
June 2006
Svein-Olaf Hvasshovd, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Benchmarking significant DBMS costs
on Niagara in order to perform a
relative performance comparison
between the Shared Nothing and the
Shared Everything DBMS memory
architectures

Lars-Erik Bjørk
Truls Rinnan Jørgensen

Problem Description
The trend in processor development is to include multiple cores, each with multiple native threads
on the same die. The Niagara processor from Sun Microsystems is such an hardware architecture.
The design of a DBMS is highly dependent of the choice of the underlying memory architecture.
Two such memory architectures are Shared Nothing and Shared Everything.

The goal of this report is to carry out a relative performance comparison between these memory
architectures on the Niagara processor. In order to do this, the most significant DBMS costs for
each memory architecture must be benchmarked on Niagara. The benchmarked costs may then
be used to calculate the performance of both memory architectures. In addition to Shared Nothing
and Shared Everything, it would also be interesting to assess alternatives to these memory
architectures.

Assignment given: 23. January 2006
Supervisor: Svein-Olaf Hvasshovd, IDI

Benchmarking significant DBMS costs on Niagara in order
to perform a relative performance comparison between the

Shared Nothing and the Shared Everything DBMS
memory architectures

Lars-Erik Bjørk and Truls Jørgensen

PREFACE

This report is the result of our diploma in Database Technology and Distributed Systems pur-
sued in the 10th semester of the masters programme in computer science at the Norwegian
University of Science and Technology, NTNU.

The motivation for performing this research was given by professor in database science,
Svein-Olaf Hvasshovd. He has been our teaching supervisor, providing invaluable insight to
the problem scope. His support has been a great factor of success for this project.

When carrying out our diploma, we faced several obstacles. The larger of these was the
need to learn the C programming language in a limited amount of time. Not only the core
language, but also additional libraries were needed to realize different benchmarks. We would
like to thank senior research scientist Øystein Torbjørnsen for guiding us when traveling in the
world of C. His willingness to share of his coding expertise has indeed improved the quality
of the code substantial parts of this report relies on.

The task of becoming familiar with the Solaris operating system has also been a challenge.
We had not been able to perform the micro benchmarks at all without senior engineer Øystein
Grøvlen at Sun Microsystems, Trondheim. He made the reservations for the highly requested
Niagara machine, as well as helping us out with tips and tricks in Solaris and promptly an-
swering our sometimes somewhat naive questions.

We would also like to thank professor Lasse Natvig and Ph.D. candidate Marius Grannæs
for providing insight to the scope of memory access time.

Trondheim, June 8, 2006

Lars-Erik Bjørk Truls Jørgensen

i

ABSTRACT

This report carries out a relative performance comparison between two DBMS architectures
on the Multi Core, Single Die (MCSD) realization Niagara. The two DBMS architectures in
question are Shared Nothing (SN) and Shared Everything (SE). The MCSD field is rapidly
evolving, and we expect that this technology will become increasingly important in the near
future.

In order to carry out the comparison, the performance of the architectures must be cal-
culated. This calculation depends on the cost figures associated with each architectural ap-
proach. To identify these costs, we present the design solutions made and results discovered
in our previous work. Based on this, the most significant costs are determined and scheduled
to be micro benchmarked.

The natural next step is to examine possible techniques to implement the benchmarks. In
order to do this, we first expand on the Niagara chip and the platform on which the micro
benchmarks will run. Having a sufficient theoretical platform to continue, we move on to
describe the implementation of each micro benchmark in detail.

After benchmarking all the most significant costs, we thoroughly discuss the results, some
of which are indeed surprising. The costs which are not benchmarked are based on assump-
tions from our previous work and recalculated to apply to Niagara.

For both SN and SE, we evaluate the system for two classes of transactions. The first class
is transactions touching one tuple (called simple), the second is transactions touching four
tuples (called complex). Each class has two instances, read and update. In order to perform
the subsequent analysis, the decomposition of each transaction is presented in detail.

When analyzing the outcome of the calculations, interesting results emerge. First, we note
that SE is the cheapest alternative when evaluating the simple transactions. This is because
the SN approach includes an administrative overhead component that does not pay off when
the transaction only touches one tuple. However, for complex transactions, the overhead
component results in a parallel gain for SN which outperforms SE.

Based on the most dominant costs of both architectures, we perform a sensitivity analysis.
For SN, the analysis is based on the cost for message passing. For SE, it is based on the cost
for synchronization. The goal of this analysis is two folded. First, it is interesting to see how
the results vary. For example, what the ratio between the cost for message passing and the
cost for synchronization must be in order to make the two approaches perform equally well.
Second, the analysis indicate how error-prone each architecture is to erroneous estimation.

The sensitivity analysis examine the performance of SN and SE when the ratio between the
cost for message passing and the cost for synchronization is varied. This is done in both the
read and the update cases. In addition to examining the simple and the complex transactions,
we examine general transactions were the number of operations are not predetermined.

The analysis of the general read transaction suggests that when the number of operations
increases, the message passing and synchronization costs wipe out the impact of the other
costs. It also suggests that when the cost of message passing is greater than 4 times the cost
of synchronization, SE performs better when increasing the number of read operations. Sim-

iii

iv

ilarly, if message passing is cheaper than 4 times the cost of synchronizing, SN is preferable.
When increasing the number of update operations, the ratio is 3.33.

After concluding the analysis, we suggest a hybrid architecture that might combine the ad-
vantages of SN and SE. At the cost of introducing both message passing and synchronization,
the architecture introduce parallelism in SE.

Lastly, we identify suggestions for future work. Realized and applied to the DBMS model
introduced in this report, we believe that several of these suggestions can shrink some of the
costs presented.

CONTENTS

Abstract iv

1 Introduction 1
1.1 Motivation . 1
1.2 The Route Ahead . 2

1.2.1 Chapters . 2
1.2.2 Appendices . 3
1.2.3 Type conventions . 3

2 Foundation 5
2.1 Method of work . 5
2.2 Transaction classes . 6
2.3 The DBMS Kernel . 7
2.4 The SN design solution . 8

2.4.1 SN on MCSD in brief . 8
2.4.2 The 2PC protocol . 8
2.4.3 Synchronization . 9
2.4.4 Locking . 9
2.4.5 Scheduling . 10
2.4.6 Background activities . 10

2.5 SN results . 11
2.6 The SE design solution . 11

2.6.1 SE on MCSD in brief . 11
2.6.2 Synchronization . 11
2.6.3 Background activities . 13

2.7 SE results . 14
2.8 Comparison . 14
2.9 Sensitivity analysis . 16

2.9.1 Sensitivity analysis based on the STU transaction 16
2.9.2 Sensitivity analysis based on the CTU transaction 17

2.10 Significant costs . 17
2.10.1 Sending and receiving messages . 18
2.10.2 Building messages and log posts . 18
2.10.3 Interpreting messages and log posts . 19
2.10.4 Writing to log . 19
2.10.5 Synchronizing shared data structures . 19

3 Pre study 21
3.1 The Niagara processor . 21

3.1.1 Niagara thread switching . 21
3.1.2 Niagara cache communication . 22

v

vi CONTENTS

3.1.3 Related Niagara Research . 23
3.2 Platform . 24

3.2.1 Hardware . 24
3.2.2 Operating System . 25

3.3 Programming language . 27
3.3.1 The objective of the micro benchmarking 27
3.3.2 Programming language candidates . 27
3.3.3 Shell scripting . 28

3.4 Techniques . 28
3.4.1 Sending and receiving messages . 29
3.4.2 Building messages and log posts . 30
3.4.3 Interpreting messages and log posts . 30
3.4.4 Writing to log . 30
3.4.5 Synchronizing shared data structures . 30

4 Approach 33
4.1 Benchmark realization . 33

4.1.1 Benchmark 1: Message passing using TCP/IP sockets 35
4.1.2 Benchmark 2: Message passing using Solaris Doors 37
4.1.3 Benchmark 3: Building or interpreting messages and log posts 39
4.1.4 Benchmark 4: Writing to log . 40
4.1.5 Benchmark 5: Synchronizing using POSIX mutexes 41
4.1.6 Benchmark 6: Synchronizing using System V semaphores 43

4.2 Benchmark scheduling . 45
4.2.1 Benchmark 1: Message passing using TCP/IP sockets 45
4.2.2 Benchmark 2: Message passing using Solaris Doors 46
4.2.3 Benchmark 3: Building or interpreting messages and log posts 47
4.2.4 Benchmark 4: Writing to log . 47
4.2.5 Benchmark 5: Synchronizing using POSIX Mutexes 48
4.2.6 Benchmark 6: Synchronizing using System V Semaphores 48

5 Results 51
5.1 Benchmark 1: Message passing using TCP/IP sockets 51
5.2 Benchmark 2:Message passing using Solaris Doors 54
5.3 Benchmark 3: Building or interpreting messages and log posts 58
5.4 Benchmark 4: Writing to log . 58
5.5 Benchmark 5: Synchronizing using POSIX mutexes 59
5.6 Benchmark 6: Synchronizing using System V semaphores 61

6 Cost figures 63
6.1 Benchmarked costs . 63

6.1.1 Benchmark 1: Message passing using TCP/IP sockets 63
6.1.2 Benchmark 2: Message passing using Solaris Doors 63
6.1.3 Benchmark 3: Building or interpreting messages and log posts 64
6.1.4 Benchmark 4: Writing to log . 64
6.1.5 Benchmark 5: Synchronizing using POSIX mutexes 64
6.1.6 Benchmark 6: Synchronizing using System V semaphores 65

6.2 Other Costs . 65
6.2.1 Block organization . 66

CONTENTS vii

6.2.2 General costs . 67
6.2.3 SN specific costs . 72
6.2.4 SE specific costs . 72

6.3 Cost summary . 72

7 SN workload estimate 75
7.1 Calculating the b-tree height for SN . 75
7.2 The Simple Transaction Update (STU) . 78

7.2.1 Node Controller (NOC) . 78
7.2.2 Node Slave (NOS) . 80

7.3 The Simple Transaction Read (STR) . 83
7.3.1 Node Controller (NOC) . 83
7.3.2 Node Slave (NOS) . 85

7.4 The Complex Transaction Update (CTU) . 87
7.4.1 Node Controller (NOC) . 87
7.4.2 Node Slave (NOS) . 89

7.5 The Complex Transaction Read (CTR) . 92
7.5.1 Node Controller (NOC) . 92
7.5.2 Node Slave (NOS) . 94

8 SE workload estimate 97
8.1 Calculating the b-tree height for SE . 99
8.2 The Simple Transaction Update (STU) . 100

8.2.1 Task1: Access file dictionary . 100
8.2.2 Task2: Execute operation on data record 102
8.2.3 Task3: Log commit and respond to calling application 103
8.2.4 Task4: Release lock . 104
8.2.5 Total costs for the STU transaction . 104

8.3 The Simple Transaction Read (STR) . 104
8.3.1 Task1: Access file dictionary . 104
8.3.2 Task2: Execute read operation on data record 106
8.3.3 Task3: Log commit and respond to calling application 107
8.3.4 Task4: Release lock . 107
8.3.5 Total costs for the STR transaction . 107

8.4 The Complex Transaction Update (CTU) . 108
8.4.1 Task1: Access file dictionary . 108
8.4.2 Task2: Execute operation on data record 109
8.4.3 Task3: Log commit and respond to calling application 111
8.4.4 Task4: Release locks . 111
8.4.5 Total costs for the CTU transaction . 112

8.5 The Complex Transaction Read (CTR) . 112
8.5.1 Task1: Access file dictionary . 112
8.5.2 Task2: Execute read operation on data record 114
8.5.3 Task3: Log commit and respond to calling application 115
8.5.4 Task4: Release lock . 115
8.5.5 Total costs for the CTR transaction . 116

viii CONTENTS

9 Analysis 117
9.1 SN workload summary . 117

9.1.1 Increasing the number of operations . 117
9.1.2 Workload . 118

9.2 SE workload summary . 119
9.2.1 Increasing the number of operations . 120
9.2.2 Workload . 121

9.3 Comparison . 121
9.4 Sensitivity analysis . 124

9.4.1 Varying the cost ratio for read transactions 124
9.4.2 Varying the cost ratio for update transactions 131
9.4.3 Varying the number of process pairs . 136

9.5 Conclusion . 140
9.5.1 The relative difference when using original costs 140
9.5.2 The results are sensitive to the relative difference in costs 140
9.5.3 The gain of parallelism . 141
9.5.4 Niagara performs poorly for single threaded tasks 141

10 A hybrid DBMS architecture for Niagara 143
10.1 A general hybrid architecture . 143
10.2 A Niagara tailored hybrid architecture . 144

10.2.1 Inter core communication . 144
10.2.2 Intra core execution . 145

10.3 The tailored hybrid versus Shared Nothing . 146
10.3.1 Scenario 1: The effect of message passing 147
10.3.2 Scenario 2: The hierarchic advantage . 148
10.3.3 Scenario 3: The disadvantage of clustered operations 148
10.3.4 Scenario 4: The disadvantage of evenly distributed operations 149
10.3.5 Summary . 150

11 Further work 151
11.1 A Niagara-optimized synchronization mechanism 151
11.2 A Niagara-optimized message passing protocol 151
11.3 Examine why Solaris Doors does not scale on Niagara 152
11.4 Examine the effects of queuing . 152
11.5 Examine the effects of background processes . 153
11.6 Optimize the use of the node controller in SN . 153
11.7 Validate the hybrid architecture . 153
11.8 Achieve fault tolerance . 153

Bibliography 157

A Abbreviations 159

B Shell scripts 161
B.1 Benchmark 1: Message passing using TCP/IP sockets 162

B.1.1 run_pong and run_ping . 162
B.1.2 rpps . 163
B.1.3 run_pp_benchmark . 164

B.2 Benchmark 2: Message passing using Solaris Doors 164

CONTENTS ix

B.2.1 run_doors . 164
B.2.2 run_doors_benchmark . 165

B.3 Benchmark 3: Building or interpreting messages and log posts 165
B.3.1 run_build . 166

B.4 Benchmark 4: Writing to log . 166
B.4.1 run_myLog . 166
B.4.2 run_myLog_benchmark . 167

B.5 Benchmark 5: Synchronizing using POSIX mutexes 167
B.5.1 run_sr_mutex . 167

B.6 Benchmark 6: Synchronizing using System V Semaphores 168
B.6.1 run_lsem . 168
B.6.2 run_sem_benchmark . 169

C Code 171
C.1 Benchmark 1: Message passing using TCP/IP sockets 171

C.1.1 ping.c . 171
C.1.2 pong.c . 175
C.1.3 pingpong_init.c . 178
C.1.4 pingpong_start.c . 179
C.1.5 pingpong_finish.c . 180

C.2 Benchmark 2: Message passing using Solaris Doors 182
C.2.1 doorclient.c . 182
C.2.2 doorserver.c . 185
C.2.3 door_init.c . 188
C.2.4 door_start.c . 189
C.2.5 door_finish.c . 190

C.3 Benchmark 3: Building or interpreting messages and log posts 192
C.3.1 build.c . 192

C.4 Benchmark 4: Writing to log . 194
C.4.1 myLog.c . 194

C.5 Benchmark 5: Synchronizing using POSIX Mutexes 196
C.5.1 sr_mutex.c . 196

C.6 Benchmark 6: Synchronizing using System V Semaphores 198
C.6.1 lsemset.c . 198
C.6.2 lseminit.c . 200
C.6.3 lsemstart.c . 202
C.6.4 lsemrm.c . 203

D Result data 205
D.1 Benchmark 1: Message passing using TCP/IP sockets 205
D.2 Benchmark 2: Message passing using Solaris Doors 207
D.3 Benchmark 3: Building or interpreting messages and log posts 209
D.4 Benchmark 4: Writing to log . 209
D.5 Benchmark 5: Synchronizing using POSIX Mutexes 210
D.6 Benchmark 6: Synchronizing using System V Semaphores 210

LIST OF FIGURES

1.1 The memory bottleneck . 2

2.1 The DBMS kernel processes . 7
2.2 SN on MSCD in a nutshell . 8
2.3 The SN process architecture . 9
2.4 The SN communication between nodes . 10
2.5 The SE process architecture . 12
2.6 Cost figures for SE. 15
2.7 A 4-node comparison graph between SN and SE 15
2.8 A comparison graph between SN and SE in logarithmic scale 16
2.9 Varying the cost for setting mutexes when running the STU transaction 17
2.10 Varying the costs for sending and receiving messages when running the CTU

transaction . 18

3.1 Eliminating latency . 22
3.2 Cache architecture . 22
3.3 Niagara architecture . 25
3.4 The TCP/IP reference model . 29

4.1 Establishing cost for message passing using TCP/IP sockets 35
4.2 Establishing costs for message passing using Solaris Doors 37
4.3 Establishing cost for building messages/posts 39
4.4 Establishing cost for writing to log . 41
4.5 Establishing costs for setting and releasing mutexes 42
4.6 Establishing cost for setting and releasing semaphores 44

5.1 Cost figures for message passing using TCP/IP sockets 52
5.2 The interleaving of process execution . 53
5.3 Cost figures for message passing using Solaris Doors 55
5.4 Cost figures for building a message or post. 57
5.5 Cost figures for writing to log. Message size and buffer size are varied. 59
5.6 Cost figures for setting/releasing a mutex. The number of mutexes in the mutex

set and the number of sets and releases are varied. 60
5.7 Cost figures for setting and releasing a semaphore, the number of processes are

varied. 60

6.1 Block organization . 67

7.1 The execution path in an SN architecture . 76
7.2 The SN b-tree . 77

8.1 The execution path in a SE architecture . 98
8.2 The SE b-tree . 99

xi

xii LIST OF FIGURES

9.1 Transaction execution cost for up to four operations 122
9.2 Transaction execution cost for up to 32 operations 123
9.3 Varying the cost ratio for the STR transaction . 125
9.4 Varying the cost ratio for the CTR transaction . 126
9.5 Varying the cost ratio for a general read transaction 129
9.6 Varying the cost ratio for the general read transaction 130
9.7 Varying the cost ratio for the STU transaction . 131
9.8 Varying the cost ratio for the CTU transaction . 132
9.9 Varying the cost ratio for a general update transaction 135
9.10 Varying the cost ratio for the general update transaction 136
9.11 Varying the process pairs for read transactions in SN 137
9.12 Varying the process pairs for update transactions in SN. 138
9.13 Varying the number of process pairs for transactions in SE 139

10.1 A general hybrid architecture . 143
10.2 A Niagara tailored hybrid process architecture 145
10.3 Scenario 1: The effect of message passing . 146
10.4 Scenario 2: The hierarchic advantage . 148
10.5 Scenario 3: The disadvantage of clustered operations 149
10.6 Scenario 4: The disadvantage of evenly distributed operations 149

B.1 run_pong: Script for executing the pong benchmark. 162
B.2 run_ping: Script for executing the ping benchmark. 162
B.3 rpps: Script for executing run_ping and run_pong 163
B.4 run_pp_benchmark: Script for executing rpps. 163
B.5 run_doors: Script for executing the doors benchmark. 164
B.6 run_doors_benchmark: Script for scheduling the run_doors benchmark. . 165
B.7 Script for scheduling the benchmark of building messages. 165
B.8 Script for scheduling the benchmark of writing to log 166
B.9 run_myLog_benchmark: Script for scheduling the run_myLog benchmark. . 166
B.10 Script for scheduling the benchmark of setting and releasing mutexes 167
B.11 Script for scheduling the benchmark of setting and releasing semaphores 168
B.12 run_lsem_benchmark: Script for scheduling the run_lsem benchmark. . . . 168

C.1 C code for ping.c part 1 . 171
C.2 C code for ping.c part 2 . 172
C.3 C code for ping.c part 3 . 173
C.4 C code for ping.c part 4 . 174
C.5 C code for pong.c part 1 . 175
C.6 C code for pong.c part 2 . 176
C.7 C code for pong.c part 3 . 177
C.8 C code for pingpong_init.c . 178
C.9 C code for pingpong_start.c . 179
C.10C code for pingpong_finish.c part 1 . 180
C.11C code for pingpong_finish.c part 2 . 181
C.12C code for doorclient.c part 1 . 182
C.13C code for doorclient.c part 2 . 183
C.14C code for doorclient.c part 3 . 184
C.15C code for doorsserver.c part 1 . 185
C.16C code for doorserver.c part 2 . 186

LIST OF FIGURES xiii

C.17C code for doorserver.c part 3 . 187
C.18C code for door_init.c . 188
C.19C code for door_start.c . 189
C.20C code for door_finish.c part 1 . 190
C.21C code for door_finish.c part 2 . 191
C.22C code for build.c part 1 . 192
C.23C code for build.c part 2 . 193
C.24C code for myLog.c part 1 . 194
C.25C code for myLog.c part 2 . 195
C.26C code for sr_mutex.c part 1 . 196
C.27C code for sr_mutex.c part 2 . 197
C.28C code for lsemset.c part 1 . 198
C.29C code for lsemset.c part 2 . 199
C.30C code for lseminit.c part 1 . 200
C.31C code for lseminit.c part 2 . 201
C.32C code for lsemstart.c . 202
C.33C code for lsemrm.c part 1 . 203
C.34C code for lsemrm.c part 2 . 204

LIST OF TABLES

1.1 Type conventions. 4

2.1 The four transactions used . 6
2.2 Cost summary for SN . 11
2.3 Cost summary for SE . 14

3.1 Sun T1000 vs T2000 . 23
3.2 Sun Fire T1000 “Erie” specification . 26

4.1 Input parameters to the benchmark for message passing using TCP/IP. 36
4.2 Input parameters to the benchmark for message passing using Solaris Doors . . 38
4.3 Input parameters to the benchmark for building messages posts 40
4.4 Input parameters to the benchmark for writing to log 41
4.5 Input parameters to the benchmark for setting and releasing mutexes 42
4.6 Input parameters to the benchmark for setting and releasing semaphores 44

6.1 Cost figures . 73

7.1 NOC Task1 cost description for STU in SN . 78
7.2 NOC Task2 cost description for STU in SN . 78
7.3 NOC Task3 cost description for STU in SN . 79
7.4 NOC Task4 cost description for STU in SN . 79
7.5 NOC Task5 cost description for STU in SN . 80
7.6 NOC Task6 cost description for STU in SN . 80
7.7 NOS Task1 cost description for STU in SN . 81
7.8 NOS Task2 cost description for STU in SN . 81
7.9 NOS Task3 cost description for STU in SN . 82
7.10 NOS Task4 cost description for STU in SN . 82
7.11 NOC Task1 cost description for STR in SN . 83
7.12 NOC Task2 cost description for STR in SN . 83
7.13 NOC Task3 cost description for STR in SN . 84
7.14 NOC Task4 cost description for STR in SN . 84
7.15 NOC Task5 cost description for STR in SN . 84
7.16 NOS Task1 cost description for STR in SN . 85
7.17 NOS Task2 cost description for STR in SN . 86
7.18 NOS Task3 cost description for STR in SN . 86
7.19 NOC Task1 cost description for CTU in SN . 87
7.20 NOC Task2 cost description for CTU in SN . 87
7.21 NOC Task3 cost description for CTU in SN . 88
7.22 NOC Task4 cost description for CTU in SN . 88
7.23 NOC Task5 cost description for CTU in SN . 89
7.24 NOC Task6 cost description for CTU in SN . 89

xv

xvi LIST OF TABLES

7.25 NOS Task1 cost description for CTU in SN . 90
7.26 NOS Task2 cost description for CTU in SN . 90
7.27 NOS Task3 cost description for CTU in SN . 91
7.28 NOS Task4 cost description for CTU in SN . 91
7.29 NOC Task1 cost description for CTR in SN . 92
7.30 NOC Task2 cost description for CTR in SN . 92
7.31 NOC Task3 cost description for CTR in SN . 93
7.32 NOC Task4 cost description for CTR in SN . 93
7.33 NOC Task5 cost description for CTR in SN . 93
7.34 NOS Task1 cost description for CTR in SN . 94
7.35 NOS Task2 cost description for CTR in SN . 95
7.36 NOS Task3 cost description for CTR in SN . 95

8.1 Task1, cost description for setting a lock on file dictionary by STU in SE 101
8.2 Task1, cost description for reading file dictionary by STU in SE 101
8.3 Task1, cost description for releasing a lock on file dictionary by STU in SE . . . 101
8.4 Task2, cost description for setting a lock by STU in SE 102
8.5 Task2, cost description for performing a b-tree operation by STU in SE 102
8.6 Task2, cost description for writing a log post to memory by STU in SE 103
8.7 Task3, cost description for writing a commit post to memory by STU in SE . . . 103
8.8 Task4, cost description for releasing a lock by STU in SE 104
8.9 Task1, cost description for setting a lock on file dictionary by STR in SE 105
8.10 Task1, cost description for reading file dictionary by STR in SE 105
8.11 Task1, cost description for releasing a lock on file dictionary by STR in SE . . . 105
8.12 Task2, cost description for setting a lock by STR in SE 106
8.13 Task2, cost description for performing a b-tree operation by STR in SE 107
8.14 Task4, cost description for releasing a lock by STR in SE 107
8.15 Task1, cost description for setting a lock on file dictionary by CTU in SE 108
8.16 Task1, cost description for reading file dictionary by CTU in SE 109
8.17 Task1, cost description for releasing a lock on file dictionary by CTU in SE . . . 109
8.18 Task2, cost description for setting a lock by CTU in SE 110
8.19 Task2, cost description for performing a b-tree operation by CTU in SE 110
8.20 Task2, cost description for writing a log post to memory by CTU in SE 111
8.21 Task3, cost description for writing a commit post to memory by CTU in SE . . 111
8.22 Task4, cost description for releasing a lock by CTU in SE 112
8.23 Task1, cost description for setting a lock on file dictionary by CTR in SE 113
8.24 Task1, cost description for reading file dictionary by CTR in SE 113
8.25 Task1, cost description for releasing a lock on file dictionary by CTR in SE . . . 114
8.26 Task2, cost description for setting a lock by CTR in SE 114
8.27 Task2, cost description for performing a B-tree operation by CTR in SE 115
8.28 Task4, cost description for releasing a lock by CTR in SE 116

9.1 Cost summary for SN . 117
9.2 The additional NOC cost for an additional operation 118
9.3 The percentage of the total transaction execution time used for message passing 119
9.4 Cost summary for SE . 120
9.5 Synchronization percentage cost in SE for the CTU transaction 121
9.6 Cost summary for SN and SE . 122
9.7 The additional cost for an additional read operation in SN 127

LIST OF TABLES xvii

9.8 The additional cost for an additional read operation in SE 128
9.9 The additional cost for an additional update operation in SN 133
9.10 The additional cost for an additional update operation in SE 134

B.1 The parameters varied in all the micro benchmarks performed. 161

D.1 Ping pong data . 206
D.2 Doors data . 208
D.3 Build data . 209
D.4 Log data . 209
D.5 Mutex data . 210
D.6 Semaphore data . 210

CHAPTER1
INTRODUCTION

The goal of this report is to perform a relative performance comparison between the two
memory architectures Shared Nothing (SN)1 and Shared Everything (SE) on Niagara. Sun
Microsystems terms the Niagara processor “Radical CMT”. In order to make the difference
between ordinary Chip Level Multi Threading (CMT) processors and Niagara clearer, we have
chosen to term the Niagara chip Multi Core Single Die (MCSD).

The research presented in this report is based on our earlier research presented in [BJ05].
This research was considered an early step on the road towards a consensus about the pre-
ferred Database Management System (DBMS) memory architecture on an MCSD chip. Be-
cause the research only sought to identify trends, the cost approximations used needed only
be good enough to capture the relative merits of the different architectural approaches. The
research therefore investigated a generic hardware architecture, consistently assuming mini-
mum costs for all calculations.

This report, on the other hand, is the second step. Based on the DBMS design solutions
suggested in [BJ05], we benchmark the most important cost figures used in the calculations
and perform a second comparison between the two architectures.

This calculation is based on Sun Microsystems’ Niagara. Thus, although some of the as-
sumptions made in [BJ05] are still valid, this research has a real world approach. Even though
this report bases its calculations on either SN or SE, it is possible that an architecture combin-
ing the advantages of both could yield even better results. We therefore briefly propose such
a hybrid architecture. Validating this architecture is left for further work.

In the following we first state our motivation for the report. We then propose a route
ahead.

1.1 MOTIVATION

The volume of information produced over the last decade has grown exponentially. In fact, as
stated by [Swe01], the global storage has increased from 90 TB in 1983 to 160 000 TB in 1996
and to almost 3 000 000 TB in 2000. This growth continues.

In the past decades, the trend in processor development has closely followed the predic-
tions of Gordon Moore [Moo65]. Moore’s law originally states that the number of transistors
on a chip is doubled every 12 months. In an update article from 1975, Moore adjusted the rate
to every 24 months to account for the growing complexity of chips, [Moo75]. As the years
went by, Moore’s law evolved to be interpreted as the doubling of microprocessor power ev-
ery 18 months [Tuo02].

However, according to [Sun03], the gain in overall system performance is much poorer
due to the lower increases in memory speeds. Memory speeds double approximately every

1All abbreviations used in this report, such as these, are explained in this manner at first use. For reference, the
abbreviations are also listed in appendix A.

1

2 CHAPTER 1. INTRODUCTION

six years. This is illustrated in figure 1.1. Due to this widening gap, processors are idle up to
75% of the time while waiting for memory fetches.

1

10

100

1000

10000

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007
Year

Re
la

tiv
e

pe
rf

or
m

an
ce

CPU (2x every 2 years)

Memory (2x every 6 years)

Figure 1.1: The memory bottleneck. The CPU power doubles every 2 years, whereas memory
speed only doubles every 6 years. This leads to a widening gap.

This calls for new ways of thinking about data processing. We also see several new com-
puter science fields gaining high attention, such as data mining and data distribution. These
fields have all in common the need for raw processor power.

1.2 THE ROUTE AHEAD

Our previous report closely followed the method of work used in [HT93], which presented a
high availability DBMS architecture and a set of benchmark transactions. These transactions
were decomposed into sub tasks, and the cost associated with each task was calculated. Al-
though this report mainly follows the same route as our previous work, it differs in content,
because we are now basing our most significant cost figures on micro benchmarks rather than
theoretical minimal costs. Therefore, the report structure deviates from the previous until we
present the cost figures in chapter 6. The cost figures which are not benchmarked are based
on the assumptions made in [HT93].

1.2.1 Chapters

This section briefly presents all the following chapters in this report.

Chapter 2 Chapter 2 presents the most important theory and findings from our previous re-
port. This chapter is important as the design solutions presented still are valid. The
chapter sums up with identifying the most significant sub tasks that are subject to be
benchmarked

1.2. THE ROUTE AHEAD 3

Chapter 3 In order to perform the micro benchmarks, a pre study is necessary. Chapter 3
presents a discussion on alternative strategies for performing the micro benchmarks, as
well as related Niagara research.

Chapter 4 Chapter 4 describes how the micro benchmarks are approached. The chapter de-
scribes how time keeping is performed and how the benchmarks are scheduled.

Chapter 5 Chapter 5 presents the results obtained by the benchmarks described in the previ-
ous chapter.

Chapter 6 Having presented all results from the benchmarks, chapter 6 presents the typical
cost figure for each benchmark. The chapter also includes a theoretical calculation of the
cost figures for the tasks that are not benchmarked.

Chapter 7 Following the structure from our previous report, chapter 7 presents a thorough
cost calculation of four different transaction types with increasing complexity in an SN
context 2 .

Chapter 8 Following the structure from our previous report, chapter 8 presents a thorough
cost calculation of four different transaction types with increasing complexity in an SE
context 2 .

Chapter 9 Chapter 9 presents an analysis based on the calculations presented in the two pre-
vious chapters. This analysis includes a summary of the results, a comparison and a
sensitivity analysis.

Chapter 10 Based on the findings made in our report, chapter 10 suggests a possible hybrid
architecture. This is done in an attempt to combine the advantages of both SN and SE.

Chapter 11 Finally, chapter 11 points in the directions of interesting fields of further research.

1.2.2 Appendices

This section briefly presents all appendices in this report.

Appendix A Presents the abbreviations commonly used in this report.

Appendix B Presents the shell scripts used to schedule the benchmarks

Appendix C Lists all source code for the micro benchmarks

Appendix D Presents all result data returned from the micro benchmarks

1.2.3 Type conventions

Table 1.1 describes the type conventions used throughout the report. The following lists all
conventions, and their meanings.

2Regarding chapter 7 and 8, it is worth noting that these calculations are indeed very similar in structure to
the calculations presented in [BJ05]. However, because all the cost figures are different, these calculations must
be performed nonetheless. It is also necessary to be familiar with the transactions’ decompositions presented to
make the most of the analysis presented in chapter 9.

4 CHAPTER 1. INTRODUCTION

Typeface Usage

Italic

• Processes

• References to names used in figures

• References to other sections by name

Boldface

• Table headings

• Table captions

• Figure captions

Typewriter • References to file names

• References to code

• References to shell scripts

• Command prompt

Boldface
typewriter • Terminal commands

Table 1.1: Type conventions.

CHAPTER2
FOUNDATION

This chapter presents a brief summary of the previous work, where we performed a relative
performance comparison between the two memory architectures SN and SE.

First, the method of work used to approach the problem is presented. Thereafter we
present the transaction classes used in this report. Before moving on to the design solutions,
it is necessary to present the assumed DBMS kernel this report relies on.

The following sections describe design solutions made and results discovered for both
SN and SE. These solutions are valid also for this report. After a brief comparison between
the two architectures and a sensitivity analysis varying the most interesting costs, the chap-
ter concludes with identifying the most significant costs which form the basis for the micro
benchmarking performed later.

As stated in the introduction, this report is a continuation of our previous work [BJ05].
The interested reader will find the content in this chapter to have clear similarities with our
previous work. Indeed, except from the last section, this chapter is included for completeness.

2.1 METHOD OF WORK

Because our previous report was an early step on the road towards a consensus about the
preferred DBMS architecture on an MCSD chip, there was not much former work on which
the report could be based. This section presents the problem addressed and the method of
work used.

For two reasons it was not possible to perform a simulation of the SN and SE architectural
approaches. First, an MCSD chip was not to our disposal. Second, both time and personnel
were limited resources. Several major assumptions were therefore made on which the research
rested. The main assumptions were:

• Although utilizing most of the properties of the Niagara chip, the processor examined
was not a specific realization of the MCSD architecture, but merely a generic MCSD
chip. For example, the generic chip run at 3 times the clock speed of Niagara executing
twice as many instructions per cycle.

• The costs presented were the absolute minimum theoretical costs, assuming full Oper-
ating System (OS) support for the different tasks and no real-world overhead such as
house keeping and stack delays.

• It was assumed possible to write the log to two independent parts of the memory with
independent failure modes. This would be done in parallel, facilitated by hardware.

In addition, none of the costs used in calculations were based on real-world benchmarks
on an MCSD chip. The costs were based on earlier work ([HT93]) and on calculations made

5

6 CHAPTER 2. FOUNDATION

ID Abbreviation for Description
STU: Simple Transaction Update Update a single tuple.
STR: Simple Transaction Read Read a single tuple.
CTU: Complex Transaction Update Update four tuples.
CTR: Complex Transaction Read Read four tuples.

Table 2.1: The four transactions used

possible by design choices stated in the report. These costs were a great factor of uncertainty
when the report identified trends of the relative merits of the architectural approaches.

[BJ05] started with describing both the SN and the SE memory architectures in general.
Thereafter, both SN and SE were mapped to an MCSD context.

The rest of this chapter summarizes and compares the costs and findings for each memory
architecture, before the final section states the transaction sub tasks that are considered to have
the greatest impact on the relative performance of the SN and SE architectural approaches.
First, however, we define the transaction classes used in this report.

2.2 TRANSACTION CLASSES

The transactions assumed when calculating the performance of SN and SE are presented in
table 2.1. These transactions were chosen because they illustrate different behaviors of the
DBMS. The two simple transactions, STU and STR, are used to estimate the workload for the
simplest possible case. The only operation performed by STR is a simple read of one tuple.
Likewise, STU updates one tuple. The two larger transactions, CTU and CTR, are considered
to be of sufficient complexity to approximate the workload presented by an average transac-
tion in a DBMS. The CTR transaction reads four tuples, and the CTU transaction updates four
tuples. In SN, the complex transactions show the DBMS behavior when more than one node
is involved in a transaction. In SE, all transactions show how the responsible node behaves in
order to ensure that the transaction execution does not interfere with other transactions run
by other nodes.

Each of these transactions were decomposed into to simple sub tasks such as creating a
transaction context, setting a lock, setting a mutex, building a log post, writing to log, sending
a message etc. An estimate was made for the cost associated with each sub task. Based on
these estimates and the DBMS architectures presented earlier in the report, the costs associated
with executing the transactions were calculated for each architecture. A similar method of
work is used in [HT93].

The reason for not choosing transactions following a benchmark standard i.e. TPC-B (as
defined in [Gra91]), is that it would be too big a task within the scope of this research project.
Albeit mentioned in our previous work, it is necessary to justify their use, because they will
indeed be important with regards to the evaluation presented later.

Before we continue, it is necessary to define a transaction’s critical path. This is described
as the sum of all operations needed to be performed before a response can be given back to
the transaction service requester.

2.3. THE DBMS KERNEL 7

O
S

B
lock

Index/File
Fragm

ent

Kernel Service Man.

Interpreter

Tuple Man.Lock Man. Log Man.Transaction Man.Code Man. Dictionary Man.

Access Method Man.

Low level data Man.

IO Man.

Global Deadlock Resolver

Figure 2.1: The DBMS kernel processes. The Code Manager contains ready loaded code to be ex-
ecuted. The Dictionary Manager provides content information. The Lock Manager
supports locking of tuples. The Transaction Manager maintains the state of all active
transactions of the node. The Log Manager provides the ability to log. The Tuple Man-
ager supports the normal set of tuple operations (Read, Write, Update, Delete). The
Log Manager and Tuple Manager use in turn services provided by the Access Method
Manager. The Access Method Manager provides support for file access methods, and
relies in turn to lower level data management.

2.3 THE DBMS KERNEL

Our design for the DBMS Kernel is identical to that of our previous work. It is heavily influ-
enced by [HT93]. This section describes the DBMS Kernel processes illustrated in figure 2.1.
First, the Kernel Service Manager is responsible for access control. The Kernel Service Manager
inserts operations in the execution queue, which is handled by the Interpreter.

Every operation is run to completion, unless it is running into a deadlock. Then the execu-
tion halts until it is discovered by the global deadlock resolver, which reinserts the operation
in the execution queue.

The Interpreter executes one operation at a time from the execution queue. The Inter-
preter depends on services from the Fragment layer. Executing in a typically from left-to-right
manner, the first fragment, Code Manager manages the ready compiled, loaded code which
typically is the result of an SQL-optimizer. The Dictionary manager keeps track of where the
tuples are stored (and, for the SN case, partition information). It then utilizes the Lock Man-
ager, which supports locking of tuples.The Transaction Manager, maintains the state of all active
transactions of the node. The Transaction Manager utilize the services from another fragment,
namely the Log Manager. The Log Manager is in turn depending on the Tuple Manager. The
Log Manager and Tuple Manager both depend on lower layer components, such as the Access
Method Manager.

The Log Manager and Tuple Manager use in turn services provided by the Access Method
Manager. The Access Method Manager provides support for file access methods, and relies in
turn to lower level data management.

8 CHAPTER 2. FOUNDATION

A

NOC

B

NOS

NOS

NOS

C

D

Transaction Operations

Op
era
tion
s

Operations

Figure 2.2: Shared Nothing on MSCD in a nutshell. Node A, which receives a transaction, for-
wards operation messages to all participating nodes.

2.4 THE SN DESIGN SOLUTION

This section first briefly explains the concept of SN in a general MCSD context, before explain-
ing major design decisions for the SN architectural approach.

2.4.1 SN on MCSD in brief

In an MCSD context, each logical processor can be seen as a node. Distributed transactions
frequently occur in SN. In a distributed setting, a transaction needs to perform operations on
tuples that reside in different subsets of the database. Each node has exclusive access to its
respective subset. Figure 2.2 illustrates SN behavior on a MCSD in a nutshell. If a transaction
is executed at node A and needs to update tuples owned by the nodes B,C and D, node A must
send a message to these nodes containing the operations to be executed. Nodes B - D will
then, acting as Node Slave (NOS) for the Node Controller (NOC) A, execute these operations
in accordance to a First-Come-First-Serve policy1(see section 2.4.5) at each node.

In such a distributed setting, each node is designed to have a transaction controller and a
DBMS kernel. Each node has private access to a distinct portion of the database, as illustrated
in figure 2.3. The transaction controller acts as a coordinator for the node, and is responsi-
ble for initiating operations and coordinating the distributed commit. The DBMS kernel is
responsible for performing operations on the database. As illustrated in the figure, there is
direct communication between the controller and the kernel on a different node. This is done
in order to avoid the process switch imposed by strict inter-controller communication.

For a more general explanation of the concept of SN, see [DG92]. For a more detailed
explanation of SN in a MCSD context, see [BJ05].

2.4.2 The 2PC protocol

As mentioned above, a transaction is often distributed in SN. That is, several nodes can be
involved in a transaction. Clearly, one needs a way to ensure that all participating nodes
in such a transaction know whether the transaction eventually committed or not. The Two-
phase commit (2PC) protocol is used for this. Mohan et al. describes a variant of this protocol

1We assume no queuing of operations on the NOSes for simplicity.

2.4. THE SN DESIGN SOLUTION 9

Shared Nothing process architecture at a node

Shared Everyting process architecture at a node

Transaction controller

DBMS Kernel

Transaction controller

DBMS Kernel

...

JDBC

Node1 Noden
E

xternal
Interface

D
atabase

N
ode

Figure 2.3: The Shared Nothing process architecture. The node has private access to a distinct
portion of the database. The transaction controller acts as a coordinator for the node,
and is responsible for initiating operations and coordinating the distributed commit.
The initiating node, which receives a transaction from the external interface, is called a
Node Controller (NOC). The NOC’s transaction controller communicates directly with
the DBMS kernel of the performing node, called Node Slave (NOS). The DBMS kernel
performs operations on the database.

called 2PC presumed commit in [MLO86]. Figure 2.4 illustrates this latter scheme. For a more
thorough explanation, consult [BJ05].

2.4.3 Synchronization

The SN architecture does not need heavy synchronization, because each node has a distinct,
private part of the memory on which it operates. This principle does not only apply to the
database content, but it also implies that all database data structures are maintained within
each node. Thus no synchronization on the database structures is needed.

2.4.4 Locking

Transactions often need to perform operations on tuples that reside in subsets owned by other
nodes. Because operations passed to a DBMS kernel (see figure 2.3) of another node could
be sent in several batches, maintaining transaction lock mechanisms is crucial. The Two-
phase locking (2PL) mechanism, thoroughly explained in [Tan01], ensures that the interleaved
execution of the transactions is serializable. In brief, 2PL works in the following manner:
There are two phases, one for locking and one for releasing. During the first phase, a process is
only allowed to lock needed records. As soon as the process releases a lock, it enters the second
phase which consists of releasing locks. Interleaving the locking and releasing of resources is
not allowed.

10 CHAPTER 2. FOUNDATION

Transaction controller

DBMS Kernel

NOSn

Transaction controller

DBMS Kernel

NOS1

2

Transaction controller

DBMS Kernel 1

3
2

1

3

NOC

...

1 ”Prepare”
2 ”Ready” /
 ”Read”
3 ”Commit”

Figure 2.4: The SN communication between nodes - the 2PC presumed commit. Message 1,
‘prepare’, is sent from the NOC to all participating NOSes. The ‘prepare’ message
is piggybacked on the operation message. For simplicity, only two NOSes are shown.
The content of message 2 depends on whether the operations to be performed are pure
reads or involve updates. For pure reads, a ‘read’ is returned. This message is piggy-
backed on the message containing the read data. If one or several write operations are
involved, a ‘ready’message is sent back to the NOC when the NOS has performed the
operations in question. Message 3, ‘commit’, is sent back to all participants that sent
a ‘ready’ in message 2. The NOC then returns the transaction outcome to the external
interface (as seen in figure 2.3).

2.4.5 Scheduling

The DBMS maintains a straight forward First-Come-First-Serve scheduling policy at each
node. Requests to perform operations on tuples, originating from the owning node or other
nodes, are executed in turn2. Thus, it is not performed any optimization of the operation
execution on the node level.

2.4.6 Background activities

Several background activities are performed in the DBMS. These activities can be an important
factor with regards to system performance on a real system. However, as these activities are
outside the transaction scope, they are not taken into account when measuring the relative
difference between SN and SE.

In the SN case, the identified background activities are:

DB buffer flushing Because this is a main-memory database, the choice of buffer flushing
strategy is different from that of disk-based databases. Using a regular Least Recently
Used (LRU) strategy could have the unfortunate side effect of leaving dirty blocks in
main memory for a long time before eventually flushing them to disk. Therefore, we
use the strategy presented in [HT93], where dirty pages are flushed to disk in fixed
intervals, typically every 10 seconds.

Checkpoint logging The background activity of logging dirty pages to disk follows the same
strategy as the one for buffer flushing.

2For this to scheme to be effective, there can be no waiting for the disks in the critical path.

2.5. SN RESULTS 11

Transaction NOC (ns) NOS (ns) Sum (ns)
STU: 741 1957 2698
STR: 441 1558 1999
CTU: 1686 1957 3643
CTR: 1086 1558 2644

Table 2.2: Cost summary for SN

2.5 SN RESULTS

This section presents the results from the calculations made by [BJ05] regarding the SN case.
The cost figures the calculations are based on are for brevity not included in this summary.
The times needed to execute the different transactions are presented in table 2.2

The NOC is run in interleaved execution with the NOSes. The benefit of this approach
compared to SE is the speedup gained by the parallel execution of the NOSes involved in a
transaction execution. Assumed that the executing transaction only performs operations on
tuples that reside at other nodes, the NOC is pure overhead. Section 2.8 presents a comparison
discussing the differences between SN and SE.

2.6 THE SE DESIGN SOLUTION

This section first briefly explains the concept of SE in a general MCSD context, before explain-
ing major design decisions for SE.

2.6.1 SE on MCSD in brief

In SE, each node has access to the entire database. Each node has a DBMS Kernel that is
responsible of performing database operations. In the SN case the transaction controller is
used to coordinate distributed transactions (see figure 2.4). Because no such transactions occur
in the SE case, there is no need for a controller as illustrated in figure 2.5. However, because
all nodes have access to the same memory, a tight synchronization scheme is necessary. In
the following subsection, we briefly explain how thread synchronization is carried out for the
different data structures.

2.6.2 Synchronization

The typical behavior of a transaction operation can be decomposed into the following:

• Access the dictionary

• Set a lock on some data resources

• Perform some low level block operations

• Create log records

As an example, consider the STU transaction, which updates a single record. This trans-
action starts with doing a dictionary operation. In order to do this, the thread executing the

12 CHAPTER 2. FOUNDATION

DBMS Kernel

Node1 N
ode

E
xternal

Interface
D

atabase

DBMS Kernel...
Noden

JDBC

Figure 2.5: The Shared Everything process architecture. Each node has access to the whole
database, and there are no distributed transactions. However, different nodes can in-
terfere with each other, as illustrated with the explosion mark to the right. In this case,
a synchronization scheme is needed to ensure serializable execution. We briefly ex-
plain how thread synchronization is carried out for the different data structures in the
following subsections.

transaction must be sure that no other threads are writing to the dictionary at the same time.
Thus, there is a need to synchronize the use of the dictionary. The next step is to perform an
update operation on a record. According to the 2PL protocol (see section 2.4.4 and [Tan01]),
the transaction must first hold an exclusive lock on the respective record. In order to achieve
this, the transaction must add an entry to the lock hierarchy. To ensure that no other thread
sets an exclusive lock simultaneously, the use of the lock hierarchy must be synchronized.
To ensure that no other thread changes the b-tree at the same time as the thread updates the
record, the use of the b-tree must also be synchronized. After the record operation is com-
pleted, the change must be written to log. To ensure that two threads do not simultaneously
write to the same log record, the use of the log needs to be synchronized. Finally, the transac-
tion must release the lock, which yields yet another synchronization of the lock hierarchy.

The data structures that must be synchronized were identified to be

• Lock hierarchy

• Dictionary

• B-tree (Managing data blocks)

• Log

The following subsections briefly describe the data structures and the synchronization
schemes used for each structure. Note that although mutexes was used as the primary syn-
chronization mechanism in [BJ05], the synchronization mechanism for this report is not to be
decided until chapter 4. Severable possible solutions were discussed on how to best make use
of the mutexes. The interested reader is referred to the complete report for a full argument to
why the different approaches were taken.

2.6. THE SE DESIGN SOLUTION 13

Lock hierarchy

Locks are organized in a lock hash table. Hashing is performed on the data resource’s primary
key. Resources hashing to the same hash bucket are connected using a linked list. The transac-
tion IDs of transactions holding a lock on the same resource are connected using a linked list
associated with the respective resource. In order to synchronize the lock hierarchy, a mutex is
set for the entire lock hash table for every single instruction. In other words, there is only one
level of synchronization. See [Tan01] for a detailed explanation of mutexes.

Dictionary

In this context, the dictionary is assumed to be a table residing in main memory that defines
the basic organization of the database. In the SE case, the dictionary will mostly be used to
locate files and may therefore also be called a file dictionary. The synchronization scheme
used to synchronize the dictionary, is indeed similar to that of the lock hierarchy. The only
difference is that because reading from the dictionary is far more common than writing to it,
database locks are used instead of mutexes, so that several read-locks may coexist. A lock is
therefore associated with the entire dictionary, ensuring that only a single thread may access
the dictionary at any time if its intention is to write. However, if the intention is to read,
several threads may read from the dictionary simultaneously.

B-tree

A major assumption made in our previous work was that the whole b-tree resides in main
memory. With the goal of minimizing the use of mutexes in the b-tree, the approach to hold a
single mutex for the entire b-tree, during an update or read, is chosen.

Log

The log is organized in a circular buffer. This means that the buffer size is fixed, and when
the buffer is full, the oldest part of the log is overwritten. In order to ensure durability and
atomicity, log records must be written to stable storage before this happens. It is assumed that
it is possible to write the log to two independent parts of the memory with independent failure
modes. As suggested in [HTBH95], this should be sufficient to ensure durability. Facilitated
by hardware, it is also assumed that this can be done in parallel, thus implying that the cost
of logging can be estimated simply as writing to main memory. The synchronization scheme
presented is to write the log post to memory while holding a mutex for the entire log buffer.

2.6.3 Background activities

As explained in section 2.4.6, some background activities are performed in the DBMS. These
activities can be an important factor with regards to system performance on a real system.
However, as these activities are outside the transaction scope, they are not taken into account
when measuring the relative difference between SN and SE. In the SE case, the identified
background activities are:

Cache invalidation Although cache invalidation is not a part of the critical path of the trans-
action execution, it is an important background activity that must be taken into consid-
eration when evaluating SE. The reason, as we described at page 25 in [BJ05], is the

14 CHAPTER 2. FOUNDATION

cache update challenge SE must face. One update to a tuple can require cache invali-
dation for all other cores holding a local copy of that tuple in their private cache. The
application programmer has limited control over such cache invalidation, as this task
indeed resides in the OS domain. As a frequent background activity, this will consume
some of the available resources, adding to the total costs of the SE approach.

DB buffer flushing and Checkpoint logging This background activity is described for the
SN case in 2.4.6. These costs also apply for SE.

2.7 SE RESULTS

This section briefly presents the results from the calculations made in [BJ05] regarding the SE
case. As for the section presenting the design solutions in the SN case, the summary given here
is brief and the interested reader is referred to the complete report for a thorough presentation.

The time needed to execute the different types of transactions is presented in table 2.3.

Transaction Cost (ns)
STU: 2141
STR: 1845
CTU: 7346
CTR: 6570

Table 2.3: Cost summary for SE

In SE, all operations of a transaction are performed in a serial execution. Opposed to SN,
there is no parallelism3.

As figure 2.6 suggests, there is a linear increase in time when increasing the number of op-
erations. The curves for the read and update transactions are plotted using the ratio between
the simple and complex transactions, CTR

STR and CTU
STU , respectively. The curves are for compar-

ison plotted against curves derived from the costs of performing a single update or read. The
gain in SE is caused by the tasks that need not be run for each operation.

2.8 COMPARISON

Figure 2.7 shows a comparison between SN and SE for transactions containing up to four op-
erations. In SN it is assumed a 1:1 relationship between the number of operations and the
number of NOSes until 32 operations are reached. The solid lines illustrate the two architec-
tures in the update case, the dashed lines illustrate the read case. As illustrated by the figure,
SN is more expensive than SE when the transaction only has one operation. The reason is that
the transaction is not actually distributed. For one operation, the NOC is pure overhead. In
the SE case, on the other hand, there is no such controller and hence no overhead.

However, as the number of operations increases, the parallel gain of the SN approach
emerges. In SE, all operations are executed at the same node. Thus, the execution time in-
creases linearly with the number of operations. For SN, however, different operations will
be executed at different nodes. An assumption made in [BJ05] is that different operations are

3As previously mentioned, in SN there is only a small increase in time when executing an additional opera-
tion. This increase is due to the work added to the transaction controller. The additional operation, however, is
performed in parallel with existing operations. This is not the case with SE.

2.8. COMPARISON 15

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Operations

Ti
m

e
(n

s)

Shared Everything update
Shared Everything read
Linear, f(x)=2141x
Linear, f(x)=1845x

Figure 2.6: Cost figures for SE. The cost figures are almost linear, both for the update and read
case.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4

Operations

Ti
m

e
(n

s)

Shared Nothing update
Shared Everything update
Shared Nothing read
Shared Everything read

Figure 2.7: A 4-node comparison graph between SN and SE DBMS architecture.

solely sent to different nodes in SN. This implies that only the extra work done by the NOC
will increase the time used to execute a transaction. The execution of the additional operations
is done in parallel. This is valid as long as there is only one operation per node.

The same comparison is illustrated by figure 2.8, spanned over 32 nodes and with time
measured in a logarithmic scale. Both approaches has a linear growth, but at 32 operations,

16 CHAPTER 2. FOUNDATION

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Operations

Ti
m

e
(n

s)

Shared Nothing update
Shared Everything update
Shared Nothing read
Shared Everything read

Figure 2.8: A comparison graph between SN and SE in logarithmic scale. For 32 operations, SN
performs almost one order of magnitude better than SE.

SN performs almost one order of magnitude better than SE.

2.9 SENSITIVITY ANALYSIS

This section includes a brief summary of the sensitivity analysis presented in [BJ05]. The
analysis is performed for two distinct costs, namely the costs for mutex setting and message
passing. These costs were chosen because they were believed to be the two most significant
isolated costs.

Two sensitivity analyses are performed. The first analysis is based on the STU transaction.
This transaction is chosen because it is interesting to look at the case where SN does not yet
gain any advantages from its ability to parallel the execution. The second analysis is based
on the CTU transaction. This transaction is chosen to get an idea of how expensive message
passing must be in order for SE to be the cheaper alternative when executing complex trans-
actions.

In the original analysis, several parameters were varied for each approach. Because this is
just a summary, only the most interesting variations are included.

2.9.1 Sensitivity analysis based on the STU transaction

This section gives a sensitivity analysis based on the STU transaction. In this analysis the
cost for setting mutexes in SE is varied, while the cost for message passing in SN is held
constant. This is illustrated by the graph in figure 2.9. There are three horizontal lines in
the graph. These lines represent the cost of executing the STU transaction on SN when the
cost of message passing is the original cost, 2 times the original cost and 3 times the original
cost. One might see from the intersection between the curve representing SE, and the curve

2.10. SIGNIFICANT COSTS 17

0

500

1000

1500

2000

2500

3000

3500

4000

4500

30 60 90 120 150 180 210 240 270 300

Set mutex cost (ns)

Ti
m

e
(n

s)

STU SE (set mutex)
STU SN original message cost
STU SN 2x original message cost
STU SN 3x original message cost

Figure 2.9: Varying the cost for setting mutexes when running the STU transaction. This graph
shows one curve for the costs associated with SE when varying the costs for setting
mutexes. Three other curves are shown for SN when using the original cost for sending
and receiving messages, 2 times the original cost and 3 times the original cost.

representing SN when using original costs, that the original estimates for setting mutexes
must be underestimated by a factor between 3 and 4 before SN yields better performance.

2.9.2 Sensitivity analysis based on the CTU transaction

When the CTU transaction is executed, SN is preferable due to its ability to parallel transac-
tions. Is is however interesting to see how much the cost for message passing may increase
before the parallel gain is consumed.

Figure 2.10 illustrates the scenario where the costs for sending and receiving messages are
varied, while the costs for setting and releasing mutexes are held constant. There are three
horizontal lines in the graph. These represent the cost of executing the STU transaction on
SE when the cost of mutex setting is the original cost, 5 times the original cost and 10 times
the original cost. The value of the x-axis at the intersection between the two solid curves,
shows that in order to make the total costs of SN and SE equal, the cost for message passing
must be multiplied by approximately 4. If the transaction to be executed involves an even
higher number of operations, the cost for message passing has to be even higher before the
two approaches perform equally good.

2.10 SIGNIFICANT COSTS

This section describes the costs considered to be most significant when executing a transac-
tion. These are costs that either are exclusive to one architecture, or far more frequent in one

18 CHAPTER 2. FOUNDATION

0

2000

4000

6000

8000

10000

12000

14000

16000

75 150 225 300 375 450 525 600 675 750

Send / receive message cost (ns)

Ti
m

e
(n

s)

CTU SN (send / receive message)
CTU SE original mutex cost (7346ns)
CTU SE 5x mutex cost
CTU SE 10x mutex cost

Figure 2.10: Varying the costs for sending and receiving messages when running the CTU transac-
tion. This graph shows one curve for the costs associated with SN when varying the
costs for sending and receiving messages. Three other curves are shown for SE when
using the original cost for setting mutexes, 5 times the original cost and 10 times the
original cost.

architecture than in the other.The following subsections describe each cost and the reason to
why it is considered significant.

2.10.1 Sending and receiving messages

The task of sending and receiving messages is only performed in SN. In SN, all nodes have
access to distinct portions of the database, and a transaction may require data from several
locations, as explained in section 2.4. The SE approach however, implies that all nodes have
access to the entire database. At the cost of heavy synchronizing, SE has no need for the
message passing scheme that SN utilizes.

The message passing cost is considered to be significant for two reasons. First, our previ-
ous work suggested that this cost is dominant in SN. We proposed a theoretical minimal cost
of 75ns for sending, and likewise, 75ns for receiving. We assumed complete and optimal OS
support, which is necessarily not the case in practice. Second, because this cost is exclusive
to SN, it is vital in order to establish the relative performance between the two architectural
approaches.

2.10.2 Building messages and log posts

Because the task of writing to log is performed much more frequently in SN, due to the 2PC
protocol, it is important to decide the cost associated with building log posts. Along the lines

2.10. SIGNIFICANT COSTS 19

of the previous discussion (see section 2.10.1), this is also the case with the cost associated
with building messages.

2.10.3 Interpreting messages and log posts

For each message or log post built, interpreting that message or post is also a task that needs
to be taken into consideration. The same reasoning as in section 2.10.2 applies for this cost.

2.10.4 Writing to log

Both architectural approaches need to write to log when updating the database. However,
because SN utilizes the 2PC protocol (see section 2.4), logging is performed much more fre-
quently in SN than in SE. It is therefore important to determine the cost associated with
writing to log.

2.10.5 Synchronizing shared data structures

As mentioned in 2.10.1, because all nodes in SE have access to the entire database, a tight
synchronization scheme is needed in order to ensure serializable execution. This was fur-
ther described in section 2.6. Although some internal process synchronization most likely is
needed also in SN, such a tight synchronization scheme is obviously not necessary, as each
node has exclusive access to a distinct portion of the database.

Because the synchronization of shared data structures only applies to SE, it is considered
significant to establish the cost associated with such synchronization.

CHAPTER3
PRE STUDY

Having established which significant costs to benchmark in section 2.10, the natural next step
is to examine possible techniques to use when micro benchmarking these costs.

This chapter is however twofold. For our purposes, we covered the necessary topics re-
garding DBMS design choices for both SN and SE in chapter 2. Niagara is however yet to
be covered. Although a thorough dissection of the Niagara chip is outside the scope of this
report, there are some key concepts that must be examined before we continue. The first goal
of this chapter is to expand on these concepts.

In section 3.2, the chapter continues with examining the platform on which the bench-
marks will be executed. Section 3.3 looks into potential programming and scripting languages
before we are turning our attention to possible programming techniques in section 3.4.

3.1 THE NIAGARA PROCESSOR

The MCSD realization Niagara has gathered much attention after the launch on December 6
2005. Sun Microsystems offers two server models featuring Niagara, the Sun Fire T1000 and
T2000 server.

Although Niagara shares many of the properties with the generic MCSD chip examined in
our previous work, there are two key concepts in Niagara that needs to be pointed out. After
we have examined how thread switching and cache communication is carried out on Niagara,
we refer to a related Niagara research.

3.1.1 Niagara thread switching

When a cache-miss occurs during execution of a thread, fetching data from memory may take
several hundred cycles, leaving the processor idle. According to [Sun03] this may be as much
as 75% of the time. When this happens, Niagara is immediately able to switch to another
thread, reducing the impact of the cache-miss.

Figure 3.1 examines the masking of memory latency in one of the eight Niagara cores1,
directly addressing the problem with the widening gap mentioned in the introduction of this
report (see figure 1.1).

If the mean number of cycles until a miss is at least 1
3 of the number of cycles used to fetch

data from memory, the latency may be completely masked. The relative time where a thread
is run by the Central Processing Unit (CPU) is illustrated in the figure by the blocks named C.

1Each Niagara core utilize the Chip Level Multi Threading (CMT) property – The execution of instructions
from multiple threads within one processor chip at the same time. Each core in Niagara utilizes this property.
Sun Microsystems terms the Niagara chip “Radical CMT”. In order to make the difference between ordinary CMT
processors and Niagara clearer, we have chosen to term the Niagara chip MCSD throughout the report.

21

22 CHAPTER 3. PRE STUDY

Thread 1

Thread 2

Thread 3

Thread 4

CMT Processor

Time

C M C M C M

C M C M C M

C M C M C M

C M C M C M

C

M

Compute

Memory latency

Figure 3.1: Eliminating latency. Running four threads within each core, the memory latency might
be completely masked.

The relative time where the thread is waiting for a memory fetch is illustrated by the blocks
named M . As seen from the figure, increasing the clock frequency of a processor will only
reduce the size of the C-blocks, leaving the M -blocks, memory latency, unchanged.

This efficient thread switching scheme is indeed crucial for Niagara. As we shall see, the
L1 caches are quite small. However, with multiple threads available, L1 misses become less
critical, as threading can hide the L2 cache latency.

3.1.2 Niagara cache communication

Communication between processors in an ordinary multiprocessor system needs to go across
expensive integrated circuit interfaces. In the case of current systems based on the SE architec-
ture, the communication between processors is realized through main memory. In the case of
the SN architecture, it is realized through message passing over an interconnection network.
These ideas were described in more detail in [BJ05].

Neither of these approaches are necessary using the Niagara MCSD processor. It is in the-
ory possible to perform all communication between threads by dumping information directly
to L2 cache, as illustrated in figure 3.2. In the figure, C1 to C8 are the eight cores on the Niagara

...

L2 Cache

T1

L1 Cache

T2 T3 T4

C8

T1

L1 Cache

T2 T3 T4

C1

Figure 3.2: Cache architecture. Each core can run 4 concurrent threads. Each core has private
access to L1 cache, whereas L2 cache is used for communication between the cores.

3.1. THE NIAGARA PROCESSOR 23

Feature Sun Fire T1000 Sun Fire T2000
Form Factor: 1RU, 18.75" deep 2RU, 24" deep
CPU: UltraSPARC T1 UltraSPARC T1

1.0 GHz 1.2GHz (4, 6, & 8 core)
Memory: DDR2, 512MB/1GB/2GB DDR2, 512MB/1GB/2GB

8 x memory slots, 16GB total 16 x memory slots, 32GB total
Network
(10/100/1000):

4x 4x

Internal Storage: 1 x 3.5" SATA, non-hot-swap Up to 4 x 2.5" SAS, hot-swap
Removable Me-
dia:

None 1x DVD-ROM

Serial: 1x RS-232, No USB 1x RS-232, 4x USB
PCI Express
slots:

1x (low profile) 3x (low profile)

PCI-X slots: None 2x (low profile, 1 occupied)
Redundant
Power Supplies
& Fans:

No Yes

Power Supply: 1x300W 2x550W

Table 3.1: Sun Fire T1000 vs T2000. Gathered from Sun [Sun06b].

processor. T1 to T4 are the four threads running at each core. The L2 cache is shared between
all the cores, while the L1 cache is internal to each core.

3.1.3 Related Niagara Research

As mentioned in the introduction of this section, the Niagara processor is bundled in two
server models. Our test model is T1000, whereas German researchers D. an Mey, et. al.,
[aMSST06a], at RWTH Aachen University have performed an extensive test on the T2000.

As our test model is different from the model used for this research, it is necessary to ex-
amine the differences between the two system models, as listed in table 3.1. The table suggests
that there are only a few differences between T1000 and T2000 from a DBMS point of view.
The vital differences are the memory capacity, which is doubled at the T2000, and a slightly
faster CPU clock. However, we expect that this difference is insignificant with regards to the
micro benchmarking to be performed.

Having established that the research performed on T2000 is also valid for our purposes,
we can move on to examining the findings done by Mey et. al.

Establishing memory latency

According to [BJA05], the main memory latency is 100ns. Mey et. al. benchmarked memory
latency by executing small C programs explained at the corresponding web site [aMSST06b].
The memory performance was benchmarked, and found to scale very well: It scales with only
129ns − 107ns = 22ns latency difference between 32 and 1 processes. The findings are in
accordance with Sun’s own figure. Similar benchmarks were also performed to establish the
bandwidth. The memory performance analysis is thorough. It is found that it is profitable to
distribute the processes across all eight cores when running up to eight processes. This yields

24 CHAPTER 3. PRE STUDY

better results than filling up two cores leaving the other cores idle (as previously mentioned,
Niagara can execute four concurrent threads within each core).

The most surprising about this benchmark, is the result when running 16 processes. It is
found that it is more profitable to start four threads on four cores (and thus leaving the other
four cores idle), than to distribute the workload evenly across all nodes2.

Other benchmarks

This section mentions other benchmarks performed that are considered less significant for our
purposes.

• In the EPCC OpenMP Micro Benchmark, Sun Fire T2000 is benchmarked contra Sun
Fire E2900, testing synchronization overhead and loop scheduling overhead. The T2000
outperforms the competitor by a factor of two. Mey et. al. relates this finding to the
difference in memory latency.

• A benchmark regarding sorting of integers finds that T2000 indeed is outperformed by
E2900, due to its smaller caches than its competitor.

• In the Integer Stream Benchmark, a benchmark called The OpenMP Stream Benchmark
was changed to do integer instead of floating point operations, as the processor does
not handle floating point operations effectively compared to integer operations. It was
evident that the UltraSPARC T1 system scales well, in some cases even up to 32 threads

• A benchmark measuring the performance of parallel partitioning of graphs with ParMETIS
shows that Sun Fire E2900 outperforms T2000 by a factor of two, due to the fact that the
competitor is a multi socket Symmetric Multiprocessing (SMP) machine, compared to
the single socket architecture of Niagara.

• A benchmark regarding password cracking with “John the Ripper” shows that the Nia-
gara processor does not scale due to the small L1 cache Niagara utilizes of 8KB. The com-
petitor E2900 scales well, but has in comparison 64KB L1 cache. When more processes
are running on each core on Niagara, the number of data misses increases dramatically.

3.2 PLATFORM

The first part of the pre study is to examine the hardware platform on which the micro bench-
marks are executed. Needless to say, prior knowledge of the platform is essential in order
to be able to execute the benchmarks properly, as well as understanding the results returned.
This section first presents facts and figures for the hardware. Second, the OS running on the
described hardware is examined.

3.2.1 Hardware

It is necessary to go into the physical architecture of the T1000 Server in more detail. Figure
3.3 includes key figures which are used in section 6.2 when costs are calculated.

2This is surprising, but as we will see when we examine our own benchmark results in chapter 5 – Niagara is
indeed full of surprises.

3.2. PLATFORM 25

L1 cache per core:
8 K data / 16K instruction:

16B/32B cache line
4-way set associative

1 ns access time

L2 cache:
3MB on chip

0.75 MB per bank
64B cache line

12-way set assosiative
21 ns access time

Main memory with:
8 GB DDR2 SDRAM

100 ns access time

8 cores:
Clock speed: 1Ghz

 4 threads within each core
32 nodes total

0,75MB

Core1 Core8Core7Core6Core5Core4Core3Core2

Bank 1: 0,75MB Bank 2: 0,75MB Bank 3: 0,75MB Bank 4: 0,75MB

 [Crossbar]FPU
Internal crossbar

134GB/s

[16B/32B cache line]

[64B cache line]

DDR2 SDRAM DDR2 SDRAM DDR2 SDRAM DDR2 SDRAM

O
n

ch
ip

O
ff

ch
ip

Figure 3.3: Niagara architecture with key figures included.

The details regarding the hardware on which the micro benchmarking is performed are
listed in table 3.2. The details are gathered both directly from the server3 and from the follow-
ing sources:

• Sun paper "Sun Fire T1000 Server Overview" [Sun05d]

• Sun paper "UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005" [Sun06d]

• Sun blueprint "Developing and Tuning Applications on UltraSPARC T1 Chip Multithreading
Systems" [She05]

• Sun paper "The UltraSPARC T1 Processor - High Bandwidth For Throughput Computing"
[BJA05]

• The research "Der UltraSPARCT1 Prozessor("Niagara") – Erste Erfahrungen" by researchers
D. an Mey, et. al.[aMSST06a].

• Sun white paper "Sun Fire T1000 and T2000 Server Architecture" [Sun05d]

3.2.2 Operating System

The Operating System (OS) running on the Sun Fire T1000 Server is an early build of Solaris
11. As explained in [Sun06a], Solaris is a UNIX based OS developed by Sun Microsystems.
Solaris supports both x64-based, x86-based and SPARC-based systems. The Sun Fire T1000

3Issuing the command # /usr/platform/‘uname -i‘/sbin/prtdiag -v lists processor information.

26 CHAPTER 3. PRE STUDY

Hardware Sun Fire T1000 Server
System model: Erie 64bit
Processor: Ultra SPARC T1
Architecture: Sun4V
Address space: 48-bit virtual

40-bit physical
Clock speed: 1.0 GHz
Cores: 8 cores running 4 threads, utilizing 32 logical CPUs
IPC: One instruction per cycle per core
Cycle time:

1
1GHz ≈ 0, 93ns

L1 cache size (per core): 16 KB/8 KB (data/instruction).
4-way set-associative
16B/32B cache lines (data/instruction)

L1 access time: 1 cycle or ≈ 1ns

L2 cache: 3 MB on chip, 4 banks, 12-way set-associative. 64B cache lines
L2 access time: 23 cycles ([Sun06d]) or ≈ 21ns

(measured by [aMSST06a] to be 22ns)
Memory: 8 slots that can be populated with one of the following types of

DDR-2, 400 MHz DIMMS with ECC:
512 MB (4 GB maximum)
1 GB (8 GB maximum)
2 GB (16 GB maximum)

Memory size: 8GB 4

Memory access time: 100ns ([BJA05]
(measured by [aMSST06a]to be between ≈ 107ns (1 process) and
≈ 132ns (32 processes))

Table 3.2: Sun Fire T1000 “Erie” specification, utilizing the Niagara processor.

server is an example of the latter. At the time of writing, Solaris 10 is the featured OS from
Sun, and Solaris 11 is not yet well documented. It is however natural to assume that the early
build of Solaris 11 share most of the features in Solaris 10.

It is well worth pointing out that the OS running on our test machine is an early build.
Although it claims to be optimized for Niagara, we have been unsuccessful in the search of
finding affirmative documentation that states in detail to which degree the many optimization
possibilities of Niagara indeed is implemented.

It is important that the OS actually is tailored to Niagara due to the fact that our micro
benchmarks will be measuring low level system costs, whose results will depend on the level
of support from the OS. This is valid for all the micro benchmarks presented later – all of them
are in some degree dependent on the OS. When the results from the micro benchmarks are
presented later, it is important to keep in mind that the results obtained are indeed dependent
on the OS support for the hardware architecture on which it is running.

4Regarding the field Memory in table 3.2, we have not been able to figure out whether the main memory on our
server were populated with 1GB or 2GB DIMMS. However, we do not expect that either should yield significant
different results.

3.3. PROGRAMMING LANGUAGE 27

3.3 PROGRAMMING LANGUAGE

This section presents an assessment of possible programming language candidates to real-
ize the benchmarks. It is important to decide upon this at an early stage, as the choice of
programming language also restricts the implementation techniques to consider.

3.3.1 The objective of the micro benchmarking

The objective for micro benchmarking is to establish cost figures associated with the decom-
posed sub tasks of a transaction. These tasks are described in section 2.10. We expect these
tasks to be indeed small and the time needed to execute them is not anticipated to exceed a
couple of hundred µs at most. It is therefore important that the programming language does
not add a considerable amount of overhead.

3.3.2 Programming language candidates

Having the previous section as a premise for the choice of programming language, the follow-
ing candidate languages are considered:

• Java

• C# .net

• C++

• C

• DTrace

While the first four candidates are established, popular and well documented program-
ming languages, the latter candidate needs an introduction.

Introduced in Solaris 10, Dynamic Tracing (DTrace) is a diagnostic monitoring tool for
troubleshooting systemic problems in real time provided by the OS. DTrace allows the user to
instrument the system by using the D programming language. Using DTrace, it is possible to
monitor the system using a number of probes inserted in the Solaris OS. This may be helpful
in order to find out exactly what is happening in the different parts of the system. DTrace is
further explained in [Sun05c].

Both Java and C# are popular object oriented languages. However, Java utilizes a Virtual
Machine between the running code and the machine. The .net-framework assumed by C#
works in a similar fashion. Although ensuring portability, rich libraries and several other
tractable features, these languages are not the answer to the quest of performing our micro
benchmarks, measuring µs (and sometimes, even ns). Both JVM and the .net-framework
would introduce a lot of overhead, and the results of the micro benchmarks would not be
sufficiently accurate. In addition we do not expect to have the possibility to install such virtual
machines on the Sun Fire T1000 Server.

Excluding the languages assuming virtual machines, C, it’s object oriented big brother,
C++ and DTrace are left. C++ is excluded because the programs used for the micro bench-
marks are small and do not utilize objects of any kind. The C programming language is
chosen over DTrace for the following reasons:

28 CHAPTER 3. PRE STUDY

• The C programs running the micro benchmarks are easy to understand

• C is used by other similar benchmarks, i.e. [aMSST06a]

• C is a well known programming language [KR88] opposed to the less familiar probing
tool DTrace

3.3.3 Shell scripting

Although the benchmarks are written in the C programming language, using the scripting
facilities of a UNIX based OS significantly simplifies the automation in scheduling the mi-
cro benchmarks. The benchmark programs is to be executed a number of times with different
parameters. Running the programs without automation is both error-prone and time consum-
ing. As mentioned in 3.2.1, time is a limited resource. Therefore, the use of scripts is tractable
for both reasons.

There are three main types of shells, with benefits and drawbacks:

sh The Bourne Shell is the original shell language, sh. It is virtually without bugs, and on
UNIX systems, most of the scripts used to start and configure the operating system are
written in this shell. However, it has a somewhat obtuse syntax compared to csh.

csh The C Shell. This shell is named so because of the similar syntactical structures to the
C language. This is attractive, considering that the micro benchmarks themselves are
written in C. However, according to the man pages of csh, it has quite a bug list opposed
to sh

ksh The Korne Shell. This shell language is a superset of sh. In addition, it contains more
advanced functionality on top. However, the ksh language is not as portable as sh.

Because of the constraint in time available when performing the benchmark, we settle for
the original Bourne Shell language defined in [Ste78]. We can not afford to explore that a csh
script contains bugs, or that the ksh language is not supported at testing phase on site.

Having settled for the C programming language and the sh shell language, the following
section explores possible implementation techniques to realize the micro benchmarks.

3.4 TECHNIQUES

This section describes potential techniques to realize the micro benchmarks. As pointed out
in section 2.10 at page 17, the significant costs to be micro benchmarked are:

• Sending and receiving messages

• Building messages and log posts

• Interpreting messages and log posts

• Writing to log

• Synchronizing shared data structures

Some of these costs can possibly yield different results depending on the technique used.
The following subsections describe potential techniques to approach each of these costs.

3.4. TECHNIQUES 29

Application – (i.e HTTP, FTP)

Transport – (TCP or UDP)

Internet – (IP)

Host to network

TCP/IP Reference Model

Figure 3.4: The TCP/IP reference model as given in [Tan96]. The Transport and Internet layer is
the central layers for our purposes, they are therefore unshaded. IP is the underlying
protocol on which the transport layer depends on. The task of the Internet layer is
to provide correct packet routing. TCP is a reliable connection-oriented protocol that
guarantees correct byte stream transmission from one machine to another. UDP is on
the other hand an unreliable, connectionless protocol that does not utilize the sequence
control of TCP, at the gain of less overhead involved.

3.4.1 Sending and receiving messages

We have identified five techniques to approach message passing between processes. All of
them use some way of Inter process communication (IPC).

TCP Transmission Control Protocol (TCP) is a network protocol that guarantees reliable and
in order delivery of sender to receiver data. Using TCP, applications on networked hosts
can create connections to one another, over which they can exchange data or packets.
As thoroughly explained in [Tan96], TCP is part of the TCP/IP reference model, named
after its two primary protocols. As described in figure 3.4, TCP is a protocol in the
transport layer in the TCP/IP reference model.

UDP As TCP, User Datagram Protocol (UDP) is a protocol in the transport layer in the TCP/IP
reference model (figure 3.4). Contrasting TCP, UDP has less overhead, and is thus tra-
ditionally considered faster, in the face of no sequence and flow control. UDP is useful
for applications where prompt delivery is more important than accurate delivery.

Solaris Doors According to [Ste99], Doors were first developed for the Spring distributed
operating system. Doors later appeared in Solaris 2.5, although at an experimental stage.
Solaris Doors is a Remote Procedure Call (RPC) programming interface that allows a
procedure in one process to call a procedure in another process. When passing pointers
to the messages as parameters, this provides a method for message passing. According
to [Ste99], Solaris Doors is as fast, if not faster, than all other forms of message passing.
This statement was made in 1999. It is not necessarily true today.

Fast Sockets Two researchers at Sun Microsystems have developed a library called speed
library or fastsockets, as documented in [NV01]. The motivation for the devel-
opment was that although Doors is the fastest IPC, socket based IPC (such as TCP)
is portable, flexible and has the ability to communicate across a network in addition to
communication between processes on the same processor. In the face of these properties,
Doors IPC is cumbersome. Fastsockets was developed to meet these attractive proper-

30 CHAPTER 3. PRE STUDY

ties while being based on Doors. Three different implementations of fastsockets are
discussed in [NV01]:

• Using Doors IPC to transfer data and signal the other process of data availability

• Using memory maps to transfer data while using Doors IPC to signal data avail-
ability

• Using Doors IPC to set up the initial connection and memory mapping to transfer
data, while using semaphores to signal the other process of data availability

System V Message Queues As explained in [Sun05a], System V IPC Message queues allow
processes to place messages into a queue where any process can retrieve the message.
Whereas System V IPC communication is reliable, it is also heavyweight. A process can
create a new message queue, or it can connect to an existing one. In the latter case, two
processes can exchange information through the same message queue5.

3.4.2 Building messages and log posts

For our purposes, there is no need for sophisticated techniques in order to build a message.
The stdlib library is sufficient. No messages or log posts are too big to be on the stack.

3.4.3 Interpreting messages and log posts

For our purposes, interpreting a message does not call for any special technique. Although
some kind of parsing is required for interpreting, the stdlib library should be more than
sufficient.

3.4.4 Writing to log

For our purposes, writing to log does not require other techniques than introducing the malloc
call. This call is needed because the log buffer is potentially to big to be on the stack, and needs
to be allocated on the heap.

3.4.5 Synchronizing shared data structures

We have identified two different candidate techniques to approach the problem of synchro-
nizing shared data structures.

POSIX Mutexes POSIX Mutexes are either intra or inter process. A mutex guarantees mutu-
ally exclusive access to a shared resource at any given time. Threads that want to access
a resource protected by a mutex must wait until the currently active thread is finished
and unlock the mutex. Mutexes are easy to use, but can drastically slow down threaded
code when overused.

5A sample ping-pong implementation of System V Queue is found at http://www.ecst.csuchico.edu/ bee-
j/guide/ipc/mq.html

3.4. TECHNIQUES 31

System V Semaphores Opposed to mutexes, semaphores allow simultaneous access to re-
sources. Semaphores represent “available resources” that can be acquired by multiple
threads at the same time until the resource pool is empty. Additional threads must then
wait until the required number of resources are available again.

CHAPTER4
APPROACH

This chapter describes the approaches to realize the micro benchmarks.
As explained in section 3.2.1, the server running the micro benchmarks is a Sun Fire T1000

Server, [Sun05e], code named Erie. The server is physically resident at a Sun Microsystems
computer lab in California. Exclusive access to this machine is of quite high demand, but
a two week exclusive time window was allocated to execute all the benchmarks. Due to
the very limited amount of time available for us to perform the benchmarks, benchmarking
every single DBMS cost is not feasible. Therefore, we settle for 6 micro benchmarks. Each
benchmark are presented in detail in section 4.1. Section 4.2 then describes how shell scripting
is used to automate the scheduling of the benchmarks.

4.1 BENCHMARK REALIZATION

Based on the significant costs presented in section 2.10 and the techniques presented in section
3.4, the following benchmarks are decided upon.

Benchmark 1: Message passing using TCP/IP sockets The first benchmark uses the TCP/IP
protocol to send messages between logical nodes. We felt it natural to perform a TCP/IP
benchmark. TCP/IP is well known, easy to use for the application programmer, portable
and can scale to communicate over an external network. In addition, much work has
been done in order to make TCP/IP efficient by short-circuit the stack as early as possi-
ble. Clearly, for our purposes, it is not necessary to go off chip. According to [Van05],
Sun Microsystems has confirmed that the Niagara processor and Solaris 10 OS have in-
deed been tweaked for TCP/IP. The Sockets library socket defined in [Sun05b] is used
realize this benchmark. This benchmark is described in section 4.1.1.

Benchmark 2: Message passing using Solaris Doors Solaris Doors is chosen because it is re-
garded as the fastest form of IPC. Although somewhat cumbersome to the application
programmer, it is chosen over fastsockets (which also uses Solaris Doors for com-
munication) because fastsockets is lacking documentation and appears to be in test-
ing phase. A DBMS must rely on stable libraries. The Doors library door defined in
[Sun05b] is used to realize this benchmark. This benchmark is described in section 4.1.2.

Benchmark 3: Building or interpreting messages and log posts Although these costs are not
identical, it is natural to assume that the cost associated with building and interpreting
messages are indeed very similar. Because of the tight time schedule, we choose to per-
form only one benchmark for these two costs, and apply the result to both tasks when
calculating later. No special libraries are used to build or interpret messages and log
posts. The benchmark makes use of standard C primitives. This benchmark is described
in section 4.1.3.

33

34 CHAPTER 4. APPROACH

Benchmark 4: Writing to log No special libraries are used to write to log. The benchmark
makes use of standard C primitives. This benchmark is described in section 4.1.4.

Benchmark 5: Synchronizing using POSIX Mutexes For synchronizing intra process, we bench-
mark using POSIX mutexes. These are lightweight synchronization tools, and useful
for synchronizing within processes. The POSIX Threads library pthreads defined in
[Sun05b] is used to realize this benchmark. This benchmark is described in section 4.1.5.

Benchmark 6: Synchronizing using System V Semaphores Opposed to mutexes, semaphores
allow simultaneous access to resources. Synchronizing between processes requires a
shared memory area, and in Niagara, L2 cache is the highest such area in the system
architecture. We did choose System V Semaphores over the POSIX equivalent for the
following reasons:

• System V has been in use longer and is more documented

• We are only using a set of one semaphore, so even though POSIX are not as heavy-
weight as System V, it is natural to assume that the differences between the two are
not significant.

System V Semaphore library defined in [Sun05b] is used to realize this benchmark. This
benchmark is described in section 4.1.6.

The following properties exists for the benchmarks:

Ensuring simultaneous execution The benchmarks including more than one process are syn-
chronized using semaphores to ensure that all processes start simultaneously. The moti-
vation for this is to simulate a real-world approach, where such a condition often is the
case.

The benchmark to be synchronized first starts a process that creates two semaphores,
start and finish, and initializes both semaphores to zero. The processes1 executing
the main part of the benchmark, starts up by trying to grab the start semaphore. That
is, they try to decrement it by one.

When all processes are pending on the start semaphore, the semaphore is increased to
a value equal to the number of processes pending. All processes thus starts executing the
main part of the benchmark simultaneously. After the start semaphore is increased, a
caretaker process is started. This process tries to decrement the finish semaphore by
a value equal to the number of processes. When the processes running the main part of
the benchmark are finished, they increment the finish semaphore by one. Thus, when
the main part of the benchmark is executed by all processes, the caretaker process wakes
up, and removes both semaphores.

Running the benchmark in this manner does not only synchronize processes within the
benchmark, but allows several benchmarks to be run sequentially using a shell script
without risking that benchmarks interfere with each other.

Time keeping Time keeping is done using the Solaris specific function gethrtime() which
returns high resolution time expressed in nanoseconds since some arbitrary time in the
past.

1Processes should here be considered either processes or process pairs

4.1. BENCHMARK REALIZATION 35

ping pong

Get start time
Send message

Recieve message

Build message

Get start time

Get end time

Build message

Recieve message

Send message

Get end time

Ai

Loop n times Loop n times

 i Є [0,n]
Bi
 i Є [0,n]

Xi

Xi

Si

Ri

Si

Ri

Figure 4.1: Establishing cost for message passing using TCP/IP sockets. The ping side builds a
message and sends it to the pong side. The pong side builds a message of equal length
and responds. On the ping side, time stamps are taken before sending the message and
after receiving the response. On the pong side, time stamps are taken after receiving the
message, and before responding. The total number of messages sent from each side is
denoted n, whereas Xi is the time used to send and receive message i.

All programs are compiled using the C compiler cc that comes bundled with Sun Studio
11 [Sun06c]. The programs are compiled for Niagara using the following flags:

• -fast (specifying that the compiler should build speed optimized code)

• -xtarget=ultraT1 (specifying that the target is Niagara)

• -xchip=ultraT1(specifying that the target chip is Niagara)

• -xarch=v9b (specifying the server architecture. v9b should be used for compiling on
the 64-bit version of Niagara)

The following sections describe the approaches taken for the benchmarks listed above.
Each section describes the micro benchmark in detail with input parameters and values, in-
cluding a figure that illustrates the execution of the benchmark and the manner in which the
time keeping is performed. The C programming code for all benchmarks are included in
appendix C.

4.1.1 Benchmark 1: Message passing using TCP/IP sockets

In the SN case, it is important to establish the actual cost for sending and receiving messages
between nodes on the Niagara chip. This benchmark uses TCP/Internet Protocol (IP) sock-
ets to realize message passing. In order to find this cost, five programs are written, namely

36 CHAPTER 4. APPROACH

ping.c, pong.c, pingpong_init.c, pingpong_start.c and pingpong_finish.c. The
three latter programs are used for synchronization purposes only, and are therefore not dis-
cussed further.

The execution is straight forward, as figure 4.1 suggests. First, the ping process builds and
sends a message to the pong process. The ping side then waits for a response message from
the pong process. At the pong side, a message (of equal length as the message just received) is
built and sent back to the ping process.

The time used by the ping process is found by subtracting the system clock time value
after receiving the pong response from the system clock time value before initially sending the
message. In figure 4.1, this time interval is named Ai. The time used at the pong side is found
in a similar fashion, by subtracting the system clock time value after sending the response
back to the ping process from the system clock time value when the pong process received the
message from the ping process. This time interval is named Bi in the figure. The i represents a
number in a sequence of a total of n messages. In this benchmark n = 1 000 000, which means
that both ping and pong send and receive 1 000 000 messages.

The time used to send and receive message i from one side to the other, (Xi in the figure)
is found using the simple formula

Xi =
Ai −Bi

2

The average time used to send and receive a message from one side to the other is found
using

X =
1
2n

n∑
i=0

(Ai −Bi)

In order to separate the time used to send a message from the time used to receive the
message, we must assume that sending and receiving is equally expensive. Therefore, we set

Si = Ri =
Xi

2

Thus, the average time used to send or receive a message is calculated using formula 4.1.

X =
1
4n

n∑
i=0

(Ai −Bi) (4.1)

When running the benchmark, several parameters are varied as listed in table 4.1.
The message size is given as an argument directly in the code, whereas a script is uti-

lized in order to be able to vary the number of process pairs. All shell scripts executed for
this benchmark are presented in appendix B.1. The code for this benchmark is presented in
appendix C.1.

Benchmark 1: Message passing using TCP/IP
Messages 1 000 000
Process pairs 2 4 6 8 16 32 64
Msg size (B) 32 64 128 256 512 1024 2048 4096 8192 16384

Table 4.1: Input parameters to the benchmark for message passing using TCP/IP.

4.1. BENCHMARK REALIZATION 37

door_client door_server

Get start time
door_call(&message)

Return from door_call

Build message

Get start time

Get end time

Build message

Enter server_proc

door_return(&message)

Get end time
Xi

Xi

Ai

Loop n times

 i Є [0,n] i Є [0,n]
Bi

Si

Ri

Si

Ri

Figure 4.2: Establishing costs for sending and receiving messages using Solaris Doors. The
door_client builds a message and passes the pointer to it to the door_server as an ar-
gument to the door_call() procedure. The server procedure which is invoked at the
door_server side, builds a response message of equal length and passes a pointer to the
message back to the door_client as an argument to the procedure door_return(). At the
door_client side, time stamps are taken before and after the call to door_call(). At the
door_server side, time stamps are taken at the beginning and the end of the server pro-
cedure. The total number of messages sent from each side is denoted n, whereas Xi is
the time used to send and receive message i.

This benchmark is synchronized using semaphores as described in “Ensuring simultaneous
execution” in section 4.1.

4.1.2 Benchmark 2: Message passing using Solaris Doors

As already explained in section 4.1.1, it is in the SN case important to point out the costs
associated with sending and receiving messages between nodes on the Niagara chip. This
section describes a benchmark, used to establish this cost, which uses Solaris Doors to realize
message passing.

In order to establish the costs for sending and receiving messages when using Solaris
Doors, five C programs are written. These are doorserver.c, doorclient.c, door_init.c,
door_start.c and door_finish.c. The three latter programs are used for synchroniza-
tion purposes only, and are therefore not discussed further.

As illustrated in figure 4.2, the door_client has a main loop that performs two task. The
first task is to build a message. The second task is to send the message to the door_server by
calling the function door_call() and passing a pointer to the message as a parameter. The func-
tion may also pass other parameters, but these are not of interest for our benchmark. Each
time the door_client calls the server procedure, a thread in the door_server process handles the
door_client’s call. Although this is what really happens, it is easier to understand the simplifi-
cation that the door_client’s thread is executing the method inside the door_server, as illustrated

38 CHAPTER 4. APPROACH

in figure 4.2. The server procedure also consists of two tasks, namely building the response
message and responding using the procedure door_return(). The response message is passed
with the procedure as a parameter. Because RPC using Solaris Doors is synchronous, the
door_client does not continue execution until the call to door_call() has returned. The time used
for sending and receiving a message on the door_client side is measured by subtracting the
time stamp taken after the call to door_call() from a time stamp taken before the call. This is il-
lustrated in the figure. Similarly, to exclude the time not spent sending and receiving message,
the door_client takes time stamps at the beginning and the end of the server procedure.

The time used to send and receive message i from one side to the other, (Xi) in the figure)
is found using the simple formula

Xi =
Ai −Bi

2

The average time used to send and receive a message is then calculated using the following
formula

X =
1
2n

n∑
i=0

(Ai −Bi)

As illustrated in the figure, Ai and Bi are the time used on the door_client and the door_server
side, respectively, when sending message i from the door_client and responding with message
i from the door_server . The number of messages sent from each side is denoted n. Thus, the
total number of messages sent is 2n.

In order to separate the costs for sending (S) from the cost for receiving (R), we must, as
in the case for TCP/IP, assume that these costs are equal. Therefore, we set

Si = Ri =
Xi

2

Thus, the average time used to send or receive a message is calculated using formula 4.2:

X =
1
4n

n∑
i=0

(Ai −Bi) (4.2)

When the benchmark is run, several parameters are varied as listed in table 4.2. The mes-
sage size is given as an argument directly in the code, whereas a script is utilized in order to
vary the number of process pairs. As for the benchmark using TCP/IP, all processes sends
and receives 1 000 000 messages. All shell scripts executed for this benchmark are presented
in appendix B.2. The code for this benchmark is presented in appendix C.2.

This benchmark is synchronized using semaphores as described in “Ensuring simultaneous
execution” in section 4.1.

Benchmark 2: Message passing using Solaris Doors
Messages 1 000 000
Process pairs 2 4 6 8 16 32 64
Msg size (B) 32 64 128 256 512 1024 2048 4096 8192 16384

Table 4.2: Input parameters to the benchmark for message passing using Solaris Doors

4.1. BENCHMARK REALIZATION 39

Get start time

Get end time

S

build

Build
messagei
i Є [0,n]

E

X

Lo
op

 n
tim

es

Figure 4.3: Establishing cost for building messages/posts. The program, build.c, builds n mes-
sages one byte at a time. The inner loop is excluded for simplicity. Time stamps are
taken before and after the outer loop.

4.1.3 Benchmark 3: Building or interpreting messages and log posts

In the SN case, message passing and logging are two of the most important costs that may
have an impact on the relative performance compared to the SE case. It is therefore impor-
tant to establish the costs associated with these tasks. This section deals with this issue and
describes a small program, build.c, used to point out these costs.

We assume that building a message and building a log post, is similar, and therefore the
same benchmark is used to determine both costs. As stated earlier, the cost of building and the
cost of interpreting is expected to be very similar. Therefore, the result from this benchmark
will be used for calculation of both costs.

When a message/post is built, one does not necessarily know its length on beforehand
because this depends on the contents, which may not be known until build time. In a complete
DBMS, the contents of a message/post may be fetched from a variety of locations. Because
we do not have a complete DBMS to our disposal, we do not have the possibility to simulate
this property. We do however expect this shortcoming to be approximately compensated by
our decision to insert words of size 1B, when building a message. Usually one would insert
words of greater size, and thus achieve greater efficiency. Because all messages/posts used in
this benchmark consist of predefined ASCII characters rather than values based on build time
conditions, we expect our program to execute faster than would be the case in a real DBMS.
We do however anticipate our decision to use words of size 1B to compensate for this probable
miscalculation.

The program starts with creating an array, buffer, of the same size as the message/post
size. A nested loop is performing the main part of the benchmark. The inner loop iterates
over the buffer, filling out the message one byte at a time, while the outer loop iterates over
the number of messages. This is illustrated in figure 4.3, except that the inner loop is excluded
for simplicity. Time stamps are taken before the nested loop starts and after the nested loop
ends. In the figure these points of time are named S and E, respectively. The number of
messages/posts is denoted n. In this benchmark n = 1 000 000 , which means that 1 000 000
messages/posts are built.

40 CHAPTER 4. APPROACH

Benchmark 3: Building messages and log posts
Messages 1 000 000
Post size (B) 32 64 128 256 512 1024 2048 4096 8192 16384

Table 4.3: Input parameters to the benchmark for building messages posts

The average cost is then calculated using formula 4.3

E − S

n
(4.3)

When the benchmark is run, input parameters are varied as listed in table 4.3.
The message/post size is given as an argument directly to the build.c program, whereas

the entire benchmark is scheduled using a script. The shell script executed for this benchmark
is presented in appendix B.3. The code for this benchmark is presented in appendix C.3.

4.1.4 Benchmark 4: Writing to log

In the SN case, logging is performed time and again compared to the SE case. This is because
distributed transactions are executed in compliance with the 2PC protocol in order to guar-
antee correctness, as described in [MLO86]. It is therefore of vital importance to establish the
cost associated with writing a log post to memory.

We assume that the log is organized as a circular buffer. This means that the buffer size
is fixed, and when the log buffer is full, the oldest part of the log is overwritten. Log posts
are therefore written to buffer in a sequential manner, as illustrated in figure 4.4. In order to
realize this, a C program is written, namely myLog.c. The program starts with allocating a
memory area to be used as the circular buffer. The insertion of log posts is carried out through
a nested loop. The outer loop iterates over the number of log posts, while the inner loop
iterates over the size of a log post, filling ASCII character directly into the buffer. The outer
loop loops a number of times equal to the number of log posts to be inserted. Posts are built
directly into the buffer instead of being built first and the copied. For simplicity the inner loop
is not illustrated in the figure.

Time stamps are taken before the nested loop starts and after the nested loop ends. In the
figure, these points in time are named S and E, respectively. The average cost is calculated
using formula 4.4

E − S

n
(4.4)

Inserting posts in this manner allows us to use the cache efficiently. This is because when
inserting sequentially into an array of allocated memory, normal cache policy is to pre fetch
cache words which will be needed in the near future. Therefore, less time is spent waiting for
memory fetches.

However, it would not be realistic to fill up a cache line with log posts and then write all
of them to the memory in a single batch, as this is not a property that is likely to occur in a
real DBMS. To avoid this, there is a 256KB space between the log post inserted in the log.
Sequential posts are therefore forced to different cache lines.

When the benchmark is run, several parameters are varied as listed in table 4.4. The post
size and the buffer size are given as arguments directly to the myLog.c program, whereas the

4.1. BENCHMARK REALIZATION 41

Get start time

Get end time

S

myLog

Write posti
to log

i Є [0,n]

E

X

Lo
op

 n
tim

es

Figure 4.4: Establishing cost for writing to log. The program, myLog.c, builds n log posts directly
into the buffer. There is a 256KB space between log posts to force subsequent posts to
different cache lines. The inner loop is excluded for simplicity.

Benchmark 4: Writing to log
Messages 1 000 000
Post size (B) 32 64 128 256 512 1024 2048 4096 8192 16384
Buffer size (MB) 10 20 40 80 160 320 640 1280

Table 4.4: Input parameters to the benchmark for writing to log

entire benchmark is scheduled using shell scripts. The shell scripts executed for this bench-
mark are presented in appendix B.4. The code for this benchmark is presented in appendix
C.4.

4.1.5 Benchmark 5: Synchronizing using POSIX mutexes

In the SE case it is vital to determine the cost associated with synchronization. This is because
such synchronization is not necessary in the SN case. The cost may therefore be cardinal to
the relative performance of the two architectural approaches.

As mentioned in the introduction to section 4.1, this benchmark measures the cost of mu-
tex synchronizing within a process. The cost of using mutexes does however continue to be
interesting as they will much likely be needed to synchronize threads within a process. It is
also interesting to compare the results with assumptions made by [BJ05]

To establish the costs related to setting and releasing mutexes a small program, sr_mutex.c,
is written. The program creates a set of mutexes, and sets and releases each mutexes a number
of times. This is illustrated in figure 4.5. The number of times each mutex is set and released
is denoted n. The number of mutexes is denoted m. The program contains a nested loop. For
each iteration of the outer loop, all of the mutexes are set and released in separate inner loops.
Before and after each inner loop, time stamps are taken, separating the time spent setting from
the time spent releasing.

42 CHAPTER 4. APPROACH

sr_mutex

Xj

Loop m times

Set mutexi

Yj

Loop m times

Loop n times

 j Є [0,n]

 j Є [0,n] i Є [0,m]

Set mutexi
 i Є [0,m]

Sj
1

Sj
2

Rj
1

Rj
2

Get start time

Get end time

Get start time

Get end time

Figure 4.5: Establishing costs for setting and releasing mutexes. The program, sr_mutex.c, sets
and releases m mutexes n times. This is executed in a nested loop. For each iteration of
the outer loop, two inner loops iterate over a set of mutexes, setting and releasing every
mutex one time. Time stamps are taken before and after both inner loops, separating
the time used to set and release.

In the figure, these time stamps are named S1
j (before setting all mutexes the j’th time), S2

j

(after setting all mutexes the j’th time), R1
j (before releasing all mutexes the j’th time) and R2

j

(after releasing all mutexes the j’th time). At each iteration of the outer loop, the difference
between the after and before time stamps are added to global variables keeping track of the
total time spent setting and releasing.

The time used to set all mutexes the j’th time is calculated using the formula

Xj = S2
j − S1

j

Similarly, the formula for the time used to release all mutexes the j’th time is

Yj = R2
j −R1

j

Benchmark 5: Synchronizing using POSIX Mutexes
Mutexes 1 10 1000 10000
Sets / releases 100 000 000 10 000 000 1 000 000 100 000

Table 4.5: Input parameters to the benchmark for setting and releasing mutexes

4.1. BENCHMARK REALIZATION 43

The average time used to set a mutex is then calculated using formula 4.5

X =
1

mn

n∑
j=0

Xj (4.5)

The average time used to release a mutex is calculated using formula 4.6

Y =
1

mn

n∑
j=0

Yj (4.6)

When the benchmark is run, several parameters are varied as listed in figure 4.5.
In contrast with the other benchmarks not all combinations of input parameters are used.

Only the parameters satisfying the expression m · n = 100 000 000 are included.
Both the number of mutexes and the number of sets and releases per mutex are given as

arguments directly to the sr_mutex.c program, whereas the entire benchmark is scheduled
using a shell script. The shell script executed for this benchmark is presented in appendix B.5.
The code for this benchmark is presented in appendix C.5.

4.1.6 Benchmark 6: Synchronizing using System V semaphores

As explained in section 4.1.5, it is important to point out the cost associated with synchroniz-
ing in the SE case. Whereas section 4.1.5 explains how this cost is benchmarked when mu-
texes are used as the synchronization primitive, this section explains how this is done when
the benchmark uses semaphores.

To establish the cost associated with setting and releasing semaphores, four programs are
written, namely lseminit.c, lsemstart.c, lsemset.c and lsemrm.c. The first pro-
gram creates a semaphore main, and initializes its value to be equal to the number of process
that will try to grab it. Thus, when several processes try to grab the semaphore simultaneously,
they will not have to wait for the semaphore to be available. The processes will however need
to wait for the built-in synchronization of the operations on the semaphore.

As illustrated in figure 4.6, the program lsemset.c contains a main loop that iterates as
many times as the number of sets and releases of the semaphore. This number is denoted
n. At each iteration, the semaphore is set and released once. Time stamps are taken before
and after the set operation and before and after the release operation. In the figure these time
stamps are named S1

i (before setting the i’th time), S2
i (after setting the i’th time), R1

i (before
releasing the i’th time) and R2

i (after releasing the i’th time). At each iteration the differences
between the before and after values are added to global variables keeping track of the total
time spent setting and releasing.

The time used to set the semaphore the i’th time is thus calculated using the formula

Xi = S2
i − S1

i

Similarly, the time used to release the semaphore the i’th time is calculated using the for-
mula

Yi = R2
i −R1

i

The average time used to set a semaphore is calculated using formula 4.7

X =
1
n

n∑
i=0

Xi (4.7)

44 CHAPTER 4. APPROACH

Get start time

Get end time

Get start time

Get end time

Loop n times

semaphore

XiSet semaphore

Yi
 i Є [0,n]

 i Є [0,n]

Release semaphore

Si
1

Si
2

Ri
1

Ri
2

Figure 4.6: Establishing cost for setting and releasing semaphores. The program, lsemset.c,
sets and releases a semaphore n times. Time stamps are taken before and after the set
operation, and before and after the release operation. At each iteration the differences
between the before and after time stamps are added to global variables keeping track
of the total time spent setting and releasing.

The average time used to release a semaphore is calculated using formula 4.8

Y =
1
n

n∑
j=0

Yi (4.8)

When this benchmark is run, the number of process pairs is varied as listed in table 4.6
This benchmark also uses semaphores to synchronize its execution as described in section

4.1 at page 33. Therefore, the program lseminit.c also creates the semaphores start and
finish. These semaphores are only used for synchronization of the benchmark and should
not be confused with the main semaphore. Other programs that also are used to provide such
synchronization are lsemstart.c and lsemrm.c.

The shell scripts executed for this benchmark are presented in appendix B.6. The code for
this benchmark is presented in appendix C.6.

Benchmark 6: Synchronizing using System V Semaphores
Sets / releases 1 000 000
Processes 2 4 6 8 16 32 64

Table 4.6: Input parameters to the benchmark for setting and releasing semaphores

4.2. BENCHMARK SCHEDULING 45

4.2 BENCHMARK SCHEDULING

This section describes how scripting is used to automate the scheduling of the benchmarks.
The advantages of running the benchmarks in this manner compared to running them manu-
ally are clear. First, the parameters are easily given as input, reducing the chances of erroneous
input parameters. Second, it is possible to schedule batches of benchmarks to be run, minimiz-
ing the human interaction. This allows for benchmarks to be run overnight. Third, scripting
simplifies the task of maintaining consistent log file naming.

The following subsections describe how shell scripts are used to schedule each benchmark.

4.2.1 Benchmark 1: Message passing using TCP/IP sockets

Benchmark 1 is scheduled by using four sh scripts, namely run_pong, run_ping, rpps
(short for run ping-pong scheduler) and run_pp_benchmark. Both scripts are pre-
sented in appendix B.1. The following sections describe each script.

run_pong and run_ping

The scripts run_pong and run_ping are responsible for starting a given number of pong and
ping processes by executing the programs compiled from pong.c and ping.c, respectively.
The scripts take three input parameters:

• Number of messages

• Message size

• Number of process pairs

Each script uses the pbind command to bind a process to a logical processor. The only
difference between the scripts is that the calls to pbind made in run_ping are in the reverse
order of the calls made in run_pong. This is done in order to ensure that ping and pong
are indeed executed on different logical processors. All the started processes are executed as
background processes.

rpps

The script rpps is a small script that takes the same three input parameters as run_pong and
run_ping. This script is responsible for starting a given number of process pairs by execut-
ing run_pong and run_ping, passing on the input parameters.. The script starts with run-
ning the program compiled from pingpong_init.c. This program creates the semaphores
start and finish used for synchronization, as explained in section 4.1.

Next, the script starts all the pong processes by executing the script run_pong. When all
the pong processes are started, the script starts all the ping processes by executing run_ping.
When all the ping processes are waiting for the start semaphore as explained in section 4.1,
the program compiled from pingpong_start.c is executed. This program increases the
value of the start semaphore, so that all the ping processes wakes up.

Next, the program compiled from pingpong_finish.c is executed. This process is used
to remove the start and finish semaphores. However, in order to use this process as a
way of telling when all the process pairs are done passing messages, the semaphores cannot
be removed straight away. The process therefore waits for the finish semaphore to reach a

46 CHAPTER 4. APPROACH

value equal to the number of process pairs. When a process pair is done passing messages,
the ping side increases the value of the finish semaphore. Thus, when all process pairs are
done, the pingpong_finish process removes both the start and thr finish semaphores.

run_pingpong_benchmark

In order to minimize human intervention, the script run_pingpong_benchmark is respon-
sible for scheduling the entire benchmark. This is done by serially executing rpps several
times, giving different input parameters. The parameters are listed in table 4.1 in section 4.1.1
at page 36. Because rpps does not finish before the last process pair is finished (because of the
pingpong_finish process), the next test is assured not to begin before the current test is finished.
A five second sleep is placed between two tests to ensure that the system is not cluttered from
the previous test.

4.2.2 Benchmark 2: Message passing using Solaris Doors

Benchmark 2 is scheduled by using two sh scripts, namely run_doors and
run_doors_benchmark. Both scripts are presented in appendix B.2. The following sections
describe each script.

run_doors

The script run_doors is responsible for starting a given number of door_server and
door_client process pairs, by executing the programs compiled from doorserver.c and doorclient.c,
respectively.

The approach is very similar to the approach taken for benchmark 1, but instead of us-
ing three scripts to start a given number of process pairs and to control synchronization, the
benchmark uses one script. Thus, run_doorsmay be regarded as a concatenation of the three
scripts, run_pong, run_ping and rpps, described in the previous section. Of course, doors
process pairs are started, not pingpong process pairs. The script takes three input parameters:

• Message size

• Number of process pairs

• Number of messages

The script starts with executing the program compiled from door_init.c. As for bench-
mark 1, this program creates the semaphores start and finish used for synchronization,
as explained in section 4.1. Both semaphores are initialized to have a value of zero.

Next, the desired number of door_server processes are started by executing the program
compiled from doorserver.c several times. Each process is bound to a specific logical processor
by issuing the command pbind.

Next, the script starts a number of door_client processes, equal to the number of
door_servers. The calls to pbind made when starting the door_clients are in the reverse order
of the calls made when starting the door_servers. This is done in order to ensure that matching
pairs of servers and clients are indeed executed on different logical processors. All door_server
and door_client processes are run as background processes.

The first thing a door_client does is to try to grab the start semaphore. Because the start
semaphore is initialized to have a value of zero, all door_client processes halt their execution.

4.2. BENCHMARK SCHEDULING 47

When all the door_client processes are waiting for the start semaphore as explained in section
4.1, the program compiled from door_start.c is executed. This program increases the
value of the start semaphore, so that all the door_client processes wake up.

When the message passing has begun, the program compiled from door_finish.c is
executed. This process tries to remove all the semaphores. However, as described for bench-
mark 1, this cannot be done before the process pairs are done passing messages. Thus, the
door_finish process waits for the semaphore to reach a value equal to the number of pro-
cess pairs.

When a door_server process has received the last message, it increases the finish semaphore
by one before terminating. Thus, when all process pairs are done passing messages, the
door_finish process wakes up, and removes both the start and the finish semaphores.

run_doors_benchmark

The script run_doors_benchmark is used to schedule the entire benchmark. This is done in
order to minimize the amount of human intervention. The script serially executes run_doors
several times, passing the parameters given in table 4.2 in section 4.1.2 at page 38. To ensure
that resources used by the previous test are released before the next test commences, a five
second sleep is placed between any two tests.

4.2.3 Benchmark 3: Building or interpreting messages and log posts

Benchmark 3 uses one sh script to schedule the entire benchmark, namely run_build. Be-
cause this benchmark does not include simultaneous processes, there is no need to synchro-
nize using semaphores. The script is presented in appendix B.3. The following section de-
scribes run_build.

run_build

The script run_build is responsible for starting several processes of the program compiled
from build.c. These processes are executed serially. The script does not take any parame-
ters, but passes parameters to the build processes according to table 4.3 in section 4.1.3 at page
40.

4.2.4 Benchmark 4: Writing to log

Benchmark 4 is scheduled by using two sh scripts, namely run_myLog and run_myLog_benchmark.
Like benchmark 3, this benchmark does not include simultaneous processes and is therefore
not synchronized using semaphores. Both scripts are listed in appendix B.4. The following
sections describe both scripts.

run_myLog

The script run_myLog is responsible for starting several processes of the program compiled
from myLog.c. This is done serially. The script takes one input parameter:

• Buffer size

The program compiled from myLog.c, however, takes three parameters. These are

48 CHAPTER 4. APPROACH

• Number of posts

• Buffer size

• Post size

The number of posts is held constant for all tests. The buffer size is held constant within
the run_myLog script, whereas the post size is varied according to table 4.4 in section 4.1.4 at
page 41.

run_myLog_benchmark

In order to vary the buffer size according to table 4.4 at page 41, run_myLog is executed sev-
eral times, serially with different input parameters. This is done in the script run_myLog_benchmark.
In order to ensure that the system is not cluttered from the previous test, a five second sleep
is placed between any two tests.

4.2.5 Benchmark 5: Synchronizing using POSIX Mutexes

Benchmark 5 is scheduled by using the single sh script run_sr_mutex. Like benchmark 3
and 4, this benchmark is not synchronized by using semaphores. The script is presented in
appendix B.5. The following section describes run_sr_mutex.

run_sr_mutex

The script is responsible of starting several processes of the program compiled from sr_mutex.c.
This is done serially. The script does not take any input parameters, but passes parameters to
the processes according to table 4.5 at page 42.

4.2.6 Benchmark 6: Synchronizing using System V Semaphores

Benchmark 6 is scheduled by using two sh script, namely run_lem and run_sem_benchmark.
Like benchmark 1 and 2, this benchmark is synchronized using semaphores. Both scripts are
presented in appendix B.6. The following sections describe both scripts.

run_lsem

The approach taken by this script is very similar to the one in run_doors described in section
4.2.2. The script takes two input parameters:

• Number of processes

• Number of sets and releases on the semaphore

The script starts with executing the program compiled from lseminit.c. This program
creates two semaphores, start and finish, which are used for synchronization as described
earlier. Both semaphores are initialized to zero. In addition, the program creates a third
semaphore, main, which is used by the benchmark to measure the costs.

Next, the desired number of processes to set and release the semaphore are created by ex-
ecuting the program compiled from lsemset.c. The processes are bound to different logical

4.2. BENCHMARK SCHEDULING 49

processors by issuing the command pbind. Like the ping and door_client processes, described
in sections 4.2.1 and 4.2.2, respectively, this process tries to grab the start semaphore. Be-
cause this semaphore is initialized to zero, the execution halts.

When all processes are waiting on the start semaphore, the program compiled from
lsemstart.c is executed. This program sets the value of the start semaphore to be equal
to the number of processes trying to perform operations on the main semaphore. Thus, all
the processes wakes up.

When the setting and releasing of the main semaphore has begun, the program compiled
from lsemrm.c is executed. This program tries to remove all three semaphore. However, this
cannot be done before all of the lsemset processes have terminated. Thus, the lsemrm process
waits for the finish semaphore to reach a value equal to the number of lsemset processes.

When an lsemset process has released the main semaphore the last time, it increases the
value of the finish semaphore by one before the process terminates. In this way, when all
the lsemset processes have terminated, the lsemrm process wakes up and removes all three
semaphores.

run_sem_benchmark

The script run_sem_benchmark is used to schedule the entire benchmark. As for the other
benchmarks, this is done in order to minimize the amount of human intervention. The script
serially executes run_lsem several times, passing the parameters given in table 4.6 in section
4.1.6 at page 44. To ensure that the system is not cluttered from the previous test a five second
sleep is placed between any two tests.

CHAPTER5
RESULTS

This chapter presents the results obtained from the benchmarks listed below and described in
chapter 4.

• Benchmark 1: Message passing using TCP/IP

• Benchmark 2: Message passing using Solaris Doors

• Benchmark 3: Building or interpreting messages and log posts

• Benchmark 4: Writing to log

• Benchmark 5: Synchronizing using POSIX Mutexes

• Benchmark 6: Synchronizing using System V Semaphores

The following sections describe and explain results obtained from running the bench-
marks.

Inspecting the hardware configuration of the T1000 1, it is apparent that the T1000 strength
is parallelism. We suspect that it might not excel at tasks that do not involve parallelism. For
comparison, we therefore ran Benchmarks 3-5 on a Sun Fire V890 server. The V890 server has
four CPUs, each running at 1350 MHz. The total amount of main memory is 16GB. This server
resides at Sun Microsystems’ database development premises in Trondheim, Norway. How-
ever, it was not possible to obtain exclusive access to this server, and therefore not possible to
control the server’s total workload. Nonetheless, for comparison, the results from the V890
Server is presented in conjunction with the corresponding benchmark.

5.1 BENCHMARK 1: MESSAGE PASSING USING TCP/IP SOCKETS

This section describes the cost figures derived from running ping.c and pong.c, described
in section 4.1.1.

Figure 5.1(b) shows the costs associated with sending messages when the number of pro-
cess pairs vary between 2 and 64. There are 10 curves in the figure, each representing a differ-
ent message size, ranging from 32B to 16KB. As expected, the cost grows as the message size
is increased. However, very little distinguishes the curves representing messages of size 32B
up to and included 1024B. A possible explanation to this is that the maximum frame size for
Ethernet is 1518B, giving an IP Maximum Transmission Unit (MTU)2 of 1500B. This is further
explained in [Hor84]. Messages smaller than 1500B are therefore all contained within a single
Ethernet frame, and thus, the cost differences are indeed small. The messages of size 2KB,

1The T1000 hardware configuration is discussed in section 3.2 at page 24
2Size of the largest datagram that a given layer of a communications protocol can pass onwards.

51

52 CHAPTER 5. RESULTS

0

50000

100000

150000

200000

250000

300000

1 PP 2 PP 4 PP 8 PP 16 PP 32 PP 64 PP
Process pairs

Ti
m

e
(n

s)

32B 64B 128B
256B 512B 1024B
2048B 4096B 8192B
16384B

(a)

0

50000

100000

150000

200000

250000

300000

32B 64B 128B 256B 512B 1024B 2048B 4096B 8192B 16384B
Message size(B)

Ti
m

e
(n

s)

1 PP 2 PP
4 PP 8 PP
16 PP 32 PP
64 PP

(b)

Figure 5.1: Cost figures for sending/receiving messages using TCP/IP sockets. In (a), the number
of process pairs is varied. In (b), the message size is varied. The cost is the average
time used to send/receive a message.

5.1. BENCHMARK 1: MESSAGE PASSING USING TCP/IP SOCKETS 53

Process Binds at
Server_A cpu0
Server_B cpu1
Server_C cpu2
Server_D cpu3
Client_A cpu3
Client_B cpu2
Client_C cpu1
Client_D cpu0

(a)

cpu0
Server_A
Client_D

cpu1
Server_B
Client_C

cpu2
Server_C
Client_B

cpu3
Server_D
Client_A

Before executing 1
cpu0

Server_A
Client_D

cpu1
Server_B
Client_C

cpu2 cpu3
Server_D
Client_A

Server_C
Client_B

2
cpu0

Server_A
Client_D

cpu1
Server_B
Client_C

cpu2 cpu3
Server_D
Client_A

Server_C
Client_B

3
cpu0

Server_A
Client_D

cpu1
Server_B
Client_C

cpu2 cpu3
Server_D
Client_A

Server_C
Client_B

(b)

Figure 5.2: The interleaving of process execution. The processes bind to different processors, as
illustrated in (a). Figure (b) illustrates that process pairs A and D have problems pass-
ing messages, because the server sides and the client sides are not scheduled to run
simultaneously.

4KB, 8KB and 16KB, on the other hand, amounts to d2048B
1500B e = 2, d4096B

1500B e = 3, d8192B
1500B e = 6 and

d16384B
1500B e = 11 frames, respectively. Therefore, there is a leap in costs associated with sending

or receiving messages of these sizes.
Figure 5.1(b) also shows that until 16 process pairs are exceeded, the costs for sending or

receiving messages of different sizes are fairly stable. There is a small increase in time used
when going from 16 to 32 process pairs. At 32 process pairs, all nodes run two processes, one
ping process, and one pong process. When the number of process pairs reaches 64, all nodes
run four processes, and the cost of sending messages increases dramatically.

Figure 5.1(a) shows the costs associated with sending messages when the message size
vary from 32B to 16KB. There are 7 curves in the figure, each representing a different number
of concurrent process pairs. As suggested by figure 5.1(b), the cost associated with sending a
message is fairly stable until the message size exceeds the size of a maximum IP MTU. It is
also evident that running more than 32 concurrent process pairs results in a dramatic increase
in the average cost per message.

The curve representing 64 process pairs is fluctuating frequently. There may be several
reasons to this. One possible reason that might seem obvious, is the chance of that one test is
not done finished before the next is started, and that this simply is a defect in the benchmark.
However, this is not probable as the benchmark is synchronized using semaphores in order to
ensure that the current test is done before the next begins.

Queuing

Queuing is probable for all message pairs. In order to simulate a real-world workload, semaphores
are introduced in order to be certain that all message pairs indeed starts simultaneously. Be-
cause there are two (or more) processes per logical CPU, the processes are subject to queuing.
Which process to execute first is decided by the OS. For 32 or less process pairs, there are two

54 CHAPTER 5. RESULTS

processes per logical CPU, and thus 50% probability for two corresponding processes to be
executed simultaneously. For 64 process pairs, there are four processes per node, thus reduc-
ing the probability to 25% for the two corresponding messages to be executed simultaneously.
An example of the race between two processes per node is illustrated in figure 5.2.

Consider the scenario where the processes are bound to CPUs as described in table 5.2(a).
A CPU must execute parallel processes in an interleaved fashion. The process not currently
executed is therefore queued. As illustrated in step 1 in figure 5.2(b), Client_C and Server_C
are executed simultaneously at different CPUs. This process pair may therefore send and
receive messages as normal. Client_D and Client_A, however, are not scheduled to run simul-
taneously as their respective server sides. Their time is therefore spent waiting for an answer
from the servers. In step 2, the previous processes are switched. Client_B and Server_B are
communicating normally, whereas process pairs D and A are still not communicating as both
client side processes has been exchanged with their server side processes. Their execution is
therefore still halting. A similar scenario is illustrated in step 3.

Queuing as described above may lead to unfortunate scenarios. If it is possible to control
the execution of the benchmark one might achieve a curve for 64 process pairs similar to the
curve one would get when excluding the upper extremes. This curve will indeed have the
same trends as the curves representing fewer process pairs. However, because Solaris 11 is
not yet well documented, to predict how this is solved by the OS is not straight forward.

5.2 BENCHMARK 2:MESSAGE PASSING USING SOLARIS DOORS

This section describes the cost figures derived from running door_client.c and door_server.c,
described in section 4.1.2.

Figure 5.3(b) shows the costs associated with sending messages when the number of pro-
cess pairs vary between 1 and 64.There are 12 curves in figure 5.3(b), each representing a
different message size, ranging from 32B to 16KB.

In the following, we short-name the processes of message passing with a message size
ranging from 32B to 512B small messages. The message size range from 1KB to 16KB are de-
noted large messages.

The cost associated with sending a message is fairly stable until the message size exceeds
the 1024B. From message size ranging from 32B – 1024B, the cost is virtually equal for each
number of process pair(s). Indeed, these curves overlap for all process pairs. However, the
four dashed curves, denoting message sizes from 2KB up to and included 16KB does not
follow the same pattern. The curves for these message sizes have a surprising evolution as
the number of process pairs increase.

For up to 4 process pairs, the relative difference between these curves are maintained.
16KB has twice the cost of 8KB, which in turn has twice the cost of 4KB, which in turn has
twice the cost of 2KB. Starting at 8 process pairs, the ranking begins to change. At 64 process
pairs, the ranking is almost inversed: 2 > 4 > 16 > 8. This surprising effect is perhaps more
apparent when the data material is transposed in figure 5.3(a).

Figure 5.3(a) shows the costs associated with sending messages when the message size
vary from 32b to 16Kb. There are 7 curves in the figure, each representing a different number
of concurrent process pair.

Although the graph appear to lead to the conclusion that sending large messages cost lest
than sending small messages, it is important to realize that this is indeed not the case. The
graphs are visualizing the cost of message passing, excluding the time to build the message.

5.2. BENCHMARK 2:MESSAGE PASSING USING SOLARIS DOORS 55

0

50000

100000

150000

200000

250000

1 PP 2 PP 4 PP 8 PP 16 PP 32 PP 64 PP
Process pairs

Ti
m

e
(n

s)

32B 64B 128B
256B 512B 1024B
2048B 4096B 8192B
16384B

(a)

0

50000

100000

150000

200000

250000

32B 64B 128B 256B 512B 1024B 2048B 4096B 8192B 16384B
Message size (B)

Ti
m

e
(n

s)

1 PP 2 PP
4 PP 8 PP
16 PP 32 PP
64 PP

(b)

Figure 5.3: Cost figures for sending/receiving messages using Solaris Doors. In (a), the number of
process pairs is varied. In (b), the message size is varied. The cost is the average time
used to send/receive a message.

The time to build a message is also a cost that needs to be taken into account before concluding
about the total cost.

56 CHAPTER 5. RESULTS

We present the results from Benchmark 3: Building or interpreting messages and log posts in
section 5.3. Benchmark 3 suggests that the cost of building a message nearly doubles as the
message size increases. Indeed, the results from the Doors benchmark strengthens this sug-
gestion. As explained in figure 4.2 at page 37, the time on the door_server includes the time
to build the server-side reply message. Although there is more to the server side than build-
ing the message, the time used on the server side is two sizes of magnitude larger for the
16KB message size than the 32B message. All test result data from the Solaris Doors micro
benchmark are listed in appendix D.2.

To sum up, if we were to send the maximum number of messages in a given time slot, we
would end up with sending far more smaller messages than larger, due to the increasing cost
of building messages of increasing larger messages. Still, the graph is surprising, in the way
that the time actually used on transmitting the message drops as the message size increase.
We have identified two possible explanations to this phenomena:

Thrashing

We suspect that Doors is subject to heavy trashing caused by the OS. As described in sec-
tion 4.1.2, the Doors communication mechanism could be abstracted as a method in a server
process that a calling process is able to execute. The server process receives the message as
a parameter from the caller. In a OS provided shared memory space, the server process re-
sponds to the caller by sending the message as a parameter in the door_return call. Given that
the shared memory space is shared for all process pairs, and not separate for each pair of
processes, thrashing in this space would be more frequent the smaller the message.

To see why this is the case, it is necessary to look into the details of the sending and receiv-
ing mechanism.

For small messages, building the message takes relative less of the total time used than
for larger messages. Indeed, most of the time used for smaller messages is to actually execute
door_call, whereas it is the other way around for larger messages – building the message is
the dominant cost. This implies that smaller messages uses relative more time accessing the
shared memory space than larger messages. In turn, there are more frequent accesses to the
shared memory space for smaller messages than for larger. Because there is OS provided
synchronization3 in the shared memory space, only one process can access the space at a
time. Hence, the more accesses to such a synchronized space, the more thrashing. For larger
messages, there are less accesses because more time is spent building the message.

Queuing

Second, as for message passing over the TCP/IP stack, queuing is also probable for all mes-
sage pairs. In order to simulate a real-world workload, semaphores are introduced in order to
be certain that all message pairs indeed starts simultaneously. The race between the different
processes is identical to the one illustrated for TCP/IP. This mechanism is illustrated in figure
5.2 and described in the corresponding section 5.1.

5.3. BENCHMARK 3: BUILDING OR INTERPRETING MESSAGES AND LOG POSTS 57

0

50000

100000

150000

200000

250000

300000

32 64 128 256 512 1024 2048 4096 8192 16384
Message size (B)

Ti
m

e
(n

s)

Build

(a)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

32 64 128 256 512 1024
Message size (B)

Ti
m

e
(n

s)

Build

(b)

Figure 5.4: Cost figures for building a message or post. The cost is the average time used to build
a post/message of a given size.Figure (b) is an enlarged version of figure (a).

58 CHAPTER 5. RESULTS

5.3 BENCHMARK 3: BUILDING OR INTERPRETING MESSAGES AND

LOG POSTS

This section describes the cost figures derived from running build.c, described in section
4.1.3. As illustrated in figure 5.4(a), message or post sizes vary between 32B and 16384KB. It
is important to notice that the x-axis is logarithmic. Therefore, even though the cost at first
sight seems to be increasing exponentially, it is actually increasing near linearly: Every time
the message or post size is doubled, the cost associated with building the message or post is
also approximately doubled.

In our previous work, we suggested that a message or post would be of size 32B. For
clarity, we have included an enlarged version of figure 5.4(a). Figure 5.4(b) shows the cost
associated with building messages/posts of sizes ranging from 32B to 1024B. To verify that
these results are indeed accurate, consider the case when building a message or post of 32B.
According to the results, this takes on average 546ns. As explained en section 4.1.3, the bench-
mark uses a nested loop, filling out one byte of the message or post at a time. When examining
the code for build.c, presented in appendix C.3, it is possible to perform an analysis of the
code used to build a message or post. Each message or post built includes 1 condition + 1
value assignment + 1 pointer assignment + 32 × (1 condition + 1 value assignment + 1 pointer
increment + 1 integer increment) + 1 integer increment. If we assume that this results in ap-
proximately 500 instructions of machine code, the time needed to execute this is

500inst

0.93 ns
inst

≈ 538ns

which complies with the benchmark results.
As mentioned in the introduction, this benchmark was also run at a Sun Fire V890 server.

In comparison with the benchmark run at the T1000 server, the V890 on average uses 25 884ns
to build a message of size 16KB. That is one order of magnitude better than the T1000, which
uses 278 552ns to perform the same task. This suggests that the T1000 server indeed does not
excel at tasks that do not involve parallelism.

5.4 BENCHMARK 4: WRITING TO LOG

This section describes the cost figures derived from running myLog.c, described in section
4.1.4. As illustrated in figure 5.5 the message size varies from 32B to 16KB, whereas the buffer
size varies from 10 to 1280MB. Although not immediate apparent from the figure, it contains 8
curves, each representing a different buffer size. However, the time used to write a log post to
buffer is clearly not much dependent on the buffer size. It is worth mentioning that all buffer
sizes in the test set are larger than the L2 cache of 3MB. Writing to a buffer smaller than 3MB
might therefore result in different costs.

It is important to notice that the x-axis is logarithmic. Therefore, even though the cost at
first sight seems to be increasing exponentially, it is actually increasing near linearly. Every
time the post size is doubled, the cost associated with writing the post to log is also approxi-
mately doubled.

This benchmark was also run at the Sun Fire V890 server. When writing a 16KB log post
to a buffer of size 640MB, the V890 on average uses 29 700ns. That is one order of magnitude
better than the T1000, which T1000 uses 279 532ns to perform the same task.

3OS provided synchronization is controlled by the OS, and not the application programmer.

5.5. BENCHMARK 5: SYNCHRONIZING USING POSIX MUTEXES 59

0

50000

100000

150000

200000

250000

300000

32 64 128 256 512 1024 2048 4096 8192 16384
Message size (B)

Ti
m

e
(n

s)

10MB 20MB
40MB 80MB
160MB 320MB
640MB 1280MB

Figure 5.5: Cost figures for writing to log. Message size and buffer size are varied. The cost is the
average time used to write a log post to buffer.

5.5 BENCHMARK 5: SYNCHRONIZING USING POSIX MUTEXES

This section describes the cost figures achieved from running sr_mutex.c, described in sec-
tion 4.1.5.

Figure 5.6 shows the costs associated with setting and releasing mutexes when both the
number of mutexes in the mutex set, and the total number of sets and releases per mutex are
varied. It is evident that compared to the costs of sending and receiving messages, mutexes
are cheap both to set and release. As illustrated by the figure, setting a mutex is slightly more
expensive than releasing it. This is the case for all samples, and the cost difference is fairly
constant ranging 10 to 20 ns, approximately.

It is interesting to see the drop of costs when the number of mutexes in the mutex set is
increased beyond one. However, increasing the number further does not result in any addi-
tional fall of costs.

As stated earlier, this micro benchmark synchronize threads within the same process. This
is likely the reason to why mutexes are so cheap. Threads within the same process run at the
same core and thus share L1 cache. Therefore, access to the mutex may be kept entirely in L1
cache, which has a much lower access time than the higher memory levels.

This benchmark was also run at the Sun Fire V890 server described in section 5.3. When
using a mutex set of 10 mutexes and setting and releasing each mutex 10 000 000 times, the
V890 on average uses 35 ns to set a mutex and 32ns to release a mutex. The T1000, on the
other hand, uses 83ns to set a mutex and 71ns to perform the same task.

60 CHAPTER 5. RESULTS

0

20

40

60

80

100

120

140

160

180

200

1 / 100000000 10 / 10000000 100 / 1000000 1000 / 100000
Process pairs

Ti
m

e
(n

s)

Set

Release

Figure 5.6: Cost figures for setting/releasing a mutex. The number of mutexes in the mutex set
and the number of sets and releases are varied. The cost is the average time used to set
a mutex.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 4 8 16 32 64
Process pairs

Ti
m

e
(n

s)

Set

Release

Figure 5.7: Cost figures for setting and releasing a semaphore, the number of processes are varied.
The costs are the average times used to set and release a semaphore.

5.6. BENCHMARK 6: SYNCHRONIZING USING SYSTEM V SEMAPHORES 61

5.6 BENCHMARK 6: SYNCHRONIZING USING SYSTEM V SEMAPHORES

This section describes the cost figures derived from running lseminit.c and lsemset.c,
described in section 4.1.6. As illustrated in figure 4.6, process pairs are varied from 2 to 64.
There are two curves in the figure. One curve represents the cost associated with setting a
semaphore, the other curve represents the cost associated with releasing the semaphore. It is
important to notice that the scale of the x-axis is logarithmic. Therefore, even though the costs
associated with setting and releasing semaphores look as if they are increasing exponentially,
they are actually increasing near linearly. Except from the interval between 1 and 2 process
pairs, the time used to set or release a semaphore is approximately doubled every time the
number of process pairs is doubled.

Compared to Benchmark 5, it is obvious that semaphores are expensive. The average
time used when setting 10 mutexes 10 000 000 times each, as described in 5.5, is 83ns per
mutex. The average time used by a single process when setting a semaphore 1 000 000 times is
2269ns. Semaphores are thus two orders of magnitude more expensive than mutexes. Clearly,
a system that would keep the use of semaphores at an absolute minimum would be tractable.

One possible reason to why semaphores are much more expensive than mutexes, is their
ability to synchronize across process boundaries. Because processes may run at different cores,
semaphores must at least be as low in the memory hierarchy as the L2 cache. One might argue
that in the case of one process, as in the example above, the semaphore could instead exist in
L1 cache, and thus impose smaller costs. However, this is decided by the OS and is therefore
not up to the application programmer.

The reason to why the costs increase with the number of concurrent processes, is that
only one process at a time can update a semaphore. If several processes try to update the
semaphore simultaneously, they will be performed in an arbitrary order. Processes therefore
have to spend time waiting for the semaphore to be available for updates.

CHAPTER6
COST FIGURES

In order to perform the calculation presented in chapters 7 and 8, several cost figures are
needed. Having presented all results from the benchmarks in chapter 5, this chapter presents
the typical cost figure for each benchmark. These figures are described in section 6.1.

Because it is not feasible to benchmark every single cost associated with a transaction, the
remaining costs, derived from [BJ05], are adjusted to the Sun Fire T1000 hardware. This is
presented in section 6.2.

Finally, section 6.3 lists all the costs associated with a transaction to clearly set them out.

6.1 BENCHMARKED COSTS

When the micro benchmarks described in section 4.1 were executed, several parameters were
varied. In order to perform the calculations presented in the next chapters, it is necessary
to decide upon a single cost for each benchmark. The following subsections present the cost
figures derived for each of the most important tasks.

6.1.1 Benchmark 1: Message passing using TCP/IP sockets

In order to establish the typical message passing cost, it is necessary to examine how the trans-
actions behave. In our previous work we assumed transactions to be small and not to involve
many nodes. To assure that the complexities of the transactions are not underestimated, we
assume that the CTU transaction is the most frequent transaction. We therefore anticipate the
average transaction to involve four nodes.

To fully take advantage of the system, all nodes should at any time participate in at least
one transaction. This results in 32 process pairs communicating simultaneously. This may not
be correct in every case, but we are assured not to under estimate the number of concurrent
processes communicating. In our previous work, we estimated a message to be of size 32B.
The messages sent according to the 2PC protocol are indeed small, but to assure that the
somewhat larger operation messages also are considered, we settle for a message size of 64B.

According to figure 5.1(a) on page 52, the time used to send or receive a message of 64B,
when 32 process pairs are communicating simultaneously, is

32 457ns

6.1.2 Benchmark 2: Message passing using Solaris Doors

Following the deduction presented in section 6.1.1, messages are of size 64B. If all nodes are
participating in at least one transaction at any time, 32 processes are communicating simulta-
neously.

63

64 CHAPTER 6. COST FIGURES

According to the graph presented in figure 5.3(a) on page 55, it appears desirable to send
messages of size 4096B rather than 64B. When looking exclusively on the time used to send
or receive, this is correct. However, as discussed in section 5.2, when including the time used
to build and interpret messages, this is no longer the case. Messages of 64B are therefore still
desirable.

According to figure 5.3(a), the average time needed to send or receive a message of size
64B when 32 processes pairs are communicating simultaneously is

116 422ns

It is obvious that when following this scenario, it is cheaper to communicate using TCP/IP
sockets.

6.1.3 Benchmark 3: Building or interpreting messages and log posts

As already mentioned, the message size is 64B. However, it is also important to establish the
size of a log post. In our previous work we suggested the size to be 32B. However, some
log posts may be larger, i.e. the 2PC log posts containing all the participants of a distributed
transaction. To assure that the log post size is not underestimated, we assume it to be 64B.

According to the graph presented in figure 5.4(a) on page 57, the time used to build a
message or post of 64B is

1092ns

6.1.4 Benchmark 4: Writing to log

It is important for the log buffer to be sufficiently large to maintain the log while reviving a
malfunctioning node, which may take several minutes. However, as illustrated by the graph
in figure 5.5 on page 59, there is no noticeable difference in the cost associated with writing
to buffer regardless of the buffer size. To be on the safe side, we choose the most expensive
alternative, a buffer size of 640MB. The difference in cost between the cheapest and the most
expensive alternatives is only 2.9%. The time used to write a 64B log post to a log buffer of
size 640MB is

1120ns

6.1.5 Benchmark 5: Synchronizing using POSIX mutexes

When it comes to the cost for setting and releasing mutexes, figure 5.6 indicates that the great-
est variation in cost is when going from 1 to 10 mutexes in the mutex set. As mentioned in
the introduction to chapter 4, we will not use POSIX mutexes to synchronize data structures
shared between different processes. Nevertheless, because mutexes are likely to be needed to
synchronize within a process, the costs for setting and releasing mutexes are still included in
this report.

Because we do not have an actual DBMS to our disposal, it is hard to predict the number
of mutexes in an actual mutex set. However, because the variations in costs are minor when
the set holds 10 or more mutexes, we assume the typical mutex set to contain 10 mutexes.

According to the graph presented in figure 5.6 on page 60, the average time used to set a
mutex in this scenario is

83ns

6.2. OTHER COSTS 65

The average time used to release a mutex is

71ns

6.1.6 Benchmark 6: Synchronizing using System V semaphores

A rough approximation of the cost associated with running the CTU transaction on the SE
architecture, reveals that the tasks of setting and releasing semaphores predominates the total
cost. This means that a great fraction of the time is spent setting and releasing semaphores.
According to [BJ05] there are four shared data structures that need synchronization. These are

• Lock hierarchy

• File dictionary

• B-tree

• Log

Three of these data structures are synchronized using semaphores, whereas the fourth, the
file dictionary, is synchronized using database locks. This is further explained in section 2.6.2
at page 11. According to [BJ05], the lock hierarchy semaphore is set and released 13 times, the
b-tree semaphore is set and released 4 times, and the log semaphore is set and released 5 times
during the execution of the CTU transaction. This means that a semaphore is on average set
and released ⌈

13 + 4 + 5
3

⌉
= 8

times during the CTU transaction. If all nodes are running at least one transaction at any
time, and we (in order not to under estimate) assume that the average transaction is the CTU
transaction, processes are bound to step on each other’s toes.

If we simplify and round off the execution time, including only the time used to set or
release semaphores, one third of the time is on average used to set and release one of the three
semaphores. If 32 nodes are executing one transaction each at the same time, we can expect⌈

32× 1
3

⌉
= 11

processes to perform operations on a given semaphore at any given time. In order to be able to
compare this with the results presented in section 5.6 on page 61, we assume that 8 processes
are performing operations on a semaphore simultaneously. Because the average transaction
most likely is not the CTU transaction, we do not expect this to affect the results. According
to the graph presented in figure 4.6 on page 60, the time used to set a semaphore when 8
concurrent processes are performing operations on a semaphore simultaneously, is 11 295 ns.
The time used to release a semaphore is 11 323 ns. The time spent waiting for the semaphore
to be available is not included in these figures.

6.2 OTHER COSTS

In addition to the costs described in the previous section, [BJ05] utilized several other basic
costs to calculate the total time used to execute the benchmark transactions. As these basic

66 CHAPTER 6. COST FIGURES

costs originally were calculated for an assumed platform with a different hardware specifica-
tion than the Niagara platform, they are recalculated. It is important to be aware of that these
costs are not obtained by simulation or benchmarking, but are based on assumptions and may
therefore be possible sources to inaccurate results.

Section 6.2.1 presents the organization of a data block before section 6.2.2 describes the
costs used for both the SN and SE architectural approaches, the SN specific costs and the SE
specific costs, based on the hardware described in section 3.2.1.

6.2.1 Block organization

For the reader to understand the costs associated with reading records, it is necessary to ex-
plain the block organization. This is illustrated and explained in figure 6.1. Data records are
assumed to be 200B, whereas index records are assumed to be 20B. All blocks are assumed to
be of size 8KB (8192B). This gives ⌊

8192B

200B

⌋
= 40

data records per block and ⌊
8192B

20B

⌋
= 409

index records per block.
An index vector is located at the start of each block, (this approach is also taken by Sys-

tem R and is described at page 120 in [ABC+76]). Each entry in the index vector contains a
pointer to a record in the block. All records in the block are associated with a pointer in the
index vector. Pointers are listed in the order of the primary key of the record to which they
point, but there is no way of knowing the value of the key without following the pointer. The
organization of the block is illustrated in figure 6.1. The block illustrated is an index block,
but a data block is organized in the same way. The only difference is that the data block has
fewer records, because data records are larger than index records. The number of entries in
the index vector in a data block is therefore also smaller.

The index vectors of the index blocks need to be able to point to 409 different index records.
We assume that the organization of records within a block is strict, and that if a pointer points
to the number of a record within the block, i.e. record number 277, an offset from the start of
the block is calculated. Therefore only logical pointers within a block are needed.

To uniquely identify 409 different index records, minimum 9 bits are needed per record.
It is perhaps more common to operate with bit size in a power of 2. That is, even though
only 9 bits per record are needed to identify 409 index records, one would allocate 16 bits
instead of 9. However, we have chosen to operate with a minimum size. This is equal for both
architectures, and hence it does not have significant impact on the relative difference between
them.

The total size of the index vector in an index block is:⌈
409× 9bits

8

⌉
= 461B

The same assumptions are made for the data blocks. To uniquely identify 40 data records,
minimum 6 bits are needed. This means that the total size of the index vector in a data block

6.2. OTHER COSTS 67

409

98
120

380

184

59

90

84

70

67

28

35

7

Figure 6.1: Block organization. Each block starts with an index vector. All records in the block
has an entry in the index vector containing a pointer to the record. The pointers in the
index vector are ordered by the keys of the records to which they point. A binary search
for the record is then performed. For every pointer that is examined, it is necessary to
follow the pointer and examine the record’s key, because the pointer does not contain
that information.

is: ⌈
40× 6bits

8

⌉
= 30B

6.2.2 General costs

This section presents costs associated with both the SN and SE approach.

Write a cache word to / read a cache word from main memory

Because cache words between main memory and L2 cache are 64B, and only one cache word
can be read or written per access, writing or reading 64B takes (see section 3.2.1 at page 24)

100ns

The consequence of several nodes trying to access the main memory simultaneously is not
taken into consideration.

Write a cache word to / read a cache word from L2 cache

As stated in section 3.2.1 the latency for accessing the L2 cache is 23 cycles, or 21 ns. As for
the main memory, a single cache word may be read or written per access. For data, the cache
word size between the L2 and L1 cache is 16B. Writing or reading 16B thus takes

21ns

The consequence of several nodes trying to access the L2 cache simultaneously is not taken
into consideration.

68 CHAPTER 6. COST FIGURES

Write to / read from L1 cache

The access time for L1 cache is almost negligible, as the L1 caches reside very close to the
processing unit. As explained in chapter 3.2.1, the execution of a single instruction takes

1
10243

ns ≈ 0.93ns

Reading or writing a cache word (16B) from L1 cache therefore takes

0.93ns ≈ 1ns

The consequence of several nodes trying to access the L1 cache simultaneously is not taken
into consideration.

Create transaction context

All nodes that are involved in the execution of a transaction, both NOC and NOS(es) in the
SN case, and the node performing the transaction in the SE case, need to create a context
for the transaction. The transaction context includes information needed to perform logging.
The research report [HT93] estimates that 200 instructions are needed to create a transaction
context at a single node. Executing 200 instructions takes:

0.93
ns

inst
× 200inst = 186ns

Delete transaction context

When a transaction commits or aborts, the transaction context must be deleted in order to
leave the DBMS in a consistent state. According to [HT93], this is estimated to take 200 in-
structions. Executing 200 instructions takes:

0.93
ns

inst
× 200inst = 186ns

Check transaction context

It is sometimes necessary to check for the existence of a transaction context. This may be
before writing a log post produced by a transaction. In [HT93], checking for the existence of a
transaction context is estimated to take 100 instructions. Executing 100 instructions takes:

0.93
ns

inst
× 100inst = 93ns

Read an index record from main memory

Reading an index record from main memory involves reading the index vector of the block
in which the record reside, performing a binary search on the index vector and reading the
record. Reading the index vector from main memory to L2 cache requires⌈

461B

64B/access

⌉
= 8

6.2. OTHER COSTS 69

accesses to main memory. Reading the index vector from L2 cache requires⌈
461B

16B/access

⌉
= 29

accesses. Reading the index vector from L1 cache also requires⌈
461B

16B/access

⌉
= 29

accesses. The number of keys that need to be examined when performing a binary search on
the index vector is in the worst case

dlog2 409e = 9

For each of the 9 keys examined during the binary search, the main memory, the L2 cache
and the L1 cache must be accessed. Because index records are assumed to be of size 20 bytes,
the whole record is contained within the 64B cache word when fetching from memory to L2
cache. Fetching the index record from L2 cache and L1 cache, on the other hand, requires 2
accesses (20B

16B/access > 1acess) However, we assume that the key is included in the first cache
line, and thus only one access is needed during the binary search. When the correct record is
found, one additional access is needed to the L2 and L1 cache in order to fetch the remainder
of the record.

Reading an index record from main memory then takes:

read vector︷ ︸︸ ︷
(8× 100ns) + (29× 21ns) + (29× 0.93ns)

+

binary search︷ ︸︸ ︷
(9× 100ns) + (9× 21ns) + (9× 0.93ns)

+
fetch record︷ ︸︸ ︷

21ns + 0.93ns

≈2555ns

Read an index record from L2 cache

Reading an index record from L2 cache is very similar to reading it from main memory. The
only difference is that the accesses to main memory are not included. Reading an index record
from L2 cache then takes:

read vector︷ ︸︸ ︷
(29× 21ns) + (29× 0.93ns) + (9× 21ns) + (9× 0.93ns)︸ ︷︷ ︸

binary search

+
fetch record︷ ︸︸ ︷

21ns + 0.93ns ≈ 855ns

Read an index record from L1 cache

Reading an index record from L1 cache is very much like reading an index record from L2
cache. Even though the index vector of the b-tree root has fewer entries than an index vector

70 CHAPTER 6. COST FIGURES

for an ordinary index record, we assume that searching for the correct index record is per-
formed in the same manner, that 9 keys need to be examined during the binary search. This
cost figure will therefore be used also when reading an index record from the root. Reading
the index vector requires ⌈

461B

16B/access

⌉
= 29

accesses to the L1 cache. For each of the keys that need to be examined, one additional
access is needed. Finally, one last access is made to the L1 cache in order to fetch the remainder
of the record. Thus, reading and index record from L1 cache takes:

read vector︷ ︸︸ ︷
(29× 0.93ns) + (9× 0.93ns)︸ ︷︷ ︸

binary search

+
fetch record︷ ︸︸ ︷

0.93ns ≈ 36ns

Read a data record from main memory

Reading a data record from main memory is very similar to reading an index record. The only
difference is the number of accesses needed. Because the index vectors for the data records
are smaller than in the case of the index records, the number of accesses to the main memory
is only ⌈

30B

64B/access

⌉
= 1

The number of accesses to the L2 cache is⌈
30B

16B/access

⌉
= 2

and the number of accesses to the L1 cache is also⌈
30B

16B/access

⌉
= 2

in order to fetch the index vector. The number of accesses to the main memory, the L2 cache
and the L1 cache during the binary search is in the worst case

dlog2 40e = 6

We assume that the entire key to be examined resides within the cache word that is fetched
during the binary search. In this case, the data record is too big to be contained within a cache
word when the last key is examined, therefore the remainder of the record needs to be read in
addition. The number of accesses to the main memory to do this is⌈

200B

64B/access

⌉
− 1 = 3

The number of accesses needed to the L2 cache is⌈
200B

16B/access

⌉
− 1 = 12

6.2. OTHER COSTS 71

The number of accesses needed to the L1 cache is also⌈
200B

16B/access

⌉
− 1 = 12

Reading a data record from main memory then takes:

read vector︷ ︸︸ ︷
(1× 100ns) + (2× 21ns) + (2× 0.93ns)

+

binary search︷ ︸︸ ︷
(6× 100ns) + (6× 21ns) + (6× 0.93ns)

+

fetch record︷ ︸︸ ︷
(3× 100ns) + (12× 21ns) + (12× 0.93ns)

≈1439ns

Read a data record from L2 cache

As for index records, reading a data record from L2 cache is very similar to reading it from
main memory. The only difference is that the accesses to main memory are not included.
Reading a data record from L2 cache then takes:

read vector︷ ︸︸ ︷
(2× 21ns) + (2× 0.93ns) + (6× 21ns) + (6× 0.93ns)︸ ︷︷ ︸

binary search

+

fetch record︷ ︸︸ ︷
(12× 21ns) + (12× 0.93ns) ≈ 439ns

Read a data record from L1 cache

Due to the extremely small size of the L1 cache compared to the database size, we find the
probability of a data record residing in L1 cache to be negligible (opposed to reading an index
record from L1 cache, in section 6.2.2).

Lock a resource

Locking a data resource is in [HT93] estimated to take about 200 instructions. We will use this
estimate. Executing 200 instructions takes:

0.93
ns

inst
× 200inst = 186ns

The time used to synchronize the lock hierarchy in the SE case is not included.

Unlock a resource

We assume that unlocking a resource costs the same as locking a resource. We will therefore
estimate that 200 instructions are needed to unlock a resource. Executing 200 instructions
takes:

0.93
ns

inst
× 200inst = 186ns

The time used to synchronize the lock hierarchy in the SE case is not included.

72 CHAPTER 6. COST FIGURES

6.2.3 SN specific costs

This section presents costs specific for the SN approach.

Decide which nodes that are slaves

Deciding which nodes that are to be slaves involves accessing the dictionary and performing
a hash for each of the participants. In the transactions considered in our research, one or four
slaves are used, depending on the transaction complexity. The research presented in [HT93]
gives an estimate of how many instructions that are needed to do this. To decide a single
slave, 150 instructions are estimated. Executing 150 instructions takes:

0.93
ns

inst
× 150inst ≈ 140ns

6.2.4 SE specific costs

This section presents costs specific for the SE approach.

Access dictionary

This operation is only performed as a standalone task in SE. For SN, dictionary access is
included in the cost of deciding which nodes that are to be slaves in the transaction execution.
The report [HT93] suggests that the cost measured to decide which nodes that are to be slaves
takes 150 instructions. Under the assumption that the additional hash function that is applied
for each participant is cheap, we treat the cost for dictionary access as equal to the cost in
section 6.2.3. Accessing the dictionary then takes:

0.93
ns

inst
× 150inst ≈ 140ns

The time used to synchronize the dictionary in the SE case is not included.

6.3 COST SUMMARY

All costs that will be used when performing the calculations in chapters 7 and 8 are summa-
rized in table 6.1.

1Regarding the field Send a message in table 6.1, TCP/IP sockets are used to realize message passing because
this is the cheaper alternative given the message size and the number of concurrent processes

6.3. COST SUMMARY 73

Description Cost
Read a cache word (64B) from memory 100 ns
Write a cache word (64B) to memory 100 ns
Read a cache word (16B) from L2 cache 21 ns
Write a cache word (16B) to L2 cache 21 ns
Read a cache word (16B) from L1 cache 0.93 ns
Write a cache word (16B) to L1 cache 0.93 ns
Create transaction context 186 ns
Delete transaction context 186 ns
Check transaction context 93 ns
Read an index record from main memory 2555 ns
Read an index record from L2 cache 855 ns
Read an index record from L1 cache 36 ns
Read a data record from main memory 1439 ns
Read a data record from L2 cache 439 ns
Lock a resource 186 ns
Unlock a resource 186 ns
Build log post 1092 ns
Write to log 1120 ns
Build a message 1092 ns
Send a message1 32 457 ns
Receive a message 32 457 ns
Decide which nodes that are slaves 140 ns
Interpret a message 1092 ns
Access dictionary 140 ns
Set mutex 83 ns
Release mutex 71 ns
Set semaphore 11 295 ns
Release semaphore 11 323 ns

Table 6.1: Cost figures

CHAPTER7
SN WORKLOAD ESTIMATE

This chapter investigates the total cost of performing the four different transaction types de-
fined in section 2.2 on page 6 in an SN context.

Albeit the structure of this chapter is indeed similar to an analog chapter in our previous
work, the costs of performing the transactions are recalculated, as all the cost figures are dif-
ferent. It is also necessary to be familiar with the transactions’ sub tasks to make the most of
the analysis presented in chapter 9.

Figure 7.1 illustrates the execution path for a transaction, with the critical path drawn1

with bold lines. The transaction is decomposed into groups of operations2, called tasks. This
figure is valid for all the transactions defined in section 2.1, although the contents of each task
may differ.

This chapter examines each task for each transaction. Each task should be seen in conjunc-
tion with the 2PC presumed commit protocol explained in section 2.4.2 at page 8.

A NOC and a NOS may very well be on the same node, but this report only consider
the worst-case scenario, when the NOC and NOSes reside on different nodes. For the two
complex transactions CTR and CTU, we assume that the four tuples reside at different NOSes.

All cost estimates used in this chapter are explained in detail in chapter 6, and summarized
in table 6.1.

The next section presents a calculation of the height of the database b-tree, and the proba-
bility of a cache hit when fetching a record. The following sections in turn presents the costs
associated with each transaction type. Corresponding calculations for the SE DBMS architec-
ture are presented in chapter 8.

7.1 CALCULATING THE B-TREE HEIGHT FOR SN

This section calculates the b-tree height in the SE case. In our previous work, we assumed the
database to be of size 10GB, and that the entire database is kept in main memory. However,
as explained in section 3.2.1, the Sun Fire T1000 Server is only equipped with 8GB of main
memory. Nevertheless, we continue to assume a database size of 10GB, as the T1000 Server
may be extended to have 16GB of memory, which is more than necessary for the types of
databases we examine.

In the SN case, the main memory area is split into subsets of 1
32 size. We assume that data is

partitioned using an approximately perfect hash function and therefore is distributed evenly
among all nodes. Although the usual approach is to have a b-tree for every table, we assume
that each node operates on a single b-tree containing the entire subset of the database.

1The critical path is the sum of all operations needed to be performed before a response can be given back to
the transaction service requester.

2The term operation as used here should not be mixed up with the term operation as used for an update or
read operation earlier in this report. Although this is still valid, the term expands to contain operations such as
creating a transaction context, setting a lock etc.

75

76 CHAPTER 7. SN WORKLOAD ESTIMATE

NOC NOS

NOC
Task1

NOS
Task1

NOC Node Controller
NOS Node Slave

Critical path
Non-critical path

NOC
Task2

NOC
Task3

NOC
Task4

NOC
Task5

NOC
Task6

NOS
Task2

NOS
Task3

NOS
Task4

Figure 7.1: The execution path in a SN architecture. The figure for simplicity shows the scenario
where only one NOS is involved. For the CTU and CTR transactions, however, up to
four NOSes could be involved.

7.1. CALCULATING THE B-TREE HEIGHT FOR SN 77

0 (root)

1

Figure 7.2: The SN b-tree. The b-tree consists of two levels of index records and one level of data
records. The height of the b-tree is 3.

The number of data blocks per node is:⌈
10GB

32× 8KB

⌉
=

⌈
10737418240B

32× 8192B

⌉
= 40960

The number of index blocks on the first level is:⌈
40960
409

⌉
= 101

The number of index blocks on the second level is:⌈
101
409

⌉
= 1

This results in a b-tree of height 3, with two levels of index records, and one level of data
records. This is illustrated in figure 7.2. The entire b-tree consists of

(1 + 101 + 40960)× 32 = 1 313 984

blocks. The total size of the index pages per node is:

(1 + 101)× 8KB = 839KB

As described in section 3.2.1, the L2 cache size is 3MB. This results in a L2 cache size of

3MB

32
= 96KB

per node. The L1 data cache size, on the other hand is only 16KB per core. This results in a L1
cache size of

16KB

4
= 4KB

per node. Because the L1 cache size per node indeed is small, we assume that only index
records that reside in the b-tree root will have cache hits. We assume that no other index
records or data records will have a hit in the L1 cache. This means that

96KB

839KB
≈ 11.4%

of the index blocks at the second level are available from L2 cache. The remaining 88.6% must
be fetched from main memory.

78 CHAPTER 7. SN WORKLOAD ESTIMATE

7.2 THE SIMPLE TRANSACTION UPDATE (STU)

This section gives the estimated time used to execute the STU transaction. The STU trans-
action contains a single update and may therefore involve up to two nodes, The transaction
is decomposed into groups of operations. The following is a description of these operations
together with a cost estimate measured in time for each task. The relationships between tasks
are illustrated in figure 7.1.

7.2.1 Node Controller (NOC)

This section gives the estimated workload for the part of the transaction executed at the node
running the node controller.

NOC Task1

This task receives and interprets the transaction. It also creates a transaction context. The costs
are described in table 7.1.

Description Cost (ns)
Read transaction from main
memory:

100

Interpret transaction (mes-
sage):

1092

Create transaction context: 186

Table 7.1: NOC Task1 cost description for STU in SN

This gives:

100ns + 1092ns + 186ns = 1378ns

This task is in the critical path.

NOC Task2

This task decides which node slave participates in the execution of the transaction, and writes
the result to log. In order to preserve consistency, the log is written to main memory. The costs
are described in table 7.2.

Description Cost (ns)
Decide participant: 140
Check transaction context: 93
Build start log post: 1092
Write start log post: 1120

Table 7.2: NOC Task2 cost description for STU in SN

This gives:

7.2. THE Simple Transaction Update (STU) 79

140ns + 93ns + 1092ns + 1120ns = 2445ns

This task is in the critical path.

NOC Task3

This task builds the message containing which update that is to be done, and sends it to the
slave. The message has a prepare-message piggybacked. The costs are described in table 7.3.

Description Cost (ns)
Build operation message: 1092
Send operation message: 32 457

Table 7.3: NOC Task3 cost description for STU in SN

This gives:

1092ns + 32 457ns = 33 549ns

This task is in the critical path.

NOC Task4

This task receives a ready-message from the slave when the slave has performed the update.
It interprets the message and logs the commit. The log is written to main memory. The costs
are described in table 7.4.

Description Cost (ns)
Receive ready-message: 32 457
Interpret ready-message: 1092
Check transaction context: 93
Build commit log post: 1092
Log commit: 1120

Table 7.4: NOC Task4 cost description for STU in SN

This gives:

32 457ns + 1092ns + 93ns + 1092ns + 1120ns = 35 854ns

This task is in the critical path.

NOC Task5

This task builds an OK-message and sends this to the calling application. This means that the
message is written to main memory. The costs are described in table 7.5.

This gives:

80 CHAPTER 7. SN WORKLOAD ESTIMATE

Description Cost (ns)
Build OK message: 1092
Write OK messages to main
memory:

100

Table 7.5: NOC Task5 cost description for STU in SN

1092ns + 100ns = 1192ns

This task is in the critical path.

NOC Task6

This task builds a commit-message and send it to the node slave. It also deletes the transaction
context. The costs are described in table 7.6.

Description Cost (ns)
Build commit message: 1092
Send commit message: 32 457
Delete transaction context: 186

Table 7.6: NOC Task6 cost description for STU in SN

This gives:

1092ns + 32 457ns + 186ns = 33 735ns

This task is not in the critical path, because it is not a part of the sum of all operations
needed to be performed before a response can be given back to the transaction service re-
quester.

Total costs

The total costs for the NOC when the STU transaction is executed is:

NOC Task1 + NOC Task2 + NOC Task3 + NOC Task4 + NOC Task5 + NOC Task6 =

1378ns + 2445ns + 33 549ns + 35 854ns + 1192ns + 33 735ns = 108 153ns

7.2.2 Node Slave (NOS)

This section gives the estimated workload for the part of the transaction executed at the node
running as the NOS.

7.2. THE Simple Transaction Update (STU) 81

Description Cost (ns)
Receive operation message: 32 457
Interpret operation mes-
sage:

1092

Create transaction context: 186

Table 7.7: NOS Task1 cost description for STU in SN

NOS Task1

This task receives and interprets the message containing which update that is to be done. It
also creates a transaction context. The costs are described in table 7.7.

This gives:

32 457ns + 1092ns + 186ns = 33 735ns

at each node. This task is in the critical path.

NOS Task2

This task locks the data record and performs the update. It also logs the update and a prepare-
post according to the 2PC protocol described in section 2.4.2. The log is written to main mem-
ory. The costs are described in table 7.8.

Description Cost (ns)
Lock data record: 186
Read index record from in-
dex root in L1 cache:

36

Read first level index
record:

11.4%× 855 + 88.6%× 2555 ≈ 2361

Read data record (including
locating the record):

1439

Write data record: d 200B
64B/accesse × 21ns/access = 84

Check transaction context: 93
Build update log post: 1092
Build prepare log post: 1092
Log update: 1120
Log prepare: 1120

Table 7.8: NOS Task2 cost description for STU in SN

This gives:

186ns+36ns+2361ns+1439ns+84ns+93ns+1092ns+1092ns+1120ns+1120ns = 8623ns

This task is in the critical path.

82 CHAPTER 7. SN WORKLOAD ESTIMATE

NOS Task3

This task creates and sends the ready-message according to the 2PC protocol. The costs are
described in table 7.9.

Description Cost (ns)
Build ready-message: 1092
Send ready-message: 32 457

Table 7.9: NOS Task3 cost description for STU in SN

This gives:

1092ns + 32 457ns = 33 549ns

This task is in the critical path.

NOS Task4

This task receives and interprets the commit-message from the node controller and logs the
commit. The log is written to main memory. It also unlocks the data record and deletes the
transaction context. The costs are described in table 7.10.

Description Cost (ns)
Receive commit-message: 32 457
Interpret commit-message: 1092
Check transaction context: 93
Build commit log post: 1092
Log commit post: 1120
Unlock data record: 186
Delete transaction context: 186

Table 7.10: NOS Task4 cost description for STU in SN

32 457ns + 1092ns + 93ns + 1092ns + 1120ns + 186ns + 186ns = 36 226ns

This task is not in the critical path, because it is not a part of the sum of all operations
needed to be performed before a response can be given back to the transaction service re-
quester.

Total costs

The total cost for the NOS when the STU transaction is executed is:

NOS Task1 + NOS Task2 + NOS Task3 + NOS Task4 =

33 735ns + 8623ns + 33 549ns + 36 226ns = 112 133ns

7.3. THE Simple Transaction Read (STR) 83

7.3 THE SIMPLE TRANSACTION READ (STR)

This section gives the estimated time used to execute the STR transaction. The STR transaction
contains a single read, and will therefore, as in the case of the STU, in the worst-case only
involve two nodes. The transaction is decomposed into groups of operations. The following
is a description of these operations together with a cost estimate measured in time for each
task. Our assumed DBMS does not log read-only transactions, therefore the tasks NOC Task8

and NOS Task 4 are not executed. The relationships between tasks are illustrated in figure 7.1.

7.3.1 Node Controller (NOC)

This section gives the estimated workload for the part of the transaction performed at the
node running the node controller.

NOC Task1

This task receives and interprets the transaction. It also creates a transaction context. The costs
are described in table 7.11.

Description Cost (ns)
Read transaction from main
memory:

100

Interpret transaction: 1092
Create transaction context: 186

Table 7.11: NOC Task1 cost description for STR in SN

This gives:

100ns + 1092ns + 186ns = 1378ns

This task is in the critical path.

NOC Task2

This task decides which node to participate in the execution of the transaction. The costs are
described in table 7.12.

Description Cost (ns)
Decide participants: 140

Table 7.12: NOC Task2 cost description for STR in SN

This gives:

140ns

This task is in the critical path.

84 CHAPTER 7. SN WORKLOAD ESTIMATE

NOC Task3

This task builds the message containing which record to read, and sends it to the node slave.
The message has a prepare-message piggybacked. The costs are described in table 7.13.

Description Cost (ns)
Build operation message: 1092
Send operation message: 32 457

Table 7.13: NOC Task3 cost description for STR in SN

This gives:

1092ns + 32 457ns = 33 549ns

This task is in the critical path.

NOC Task4

This task receives a read-message from the node slave when it has performed the read. It also
interprets the message. The costs are described in table 7.14.

Description Cost (ns)
Receive read-message: 32 457
Interpret read-message: 1092

Table 7.14: NOC Task4 cost description for STR in SN

This gives:

32 457ns + 1092ns = 33 549ns

This task is in the critical path.

NOC Task5

This task builds a data message containing the data read, and sends this to the calling appli-
cation. This means that the message is written to main memory. The task also deletes the
transaction context. The costs are described in table 7.15.

Description Cost (ns)
Build data message: 1092
Write data message to main
memory:

100

Delete transaction context: 186

Table 7.15: NOC Task5 cost description for STR in SN

This gives:

7.3. THE Simple Transaction Read (STR) 85

1092ns + 100ns + 186ns = 1378ns

This task is in the critical path.

NOC Task6

This task is not performed when the transaction is a read-only transaction. This is because no
logging is performed, and therefore the node performing a read, is not needed to receive a com-
mit-message. If the transaction performed contained one or more updates, commit-messages
would be sent to all nodes performing these updates.

Total costs

The total costs for the NOC when the STR transaction is executed is:

NOC Task1 + NOC Task2 + NOC Task3 + NOC Task4 + NOC Task5 =

1378ns + 140ns + 33 549ns + 33 549ns + 1378ns = 69 994ns

7.3.2 Node Slave (NOS)

This section gives the estimated workload for the part of the transaction performed at the
node running as the node slave.

NOS Task1

This task receives and interprets the message containing which record to read. It also creates
a transaction context if one does not already exist. The costs are described in table 7.16.

Description Cost (ns)
Receive operation message: 32 457
Interpret operation mes-
sage:

1092

Create transaction context: 186

Table 7.16: NOS Task1 cost description for STR in SN

This gives:

32 457ns + 1092ns + 186ns = 33 735ns

at each node. This task is in the critical path.

86 CHAPTER 7. SN WORKLOAD ESTIMATE

Description Cost (ns)
Lock data record: 186
Read index record from in-
dex root in L1 cache:

36

Read first level index
record:

11.4%× 855 + 88.6%× 2555 ≈ 2361

Read data record (including
locating the record):

1439

Table 7.17: NOS Task2 cost description for STR in SN

NOS Task2

This task locks the data record and performs the read. The costs are described in table 7.17.

This gives:

186ns + 36ns + 2361ns + 1439ns = 4022ns

This task is in the critical path.

NOS Task3

This task creates and sends the read-message according to the 2PC protocol. It also unlocks
the data record and deletes the transaction context. The costs are described in table 7.18.

Description Cost (ns)
Build read-message: 1092
Send read-message: 32 457
Unlock data record: 186
Delete transaction context: 186

Table 7.18: NOS Task3 cost description for STR in SN

This gives:

1092ns + 32 457ns + 186ns + 186ns = 33 921ns

This task is in the critical path.

NOS Task4

For the same reasons as the reasons described in NOC Task6, this task is not performed.

Total costs

The total costs for the NOS when the STR transaction is executed is:

NOS Task1 + NOS Task2 + NOS Task3 =

7.4. THE Complex Transaction Update (CTU) 87

33 735ns + 4022ns + 33 921ns = 71 678ns

7.4 THE COMPLEX TRANSACTION UPDATE (CTU)

This section gives the estimated time used to execute the CTU transaction. The CTU trans-
action contains four updates. We consider the case when the records to be updated reside at
four different nodes. The workload estimated in this section is therefore based on the use of
one NOC and four NOSes. The transaction is decomposed into groups of operations called
tasks. The following is a description of these operations together with a time estimate of each.
The relationships between tasks are illustrated in figure 7.1.

7.4.1 Node Controller (NOC)

This section gives the estimated workload for the part of the transaction performed at the
node running the node controller.

NOC Task1

This task receives and interprets the transaction. It also creates a transaction context. The costs
are described in table 7.19.

Description Cost (ns)
Read transaction from main
memory:

100

Interpret transaction: 1092
Create transaction context: 186

Table 7.19: NOC Task1 cost description for CTU in SN

This gives:

100ns + 1092ns + 186ns = 1378ns

This task is in the critical path.

NOC Task2

This task decides which node slaves that are to participate in the transaction, and writes this
to log. The log is written to main memory. The costs are described in table 7.20.

Description Cost (ns)
Decide participants: 4× 140 = 560
Check transaction context: 93
Build start log post: 1092
Write start log post: 1120

Table 7.20: NOC Task2 cost description for CTU in SN

88 CHAPTER 7. SN WORKLOAD ESTIMATE

This gives:

560ns + 93ns + 1092ns + 1120ns = 2865ns

This task is in the critical path.

NOC Task3

This task builds the messages containing which updates that are to be done, and sends these.
These messages have a prepare-message piggybacked. There are four of these messages, one
for each NOS. The costs are described in table 7.21.

Description Cost (ns)
Build operation messages: 4× 1092 = 4368
Send operation messages: 4× 32 457 = 129 828

Table 7.21: NOC Task3 cost description for CTU in SN

This gives:

4368ns + 129 828ns = 134 196ns

This task is in the critical path.

NOC Task4

This task receives ready-messages from the node slaves, when they have performed the up-
date. It interprets the messages and logs the commit. The log is written to main memory.
There are four of these messages. The costs are described in table 7.22.

Description Cost (ns)
Receive ready-messages: 4× 32 457 = 129 828
Interpret ready-messages: 4× 1092 = 4368
Check transaction context: 93
Build commit log post: 1092
Log commit: 1120

Table 7.22: NOC Task4 cost description for CTU in SN

This gives:

129 828ns + 4368ns + 93ns + 1092ns + 1120ns = 136 501ns

This task is in the critical path.

7.4. THE Complex Transaction Update (CTU) 89

Description Cost (ns)
Build OK message: 1092
Write OK message to main
memory:

100

Table 7.23: NOC Task5 cost description for CTU in SN

NOC Task5

This task builds an OK-message and sends this to the calling application. This means that the
message is written to main memory. The costs are described in table 7.23.

This gives:

1092ns + 100ns = 1192ns

This task is in the critical path.

NOC Task6

This task builds commit-messages and send these to all participants. It also deletes the trans-
action context. The costs are described in table 7.24.

Description Cost (ns)
Build commit messages: 4× 1092 = 4368
Send commit messages: 4× 32 457 = 129 828
Delete transaction context: 186

Table 7.24: NOC Task6 cost description for CTU in SN

This gives:

4368ns + 129 828ns + 186ns = 134 382ns

This task is not in the critical path, because it is not a part of the sum of all operations
needed to be performed before a response can be given back to the transaction service re-
quester.

Total costs

The total costs for the NOC when the CTU transaction is executed is:

NOC Task1 + NOC Task2 + NOC Task3 + NOC Task4 + NOC Task5 + NOC Task6 =

1378ns + 2865ns + 134 196ns + 136 501ns + 1192ns + 134 382ns = 410 514ns

7.4.2 Node Slave (NOS)

This section will give the estimated workload for the part of the transaction performed at one
of the four nodes running as node slaves.

90 CHAPTER 7. SN WORKLOAD ESTIMATE

NOS Task1

This task receives and interprets the message containing which update that is to be done. It
also creates a transaction context. The costs are described in table 7.25.

Description Cost (ns)
Receive operation message: 32 457
Interpret operation mes-
sages:

1092

Create transaction context: 186

Table 7.25: NOS Task1 cost description for CTU in SN

This gives:

32 457ns + 1092ns + 186ns = 33 735ns

at each node.
This task is in the critical path.

NOS Task2

This task locks the data record and performs the update. It also logs the update and a prepare-
post according to the 2PC protocol described in section 2.4.2. The log is written to main mem-
ory. The costs are described in table 7.26.

Description Cost (ns)
Lock data record: 186
Read index record from in-
dex root in L1 cache:

36

Read first level index
record:

11.4%× 855 + 88.6%× 2555 ≈ 2361

Read data record (including
locating the record):

1439

Write data record: d 200B
64B/accesse × 21ns/access = 84

Check transaction context: 93
Build update log post: 1092
Build prepare log post: 1092
Log update: 1120
Log prepare: 1120

Table 7.26: NOS Task2 cost description for CTU in SN

This gives:

186ns+36ns+2361ns+1439ns+84ns+93ns+1092ns+1092ns+1120ns+1120ns = 8623ns

This task is in the critical path.

7.4. THE Complex Transaction Update (CTU) 91

NOS Task3

This task creates and sends the ready-message according to the 2PC protocol. The costs are
described in table 7.27.

Description Cost (ns)
Build ready-message: 1092
Send ready-message: 32 457

Table 7.27: NOS Task3 cost description for CTU in SN

This gives:

1092ns + 32 457ns = 33 549ns

This task is in the critical path.

NOS Task4

This task receives and interprets the commit-message from the node controller and logs the
commit. The log is written to main memory. The task also deletes the transaction context. The
costs are described in table 7.28.

Description Cost (ns)
Receive commit-message: 32 457
Interpret commit-message: 1092
Check transaction context: 93
Build commit log post: 1092
Log commit post: 1120
Unlock data record: 186
Delete transaction context: 186

Table 7.28: NOS Task4 cost description for CTU in SN

32 457ns + 1092ns + 93ns + 1092ns + 1120ns + 186ns + 186ns = 36 226ns

This task is not in the critical path, because it is not a part of the sum of all operations
needed to be performed before a response can be given back to the transaction service re-
quester.

Total costs

The total costs for each NOS when the CTU transaction is executed is:

NOS Task1 + NOS Task2 + NOS Task3 + NOS Task4 =

33 735ns + 8623ns + 33 549ns + 36 226ns = 112 133ns

92 CHAPTER 7. SN WORKLOAD ESTIMATE

7.5 THE COMPLEX TRANSACTION READ (CTR)

This section gives the estimated time used to execute the CTR transaction. Opposed to the
CTU transaction, the CTR transaction contains pure read operations. The transaction will
therefore involve up to five different nodes, one NOC and four NOSes. The transaction is
decomposed into groups of operations called tasks. The following is a description of these
tasks together with a time estimate of each. Our assumed DBMS does not log read-only trans-
actions, therefore the tasks NOC Task8 and NOS Task4 are not executed. The relationships
between tasks are illustrated in figure 7.1.

7.5.1 Node Controller (NOC)

This section gives the estimated workload for the part of the transaction performed at the
node running as node controller.

NOC Task1

This task receives and interprets the transaction. It also creates a transaction context. The costs
are described in table 7.29.

Description Cost (ns)
Read transaction from main
memory:

100

Interpret transaction: 1092
Create transaction context: 186

Table 7.29: NOC Task1 cost description for CTR in SN

This gives:

100ns + 1092ns + 186ns = 1378ns

This task is in the critical path.

NOC Task2

This task decides which nodes that are to participate in the execution of the transaction. The
costs are described in table 7.30.

Description Cost (ns)
Decide participants: 4× 140 = 560

Table 7.30: NOC Task2 cost description for CTR in SN

This gives:

560ns

This task is in the critical path.

7.5. THE Complex Transaction Read (CTR) 93

NOC Task3

This task builds the messages containing which reads that are to be done, and sends these
to the slaves. The messages have a prepare-message piggybacked. The costs are described in
table 7.31.

Description Cost (ns)
Build operation messages: 4× 1092 = 4368
Send operation messages: 4× 32 457 = 129 828

Table 7.31: NOC Task3 cost description for CTR in SN

This gives:

4368ns + 129 828ns = 134 196ns

This task is in the critical path.

NOC Task4

This task receives read-messages from the slaves, when they have performed the reads. It also
interprets the messages. The costs are described in table 7.32.

Description Cost (ns)
Receive read-messages: 4× 32 457 = 129 828
Interpret read-messages: 4× 1092 = 4368

Table 7.32: NOC Task4 cost description for CTR in SN

This gives:

129 828ns + 4368ns = 134 196ns

This task is in the critical path.

NOC Task5

This task builds a data message containing the data read, and sends this to the calling appli-
cation. This means that the message is written to main memory. The task also deletes the
transaction context. The costs are described in table 7.33.

Description Cost (ns)
Build data message: 1092
Write data message to main
memory:

100

Delete transaction context: 186

Table 7.33: NOC Task5 cost description for CTR in SN

94 CHAPTER 7. SN WORKLOAD ESTIMATE

This gives:

1092ns + 100ns + 186ns = 1378ns

This task is in the critical path.

NOC Task6

This task is not performed when the transaction is a read-only transaction. This is because no
logging is performed, and therefore the node performing a read, is not needed to receive a com-
mit-message. If the transaction performed contained one or more updates, commit-messages
would be sent to all nodes performing these updates.

Total costs

The total costs for the NOC when the CTR transaction is executed is:

NOC Task1 + NOC Task2 + NOC Task3 + NOC Task4 + NOC Task5 =

1378ns + 560ns + 134 196ns + 134 196ns + 1378ns = 271 708ns

7.5.2 Node Slave (NOS)

This section gives the estimated workload for the part of the transaction performed at one of
the four nodes running as node slaves.

NOS Task1

This task receives and interprets the message containing which record to read. It also creates
a transaction context. The costs are described in table 7.34.

Description Cost (ns)
Receive operation message: 32 457
Interpret operation mes-
sages:

1092

Create transaction context: 186

Table 7.34: NOS Task1 cost description for CTR in SN

This gives:

32 457ns + 1092ns + 186ns = 33 735ns

at each node.
This task is in the critical path.

7.5. THE Complex Transaction Read (CTR) 95

Description Cost (ns)
Lock data record: 186
Read index record from in-
dex root in L1 cache:

36

Read first level index
record:

11.4%× 855 + 88.6%× 2555 ≈ 2361

Read data record (including
locating the record):

1439

Table 7.35: NOS Task2 cost description for CTR in SN

NOS Task2

This task locks the data record and performs the read. The costs are described in table 7.35.

This gives:

186ns + 36ns + 2361ns + 1439ns = 4022ns

This task is in the critical path.

NOS Task3

This task creates and sends the read-message according to the 2PC protocol. It also unlocks
the data resource and deletes the transaction context. The costs are described in table 7.36.

Description Cost (ns)
Build read-message: 1092
Send read-message: 32 457
Unlock data record: 186
Delete transaction context: 186

Table 7.36: NOS Task3 cost description for CTR in SN

This gives:

1092ns + 32 457ns + 186ns + 186ns = 33 921ns

This task is in the critical path.

NOS Task4

For the same reasons as described in NOC Task6, this task is not performed.

Total costs

The total costs for the NOS when the CTR transaction is executed is:

NOS Task1 + NOS Task2 + NOS Task3 =

96 CHAPTER 7. SN WORKLOAD ESTIMATE

33 735ns + 4022ns + 33 921ns = 71 678ns

CHAPTER8
SE WORKLOAD ESTIMATE

This chapter investigates the total cost of performing the four different transaction types de-
fined in section 2.2 at page 6 in an SE context. We will do that by performing a decomposition
of each element presented in figure 8.1. The cost figures presented in the following sections
are taken from chapter 6, and are summarized in table 6.1.

As for chapter 7, the structure of this chapter is indeed similar to an analog chapter in our
previous work [BJ05]. However, as all the cost figures are different, the costs of performing the
different transactions are recalculated. It is also necessary to be familiar with the transactions’
sub tasks to make the most of the analysis presented in chapter 9.

Figure 8.1 illustrates the execution path for a transaction. This figure is quite different from
the corresponding figure presented in chapter 7. The reason is that there is no node controller
or slaves in SE, because all nodes have access to the same shared, global memory. However,
as mentioned in section 2.6 at page 11, the main challenge with the SE approach is the need
for heavy synchronization to ensure that nodes do not interfere with each other.

Figure 8.1 illustrates the different tasks each node has to go through to ensure serializable
execution. For Task1, the node needs to set a lock on the file dictionary in order to locate
the tuple that is the target for the current transaction operation. This sub task can be further
decomposed: It first need to acquire a semaphore, then set a lock on the file dictionary before
releasing the semaphore again. The first time Task1 is executed, the transaction is also read
from memory and interpreted. A transaction context is also created. The node can then move
on to performing the dictionary operation, before releasing the lock again.

After performing the actual operation (Task2), the node has to start over with Task1 as
long as the transaction has more operations to be executed. When the operation queue is
empty, the node proceeds to Task3. If the transaction was of type STU or CTU, the node logs
a commit and responds to the calling application. If the transaction consisted of pure read
operations, such as STR or CTR, this task only consists of responding to the calling application.
The transaction then moves on to Task4, which is the only task that is outside the critical
path. This task consist of releasing all locks the transaction has acquired during the operation
execution. This is done by accessing the lock data structure by hashing on the transaction ID.
All the locks the transaction has acquired are linked together in a linked list fashion, and the
node releases all locks in one batch by following these links.

The next section presents a calculation of the height of the database b-tree, and the proba-
bility of a cache hit when fetching a record. The following sections in turn presents the costs
associated with each transaction type.

97

98 CHAPTER 8. SE WORKLOAD ESTIMATE

Task2
Execute operation

on data record

Set lock on
data record

Perform
B-tree

operation

Write log post to
memory

H1 HnH2 ...

TxID1

R2

...

Rn

TxID2 TxIDn

R1

...

...LSN LSNLSN

Set lock on
file dictionary

Perform
dictionary
operation

Release lock on
file dictionary

H1 HnH2 ...

TxID1

R2

...

Rn

TxID2 TxIDn

R1

...

...

...

...

T1 T2 Tn

R1 R2 Rn

I2I1 InV

P

S

H1 HnH2 ...

TxID1

R2

...

Rn

TxID2 TxIDn

R1

...

Task1
Access File Dictionary

[More
operations

to be
executed]

...LSN LSNLSN

H1 HnH2 ...

TxID1

R2

...

Rn

TxID2 TxIDn

R1

...

Task3
Log Commit

[No more
operations

to be
executed]

Task4
Release lock on

data record

Only performed for STU and
CTU (writing) transactions

!

! Outside critical path

Figure 8.1: The execution path in a SE architecture. The transaction performs four tasks during the
execution with respect to synchronizing. There are several sub tasks within each task.
The circular figures next to the description of the different sub tasks has the purpose
of illustrating the typical data structures each task needs to synchronize 1The details
within each task is explained roughly in the introduction of this chapter, and more
detailed in the following sections.

8.1. CALCULATING THE B-TREE HEIGHT FOR SE 99

0 (root)

1

2

Figure 8.2: The SE b-tree. The b-tree consists of three levels of index records and one level of data
records. The height of the b-tree is 4.

8.1 CALCULATING THE B-TREE HEIGHT FOR SE

This section calculates the b-tree height in the SE case. As explained in section 7.1, we assume
the database size to be 10 GB. Although the usual approach is to have a b-tree for every table,
we assume that the entire database is contained within a single b-tree.

The number of data blocks in the SE case is:⌈
10GB

8KB

⌉
=

⌈
10 737 418 240B

8192B

⌉
= 1 310 720

The number of index blocks on the lowest level is:⌈
1 310 720

409

⌉
= 3205

The number of index blocks on the next level is:⌈
3205
409

⌉
= 8

The number of index blocks on the highest level is:⌈
8

409

⌉
= 1

This results in a four level b-tree, with three levels of index records, and one level of data
records. This is illustrated in figure 8.2. The entire b-tree consists of:

1 + 8 + 3205 + 1 310 720 = 1 313 934

blocks. The total size of the index pages are:

(1 + 8 + 3205)× 8KB ≈ 25MB

The total amount of L2 cache available in our system is 3MB. This allows us to assume that
the two upper levels of index records always reside in cache, and that approximately

3MB

25MB
= 12%

1The details of each data structure is not included here, because it is outside the scope of this report. However,
it is described in [BJ05]

100 CHAPTER 8. SE WORKLOAD ESTIMATE

of the index blocks at the lowest level can be fetched from L2 cache. The remaining 88% must
be fetched from main memory.

The total amount of L1 cache is

16KB × 8 = 128KB

However, a node may only access the L1 cache within its core, thus we operate with a L1 cache
size of 16KB.

If we assume that the root always resides in L1 cache, there is 8KB left2. We assume that
records at the lowest index level never reside in L1 cache, as the chance of a record doing this
is very small. However, because the first level of index records are accessed frequently, as
there are only 8 such blocks, it makes sense to assume that there is a good chance that some of
these blocks reside in L1 cache. If we anticipate the remaining 8KB of L1 cache to be available,
there is a

8KB

8× 8KB
= 12.5%

probability of a L1 cache hit when fetching first level index records. The remaining 87.5%
must be fetched from L2 cache.

8.2 THE SIMPLE TRANSACTION UPDATE (STU)

This section investigates the total cost of performing a Simple Transaction Update (STU) in
SE. We will to that by decomposing each task into sub tasks.

8.2.1 Task1: Access file dictionary

This task investigates the cost for accessing the file directory by decomposing the task in the
sub tasks indicated in figure 8.1. The tasks are:

• Set lock on file dictionary

• Perform dictionary operation

• Release lock on file dictionary

The following subsections will describe the sub tasks in detail.

Set lock on file dictionary

This sub task reads the transaction from memory, interprets it and creates a transaction con-
text. The task also sets a lock on the file dictionary. This involves setting and releasing a
semaphore for the lock hierarchy and setting a lock on the file dictionary.

Using the values from 8.1, this yields a total cost of:

100ns + 1092ns + 186ns + 11 295ns + 186ns + 11 323ns = 24 182ns

2In reality, the root indices would not make up as much as 8KB.

8.2. THE Simple Transaction Update (STU) 101

Description Cost (ns)
Read transaction from
memory:

100

Interpret transaction: 1092
Create transaction context: 186
Set semaphore: 11 295
Set file dictionary lock: 186
Release semaphore: 11 323

Table 8.1: Task1, cost description for setting a lock on file dictionary by STU in SE

Perform dictionary operation

This sub task performs a dictionary operation. This can be a read operation or a write oper-
ation. Because the number of read operations by far exceeds the number of writes, we only
estimate the costs for the read case. This task therefore involves the single sub task of accessing
the dictionary.

Description Cost (ns)
Access dictionary: 140

Table 8.2: Task1, cost description for reading file dictionary by STU in SE

Using the values from 8.2, this yields a total cost of:

140ns

Release lock on file dictionary

This sub task releases the lock set on the file dictionary. This involves setting and releasing a
semaphore for the lock hierarchy and releasing the lock held for the file dictionary.

Description Cost (ns)
Set semaphore: 11 295
Release file dictionary lock: 186
Release semaphore: 11 323

Table 8.3: Task1, cost description for releasing a lock on file dictionary by STU in SE

Using the values from 8.3, this yields a total cost of:

11 295ns + 186ns + 11 323ns = 22 804ns

Task1 cost

The total cost for Task1 yields:

24 182ns + 140ns + 22 804ns = 47 126ns

102 CHAPTER 8. SE WORKLOAD ESTIMATE

8.2.2 Task2: Execute operation on data record

This task includes all sub tasks needed to execute an operation on a data record in the b-tree.
The sub tasks are:

• Set lock on record

• Perform b-tree operation

• Write log post to memory

The following subsections will describe the sub tasks in detail.

Set lock on data record

This sub task sets a lock on a record. This involves setting and releasing a semaphore for the
lock hierarchy and setting a lock.

Description Cost (ns)
Set semaphore: 11 295
Set lock on record: 186
Release semaphore: 11 323

Table 8.4: Task2, cost description for setting a lock by STU in SE

Using the values from 8.4, this yields a total cost of:

11 295ns + 186ns + 11 323ns = 22 804ns

Perform b-tree operation

This sub task performs an operation on the b-tree. This involves setting and releasing a
semaphore for the entire b-tree, reading three index records, reading one data record and
writing the data record back to memory.

Description Cost (ns)
Set semaphore 11 295
Read index record from in-
dex root in L1 cache:

36

Read first level index
record:

12.5%× 36 + 87.5%× 855 ≈ 753

Read second level index
record:

12%× 855 + 88%× 2555 = 2351

Read data record: 1439
Write data record: d 200B

64B/accesse × 21 = 84
Release semaphore: 11 323

Table 8.5: Task2, cost description for performing a b-tree operation by STU in SE

Using the values from 8.5, this yields a total cost of:

11 295ns + 36ns + 753ns + 2351ns + 1439ns + 84ns + 11 323ns = 27 281ns

8.2. THE Simple Transaction Update (STU) 103

Write log post to memory

This sub task writes a log post to memory. This involves building the log post, checking
the transaction context, setting and releasing a semaphore and writing the log post to main
memory.

Description Cost (ns)
Build log post: 1092
Check transaction context: 93
Set semaphore: 11 295
Write log post: 1120
Release semaphore: 11 323

Table 8.6: Task2, cost description for writing a log post to memory by STU in SE

Using the values from table 8.6, this yields a total cost of:

1092ns + 93ns + 11 295ns + 1120ns + 11 323ns = 24 923ns

Task2 cost

The total cost for Task2 yields:

22 804ns + 27 281ns + 24 923ns = 75 008ns

8.2.3 Task3: Log commit and respond to calling application

This task includes a single sub task, which is to write a commit log post to memory and to
write the response to main memory.

Write commit log post and response to memory

This sub task involves building the log post, checking the transaction context, setting and
releasing a semaphore and writing the log post and the response to main memory.

Description Cost (ns)
Build commit log post: 1092
Check transaction context: 93
Set semaphore: 11 295
Write commit log post: 1120
Release semaphore: 11 323
Write response to main
memory:

100

Table 8.7: Task3, cost description for writing a commit post to memory by STU in SE

Using the values from table 8.7, this yields a total cost of:

1092ns + 93ns + 11 295ns + 1120ns + 11 323ns + 100ns = 25 023ns

104 CHAPTER 8. SE WORKLOAD ESTIMATE

8.2.4 Task4: Release lock

This task includes a single sub task which is to release the lock on the data record.

Release lock on data record

This sub task involves setting and releasing a semaphore and unlocking the data record. The
task also involves deleting the transaction context.

Description Cost (ns)
Set semaphore: 11 295
Release lock on record: 186
Release semaphore: 11 323
Delete transaction context: 186

Table 8.8: Task4, cost description for releasing a lock by STU in SE

Using the values from table 8.8, this yields a total cost of:

11 295ns + 186ns + 11 323ns + 186ns = 22 990ns

8.2.5 Total costs for the STU transaction

The total cost when the STU transaction is executed is:

Task1 + Task2 + Task3 + Task4 =

47 126ns + 75 008 + 25 023ns + 22 990ns = 170 147ns

8.3 THE SIMPLE TRANSACTION READ (STR)

This section investigates the total cost of performing a STR in SE. We will to that by decom-
posing each task into sub elements.

8.3.1 Task1: Access file dictionary

This task investigates the cost for accessing the file directory by decomposing the task in sub
elements The tasks are:

• Set lock on file dictionary

• Perform dictionary operation

• Release lock on file dictionary

The following subsections will describe the sub tasks in detail.

8.3. THE Simple Transaction Read (STR) 105

Set lock on file dictionary

This sub task reads the transaction from memory, interprets it, and creates a transaction con-
text. The task also sets a lock on the file dictionary. This involves setting and releasing a
semaphore for the lock hierarchy and setting a lock on the file dictionary.

Description Cost (ns)
Read transaction from
memory:

100

Interpret transaction: 1092
Create transaction context: 186
Set semaphore: 11 295
Set file dictionary lock: 186
Release semaphore: 11 323

Table 8.9: Task1, cost description for setting a lock on file dictionary by STR in SE

Using the values from table 8.9, this yields a total cost of:

100ns + 1092ns + 186ns + 11 295ns + 186ns + 11 323ns = 47 126ns

Perform dictionary operation

This sub task performs a dictionary operation. This could be a read operation or a write
operation. Because the number of read operations by far exceeds the number of writes, we
only estimate the costs for the read case. This task therefore involves the single sub task of
accessing the dictionary.

Description Cost (ns)
Access dictionary: 140

Table 8.10: Task1, cost description for reading file dictionary by STR in SE

Using the values from table 8.10, this yields a total cost of:

140ns

Release lock on file dictionary

This sub task releases the lock set on the file dictionary. This involves setting and releasing a
semaphore for the lock hierarchy and releasing the lock held for the file dictionary.

Description Cost (ns)
Set semaphore: 11 295
Release file dictionary lock: 186
Release semaphore: 11 323

Table 8.11: Task1, cost description for releasing a lock on file dictionary by STR in SE

Using the values from table 8.11, this yields a total cost of:

106 CHAPTER 8. SE WORKLOAD ESTIMATE

11 295ns + 186ns + 11 323ns = 22 804ns

Task1 cost

The total cost for Task1 yields:

24 182ns + 140ns + 22 804ns = 47 126ns

8.3.2 Task2: Execute read operation on data record

This task includes all sub tasks needed to execute an operation on a data record in the b-tree.
The sub tasks are:

• Set lock on record

• Perform b-tree operation

The following subsections will describe the sub tasks in detail.

Set lock on record

This sub task sets a lock on a record. This involves setting and releasing a semaphore for the
lock hierarchy and setting a lock.

Description Cost (ns)
Set semaphore: 11 295
Set lock on record: 186
Release semaphore: 11 323

Table 8.12: Task2, cost description for setting a lock by STR in SE

Using the values from table 8.12, this yields a total cost of:

11 295ns + 186ns + 11 323ns = 22 804ns

Perform b-tree operation

This sub tasks performs an operation on the b-tree. This involves setting and releasing a
semaphore for the entire b-tree, reading three index records and reading one data record.

Using the values from table 8.13, this yields a total cost of:

11 295ns + 36ns + 753ns + 2351ns + 1439ns + 11 323ns = 27 197ns

Task2 cost

The total cost for Task2 yields:

22 804ns + 27 197ns = 50 001ns

8.3. THE Simple Transaction Read (STR) 107

Description Cost (ns)
Set semaphore 11 295
Read index record from in-
dex root in L1 cache:

36

Read first level index
record:

12.5%× 36 + 88.5%× 855 ≈ 753

Read second level index
record:

12%× 855 + 88%× 2555 = 2351

Read data record: 1439
Release semaphore: 11 323

Table 8.13: Task2, cost description for performing a b-tree operation by STR in SE

8.3.3 Task3: Log commit and respond to calling application

Reading does not require writing record or log, therefore only the response is written to main
memory. The total cost for Task3 is thus:

100ns

8.3.4 Task4: Release lock

This task includes a single sub task which is to release the lock on the data record.

Release lock on data record

This sub involves setting and releasing a semaphore and unlocking the data record. The task
also involves deleting the transaction context.

Description Cost (ns)
Set semaphore: 11 295
Release lock on record: 186
Release semaphore: 11 323
Delete transaction context: 186

Table 8.14: Task4, cost description for releasing a lock by STR in SE

Using the values from table 8.14, this yields a total cost of:

11 295ns + 186ns + 11 323ns + 186ns = 22 990ns

8.3.5 Total costs for the STR transaction

The total cost when the STR transaction is executed is:

Task1 + Task2 + Task3 + Task4 =

47 126ns + 50 001ns + 100ns + 22 990ns = 120 217ns

108 CHAPTER 8. SE WORKLOAD ESTIMATE

8.4 THE COMPLEX TRANSACTION UPDATE (CTU)

This section investigates the total cost of performing a CTU in SE. We will to that by de-
composing each task into sub elements. There are four tuples to be updated during the CTU
execution. Referring to figure 8.1, this means that Task1 and Task2 loops four times until the
execution queue is empty.

8.4.1 Task1: Access file dictionary

This task investigates the cost for accessing the file directory by decomposing the task in the
sub elements indicated in figure 8.1. The tasks are:

• Set lock on file dictionary

• Perform dictionary operation

• Release lock on file dictionary

The following subsections will describe the sub tasks in detail.

Set lock on file dictionary

This sub task reads the transaction from memory, interprets it and creates a transaction con-
text. The task also sets a lock on the file dictionary. This involves setting and releasing a
semaphore for the lock hierarchy and setting a lock on the file dictionary. In the execution
of the CTU transaction, this sub task is executed four times. However, the work of reading
and interpreting the transaction, and creating a transaction context, is only performed once.
Therefore we operate with two distinct costs for this task.

Description Cost (ns)
Read transaction from
memory (performed once):

100

Interpret transaction (per-
formed once):

1092

Create transaction context
(performed once):

186

Set semaphore: 11 295
Set file dictionary lock: 186
Release semaphore: 11 323

Table 8.15: Task1, cost description for setting a lock on file dictionary by CTU in SE

Using the values from table 8.15, this yields a total cost of:

100ns + 1092ns + 186ns + 11 295ns + 186ns + 11 323ns = 24 182ns

the first time the sub task is executed, and

11 295ns + 186ns + 11 323ns = 22 804ns

all other times.

8.4. THE Complex Transaction Update (CTU) 109

Perform dictionary operation

This sub tasks performs a dictionary operation. This could be a read operation or a write
operation. Because the number of read operations by far exceeds the number of writes, we
only estimate the costs for the read case. This task therefore involves the single sub task of
accessing the dictionary

Description Cost (ns)
Access dictionary: 140

Table 8.16: Task1, cost description for reading file dictionary by CTU in SE

Using the values from table 8.16, this yields a total cost of:

140ns

Release lock on file dictionary

This sub task releases the lock set on the file dictionary. This involves setting and releasing a
semaphore for the lock hierarchy and releasing the lock held for the file dictionary.

Description Cost (ns)
Set semaphore: 11 295
Release file dictionary lock: 186
Release semaphore: 11 323

Table 8.17: Task1, cost description for releasing a lock on file dictionary by CTU in SE

Using the values from table 8.17, this yields a total cost of:

11 295ns + 186ns + 11 323ns = 22 804ns

Task1 cost

The total cost for Task1 yields:

24 182ns + 140ns + 22 804ns = 47 126ns

the first time the task is executed, and

22 804ns + 140ns + 22 804ns = 45 748ns

all other times. These are referred to as Task1start and Task1rest, respectively.

8.4.2 Task2: Execute operation on data record

This task includes all sub tasks needed to execute an operation on a data record in the b-tree.
The sub tasks are:

• Set lock on record

• Perform b-tree operation

110 CHAPTER 8. SE WORKLOAD ESTIMATE

• Write log post to memory

The following subsections will describe the sub tasks in detail.

Set lock on record

This sub task sets a lock on a record. This involves setting and releasing a semaphore for the
lock hierarchy and setting a lock.

Description Cost (ns)
Set semaphore: 11 295
Set lock on record: 186
Release semaphore: 11 323

Table 8.18: Task2, cost description for setting a lock by CTU in SE

Using the values from table 8.18, this yields a total cost of:

11 295ns + 186ns + 11 323ns = 22 804ns

Perform b-tree operation

This sub tasks performs an operation on the b-tree. This involves setting and releasing a
semaphore for the entire b-tree, reading three index records, reading one data record and
writing the data record back to memory.

Description Cost (ns)
Set semaphore: 11 295
Read index record from in-
dex root in L1 cache:

36

Read first level index
record:

12.5%× 36 + 87.5%× 855 ≈ 753

Read second level index
record:

12%× 855 + 88%× 2555 = 2351

Read data record: 1439
Write data record: d 200B

64B/accesse × 21ns = 84ns

Release semaphore: 11 323

Table 8.19: Task2, cost description for performing a b-tree operation by CTU in SE

Using the values from table 8.19, this yields a total cost of:

11 295ns + 36ns + 753ns + 2351ns + 1439ns + 84ns + 11 323ns = 27 281ns

Write log post to memory

This sub task writes a log post to memory. This involves building the log post, checking
the transaction context, setting and releasing a semaphore and writing the log post to main
memory.

Using the values from table 8.20, this yields a total cost of:

8.4. THE Complex Transaction Update (CTU) 111

Description Cost (ns)
Build log post: 1092
Check transaction context: 93
Set semaphore: 11 295
Write log post: 1120
Release semaphore: 11 323

Table 8.20: Task2, cost description for writing a log post to memory by CTU in SE

1092ns + 93ns + 11 295ns + 1120ns + 11 323ns = 24 923ns

Task2 cost

The total cost for Task2 yields:

22 804ns + 27 281ns + 24 923ns = 75 008ns

for each operation.

8.4.3 Task3: Log commit and respond to calling application

This task includes a single sub task. This is to write a commit log post to memory, and to write
the response to main memory.

Write commit log post and response to memory

This sub task involves building the log post, checking the transaction context, setting and
releasing a semaphore and writing the log post and the response to main memory.

Description Cost (ns)
Build update log post: 1092
Check transaction context: 93
Set semaphore: 11 295
Write commit log post: 1120
Release semaphore: 11 323
Write response to main
memory:

100

Table 8.21: Task3, cost description for writing a commit post to memory by CTU in SE

Using the values from table 8.21, this yields a total cost of:

1092ns + 93ns + 11 295ns + 1120ns + 11 323ns + 100ns = 25 023ns

8.4.4 Task4: Release locks

This task includes a single sub task which is to release the locks on the data records.

112 CHAPTER 8. SE WORKLOAD ESTIMATE

Release lock on data records

This sub task involves setting and releasing a semaphore and unlocking the data records. It
also involves deleting the transaction context.

Description Cost (ns)
Set semaphore: 11 295
Release lock on record: 186
Release semaphore: 11 323
Delete transaction context: 186

Table 8.22: Task4, cost description for releasing a lock by CTU in SE

Using the values from table 8.22, this yields a total cost of:

11 295ns + 186ns + 11 323ns + 186ns = 22 990ns

8.4.5 Total costs for the CTU transaction

Task1 is split into Task1start and Task1rest. Task1start is only performed once, while
Task1rest is performed three times and is thus multiplied by 3. Task2 is multiplied by 4,
because it is executed for each operation.

The total cost when the CTU transaction is executed is:

Task1start + (3× Task1rest) + (4× Task2) + Task3 + Task4 =

47 126ns + (3× 45 748ns) + (4× 75 008ns) + 25 023ns + 22 990ns = 532 414ns

8.5 THE COMPLEX TRANSACTION READ (CTR)

This section investigates the total cost of performing a CTR in SE. We will to that by de-
composing each task into sub elements. There are four tuples to be updated during the CTR
execution. Referring to figure 8.1, this means that Task1 and Task2 loops four times until the
execution queue is empty.

8.5.1 Task1: Access file dictionary

This task investigates the cost for accessing the file directory by decomposing the task in sub
elements The tasks are:

• Set lock on file dictionary

• Perform dictionary operation

• Release lock on file dictionary

The following subsections will describe the sub tasks in detail.

8.5. THE Complex Transaction Read (CTR) 113

Set lock on file dictionary

This sub task reads the transaction from memory, interprets it and creates a transaction con-
text. The task also sets a lock on the file dictionary. This involves setting and releasing a
semaphore for the lock hierarchy and setting a lock on the file dictionary. In the execution
of the CTR transaction, this sub task is executed four times. However, the work of reading
and interpreting the transaction, and creating a transaction context, is only performed once.
Therefore we operate with two distinct costs for this task.

Description Cost (ns)
Read transaction from
memory (performed once):

100

Interpret transaction (per-
formed once):

1092

Create transaction context
(performed once):

186

Set semaphore: 11 295
Set file dictionary lock: 186
Release semaphore: 11 323

Table 8.23: Task1, cost description for setting a lock on file dictionary by CTR in SE

Using the values from table 8.23, this yields a total cost of:

100ns + 1092ns + 186ns + 11 295ns + 186ns + 11 323ns = 24 182ns

the first time the sub task is executed, and

11 295ns + 186ns + 11 323ns = 22 804ns

all other times.

Perform dictionary operation

This sub task performs a dictionary operation. This could be a read operation or a write
operation. Because the number of read operations by far exceeds the number of writes, we
only estimate the costs for the read case. This task therefore involves the single sub task of
accessing the dictionary.

Description Cost (ns)
Access dictionary: 140

Table 8.24: Task1, cost description for reading file dictionary by CTR in SE

Using the values from table 8.24, this yields a total cost of:

140ns

Release lock on file dictionary

This sub task releases the lock set on the file dictionary. This involves setting and releasing a
semaphore for the lock hierarchy and releasing the lock held for the file dictionary.

114 CHAPTER 8. SE WORKLOAD ESTIMATE

Description Cost (ns)
Set semaphore: 11 295
Release file dictionary lock: 186
Release semaphore: 11 323

Table 8.25: Task1, cost description for releasing a lock on file dictionary by CTR in SE

Using the values from table 8.25, this yields a total cost of:

11 295ns + 186ns + 11 323ns = 22 804ns

Task1 cost

The total cost for Task1 yields:

24 182ns + 140ns + 22 804ns = 47 126ns

the first time the task is executed, and

22 804ns + 140ns + 22 804ns = 45 748ns

all other times. These are referred to as Task1start and Task1rest, respectively.

8.5.2 Task2: Execute read operation on data record

This task includes all sub tasks needed to execute an operation on a data record in the b-tree.
The sub tasks are:

• Set lock on record

• Perform b-tree operation

The following subsections will describe the sub tasks in detail.

Set lock on record

This sub task sets a lock on a record. This involves setting and releasing a semaphore for the
lock hierarchy and setting a lock.

Description Cost (ns)
Set semaphore: 11 295
Set lock on record: 186
Release semaphore: 11 323

Table 8.26: Task2, cost description for setting a lock by CTR in SE

Using the values from table 8.26, this yields a total cost of:

11 295ns + 186ns + 11 323ns = 22 804ns

8.5. THE Complex Transaction Read (CTR) 115

Perform b-tree operation

This sub tasks performs an operation on the b-tree. This involves setting and releasing a
semaphore for the entire b-tree, reading three index records, and reading one data record.

Description Cost (ns)
Set semaphore: 11 295
Read index record from in-
dex root in L1 cache:

36

Read first level index
record:

12.5%× 36 + 87.5%× 855 ≈ 753

Read second level index
record:

12%× 855 + 88%× 2555 ≈ 2351

Read data record: 1439
Release semaphore: 11 323

Table 8.27: Task2, cost description for performing a B-tree operation by CTR in SE

Using the values from table 8.27, this yields a total cost of:

11 295ns + 36ns + 753ns + 2351ns + 1439ns + 11 323ns = 27 197ns

Task2 cost

The total cost for Task2 yields:

22 804ns + 27 197ns = 50 001ns

8.5.3 Task3: Log commit and respond to calling application

Reading does not require writing record or log, therefore only the response is written to main
memory. The total cost for Task3 is thus:

100ns

8.5.4 Task4: Release lock

This task includes a single sub task which is to release the lock on the data record.

Release lock on data record

This sub task involves setting and releasing a semaphore and unlocking the data record. It
also involves deleting the transaction context.

Using the values from table 8.28, this yields a total cost of:

11 295ns + 186ns + 11 323ns + 186ns = 22 990ns

116 CHAPTER 8. SE WORKLOAD ESTIMATE

Description Cost
Set semaphore: 11 295
Release lock on record: 186
Release semaphore: 11 323
Delete transaction context: 186

Table 8.28: Task4, cost description for releasing a lock by CTR in SE

8.5.5 Total costs for the CTR transaction

Task1 is split into Task1start and Task1rest. Task1start is only performed once, while
Task1rest is performed three times and is thus multiplied by 3. Task2 is multiplied by 4,
because it is executed for each operation.

The total cost when the CTR transaction is executed is:

Task1start + (3× Task1rest) + (4× Task2) + Task3 + Task4 =

47 126ns + (3× 45 748ns) + (4× 50 001ns) + 100ns + 22 990ns = 407 463ns

CHAPTER9
ANALYSIS

This chapter presents an analysis based on the calculations presented in chapter 7 and chapter
8. The chapter starts with presenting a workload summary for SN and SE in sections 9.1 and
9.2, respectively. Next, section 9.3 presents a comparison between the results obtained for the
two approaches. The results are also compared with the results in our previous work, [BJ05].
Finally, section 9.4 presents a sensitivity analysis. The ratio between the costs for message
passing and synchronizing is varied. The number of expected processes is also varied.

9.1 SN WORKLOAD SUMMARY

This section gives a brief summary and presentation of the costs calculated in chapter 7. Table
9.1 summarizes the costs associated with each of the four transactions (STU, STR, CTU and
CTR), when utilizing SN.

As stated earlier, we assume that all records touched by the complex transactions reside
at different nodes. We also assume that a NOC is not at the same node as any NOSes of the
same transaction, and that there is no queuing of operations. These assumptions allow us
to anticipate full parallelism in the SN case. All NOSes are executed in parallel, whereas the
NOSes and the NOC are executed in an interleaved fashion. The latter is illustrated in figure
7.1 at page 76. This makes an impact on the costs described in table 9.1. The time used to
execute the NOSes is equal for the simple and complex transactions of the different types.
The total time used to execute the different transactions is therefore simply the sum of the
NOC and one of the NOSes. As we shall see, this is not the case when using SE, where all
operations are executed at a single node.

9.1.1 Increasing the number of operations

The ratio between the complex and the simple transactions is

CTU

STU
=

522 647ns

220 286ns
≈ 2.4

Transaction NOC (ns) NOS (ns) Sum (ns)
STU: 108 153 112 133 220 286
STR: 69 994 71 678 141 672
CTU: 410 514 112 133 522 647
CTR: 271 708 71 678 343 386

Table 9.1: Cost summary for SN

117

118 CHAPTER 9. ANALYSIS

Task Description Cost (ns)
NOC Task1 Decide participants 140

NOC Task3
Build operation message 1092
Send operation message 32 457

NOC Task4
Receive ready message 32 457
Interpret ready message 1092

NOC Task6
Build commit message 1092
Send commit message 32 457

Table 9.2: The additional NOC cost for an additional operation

in the case of updates, and
CTR

STR
=

343 386ns

141 672ns
≈ 2.4

in the case of reads
Because all NOSes are executed in parallel, the extra work done by the NOC is the only

cost added to the total transaction execution time when performing an additional operation.
If we examine the calculation of the CTU transaction presented in section 7.4, it is apparent
that the extra work imposed on the NOC by an additional operation is as presented in table
9.2.

This yields a total additional cost of

140ns + 1092ns + 32 457ns + 32 457ns + 1092ns + 1092ns + 32 457ns = 100 787ns

per added operation.
If we compare this additional cost to the total cost of executing the NOC in a transaction

where a single NOS is involved (the STU transaction), the ratio is

100 787ns

108 153ns
≈ 0.932

This means that when going from one to two operations, the cost associated with executing
the NOC is nearly doubled.

The same phenomena is also apparent when examining the ratio between the time needed
to run the NOC in the case of an STU transaction and in the case of a CTU transaction. This
ratio is

NOCCTU

NOCSTU
=

410 514ns

108 153ns
≈ 3.8

This is not surprising as the CTU transaction involves four times as many operations as the
STU transaction.

9.1.2 Workload

The cost associated with message passing is unquestionably the most expensive single cost. It
is therefore interesting to examine the cost for message passing compared to the total costs of
the different transactions. This is presented in table 9.3.

It is obvious that the time used to execute the transactions depends on the cost associated
with message passing.

When examining table 9.3, it may look like much time is spent waiting for messages. As
an example, let us again consider the CTU transaction. When the NOC is finished sending

9.2. SE WORKLOAD SUMMARY 119

Transaction Percentage
STU:

6×32 457ns
220 286ns ≈ 88%

STR:
4×32 457ns
141 672ns ≈ 92%

CTU:
15×32 457ns
522 647ns ≈ 93%

CTR:
10×32 457
343 386ns ≈ 95%

Table 9.3: The percentage of the total transaction execution time used for message passing

the final operation message to the NOSes, which is done serially, the NOS that received the
first operation message have already responded. Therefore, the NOC does not waste valuable
processing time waiting for response from the NOSes.

On the NOS side, however, more time is spent waiting. According to figure 7.1, when a
NOS has sent a ready message to the NOC, it has to wait for the NOC to perform NOC Task4,
NOC Task5 and parts of NOC Task6 before receiving a commit message. If the NOSes receive
commit messages in the same order as they sent ready messages, then according to section 7.4,
the NOS has been idle for

Task4︷ ︸︸ ︷
136 501ns +1192ns︸ ︷︷ ︸

Task5

+

Task6︷ ︸︸ ︷
4368ns + 32 457ns = 174 518ns

According to section 7.4, the total time spent executing the NOS is 112 133ns. This means that
a node executing a single NOS is idle

174 518
112 133ns + 174 518ns

≈ 61%

of the time. Clearly, a node may run more than a single CTU NOS without swamping the
system. However, an actual DBMS trying to meet high availability demands would never run
at 100% of the maximum capacity in case of any unforeseen conditions. It is on the other hand
common to keep the average load at 70% of the maximum.

9.2 SE WORKLOAD SUMMARY

This section describes and discusses the results from the cost calculations presented in chapter
8. The results are presented in table 9.4.

Contrasting SN, there is no parallelism in SE. Somewhat surprising, this is no obvious
drawback in the execution of small transactions such as STR and STU. The reason is of course
that the NOC overhead that SN carries in order to be able to run operations in parallel is not
apparent in SE.

As illustrated in table 9.4, there is a significant leap in costs when moving from transactions
containing a single operation to transactions containing four operations. Due to the lack of

120 CHAPTER 9. ANALYSIS

Transaction Cost (ns)
STU: 170 147
STR: 120 217
CTU: 532 414
CTR: 407 463

Table 9.4: Cost summary for SE

parallelism, adding a single operation to a transaction implies adding a considerable cost to
the total transaction execution cost.

9.2.1 Increasing the number of operations

When inspecting the relative cost ratio between single and complex transactions, the ratio is

CTU

STU
=

532 414
170 147

≈ 3.1

in the case of updates, and
CTR

STR
=

407 463
120 217

≈ 3.4

in the case of reads.
The performance gain of executing four operations in a transaction opposed to serially

executing four transactions each containing a single operation, is attributable to the decompo-
sition of the sub tasks that only need to be executed once per transaction. Consulting figure
8.1 at page 98, these sub tasks are Task3 and Task4. In addition (but not apparent in the fig-
ure), parts of Task1 only need to be executed once. The decomposition of Task1 is described
in section 8.4.1 at page 108. The decomposition shows that the cost difference between the
first and the consecutive executions of Task1 is indeed small:

Task1start− Task1rest =
47 126ns− 45 748ns = 1378ns

Thus, while Task3 and Task4 only need to be performed once per transaction, the most
significant parts of Task1 and Task2 in its entirety still need to be performed for each opera-
tion. Task1 and Task2 yield indeed the most significant costs. A closer look at the cost figures
for the CTU transaction illustrates this. The first operation execution yields a cost of

Task1start + Task2 =
47 126ns + 75 008ns = 122 134ns

The 3 consecutive operation executions each yields a cost of

Task1rest + Task2 =
45 748ns + 75 008ns = 120 756ns

which yields a total of

9.3. COMPARISON 121

Transaction Cost (ns)

Task1start 45 236ns
47 126 ≈ 96%

Task1rest
45 236ns
45 748 ≈ 99%

Task2: 67 854ns
75 008 ≈ 90%

Task3: 22 618ns
25 023 ≈ 90%

Task4
22 618ns
22 990 ≈ 98%

Table 9.5: Synchronization percentage cost in SE for the CTU transaction

3× 120 756ns = 362 267ns

Before completion, Task3 and Task4 is run once, with a total cost of

Task3 + Task4 =
25 023ns + 22 990ns = 48 013ns

Clearly, the biggest cost in SE is associated with the execution of the first two tasks. The
next question to answer is what mechanism makes the biggest cost in SE.

9.2.2 Workload

Not surprising, the most significant costs is associated with the synchronization using System
V Semaphores. To realize this, let us again consider the CTU transaction. Inspecting the
cost figures, the percentage of the cost associated with synchronization using semaphores,
is for each sub task illustrated in table 9.5. Although only listing these figures for CTU, the
same percentage also applies for the other classes of transactions, with the exception of the
percentage of Task3. Because there is no synchronization in Task3 in the read cases, the
percentage yields 0% for transactions CTR and STR. Obviously, Task1rest is only executed
for CTU and CTR.

It is apparent that the most expensive mechanism in use is the synchronization primitives.
A lot of time could be saved if a less expensive synchronization primitive could substitute the
System V semaphores.

9.3 COMPARISON

This section presents a comparison between the results obtained for SN and SE, calculated in
chapters 7 and 8, respectively. We also draw the lines back to our previous work, and state the
main differences.

122 CHAPTER 9. ANALYSIS

0

100000

200000

300000

400000

500000

600000

0 1 2 3 4
Operations

Ti
m

e
(n

s)

Shared Nothing update
Shared Everything update
Shared Nothing read
Shared Everything read

Figure 9.1: Transaction execution cost for up to four transactions. There are four curves in the
graph. The dashed lines illustrate the costs associated with running pure read transac-
tions, whereas the solid lines illustrate the costs associated with running pure update
operations. It is apparent that SE is the cheaper alternative when performing one oper-
ation. SN read is chapter than SE for operations > 1, whereas SN update is preferable
for operations > 3.

The costs for the different architectural approaches are already summarized in sections 9.1
and 9.2. A recapitulation of the costs presented in these sections is shown in table 9.6. These
cost figures are used to present the following graphs.

The graph shown in figure 9.1 illustrates the cost associated with executing transactions
containing up to four operations. As before, we assume that different operations in the SN
case reside at different nodes. There are four curves in the graph. The dashed lines illustrate
the costs associated with running pure read transactions, whereas the solid lines illustrate the
costs associated with running pure update operations.

According to the graph, SE is the cheaper alternative when the transactions are only per-
forming one operation. SN is more expensive, because the NOC component of SN is pure
overhead. As explained earlier, the NOC is used to coordinate distributed transactions and the
distributed commit. Because transactions involving a single operation cannot be distributed,

Transaction SN SE
NOC NOS Sum

STU: 108 153 112 133 220 286 170 147
STR: 69 994 71 678 141 672 120 217
CTU: 410 514 112 133 522 647 532 414
CTR: 271 708 71 678 343 386 407 463

Table 9.6: Cost summary for SN and SE

9.3. COMPARISON 123

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Operations

Ti
m

e
(n

s)

Shared Nothing update
Shared Everything update
Shared Nothing read
Shared Everything read

Figure 9.2: Transaction execution cost for up to 32 operations. The trend suggested in 9.1 contin-
ues. At 32 operations, SN performs substantially better than SE.

the work performed by the NOC is superfluous. Because there is no such controller compo-
nent in SE, both the read and the update single operation transactions are cheaper when using
SE. This was also the case in our previous work presented in [BJ05].

When increasing the number of operations, the curves for SN and SE intersect in both the
read and the update case. This means that when performing additional operations, the SN
approach is eventually cheaper.

In our previous work, SN was cheapest for transactions performing two or more transac-
tions. This was the case in both the read and the update case. When examining the graph
presented in figure 9.1, the number of operations needed to make SN the cheaper alterna-
tive deviates somewhat from our previous work. In the read case, the number of operations
needed is still two. In the update case, however, the number of operations needed has in-
creased to four. This is because the minimum, inaccurate cost estimates used in our previous
work appears to have a greater impact on SN than SE.

This is perhaps not too surprising. The message passing cost in this report is

Msg_passingnew

Msg_passingold

=
32 457ns

75ns
≈ 433

times greater than in the previous, whereas the cost for synchronization is

Synchronizationnew

Synchronizationold

=
11 295ns

30ns
≈ 377

times greater than in the previous report.
The graph shown in figure 9.2 illustrates the costs associated with executing transactions

involving up to 32 operations. The part of the graph up to four operations is therefore identical
to the graph presented in figure 9.1. There are four curves in the graph. The dashed curves

124 CHAPTER 9. ANALYSIS

illustrate the read case, whereas the solid lines illustrate the update case. According to the
graph, SN outperforms SE in both the update and the read case as the number of operations
increases. Because we are assuming full parallelism in the SN case, all operations are running
at different nodes. This means that when 32 operations are reached, these operations are
running at 32 different nodes. This is not plausible, and this scenario would rarely take place
in the real world.

In our previous work, SN outperformed SE by almost one order of magnitude when run-
ning 32 operations. According to the graph presented in figure 9.2, this is no longer the case.
When the transactions involve 32 operations SN does not even outperform SE by a factor of
two.

9.4 SENSITIVITY ANALYSIS

This section presents a sensitivity analysis for the costs of message passing and synchroniza-
tion. These costs are chosen because they are the most significant isolated cost elements for
each architectural approach.

Section 9.4.1 examines the performance when executing pure read transactions, whereas
section 9.4.2 examines the performance when running pure update transactions. In both sec-
tions the ratio between the costs of message passing and synchronization is varied.

Because the choice of costs presented in chapter 6 is highly depending on the expected
number of processes, this is an element that may have great impact on the relative perfor-
mance of SN and SE. Section 9.4.3 presents an analysis by varying the number of expected
processes.

9.4.1 Varying the cost ratio for read transactions

In this section we perform a sensitivity analysis by varying the ratio between the costs for mes-
sage passing in SN and synchronization in SE. This is performed for the pure read transactions
STR and CTR. It is also performed for a general read transaction where the number of oper-
ations is not predetermined. The objective of the latter is to determine the ratio that marks a
crossing between the performance of SN and SE in the read case. Having benchmarked these
costs, this ratio could yield a suggestion on which memory architecture to implement on a
DBMS.

The following sections present an analysis for each of the transactions listed above.

The STR transaction

This section presents an analysis based on the STR transaction. The ratio between message
passing in SN and synchronization in SE is varied, as illustrated by in figure 9.3. There are
three horizontal curves in the graph. These curves illustrate the cost of running the STR trans-
action on SE when the cost for synchronization is the original cost, two times the original cost
and three times the original cost. The three other curves illustrate the cost of executing the
STR transaction on SN in the different cases.

In order to explain this more thoroughly, let us consider the two dashed curves. The
horizontal curve illustrates the cost associated with running the STR transaction on SE when
the cost for synchronization is equal to the original cost. The cost is not varied, and the time
used to execute the transaction is therefore constant. The other dashed curve illustrates the
cost associated with running the STR transaction on SN.

9.4. SENSITIVITY ANALYSIS 125

STR

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10
Ratio

Ti
m

e
(n

s)

SE original cost
SN original cost
SE 2 x original cost
SN 2x original cost
SE 3x original cost
SN 3x original cost

Figure 9.3: Varying the cost ratio for the STR transaction. There are three horizontal curves in the
graph. These curves illustrate the costs associated with running the STR transaction
on SE when the cost for synchronization is the original cost, two times the original
cost and three times the original cost. The x-axis represents the ratio between the cost
for message passing and the cost for synchronization. There are three pairs of curves.
These are illustrated with dashed, solid and bold lines. The arched curves represent the
costs associated with running the STR transaction on SN. The costs used for message
passing when creating this curves are x times the cost used for synchronization in the
matching SE curve. All pairs of curves intersect at x = 2.5. This suggests that if the
cost for message passing is 2.5 times the cost for synchronization, SN and SE perform
equally good when running STR transactions.

Opposed to the cost for synchronization, the cost for message passing is not held constant.
The x-axis represents the ratio between these two costs. Thus at x = 1, the cost for message
passing is set equal to the original cost for synchronization. At x = 2, the cost for message
passing is set to two times the original cost for synchronization, and so forth. The intersection
between the two curves illustrates the ratio that makes SN and SE perform equally well.

The other pairs of curves behave in the same manner. The only difference is that the
starting points are shifted from the original cost for synchronization, to two and three times
the original cost.

As illustrated in the graph, all pairs of curves intersect at approximately x = 2.5. This
suggests that if the cost for message passing is approximately 2.5 times the cost for synchro-
nization, SN and SE will perform equally good when running the STR transaction.

Another way to see this is to examine the number of times messages are sent or received
in SN and compare this with the number of times a semaphore is set and released in SE.
These numbers are for the STR case already described in sections 7.3 and 8.3, respectively.
According to these sections, messages are sent or received four times, whereas semaphores
are set or released 10 times. The ratio between these numbers is

126 CHAPTER 9. ANALYSIS

CTR

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10
Ratio

Ti
m

e
(n

s)

SE original cost
SN original cost
SE 2 x original cost
SN 2x original cost
SE 3x original cost
SN 3x original cost

Figure 9.4: Varying the cost ratio for the CTR transaction. There are three horizontal curves in the
graph. These curves illustrate the costs associated with running the CTR transaction
on SE when the cost for synchronization is the original cost, two times the original
cost and three times the original cost. The x-axis represents the ratio between the cost
for message passing and the cost for synchronization. There are three pairs of curves.
These are illustrated with dashed, solid and bold lines. The arched curves represent the
costs associated with running the CTR transaction on SN. The costs used for message
passing when creating this curves are x times the cost used for synchronization in the
matching SE curve. All pairs of curves intersect at x ≈ 3.5. This suggests that if the
cost for message passing is 3.5 times the cost for synchronization, SN and SE perform
equally good when running CTR transactions.

10
4

= 2.5

Because the cost for message passing (see section 9.1) and synchronization (see section
9.2) dominates the total, the remaining costs do not make a significant impact on the ratio.
As the costs of message passing and synchronization grows, the ratio to make SN and SE
perform equally good when executing the STR transaction approaches 2.5. That is, given that
the approaches perform equally well, then

lim
m,s→∞

m

s
= 2.5

where m is the cost for message passing and s is the cost for synchronization.
This means that if the cost of passing messages is greater than 2.5 times the cost for syn-

chronization, SE will perform best for a system running STR transactions. It is also valid the
other way around. If message passing is less than 2.5 times the cost for synchronization, SN is
the better alternative. It is important to notice that this ratio is only valid for the STR transac-
tion. As we shall see, read transactions involving a different number of operations will have
different ratios.

9.4. SENSITIVITY ANALYSIS 127

Task Description Cost (ns)
NOC Task2 Decide participants 140

NOC Task3
Build operation message 1092
Send operation message 32 457

NOC Task4
Receive read message 32 457
Interpret read message 1092

Table 9.7: The additional cost for an additional read operation in SN

However, if the percentages of the total transaction execution time used for message pass-
ing and synchronization decrease, these costs will not longer predominate the total costs, and
the ratio will deviate.

The CTR transaction

This section presents an analysis based on the CTR transaction. The ratio between message
passing in SN and synchronization in SE is varied. This is illustrated by the graph in figure
9.4, which is analogous to the graph described in the previous section.

There are three horizontal curves in the graph. These illustrate the costs associated with
running the CTR transaction on SE when the cost for synchronization is the original cost, two
times the original cost and three times the original cost, respectively. The three remaining
curves illustrate the costs associated with running the CTR transaction on SN in the differ-
ent cases, as described in the previous section. The x-axis represents the ratio between the
different costs used.

As already explained, the curves intersect at approximately x = 2.5 when running the STR
transaction. This is no longer the case when running the CTR transaction. According to the
graph, all pairs of curves intersect at approximately x ≈ 3.5. This is because the ratio between
the number of times a message is sent or received in SN and the number of times a semaphore
is set or released in SE has changed. According to sections 7.5 and 8.5, these numbers are 101

and 34, respectively. The ratio between these numbers is

34
10

= 3.4

For the same reasons as explained in the previous section, given that the approaches per-
form equally good, this yields

lim
m,s→∞

m

s
= 3.4

where m is the cost for message passing and s is the cost for synchronization.
This means that if the cost of passing messages is greater than 3.4 times the cost for syn-

chronization, SE will perform best for a system running CTR transactions. On the other hand,
if message passing is cheaper than 3.4 times the cost for synchronization, SN is preferable. It
is important to notice that this ratio is only valid for the CTR transaction, read transactions
involving a different number of operations will have different ratios.

1Although there are four NOSes involved in a CTR transaction, we assume that all NOSes are executed in
parallel. The numbers of messages sent is therefore calculated by summing up the numbers sent from NOC and
one NOS.

128 CHAPTER 9. ANALYSIS

Task Description Cost (ns)

Task1rest

Set semaphore 11 295
Set file dictionary lock 186
Release semaphore 11 323
Access dictionary 140
Set semaphore 11 295
Release file dictionary lock 186
Release semaphore 11 323

Task2

Set semaphore 11 295
Set lock on record 186
Release semaphore 11 323
Set semaphore 11 295
Read index record from index root in L1 cache 36
Read first level index record 753
Read second level index record 2351
Read data record 1439
Release semaphore 11 323

Table 9.8: The additional cost for an additional read operation in SE

General read transaction

This section presents an analysis based on a general read transaction. The purpose of this
section is to establish a ratio between the cost for message passing and the cost for synchro-
nization that can be used to tell which approach yields best results regardless of how many
operations that are added to the transaction. Thus, we are not limiting ourselves to transac-
tions with a predefined number of operations such as the STR and CTR transactions described
above. In order to do this, we have to examine the sub tasks of a read transaction when run-
ning on SN and SE.

As illustrated by the graphs in figures 9.1 and 9.2 in section 9.3, the curves for the costs of
executing a read operation on SN and SE are increasing linearly with the number of opera-
tions. Thus, the costs for the two architectural approaches may be described by the following
equations.

Costread
SN = z · aread

SN + bread
SN (9.1)

Costread
SE = z · aread

SE + bread
SE (9.2)

The z denotes the number of operations.2 The constants aread
SN and aread

SE are the costs as-
sociated with performing one additional read operation. The constants bread

SN and bread
SE are the

costs that are not dependent on the number of operations. Our goal is to find the cost ratio
that satisfies

aread
SN = aread

SE

That is, a ratio between the cost for message passing and the cost for synchronization that
makes the slopes of the curves representing the total costs of running a read transaction on
SN and SE equal. In order to do this, we must establish the costs associated with running an
additional operation on SN and SE.

2The reason that z is used in stead of the more common variable x, is to ensure that it is not mixed up with the
x of the x-axis in the graph presented in figure 9.5.

9.4. SENSITIVITY ANALYSIS 129

General Read

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10
Ratio

Ti
m

e
(n

s)

SE original cost
SN original cost
SE original 2x cost
SN original 2x cost
SE original 3x cost
SN original 3x cost

Figure 9.5: Varying the cost ratio for a general read transaction. There are three horizontal curves
in the graph. These curves illustrate the costs associated with running an additional
read operation in SE when the cost for synchronization is the original cost, two times
the original cost and three times the original cost. The x-axis represents the ratio be-
tween the cost for message passing and the cost for synchronization. There are three
pairs of curves. These are illustrated with dashed, solid and bold lines. The arched
curves represent the costs associated with running an additional read operation in SN.
The costs used for message passing when creating these curves are x times the cost
used for synchronization in the matching SE curve. All pairs of curves intersect at
x ≈ 4. This suggests that if the cost for message passing is 4 times the cost for syn-
chronization, SN and SE perform equally good when increasing the number of read
operations.

The cost associated with performing an additional read operation in SN is presented in
table 9.7. These figures are taken from section 7.5. The original cost for message passing is
used in the table.

This makes a total of

140ns + 1092ns + 32 457ns + 32 457ns + 1092ns = 67 238ns

According to section 8.5, the additional costs imposed on SE by an additional read opera-
tion are as listed in table 9.8.

This makes a total of
Task1rest + Task2 = 95 749ns

It is clearly more expensive to perform an additional read operation in the SE case than in the
SN case when using original costs.

The graph illustrated in figure 9.5 represents the cost of running an additional read opera-
tion in SN and SE. As for the graphs presented in the two previous sections, the ratio between
the cost for message passing in SN and the cost for synchronization in SE is varied. The x-axis
represents this ratio. There are three horizontal curves in the graph. These curves represent

130 CHAPTER 9. ANALYSIS

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Operations

Ti
m

e
(n

s)

SN read
SE read

(a)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Operations

Ti
m

e
(n

s)

SN read
SE read

(b)

Figure 9.6: Varying the cost ratio for the general read transaction. Graph (a) illustrates the case
where the cost for message passing is 3 times the cost for synchronization. Graph (b)
illustrates the case where the cost for message passing is 5 times the cost for synchro-
nization. The difference in relative performance is clear.

the costs associated with running an additional read operation on SE when the cost for syn-
chronization is the original cost, two times the original cost and three times the original cost,
respectively.

All pairs of curves in the graph intersect at x ≈ 4.1. Following the lines of the previous
sections, this may also be seen by examining the additional number of times messages are sent
or received for an extra read operation in SN, and the additional number of times semaphores
are set or released for an extra read operation in SE. According to table 9.7 this two in the case
of SN. For SE, table 9.8 tells us that the number of additional sets and releases of semaphores
is 8. The ratio between these two numbers is

8
2

= 4

This means that when the cost for message passing is 4 times the cost for synchronization, an
additional read operation imposes approximately equal additional costs to SN and SE. Given
that the additional costs are equal for SN and SE, this yields

lim
m,s→∞

m

s
= 4

where the cost for message passing is denoted m and the cost for synchronization is denoted
s.

If the cost for message passing is greater than 4 times the cost for synchronization, SE will
perform best when increasing the number of read operations. On the other hand, if message
passing is cheaper than 4 times the cost for synchronization, SN is preferable. This ratio is
valid for all number of operations large enough to wipe out the impact of the initial costs,
bread
SN and bread

SE . This is illustrated in figure 9.6. The graph shown in figure 9.6(a) illustrates the
case where the cost for message passing is 3 times the cost for synchronization. In this scenario
SN clearly performs better. Figure 9.6(b), on the other hand, illustrates the case where the cost
for message passing is 5 times the cost for synchronization. In this scenario, SE is preferable.

9.4. SENSITIVITY ANALYSIS 131

STU

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10
Ratio

Ti
m

e
(n

s)

SE original cost
SN original cost
SE 2x original cost
SN 2x original cost
SE 3x original cost
SN 3x original cost

Figure 9.7: Varying the cost ratio for the STU transaction. There are three horizontal curves in the
graph. These curves illustrate the costs associated with running the STU transaction
on SE when the cost for synchronization is the original cost, two times the original
cost and three times the original cost. The x-axis represents the ratio between the cost
for message passing and the cost for synchronization. There are three pairs of curves.
These are illustrated with dashed, solid and bold lines. The arched curves represent the
costs associated with running the STU transaction on SN. The costs used for message
passing when creating this curves are x times the cost used for synchronization in the
matching SE curve. All pairs of curves intersect at x = 2.33. This suggests that if the
cost for message passing is 2.33 times the cost for synchronization, SN and SE perform
equally good when running STU transactions.

9.4.2 Varying the cost ratio for update transactions

In this section we perform a sensitivity analysis by varying the ratio between the costs for
message passing in SN and synchronization in SE. This section is following the structure of
section 9.4.1, but we now perform the analysis for the update transactions, STU and CTU.
Also, an analysis for a general update transaction is performed. This is a transaction where
the number of operations is not predetermined. As explained in section 9.4.1, our mission
is to establish a ratio that marks a crossing in the performance of SN and SE. The following
sections present an analysis for the transactions described above.

The STU transaction

This section presents an analysis based on the STU transaction. The ratio between the cost
for message passing and the cost for synchronization is varied. Because a similar analysis
is performed and thoroughly explained in section 9.4.1, this section briefly summarizes the
results.

In the graph presented in figure 9.7, there are three horizontal curves. These curves illus-
trate the cost of executing the STU transaction on SE when the cost for synchronization is the

132 CHAPTER 9. ANALYSIS

CTU

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10
Ratio

Ti
m

e
(n

s)

SE original cost
SN original cost
SE 2x original cost
SN 2x original cost
SE 3x original cost
SN 3x original cost

Figure 9.8: Varying the cost ratio for the CTU transaction. There are three horizontal curves in the
graph. These curves illustrate the costs associated with running the CTU transaction
on SE when the cost for synchronization is the original cost, two times the original
cost and three times the original cost. The x-axis represents the ratio between the cost
for message passing and the cost for synchronization. There are three pairs of curves.
These are illustrated with dashed, solid and bold lines. The arched curves represent the
costs associated with running the CTU transaction on SN. The costs used for message
passing when creating this curves are x times the cost used for synchronization in the
matching SE curve. All pairs of curves intersect at x = 2.93. This suggests that if the
cost for message passing is 2.93 times the cost for synchronization, SN and SE perform
equally good when running CTU transactions.

original cost, two times the original cost and three times the original cost, respectively. The
three remaining curves illustrate the cost of executing the STR transaction on SN in the dif-
ferent cases, as explained thoroughly in section 9.4.1. The x-axis represents the ratio between
the cost for message passing and the cost for synchronization. When running the STR trans-
action, the curves intersect at approximately x = 2.5. However, because the STU transaction
is an update transaction, this point of intersection is shifted somewhat to the left. The ratio
that marks a crossing between the performance of SN and SE is approximately x ≈ 2.3.

We may also decide this crossing by comparing the number of times messages are sent
or received in SN to the number of times semaphores are set or released in SE, during the
execution of the STU transaction. According to sections 7.2 and 8.2 these numbers are 6 and
14, respectively. Thus, the ratio is

14
6

= 2.33

For the same reasons as explained in section 9.4.2, given that the approaches perform equally
good, this yields

lim
m,s→∞

m

s
= 2.33

9.4. SENSITIVITY ANALYSIS 133

Task Description Cost (ns)
NOC Task2 Decide participants 140

NOC Task3
Build operation message 1092
Send operation message 32 457

NOC Task4
Receive ready message 32 457
Interpret ready message 1092

NOC Task6
Build commit message 1092
Send commit message 32 457

Table 9.9: The additional cost for an additional update operation in SN

where m is the cost for message passing and s is the cost for synchronization. This means
that if the cost for message passing is greater than 2.33 times the cost for synchronization, SE
will perform best for a system running STU transactions. On the other hand, if the cost for
message passing is less than 2.33 times the cost for synchronization, SN is preferable.

The CTU transaction

This section presents a sensitivity analysis based on the CTU transaction. As for the previous
section, the ratio between the cost for message passing and the cost for synchronization is
varied. This is illustrated in figure 9.8.

The graph in the figure contains three horizontal curves. These illustrate the cost of ex-
ecuting the CTU transaction on SE when the cost for message passing is equal the original
cost of synchronization, two times the original cost and three times the original cost. The
three remaining curves illustrate the cost of executing the CTU transaction on SN in the dif-
ferent cases. The x-axis represents the ratio between the cost message passing and the cost
synchronization.

All the pairs of curves in the graph intersect at approximately x ≈ 3. This suggests that
when the ratio between the costs is approximately 3, SN and SE perform equally good. As
explained earlier, another way to see this is to examine the number of times messages are sent
and received in SN and the number of times semaphores are set or released in SE during the
execution of the CTU transaction. According to sections 7.4 and 8.4, these number are 15 and
44,respectively. The ratio thus is

44
15

= 2.93

For the same reasons as explained in section 9.4.2, given that the approaches perform equally
good, this yields

lim
m,s→∞

m

s
= 2.93

where m is the cost for message passing and s is the cost for synchronization. This means
that if the cost for message passing is greater than 2.33 times the cost for synchronization, SE
will perform best for a system running STU transactions. On the other hand, if the cost for
message passing is less than 2.33 times the cost for synchronization, SN is preferable.

General update transaction

This section presents an analysis based on a general update transaction. The purpose of this
section is to establish a ratio between the cost for message passing and the cost for synchro-
nization that can be used to tell whether SN or SE yields best results regardless of how many

134 CHAPTER 9. ANALYSIS

Task Description Cost (ns)

Task1rest

Set semaphore 11 295
Set file dictionary lock 186
Release semaphore 11 323
Access dictionary 140
Set semaphore 11 295
Release file dictionary lock 186
Release semaphore 11 323

Task2

Set semaphore 11 295
Set lock on record 186
Release semaphore 11 323
Set semaphore 11 295
Read index record from index root in L1 cache 36
Read first level index record 753
Read second level index record 2351
Read data record 1439
Write data record 84
Release semaphore 11 323
Build log post 1092
Check transaction context 93
Set semaphore 11 295
Write log post 1120
Release semaphore 11 323

Table 9.10: The additional cost for an additional update operation in SE

operations that are added to the transaction. This section is therefore analogous to section
9.4.2 which presents an analysis for the general read transaction.

As illustrated by the graphs in figures 9.1 and 9.2 in section 9.3, the costs of executing
an update operation on SN and SE are increasing linearly with the number of operations.
The costs for the two architectural approaches may therefore be described by two equations
similar to equations 9.1 and 9.2 in section 9.4.1.

Costupdate
SN = z · aupdate

SN + bupdate
SN (9.3)

Costupdate
SE = z · aupdate

SE + bupdate
SE (9.4)

The z denotes the number of operations. The constants aupdate
SN and aupdate

SE are the costs asso-
ciated with performing an additional update operation. The constants bupdate

SN and bupdate
SE are

the parts of the total costs that are not depending on the number of operations. As described
for the general read transaction in section 9.4.1, our goal is to find a ratio between the cost for
message passing and the cost for synchronization that satisfies

aupdate
SN = aupdate

SE

To find this ratio, it is necessary to examine the extra work imposed by an additional
update operation in SN and SE. According to section 7.4, the extra work imposed on SN is as
described in table 9.9. The original cost is used for message passing.

9.4. SENSITIVITY ANALYSIS 135

General Update

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10
Ratio

Ti
m

e
(n

s)

SE original cost
SN original cost
SE original 2x cost
SN original 2x cost
SE original 3x cost
SN original 3x cost

Figure 9.9: Varying the cost ratio for a general update transaction. There are three horizontal
curves in the graph. These curves illustrate the costs associated with running an ad-
ditional update operation in SE when the cost for synchronization is the original cost,
two times the original cost and three times the original cost. The x-axis represents the
ratio between the cost for message passing and the cost for synchronization. There
are three pairs of curves. These are illustrated with dashed, solid and bold lines. The
arched curves represent the costs associated with running an additional update opera-
tion in SN. The costs used for message passing when creating these curves are x times
the cost used for synchronization in the matching SE curve. All pairs of curves inter-
sect at x = 3.33. This suggests that if the cost for message passing is 3.33 times the cost
for synchronization, SN and SE perform equally good when increasing the number of
update operations.

This makes a total of

140ns + 1092ns + 32 457ns + 32 457ns + 1092ns + 1092ns + 32 457ns = 100 787ns

The costs associated with performing an additional update operation in SE are presented
in table 9.10. These cost figures are taken from section 8.4.

This makes a total of
Task1rest + Task2 = 120 756

When using original costs, it is considerably more expensive to perform an additional
update operation in SE than in SN.

The graph in figure 9.9 represents the cost of running an additional operation for SN and
SE. The cost ratio between the cost for message passing and the cost for synchronization
is varied. There are three horizontal curves in the graph. These curves illustrate the cost of
executing an additional operation on SE when the cost for synchronization is the original cost,
two times the original cost and three times the original cost, respectively. The x-axis represents
the ratio.

136 CHAPTER 9. ANALYSIS

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Operations

Ti
m

e
(n

s)

SN update
SE update

(a)

0

1000000

2000000

3000000

4000000

5000000

6000000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Operations

Ti
m

e
(n

s)

SN update
SE update

(b)

Figure 9.10: Varying the cost ratio for general update transaction. Graph (a) illustrates the case
where the cost for message passing is 2.33 times the cost for synchronization. Graph
(b) illustrates the case where the cost for message passing is 4.33 times the cost for
synchronization. The difference in relative performance is clear.

All the pairs of curves in the graph intersect at approximately x ≈ 3.5. This suggests that if
the cost for message passing is 3 times the cost for synchronization, it is equally expensive to
perform an additional update operation in SN and SE. Another way to see this is to examine
the number of times messages are sent or received in SN and the number of times semaphores
are set or released in SE for an additional update operation. According to tables 9.9 and 9.10
these numbers are 3 and 10 respectively. The ratio between these two numbers is

10
3

= 3.33

Given that the additional costs are equal for SN and SE, this yields

lim
m,s→∞

m

s
= 3.33

where m is the cost for message passing and s is the cost for synchronization.
If the cost for message passing is greater than 3.33 times the cost for synchronization, SE

will perform best when increasing the number of update operations. If the cost for message
passing is less than 3.33 times the cost for synchronization, SN is preferable. As for the general
update transaction presented in section 9.4.1, this is valid for all numbers of operations large
enough to wipe out the impact of the initial costs bupdate

SN and bupdate
SE . This is illustrated in figure

9.10. The graph shown in figure 9.10(a) illustrates the case where the cost for message passing
is 2.33 times the cost for synchronization. In this scenario SN clearly performs better. Figure
9.10(b), on the other hand, illustrates the case where the cost for message passing is 4.33 times
the cost for synchronization. In this scenario, SE is preferable.

9.4.3 Varying the number of process pairs

This section provides a sensitivity analysis by varying the number of process pairs. First, we
examine the SN case, then SE.

9.4. SENSITIVITY ANALYSIS 137

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 4 8 16 32
Process pair

Ti
m

e
(n

s)

STR Doors CTR Doors

STR TCP CTR TCP

Figure 9.11: Varying the process pairs for read transactions in SN. The graph has four curves,
representing the cost curves for the read transactions applied on both message pass-
ing techniques. The dashed curves represent the STR transaction, the solid curves
the CTR transaction. The cost curves utilizing Solaris Doors is denoted with squares,
TCP/IP is denoted with circles. Considering the STR and CTR transactions using
Solaris Doors, they are both clearly cheaper compared to the TCP/IP equivalent for
a number of process pairs < 8. However, when the numbers of process pairs is >
8, TCP/IP scales very well. Reaching 32 process pairs, TCP/IP outperforms Solaris
Doors by a a factor of ≈ 3.45 in the CTR case, and ≈ 3.37 in the STR case.

Varying the number of process pairs in SN

This section expands on the most significant cost in SN, namely message passing. When we
in section 6.1 at page 63 established the costs to use in the calculation chapters, we had two
candidate techniques to choose from with regards to message passing, namely TCP/IP and
Solaris Doors. After settling for a message size of 64B, we argued that in order to fully take
advantage of the system, all nodes should at any time participate in at least one transaction. In
other words, we considered the cost of 32 process pairs. Because the TCP/IP candidate was
far cheaper in this case, we settled for this technique. This section seeks to examine which
technique that is preferable when the number of process pairs is varied. Indeed, because
Niagara has eight cores, it could also be interesting to examine which technique is cheaper
when only one process is applied per core (compared to four processes per core).

Figure 9.11 illustrates how the total costs changes when the number of process pairs in-
volved vary. The graph has four curves, representing the cost curves for the read transactions
applied on both message passing techniques. The dashed curves represent the STR transac-
tion, the solid curves represent the CTR transaction. The cost curves utilizing Solaris Doors is
denoted with squares, TCP/IP is denoted with circles. The update case is illustrated in figure
9.12. Albeit the costs are higher in the latter graph, the graphs are practically identical. We
will therefore combine the analysis of these graphs in the following.

138 CHAPTER 9. ANALYSIS

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 2 4 8 16 32
Process pair

Ti
m

e
(n

s)

STU Doors CTU Doors

STU TCP CTU TCP

Figure 9.12: Varying the process pairs for update transactions in SN. As the previous graph (figure
9.11), the graph has four curves, representing the cost curves for the update transac-
tions applied on both message passing techniques. The dashed curves represent the
STU transaction, the solid curves the CTU transaction. The cost curves utilizing So-
laris Doors is denoted with squares, TCP/IP is denoted with circles. Considering the
STU and CTU transactions using Solaris Doors, they are both clearly cheaper com-
pared to the TCP/IP equivalent for a number of process pairs < 8. However, when
the numbers of process pairs is > 8, TCP/IP scales very well. Reaching 32 process
pairs, TCP/IP outperforms Solaris Doors by a a factor of ≈ 3.41 in the CTU case, and
≈ 3.29 in the STU case.

Figure 9.11 illustrates that although message passing using TCP/IP has a significantly
higher costs for a low number of process pairs, it scales very well, as there is literally no
growth with an increasing number of process pairs. In contrast, Solaris Doors starts off much
cheaper, but it does not scale well compared to TCP/IP. Indeed, when the number of process
pairs is below 8, it is apparent that Solaris Doors is the cheaper technique. At 8 process pairs,
however, there is practically no difference between the techniques. This is interesting, as noted
above, in the case where there are one process per core. For all process pairs above 8, TCP/IP
outperforms Solaris Doors, in the read as well as the update case. Inspecting the costs for each
transaction, we find that when reaching 32 process pairs, Solaris Doors is

CTR32PP
Doors

CTR32PP
TCP

=
1 183 038ns

343 389ns
≈ 3.45

times as expensive as TCP/IP for the CTR case, and

STR32PP
Doors

STR32PP
TCP

=
477 533ns

141 673ns
≈ 3.37

times as expensive as TCP/IP for the STR case. For the update case, we find indeed similar
results. Solaris Doors is in the update case

9.4. SENSITIVITY ANALYSIS 139

0

100000

200000

300000

400000

500000

600000

1 2 4 8
Process pair

Ti
m

e
(n

s)

STR STU

CTR CTU

Figure 9.13: Varying the number of process pairs for transactions in SE. There are four curves in
the graph. The dashed curves denote the read transactions, the solid curves denote
the update transactions. The curves denoted with a square is the complex transac-
tions, whereas a circle denotes the simple transactions. The graph suggests no sur-
prising effects. For fewer process pairs, the total costs are increasingly smaller.

CTU32PP
Doors

CTU32PP
TCP

=
1 782 126ns

522 651ns
≈ 3.41

times as expensive as TCP/IP for the CTU case, and

STU32PP
Doors

STU32PP
TCP

=
724 078ns

220 2885ns
≈ 3.29

times as expensive as TCP/IP for the STU case.
As mentioned in section 5.2 at page 54, we suspect that Solaris Doors does not scale well

due to heavy thrashing.

Varying the number of process pairs in SE

This section expands on the most significant cost in SE, namely synchronization. Although
a similar analysis to the one in the previous section could yield interesting results, the only
inter-process synchronization technique implemented is System V Semaphores. To plot the
inter-process System V Semaphores against the much lighter intra-process POSIX Mutexes
makes no sense, because the latter benchmark was not implemented to handle inter-process
synchronization. 3

However, it is interesting to note how the costs change when the number of simultaneous
process pairs involved under the SE regime is varied. We argued in section 6.1.6 at page 65

3However, to implement POSIX Mutexes for inter-process synchronization is one of our suggestions for future
work in chapter 11.

140 CHAPTER 9. ANALYSIS

that when assuming 32 nodes executing one CTU transaction each at the same time, we can
expect 11 processes to perform operations on a semaphore at any given time. Because we did
not sample for 11 processes, we settled for 8 process pairs over 16, to account for the simpler
transactions. However, this implies that there is no need to examine more than 8 process pairs,
because the system will not exceed 32 nodes.

Figure 9.13 shows how the cost vary when the number of process pairs vary from 1 to 8.
There are four curves in the graph. The dashed curves denote the read transactions, the solid
curves denote the update transactions. The curves denoted with a square is the complex trans-
actions, whereas a circle denotes the simple transactions. The graph suggests no surprising
effects. For fewer process pairs, the total costs are increasingly smaller.

9.5 CONCLUSION

The conclusion introduced in this section presents a brief summary of the tendencies discov-
ered during our research. These tendencies should not be perceived as definite truths, but
merely as directions of trends.

Several trends have been discovered during our research. The following sections give a
brief summary of each trend.

9.5.1 The relative difference when using original costs

This section describes the relative difference between SN and SE when original cost figures
are used. These cost figures are described in chapter 6.

The SE DBMS architecture is cheaper when running simple transactions

During the analysis it became evident that when using the original cost estimates, SE wins
by a head compared to SN when running simple transactions. The administrative overhead
imposed by the NOC component enables SN to parallel complex transaction. However, it
works against its purposes when executing transactions only containing one operation. This
was also the case in our previous work. A possible solution which is yet to be properly in-
troduced in chapter 11, is to push the NOC responsibility to the node actually performing the
operation.

The SN DBMS architecture is cheaper when running complex transactions

During the analysis we discovered that the overhead imposed by the NOC in SN pays off
when executing complex transactions. Because different operations are assumed to go to dif-
ferent nodes, all operations are performed in full parallel, and only the additional work forced
on the NOC adds to the total time used to execute the transactions.

9.5.2 The results are sensitive to the relative difference in costs

In sections 9.4.1 and 9.4.2 we varied the ratio between the cost for message passing and the cost
for synchronization. It became evident that the results for the two architectural approaches in-
deed are dependent on the relationship between these two costs. An analysis was performed

9.5. CONCLUSION 141

for each transaction type including a general read transaction and a general update transac-
tion. The two latter transaction types are transactions were the number of operations are not
predetermined.

During the analysis of the general read and update transactions, we increased the number
of operations involved in a transaction to infinity. As the number of operations involved
increases, the most dominant costs (message passing in SN and synchronization in SE) become
increasingly more dominant compared to the other costs. Eventually, the other costs virtually
vanish. At this point, a ratio between the costs emerges. For the general read transaction, this
ratio is 4. For the general update transaction, the ratio is 3.33.

In the following we illustrate for the general read transaction, but the same holds for the
general update transaction. For the read case, this ratio suggests that if the cost of message
passing is approximately 4 times the cost of synchronization, SN and SE will perform equally
well. If the cost of message passing is less than 4 times the cost of synchronizing, SN is the
better architectural alternative. Similarly, if the cost of message passing is more than 4 times
the cost of synchronizing, SE is preferable.

Several of the cost figures used in the calculations presented in this report are not bench-
marked. For a general DBMS, they may therefore not be sufficiently accurate. However, for
the assumed DBMS we have investigated, message passing and synchronization should in-
deed be the most significant costs. Therefore, given that the DBMS follows the same lines,
we believe that the ratios presented above may be used as a mild rule of thumb for choosing
between the SN or SE memory architecture. If the costs associated with message passing and
synchronization are known, the ratios presented above may be used to get a hint of which
architecture that will yield the better results.

Of course, for systems having design solutions differing vastly from the solutions pre-
sented in chapter 2, the cost ratios will also differ.

9.5.3 The gain of parallelism

As explained in the previous section, SN profits by its ability to parallel the execution of com-
plex transactions. The paralleling possibilities of SN allows the approach to have a high cost
for message passing and still be the better of the two candidates when executing complex
transaction. There is of course, as explained earlier, a crossing between the performances of
SN and SE if the cost of message passing is too high. The location of this crossing is influenced
by the level of parallelism.

9.5.4 Niagara performs poorly for single threaded tasks

Compared to traditional processors, the Niagara processor has many slower cores opposed
to a few faster cores. At the face of being power-efficient, this could be seen as one of the
disadvantages of the Niagara architecture. Because the cores run at a low frequency, executing
only a single instruction per cycle, Niagara performs poorly for single threaded tasks. This
became evident when running benchmarks 3, 4 and 5. These benchmarks were executed at
both the Sun Fire T1000 Server and a Sun Fire V890 Server. On average the V890 Server
performed almost one order of magnitude better than the T1000. On the other hand, Sun
Microsystems does not promote Niagara to excel at single threaded programs. The key to
unlocking the potential of Niagara is not to enforce single threaded execution, but to adapt
programs to the highly threaded environment.

CHAPTER10
A HYBRID DBMS ARCHITECTURE FOR

NIAGARA

As we have seen from the analysis, both the SN and SE architectural approaches have strengths
and weaknesses. It is perhaps possible to combine the attractive properties of both approaches.
The object of this chapter is to introduce such a Niagara tailored hybrid memory architecture.

This chapter first presents a general hybrid architecture suggested by [NZT96] in section
10.1. This architecture was mentioned in our previous work, and is used as an inspiring basis
for the hybrid architecture we present in section 10.2. Although a proper analysis of the hybrid
following the lines of this report would be ideal, we do not have the possibility to perform a
complete second analysis within the scope of this research. We therefore present a selection
of scenarios to illustrate that further work in this area is of great interest. These scenarios are
presented in section 10.3.

10.1 A GENERAL HYBRID ARCHITECTURE

Because both SN and SE have their benefits and drawbacks, it is natural to believe that one
might achieve interesting results by combining the two approaches. The article [NZT96]
presents such an architecture. This two level hierarchic hybrid architecture is illustrated in
figure 10.1.

The figure illustrates clusters of SE systems combined in an SN manner. Each SE sys-
tem contains several processors which share memory and disk. The processors are connected
through a bus. Several of these systems are connected via an interconnection network, form-
ing an SN system. According to [NZT96], this hybrid architecture combine the advantages of
SE and SN, and compensate for their drawbacks.

Interconnection network

P1 Pn
Processor
cores

Main
memory

Nonvolatile
storage

P2 ...

Bus

P1 Pn
Processor
cores

Main
memory

Nonvolatile
storage

P2 ...

Bus

...

Figure 10.1: A general hybrid architecture [NZT96].

143

144 CHAPTER 10. A HYBRID DBMS ARCHITECTURE FOR NIAGARA

10.2 A NIAGARA TAILORED HYBRID ARCHITECTURE

Our motivation for suggesting a Niagara tailored hybrid architecture is based on the observa-
tion that SN scales better than SE for increasingly complex transactions. Although SN bene-
fits greatly from its possibility to execute operations in parallel, message passing is expensive
compared to the isolated cost for synchronization. At the face of introducing both costs, the
hybrid architecture suggested in the following seeks to minimize both the amount of message
passing and synchronization.

It is in the nature of tailored architectures that it takes advantage of the underlying hard-
ware architecture. And indeed, the general hybrid architecture suggested in figure 10.1 indeed
resembles the Niagara hardware architecture1.

Comparing the hardware architecture to the hybrid architecture, we make the following
observations. Intra core, each of the eight cores in Niagara is similar to the SE sub systems that
shares memory and disk. Inter core, the interconnection network is similar to the interconnect
between the cores on the Niagara chip. It is therefore interesting to use the cores as SE-like sub
systems, while an SN-like policy is enforced between the cores. The transaction operations are
executed intra core, whereas all communication is inter core. In the following, we expand on
these observations.

10.2.1 Inter core communication

Niagara utilizes eight cores which can execute four native threads each. This gives a total
of 32 nodes in the DBMS model we have used in our calculations. However, if we turn our
attention to the eight cores, it becomes apparent that the hardware configuration of Niagara
could yield an alternative way of realizing a DBMS.

Instead of naming every single thread a node, an entire core can be run as a node. Instead
of running 32 nodes, this segmentation results in 8 nodes, each spanning their own subset of
the database in an SN manner. Each core will have four threads working in an SE-like fashion,
which will be discussed in section 10.2.2.

For the cases where a transaction needs to perform operations in subsets owned by other
nodes, a message passing scheme between the cores must be present. The hardware configu-
ration of Niagara is indeed prepared for inter core communication. Inter core communication
may be realized via a tailored message passing protocol over the L2 cache 2.

As stated above, the message passing cost between nodes is indeed the most significant
cost in the SN architectural approach. Although a message passing protocol that takes advan-
tage of the Niagara hardware architecture most likely would reduce the cost associated with
message passing dramatically, it would probably continue to be the most significant cost.
However, because the database is split into 8 subsets instead of 32, the message passing will
occur less frequently in this architecture. In addition, it will most likely involve fewer nodes.

For a transaction touching subsets owned by other cores, the cores owning these subsets
must be involved in the execution. When a transaction arrives at node, the NOC thread in
the core forwards the operations that is regarding other subsets to the correct cores over the
interconnection. Thus, communication between the cores only involves the NOCs of each
core. Again, because there are eight cores opposed to 32 nodes, one might expect that the
amount of messages drops dramatically compared to a strict SN scheme.

1For reference, this architecture is illustrated in figure 3.3 at page 25.
2This is one of our suggestions for further work, see section 11.2.

10.2. A NIAGARA TAILORED HYBRID ARCHITECTURE 145

D
atabase

N
ode...

Core1

NOS4NOS3NOS2

NOC / NOS1

Core8

NOS4NOS3NOS2

NOC / NOS1

Figure 10.2: A Niagara tailored hybrid process architecture. The hybrid has 8 nodes, each node is
mapped to a Niagara core. Message passing is performed inter core in a SN manner.
Each node has four native processes, mapped to the four native threads within a Ni-
agara core. Within each node, one of the processes has node controller responsibility,
distributing operations between all four threads, including itself. All executions are
performed intra core. All involved processes participates in a distributed commit. If
a transaction operation touches a subset owned by another node, the NOC of that
node exchanges operation and data messages with the NOC from the node where the
transaction originated.

10.2.2 Intra core execution

Turning our attention to the core, each core has four concurrent processes. The threads within
a core share the L1 cache, 1

8 of the L2 cache and 1
8 of the main memory. As with a strict SE

scheme, these threads are bound to interfere with each other without synchronization. It is
therefore apparent that some synchronization mechanism must be present. The hardware
configuration states that the L1 cache is private to each core, but shared for all four threads
within a core. The L1 cache has a low latency (≈ 1ns access time), so synchronizing intra core
at L1 is very attractive. This can be realized through a tailor-made synchronization scheme,
perhaps with fundament in POSIX mutexes set for inter-process synchronization 3.

Intra-core, there are four synchronized threads with access to the same set of data. Al-
though the core might resemble a strict SE scheme, it is desirable for a complex transac-
tion touching only the subset owned by one node to be executed in parallel by the available
threads. Therefore, as illustrated in figure 10.2, the core also utilize elements from SN.

Within each core, one of the threads has an SN-like node controller (NOC) responsibility,
distributing operations between all four threads, including itself. In order to reduce conges-
tion we assume that the NOC only distributes operations to itself if all other threads within
the core are occupied. The gain of introducing parallelism comes with a cost. It is necessary to
introduce some form of communication and distributed commit between the threads within
the core. If it is desirable to avoid message passing within the core, parallel execution of com-
plex transactions within the core is not possible. Lacking parallelism, the parts of a transaction
executed at a core would be run single threaded. As this scheme would not use a default NOC
within each core, all threads in all cores would have to pass messages to each other in order to

3This is one of our suggestions for further work, see section 11.1.

146 CHAPTER 10. A HYBRID DBMS ARCHITECTURE FOR NIAGARA

H
ybrid

CoreA

A4A3A2

A1

Transaction

1

2
3

CoreB

B4B3B2

B1

(a)

Shared N
othing

CoreA

A4A2

A3

Transaction

CoreB

A1

B4B2

B3B1

1

2

3

(b)

1 ”Prepare”
2 ”Ready” / ”Read”
3 ”Commit”

(c)

Figure 10.3: Scenario 1: The effect of message passing. Figure (a) illustrates the case when the CTU
transaction is executed on the hybrid, whereas figure (b) illustrates the case when the
CTU transaction is executed on SN. Figure (c) describes the content of each message.
Clearly, more messages are sent in (a).

perform transactions spanning multiple subsets. This would not result in a reduced cost for
message passing.

The introduction of this SN-like behavior has the advantage that the execution of an STU
transaction and a CTU transaction will yield almost the same costs, given that a transaction
operate within the same core. The only cost added will be the overhead imposed by the con-
troller. This overhead will be very similar to that performed by the NOC described earlier in
this report. However, because the communication as well as synchronization can be realized
through L1 cache within a core, the associated cost will be significantly smaller.

In addition, we expect that this architecture will use less time on execution. We have previ-
ously calculated that ≈ 1

3 of the processes are operating on a given synchronization primitive
at any given time. As described earlier in this report, a strict SE scheme yields 11 processes. As
there are only four threads within each SE sub system, the percentage of the total transaction
execution time spent on synchronization will obviously be less.

10.3 THE TAILORED HYBRID VERSUS SHARED NOTHING

This section presents a brief comparison between the hybrid architecture and SN as described
throughout the report. In the following we illustrate different scenarios of the distributions of
operations when executing the CTU transaction on the two architectures. The comparison is
based on the CTU transaction, because the execution of this transaction involves the highest
number of nodes and messages (update transactions involve the additional commit-message).
We give a thorough explanation of the figure semantics in the first scenario. The figures illus-
trating the subsequent scenarios share these semantics.

10.3. THE TAILORED HYBRID VERSUS SHARED NOTHING 147

10.3.1 Scenario 1: The effect of message passing

Figure 10.3 illustrates the number of messages necessary to carry out the CTU transaction for
both architectures according to the 2PC-presumed commit protocol4 . The figure illustrates the
case where a transaction contains operations distributed over two cores, A and B.

In the hybrid case (figure 10.3(a)), the transaction arrives at process A1. This process has
the NOC responsibility, and forwards the operations to the correct destinations. In this case,
two of the operations touch tuples within the subset of core A. Therefore, two available pro-
cesses, A2 and A3 receive the operations.

However, two operations need to perform updates on tuples residing in the subset owned
by core B. A1 forwards these operations to the process with NOC responsibility in core B,
namely B1. B1, in turn, forwards the operations to two available processes in its core. The
processes A2, A3, B2 and B4 now acts as NOSes in the transaction execution. Following the
annotation from figure 10.3(c), a prepare message is piggybacked on all operation messages.

After the NOSes have performed the updates, they respond with a ready-message to the
NOC in their core. After receiving the ready-messages from B2 and B4, B1 responds to the
initiating process A1. After receiving a ready-message from all involved processes, A1 issues a
commit-message. This message propagates in the same manner as the previous messages.

When the CTU transaction is executed in SN (figure 10.3(b)), the same processes are in-
volved as in the case of the hybrid, except for process B1. A1 has the NOC responsibility, and
exchanges messages with all NOSes directly, opposed to the B1 intermediary in the hybrid.
The SN 2PC execution is described in detail in figure 2.4 at page 10.

It is apparent that the hybrid carries an additional overhead compared to SN. In this
example, the number of messages is 15 in the hybrid case, whereas 12 messages are sent in the
SN case.

As suggested in section 10.2.2, a tailored message passing protocol for intra core communi-
cation will significantly improve the performance of the hybrid. Indeed, most of the messages
in the example are passed within the core. Because the processes within a core share L1 cache,
message passing at this level is clearly tractable. However, it is apparent from figure 10.3(b)
that also SN may greatly benefit from this protocol.

If we assume the cost of inter-core communication to be equal to the cost used for mes-
sage passing in the calculations presented earlier, this type of communication is considerably
more expensive than communication through L1 cache. As explained in chapter 9, the cost
of message passing between nodes is large enough to wipe out the effect of all other costs.
Therefore, we have to compare the number of messages passed between cores to see which
approach that probably yields best results. It is important to keep in mind that the hybrid also
carries the cost of synchronization. However, because all synchronization may be kept in L1
cache, we expect this cost to be in the same order of magnitude as the results obtained from
the benchmarking of intra-process synchronization using POISX mutexes.

In the example presented in figure 10.3, 3 messages are passed between cores in the case of
the hybrid. In the SN case, 6 messages are passed. Under the assumption that it is possible to
realize intra-core communication through L1 cache, the hybrid appears to yield better results
than SN when the operations of the CTU transaction are distributed in this fashion.

148 CHAPTER 10. A HYBRID DBMS ARCHITECTURE FOR NIAGARA

H
ybrid

CoreA

A4A3A2

A1

Transaction

CoreB

B4B3B2

B1

(a)

Shared N
othing

CoreA

A4A2

A3

Transaction

CoreB

A1

B4B2

B3B1

(b)

Figure 10.4: Scenario 2: The hierarchic advantage. Figure (a) illustrates the case when the CTU
transaction is executed on the hybrid, whereas figure (b) illustrates the case when the
CTU transaction is executed on SN.

10.3.2 Scenario 2: The hierarchic advantage

Figure 10.4 illustrates the scenario where the transaction received solely contains operations
that touch tuples residing in subsets owned by another core.

For the hybrid case illustrated in figure 10.4(a), all message passing between the NOSes
and the NOC is realized within the core. The reason is that the NOC in the core receiving
the transaction (A1) involves the NOC in the core where the tuples reside (B1). There are only
three messages passed between cores. These messages regard the distributed commit between
the two NOCs.

In the SN case, as illustrated in figure 10.4(b), only one NOC, A1, is involved in the execu-
tion. Because the receiving core does not own any of the tuples to be updated, all messages
between the NOC and the NOSes is passed between the cores. For the CTU case, this results
in 12 messages, all of which are between cores.

It is apparent that the NOC component in SN is more prone to congestion than the NOCs
in the hybrid. However, this becomes even more evident for transactions containing more
operations. For 32 operations evenly distributed between all cores, all processes have one
operation to execute. In SN, this implies that 31 processes must interact with the NOC as
NOSes. In other words, the NOC is involved with passing 31 × 3 = 93 messages. Although
transactions with 32 operations are of rare breed, the NOC can easily be a bottleneck in such
scenarios. In the hybrid, the NOC component in every core is involved in the execution. Each
NOC is responsible for communicating with the NOSes within the core. Even though the
hybrid way yields more messages, the number of messages passed by each NOC component
is small compared to the single NOC in SN. In addition message passing within different
cores is performed in parallel.

Although the total number of messages in the hybrid is higher than in SN, there are sub-
stantially fewer messages passed between cores. Given that message passing intra core is
realized through L1 cache, the hybrid appears to outperform SN in this scenario.

10.3.3 Scenario 3: The disadvantage of clustered operations

Figure 10.5 illustrates the scenario where the transaction received solely contains operations
that touch tuples residing in the subset owned by the receiving core. Hence, all messages

42PC is described for SN in section 2.4.2.

10.3. THE TAILORED HYBRID VERSUS SHARED NOTHING 149

H
ybrid

CoreA

A4A3A2

A1

Transaction

CoreB

B4B3B2

B1

(a)

S
hared N

othing

CoreA

A4A2

A3

Transaction

CoreB

A1

B4B2

B3B1

(b)

Figure 10.5: Scenario 3: The disadvantage of clustered operations. Figure (a) illustrates the case
when the CTU transaction is executed on the hybrid, whereas figure (b) illustrates the
case when the CTU transaction is executed on SN.

between the NOC and the NOSes are passed within the core. This holds for both the hybrid
and SN architectures, illustrated in figures 10.5(a) and 10.5(b), respectively. Because the cost
for message passing therefore is equal, SN will perform better, due to the hybrid’s need for
synchronization.

10.3.4 Scenario 4: The disadvantage of evenly distributed operations

H
ybrid

B

Transaction

C

D E

A

NOS

NOC

NOS

NOC

NOS

NOC

NOS

NOC

NOC

(a)

B

NOS

D

NOS

E

C

NOS

S
hared N

othing

Transaction

A

NOC

NOS

(b)

Figure 10.6: Scenario 4: The disadvantage of evenly distributed operations. Figure (a) illustrates
the case when the CTU transaction is executed on the hybrid, whereas figure (b) illus-
trates the case when the CTU transaction is executed on SN.

Figure 10.6 illustrates the scenario where the transaction received solely contains opera-
tions that touch tuples residing in subsets owned by distinct different cores. Thus, five cores
are involved. For both the hybrid and the SN architectures, the number of messages passed
between cores is 12. This is illustrated in figures 10.6(a) and 10.6(b), respectively.

150 CHAPTER 10. A HYBRID DBMS ARCHITECTURE FOR NIAGARA

The hierarchic nature of the hybrid architecture, implies however that the NOC compo-
nent in each core owning a tuple involved in the transaction passes 3 additional messages
with the NOS within the core. As stated in scenario 2, message passing within different cores
is performed in parallel. In addition, the hybrid carries the cost of synchronization. This
implies that SN yields better results following this scenario.

However, in a saturated system, the hybrid yields 8 process pairs that may communicate
simultaneously between cores, opposed to 32 process pairs in SN. In this case, the hybrid
yields a lower cost per message and may therefore perform better.

10.3.5 Summary

We expect the hybrid architecture to have several very attractive properties. First, it reduces
the amount of message passing dramatically, because there are only eight nodes (opposed to
32) involved in message passing. Second, a Niagara-tailored message passing protocol will
drop the cost of message passing compared to the micro benchmarked costs presented earlier
in this report. This assumes however that such a protocol indeed is feasible. Due to the small
size of the L1 caches, we suspect that realizing such a protocol is not straight forward.

It appears however, that if message passing must be realized through L2 cache, SN will
outperform the hybrid in the scenarios just presented. In this case, it will not matter whether
messages are passed within the core or not. On the other hand, the hierarchical nature of the
hybrid yields more messages than in SN. Because the cost associated with message passing is
independent of core boundaries, the total number of messages becomes of vital importance5.

Third, introducing parallel intra core execution of operations increases the throughput of
complex transactions. Because there is only four threads to be synchronized (opposed to 32),
there is less synchronizing. If a tailored synchronization mechanism that takes advantage of
the shared L1 cache is applied, the synchronization cost will also drop.

On the reverse side, this architecture must deal with the most significant costs for both SN
and SE. Adopted from SN are the cost of message passing and distributed transaction pro-
cessing. It also encapsulates the SE cost of synchronization. In order to find out whether this
hybrid architecture indeed yields a performance gain or not, one have to build a calculation
model for the DBMS, in a similar fashion as the calculations performed for the SN and SE
cases in this report.

Further research in this area is of great interest.

5Recall that message passing within different cores is performed in parallel when utilizing the hybrid.

CHAPTER11
FURTHER WORK

Although the approach pursued throughout this report is far more in touch with real life than
the approach taken in our previous work, there are still many aspects which need attention.
In addition we have identified several areas which are suggestive for additional research. In
this chapter we therefore present several fields of interest for further work:

• A Niagara-optimized synchronization mechanism

• A Niagara-optimized message passing protocol

• Examine why Solaris Doors does not scale on Niagara

• Examine the effects of queuing

• Examine the effects of background processes

• Optimize the use of the node controller in SN

• Validate the hybrid architecture

• Achieve fault tolerance

The following sections describe each topic in detail.

11.1 A NIAGARA-OPTIMIZED SYNCHRONIZATION MECHANISM

In SE, the most frequent and by far most expensive cost is associated with synchronizing.
We used System V Semaphores to implement synchronization. The System V Semaphore
technique is indeed heavyweight, and it could as a beginning be interesting to examine the
total SE cost based on the much more lightweight POSIX mutexes. POSIX mutexes is used
in this report for intra process synchronization, but it has also the ability to synchronize inter
process.

Albeit the use of POSIX mutexes could yield better results, we expect that a synchroniza-
tion mechanism tailored for Niagara could be far more efficient. Given the Niagara architec-
ture and the L2 cache response time of ≈ 100ns, it should be possible to synchronize far less
expensive than ≈ 11 300ns.

11.2 A NIAGARA-OPTIMIZED MESSAGE PASSING PROTOCOL

In SN, the cost associated with message passing is even more dominant than the synchroniza-
tion cost is in SE. We implemented two alternative methods of message passing in this report,
namely message passing over TCP/IP sockets and over Solaris Doors. Because the L2 cache

151

152 CHAPTER 11. FURTHER WORK

is shared between all cores, and thus, all logical CPUs (or nodes), it should be no reason to go
off chip for message passing between nodes.

Our benchmark results has lead us to believe that this is not the case for either technique.
As stated above, the L2 cache has an access time of ≈ 100ns. Our benchmark results suggest
a message passing cost two orders of magnitude greater. Clearly, there is much overhead. It
seems likely that the following is the case:

TCP/IP The transmission short-circuits two deep in the stack, probably off chip.

Doors The shared data structure used for message passing resides in main memory.

A tailored message-passing protocol could easily benefit of the shared L2 cache for mes-
sage passing. Further, as illustrated at page 22 in figure 3.2, L1 is internal to each core, but
shared across the four native threads within each core. Thus, a tailored message-passing pro-
tocol could utilize the L1 cache for message passing between nodes within the same core. Of
course, given the small size of the L1 cache in Niagara, this is perhaps only possible for the
small 2PC messages, not the larger data-contained messages.

Such a message-passing mechanism needs a portion of the cache to be dedicated to mes-
sage passing. This dedicated portion calls in turn for synchronization. This implies that this
mechanism also will depend on the choice of synchronization mechanism explained in section
11.1.

Another suggestion, perhaps in a way more radical, is to simply dedicate a bus solely for
message passing. This makes the message passing mechanism independent of synchroniza-
tion costs.

Further research in the area of tailoring a message passing mechanism for Niagara is of
great interest.

11.3 EXAMINE WHY SOLARIS DOORS DOES NOT SCALE ON NIA-
GARA

In section 5.2 we presented the costs associated with passing messages when using Solaris
Doors. It became apparent that Solaris Doors does not scale as well as TCP/IP when increas-
ing the number of concurrent process pairs. We suggested that a possible reason to this might
be heavy trashing of shared data structures. However, there might very well be other reasons,
such as whether or not the early build of Solaris 11 handles Doors in an optimal manner when
running on the T1000 server.

An interesting field of further research is to look into the reasons to why Solaris Doors do
not scale on Niagara.

11.4 EXAMINE THE EFFECTS OF QUEUING

Throughout the report we have chosen to ignore the effects of queuing. In SN we have as-
sumed that all operations of a complex transaction touch different subsets of the database.
In both SN and SE we have assumed that the effects of queuing are negligible. In real life,
however, this is not necessarily true. In the SN case some of the operations of a complex
transaction will occasionally touch the same database subset, and there will not be full paral-
lelism. Equally in SE, the database locks and semaphores are not always available when need.
In both approaches, if there is a rush of transactions, there might not always be an available
node.

11.5. EXAMINE THE EFFECTS OF BACKGROUND PROCESSES 153

An interesting field of further work is to investigate the impact queuing has on the total
transaction execution time.

11.5 EXAMINE THE EFFECTS OF BACKGROUND PROCESSES

In chapter 2 we identified several background processes. These are:

• DB buffer flushing (SN and SE)

• Checkpoint logging (SN and SE)

• Cache invalidation (SE)

Because these processes are not inside the transaction scope, they are not taken into con-
sideration when the total transaction execution times are calculated in chapters 7 and 8. How-
ever, these processes will occupy some of the available resources, and thus decrease the overall
performance of the system.

An interesting field of further work is to investigate the impact background processes have
on the total transaction execution time.

11.6 OPTIMIZE THE USE OF THE NODE CONTROLLER IN SN

As explained throughout the report, most of the work performed by the node controller when
executing the STU and the STR transactions is pure overhead. Because the simple transactions
only involve a single tuple, a distributed commit is not necessary. An interesting approach to
this problem would be to push the node controller to the transaction performing the operating.

In the way our system is defined, when a simple transaction (STU or STR) is received from
the external interface, the receiving node gets the role of controller and decides which node
to be the slave. Instead of doing this, it would be desirable for the receiving node to pass
the responsibility of being a controller to the node performing the operation. In this way,
the overhead with message passing and logging needed to perform 2PC is avoided, and thus
could make the simpler transactions more cost efficient.

11.7 VALIDATE THE HYBRID ARCHITECTURE

Although we have proposed a hybrid architecture in chapter 10, the architecture still remains
to be validated. Utilizing this hybrid architecture as a basis, instead of SN or SE, it is necessary
to perform a research following the lines of the research presented in this report. Uncovering
whether the proposed architecture indeed is capable of combining the advantages of SN and
SE without adopting all their drawbacks, is indeed an interesting field for further work.

11.8 ACHIEVE FAULT TOLERANCE

An important topic of database systems that is not discussed in our research is fault tolerance.
Achieving hardware fault tolerance when running a DBMS on an MCSD chip is of great in-
terest. It indeed appears difficult to achieve independent failure modes when all nodes are
located within the same die.

154 CHAPTER 11. FURTHER WORK

In the SN architecture, a failed node will prevent access to parts of the database, leaving
the database only partially available. It would be of great interest to develop mechanisms for
either to make a failing node hand its data responsibility over to an available node, or to make
available nodes take responsibility over data belonging to nodes that have recently failed.
It would be interesting to investigate approaches in directions of the solutions presented in
[HTBH95].

BIBLIOGRAPHY

[ABC+76] Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P.
Eswaran, Jim Gray, Patricia P. Griffiths, W. Frank King III, Raymond A. Lorie,
Paul R. McJones, James W. Mehl, Gianfranco R. Putzolu, Irving L. Traiger, Brad-
ford W. Wade, and Vera Watson. System R: Relational Approach to Database
Management. ACM Trans. Database Syst., 1(2):97–137, 1976.

[aMSST06a] Dieter an Mey, Samuel Sarholz, Alexander Spiegel, and Christian Terboven. Der
UltraSPARCT1 Prozessor("Niagara") – Erste Erfahrungen. "http://www.rz.rwth-
aachen.de/computing/hpc/hw/niagara/Niagara_ZKI_2006-03-31_anMey.pdf", 2006.

[aMSST06b] Dieter an Mey, Samuel Sarholz, Alexander Spiegel, and Christian Terboven. The
UltraSPARC T1 (“Niagara”) based Sun Fire T2000 Server. "http://www.rz.rwth-
aachen.de/computing/hpc/hw/niagara.php", 2006.

[BJ05] Lars-Erik Bjørk and Truls Jørgensen. A relative performance comparison be-
tween the Shared Nothing and the Shared Everything DBMS architecture on a
Multi Core, Single Die chip. IDI, NTNU: "http://www.idi.ntnu.no/˜ trulsjor/pro-
ject.pdf", 2005.

[BJA05] William Bryg and Sun Microsystems Jerome Alabado. The Ultra-
SPARC T1 Processor - High Bandwidth For Throughput Computing.
"http://www.sun.com/processors/whitepapers/UST1_bw_v1.0.pdf", 12 2005.

[DG92] David J. DeWitt and Jim Gray. Parallel Database Systems: The Future of High
Performance Database Processing. Communications of the ACM, 36(6), 1992.

[Gra91] Jim Gray. The Benchmark Handbook for Database and Transaction Systems. Morgan
Kaufmann, 1991.

[Hor84] Charles Hornig. A Standard for the Transmission of IP Datagrams over Ethernet
Networks. Request for Comments: 894, http://www.ietf.org/rfc/rfc894.txt, 04 1984.

[HT93] Svein Olaf Hvasshovd and Øystein Torbjørnsen. A Software Architecture for a
Continuosly Available Shared-Nothing Parallel DBMS Based on ATM Technol-
ogy. SINTEF Delab, 1(1), 1993.

[HTBH95] Svein-Olaf Hvasshovd, Øystein Torbjørnsen, Svein Erik Bratsberg, and Per Ho-
lager. The ClustRa Telecom Database: High Availability, High Throughput, and
Real-Time Response. In VLDB ’95: Proceedings of the 21th International Conference
on Very Large Data Bases, pages 469–477, San Francisco, CA, USA, 1995. Morgan
Kaufmann Publishers Inc.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Prentice
Hall PTR, 1988.

155

156 BIBLIOGRAPHY

[MLO86] C. Mohan, B. Lindsay, and R. Obermarck. Transaction Management in the R*
Distributed Database Management System. ACM Transactions on Database Sys-
tems, 11(4):378–396, 1986.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), 04 1965.

[Moo75] Gordon E. Moore. Progress in digital integrated electronics. In Proceedings of
IEEE Digital Integrated Electronic Device Meeting, pages 11–13, 1975.

[NV01] Nagendra Nagarajayya and S.R. Venkataramanan. Fast
Sockets, An Interprocess Communication Library.
"http://developers.sun.com/solaris/articles/fast_sockets.pdf", 02 2001.

[NZT96] Michael G. Norman, Thomas Zurek, and Peter Thanisch. Much Ado About
Shared-Nothing. SIGMOD Record, 25(3):16–21, 1996.

[She05] Denis Sheahan. Developing and Tuning Applications on UltraSPARC T1 Chip
Multithreading Systems. "http://www.sun.com/blueprints/1205/819-5144.pdf", 12
2005.

[Ste78] Steve R. Bourne. The Bourne Shell . "http://steve-parker.org/sh/", 1978.

[Ste99] W. Richard Stevens. UNIX Network Programming Volume 2 Interprocess Communi-
cation. Prentice Hall, 2 edition, 1999.

[Sun03] Sun Microsystems. Introduction to Throughput Computing. Sun Microsystems,
2003.

[Sun05a] Sun Microsystems. Programming Interfaces Guide. Sun Microsystems, Inc., 2005.

[Sun05b] Sun Microsystems. Solaris 10 Reference Manual Collection. Sun Microsystems,
"http://docs.sun.com/app/docs/coll/40.10", 2005.

[Sun05c] Sun Microsystems. Solaris Dynamic Tracing Guide. Sun Microsystems,
http://docs.sun.com/app/docs/doc/817-6223, 2005.

[Sun05d] Sun Microsystems. Sun Fire T1000 and T2000 Server Architecture White Paper.
"http://www.sun.com/servers/coolthreads/coolthreads_architecture_wp.pdf", 12 2005.

[Sun05e] Sun Microsystems. Sun Fire T2000 Server. Sun Microsystems,
"http://www.sun.com/servers/coolthreads/t1000/", 2005.

[Sun06a] Sun Microsystems. Solaris 10. Sun Microsystems,
"http://www.sun.com/software/solaris/specs.jsp ", 2006.

[Sun06b] Sun Microsystems. Sun Fire CoolThreads Servers.
"http://www.sun.com/emrkt/trycoolthreads/coolthreads.jsp", 01 2006.

[Sun06c] Sun Microsystems. Sun Studio 11 Collection. Sun Microsystems,
"http://docs.sun.com/app/docs/coll/771.7", 2006.

[Sun06d] Sun Microsystems. UltraSPARC T1 Supplement to the UltraSPARC Architecture
2005, Draft D2.0, 17 Mar 2006. http://opensparc.sunsource.net/specs/UST1-UASuppl-
current-draft-HP-EXT.pdf, 2006.

BIBLIOGRAPHY 157

[Swe01] L. Sweeney. Information Explosion: Confidentiality, Disclosure, and Data Access -
Theory and Practical Applications for Statistical Agencies. Urban Institute, Washing-
ton, DC, 2001.

[Tan96] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 2 edition, 1996.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2001.

[Tuo02] Ilkka Tuomie. The Lives and Death of Moore’s Law. First Monday, 7(11), 11 2002.

[Van05] Ashlee Vance. Sun employs scout to do dirty work on rock chips. The Register,
"http://www.theregister.co.uk/2005/11/04/sun_rock_scout/print.html", 2005.

APPENDIX A
ABBREVIATIONS

In this section, abbreviations commonly used in the report are listed and explained:

2PC Two-phase commit - A common protocol for committing distributed transactions

2PL Two-phase locking - A common protocol for locking resources in a database

ASCII American Standard Code for Information Interchange - A character encoding based
on the English alphabet. Represents text in computers, communications equipment,
and other devices that work with text

CMT Chip Level Multi Threading - The execution of instructions from multiple threads within
one processor chip at the same time. Each core in Niagara utilizes this property. Sun
Microsystems terms the Niagara chip “Radical CMT”. In order to make the difference
between ordinary CMT processors and Niagara clearer, we have chosen to term the Ni-
agara chip MCSD (see below).

CPU Central Processing Unit - The main computational section of a computer that interprets
and executes instructions

CTR Complex Transaction Read - A transaction reading four tuples

CTU Complex Transaction Update - A transaction updating four tuples

DBMS Database Management System - A software system that facilitates the creation, main-
tenance and use of a database

IP Internet Protocol - A data-oriented protocol used for communicating data across a packet-
switched internetwork

IPC Inter process communication - A set of techniques for the exchange of data between two
or more threads in one or more processes.

LRU Least Recently Used - A policy for managing queues

MCSD Multi Core Single Die - A hardware processor architecture that consists of several
cores on the same die. Each core utilize the CMT property (see above).

MTU Maximum Transmission Unit - Size of the largest datagram that a given layer of a com-
munications protocol can pass onwards

NOC Node Controller - The node running the transaction controller process

NOS Node Slave - The node running the transaction slave process

159

160 APPENDIX A. ABBREVIATIONS

OS Operating System - A program which acts as an interface between a user of a computer
and the computer hardware

RPC Remote Procedure Call - The procedure being called and the calling procedure are in
different processes

SE Shared Everything - The processors share main memory and disk(s)

SMP Symmetric Multiprocessing - A multiprocessor computer architecture where two or
more identical processors are connected to a single shared main memory. Most com-
mon multiprocessor systems today use an SMP architecture.

SN Shared Nothing - The processors do not share memory nor disk(s)

STR Simple Transaction Read - A transaction reading a single tuple

STU Simple Transaction Update - A transaction Updating a single tuple

TCP Transmission Control Protocol - A network protocol that guarantees reliable and in-
order delivery of sender to receiver data

UDP User Datagram Protocol - A unreliable, connectionless network protocol that tradition-
ally is considered faster than TCP due to less overhead involved (such as the sequence
and flow control offered by TCP)

APPENDIX B
SHELL SCRIPTS

This appendix corresponds to section 4.2 For convenience, table B.1 lists all parameters varied
for the benchmarks. The following sections in this appendix lists the shell scripts executed for
each micro benchmark.

Benchmark 1: Message passing using TCP/IP
nof_msg 1 000 000
nof_proc 2 4 6 8 16 32 64
msg_size(B) 32 64 128 256 512 1024 2048 4096 8192 16384

Benchmark 2: Message passing using Solaris Doors
nof_msg 1 000 000
nof_proc 2 4 6 8 16 32 64
msg_size(B) 32 64 128 256 512 1024 2048 4096 8192 16384

Benchmark 3: Building or interpreting messages and log posts
nof_msg 1 000 000
post_size(B) 32 64 128 256 512 1024 2048 4096 8192 16384

Benchmark 4: Writing to log
nof_msg 1 000 000
buffer_size(MB) 10 20 40 80 160 320 640 1280

Benchmark 5: Synchronizing using POSIX Mutexes
nof_mutexes 1 10 1000 10000
nof_set/release 100 000 000 10 000 000 1 000 000 100 000

Benchmark 6: Synchronizing using System V Semaphores
nof_set 1 000 000
nof_proc 2 4 6 8 16 32 64

Table B.1: The parameters varied in all the micro benchmarks performed.

161

162 APPENDIX B. SHELL SCRIPTS

run_pong

1 #!/usr/bin/sh
2
3 NOF_MESSAGES=$1
4 MESSAGE_SIZE=$2
5 NOF_PROC=$3
6
7 PORT=7000
8 i=0
9 while [$i -lt $NOF_PROC]

10 do
11 p=‘expr $i \% 32‘
12 ../exec/pong $PORT $MESSAGE_SIZE > log/log_pong_${NOF_PROC}p_${PORT}_${NOF_MESSAGES}m_${

MESSAGE_SIZE}b.log &
13 pbind -b $p $!
14 i=‘expr $i + 1‘
15 PORT=‘expr $PORT + 1‘
16 done

Figure B.1: run_pong: Script for executing the pong benchmark.

run_ping

1 #!/usr/bin/sh
2
3 HOST=127.0.0.1
4 NOF_MESSAGES=$1
5 MESSAGE_SIZE=$2
6 NOF_PROC=$3
7
8 PORT=7000
9 i=‘expr $NOF_PROC - 1‘

10
11 while [$i -ge 0]
12 do
13 p=‘expr $i \% 32‘
14 ../exec/ping $HOST $PORT $NOF_MESSAGES $MESSAGE_SIZE > log/log_ping_${NOF_PROC}p_${PORT}

_${NOF_MESSAGES}m_${MESSAGE_SIZE}b.log &
15 pbind -b $p $!
16 i=‘expr $i - 1‘
17 PORT=‘expr $PORT + 1‘
18 done

Figure B.2: run_ping: Script for executing the ping benchmark.

B.1 BENCHMARK 1: MESSAGE PASSING USING TCP/IP SOCKETS

The scripts in this section were used to automate the benchmarking of the costs associated
with sending and receiving messages using TCP/IP sockets. These scripts are described in
section 4.2.1.

B.1.1 run_pong and run_ping

The script shown in figure B.1 is used to automate the execution of the program pong.c. The
script takes three input parameters, the number of messages (NOF_MESSAGES), the message
size (MESSAGE_SIZE) and the number of processes (NOF_PROC). The port number of the
first process is by default set to 7000. The port numbers of the following processes are auto-
matically increased as the processes are started. Each process is bound to a processor by a call
to pbind. This is done to ensure that processes are evenly distributed among processors. The
output of each process is logged to a separate log file.

The script shown in figure B.2 is used to automate the program ping.c. Because all
communication is done within the same computer, the host is set to 127.0.0.1 by default.
This script is very similar to that of pong.c. However, processes are bound to process in the

B.1. BENCHMARK 1: MESSAGE PASSING USING TCP/IP SOCKETS 163

rpps

1 #!/bin/sh
2
3 echo starting init
4 ../exec/pingpong_init
5 echo starting pong
6 ../script/run_pong $1 $2 $3
7 echo starting ping
8 ../script/run_ping $1 $2 $3
9 echo start pp race

10 ../exec/pingpong_start $3
11 echo finish
12 ../exec/pingpong_finish $3
13 echo done

Figure B.3: rpps: Script for executing run_ping and run_pong

run_pp_benchmark

1 #!/bin/sh
2
3
4 echo =======================
5 echo Benchmark 4: TCP IP
6 echo =======================
7 echo nof_msg : 1000000
8 echo msg_size: 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384 B
9 echo nof_proc: 2,4,8,16,32,64

10 echo =======================
11 echo
12 echo
13
14 echo =======
15 echo 32B
16 echo =======
17 ./rpps 1000000 32 1
18 sleep 5
19 ./rpps 1000000 32 2
20 sleep 5
21 ./rpps 1000000 32 4
22 sleep 5
23 ./rpps 1000000 32 8
24 sleep 5
25 ./rpps 1000000 32 16
26 sleep 5
27 ./rpps 1000000 32 32
28 sleep 5
29 ./rpps 1000000 32 64
30
31 sleep 5
32 echo =======
33 echo 64B
34 echo =======

Figure B.4: run_pp_benchmark: Script for executing rpps.

opposite order. This is done in order to ensure that corresponding processes in the process
pair is executed on different logical CPUs.

B.1.2 rpps

The script rpps (short for run_pingpong_scheduler) shown in figure B.3 is a small script used
to execute run_pong and run_ping. Because pong.c is the server process, this process is
executed first.

164 APPENDIX B. SHELL SCRIPTS

run_doors

1 #!/usr/bin/sh
2
3 MESSAGE_SIZE=$1
4 NOF_PROC=$2
5 NOF_MESSAGES=$3
6
7 echo door_init:
8 ../exec/door_init
9

10 i=‘expr $NOF_PROC - 1‘
11 echo door_server:
12 while [$i -ge 0]
13 do
14 p=‘expr $i \% 32‘
15 ../exec/door_server $MESSAGE_SIZE /tmp/.bogusdoor${i} $NOF_MESSAGES > log/

log_doors_server_${NOF_PROC}p_${i}_${NOF_MESSAGES}m_${MESSAGE_SIZE}B.log &
16 pbind -b $p $!
17 i=‘expr $i - 1‘
18 done
19
20 i=‘expr $NOF_PROC - 1‘
21 echo door_client:
22 while [$i -ge 0]
23 do
24 p=‘expr $i \% 32‘
25 ../exec/door_client $MESSAGE_SIZE /tmp/.bogusdoor${i} $NOF_MESSAGES > log/

log_doors_client_${NOF_PROC}p_${i}_${NOF_MESSAGES}m_${MESSAGE_SIZE}B.log &
26 pbind -b $p $!
27 i=‘expr $i - 1‘
28 done
29
30 echo door_start:
31 ../exec/door_start $NOF_PROC
32 echo door_finish:
33 ../exec/door_finish $NOF_PROC
34 echo done

Figure B.5: run_doors: Script for executing the doors benchmark.

B.1.3 run_pp_benchmark

The script run_pp_benchmark shown in figure B.4 is a script used to automate the schedul-
ing, feeding rpps with input values as listed in table B.1. We show the execution of the 32B
chunk. All other sizes are executed in similar fashion. Between execution of rpps, we sleep 5
seconds.

B.2 BENCHMARK 2: MESSAGE PASSING USING SOLARIS DOORS

The scripts in this section were used to automate the benchmarking of the costs associated
with sending and receiving messages using Solaris Doors. These scripts are described in sec-
tion 4.2.2.

B.2.1 run_doors

In the same fashion as run_ping (and run_pong), the script shown in figure B.5 is used
to automate the execution of the program doors_server.c and doors_client.c. The
script takes three input parameters, the message size (MESSAGE_SIZE), the number of pro-
cesses (NOF_proc) and the number of messages (NOF_MESSAGES). Each process is bound to
a processor by a call to pbind. This is done to ensure that processes are evenly distributed
among processors. The output of each process is logged to a separate log file. The pbind
calls are reversed for doors_client, in order to ensure that corresponding processes in the
process pair is executed on different logical CPUs.

B.3. BENCHMARK 3: BUILDING OR INTERPRETING MESSAGES AND LOG POSTS 165

run_doors_benchmark

1 #!/bin/sh
2
3 echo =================================
4 echo Benchmark 1: Solaris Doors
5 echo =================================
6 echo msg_size: 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384 B
7 echo nof_proc: 1, 2, 4, 8, 16,32,64
8 echo nof_msg : 1000000
9 echo =================================

10 echo
11 echo
12 echo =======
13 echo 32B
14 echo =======
15 rm /tmp/.*door*
16 ./run_doors 32 1 1000000
17 rm /tmp/.*door*
18 sleep 5
19 ./run_doors 32 2 1000000
20 rm /tmp/.*door*
21 sleep 5
22 ./run_doors 32 4 1000000
23 rm /tmp/.*door*
24 sleep 5
25 ./run_doors 32 8 1000000
26 rm /tmp/.*door*
27 sleep 5
28 ./run_doors 32 16 1000000
29 rm /tmp/.*door*
30 sleep 5
31 ./run_doors 32 32 1000000
32 rm /tmp/.*door*
33 sleep 5

Figure B.6: run_doors_benchmark: Script for scheduling the run_doors benchmark.

B.2.2 run_doors_benchmark

The script run_doors_benchmark shown in figure B.6 is a script used to automate the
scheduling, feeding run_doors with input values as listed in table B.1. We show the exe-
cution of the 32B chunk. All other sizes are executed in similar fashion. Between execution of
run_doors, we sleep 5 seconds.

B.3 BENCHMARK 3: BUILDING OR INTERPRETING MESSAGES AND

LOG POSTS

run_build

1 #!/bin/sh
2
3 echo =================================
4 echo Benchmark 3: Build
5 echo =================================
6 echo nof_posts: 1000000
7 echo post_size: 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384
8
9 NOF_POSTS=$1

10
11 LOGFILE="log/log_build_${NOF_POSTS}.log"
12
13 echo 32B
14 echo 32B > $LOGFILE
15 ../exec/build 32 $NOF_POSTS >> $LOGFILE
16
17 echo 64B

Figure B.7: Script for scheduling the benchmark of building messages.

166 APPENDIX B. SHELL SCRIPTS

run_myLog

1 #!/bin/sh
2
3 BUFFER_SIZE=$1
4 NOF_POSTS=1000000
5
6 LOGFILE="log/log_mylog_${NOF_POSTS}_${BUFFER_SIZE}.log"
7
8 echo 32b
9 echo 32b > $LOGFILE

10 ../exec/myLog $BUFFER_SIZE 32 $NOF_POSTS >> $LOGFILE
11
12 echo 64b

Figure B.8: Script for scheduling the benchmark of writing to log.

run_myLog_benchmark

1 #!/bin/sh
2
3 echo =================================
4 echo Benchmark 4: myLog
5 echo =================================
6 echo nof_posts: 1000000
7 echo buffer_size: 10, 20, 40, 80, 160, 320, 640, 1280 MB
8
9 echo 10485760B - 10 MB

10 ./run_myLog 10485760
11 sleep 5
12
13 echo 20971520B - 20 MB

Figure B.9: run_myLog_benchmark: Script for scheduling the run_myLog benchmark.

The script in this section is used to automate the benchmarking of the costs associated with
building message and log posts. This scripts is described in section 4.2.3.

B.3.1 run_build

The script takes one input parameter, the number of posts to be built (NOF_POSTS). The
program build.c , however, takes two parameters. All output from the program is logged
to a log file. The script also provides progression feedback to the user interface. We show
the execution of the 32B chunk. All other sizes (as listed in table B.1) are executed in similar
fashion.

B.4 BENCHMARK 4: WRITING TO LOG

The scripts in this section are used to automate the benchmarking of the costs associated with
writing to log. These scripts are described in section 4.2.4.

B.4.1 run_myLog

The script shown in figure B.8 is used to automate the program used to benchmark the costs
associated with writing to log. The script takes one input parameter, namely the buffer size
(BUFFER_SIZE). All output from the program is logged to a log file. The script also provides

B.5. BENCHMARK 5: SYNCHRONIZING USING POSIX MUTEXES 167

run_sr_mutex

1 #!/bin/sh
2
3 echo ==========================
4 echo Benchmark 5 Mutex
5 echo ==========================
6 echo nof_mutexes: 1, 10, 100, 1000
7 echo nof_sets_releases: 100000000, 10000000, 1000000, 100000
8
9 LOGFILE="log/log_sr_mutex.log"

10
11 echo 1 100000000
12 echo 1 100000000 > $LOGFILE
13 ../exec/sr_mutex 1 100000000 >> $LOGFILE
14
15 echo 10 10000000
16 echo 10 10000000 >> $LOGFILE
17 ../exec/sr_mutex 10 10000000 >> $LOGFILE
18
19 echo 100 1000000
20 echo 100 1000000 >> $LOGFILE
21 ../exec/sr_mutex 100 1000000 >> $LOGFILE
22
23 echo 1000 100000
24 echo 1000 100000 >> $LOGFILE
25 ../exec/sr_mutex 1000 100000 >> $LOGFILE

Figure B.10: Script for scheduling the benchmark of setting and releasing mutexes.

progression feedback to the user interface. We show the execution of the 32B chunk. All other
sizes are executed in similar fashion.

B.4.2 run_myLog_benchmark

The script run_myLog_benchmark shown in figure B.9 is used to automate the schedul-
ing, feeding run_myLog with input values as listed in table B.1. We show the execution
of the 10MB chunk. All other sizes are executed in similar fashion. Between execution of
run_myLog, we sleep 5 seconds.

B.5 BENCHMARK 5: SYNCHRONIZING USING POSIX MUTEXES

The script in this section is used to automate the benchmarking of the costs associated with
setting and releasing mutexes. This scripts is described in section 4.2.5.

B.5.1 run_sr_mutex

The script in figure B.10 is indeed simple and is used mostly for logging purposes and to
avoid erroneous input that would easily occur if the benchmark was to be executed manually.
The mutex benchmark differs from the other benchmarks by the amount of tests executed.
Whereas the other benchmarks vary the parameters so that all possible combinations is ex-
ecuted, there is a 1-1 relationship between the parameters in the mutex script, as illustrated
in the figure. The script logs the output of sr_mutex.c to the log file log_sr_mutex.log.
The script provides progression feedback to the user interface.

168 APPENDIX B. SHELL SCRIPTS

run_lsem

1 #!/usr/bin/sh
2
3
4 NOF_PROC=$1
5 NOF_SETS=$2
6
7 i=‘expr $NOF_PROC - 1‘
8
9 echo lseminit:

10 ../exec/lseminit $NOF_PROC
11 echo lsemset:
12 while [$i -ge 0]
13 do
14 p=‘expr $i \% 32‘
15 ../exec/lsemset $NOF_SETS > log/log_semaphore_${NOF_PROC}p_${NOF_SETS}s_${i}.log &
16 pbind -b $p $!
17 i=‘expr $i - 1‘
18 done
19 echo lsemstart:
20 ../exec/lsemstart $NOF_PROC
21 echo lsemrm:
22 ../exec/lsemrm $NOF_PROC
23 echo done

Figure B.11: Script for scheduling the benchmark of setting and releasing semaphores.

run_sem_benchmark

1 #!/bin/sh
2
3 echo ==========================
4 echo Benchmark 6 Semaphore
5 echo ==========================
6 echo nof_set: 1000000
7 echo nof_proc: 1,2,4,8,16,32,64
8 echo
9 echo

10 echo =======
11 echo 1P
12 echo =======
13 ./run_lsem 1 1000000
14 sleep 5
15 echo =======
16 echo 2P
17 echo =======

Figure B.12: run_lsem_benchmark: Script for scheduling the run_lsem benchmark.

B.6 BENCHMARK 6: SYNCHRONIZING USING SYSTEM V SEMAPHORES

The scripts in this section are used to automate the benchmarking of the costs associated with
setting and releasing semaphores. These scripts are described in section 4.2.6.

B.6.1 run_lsem

The script shown in figure B.11 is used to automate the programs used to benchmark the
costs associated with setting and releasing semaphores. The script takes two input parame-
ters, namely the number of processes NOF_PROC and the number of times each process is
to set and release the semaphore (NOF_SETS). The script starts with running the program
lseminit.c which creates a semaphore set containing a single semaphore. The script then
starts up the number of wanted processes of the program lsemset.c and distributes these
evenly over the processors using a call to pbind. All processes log to separate log files. The
processes are then started with the execution of lsemstart. When these processes are exe-
cuted, the semaphore set is removed by executing the program semrm.c.

B.6. BENCHMARK 6: SYNCHRONIZING USING SYSTEM V SEMAPHORES 169

B.6.2 run_sem_benchmark

The script run_sem_benchmark shown in figure B.12 is used to automate the scheduling,
feeding run_lsem with input values as listed in table B.1. We show the execution of the 1
process part chunk. All other process pairs are executed in similar fashion. Between execution
of run_lsem, we sleep 5 seconds.

APPENDIX C
CODE

This appendix lists the code used for all the benchmarks. The only change made since compile
time is the modification of some of the comments.

C.1 BENCHMARK 1: MESSAGE PASSING USING TCP/IP SOCKETS

This section lists the source code for all programs used in benchmark 1.

C.1.1 ping.c

Figures C.1, C.2, C.3 and C.4 present the code for ping.c.

ping.c (continues on page 172)

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <unistd . h>
4 # include <errno . h>
5 # include < s t r i n g . h>
6 # include <netdb . h>
7 # include <sys/types . h>
8 # include < n e t i n e t /in . h>
9 # include <sys/socket . h>

10 # include <sys/time . h>
11 # include < f l o a t . h>
12 # include <sys/ipc . h>
13 # include <sys/sem . h>
14
15
16 / * The s i z e o f t h e l o c a l in−b u f f e r * /
17 # define MAXDATASIZE 32000
18
19 i n t main (i n t argc , char * argv [])
20 {
21 / * I n i t i a l i z i n g a l l v a r i a b l e s t o z e r o * /
22 i n t sockfd = 0 ,
23 numbytes = 0 ,
24 port = 0 ,
25 loop = 0 ,
26 nof_messages = 0 ,
27 message_size = 0 ,
28 sent_bytes = 0 ;
29
30 long long i n t t o t a l _ t i m e = 0 ;
31 char buf [MAXDATASIZE] ;
32 s t r u c t hostent * he ;
33
34 / * I n f o r m a t i o n a b o u t t h e a d d r e s s t o c o n n e c t t o * /
35 s t r u c t sockaddr_in the i r_addr ;
36 hrt ime_t s t a r t , end ;

Figure C.1: C code for ping.c part 1

171

172 APPENDIX C. CODE

ping.c (continued from page 171, continues on page 173)

37
38 key_t s t a r t _ k e y ;
39 key_t f in ished_key ;
40 i n t s tar t sem_id ;
41 i n t f inishedsem_id ;
42 s t r u c t sembuf s t a r t _ o p = { 0 , −1, 0 } ;
43 / * S e t t o a l l o c a t e r e s o u r c e * /
44 s t r u c t sembuf f inished_op = { 0 , 1 , 0 } ;
45
46
47
48 / * Making s u r e a l l arguments a r e g i v e n * /
49 i f (argc != 5)
50 {
51 f p r i n t f (s tderr , " usage : c l i e n t hostname port nof_messages message_size \n") ;
52 e x i t (1) ;
53 }
54
55
56 / * C r e a t i n g a key f o r t h e s t a r t s emaphore s e t * /
57 i f ((s t a r t _ k e y = f t o k (" s t a r t . t x t " , ’E ’)) == −1) {
58 perror (" f t o k ") ;
59 e x i t (1) ;
60 }
61
62 / * C r e a t i n g a key f o r t h e f i n i s h semaphore s e t * /
63 i f ((f in ished_key = f t o k (" f i n i s h e d . t x t " , ’E ’)) == −1) {
64 perror (" f t o k ") ;
65 e x i t (1) ;
66 }
67
68 / * g r a b b i n g t h e semaphore s e t a l l r e a d y c r e a t e d f o r t h e s t a r t s emaphore * /
69 i f ((s tar t sem_id = semget (s tar t_key , 1 , 0)) == −1) {
70 perror (" semget ") ;
71 e x i t (1) ;
72 }
73
74 / * g r a b b i n g t h e semaphore s e t a l l r e a d y c r e a t e d f o r t h e f i n i s h e d semaphore * /
75 i f ((f inishedsem_id = semget (f inished_key , 1 , 0)) == −1) {
76 perror (" semget ") ;
77 e x i t (1) ;
78 }
79
80 / * Get t h e h o s t i n f o * /
81 he=gethostbyname (argv [1]) ;
82 i f (he == NULL)
83 {
84 perror (" gethostbyname ") ;
85 e x i t (1) ;
86 }
87
88 / * Get t h e p o r t * /
89 port = a t o i (argv [2]) ;
90 i f (port == NULL)
91 {
92 perror (" port ") ;
93 e x i t (1) ;
94 }
95
96 / * Get number o f m e s s ag e s * /
97 nof_messages = a t o i (argv [3]) ;

Figure C.2: C code for ping.c part 2

C.1. BENCHMARK 1: MESSAGE PASSING USING TCP/IP SOCKETS 173

ping.c (continued from page 172, continues on page 174)

98 i f (nof_messages == NULL)
99 {

100 perror (" nof_messages ") ;
101 e x i t (1) ;
102 }
103
104 / * Get message s i z e * /
105 message_size = a t o i (argv [4]) ;
106 i f (message_size == NULL)
107 {
108 perror (" message_size ") ;
109 e x i t (1) ;
110 }
111
112 / * C r e a t i n g t h e s o c k e t * /
113 i f ((sockfd = socket (PF_INET , SOCK_STREAM, 0)) == −1)
114 {
115 perror (" socket ") ;
116 e x i t (1) ;
117 }
118
119 / * I n i t i a l i z i n g t h e a d d r e s s s t r u c t t o c o n n e c t t o * /
120 the i r_addr . s in_ fami ly = AF_INET ;
121 the i r_addr . s i n _ p o r t = htons (port) ;
122 the i r_addr . sin_addr = * ((s t r u c t in_addr *) he−>h_addr) ;
123 memset(&(the i r_addr . s in_zero) , ’ \0 ’ , 8) ;
124
125 / * Tuning t h e s o c k e t , making s u r e t h e r e i s no b u f f e r i n g * /
126 i n t nobuf =0;
127 i f (se tsockopt (sockfd , SOL_SOCKET, SO_SNDBUF ,&nobuf , s i ze of (i n t)) == −1)
128 {
129 perror (" se tsockopt ") ;
130 e x i t (1) ;
131 }
132
133
134 / * Connect t o s o c k e t * /
135 i n t cnt = connect (sockfd , (s t r u c t sockaddr *)&their_addr , s i ze of (s t r u c t sockaddr)) ;
136 i f (cnt == −1)
137 {
138 perror (" connect ") ;
139 e x i t (1) ;
140 }
141
142 / * Send handshake c o n t a i n i n g t h e number o f m e s s a g e s t h a t i s t o be s e n t * /
143 char s t r [1 0 0] ;
144 s p r i n t f (s t r , "%d" , htonl (nof_messages)) ;
145 send (sockfd , s t r , 1 0 0 , 0) ;
146
147 / * The b u f f e r c o n t a i n i n g t h e message t o send * /
148 char my_message [message_size] ;
149
150 / * I n i t t h e l o o p v a r i a b l e * /
151 loop = nof_messages ;
152
153 / * In o r d e r f o r a l l p r o c e s s e s t o b e g i n a t t h e same t ime , e x e c u t i o n i s h a l t i n g u n t i l t h e

s t a r t s emaphore i s a v a i l a b l e * /
154 i f (semop (startsem_id , &star t_op , 1) == −1) {
155 perror (" semop") ;
156 e x i t (1) ;
157 }

Figure C.3: C code for ping.c part 3

174 APPENDIX C. CODE

ping.c (continued from page 173)

158
159 / * Ready , s e t , GO! * /
160
161 while (loop)
162 {
163 / * B u i l d t h e message t o be s e n t * /
164 i n t i =0 ;
165 char * tp ;
166 for (tp = my_message ; tp < my_message + message_size−1; tp ++)
167 {
168 char c h a r a c t e r = ’L ’ ;
169 * tp = c h a r a c t e r ;
170 }
171
172 * tp = ’ \0 ’ ;
173
174 / * Get s t a r t t ime * /
175 s t a r t = gethrt ime () ;
176
177 / * Sending t h e message j u s t b u i l t * /
178 sent_bytes = send (sockfd , my_message , message_size , 0) ; / / s end
179 i f (sent_bytes != message_size)
180 {
181 p r i n t f (" Expected to send message of s i z e %d b , was %d b\n" , message_size ,

sent_bytes) ;
182 }
183
184 / * R e c e i v i n g r e s p o n s e * /
185 numbytes=recv (sockfd , buf , message_size , MSG_WAITALL) ;
186 i f (numbytes != message_size)
187 {
188 p r i n t f (" Expected message of s i z e %d b , was %d b\n" , message_size , numbytes) ;
189 }
190 i f (numbytes== −1)
191 {
192 perror (" recv ") ;
193 e x i t (1) ;
194 }
195 / * Response r e c i e v e d , g e t t h e end t ime * /
196 end = gethrt ime () ;
197
198 / * Add t h e t ime used t o t h e t o t a l t ime * /
199 t o t a l _ t i m e += end − s t a r t ;
200
201 buf [numbytes] = ’ \0 ’ ;
202
203 / * R e s e t t i n g t h e message b u f f e r * /
204 memset (my_message , 0 , message_size) ;
205
206 loop−−;
207 }
208
209 / * Adds 1 t o t h e f i n i s h e d semaphore t o i n d i c a t e t h a t t h e p r o c e s s i s f i n i s h e d * /
210 i f (semop (finishedsem_id , &finished_op , 1) == −1)
211 {
212 perror (" semop") ;
213 e x i t (1) ;
214 }
215
216 p r i n t f (" [PING] Average \ t %l l d \n" , (t o t a l _ t i m e /nof_messages)) ;
217 }

Figure C.4: C code for ping.c part 4

C.1. BENCHMARK 1: MESSAGE PASSING USING TCP/IP SOCKETS 175

C.1.2 pong.c

Figures C.5, C.6 and C.7 present the code for pong.c.

pong.c (continues on page 176)

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <unistd . h>
4 # include <errno . h>
5 # include < s t r i n g . h>
6 # include <netdb . h>
7 # include <sys/types . h>
8 # include < n e t i n e t /in . h>
9 # include <sys/socket . h>

10 # include <sys/time . h>
11 # include < f l o a t . h>
12
13 / * Maximum number o f pending c o n n e c t s * /
14 # define BACKLOG 10
15
16 / * The s i z e o f t h e l o c a l in−b u f f e r * /
17 # define MAXDATASIZE 32000
18
19 i n t main (i n t argc , char * argv [])
20 {
21 i n t l i s t e n _ s o c k e t , r e c e i v e _ s o c k e t ;
22 i n t read_value , nof_messages , message_size , port , s i n _ s i z e ;
23 i n t yes = 1 ;
24
25 / * The t o t a l t ime s p e n t working * /
26 long long i n t t o t a l _ t i m e ;
27
28 i n t loop = 0 ;
29
30 / * The l o c a l in−b u f f e r * /
31 char message_buffer [MAXDATASIZE] ;
32
33 / * The a d d r e s s s t r u c t u r e o f t h e s e r v e r s o c k e t * /
34 s t r u c t sockaddr_in l i s t e n _ a d d r e s s ;
35
36 / * The a d d r e s s s t r u c t u r e o f t h e send / r e c e i v e s o c k e t * /
37 s t r u c t sockaddr_in receiveAddress ;
38
39 / * S t r u c t u r e s used t o measure t ime d i f f e r e n c e s * /
40 hrt ime_t s t a r t , end ;
41
42 / * Making s u r e a l l arguments a r e g i v e n * /
43 i f (argc != 3)
44 {
45 f p r i n t f (s tderr , " usage : c l i e n t port message_size\n") ;
46 e x i t (1) ;
47 }
48
49 port = a t o i (argv [1]) ;
50 message_size = a t o i (argv [2]) ;
51
52 i f (message_size == NULL)
53 {
54 perror (" message_size ") ;
55 e x i t (1) ;

Figure C.5: C code for pong.c part 1

176 APPENDIX C. CODE

pong.c (continued from page 175, continues on page 177)

56 }
57
58 / * The b u f f e r c o n t a i n i n g t h e message t o send * /
59 char my_message [message_size] ;
60
61 / * C r e a t i n g t h e s e r v e r s o c k e t * /
62 l i s t e n _ s o c k e t = socket (AF_INET , SOCK_STREAM, 0) ;
63 i f (l i s t e n _ s o c k e t == −1)
64 {
65 perror (" socket ") ;
66 e x i t (1) ;
67 }
68
69 / * Tuning t h e s o c k e t , making s u r e t h e r e i s no b u f f e r i n g * /
70 i n t nobuf =0;
71 i f (se tsockopt (l i s t e n _ s o c k e t , SOL_SOCKET, SO_SNDBUF,&nobuf , s i ze of (i n t)) == −1)
72 {
73 perror (" se tsockopt ") ;
74 e x i t (1) ;
75 }
76
77 / * Making t h e a d d r e s s r e u s a b l e * /
78 i f (se tsockopt (l i s t e n _ s o c k e t , SOL_SOCKET,SO_REUSEADDR,& yes , s i ze of (i n t)) == −1)
79 {
80 perror (" se tsockopt ") ;
81 e x i t (1) ;
82 }
83
84 / * I n i t i a l i z i n g t h e a d d r e s s o f t h e s e r v e r s o c k e t * /
85 l i s t e n _ a d d r e s s . s in_ fami ly = AF_INET ;
86 l i s t e n _ a d d r e s s . s i n _ p o r t = htons (port) ;
87 l i s t e n _ a d d r e s s . sin_addr . s_addr = INADDR_ANY;
88 memset(&(l i s t e n _ a d d r e s s . s in_zero) , ’ \0 ’ , 8) ;
89
90 / * B ind ing t h e s e r v e r s o c k e t t o t h e s e r v e r a d d r e s s * /
91 i n t bind_res = bind (l i s t e n _ s o c k e t , (s t r u c t sockaddr *)&l i s t e n _ a d d r e s s , s i ze of (s t r u c t

sockaddr)) ;
92 i f (bind_res == −1)
93 {
94 perror (" bind ") ;
95 e x i t (1) ;
96 }
97
98 / * S e t t i n g t h e s e r v e r s o c k e t t o l i s t e n f o r c o n n e c t i o n s * /
99 i n t l i s t e n _ r e s = l i s t e n (l i s t e n _ s o c k e t , BACKLOG) ;

100 i f (l i s t e n _ r e s == −1)
101 {
102 perror (" l i s t e n ") ;
103 e x i t (1) ;
104 }
105
106 s i n _ s i z e = s i ze of (s t r u c t sockaddr_in) ;
107
108 / * Wait ing f o r connec t , us ing r e c e i v e s o c k e t a s a communicat ion end−p o i n t * /
109 r e c e i v e _ s o c k e t = accept (l i s t e n _ s o c k e t , (s t r u c t sockaddr *)&receiveAddress , &s i n _ s i z e) ;
110 i f (r e c e i v e _ s o c k e t == −1)
111 {
112 perror (" accept ") ;
113 e x i t (1) ;
114 }
115
116 memset (message_buffer , 0 , s i ze of message_buffer) ;
117
118 / * Reading 100 b y t e s from t h e in−b u f f e r * /
119 read_value = recv (rece ive_socke t , message_buffer , 100 , MSG_WAITALL) ;
120 i f (read_value == −1)

Figure C.6: C code for pong.c part 2

C.1. BENCHMARK 1: MESSAGE PASSING USING TCP/IP SOCKETS 177

pong.c (continued from page 176)

121 {
122 perror (" Reading message ") ;
123 e x i t (0) ;
124 }
125
126 / * C o n v e r t i n g t h e message in t h e in−b u f f e r t o an i n t e g e r r e p r e s e n t i n g
127 t h e number o f m e s s a g e s t o be s e n t and r e c e i v e d * /
128 nof_messages = a t o i (message_buffer) ;
129 nof_messages = ntohl (nof_messages) ;
130
131 / * Used t o f i n d t h e a v e r a g e t ime pr message * /
132 loop = nof_messages ;
133
134 t o t a l _ t i m e = 0 . 0 ;
135 i n t sent_bytes = 0 ;
136
137 while (nof_messages)
138 {
139 memset (message_buffer , 0 , MAXDATASIZE) ;
140
141 / * R e c e i v e i n g message from t h e c l i e n t * /
142 read_value = recv (rece ive_socke t , message_buffer , message_size , MSG_WAITALL) ;
143
144 / * Keep ing t r a c k o f t h e t ime when s t a r t i n g t o work * /
145 s t a r t = gethrt ime () ;
146
147
148 i f (read_value != message_size)
149 {
150 p r i n t f (" Expected message of s i z e %d b , was %d b\n" , message_size , read_value) ;
151 }
152
153 i f (read_value == −1)
154 {
155 perror (" Reading message ") ;
156 break ;
157 }
158 nof_messages−−;
159
160 / * B u i l d i n g t h e message t o be s e n t * /
161 char * tp ;
162 for (tp = my_message ; tp < my_message + message_size−1; tp ++)
163 {
164
165 char c h a r a c t e r = ’T ’ ;
166 * tp = c h a r a c t e r ;
167 }
168 * tp = ’ \0 ’ ;
169
170 / * Keep ing t r a c k o f t ime when t h e work i s f i n i s h e d * /
171 end = gethrt ime () ;
172
173 / * Sending t h e e n t i r e message v i a t h e r e c e i v e s o c k e t * /
174 sent_bytes = send (rece ive_socke t , my_message , message_size , 0) ;
175 i f (sent_bytes != message_size)
176 {
177 p r i n t f (" Expected to send message of s i z e %d b , was %d b\n" , message_size ,

sent_bytes) ;
178 }
179
180 / * Adding t h e t ime used t o t h e t o t a l t ime * /
181 t o t a l _ t i m e += end − s t a r t ;
182 }
183
184 p r i n t f (" [PONG] Average : \ t %l l d \n" , (t o t a l _ t i m e / loop)) ;
185 c l o s e (r e c e i v e _ s o c k e t) ;
186 }

Figure C.7: C code for pong.c part 3

178 APPENDIX C. CODE

C.1.3 pingpong_init.c

Figures C.8 presents the code for pingpong_init.c.

pingpong_init.c

1 # include <sys/ipc . h>
2 # include <sys/sem . h>
3 # include <sys/types . h>
4 # include < s t d i o . h>
5 # include < s t d l i b . h>
6 # include <errno . h>
7
8
9 / * Th i s f i l e c r e a t e s two semaphore s e t s : s t a r t and f i n i s h e d .

10 S t a r t i s used t o s y n c h r o n i z e t h e s t a r t o f a l l p r o c e s s e s . F i n i s h i s used
11 t o s y n c h r o n i z e t h e r emova l o f t h e s emaphore s e t s . * /
12 i n t main (i n t argc , char * argv [])
13 {
14
15
16 key_t s t a r t _ k e y ;
17 key_t f in ished_key ;
18 i n t s tar t sem_id ;
19 i n t f inishedsem_id ;
20
21 union semun
22 {
23 i n t val ;
24 s t r u c t semid_ds * buf ;
25 unsigned short i n t * array ;
26 } ;
27
28
29 / * Arguments f o r t h e semaphore s e t s * /
30 union semun s t a r t _ a r g ;
31 union semun f i n i s h e d _ a r g ;
32
33 / * C r e a t i n g a key f o r e a c h semaphore . The key i s a s s o c i a t e d with a f i l e * /
34 s t a r t _ k e y = f t o k (" s t a r t . t x t " , ’E ’) ;
35 f in ished_key = f t o k (" f i n i s h e d . t x t " , ’E ’) ;
36
37 / * C r e a t i n g t h e semaphore s e t s * /
38 s tar t sem_id = semget (s tar t_key , 1 , 0666 | IPC_CREAT) ;
39 f inishedsem_id = semget (f inished_key , 1 , 0666 | IPC_CREAT) ;
40
41 / * I n i t i a t i n g t h e v a l u e s o f t h e s emaphore s e t s * /
42 s t a r t _ a r g . val = 0 ;
43 f i n i s h e d _ a r g . val = 0 ;
44
45 semctl (s tar tsem_id , 0 , SETVAL, s t a r t _ a r g) ;
46 semctl (f inishedsem_id , 0 , SETVAL, f i n i s h e d _ a r g) ;
47
48 }

Figure C.8: C code for pingpong_init.c

C.1. BENCHMARK 1: MESSAGE PASSING USING TCP/IP SOCKETS 179

C.1.4 pingpong_start.c

Figures C.9 presents the code for pingpong_start.c.

pingpong_start.c

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <errno . h>
4 # include <sys/types . h>
5 # include <sys/ipc . h>
6 # include <sys/sem . h>
7
8 i n t main (i n t argc , char * argv [])
9 {

10 key_t key ;
11 i n t semid ;
12
13 i f (argc != 2)
14 {
15 p r i n t f (" Usage : %s <nof_processes > \n" , argv [0]) ;
16 e x i t (1) ;
17 }
18
19 i n t nof_processes = a t o i (argv [1]) ;
20
21
22 / * Used t o i n c r e m e n t t h e semaphore b e f o r e a l l p r o c e s s e s may b e g i n * /
23 s t r u c t sembuf op = { 0 , nof_processes , 0 } ;
24
25 / * C r e a t i n g a key f o r t h e semaphore s e t * /
26 i f ((key = f t o k (" s t a r t . t x t " , ’E ’)) == −1) {
27 perror (" f t o k ") ;
28 e x i t (1) ;
29 }
30
31 / * Grabbing t h e semaphore s e t a l l r e a d y c r e a t e d f o r t h e s t a r t s emaphore * /
32 i f ((semid = semget (key , 1 , 0)) == −1) {
33 perror (" semget ") ;
34 e x i t (1) ;
35 }
36
37
38 / * Ready , s e t , GO! * /
39 i f (semop (semid , &op , 1) == −1)
40 {
41 perror (" semop") ;
42 e x i t (1) ;
43 }
44
45 }

Figure C.9: C code for pingpong_start.c

180 APPENDIX C. CODE

C.1.5 pingpong_finish.c

Figures C.10 and C.11 present the code for pingpong_finish.c.

pingpong_finish.c, (continues on page 181)

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <errno . h>
4 # include <sys/types . h>
5 # include <sys/ipc . h>
6 # include <sys/sem . h>
7
8 i n t main (i n t argc , char * argv [])
9 {

10 key_t s t a r t _ k e y ;
11 key_t f in ished_key ;
12
13 i n t s tar t sem_id ;
14 i n t f inishedsem_id ;
15
16 i f (argc != 2)
17 {
18 p r i n t f (" Usage : %s <nof_processes > \n" , argv [0]) ;
19 e x i t (1) ;
20 }
21
22 i n t nof_processes = a t o i (argv [1]) ;
23 i n t nof_grabs = nof_processes * −1;
24
25 s t r u c t sembuf f inished_op = { 0 , nof_grabs , 0 } ; / * S e t t o a l l o c a t e r e s o u r c e * /
26
27 / * C r e a t i n g a key t h a t i d e n t i f i e s t h e f i n i s h semaphore * /
28 i f ((f in ished_key = f t o k (" f i n i s h e d . t x t " , ’E ’)) == −1)
29 {
30 perror (" f t o k ") ;
31 e x i t (1) ;
32 }
33
34 / * Grabbing t h e f i n i s h semaphore s e t * /
35 i f ((f inishedsem_id = semget (f inished_key , 1 , 0)) == −1)
36 {
37 perror (" semget ") ;
38 e x i t (1) ;
39 }

Figure C.10: C code for pingpong_finish.c part 1

C.1. BENCHMARK 1: MESSAGE PASSING USING TCP/IP SOCKETS 181

pingpong_finish.c, (continued from page 180)

41 / * Wait ing u n t i l a l l p r o c e s s e s a r e done e x e c u t i n g * /
42 i f (semop (finishedsem_id , &finished_op , 1) == −1) {
43 perror (" semop") ;
44 e x i t (1) ;
45 }
46
47 p r i n t f (" Removing f i n i s h semaphore \n") ;
48
49 / * Removing t h e f i n i s h semaphore s e t * /
50 i f (semctl (f inishedsem_id , 0 , IPC_RMID , (0 , 0 , 0)) == −1)
51 {
52 perror (" semctl ") ;
53 e x i t (1) ;
54 }
55
56
57 / * C r e a t i n g a key t h a t i d e n t i f i e s t h e s t a r t s emaphore s e t * /
58 i f ((s t a r t _ k e y = f t o k (" s t a r t . t x t " , ’E ’)) == −1)
59 {
60 perror (" f t o k ") ;
61 e x i t (1) ;
62 }
63
64 / * Grabbing t h e s t a r t s emaphore s e t * /
65 i f ((s tar t sem_id = semget (s tar t_key , 1 , 0)) == −1)
66 {
67 perror (" semget ") ;
68 e x i t (1) ;
69 }
70
71 / * Removing t h e s t a r t s emaphore s e t * /
72 i f (semctl (s tar tsem_id , 0 , IPC_RMID , (0 , 0 , 0)) == −1)
73 {
74 perror (" semctl ") ;
75 e x i t (1) ;
76 }
77
78 return 0 ;
79 }

Figure C.11: C code for pingpong_finish.c part 2

182 APPENDIX C. CODE

C.2 BENCHMARK 2: MESSAGE PASSING USING SOLARIS DOORS

This section lists the source code for all programs used in benchmark 2.

C.2.1 doorclient.c

Figures C.12, C.13 and C.14 present the code for doorclient.c.

doorclient.c (continues on page 183)

1 # include <unistd . h>
2 # include < s t d i o . h>
3 # include <sys/types . h>
4 # include <sys/ s t a t . h>
5 # include < f c n t l . h>
6 # include <errno . h>
7 # include <sys/time . h>
8 # include < f l o a t . h>
9 # include < s t d l i b . h>

10 # include <sys/ipc . h>
11 # include <sys/sem . h>
12 # include <sys/door . h>
13
14 char * message ;
15 char * r_message ;
16
17 / * The t o t a l t ime s p e n t working * /
18 long long i n t t o t a l _ t i m e ;
19
20 / * S t r u c t u r e s used t o measure t ime d i f f e r e n c e s * /
21 hrt ime_t s t a r t , end ;
22 i n t nof_messages ;
23
24 extern i n t errno ;
25
26 i n t main (i n t argc , char * argv []) {
27
28 key_t s t a r t _ k e y ;
29 key_t f in ished_key ;
30 i n t s tar t sem_id ;
31 i n t f inishedsem_id ;
32 s t r u c t sembuf s t a r t _ o p = { 0 , −1, 0 } ;
33 / * S e t t o a l l o c a t e r e s o u r c e * /
34 s t r u c t sembuf f inished_op = { 0 , 1 , 0 } ;
35
36 / * C r e a t i n g a key f o r t h e s t a r t s emaphore s e t * /
37 i f ((s t a r t _ k e y = f t o k (" s t a r t . t x t " , ’E ’)) == −1) {
38 perror (" f t o k ") ;
39 e x i t (1) ;
40 }
41
42 / * C r e a t i n g a key f o r t h e f i n i s h semaphore s e t * /
43 i f ((f in ished_key = f t o k (" f i n i s h e d . t x t " , ’E ’)) == −1) {
44 perror (" f t o k ") ;
45 e x i t (1) ;
46 }
47
48 / * g r a b b i n g t h e semaphore s e t a l l r e a d y c r e a t e d f o r t h e s t a r t s emaphore * /
49 i f ((s tar t sem_id = semget (s tar t_key , 1 , 0)) == −1) {
50 perror (" semget ") ;

Figure C.12: C code for doorclient.c part 1

C.2. BENCHMARK 2: MESSAGE PASSING USING SOLARIS DOORS 183

doorclient.c (continued from page 182, continues on page 184)

51 e x i t (1) ;
52 }
53
54 / * g r a b b i n g t h e semaphore s e t a l l r e a d y c r e a t e d f o r t h e f i n i s h e d semaphore * /
55 i f ((f inishedsem_id = semget (f inished_key , 1 , 0)) == −1) {
56 perror (" semget ") ;
57 e x i t (1) ;
58 }
59
60 i n t message_size = a t o i (argv [1]) ;
61 i f (message_size == NULL || message_size == 0)
62 {
63 perror (" message_size ") ;
64 e x i t (1) ;
65 }
66
67 char * door_pathname = argv [2] ;
68 i f (door_pathname == NULL || door_pathname == " ")
69 {
70 perror (" door_pathname ") ;
71 e x i t (1) ;
72 }
73
74 / * Get number o f m e s s ag e s * /
75 nof_messages = a t o i (argv [3]) ;
76 i f (nof_messages == NULL)
77 {
78 perror (" nof_messages ") ;
79 e x i t (1) ;
80 }
81
82 message = (char *) malloc (message_size) ;
83 r_message = (char *) malloc (message_size) ;
84 i n t i ;
85 i n t did , d ;
86 door_arg_t darg ;
87 door_ info_t i n f o ;
88
89 i f ((d=open (door_pathname , O_RDONLY)) < 0)
90 perror ("Open door ") , e x i t (1) ;
91
92 i n f o . d i _ t a r g e t =0;
93 i f (door_info (d , &i n f o) < 0) {
94 perror (" Door_info ") ;
95 p r i n t f (" errno=%d\n" , errno) ;
96 e x i t (1) ;
97 }
98
99 i n t j = 0 ;

100 i n t loop = nof_messages ;
101
102 / * In o r d e r f o r a l l p r o c e s s e s t o b e g i n a t t h e same t ime , e x e c u t i o n i s h a l t i n g u n t i l t h e

s t a r t s emaphore i s a v a i l a b l e * /
103 i f (semop (startsem_id , &star t_op , 1) == −1) {
104 perror (" semop") ;
105 e x i t (1) ;
106 }
107
108 / * Ready , s e t , GO! * /
109 while (loop)
110 {

Figure C.13: C code for doorclient.c part 2

184 APPENDIX C. CODE

doorclient.c (continued from page 183)

111 / * B u i l d i n g t h e message t o be s e n t * /
112 char * tp ;
113 for (tp = message ; tp < message + message_size−1; tp ++)
114 {
115 char c h a r a c t e r = ’C ’ ;
116 * tp = c h a r a c t e r ;
117 }
118 * tp = ’ \0 ’ ;
119
120 darg . data_ptr = (char *) message ;
121 darg . d a t a _ s i z e = message_size ;
122 darg . desc_ptr = NULL;
123 darg . desc_num = 0 ;
124 darg . rbuf = r_message ;
125 darg . r s i z e = message_size ;
126
127 / * Keep ing t r a c k o f t h e t ime when s t a r t i n g t o work * /
128 s t a r t = gethrt ime () ;
129 j ++;
130 d o o r _ c a l l (d , &darg) ;
131 / * Keep ing t r a c k o f t ime when t h e work i s f i n i s h e d * /
132 end = gethrt ime () ;
133 / * Adding t h e t ime used t o t h e t o t a l t ime * /
134 t o t a l _ t i m e += end − s t a r t ;
135
136 char * ptr = (char *) darg . data_ptr ;
137 loop−−;
138 }
139
140 c l o s e (d) ;
141 f r e e (message) ;
142 f r e e (r_message) ;
143
144 / * Adds 1 t o t h e f i n i s h e d semaphore t o i n d i c a t e t h a t t h e p r o c e s s i s f i n i s h e d * /
145 i f (semop (finishedsem_id , &finished_op , 1) == −1)
146 {
147 perror (" semop") ;
148 e x i t (1) ;
149 }
150
151 p r i n t f (" [Cl ient , msg : %d] Average : \ t %l l d \n" , j , (t o t a l _ t i m e /nof_messages)) ;
152
153 return 0 ;
154 }

Figure C.14: C code for doorclient.c part 3

C.2. BENCHMARK 2: MESSAGE PASSING USING SOLARIS DOORS 185

C.2.2 doorserver.c

Figures C.15, prog:doorserver2 and C.17 present the code for doorserver.c.

doorserver.c (continues on page 186)

1
2 # include <sys/door . h>
3 # include <unistd . h>
4 # include < s t d i o . h>
5 # include < f c n t l . h>
6 # include <sys/ s t a t . h>
7 # include <errno . h>
8 # include <sys/types . h>
9

10 # define BOGUS_DOOR_COOKIE ((void *) (0 xdeadbeef))
11
12 char * message ;
13 i n t nof_messages ;
14 i n t run =1;
15 i n t count =0;
16 s t a t i c void server_proc () ;
17
18 / * The t o t a l t ime s p e n t working * /
19 long long i n t t o t a l _ t i m e ;
20
21 / * S t r u c t u r e s used t o measure t ime d i f f e r e n c e s * /
22 hrt ime_t s t a r t , end , tmp ;
23
24 i n t main (i n t argc , char * argv [])
25 {
26 i n t message_size = a t o i (argv [1]) ;
27 i f (message_size == NULL || message_size == 0)
28 {
29 perror (" message_size ") ;
30 e x i t (1) ;
31 }
32
33 char * door_pathname = argv [2] ;
34 i f (door_pathname == NULL || door_pathname == " ")
35 {
36 perror (" door_pathname ") ;
37 e x i t (1) ;
38 }
39
40 / * Get number o f m e s s ag e s * /
41 nof_messages = a t o i (argv [3]) ;
42 i f (nof_messages == NULL || nof_messages == 0)
43 {
44 perror (" nof_messages ") ;
45 e x i t (1) ;
46 }
47
48 message = (char *) malloc (message_size) ;
49 fdetach (door_pathname) ;
50 i n i t (door_pathname) ;

Figure C.15: C code for doorserver.c part 1

186 APPENDIX C. CODE

doorserver.c (continued from page 185), continues on page 187)

51 while (run)
52 {
53 usleep (1 0 0) ;
54 }
55 s leep (1) ;
56 fdetach (door_pathname) ;
57 f r e e (message) ;
58 p r i n t f (" [Server , msg : %d] Average : \ t %l l d \n" , count , (t o t a l _ t i m e / nof_messages)) ;
59 return 0 ;
60 }
61
62 i n t i n i t (char * door_pathname)
63 {
64 i n t did , door , fd ;
65 s t r u c t s t a t buf ;
66 door_ info_t i n f o ;
67
68 i f ((door = open (door_pathname , O_RDONLY)) >= 0)
69 {
70 i f (door_info (door , &i n f o) >= 0)
71 {
72 p r i n t f (" door_info : i n f o . d i _ t a r g e t = %ld\n" ,
73 i n f o . d i _ t a r g e t) ;
74 i f (i n f o . d i _ t a r g e t > 0)
75 {
76 (void) p r i n t f (" door_server pid %ld already "
77 " running . Cannot s t a r t another "
78 " door_server pid %ld " ,
79 i n f o . d i _ t a r g e t , getpid ()) ;
80 e x i t (1) ;
81 }
82 }
83 }
84 e lse
85 {
86 i f (s t a t (door_pathname , &buf) < 0)
87 {
88 i f ((fd = c r e a t (door_pathname , 0644)) < 0)
89 {
90 p r i n t f (" d o o r f i l e c r e a t f a i l e d \n") ;
91 e x i t (1) ;
92 }
93 (void) c l o s e (fd) ;
94 }
95 }
96
97 i f ((did = door_create (server_proc , BOGUS_DOOR_COOKIE, DOOR_UNREF)) < 0)
98 {
99 perror (" door_create ") ;

100 e x i t (−1) ;
101 }
102
103 i f (f a t t a c h (did , door_pathname) < 0)
104 {
105 i f ((errno != EBUSY) || (fdetach (door_pathname) < 0) || (f a t t a c h (did , door_pathname)

< 0))
106 {
107 perror (" door_attach ") ;
108 }
109 }
110 return 0 ;

Figure C.16: C code for doorserver.c part 2

C.2. BENCHMARK 2: MESSAGE PASSING USING SOLARIS DOORS 187

doorserver.c (continued from page 186)

111 }
112
113 s t a t i c void server_proc (void * cookie , char * argp , s i z e _ t arg_s ize , door_desc_t *dp , s i z e _ t

n_desc)
114 {
115 / * Keep ing t r a c k o f t h e t ime when s t a r t i n g t o work * /
116 s t a r t = gethrt ime () ;
117
118 i f (count > 0)
119 {
120 t o t a l _ t i m e += end − tmp ;
121 }
122
123 tmp = s t a r t ;
124
125 i n t r e t ;
126 char * ptr = (char *) argp ;
127
128 i f (p t r ==NULL || argp ==NULL)
129 {
130 p r i n t f (" ptr or argp i s NULL") ;
131
132 }
133
134 i f (argp == DOOR_UNREF_DATA) / * f d e t a c h () c a l l e d by s e r v e r in main () r e s u l t s in t h e f i n a l

s e r v e r _ p r o c c a l l * /
135 {
136 door_return (NULL, 0 , NULL, 0) ;
137 }
138
139 i f (p t r == NULL) / * empty door c a l l * /
140 {
141 (void) door_return (NULL, 0 , 0 , 0) ; / * r e t u r n t h e f a v o r * /
142 }
143
144 / * B u i l d i n g t h e message t o be s e n t * /
145 char * tp ;
146 for (tp = message ; tp < message + arg_s ize−1; tp ++)
147 {
148 char c h a r a c t e r = ’ S ’ ;
149 * tp = c h a r a c t e r ;
150 }
151 * tp = ’ \0 ’ ;
152
153 count ++;
154
155 i f (count == nof_messages)
156 {
157 run = 0 ;
158 }
159
160 / * Keep ing t r a c k o f t ime when t h e work i s f i n i s h e d * /
161 end = gethrt ime () ;
162
163 r e t = door_return ((void *) message , arg_s ize , NULL, 0) ;
164
165 i f (r e t < 0)
166 {
167 perror (" door_return ") , e x i t (1) ;
168 }
169 }

Figure C.17: C code for doorserver.c part 3

188 APPENDIX C. CODE

C.2.3 door_init.c

Figures C.18 presents the code for door_init.c.

door_init.c

1 # include <sys/ipc . h>
2 # include <sys/sem . h>
3 # include <sys/types . h>
4 # include < s t d i o . h>
5 # include < s t d l i b . h>
6 # include <errno . h>
7
8
9 / * Th i s f i l e c r e a t e s two semaphore s e t s : s t a r t and f i n i s h e d .

10 S t a r t i s used t o s y n c h r o n i z e t h e s t a r t o f a l l p r o c e s s e s . F i n i s h i s used
11 t o s y n c h r o n i z e t h e r emova l o f t h e s emaphore s e t s . * /
12 i n t main (i n t argc , char * argv [])
13 {
14
15
16 key_t s t a r t _ k e y ;
17 key_t f in ished_key ;
18 i n t s tar t sem_id ;
19 i n t f inishedsem_id ;
20
21 union semun
22 {
23 i n t val ;
24 s t r u c t semid_ds * buf ;
25 unsigned short i n t * array ;
26 } ;
27
28
29 / * Arguments f o r t h e semaphore s e t s * /
30 union semun s t a r t _ a r g ;
31 union semun f i n i s h e d _ a r g ;
32
33 / * C r e a t i n g a key f o r e a c h semaphore . The key i s a s s o c i a t e d with a f i l e * /
34 s t a r t _ k e y = f t o k (" s t a r t . t x t " , ’E ’) ;
35 f in ished_key = f t o k (" f i n i s h e d . t x t " , ’E ’) ;
36
37 / * C r e a t i n g t h e semaphore s e t s * /
38 s tar t sem_id = semget (s tar t_key , 1 , 0666 | IPC_CREAT) ;
39 f inishedsem_id = semget (f inished_key , 1 , 0666 | IPC_CREAT) ;
40
41 / * I n i t i a t i n g t h e v a l u e s o f t h e s emaphore s e t s * /
42 s t a r t _ a r g . val = 0 ;
43 f i n i s h e d _ a r g . val = 0 ;
44
45 semctl (s tar tsem_id , 0 , SETVAL, s t a r t _ a r g) ;
46 semctl (f inishedsem_id , 0 , SETVAL, f i n i s h e d _ a r g) ;
47
48 }

Figure C.18: C code for door_init.c

C.2. BENCHMARK 2: MESSAGE PASSING USING SOLARIS DOORS 189

C.2.4 door_start.c

Figures C.19 presents the code for door_start.c.

door_start.c

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <errno . h>
4 # include <sys/types . h>
5 # include <sys/ipc . h>
6 # include <sys/sem . h>
7
8 i n t main (i n t argc , char * argv [])
9 {

10 key_t key ;
11 i n t semid ;
12
13 i f (argc != 2)
14 {
15 p r i n t f (" Usage : %s <nof_processes > \n" , argv [0]) ;
16 e x i t (1) ;
17 }
18
19 i n t nof_processes = a t o i (argv [1]) ;
20
21
22 / * Used t o i n c r e m e n t t h e semaphore b e f o r e a l l p r o c e s s e s may b e g i n * /
23 s t r u c t sembuf op = { 0 , nof_processes , 0 } ;
24
25 / * C r e a t i n g a key f o r t h e semaphore s e t * /
26 i f ((key = f t o k (" s t a r t . t x t " , ’E ’)) == −1) {
27 perror (" f t o k ") ;
28 e x i t (1) ;
29 }
30
31 / * Grabbing t h e semaphore s e t a l l r e a d y c r e a t e d f o r t h e s t a r t s emaphore * /
32 i f ((semid = semget (key , 1 , 0)) == −1) {
33 perror (" semget ") ;
34 e x i t (1) ;
35 }
36
37
38 / * Ready , s e t , GO! * /
39 i f (semop (semid , &op , 1) == −1)
40 {
41 perror (" semop") ;
42 e x i t (1) ;
43 }
44
45 }

Figure C.19: C code for door_start.c

190 APPENDIX C. CODE

C.2.5 door_finish.c

Figures C.20 and C.21 present the code for door_finish.c.

door_finish.c, (continues on page 191)

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <errno . h>
4 # include <sys/types . h>
5 # include <sys/ipc . h>
6 # include <sys/sem . h>
7
8 i n t main (i n t argc , char * argv [])
9 {

10 key_t s t a r t _ k e y ;
11 key_t f in ished_key ;
12
13 i n t s tar t sem_id ;
14 i n t f inishedsem_id ;
15
16 i f (argc != 2)
17 {
18 p r i n t f (" Usage : %s <nof_processes > \n" , argv [0]) ;
19 e x i t (1) ;
20 }
21
22 i n t nof_processes = a t o i (argv [1]) ;
23 i n t nof_grabs = nof_processes * −1;
24
25 s t r u c t sembuf f inished_op = { 0 , nof_grabs , 0 } ; / * S e t t o a l l o c a t e r e s o u r c e * /
26
27 / * C r e a t i n g a key t h a t i d e n t i f i e s t h e f i n i s h semaphore * /
28 i f ((f in ished_key = f t o k (" f i n i s h e d . t x t " , ’E ’)) == −1)
29 {
30 perror (" f t o k ") ;
31 e x i t (1) ;
32 }
33
34 / * Grabbing t h e f i n i s h semaphore s e t * /
35 i f ((f inishedsem_id = semget (f inished_key , 1 , 0)) == −1)
36 {
37 perror (" semget ") ;
38 e x i t (1) ;
39 }

Figure C.20: C code for door_finish.c part 1

C.2. BENCHMARK 2: MESSAGE PASSING USING SOLARIS DOORS 191

door_finish.c, (continued from page 190)

41 / * Wait ing u n t i l a l l p r o c e s s e s a r e done e x e c u t i n g * /
42 i f (semop (finishedsem_id , &finished_op , 1) == −1) {
43 perror (" semop") ;
44 e x i t (1) ;
45 }
46
47 p r i n t f (" Removing f i n i s h semaphore \n") ;
48
49 / * Removing t h e f i n i s h semaphore s e t * /
50 i f (semctl (f inishedsem_id , 0 , IPC_RMID , (0 , 0 , 0)) == −1)
51 {
52 perror (" semctl ") ;
53 e x i t (1) ;
54 }
55
56 / * C r e a t i n g a key t h a t i d e n t i f i e s t h e s t a r t s emaphore s e t * /
57 i f ((s t a r t _ k e y = f t o k (" s t a r t . t x t " , ’E ’)) == −1)
58 {
59 perror (" f t o k ") ;
60 e x i t (1) ;
61 }
62
63 / * Grabbing t h e s t a r t s emaphore s e t * /
64 i f ((s tar t sem_id = semget (s tar t_key , 1 , 0)) == −1)
65 {
66 perror (" semget ") ;
67 e x i t (1) ;
68 }
69
70 / * Removing t h e s t a r t s emaphore s e t * /
71 i f (semctl (s tar tsem_id , 0 , IPC_RMID , (0 , 0 , 0)) == −1)
72 {
73 perror (" semctl ") ;
74 e x i t (1) ;
75 }
76
77 return 0 ;
78 }

Figure C.21: C code for door_finish.cpart 2

192 APPENDIX C. CODE

C.3 BENCHMARK 3: BUILDING OR INTERPRETING MESSAGES AND

LOG POSTS

This section lists the source code for all programs used in benchmark 3.

C.3.1 build.c

Figures C.22 and C.23 present the code for build.c.

build.c, (continues on page 193)

1 # include < s t d i o . h>
2 # include <sys/time . h>
3 # include <malloc . h>
4 # include < s t d l i b . h>
5 # include < s t r i n g . h>
6 # include <pthread . h>
7
8 i n t main (i n t argc , char * argv [])
9 {

10 i n t p o s t s i z e ;
11 i n t nof_posts ;
12
13 / * Making s u r e a l l arguments a r e g i v e n * /
14 i f (argc != 3)
15 {
16 f p r i n t f (s tderr , " Usage : <posts ize > <nof_posts > \n") ;
17 e x i t (1) ;
18 }
19
20 p o s t s i z e = a t o i (argv [1]) ;
21 nof_posts = a t o i (argv [2]) ;
22
23
24 / * The b u f f e r used t o h o l d t h e p o s t / message * /
25 char b u f f e r [p o s t s i z e] ;
26
27 i n t i = 0 ;
28 i n t j ;
29
30 / * The t o t a l t ime s p e n t working * /
31 long long i n t t o t a l _ t i m e = 0 ;

Figure C.22: C code for build.c part 1

C.3. BENCHMARK 3: BUILDING OR INTERPRETING MESSAGES AND LOG POSTS 193

build.c, (continued from page 192)

33 / * S t r u c t u r e s used t o measure t ime d i f f e r e n c e s * /
34 hrt ime_t s t a r t , end ;
35
36 memset (buffer , 0 , p o s t s i z e) ;
37
38 / * S t a r t i n g t o b u i l d p o s t s / m e s s a g e s * /
39 s t a r t = gethrt ime () ;
40 char * ap ;
41 while (i <nof_posts)
42 {
43 j = 0 ;
44 ap = b u f f e r ;
45 while (j < p o s t s i z e)
46 {
47 * ap = ’L ’ ;
48 ap++;
49 j ++;
50 }
51
52 i ++;
53 }
54
55 * (b u f f e r +posts ize−1)= ’ \0 ’ ;
56 end = gethrt ime () ;
57
58 / * Adding t h e t ime used t o t h e t o t a l t ime * /
59 t o t a l _ t i m e = end − s t a r t ;
60
61 p r i n t f (" Average : \ t%l l d ns\n" , (t o t a l _ t i m e /nof_posts)) ;
62
63 return 0 ;
64 }

Figure C.23: C code for build.c part 2

194 APPENDIX C. CODE

C.4 BENCHMARK 4: WRITING TO LOG

This section lists the source code for all programs used in benchmark 4.

C.4.1 myLog.c

Figures C.24 and C.25 present the code for myLog.c.

myLog.c, (continues on page 195)

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <unistd . h>
4 # include <errno . h>
5 # include < s t r i n g . h>
6 # include <sys/types . h>
7 # include <sys/time . h>
8
9 char * b u f f e r ;

10
11 i n t main (i n t argc , char * argv [])
12 {
13 / * I n i t i a l i z i n g a l l v a r i a b l e s t o z e r o * /
14 unsigned i n t b u f f e r _ f i l l e d = 0 ,
15 b u f f e r s i z e = 0 ,
16 p o s t s i z e = 0 ,
17 nof_posts = 0 ;
18
19 / * Making s u r e a l l arguments a r e g i v e n * /
20 i f (argc != 4)
21 {
22 f p r i n t f (s tderr , " Usage : < b u f f e r s i z e > <posts ize > <nof_posts > \n") ;
23 e x i t (1) ;
24 }
25
26 / * Get t h e b u f f e r s i z e * /
27 b u f f e r s i z e = a t o i (argv [1]) ;
28 i f (b u f f e r s i z e == NULL)
29 {
30 perror (" b u f f e r _ s i z e ") ;
31 e x i t (1) ;
32 }
33
34 / * Get t h e p o s t s i z e * /
35 p o s t s i z e = a t o i (argv [2]) ;
36 i f (p o s t s i z e == NULL)
37 {
38 perror (" p o s t _ s i z e ") ;
39 e x i t (1) ;
40 }
41
42 / * Get number o f p o s t s * /
43 nof_posts = a t o i (argv [3]) ;
44 i f (nof_posts == NULL)
45 {
46 perror (" nof_posts ") ;
47 e x i t (1) ;
48 }
49
50 / * I n i t t h e b u f f e r * /
51 b u f f e r = (char *) malloc (b u f f e r s i z e) ;
52 char * ap = b u f f e r ;
53
54 / * Zero out t h e b u f f e r b e f o r e us ing i t * /
55 memset (buffer , 0 , b u f f e r s i z e) ;

Figure C.24: C code for myLog.c part 1

C.4. BENCHMARK 4: WRITING TO LOG 195

myLog.c, (continued from page 194)

56
57 hrt ime_t s t a r t , end ;
58
59 i n t i ;
60 i = nof_posts ;
61 i n t j ;
62
63 / * Get s t a r t t ime * /
64 s t a r t = gethrt ime () ;
65 while (i)
66 {
67 j = p o s t s i z e ;
68
69 / * I f t h e r e i s enough s t o r a g e f o r t h e p o s t a t t h e end o f t h e b u f f e r * /
70 i f ((b u f f e r + b u f f e r s i z e − ap) >= p o s t s i z e)
71 {
72 while (j)
73 {
74 * ap = ’L ’ ;
75 ap++;
76 j−−;
77 }
78 }
79 / * E l s e , t h e r e i s not enough s t o r a g e a t t h e end o f t h e b u f f e r , s t a r t i n g a t t h e

b e g i n n i n g * /
80 e lse
81 {
82 b u f f e r _ f i l l e d ++;
83 ap = b u f f e r ;
84 i ++;
85 }
86 i−−;
87 i f ((ap + (2 5 6 * 1 0 2 4)) < (b u f f e r + b u f f e r s i z e))
88 {
89 ap += (2 5 6 * 1 0 2 4) ;
90 }
91
92 }
93
94 / * F i n i s h e d , g e t end t ime * /
95 end = gethrt ime () ;
96
97 long long i n t average_time = (end − s t a r t) / nof_posts ;
98 p r i n t f (" Average : \ t%l l d ns \n" , average_time) ;
99

100 f r e e (b u f f e r) ;
101 }

Figure C.25: C code for myLog.c part 2

196 APPENDIX C. CODE

C.5 BENCHMARK 5: SYNCHRONIZING USING POSIX MUTEXES

This section lists the source code for all programs used in benchmark 5.

C.5.1 sr_mutex.c

Figures C.26 and C.27 present the code for sr_mutex.c.

sr_mutex.c, (continues on page 197)

1 # include < s t d l i b . h>
2 # include <unistd . h>
3 # include < s t d i o . h>
4 # include <pthread . h>
5 # include <sys/time . h>
6
7 i n t main (i n t argc , char * argv [])
8 {
9 / * Making s u r e a l l arguments a r e g i v e n * /

10 i f (argc != 3)
11 {
12 f p r i n t f (s tderr , " usage : sr_mutex <nof_mutexes > < n o f _ s e t _ r e l > \n") ;
13 e x i t (1) ;
14 }
15
16 / * The number o f mutexes * /
17 i n t nof_mutexes = a t o i (argv [1]) ;
18 i f (nof_mutexes == NULL)
19 {
20 perror (" nof_mutexes ") ;
21 e x i t (1) ;
22 }
23
24 / * The number o f t i m e s e a c h mutex i s s e t * /
25 i n t n o f _ s e t _ r e l = a t o i (argv [2]) ;
26 i f (n o f _ s e t _ r e l == NULL)
27 {
28 perror (" n o f _ s e t _ r e l ") ;
29 e x i t (1) ;
30 }
31
32
33 / * C r e a t i n g an a r r a y o f mutexes * /
34 pthread_mutex_t mutexes [nof_mutexes] ;
35
36 / * V a r i a b l e s used t o h o l d t h e t o t a l t ime used t o l o c k and u n l o c k * /
37 long long i n t locking , unlocking ;
38 locking = unlocking = 0 ;
39 i n t i , j ;
40
41 / * I n i t i a l i z i n g t h e mutexes * /
42 for (i = 0 ; i < nof_mutexes ; i ++)
43 {
44 pthread_mutex_t mut ;
45 mutexes [i] = mut ;
46 }
47
48 / * S t r u c t u r e s used t o measure t ime d i f f e r e n c e s * /
49 hrt ime_t b e f o r e _ s e t t i n g ,
50 a f t e r _ s e t t i n g ,

Figure C.26: C code for sr_mutex.c part 1

C.5. BENCHMARK 5: SYNCHRONIZING USING POSIX MUTEXES 197

sr_mutex.c, (continued from page 196)

51 b e f o r e _ r e l e a s i n g ,
52 a f t e r _ r e l e a s i n g ;
53
54 / * Loop ing through t h e a r r a y o f mutexes j t imes , s e t t i n g and r e l e a s i n g e v e r y mutex e a c h

i t e r a t i o n * /
55 for (j = 0 ; j < n o f _ s e t _ r e l ; j ++)
56 {
57 b e f o r e _ s e t t i n g = gethrt ime () ;
58 for (i = 0 ; i < nof_mutexes ; i ++)
59 {
60 / * S e t t i n g t h e mutexes * /
61 pthread_mutex_lock(&mutexes [i]) ;
62 }
63
64 a f t e r _ s e t t i n g = gethrt ime () ;
65
66 / * Adding t h e t ime used t o t h e t o t a l t ime s p e n t l o c k i n g * /
67 locking += a f t e r _ s e t t i n g − b e f o r e _ s e t t i n g ;
68
69
70 b e f o r e _ r e l e a s i n g = gethrt ime () ;
71 for (i = 0 ; i < nof_mutexes ; i ++)
72 {
73 / * R e l e a s i n g t h e mutexes * /
74 pthread_mutex_unlock(&mutexes [i]) ;
75 }
76
77 a f t e r _ r e l e a s i n g = gethrt ime () ;
78
79 / * Adding t h e t ime used t o t h e t o t a l t ime s p e n t u n l o c k i n g * /
80 unlocking += a f t e r _ r e l e a s i n g − b e f o r e _ r e l e a s i n g ;
81 }
82
83 p r i n t f (" S e t t i n g average : \ t%l l d ns\n" , locking /(n o f _ s e t _ r e l * nof_mutexes)) ;
84 p r i n t f (" Releas ing average : \ t%l l d ns\n" , unlocking /(n o f _ s e t _ r e l * nof_mutexes)) ;
85 }

Figure C.27: C code for sr_mutex.c part 2

198 APPENDIX C. CODE

C.6 BENCHMARK 6: SYNCHRONIZING USING SYSTEM V SEMAPHORES

This section lists the source code for all programs used in benchmark 6.

C.6.1 lsemset.c

Figures C.28 and C.29 present the code for lsemset.c.

lsemset.c, (continues on page 199)

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <errno . h>
4 # include <sys/types . h>
5 # include <sys/ipc . h>
6 # include <sys/sem . h>
7
8 i n t main (i n t argc , char * argv [])
9 {

10 key_t s t a r t _ k e y ;
11 key_t main_key ;
12 key_t f in ished_key ;
13 i n t s tar t sem_id ;
14 i n t mainsem_id ;
15 i n t f inishedsem_id ;
16 long long i n t t o t a l _ t i m e ;
17 hrt ime_t s t a r t , end ;
18 s t r u c t sembuf s t a r t _ o p = { 0 , −1, 0 } ;
19 s t r u c t sembuf main_op = { 0 , −1, 0 } ; / * S e t t o a l l o c a t e r e s o u r c e * /
20 s t r u c t sembuf f inished_op = { 0 , 1 , 0 } ; / * S e t t o a l l o c a t e r e s o u r c e * /
21 long long i n t se t_ t ime = 0 ;
22 long long i n t r e l e a s e _ t i m e = 0 ;
23
24 i f (argc != 2)
25 {
26 p r i n t f (" Usage : %s <nof_se ts > \n" , argv [0]) ;
27 e x i t (1) ;
28 }
29
30 i n t n o f _ s e t s = a t o i (argv [1]) ;
31 i n t loop = n o f _ s e t s ;
32
33 / * C r e a t i n g a key f o r t h e s t a r t s emaphore s e t * /
34 i f ((s t a r t _ k e y = f t o k (" s t a r t . t x t " , ’E ’)) == −1) {
35 perror (" f t o k ") ;
36 e x i t (1) ;
37 }
38
39
40 / * C r e a t i n g a key f o r t h e main semaphore s e t * /
41 i f ((main_key = f t o k (" grabme . t x t " , ’E ’)) == −1) {
42 perror (" f t o k ") ;
43 e x i t (1) ;
44 }
45
46 / * C r e a t i n g a key f o r t h e f i n i s h semaphore s e t * /
47 i f ((f in ished_key = f t o k (" f i n i s h e d . t x t " , ’E ’)) == −1) {
48 perror (" f t o k ") ;
49 e x i t (1) ;
50 }
51
52
53 / * g r a b b i n g t h e semaphore s e t a l l r e a d y c r e a t e d f o r t h e s t a r t s emaphore * /
54 i f ((s tar t sem_id = semget (s tar t_key , 1 , 0)) == −1) {
55 perror (" semget ") ;

Figure C.28: C code for lsemset.c part 1

C.6. BENCHMARK 6: SYNCHRONIZING USING SYSTEM V SEMAPHORES 199

lsemset.c, (continued from page 198)

56 e x i t (1) ;
57 }
58
59
60 / * g r a b b i n g t h e semaphore s e t a l l r e a d y c r e a t e d f o r t h e main semaphore * /
61 i f ((mainsem_id = semget (main_key , 1 , 0)) == −1) {
62 perror (" semget ") ;
63 e x i t (1) ;
64 }
65
66 / * g r a b b i n g t h e semaphore s e t a l l r e a d y c r e a t e d f o r t h e f i n i s h e d semaphore * /
67 i f ((f inishedsem_id = semget (f inished_key , 1 , 0)) == −1) {
68 perror (" semget ") ;
69 e x i t (1) ;
70 }
71
72
73 / * In o r d e r f o r a l l p r o c e s s e s t o b e g i n a t t h e same t ime , e x e c u t i o n i s h a l t i n g u n t i l t h e

s t a r t s emaphore i s a v a i l a b l e * /
74 i f (semop (startsem_id , &star t_op , 1) == −1) {
75 perror (" semop") ;
76 e x i t (1) ;
77 }
78
79 / * Ready , s e t , GO! * /
80 while (loop)
81 {
82
83
84 / * Grab semaphore * /
85 s t a r t = gethrt ime () ;
86 main_op . sem_op = −1;
87 i f (semop (mainsem_id , &main_op , 1) == −1)
88 {
89 perror (" semop") ;
90 e x i t (1) ;
91 }
92 end = gethrt ime () ;
93 se t_ t ime += (end − s t a r t) ;
94
95 / * R e l e a s e s emaphore * /
96 s t a r t = gethrt ime () ;
97 main_op . sem_op = 1 ;
98 i f (semop (mainsem_id , &main_op , 1) == −1)
99 {

100 perror (" semop") ;
101 e x i t (1) ;
102 }
103
104 end = gethrt ime () ;
105 r e l e a s e _ t i m e += end − s t a r t ;
106 loop−−;
107 }
108
109 / * Adds 1 t o t h e f i n i s h e d semaphore t o i n d i c a t e t h a t t h e p r o c e s s i s f i n i s h e d * /
110 i f (semop (finishedsem_id , &finished_op , 1) == −1)
111 {
112 perror (" semop") ;
113 e x i t (1) ;
114 }
115
116 p r i n t f (" [SEM] Average s e t time : %l l d \n" , (se t_ t ime / n o f _ s e t s)) ;
117 p r i n t f (" [SEM] Average r e l e a s e time : %l l d \n" , (r e l e a s e _ t i m e / n o f _ s e t s)) ;
118 return 0 ;
119 }

Figure C.29: C code for lsemset.c part 2

200 APPENDIX C. CODE

C.6.2 lseminit.c

Figures C.30 and C.31 present the code for lseminit.c.

lseminit.c, (continues on page 201)

1 # include <sys/ipc . h>
2 # include <sys/sem . h>
3 # include <sys/types . h>
4 # include < s t d i o . h>
5 # include < s t d l i b . h>
6 # include <errno . h>
7
8
9 / * Th i s f i l e c r e a t e s t h r e e semaphore s e t s : s t a r t , main and f i n i s h e d .

10 S t a r t i s used t o s y n c h r o n i z e t h e s t a r t o f a l l p r o c e s s e s . Main i s t h e semaphore
11 used t o measure t h e t ime used t o grab and r e l e a s e a semaphore . F i n i s h i s used
12 t o s y n c h r o n i z e t h e r emova l o f t h e s emaphore s e t s . * /
13 i n t main (i n t argc , char * argv [])
14 {
15 key_t s t a r t _ k e y ;
16 key_t main_key ;
17 key_t f in ished_key ;
18 i n t s tar t sem_id ;
19 i n t mainsem_id ;
20 i n t f inishedsem_id ;
21
22 i f (argc != 2)
23 {
24 p r i n t f (" Usage : %s <nof_processes > \n" , argv [0]) ;
25 e x i t (1) ;
26 }
27
28 i n t nof_processes = a t o i (argv [1]) ;
29
30 union semun
31 {
32 i n t val ;

Figure C.30: C code for lseminit.c part 1

C.6. BENCHMARK 6: SYNCHRONIZING USING SYSTEM V SEMAPHORES 201

lseminit.c, (continued from page 200)

33 s t r u c t semid_ds * buf ;
34 unsigned short i n t * array ;
35 } ;
36
37 / * Arguments f o r t h e semaphore s e t s * /
38 union semun s t a r t _ a r g ;
39 union semun main_arg ;
40 union semun f i n i s h e d _ a r g ;
41
42 / * C r e a t i n g a key f o r e a c h semaphore . The key i s a s s o c i a t e d with a f i l e * /
43 s t a r t _ k e y = f t o k (" s t a r t . t x t " , ’E ’) ;
44 main_key = f t o k (" grabme . t x t " , ’E ’) ;
45 f in ished_key = f t o k (" f i n i s h e d . t x t " , ’E ’) ;
46
47 / * C r e a t i n g t h e semaphore s e t s * /
48 s tar t sem_id = semget (s tar t_key , 1 , 0666 | IPC_CREAT) ;
49 mainsem_id = semget (main_key , 1 , 0666 | IPC_CREAT) ;
50 f inishedsem_id = semget (f inished_key , 1 , 0666 | IPC_CREAT) ;
51
52 / * I n i t i a t i n g t h e v a l u e s o f t h e s emaphore s e t s * /
53 s t a r t _ a r g . val = 0 ;
54 main_arg . val = nof_processes ;
55 f i n i s h e d _ a r g . val = 0 ;
56
57 semctl (s tar tsem_id , 0 , SETVAL, s t a r t _ a r g) ;
58 semctl (mainsem_id , 0 , SETVAL, main_arg) ;
59 semctl (f inishedsem_id , 0 , SETVAL, f i n i s h e d _ a r g) ;
60
61 }

Figure C.31: C code for lseminit.c part 2

202 APPENDIX C. CODE

C.6.3 lsemstart.c

Figure C.32 presents the code for lsemstart.c.

lsemstart.c

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <errno . h>
4 # include <sys/types . h>
5 # include <sys/ipc . h>
6 # include <sys/sem . h>
7
8 i n t main (i n t argc , char * argv [])
9 {

10 key_t key ;
11 i n t semid ;
12
13 i f (argc != 2)
14 {
15 p r i n t f (" Usage : %s <nof_processes > \n" , argv [0]) ;
16 e x i t (1) ;
17 }
18
19 i n t nof_processes = a t o i (argv [1]) ;
20
21
22 / * Used t o i n c r e m e n t t h e semaphore b e f o r e a l l p r o c e s s e s may b e g i n * /
23 s t r u c t sembuf op = { 0 , nof_processes , 0 } ;
24
25 / * C r e a t i n g a key f o r t h e semaphore s e t * /
26 i f ((key = f t o k (" s t a r t . t x t " , ’E ’)) == −1) {
27 perror (" f t o k ") ;
28 e x i t (1) ;
29 }
30
31 / * Grabbing t h e semaphore s e t a l l r e a d y c r e a t e d f o r t h e s t a r t s emaphore * /
32 i f ((semid = semget (key , 1 , 0)) == −1) {
33 perror (" semget ") ;
34 e x i t (1) ;
35 }
36
37 / * Ready , s e t , GO! * /
38 i f (semop (semid , &op , 1) == −1)
39 {
40 perror (" semop") ;
41 e x i t (1) ;
42 }
43
44 }

Figure C.32: C code for lsemstart.c

C.6. BENCHMARK 6: SYNCHRONIZING USING SYSTEM V SEMAPHORES 203

C.6.4 lsemrm.c

Figures C.33 and C.34 present the code for lsemrm.c.

lsemrm.c, (continues on page 198)

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <errno . h>
4 # include <sys/types . h>
5 # include <sys/ipc . h>
6 # include <sys/sem . h>
7
8 i n t main (i n t argc , char * argv [])
9 {

10 key_t s t a r t _ k e y ;
11 key_t main_key ;
12 key_t f in ished_key ;
13
14 i n t s tar t sem_id ;
15 i n t mainsem_id ;
16 i n t f inishedsem_id ;
17
18 i f (argc != 2)
19 {
20 p r i n t f (" Usage : %s <nof_processes > \n" , argv [0]) ;
21 e x i t (1) ;
22 }
23
24 i n t nof_processes = a t o i (argv [1]) ;
25 i n t nof_grabs = nof_processes * −1;
26
27 s t r u c t sembuf f inished_op = { 0 , nof_grabs , 0 } ; / * S e t t o a l l o c a t e r e s o u r c e * /
28
29 / * C r e a t i n g a key t h a t i d e n t i f i e s t h e f i n i s h semaphore * /
30 i f ((f in ished_key = f t o k (" f i n i s h e d . t x t " , ’E ’)) == −1)
31 {
32 perror (" f t o k ") ;
33 e x i t (1) ;
34 }
35
36 / * Grabbing t h e f i n i s h semaphore s e t * /
37 i f ((f inishedsem_id = semget (f inished_key , 1 , 0)) == −1)
38 {
39 perror (" semget ") ;
40 e x i t (1) ;
41 }
42
43 / * Wait ing u n t i l a l l p r o c e s s e s a r e done e x e c u t i n g * /
44 i f (semop (finishedsem_id , &finished_op , 1) == −1) {
45 perror (" semop") ;
46 e x i t (1) ;
47 }
48
49 / * Removing t h e f i n i s h semaphore s e t * /
50 i f (semctl (f inishedsem_id , 0 , IPC_RMID , (0 , 0 , 0)) == −1)
51 {
52 perror (" semctl ") ;
53 e x i t (1) ;
54 }

Figure C.33: C code for lsemrm.c part 1

204 APPENDIX C. CODE

lsemrm.c, (continued from page 198)

56 / * C r e a t i n g a key t h a t i d e n t i f i e s t h e s t a r t s emaphore s e t * /
57 i f ((s t a r t _ k e y = f t o k (" s t a r t . t x t " , ’E ’)) == −1)
58 {
59 perror (" f t o k ") ;
60 e x i t (1) ;
61 }
62
63 / * Grabbing t h e s t a r t s emaphore s e t * /
64 i f ((s tar t sem_id = semget (s tar t_key , 1 , 0)) == −1)
65 {
66 perror (" semget ") ;
67 e x i t (1) ;
68 }
69
70 / * Removing t h e s t a r t s emaphore s e t * /
71 i f (semctl (s tar tsem_id , 0 , IPC_RMID , (0 , 0 , 0)) == −1)
72 {
73 perror (" semctl ") ;
74 e x i t (1) ;
75 }
76
77 / * C r e a t i n g a key t h a t i d e n t i f i e s t h e main semaphore s e t * /
78 i f ((main_key = f t o k (" grabme . t x t " , ’E ’)) == −1)
79 {
80 perror (" f t o k ") ;
81 e x i t (1) ;
82 }
83
84 / * Grabbing t h e main semaphore s e t * /
85 i f ((mainsem_id = semget (main_key , 1 , 0)) == −1)
86 {
87 perror (" semget ") ;
88 e x i t (1) ;
89 }
90
91 / * Removing t h e main semaphore s e t * /
92 i f (semctl (mainsem_id , 0 , IPC_RMID , (0 , 0 , 0)) == −1)
93 {
94 perror (" semctl ") ;
95 e x i t (1) ;
96 }
97
98 return 0 ;
99 }

Figure C.34: C code for lsemrm.c part 2

APPENDIX D
RESULT DATA

This appendix lists all results data from the benchmarks. The following sections list all results
returned from each benchmark in turn.

D.1 BENCHMARK 1: MESSAGE PASSING USING TCP/IP SOCKETS

Table D.1 lists the results obatined from running bencmark 1, sorted by number of process
pairs. All numbers are in ns. Numbers in columms Ping and Pong are averaged over 1 000 000
runs.

Nof_proc Msg_size Ping (ns) Pong (ns) (PI-PO)/4 (ns)
1p 32B 81941 675 20317
1p 64B 81879 1221 20165
1p 128B 84787 2314 20618
1p 256B 89521 4499 21256
1p 512B 96604 8875 21932
1p 1024B 112358 17628 23683
1p 2048B 138592 35125 25867
1p 4096B 192967 70112 30714
1p 8192B 302850 140117 40683
1p 16384B 524488 280071 61104
2p 32B 115407 686 28680
2p 64B 103334 1238 25524
2p 128B 104059 2373 25421
2p 256B 106744 4576 25542
2p 512B 109054 9326 24932
2p 1024B 123282 19210 26018
2p 2048B 170825 61690 27284
2p 4096B 253393 94030 39841
2p 8192B 352241 181065 42794
2p 16384B 590777 334594 64046
4p 32B 116886 760 29031
4p 64B 117195 1370 28956
4p 128B 119266 2675 29148
4p 256B 118460 4970 28372
4p 512B 125588 9720 28967
4p 1024B 140975 19070 30476
4p 2048B 171462 40374 32772

205

206 APPENDIX D. RESULT DATA

Nof_proc Msg_size Ping (ns) Pong (ns) (PI-PO)/4 (ns)
4p 4096B 235703 84216 37872
4p 8192B 349273 153426 48962
4p 16384B 594511 307379 71783
8p 32B 116319 768 28888
8p 64B 126364 1465 31225
8p 128B 115900 2909 28248
8p 256B 117643 5601 28011
8p 512B 126957 10557 29100
8p 1024B 142380 20533 30462
8p 2048B 176714 45202 32878
8p 4096B 245238 90388 38713
8p 8192B 384642 184684 49990
8p 16384B 602490 301159 75333

16p 32B 122020 772 30312
16p 64B 117773 1459 29079
16p 128B 118825 3079 28937
16p 256B 119617 5920 28424
16p 512B 131909 11417 30123
16p 1024B 151315 21935 32345
16p 2048B 181256 46166 33773
16p 4096B 248598 85264 40834
16p 8192B 375989 168681 51827
16p 16384B 659970 340236 79933
32p 32B 129196 902 32073
32p 64B 131626 1796 32457
32p 128B 311553 2637 77229
32p 256B 139149 7987 32791
32p 512B 151714 14948 34192
32p 1024B 174606 28840 36442
32p 2048B 241073 57880 45798
32p 4096B 329535 140113 47355
32p 8192B 550760 286798 65990
32p 16384B 1000219 555336 111221
64p 32B 851671 732 212735
64p 64B 1020099 1430 254667
64p 128B 271153 8748 65601
64p 256B 1040162 5294 258717
64p 512B 301468 33565 66976
64p 1024B 1021690 19665 250506
64p 2048B 457504 156787 75179
64p 4096B 678148 289596 97138
64p 8192B 1087808 554627 133295
64p 16384B 1934448 1103270 207795
Table D.1: Ping-pong data. Data from the TCP/IP benchmark.

D.2. BENCHMARK 2: MESSAGE PASSING USING SOLARIS DOORS 207

D.2 BENCHMARK 2: MESSAGE PASSING USING SOLARIS DOORS

Table D.2 lists the results obatined from running benchmark 2, sorted by number of process
pairs. All numbers are in ns. Numbers in columms Client and Server are averaged over
1 000 000 runs.

Nof_proc Msg_size Client Server C-S/4
1p 32B 34391 1900 8122
1p 64B 35305 2450 8214
1p 128B 37065 3531 8384
1p 256B 40636 5760 8719
1p 512B 47529 10156 9343
1p 1024B 61200 18962 10560
1p 2048B 88926 36409 13129
1p 4096B 143718 71625 18023
1p 8192B 252213 141747 27617
1p 16384B 469596 282370 46807
2p 32B 46889 2893 10999
2p 64B 46890 3418 10868
2p 128B 47018 4230 10697
2p 256B 50388 6556 10958
2p 512B 56929 10860 11517
2p 1024B 71131 19626 12876
2p 2048B 96512 37050 14866
2p 4096B 150948 72201 19687
2p 8192B 259277 142148 29282
2p 16384B 477477 282722 48689
4p 32B 82243 3712 19633
4p 64B 80382 4269 19028
4p 128B 80958 5354 18901
4p 256B 83576 7567 19002
4p 512B 85571 12032 18385
4p 1024B 92621 20983 17910
4p 2048B 112890 38862 18507
4p 4096B 168880 74828 23513
4p 8192B 283638 147264 34094
4p 16384B 511414 291761 54913
8p 32B 137858 4013 33461
8p 64B 135812 4558 32813
8p 128B 134668 5655 32253
8p 256B 135193 7862 31833
8p 512B 132138 12270 29967
8p 1024B 132167 21230 27734
8p 2048B 133912 39398 23629
8p 4096B 178921 76174 25687
8p 8192B 288258 150329 34482
8p 16384B 518820 298989 54958

208 APPENDIX D. RESULT DATA

Nof_proc Msg_size Client Server C-S/4
16p 32B 250016 4198 61454
16p 64B 249104 4747 61089
16p 128B 249326 5847 60870
16p 256B 248193 8061 60033
16p 512B 244848 12490 58090
16p 1024B 239211 21464 54437
16p 2048B 219213 39975 44810
16p 4096B 218098 79149 34737
16p 8192B 310043 157947 38024
16p 16384B 542695 314020 57169
32p 32B 470534 4311 116556
32p 64B 470567 4878 116422
32p 128B 472149 5981 116542
32p 256B 473204 8202 116250
32p 512B 469000 12644 114089
32p 1024B 463705 21667 110509
32p 2048B 430973 40488 97621
32p 4096B 396755 83279 78369
32p 8192B 416749 216515 50059
32p 16384B 760958 485625 68833
64p 32B 947301 9742 234390
64p 64B 946247 10867 233845
64p 128B 949495 13725 233942
64p 256B 949489 19009 232620
64p 512B 946572 29588 229246
64p 1024B 941146 51895 222313
64p 2048B 893211 95735 199369
64p 4096B 828116 187869 160062
64p 8192B 863334 436361 106743
64p 16384B 1557602 980597 144251

Table D.2: Doors data. Data from the Doors benchmark.

D.4. BENCHMARK 4: WRITING TO LOG 209

D.3 BENCHMARK 3: BUILDING OR INTERPRETING MESSAGES AND

LOG POSTS

Table D.3 lists the results obatined from running bencmark 3, sorted by number of process
pairs. All numbers are in ns and averaged over 1 000 000 runs.

Msg size (B) Time (ns)
32 546
64 1092

128 2185
256 4381
512 8742

1024 17483
2048 34967
4096 69654
8192 139283

16384 278552
Table D.3: Build data. Data from the Build benchmark.

D.4 BENCHMARK 4: WRITING TO LOG

Table D.4 lists the results obatined from running bencmark 4. Log size is in MB, message size
is in B. All numbers are in ns, and are averaged over 1 000 000 runs.

Msg size Log size (MB)
(B) 10 20 40 80 160 320 640 1280
32 544 544 544 544 553 559 560 560
64 1088 1088 1089 1088 1105 1118 1120 1108

128 2176 2176 2179 2177 2211 2237 2210 2224
256 4352 4352 4352 4354 4423 4417 4398 4464
512 8747 8711 8706 8707 8801 8797 8780 9141

1024 17410 17410 17410 17414 17565 17539 17871 17882
2048 34819 34820 34823 34828 35088 35357 35366 35300
4096 69639 70025 69646 69668 70466 70803 70240 70157
8192 139995 139284 139298 139744 140532 140341 140022 139863

16384 278565 278579 278975 279169 280574 280051 279532 279267
Table D.4: Log data. Data from the log benchmark.

210 APPENDIX D. RESULT DATA

D.5 BENCHMARK 5: SYNCHRONIZING USING POSIX MUTEXES

Table D.5 lists the results obatined from running bencmark 5, sorted by number of mutexes.
All numbers are in ns. Numbers in columms Set and Release are averaged over the corre-
sponding times the mutex(es) is set and released in columm Set/Relase.

Mutex Set/Release Set Release
1 100000000 182 170

10 10000000 83 71
100 1000000 73 61

1000 100000 98 77
Table D.5: Mutex data. Data from the mutex benchmark.

D.6 BENCHMARK 6: SYNCHRONIZING USING SYSTEM V SEMAPHORES

Table D.6 lists the results obatined from running bencmark 6, sorted by number of process
pairs. All numbers are in ns. Numbers in columms Set and Release are averaged over 1 000 000
runs.

Process pairs Set Release
1PP 2269 2275
2PP 2445 2453
4PP 5676 5713
8PP 11295 11323

16PP 21854 21738
32PP 42739 42100
64PP 84917 84255

Table D.6: Semaphores data. Data from the semaphore benchmark.

