
HPC File Server Monitoring and Tuning

Rune Johan Andresen

6th August 2005

Abstract

As HPC systems grow, the distributed file systems serving these systems need to han-
dle an increased load of data. In order to maintain performance, these underlying
file servers need to distributethe load of data volumes efficiently over available disks.
This is particularly true at CERN, the European European Organizationfor Nuclear
Research, which expects to behandling Pentabytes of data inthe near future.

In this thesis, new utilities that analyze file serverdata which is then used to semi-
automatically tune thefiles system, are developed. This is achieved using a commercial
database to store the dataand then integrating it with the file server. This requires a
database and a system design that can handle a large amount ofdata.

File server data collections associated with aprocess known as "volumes", can vary in
size, and be accessed at any time. To increase the overall system performance, volume
history data is analyzed to locate volumes that may be gathered for increased system
performance throuhgh load balancing. For instance, using the volume history data, it
is possible to detect and gather volumes that are most accessed during the day with
volumes that are most accessed during the night on one file server. The file server
capacity is hence optimized.

As part of this work, a user interface which can visualize thehistory data for volumes
and partitions, is designed and implemented on top of the AFSfile system at CERN.
Our initial results presented in this thesisreveal that it is possible to locate volumes
that have a repeating access period, and thus, gather them onthe same partition. Other
analyses and suggestions for future work will also be discussed.

ii

Acknowledgments

This thesis was written at European Organization for Nuclear Research (CERN), while
working for the CERN IT Department, Architecture and Data Challenges (ADC) group.
The work is based upon requests from the CERN and Deutsches Elektronen-Synchrotron
(DESY) AFS administrators. I would like to thank my supervisors at CERN, Rainer
Toebbicke and Bernard Antoine, for excellent feedback and support during my work;
and Nilo Segura Chinchilla for helping me with performance issues related to the
Oralce database.

I am most also most grateful to my supervisor at NTNU, Anne Cathrine Elster, for
helping realize this thesis and the NOTUR poster related to this work.

iii

CONTENTS CONTENTS

Contents

1 Introduction 2

2 Background 4

2.1 AFS - Basic concepts . 4

2.2 Load Balancing . 8

2.3 Oracle Database . 11

2.4 Perl . 11

2.5 Perl and Oracle . 11

3 State Of The Art 12

3.1 The CERN AFS Cell . 12

3.1.1 Basics . 13

3.2 AFS Admin . 15

3.3 Load balancing . 15

4 SW Design 17

4.1 Database Design . 18

4.1.1 Data distribution in DB . 19

4.2 Updating the Database . 22

4.2.1 afs_monitoring . 24

4.2.2 Daily_updates . 27

4.3 Interfacing with the Database .27

4.4 Presenting statistics . 30

4.5 Interfacing with AFS Admin . 31

4.6 Discussion . 31

5 Methodology 32

5.1 Metric for volume availability . 32

5.2 Methodology of Load balancing . 33

5.2.1 Method1 . 34

5.2.2 Method2 . 35

5.2.3 Discussion . 35

iv

CONTENTS CONTENTS

6 Analysis 38

6.1 Analysis on server level . 38

6.1.1 Analyzing AFS45 . 38

6.1.2 Analyzing AFS91 . 39

6.1.3 Comparing AFS45 to AFS91 40

6.2 Analysis on partition level . 40

6.2.1 AFS45 Partitions . 41

6.2.2 AFS91 Partitions . 41

6.3 Volume moves . 42

6.4 Discussion . 43

7 Trouble shooting 45

8 Conclusion 46

Appendix 47

A Database i

A.1 Sqlplus Script for Database Tables and Indexing i

A.2 Oracle indexes and functions . iii

B Volume Moves Timing Tables iv

B.1 IBM/Linux to IBM/Linux . iv

B.2 Sun/Solaris to Sun/Solaris: . v

References vi

v

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Ideal volume distribution for the file server system. 9

2 Realistic volume distribution. 10

3 The Perl/Oracle architecture. 12

4 Load balancing . 16

5 Load balancing and tuning using a DB.. 17

6 DB ER-diagram. 19

7 Table Fileserver. 20

8 Table id_volumes. 20

9 Table volumes part 1. 21

10 Table volumes part 2. 22

11 Table volume_data part 1. 22

12 Table volume_data part 2 . 23

13 Table daily_updates. 23

14 Perl SGI graphical presentaion . 30

15 Access history presented in Perl CGI. 30

16 Used blocks history presented in Perl CGI. 31

17 Server diskavailability . 33

18 Four days history for volume p.cvs.cesar. 34

19 Diskavailability Volume 1 . 36

20 Diskavailability Volume 2 . 36

21 Diskavailabily history for afs45. 39

22 Diskavailabily history for afs91. 40

23 Accesses, used blocks and quota history for file server AFS45. . . . 41

24 Accesses, used blocks and quota history for file server AFS91. . . . 42

25 IBM/Linux volume moves vs Sun/Solaris moves. 43

1

1 INTRODUCTION

1 Introduction

As HPC systems grow, the underlying file servers need to handle more and more data
efficiently in order to maintain performance. This is particularly true for CERN’s dis-
tributed file system, which will have to handle Terabytes of data. The goal of this
project is to efficiently monitor and automate the CERN AFS (Andrew File System)
file server information by storing the related information such as volume access, vol-
ume moves, used space, etc. in a database (DB). With the AFS server history provided
by the DB, applications can then be used to automate decisions regarding how to move
data volumes for load balancing the system. Thus, this can ensure that no file server is
overloaded and hence unable to serve the AFS users.

A distributed file systems unites the file systems of individual file servers into a sin-
gle name space. The underlying distributed nature is hidden. Files stored on each file
server are as accessible to users as the files stored on the users’ local disk. For in-
stance, a group can share disks pace for their project, or single users can have their
private accounts. Usually data is backed up on disk and tape,making the file system
more reliable than the local disk. Universities and large organizations among others
use distributed file systems for sharing common data and centralize data management,
increasing system availability and system efficiency. Frequently used software can be
distributed over several file servers in order to avoid that aserver crash result in unavail-
able programs. A distributed file system also distributes the workload over several file
server machines, which tends to be more utilized than largerfile storage machines of a
centralized file system. For instance, if a file server is overloaded, some volumes1may
be moved to other servers that have less work load.

The CERN AFS file system houses a large amount of clients and important projects,
among the ATLAS2 and CMS3 projects. The data management at present time is com-
plex and is a mix of human and computer processes. Data statistics for monitoring the
file system are located in files and not centralized, which make the system administra-
tion hard to comprehend. A challenge is to distribute volumes over the file servers in
order to improve system performance, which is the main focusof this thesis. At present
time volumes are only moved when a partition or a file server isapproaching overload.
With a volume history it would be possible to create a more intelligent system for load
balancing the volumes before a server or a partition reach a critical level and even make
the system more efficient.

In agreement with DESY (Deutche Elektronen-Synchrotron)4 CERN decided to go for
a database approach for storing volume history. This will eventually not only result in
more intelligent volume moves, but make AFS administrationmore effective. For AFS
administration, volume information data is more available, and less costly to retrieve,
from a DB than from the file servers.

1A “container” of related files and directories, usually belongs to a project or a single user.
2A particle physics experiment for the large hadron collider, LHC, which will explore the fundamental

nature of matter and the basic forces that shape the universe. The ATLAS detector will search for new
discoveries in the head-on collisions of protons of extraordinarily high-energy.

3The compact Muon Solenoid - A detector that validates ATLAS’s results and vice versa
4CERN and DESY have a similar structure and share the same challenges in AFS management

2

1 INTRODUCTION

The work approach is to design and implement the applications and DB for storing
and analyzing volume history, in addition to an interface for tuning automation of load
balancing. The history for existing volume distribution and moves has to be analyzed
in order to locate which variables and history that are more important for optimizing
the system. To relocate all volumes for optimizing is not an option due to the size of the
distributed file system at CERN, which means that automationof volume moves has to
be tuned and optimized over time. Another issue is the user pattern for each volume.
At recent time CERN is in a install period of the LHC5 project. In year 2007 the LHC
project will go into a experiment period, which could radically change the usage of the
AFS file system. In fact, the CERN AFS cell is expected to increase with a factor of 10
during a three years period. This work will eventually be submitted to the AFS open
source project[3].

5Large Hadron Collider - An accelerator which brings protonsand ions into head-on collisions for recre-
ating the conditions after the Big Bang in order to find (yet) undetected particles

3

2 BACKGROUND

2 Background

As far as management is concerned the AFS is a cluster. File server machines are up-
dated and managed with scripts. Technically they are not in the same physical location
nor do they communicate directly with each other. They are only aware of the DB
servers that know where the files are located and are not of each other. Cluster file sys-
tems (e.g. IBM Storage Tank) and cluster are more static withidentical nodes. If one
node is unplugged the systems fails. AFS is more dynamic. If one node is going down
the system still runs. The nature of physical science requires this kind of HPC cluster
than the traditional form of parallel programs running on a cluster. The same program
is usually run several times with different values in order to find the one most close to
the nature. Parallel programs that are running on several CPUs, interfacing with each
other on runtime, is not very common for physicists. Thus, a reliable and fast transfer
from the AFS file system to several nodes requesting the same application is necessary
to serve the local AFS users in the CERN cell.

This chapter provides a background by looking into the basicconcepts of AFS, advan-
tages and common issues for using a distributed file system. First, the concepts of AFS
are presented in chapter 2.1, describing AFS and a distributed file system. Chapter 2.2
describes the phenomenon of load balancing.

2.1 AFS - Basic concepts

AFS is a client-server architecture distributed file system, providing location indepen-
dence, scalability and transport migration [1]. It allows users to share and access all of
the files stored in a network of computers in the same way as on alocal file system.
The files are distributed on several servers, but are available from every client. A Dis-
tributed filesystem’s main advantages are increased systemavailability and increased
system efficiency.

Cell A cell is an independently administrated site running AFS. The cern.ch cell is
such an example. The cell’s administrators determine how client machines are config-
ured and how much space is given to each user or group. A cell consists of a set of
file servers and client computers. A set of computers can onlybelong to one cell. Two
cells cannot share a client or a file server. A cell’s file tree looks the same when viewed
from any client because the cell’s file server machines storethe files centrally.

Clients Clients are the working stations in the AFS system. They are using caching
in order to increase the speed and efficiency of the file system. Each AFS client com-
puter dedicates a portion of its local disk or memory to cachewhere it stores data
temporarily. The cache-manager communicates with the file server and make sure that
the local version is up to date. This is calledcallback. Working on a RW volume on
a partition requires more call backs than a read only volume,which will be discussed
later. If several clients work on the same file (if they are on the same project and have

4

2.1 AFS - Basic concepts 2 BACKGROUND

the same permissions to edit data), the person that saves last makes the changes in
traditionally UNIX style.

File servers The file servers actually stores and manage the data in the AFSsystem.
File servers provide file storage and delivery services in addition to other specialized
services for the client computers. There are several file server processes, some of them
running on all file server machines while other are more specialized. For instance,
every file server machine has BOS, basic-over-seen server, which monitor the server
and restarts a process if it fails. The binary distributed machines keep track of the most
popular binary files in order to save the Read/Write partitions for unnecessary accesses
and database servers keep track of the physical location of volumes.

Server processes

• The file server process:The file server is the most fundamental of the AFS pro-
cesses and run on each file server machine. It delivers the same service across a
network as a local file system on a UNIX computer. Furthermore, it delivers data
files and programs on the clients demand and stores edited files, maintaining the
directory structure, handling requests for copying, moving, creating and deleting
directories and files, stores the status information for each file and directory, con-
trols authorization and creates symbolic and hard links between files and grants
advisory locks on request.

• The Basic OverSeer Server process:Runs on each server and reduces the de-
mands on system administrators by monitoring the running processes. It can
automatically restart failed processes and provides a interface for administration
tasks.

• The authentication server process:Performs network security related functions.
It identify users as they log into the system and requires a password. It also help
client and server processes to prove their identity for eachother. Kerberos6 is
used for these purposes.

• The protection server process: Protects files and directories from unauthorized
use. Rather than using UNIX file system’s three access permission AFS is using
seven for making the system more flexible. Users can grand individual users to
have access to their directories using a Access Control List(ACL). ACL is a list
of all the groups to which the users belongs. It is possible for administrators to
create groups where permission is granted for certain IP addresses in addition to
the ACL lists.

• The Volume Serverprocess: Operates at the level of whole volumes, provides
the interface trough creating, deleting, moving and replicating volumes as well
as preparing them to be stored on tape.

6A network authentication protocol developed at Massachusetts Institute of Technology

5

2.1 AFS - Basic concepts 2 BACKGROUND

• The Volume Location, VL, Server process:Maintains a complete list of volume
locations in the Volume Location Database (VLBD). When a client’s cache man-
ager requests for a file, it first contact the VL Server in orderto localize which
file server has the wanted volume and file.

• The update server process:Updates AFS file server process software and con-
figurations on all file server machines.

• The backup server process:Maintains the information in the backup database.
The backup server process and the backup Database allow administrators to back
up data from AFS volumes to tape and restore it from tape if necessary. The
backup approach is to first clone a read/write volume and protect it from HW
failure by taping it.

• The salvager process:Runs only after the failure of a file server or volume server
process and restores any inconsistencies.

Partitions A partition in the AFS file system environment is usually one of several
disks on a file server machine. Partitions are divided into volumes.

Volumes Volumes are conceptual containers for a set of related files,which is keep-
ing them togheter on one file server partition. Volumes vary in size, but are smaller
than a partition for practical and administration reasons.The volumes can be moved
between file servers in order to maintain system efficiency. Avolume corresponds log-
ically to a directory in the global file tree. AFS interprets mount points, directories in
the file tree, and retrieves the files and directories that theuser request from the appro-
priate location. In order to find a file, only the file’s parent directory and the file name
is required. The system uses theVolume Location VL, Server process(VLDB) in order
to keep track of the volume’s file server and partition location. Most cells store the
contents of each user’s home directory in separate volumes.The complete contents of
the directory moves together when the volumes moves, makingit easy for AFS to keep
track of where a file is at a certain time. Volume moves are recorded automatically in
the databases, so users do not have to keep track of file locations.

Set of volumes A set of volumes are volumes that belongs to each other. Usually a
set of volumes is a project, created by the project administrator.

Volume quota A volume has an upper limit for available space. The quota canbe
increased by the AFS administrators if more space is required.

Volume used blocks Used volume blocks is the number of blocks used by the vol-
ume. This number can never be larger than the volume quota.

6

2.1 AFS - Basic concepts 2 BACKGROUND

Mount points A volume corresponds logically to a directory, or the root directory
for that volume. A directory in the file system is mounted to the certain volume using
a on-line file that names the volume containing the data files in the directory.

Read/write volumes Read/Write (RW) volumes are the original volumes that can be
read from and written to. A RW volume can be backup up on a backup-volume, always
located on the same partition as the original RW volume. Furthermore, a volume can
be replicated into several clones. The RW volumes have a unique ID number, which is
used by the VLBD for identification.

Replications Read only copies or clones of volumes usually contain frequently ac-
cessed binaries/programs. The replicated volumes are copied to other disks/partitions
to relieve a file server machine or a disk for accesses, which makes the contents more
available. On large systems usually one server is dedicatedto this purpose. Using files
on read only volumes puts less of loads on a file server, cause only one call back is re-
quired each read only (RO) volume as opposed to a call back each file for the original
volumes that support read/write (RW). If a set of replicatedvolumes are copies of one
RW volume, they have the same ID number. Hence, RO volumes areidentified by ID
number and location.

Backup volumes Some volumes in a distributed file system are backed up to in-
crease reliability. All changes are copied into a backup volume located on the same
partition every night. Furthermore, backup volumes (BK volumes) can be backed up
on tapes. BK volumes are always located on the same partitionas the original (RW)
volume. The backup volume’s ID is unique because there are maximum one backup
volume each RW volume.

Caching and Callbacks Caching on the clients increase the speed and efficiency of
file accesses in AFS. Clients use local disk or/and memory forcaching data. A client
cache manager handles the file requests and use the local filesif they are present and
up to date. Caching reduces network traffic and access to frequently accessed data.
Callbacksare used in order to maintain consistency for cached files. A File server is
calling back to the client if any of the requested files are modified. For RW volumes
a call back each file is required, thus only one is required forreplicated volumes (RO
volumes). Any RW file can be modified at any time, while a RO volume is up-to-date
until it is deleted and replaced. In AFS, all replications ofa certain RW volume have
the same ID.

Transparent access and Uniform name spaceAFS hastransparent accessto the
files in a cell’s file space. The users do not need to know which file server or servers
their files are located in order to access them. They only needto know the file’s path-
name, which is by the AFS system translated into a machine location. Uniform name

7

2.2 Load Balancing 2 BACKGROUND

space: A file’s pathname is identical regardless of which client machine the user is
working on.

Cloning The volume serveruse cloning of RW volumes for moving volumes, cre-
ating backup and RO volumes. A clone in these terms is not a copy of the volume
data, but a copy of thevnode index. The vnode index is a table of pointers between the
directories and the files in a volume and the physical data location on the disks.

Volume Moves When a volume is moved between two partitions, it is first cloned and
then copied over the network. During the process of cloning it is unavailable for I/O
requests, but not during the process of copying. All modifications during the process
of copying are added to the new volume after the volume move iscompleted.

2.2 Load Balancing

Load balancing distributes processing and communicationsactivity evenly across the
file server network and is important for making the system efficiency. When a server
is overloaded by accesses or empty of disk space it is necessary to move one volume
from one file server to another. Moving a volume make the volume unavailable during
the cloning process and may take up to several hours depending on the volume size.
However, during the moving process the volume is again available. All changes during
the moving process are added after the move is accomplished.

As described in chapter 2.1, the following statements are true for file servers, partitions
and volumes:

• A file server machine has one or several disks. The number of disks each file
server differs

• A partition on a file server machine is usually a disk

• A volume is never larger than a partition, e.g. a volume is notstriped over several
disks

• A backup volume is always on the same partition as the RW volume

The disks on the file server machines are potential bottlenecks. If a disk reaches the
maximum amount of accesses that the file server can handle, all other disks on that
file server is unavailable. Thus, load balancing is performed on disk level. Figure 1
demonstrates an ideal volume distribution over three file servers, given that they have
the same amount of disks (two in this example), the same HW in general and volumes
have the same size. This setup exploits the storage space available and distributes
frequent accessed volumes, avoiding that requests are piling up on one file server and,
hence, make the system less available.

8

2.2 Load Balancing 2 BACKGROUND

Figure 1:Ideal volume distribution for the file server system

In the reality such ideal distribution is difficult. However, there are other issues than
only load balancing that have influence on volume distribution. For instance, some
volumes may have higher priorities than others, requiring better response time etc., or
volumes belonging to a set of volumes could be gathered on fewfile servers in order
to decrease network traffic. The latter is true because usersof a project do not need to
access two different servers in order to retrieve or store data if all project volumes are
located on one server7. Furthermore, clustering sets of volumes is beneficial in case of
a server crash. In this case only a few projects are influencedby the event, which ease
administration.

Volumes differ in size and accesses each volume differs overtime. In fact, volume size
can change over time as well. Some volumes may be heavily accessed at present time,
but not at all in close future. Thus, load balancing on present data information may have
serious consequences. Without a history it is impossible tofulfill intelligent automated
moves, exception of when disk storage exhaustion occurs. Ifa disk or server is full,
volumes are stored elsewhere. However, most of the load balancing is done manually
in AFS cells at current time.

Figure 2 demonstrates a situation where Disk1 houses a volume FS1_D1 (File server
1 - Disk1) that has a frequent number of accesses. In total thevolumes on File Server
1/Disk1 reach the upper limit of accesses the server can handle, which leave volume
FS1_D2 unavailable for its users. In this case AFS administrators have to manually
move the upper FS1_D1 volume to another server, in this case File Server 2. The most
suited partition is Disk1, with enough space and no frequently accessed volumes. Hav-

7From the AFS administration point of view. The users do not know the physical location of the volumes
due to transparent access in AFS

9

2.2 Load Balancing 2 BACKGROUND

Figure 2:Realistic volume distribution

ing more hard disks/spindles, file server 2 can handle more accesses, but it is necessary
to take FS2_D2 and FS2_D3 into consideration before moving the volume. There are
no point in moving a volume to relieve a server only to exhaustanother one. At present
time such volume moves are usually performed when a file server reach its upper limit.
As already mentioned, intelligent moves are impossible without knowledge of the ac-
cess pattern for a volume over time. If a volume history couldconfirm that the FS2_D3
volumes over time stay on a low and none access level in average, it would have been
preferable to move one of them to another server (for instance file server 1 / disk 1
which has freed up space), making space for (a) more accessedvolume(s).

To find how available a partition is, it is useful to use a metric which calculates total
volume accesses and used diskspace for a disk. Thus,

DiskAvailability= TotaAccesses
GB

An optimized solution for volume distribution is a NP-Complete problem. Given a set
of items, each with a cost and value, the number of each item isdetermined to be in-
cluded in a collection so that total costs is less than some given costs and the total value
is as large as possible. Thus, having a set of volumes and partitions, how can the vol-
umes be distributed over the partitions in order to exploit the storage space and handle
accesses in a optimized fashion? A solution is to calculate every possible volume com-
bination on every partition, which is an exponential time growing problem. However,
given the size of the distributed file system and additional conditions, a polynomial
time approximation algorithm is preferred for this project. [ref coreman]

10

2.3 Oracle Database 2 BACKGROUND

2.3 Oracle Database

(About Oracle advantages and disadvantages)

The CERN central database service has Oracle databases in production. Exploiting a
supported service will ease AFS administration if the database fails, making Oracle a
natural choice. Nevertheless, the SW design should be independent of database vendors
considering the open source nature of AFS. Several Oracle features like PL/SQL8 are
therefore not exploited.

2.4 Perl

Perl was initially designed as a glu language for Unix, and has long since spread to most
other operating systems. Hence, the language is available on several programming en-
vironments. Also, no changes are required when moving scripts between different
OSs. This ability makes Perl suited for AFS development, considering that distributed
file systems usually house different kind of operating systems and architectures. For
instance, at CERN the AFS file servers run Linux and Solaris onIBM and SUN ma-
chines. Scripts written for the AFS file servers do not need totake the underlying
platform into consideration. Nevertheless, Perl is used byAFS developers and is a
natural choice for further development[6].

2.5 Perl and Oracle

Some components are required in order to make Perl and Oraclemodules commu-
nicate efficiently: Perl DBI, DBD:Oracle and OCI[4] (See Figure 3) Perl DBI is a
generic application-programming interface (API), similar in concept to Java Database
Connectivity (JDBC). Perl object oriented archtecture makes it possible to have a sin-
gle routing point to many different DBs, which is another argument for using Perl in
a Open Source environment where several DBs should be supported. Oracle uses the
DBD:Oracle driver, a Perl module that provides the actual communication to the low-
level OCI code. The OCI component makes the final connection the Oracle DB.

8Procedural Language/SQL.

11

3 STATE OF THE ART

Figure 3:The Perl/Oracle architecture

3 State Of The Art

This chapter discusses the CERN AFS cell’s setup and dimensions. The following
chapter 3.1 discusses how AFS is used at CERN, how data is presented and how deci-
sions are made in order to manage the system efficiently. Chapter 3.2 discusses AFS
admin, which is a supplement to AFS, implemented at CERN to ease administration.
Chapter 3.3 discusses how load balancing can be improved at CERN.

3.1 The CERN AFS Cell

Several analyses are requires to apprehend the situation inthe CERN AFS cell. Man-
agement, hierarchy, dimensions and even extensions to the AFS are crucial issues for
analyzing and, hence, tuning the load balancing using a DB.

Management hierarchy has significance influence on system efficiency. For instance,
replicas or read only volumes have potential importance forsystem performance, de-
creasing network traffic and callbacks, increasing responstime and availability. A dis-
advantage is that local project administrators need to create these replicas manually,
which unfortunately results in few read only volumes due to more management over-
head.

The CERN AFS cell tends to favor, at present time, relativelyless expensive storage
disks that are piling up requests, rather than several smaller disks that can handle re-
quests faster. In order to maintain the AFS service at present level during the growth
of file servers, users and projects approaching the LHC startup in 2007, there will be
installed a larger amount of smaller disks, which makes the system more available due
to more spindles. Hence, the disk subsystem is a potential bottleneck. If the number of
waiting I/O requests is a sustained value more than approximate 2 times the number of
spindles making up the physical disk, there is a disk bottleneck.

Some accesses are more costly than others. In the CERN cell volume changes are
backed up on tape every night. These accesses, which are streaming data from disks
to tape, can exhaust the disk if they are running simultaneously. Thus, two processes
are competing for the disk arm. Some intelligent code would be preferable in order to

12

3.1 The CERN AFS Cell 3 STATE OF THE ART

detect such situations. However, tuning on this level is nota part of this project. What
is worthy to notice is that such effects may have influence on the file server machine
monitoring and history.

Another important issue is volume size. A system with small volumes and few files is
ideal for optimizing performance. It is faster and less critical to move volumes that are
smaller. However, moving large volumes is costly and need tobe carefully planned. On
the other hand, for project administrators it is more convenient to create large volumes
to ease administration, which complicates optimization.

It is preferred to distribute a set of volumes over the file server machines in order to
avoid that all of them are involved if a server fails. Such distribution is increasing
the system availability for projects, but can easily conflict with volume distribution for
increased overall system performance.

These issues are important in order to understand how to analyze AFS history properly
and tune load balancing. It is preferred to find approximation algorithm that can take
these variables into consideration in order to find a generalapproach for load balancing
a distributed file system.

3.1.1 Basics

A look into the AFS term is preferable in order to analyze the AFS setup.

The AFS hierarchy At CERN the AFS system administrators decide the volumes’
physical location for making the AFS system effective. Theydecide every users’ and
project’s quota. However, the project leader decides how they are exploiting the given
space. Several of these decisions are straightforward and are automated. The project
leaders decide the size of their volumes (within physical limits) and if they are using
replication or not. These local decisions makes it even harder to manage the system
administration and load balancing for the AFS administrators. The project leaders de-
cide as well which users are granted, using protection groups. This modification is at
present time used at CERN, avoiding that the ACL files are not updated and ease admin-
istration work. With protection groups a project leader have more options for granting
users, even giving his or her administrator status away to another user if preferable,
without interfacing with the AFS administration. Hence, the hierarchy is:

• The AFS administrators. At present time there are three AFS administrators at
CERN. Their tasks are to load balancing the system for increased performance,
deciding disk quota for users and projects, installing new file servers, maintain
code and support the AFS system.

• The project leaders. There are approximately 5000 project leaders at CERN.
They exploit the disk quota given by the AFS administrators9. Users granted for

9The disk quota is reflecting the size of a project. If a projects need more space there are financial issues
involved.

13

3.1 The CERN AFS Cell 3 STATE OF THE ART

projects volumes, number of volumes, directory tree among other tasks is as well
done by the project administrator.

• Users. Users have their own accounts, independent of which projects they are
granted to, if any.

Dimensions At the CERN AFS cell there are approximately 15000 users, 5000
projects, 8000 client machines and 30 servers for the time being. There are 4000 active
users at any time. It is necessary to carefully decide required storage space in order to
save historical statistics in a database. The toal disk capacity is 12 Terabytes, which is
approximately 410 GB each server. Over a period of 3 years disk capacity is expected
to increase to approximately 100 Terabytes. The typicall file servers at current time are
SunFire V240 and IBM xSeries models 345 and 346.

Volumes Small volumes make load balancing more straightforward andless time
consuming to move volumes between file servers if neccessary. An idealistic volume
size for the CERN AFS cell, considering the dimensions for the time being, is 1 GB
with 100 large files. Unfortunately, the project leaders using AFS usually prefer large
Volumes. Volumes are mounted into the directory hierarchy and several volumes means
more overhead and management work. It is more convenient to use few and large vol-
umes than several small ones. Volume size is a tradeoff between the AFS administrators
and the local project leaders wishes, regarding that the administrators simply decide the
total quota to each project. The project leaders decide the volume partitions in the end.
Consequently, moving a volume could be time consuming and costly, maybe several
hours, and an eventually move has to be carefully evaluated.

Replications Using replications for reducing call backs and network traffic is unfor-
tunately not a common task. Replications are not transparent and has to be mounted
and managed by the local project leaders. Knowledge about AFS and replications are
required and is used only by a few projects at CERN. Network traffic is neither the
main performance bottleneck.

Database servers There are 3 main database servers at CERN and 2 for backup. The
3 main servers are located in the same building and need backup in case of fire. This is
necessary because the database servers are not backed up on tape.

Backup server The backup server backup the data on HDs every evening, whereall
changes are stored on tapes. Every 30 day the data is fully taped from scratch. Every
user and project have direct access to their backed up data. The backup is not a part
of their quota. The backup on tape is done by the CASTOR10 project. CASTOR is a
hierarchical storage management system developed at CERN.

10CERN Advanced STORage Manager

14

3.2 AFS Admin 3 STATE OF THE ART

P, Q, asis and U volumes CERN operates with different kinds of volumes. p and
q are on more reliable HW than u. p volumes are backed up while qvolumes are not.
Asis are volumes with loads of public domain software. The sowftare is not installed
on the machine, but rather directly accessed through AFS viasymlinks.

3.2 AFS Admin

AFS Admin is a supplement to AFS, implemented at CERN by Wolfgang Frieble from
DESY. The purpose of AFS Admin is to ease administration, using routines that are
meant to enhance the functionality of the AFS module. The routines retrieve volume,
server and partition status information data among others,e,g accesses, total disk usage,
volume names, volume location etcc. AFS Admin makes it as well more convenient for
project administrators to create, delete and grant users. When administration requests
status information, AFS admin interfaces with the file server machines in order retrieve
the data. For instance, retrieving data for volume with ID number 537031140 using
vos examine in a console results in:

vos examine 537031140

> p.lep.higgs.general1 133588940 RW 1335889 K On-line

> afs45.cern.ch /vicepa

> RWrite 537031140 ROnly 0 Backup 537031142

> MaxQuota 1500000 K

> Creation Wed May 26 12:50:08 1999

> Last Updated Fri Feb 18 15:20:34 2000

> 0 accesses in the past day

This approach, accessing the file servers for each AFS admin request, may compete
with the AFS users’ accesses and is not preferable. Storing volume information in
a DB will make AFS statistics more available for administrators and relieves the file
server machines. The design and implementation for a more effective AFS Admin is
discussed in Chapter 4.

3.3 Load balancing

The AFS administration at CERN prefer to cluster the sets of volumes. If a new volume
is created it is stored on one of the file servers that all readyhouse the volum’s set.
Among the file servers that house the set, the volume is storedon the file server that
has most disk space available. Only when the file server(s) that house a set of volumes
are full, a new file server is chosen. (The available file server with most available space.
See Figure 4. File server 1 houses the CVS and SUN volume sets.File server 2 and
3 house the ATLAS and CMS volume sets. File server 1 is full andthe new SUN
volume is stored on the file server that has most disk space available, which in this

15

3.3 Load balancing 3 STATE OF THE ART

Figure 4:Load balancing

example is file server 2. When this happens, File server 1 and file server 2 house the
SUN volumes. File server(s) to house a set of volumes is manually chosen when a new
project is created. At present time, the only automated loadbalancing is volume moves
if volumes on a partition are increased in size and approach the disk space limit.

This volume clustering may conflict with the optimized load balancing mentioned in
chapter 2 due to the decreased number of file server candidates to store new volumes.
Nevertheless, this approach is chosen for administration and network traffic in mind.
If one volume in a set (a project) is unavailable, usually thewhole project is influenced
anyway. It is preferable that a whole project is unavailableuntil the server is restored,
in contrast to a scenario where several projects loose some of their volumes.

16

4 SW DESIGN

Figure 5:Load balancing and tuning using a DB.

4 SW Design

An underlying system was designed and implemented during the work of this thesis.
First, a DB was designed and tested before it was set into production. Perl scripts
were implemented in order to update the DB with data from the underlying AFS sys-
tem. Because the DB will be used by independent projects a interface was created,
for retrieving, updating and adding data. However, the mainpurpose of the DB is to
partly automate effective load balancing. A graphical userinterface was implemented
in order to analyze volume history, and thus, better understand the volumes’ behavior.
The SW design for monitoring and tuning load balancing in theCERN AFS cell is
demonstrated in figure 5.

The SW design for monitoring and tuning load balancing depends on already imple-
mented applications and interfaces like Diskstat and the Vos.pm and Volset.pm pack-
ages, described in chapter 3.

1. The Diskstat script gather volume data information every24 hours from the file
servers and write the results to a file AFS.snapshot. This fileis at present time
used to present the file servers’ status in terms of disk usage, accesses, volume

17

4.1 Database Design 4 SW DESIGN

quota and so on. Because AFS.snapshot is overwritten every 24 hours history
data is lost.

2. The afs_monitoring script parses and stores the data in AFS.snapshot every 24
hours to the DB, keeping the volume history. In addition to store this data it de-
tects which volumes are most accessed on each file server and stores the volume
IDs in a DB table. The most accessed volume IDs are of use for the daily_updates
script.

3. Despite intelligent volume placement a file server machine may be overloaded
during the day. The daily_update script connects to the DB and detects which
volumes are most accessed on each file server the most recent day, due to the
fact that these volumes are potential candidates for overloading the file server
during the day. The script stores volume data statistics forthe given volumes
into the DB more frequent than afs_monitoring, making the system (Automated
volume moves) able to move off heavily accessed volumes whenoverloading
occurs (see figure 3, chapter 3.1). The script is executed several times a day and
use the Vos.pm package to retrieve the vaild data from the fileservers. Only
a given number of volumes are frequently monitored during the day to not put
unnecessary load on the file servers.

4. Analysis of DB data for intelligent volume moves. Volume history data is ana-
lyzed in order to find some connections between the variablesfor automate load
balancing. The most obvious optimization gains are automated first, then the
script will be tuned over time. Hence, there will be an underlying approximation
algorithm. Inital analyses are included in this thesis and will be continued in
further work.

5. The script will be tested on the AFS system and will be analyzed in order to
improve the approximation algorithm for better load balancing. This is not a part
of this thesis, but will be implemented in further work.

Most of the information stored in the DB is updated every 24 hours, which is a costly
operation. To avoid overloading the file servers during monitoring of the AFS system,
only the ten highest accessed volumes from the previous day,which are likely to be
potential problems, are monitored more frequently for loadbalancing the system. This
is a tradeoff between reliability and performance. DB and table design is covered in
chapter 4.1, script design for updating the DB in chapter 4.2, interfacing with the DB
in chapter 4.3, graphical representation of volume historyin 4.4 and finally the AFS
Admin in 4.5.

4.1 Database Design

At CERN central DB services are provided by the Database and Engineering group,
which use Oracle databases. Due to the DB size and administration issues this service

18

4.1 Database Design 4 SW DESIGN

Figure 6:DB ER-diagram

was chosen for serving the DB. Because this monitoring approach will be set in produc-
tion elsewhere the DB design had to be independent of the underlying DB architecture.
Nevertheless, some optimization for Oracle is described inchapter 4.1.2

4.1.1 Data distribution in DB

An Oracle DB stores the AFS file system data history, such as volume access, volume
moves, used space etc. Normal forms are not preferable in this case. Data tables
are divided into the types of data that are most frequently updated in order to avoid
unnecessary data replication. Some Volume information is seldom updated, once a
week or once a month. Other data is updated more frequently. The basic idea is to
timestamp data if there are no modifications (The previous updated data is also valid
in the most recent update). If there are any modifications newdata is inserted. In this
way it is possible to create time boundaries for which periodany given data is valid.
Thus, volume ID and date is required to retrieve the volume history data from the DB.
Because replicas of any RW volume share the same volume ID, server and partition
location is also required for RO volumes.

There are 5 tables:File servers, id_volumes, volumes, volume_dataanddaily_updates.
The tablesFileserversand id_volumekeep the relation between file server and vol-
ume ID number and name. The ID numbers are used as keys in the tables volumes
and volume_data. TableVolumesstores less frequently the volume data while table
volume_datastores more frequently updated data. There is a one to many relation-
ship between the tablesvolumesandvolume_data. For one row in tablevolumesthere
can be several updates for the volume’s frequently updated data. Tabledaily_updates
keeps track of which volumes are to be monitored every hour for automation of volume
moves. See figure 6 for a ER diagram.

19

4.1 Database Design 4 SW DESIGN

(a)

Figure 7:Table Fileserver

Figure 8:Table id_volumes

Table Fileserver and id_volume

Tablefileserver (figure 7)identify ID_SERVERused in DB with its real name. Table
id_volumes (figure 8)identifies volume ID,ID_VOL, with volume name.

Table volumes:

The data intable volume (figure 9 and figure 10)is volume data which is not updated
frequently. For each daily update the script determines if there are any differences
between volume data in the DB and the AFS.snapshot file11. If there are no edited
fields for a given volume, for the fieldsID_SERVER, ID_PARTITION, SET_ID, ID_REP

11A file updated every 24 hour with file server information

20

4.1 Database Design 4 SW DESIGN

Figure 9:Table volumes part 1

or ID_BACKUP, DATE_UPDATED is updated with todays date. No further data is edited.
If there are any changes a new row is created, withRECENT_ROW identifying that this is
the most recent row for the given volume ID. Because selecting with date comparison
is costly, the fieldRECENT_ROW is set to 1 for the most recent row for a given volume
ID. This is done in order to make select statements more effective in retrieving the
most recent volume data. The most recent data is likely to be the most interesting
information and should be more accessible than older data. Older rows for the given
volume are not updated anymore with timestamps andRECENT_ROW is set to 0.

In order to keep the DB at a given size, old volume data is compressed. For instance,
all volume data that is between one and two months old can be stored as one (or few)
row(s) with the average field values. Because id_server and id_partition can’t have
average values, for storing volume moves history, there canonly be average values for
between volume moves.

If a volume is a RW volume, it can have a replica (RO) volume ID and a backup volume
IDs. The AFS file server system allows one backup volume and several replicas for a
RW volume. Thus, a replica or a backup volume can’t have id_rep or id_backup volume
IDs in the DB. The RO and backup volumes’ parent is the RW volume. Because there
can be more than one volume existing on the file servers with the same ID (several RO
volumes),DATE_DELETED has to be in tablevolumesand not in the tableid_volumes.
Field DATE_DELETED stores the date when a volume is deleted from the AFS file
server system.

Table volume_data

The data in tablevolume_data(figure 11 and figure 12) is updated frequently. It has
the same mechanism as table volumes. In order to keep a secondary key for identifying
which row(s) belongs to any given row in table volumes, this table is always updated at

21

4.2 Updating the Database 4 SW DESIGN

Figure 10:Table volumes part 2

Figure 11:Table volume_data part 1

the same time as volumes. Because this data usually is editedmore often, several rows
are likely to “belong to” one row in table volumes.

Daily updates

Table daily_updates (figure 13) stores which volumes are to be frequently updated
during the day.

4.2 Updating the Database

There are two scripts that updates the database. afs_monitoring, discussed in chapter
4.2.1, updates the DB every 24 hours (at midight). Daily_updates, discussed in chapter
4.2.2, monitors the 10 most accessed volumes on each server.

22

4.2 Updating the Database 4 SW DESIGN

Figure 12:Table volume_data part 2

Figure 13:Table daily_updates

23

4.2 Updating the Database 4 SW DESIGN

4.2.1 afs_monitoring

The afs_monitoring script stores volume data from the file AFS.snapshot every 24
hours. The abstract approach is:

1. Compares volume data information between the AFS.snapshot file and the DB
and updates all changes.

2. Detect and mark deleted volumes

3. Detect and store the most accessed volumes IDs into a table

In order to update the DB, the script compares the updated fileinformation in AFS.snapshot
with the DB. If the script finds the same volumes in the DB, it updates its information.
If there is no new information to be updated it timestamps themost recent volume in-
formation with todays date. If there is any new information for the given volume, it
inserts a new row with the recent data from the file.

Update table fileserver If there any new file servers added to the system, the server
name is added to tablefilservers. As well, the file server is given a numeric ID to
decrease search time.

Update table volume_id If there are any new volumes added, the volume ID and
name is added to tablevolume_id.

Updating table volumes Because there is only one RW volume ID and one backup
volume ID in the file server system, the IDs works as unique identifications for these
volumes. However, clones or replicas of a RW volume share thesame volume ID.
Thus, location volume location is required in addition to volume ID order to create a
unique key for quering the DB. Because there are several rowsdue to history with the
same volume ID in the DB, the final attribute for the unique keyis recent_row=’1’,
which locates the most recent row available for the given volume ID.

This eases the update process. Updates for replicas will be explained, where the volume
ID is NOT unique.

The script first retrieves the variables from the updated file- AFS.snapshot:

$VOL_ID_FILE, $SERVER_FILE, $PARTITION_FILE, $VOLUME_NAME_FILE,
$SET_FILE, $QUOTA_FILE, $BLOCKS_FILE, $ACC_FILE, $DATE_FILE

wherevol_id is a numeric ID for the volume,server/partitionis the location of the
volume,volume_nameis the char name,set is the name of the set which the volume
belongs to,quota is the maximum disk space for the volume,blocksused is the disk
space used by the volume,acc is the number of accesses since last update,dateis the
date when the volume was created.

24

4.2 Updating the Database 4 SW DESIGN

The script compares the file information withtable volumesin the DB:

SELECT SERVER, PARTITION, DATE_UPDATED,SET,ID_REP,ID_BACKUP

FROM VOLUME

WHERE ID_VOL=$VOL_ID_FILE, ID_SERVER=$SERVER_FILE,

ID_PARTITION=$PARTITION_FILE,RECENT_ROW=’1’

RECENT_ROW is a flag that has the value 1 if this is the most recent row of data for a
given volume. If a row for a given volume no longer is the most recent, the flag is set
to 0, and the row is no longer updated. As explained in the lastchapter, the valid time
boundary for a row of data is given by the date it was inserted into the DB and the last
update date.

If volume data is modified:

If the volume is present but any of the valuesSERVER, PARTITION, DATE_UPDATED

or SETare not equal to the file variables, a new row is inserted into the tablevolume. If
the select statement doesn’t return any data the volume is entirely new and is inserted
into the table.

A new row of a given volume is to be inserted into the DB withRECENT_ROW=1. Any
other row with the same volume ID need to be updated with recent_row=0. This is
most practical to do before inserting the new row:

UPDATE VOLUME

SET RECENT_ROW=0

WHERE ID_VOL=$VOL_ID_FILE

Then the new row can be inserted:

INSERT INTO VOLUMES

VALUES($VOL_ID_FILE, $SERVER_FILE,$PARTITION_FILE, $TODAYS_DATE,

$TODAYS_DATE,$SET_FILE,$ID_REP_FILE,$ID_BACKUP_FILE,$DATE_FILE,

$NULLDATE , RECENT_ROW=’1’)

Where $TODAYS_DATE is the date of today, $ID_REP_FILE is the volume ID of the
volumes’ replica and $ID_BACKUP_FILE is the volume ID of the volumes’ backup vol-
ume (if they are present). $ID_REP_FILE and $ID_BACKUP_FILE are available through
the vos.pm12 package in the AFS system. $NULLDATE is defined as NULL until the
volume is deleted from the AFS file servers.

12Perl interface to vos examine, vos listvol, vos listvldb andvos partinfo

25

4.2 Updating the Database 4 SW DESIGN

Else - if data is NOT modified:

If the Volume exists in the DB and no variables are edited since last update, the script
updates the most recent row for the given volume with a timestamp of today:

UPDATE VOLUMES

SET DATE_UPDATED=$TODAY

WHERE ID_VOL=$VOL_ID_FILE AND RECENT_ROW=1

NB! The same approach is carried out for the tablevolume_datawith the identical
timestamp $TODAYS_DATE.

Updating replicas:

The RW and backup updates can easily operate due to the fact that the volume ID is
unique, but there can be several replicas of a RW volume. These RO volumes of a given
RW volume share the same volume ID. Thus, replica volume identification requires the
volume ID, the file server location and the partition location as explained. If no data
for a replica has been modified since the last update, the sameapproach as for RW
and backup volumes is used. The script finds the identical rowin the DB and updates
the timestamp,DATE_UPDATED. The problem occurs when a new replica is present or
data is modified. The volume ID is not a unique key. Setting allRO volumes with the
same ID to recent_row=0 would influence already up-to-date data for RO volumes on
other file servers and partitions.

Because a replica cannot move from one partition or a server to another, a replica that
is not updated can be marked deleted. Because of this, a replica is left with the flag
RECENT_ROW=1 even though there is new information for the volume ID on other
partitions.

Determine which volumes are deleted After the script has compared AFS.snapshot
with the DB, it goes through the DB and finds volumes which are marked withRE-
CENT_FLAG=1 and have an older date than the most recent update. These volumes
are not updated, which means that they were not present in theAFS.snapshot. These
volumes are marked withDATE_DELETED=$TODAY andRECENT_ROW=’0’.

UPDATE volume

SET recent_row=’0’ date_deleted=$TODAY

WHERE recent_row=’1’ AND date_updated<$TODAY

RECENT_ROW is set to 0, even though this volume won’t be updated again. For prac-
tical reasonsRECENT_ROW=1 is reserved for existing volumes.

26

4.3 Interfacing with the Database 4 SW DESIGN

Determine which volumes to be frequently monitored Determines and store which
volumes are most accessed for each file server machine. This script is used by daily_update
for frequent monitoring. For each server the following query is executed:

SELECT id_volume FROM VOLUMES WHERE RECENT_ROW=’1’ AND ID_SERVER=’<SERVER_NR>’
AND ROWNUM<10 SORT BY ACCESSES DESC

FOR EACH FETCH:

INSERT INTO DAILY_UPDATES VALUES (<COUNT_FETCH>, ID_VOLUME)

For each server the ID for the 10 most accessed volumes are stored into table daily_updates.
The daily_update script retireves the ID for all these volumes, quering table daily_updates,
when it is executed during the day.

4.2.2 Daily_updates

The script monitors the 10 most accessed volumes on each file server from the last daily
update. This is carried out in order to decide if any of the volumes should be moved to
another file server during the day. Thus, the script is important for the further work on
automated load balancing.Tabledaily_updatesis updated with the ID and position of
the ten most accessed volumes from the previous day. These 10volumes are monitored
through Vos.pm package functions every hour. The DB works ina similar way for more
frequent updates with the exception of accesses. $TODAY in the perl script support
updates down to each second.

Because the access data for a volume is set to default (0) every 24 hours, more frequent
DB updates for these volumes has to consider the delta value between two updates in
order to get the number of accesses between two time stamps.

For instance, if the script wants to calculate total accesses for a given volume between
09.00 and 10.00 with values A and B, the result is:

Value access 09.00→ 10.00 =4(A,B)

4.3 Interfacing with the Database

The Perl packagedb_afs_admin.pmwas implemented for interfacing with the DB. It
was beneficial to introduce a interface for the DB for severalreasons:

• At this point there are three different known modules that are interfacing with the
DB: AFS Admin, a Perl CGI script that represents partition and volume history.
Furthermore, the scripts for automated load balancing willinterface with the DB.

27

4.3 Interfacing with the Database 4 SW DESIGN

• AFS Admin is at current time upgraded by other developers that are exploiting
the DB developed in this work. Thus, an interface for other AFS projects to
interface with the DB will ease developement. A new user account for the DB
and the package db_afs_admin.pm is everything that is needed for interfacing
with the DB.

The package contains subrotuines with SQL queries for both retrieving, adding and
updating the DB.

Nested SELECT statements are used to retrieve file server history. For instance, re-
trieving the most recent access data for partition A, serverAFS45, is carried out the
following way:

SELECT ACCESSES

FROM VOLUME_DATA

WHERE RECENT_ROW=’1’ AND ID_SERVER= (SELECT ID_SERVER FROM
FILESERVER WHERE NAME=’AFS45’) AND ID_PARTITION=’A’

This will return the the total number of the most recent volume accesses for partition
afs45/a. Because the most recent data is marked with the flaggRECENT_ROW=’1’,
current data is faster to retrieve from the DB, which is beneficial for AFS Admin and
other modules that do not need volume history. Selecting older volume data is done
with dates. For instance, retrieving all access data for a file server 2 days ago for parti-
tion afs45/a:

SELECT ACCESSES_INT

FROM VOLUME_DATA

WHERE DATE_ADD2DB<=($TODAY-2) AND DATE_UPDATED=>($TODAY-2)
AND ID_SERVER= (SELECT ID_SERVER FROM FILESERVER WHERE NAME=’AFS45’)
AND ID_PARTITION=’A’

The select statement finds the volume access data for the given date for the partition.
The db_afs_admin.pm perldoc has a full overview of all available routines:

.::db_afs_admin(3) User Contributed Perl Documentation .::db_afs_admin(3)
NAME

db_afs_admin - Interface to AFS admin History Database
SYNOPSIS

$used_blocks_volume = db_get_volattrib($vol_id,’Blocks’,$day_count);
$quota_volume = db_get_volattrib($vol_id,’Quota’,$day_count);
%accesses = db_get_volattrib($vol_id,’Accesses’,$day_count);
The keys of the %accesses hash are the partition names (e.g. afssrv1/a).
If the argument refers to the RW volume, only accesses to the RW volume are
returned. If the RO name or ID is given, all accesses to the RO volumes are
stored in the %accesses hash. If the BK name or ID is given, the accesses
to the BK volume are returned. $day_count is number of days in the past

28

4.3 Interfacing with the Database 4 SW DESIGN

it is preferable to retrieve the data from. 0 and 1 is yesterday, 2 is
two days ago etc. 0 is faster than 1 and use the recent_row flag for yesterdays‘
records.

$total_accesses_partition = list_partition_db($partition,’Accesses’,$day_count);
$total_quota_partition = list_partition_db($partition,’Quota’,$day_count);
$total_blocks_partition = list_partition_db($partition,’Blocks’$day_count);

Example: $partition = afs45/a (name server/partition)
insert_volume($volume_id);

@volumes = db_list_volumes($attrib);
Where $attrib is ’id_vol’ for the volume id, or ’name’ is the volume name.
Returns an @array of ALL VOLUMES in the DB.

%accesses = gd_get_volattrib($vol_id,’Accesses’,$day_count, $id_server,$id_partition);
%blocks = gd_get_volattrib($vol_id,’Blocks’,$day_count,$id_server,$id_partition);
%quota = gd_get_volattrib($vol_id,’Quota’$day_count,$id_server,$id_partition);
%files = gd_get_volattrib($vol_id,’Files’,$day_count,$id_server,$id_partition);

The gd_% functions are written for the graphical presentaion cgi script for performance
reasons. The function returns a history hash for the given attribute, where the date in ’dd/mm/yyyy’
fashion is the key for the given value.

DESCRIPTION
db_get_volattrib returns used $blocks of 1024k for a volume, with arguments
($vol_id,’Blocks’,$day_count);

db_get_volattrib returns $quota (Blocks of 1024k) given to avolume, with arguments
($vol_id,’Quota’,$day_count);

db_get_volattrib returns %total_accesses for a volume (last day) with arguments
($vol_id,’Accsesses’,$day_count);
list_partition_db returns $total_accesses for partition with arguments
($partition, ’Accesses’,$day_count);
list_partition_db returns $total_quota in blocks of 1024k for a partition with arguments
($partition,’Quota’,$day_count);
list_partition_db return $total_used_blocks of 1024k for a partition with arguments
($partition, ’Blocks’,$day_count);
insert_volume with argument ($id_volume). Use this function after created a new volume
on the AFS system. Only the volume_id is needed, also for ROs.

db_list_volumes returns @array of all volumes in the DB with argument
’id_vol’ or ’name’.

gd_get_volattrib returns %hash of access history for a given volume with argument ’Accesses’.

gd_get_volattrib returns %hash of blocks history for a given volume with argument ’Blocks’.

gd_get_volattrib returns %hash of file count history for a given volume with argument ’Files’.

gd_get_volattrib returns %hash of quota history for a given volume with argument ’Quota’

gd_list_partition returns %hash of Accesses history for a given partition with argument ’Accessers’
AUTHOR

Rune J.Andresen

AFS Admin uses the db_get_volattrib, list_partition_db and insert_volume subrou-
tines. The same subroutines will be used for automated load balancing. The graph-
ical user interface for analyzing volume history, described in chapter 4.4 uses as well
gd_get_volattrib, which are designed to retrieve history data more efficiently for whole
partitions.

29

4.4 Presenting statistics 4 SW DESIGN

Figure 14: Perl SGI graphical presentaion

Figure 15:Access history presented in Perl CGI

4.4 Presenting statistics

For human interfacing, the Perl GD:Graph module is used for presenting file server
history. Load balancing can’t be fully automated due situations which is difficult to
predict. Thus, AFS administrators need the statistics presented. The representation
is as well cruical for analyzing and understanding how to make load balancing more
effective. A Perl script updates server statistics images after every DB update (each
hour for the selected volumes in the table daily_updates). AHTML/Perl CGI page
presenting the statistics is refreshed frequently in orderto present the updated data[2].

The first level has an overview of all file servers available (Figure 14). The second level
has an overview over all partitions for a given server. It is possible to choose between
the total partition or the induvidual volume history on the third level. Furthermore, it
is possible to choose history for accesses, disk usage, diskquota and file-count. For
instance, Figure 15 presents the total access history for partition AFS51/a. Figure
16 presents the total disk volume usage history from last fully update for partition
AFS51/a.

30

4.5 Interfacing with AFS Admin 4 SW DESIGN

Figure 16:Used blocks history presented in Perl CGI

4.5 Interfacing with AFS Admin

The new AFS admin implementation interfaces with the DB using the db_afs_admin.pm
package. These modifications are carried out to retrieve data faster without the need
of accessing all file servers, as discussed in chapter 3. Thus, instead of examin all file
servers every time project administrators need volume information, the information
can be located in the DB. Also, when a AFS administrator is creating a new volume,
afs_admin will update the DB directly. The DB does not need towait until next main
update to retrieve this volume data.

For most volumes the DB information is from the present day. If current volume in-
formation is required AFS Admin use the Vos and Volset interfaces that retrieves the
information directly from the file servers.

4.6 Discussion

This chapter explains the most essential parts of the code. Unfortunately, some details
had to be left out due to the size of the implementation, whichcount approximately
4000 lines of code. All files are stored on the CD in addition toa README with
file explanations. The system has been running stable for 6 weeks at current time.
However, old data in the DB has to be deleted or compressed in order to avoid that
the tables grow for infinity. The most straightforward approach is to delete data that is
1 year old. It would be beneficial to compress old data in orderto keep older history
data, but this approach is more complex to achieve due to the DB design. Also, more
rows of data results in slower execution of queries. This problem has to be considered
in further work.

31

5 METHODOLOGY

5 Methodology

The file server history is to be used for automation of load balancing. Some methods
are discussed for tuning the automation, which is estimatedto last for several months.
Because moving all volumes in an idealistic initial position is impossible (this would
make the AFS cell unavailable for several months), volumes have to be moved over
time for better utilization of the system. Furthermore, thesize of the CERN AFS cell is
estimated to grow with a factor of 10 within 3 years and project and volume behavior
may change dramatically. This chapter discusses methodology for the volume move
implementation. Some central issues to take into consideration are:

• A volume with many files is more time consuming to move than a volume with
fewer files.

• A volume that is heavily accessed is likely to be a potential problem wherever
it is located. History should avoid that a volume is moved into a loop between
servers.

• Volumes that belong to the same set should be clustered over few file servers in
order to avoid that all projects are influenced by a server crash. This policy may
conflict with an idealistic volume distribution.

• A new volume is stored into the file server, available for the set, with most free
disk space. This initial algorithm may be improved in order to make load bal-
ancing more effective.

5.1 Metric for volume availability

The file server partitions, or disks, are the potential bottlenecks or hot spots. As men-
tioned in chapter 2, a disk can be over-exposed with accesses, or there are no free space
left. The former may have consequences for the whole file server, blocking other parti-
tions to perform any I/O. In order to find a partition’s availability it is useful to introduce
a metric, which divide total volume access with used disk space (in blocks of 1024KB).

DiskAvailability= TotalAccess
UsedBlocks

Calculating disk availability in this straightforward manner makes it easier to detect
partitions that are not in harmony. Ifdiskavailabilityis a large number there are many
accesses each block, leaving empty space unavailible for other volumes that require
less I/O requests. In the other extreme, ifdiskavailabilityis approaching zero, several
idle volumes are occupying the partition and are not exploiting the disk’s access ca-
pacity. An approximate optimized value fordiskavailability is total accesses divided
by total used blocks in the whole AFS cell over several days. An optimized value for

32

5.2 Methodology of Load balancing 5 METHODOLOGY

Figure 17:Server diskavailability

a given day would require to take disk and I/O capacity for every partition/disk into
consideration.

Figure 17 demonstrates an AFS cell with two file servers with two partitions/disks
each. Server1/PartitionA has an lowdiskavailabilitywhile Server2/PartitionB has an
highdiskavailability. Moving some volumes from the latter to the former would exploit
the disk space in a better manner on Server2/PartitionB and exploit the ability to han-
dle more accesses on Server1/PartitionB. Server1/PartitionB and Server2/PartitionA
are close to the averagediskavailabilityand are not first priorities for an optimization
algorithm for load balancing. Furthermore, this scenario requires thediskavailability
to be approximately the same in average for each partition over time before moving
any volumes between servers. (See chapter 2).

5.2 Methodology of Load balancing

There are several approaches and methods for load balance anAFS cell. Initially the
load balancing problem is NP complete. Finding one or several approximation algo-
rithm(s) and tune them over time is the most realistic approach. Furthermore, even if
there where possible to solve a NP complete problem in polynomial time, moving all
volumes in their right position would not be an option considering the size of the CERN
AFS cell[5]. Also, number of files for every volume is essential for volume moves. If
there are a high file count it is time consuming and costly to move off the volume.

33

5.2 Methodology of Load balancing 5 METHODOLOGY

Figure 18:Four days history for volume p.cvs.cesar

Chapter5.2.1 will discuss some approaches for finding an approximation algorithm. Of
course, this algorithm has to be tuned over several months before it is approximately
optimized.

5.2.1 Method1

The most straightforward method is to consider the presentdiskavailabilityfor a vol-
ume. If the presentdiskavailabilitymakes the volume a candidate for moving it off
to another server, the algorithm takes the volume history into consideration. The im-
portance of Diskavailability will decrease with the history timeline. For instance, the
diskavailability of the present date will have more importance than the day before and
so on.

Figure 18 demonstrates an example. Volume p.cvs.cesar has ahigh diskavailabilityat
present time and considered to be moved to a partition with less workload. To make
sure that is not an exception, history is validated to maximize the probability that the
number of accesses the next day will stay at the same level. The statistics of the present
date will count most and older history data have less influence. Lets say we take 100%
of today’s value into consideration added to 90% of yesterday’s value and so on. The
volumes on the partition with the highest values are candidates for moving. Using his-
tory in this fashion the algorithm will find which volumes that have highest (and lowest)
diskavailabilityover time, eventually calculate the probability that the volume move
will gain system performance. Thus, an approach for load balancing with method1 is:

1. Detect partitions with the highest totaldiskavailability. The number of how
many partitions to take into consideration is a variable,nr_partitions, and has
to be tuned over time. As well, the partitions with the lowestdiskavailability
have to be detected as a target for volume moves.

34

5.2 Methodology of Load balancing 5 METHODOLOGY

2. For each partition, volumes with the highest diskavailability at present date are
detected. The number of volumes to be evaluated is an variable,nr_volumes, that
has to be tuned over time.

3. Calculate a sum for each volume that are selected in stage 2with the following
approach: Ifdiskavailability for today isda0, diskavailability for yesterday is
da1, diskavailabilityfor two days ago isda2etc, a formula

1xda0 + 0.90xda1 + 0.80xda2 ... 0.1xda9

can be used. The decreasing ten percent,dec_percent, and ten days in history,
history_days, are two variables that have to be tuned over time.

4. Sort the volumes bydiskavailabilityover time and move off a number of vol-
umes, a variablenr_volumes, to partitions with free space and low diskavailabil-
ity.

5.2.2 Method2

Another method is to locate trends in the volume history. A volume may have a repeat-
ing access pattern over time. If this volume, let say, only isaccessed in the weekdays,
another volume that is accessed only in the weekends could bemoved to the same par-
tition as the former volume. Several project volumes at CERNare accessed by cron
jobs13 for storing data, making this approach useful for load balancing. Figure 19
and 20 demonstrate two volume histories that fix together, having the opposite access
period. Volume 1 has a weekly pattern with a high diskavailability on mondays and
Tuesdays, and a low diskavailability on Fredays. Volume 2 has a weekly pattern with
a high diskavailability on Fredays, and a low diskavailability Mondays and Tuesdays.

This repeated period for volumes are only likely to be valid for project accessed by cron
jobs. Volume access pattern for volume belonging to end users or humans in general
are impossible to predict. Hence, method2 is likely to work more efficient when used
on volumes or partitions that are mainly accessed by cron jobs.

5.2.3 Discussion

An approximation algorithm will eventually result in improved system performance,
using method1 or/and method2, tuning the algorithm variables over time. Nevertheless,
moving volumes between partitions has a cost. Large volumeswith a large file count
can take hours to move, and volume data is unavailable duringthe cloning process
(Chapter2). Some analysis has to be performed in order to move such volumes. Small
volumes with a low file count may be moved between servers for tuning the algorithm
variables. If the move turned out to be a bad move, it can easily be moved back to
it initial position. A requirement for large volumes is thatthey are moved between

13Cron jobs are scheduled to be executed periodically

35

5.2 Methodology of Load balancing 5 METHODOLOGY

Figure 19:Diskavailability Volume 1

Figure 20:Diskavailability Volume 2

36

5.2 Methodology of Load balancing 5 METHODOLOGY

servers with a limited frequency, proportional to the size/file count, due to the costs of
moving them.

37

6 ANALYSIS

6 Analysis

This chapter analyzes the statistics data from the DB and measure the time of volume
moves, for better understanding the state of the CERN AFS cell. First chapter 6.1
analyzes the history data for the server level. Chapter 6.2 analyzes the partition level.
This is followed by chapter 6.3 analyzes trends in differentkinds of volumes, that is,
history trends for user volumes, project volumes and scratch volumes. The graphical
interface to the DB is used for retrieving the data, described in chapter 4.4. Finally, in
chapter 6.4, the analysis is evaluated in the light of the cell’s size and performance.

6.1 Analysis on server level

The distribution of volume types is different for each server. Some servers have a
majority of user volumes and others have mostly project volumes. Because of the
hypothesis that project volumes are accessed with cron jobsand have a repeated access
pattern that is easier to predict than user volumes, this chapter analyzes history data for
a server with a majority of user volumes and another server with a majority of project
volumes. It is beneficial to find a connection between number of user volumes, project
volumes and accesses. If file servers with a majority of project volumes have a repeated
period of accesses, this can be exploited for better load balancing. On the other hand,
user volume accesses that are predicted to not recur at regular intervals, or nonperiodic,
may turn up to have some intervals that are beneficial for loadbalancing.

6.1.1 Analyzing AFS45

AFS45 has at present time 4% user volumes, 58% asis volumes, 30% project volumes
and 8% q volumes. Table 1 includes the history data for total accesses, used blocks
and quota. Figure 21 is a graph with the followingdiskavailability for the server.
Diskavailabilityis as explained in chapter 5 accesses divided by used blocks.

Date 10.07.05 11.07.05 12.07.05 13.07.05

Accesses 8.599.521 10.434.954 19.972.144 6.602.221

Used blocks 234.096.533 185.049.331 185.049.331 185.049.331

Quota 354.470.706 356.470.706 356.470.706 356.470.706

14.07.05 15.07.05 16.07.05 17.07.05 18.07.05

12.748.033 6.764.156 4.040.520 4.683.897 6.284.044

185.049.331 253.999.686 253.999.686 253.999.686 249.003.920

356.470.706 356.470.706 356.470.706 356.470.706 356.470.706

19.07.05 20.07.05 21.07.05 22.07.05

14.873.407 11.160.834 12.931.755 9.911.630

249.003.920 249.003.920 249.003.920 249.003.920

356.470.706 356.470.706 356.470.706 356.470.706

38

6.1 Analysis on server level 6 ANALYSIS

Figure 21:Diskavailabily history for afs45

Table 1: Accesses, used blocks and quota history for file server AFS45 from 10.07.05
to 22.07.05

Thediskavailabilityhistory in figure 21 demonstrates a trend where thediskavailability
during the weekends is lower than in the weekdays. There are also two local tops on the
12.07.05 and 19.07.05 (Tuesday) if the weekend 16.07.05 and17.07.05 is considered a
universal lower point. On the dates 13.07.05 and 20.07.05 (Wednesday) thediskavail-
ability is lower than Tuesdays, and is growing on Thursdays. Hence, the graph has as a
period that repeats. However, the total values are lower after Sunday 17.07.05 than the
week before.

6.1.2 Analyzing AFS91

AFS91 has at present time 18% user volumes, 20% q volumes and 60% project vol-
umes.

Date 11.07.05 12.07.05 13.07.05 14.07.05

Accesses 40472263 34422306 23843116 12474376

Used blocks 186467835 186467835 186467835 186467835

Quota 586074366 586074366 586074366 586074366

15.07.05 16.07.05 17.07.05 18.07.05 19.07.05

15558158 7884740 21190065 20378314 15843409

186467835 186467835 186467835 186467835 186467835

586074366 586074366 586074366 586074366 586074366

20.07.05 21.07.05 22.07.05 23.07.05

16626915 24825922 42647840 33022732

186467835 186467835 186467835 186467835

586074366 586074366 586074366 586074366

39

6.2 Analysis on partition level 6 ANALYSIS

Figure 22:Diskavailabily history for afs91

Table 2: Accesses, used blocks and quota history for file server AFS91 from 11.07.05
to 23.07.05

Figure 22 reveals no repeating period or pattern despite thehigh number of project
volumes. From Monday 11.07.05 until Saturday 16.07.05 thediskavailability is de-
creasing every day. The next week the diskavailability is growing to reach a global
maximum for this history graph on Friday 22.07.05.

6.1.3 Comparing AFS45 to AFS91

During a 12 days period it is possible to see a repeating period for AFS45. The re-
lationship between weekdays remained approximately the same. This server has a
majority of project and AFS configuration volumes. Analysisof AFS91 did not reveal
any weekly repeated period. AFS91 has 18% user volumes and AFS45 has 4% user
volumes. The low number of user volumes in the latter may be one reason for the
repeating period ofdiskavailability.

6.2 Analysis on partition level

Server analyses take all volumes on all partitions into consideration for a given server.
These analyses do not differ between the partitions. Thus, it is desirable to analyze
the individual partitions, which are the potential bottlenecks. Volumes sets are as well
distributed over partitions, not servers. A disk failure ismore common and more likely
to occur than a server crash. However, a server has a upper limit for I/O requests, which
makes both server and partition analyses important.

40

6.2 Analysis on partition level 6 ANALYSIS

Figure 23:Accesses, used blocks and quota history for file server AFS45

6.2.1 AFS45 Partitions

AFS45 has four partitions, AFS45/a, AFS45/b, AFS45/c and AFS45/s. Calculating
diskavailabilityfor each partition reveal some tendencies for AFS45.Diskavailabil-
ity for the whole server (see figure 21) has a lower limit 0.02 and an upper limit 0.1.
Figure 23 demonstrates thatdiskavailabilityfor the partitions have a lower limit 0.004
and an upper limit of 0.35. It is possible to recognize the pattern from figure 21, for
server AFS45, when analyzing figure.23. Nevertheless, the maximum values, dated
12.07.05, 14.07.05, 19.07.05 and 21.07.05, differ more forthe partitions than for the
server. The relatively low diskavailability for AFS45/a, AFS45/b and AFS45/c com-
pared to AFS45/s smooth out the differences for the total server history. This demon-
strates the importance of analyzing the partitions in orderto find potential bottlenecks.
For instance, an increasing amount of accesses for partition AFS45/s may over exhaust
the server capacity, which is not straightforward when onlyconsidering the total server
statistics, given that number of used blocks for each partition does not vary much.
AFS45/s houses a majority of asis volumes14, which eventually have a repeating pe-
riod for accesses. The asis accesses may be regeneration of symlinks for public domain
software.

6.2.2 AFS91 Partitions

Figure 24 reveals that partitions AFS91/b and AFS91/s have very few accesses. Par-
tition AFS91/cdiskavailabilityhistory is nearly identical to the server history, Figure
22. AFS91/c houses only Atlas project volumes, which indeedare frequently accessed.
This partitiondiskavailabilityhistory has no obvious repeating period, which for this
case disproves the hypothesis that project volumes are easier to load balance due to a
repeating access pattern.

14AFS configuration volumes

41

6.3 Volume moves 6 ANALYSIS

Figure 24:Accesses, used blocks and quota history for file server AFS91

6.3 Volume moves

Moving volumes between partitions has a cost, which has to beconsidered before a
volume actually is moved. As discussed before, a large volume is time consuming to
move, and thus, could make the volume data unavailable for several hours during the
cloning process. If large a volume is decided to be moved, it is particularly impor-
tant that the move gain the overall performance, and it does not to be moved again
in the near future. Because volume moves move data between partitions, they have a
influence on the server’s response time during the moving process, and other volumes
may be less available. Measuring volume moves when a server is heavily accessed
could give very different results. Thus, the following measure of volume moves are
performed during the night when most of the servers are less accessed, and thus, only
give the best case results. Nevertheless, most volumes should be moved at night to
avoid competing with the volume accesses during the day. Table 3 includes the aver-
age volume moves between two IBM servers with CERN Linux installed and two Sun
servers with Solaris installed. The volume sizes are 2GB, 4 GB and 6GB.

size time IBM/Linux to IBM/Linux time Sun/Solaris to Sun/Solaris

2GB 4m5.436s 20m2.315s

4GB 4m46.019s 22m18.660s
6GB 8m46.265s 30m57.39s

Table 3. Timed volume moves between IBM/Linux servers and between Sun/Solaris
servers

Figure 25 demonstrates the difference in time between moving volumes between two
IBM/Linux servers and two Sun/Solaris servers. The Sun servers are older than the
IBM/Linux servers, which is likely to be the main reason for the time gap. The
Sun/Solaris servers use as well RAID5 disks for backup, which save disk usage but
slow down the writing process. The IBM/Linux servers use disk mirroring, which in-

42

6.4 Discussion 6 ANALYSIS

Figure 25:IBM/Linux volume moves vs Sun/Solaris moves

crease the write process, but requires more disk space. Nevertheless, in the CERN AFS
cell there is a 2:1 relationship between reading and writing, which makes the reading
process the important one. For both the IBM/Linux and the Sun/Solaris servers the
measured time for volume moves for 2GB and 4GB are very close.The initial volume-
move process, cloning the volume, copies the vnode index, which is a table of pointers
between directories and files in the volume. Hence, the volume file count is the critical
variable for the initial state for volume moves, which is thesame value for all volumes
in this experiment. From 4GB to 6GB the Sun/Solaris servers volume moves are more
increased in time than the IBM/Linux servers. This is eventually due to more time
moving the volume than actually creating the clone, and the Sun/Solaris servers (using
RAID5) write slower than the IBM/Linux servers.

6.4 Discussion

Finding repeating periods for disk partitions and servers containing project volumes
where not as straightforward as predicted. User volumes maybe as well easy to predict
than project volumes, considering that most of them are usedduring the week and
are idle during the weekends and nights. Nevertheless, because sets of volumes are
gathered on few partitions, it should be possible to locate the projects that have a stable
repeating access pattern, if any, analyzing on partition level. Querying every volume
that belongs to a set could easily be costly and time consuming. Of course, when the
DB is growing and more history data is available, other trends for the different kinds of
volumes may be revealed. Considering the approximate 20 000volumes in the CERN
AFS Cell at current time, finding matching volumes, discussed in chapter 5.2.2, is
neither a straightforward task, which in theory requires approximately 20 000 compare
operations for finding the best match.

Timing volume moves revealed a difference between the Sun/Solaris and IBM/Linux

43

6.4 Discussion 6 ANALYSIS

servers, which is eventually critical for load balancing. It is more costly to move off a
volume from a Sun server than from a IBM server.

44

7 TROUBLE SHOOTING

7 Trouble shooting

The volume accesses statistics are reset every 24 hour. Because of a bug in the Open
AFS code this was done 08.00 in the morning for the Solaris fileservers, and not at
midnight. Diskstat is updating the data at 05.00, which means that the access statuses
for the Solaris servers are at another stage than the Linux servers. The fix is to run
diskstat just before the access data is reset, and set the Solaris servers to be reset at
midnight. The original script used a time zone correction function that did not work.

Performance for the updating script was poor due to many select and update statements
(approximately 43000 loops each time the update script was run). The program was
updated with hash tables to be capable of retrieving more data in one select query.
The script accesses the hash tables more frequently than accessing the database, which
reduces execution time (From approximately 5 hours to 3 hours).

45

8 CONCLUSION

8 Conclusion

As the distributed file systems grow, it becomes even more critical for them to maintain
performance regardless of increased data handling. This isparticularly true at CERN
which through its LHC project is expected to have to handle Petabytes of data in the
future.

In this thesis, we showed that by developing a system that stores file system volume
history data in a commercial database, and integrating thisdata with a GUI for analysis,
the file system could be significantly optimized.

Volume distribution could be performed more efficiently by using more knowledge of
the volumes’ access pattern, disk usage and disk quota. By distributing the highly
accessed volumes among all available file servers, overall system performance gain
was achieved. Using volume history data, it was also possible to calculate a better
prediction of the volumes’ behavior in the future.

Our developemet target environement was the AFS files systemat CERN, and Ora-
cle was used for our underlyingdatabase since it is already supported at CERN. The
database setup and required scripts for interfacing with the database were designedas
part of this work. Furthermore, the database was in additionto making load balancing
more effective, also intended to make AFS administration more straightforward. Ad-
ministrators do now not need to collect data from all serversin order to retrieve volume
status unless very recent data is required.

In order to avoid unnecessary data replication,database tables where divided into thetypes
of data that was most frequently updated. Volume data that was not modified since the-
last update, was time stamped, makinga time boundary for when a row of data is valid.
If volume data was modified since the last update, a new row wasadded to the database.

The database interface was a Perl package, intended for communication betweenload
balancing scripts and the database. Perl scripts were written for updating the database.
A graphical user interface was designed and implemented in order to analyze volume
history data for better understanding of volume accesses, volume quota and disk usage
in the CERN AFS cell. The GUI was implemented in Perl CGI, using the database
interface for retrieving volume history data.

These analyses will eventually be used for approaching a fully or partly automated load
balanced file system, which will require history data from several months and tuning
over time.

Our history data for 11 days revealed that some volume behavior is easier to predict
than other. A hypothesis was that project volumes were easier to load balance than
user volumes due to an assumed repeated access and disk usagepattern. Unfortunately,
analysis of the Atlas project volumes turned up to have irregular access patterns over a
period of 11 days.

Another hypothesis was that user volumes would likely to have irregular access pat-
terns, which was partly true considering available historydata. However, user volumes
were mostly accessed during the day, and not during the nights and the weekends. Such

46

8 CONCLUSION

volumes could hence eventually be gathered on partitions with volumes thatare mainly
accessed by cron jobs during the nights for better system performance.Thus, available
history data at recent times is not sufficient for making any final conclusions. Never-
theless, taking our initial analysis into consideration, all kinds of volumes should be
considered for moving in order to gain overall system performance.

To ease load balancing a new parameter ondisk availabilitydefault was introduced.
Diskavailability is is accesses divided by used data blocks of 1024K. This parameter
reflects how much a volume is accessed with respect to the diskusage. On the one
hand, this is important because heavily accessed volumes should be distributed over
all partitions in order to avoid that few servers are overloadedby accesses. On the
other hand, idle volumes should also be distributed over allpartitions to avoid that
whole servers are idling, and thus, not helpingthe overall system to receive requests.
Hence, knowledge of disk vailability helped load balancingby locating volumes and
even whole partitions that had too many accesses to each usedblock, or the opposite,too
few accesses to each used block, compared to the total disk availability and accesses
capacity.

Further work for load balancing will be based on methodologyand analysis introduced
in this thesis. More volume history available from the database should beanalyzed in
order to find trends for volume sets and kinds, which can makeload balancing even
more reliable and effective.

47

8 CONCLUSION

Appendix

48

A DATABASE

A Database

A.1 Sqlplus Script for Database Tables and Indexing

Alter table volumes drop constraint v_id_server_fk;

Alter table volumes drop constraint v_id_vol_fk;
Alter table volume_data drop constraint v_d_id_server_fk;
Alter table volume_data drop constraint v_d_id_vol_fk;
drop table fileservers;
create table fileservers(

id_server number(25) not null,
name varchar2(25) not null,
CONSTRAINT fileservers_pk PRIMARY KEY(id_server)
)
ORGANIZATION INDEX;

drop table id_volumes;
create table id_volumes(

id_vol number(20) not null,
name varchar2(45) not null,
set_id varchar2(20) not null,
CONSTRAINT id_volumes_pk PRIMARY KEY(id_vol)

)
ORGANIZATION INDEX;

drop table volumes;
create table volumes(

id_vol number(20) not null,
id_server number(25) not null,
id_partition varchar2(25) not null,
date_add2db date not null,
date_updated date not null,
id_rep number(20),
id_backup number(20),
date_created date not null,
date_deleted date,
recent_row number(1),
freq_update_row number(1),
CONSTRAINT volume_pk PRIMARY KEY(id_vol,id_server,id_partition,date_updated),
CONSTRAINT v_id_server_fk FOREIGN KEY (id_server) REFERENCES fileservers,
CONSTRAINT v_id_vol_fk FOREIGN KEY (id_vol) REFERENCES id_volumes
);

drop table volume_data;

create table volume_data(

id_vol number(20) not null,
id_server number(25) not null,
id_partition varchar2(25) not null,
date_add2db date not null,
date_updated date not null,
blocks_quota number(20),
blocks_used number(20),
accesses number(20),
recent_row number(1),
freq_update_row number(1),
files number(10),
CONSTRAINT volume_data_pk PRIMARY KEY (id_vol,id_server,id_partition,date_updated),
CONSTRAINT v_d_id_server_fk FOREIGN KEY (id_server) REFERENCES fileservers,
CONSTRAINT v_d_id_vol_fk FOREIGN KEY (id_vol) REFERENCES id_volumes);

drop table daily_updates;
create table daily_updates(

id_server number(25) not null,
id_partition varchar2(25) not null,

i

A.1 Sqlplus Script for Database Tables and Indexing A DATABASE

id_vol number(20) not null);
drop table time_full_update;

create index performance on volumes (decode(RECENT_ROW,1,RECENT_ROW));
create index performance2 on volume_data (decode(RECENT_ROW,1,RECENT_ROW));

ii

A.2 Oracle indexes and functions A DATABASE

A.2 Oracle indexes and functions

Function based index to select "better" the recent_row=1 condition:

decode(RECENT_ROW,1,RECENT_ROW);

Gather statistics for the Cost Based Optmizer (in sqlplus):

exec dbms_stats.gather_schema_stats(ownname=>’RJANDRES’,cascade=>true, esti-
mate_percent=>80, method_opt=>’for all indexes for all indexed columns size 30’);

iii

B VOLUME MOVES TIMING TABLES

B Volume Moves Timing Tables

B.1 IBM/Linux to IBM/Linux

Timing volume moves for 2GB, 4GB and 6GB during one night, Linux to Linux:

Nr 1 2 3 4 5 6

2GB 4m1.931s 4m53.340s 3m43.299s 3m29.384s 4m45.192s 3m39.289s
4GB 5m10.543s 5m54.286s 4m36.380s 4m42.071s 5m43.724s 4m46.375s
6GB 8m38.818s 9m37.727s 8m13.224s 8m23.505s 9m40.441s 8m17.321s

7 8 9 10 11 12

3m30.167s 4m42.817s 3m33.874s 3m28.404s 4m39.144 3m38.394s

4m43.424s 5m48.504s 4m33.633s 4m45.588s 5m48.405s 4m39.208s
8m26.665s 9m37.676s 8m9.263s 8m30.040s 9m32.552s 8m7.888s

iv

B.2 Sun/Solaris to Sun/Solaris: B VOLUME MOVES TIMING TABLES

B.2 Sun/Solaris to Sun/Solaris:

Timing volume moves for 2GB, 4GB and 6GB during one night, Solaris to Solaris.

Nr 1 2 3 4 5 6

2GB 21m8.771s 28m30.730s 18m57.411s 20m2.177s 19m23.365s 18m47.078s
4GB 22m25.202s 32m27.999s 19m37.687s 26m33.581s 20m0.724s 19m51.056s
6GB 32m11.850s 29m22.501s 37m36.545s 34m25.657s 28m27.262s 29m53.709s

7 8 9 10 11

19m29.774s 18m8.880s 18m49.656s 18m59.859s 18m7.762s

22m51.147s 19m55.288s 20m49.093s 21m10.755s 19m42.733s
31m50.523s 28m52.349s 28m9.173s 30m55.931s 28m45.740

v

REFERENCES REFERENCES

References

[1] Afs administration reference version 3.6.

[2]
http://afs-monitoring.web.cern.ch/afs-monitoring/cgi-bin/stats.cgi.

[3] What’s new at cern?
http://public.web.cern.ch/public/content/chapters/aboutcern/cernfuture/whatlhc/whatlhc-e
june 2005.

[4] Andy Duncan and Jared Still. Perl for Oracle DBAs.
O’Reilly, 2001.

[5] Thomas H.Coremen, Charles E.Leiserson, Ronald
L.Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 2001.

[6] Larry Wall, Tom Christiansen, and Jon Orwant.
Programming Perl. O’Reilly, 2000.

vi

