structured data are challenging.
If searching for numeric nodes, Hu and Tang scheme would perform very well.

28

INDEXING AND INFORMATION RETRIEVAL FOR XML

Consider the expression “XPath:/[1][2][2]” which is node C in figure 16. This
makes it easy to create an inverse index, by referring to the node identifier as
shown in figure 17.

Element value nid (element numbering value)
Hash(bookstore) (1,1)
Hash(book) (2,1:1)

Figure 17: Hu and Tang inverted index

Both these indexing schemes have limitations of updating. If updates were no is-
sue, indexing scheme could remain static. Approaches for static indexing schemes
has been suggested, which uses offsets inside the document or collection as refer-
ence [30, 29]. To make use of the functionality from Li/Moon [27] and Hu/Tangs [28]
numbering schemes, level and sibling sequence number also has to be taken into
concern. A typical complete key would look something like <documentID, star-
taddress, endaddress, level>, as shown in figure 18.

<book>
 <title> XML </title>
 <allauthors>
 <author> jane </author>
 <author> john </author>
 </allauthors>
 <year> 2000 </year>
 <chapter>
 <head> Origins </head>
 <section>
 <head> …</head>
 <section> …</section>
 </section>
 <section> ...</section>
 <chapter> ...</chapter>
</book>

book

title

XML

allauthors year chapter

head section

jane john Origins

2000

chapter

authorauthor section

head section

(1.1:70,1)

(1,2:4,2)

(1,3,3)
(1,6:8,3)

(1,7,4) (1,10,4) (1,18,4) (1,21:23,4) (1,24:28,4)

(1,9:11,3)

(1,5:12,2)

(1,14,3) (1,17:19,3) (1,20:29,3) (1,30:39,3)

(1,41:69,2)(1,16:40,2)(1,13:15,2)

Figure 18: Indexing with addresses

Value Index
Value based indexes for XML often includes information regarding elements and
attributes [10]. For example, searching for all nodes with a specific value, would
only return those addressable units actually containing the search criteria ([25],
DR). Also, indexes based on partly string matches could be designed. Such as a
“starts with” operation, thus enabling retrieval all node values that has a specific
prefix. Additional tools such as formatting of values (XPath 2.0, XQuey 1.0) and
definition of values (DTD, XML Schema) could further help with more specific
queries, boosting performance.

Full-text indexes enable searching through whatever element or attribute in the
entire data collection. This includes searches for text which is part of bigger
context, or words which have some context ([25], IR). This is part of the information
retrieval strategy, discussed in chapter 5.2. This is the most demanding indexing

29

INDEXING AND INFORMATION RETRIEVAL FOR XML

type, because it is difficult to predict queries, thus making it hard to design indexes
based on pre defined criteria’s. Full-text searches are expensive and should be
used only for special purposes.

5.3.2 Extent

The extent of an index says how much of the data collection the index should include.
In XML, the extent of the index can vary from node level to huge collections of data. A
very granular index would accurately respond to queries from the entire collection, but
would be large and slow. A special index, referring to particular pre defined granular
units, or certain part of the collection would be faster with searches on the specified
criteria, but would only be useful for this criteria. It is important to distinguish the
purpose of the index, and choose an extent accordingly.

An index over an XML document with the highest granularity would result in an index
quite large in comparison with the document itself. To get around this potential prob-
lem, Duda and Kossmann [31] suggested the introduction of the notion range, used in
structural index over XML. They present range as a less granular unit, where one or
more nodes (chosen representation of XML data) are encapsulated within the range.
Consider an XML document with two records of a CD entry, with similar structure as
in figure 15. The node tree would result in the node tree shown in figure 19.

Root (0,200)

CD(1,99) CD(100,199)

Artist(10,89) Artist(110,188)

Name(20,39) Name(120,139)Title(50,69) Title(150,169)

Text_value(30,38) Text_value(60,68) Text_value(130,138) Text_value(160,167)

Figure 19: CD node tree

With a granularity of each node, this index would contain 15 entries. But by introduc-
ing the less granular unit (range unit), encapsulating more nodes, index entries can be
reduced. The encapsulation can be based on node sizes or node count, within the range
unit. If the “CD” node is encapsulated there would only be 3 entries (including root
node) as shown in figure 20.

This approach would reduce the number of index lookups if more than one node is
selected for retrieval in the same range unit. The decision of how much to include in the

30

INDEXING AND INFORMATION RETRIEVAL FOR XML

Root (0,200)

CD(1,99) CD(100,199)

Artist(10,89) Artist(110,188)

Name(20,39) Name(120,139)Title(50,69) Title(150,169)

Text_value(30,38) Text_value(60,68) Text_value(130,138) Text_value(160,167)

Range unit Range unit

Figure 20: Range on CD node tree

index would require a balance between size of the range unit and the size of the XML
document. For example a range unit size which is bigger than the address range of an
entire XML document would be useless; implying the document as the range unit.

5.3.3 Target

The target is what the index is intended to retrieve. A common line of action with XML
is to refer to and retrieve entire nodes [10]. Another approach is to refer to and retrieve
parent nodes. This will also work as a caching mechanism where additional informa-
tion is immediately available for possible future queries. The range unit discussed in
chapter 5.3.2 uses this approach. The top node in the range unit can be the addressable
unit, but sub nodes are still accessible. Having knowledge of how to process the data in
the range unit, it can be further extracted. For example, an element can be returned and
further parsed. Additional indexes can also be used to retrieve desired nodes inside a
range unit.

In a static collection of data, data that do not change the physical address within the
collection (byte, offset, word, etc..) can be the index target, thus minimizing the size
and complexity of the index. In dynamic collections of data, a direct addressing scheme
would be unfavorable. Every time data is altered, partially of complete re indexation is
required. In this case, a numbering scheme that uses virtual addresses is preferred. It
is advantageous for the index to have its own reference list, so the index do not have to
mind updating any other entries than those directly concerning the node in question.

31

INDEXING AND INFORMATION RETRIEVAL FOR XML

5.3.4 Control

The control aspect of the index deals with the time for the actual indexing [10]. It is
als advantageous to have the index ready whenever a lookup is necessary. A usual
approach is to index data at application startup or even before the application startup,
as a pre processing phase. Indexing can also be done automatically, either in timed
intervals or at application specific events. Examples where timed intervals are used
are web search engines, where updating is not critical for the success of the operation
that the system is rapidly updated. An example of event based indexing is in situa-
tions where the consistency of the system is crucial, as with business critical applications.

When the system knows when to index, it is also important to know what to index. In-
dexing is usually based on an instruction set, predefined for the purpose of the system.
Indexes can also be made solely on the basis of some user defined criteria. For example,
if a user wanted to find the owner of a car solely based on plate numbers, it would
be unnecessary to index the car type, model, weight, etc. Therefore it is important do
determine what data to index and what retrieval directions to take into concern.

A number of approaches [32, 33] utilize more than one index to accommodate for dif-
ferent retrieval requirements. These could either be completely separate indexes for
each retrieval task, or the indexes could overlap and have dependencies with one an-
other. Consider the example discussed in chapter 5.3.2 where introducing the notion
of range and indexed based on the range units. This solution would only be effective
on relationships queries. Node searches based on node names would be considerately
expensive. A possible solution could be to create a 2-level index scheme, as suggested
by Ponce, Vila and Hersch [34]. They suggested having tags in a separate index that
would accommodate the name tag name retrieval process, further utilizing a second
data index to retrieve the actual data of the node. The structure and sequence of events
in such a scheme is presented in figure 21.

Client

A
ccess T

ags
A

ccess D
ata

1

3

5

7

8

4

2

tags

6

data

Tag Index

Data Index

Figure 21: 2-level indexing scheme, selection process

32

INDEXING AND INFORMATION RETRIEVAL FOR XML

In the case of the scheme presented in figure 21, the tag index is depended on the data
index to completely retrieve nodes based on name tags. Although this would require
two index lookups, the advantages comes in the form of a total smaller index and faster
retrieval, as this would both reduce the data accessed and transferred compared to one
large index.

33

STATE OF THE ART

6 State of the Art

6.1 A Classification of Products

Since the introduction of XML in 1998, there have been many different products to pro-
cess this markup language. Most of them implement the W3C DOM interface which has
developed to be de facto industry standard, providing a common API. Approaches for
handling XML which tries to exceed the limitations of the W3C DOM recommendation
has recently emerged, resulting in a number of different APIs

Table 1 shows XML parsers and processors most used today. In the following chapters,
the most interesting of these are examined in depth, namely Xerces2 (chapter 6.2) which
utilize demand driven node building, and VTD-XML (chapter 6.3) which uses a non
extractive approach.

Product Object Model Proc Approach Tokenization M̃em usage
Xerces2 normal W3C DOM Eager extractive 8x XML
Xerces2 deferred W3C DOM Demand driven extractive 0-10x XML
VTD-XML VTD Eager non-extrative 1.3-2x XML
Crimson W3C DOM Eager extrative 3-8x XML
JDOM DOM classes Eager extrative 4-8x XML
DOM4J D4J classes Eager extrative 4x XML
MS .Net DOM .Net classes Eager extractive 3-6x XML
SAX stream Eager extractive low

Table 1: State of the art implementations

6.2 Apache Xerces2

The Apache Xerces2 parser [42] takes advantage of demand driven XML loading to im-
prove performance. It has two modes, with or without demand driven parsing, which
can be switched on or offwith a simple command. Xerces2 call the demand driven mode
for “deferred mode”, and will be referred to as this from now on. In normal mode, the
entire XML document is read at document load, and is accessed as a complete W3C
DOM node tree in memory. Apache Xerces2 implements all levels of the W3C DOM
interfaces discussed in chapter 3.3.1.

In deferred mode, the DOM tree is created as it is traversed. When the Document node
is created, the DOM tree consists of this node only. The remainder of the nodes is created
as they are accessed. A technique the Xerces2 developers call deferred node expansion.
This shortens the time used in the initial building of the document. On document load,
it does not build the DOM tree but a non object oriented data structure that contains
the information needed to create the parts of the tree when needed. Because only a few
objects are created, the initial memory consumption is very small compared to normal
mode. When the client application requests a node, the implementation creates the
inquired node and all of its children. It only creates nodes which have not already been
created already.

34

STATE OF THE ART

A deferred DOM is useful and effective when only parts of the XML document are
accessed. If the whole document is traversed, a traditional DOM implementation would
be preferred. This is due to the overhead of constructing nodes in several sessions. This
results in higher memory consumption and more processing time. Xerces2 does not
predict which nodes are to be requested; hence it is slow on selecting single nodes in
deferred mode.

6.2.1 Xerces2 Parser Components

The Xerces2 parser is built upon the Xerces Native Interface (XNI) which defines a basic
approach for building parsers components and configurations. Each component has
certain dependencies which a developer must take into consideration. There are some
dependencies between the components in the configuration. The dependencies can be
seen in figure 22. The components are as follows:

• Fundamental Dependencies

– Symbol Table (Further discussed in chapter 6.2.2)
– Error Reporter

• Individual Component Dependencies

– Document Scanner
– DTD Scanner
– Entity Manager
– DTD Validator
– Namespace binder
– Schema Validator

The XNI parser configuration framework provides an easy to construct a custom con-
figuration. The framework separates the API from the configuration, making it easier to
choose components to use without re implementing the parser code. The information
flow in the system are shown in figure 23.

• Information flows through a pipeline of components in the parser configuration

• Information goes to the parser which creates the correct API (DOM or SAX) for
the configuration.

6.2.2 Use of Symbol Table

The reference implementation of Xerces2 uses a symbol table to represent common
strings in the document [22] as shown in figure 24.

For lexically equivalent strings, the same identification is returned. This both reduces
the amount of objects created while parsing and also gives components the possibility
to perform comparisons directly on the references. The symbol table in Xerces2 also
gives the possibility of providing an alternative hash algorithm. A common problem
is that simple string hashing algorithm often fails to provide balanced set of hash code
for symbols that are mostly unique. This is mainly postponed to strings with similar
leading characters. The symbol table in figure 24 is based on example document 1.

35

STATE OF THE ART

Dependence

Document
Scanner

DTD
Scanner

DTD
Validator

Schema
Validator

Namespace
Binder

Entity
Manager

Grammer
Pool

Datatype
Factory

Symbol
Table

Error
Reporter

Figure 22: Xerces2 components

DOM Parser SAX Parser

Document Parser

Parser Configuration

ComponentComponentXML n1

Figure 23: XNI parser configuration

6.3 VTD-XML

VTD-XML [38, 37] is an open source, non extractive XML processing API for several pro-
gramming languages. To sum up from chapter 3.1.2, extractive XML means that XML
is kept in its original format. Only parts of the XML which are needed are formatted
for the user in mind. This reduces the large memory overhead which DOM normally
produces. The amount of objects created are reduced, and since objects creation is the
single most expensive operation for frameworks like Java end .Net, the load time is
heavily reduced as well. The VTD-XML does not implement the W3C DOM, but has
a completely different model which does not use a node tree to hold XML data and
structure information. Figure 25 shows an overview of the classification of VTD-XML
compared with SAX (streamed parsers) and DOM.

The API mainly differs from W3C DOM in the design to support random access without

36

STATE OF THE ART

Symbol table

Document

-Name : int = 1
Element

-Name : int = 3
Element

-Name : int = 2
Attribute

-Name : int = 2
Attribute

-Name : int = 4
Element

-Name : int = 5
Element

ID Type
1 CD
2 Type
3 Artist
4 name
5 title

DOM symbol representation

Figure 24: Xerces2 symbol table

VTD-XML DOM SAX/PULL

Usability
Normally shortest code but
unknown interface to programmers Very good Poor

Random Access

Memory Usage 1.3x ~1.5x of the document size
Normally 5x~10x of the
document size

Doesn't grow with
document size

Yes Yes No, Forward only

Yes No No

Inherent Persistence
(avoid parsing every time) Yes No No

Incremental Modification

Hardware Implementation Yes N/A N/A

In memory cursor based on "non-
extractive" VTD records (Virtual
Token Descriptor)

Processing Model
Description

Second fastest, Raw speed
un-indicative of its real
world performanceSlowest

Fastest (outperform SAX with Null
Content handler)Performance

Low-level tokenizer based
on "extractive" tokens

In memory object model
based on Node object and
"extractive" tokens

Figure 25: VTD vs DOM and SAX

incurring excessive resource overhead. VTD-XML is based on VTD [38] (Virtual Token
Descriptor). The VTD is a binary specification that encodes information about tokens in
the XML document such as offset in the source, length, type and nesting depth. VTD-
XML keeps the raw XML unchanged in memory, and uses the VTD tokens to navigate

37

STATE OF THE ART

through the data.

6.3.1 The VTD Processing Model

While making non-extractive tokenization of text usually requires only start offset and
length of data, the tokenization of XML documents needs additional information. The
VTD token is fit to retain this information. Figure 26 shows the content of a VTD token
record. This representation of a bit level layout of the VTD token is:

• Starting offset: 30-bits.

• Length: 20-bits.

• For some token types:

– Prefix length: 9-bits.

– Qname length: 11-bits.

• Nesting Depth: 8-bits.

• Token type: 4-bits.

• Reserved bit: 2-bits are reserved for marking namespaces.

bit 63 bit 60

bit 59 bit 52

bit 51 bit 43

bit 42 bit 32

bit 29 bit 0

Token Type 4: bit Prefix Length: 9 bit

Nesting Depth: 8 bit Qname Length: 11 bit

Token Starting Offset: 30 bit

Token Length: 20 bit

Figure 26: VTD record

The hierarchical view of an XML document is created though a collection of VTD records,
in chunk-based structures called Location Cache (LC). There is one Location Cache for
all levels of nodes in the XML document. A LC entry is a 64 bit integer where the most
significant 32 bits contains the address of the VTD record and the least significant 32
bits corresponds to the VTD (and LC) record of the first child element. By navigating
from the top of the XML node tree, the LC gives information of how to navigate to
siblings and children of a VTD entry. Figure 27 shows the logical flow when retrieving a
XML node. The root Location Cache (LC-1) consist of only one entry (XML documents
has only one root node). This entry has the ID of the first child LC entry in LC-2 in its
least significant 32 bits. Siblings in the XML node tree are als listed in the same Location.

38

STATE OF THE ART

N Levels of LC’s (N<=M)
M = Maximum depth VTD-buffer

X X

LC - 1 LC – 2

X

LC – N

XML file

<x22137818>
 <x45333255>
 <x12814346>aaaaaaaaaaaaaaaaaaaa</x12814346>
 <x33314325>aaaaaaaaaaaaaaaaaaaa</x33314325>
 <x47754634>aaaaaaaaaaaaaaaaaaaa</x47754634>
 <x28185821>aaaaaaaaaaaaaaaaaaaa</x28185821>
 <x74133588>aaaaaaaaaaaaaaaaaaaa</x74133588>
 <x83527365>aaaaaaaaaaaaaaaaaaaa</x83527365>
 <x51134418>aaaaaaaaaaaaaaaaaaaa</x51134418>
 <x47645322>aaaaaaaaaaaaaaaaaaaa</x47645322>
 <x12814346>aaaaaaaaaaaaaaaaaaaa</x12814346>
 <x48637284>aaaaaaaaaaaaaaaaaaaa</x48637284>
 <x66242627>aaaaaaaaaaaaaaaaaaaa</x66242627>
 <x26683643>aaaaaaaaaaaaaaaaaaaa</x26683643>
 <x77745464>aaaaaaaaaaaaaaaaaaaa</x77745464>
 <x47843185>aaaaaaaaaaaaaaaaaaaa</x47843185>
 <x68781186>aaaaaaaaaaaaaaaaaaaa</x68781186>
<x47843185>aaaaaaaaaaaaaaaaaaaa</x47843185>
<x22137818>
 <x45333255>

Figure 27: Location cache representation

To look up an element, the LC is actively used to find records (VTD and LC) correspond-
ing to this element. For instance, the first child node is to be located from the current
LC.

1. From the current LC entry, the least significant 32 bits are used to find the LC entry
of the first children of this node in the next level LC.

2. Calculate the LC entry of the last child of this node. This is done by moving down
the list of LC entries (corresponding to siblings). The next LC with a value for
the least 32 bits (it has children in the next level LC), will be the limit for the LC
entries corresponding to children for our LC entry.

3. When both the first and he last child of an entry is found, a segment of LC entries
is delimited. To traverse to the first child node, the current entry is simply moved
down one unit to the next LC level. Finally when a LC entry is retrieved, most
significant 32 bits of the LC entry is used to look up the VTD-record. VTD records
are in turn used to extract data from the data buffer.

To navigate the element hierarchy represented by VTD and Location Caches, the pro-
cessing model first creates an integer array (whose size equals the maximum depth M
of the XML tree) called Context Object (CO). Its primary purpose is to track the current
position in the hierarchy. The first entry in the Context Object (CO[0]) is used to indicate
the current depth of the cursor. The rest of the array is laid out as follows: Assuming
the current depth of the cursor is D (D <=M), VTD indexes of the current cursor and all
its ancestors (except root index) into the Context Object according to their depth values
(CO[1] ˜ CO[D-1]), as shown in figure 28. Any unused entries are filled with -1. The CO
will als hold the complete path to the current cursor.

6.3.2 Properties of the Processing Model

A number of important properties of the concept behind VTD-XML are:

39

STATE OF THE ART

Depth = 3 co[1] co[2] co[3] -1

VTD BufferElement Hierarchy

Context Object

The Cursor

Figure 28: VTD context object

• Keep the XML data intact in memory to be used when a token is accessed. The
XML data is only used when a token needs data, otherwise the VTD records is
enough.

• The parsed representation makes extensive use of 64 bit integers. Both for the LC
and VTD storage units.

• Compact encoding. The VTD and LC records squeeze maximum amount of
information into every record. Making a perfect compromise between space and
efficiency.

• Constant record length makes the records very effective. In extractive tokens,
excessive use of pointers are used to associate the records with each other. When
using chunk based buffers, they are associated with each other by natural adja-
cency. For example, attributes are als located nearby its element token, and a
sibling is als after the LC entry. This removes a lot of overhead, both in terms of
performance and memory consumption.

• Records are accessed with indexes sorted by integers instead of pointers. The
hierarchy only consists of element nodes.

40

STATE OF THE ART

6.3.3 Navigating VTD-XML, User Level

The navigation API is divided into three layers:

• VTDGen (VTD Generator) which parses the XML data
into an internal representation using VTD.

• VTDNav (VTD Navigator) which is a cursor based
API so that users can traverse the tree almost like a
DOM API.

• The Autopilot class which provides element traversal.

0 <adress-book> 0 -1 -1
1 <contact> 1 1 -1
2 <name> 2 1 2
3 Zane Pasolin

 </name>
4 <address> 2 1 4
5 999 W. Prince St.

 </address>
6 <city> 2 1 6
7 New York

 </city> 1 1 -1
 </contact> 0 -1 -1

</adress-book>

Root index: 0 Max nesting depth: 3

Start

Navigation Action

toFirstChild

toFirstChild

toNextSibling

toNextSibling

toParent

toParent

VTD index

Figure 29: VTD navigation examples

On document load, the XML data is copied to a memory buffer as raw data. The data
is assigned to a new instance of VTDGen, which generates the VTD-tokens for the
document. When completed, the document is ready to be traversed through the use of
VTDNav.

Figure 29 shows a navigation example. VTD records are shown in the table on the left
hand side, and the Content Object is shown on the right hand side. Initially, the cursor
of the VTD-Nav points to the root element. As traversing, the depth value of the CO
and the corresponding entry (the underscored value) are updated to reflect the cursors
position. To move up the hierarchy, the last CO entry must be popped and the depth
value decremented. Unused entries in the CO has the value of “-1”.

The hierarchy of VTD-XML consists of element nodes only. There is a cursor for every
instance of VTDNav, which is used to navigate the tree. The VTD-XML uses integers
for assigning navigation direction and has a method called “toElement”. One variant
of this method takes an integer that is a command for the navigation direction in the

41

STATE OF THE ART

tree. Commands like root, parent, first_child, last_child, next_sibling, prev_sibling, etc, are
available. When the cursor is positioned at a specific element the user can issue the
getAttrVal and getText commands to retrive attributes and text values of the element.
Member methods of the VTDNav such as “getAttrVal” return integers, representing
VTD records describing the requested token.

6.3.4 VTD-XML Performance

The random access capability of the VTD-XML provides a very good performance in
comparison to traditional DOM and SAX implementations. Using SAX, the user can get
complex code and data might have to be parsed several times to get required results.
With VTD-XML the user get most of the functionality provided by DOM and SAX but
with a improved performance.

In W3C DOM, every single node type is defined as a Node. This means that some node
types are provided with functionality and complexity which are never used. An exam-
ple is text and attributes nodes. Neither have any children, thus functionality for child
nodes do not need to be included. Treating these nodes as objects, increase both the
memory use and performance on traversals. In VTD-XML, the VTD record is assigned
a node type, where all types are treated differently with no functionality overhead.

Because VTD records consists of integers, not objects, there are no overhead in creating
expensive objects. The constant length of the VTD record makes it flexible, and can
be stored in large memory blocks which are easy to allocate. This leads to significant
higher performance and lower memory usage. VTD-XML typically consumes memory
in magnitude 1.3 to 2 times the XML document size, which is significant less than a
traditional eager W3C DOM implementation

6.3.5 Limitations

One of the limitations of VTD-XML is the lack of support for entity declarations in
DTDs, besides the five built-in entities (&s; > < ' "). There is also
a memory requirement of approximately 1.3 - 2 times the size of the XML document.

6.4 Other Traditional Implementation

Crimson
The Crimson [43] is formerly known at the Java Project X and was bundled with
JDK 1.4. Crimson exists because of a disagreement between some of the IBM
engineers about the internal design of the parser. The developers of Crimson
argued that the parser was significantly faster than the Xerces, but test shown the
complete opposite. In early releases of Crimson, Xerces was several times faster.
Crimson was known to be extremely slow on walk and modify performance.
Recently the development of Crimson is halted, and both the Crimson and Xerces
teams are now both cooperating in the development of Xerces2.

JDOM
JDOM [39] is a simplified version of the original DOM for Java. It is an alternative
to DOM and SAX and integrates well with both of them. The object model differs

42

STATE OF THE ART

from W3C DOM in two aspects. There are no interfaces, but concrete classes which
simplify the API but limit the flexibility. The approach also makes extensive use
of the java Collection classes which simplifies development for java programmers
who is already familiar with this technology: In the documentation, the stated
goal for JDOM is to provide approximately 80% of the functionality of W3C DOM
with only 20% of the effort. It also provides integration with W3C DOM.

Mircosoft DOM
Microsoft API for DOM [44] is included in the .NET framework, and are widely
available on Microsoft’s homepages. This API support all the Level 1 and Level
2 Core recommendations from W3C, and have in addition functionality to syn-
chronize XML documents. The API can be implemented by all of Microsoft’s
programming languages (C#, VB, VC++, VC) provided in the .NET framework.
The source-code for the API is proprietary, and no common W3C interfaces are
made available in the framework. The Microsoft W3C implementation simply
uses traditional eager approaches, reading entire XML data to memory as objects.
Microsoft has prompt that their implementation is the most effective implemen-
tation for the MS Windows platform [48].

Dom4J
Dom4j [40] is an open source XML framework for Java which allows reading,
writing, navigating, creating and modifying XML documents. Dom4J integrates
with W3C DOM and SAX and is seamlessly integrated with full XPath support.
However, Dom4j uses its own format internally, but W3C DOM documents can be
loaded and saved to and from dom4j. The strength of the API is the use of collec-
tions classes, making it possible to have a more direct approach to programming,
even though it can be more complex.

SAX
Event though SAX [17, 6] is a stream based API which does not build a object
model in memory, it is a immensely popular API for simply extracting data from
XML files. SAX is also mentioned in chapter 3.1.1 as the push approach of XML
parsing. SAX is an option where document object models simply use too much
memory, making it ideal for handling large XML documents.

43

Part II

Solution

This part shows how we solved the task of implementing a demand driven W3C DOM prototype
with limited memory consumption. We successfully designed and implemented a W3C DOM
library capable of adjusting the memory consumption. This implementation has the name D3P
and means Demand Driven DOM Parser. Further, the prototype implementation will be
referred to as this.

We start off by introducing the D3P library, explaining its purpose and extent. Then presenting
the specification of the implementation, showing index schemes (structural and value), caching
and replacement algorithms used to control the memory consumption and techniques utilized to
pull benefits from the managed memory model.

Further, in chapter 8, a more in-depth technical overview of the prototype is presented, with
help of component- and class diagrams. Finally we wrap up by present the solution from a
user perspective in the form of a GUI and console tools. Here, we show different configuration
alternatives, and explain how it can affects application performance.

45

DESIGN

7 Design

7.1 Demand Driven Dom Parser (D3P)

A user of the D3P library should be able to utilize this API as any other library im-
plementing the W3C DOM interfaces, but with the ability to adjust the memory con-
sumption. Users might experience some performance recession in terms of total time
taken to do an operation, depending on the usage. This is however, expected for total
traversal as mentioned in chapter 3.2. This implementation provides the possibility of
using very large files without a tremendous memory consumption and without having
another service running, like an XML database. D3P is simply a W3C DOM library for
large files.

7.1.1 W3C DOM Support

The D3P library supports most of the functions stated by the W3C DOM CORE Level
1 specification, and some of the Level 2 CORE. It supports both structural and value
specific searches related to the Level 1 CORE. This includes basic function for navigating
a DOM tree structure in any direction and name based searches of the node tree. A
complete list of supported functions are listed in the “W3C standard” document in
appendix E.

7.1.2 The D3P Library API

This thesis describes an implementation of the W3C DOM. The W3C [4] provides a
specification of the interfaces in IDL (Interface Definition Language). The IDL does not
give language specific syntax information. Each programming language has to map the
IDL to its own syntax.

Although programming languages like C and C++ provides the developer with more
control in memory management, scripting languages like Java and C# has been adopted
as the most used development platform for XML based applications. Hence this im-
plementation is written in C#. At the time being, no alternative DOM implementation
to .NET could be found. The .NET framework from Microsoft does not have the W3C
DOM interfaces available, only specific classes; therefore must new interfaces be made
in C# from W3Cs IDL specifications.

46

DESIGN

7.2 Architecture

The overall architecture of the solution is a three level architecture. Figure 30 defines
these three logical components of the Demand Driven DOM Parser:

XML Source holds XML data. In general, this data could be supplied from any source,
as long as it can be available as bytestreamed data.

Memory Management is responsible for controlling the memory consumption. It also
has knowledge of how to find data in the XML Source in sense of an index.
This component includes caching and replacement strategies for controlling W3C
objects.

W3C DOM Interface Implementation is responsible for the logic of navigating the
node tree. It has less knowledge of how the subsystem works; it simply navigates
through a node three which for this component exists as a full node tree.

W3C Dom Interfaces

Memory Management

XML Data Source

Figure 30: Architectural overview

47

DESIGN

7.3 Use of Index

Using a preprocessor to index an XML document utilize the compiled approach dis-
cussed in chapter 3.2. Information regarding the structure of the XML document must be
stored for future navigation, and a value index must be used for the special GetElements-
ByTagName access method. As discussed in chapter 5, there are several approaches
of representing the XML structure in index. In example, static offset-addresses can be
used as index target when the document is static and never changes its content. This is
the fastest approach, because the data is compiled. A dynamic index will force usage of
interpreted data, since the exact data location might not be known. On the other hand,
the dynamic index have better support for changes in a XML document. An static index,
aiming for static documents is chosen, making direct access faster.

The proposed index builds on principles from the non-extractive approach discussed
in chapter 3.1.2. This approach has substantial benefits when the document appears as
static. The approach makes it possible to refer to offsets in a data stream and use the
data directly. This will however, not work for an implementation of the W3C DOM. But
the same type of index can be used. The non-extractive approach maps the entire XML
structure, and constructs references to offset address in the stream. When the structure
later is accessed, the system always knows where different parts of the document are
located. Using the non-extractive approach for indexing, a basic approach for indexing
the structure of XML documents based on offsets are proposed:

For each node, the start-offset, end-offset and the start-offset of all its children is
stored.

If the node is an element, the element name is also stored for faster retrieval. The value
stored is not the string, but an integer value which corresponds to the element name
in a symbol table. The symbol table is further discussed in chapter 6.2.2. All nodes
in the entire XML document is not indexed, this would generate a huge amount of
index entries, making it both large and slow. To reduce the amount of index entries, the
granularity of the document has to be changed. This is issued in chapter 7.3.1.

In this chapter, XML example document 3 found in appendix C.3 is used. Figure 31
shows the object representation of the sample XML document.

7.3.1 XML Node Collapsing

The basic idea by indexing the start and end address of every node is that it will generate
a huge number of index entries, one for each node in the tree. One file access will be
required for every single node on retrieval. In traversing the entire tree, this will cause
terrible performance issues. Most XML elements containing child elements often do not
contain any data themselves, and in data-centric documents (as shown in chapter 2.6),
data tuples rarely has much data.

To avoid a lot of source accesses for reading relative small portions of data, an index
granularity based on the node-size has been selected, potentially encapsulating nodes
as discussed in chapter 5.3.2. If a node is under a defined minimum size, this node and
all sub nodes will not be indexed. The nodes are still reachable however, but since they

48

DESIGN

Music-Store (0,3000)

Group (1,302)

Title (16,30)
CD (31,301)

Songs (41,300)

Song (60,120)

Duration (71,76)

Title (33,40)

Title (64,70)
Collaborations(77,109)

Group (78,94) Group (95,108)

(303,2999) (Additional Group nodes)

(121,299) (Additional Song nodes)

Figure 31: Sample XML node tree

are not indexed individually, they have to be parsed all at once.

The decision on the minimum size must be set at indexing time. A high minimum size
will result in a smaller and faster index. In addition, theindexing itself will be faster
due to fewer insertions of entries in the data storage.

In retrieving the node, the index must be aware of this technique as well. If the index
detects a collapsed node, it will generate a D3P node tree from this and all its sub nodes.
That is, in this small portion of the XML tree, an eager approach is used instead of
demand driven approach, giving a performance penalty if only a very small portion of
the partial generated tree is accessed. Due to the different accessibility of nodes, the
nodes in both the structure and value index are divided into tree types:

Indexed Node: These nodes are directly reachable from index. When querying the
structural index, a response containing navigation information is expected.

Blocked Node: These nodes are not directly reachable from index. But however, a
blocked node is referred to by an indexed node. Logically, the parent has infor-
mation regarding the start byte offset of the Blocked node.

Indirect Blocked Node: These nodes are not reachable from the index. They are con-
tained inside a blocked node, meaning that for these nodes to be revealed, the
blocked node must be parsed.

49

DESIGN

7.3.2 Symboltable

The concept of a symbol table is simple. It is basically an alias list where character data
are associated with a numeric value. The reason usign a symbol table is to consume
less memory space, with little performance overhead. Also, integer values are generally
faster to compare than strings. The concept is the same as in Xerces2 (chapter 6.2), but
D3P also uses the symbol table in indexing the XML document. The symbol table for the
XML data represented in figure 31 in file is illustrated in figure 32. This implementation
utilizes symbol table by using a combined hash table and array. In chapter 7.3.3 and 7.3.4,
string names are used in examples for simplicity, but the implementation uses integers
which are used with the symbol table.

Character Value
Music-Store 1
Group 2
Title 3
CD 4
Songs 5
Song 6
Duration 7
Collaborations 8

Symbollist

Figure 32: Symbol table

7.3.3 The Structure Index

XML documents are hierarchic structured, making navigation easy through the W3C
DOM interfaces. Traditional implementation can reach every point of this structure by
traversing through the node tree. In this Demand Driven Dom Parser, all nodes can
not be retained in memory at once, hence an index is created to accommodate for the
lack of in memory nodes. The index will use principles from non-extractive parsing
(chapter 3.1.2) combined with Li/Moon indexing scheme (chapter 5.3.1) to determine
relationships between nodes.

Description
The proposed index will store data containing four columns as shown in figure 33:
start, end, children and name.

• The first column acts as the identifier in the index. It is also the byte offset
address where the node starts in the XML document, hence it is unique for
the file.

• The second column is the respective end address of the node.

• The child column consists of a list of all child nodes (start offset).

• The forth column consists of the name of the node. Note that in the imple-
mentation, the respectively integer value from the symbol table are stored
in this column. If the node is not an element node, the integer value for
this column is “-1”, meaning “not in use”. If the node is an element, but
the element has attributes, the value is also “not in use”. This is due to that

50

DESIGN

attributes are not covered by the symbol table. When the “not in use” value
is issued, the data has to be read from file, either because it is not an element
or the element has attributes.

Where the node starts (INT)

Where the node ends (INT)

A list of childs nodes start addresses (INT [])

The name of the node (INT)

Index table
Start End Children Name
0 3000 1,303,606,…. Music-Store

Figure 33: Sample index table

Construction
The index construction is a “parse once, use many times” operation (discussed
in chapter 3.1.2) and is required to make the implementation work. This is done
with a custom XML parser (for technical specifications, see chapter 8.6).

Each time the parser encounters a node, it checks its size (end - start). If it is below
the CollapseLimit, the parser simply do not index this node, making it unreach-
able. This way, less nodes are indexed, resulting in a higher granularity, as shown
in chapter 7.3.1. The data are stored with the given format in the generic index
storage discussed in chapter 8.5.

For example, the XML representation in figure 31 is to be indexed. Assume that
the additional Group listings are at the addresses 303, 606, etc, and only has one
CD entry each. Further the CollapseLimit is set to 300 bytes. The index would
then have the structure shown in figure 34.

Start End Children Name
0 3000 1,303,606,…. Music-Store
1 302 16,31 Group
303 605 318,333 Group
606 900 621,639 Group

Index table

Figure 34: Resulting index table

For the sake of simplicity, only the first three Group nodes have been accounted
for. The figure shows that only the “Music-Store” and “Group” nodes has been
index. This is because the CollapseLimit is set to 300 bytes, and the only nodes
that have a greater address range is these three nodes.

Retrieving
W3C DOM uses relations to navigate through the XML node tree. When retrieving

51

DESIGN

Group’s (id 1) Nodelist

NodeList Object

ArrayList = 16 31

Group’s (id 1) Nodelist

NodeList Object

ArrayList = 16 Node

Figure 35: NodeList with no and one node visited

nodes by traversing, there is only a single entry point, namely the root node. As
the index contains information about where the node start and who their children
are, structural navigation in the node tree is possible.

When a node is requested, the byte offset of that node is used as an identifier. This
identifier is used consulting the index. The index takes different actions according
to whether the identifier was found in the index or not If the index entry is found,
the index returns the same data which was indexed for this node, namely the start,
end, children and name. This information can be used to make the requested node
directly. If the node is an element, and it has a value for the name column, the
XML source do not have to be accessed at all.

If the index entry on the other hand is not found, the node has not been indexed
since its size was considered too small at index time (smaller than the collapse
limit). Additional parsing is required to build this node. Using the build-in .NET
XML Pull Parser, the node starting at the byte offset (the identifier) and all its
children are parsed as nodes of the D3P. As for sure, the length of the XML data
under this node is lower or equal to CollapseLimit limit value.

If the identifier was found, the new node can be made. However, if this node is an
element, the child nodes are not constructed directly. The fact that this identifier
existed in index shows that this node is considered large (at least larger than the
CollapseLimit set at indexing time), and it is not desirable to parse all children to
memory. The children to this element will simply remain as integer values. That
is, their byte offset in the file and identifier in the index. The NodeList in D3P is
constructed in such a manner, that if a node in the NodeList are accessed, and this
node exists in the form of its identifier, the NodeList makes the corresponding
node and replaces it with the number. This node can in turn either exist or not
exist in the index and are handled accordingly. On the left hand side in figure 35 a
graphical representation of a NodeList with no child nodes visited is shown. On
the right hand side, the same NodeList is shown, but the second node has been
visited. Note that the first integer remains unchanged until visited. This ensures
that only nodes which are requested are built.

To illustrate what will be built when retrieving a node, an example where a node
is to be fetched is presented. The documents in figure 31 and 34 is used and the
desired node is the “Group” located at address 78. The query for this node would
in W3C DOM syntax be: “Root.FirstChild. SecondChild6. SecondChild. FirstChild.

6W3C DOM does not state a “secondChild” attribute, This is solely for logical traversal. In W3C,
secondChild would have been: ChildNodes.Item(1)

52

DESIGN

SecondChild. FirstChild”.

Music-Store (0,3000)

Group (1,302)

Title (16,30)
CD (31,301)

Songs (41,300)

Song (60,120)

Duration (71,76)

Title (33,40)

Title (64,70)
Collaborations(77,109)

Group (78,94) Group (95,108)

Constructed nodes Numeric values (not constructed nodes)

(303,2999) (Additional Group nodes)

(121,299) (Additional Song nodes)

Figure 36: Partial constructed DOM tree

The actual constructed data (node tree) is illustrated in figure 36. Nodes are
built as the nodes in the tree are visited. Only the first “Group” node is (partly)
constructed, and only the child “CD” node is fully constructed. The process is as
follows:

1. The entry point is established by constructing the root node (“Music-Store”)
from the index, which only has numeric values as children. The Root node
is not accessed by its identifier, since there is only one root node. This node
is treated as special and is retrieved by the index separately.

2. The first node (id 1) of the child list is requested. It contains a numeric value
and checks whether the identifier exists in index. As it turns out, the node
exists (this is the “Group” node) in index and gets constructed in the similar
manner as the root node.

3. The second node (id 31) of the child list is requested, and the response from
the index is that this node does not exist. That means that this is a collapsed
node and parsing is necessary to build the node.

4. The node (“CD” node, address 31) will be parsed and the entire node regard-
less of structure will be built. The resulting node is root node of a node sub
tree, which is attached to the real node tree. When this node is built, no more
index or file accesses are necessary to reach the desired node.

53

DESIGN

Building sub tree of nodes also acts as a caching mechanism where nearby nodes
are available for future access. For example, if the requested node is the “Title”
element at address 64, it would already exists in the built node tree, and returned
at once. The content of a collapsed node are either all inn memory or nothing in
memory. This have consequences when nodes are removed from memory. This
will be further discussed in chapter 7.4.

7.3.4 The Value Index (Name Tag)

The W3C DOM states a function for retrieving elements based on their tag name through
the “getElementsByTagName” method in Element and Document, with the actual name
as main argument. This method returns a list of nodes (NodeList) with all the elements
with this specific tag name existing within the context of the Element or Document. The
resulting NodeList can contain nodes from various parts of the document. The list is
ordered in order of occurrence in preorder traversal of the document tree.

The structural index can not perform this task without parsing the entire XML docu-
ment, which would result in performance issues. Therefore a 2-level indexing scheme
as discussed in chapter 5.3.4 has been implemented to accommodate the retrieval of
nodes based on names. This means that an additional index for retrieving nodes which
has a specific name, while the structural index in chapter 7.3.3 is utilized for retrieving
the data used for navigating and constructing nodes.

The ability to access nodes directly provided an element name gives yet another entry
point to the node tree. Both the W3C Document node and Element node has this
function, but this implementation only supports the Document node version, retrieving
all elements with a specific name in the entire XML document.

Description
The index can be described as a table consisting of two columns, name and oc-
currences. This is an inverted index, refering directly at identifiers of elements
which has the specified tag name. The proposed structure of the index is shown
in figure 37. The first column is the name column, holding each unique name,
and act as the identifier. The second column consists of an array of byte offset
locations, where the name occurs. Note that the offset address is the identifier
in the structural index too. The location addresses accordingly refer to either an
indexed node or a blocked node.

Since indirect blocked nodes are not reachable from the structure index, the blocked
nodes are used as representation for these nodes. And since the structure of the
blocked node is unknown, only a counter for how many tag names with the
specific value exists inside this blocked node are used. The counter is necessary
for the NodeList to insert Elements at the correct position.

In figure 37, the element named “Title” is associated with a list of occurrences.
The first occurrence is identifier 56. This node is obvious a blocked node. It has a
total of 10 occurrences of “Title” in its sub tree. The D3P library must know how
many occurrences there are under these blocked nodes, due to correct retrieval
according to the W3C DOM specification. If no counter for the blocked nodes was

54

DESIGN

Name tag (INT) How many times the tag occurs (INT)

One entry in the Occurance list (double array, INT[,])

Name Occurrence
Title [56, 10], [345, 7], [1500, 2], …

Nametag Index

Where the name tag occurs (INT)

Figure 37: Tag name index, example entry

provided, the NodeList would not know the total length of the list nor where to
correctly insert Elements in the list.

Construction
The tag name index is constructed simultaneously as the structure index. The
tag name index consists of a hash table with the name as key and a sorted list
as value, as shown in figure 38. A sorted list is basically a hash table that sorts
automatically based on the key value when it is being inserted.

Key Object
Sortedlist

Key Object
Hashtable

Figure 38: Tag name index construction

The key in the hash table is a unique tag name that resides within the XML doc-
ument. Each time the parser encounters an element name, it checks if the name
exists in the table, then either creates or add the occurrences in the appropriate
manner.

The W3C DOM standard say that getElementsByTagName function return a
NodeList, where the elements are encountered in a preorder traversal of the doc-
ument tree. This is why a sorted list is used, sorted on node identifiers. The
sorted list associated with the name key in the hash table, has entries of its own.
It consists of the node offset address and a number indicating how many occur-
rences are present at this offset address. Note that for indexed nodes, this number
is always one, because an indexed node does only contain itself. For a blocked
node on the other hand, the number is one or higher. Parsing the sub tree of a
blocked node will reveal these nodes. The occurrences are counted while parsing
and is inserted as value to the appropriate address offset key in the sorted list.
To elaborate, consider the following example: The elements in figure 31 shows
nested elements with the specific name “Group”.

55

DESIGN

For the sake of simplicity, only the first Group element and first Song element
shown in figure 31 are accounted for in the index. Furthermore a CollapseLimit
of 300 bytes is assumed. This would indicate that the “Group” element will be a
blocked node in the structure index (see chapter 7.3.3). The tag name index for
this scenario is shown in figure 39.

Physical view

Logical view

Name Occurances
Music-Store [0,1]
Group [1,1],[31,2]
Title [16,1],[31,2]
CD [31,1]
Songs [31,1]
Song [31,1]
Duration [31,1]
Collaborations [31,2]

Nametag Table

Key Object
Group

Hashtable

Key Object
1 1
31 2

Sortedlist

Figure 39: Resulting tag name index

The table in figure 39 means that “Music-Store” occurs once at address 0, “Group”
occurs once at address 1 and twice at address 31, “Title” occurs once at address 16
and twice at address 31, etc. Note that all nodes under the element with identifier
31, uses 31 as its reference, due to that all these nodes are indirect blocked nodes.
The only way to access these nodes are through constructing the entire sub tree
under node with identifier 31.

Retrieving
To properly understand the retrieval process of nodes based on their tag names,
a closer look at the NodeList implementation is required. This list is basically
an array of objects (ArrayList), which means that the contents of the list may be
any object. In this implementation, a listing can either be a D3P Node or a nu-
meric value, as discussed in chapter 7.3.3. Also, a string is associated with the
NodeList. This is basically a flag that indicates if it is a node list constructed by
the “getElementsByTagName” method or not (if the string is empty the list has
been constructed under normal traversal).

To illustrate what happens when retrieving a node list by tag name, consider the
following example. Using illustrations from figure 31 and 39, the requested tag
name is “Group”. First, the occurrences of the tag name is retrieved from index
and a node list is constructed, as shown in figure 40.

The resulting NodeList has three entries, reflecting the index entry for the name
“Group” in figure 40. The NodeList has one entry for address 1 and two entries
for address 31, resulting in the three entries. Any other W3C DOM implementa-
tion would return this number of entries, but the D3P only contains the numeric
values from the index. This is done to prevent any unnecessary disk accesses, not
to mention the memory advantages (a numeric value consumes a lot less space
than a constructed D3P node), and collocate with the principle of retrieving nodes
only when it is requested.

56

DESIGN

String = ”Group”

NodeList Object

ArrayList = 1 31 31

Figure 40: NodeList before creating nodes

When accessing the nodes in this NodeList, the methodology is different accord-
ing to whether the accessed node is an indexed node or a blocked node. When a node
is accessed, the integer value (identifier) is consulted in the index. If the node is
found in the index, the new node is constructed from the information retrieved
from the index and replaced at the proper position in the NodeList. This approach
is similar to that discussed in chapter 7.3.3.

However, if the identifier is not found in the index, the entry is referring to a
blocked node. In this case, there are one or more elements inside this blocked
node which has a matching element name. The exact number of nodes is found
by analyzing the node list. There might be identifiers both before and after the
current entry holding the same identifier value. The total count of entries with
the same identifiers are the number of Elements with the requested name existing
in the sub tree of the blocked node. This is also the same number of occurrences
which are indexed for a blocked node.

In the following example, the first node is retrieved from the node list in figure 40.
The node with identifier 1 is found to hold an entry in the index, resulting in
an easy construction of a new node. The node is replaced at the first position,
resulting in the NodeList shown in figure 41.

String = ”Group”

NodeList Object

ArrayList = Node 31 31

Figure 41: NodeList, single node created

When accessing third entry in the NodeList shown in figure 41, a more complex
approach must be used:

1. The identifier is consulted in the index, but as shown in figure 34, the identifier
(31) is not in the index, hence it is a blocked node.

2. The element starting at the address offset 31 is parsed and all elements in this
sub tree matching the requested name are inserted to an array. The resulting

57

DESIGN

array has elements stored in preordered traversal of the document. In this
case, two nodes are located.

3. In the NodeList, the first entry with the same identifier (31) is located,
which in this case is entry number two. The array of nodes is replaced from
this entry and ahead. The number of entries in the NodeList with the same
identifier should match the number of nodes in the array, resulting in the
NodeList in figure 42.

String = ”Group”

NodeList Object

ArrayList = Node Node Node

Figure 42: NodeList, multiple nodes created

The node list is now completely constructed. Notice that all the Elements within
the same blocked node will be inserted in the NodeList when either is being ac-
cessed. When requesting the second entry in this list in figure 42, the node is now
already constructed and would be returned at once.

In order to make the NodeList sorted in preorder traversal, the sorted list from
the indexing is necessary. The NodeList needs to know the order in which nodes
appear (beginning to end) in the file, so that it can insert nodes in the correct
position in the NodeList.

58

DESIGN

7.4 Loading and Unloading XML Nodes - Lazy Loading

The principle of caching from operating systems shown in chapter 4.2.2 is used in this
implementation of W3C DOM as well. In casees where the node tree would exceed the
internal memory, caching must be used. That is, holding only a small portion of the
data in memory at a time. There are two basic approaches how to do this:

Use OS paging
The Operating System (OS) have a working caching method by loading chunks
of data (pages) to disk when memory is full. The XML node tree can be huge, but
only portions of the data is in memory. There are however inconvenience by this
approach. The operating system does not take the XML structure in to concern.
When the OS flushes a page to disk to release memory it only takes into account
whether the page has been visited recently, with no concern that parts of this page
can be a part of a larger context. The OS also has limited swapping space on disc,
setting the limitation of the size of XML documents which can be loaded. This
space is shared with other applications running on the computer. In addition,
the process of writing data to disc is a resource demanding process, potential to
strangle other processes.

Manually Unload Nodes
By manually unloading nodes in the D3P library, full control over which nodes
are in memory at a time is obtained. For example, all parent nodes of the nodes
last recently used nodes are more likely to be referred to sooner than others.
That is, when the node tree is traversed, the parent node is required to move to
either previous or next sibling. By holding the control in the D3P library, a more
intelligent caching algorithm can be utilized.

By continuous sorting nodes in memory after the LRU algorithm (chapter 4.3), the sys-
tem knows at all times which nodes are due to be removed from memory. However
there are technical limitations of implementing this at a node basis. A software LRU
algorithm is generally made out of some sort of ordered list. As nodes are added to
the top of the list, the time of searching this list is increasing, gradually, to the point
of extremely bad performance. Therefore an LRU algorithm which registers nodes or
a collection of nodes have been implemented, which makes up a larger block of data.
This way, there will be fewer entries in the LRU list and more memory will be released
for each LRU operation. However, there must be some sense in selecting the minimum
size for a block which is inserted in the LRU list. The size of the node collection han-
dled by the algorithm are dependent on the chose strategy cache structure discussed in
chapter 7.4.2 and 7.4.3.

In addition, nodes are never moved in a sorted list as the principle of LRU indicates.
A timestamp is set on each collection of nodes when it is used. This approachs was
discussed in chapter 4.3.3. The implemented LRU algorithm rather checks the list for
the lowest timestamp when nodes has to be removed from memory.

7.4.1 Cache Algorithm for XML Structure

Cache algorithms for linear data structures are well known and widely used in operating
system. A file on the hard drive is for the operation system always linear data. XML is

59

DESIGN

logically tree-structured, so the principle of caching must be altered to fit this structure.
The following weak statement are proposed as basis for the cache algorithms in this
thesis. They build on the principle of locality discussed in chapter 4.3:

• If a node is referred to, the node and its children will tend to be referred to again
soon.

• If a node is referred to, its parent tend to be referred to again soon.

In other words: parent and children of currently visited nodes are more likely to be
addressed soon.

All test implementations of caching in this thesis uses timestamp for identification of
the least recently used nodes. As discussed in the beginning of this chapter, moving
objects in a LRU list is expensive in terms of performance. With the use of timestamp,
objects never gets moved around, but their timestamp is updated. When a candidate
for replacement must be found, the entire list is searched for the active object with the
least timestamp.

Two approaches are proposed. The first emulates the operating systems virtual memory
paging, dividing data into ranges, making no concern of parent-children relationships.
The latter takes concern of parent-children relationship by never removing parent nodes
to nodes recently used. These are discussed in chapter 7.4.2 and 7.4.3 respectively.

7.4.2 Linear Structured Cache

This structure gives no regards to child-parent or sibling relationships. The data area
is divided into static intervals with a fixed size. This means that data is divided in the
same manner as if it was linear data. This method is foolproof, but when traversing a
tree, a parent node which is dismissed from memory are forced to be recreated when
moving up in the tree.

Source.Start Source.Length

NodeList NodeList NodeList- - - - - - - - - - - -

+dismiss()

Node

Figure 43: Static linear structured cache

60

DESIGN

The number of intervals, n, must be predefined when making the cache. The data-size in
each interval will be (XML data length / n). An estimate of serialized XML versus XML
in memory using D3P nodes is a magnitude of eight. (this value alters for how the XML
document is structured) This means that in each interval there resides approximately
M units of memory (equation 1).

M =
XMLData.Length

n
∗ 8 (1)

When an interval is selected for removal, all nodes which have identifiers (offset address)
inside this interval are removed from memory. Hence, for the least recent node to still be
retained in memory there must be at least two intervals in which there are nodes. This
way, it is certain that the interval with the recently used node is not the one selected
for removal. To ensure this, the maximum memory usage allowed must be over M
(the amount of data in a node). For example, if an XML document is 400 MB and the
maximum desired memory usage is 10 MB, the number of intervals will be 320 as shown
in equation 2.

N =
XMLData.Length

M
∗ 8 =

400E6B
10E6B

∗ 8 = 320 (2)

7.4.3 Tree Structured Cache

This structure takes consideration regarding child-parent relationship of nodes most re-
cently used. When a node is accessed, the node’s timestamp is updated. This timestamp
traverses upwards in the node tree, so that all ancestors of the current node have the
same timestamp as the current used node. When selecting the least recently used node,
the algorithm starts on top, traversing the tree. If a node has more than one node in
its nodelist, the node which has the lowest timestamp is dismissed. The node with the
highest timestamp is obvious the same as the current most recently used node, hence a
node with this timestamp is on the path to the MRU7 node, and should not be dismissed.

It takes less time and resources to dismiss a collection of nodes than one at a time,
therefore the first least recently used node found when traversing from top of node tree
is dismissed. In figure 44, the next node to be dismissed is node B, and with this, all
its children. If the node tree is traversed in preorder traversal, the tree structured cache
will always remove nodes in postorder traversal.

7.4.4 Behavior of the Cache Algorithms

There are basically only one way of tuning the algorithms. This is altering how much
memory to be released when the maximum cache memory limit is reached.

In the static cache, an interval of data represents how much data that potential to be re-
leased from memory at once. In the tree cache algorithm, no control is attained over how
much memory is being removed at a time, only how many nodes. The latter approach
is potential to spend time removing only insignificant amounts of memory at a time.
This is the case for very wide XML structures.

7MRU means Most Recently Used. It is the opposite of LRU and refers to the node which is on top of
the LRU algorithm stack

61

DESIGN

Document

-Time: 1006
Element

-Time: 1002
Element

-Time: 1004
Element

-Time: 1006
Element

-Time: 1001
Element

-Time: 1005
Element

-Time: 1006
Element

-Time: 1004
Element

-Time: 1003
Element

-Time: 1002
Element

A

D

JI

B C

HGFE

MRU

MRU

MRU

LRU

LRU

Figure 44: Cached nodes in the tree

The special “GetElementsByTagName” function discussed in chapter 7.3.4, does not
traverse the node tree starting at the root node, and nodes can be scattered located
around the XML node tree. In this particular case, the tree cache algorithm will potentially
use many resources constructing parent and ancestor nodes to set the timestamp, even
when the ancestors are never to be used. In this case, the static cache can make a better
and faster decision of nodes to remove from memory.

62

DESIGN

7.5 Utilizing the Managed Memory Model

The essence in demand driven parsing of a XML object representation is the construction
of nodes as they are requested. Using the principle of demand paging and swapping
discussed in chapter 4.5, nodes have to be removed from memory to make space for
demanded nodes. The removal of objects from memory is the job of the Garbage
Collection (GC) as discussed in chapter 4.6. The GC removes objects not referred to,
but in the case of a hierarchical structure like the W3C DOM node tree, all or nothing
of the tree is referred to. It is however possible, to make the GC clean the selected objects.

The nodes to be removed from memory must be located before the Garbage Collector
is issued. Then, all references to these nodes must be removed. This way, when the
GC runs its collector, these objects (D3P nodes) will be considered garbage and deleted
from memory.

The problem however, is that the system has to know in advance that the heap is nearly
full and the GC is about to be issued. If the GC runs its collector before the system has
deleted sufficient nodes, there might not be enough size on the heap for future nodes to
be loaded, resulting in a full heap and the application will break.

Therefore, this implementation has a additional thread, continuous checking the size of
the heap. A maximum allowed amount of memory can be set, which must be under
the maximum heap size. When the thread finds the heap size to be over this limit,
the cache algorithm is issued, finding and removing references to these node(s) due
to specifications of the algorithm. The next time the GC run, all objects not reachable
from the root of the program or from the current context will be removed from memory.
Hence the GC has to run after the removal of references to the node. The best practice
advice is to let GC run itself whenever it finds this necessary, but the GC has to be run
immediately after dismissing nodes from the node tree to release memory.

This approach is not straight forward. If a client using this implementation has a ref-
erence to the Node, this reference will not be deleted from memory. The system will
remove all references from parent, child and siblings, but the clients reference will still
exist. The client using this object can try to navigate the node tree through it, but
all references in all navigational directions have been removed, due to the attempt of
disposing the node. This means that each node has to have the knowledge of how to
rebuild references to parent and child nodes. This is done by replacing the node object
back to the identifier integer value which represents the offset address of the node. For
example, a node in the tree has a parent node. The parent node is selected for removal,
so all references to it have to be removed. The node referring to this parent, replaces
its reference pointer by an integer representing the identifier (byte offset) of the parent
node. This way, if the node later tries to access its parent, the node is made by using
the identifier as discussed in chapter 7.3.3. The same approach is performed with child
nodes.

A node which still exists, but are not in the node tree is called a disconnected node. The
user might have a reference to this node. If the user navigates the node tree again to
the same node, the user should have two references to the same node, not two different

63

DESIGN

1

4

25

3

1
2

3
4

5

Least R
ecently U

sed N
odes

MRU

LRU

Figure 45: Node tree before cleaning

5

1

4

2

3

1
2

3
4

UNREACHABLE

Least R
ecently U

sed N
odes

MRU

LRU

Figure 46: Node tree after cleaning

ones. This means that the system must know which nodes a user still has a reference
to, so when navigating the tree to a node which is refered to elsewhere, the reference to
the same node must be returned.

To solve this problem, a function in the managed memory model is used, namely weak
references. A weak reference is a reference to an object which might or might not be
valid. When a garbage collector is issued, weak references are not taken into concern.
That is, when the weak reference is the only reference to a node, the object is considered
garbage. In this implementation, there is a list of all D3P nodes which are created, all
referred to by weak references. Always, before making a new node, this list is consulted.
If the weaker reference is valid, the garbage collector has either not been issued since
the node was disconnected or the user has a reference to the node outside the node tree.
In any case, the reference to this node is returned.

Figure 45 and 46 shows how references are removed from nodes, making the node
unreachable from the rest of the tree. As shown in figure 46 there are still a indirect
reference in sense of integer identifiers, meaning the reference can be rebuilt if needed.

7.6 Updating the XML Document - Lazy Approach

When updating the XML document, there are many considerations to take. Basically,
the XML document is only a text file, which is fairly easy to both edit and create. Tra-
ditional W3C DOM implementations all have write support for writing altered XML
documents back to file. This is not an issue, since all data is in memory; it is only con-
verted to string and flushed to file. The D3P prototype however, does not have every
node in the node tree in memory. The easy approach is to traverse the tree as usual,
writing it back as it goes, resulting in a lot of unnecessary I/O and object creation. Data
which are not altered from the old files do not have to be converted from text to nodes
and back to text data. It is already in text, stored in the XML document.

The changes in the XML object representation is not reflected on the file immediately,
lazy write back [21] is used. In terms of basic lazy write back techniques, the data is
marked as dirty when it is retained in cache, but written back to storage when it is
flushed from cache. But if the file was to be rewritten every time a dirty node was
removed from cache, performance could be an issue. As the number of altered nodes

64

DESIGN

increases, too many resources will be spent rewriting the file. Hence in this implemen-
tation, the file is not rewritten until the user gives the command for this.

This implementation makes an update log of every change made to the tree. That is,
insertion of nodes, deleting nodes and altering nodes. The update log simply holds
information about which node is altered, that nodes ID and if the altering concerns the
node itself, its child nodes or both.

Insert: A node with a unique, negative ID in the signed 32 bit integer address space,
is inserted to the NodeList. The owner Element of this NodeList is added to the
update log. The entry is marked with “children”.

Delete: The node is simply removed from the NodeList and the owner Element is
added to the update log, marked with “children”.

Attributes insert, removed or modified: The owner Element is added to the update
log, marked with “self”.

If an Element is added to the update log and already exists in the log with the same
mark, no action is performed. If it exists, but with the opposite mark (in example, want
to set a Element marked as “children” when it already exists in the update log marked
with “self”), the entry is marked with “both”.

In the W3C DOM API, a nodes name cannot be altered. If a node name is to be redefined,
the node has to be removed and a new node with the desired name has to be added in
its place [13]. Any new inserted nodes in the tree, has to be inserted into some already
existing NodeList, hence new nodes are never added to the update list, only the owner
of the NodeList it is inserted into.

The entries in the update log are sorted due to its ID, which actually is the character
offset in the source XML document. This means in other words that the entire file can
be copied from the source XML file, besides the nodes which can be found in the update
log. These nodes have to be handled in another manner. The mark in the update log
is checked, writing only what has been changed in this node. When a node is marked
as “children”, each of the children has to be handled individually. The result will be a
new XML document, with merged results from the original source XML document and
entries in the update log.

Nodeowner ID = 300

NodeList Object

ArrayList = -201Node -200330320NODE 310

Figure 47: Altered nodeList

The NodeList in figure 47 shows five nodes as children of an Element. The first node
is in memory, because a node is in its place. It has a positive ID, which means it is

65

DESIGN

referred to in the memory. The second and third node is either not made yet or has
been dismissed from memory cache, due to low usage in recent time. The fourth entry
consists of a new node which reside in memory, and the fifth is a node which is new,
but has been dismissed from memory. This latter node has to be stored temporarily
when it is removed from memory cache, because it obviously cannot be found in the
source XML document. The ID of this node is used in registering the temporary node,
so that the same node can be brought back to life if it later is referred to. As further
discussed in further work in chapter 13, this prototype does not write dirty nodes to
disk when they are removed from memory cache, as should have been done in a final
implementation. Dirty nodes which are removed from memory cache are still retained in
another repository in memory. This means that as the number of dirty nodes increases,
more and more of the memory cache will be used holding these nodes.

66

IMPLEMETATION

8 Implemetation

8.1 Component Overview

In the D3P library, each module is shown separately. Implementations of the W3C DOM
interfaces are not shown in this thesis, due to that the behavior of these classes are stated
by W3C, and can be found at [14].

INDEX
Dom NODE producer

XML File Handler

Parser

Index Storage

DOM DOCUMENT

Cache

Node

DomWriter

Figure 48: Component overview

The XmlDataSource, XmlIndexStorage and the cacheAlgProvider all use a hybrid be-
tween a factory and a singleton pattern8. This is due to the available configuration
settings in the library. The settings are set as global variables in a static class called
Constants. The values in the file are default values, set at compile time, but they can be
altered for the session in the GUI, the command line tool or through the API.

To get a better overview of the application, the component diagram in figure 48 is

8Patterns (Design Patterns) is a common method to exchange knowledge of specific program design
problem. Singleton states that only one instance occurs. Factory states that some object is constructed due
to a factor (such as a input parameter)

67

IMPLEMETATION

presented. Each component is further discussed throughout the chapters. An UML
sequence diagram is available in appendix D. This diagram shows a scenario where a
node is accessed, and how the different components interact to get the desired node.

8.2 Cache

StaticCache

+clean()
+add(in node : Node)

«interface»
Icache

NodeTimedCache

+abortThread()

Cleaner

+getElByTagName(in name : string)
+getNode(in address : int)
+getRoot(in address : int)
+parentTo(in node : Node)
+Peek(in node : Node)

-symbolTable : List
-ghostNodes : List

Cache

+add(in node : Node)
+clean()

TimedCache

+getCache() : Icache
-usedCache : Icache
CacheAlgorithmFactory

1 1

Figure 49: Class Diagram: Cache

The Cache class controls which nodes who are in memory at any given time. It is
responsible for registering constructed nodes, and make a decision which nodes who
are due to be removed from memory. The Cache possesses a symbolTable, a ICache and
a list over Ghostnodes:

symbolTable of type List
Holds all element names used in the XML data to make traversing use less memory.
When the symbolTable is used and an element does not have attributes, the
element does not require any XML source access to build its node. But however,
attributes are not in the symbol table, and elements in possession of attributes must
be parsed for retrieval of attributes. Whether an element has attributes or not is
known at indexing time, and registered in the structural index. This approach is
slower than assigning a string to a node-object, but more memory efficient.

cacheAlg of type ICache
Holds all the existing nodes which reside in the node-tree. Which algorithm who
is being used is stated by the configuration, and the correct implementation of
ICache is returned by the CacheAlgorithmFactory. The available cache algorithms
is presented in chapter 7.4.1.

68

IMPLEMETATION

if node with this address exist in ghostNode list
get node from ghostNode list

end if
else

make this node from XML source
register node in ghostNode list

end else

return the node

Figure 50: pseudo code for consulting weak references

ghostNode
Holds a weak reference9 of all D3P nodes who are created. This gives a second
chance of holding a reference to a node who was not collected as garbage by the
GC. For example, a scenario where a user holds a node, which the LRU algorithm
dismisses as the next to be removed from memory, this node will be removed
from the tree, but not from memory. If this node is visited again by navigating the
node tree, the nodes reference will be returned from the ghostNode-List rather
than making a new object for this node. The pseudo code for this part in figure 50.

Cleaner instantiated in cacheAlg
The Cleaner class is responsible for checking the current memory usage. If the
memory consumption is over the desired limit stated in the configuration, the
Cleaner activates the selected ICache implementation in cacheAlg, using a visitor
pattern10. The Cleaner will continue to activate the ICache implementation until
the memory consumption has decreased under the desired limit. The pseudo
code for this operation is shown in figure 51. In addition, an activity diagram is
provided for the Cleaner. This can be found in appendix a:uml.

while abort value is not set
while memory used is less than memory Allowed To Use

Find least recently used node or bunch of nodes
Remove links to the nodes
Remove from memory all nodes which have no links to it
Update memory usage value

end while
wait a small period of time

end while

Figure 51: pseudo code for the node cleaner

8.3 DomProducer

Domproducer is the class which is responsible for making D3P node from the XML
source. It is dependent on the IndexDataStorage and the XmlDataReader.

9Weak references are discussed in chapter 7.5
10The visitor design pattern is a approach to separate an algorithm from an object structure. The cleaner

visits the LRU algorithm which are registered.

69

IMPLEMETATION

+makeNode(in address : int) : Node
+makeRootNode(in address : int) : Node
+MakeNodeList(in name : string) : NodeList
+makeSymbolTable(in node : IxmlDataReader) : Symboltable
+Parse(in address : int, in doc : Document) : Node
+Parse(in address : int, in doc : Document, in name : string) : Array
+write()
+resourceLength() : int

-index : IxmlDataReader
-xmlResource : IxmlDataReader

DomProducer

IDisposable

Figure 52: Class diagram: DomProducer

As mentioned in chapter 7.3.1, nodes who are smaller than a defined size are considered
too small to be indexed, and becomes a blocked node or an indirect blocked node. In the
function DomParser:makeNode(node Node) the decision must be made, whether to
parse the entire node or make the node directly from index data. This is show in the
pseudo code in figure 53.

if node address exist in index
if node is element

if element has attributes (known from index)
read start tag from source
make a new node with name from source
make attributes and append to new node

end if
else

make new node with name from symbol table
end else

end if
else make respective node

end if
else

Get data stream from data source
Use MS XmlTextReader to make this node and children from the

data stream
end else

return the newly constructred node

Figure 53: Pseudo code for constructing nodes

When making a node which resides in index, index information is actively used to reduce
parsing from the XML data source. If the index provides symbol table information, it
is preferred to use this value prior to parsing from source. The symbol table gives only
information for the nodes of type element. Other nodes, such as text nodes, comments
and processing instructions, must be parsed from the XML data source. The index gives
however, not detailed information about attributes. It only says if attributes are present
or not. If attributes are present, data must be parsed from XML data source. The symbol

70

IMPLEMETATION

table makes it possible to never parse XML data for indexed nodes (see chapter 7.3.1 for
the different node types) which do not have attributes. When making nodes which
are part of a blocked node, a stream is provided to Microsoft’s own XML Pull parser
(XmlTextReader) included in the .NET framework. The nodes made from this stream
are D3P nodes as well.

8.4 XML Data Source

The XML Data Source component is responsible for reading XML data from a XML
source. In this implementation, two approaches are available, a reader which reads
directly from XML source file (XmlDataReader), and a reader which uses a memory
stream (XMLDataBufferReader) to buffer the whole source file. This latter approach
will require memory of same size as the XML document, and will hence be equal to
VTD-XML in chapter 6.3 regarding initial memory requirements. Both approaches
implements the IXmlDataReader interface and the static fileStorageProvider returns the
implementation defined by the configuration.

+getNext() : byte
+hasMore() : bool
+load() : bool
+progress() : int
+readData() : Stream
+readStringData() : string
+CurrentAddress() : int
+Dispose()

{abstract}
simpleXmlDataReader

#bytesRead : int
#fileLength : int
#fileName : string
#fileOpen : bool
#fis : FileStream
-CurremtAdress : int
-File : string
-ResourceLength : int

XmlDataReader
-

XmlDataBufferReader
-buffer : Array

+getFileStorage() : IXmlDataReader

fileStorageProvider
-datareader : IXmlDataReader

+getNext() : byte
+hasMore() : bool
+load() : bool
+progress() : int
+readData(in start : int) : Stream
+readStringData(in start : int, in end : int) : string
+currentAddress() : int

«interface»IXmlDataReader

IDisposable

Figure 54: Class diagram: XML data source

Both these readers only support 8-bits ASCII (same as UTF-8 in US/English). This is
because the parser always have to be in control of how much data is read at any given
time. The number of character read prior to an node is that nodes start offset in the XML
document. By using 8-bits ASCII coding only, one character will always be exactly one
byte.

71

IMPLEMETATION

8.5 XML Index Storage

The XML Index Storage is responsible for holding the information regarding the struc-
ture of the XML document. How this is done, is abstracted through the IindexDataStor-
age interface. Currently, two approaches are tested: using an embedded object database,
and using memory structures for holding index data.

+clearDataStorage()
+dbOpen() : bool
+dbClose() : bool
+Load()
+retrieve(in name : int) : NameTag
+retrieve(in type : SpecType, in address : int) : StorageAdress
+retrieveBlockOwner(in address : int) : int
+store(in type : SpecType, in start : int, in end : int, in children : Array, in namesymbol : int)
+storeTags(in nameId : int, in tags : Array)
+storeSymbolTable(in symbols : SymbolTable)
+getSymbolTable() : SymbolTable
+Dispose()

{abstract}
simpleStorage

#fileName : string
+Prop: FileName : string

db40DataStorage
-db : ObjectContainer

memoryDataStorage
-index : Hashtable
-tag : Hashtable

+getDataStorage() : IindexDataStorage

indexStorageProvider.cs
-IindexDataStorage.cs : IindexDataStorage

+clearDataStorage()
+dbOpen()
+dbSave()
+Load()
+retrieve(in name : int) : NameTag
+retrieve(in type : SpecType, in address : int) : StorageAdress
+retrieveBlockOwner(in address : int) : int
+store(in type : SpecType, in start : int, in end : int, in children : Array, in namesymbol : int)
+storeTags(in nameid : int, in tags : Array)
+storeSymbolTable(in symbols : SymbolTable)
+getSymbolTable() : SymbolTable

«interface»IindexDataStorage

IDisposable

Figure 55: Class diagram: XML index storage

The Embedded database (Db4O datastorage [41]) runs in its own thread and stores data
in a database file. In this matter, the data is available next time the database file is
opened. The embedded database used ,DB4O, has memory caching and intern index
therefor making the process very fast. The memory data structure uses a Hashtable
from the .NET library, storing objects in memory. After parsing the structure of the
XML document, the index data is serialized to disk. When a XML document is loaded
for usage in D3P, the data has to be de serialized back into memory.s

8.6 Parser

The parser is responsible for pre processing the XML document so it can be used with
the D3P library. The parser maps the entire XML document and extracts both infor-
mation for the structural as well at the tag name value index discussed in chapter 7.3.3
and 7.3.4. The entries which for the structural index are flushed in postorder traversal.
There is no way of knowing the size of a node until both the start and end tag is found.

72

IMPLEMETATION

If the size is over the pre defined limit (the CollapseLimit configuration option), the
node is indexed with the address as key.

This parser is implemented for the specific purpose for supporting D3P, hence it is not
completely developed to support namespace, Xlink and PCDATA-tags since neither the
D3P library is implemented to support this.

+makeNode(in address : int) : Node
+makeRootNode(in address : int) : Node
+MakeNodeList(in name : string) : NodeList
+makeSymbolTable(in node : IxmlDataReader) : Symboltable
+Parse(in address : int, in doc : Document) : Node
+Parse(in address : int, in doc : Document, in name : string) : Array
+write()
+resourceLength() : int

-index : IxmlDataReader
-xmlResource : IxmlDataReader

DomProducer

IDisposable

Figure 56: Class diagram: Parser

This parser basically does the same as any other SAX parser, with one crucial difference.
This parser can get the exact start and end offset in the data source. No other SAX
parser in C# or java is known to have an API with this ability. The code which controls
the offset address when searching for start and end tags are shown in pseudo code in
figure 57. An overview of the parser functionality is available as UML activity diagram
in appendix D.

8.7 XmlWriter

This class is the specific implementation of the approach discussed in chapter 7.6.
Changes are collected in an unordered list in the DomWriter as a temporary repository.
When the write()-command is issued, this list is sorted and a log for updating is made.
The nodes in the updateLog is marked with a tag, showing what data is altered in the
node. It can be the node itself (which basically means its content, element name or ele-
ment attributes), its children if the node is an element (stated by the NodeList attached
to the element) or both.

This gives the opportunity to only rewrite the part of the node which is altered. If
the state of an Element or Attribute is altered, only the start tag and attributes has to
be written from D3P nodes, all of the children can be directly copied from the XML
source file, releasing D3P from much processing. The children do not even have to be
constructed. When a node is added or removed from the NodeList, the owner of the
NodeList is registered as an altered node. Figure 59 shows the behaviour of the write
function in pseudo code.

73

IMPLEMETATION

while still data available on source
get next character
until "<" is found

skip forward
end until
remember Start Address

until ">" is found
append to string

end until
remember End address

send string to analysis
if string is startTag

if stack is not empty
peek object at top of stack
append myself as child to object

end if
make new object
append Start Address to object
push new object on stack

end if
else if string is endTag

pop object of stack
append End Address to object
send object to index

end else if
else if string is end tag at once

peek object at top of stack
append myself as child to object
make new object
append Start and End Address to object
send object to index

end else if
... else if ... // other nodetypes

end while

Figure 57: Pseudo code for initial parsing of XML

74

IMPLEMETATION

+addChange(in n : Node, in changetype : Change)
+removeChange()
+write()

-updateLog : UpdateLog
DomWriter

+writeSource(in start : int, in en : int)
+writeXML(in xmldata : string)
+sourceLength() : int
+targetLength() : int

DomXmlWriter

+addEntry(in entry : LogEntry)
+tryMergeInfo() : LogEntry
+resolveMergeInfo()

-entryStack
UpdateLog

+Id : int
+change : Change
+nodeLink : Node

LogEntry

IDisposeIDispose

Figure 58: Class Diagram: DomWriter

function writer (StartAddress, EndAddress)

Get next LogEntry in UpdateLog
if LogEntry is greater than EndAddress

copy source to target from StartAddress to EndAddress to target file
else
Rapport LogEntry as successfully fetched

if LogEntry.Change is a Block
write entire XML block from LogEntry.NodeLink

end if
else

copy data from Start address to LogEntry.Start
if LogEntry.Change is Self or Both

write new element start tag
end if
else if LogEntry.Change is Children or Both

foreach node in child list
if node is new

write new node from LogEntry.NodeLink
end if
else

writer(node.Start , node.End)
end else

end foreach
end else if

end function writer

Figure 59: Pseudo code for writing back XML

75

CONFIGURATION

9 Configuration

9.1 Configuration Tool

The D3P includes a graphical user interface and a command line tool which can be
used for setting configuration parameters and index the XML document. Both run on
the .NET platform and are supplied with the library. Indexing can be done on-the-fly
when loading the XML document to the D3P at runtime, or it can be done in advance
using the index tab shown in figure 60 or the command line tool shown in figure 61. It
is recommended that the XML document is indexed in advance to minimize delay in
the application using D3P. Once the file is indexed, the index can be used for as many
sessions as desired, as long as the source XML document is not altered. This states a
‘parse once, use many times” situation for the index.

Figure 60: Indexing tool, index tab

There are a number of settings for the indexing, shown in figure 62. Some of these
settings can have critical outcome on performance, hence they should be set with care.
A simple introduction to the options are presented. For technical specifications, please

76

CONFIGURATION

Figure 61: Indexing command line tool

refer to chapter 7 and 8. Further in this chapter, these options and their impact the
overall performance is addressed. When using the console or GUI application to index
or alter settings, a file with same name as the XML file in question but with the extension
.settings is stored in the same directory as the XML file. The file containing the both
indexes (structural and value) and the symbol table is stored in a file with the same
name, but with a .dat extension. This file is located in the same directory as well.

9.2 CollapseLimit

The CollapseLimit option is used to select the minimum size of nodes which shall reside
in index. A higher value will result in faster parsing and a smaller index. On the other
hand, all nodes which are not indexed will be regarded as blocked nodes (as discussed
in chapter 7.3.1 and constructed as complete D3P sub trees if accessed. The user can
adjust this by how the XML document is to be used. The CollapseLimit simply set the
level of granularity to be used in the index and cache. This has impact on performance,
as this value affect both the cache behavior and numbers of file accesses when navigating.

Consider a scenario where an XML document has 10 sub nodes to its root node. The
file is 50 MB of size. That is, it is estimated for each sub node to be 5 MB, where each
sub node of these again has 1000 nodes, each with an estimated node size of 5 bytes. In
indexing this particular document, the impact of selecting too high or low CollapseLimit
might be crucial.

High CollapseLimit
Choosing a high CollapseLimit will result in a smaller index and lower index
construction time, but more nodes have to be parsed as sub trees. The cache will
have less control over the memory consumption as it only can dismiss indexed
nodes and whole blocked nodes. However the cache will dismiss more nodes at the
time, requiring less work for the cache algorithm.

77

CONFIGURATION

Figure 62: Indexing tool, settings tab

In the presented scenario, a high CollapseLimit over 5 MB, would result in an
index only containing one indexed nodes, namely the root node, which would con-
tain 10 blocked nodes. In this case, the cache can only load and unload entire 5
MB of XML data blocks at a time, resulting in an estimated minimum memory
usage of 40 MB (the estimated memory object representation is 8 times the raw
XML data, 5 MB * 8 = 40 MB). At the same time, the high CollapseLimit ensures
a low number of source accesses, and therefore a low overhead in comparison to
traditional approaches.

The advantages with a high CollapseLimit, aside from a smaller index and reduced
index construction time, is when whole blocked nodes are accessed. This will result
in fewer accesses to the source XML source document. The disadvantage is when
only a small portion (Indirect Blocked Node) of the XML document is to accessed (1
off the 1000 sub nodes), as this would require to build the entire blocked node(1001
nodes), consequently requiring more processing and memory space.

78

CONFIGURATION

Low CollapseLimit
Choosing a low CollapseLimit will produce a large index, but less nodes have to
be completely parsed as D3P sub trees. Also the time spent indexing the file is
increased due to more entries to be inserted in the index. The cache would have
more control over the memory consumption, but the cache would have more en-
tries and more work to do.

In the presented scenario, a low CollapseLimit under 5 MB would result in an in-
dex containing 11 indexed nodes and 10000 blocked nodes. In this case, the cache can
load and unload potentially only 5 bytes of XML data blocks at a time, resulting
in an estimated minimum memory usage of 40 bytes.

The advantage of having a low CollapseLimit is when small parts document is
accessed. This implies that small nodes are represented as Blocked Nodes in the
index. This decreases the chance of having to parse and build unnecessary nodes,
saving both time and memory space. The disadvantage is if many nodes are
accessed, requiring many accesses to the XML source document. Estimated, an
entire tree traversal would require 10011 file accesses, making the application a
performance bottleneck in any system.

9.3 Max Cache Size

The Max Cache Size value is the maximum amount of memory the total application is
allowed to use. This includes nodes, index, buffers, temporary object and other data
that is required by the D3P library. It is important to select a reasonable amount of mem-
ory. For example, when using the XmlDataBufferReader as data source (see chapter 9.6,
the total amount of allowed memory can not be below the size of the XML document.
Also the Max Cache Size has connections to the CollapseLimit value, discussed in
chapter 9.2. Basically, the Max Cache Size must be at least a magnitude of the Collapse-
Limit. If a chosen CollapseLimit results in blocked nodes of memory size larger than
the Max Cache Size, the node will be attempted to be removed once it enters the memory.

The performance hit of choosing size of the tree is very dependent on how the D3P
library is used. Consider a scenario where only 10% of a XML document is being used
and the Max Cache Size is set to accommodate these 10%. When adjusting this value
further, this will happen:

Higher cache size
A higher value for the cache size would not affect the performance, because the
memory consumption would never exceed the max cache size and the nodes
would always be available in memory.

Lower cache size
If the max tree size was to be lowered, the Cache will have to dismiss the least
recently used nodes from memory. And when dismissed nodes are requested they
have to be rebuilt, resulting in a decreased performance.

The rule of thumb is that a higher value is better, as long as the system can handle it, as
this lower value the chance of nodes being dismissed and rebuilt.

79

CONFIGURATION

9.4 Use Cache

This option turns on and off the caching in D3P. Without the cache activated, all nodes
will be retained in memory. With the caching turned on, nodes which is least recently
used will be removed from memory when the limit of Max Cache Size is reached. In
practice, setting the “use cache” option to off will have the same effect as setting the
Max Cache Size to infinite (or Int32.MAX).

9.5 Data Storage

This option selects the Data Storage for the index to be used. As for now, one can
choose between the db40 Open source Database [41], and a in memory index based on
the .NET Hashtable class. When much data is to be indexed, the embedded database is
preferred, due to higher memory usage in the in memory index. The in memory index
is serialized to disk when the session ends.

Memory Based Index
Choosing a memory index would always be faster then a disk based index how-
ever, this comes at a cost of more memory consumption. The structural index
is often queried when navigating (and building). A memory index would not
require a lot of disk accesses, making this an favorable option.

Disk Based Index
Choosing a disk based index would be slower than a memory based index, but has
the advantage of consuming a lot less memory for many index entries. The down-
side is that the structural index would require a lot of disk access even for simple
navigation purposes, making the memory based index favorable. However, the
value based index behaves somewhat differently then the structural index. This
index only requires one access for each value query (getElmentsByTagName), and
uses the structural index for additional building. The performance difference
would me minimal of using memory or disk based value index.

This implementation has either both indexes (value and structure) in memory or in the
embedded database.

9.6 Xml Reader

This option selects between direct access to file and full buffer to memory before usage.
Copying the file to memory will use considerable more memory. A memory buffer is
expected to always be faster then a file on disk. However this advantage is minimal,
and only under special circumstances is the buffered approach expected to be significant
faster. This happens only when the collapse limit is set low and traversing the node
tree, resulting in many disk accesses (I/O operations). The penalty for having a buffer is
that it occupies a lot of memory, something the D3P implantation would like to avoid.

9.7 Cache Algorithm

Selects what cache algorithm is to be used in D3P. Currently, a Static Cache with pre sized
buckets and a Tree Based Cache which takes parent-child considerations are available.

80

CONFIGURATION

Static Cache
The static cache takes no consideration to relationships and dismisses nodes bases
on their addresses within a predefined interval. This can potentially lead to
relevant nodes (parents, siblings, children) often being dismissed from memory
and rebuilt when traversing the node tree. When retrieving nodes based on their
name (using getElementsByTagName), the nodes does not require being nearby
related, making the static cache a favorable choice.

Tree Cache
The tree based cache would normally be favorable when traversing. The reason is
that the Tree Cache takes node relationships into consideration, making it a bit more
intelligent then the Static Cache. This cache will not dismiss parents of last recently
used nodes, thus minimizes the chance of relevant nodes being dismissed form
memory, making the tree cache well suited when dealing with hieratical structured
data.

81

Part III

Evaluation and Discussion

In the former chapters 4 5 and 6 we have been discovering features of lazy processing. The
technology and research supported our work in developing a demand driven DOM parser (D3P).
A parser making it possible to adjust the memory consumption to be used by the implementation.
This would in theory make it efficient when using large XML documents. This implementation
of the W3C DOM, is during the next chapter tested with several input files and scenarios. It
is designed to look at the D3P pros and cons. Later on we will address these results in the
discussing part of the thesis, chapter 11.

83

TESTING

10 Testing

When using DOM in an application, questions regarding performance come naturally.
The navigation, retrieval and handling of the XML should not take too long or consume
huge amounts of memory. Tests like [47, 48, 49] are performed simply to show which
product is to be preferred. In particular, implementations of the W3C DOM in java,
all share the same interfaces, and many of the parsers are free (licensed under GPL
or similarly), making it easy to switch to a “better” parser as requested. This makes
it important to show how a W3C DOM implementation performs compared to other
implementations. In this chapter, we will test the performance of the D3P compared
to other parsers. However, the D3P is no traditional parser. To lower the memory
consumption, some other resource has to suffer. In this case, this is I/O and CPU time.
In this chapter, we test the implementation not only with acknowledged techniques, but
we also introduce some additional tests to show the strength and weakness of Demand
Driven Dom Parser (D3P). This chapter start with a simple introduction to software
performance testing, moving on to existing DOM performance testing frameworks.
Before testing the D3P performance compared to other, internal tests are performed,
finding the optimal configuration for the D3P to be used in further testing.

10.1 Software Performance Testing

Software Testing is a crucial part of software development. There are several methods
for performing testing, depending on the actual intentions of the test. Unit testing
is primarily for functionality testing, that is, to verify that a component/class does
what it is suppose to do. The W3C, for instance has many Conformance Test Suites
for their recommendations. This is to verify that the implementation supports all
functionality of the recommendation. Performance testing is used as another common
evaluation criteria. Performance testing has been defined as: In software engineering,
performance testing is testing that is performed to determine how fast some aspect of
a system performs under a particular workload. In this thesis, it is desired to see how
the solution performs compared to existing products. XML products strongly depend
on high performance in every context of use, making this kind of comparison important.
The computer has a number of resources, which all have limitations. These resources
are [46]:

CPU time
A measure for the time the application spend in the Central Processing Unit
(CPU). A fast CPU makes the calculations faster than slower. A badly designed
and written application is potential for producing binary code which makes more
calculations than needed, making the application use more CPU time.

Main Memory size
Represents the capability of the internal memory, RAM (Random Access Memory).
Everything that needs to be fed to the CPU has to reside in RAM, thus all programs
running, has some data in memory. Main Memory is much faster than secondary
storage, so it is always desired to keep as much of the currently running programs
in memory at any given time. Many running programs or low amount of hardware
RAM, causes less available memory.

84

TESTING

Secondary Storage (I/O)
I/O11 operations does not only have limitations in its size, but also its speed. This
is the slowest resource. The start-up cost when reading a new stream from a hard
drive is high, so when reading data, as much as possible should be read at once
for less disk accesses. The disk drive is only one of many types of I/O (In-Out)
devices used by a computer to store or communicate data. Most I/O devices have
performance issues compared with the internal RAM and CPU.

The goal of every performance demanding program will after this be: An application
that uses minimal calculations, minimal memory and reads everything it needs from
the hard drive at once, results in the fastest runtime. In every task the computer makes,
some or all of these resources are used. If one of the resources is empty, that is, there
are no more of that resource available, that resource is a bottleneck, because the other
resources can still deliver higher performance. It is however, crucial to set test conditions
to be similar to the expected actual use. This is often difficult to arrange, because of the
variety in pattern of usage.

10.2 Testing DOM Performance

Several tests has been developed and performed to determine which W3C DOM imple-
mentation is the best [47, 48, 49], both independent and testing done to emphasize the
producers own product. The latter type of testing is often done in the owner’s interest,
choosing test scenarios where the specific product is superior. To get an independent
test result of the D3P, most tests are adopted by independent sources. The particular
test in [47] concentrated on these factors:

Document Build Time
Measures the time spend to build a document representation from a text document.
The definition of a document representation is a bit vague. Some parses will build
entire object models in memory, while others can do preparations, making the file
ready to use.

Tree Walk Time
Measures the time spend to traverse the constructed document representation.
When traversing, all data is visited: Elements, Attributes and Text nodes, all
preorder traversal from the document root element. When starting the traversal,
the document is already considered “built”.

Modification Time
Measures the time spend traversing the whole document in preordered traversal
doing modifications along the way, and write the document back to persistent
storage (hard disk). The time does not include the build time of the document.

Text Generation Time
Measures the time spend to get the content of the entire node tree. That is, for an
unchanged node tree, the text generation output will be more or less equal to the
original XML document. The DOM Parser can format the output in various format
however, resulting in slightly various output files. The time does not include the
build time of the document.

11I/O (In - Out) represents kommunications between CPU/Memory and som external unit

85

TESTING

Document Memory Usage
Shows the memory consumption the complete program has before and after the
complete traversal of the DOM node tree. The memory before walk is also the
initial memory used after Document Build. This memory consumption includes
the entire application. This means that if the DOM library has memory consuming
components, these will also be taken into account.

Serialization Out time, In time and Size
Measures the time spend to serialize, de serialize and the memory used for this
representation. This is not a part of the W3C DOM recommendation; consequently
not all parsers support this.

Also, other tests use some or all of these criteria’s when running performance testing.
In [36], where lazy XML processing is the issue, the walk time and memory consump-
tion are measured for how much of the document is covered. In result, this test is
constructed to accentuate some particular aspect of the DOM implementation.

The test of DOM implementations in [47] does not feed the parser from hard drive,
but uses a stream from memory. Using memory buffers to avoid any external timing
variables is a common approach of isolating the test to just concern the implementation
itself. Also [47] is using a number of tests as data basis. Tests are run ten times, and an
average result is calculated, except when large files are used.

10.3 Test Harness

The implementation of DOM described in this thesis, is intended to be used with large
files, typically in the size of 10 - 300 MB. XML documents are not the ideal data storage
when the file size reaches upwards, hence most DOM parsers are not intended to be
used with very large XML documents. The tests described in chapter 10.2 all uses test
file with size of magnitude from 400 bytes to 1400 KB. The latter is regarded as a very
large file by the testers.
The basic advice on reading large XML documents is: Do not do it! Rather use a
pull parser, SAX or an XML database. The basic idea behind this thesis is to make
large XML documents available through the W3C DOM interface without the drain
of memory resource usually experienced when using other established W3C DOM
implementations; hence some tests are made as a special case, to show particular aspects
of this implementation, both with it’s pros and cons.

10.3.1 Compared W3C DOM Parsers

This implementation is done under the Microsoft .Net framework V2.0. Most other W3C
DOM parsers are implemented to run under the Java VM. In fact, no other alternative
W3C DOM implementation running on .Net framework could be found. This means
that comparisons have to include implementations in other programming languages as
well, to get a basis for discussion. Java parses is used because this framework has an
architecture and memory handling similar to MS Net’s. The parses to be tested in this
thesis are:

• Xerces2 (Java), from now on referred to as Xerces

86

TESTING

TestFile Number XML structure Attributes Depth Text Length Size (MB)
Test: 1-6 flat 0 3 20 - 180B 0.5 - 330
Test: 7-12 deep 0 12-22 20B 0.5 - 390
Test: 13-18 medium 8 5-8 20B 0.5 - 303
Test: 19-24 medium 0 5 20 - 15KB 0.5 - 345

Table 2: Test files

• Xerces Deferred mode (Java)

• MS .Net library XML parser programmed in C#. From this point referred to simply
as C# XML DOM.

• D3P (programmed in C#.net)

However, in preliminary test rounds, Dom4J, JDOM and Crimson (all discussed in chap-
ter 6.4) was a part of the test harness, but it was unveiled that these implementations
did not contribute to any new findings, either compared to others or themselves. Xerces
was chosen to represent all of these parsers. This choice was done due to that Xerces
also has a deferred mode, which utilizes on demand traversal and other memory saving
techniques.

The Xerces Deferred mode is the Xerces parser with the deferred mode turned on.
Deferred mode results in partial building of the document representation as the node
tree is traversed. This is also the basics of D3P, consequently D3P and the C# XML
DOM can be compared in the same manner. The results is partially but not completely
comparable because of language differences. And for correct testresults, comparisons
within the same programming language and platform is preferred.

10.3.2 Test Files

The XML structure has the ability to have a number of features, which can have impact
on performance results. Some of these are:

• Number of children under each element (XML structure).

• Number of levels (depth).

• Number of attributes per elements.

• Number of bytes in text nodes and/or PCDATA.

To keep control over the features of the documents, 24 documents have been produced
for the soul purpose of this evaluation. The 24 XML documents are divided into four
groups, each with respect to one of the features above. The files are shown in table 2
Each of the four groups have six files, with a size from 500 KB to just over 300 MB.
Specifications of each test file are available in appendix F.1. All files are considered
relatively simple. They have neither namespace, PCDATA, Xlink or DTD schemas
attached to them. In the manner the documents are constructed, deep documents will
have a smaller amount of actual XML data per MB than flat files. This is because the D3P

87

TESTING

parser does not support these operations. For each level, white spaces are added in front
of the nodes to make the document appear “pretty”. This is a common approach for
XML output, hence this is also done with these files. The files are made by a “random”
XML generator made for the sole purpose of making these files. The generator takes
input parameters for how the file is to be constructed in sense of children, attributes,
text size and element name. When constructing elements, the tag name is selected from
a collection of strings, making the same element name appear random in the document.

10.3.3 The Tests

Most tests described here use the tests from [47] as a basis to test the performance of the
demand driven approaches used in D3P. However, some test in [47] can not be carried
out, because some features of D3P are not fully implemented. The test to be carried out
as described in [47] is the Tree Walk Time and the Document Memory Usage test. The latter
test is altered to contain document memory usage before and after walk. This tests
measures the memory consumption of the object representation before actual usage of
the node tree and after total traversal of the tree. The tests are referred to as general tests
and are issued for all 24 test files described in chapter 10.3.2.

Serialization is not implemented in the D3P, so all test regarding serialization are
skipped. The Text Generation Time is dismissed due to the unrealistic scenario of out-
putting entire XML text for the file size D3P is constructed for.

In addition to these tests, three other tests are issued. These tests shows scenarios where
the differences for demand driven versus traditional W3C DOM implementations are
easier revealed:

Partial Traversal Test
Measures the time and consumed memory for some part of the document to be
accessed. The partial test traverses every N node in the tree in preorder traversal,
regardless of level. The resulting test will access approximately a 1/3 of all nodes
in the node tree. The test is only issued for test file 16.

Partial Traversal Test Repeat
Measures the time and memory for a spesific assembled part of the document.
This test will traverse, in preorder traversal 1/10 of a document 10 times. In total,
only 10% of the document is ever accessed. For simplicity, file number 16 is used
with this test. The root node has 10 sub nodes of equal size, making it easy to
controll that only 10% of the document is accessed. D3P is configured to have a
cache large enough to keep this part in memory without having to remove nodes
from memory as traversed. The test is only issued for test file 16.

GetElementsByTagNameTime
The GetElementsByTagName command in W3C’s Document Object Model re-
turns a nodelist with every node matching the exact name, in preorder traversal
of the document. This can result in holding elements from various parts of the
document. The test measures the time spend to issue this command for a known
element name, return the node list and access each node in it. This special test is
only issued for file number 16. The test runs the D3P DOM parser under several

88

TESTING

settings in terms of CollapseLimit. This is due to that for any element with the
specific name inside a blocked node, the entire blocked node has to be parsed, and
D3P nodes constructed. The CollapseLimits are:

• 1 B
• 1 KB
• 10 KB
• 80 KB
• 1 MB

The element name of the document node is used as criteria in the getElements-
ByTagName. The method is run from the Document Node because it is not
implemented on Element level. A total number of 5081 elements are expected in
the returned nodelist.

RemoveTest
Measures the time spent and memory consumed removing every second node
from the root element of a specific document (test file 16). Measures are taken for
the build, removal of nodes and the writing of the modified node tree to XML. File
16 is known to have ten sub nodes to the document root. This test should remove
five of them and write the docuemnt back. The size of the modified file should be
approximately half of the original file.

Document Walk Time and Memory, Percentage Coverage
Measures the time spend to reach a percentage coverage of the document when
traversing in preorder traversal. Reading the document from the start, time and
memory is measured for every 10% of the file traversed. For simplicity, a file with
10 sub nodes of the document root is used. Each sub node has the same length.
This test measures the total time and memory at end of every sub node read. I.e.
when the third sub node is traversed 30% of the document is covered. The initial
parsing and index construction is not included for D3P in this test.

10.3.4 Test Technique

Test computer is a Dell Inspiron 9300 Windows XP Service Pack 2 PC with the specifi-
cations:

• CPU: Intel Dothan 1.87 Ghz.

• RAM: DDR2, 533Mhz Dual Channel, 1024 MB.

• Harddrive: 5400 RPM, 8 MB cache.

Framework librarys used in the test are sun java 1.5 and .Net framework 2.0. All tests
are run on the Windows operation system. This is due to the fact that the Microsoft
.NET framework only runs on this operation system. Another .NET library implemen-
tation, mono [45] exists, and runs on varous operation systems, but the XML parser
performance on this implemetation is known have performance problems compared
with the Microsoft Implementation. When the tests were run, no other processing,
I/O or memory consuming application was running. This was necessary for reducing
uncertainty in the test results. Below, an overview of how measurements are reached is
shown:

89

TESTING

Measuring Times
Time measuring is done by using the systems timer. A timestamp is collected
both before and after the test, and the difference is the test result. That is, the time
taken to perform the operation.

Measuring Memory Consumption
Memory measurement are done before and after the test, and the difference is
the test result. To make the test “fair” for all the implementations, the garbage
collector is issued before reading the memory consumption.

Profiling tools gives the opportunity to get the time spent in each routine in the appli-
cation. However, profiling takes time and gives unrealistic results compared to regular
runtime. Therefore, profiling was rejected as a possible alternative to get accurate tim-
ing and memory measurements.

The Document Build Test described in chapter 10.2 refer to the building process as a bit
vague. The D3P has an indexing process prior to usage of the node tree. But the index
process is done once for a static document and never again. On document load, the
index is loaded and used. It can be questioned whether or not the indexing time is a
part of the document build process, therefore in the test presented later in this thesis,
both approaches are presented. That is, both D3P without indexing referred to as D3P
No Parse and D3P with indexing simply referred to as D3P.

D3P and D3P No Parse is expected to differ in all measurements concerning time, but
when measuring consumed memory, there is no difference between the two. After all,
the parsing and indexing is not a part of the document access, and the index will be of
same size. Hence, in all memory measurements, the test result is simply referred to as
D3P.
During internal testing of the D3P, it was observed that the Microsoft .NET framework
buffers data internally. When multiple tests were performed in the same run, test
results became unrealistic, because it seemed like data could be fetched from secondary
storage extremely fast. Since Java tests did not behave like this, it was decided to run
tests without any pre cached document data. That is, each test was run once for every
binary, and all tests was run in a sequence. All binaries were run once without recording
test results, due to the JIT12 compilation both for Java and .NET framework.

10.4 Test Preparations and Configuration

This implementation states a number of configuration options which can affect the test
result. Therefore, a test unveiling which approaches are generally the most perfor-
mance efficient in the sense of both timing and memory consumption. There are four
components the user can affect in selecting the specific approach to be used. The four
components are:

Index Storage: In memory or embedded object database.

XML Data Reader: Filestream from disk or stream from buffered data in memory.

12Just In Time compilation. Frameworks like Java and .NET utilizes script files compiled at runtime to
be optimized for the current OS and hardware configuration.

90

TESTING

Cache Algorithm: Static or adaptive to the Node Tree.

Memory cache size Can be set from 1 byte to infinitely.

The three first tests have been run on 4 files, with the parser being tuned to show the
characteristics of the components, but not necessary with the configuration that is the
fastest. Complete test results can be found in appendix F. The last test is used to find the
performance influence of the memory cache size. This test will unveil the consequence
of having a low memory cache versus a high memory cache for D3P nodes.

10.4.1 Index Storage

In terms of indexstorage the choice is between the embedded- and the memory-database
option. In the embedded object database the data is mainly stored on the hard drive,
using less memory when the index grows big. On the other hand the latter only ac-
cesses the hard drive on opening and closing the index, serializing and desierializing
data. The frequently invokes on the database data causes the DB4O to be relatively
slow compared to the in memory approach. It also have a larger startup overhead in
terms of time. The test in appendix F.2 reveals that the DB4O is approximately 35 times
slower on small files. The only drawback of the in memory database is a small memory
overhead, as shown in appendix F.2. But this is not of notice relative to the total memory
consumption of the application.

The test shows that the memory database is considerable faster than the embedded
object database. The object database uses more load time than the in memory storage.
Although the in memory index approach will use more memory, the number of entries
in the index would normally be too few to be essential, hence the memory index will be
selected for further testing.

10.4.2 XML Data Reader

The test results in appendix F.2 shows that performance differences can be considerable
between the two readers. This is a result of how many data reader accesses who are
issued. In test 6 and 7, the low CollapseLimit causes many file accesses for the FileReader.
For the FileStream, this is no issue. In test 8 and 9, where the CollapseLimit is raised,
resulting in less individual file accesses and more resources spent parsing and making
D3P nodes. Here, the result for total traversal are approximately equal. The build-time
(initial time before using the DOM tree) is always lower for the FileReader, caused by
the BufferedReader which always copies the entire XML data to memory.

In the example of test 6 and 7, where the “user” set an unfavorable CollapseLimit, the
result is very high walk time for both approaches. In test 8 and 9, where collapseLimit
is set reasonable, walk time is lower for both of them. Considering the fact that the
buffered method uses additional memory the size of the XML source, FileReader is
considered to be the most favorable as when the CollapseLimit is reasonable.

10.4.3 Cache Algorithm

The test results in appendix F.2 shows the difference in performance as the allowed
memory consumption varies. The dynamic tree cache outperforms the static cache in

91

TESTING

all situations. Also the performance is better when the allowed memory consumption
decreases. A possible reason for this performance gain is that the TreeCache gets less
objects to compare to in the LRU algorithm when there are fewer nodes present. As the
node tree size increases, more time will be spent finding the right node to release. In
the future test harness, the dynamic tree cache will be used. For the tests which utilize
the getElementByTagName function, the static cache is used. This command makes a
list of nodes from different parts of the node tree. If these tests are used with tree cache,
all ancestors of the nodes in the list is also constructed, resulting in a unnecessary high
memory and performance overhead

10.4.4 Cache Size Impact on Performance

This test is constructed to get an estimate of the performance impact of the memory
cache size. As described in chapter 9.3, the memory cache size sets the total amount of
memory the application is allowed to use and therefore sets constrains how much of
the node tree can be kept in memory. In this test, test file 5 is used. This file is indexed
with a 5 MB CollapseLimit. The cache configurations settings for the cache size are as
follows:

• D3P-1: 1 MB cache size.

• D3P-2: 100 MB cache size.

• D3P-3: No caching restriction is used. The DOM tree is build partially, but all
nodes are kept in memory, as with unlimited cache size. The implementation will
work in the same manner as Xerces Deferred.

Since the CollapseLimit of test file 5 is 5 MB, the memory cache limit of 1 MB in D3P-1 is
unrealistic, and the memory consumption will obviously not reach to the level of 1 MB.
This is done solely to stress the algorithm to always try to remove nodes from memory.
Note that the node tree is traverse, so no nodes leaved by postorder traversal is ever
referred to again.

Figure 63 and 64 shows the measured results. The graphical representation shows
that with the cache turned off, the least amount of time spent are attained. Note that
for setting D3P-2, the time spent are the same until the memory limit of 100 MB is
reached. In situations where nodes have to be removed from memory for the traversing
to proceed, some extra time is spent. The conclusion is that the penalty for using a low
memory cache size on traversal is not overwhelming, hence low memory cache limits
are encouraged in these situations.

10.5 Test Result

Detailed test results are available in appendix F, and only some parts are extracted for
deeper analysis. Some parsers did not succeed in completing all test within reasonable
time. In particular this was the case for very large files which was close to a third of
the internal memory. These files (Test files 6, 12, 18, 24) made the memory requirement
exceed the limits of the internal RAM and made the application break. The most
basic tests are also carried out on Crimson, DOM4J and JDOM, but these results are not
discussed in this chapter. Test results for all implementations are available in appendix F.

92

TESTING

0

1000

2000

3000

4000

5000

6000

7000

8000

Build 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Stage

Ti
m

e
(m

s) D3P-1
D3P-2
D3P-3

Figure 63: Cache size impact, time usage

-

50,00

100,00

150,00

200,00

250,00

300,00

350,00

Build 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Stage

M
em

or
y

U
sa

ge
 (M

B
)

D3P-1
D3P-2
D3P-3

Figure 64: Cache size impact, memory usage

93

TESTING

Parser Time in ms
XercesDeferred 4000
Xerces 8296
C# 5078
D3P - No parse 15
D3P 10016

Table 3: Document build time. test file 5

Parser Time In Milliseconds
XercesDeferred 485
Xerces 781
C# 266
D3P No Parse 16
D3P 563

Table 4: Document build time. test file 2

In this result summary, only parts of the test results are shown. Tests with noticeable
results are emphasized and further discussed in chapter 11. Each test is supplemented
with a comment to stress points of interests in an objective matter.

10.5.1 Document Build Time

Figure 65 shows the test results for the build time of test file number 5. The results are
also reflected as numeric values in table 3. Test results for file number 2 is also included
in numerical values in table 4. The size of test files 5 and 2 is 118 MB and 4684 KB
respectively.

As observed in both tests, C# outperforms the Java parsers. Also, the Xerces parser has
significant lower build time with deferred mode turned on. Having less startup cost is
a normal behavior with lazy and demand driven parsers. This is also reflected when
comparing the D3P No Parse and the C# parser. The D3P with indexing is the slowest
of all, due to overhead in the analyzing of the XML document.

With the D3P No Parse, the time used in the build process is not used building any
nodes, but to prepare indexes and open a file stream. Hence the build time is not
depending on how large the source XML document is, or how it is structure, but merely
of loading indexes.

10.5.2 Tree Walk Time

Figure 65 shows the measured results for traversing file number 5 in preorder traversal.
The results are also reflected as numerical values in table 5.
Results in figure 65 and table 5 shows that D3P, D3P No Parse and Xerces Deferred
uses more time than the others. That is, all demand driven parsers uses more time for
a full traversal of the node tree. This is also acknowledged by the other tests listed in

94

TESTING

0 5000 10000 15000 20000 25000

XercesDef

Xerces

C#

D3P no Parse

D3P

Pa
rs

er
s

Time (ms)

Parse
Build
Walk

Figure 65: Full traversal, file 5 time usage

0 50 100 150 200 250 300 350 400 450

XercesDef

Xerces

C#

D3P no Parse

Pa
rs

er
s

Memory Usage (MB)

Build
Walk

Figure 66: Full traversal, file 5 memory usage

95

TESTING

Parser Time in ms
XercesDeferred 5797
Xerces 328
C# 438
DP3 9110

Table 5: Document walk time. test file 5

appendix F.3.

10.5.3 Document Memory Usage Before and After Walk

The D3P has the ability to adjust the memory consumption at any time. That is, how
much node tree data is to be in memory cache. To compare this solution with others
might seem odd, because the memory consumption can be lowered to outperform the
others. Even though, a reasonable cache limit is set for this test.
Figure 66 shows the memory usage both before and after walk for the implementations.
Test file 5 of size 118 MB is used. Both D3P and Xerces Deferred uses memory during
traversal in contradiction to Xerces and C# parser. The latter actually uses less memory
when the traversal is done than before. This is acknowledged by test results in ap-
pendix F.3. Observe that Xerces Deferred uses more memory than Xerces after the full
traversal. This was expected from the Xerces specifications listed in chapter 6.2.

10.5.4 Partial Traversal Test

Figure 67 and 68 shows the measured results for time used and memory consumed
when only partial traversing the node tree. The test uses test file 16 of size 46 MB.
Observe that Xerces Deferred uses less time than Xerces in normal mode, which is
expected when only parts of the document actually is visited. However, comparing
D3P No Parse and C#, D3P uses more time. D3P uses less memory, due to the ability to
adjust memory consumption. Comparing the Xerces and Xerces Deferred unveils that
the latter surprisingly is using more initial memory than Xerces in normal mode. This
is not correct according the technical specifications in [42]. Additional test results in
appendix F.3 reveals that this only happens for XML documents with attributes.

10.5.5 Partial Traversal Test Repeat

Figure 69 and 70 shows measured results for time spend and memory consumed in the
test respectively. The test is performed on test file 16, with a size of 46 MB. Note that
only 10% of the document is accessed. The graphical representation shows the first
traversal and the final nine separately. This is to show the measured difference in the
first and remaining traversal. Note that both D3P and Xerces Deferred build the nodes
in this first traversal, but traverse in memory data in the remaining. With the Xerces as
the highest measured time and D3P not far behind, the D3P no parse uses the less time
in this test. Note that D3P (normal and no parse) uses 31 MB of memory. This is 20% of
the C# implementation which uses 150 MB.

96

TESTING

- 2 000 4 000 6 000 8 000 10 000 12 000 14 000

XercesDef

Xerces

C#

D3P no parse

D3P

Pa
rs

er

Time (ms)

Parse
Build
Partial Traversal

Figure 67: Partial traversal, file 16 time usage

- 50 100 150 200 250 300

XercesDef

Xerces

C#

D3P

Pa
rs

er
s

Memory Usage (MB)

Parse
Build
PartialTraversal

z

Figure 68: Partial traversal, file 16 memory usage

97

TESTING

0 2000 4000 6000 8000 10000 12000

XercesDef

Xerces

C#

D3P no parse

D3P

Pa
rs

er
s

Time (ms)

Parse
Build
Traversal 1
Traversal 2-10

Figure 69: Partial traversal repeat, file 16 time usage

0 50 100 150 200 250 300

XercesDef

Xerces

C#

D3P

Pa
rs

er
s

Memory Usage (ms)

Build
Traversal-1

Figure 70: Partial traversal repeat, file 16 memory usage

98

TESTING

10.5.6 Remove Test

Figure 71 and 72 shows the D3P produce a very good result. This is due to the fact that it
does not build more than the document element. And when running output it just reads
and writes the delta unmodified area directly from one stream to another. Observe that
Xerces and C# uses only half of the memory after the remove test. This indicates that
the nodes simply are removed both from the node tree and from memory. In the write
operation, Xerces Deferred uses more memory compared to the other implementations.
D3P uses less memory in this test, almost unnoticeable in the graphical presentation.

10.5.7 GetElementsByTagName Test

Figure 73 and 74 shows the measured results for the getElementsBytTagName test.
The D3P and D3P No Parse have a number of entries due to different CollapseLimits
used. The figure shows that the performance this function is highly dependent on the
CollapseLimit. With D3P No Parse, the best measured setting for test file 16 was 1 KB.
This particular setting gave the measured lowest both time and memory consumption
in this test. Also observe that both parsing and document build takes longer for a lower
CollapseLimit.

10.5.8 Document Walk Time and Memory, Percentage Coverage

Figure 75 shows the measured test results using XML test file 16. The test includes
load time for all parsers. The D3P with initial indexing included is not included in
the test. The Xerces Deferred has lower measured time than the Xerces normal mode
for document coverage under 83%. The same observation can be done with D3P No
Parse versus the C# implementation. Here the crossover is at 65%. Note that the
memory usage of the two implementation using demand driven approaches. Xerces
reaches many times the document size; while D3P No Parse’s highest measured memory
consumption is 40 MB, under the size of the document (test file number 16 is 46 MB).

99

TESTING

- 2 000 4 000 6 000 8 000 10 000 12 000

XercesDef

Xerces

C#

D3P no parse

D3P

Pa
rs

er
s

Time (ms)

Parse
Build
Remove
Output

Figure 71: RemoveTest, File 16 time usage

-

50

100

150

200

250

300

350

XercesDef Xerces C# D3P no parse D3P

Parsers

M
em

or
y

U
sa

ge
 (M

B
)

Parse
Build
Walk
Output

Figure 72: RemoveTest, File 16 memory usage

100

TESTING

- 10 000 20 000 30 000 40 000 50 000 60 000

XercesDef

Xerces

C#

D3P-1 - 1B C

D3P-2 - 1KB C

D3P-3 - 10KB C

D3P-4 - 80KB C

D3P-5 - 1MB C

D3P-1 - 1B C - No Parse

D3P-2 - 1KB C - No Parse

D3P-3 - 10KB C - No Parse

D3P-4 - 80KB C - No Parse

D3P-5 - 1MB C - No Parse

Pa
rs

er
s

Time (ms)

Parse
Build
Loop

Figure 73: GetElementByTagName, file 16, measured time

- 50 000 100 000 150 000 200 000 250 000 300 000 350 000

XercesDef

Xerces

C#

D3P-1 - 1B C

D3P-2 - 1KB C

D3P-3 - 10KB C

D3P-4 - 80KB C

D3P-5 - 1MB C

D3P-1 - 1B C - No Parse

D3P-2 - 1KB C - No Parse

D3P-3 - 10KB C - No Parse

D3P-4 - 80KB C - No Parse

D3P-5 - 1MB C - No Parse

Pa
rs

er
s

Memory (KB)

Parse
Build
Loop

Figure 74: GetElementByTagName, file 16 memory consumed

101

TESTING

0

2000

4000

6000

8000

10000

12000

14000

Build 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Stage

Ti
m

e

Xerces Def
Xerces
C#
D3P

Figure 75: Traverse time for percentage document cover

-

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

450,00

Build 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Stage

M
em

or
y

us
ag

e(
M

B
)

XercesDef
Xerces
C#
D3P

Figure 76: Memory consumed for percentage document cover

102

DISCUSSION

11 Discussion

The test results confirm what is expected for an on demand XML parser: Slower because
it needs more source data accesses and processing, but uses less memory. The parse
and indexing time uses a lot of time for the D3P. Since the indexing is a “parse once, use
many times” operation for static documents, this index time can be disregard in many
use cases. To show remarks with the test results, some results are emphasized:

Tree Walk Time
Test results are as expected for total traversal using a demand driven parser; D3P
and Xerces Deferred is slowest. This is verified by theory in chapter 3.2. The cache
size of D3P has limited impact on total traversal time when the entire document is
traversed. This is due to that nodes are not referred to again once leaved behind
by the postorder traversal.

Partial Test
D3P is only just beaten in terms of time used compared to the C# parser. This is
also as expected. The test uses nodes from different parts of the document. With
the parser settings used, the value of CollapseLimit is set to 80 KB the traversing
will result in building many nodes not used, not fulfilling the full potential of D3P.
Having a lower CollapseLimit, makes the parser index all of the nodes, would
solve this problem but introduce another, namely the number of disk accesses.
With over 250 000 element nodes and traversing 68 000 of them this would lead to
68 000 disk accesses. A solution to this problem could be having the whole docu-
ment in memory using a MemoryStream (discussed in chapter 8.4). An approach
is also used by the VTD-XML parser. Doing this amount of file accesses would
make the I/O a bottleneck in the system. But this also involve having the whole
file in memory, resulting in a large memory overhead, which can be avoided with
the approach used in this example.

Partial Traversal Test Repeat
This test basically shows the D3P performance when only a part of the document
is in memory and the caching is turned off. This is the perfect scenario for D3P. All
nodes which are build are used several times and none is discarded. In test file 5,
as shown in the test result, D3P parser uses approximately 30% (1625 ms versus
5249 ms) of the time used by the C# parser. Also this test shows that when keeping
all of the nodes in memory the D3P parser it is only marginal slower than the C#
parser; Traversing the last 9 nodes in 765 ms versus 702 ms by the C# parser. The
D3P can be tuned exactly on how much memory to be used, making the initial
tuning of D3P important considering the scenario to be used in.

Get Elements By Tag Name
The test shows the importance of choosing the right CollapseLimit to the purpose
of usage. The task of finding the “magic limit” for the CollapseLimit is not
easy. Even though it can be argued that for the getElementsByTagName test,
a CollapseLimit of 1 byte (indexing all nods) would be ideal, tests shows the
opposite. This is due to many disk accesses. One for each element actually
holding attributes.

103

DISCUSSION

RemoveTest
D3P is superior in this test. This is simply because no nodes are actually made,
except for the root node. When writing, has to build to nodes to write and
therefore uses much memory in this operation compared to the others. D3P uses
approximately zero memory except the application data and indexes, because
it does not have any nodes build except the rootnode. When writing it takes
advantage of this, writing from the new file directly from the source file. This
method is described in chapter 3.1.2.

Document Walk Time and Memory, Percentage Coverage
The result shows how well the D3P perform when a percentage of the document
is covered. The D3P performs better when only parts of the document is covered.
This can be used as an indication for when to use the D3P and when to use a
traditional implementation. If the user has a large XML document, but knows the
total usage will only cover a smaller part of it, then D3P can be a lucrative option.

In all tests regarding memory consumption, D3P is superior. This is simply because
D3P can adjust its memory consumption. No other W3C DOM implementation does
this, making the D3P unique.

11.1 Evaluation of the Implementation

The proposed prototype described in chapter 8, is implemented and working. The
discussion makes no doubt that the implementation has it strengths, but also some
weaknesses. To simplify the evaluation, strength and weakness of the proposed pro-
totype implementation and the approaches used are structured in separate chapters.
Chapter 11.2 and chapter 11.3 deals with the two different aspects respectively.

11.2 Application Strength

The D3P handels XML data as W3C DOM nodes in a way not done before. In terms of
speed and memory management the implementation works as predicted. In every test,
D3P allocates less total memory than any other W3C DOM based implementation. The
D3P also has the ability to use a custom configuration to improve performance.

The measured time results shows that D3P No Parse generally is approximately 40 %
slower than the C# parser in full traversals of the document. When coverage decreases,
D3P catches up. As the percentage document coverage test in chapter 10.5.8 shows, the
D3P is faster in terms of combined build and walk time when it comes to approximately
65 % or less document coverage. D3P is also faster on traversing a pre defined parts of
a document several times discussed in chapter 10.5.5. When keeping all of the data in
memory, D3P is marginal slower than the .NET parser, as expected.

11.2.1 API

The API supports the W3C DOM, making D3P compatible with applications using the
DOM interface. Although it does not build on specific interfaces, since none such are
supported by the Microsoft .NET framework, a user will fully recognize the W3C DOM
interfaces used in this library.

104

DISCUSSION

11.2.2 Memory Consumption

This implementation has the ability to adjust memory consumption, even dynamically at
runtime, making it an extremely powerful W3C DOM library for large XML documents.
Most W3C DOM implementations does not have this ability, limiting the size of XML
data being accessed through DOM. The application has a little overhead for index,
symbol table and cache algorithm, but even so, memory consumption is considerable
lower than any other W3C DOM implementation today.

11.3 Application Weakness

The application weakness is the same as its strength, namely the memory usage. When
the memory consumption is forced down only small parts of the document is kept in
memory. This is described in chapter 11.2.2. This can result in performance issues in
some cases.

11.3.1 Performance

D3P will have performance penalties as the coverage of the XML document increases.
In theory, techniques like lazy loading and demand driven processing will always have
performance penalties over eager approaches when all data is used as shown in chap-
ter 3.2. This is due to the overhead of having more individual accesses to the XML
source. In addition, this implementation also removes nodes from memory as it goes.
That is, time is spent removing nodes from the node tree and running the garbage col-
lector. D3P can to a certain degree adjust how lazy it should be. In principle, only the
root node in the XML document has to be loaded, and each children of the root node can
be loaded in an eager approach. This can be accomplished by setting the CollapseLimit
to Int32.MAX.

11.3.2 Finding Optimal Configuration

Finding the optimal configuration to use with the D3P is not an easy task. There are
many considerations to take, and a mistake can result in lower performance. This par-
ticularly concerns the selection of the CollapseLimit for a document. This is absolutely
a drawback of the application.

11.4 Deferred Overhead

Based on the general test results (available in appendix F.3), the overhead in terms of
time and memory consumption was analyzed. The results are shown in appendix F.6.
When comparing Xerces and Xerces Deferred, the deferred variant normally has a mem-
ory overhead of 25 % to 90 % depending on the document structure. The overhead in
terms of processing time is large on small documents. Up to 70 %, but less significant
as the document increases, probably because of larger initial startup costs. The result
is as expected and also shown in earlier results. When doing full coverage of XML
documents, deferred parsers like Xerces Deferred always has an overhead. Such a
parser would be favorable when document coverage is under a certain limit. As the
percentage document coverage test in chapter 10.5.8 shows, the Xerces Deferred is the

105

DISCUSSION

fastest parser when document coverage is less than 83 84 %.

When comparing D3P and the C# parser, a different result appears than in the Xerces/X-
erces Deferred comparison . The configuration has a large influence on the behavior
of the parser. With the final test settings, the parser normally uses approximately 40 %
more time than the C# parser. This is quite acceptable due to overhead caused by the
caching, indexes, I/O accesses etc. The main advantage of the D3P parser is its low
memory consumption, using only 1-30 % of the C# parser’s. The consumption is more
or less independent of the XML document size. The granularity of the index has impact
on the memory consumption. Large granularity i.e. a high CollapseLimit value makes
the D3P consume more memory, while small granular indexing will make the parser
use less memory, but more processing.

106

Part IV

Conclusion And Further Work

107

CONCLUSION

12 Conclusion

12.1 Comparison with Others

The test results from chapter 10.5 and the further discussion in chapter 11 indicates
the differences between the implementations. Generally, the implementations on the
Microsoft .NET platform perform better than the implementations on the Java platform.
But however, the Xerces in deferred mode can be compared to D3P as Xerces in normal
mode is compared to the MS .NET library implementation.

12.2 Summary

In this thesis, the aim has been to develop and evaluate a W3C DOM implementation
for large XML documents, by utilizing demand driven approaches and caching to de-
crease the memory consumption. We started by gathering comprehensive background
information regarding the basics of XML, how to handle XML and parsing techniques.
Also, memory handling and indexing techniques for XML have been examined to find
the best solution. Although no similar W3C DOM implementation could be found, two
XML processors with untraditional approaches has been carefully examined, namely
the Xerces2 Deferred and VTD-XML. Both these implementations utilize techniques for
lower memory usage. We wanted to take memory consumption to a bottom level, even
lower than the existing solutions for object models.

This resulted in the prototype implementation of D3P (Demand Driven Dom Parser).
It utilizes preparsing, making an index later used for navigation of the node tree. A
memory cache is used for the XML nodes currently used, and a replacement algorithm
selects nodes to be removed from cache, when the limited cache size is exceeded. The
cache size can be changed dynamically at runtime. The D3P implements W3C DOM
Core level 1 with minor modifications, and the implementation partially supports write
back of changes to secondary storage.

Compared to other solutions, D3P uses less memory than any W3C DOM implemen-
tation currently known. As document coverage is low, the D3P is advantagous, but as
document coverage increases, a traditional approach is preferred. When altering and
saving an XML document, smaller changes in a large document will emphasize D3P as
advantageous. It uses less time in the operation than other tested implementations.

12.3 Conclusion

We have through this thesis solved the problem of memory consumption for W3C DOM
implementations. All nodes are retained in a memory cache, which gives the application
full control of the nodes. To conclude the scenarios presented in the introduction
(chapter 1.1.1), the solutions for these are presented here:

• Size of the XML document is of no importance. Huge XML documents are avail-
able through the W3C DOM interface.

• Faster document loading as document coverage decreases. If only a small portion
of the document is loaded, the memory consumption is no higher than the data
representing this part of the document.

108

CONCLUSION

The proposed solution always has an advantage when the memory consumption is
considered. This is due to that every node in the node tree is seldom referred to all at
once. Hence, not all nodes has to be located in memory. The D3P makes the decision of
which nodes to be allowed in memory.

Total processing time is always higher for lazy implementations, with the proposed
solution as no exception. Doing a full traversal of the XML document, makes the tradi-
tional approaches to be preferred. As total document coverage decreases, the suggested
approach are advantageous because it only uses resources reading the data in question.
These results was expected through theory about lazy loading, and are reflected in the
results of this thesis.

We hope this thesis can be an inspiration for further work of handling XML. The
proposed prototype shows how lazy loading can be combined with caching to control
memory handling, even for tree structured data like XML.

109

FURTHER WORK

13 Further Work

In this section we present points in this thesis which could be improved. The imple-
mentation in this theses is considered a prototype, and during the limited time available
for the master thesis, all plans for implementation and evaluating were carried through.
The following chapters will highlight some of these plans, which can be used as a basis
for further research, development and evaluation.

13.1 Analysis Tool

As discussed in chapter 11.3.2, the optimal configuration is hard to find, especially
for an inexperienced user of the D3P. In particular the value of CollapseLimit is hard
to evaluate. For the user to find value which gives a good balance between memory
consumption and number of data accesses, knowledge about the document structure
is essential. For D3P to be a generic W3C DOM library, an analysis tool should be
proposed. This tool could, given criteria’s for user pattern and knowledge about the
document, structure select a CollapseLimit for the document to be indexed with. The
tool has to analyze the entire document or take samples of it to get a structure overview.

13.2 Update Index

Indexes which do not alter in its lifetime are referred to as static indexes. This prototype
utilizes static indexes due to the non extractive approach of mapping start and end offset
in the XML document. The start and end offsets gives D3P the ability to extract data from
the XML document on request, without having to search whole or parts of the document.

The static index approach leads to a forced re index of the XML document when a new
file is written. A new approach is desired, which update the index when writing the
new file. Further development and research in the field of solving the index update
problem might determine the actual utility value of this demand driven W3C DOM
approach.

13.3 Extended DOM Support

Full support for W3C DOM recommendations is desired. The current implementation
has support for all functionality within Core 1 which is considered the most important,
but some interfaces remains. Core 2 have support for namespace, a functionality which
is extremely important as the collection of XML files grows. The parser also do not have
support for DTD validation, a desired functionality in future versions. The DTD could
also possibly be used to reveal the structure of the document and could be considered
when reaching decisions in the proposed analysis tool discussed in chapter 13.1.

13.4 Perfect Writing

W3C DOM implementations output XML formatted differently. The XML recommen-
dation does not define how the resulting text file containing the XML data should be
formatted, only that the content of this file should be well formed XML. Hence, XML
documents written to file as output from various implementations vary. Some even has
an option for selecting “pretty XML”, which means that line feeds at end of nodes and a

110

FURTHER WORK

number of white spaces or tabulators before nodes is used to make the document more
human readable. Typically, a fixes number of white spaces are used before each node
or element.

In the D3P prototype implementation, write back utilizes non extractive approaches to
merge the old source document with new and altered nodes which reside in memory.
When copying pieces of the source document using only start and end offset, there is
no way of knowing at what node level the copied data is located, hence when new or
altered nodes are written, it has no knowledge how to format its data. This means that
the output sometimes looks odd. By having knowledge of the current level of the node
(either by introducing yet another index parameter or analyzing existing index / node
tree) and how the legacy XML is formatted, the integration between legacy XML and
new XML will seem seamless.

13.5 Switch Memory Model

The managed memory model in frameworks like Java and .NET uses much resources
cleaning removing objects from memory. And as discussed in this thesis, the operation
of removing D3P nodes from the memory is tricky: All references to an object have to
be removed for the garbage collection to remove the object. In addition, the garbage
collection uses resources; checking references and reorganizing the heap.

Languages like C++, has another memory model, which put all responsibility for the
memory handling on the shoulders of the developer. Memory are considered to released
when the delete operator is used on data. Data is removed manually, with no expensive
garbage collection. It could be interesting to see how the techniques used in this
implementation would perform under another memory model. Even though this master
thesis describes a prototype implementation in C#, principles used here, could also be
migrated to other languages.

13.6 Serialize Dirty Nodes

As the node tree is altered and new nodes are added or deleted, everything works as
with traditional implementations. But when a new or altered node has to be removed
from memory due to full memory cache, all these nodes are still retained in memory.
These nodes have to be removed from memory, but they can not be discarded as other
nodes, because they can not be retrieved from the source XML document. Functionality
for saving these nodes to persistent storage as a temporary file is desired. A suggestion
is to use already established techniques of PDOM (Persistent DOM). Many native XML
databases use PDOM as their internal storage, also with a complete index over the DOM
nodes.

13.7 Save State

A common approach for W3C DOM implementations is to alter the node tree while
it is in memory and write the entire node tree to a new document when a command
is issued. This is also supported by the D3P prototype, but since the index uses non-
extractive information, it is recommended by Zhang [1] to save the state of the file,
rather than updating it. With the index already in persistent storage, only the update

111

FURTHER WORK

log and the in memory dirty nodes have to be written. This will be significant faster
than updating the source file, in particular when the size of the file increases. Also,
discussed in chapter 13.2, index update when writing an altered XML node tree to file is
not implemented. With the save state, function, the index does not have to be re indexed.

A proposed approach is to write the file back in intervals, i.e. when the cost of use or
size of serialized nodes is increasing to a critical point, or when the file is needed by
some other application.

13.8 More Test Results for Evaluation

The evaluation of the demand driven approach used by D3P shown in chapter 10 is
mostly based on approaches for reading data from the node tree. On altering the node
tree, only one test is issued, namely the “Remove Test” discussed in chapter 10.3.3. Even
though the D3P has no problems with running test which also add or alter arbitrarily
nodes, these tests has not been included in this thesis. The reason is the lack of seri-
alization of dirty nodes discussed in chapter 13.6. As the number of altered and new
nodes increases, so will the memory consumption, eventually wasting the point of a
demand driven DOM parser. For further study, when the serialization of dirty nodes
has been completed, another set of test can unveil the performance of demand driven
approaches for altering a W3C DOM node tree.

112

REFERENCES

References

[1] Jimmy Zhang - Non-Extractive Parsing for XML. [23.05.06]
http://www.xml.com/pub/a/2004/05/19/parsing.html

[2] Aleksander Andrzej Slominski - Push and Pull: complementary sides of XML
parsing [23.05.06]
http://www.extreme.indiana.edu/xgws/papers/xml_push_pull/node3.html

[3] XQuery : the Xml Query Language. [10.02.06] http://www.w3.org/TR/xquery/

[4] World Wide Web Consortium. [24.01.06] http://www.w3.org

[5] Extensible Markup Language (XML). [25.01.06] http://www.w3.org/XML

[6] Hunter, Watt m.fl - Beginning XML 3.rd Edition (2004) Wiley Publishing Inc.

[7] Bourret Ronald - XML and Databases. [08.05.06]
http://www.rpbourret.com/xml/XMLAndDatabases.htm

[8] Akmal Chaudhri m.fl - XML Data Managment: Native XML and XML-enabled
Database Systems. Addison Wesley (2003)

[9] Anatomy of a native XML base management system. [08.03.06] The VLDB Journal
nr 11/2002

[10] Sleepycat Software - Whitepaper on Anatomy of a Native XML Database
[04.05.06] http://www.sleepycat.com/

[11] Robin Cover - Technology Reports - W3C Document Object Model (DOM).
[04.05.06] http://xml.coverpages.org/dom.html

[12] DOM origion and the Level. [24.02.06]
http://www.quirksmode.org/index.html?/js/dom0.html

[13] W3C DOM CORE 1 Specifications. [24.02.06]
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html

[14] W3C DOM Core 2 Specification. [23.02.06] http://www.w3.org/TR/DOM-Level-2-Core/

[15] Arnaud Le Hors,Elena Litani - Discover key features of DOM Level 3 Core.
[04.05.06] http://www-128.ibm.com/developerworks/xml/library/x-keydom.html

[16] Standard Generalized Markup Language (SGML). [15.05.06]
http://xml.coverpages.org/sgml.html

[17] This is the official website for SAX. [26.05.06] http://www.saxproject.org/

[18] Catania B, Ooi B, et.al. - Lazy XML Updates: Lazyness as a Virtue of Update and
Structural Join Efficiency. [05.05.06] http://www.comp.nus.edu.sg/ ooibc/sigmod386.pdf

[19] XML:DB Initiative XUpdate: XML update Working Draft. [05.05.06]
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html

[20] XML:DB - The XML Database Initiative. [27.05.06] http://xmldb-org.sourceforge.net/

113

REFERENCES

[21] Bic, Shaw - Operating Systems Principles. Prentice Hall 2002

[22] Xerces2 Symbol Table. [15.02.06]
http://xerces.apache.org/xerces2-j/xni-xerces2.html#symbol-table

[23] Kjell Brasbergsengen Lagring og behandling av store datamengder , Tapir (2003)

[24] Connolly Thomas, Begg Carolyn Database Systems , 3rd editionn, 2002 pp. 998 1044.
Addison Wesley

[25] Baeza-Yates, Ribeiro-Neto Modern Information Retrieval Addison Wesley; 1st edition
(May 15, 1999)

[26] Dietz, Paul F. Dietz. Maintaining order in a linked list. In Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing, pp 122 - 127

[27] Quanzhong Li, Bongki Moon: Indexing and Querying XML Data for Regular
Path Expression. [26.02.06] http://www.vldb.org/conf/2001/P361.pdf, in proceedings of
VLDB, 2001

[28] Gongzhu Hu, Chunxia Tang. Indexing XML Data for Path Expression Queries
Lecture Notes in Computer Science Volume 3026 / 2004 pp. 332 - 348. Springer-Verlag
GmbH

[29] Chun Zhang, Jeffrey Naughton et.al: On Supporting Containment Queries in
Relational Database Systems. [15.03.06]
http://www.cs.wisc.edu/niagara/papers/ZND+01.pdf,SIGMOD 2001

[30] Al-Khalifa, Jagadish m.fl - Strucural Joins: A Primitive for Efficient XML Query
Pattern Matching. [12.03.06]
http://www.eecs.umich.edu/ jignesh/publ/xmljoin-ICDE.pdf

[31] Duda, Kossmann - Adaptive XML storage or the importance of being lazy.
[25.02.06] http://www.dbis.ethz.ch/research/publications/xime_p2005.pdf

[32] Chung, Min, Shim - APEX: An Adaptive Path Index for XML data. [06.03.06]
http://ee.snu.ac.kr/ shim/sigmod02-apex.pdf

[33] Catania, Maddalena - XML Document Indexes: A Classification. [01.03.06]
http://oswinds.csd.auth.gr/papers/ic05b.pdf

[34] Ponce, Vila, Hersch - Indexing and selection of data items in huge data sets by
constructing and accessing tag collections [02.03.06]
http://diwww.epfl.ch/w3lsp/publications/gigaserver/iasodiihdsbcaatc.pdf

[35] Jeffrey Richter - Garbage Collection: Automatic Memory Management in the
Microsoft .NET Framework. [13.02.06]
http://msdn.microsoft.com/msdnmag/issues/1100/gci/

[36] Noga M., Schott S., Löwe W. - Lazy XML Processing. [20.02.06]
http://www.cs.uwm.edu/classes/cs790/digdoc-s2003/papers/p88-noga.pdf

[37] Jimmy Zhang - Improve XML Processing with VTD-XML. [07.01.06]
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/code/211657.htm

114

REFERENCES

[38] Project Homepage of VTD-XML. [07.01.06] http://vtd-xml.sourceforge.net/

[39] Jason Hunter - JDOM: How it Works and how it opened the Java Process.
[07.01.06] www.jdom.org/downloads/oraoscon01-jdom.pdf

[40] Dom4J homepages. [20.01.06] http://www.dom4j.org/

[41] db4Objects Open Source embeded database Homepage. [03.02.06]
http://www.db4o.com/

[42] Project homepage of the Xerces2 DOM parser. [29.03.06]
http://xerces.apache.org/xerces2-j/

[43] Project homepage of the Apache Crimson parser. [31.05.06]
http://xml.apache.org/crimson/

[44] Mircosoft homepage - Process XML Data Using the DOM Model [31.05.06]
http://msdn2.microsoft.com/en-us/library/t058x2df(VS.80).aspx

[45] The mono project homepage. [07.06.06] http://www.mono-project.com/

[46] What Is Performance? [28.04.06]
http://developer.apple.com/documentation/Performance/Conceptual
/PerformanceOverview/DevelopingForPerf/chapter_2_section_2.html

[47] XMLBench Document Model Benchmark. [28.04.06]
http://www.sosnoski.com/opensrc/xmlbench/index.html

[48] Comparing XML Performance (.NET 2.0, .NET 1.1, and Sun Java 1.5). [28.04.06]
http://msdn.microsoft.com/vstudio/java/compare/xmlperf/default.aspx

[49] XMark - An XML Benchmark Project. [03.05.06] http://www.xml-benchmark.org/

115

GLOSSARY

Part V

Appendix

A Glossary

API Application Programming Interface

Blocked Node A node indirect reachable from the D3P index. A Indexed Node has
references to it.

Cache A system for making local copies of data, for faster retrieval

Collapse Limit The maximum byte size of a node which is to be treated by the D3P
index.

CPU Central Processing Unit

Content Object VTD-XML object. Holds the complete path to the current cursor (VTD
record)

DHTML Dynamic HTML

DOM Document Object Model

DTD Document Type Definition

FIFO First In First Out algorithm

DR Data Retrieval

GC Garbage Collector

HTML HyperText Markup Language

I/O In/Out. Access to external elements (Disk/Network)

IDL Interface Definition Language.

Indexed Nodes Nodes which are directly reachable form the D3P index.

Indirect Blocked Node Nodes which are not reachable from the D3P index. They
retain within a blocked node, and the blocked node has to be parsed for the
Indirect Blocked Nodes to be reveald.

IR Information Retrieval

JIT Just In Time compilation. Frameworks like Java and .Net utilizes script files com-
piled at runtime to be optimized for the current OS and hardware configuration.

Location Cache VTD-XML object. Holds child and sibling structure information for
the VTD-XML processor.

LRU Least Recentrly Used replacement algorithm

117

GLOSSARY

Managed Memory Model A Memory model releaving the developer from reclaming
allocated memory. Memory are allocated of a heap, in which all objects are located,
and a Garbage Collector (GC) are used for removing objects from memory which
are not referred to.

MRU Most Recently Used replacement algorithm

MS Microsoft

Name Tag Index Inverted Value Index in D3P. Gets identificator for element nodes
which have a specific name.

OOP Object Orientated Programming

PDOM Persistent Document Object Model. Serialized DOM objects.

Page The amount of data adressed by a virtual memory management system

RAM Random Access Memory. The main memory in a computer.

Relational Index Index which holds information regarding navigation.

RDBMS Relational DataBase Managment System

SAX Simple API for XML

SGML Standard Generalized Markup Language

Trashing Unloading memory pages due to be used in recent future

XSL XML StyleSheet Language

XSLT XSL Transformations

Vitrual Memory Memory managment system controlling a virtual address space

VM Virtual Machine (in sense of java and .net)

VTD Vitrual Token Descriptor

XPath An XML Query language often used with XSLT

XQuery The XML Query language

W3C World Wide Web Consortium

Weak Refernce A reference not taken into concern when issuing the garbage collector
in the Managed Memory Model

118

DOCUMENT OBJECT MODEL

B Document Object Model

Figure 77: XML DOM core level one

119

SAMPLE DOCUMENTS

C Sample Documents

C.1 Sample XML Document 1

<?xml version="1.0" encoding="utf−8"?>
<CD type="music">
<Artist type="group">
<name>

U2
</name>
< title>

Best of U2
</ title >
</Artist>
</CD>

Figure 78: Xml sample document #1

120

SAMPLE DOCUMENTS

C.2 Sample XML Document 2

<?XML version="1.0" encoding="UTF−8"?>
<books>
<bookstore>
<book>
< title lang="eng">Harry Potter</title>
<price>29.99</price>
</book>
<book>
< title lang="eng">Learning XML</title>
<price>39.95</price>
</book>
</bookstore>
<storage>
<book>
< title lang="eng">XML for real programmers</title>
<price>34.50</price>
</book>

......
<book>

....
</book>
</storage>
</books>

Figure 79: Xml sample document #2

121

SAMPLE DOCUMENTS

C.3 Sample XML Document 3

<Music−Store>
<Group>
<Title>Live8</Title>
<CD>
<Title>Perfect Day</Title>
<Songs>
<Song>
<Title>Perfect Morning</Title>
<Duration>2.19<Duration>
<Collaborations>
<Group>U2</Group>
<Group>Queen</Group>
</Collaboration>
</Song>
<Song>
<Title>Perfect Afternoon</Title>
<Duration>2.19<Duration>
<Collaborations>
<Group>Smashing pumpkin</Group>
</Collaborations>
</Song>
<Song>
<Title>Perfect Nightbp!</Title>
<Duration>2.19<Duration>
<Collaborations>
<Group>Metallica</Group>
<Group>Green Day</Group>
</Collaboration>
</Song>
</Songs>
</CD>
</Group>
<Group>
<Title>Live9</Title>
<CD>
<Title>Unperfected day</Title>
<Songs>

.....
</Songs>
</CD>
</Group>
<Group>

.....
</Group>
</Music−Store>

Figure 80: Xml sample document #3

122

D3P UML DIAGRAMS

D D3P UML Diagrams

Find LRU Node

Remove all links to object

Lock Nodelist of node

Traverse nodelist. Find LRU node or block

[Only one traversed
node. Find LRU node

recursive]

Object is removed
[Run new if abort not set]

Figure 81: UML cache diagram

123

D3P UML DIAGRAMS

Parse

Get new byte

Analyze stream

Readbyte

[Tag not found

Flush to database

Save Database

[String is startag]

[Continue parsing]

Set as child to previous and remember startadress

Create new object and put to stack

[Allready saved
nodes in stack]

[Non nodes
in stack]

Take last element off stack

[Strings is endtag]

Set element as child of top of the stack.

[String is element with
endtag or other node]

[Stack is not empty.
More to parse]

[Stack is empty.
File parsed.

Save]

Figure 82: UML parser diagram

124

D3P UML DIAGRAMS

DataStorageIndexCacheNode

GetNodeWithID

Restore Node

GetNodeWithID(int myID)

DOM Producer

Returns Node

Returns Node

Read Data From File

Returns Node

Analyze Data()

Returns Node

Returns Node

Returns Node

Returns Node

GetNodeMethod

Client Class

Register Weak Reference

Register Node Link()

GetNodeWithID(int myID)

Returns StorageAdress

Symbol Table

GetName(int ID)

Returns Name

[Node is
created]

[Node Not Created]

[Has weak reference]

[Node must be created]

[Node must be parsed from file]

[Node can be constructed with
symboltable and storageadress]

Figure 83: Generic example to get a node in the hierarchy

125

W3C STANDARD

E W3C Standard

This appendix shows the extent of implementation the W3C DOM Core 1 recomanda-
tions. The listing below shows all interfaces in Core 1. For interfaces fully implemented,
no comment are added. For interfaces where D3P has aditional or missing functionality
a + or - are used repectively to indicate this. Remaining interfaces are commented as
needed. Interfaces whicha are not implemented in the D3P are simply commented with
“not supported by D3P”.

• Attr

+ ownerElement : introduced in level 2

• CDATASection : not supported by D3P

• CharacterData : the .NET String object is used for Characterdata

• Comment

• Document

+ Load(string filename) : load a file.

+ Save(string filename) : save the current XML document to a file.

+ ownerDocument - introduced in level 2

- createCDATASection

- createEntityReference

- DocumentType

- DOMImplementation

• DocumentFragment : not supported by D3P

• DocumentType : not supported by D3P

• DOMException

+ INVALID_STATE_ERR : introduced in level 2

+ SYNTAX_ERR : introduced in level 2

+ INVALID_MODIFICATION_ERR : introduced in level 2

+ NAMESPACE_ERR : introduced in level 2

+ INVALID_ACCESS_ERR : introduced in level 2

• DOMImplementation : not supported by D3P

• Element

+ bool hasAttributes : introduced in Level 2

- getElementsByTagName : this function is only available from Document

• Entity : not supported by D3P

• EntityReference : not supported by D3P

126

W3C STANDARD

• NamedNodeMap

• Node

+ bool hasAttribute(string name) : introduced in level 2

+ String innerXML(bool pretty) : Output data of child nodes

+ String outerXML(bool pretty) : Output data of this and child nodes

+ innerText : Write text content of all children

• NodeList

• Notation : not supported by D3P

• ProcessingInstruction

• Text

127

TESTING

F Testing

F.1 Test Preliminary Settings

Filename Elements Attributes Text node length Depth Size (KB)
Test-1.xml 1 * 5 * 2000 0 20 3 479
Test-2.xml 1 * 9 * 6000 0 60 3 4694
Test-3.xml 1 * 18 * 6000 0 60 3 9388
Test-4.xml 1 * 30 * 12000 0 100 3 52384
Test-5.xml 1 * 40 * 16000 0 160 3 118127
Test-6.xml 1 * 90 * 18000 0 180 3 330648
Test-7.xml 1 * (2^12) 0 20 12 544
Test-8.xml 1 * (2^15) 0 20 16 4928
Test-9.xml 1 * (2^16) 0 20 17 10240
Test-10.xml 1 * (2^18) 0 20 19 44032
Test-11.xml 1 * (2^19) 0 20 20 91136
Test-12.xml 1 * (2^21) 0 20 22 389120
Test-13.xml 1*10*(8^2)*4 8 20 5 569
Test-14.xml 1*10*(8^3)*4 8 20 6 4623
Test-15.xml 1*10*(8^4) 8 20 6 9005
Test-16.xml 1*10*(8^4)*5 8 20 7 46308
Test-17.xml 1*10*(8^4)*11 8 20 7 99325
Test-18.xml 1*10*(8^5)*4 8 20 8 303797
Test-19.xml 1*10*4*4*2 0 2000 5 644
Test-20.xml 1*10*4*4*2 0 15000 5 4706
Test-21.xml 1*10*8*4*2 0 15000 5 9411
Test-22.xml 1*30*8*4*4 0 15000 5 56428
Test-23.xml 1*60*8*4*4 0 15000 5 97817
Test-24.xml 1*180*8*4*4 0 15000 5 346175

Table 6: Testfiles for the XML parser test harness

File Collapselimit Maxtreesize
Test-1.xml 100KB 2MB
Test-2.xml 800KB 3MB
Test-3.xml 2MB 3MB
Test-4.xml 2MB 6MB
Test-5.xml 5MB 15MB
Test-6.xml 10MB 30MB
Test-7.xml 500KB 1MB
Test-8.xml 500KB 2MB
Test-9.xml 500KB 3MB
Test-10.xml 500KB 3MB
Test-11.xml 500KB 15MB
Test-12.xml 10MB 30MB
Test-13.xml 15KB 700KB
Test-14.xml 15KB 700KB
Test-15.xml 15KB 1MB
Test-16.xml 80KB 1MB
Test-17.xml 80KB 1MB
Test-18.xml 1MB 3MB
Test-19.xml 5KB 350KB
Test-20.xml 50KB 350KB
Test-21.xml 50KB 350KB
Test-22.xml 1MB 5MB
Test-23.xml 1MB 7MB
Test-24.xml 1MB 7MB

Test Individual Settings

Table 7: Test settings

128

TESTING

F.2 Internal Performance Tests

In
te

rn
al

 te
st

s:
Te

st
 #

Fi
le

R
ea

de
r

D
at

ab
as

e
C

ol
la

ps
el

im
it

U
se

 C
ac

he
C

ac
he

 a
lg

.
Tr

ee
 s

iz
e

P
ar

se
B

ui
ld

W
al

k
LD

X
P

-1
Te

st
-1

.x
m

l
B

uf
fe

rR
ea

de
r

D
B

40
40

K
B

fa
ls

e
-

-
12

81
78

15
79

LD
X

P
-2

Te
st

-1
.x

m
l

B
uf

fe
rR

ea
de

r
M

em
or

y
40

K
B

fa
ls

e
-

-
10

9
16

67
1

LD
X

P
-3

Te
st

-1
.x

m
l

B
uf

fe
rR

ea
de

r
D

B
40

50
0K

B
fa

ls
e

-
-

12
65

63
62

LD
X

P
-4

Te
st

-1
.x

m
l

B
uf

fe
rR

ea
de

r
M

em
or

y
50

0K
B

fa
ls

e
-

-
10

9
15

31
LD

X
P

-5
Te

st
-4

.x
m

l
B

uf
fe

rR
ea

de
r

D
B

40
1M

B
fa

ls
e

-
-

78
28

25
0

13
73

91
LD

X
P

-6
Te

st
-4

.x
m

l
B

uf
fe

rR
ea

de
r

M
em

or
y

1M
B

fa
ls

e
-

-
58

13
57

8
69

52
3

LD
X

P
-7

Te
st

-4
.x

m
l

Fi
le

R
ea

de
r

M
em

or
y

1M
B

fa
ls

e
-

-
61

23
42

2
14

10
16

LD
X

P
-6

Te
st

-4
.x

m
l

B
uf

fe
rR

ea
de

r
M

em
or

y
2M

B
fa

ls
e

-
-

44
22

17
1

29
07

LD
X

P
-7

Te
st

-4
.x

m
l

Fi
le

R
ea

de
r

M
em

or
y

2M
B

fa
ls

e
-

-
47

65
16

29
69

LD
X

P
-1

0
Te

st
-4

.x
m

l
Fi

le
R

ea
de

r
M

em
or

y
15

M
B

tru
e

S
ta

tic
60

55
94

15
77

50
LD

X
P

-1
1

Te
st

-4
.x

m
l

Fi
le

R
ea

de
r

M
em

or
y

15
M

B
tru

e
Tr

ee
60

56
25

16
77

34
LD

X
P

-1
2

Te
st

-4
.x

m
l

Fi
le

R
ea

de
r

M
em

or
y

2M
B

tru
e

S
ta

tic
25

M
B

61
71

16
49

22
LD

X
P

-1
3

Te
st

-4
.x

m
l

Fi
le

R
ea

de
r

M
em

or
y

2M
B

tru
e

Tr
ee

25
M

B
64

06
15

45
79

LD
X

P
-1

4
Te

st
-4

.x
m

l
Fi

le
R

ea
de

r
M

em
or

y
2M

B
tru

e
S

ta
tic

12
M

B
62

35
16

61
09

LD
X

P
-1

5
Te

st
-4

.x
m

l
Fi

le
R

ea
de

r
M

em
or

y
2M

B
tru

e
Tr

ee
12

M
B

62
97

16
34

06

D
at

ab
as

e
m

em
or

y
ha

nd
lin

g:
D

at
ab

as
e

Fi
le

C
ol

la
ps

el
im

it
In

iti
al

P
ar

se
 (B

)
B

ui
ld

W
al

k
M

em
or

y
Te

st
-1

.x
m

l
40

B
30

52
48

1
32

76
40

55
10

0
D

B
40

Te
st

-1
.x

m
l

40
B

31
89

52
61

99
44

17
54

4
41

03
28

0
M

em
or

y
Te

st
-1

.x
m

l
50

0K
B

32
12

20
51

47
48

31
72

31
72

04
4

D
B

40
Te

st
-1

.x
m

l
50

0K
B

31
66

84
61

66
24

18
06

8
31

76
88

0
M

em
or

y
Te

st
-4

.x
m

l
1M

B
32

23
72

57
98

60
60

37
28

21
90

22
65

6
D

B
40

Te
st

-4
.x

m
l

1M
B

32
35

28
53

79
90

44
25

0
22

04
69

58
4

Figure 84: Internal tests

129

TESTING

F.3 General Tests

When examining the test tables, observe that a blank field means non-measured because
the test was not finished. A “-” means that the digit was to small to be shown with two
decimals.

FILENAME Build Time Walk Time Modify Time Output Time Build Mem Walk Mem
Test-1.xml 203 78 63 - 1,77 1,52
Test-2.xml 578 328 203 - 11,13 10,18
Test-3.xml 828 844 406 - 22,38 22,89
Test-4.xml 2 260 2 562 1 250 - 94,79 100,14
Test-5.xml 4 594 4 594 2 110 - 193,90 200,97
Test-6.xml -
Test-7.xml 250 78 47 - 1,55 1,41
Test-8.xml 1 688 375 156 - 12,66 11,74
Test-9.xml 922 765 297 - 26,08 26,39
Test-10.xml 2 875 3 219 1 157 - 105,52 111,67
Test-11.xml 6 109 6 547 2 390 - 214,45 224,41
Test-12.xml -
Test-13.xml 313 125 32 - 3,05 1,87
Test-14.xml 875 625 78 - 23,26 15,78
Test-15.xml 1 407 1 188 125 - 45,41 33,07
Test-16.xml 6 031 5 984 547 - 233,69 214,86
Test-17.xml -
Test-18.xml -
Test-19.xml 141 16 16 - 0,92 0,53
Test-20.xml 328 15 16 - 13,17 -3,79
Test-21.xml 1 641 31 15 - 26,24 -7,52
Test-22.xml 2 313 94 47 - 156,58 -45,16
Test-23.xml 4 110 156 47 - 271,55 -78,45
Test-24.xml -

XERCES DEFERRED
FILENAME Build Time Walk Time Modify Time Output Time Build Mem Walk Mem
Test-1.xml 188 94 78 93 1,79 1,56
Test-2.xml 485 516 266 468 11,16 10,39
Test-3.xml 687 703 703 922 22,19 20,81
Test-4.xml 2 094 3 156 1 234 4 937 94,81 101,40
Test-5.xml 4 000 5 797 2 562 12 844 193,84 207,09
Test-6.xml
Test-7.xml 359 93 62 344 1,57 1,44
Test-8.xml 656 422 188 250 12,68 12,00
Test-9.xml 953 797 344 438 25,80 26,92
Test-10.xml 2 891 3 391 1 266 1 672 105,54 112,48
Test-11.xml 5 218 6 594 2 672 4 047 214,07 230,82
Test-12.xml
Test-13.xml 312 141 31 94 3,07 1,82
Test-14.xml 906 594 63 328 23,21 14,13
Test-15.xml 1 328 1 093 109 640 45,43 33,38
Test-16.xml 5 594 5 812 516 2 938 229,60 139,35
Test-17.xml 11 000 497,28
Test-18.xml
Test-19.xml 187 15 15 390 0,94 0,53
Test-20.xml 469 16 15 407 13,20 -3,79
Test-21.xml 1 656 31 16 781 26,26 -7,52
Test-22.xml 2 313 219 47 5 437 156,60 -45,14
Test-23.xml 4 281 344 46 8 765 271,59 -78,43
Test-24.xml

CRIMSON

130

TESTING

XERCES
FILENAME Build Time Walk Time Modify Time Output Time Build Mem Walk Mem
Test-1.xml 187 - 63 78 2,45 -0,00
Test-2.xml 781 16 218 406 16,93 -0,00
Test-3.xml 1 187 47 406 828 33,91 -0,08
Test-4.xml 4 531 172 1 422 4 344 153,86 -
Test-5.xml 8 296 328 2 469 9 703 322,39 -
Test-6.xml
Test-7.xml 250 16 63 79 2,28 -0,00
Test-8.xml 891 32 203 250 19,12 -
Test-9.xml 1 484 47 375 406 38,95 -0,08
Test-10.xml 5 641 235 1 422 1 500 161,38 -
Test-11.xml 11 203 422 2 937 4 156 329,45 -
Test-12.xml
Test-13.xml 329 15 31 78 2,58 -0,00
Test-14.xml 1 157 31 110 344 20,47 -
Test-15.xml 2 015 62 187 641 39,70 -0,08
Test-16.xml 9 297 344 890 3 000 202,39 -
Test-17.xml 21 985 688 1 969 6 813 432,08 -
Test-18.xml
Test-19.xml 156 - - 78 1,37 -0,00
Test-20.xml 438 - 16 359 9,31 -
Test-21.xml 1 640 - 16 719 18,57 -0,00
Test-22.xml 2 438 - 31 4 000 110,99 -
Test-23.xml 3 735 - 47 7 453 192,36 -0,00
Test-24.xml 13 125 31 1 094 45 485 680,72 -0,08

JDOM
FILENAME Build Time Walk Time Modify Time Output Time Build Mem Walk Mem
Test-1.xml 296 31 312 171 2,19 0,52
Test-2.xml 1 141 94 4 578 765 15,73 2,87
Test-3.xml 1 844 500 9 000 1 469 31,59 5,63
Test-4.xml 4 250 531 58 265 5 813 146,45 22,53
Test-5.xml 7 968 906 137 719 11 172 310,23 38,63
Test-6.xml
Test-7.xml 328 15 31 125 2,11 0,31
Test-8.xml 938 109 156 547 17,09 3,52
Test-9.xml 1 500 218 297 1 047 34,97 6,86
Test-10.xml 5 344 875 1 172 4 063 145,34 28,41
Test-11.xml 10 734 1 782 2 360 8 234 297,47 56,82
Test-12.xml
Test-13.xml 375 16 16 141 2,33 0,05
Test-14.xml 1 281 47 94 750 18,88 0,32
Test-15.xml 2 359 94 172 1 422 36,75 0,19
Test-16.xml 10 250 438 844 7 015 186,92 2,93
Test-17.xml 23 891 828 1 875 15 109
Test-18.xml
Test-19.xml 172 - - 78 1,32 0,02
Test-20.xml 313 - - 187 9,26 0,02
Test-21.xml 1 671 - - 375 18,51 0,05
Test-22.xml 2 032 16 15 3 203 110,83 0,26
Test-23.xml 3 297 16 32 8 516 192,12 0,46
Test-24.xml

131

TESTING

DOM4J
FILENAME Build Time Walk Time Modify Time Output Time Build Mem Walk Mem
Test-1.xml 313 - 47 94 1,94 -
Test-2.xml 797 47 1 047 563 28,29 -0,07
Test-3.xml 2 536 141 1 547 4 735 135,52 -
Test-4.xml 3 954 141 6 188 3 610 135,52 -
Test-5.xml 7 594 250 14 234 9 969 290,62 -
Test-6.xml - -
Test-7.xml 312 - 16 47 2,02 -
Test-8.xml 938 31 110 187 16,89 -
Test-9.xml 1 422 62 235 375 34,46 -0,06
Test-10.xml 1 109 16 516 297 14,14 -
Test-11.xml 10 672 562 1 938 3 344 293,46 -
Test-12.xml - -
Test-13.xml 391 - 16 47 2,33 -
Test-14.xml 1 172 16 78 250 18,40 -
Test-15.xml 2 110 31 140 469 35,51 -0,06
Test-16.xml 9 094 188 703 3 000 181,12 -
Test-17.xml 20 485 391 1 547 8 765 386,57 -
Test-18.xml
Test-19.xml 172 - - 32 1,37 -
Test-20.xml 313 - - 141 9,31 -
Test-21.xml 1 703 - - 266 18,55 -
Test-22.xml 2 063 - 15 2 968 110,80 -
Test-23.xml 3 297 - 15 7 703 192,02 -
Test-24.xml 11 468 16 47 21 766 679,47 -0,07

C#
FILENAME Build Time Walk Time Modify Time Output Time Build Mem Walk Mem
Test-1.xml 63 16 31 47 1,04 0,00
Test-2.xml 266 31 234 266 9,73 0,00
Test-3.xml 390 47 515 532 19,44 0,00
Test-4.xml 2 203 219 1 938 5 687 107,57 0,00
Test-5.xml 5 078 438 3 828 13 422 236,83 0,00
Test-6.xml 81 312 1 078 661,25 0,00
Test-7.xml 484 16 31 110 0,54 0,00
Test-8.xml 328 17 156 266 4,26 0,00
Test-9.xml 437 47 406 531 8,51 0,00
Test-10.xml 3 047 172 1 594 5 156 34,01 0,00
Test-11.xml 6 453 328 4 344 16 187 68,01 0,00
Test-12.xml 15 750 1 562 13 938 272,01 0,00
Test-13.xml 594 15 16 47 1,89 0,00
Test-14.xml 531 16 172 265 15,06 0,00
Test-15.xml 1 265 63 281 719 29,96 0,00
Test-16.xml 4 469 297 1 890 5 563 150,17 0,00
Test-17.xml 10 156 656 6 625 16 265 328,84 0,00
Test-18.xml
Test-19.xml 94 - - 16 1,55 0,00
Test-20.xml 204 - - 46 9,94 0,00
Test-21.xml 328 - - 94 19,86 0,00
Test-22.xml 1 937 16 15 4 453 119,08 0,00
Test-23.xml 3 125 15 46 12 047 206,39 0,00
Test-24.xml 18 469 94 12 688 79 375 730,28 0,00

132

TESTING

D3P
FILENAME Parse Time Build Time Walk Time Parse Mem Build Mem Walk Mem
Test-1.xml 109 16 47 0,03 -0,00 3,18
Test-2.xml 563 16 359 0,03 -0,00 16,58
Test-3.xml 1 359 16 1 172 0,03 -0,00 14,21
Test-4.xml 4 875 15 5 438 0,04 -0,00 18,48
Test-5.xml 10 016 15 9 110 0,04 -0,00 37,37
Test-6.xml 26 063 31 24 141 0,06 -0,00 22,51
Test-7.xml 171 16 203 0,03 -0,00 2,02
Test-8.xml 672 15 516 0,03 -0,00 1,01
Test-9.xml 1 344 15 1 032 0,04 -0,00 1,01
Test-10.xml 5 844 16 3 484 0,08 -0,00 5,06
Test-11.xml 11 922 31 7 469 0,14 -0,00 18,20
Test-12.xml 47 391 31 72 500 0,05 -0,00 16,13
Test-13.xml 219 47 187 0,04 -0,00 3,27
Test-14.xml 703 62 735 0,17 -0,00 3,28
Test-15.xml 1 172 94 1 687 0,22 -0,00 0,13
Test-16.xml 7 625 125 6 640 0,27 -0,00 0,53
Test-17.xml 14 442 297 16 750 1,76 -0,00 0,41
Test-18.xml 43 797 78 70 031 0,27 -0,00 3,19
Test-19.xml 172 63 62 0,03 -0,00 0,02
Test-20.xml 313 47 342 0,03 -0,00 8,09
Test-21.xml 657 75 469 0,04 -0,00 20,19
Test-22.xml 2 281 32 1 718 0,06 -0,00 36,20
Test-23.xml 3 547 16 2 484 0,09 -0,00 4,04
Test-24.xml 14 250 63 10 266 0,24 -0,00 8,11

133

TESTING

1851752 1590760
11675240 10671024
23462896 24003224
99393624 105005672

203322552 210736544

1621888 1475088
13271432 12314688
27345816 27671744

110645320 117092080
224872240 235314464

3194856 1963560
24391592 16549040
47615456 34677200

245046624 225294296

966832 553720
13814120 -3973672
27515712 -7890312

164187680 -47358280
284736952 -82263496

1875352 1633952
11698832 10896296
23264640 21816544
99417224 106324376

203252520 217145152

1644976 1508152
13294272 12579216
27051184 28223584

110668080 117944040
224468744 242032824

3220768 1905416
24332608 14813920
47638976 34998272

240753904 146117824

Crimson

-200,00 -100,00 - 100,00 200,00 300,00 400,00 500,00

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Memory Usage (MB)

Build
Walk

Crimson

0 2000 4000 6000 8000 10000 12000 14000 16000

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Time(ms)

Build Time
Walk Time
Modify Time
Output Time

134

TESTING

990336 557688
13837752 -3969704
27539344 -7882288

164211376 -47333120
284778288 -82244640

2573552 -72
17757160 -72
35553664 -82728

161329336 0
338054576 0

2392064 -72
20053584 0
40846496 -82632

169214544 0
345458000 0

2701120 -72
21466136 0
41625384 -82760

212223432 0
453073240 0

1440464 -72
9759880 0

19475200 -72
116376312 0
201703536 -72
713787568 -82600

Xerces

0 10000 20000 30000 40000 50000 60000 70000

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Time(ms)

Build Time
Walk Time
Modify Time
Output Time

Xerces

-100,00 - 100,00 200,00 300,00 400,00 500,00 600,00 700,00 800,00

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Memory Usage (MB)

Build
Walk

135

TESTING

2296968 549152
16494976 3013376
33120968 5903304

153562824 23628408
325299944 40507616

2208968 329112
17916448 3693632
36665296 7192168

152396320 29794480
311916816 59576024

2441704 47496
19796632 337152
38539160 198568

196003752 3074120
420242904 3574328

1385384 18552
9705312 18624

19405224 47672
116215392 272864
201453352 481000

2034856 0
29666424 -77352

142101664 0
142101664 0
304740552 0

2116536 0
17713528 0
36130832 -66200
14825408 0

307712336 0

2447736 0
19288632 0
37235344 -66688

189921272 0
405350960 0

DOM4J

0 5000 10000 15000 20000 25000 30000 35000

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Time(ms)

Build Time
Walk Time
Modify Time
Output Time

DOM4J

-100,00 - 100,00 200,00 300,00 400,00 500,00 600,00 700,00 800,00

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Memory Usage (MB)

Build
Walk

136

TESTING

9758320 0
19453024 0

116179936 0
201349360 0
712474848 -69456

-2483816
-17751216
-35500148

-163187192
-337924192

1092580 296
10199700 188
20388592 200

112795640 188
248332628 188
693368632 496

569032 108
4471292 100
8924380 100

35663036 188
71314572 188

285218696 496
1985424 208

15789556 212
31415836 200

157463468 200
344811372 204

1625980 180
10418688 184
20825512 184

124861272 188
216417780 188
765756912 188

Parse Build Mem Walk Mem

D3P

0 20000 40000 60000 80000 100000 120000 140000

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Time(ms)

PARSE_TIME
Build Time
Walk Time

D3P

-5,00 - 5,00 10,00 15,00 20,00 25,00 30,00 35,00 40,00

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Memory Usage (MB)

Parse
Build Mem
Walk Mem

137

TESTING

Xerces deferred

0 5000 10000 15000 20000 25000 30000

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Time(ms)

Build Time
Walk Time
Modify Time
Output Time

Xerces deferred

-200,00 -100,00 - 100,00 200,00 300,00 400,00 500,00 600,00

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Memory Usage (MB)

Serie1
Serie2

138

TESTING

JDOM

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Time(ms)

Build Time
Walk Time
Modify Time
Output Time

JDOM

- 50,00 100,00 150,00 200,00 250,00 300,00 350,00 400,00

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

FI
le

Memory Usage (MB)

Build
Walk

139

TESTING

C#

0 20000 40000 60000 80000 100000 120000

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Time(ms)

Build Time
Walk Time
Modify Time
Output Time

C#

- 100,00 200,00 300,00 400,00 500,00 600,00 700,00 800,00

Test-1.xml

Test-3.xml

Test-5.xml

Test-7.xml

Test-9.xml

Test-11.xml

Test-13.xml

Test-15.xml

Test-17.xml

Test-19.xml

Test-21.xml

Test-23.xml

Fi
le

Memory Usage (MB)

Build Mem
Walk Mem

140

TESTING

F.4 Special Tests

Pa
rt

ia
l T

ra
ve

rs
al

 T
es

t:

Ti
m

e(
m

s)
M

em
or

y(
M

B
)

Ti
m

e(
m

s)
M

em
or

y(
M

B
)

Ti
m

e(
m

s)
M

em
or

y(
M

B
)

X
er

ce
sD

ef
-

-

5

59
4

23

0

34
4

20

X
er

ce
s

-

-

9

29
7

20

2

47

-

C
#

-

-

4

46
9

15

0

62

0

D
3P

 n
o

pa
rs

e
-

-

12
5

-

5
53

8

5

D

3P
7

62
5

0

12
5

-

5

53
8

5

G
et

 E
le

m
en

ts
 B

y
Ta

gn
am

e
Te

st
:

P
ar

se
d

C
=C

ol
la

ps
el

im
it

Ti
m

e(
m

s)
M

em
or

y(
K

B
)

Ti
m

e(
m

s)
M

em
or

y(
K

B
)

Ti
m

e(
m

s)
M

em
or

y(
K

B
)

X
er

ce
sD

ef
-

-

5

59
4

23

0
00

0

2
46

9

10

1
16

9

X
er

ce
s

-

-

9

29
7

20

2
00

0

37
5

-

C

#
-

-

4
46

9

15
0

17
0

10

9

-

D
3P

-1
 -

1B
 C

24
 8

44

21

 1
19

21
 5

78

1

2

34
4

1

D
3P

-2
 -

1K
B

 C
10

 4
37

6
41

1

1
60

9

1

82
8

1

D

3P
-3

 -
10

K
B

 C
6

96
9

1
35

5

26
6

1

5
64

0

1

D

3P
-4

 -
80

K
B

 C
6

46
9

28
6

47

1

6
00

0

1

D

3P
-5

 -
1M

B
 C

5
79

7

62

31

1

5

08
2

1

D
3P

-1
 -

1B
 C

 -
N

o
P

ar
se

21
 5

78

21

 1
09

2
34

4

1

D

3P
-2

 -
1K

B
 C

 -
N

o
P

ar
se

1
60

9

6
39

1

82
8

1

D

3P
-3

 -
10

K
B

 C
 -

N
o

P
ar

se
26

6

1

30
6

5

64
0

1

D
3P

-4
 -

80
K

B
 C

 -
N

o
P

ar
se

47

26
6

6
00

0

1

D

3P
-5

 -
1M

B
 C

 -
N

o
P

ar
se

31

42

5
08

2

1

P
ar

se
B

ui
ld

Ta
gT

es
tP

ar
tia

lT
ra

ve
rs

al
P

ar
se

d
P

ar
se

B
ui

ld

141

TESTING

Pa
rt

ia
l T

ra
ve

rs
al

 T
es

t R
ep

ea
t:

Ti
m

e(
m

s)
M

em
or

y(
M

Ti
m

e(
m

s)
M

em
or

y(
M

Ti
m

e(
m

s)
M

em
or

y(
M

Ti
m

e(
m

s)
M

em
or

y(
M

B
)

Ti
m

e(
m

s)
M

em
or

y(
M

B
)

P
ar

se
0

0
0

0
0

0
0

76
25

0
B

ui
ld

55
94

23
0

92
97

20
2

44
69

15
0

12
5

0
12

5
0

Tr
av

er
sa

l-1
40

6
14

32
0

78
0

73
5

31
73

5
31

Tr
av

er
sa

l-2
47

0
47

0
78

0
78

0
78

0
Tr

av
er

sa
l-3

47
0

47
0

78
0

78
0

78
0

Tr
av

er
sa

l-4
62

0
46

0
78

0
94

0
94

0
Tr

av
er

sa
l-5

62
0

46
0

78
0

94
0

94
0

Tr
av

er
sa

l-6
47

0
47

0
78

0
93

0
93

0
Tr

av
er

sa
l-7

47
0

46
0

78
0

78
0

78
0

Tr
av

er
sa

l-8
62

0
46

0
78

0
78

0
78

0
Tr

av
er

sa
l-9

47
0

47
0

78
0

78
0

78
0

Tr
av

er
sa

l-1
0

62
0

46
0

78
0

94
0

94
0

S
U

M
64

83
24

4
97

47
20

2
52

49
15

0
16

25
31

92
50

32

R
em

ov
eT

es
t

P
ar

se
d

P
ar

se
B

ui
ld

R
em

ov
eT

es
t

O
ut

pu
t

Ti
m

e(
m

s)
M

em
or

y(
M

Ti
m

e(
m

s)
M

em
or

y(
M

Ti
m

e(
m

s)
M

em
or

y(
M

To
ta

l(M
B

)
Ti

m
e(

m
s)

M
em

or
y(

M
B

)
To

ta
l(M

B
)

X
er

ce
sD

ef
-

-

5

59
4

23

0

-

0

23

0

3

56
3

89

31
9

X
er

ce
s

-

-

9

29
7

20

2

-

-1

01

10
1

1
57

8

0

10
1

C
#

-

-

4

46
9

15

0

-

-7

5

75

1
79

7

-

75

D
3P

 n
o

pa
rs

e
-

-

12
5

1

15

-

1

1

11
0

-

1

D
3P

7
62

5

1

12
5

-

15

-

-

1
11

0

-

-

D
3P

D
3P

 n
o

pa
rs

e
S

ta
ge

X
er

ce
sD

ef
X

er
ce

s
C

#

142

TESTING

F.5 Percentage Tests

Pe
rc

en
ta

ge
 T

es
t

Ti
m

e(
m

s)
S

um
(m

s)
M

em
or

y(
B

)
Ti

m
e(

m
s)

S
um

(m
s)

M
em

or
y(

B
)

Ti
m

e(
m

s)
S

um
(m

s)
M

em
or

y(
B

)
Ti

m
e(

m
s)

S
um

(m
M

em
or

y(
M

B
)

B
ui

ld
55

94
55

94
21

4,
07

92

97
92

97
20

3,
25

44

69
44

69
15

0,
17

12

5
12

5
-

10

 %
26

5
58

59
25

2,
16

31

93
28

20
3,

25

32
45

01
15

0,
17

70

3
82

8
20

,2
3

20
 %

43
8

62
97

27
3,

47

37
93

65
20

3,
25

35

45
36

15
0,

44

84
4

16
72

9,
90

30
 %

46
9

67
66

29
4,

66

16
93

81
20

3,
25

31

45
67

15
0,

45

67
1

23
43

25
,0

8

40

 %
46

8
72

34
31

6,
12

31

94
12

20
3,

25

32
45

99
15

0,
45

73

5
30

78
5,

52

50

 %
46

9
77

03
33

7,
49

31

94
43

20
3,

25

36
46

35
15

0,
45

71

9
37

97
12

,3
6

60
 %

46
9

81
72

35
8,

72

21
94

64
20

3,
25

35

46
70

15
0,

45

57
8

43
75

32
,4

7

70

 %
46

9
86

41
37

9,
90

31

94
95

20
3,

25

33
47

03
15

0,
45

76

6
51

41
12

,3
9

80
 %

21
8

88
59

40
1,

85

31
95

26
20

3,
25

34

47
37

15
0,

45

70
3

58
44

7,
01

90
 %

20
79

10
93

8
38

3,
25

31

95
57

20
3,

25

32
47

69
15

0,
45

70

3
65

47
11

,9
2

10
0

%
53

1
11

46
9

40
4,

03

32
95

89
20

3,
25

37

48
06

15
0,

45

98
4

75
31

10
,4

4

Pe
rc

en
ta

ge
 T

es
t W

ith
 D

iff
er

en
t C

ac
he

 S
iz

e
D

3P
-1

D
3P

-2
D

3P
-3

Ti
m

e(
m

s)
S

um
(m

s)
M

em
or

y(
BT

im
e(

m
s)

S
um

(m
s)

M
em

or
y(

B
Ti

m
e(

m
s)

S
um

(m
s)

M
em

or
y(

B
)

12
5

12
5

-

12
5

12
5

-

12

5
12

5
-

70
3

82
8

20
,2

3

73

4
85

9
32

,7
6

68
8

81
3

32
,8

1

84

4
16

72
9,

90

62
5

14
84

64
,3

3

65

6
14

69
64

,3
8

67
1

23
43

25
,0

8

60

9
20

93
95

,8
8

64
1

21
10

95
,9

2

73

5
30

78
5,

52

10
31

31
24

95
,8

7

67

2
27

82
12

7,
52

##

##
##

##
#

71
9

37
97

12
,3

6

71

9
38

43
95

,8
3

67
2

34
54

15
8,

99

##
##

##
##

#
57

8
43

75
32

,4
7

59
4

44
37

95
,8

6

65

6
41

10
19

0,
61

##

##
##

##
#

76
6

51
41

12
,3

9

76

6
52

03
95

,8
1

64
1

47
51

22
2,

16

##
##

##
##

#
70

3
58

44
7,

01

56
3

57
66

95
,8

4

76

6
55

17
25

3,
71

##

##
##

##
#

70
3

65
47

11
,9

2

75

0
65

16
95

,8
8

64
1

61
58

28
5,

32

##
##

##
##

#
70

8
72

55
10

,4
4

56
3

70
79

95
,9

4

71

8
68

76
31

6,
91

##

##
##

##
#

##
##

##
##

#D
3P

P
ar

se
d

X
er

ce
sD

ef
X

er
ce

s
C

#

143

TESTING

F.6 Deferred Overhead

Time(ms) Memory(M Time(ms) Memory(MB)
Test-1.xml 187 2,45 282 3,35 51 % 36 %
Test-2.xml 797 16,93 1001 21,55 26 % 27 %
Test-3.xml 1234 33,83 1390 42,99 13 % 27 %
Test-4.xml 4703 153,86 5250 196,21 12 % 28 %
Test-5.xml 8624 322,39 9797 400,92 14 % 24 %
Test-6.xml
Test-7.xml 266 2,28 452 3,01 70 % 32 %
Test-8.xml 923 19,12 1078 24,67 17 % 29 %
Test-9.xml 1531 38,88 1750 52,71 14 % 36 %
Test-10.xml 5876 161,38 6282 218,02 7 % 35 %
Test-11.xml 11625 329,45 11812 444,89 2 % 35 %
Test-12.xml
Test-13.xml 344 2,58 453 4,89 32 % 90 %
Test-14.xml 1188 20,47 1500 37,33 26 % 82 %
Test-15.xml 2077 39,62 2421 78,81 17 % 99 %
Test-16.xml 9641 202,39 11406 368,95 18 % 82 %
Test-17.xml 22673 432,08
Test-18.xml
Test-19.xml 156 1,37 202 1,48 29 % 7 %
Test-20.xml 438 9,31 485 9,41 11 % 1 %
Test-21.xml 1640 18,57 1687 18,75 3 % 1 %
Test-22.xml 2438 110,99 2532 111,46 4 % 0 %
Test-23.xml 3735 192,36 4625 193,15 24 % 0 %
Test-24.xml 13156 680,64

Time(ms) Memory(M Time(ms) Memory(MB)
Test-1.xml 79 1,04 63 3,18 -20 % 205 %
Test-2.xml 297 9,73 375 16,57 26 % 70 %
Test-3.xml 437 19,44 1188 14,21 172 % -27 %
Test-4.xml 2422 107,57 5453 18,48 125 % -83 %
Test-5.xml 5516 236,83 9125 37,37 65 % -84 %
Test-6.xml 82390 661,25 24172 22,51 -71 % -97 %
Test-7.xml 500 0,54 219 2,02 -56 % 272 %
Test-8.xml 345 4,26 531 1,01 54 % -76 %
Test-9.xml 484 8,51 1047 1,01 116 % -88 %
Test-10.xml 3219 34,01 3500 5,06 9 % -85 %
Test-11.xml 6781 68,01 7500 18,20 11 % -73 %
Test-12.xml 17312 272,01 72531 16,13 319 % -94 %
Test-13.xml 609 1,89 234 3,27 -62 % 73 %
Test-14.xml 547 15,06 797 3,28 46 % -78 %
Test-15.xml 1328 29,96 1781 0,13 34 % -100 %
Test-16.xml 4766 150,17 6765 0,52 42 % -100 %
Test-17.xml 10812 328,84 17047 0,41 58 % -100 %
Test-18.xml 70109 3,19
Test-19.xml 94 1,55 125 0,02 33 % -99 %
Test-20.xml 204 9,94 389 8,09 91 % -19 %
Test-21.xml 328 19,86 544 20,19 66 % 2 %
Test-22.xml 1953 119,08 1750 36,20 -10 % -70 %
Test-23.xml 3140 206,39 2500 4,04 -20 % -98 %
Test-24.xml 18563 730,28 10329 8,11 -0,4435705 -99 %

File

File

Memory
Overhead

XercesDef

Deferred time overhead : Build + Walk
Time

Overhead

Time
Overhead

Xerces
Deferred time overhead : Build + Walk

Memory
Overhead

C# D3P

Figure 85: Deferred overhead

144

CD CONTENT

G CD content

Complete listing of files on CD

G.1 D3P library

The Complete Demand Driven DOM Parser(D3P) source code, with MS Visual Studio
2005 project files.

D3P
DocumentFactory

D3P.Common
Cache.cs
Common.cs
Constants.cs
DocumentRoot.cs
DomProducer.cs
Hashlist.cs
NameTag.cs
Parser.cs
processingInstruction.cs
Serializer.cs
SpecType.cs
StorageAdress.cs
SymbolTable.cs

D3P.Common.DataStorages
db40DataStorage.cs
IIndexDataStorage.cs
indexStorageProvider.cs
memoryDataStorage.cs
simpleStorage.cs

D3P.Common.FileStorages
DomWriter.cs
DomXmlWriter.cs
fileStorageProvider.cs
IxmlDataReader.cs
simpleXmlDataReader.cs
XmlDataBufferReader.cs
XmlDataReader.cs

D3P.Common.GUI
indexGUI.cs
indexGUI.designer.cs
indexGUI.resx
Options.cs
Settings.cs
Settings.designer.cs

145

CD CONTENT

Settings.resx
XmlManager.cs
XmlManager.designer.cs
XmlManager.resx
XmlViewerGUI.cs
XmlViewerGUI.designer.cs
XmlViewer.resx

D3P.Common.LruCache
cacheAlgProvider.cs
Cleaner.cs
ICache.cs
nodeTimedCache.cs
SimpleCacheAlg
StaticCache.cs
TimedCache.cs

D3P.DOM
AttrImpl.cs
CDATASectionImpl.cs
Comment.cs
DocumentFragment.cs
DocumentImpl.cs
DocumentType.cs
DOMExceptionImpl.cs
Element.cs
Entity.cs
EntityReference.cs
NamedNodeMap.cs
NodeImpl.cs
NodeListImpl.cs
NodeTypes.cs
Notation.cs
ProcessingInstruction.cs
TextImpl.cs

D3P.Interfaces
Attr.cs
CDATASection.cs
CharacterData.cs
Comment.cs
DocumentFragment.cs
Document.cs
DocumentType.cs
DOMException.cs
DOMImplementation.cs
Element.cs
Entity.cs
EntityReference.cs

146

CD CONTENT

NamedNodeMap.cs
Node.cs
NodeList.cs
Notation.cs
ProcessingInstruction.cs
Text.cs

D3P.Simle
SimpleCharacterData.cs

G.2 .NET Test Suite

Test suite for the D3P and C# parsers, with MS Visual Studio 2005 project files.

TestApplication
CSharpTest.cs
D3PTest.cs
simpleTest.cs
DocumentSummary.cs
Program.cs

G.3 Java Test Suite

Test suite for the Java parsers.

default package
Constants.java
Crimson.java
Xerces.java
DOM4J.java
JDOM.java
Crimson.jar
Xerces.jar
DOM4J.jar
JDOM.jar
DocumentSummary.cs
TESTBENCH.cs

G.4 D3P Console Parser

Console application to start a console indexer. Look in Release catalog for sample .bat
files to run. Run HELP.bat for introduction and look at run.bat for a general index.
Comes with MS Visual Studio 2005 project files.

D3P Console Parser
Program.cs

147

CD CONTENT

G.5 D3P GUI Parser

The GUI parser used to adjust settings and index files. It does the same as the console
parser in appendix refDCP but with a graphical user interface. The MS Visual Studio
2005 project files are attached, and the binary is located in the bin/Release folder.

D3P GUI Parser
Program.cs

G.6 XML File Generator

XML filegenerator for the generated XML files

TestFileGenerator
Program.cs

G.7 D3P Library Documentation

D3P Documentation in PDF and HTML format.

• doc.pdf

• doc.html

G.8 Testfiles

Folder containing all testfiles used.
Testfiles Test-(1-24).xml

148

