HPC File Server Monitoring and Tuning

Rune Johan Andresen

6th August 2005

Abstract

As HPC systems grow, the distributed file systems servinggtlsgstems need to han-
dle an increased load of data. In order to maintain perfommathese underlying
file servers need to distributethe load of data volumes effitf over available disks.
This is particularly true at CERN, the European Europeana@mationfor Nuclear
Research, which expects to behandling Pentabytes of dtta mear future.

In this thesis, new utilities that analyze file serverdatacihs then used to semi-
automatically tune thefiles system, are developed. Thishgaed using a commercial
database to store the dataand then integrating it with theséifver. This requires a
database and a system design that can handle a large amaiatd of

File server data collections associated with aprocess krasv'volumes", can vary in
size, and be accessed at any time. To increase the ovetairsperformance, volume
history data is analyzed to locate volumes that may be gadhfer increased system
performance throuhgh load balancing. For instance, usiaggdlume history data, it
is possible to detect and gather volumes that are most actessing the day with

volumes that are most accessed during the night on one fierseThe file server

capacity is hence optimized.

As part of this work, a user interface which can visualizehtstory data for volumes
and patrtitions, is designed and implemented on top of the #{€System at CERN.
Our initial results presented in this thesisreveal thas ip@ssible to locate volumes
that have a repeating access period, and thus, gather thém eame partition. Other
analyses and suggestions for future work will also be dsedis

Acknowledgments

This thesis was written at European Organization for NudResearch (CERN), while
working for the CERN IT Department, Architecture and Data{lnges (ADC) group.
The work is based upon requests from the CERN and Deutscikgdien-Synchrotron
(DESY) AFS administrators. | would like to thank my supeorsat CERN, Rainer
Toebbicke and Bernard Antoine, for excellent feedback amgbsrt during my work;
and Nilo Segura Chinchilla for helping me with performanssuies related to the
Oralce database.

I am most also most grateful to my supervisor at NTNU, Anneh@aé Elster, for
helping realize this thesis and the NOTUR poster relatetdisovtork.

CONTENTS

CONTENTS

Contents
1 Introduction

2 Background

2.1 AFS-Basicconcepts
22 LoadBalancing
2.3 OracleDatabase
24 Perl ...

25 PerlandOracle

3 State Of The Art

3.1 TheCERNAFSCell

311 Basics.
3.2 AFSAdmin oL
3.3 Loadbalancing

4 SW Design

4.1 DatabaseDesign
4.1.1 DatadistributoninDB
4.2 Updatingthe Database
421 afs_monitoring
422 Daily updates
4.3 Interfacing with the Database
4.4 Presenting statistics
4.5 Interfacing with AFS Admin

4.6 Discussion

5 Methodology

5.1 Metric for volume availability

5.2 Methodology of Load balancing

521 Methodl
522 Method2
5.2.3 Discussion

CONTENTS CONTENTS

6 Analysis 38
6.1 Analysisonserverlevel 38
6.1.1 AnalyzingAFS45 38
6.1.2 Analyzing AFS91 39
6.1.3 Comparing AFS45t0 AFS91 40
6.2 Analysis on partitionlevel 0L 04
6.2.1 AFS45Partitions o 41
6.2.2 AFS91 Partitions 41
6.3 Volumemoves 42
6.4 DISCUSSION e 43
7 Trouble shooting 45
8 Conclusion 46
Appendix a7
A Database i
A.1 Sqlplus Script for Database Tables and Indexing i
A.2 Oracleindexesandfunctions i
B Volume Moves Timing Tables iv
B.1 IBM/Linuxto IBM/Linux iv
B.2 Sun/Solaristo Sun/Solaris: Y,
References Vi

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Ideal volume distribution for the file serversystem 9
2 Realistic volume distribution. L. 10
3 The Perl/Oracle architecture. 12
4 Loadbalancing. 16
5 Load balancing and tuningusingaDB. 17
6 DBER-diagram. 19
7 TableFileserver. 20
8 Tableid volumes. 20
9 Tablevolumespartl. 21
10 Tablevolumespart2. 22
11 Tablevolume datapartl. 22
12 Tablevolume_datapart2., 23
13 Tabledaily updates 23
14 Perl SGI graphical presentaion 0
15 Access history presentedinPerlCGI 30
16 Used blocks history presentedin Perl CGI. 31
17 Serverdiskavailability 33
18 Fourdays history forvolume p.cvs.cesar 34
19 Diskavailability Volume 1 oL 36
20 Diskavailability Volume2 oo 36
21 Diskavailabily historyforafs4d5 39
22 Diskavailabily historyforafs91 40
23 Accesses, used blocks and quota history for file server AFS45. . 41
24 Accesses, used blocks and quota history for file server AFS91. . 42
25 IBM/Linux volume moves vs Sun/Solarismoves 43

1 INTRODUCTION

1 Introduction

As HPC systems grow, the underlying file servers need to lkandfe and more data
efficiently in order to maintain performance. This is partagly true for CERN's dis-
tributed file system, which will have to handle Terabytes afad The goal of this
project is to efficiently monitor and automate the CERN AF3idfew File System)
file server information by storing the related informatiarcls as volume access, vol-
ume moves, used space, etc. in a database (DB). With the A#& $éstory provided
by the DB, applications can then be used to automate desiségarding how to move
data volumes for load balancing the system. Thus, this camrerthat no file server is
overloaded and hence unable to serve the AFS users.

A distributed file systems unites the file systems of indiaidile servers into a sin-
gle name space. The underlying distributed nature is hidB@es stored on each file
server are as accessible to users as the files stored on tiselosal disk. For in-
stance, a group can share disks pace for their project, glesirsers can have their
private accounts. Usually data is backed up on disk and tapking the file system
more reliable than the local disk. Universities and larggaoizations among others
use distributed file systems for sharing common data andalee data management,
increasing system availability and system efficiency. Besdly used software can be
distributed over several file servers in order to avoid trssraer crash result in unavail-
able programs. A distributed file system also distributesabrkload over several file
server machines, which tends to be more utilized than ldilgestorage machines of a
centralized file system. For instance, if a file server is lmagted, some volumémay
be moved to other servers that have less work load.

The CERN AFS file system houses a large amount of clients apdriant projects,
among the ATLAS and CMS projects. The data management at present time is com-
plex and is a mix of human and computer processes. Datatistfisr monitoring the

file system are located in files and not centralized, whicheribk system administra-
tion hard to comprehend. A challenge is to distribute volsmeer the file servers in
order to improve system performance, which is the main foftisis thesis. At present
time volumes are only moved when a patrtition or a file servaproaching overload.
With a volume history it would be possible to create a moreliigient system for load
balancing the volumes before a server or a partition reacitieat level and even make
the system more efficient.

In agreement with DESY (Deutche Elektronen-Synchrott@BRN decided to go for
a database approach for storing volume history. This wéingwally not only result in

more intelligent volume moves, but make AFS administratimre effective. For AFS

administration, volume information data is more availalled less costly to retrieve,
from a DB than from the file servers.

1A “container” of related files and directories, usually beje to a project or a single user.

2A particle physics experiment for the large hadron collidedC, which will explore the fundamental
nature of matter and the basic forces that shape the univarse ATLAS detector will search for new
discoveries in the head-on collisions of protons of exdamrily high-energy.

3The compact Muon Solenoid - A detector that validates ATLsA®5ults and vice versa

4CERN and DESY have a similar structure and share the samlenpes in AFS management

1 INTRODUCTION

The work approach is to design and implement the applicataord DB for storing
and analyzing volume history, in addition to an interfacetfming automation of load
balancing. The history for existing volume distributiordamoves has to be analyzed
in order to locate which variables and history that are momeadrtant for optimizing
the system. To relocate all volumes for optimizing is not ptiam due to the size of the
distributed file system at CERN, which means that automatimolume moves has to
be tuned and optimized over time. Another issue is the udeerpaor each volume.
At recent time CERN is in a install period of the LA@roject. In year 2007 the LHC
project will go into a experiment period, which could radigahange the usage of the
AFS file system. In fact, the CERN AFS cell is expected to inseewith a factor of 10
during a three years period. This work will eventually bersitted to the AFS open
source project[3].

5Large Hadron Collider - An accelerator which brings protans ions into head-on collisions for recre-
ating the conditions after the Big Bang in order to find (yet)letected particles

2 BACKGROUND

2 Background

As far as management is concerned the AFS is a cluster. Filersmachines are up-
dated and managed with scripts. Technically they are nditarsame physical location
nor do they communicate directly with each other. They arg aware of the DB
servers that know where the files are located and are not bfaher. Cluster file sys-
tems (e.g. IBM Storage Tank) and cluster are more static idéhtical nodes. If one
node is unplugged the systems fails. AFS is more dynamiaéfriode is going down
the system still runs. The nature of physical science reguhis kind of HPC cluster
than the traditional form of parallel programs running orwster. The same program
is usually run several times with different values in ordefind the one most close to
the nature. Parallel programs that are running on severdkCiaterfacing with each
other on runtime, is not very common for physicists. Thuglable and fast transfer
from the AFS file system to several nodes requesting the sppligation is necessary
to serve the local AFS users in the CERN cell.

This chapter provides a background by looking into the besicepts of AFS, advan-
tages and common issues for using a distributed file systést, the concepts of AFS
are presented in chapter 2.1, describing AFS and a distddile system. Chapter 2.2
describes the phenomenon of load balancing.

2.1 AFS - Basic concepts

AFS is a client-server architecture distributed file systproviding location indepen-
dence, scalability and transport migration [1]. It allové®ts to share and access all of
the files stored in a network of computers in the same way aslocaifile system.
The files are distributed on several servers, but are avaifedim every client. A Dis-
tributed filesystem’s main advantages are increased syataitability and increased
system efficiency.

Cell A cellis an independently administrated site running AFS. Tha.chrcell is
such an example. The cell’s administrators determine himtoiachines are config-
ured and how much space is given to each user or group. A aadlists of a set of
file servers and client computers. A set of computers canlogllyng to one cell. Two
cells cannot share a client or a file server. A cell’s file tagkk the same when viewed
from any client because the cell’s file server machines stardiles centrally.

Clients Clients are the working stations in the AFS system. They airgucaching
in order to increase the speed and efficiency of the file syskanh AFS client com-
puter dedicates a portion of its local disk or memory to cashere it stores data
temporarily. The cache-manager communicates with theditees and make sure that
the local version is up to date. This is calleallback Working on a RW volume on
a partition requires more call backs than a read only voluatéch will be discussed
later. If several clients work on the same file (if they are lo& $ame project and have

2.1 AFS - Basic concepts 2 BACKGROUND

the same permissions to edit data), the person that savemdkes the changes in
traditionally UNIX style.

File servers The file servers actually stores and manage the data in thespgt&m.
File servers provide file storage and delivery services ilitah to other specialized
services for the client computers. There are several files@rocesses, some of them
running on all file server machines while other are more spieeid. For instance,
every file server machine has BOS, basic-over-seen sertéghwnonitor the server
and restarts a process if it fails. The binary distributedinirzes keep track of the most
popular binary files in order to save the Read/Write part&ifor unnecessary accesses
and database servers keep track of the physical locatioolomes.

Server processes

e The file server procesdhe file server is the most fundamental of the AFS pro-
cesses and run on each file server machine. It delivers the saivice across a
network as a local file system on a UNIX computer. Furthermibdelivers data
files and programs on the clients demand and stores editedrfil@ntaining the
directory structure, handling requests for copying, mgyareating and deleting
directories and files, stores the status information fohdié&eand directory, con-
trols authorization and creates symbolic and hard linke/een files and grants
advisory locks on request.

e The Basic OverSeer Server procegtins on each server and reduces the de-
mands on system administrators by monitoring the runninggsses. It can
automatically restart failed processes and provides aaue for administration
tasks.

e The authentication server proced®erforms network security related functions.
It identify users as they log into the system and requiressaypard. It also help
client and server processes to prove their identity for esthler. Kerberdsis
used for these purposes.

e The protection server procesBrotects files and directories from unauthorized
use. Rather than using UNIX file system'’s three access psioni#\FS is using
seven for making the system more flexible. Users can granddugl users to
have access to their directories using a Access Contro(AGL). ACL is a list
of all the groups to which the users belongs. It is possibleftministrators to
create groups where permission is granted for certain IiReadds in addition to
the ACL lists.

e The Volume Serveprocess Operates at the level of whole volumes, provides
the interface trough creating, deleting, moving and reyiiy volumes as well
as preparing them to be stored on tape.

6A network authentication protocol developed at Massadtsisastitute of Technology

2.1 AFS - Basic concepts 2 BACKGROUND

e The Volume Location, VL, Server procedsaintains a complete list of volume
locations in the Volume Location Database (VLBD). When amts cache man-
ager requests for a file, it first contact the VL Server in otddocalize which
file server has the wanted volume and file.

e The update server proceskipdates AFS file server process software and con-
figurations on all file server machines.

e The backup server procesMaintains the information in the backup database.
The backup server process and the backup Database allowiattators to back
up data from AFS volumes to tape and restore it from tape iEssary. The
backup approach is to first clone a read/write volume andeptat from HW
failure by taping it.

e The salvager procesfuns only after the failure of a file server or volume server
process and restores any inconsistencies.

Partitions A partition in the AFS file system environment is usually orfiseveral
disks on a file server machine. Partitions are divided infames.

Volumes Volumes are conceptual containers for a set of related file&h is keep-
ing them togheter on one file server partition. Volumes vargize, but are smaller
than a partition for practical and administration reasofise volumes can be moved
between file servers in order to maintain system efficiencyoldme corresponds log-
ically to a directory in the global file tree. AFS interpretsumt points, directories in
the file tree, and retrieves the files and directories thatifiee request from the appro-
priate location. In order to find a file, only the file's pareiredtory and the file name
is required. The system uses ¥M@ume Location VL, Server proce84.DB) in order
to keep track of the volume’s file server and partition lomati Most cells store the
contents of each user’'s home directory in separate volufitescomplete contents of
the directory moves together when the volumes moves, matkéragy for AFS to keep
track of where a file is at a certain time. Volume moves arendambautomatically in
the databases, so users do not have to keep track of filedosati

Set of volumes A set of volumes are volumes that belongs to each other. lysaal
set of volumes is a project, created by the project admatistr

Volume quota A volume has an upper limit for available space. The quotabeEan
increased by the AFS administrators if more space is redjuire

Volume used blocks Used volume blocks is the number of blocks used by the vol-
ume. This number can never be larger than the volume quota.

2.1 AFS - Basic concepts 2 BACKGROUND

Mount points A volume corresponds logically to a directory, or the roaotdtory
for that volume. A directory in the file system is mounted te tertain volume using
a on-line file that names the volume containing the data filéke directory.

Read/write volumes Read/Write (RW) volumes are the original volumes that can be
read from and written to. A RW volume can be backup up on a hacklume, always
located on the same partition as the original RW volume. Heurhore, a volume can
be replicated into several clones. The RW volumes have aianlg number, which is
used by the VLBD for identification.

Replications Read only copies or clones of volumes usually contain fratiyac-
cessed binaries/programs. The replicated volumes areddpiother disks/partitions
to relieve a file server machine or a disk for accesses, whadkemthe contents more
available. On large systems usually one server is deditatinds purpose. Using files
on read only volumes puts less of loads on a file server, caulg®ne call back is re-
quired each read only (RO) volume as opposed to a call batkfédador the original
volumes that support read/write (RW). If a set of replicatellimes are copies of one
RW volume, they have the same ID number. Hence, RO volumesdeanéfied by ID
number and location.

Backup volumes Some volumes in a distributed file system are backed up to in-
crease reliability. All changes are copied into a backupur located on the same
partition every night. Furthermore, backup volumes (BKuoés) can be backed up
on tapes. BK volumes are always located on the same paréiidhe original (RW)
volume. The backup volume’s ID is unique because there arénmuan one backup
volume each RW volume.

Caching and Callbacks Caching on the clients increase the speed and efficiency of
file accesses in AFS. Clients use local disk or/and memorgdohing data. A client
cache manager handles the file requests and use the locéfl fileg are present and

up to date. Caching reduces network traffic and access todrely accessed data.
Callbacksare used in order to maintain consistency for cached filesilédgeérver is
calling back to the client if any of the requested files are ffiwdl For RW volumes

a call back each file is required, thus only one is requireddplicated volumes (RO
volumes). Any RW file can be modified at any time, while a RO wnduis up-to-date
until it is deleted and replaced. In AFS, all replicationsaafertain RW volume have
the same ID.

Transparent access and Uniform name space AFS hastransparent accesto the
files in a cell’s file space. The users do not need to know whietsérver or servers
their files are located in order to access them. They only tekdow the file’s path-
name, which is by the AFS system translated into a machiragitot Uniform name

2.2 Load Balancing 2 BACKGROUND

space: A file’s pathname is identical regardless of which client fiime the user is
working on.

Cloning The volume serveuse cloning of RW volumes for moving volumes, cre-
ating backup and RO volumes. A clone in these terms is not & 0bthe volume
data, but a copy of thenode indexThe vnode index is a table of pointers between the
directories and the files in a volume and the physical datatime on the disks.

Volume Moves When a volume is moved between two partitions, it is first etband
then copied over the network. During the process of clonirig unavailable for I/O
requests, but not during the process of copying. All modifices during the process
of copying are added to the new volume after the volume mowerigpleted.

2.2 Load Balancing

Load balancing distributes processing and communicatotigity evenly across the
file server network and is important for making the systentigificy. When a server
is overloaded by accesses or empty of disk space it is negdssaove one volume
from one file server to another. Moving a volume make the velumavailable during
the cloning process and may take up to several hours depgeodithe volume size.
However, during the moving process the volume is againalbvkl All changes during
the moving process are added after the move is accomplished.

As described in chapter 2.1, the following statements aeefor file servers, partitions
and volumes:

e A file server machine has one or several disks. The numbersktdiach file
server differs

e A partition on a file server machine is usually a disk

e Avolume is never larger than a partition, e.g. a volume isstrgped over several
disks

¢ A backup volume is always on the same partition as the RW velum

The disks on the file server machines are potential bottlenelf a disk reaches the
maximum amount of accesses that the file server can hantilgthat disks on that

file server is unavailable. Thus, load balancing is perfatme disk level. Figure 1

demonstrates an ideal volume distribution over three fiteegs, given that they have
the same amount of disks (two in this example), the same HVeme@l and volumes
have the same size. This setup exploits the storage spaitebsvand distributes

frequent accessed volumes, avoiding that requests ang pifi on one file server and,
hence, make the system less available.

2.2 Load Balancing 2 BACKGROUND

File Server | File Server 2 File Server 3

| Volume | | Volume | | Volume | | Volume | | Volume || Volume |

| Volume | | Volume | | Volume | | Volume | | Volume || Volume |

| Volume | | Volume | | Volume | | Volume | | Volume | | Volume |

| Volume | | Volume | | Volume | | Volume | | Volume | | Volume |
Diskl Disk2 Diskl Dislk2 Diskl Disk2

:l Frequently accessed volumes :I Moderate accessed volumes

:l Low accessed volumes I:I Non accessed volumes

Figure 1:1deal volume distribution for the file server system

In the reality such ideal distribution is difficult. Howeydhere are other issues than
only load balancing that have influence on volume distrdnuti For instance, some
volumes may have higher priorities than others, requirigigds response time etc., or
volumes belonging to a set of volumes could be gathered orfifewervers in order
to decrease network traffic. The latter is true because o$@rproject do not need to
access two different servers in order to retrieve or stota flall project volumes are
located on one serverFurthermore, clustering sets of volumes is beneficial seaf

a server crash. In this case only a few projects are influebgeke event, which ease
administration.

Volumes differ in size and accesses each volume differstower In fact, volume size
can change over time as well. Some volumes may be heavilgsedat present time,
but notat all in close future. Thus, load balancing on predata information may have
serious consequences. Without a history it is impossiblelfidl intelligent automated
moves, exception of when disk storage exhaustion occura.dl§k or server is full,
volumes are stored elsewhere. However, most of the loach@ialgis done manually
in AFS cells at current time.

Figure 2 demonstrates a situation where Disk1 houses a wokBd_D1 (File server
1 - Disk1) that has a frequent number of accesses. In totaldluenes on File Server
1/Disk1 reach the upper limit of accesses the server canldantich leave volume
FS1_D2 unavailable for its users. In this case AFS admaiists have to manually
move the upper FS1_D1 volume to another server, in this dés&&rver 2. The most
suited partition is Disk1, with enough space and no frequeccessed volumes. Hav-

"From the AFS administration point of view. The users do natkithe physical location of the volumes
due to transparent access in AFS

2.2 Load Balancing 2 BACKGROUND

File Server | File Server 2
Volume Volume Volume
FS1_Dl »! ESI_DI Fs2_D3
' : Volume
Lommemamaat FS2 D3
Volume Volume Volume :;’;ur;; Volume
FsI_DlI FS|_D2 Fs2 DI = FS2 D3
Diskl Disk2 Diskl Disk2 Disk3
I:I Frequently accessed volumes :l Moderate accessed volumes
:I Low accessed volumes :l Non accessed volumes

Figure 2:Realistic volume distribution

ing more hard disks/spindles, file server 2 can handle maresses, but it is necessary
to take FS2_D2 and FS2_D3 into consideration before mowiagydlume. There are
no pointin moving a volume to relieve a server only to exhaunsther one. At present
time such volume moves are usually performed when a file sezaeh its upper limit.
As already mentioned, intelligent moves are impossibl@éevit knowledge of the ac-
cess pattern for a volume over time. If a volume history caaldfirm that the FS2_D3
volumes over time stay on a low and none access level in aggitagould have been
preferable to move one of them to another server (for ingtdibe server 1 / disk 1
which has freed up space), making space for (a) more acceskede(s).

To find how available a partition is, it is useful to use a neetvhich calculates total
volume accesses and used diskspace for a disk. Thus,

DiskAvailability — TotaAccesses

An optimized solution for volume distribution is a NP-Corefd problem. Given a set
of items, each with a cost and value, the number of each itetateyrmined to be in-
cluded in a collection so that total costs is less than sorengiosts and the total value
is as large as possible. Thus, having a set of volumes anitigrast how can the vol-
umes be distributed over the partitions in order to explatgtorage space and handle
accesses in a optimized fashion? A solution is to calculaggeygossible volume com-
bination on every partition, which is an exponential timewjing problem. However,
given the size of the distributed file system and additiomaiditions, a polynomial
time approximation algorithm is preferred for this projdeef coreman]

10

2.3 Oracle Database 2 BACKGROUND

2.3 Oracle Database

(About Oracle advantages and disadvantages)

The CERN central database service has Oracle databasesdincfion. Exploiting a
supported service will ease AFS administration if the daselfails, making Oracle a
natural choice. Nevertheless, the SW design should be @nkmt of database vendors
considering the open source nature of AFS. Several Oraatarks like PL/SQB are
therefore not exploited.

2.4 Perl

Perlwas initially designed as a glu language for Unix, argllbag since spread to most
other operating systems. Hence, the language is availaldeveral programming en-
vironments. Also, no changes are required when moving tschptween different
OSs. This ability makes Perl suited for AFS developmentsim®ring that distributed
file systems usually house different kind of operating syst@and architectures. For
instance, at CERN the AFS file servers run Linux and SolaritBdm and SUN ma-
chines. Scripts written for the AFS file servers do not neethke the underlying
platform into consideration. Nevertheless, Perl is used\b$ developers and is a
natural choice for further development[6].

2.5 Perl and Oracle

Some components are required in order to make Perl and QOramdeiles commu-
nicate efficiently: Perl DBI, DBD:Oracle and OCI[4] (See &ig 3) Perl DBI is a
generic application-programming interface (API), similaconcept to Java Database
Connectivity (JDBC). Perl object oriented archtecture ek possible to have a sin-
gle routing point to many different DBs, which is anotherwargent for using Perl in
a Open Source environment where several DBs should be segdp@racle uses the
DBD:Oracle driver, a Perl module that provides the actuatitwnication to the low-
level OCI code. The OCI component makes the final connedtietdracle DB.

8Procedural Language/SQL.

11

3 STATE OF THE ART

Perl Script Perl DBI DBD:Oracle OCI - Oracle Interface -
Perl Database Perl Database Oracle supplied C library H

Interface Driver Module for Oracle database -
Madule fir Oracle access

Oracle DB

I:l Perl modules |:I Oracle modules and components

Figure 3:The Perl/Oracle architecture

3 State Of The Art

This chapter discusses the CERN AFS cell’'s setup and dimessiThe following
chapter 3.1 discusses how AFS is used at CERN, how data isrtegsand how deci-
sions are made in order to manage the system efficiently. t€hay2 discusses AFS
admin, which is a supplement to AFS, implemented at CERN s$e eaministration.
Chapter 3.3 discusses how load balancing can be improvedRNC

3.1 The CERN AFS Cell

Several analyses are requires to apprehend the situattbe GERN AFS cell. Man-
agement, hierarchy, dimensions and even extensions toRBeafe crucial issues for
analyzing and, hence, tuning the load balancing using a DB.

Management hierarchy has significance influence on systiécieaty. For instance,
replicas or read only volumes have potential importancesystem performance, de-
creasing network traffic and callbacks, increasing resjroesand availability. A dis-
advantage is that local project administrators need tatemb@se replicas manually,
which unfortunately results in few read only volumes due twreén€management over-
head.

The CERN AFS cell tends to favor, at present time, relativedgs expensive storage
disks that are piling up requests, rather than several emditks that can handle re-
guests faster. In order to maintain the AFS service at ptdsesl during the growth
of file servers, users and projects approaching the LHCugtant 2007, there will be
installed a larger amount of smaller disks, which makes yistesn more available due
to more spindles. Hence, the disk subsystem is a potentidgbeck. If the number of
waiting 1/0 requests is a sustained value more than appeteittimes the number of
spindles making up the physical disk, there is a disk bodtté&n

Some accesses are more costly than others. In the CERN d¢etheachanges are
backed up on tape every night. These accesses, which aaengigedata from disks
to tape, can exhaust the disk if they are running simultasigohus, two processes
are competing for the disk arm. Some intelligent code woelghteferable in order to

12

3.1 The CERN AFS Cell 3 STATE OF THE ART

detect such situations. However, tuning on this level isspéart of this project. What
is worthy to notice is that such effects may have influenceherfite server machine
monitoring and history.

Another important issue is volume size. A system with smallisnes and few files is
ideal for optimizing performance. It is faster and lessicaitto move volumes that are
smaller. However, moving large volumes is costly and nedxtearefully planned. On
the other hand, for project administrators it is more coiemito create large volumes
to ease administration, which complicates optimization.

It is preferred to distribute a set of volumes over the fileveemachines in order to
avoid that all of them are involved if a server fails. Suchtrélisition is increasing

the system availability for projects, but can easily cohflith volume distribution for

increased overall system performance.

These issues are important in order to understand how tgznAFS history properly
and tune load balancing. It is preferred to find approxinmatilgorithm that can take
these variables into consideration in order to find a germgmadoach for load balancing
a distributed file system.

3.1.1 Basics

A look into the AFS term is preferable in order to analyze theSfsetup.

The AFS hierarchy At CERN the AFS system administrators decide the volumes’
physical location for making the AFS system effective. Thegide every users’ and
project’s quota. However, the project leader decides hay #re exploiting the given
space. Several of these decisions are straightforward r@naudomated. The project
leaders decide the size of their volumes (within physicalt8) and if they are using
replication or not. These local decisions makes it evendram manage the system
administration and load balancing for the AFS administsatd he project leaders de-
cide as well which users are granted, using protection grotihis modification is at
presenttime used at CERN, avoiding that the ACL files are pdated and ease admin-
istration work. With protection groups a project leaderdnenore options for granting
users, even giving his or her administrator status away tthan user if preferable,
without interfacing with the AFS administration. Henceg thierarchy is:

e The AFS administratorsAt present time there are three AFS administrators at
CERN. Their tasks are to load balancing the system for ise@@erformance,
deciding disk quota for users and projects, installing nésvsiérvers, maintain
code and support the AFS system.

e The project leaders There are approximately 5000 project leaders at CERN.
They exploit the disk quota given by the AFS administratotdsers granted for

9The disk quota is reflecting the size of a project. If a prajered more space there are financial issues
involved.

13

3.1 The CERN AFS Cell 3 STATE OF THE ART

projects volumes, number of volumes, directory tree amaherdasks is as well
done by the project administrator.

e Users Users have their own accounts, independent of which piofeey are
granted to, if any.

Dimensions At the CERN AFS cell there are approximately 15000 users,0500
projects, 8000 client machines and 30 servers for the tirmgb&here are 4000 active
users at any time. It is necessary to carefully decide redistorage space in order to
save historical statistics in a database. The toal diskaitypa 12 Terabytes, which is
approximately 410 GB each server. Over a period of 3 yeaksadipacity is expected
to increase to approximately 100 Terabytes. The typicelsidrvers at current time are
SunFire V240 and IBM xSeries models 345 and 346.

Volumes Small volumes make load balancing more straightforwardlass time
consuming to move volumes between file servers if neccessarydealistic volume
size for the CERN AFS cell, considering the dimensions fertime being, is 1 GB
with 100 large files. Unfortunately, the project leaders\gsAFS usually prefer large
Volumes. Volumes are mounted into the directory hieraretd/several volumes means
more overhead and management work. It is more conveniesetidenv and large vol-
umes than several small ones. Volume size is a tradeoff leettie AFS administrators
and the local project leaders wishes, regarding that therastnators simply decide the
total quota to each project. The project leaders decidedhane partitions in the end.
Consequently, moving a volume could be time consuming astlycanaybe several
hours, and an eventually move has to be carefully evaluated.

Replications Using replications for reducing call backs and networkfita$ unfor-
tunately not a common task. Replications are not transparahhas to be mounted
and managed by the local project leaders. Knowledge aboStakfe replications are
required and is used only by a few projects at CERN. Netwafitris neither the
main performance bottleneck.

Database servers There are 3 main database servers at CERN and 2 for backup. The
3 main servers are located in the same building and need patkase of fire. This is
necessary because the database servers are not backedipp.on t

Backup server The backup server backup the data on HDs every evening, ahlere
changes are stored on tapes. Every 30 day the data is fuég tapm scratch. Every
user and project have direct access to their backed up dambdckup is not a part
of their quota. The backup on tape is done by the CASTQRoject. CASTOR is a
hierarchical storage management system developed at CERN.

10CERN Advanced STORage Manager

14

3.2 AFS Admin 3 STATE OF THE ART

P, Q, asis and U volumes CERN operates with different kinds of volumes. p and
g are on more reliable HW than u. p volumes are backed up whitdugnes are not.
Asis are volumes with loads of public domain software. Theftare is not installed
on the machine, but rather directly accessed through AFSwidinks.

3.2 AFS Admin

AFS Admin is a supplement to AFS, implemented at CERN by WoifgFrieble from
DESY. The purpose of AFS Admin is to ease administratiomaisoutines that are
meant to enhance the functionality of the AFS module. Thémes retrieve volume,
server and partition status information data among otleegsaccesses, total disk usage,
volume names, volume location etcc. AFS Admin makes it asmate convenient for
project administrators to create, delete and grant userenvddministration requests
status information, AFS admin interfaces with the file sermachines in order retrieve
the data. For instance, retrieving data for volume with IDniver 537031140 using
vOs examine in a console results in:

vos examine 537031140

> p.lep.higgs.generall 133588940 RW 1335889 K On-line
> afs45.cern.ch /vicepa

> RWrite 537031140 ROnly 0 Backup 537031142

> MaxQuota 1500000 K

> Creation Wed May 26 12:50:08 1999

> Last Updated Fri Feb 18 15:20:34 2000

> 0 accesses in the past day

This approach, accessing the file servers for each AFS admirest, may compete
with the AFS users’ accesses and is not preferable. Stoohgne information in
a DB will make AFS statistics more available for administratand relieves the file
server machines. The design and implementation for a mégetiee AFS Admin is
discussed in Chapter 4.

3.3 Load balancing

The AFS administration at CERN prefer to cluster the set®hfmes. If a new volume
is created it is stored on one of the file servers that all rdaalyse the volum'’s set.
Among the file servers that house the set, the volume is stumdtie file server that
has most disk space available. Only when the file servergshituse a set of volumes
are full, a new file server is chosen. (The available file serith most available space.
See Figure 4. File server 1 houses the CVS and SUN volume Biétsserver 2 and
3 house the ATLAS and CMS volume sets. File server 1 is full trednew SUN
volume is stored on the file server that has most disk spadkableg which in this

15

3.3 Load balancing 3 STATE OF THE ART

W T

File Server | \File Server 2 File Server 3

Volume || Volume | i
| Volume H Volume | i | Volume || Volume |
| Volume ” Volume | | il Volume | I Volume ” Volume |
[Voume || voume ||ii|[volume |[votume]| |[Votume || volume]

Diskl| Disk2 |[i]|| Diskl Disk2 Diskl| Disk2
:I p-sun volumes i :I p.atlas volumes
I:I p.cvs volumes i I:I p.cms volumes

Figure 4:Load balancing

example is file server 2. When this happens, File server 1 #nddiver 2 house the
SUN volumes. File server(s) to house a set of volumes is nilgrakesen when a new
projectis created. At present time, the only automated bzdaincing is volume moves
if volumes on a partition are increased in size and apprdaeiisk space limit.

This volume clustering may conflict with the optimized loaaldncing mentioned in
chapter 2 due to the decreased number of file server cansligeséore new volumes.
Nevertheless, this approach is chosen for administratiohretwork traffic in mind.
If one volume in a set (a project) is unavailable, usuallytimle project is influenced
anyway. It is preferable that a whole project is unavailalmgl the server is restored,
in contrast to a scenario where several projects loose sbtheiovolumes.

16

4 SW DESIGN

production

| .Diskstat 2.afs_monitoring DB
Gather volume Parse the data files 1
statistics every 24 every 24 hours and 3.dai|y Upd
hours. Data is stored stores the data into i I“"Ionitc; = !
into files and is the DB s
" " most
available until next
accessed
day
volumes
frequently
Implemented
--- > Tuning
i vy
5.Automated 4. Analysis
volume moves Analyse volume
history to create
Set automated automation of
volume moved into le— | volume moves,

including tuning of

algorithms

SWV design of this project

Figure 5:Load balancing and tuning using a DB.

4 SW Design

An underlying system was designed and implemented duriagvibrk of this thesis.
First, a DB was designed and tested before it was set intouptimsh. Perl scripts
were implemented in order to update the DB with data from thaeudlying AFS sys-
tem. Because the DB will be used by independent projectseafame was created,
for retrieving, updating and adding data. However, the npairpose of the DB is to
partly automate effective load balancing. A graphical ustarface was implemented
in order to analyze volume history, and thus, better undedsthe volumes’ behavior.
The SW design for monitoring and tuning load balancing in @€RN AFS cell is
demonstrated in figure 5.

The SW design for monitoring and tuning load balancing depem already imple-
mented applications and interfaces like Diskstat and theepvio and Volset.pm pack-
ages, described in chapter 3.

1. The Diskstat script gather volume data information e2rhours from the file
servers and write the results to a file AFS.snapshot. Thissfidéé present time
used to present the file servers’ status in terms of disk ysagesses, volume

17

4.1 Database Design 4 SW DESIGN

guota and so on. Because AFS.snapshot is overwritten evdemp@rs history
data is lost.

2. The afs_monitoring script parses and stores the data Bigkapshot every 24
hours to the DB, keeping the volume history. In addition tresthis data it de-
tects which volumes are most accessed on each file servetaand the volume
IDsin a DB table. The most accessed volume IDs are of usedatdfly updates
script.

3. Despite intelligent volume placement a file server maehiray be overloaded
during the day. The daily_update script connects to the DidBdmtects which
volumes are most accessed on each file server the most repgrdue to the
fact that these volumes are potential candidates for ozéihg the file server
during the day. The script stores volume data statisticsHergiven volumes
into the DB more frequent than afs_monitoring, making th&tesyn (Automated
volume moves) able to move off heavily accessed volumes valvenioading
occurs (see figure 3, chapter 3.1). The script is executettaldimes a day and
use the Vos.pm package to retrieve the vaild data from theséitgers. Only
a given number of volumes are frequently monitored durirggdly to not put
unnecessary load on the file servers.

4. Analysis of DB data for intelligent volume moves. Volumistbry data is ana-
lyzed in order to find some connections between the varidbtemutomate load
balancing. The most obvious optimization gains are autechéitst, then the
script will be tuned over time. Hence, there will be an ungied approximation
algorithm. Inital analyses are included in this thesis aiiltl ve continued in
further work.

5. The script will be tested on the AFS system and will be aredyin order to
improve the approximation algorithm for better load balagcThis is not a part
of this thesis, but will be implemented in further work.

Most of the information stored in the DB is updated every 2drspwhich is a costly
operation. To avoid overloading the file servers during rwoirig of the AFS system,
only the ten highest accessed volumes from the previousvdagh are likely to be
potential problems, are monitored more frequently for Ibathncing the system. This
is a tradeoff between reliability and performance. DB arilealesign is covered in
chapter 4.1, script design for updating the DB in chaptey iht2rfacing with the DB
in chapter 4.3, graphical representation of volume historg.4 and finally the AFS
Adminin 4.5.

4.1 Database Design

At CERN central DB services are provided by the Database anginEering group,
which use Oracle databases. Due to the DB size and admtigstissues this service

18

4.1 Database Design 4 SW DESIGN

Volumes I File
servers \
Daily
. updates
Volume- ID_volumes /
Data

Figure 6:DB ER-diagram

was chosen for serving the DB. Because this monitoring aaprwill be setin produc-
tion elsewhere the DB design had to be independent of therlyimeDB architecture.
Nevertheless, some optimization for Oracle is describedhapter 4.1.2

4.1.1 Data distribution in DB

An Oracle DB stores the AFS file system data history, such hsn@access, volume
moves, used space etc. Normal forms are not preferablesnctige. Data tables
are divided into the types of data that are most frequenttjatgd in order to avoid
unnecessary data replication. Some Volume informatiorelidosn updated, once a
week or once a month. Other data is updated more frequenliig. basic idea is to
timestamp data if there are no modifications (The previowsatgrl data is also valid
in the most recent update). If there are any modifications deta is inserted. In this
way it is possible to create time boundaries for which pedoy given data is valid.
Thus, volume ID and date is required to retrieve the volurstohy data from the DB.
Because replicas of any RW volume share the same volume tHzgrsand partition
location is also required for RO volumes.

There are 5 tableg:ile servers, id_volumes, volumes, volume_datddaily updates
The tablegFileserversandid_volumekeep the relation between file server and vol-
ume ID number and name. The ID numbers are used as keys intles talumes
and volume_data. TabMolumesstores less frequently the volume data while table
volume_datastores more frequently updated data. There is a one to méatjore
ship between the table®lumesandvolume_dataFor one row in tableolumeghere
can be several updates for the volume’s frequently updadéal dabledaily updates
keeps track of which volumes are to be monitored every hawadtomation of volume
moves. See figure 6 for a ER diagram.

19

4.1 Database Design 4 SW DESIGN

Fileservers
id_server name
I afs45
2 afs46
@
Figure 7:Table Fileserver
id_volumes
id_vol name set_id
537045149 p.aleph.wwtf lep
537045151 p'a'eph'::'“'b“k lep

Figure 8:Table id_volumes

Table Fileserver and id_volume

Tablefileserver (figure 7)dentify ID_SERVERuUSed in DB with its real name. Table
id_volumes (figure 8plentifies volume ID)D_voL, with volume name.

Table volumes:

The data intable volume (figure 9 and figure 18)volume data which is not updated
frequently. For each daily update the script determinekéfe are any differences
between volume data in the DB and the AFS.snapshdtfiléf there are no edited

fields for a given volume, for the field®_SERVER ID_PARTITION, SET_ID, ID_REP

11A file updated every 24 hour with file server information

20

4.1 Database Design 4 SW DESIGN

Volumes

id_vol id_server | id_partition date_add2db date_updated
537031140 a 10.03.2005:13.39:05 | 12.03.2005:14:28:22
537031142 a 10.03.2005:13.39:05 | 12.03.2005:14:28:22

Figure 9:Table volumes part 1

or1D_BACKUP, DATE_UPDATEDIs updated with todays date. No further data is edited.
If there are any changes a new row is created, REOENT ROMdentifying that this is
the most recent row for the given volume ID. Because selgatiith date comparison

is costly, the fieldRECENT_ROWis set to 1 for the most recent row for a given volume
ID. This is done in order to make select statements more teffen retrieving the
most recent volume data. The most recent data is likely tchbemost interesting
information and should be more accessible than older dalider@ows for the given
volume are not updated anymore with timestampsrEdeENT _ROWis set to 0.

In order to keep the DB at a given size, old volume data is cesgad. For instance,
all volume data that is between one and two months old candoedsts one (or few)

row(s) with the average field values. Because id_server @ngiartition can’t have

average values, for storing volume moves history, thereocénbe average values for
between volume moves.

If avolume is a RW volume, it can have a replica (RO) volumehid a backup volume
IDs. The AFS file server system allows one backup volume amerakreplicas for a
RW volume. Thus, a replica or a backup volume can’'t have ploréd_backup volume
IDs in the DB. The RO and backup volumes’ parent is the RW v@luBecause there
can be more than one volume existing on the file servers witlséime ID (several RO
volumes) DATE_DELETED has to be in tablgolumesand not in the tabled_volumes
Field DATE_DELETED stores the date when a volume is deleted from the AFS file
server system.

Table volume_data
The data in tableolume_datdfigure 11 and figure 12) is updated frequently. It has

the same mechanism as table volumes. In order to keep a segdey for identifying
which row(s) belongs to any given row in table volumes, thidé is always updated at

21

4.2 Updating the Database 4 SW DESIGN

id_rep | id_backup |date_created | date_deleted | recent_row freq_upd
NA 537031142 | I18-FEB-2000 NA | 0
NA NA 13-FEB-2005 NA 0 0

Figure 10:Table volumes part 2

Volume_data
id_vol id_server id_partition date_add2db date_updated
537031140 I a 12.03.2005:14:28:22 | 12.03.2005:15:28:22
537031142 a 12.03.2005:14:28:22 | 12.03.2005:15:28:22

Figure 11:Table volume_data part 1

the same time as volumes. Because this data usually is eddesloften, several rows
are likely to “belong to” one row in table volumes.

Daily updates

Table daily _updates (figure 13) stores which volumes areetdréquently updated
during the day.

4.2 Updating the Database

There are two scripts that updates the database. afs_mingijtdiscussed in chapter
4.2.1, updates the DB every 24 hours (at midight). Daily aies, discussed in chapter
4.2.2, monitors the 10 most accessed volumes on each server.

22

4.2 Updating the Database

4 SW DESIGN

blocks_quota | blocks_used | accesses_int | accesses_ext | file_count | recent row | freq upd
300.000 51028 1680 0 100 | 0
100.000 30034 886 0 1237 | 0

Figure 12:Table volume_data part 2

Daily _updates

id_server |id_partition id_vol

a 537031140

Figure 13:Table daily _updates

23

4.2 Updating the Database 4 SW DESIGN

4.2.1 afs_monitoring

The afs_monitoring script stores volume data from the fileSARapshot every 24
hours. The abstract approachiis:

1. Compares volume data information between the AFS.soafiith and the DB
and updates all changes.

2. Detect and mark deleted volumes

3. Detect and store the most accessed volumes IDs into a table

In order to update the DB, the script compares the updateadfidemationin AFS.snapshot
with the DB. If the script finds the same volumes in the DB, itlafes its information.

If there is no new information to be updated it timestampsntiost recent volume in-
formation with todays date. If there is any new information the given volume, it
inserts a new row with the recent data from the file.

Update table fileserver If there any new file servers added to the system, the server
name is added to tabfservers As well, the file server is given a numeric ID to
decrease search time.

Update table volume_id If there are any new volumes added, the volume ID and
name is added to tabl®lume_id

Updating table volumes Because there is only one RW volume ID and one backup
volume ID in the file server system, the IDs works as uniquetifieations for these
volumes. However, clones or replicas of a RW volume shareséimee volume ID.
Thus, location volume location is required in addition tdwoe ID order to create a
unique key for quering the DB. Because there are several dowdo history with the
same volume ID in the DB, the final attribute for the unique keyecent_row="1",
which locates the most recent row available for the givenna ID.

This eases the update process. Updates for replicas witdiaired, where the volume
ID is NOT unique.

The script first retrieves the variables from the updated #H€S.snapshot:

$VOL_I D_FILE, $SERVER FILE, $PARTI TI ON_FILE, $VOLUVE_NAME_FI LE,
$SET_FILE, $QUOTA FILE, $BLOCKS FILE, $ACC FILE, $DATE_FILE

wherevol_id is a numeric ID for the volumeserver/partitionis the location of the
volume,volume_namés the char namesetis the name of the set which the volume
belongs togquotais the maximum disk space for the voluni®ocksused is the disk
space used by the volumagcis the number of accesses since last upditeis the
date when the volume was created.

24

4.2 Updating the Database 4 SW DESIGN

The script compares the file information witible volumesén the DB:

SELECT SERVER, PARTITION, DATE_UPDATED, SET, | D_REP, | D_BACKUP
FROM voOL UME
VWHERE | D_voL=$VOL_I D FILE, 1 D_SERVER=$SERVER FI LE,

| D_PARTI TI ON=$PARTI TI ON_FI LE, RECENT_ROW=" 1’

RECENT_ROWw is a flag that has the value 1 if this is the most recent row d ftata
given volume. If a row for a given volume no longer is the mestant, the flag is set
to 0, and the row is no longer updated. As explained in theclagpter, the valid time
boundary for a row of data is given by the date it was inseréalthe DB and the last
update date.

If volume data is modified:

If the volume is present but any of the valUBSRVER PARTITION, DATE_UPDATED
or SETare not equal to the file variables, a new row is inserted imtdablevolume If
the select statement doesn’t return any data the volumdirelgmew and is inserted
into the table.

A new row of a given volume is to be inserted into the DB wethCENT_ROW=1. Any
other row with the same volume ID need to be updated with tecew=0. This is
most practical to do before inserting the new row:

UPDATE VOLUME
SET RECENT_ROWEO
VWHERE | b_voL=$VOL_I D_FI LE

Then the new row can be inserted:

I NSERT | NTO VOLUMES
VALUES($VOL_I D_FI LE, $SERVER FI LE, $PARTI TI ON_FI LE, $TODAYS_DATE,
$TODAYS DATE, $SET _FI LE, $1 D_REP_FI LE, $1 D_BACKUP_FI LE, $DATE_FI LE,

$NULLDATE, RECENT_ROW="1")

Where $rODAYS_DATE is the date of today, 1$_REP_FILE is the volume ID of the
volumes' replica and®_BACKUP_FILE is the volume ID of the volumes’ backup vol-
ume (if they are present).1$_REP_FILE and $D_BACKUP_FILE are available through
the vos.pm? package in the AFS systemNBLLDATE is defined as NULL until the
volume is deleted from the AFS file servers.

12perl interface to vos examine, vos listvol, vos listvidb and partinfo

25

4.2 Updating the Database 4 SW DESIGN

Else - if data is NOT modified:

If the Volume exists in the DB and no variables are editedesiast update, the script
updates the most recent row for the given volume with a tiemaptof today:

UPDATE VOLUMES
SET DATE_UPDATED=$TODAY
VWHERE | b_voL=$VOL_| D _FI LEAND RECENT ROW=1

NB! The same approach is carried out for the talmume_datawith the identical
timestamp $ODAYS_DATE.

Updating replicas:

The RW and backup updates can easily operate due to the &dhthvolume ID is
unique, but there can be several replicas of a RW volume.ellR€svolumes of a given
RW volume share the same volume ID. Thus, replica volumdiiileation requires the
volume ID, the file server location and the partition locatas explained. If no data
for a replica has been modified since the last update, the sppm®ach as for RW
and backup volumes is used. The script finds the identicaimatve DB and updates
the timestamppATE_UPDATED. The problem occurs when a new replica is present or
data is modified. The volume ID is not a unique key. Settindr@lvolumes with the
same ID to recent_row=0 would influence already up-to-data tbr RO volumes on
other file servers and partitions.

Because a replica cannot move from one partition or a seovamather, a replica that
is not updated can be marked deleted. Because of this, @adplleft with the flag

RECENT_ROw=1 even though there is new information for the volume ID omeot

partitions.

Determine which volumes are deleted After the script has compared AFS.snapshot
with the DB, it goes through the DB and finds volumes which aegk®d withRE-
CENT_FLAG=1 and have an older date than the most recent update. Thesae
are not updated, which means that they were not present iARBesnapshot. These
volumes are marked withATE_ DELETED=$TODAY andRECENT_ROW="0".

UPDATE vol ume
SET recent _row=' 0’ date_del et ed=$TODAY
VWHERE recent _row="1" AND dat e_updat ed<$TODAY

RECENT_ROW is set to 0, even though this volume won’t be updated againpfaz-
tical reason®ECENT_ROW=1 is reserved for existing volumes.

26

4.3 Interfacing with the Database 4 SW DESIGN

Determine which volumes to be frequently monitored Determines and store which
volumes are most accessed for each file server machine.cFipsis used by daily _update
for frequent monitoring. For each server the following quisrexecuted:

SELECT i d_vol une FROM voLUMES WHERE RECENT_ROW='1" AND | D_SERVER=' <SERVER_NR>’
AND ROWNUM<10 SORT BY ACCESSES DESC

FOR EACH FETCH:

I NSERT | NTO DAI LY_UPDATES VALUES (<COUNT_FETCH>, | D_VOLUME)

For each server the ID for the 10 most accessed volumes aeel stdo table daily _updates.
The daily_update script retireves the ID for all these vadsnguering table daily _updates,
when it is executed during the day.

4.2.2 Daily_updates

The script monitors the 10 most accessed volumes on eachifilersrom the last daily
update. This is carried out in order to decide if any of themands should be moved to
another file server during the day. Thus, the script is imgydrtor the further work on
automated load balancing.Taldeily updatess updated with the ID and position of
the ten most accessed volumes from the previous day. Thagsuifies are monitored
through Vos.pm package functions every hour. The DB worlessimilar way for more
frequent updates with the exception of accessemoD8Y in the perl script support
updates down to each second.

Because the access data for a volume is set to default (G) 24drours, more frequent
DB updates for these volumes has to consider the delta vaftweekbn two updates in
order to get the number of accesses between two time stamps.

For instance, if the script wants to calculate total accefsea given volume between
09.00 and 10.00 with values A and B, the result is:

Value access 000 — 10.00 = A(A,B)

4.3 Interfacing with the Database

The Perl packagdb_afs_admin.prwas implemented for interfacing with the DB. It
was beneficial to introduce a interface for the DB for severasons:

e Atthis point there are three different known modules thatiaterfacing with the
DB: AFS Admin, a Perl CGI script that represents partitiod &lume history.
Furthermore, the scripts for automated load balancingmiéirface with the DB.

27

4.3 Interfacing with the Database 4 SW DESIGN

e AFS Admin is at current time upgraded by other developersahaexploiting
the DB developed in this work. Thus, an interface for otheiSA#rojects to
interface with the DB will ease developement. A new user antéor the DB
and the package db_afs_admin.pm is everything that is defedeénterfacing
with the DB.

The package contains subrotuines with SQL queries for betieving, adding and
updating the DB.

Nested SELECT statements are used to retrieve file serviamhid-or instance, re-
trieving the most recent access data for partition A, seARE845, is carried out the
following way:

SELECT ACCESSES
FROM VOLUME_DATA

WHERE RECENT_ROW='1" AND | D_SERVER= (SELECT | D_SERVER FROM
FI LESERVER WHERE NAME=" AFS45’) ANDI D PARTI TI ON=" A

This will return the the total number of the most recent votuatccesses for partition
afs45/a. Because the most recent data is marked with the RBGENT ROM'1’,
current data is faster to retrieve from the DB, which is bereffor AFS Admin and
other modules that do not need volume history. Selectingroldlume data is done
with dates. For instance, retrieving all access data foeaélver 2 days ago for parti-
tion afs45/a:

SELECT ACCESSES_|I NT
FROM VOLUME_DATA

VWHERE DATE_ADD2DB<=($TODAY-2) AND DATE_UPDATED=>($TODAY- 2)
AND | D_SERVER= (SELECT | D_SERVER FROM FI LESERVER WHERE NAME=" AFS45")
AND | D_PARTI TI ON=" A

The select statement finds the volume access data for the date for the partition.
The db_afs_admin.pm perldoc has a full overview of all ald# routines:

.::db_af s_admi n(3) User Contributed Perl Docunentation .::db_afs_admin(3)

NAVE
db_afs_adnmin - Interface to AFS admi n History Dat abase

SYNOPSI S
$used_bl ocks_vol une = db_get _vol attrib($vol _id,’ Bl ocks’, $day_count);
$quot a_vol une = db_get _volattrib($vol _id,” Quota’, $day_count);
Yaccesses = db_get _vol attrib($vol _id,’ Accesses’, $day_count);
The keys of the %ccesses hash are the partition names (e.g. afssrvl/a).
If the argunent refers to the RWvol ume, only accesses to the RWvol ume are
returned. If the ROnanme or IDis given, all accesses to the RO volumes are
stored in the %ccesses hash. If the BK name or IDis given, the accesses
to the BK volume are returned. $day_count is nunber of days in the past

28

4.3 Interfacing with the Database 4 SW DESIGN

it is preferable to retrieve the data from 0 and 1 is yesterday, 2 is
two days ago etc. O is faster than 1 and use the recent_rowflag for yesterdays
records.

$total _accesses_partition = |ist_partition_db($partition,’ Accesses’, $day_count);
$total _quota_partition = list_partition_db($partition,’ Quota’,$day_count);
$total _blocks_partition = list_partition_db($partition,’Blocks’ $day_count);

Exanpl e: $partition = afs45/a (nane server/partition)
insert_vol une($vol ume_i d);

@ol umes = db_list_volumes($attrib);
Were $attribis 'id_vol' for the volume id, or 'name’ is the volune nane.
Returns an @rray of ALL VOLUMES in the DB.

Yaccesses = gd_get _volattrib($vol _id, Accesses’, $day_count, $id_server, $id_partition);
%l ocks = gd_get _volattrib($vol _id, Blocks’,$day_count, $i d_server, $i d_partition);
Yguot a = gd_get _volattrib($vol _id, Quota’ $day_count, $i d_server, $i d_partition);
%iles = gd_get _volattrib($vol _id, Files', $day_count, $id_server, $id_partition);

The gd_%functions are witten for the graphical presentaion cgi script for performnce
reasons. The function returns a history hash for the given attribute, where the date in 'dd/ miyyyy’
fashion is the key for the given val ue.

DESCRI PTI ON
db_get _volattrib returns used $bl ocks of 1024k for a volume, with argunents
($vol _id," Bl ocks’, $day_count);

db_get _volattrib returns $quota (Bl ocks of 1024k) given to avol ume, with argunents
($vol _id," Quota’, $day_count);

db_get _volattrib returns %otal _accesses for a volune (last day) with argunents

($vol _id,’ Accsesses’, $day_count);

list_partition_db returns $total _accesses for partition with argunents

($partition, 'Accesses’, $day_count);

list_partition_db returns $total _quota in blocks of 1024k for a partition with arguments
($partition,’ Quota’, $day_count);

list_partition_db return $total _used_bl ocks of 1024k for a partition with argunents
($partition, 'Blocks’, $day_count);

insert_volume with argunent ($id_volume). Use this function after created a new vol une
on the AFS system Only the volume_id is needed, also for ROs.

db_l'ist_volumes returns @rray of all volumes in the DB with argunent

"id_vol’ or 'nane’.

gd_get _volattrib returns %ash of access history for a given volume with argunment ' Accesses’.
gd_get _volattrib returns %ash of blocks history for a given volune with argument "Bl ocks’.

gd_get _volattrib returns %ash of file count history for a given volunme with argument 'Files’.
gd_get _volattrib returns %ash of quota history for a given volune with argument 'Quota’
gd_list_partition returns %ash of Accesses history for a given partition with argunent 'Accessers’

AUTHOR
Rune J. Andresen

AFS Admin uses the db_get volattrib, list_partition_dli ansert_volume subrou-
tines. The same subroutines will be used for automated lad&ghbing. The graph-

ical user interface for analyzing volume history, desatibechapter 4.4 uses as well
gd_get_volattrib, which are designed to retrieve hist@tadnore efficiently for whole

partitions.

29

4.4 Presenting statistics 4 SW DESIGN

Server overview Partitions AF545 Volumes AFS45/A
AFS45 b
AFS5| g Partition history
) = >
Volume| history
Volume2 history

Figure 14: Perl SGI graphical presentaion

Accesses for partition afsSlsa

200000000

150000000 -

ACCessEs

103123656

100000000
S5432007

STSE54TE 57571201
49243995 e
ey PR g p0s60 1

@ 30652121

sonoo0nn | 43607559 42674691 43362422

35523972 35603903 JEEI6IIT

01405 12408 03408 0408

Days

2207 2T 24A0T 2SAT 2607 20T ZEAT 29407 G007 BLAT

Figure 15:Access history presented in Perl CGl

4.4 Presenting statistics

For human interfacing, the Perl GD:Graph module is used fesgnting file server
history. Load balancing can’t be fully automated due situret which is difficult to
predict. Thus, AFS administrators need the statisticsemtesl. The representation
is as well cruical for analyzing and understanding how to enlalad balancing more
effective. A Perl script updates server statistics imades avery DB update (each
hour for the selected volumes in the table daily_updatesHTAML/Perl CGIl page
presenting the statistics is refreshed frequently in ot@eresent the updated data[2].

The first level has an overview of all file servers availabig(Fe 14). The second level
has an overview over all partitions for a given server. Itdsgble to choose between
the total partition or the induvidual volume history on théd level. Furthermore, it
is possible to choose history for accesses, disk usagegdista and file-count. For
instance, Figure 15 presents the total access history faitipa AFS51/a. Figure
16 presents the total disk volume usage history from lasy fwbdate for partition
AFS51/a.

30

4.5 Interfacing with AFS Admin 4 SW DESIGN

Used blocks for partition afsS5lsa

200000000

150000000

1307 1743 05566 05, 45 03 FEZA2AGTE 07N 049551, 188 U3 I6T71LAF0TSE470L;

Elocks

100000000

HTITTITRS

178 2% B2 o

Figure 16:Used blocks history presented in Perl CGI

4.5 Interfacing with AFS Admin

The new AFS admin implementation interfaces with the DBg#ire db_afs_admin.pm
package. These modifications are carried out to retrieve fdater without the need
of accessing all file servers, as discussed in chapter 3., Tisisad of examin all file
servers every time project administrators need volumerinéion, the information
can be located in the DB. Also, when a AFS administrator igtimg a new volume,
afs_admin will update the DB directly. The DB does not needad until next main
update to retrieve this volume data.

For most volumes the DB information is from the present dégutrent volume in-
formation is required AFS Admin use the Vos and Volset irsteek that retrieves the
information directly from the file servers.

4.6 Discussion

This chapter explains the most essential parts of the codiartunately, some details
had to be left out due to the size of the implementation, wisimhnt approximately
4000 lines of code. All files are stored on the CD in additioratREADME with
file explanations. The system has been running stable foreksvat current time.
However, old data in the DB has to be deleted or compressedd&r ¢o avoid that
the tables grow for infinity. The most straightforward agmiis to delete data that is
1 year old. It would be beneficial to compress old data in otdéeep older history
data, but this approach is more complex to achieve due to Bxdd3ign. Also, more
rows of data results in slower execution of queries. Thibfmm has to be considered
in further work.

31

5 METHODOLOGY

5 Methodology

The file server history is to be used for automation of loadbeihg. Some methods
are discussed for tuning the automation, which is estimatéast for several months.
Because moving all volumes in an idealistic initial positis impossible (this would

make the AFS cell unavailable for several months), volunas&to be moved over
time for better utilization of the system. Furthermore, e of the CERN AFS cell is
estimated to grow with a factor of 10 within 3 years and prbga volume behavior
may change dramatically. This chapter discusses methggdtw the volume move

implementation. Some central issues to take into condiderare:

e A volume with many files is more time consuming to move than lawve with
fewer files.

e A volume that is heavily accessed is likely to be a potentiabfem wherever
it is located. History should avoid that a volume is movea iatloop between
servers.

e \Volumes that belong to the same set should be clustered ewefilé servers in
order to avoid that all projects are influenced by a servestcrahis policy may
conflict with an idealistic volume distribution.

e A new volume is stored into the file server, available for tag with most free
disk space. This initial algorithm may be improved in ordentake load bal-
ancing more effective.

5.1 Metric for volume availability

The file server partitions, or disks, are the potential batttks or hot spots. As men-
tioned in chapter 2, a disk can be over-exposed with accessiere are no free space
left. The former may have consequences for the whole fileesgolocking other parti-
tionsto performany I/O. In order to find a partition’s availdy it is useful to introduce
a metric, which divide total volume access with used diskspgan blocks of 1024KB).

DiskAvailability= [2alAccess

Calculating disk availability in this straightforward maer makes it easier to detect
partitions that are not in harmony. diskavailabilityis a large number there are many
accesses each block, leaving empty space unavailible fier @olumes that require

less I/O requests. In the other extremaligkavailabilityis approaching zero, several
idle volumes are occupying the partition and are not exipigithe disk’s access ca-
pacity. An approximate optimized value fdiskavailabilityis total accesses divided
by total used blocks in the whole AFS cell over several days.optimized value for

32

5.2 Methodology of Load balancing 5 METHODOLOGY

DiskAvailability

0.67— —

0.5

028 Average Diskavailabilicy

02—+

|

— | . = -] E—
Partition A Partition B Partition A Partition B
3.000000 aces 10.000000 accs 8.000000 accs 8.000000 zccs
30.000000 blocks 20.000000 blocks 40.000000 blocks 12.000000 blocks

Server | Server 2

Figure 17:Server diskavailability

a given day would require to take disk and I/O capacity fomgyartition/disk into
consideration.

Figure 17 demonstrates an AFS cell with two file servers with partitions/disks
each. Serverl/PartitionA has an ldiskavailabilitywhile Server2/PartitionB has an
highdiskavailability Moving some volumes from the latter to the former would expl
the disk space in a better manner on Server2/PartitionB mpldiethe ability to han-
dle more accesses on Serverl/PartitionB. Serverl/Paiitand Server2/PartitionA
are close to the averagkskavailabilityand are not first priorities for an optimization
algorithm for load balancing. Furthermore, this scenagmuires thadiskavailability
to be approximately the same in average for each partiti@n time before moving
any volumes between servers. (See chapter 2).

5.2 Methodology of Load balancing

There are several approaches and methods for load balamgeSanell. Initially the
load balancing problem is NP complete. Finding one or séwgmaroximation algo-
rithm(s) and tune them over time is the most realistic apgito&urthermore, even if
there where possible to solve a NP complete problem in potyaidime, moving all
volumes in their right position would not be an option coesidg the size of the CERN
AFS cell[5]. Also, number of files for every volume is essahtor volume moves. If
there are a high file count it is time consuming and costly toenoff the volume.

33

5.2 Methodology of Load balancing 5 METHODOLOGY

DiskAvailabilicy 4

0.05

0.03

0.02—

0.0+

3days 2days yesterday rtoday
ago ago

>
Time

Figure 18:Four days history for volume p.cvs.cesar

Chapter5.2.1 will discuss some approaches for finding aroappation algorithm. Of
course, this algorithm has to be tuned over several montlosebi is approximately
optimized.

5.2.1 Method1l

The most straightforward method is to consider the prediskivailabilityfor a vol-
ume. If the presendiskavailabilitymakes the volume a candidate for moving it off
to another server, the algorithm takes the volume histaxy donsideration. The im-
portance of Diskavailability will decrease with the histdimeline. For instance, the
diskavailability of the present date will have more impada than the day before and
so on.

Figure 18 demonstrates an example. Volume p.cvs.cesarltigh diskavailabilityat
present time and considered to be moved to a partition with feorkload. To make
sure that is not an exception, history is validated to mazénthe probability that the
number of accesses the next day will stay at the same levelsfaltistics of the present
date will count most and older history data have less inflaehets say we take 100%
of today’s value into consideration added to 90% of yestgsdaalue and so on. The
volumes on the partition with the highest values are candgifor moving. Using his-
tory in this fashion the algorithm will find which volumes theave highest (and lowest)
diskavailabilityover time, eventually calculate the probability that théumee move
will gain system performance. Thus, an approach for loadrzahg with method1 is:

1. Detect partitions with the highest totdiskavailability The number of how
many partitions to take into consideration is a variable partitions and has
to be tuned over time. As well, the partitions with the lowdskavailability
have to be detected as a target for volume moves.

34

5.2 Methodology of Load balancing 5 METHODOLOGY

2. For each partition, volumes with the highest diskavdlilstat present date are
detected. The number of volumes to be evaluated is an variablolumesthat
has to be tuned over time.

3. Calculate a sum for each volume that are selected in staggh 2he following
approach: Ifdiskavailabilityfor today isda0, diskavailabilityfor yesterday is
dal, diskavailabilityfor two days ago isla2etc, a formula

1xdaO + 0.90xdal + 0.80xda2 ... 0.1xda9

can be used. The decreasing ten percdet, percentand ten days in history,
history_daysare two variables that have to be tuned over time.

4. Sort the volumes bgiskavailabilityover time and move off a number of vol-
umes, a variablar_volumesto partitions with free space and low diskavailabil-

ity.

5.2.2 Method2

Another method is to locate trends in the volume history. Auiree may have a repeat-
ing access pattern over time. If this volume, let say, onlydsessed in the weekdays,
another volume that is accessed only in the weekends couttblied to the same par-
tition as the former volume. Several project volumes at CER@&laccessed by cron
jobs'3 for storing data, making this approach useful for load beilem Figure 19
and 20 demonstrate two volume histories that fix togetheingahe opposite access
period. Volume 1 has a weekly pattern with a high diskavditgton mondays and
Tuesdays, and a low diskavailability on Fredays. Volume 2adaeekly pattern with
a high diskavailability on Fredays, and a low diskavaili#ZhMondays and Tuesdays.

This repeated period for volumes are only likely to be vadiddroject accessed by cron
jobs. Volume access pattern for volume belonging to endsusehumans in general
are impossible to predict. Hence, method2 is likely to workenefficient when used
on volumes or partitions that are mainly accessed by cras job

5.2.3 Discussion

An approximation algorithm will eventually result in impred system performance,
using method1 or/and method2, tuning the algorithm vagmbler time. Nevertheless,
moving volumes between partitions has a cost. Large volumithsa large file count
can take hours to move, and volume data is unavailable dtin@gloning process
(Chapter2). Some analysis has to be performed in order t@meoeh volumes. Small
volumes with a low file count may be moved between serversifting the algorithm
variables. If the move turned out to be a bad move, it canyeasiimoved back to
it initial position. A requirement for large volumes is they are moved between

13Cron jobs are scheduled to be executed periodically

35

5.2 Methodology of Load balancing

5 METHODOLOGY

DiskAvailability
volumel
A

0.05-

0.03

0.02+

0.05

Figure 19:Diskavailability Volume 1

DiskAvailabiliy
volumel
A

0.05+

0.03+

0.02+

0.05-

tue wed thu fre sat sun mon

Time

Figure 20:Diskavailability Volume 2

36

5.2 Methodology of Load balancing 5 METHODOLOGY

servers with a limited frequency, proportional to the dileetount, due to the costs of
moving them.

37

6 ANALYSIS

6 Analysis

This chapter analyzes the statistics data from the DB andunedhe time of volume
moves, for better understanding the state of the CERN AFIS &@lst chapter 6.1
analyzes the history data for the server level. ChapteriaB/aes the partition level.
This is followed by chapter 6.3 analyzes trends in diffetentls of volumes, that is,
history trends for user volumes, project volumes and skradtumes. The graphical
interface to the DB is used for retrieving the data, describechapter 4.4. Finally, in
chapter 6.4, the analysis is evaluated in the light of thiscgre and performance.

6.1 Analysis on server level

The distribution of volume types is different for each serv&€ome servers have a
majority of user volumes and others have mostly project ma@s. Because of the
hypothesis that project volumes are accessed with crorgjothhave a repeated access
pattern that is easier to predict than user volumes, thigtenanalyzes history data for
a server with a majority of user volumes and another servier avmajority of project
volumes. Itis beneficial to find a connection between numbaser volumes, project
volumes and accesses. If file servers with a majority of gtajelumes have a repeated
period of accesses, this can be exploited for better loaghlbaig. On the other hand,
user volume accesses that are predicted to not recur aarégidrvals, or nonperiodic,
may turn up to have some intervals that are beneficial for bzdancing.

6.1.1 Analyzing AFS45

AFS45 has at present time 4% user volumes, 58% asis volud#sp8oject volumes
and 8% g volumes. Table 1 includes the history data for tateésses, used blocks
and quota. Figure 21 is a graph with the followidggkavailability for the server.
Diskavailabilityis as explained in chapter 5 accesses divided by used blocks.

| Date | 100705 | 110705 | 12.07.05 | 13.07.05 |
| Accesses | 8.599.521 | 10.434.954 | 19.972.144| 6.602.221 |
Used blocks| 234.096.533] 185.049.331] 185.049.331| 185.049.331
Quota | 354.470.706| 356.470.706| 356.470.706| 356.470.706
| 140705 | 150705 | 16.07.05 | 17.07.05 | 18.07.05 |
12.748.033 | 6.764.156 | 4.040.520 | 4.683.897 | 6.284.044
185.049.331| 253.999.686| 253.999.686| 253.999.686 249.003.920
356.470.706| 356.470.706| 356.470.706| 356.470.706| 356.470.706
19.07.05 20.07.05 21.07.05 22.07.05
14.873.407 | 11.160.834 | 12.931.755 | 9.911.630
249.003.920| 249.003.920| 249.003.920| 249.003.920
356.470.706| 356.470.706| 356.470.706| 356.470.706

38

6.1 Analysis on server level 6 ANALYSIS

0.1

dis kavailability
[=]
=
=

Figure 21:Diskavailabily history for afs45

Table 1: Accesses, used blocks and quota history for filees@®#S45 from 10.07.05
to 22.07.05

Thediskavailabilityhistory in figure 21 demonstrates a trend wheredikskavailability
during the weekends is lower than in the weekdays. Therdsodévao local tops on the
12.07.05 and 19.07.05 (Tuesday) if the weekend 16.07.034:0F.05 is considered a
universal lower point. On the dates 13.07.05 and 20.07.Gslf\@sday) thdiskavail-

ability is lower than Tuesdays, and is growing on Thursdays. Hehegriaph has as a
period that repeats. However, the total values are lower &iinday 17.07.05 than the

week before.

6.1.2 Analyzing AFS91

AFS91 has at present time 18% user volumes, 20% g volumesG#bdco6oject vol-

umes.

| Dae | 11.07.05 | 12.07.05 | 13.07.05 [14.07.05 |

Accesses | 40472263 | 34422306 | 23843116 | 12474376

Used blocks| 186467835| 186467835 186467835| 186467835
Quota 586074366 | 586074366 586074366| 586074366

| 15.07.05 | 16.07.05 17.07.05 18.07.05 19.07.05

15558158 7884740 21190065 | 20378314 | 15843409
186467835 | 186467835| 186467835| 186467835 186467835
586074366 | 586074366| 586074366| 586074366| 586074366

20.07.05 21.07.05 22.07.05 23.07.05

16626915 | 24825922 | 42647840 | 33022732
186467835 | 186467835| 186467835| 186467835
586074366 | 586074366| 586074366| 586074366

39

6.2 Analysis on partition level 6 ANALYSIS

0.25

0.2

0.1

gillin]

Figure 22:Diskavailabily history for afs91

diskavailability

Table 2: Accesses, used blocks and quota history for filees@&®#S91 from 11.07.05
to 23.07.05

Figure 22 reveals no repeating period or pattern despiténitdite number of project
volumes. From Monday 11.07.05 until Saturday 16.07.05dikkavailabilityis de-
creasing every day. The next week the diskavailability magng to reach a global
maximum for this history graph on Friday 22.07.05.

6.1.3 Comparing AFS45 to AFS91

During a 12 days period it is possible to see a repeating @doinAFS45. The re-

lationship between weekdays remained approximately theesaThis server has a
majority of project and AFS configuration volumes. AnalysisA\FS91 did not reveal

any weekly repeated period. AFS91 has 18% user volumes aSd#\Ras 4% user
volumes. The low number of user volumes in the latter may leereason for the
repeating period adiskavailability.

6.2 Analysis on patrtition level

Server analyses take all volumes on all partitions into hamation for a given server.
These analyses do not differ between the partitions. Thus,desirable to analyze
the individual partitions, which are the potential bot#eks. Volumes sets are as well
distributed over partitions, not servers. A disk failurenere common and more likely
to occur than a server crash. However, a server has a uppeidiiO requests, which
makes both server and partition analyses important.

40

6.2 Analysis on partition level 6 ANALYSIS

OAFS45A
O AFS45E
mAFS45C
B AF5455

diskavailability
o
[

Figure 23:Accesses, used blocks and quota history for file server AFS45

6.2.1 AFSA45 Partitions

AFS45 has four partitions, AFS45/a, AFS45/b, AFS45/c an@ǧs. Calculating
diskavailabilityfor each partition reveal some tendencies for AFSBiskavailabil-
ity for the whole server (see figure 21) has a lower limit 0.02 andper limit 0.1.
Figure 23 demonstrates thdiskavailabilityfor the partitions have a lower limit 0.004
and an upper limit of 0.35. It is possible to recognize thagoatfrom figure 21, for
server AFS45, when analyzing figure.23. Nevertheless, the@mum values, dated
12.07.05, 14.07.05, 19.07.05 and 21.07.05, differ moretferpartitions than for the
server. The relatively low diskavailability for AFS45/aF845/b and AFS45/c com-
pared to AFS45/s smooth out the differences for the totakesdristory. This demon-
strates the importance of analyzing the partitions in otdéind potential bottlenecks.
For instance, an increasing amount of accesses for parB#®45/s may over exhaust
the server capacity, which is not straightforward when aalysidering the total server
statistics, given that number of used blocks for each jamtiloes not vary much.
AFS45/s houses a majority of asis volurfesvhich eventually have a repeating pe-
riod for accesses. The asis accesses may be regeneratjonlivlils for public domain
software.

6.2.2 AFS91 Partitions

Figure 24 reveals that partitions AFS91/b and AFS91/s have few accesses. Par-
tition AFS91/cdiskavailabilityhistory is nearly identical to the server history, Figure
22. AFS91/c houses only Atlas project volumes, which indedrequently accessed.
This partitiondiskavailability history has no obvious repeating period, which for this
case disproves the hypothesis that project volumes arer¢adbad balance due to a
repeating access pattern.

14AFS configuration volumes

41

6.3 \Wlume moves 6 ANALYSIS

0.2
0.18 -
o.16]
0.14 M -
.
2 012
E DAFSI1C
3 01 BAFS91E
E OAFS91S
2 0.08
3
0.08
0.04
0.02 H
p L
S FoP F PP P PP
R SR e P N e
PSP\ S S S LA\ S\ G LS\ LI GBI L

Figure 24:Accesses, used blocks and quota history for file server AFS91

6.3 \Volume moves

Moving volumes between partitions has a cost, which has todnsidered before a
volume actually is moved. As discussed before, a large veligitime consuming to
move, and thus, could make the volume data unavailable f@rakhours during the
cloning process. If large a volume is decided to be moved; garticularly impor-
tant that the move gain the overall performance, and it do¢gmbe moved again
in the near future. Because volume moves move data betwettiops, they have a
influence on the server’s response time during the movingga® and other volumes
may be less available. Measuring volume moves when a seneavily accessed
could give very different results. Thus, the following messof volume moves are
performed during the night when most of the servers are lesssaed, and thus, only
give the best case results. Nevertheless, most volumes$dsheunoved at night to
avoid competing with the volume accesses during the dayleTaimcludes the aver-
age volume moves between two IBM servers with CERN Linwaltestl and two Sun
servers with Solaris installed. The volume sizes are 2GBB4@Gd 6GB.

| size [time IBM/Linux to IBM/Linux | time Sun/Solaris to Sun/Solar|s

| 2GB | 4m5.436s | 20m2.315s |
4GB 4m46.019s 22m18.660s
6GB 8m46.265s 30m57.39s

Table 3. Timed volume moves between IBM/Linux servers ameebe Sun/Solaris
servers

Figure 25 demonstrates the difference in time between ngoxafumes between two
IBM/Linux servers and two Sun/Solaris servers. The Sunessrare older than the
IBM/Linux servers, which is likely to be the main reason fbettime gap. The
Sun/Solaris servers use as well RAID5 disks for backup, wseve disk usage but
slow down the writing process. The IBM/Linux servers useaisrroring, which in-

42

6.4 Discussion 6 ANALYSIS

minutes

2GB 4GB 6GE

= I1BM/LiInux === 5un/Saolaris

Figure 25:IBM/Linux volume moves vs Sun/Solaris moves

crease the write process, but requires more disk spacertNeless, in the CERN AFS
cell there is a 2:1 relationship between reading and writiigich makes the reading
process the important one. For both the IBM/Linux and the/Salaris servers the
measured time for volume moves for 2GB and 4GB are very clbise.initial volume-
move process, cloning the volume, copies the vnode indeichaf a table of pointers
between directories and files in the volume. Hence, the velffilmcount is the critical
variable for the initial state for volume moves, which is #zene value for all volumes
in this experiment. From 4GB to 6GB the Sun/Solaris servehsrme moves are more
increased in time than the IBM/Linux servers. This is evaliyjudue to more time
moving the volume than actually creating the clone, and th@Solaris servers (using
RAIDS5) write slower than the IBM/Linux servers.

6.4 Discussion

Finding repeating periods for disk partitions and serverstaining project volumes
where not as straightforward as predicted. User volumeshaag well easy to predict
than project volumes, considering that most of them are dsethg the week and
are idle during the weekends and nights. Neverthelessubecsets of volumes are
gathered on few partitions, it should be possible to lodatetojects that have a stable
repeating access pattern, if any, analyzing on partitivalleQuerying every volume
that belongs to a set could easily be costly and time consyn@f course, when the
DB is growing and more history data is available, other tediod the different kinds of
volumes may be revealed. Considering the approximate 2&@d@nes in the CERN
AFS Cell at current time, finding matching volumes, discdssechapter 5.2.2, is
neither a straightforward task, which in theory requirgsragimately 20 000 compare
operations for finding the best match.

Timing volume moves revealed a difference between the SewiS and IBM/Linux

43

6.4 Discussion 6 ANALYSIS

servers, which is eventually critical for load balancingisimore costly to move off a
volume from a Sun server than from a IBM server.

44

7 TROUBLE SHOOTING

7 Trouble shooting

The volume accesses statistics are reset every 24 houru&eoéa bug in the Open
AFS code this was done 08.00 in the morning for the Solarisdilers, and not at
midnight. Diskstat is updating the data at 05.00, which rsehat the access statuses
for the Solaris servers are at another stage than the Linwerse The fix is to run
diskstat just before the access data is reset, and set taasSsdrvers to be reset at
midnight. The original script used a time zone correctiamction that did not work.

Performance for the updating script was poor due to manygtsatel update statements
(approximately 43000 loops each time the update script wak rThe program was
updated with hash tables to be capable of retrieving mora idabne select query.
The script accesses the hash tables more frequently thaessiieg the database, which
reduces execution time (From approximately 5 hours to 3$jour

45

8 CONCLUSION

8 Conclusion

As the distributed file systems grow, it becomes even motieakfor them to maintain
performance regardless of increased data handling. Tpartgularly true at CERN
which through its LHC project is expected to have to handiedes of data in the
future.

In this thesis, we showed that by developing a system thag¢sfile system volume
history data in a commercial database, and integratingltiigswith a GUI for analysis,
the file system could be significantly optimized.

Volume distribution could be performed more efficiently ksing more knowledge of
the volumes’ access pattern, disk usage and disk quota. $®sibditing the highly

accessed volumes among all available file servers, ovesstitim performance gain
was achieved. Using volume history data, it was also passiblcalculate a better
prediction of the volumes’ behavior in the future.

Our developemet target environement was the AFS files syate@ERN, and Ora-
cle was used for our underlyingdatabase since it is alreadpa@ted at CERN. The
database setup and required scripts for interfacing withdtitabase were designedas
part of this work. Furthermore, the database was in additianaking load balancing
more effective, also intended to make AFS administratiomenstraightforward. Ad-
ministrators do now not need to collect data from all serirecsder to retrieve volume
status unless very recent data is required.

In order to avoid unnecessary data replication,databbkestevhere divided into thetypes
of data that was most frequently updated. Volume data thaneamodified since the-
last update, was time stamped, makinga time boundary fonahrew of data is valid.

If volume data was modified since the last update, a new rovadided to the database.

The database interface was a Perl package, intended for goitation betweenload
balancing scripts and the database. Perl scripts werewfibr updating the database.
A graphical user interface was designed and implementeddierdo analyze volume
history data for better understanding of volume accessdgme quota and disk usage
in the CERN AFS cell. The GUI was implemented in Perl CGlI, gdine database
interface for retrieving volume history data.

These analyses will eventually be used for approachindydupartly automated load
balanced file system, which will require history data frormesal months and tuning
over time.

Our history data for 11 days revealed that some volume beh@veasier to predict
than other. A hypothesis was that project volumes were etsi®ad balance than
user volumes due to an assumed repeated access and diskatgage Unfortunately,
analysis of the Atlas project volumes turned up to have inl@gaccess patterns over a
period of 11 days.

Another hypothesis was that user volumes would likely toehiaregular access pat-
terns, which was partly true considering available histtata. However, user volumes
were mostly accessed during the day, and not during theswgit the weekends. Such

46

8 CONCLUSION

volumes could hence eventually be gathered on partitiottewelumes thatare mainly
accessed by cron jobs during the nights for better systefonpegince. Thus, available
history data at recent times is not sufficient for making anglfconclusions. Never-
theless, taking our initial analysis into consideratiohkends of volumes should be
considered for moving in order to gain overall system pentamce.

To ease load balancing a new parametedisk availabilitydefault was introduced.
Diskavailabilityis is accesses divided by used data blocks of 1024K. Thismpetea
reflects how much a volume is accessed with respect to theudsffe. On the one
hand, this is important because heavily accessed volunmgdshe distributed over
all partitions in order to avoid that few servers are ovethxby accesses. On the
other hand, idle volumes should also be distributed ovepaiititions to avoid that
whole servers are idling, and thus, not helpingthe oveyalflesn to receive requests.
Hence, knowledge of disk vailability helped load balandiyglocating volumes and
even whole partitions that had too many accesses to eaclvlogdd or the opposite,too
few accesses to each used block, compared to the total didlalaility and accesses
capacity.

Further work for load balancing will be based on methodolagg analysis introduced
in this thesis. More volume history available from the das#should beanalyzed in
order to find trends for volume sets and kinds, which can nwakkebalancing even
more reliable and effective.

a7

8 CONCLUSION

Appendix

48

A DATABASE

A

Al

Database

Sqlplus Script for Database Tables and Indexing

Alter table volumes drop constraint v_id_server_fk;

Alter table volumes drop constraint v_id_vol _fk;
Alter table volume_data drop constraint v_d_id_server_fk;
Alter table volune_data drop constraint v_d_id_vol _fk;
drop table fileservers;
create table fileservers(

i d_server nunmber(25) not null,

name varchar2(25) not null,

CONSTRAINT fil eservers_pk PRI MARY KEY(id_server)

)
ORGANI ZATI ON | NDEX;
drop table id_vol unes;
create table id_vol unes(
id_vol nunber(20) not null,
nane varchar2(45) not null,
set_id varchar2(20) not null,
CONSTRAINT i d_vol unes_pk PRI MARY KEY(id_vol)

)
ORGANI ZATI ON | NDEX;
drop table vol unes;
create table vol unes(
id_vol nunber(20) not null,
i d_server number(25) not null,
id_partition varchar2(25) not null,
dat e_add2db date not null,
date_updated date not null,
i d_rep nunber(20),
i d_backup nunber (20),
date_created date not null,
date_del eted date,
recent _row nunber (1),
freq_updat e_row nunber (1),
CONSTRAI NT vol une_pk PRI MARY KEY(id_vol,id_server,id_partition, date_updated),
CONSTRAI NT v_i d_server_fk FOREI GN KEY (id_server) REFERENCES fileservers,
CONSTRAINT v_id_vol _fk FOREI GN KEY (id_vol) REFERENCES id_vol umes

drop table vol une_dat a;

create table volume_data(

i d_vol nunber(20) not null,

i d_server number(25) not null,
id_partition varchar2(25) not null,
dat e_add2db date not null,
date_updated date not null,

bl ocks_quot a number (20),

bl ocks_used nunber (20),
accesses nunber (20),

recent _row nunber (1),
freq_updat e_row nunber (1),
files number(10),

CONSTRAI NT vol une_dat a_pk PRI MARY KEY (id_vol,id_server,id_partition,date_updated),

CONSTRAINT v_d_i d_server_fk FOREI GN KEY (id_server) REFERENCES fil eservers,
CONSTRAINT v_d_id_vol _fk FOREI GN KEY (id_vol) REFERENCES i d_vol umes)
drop tabl e daily_updates;
create table daily_updates(
i d_server number(25) not null,
id_partition varchar2(25) not null,

Al

Sqlplus Script for Database Tables and Indexing

A DATAHA

i d_vol nunber(20) not null);
drop table tine_full _update;

create index performance on vol unes (decode(RECENT_ROW 1, RECENT_ROW);
create index performance2 on vol une_data (decode(RECENT_ROW 1, RECENT_ROW);

A.2 Oracle indexes and functions A DATABASE

A.2 Oracle indexes and functions

Function based index to select "better" the recent_rowsntlition:
decode(RECENT_ROW,1,RECENT_ROW);
Gather statistics for the Cost Based Optmizer (in sqlplus):

exec dbms_stats.gather_schema_stats(ownname=>'RIBNHRscade=>true, esti-
mate_percent=>80, method_opt=>'for all indexes for alexed columns size 30’);

B VOLUME MOVES TIMING TABLES

B Volume Moves Timing Tables

B.1 IBM/Linux to IBM/Linux

Timing volume moves for 2GB, 4GB and 6GB during one night,uxno Linux:

[Nr_|

1|

2|

3 |

4|

5 |

6 |

2GB

4m1.931s

4m53.340s

3m43.299s

3m29.384s

4m45.192s|

3m39.289s

4GB

5m10.543g

5m54.2865

4m36.380s

4m42.071s

5m43.724s

4m46.375s

6GB

8m38.818s

9m37.727s

8m13.224s

8m23.505s

9m40.441s

8m17.321s

| 7 | 8 | 9 | 10 | 11 | 12 |
| 3m30.167s| 4m42.817s| 3m33.874s| 3m28.404s| 4m39.144 | 3m38.394s

4m43.424s 5m48.504s| 4m33.633s| 4m45.588s| 5m48.405s 4m39.208s|
8m26.665s 9m37.676s| 8m9.263s | 8m30.040s| 9m32.552s 8m7.888s

B.2 Sun/Solaris to Sun/Solaris:

B VOLUME MOVES TIMING TABIE

B.2 Sun/Solaris to Sun/Solaris:

Timing volume moves for 2GB, 4GB and 6GB during one nightasislto Solaris.

(N] 1 [2 | 38 [4 [5 [6 |
2GB | 21m8.771s| 28m30.7309 18m57.4119 20m2.177s| 19m23.3655 18m47.078s
4GB | 22m25.2029 32m27.9999 19m37.6879 26m33.581g 20m0.724s| 19m51.056s
6GB | 32m11.8508 29m22.5019 37m36.5459 34m25.657g 28m27.2629 29m53.709s
7 [8 [9 [10 [1T]
| 19m29.774q 18m8.8805| 18m49.656$4 18m59.859s4 18m7.7625|
22m51.1479 19m55.2885 20m49.0935 21m10.7555 19m42.733s
31m50.5239 28m52.3495 28m9.173s| 30m55.9315 28m45.740

REFERENCES REFERENCES

References

[1] Afs administration reference version 3.6.

[2]
http://afs-monitoring.web. cern.ch/afs-nonitoring/cgi-bin/stats.cgi.
[3] Wat's new at cern?
http://public.web. cern. ch/ public/content/chapters/aboutcern/cernfuture/whatl hc/what!l he
j une 2005.
[4] Andy Duncan and Jared Still. Perl for Oracle DBAs.
OReilly, 2001.

[5] Thomas H. Corenen, Charles E. Leiserson, Ronald
L.Rivest, and Cifford Stein. Introduction to
Al gorithns. The MT Press, 2001.

[6] Larry Vall, Tom Christiansen, and Jon Orwant.
Programm ng Perl. OReilly, 2000.

vi

