Abstract

Data is worthless without knowing what the data represents, and you need metadata to
efficiently manage large data sets. As computing power becomes cheaper and more data is
derived, metadata becomes more important than ever.

Today researcher are setting more experimental scientific workflows than before. As
a result a lot of steps leading to the implementation are skipped. The leading steps usu-
ally included documenting the work, which is not a central part of the more experimental
approach. Since documenting is no longer a natural part of the scientific workflow, and
the workflow might be changing a lot though its lifetime, many data products are lacking
documentation.

Since the way the scientist work have changed, we feel the way they document their
work need to change. Currently there is no metadata system that retrieves metadata di-
rectly from the scientific process without having the researcher having to change his code
or in other ways manually set up the system to handle the workflow. This thesis suggest
ways to automate the metadata retrieval, and shows how two of these techniques can be
implemented. Automatic linage and metadata retrieval will help the researchers document
the process a data product have gone though. My implementation shows how to retrieve
linage and metadata by instrumenting Interactive Data Language scripts, and how to re-
trieve linage from shell script by looking at the system calls made by the executable.

The implementation discussed in this paper is intended to be a client for the Earth
System Science Server, a metadata system for earth science data.

ii
Acknowledgements

This thesis is the culmination of my Master of Technology in Computer Science studies
at Norwegian University of Science and Technology. The thesis was written at the Envi-
ronmental Information Lab, University of California, Santa Barbara. | would like to thank
professor James Frew at University of Santa Barbara California and my teaching supervi-
sor, professor Ingeborg Sglvberg, at the Norwegian University of Science and Technology
for all the help and support | have received.

Contents

[T Tnfroduction] 3
[1.1 Earth System Science Server¢fS. 3
111 WhatisESA 3

[1.1.2 EStechnologigs 4

[L.2 Howdoesthisthesisfitinto BIS. 4

2 Rel I I 5
2.1 U . . . e 5
2.2 Transparentresultcaching 5
2.3 Earth System Science Workbench (ESBW) . « .« v v v v oo e o 6.
|3 Possible techniques 7
3.1 Instructingthesourcecdde 7
B2 _OVErNdING TOULNGS . - - « « o v oo e e e e e e e e e 7
B3 PassiVe MOMMOMMG - - « « « v v e e e et e e e 8
[3.4 Interpretingthecodle 8
[4__The frameworks 9
[4.1 “Tnteractive Datalanguage (IDL) 9
[A.1.1 Instructingthe sourcecqde 9

41 verriding functions L L L 10

I3 PassVEeMONMOMNG o v o oee e e e 11

BI4 TNerpretingthe COHE v v oo e e 11

B2 Bash 11
421 Instructingthesourcecdde 12

22 Overndefunclions oo v 12

4.2.3 Passivemonitoring 12

2. nterpretingthecode, 13

425 Parallels. 14

[5 Implementation 15
0.1 Pluging 15
BIT IDLPIUGIN o o 15

.1.2 Systemcallplugin 18
.................................... 18
|§ZI Theloggerexecutable 18
........................... 20

B3 TranSmifiar o v v v e e e e 20

6 Results 25
[6.1 Achievingthegoals, 25
6.1.1 Resiliencytochandes. 25

T2 Examplds 26

iv CONTENTS
B grap 27
[A__Abbreviations and Definitions 29
Al Listof Definitions 29

2 Listof Abbreviations 29
[B_Source Codé 31
B.1 IDLpluginscripts 31
B.1.1 esddlpreg 31

B d e 35
........................... 36

B.1.4 pille.pro 37

BI5 esTog.prado vt 37

B.1.6 Wrapperscriptso 38
s 47
@b 47

B22Z es3ncludessh 51
.................................... 51
B.4 Transmittdr 57
B.4.1 ExecElementjaya. 57
a 58

B.4.3 TnitElementjaja 59
............................ 60

[B45 ToglnputStream.jaya 61

B.4.6 PipeElementjaya 00000 62

B.4.7 Transmitterjava 64
............................ 65

B.4.9 WorkflowMessage.java 66
[BZ2T0 XMLParserjaja v v v v v i e e e e e 68
[C__Short installation Instructions| 71
|D 1DL example workilow| 73
ID.1_Sourcecode 73
[D.1.1 Originalsourcecofle 73
[D.T.2 Preprocessedsourcedode 75.

D.2 Clientinternallogfile 77
D.3 ES workflowmessade, 79
[E Bash example workflowy 81
EI _Sourcecode 81
E.2 Clientinternallogfilgs 81
[E:2.120050528T225100.371521Z-6B43 oo oo .. 83
[E2.220050528T225101.185212Z-6B38 84

[E.3 ES workflowmessade, 84

List of Figures

I TheUFoarchitecture 6
5.1 The ESclient architectue 16
[D.T A DAG representing the information flow of modscelgance 74
[E-TADAG representing the information flow of the bash test Script. 82.

This page is intentionally left blank.

List of Tables

4.1 Applicability of the differenttechniques 14
0.1 Usagetorthe IDL preprocespor. 17
(.2 Usageforthe IDCwrappero vv i oo oo 17
0.5 __Actions made Dby the system trace postprocessor 19 .
[5.4 " System calls interpreted by the system call plugin 19.
.o Usagetorthelogger. 21
b6 Tagsusedintheinternallog 22

This page is intentionally left blank.

Chapter 1

Introduction

This thesis discusses different approaches to do effortless and unintrusive linage extraction
on scientific processes. The results are intended to be used as a tool to document workflows
for researchers who process digital data.

To my best knowledge there does not exist a system today that does this without forcing
the users to make their workflow in a specific way, like wrapping their code in special
scripts or manually inserting log statements into the code.

Although some metadata needs to be entered by a human, a lot of the effort in doc-
umenting the scientific work done on computers can be completely automated. A lot of
information retrieval can be achieved by looking at how the computer program behaves or
how it interacts with the rest of the system. As computing power is relatively cheap on
todays marked we suggest sacrificing performance to relieve the user of having to input the
metadata that the system is able to automatically retrieve.

An important part of the information we are trying to retrieve is linage. Linage is the
history of the data set. Linage shows what data is used as source, and how the source
data is processed to create the a new data set. To be able to construct the linage graph
we need to know the dependencies between data and processes. Through this thesis | will
discuss possible ways to, without effort, detect the interaction between programs and their
environment to retrieve the linage. The result is a client which is part of a data management
system referred to as Earth System Science Server.

It is important that the system does not interfere with the work of the user. If the user
feels the presence of any sensor on his computer is interfering with his work it needs to be
easy to completely deactivate the sensor. In this way the user can turn off the sensors on
his computer when doing development and activate them when the algorithm is at a later
stage.

1.1 Earth System Science Server (E$
1.1.1 Whatis ES?

The Earth System Science Server is based on the Earth System Science Workbench (
ESSW). ES is a infrastructure to nonintrusive manage large amounts of data distributed
over multiple locations. Today data is distributed from one center, and researchers who
wish to publish processed data needs to submit it back to the central locatiben&Ses
the different data producers to publish their data through their data center. As long as the
different data producers uses metadata in the same format and makes it available to a cen-
tral location, it is possible to search through it and get a pointer to where the data can be
found.

Metadata is an important part of a system that manages large sets of data products. If
we implement a metadata standard, metadata and data sets can be shared easier between

3

4 CHAPTER 1. INTRODUCTION

different entities. By creating consistent metadata records and submitting it to the&€S
data consumers and suppliers are able to do the following:

e Share data sets between data centers

Analyze the history of a dataset

Data and process quality ensuring

e Search metadata to find products

Easier identify a given data set

Identify faulty data sets, and track the errors trough the processing steps

1.1.2 ES technologies

As its name suggest the E8as a client server architecture. The part of the server which
interacts with the client is called the core. The core has two major roles. The first, is
to receive information about data granules, the second is to present the information and
make it available to a search interface. The core part of tiesBBition is currently under
development and the details of this system are not clear at this point.

ES® uses the Alexandria Digital Library Middleware [1] to provide the search capabil-
ity. The Middleware is a HTML based distributed digital library with collections of georef-
erenced materials. The Middleware provides an XML interface that provides clients with
the ability to search the data collections. The’B®oject has it's own ADL Middleware
client, but the user can use another client if they desire.

ES® provides a constant namespace of the data granules though a HTTP redirector
service we call the MODster. MODster is a distributed, decentralized inventory server
for Earth science data granules. Data providers can tell the MODster server where their
granules are located, and when a user is retrieving a granule from the MODster they get
redirected to the real location. The key element that makes this work is that most granules
have a well defined naming convention. By using the MODster we can use static links to
the granules inside the E®ind in written papers. Also, if the user knows the name of a
product, he or she can go directly to the MODster and find the data.

1.2 How does this thesis fit into ES

The result of the work behind this thesis is the foundation for a client which can submit
linage and metadata to the E8ore. The data that is sent to the core is mainly collected
without interaction with the user, but it is possible for the user to provide additional meta-
data by inserting statements into the source code.

The client is a generic linage and metadata collector extended to interact wWitl &S
client is designed without ESspecific modules up to the point where the data is submitted
to the ES core. This modular design allows a lot of freedom for changes to both the ES
core and the client without having to update the whole codebase.

Chapter 2

Related research

Currently there are no metadata system capable of automatically retrieving linage from
scientific processes, without special preparation of the workflow. The[lWfo [2] and Trans-
parent result cachin@|[4] projects shows how system tracing can be applied in application
with some of the same properties as’ES

2.1 Ufo

The Ufo [2] project describes how to extend the functionality of a standard operating system
entirely in the user space. The purpose of the Ufo is to make an extension of the local file
system to include remote files accessed by e.g. ftp or http.

The authors discussed different ways to extend the operating system to get access to the
file system. They are arguing that a extension in user level is favorable because it does not
require the user to put an extra load on administrators, and it is more secure since it cannot
introduce vulnerabilities which exposes the system.

Ufo is implemented using system call tracing. When a system call is issued, Ufo is
able to pick up the call and change the parameters before it is sent to the kernel. When
Ufo captures system calls to open a remote file, Ufo downloads the file and changes the
parameter of the open command to the path of the newly downloaded local file. At this
point the process can read and write to the file since it got a pointer to the local file. When
the process closes the file handle, Ufo is responsible to write the changes back to the origin.

Ufo is implemented in two modules, the Ufo module and the Catcher. The Ufo module
is the implementation of the remote file system and is responsible for the local cache. The
cacher is the part of the system that is most interesting in regards to theliE®. The
Catcher is using the proc file system to intercept system calls, and informs the Ufo module
about the call before it changes the parameters and sends the call down to the kernel.

Even though the goal of Ufo is different from ESthey show that it is possible to
retrieve parts of the linage from arbitrary processes without any recompilation.

2.2 Transparent result caching

Transparent result cachingl [4] traps system calls to determine the dependencies among
input files, development tools and output files by tracing the process system calls. They
suggest storing linage locally on the computer, and use it to automatically update output
files when a input file is changed. For example say the file foo.h is used to make the
program foo. After compiling foo, you change the content of foo.h. When detecting the
change of foo.h, TREC would automatically recompile foo.

The TREC project needs to collect a lot of the same same informatidisE®ing to
collect. Although TREC does not record information about interprocess dependencies, it

5

6 CHAPTER 2. RELATED RESEARCH

————————————————————————————

Catcher

Application ORO) File Services -m

Caching

FTP | HTTP | NFS

Figure 2.1: The UFo architecture

records dependencies between processes and files. Their work shows that it is possible to
retrieve the linage and metadata from a process by tracing the system calls it makes.

Transparent result caching captures the dependency information by intercepting system
calls using a native kernel tracing mechanisms. For each process, information about the
command line arguments, environment variables, process parent, process children, files
read and files written gets stored and made available to query.

TREC relies on the Solaris proc filesystem to intercept the system calls necessary to
build the dependency information. The proc filesystem offers an interface to important
kernel data structures that provide information about the state of a running kernel by use
of special files. Most UNIX systems use a quite similar interface as the Solaris system.
The system calls intercepted by TREC are: open, fork, forkl, creat, unlink, exec, execve,
rename and exit. Command line arguments and environment variables are available trough
the exec system calls. To reduce unnecessary overhead, they do not monitor read and write
system calls. Instead they assume if a file is opened for writing that the process intends to
write to the file, and if a file is opened for reading only the process reads from the file.

2.3 Earth System Science Workbench (ESSW)

ESSW [3] is a system designed to handle linage and metadata for objects in scientific
workflows. The ESSW system needed more interaction than we wish to have’in ES
Before linage from a workflow can be sent to the reservoir, the object in the workflow
needs to be manually registered with the server. Workflows that is monitored by EESW has
to make calls to a custom application programming interface that needs to be added by the
maintainer of the workflow. The linage recored of an object can be queried though a web
application.

ESSW addresses the same general problem we which to address WitluE@quires
a lot of interaction and tuning before it is able to run. Also, a workflow will not be able to
run under ESSW if the connection to the server is broken.

Chapter 3

Possible techniques

3.1 Instructing the source code

If our system is able to read and make changes to the source code before it is interpreted,
we can change or insert code to make the program log the appropriate metadata.

Instruction can be done by inserting some simple logging statements before or after
specific routine invocations. Some level of parsing is required to insert the code in the
right place, retrieve the arguments and make sure that the inserted code does not change
the outcome of the process. The code inserted and the original function call needs to be in
the same code block to ensure that flow control statements does not make one executed and
not the other.

Another way of achieving this is simply by changing the function call to a wrapper
function under our control. The wrapper function can log the execution and return the
value returned from the original function. This way we don’t need to parse the arguments
of the function call, and we don’t need to worry about the call not being in the same block.

A preprocessor can be used to alter the source code. Some ways of invoking the pre-
processor could make the process transparent, others could have the user explicitly invoke
the preprocessor. By making the preprocessor a part of the compilation process would hide
this step, and the user does not need to know about the preprocessor. All the source code
containing operations we wish to log needs to be run through the preprocessor in order to
enable the necessary logging.

It is reasonable to assume that the number of routines that initializes 1/O is relatively
low, probably in the order of a dozen or two. A preprocessor can have a list of the routines
that we are interested in logging, and make changes to the code according to this list.

In the situation where the user directly enters the commands in a shell the notion of a
preprocessor does not make sense. In this case it is possible to put a thin layer over the
shell, which reads commands from the input and passes them over to the underlying shell.
This way the layer on top of the shell can make changes to the commands before passing
them through. A integration of the two techniques is possible if the users starts a shell and
then calls a script to be executed in the shell. If the layer on top of the shell intercepts the
call to execute the script, and invokes the preprocessor before the script is executed, the
preprocessing would be transparent to the user.

3.2 Overriding routines

The idea is to override a routine with a wrapper routine. The wrapper routine would log
the event before calling the real routine. Different environments offer different ways to
overriding routine calls:

8 CHAPTER 3. POSSIBLE TECHNIQUES

e Most object oriented languages offer a way of making subclasses which would over-
ride the super-classes functions.

e Changing the namespace: Some languages enable you to define your own names-
paces. By changing this namespace to something we control we would be able to
intercept the routine invocations.

e Linking to different versions of an external libraries. In many cases the functions we
are interested in are a part of an external library. We can replace the external library
with a library that is wrapped.

e By changing the order the environment looks for objects, functions or files. Most
environments has some way of defining the search path. By inserting our routines
ahead of the other routines in the search path they would be invoked.

3.3 Passive monitoring

Passive monitoring is to look at which commands are issued to the execution environment
when a program is executed. This method is unique because we don’t need to do any
changes before the program is executed, since all hooks will reside in the execution envi-
ronment.

This method is useful for information retrieval when the source code is not immediately
accessible, and would be the only way if we don't have access to the source code. The
downside is that we make it harder to record information that is internal to the program,
such as the value of a given variable.

This idea can be implemented at the operating system level, or in the case of a virtual
machine the interaction can take place at a higher level. Itis likely that many environments
already has support for this sort of logging. In a *nix environment the commstnalse
andlstracegive you system calls and library calls respectfully. The commands can either
be issued at the time of execution or they can connect to a process already running. A
simple daemon can be made to look for specific processes, and logs the system calls of
those processes.

3.4 Interpreting the code

Most of the time when you look at a source code file you can easily establish which I/O
operations are likely to take place during execution. When a computer is given the same
code it certainly can tell which 1/O operations it is doing while executing the code. Since
this is true it should be possible to give the source code or even a pice of compiled code
to an interpreter and it would be able to determine the arguments of certain function calls.
The interpreter could process the code with far less resources than needed if the code really
was executed, since the interpreter does not need to execute all statements in the code to
retrieve the information desired.

Since the code in many cases will contain statements that will control the flow of exe-
cution like if-, while- and for-statements the flow may depend on complex computations.
The complexity is reduced if the general execution flow does not depend on or is derived
from external functions or data. It might be reasonable to assume that in many cases the
I/O is not dependent on flow control statements, and therefore the interpreter does not need
to be full-blown. Even with this assumption the interpreter has to be somewhat complex,
and if the assumption is wrong the cost of making an interpreter would be high.

Chapter 4

The frameworks

4.1 Interactive Data Language (IDL)

IDL, the Interactive Data Language, is a commercial computing environment for data anal-
ysis and visualization made by Research Systems Inc. Supported operating systems include
Windows, Linux and Mac OS X. Earth scientists use IDL because it provides a higher level
of abstraction when handling image- and scientific data formats.

IDL has a graphical interface which provides the user with a large variety of tools,
but I'm going to focus on the scripting interface because this is how automated tasks are
completed.

Traditional interpreted languages does parsing, lexical analysis and execution on each
statement before going to the next statement. IDL on the other hand uses a two-step pro-
cess where the scripts are compiled and interpreted separately. Routines are compiled into
a internal binary format when a command is issued. After the routine is compiled the inter-
preter executes the code. The interpreter is a simple stack based postfix language, in witch
each instruction corresponds to a primitive of the IDL language.

The core of the system is the interpreter, which contains the stack. The stack consist of
IDL _VPTR structures, which are pointers to IDIARIABLE structures. The IDLVARIABLE
structures are implementations of the variables in the IDL environment. During execution
of a statement the interpreter pops pointers from the top of the stack and pushes the a
pointer to the resulting IDLVARIABLE back on the stack.

Itis possible to invoke IDL functions from other programming languages and more im-
portantly IDL has support for interacting with external programming languages like C/C++,
Java, Fortran, COM and ActiveX. Some of the extensions run in the same memory space as
IDL and could be a used to pull metadata out of IDL. The external modules made in C/C++
needs to be compiled for each computer architecture. It turns out that it is hard to access
the information this way, and the memory structure might be dependent on the version of
IDL.

When we make IDL call external modules we use @&LL EXTERNALfunction.

When callingCALL EXTERNALIDL loads the external routine into the same memory
space. This gives us potential a low level access to the entire system including the stack.

4.1.1 Instructing the source code

IDL has a simple programatic syntax and it is easier to preprocess than most programming
languages. A preprocessor capable of changing function calls to wrapper functions does
not need to contain a full lexical analyzer for the language, it can be achieved by a stream
editor.

To be able to preprocess the scripts we need to intercept the source code before IDL
interprets it. IDL has several ways you can invoke code. From the console, the commands

9

10 CHAPTER 4. THE FRAMEWORKS

.RUN [filename] .COMPILE [filename]and @][filename]will load a the script file. Some

of the commands will also execute the script. IDL can read scripts and routines from files
by passing the filename as an argument when the IDL executable is called, and IDL can
read scripts from standard input. If the filename is passed as an argument or the script is
piped into IDL, the syntax changes slightly. | call this syntax the interactive syntax. When
interactive syntax is used every procedure and function declaration has to start with the
.RUNkeyword. If the script is executed in any of the other ways. RigNkeyword can not

be present.

The .COMPILE command explicitly compiles a routine to the internal binary format
and loads it into the memory. To allow the user to load scripts within a IDL shell we
can create a procedure which preprocess the code and offers the functionalitp\df
PILE. | have called this functioBES3COMPILE It is not possible to havES3COMPILE
call .COMPILE, since IDL does not allow any command that starts with a dot to be in-
voked within a script. It is however possible to IRESOLVEROUTINEinstead. The
RESOLVEROUTINEprocedure compiles user-written or library routines in a similar fash-
ion. IDL looks for a file with the same name as the routine in IDL's search path, and loads
the routine from the file when found. If tteOMPILE_FULL _FILE option is given to the
RESOLVEROUTINEprocedure, it will compile all other routines inside the file.

Since RESOLVEROUTINE is looking for a routine, the script-file need to contain
a procedure or function with the same name as the file it resides in. To eR&ble
SOLVEROUTINETto load the file the preprocessor needs to have an option of creating
a dummy procedure. The dummy procedure has no other function than to enable the file to
be loaded dynamically from a script.

Since there is no ideal way of intercepting the code in the IDL environment if it is passed
to IDL as an argument or through standard input, the preprocessor needs to be accessible
outside IDL. If the script is normally piped into IDL, the script can now be piped though the
preprocessor and then into IDL. This can ether be done explicitly by the user or by making
a wrapper for the IDL executable. By having the preprocessor a standalone executable the
user can also preprocess the code manually before executing it in a IDL environment which
is not rigged in any way.

The preprocessor renames the built-in read and write function calls in the script to call
the wrapper functions called ES@nction nameThe wrapper functions need to be created
by the preprocessor before the execution starts.

4.1.2 Overriding functions

The functions and procedures that come with IDL are distributed ether as binary libraries
or IDL code. The lower level functionality and some complex routines are implemented
in binary libraries, and the higher level functions are implemented in in IDL code. Most
libraries that reads structured data from a file, for instance images and video, are distributed
as IDL code. Although some functions like READFF and READPNG are distributed
only as binaries.

When a routine is invoked IDL searches for a match in the following order:

1. System functions

2. Dynamically loadable modules

3. Compiled IDL functions or procedures

4. Files matching the name of the routine in the current directory

5. Files matching the name of the routine in directories specified by the internal envi-
ronment variabléPATH

4.2. BASH 11

Since the higher level libraries is a part of the last item on the list it is easy to override
these routines. This can be done by making routines with the same name as the routines we
wish to override and placing them in a directory being searched earlier than the directory
containing the original routine. This routine needs to have the full functionality of the
original routine since we are not able to call the original routine while a routine with the
same name is being executed. This is unfortunate since we could be put in a situation
where the code needed to be updated for each new release of IDL. To only override the
higher level routines is not enough since the higher level libraries does not cover all the
ways a file can be accessed.

Routines that are part of dynamically loadable modules can not be overridden. The
only possible way to change the behavior of routines in dynamically loadable modules we
don't have the source code for, is to remove the original routine and replace it with our own
implementation. Even if we did this there is a chance that the binary libraries that use the
routine we replaced would be statically linked to the original library and would ether use
the original version or break when executed.

When the higher level libraries opens a file, they useQRENcommand. If we over-
ride this command, all files that are used would be traced. SaBiNis hard to override
since it is a system routine and, IDL does not provide any way of override system routines.
Also, it is unlikely that the binary libraries use this routine, it is more likely they use stan-
dard C/C++ or fortran libraries. Therefore overriding this routine would not be a complete
solution.

4.1.3 Passive monitoring

There is no specific support for passive monitoring in IDL. The only way to do this is to
trace the system calls issued by the IDL executable at the operating system level. By tracing
the system calls made by IDL, all file operations would be recorded. It is however harder
to look at the different parameters of the IDL scripts.

4.1.4 Interpreting the code

There is no good publicly available language definition for IDL, which makes the IDL
language syntax best defined by the behavior of the latest version of the IDL interpreter.
Making a fully blown IDL interpreter would involve a lot of work, and only minor parts
could be reused for other programming languages.

4.2 Bash

Bash is the GNU implementation of the original Unix shell. Bash is short for Bourne-
Again Shell. The name is a tribute to Steven R. Bourne, the creator of the original shell for
Unix-compatible operating systems. There is a vide verity of shells out there, and most of
them are open source. Bash is the default shell in most modern operating system except
Windows, although you are able to run bash on windows. It is reasonable to assume bash
is one of the most commonly used shells.

The purpose of shells are to provide a wrapper around the execution of executables.
The simplest shell would read one line either from a script or the console and issue an
execute command to the underlaying system. Shells usually forks/clones a child process
before they send a execute command, and waits until the child process is finished.

Even if the main purpose of a shell is to issue execute external commands most modern
shells provide other functionality to the user. Modern shell functionality includes debug-
ging, subroutines, flow control, string manipulation and file pattern matching.

One feature that is extensively used in shell script are UNIX pipes. A UNIX pipe is a
way to channel the input and output of processes to other processes or files. One of the most

12 CHAPTER 4. THE FRAMEWORKS

common way to crate a pipe in a shell is to use the pipe chardgtéfhe pipe character
allows you to redirect the output from one process to into another process. You can also
create files on a UNIX based system that are pipes, called named pipes. Named pipes are
not regular files, but can be treated as files inside the program. In fact the program does not
need to distinguish between regular files and named pipes.

The syntax of a bash script can get fairly complex when piping and other build-in
functionally is used. In the scope of this thesis the syntax of bash is too complex for me to
write a lexical analyzer.

4.2.1 Instructing the source code

In a shell environment the number of commands capable of initializing I/O is high. Almost
all standard commands can read or write to a file, and the shell itself can be made to do 1/O.
In a shell script you would often find one line containing multiple commands connected
together with pipes. To successfully insert logging statements at a line like this you need
to call the logging function between the execution of each command. In bash there is a
build-in function that does that, called trap. If you use the trap function with the debug flag
you can execute a logging function for each command executed by the shell. The major
drawback of using trap is that in the most common version of bash, no information is given
about the command about to be executed.

Even if the commands executed and it's parameters where known we would not be able
to keep track of all the 1/0 preformed by the script. Since each command is a standalone
executable, programs will do I/O operations that are not possible to detect by looking at the
environment the program is running in.

4.2.2 Override functions

Override executables can be done in a shell environment by inserting a directory containing
an executable in the environment variaB¥&TH before the directory of the original exe-
cutable occurs. To ensure that user does not override our commands by chan@§aglithe
variable, the trap function can be used to do the necessary changes before execution of the
command.

Bash is flexible enough to create a generic command that can override all commands
that and will do all the necessary logging before executing the parent command. The full
path of the command being overridden can can be determined by the command name,
parameters and the search path, which are available to the command tSRAIGH $0
and$@. All that needs to be done to override a command is to make a link, with the name
of the command being overridden, to the generic override command. The folder containing
the link should be placed before the folder of the original commarkhiH

4.2.3 Passive monitoring
Bash debugger

Recent versions of bash has a more sophisticated debugger built in. Currently bash 2 is
the most widespread version, and includes only a simple execution trace. If you issue the
commandset -x, the commands will print as they are executed.

For example if you open a bash shell and type the following:

$ set—x
$ cat < bar | grep foo

This will be printed to stdout:

+ cat

4.2. BASH 13

+ grep foo

As you can see from the output above we get the trace of commands executed and their
parameters, however some information is lost. We are not able to determine that cat is
reading the file bar and the output is directed to grep. In fact we are not able to determine
any interaction the program had with the environment.

We are able to collect a lot of information by analyzing the data we get from a execution
trace like this when the programs executed are kown commands. We are able to parse the
parameters and determine what I/O each execution is doing. When it comes to custom
made executables we are no longer able to determine the I/O by looking at the parameters.
We could make assumptions that would work for many cases, but not for all.

Trace system calls

Strace is a system call tracer, a debugging tool which prints out a trace of all the system
calls made by a process. Strace is an open source project that runs on the linux kernel and
it is included in most linux distributions. There is no need to alter or recompile the program
being traced, so interaction with the programmer can be kept at a minimal.

When most shells are executing a command they create a sub process where the pipes
in and out of the program are set up beforegikecvesystem call is issued. Strace outputs
all the information needed to determine what pipes goes in and out of a command and what
files are opened by the command.

The effect of each system in the strace log are dependent on the context the call was
issued. This means it is not possible to determine what a script does by looking at each line
of the strace log individually. If we want to extract the information from the strace log we
need a parser for the log that keeps state of the pipes and files that are open.

We are also able to determine what files are opened by the process after the system call
to execute the executable has been issued. Therefore we are also able to record all I/O done
by custom made programs.

By doing passive monitoring we are not able to insert our own commands to collect
information in the context of the command we are monitoring at the time of execution. For
example by using this approach by itself we are not able to determine if the files accessed
by the a command existed before the command was invoked, because we only have after
the fact information about the execution.

4.2.4 Interpreting the code

Interpreting the code would not be hard since bash is open source and we would be able to
utilize a fair amount of the code from the original project. Flow control in bash is however
usually determined by the output from other executables. We don’t necessarily support
interpretation of these executables, and we would need to execute them to learn the exit
status to determine the flow of the program. The exit status might depend on external
elements and there is no guarantee that the exit status is going to be the same every time
we run an executable, therefore it is impossible to determine the exact execution path of
a shell script. To have our program execute arbitrary executables is anyway not an option
since we might make undesirable changes to files or the environment.

If we change an exciting shell to extract the metadata and linage from scripts executed,
we might need to update the shell when a new version of the shell is released. This is some-
thing we wish to avoid since the resources might not be in place to support development on
this project in the future.

14 CHAPTER 4. THE FRAMEWORKS

] || instructing | overriding | monitoring \
IDL Possible - low number Not possible to over{ No supportin IDL, out-
of function of interest | ride core functions side monitoring possi-
ble
Bash || Complex syntax makes Easy - changing the Easily done by tracing
it really hard to instruct| PATHvariable system calls

Table 4.1: Applicability of the different techniques

425 Parallels

In concept bash differs a lot from IDL. Bash is a command language interpreter that invokes
executables, and IDL on the other hand is a language for application development. The
difference is that most commands in bash spawns a subprocess for another application, in
IDL only a couple of special commands executes applications.

At first the difference might not seem significant, but when studying the different lan-
guages up close the difference become more apparent. Since bash is mostly used to invoke
executables, the command names are dependent on the applications that exists on the sys-
tem it runs on. For IDL the commands are pretty much identical for all platforms. The
biggest difference is probably that in bash we are not as much interested in the processing
done by the bash interpreter, as what the executables invoked by bash does. In IDL we are
mainly interested what is done by the interpreter.

Because of the different properties of the languages | chose to use different approaches
for the two. As shown in tabl¢ 4.1, it is possible to determine the linage by looking at the
system calls made by the IDL interpreter. By doing it this way you would loose valuable
information that we are able to get from the IDL environment when we instruct the code.
The preprocessing technique is not ideal for bash since we are not so much interested in
what commands are issued, as what the command do.

Chapter 5

Implementation

5.1 Plugins

The plugins is the part of the system responsible for catching the information we are inter-
ested in from the users process. The plugins are typically language specific.

The plugins do not write the information retrieved from the users process to any file but
passes the information on to the rest of the system through the logging module. It is not
necessary for plugins to keep any state since the logging modules is accessed statically.

Each directory containing source code that is being traced has a subdirectory called
.es3. The plugins can store information they need in assigned directories under the .es3
directory.

The plugins can be turned on and off by inserting and removing the name of the pro-
gramming language used in t&&S3ENABLEenvironment variable. ThHES3ENABLEis
a colon separated list of active plugins. The plugins will not interact with the processes if
the plugin is not turned on. Itis up to the plugin itself to determine if it is active or not, and
make a decision what to do. In most cases the session might have to be started over again
if you want to enable or disable plugins during execution.

5.1.1 IDL plugin

The IDL plugin uses preprocessing of the users scripts to retrieve the linage and metadata
from the process. In IDL only a small number of routines available to that will initiate
I/O operations or interact with the environment. This allows us to collect all the linage
information by only intercepting calls to these routines. The preprocessor can be invoked
manually by the user, or automatically whenever a script is executed in IDL with ES
enabled.

Preprocessor

Since IDL does not support overriding routines | use a preprocessor to change the rou-
tine calls in the users scripts. The routines calls are renamed so when executing the code
wrapper routines are invoked instead of the original targets. The wrapper routine calls
the logging module which makes a record of the execution before the corresponding IDL
routine is called.

The wrapper routines can be created by using the "-w” option to thediis@c exe-
cutable. The routines need only to be created once when installih@fES system. The
wrapper routines need to be included in the IDL searchpath before executing scripts that
are preprocessed. If desired the wrappers can be stored in one directory and included in
the default path by a systems administrator, but no administrator access is required to run

15

16 CHAPTER 5. IMPLEMENTATION

Plugin #1 ES3 Server

Plugin #2 ———» Transmitter

3
Plugin #n Log File(s)

Figure 5.1: The ESclient architecture

the plugin. The names of the routines for this plugin all begin with "&s@nd will not
interfere executions by users that does not havede@bled.

The logging module is wrapped by the procedd&3LOGGER This procedure parses
it's arguments, escapes the strings and invokes thdoggfer executable. The procedure
was created to control the communication with the log module, and to simplify the wrapper
routines.

The preprocessor is a naive stream editor, it does not do full lexical analysis of the
scripts. Itis probably possible to write a malicious script that uses a special syntax that will
make the preprocessor break the script. This could be a problem if the IDL code contains
strings with IDL code, and the strings continues over several lines. This is however unlikely
to be a problem in real scripts, and can be avoided by making the preprocessor understand
statements continuing over more than one line.

The preprocessor will ignore everything in a script following a line starting with the
words”;ES3: IGNORE". The keyword is used to prevent the preprocessor to accidentally
run on the wrapper scripts. A user can use this control word to exclude parts of his pro-
gram. Improvements to the preprocessor will include adding more statements to control
the behavior of the preprocessor.

The preprocessor will insert log statements at the beginning and end of each block and
routine written by the user. The logger uses the term box to describe these borders. The
use of boxes will allow us to keep track of the execution path of the script.

Automatic preprocessing

A user can explicitly preprocess the scripts, or the system can do it automatically. When
a system has the ESlient installed and configured, the user can enablétEgking by
adding "idl" to the environment variabES3ENABLEand crate the subfolderss3/idl/in
the folders containing source code®$§going to instruct. If the user wants to disable’ES
all that needs to be done is to remove "idl” from tBE3ENABLEenvironment variable.
If the variableES3ENABLEIs not set or does not contain the string "idl” when you start
IDL, ES? will not have any effect on the session.

When ES is installed the IDL variabléPATH is set to include the wrappers Ef-

5.1. PLUGINS 17

Usage: es3dlprec [options] [input-file]
If no input file is given the preprocessor will read from std-in.

Options are:

-h Display a short help text and exit.

-0 <output-file> Place the output intefile>. If not output file is given the output
is directed to std-out.

-d Create a dummy procedure with the same name as the out-
put file. When this option is set all the procedures defined
in the file can be loaded into the IDL environment by using
RESOLVEROUTINE and not having to useCOMPILE RE-
SOLVEROUTINE can be called from scripts and procedures,
but.COMPILEonly works in interactive mode.

-w <output-dir- Create the wrapper routines .pro files<tmutput-dir> and exit.
These wrapper routines needs to be in the IDL searchpath when
preprocessed scripts are ran.

-l Output a list all the routines in the input.

-b Insert logging statements at the start of end of each function,
procedure and block.
-p Output only the difference between the original script and the

preprocessed. This is used for debugging, and can be a way of
ensuring the correct behavior of the preprocessor.

Table 5.1: Usage for the IDL preprocessor

Usage: es3dlwrap [options] [directory]
If no directory is given, the current directory is wrapped.

Options are:
-h, —help Display a small usage text
-c, —create Create the .es3/idl subdirectorytree if it does not exist

Table 5.2: Usage for the IDL wrapper

ternal routines, and the procediE83STARTURS called at startup. If ESis enabled for

the session the startup procedure searchetP#EH variable for a directory containing

the subdirectorytree .es3/idl/. When such a directory is found the startup script calls the
es3idlwrap executable and adds the .es3/idl/ directory to!BATH variable ahead of the
directory. Thees3idlwrap preprocesses all the files ending with ".pro” in the directory,
and puts the processed files in the .es3/idl/ directory. It does not make any changes to the
original file. This way, if a routine is called, the preprocessed version is used because it
occurs before the original version in the searchpath.

If the subdirectorytree .es3/idl/ exists under the current directory it has to be treated as a
special case since IDL will load any routine from files in the current directory before look-
ing though the searchpath. The way this is solved is by runningsBallwrap executable
on the current directory before loading all the routines outputtegsBydlwrap into mem-
ory using theRESOLVEROUTINEprocedure.COMPILEis the command normally used
to load routines into memory, but it cannot be called from within a script. Therefore we pre-
process the files with the "-d” flag set. This will add a dummy routine to the preprocessed
file which will allow for it to be loaded into memory bRESOLVEROUTINE

The automatic preprocessing can be broken if the user changes the current directory or
the!PATH variable after startup. This is why we cannot support these actions.

18 CHAPTER 5. IMPLEMENTATION

5.1.2 System call plugin

System calls are invocations of kernel routines issued by executables. To be able to access
the system call we use strace. Strace is a program that comes with most linux distributions,
and prints out a trace of all the system calls made by a another process. A program does
not need to be recompiled before it can be traced, this allows us to use strace on binaries
we don't have the source code for.

The system call plugin starts up strace in the background, and the output is piped into a
system call postprocessor I've called esBaceproc. Strace is set to attach to subprocesses
of the process being traced, and the output is made more verbose to include all information
needed to keep state of the processes traced. The postprocessor receives the system calls
made, and makes the appropriate calls to the logger.

To improve performance esd8raceproc does not trace all system calls, but only the
subset needed to keep sufficient state of the process. I've chosen not to trace all read and
writes to a file, since this would reduce performance. | am making the assumption that if
the process opens a file for reading, it reads from the file and if opens a file for writing, it
writes to the file. A description of the system calls interpreted in can be found i table 5.4.

Theopensystem call is not only issued when a data file is opened by the program, but
for all files used by the program. If the process uses shared object, the shared object files
are going to show up in the list of files used by the process. The client is going to submit
all files referenced by the process back to the core, including any shared libraries. It is up
to the server to determine if files should be excluded from the list.

The system call plugin is intended to use with bash scripts but there is no reason why it
cannot be made more general and work with other programmatic languages. It is however
designed with bash in mind, and might not work well with other languages.

The es3sraceproc executable

The es3straceproc executable is designed to read the output from strace on std-in and call
the logger with the collected information.

The system calls that are outputted from strace could be broken over several lines if the
call is put on hold. When the postprocessor receives a system call that is not finished, it
stores it until the call is finished. The action done by the postprocessor when a system call
is trapped is shown in tabfe $.3. The postprocessor stores information about the different
processes in a hash table indexed by the process identifier.

Since both the logger and the strace postprocessor is written in perl, the source code of
the logger is included in the postprocessor to improve performance. If the postprocessor
is called as a standalone executable there is an overhead of a couple of seconds because
the logger source code needs to be interpreted for each call. Further work would be to
implement the logger with less overhead. When this is done the postprocessor can execute
the logging executable without this delay.

5.2 Logger
5.2.1 The logger executable

The logger is a central part of the client. It connects the plugins and the transmitter together.
All information that the plugins wishes to pass on the rest of the system needs to go though
the logger. Having all the plugins go though the logger makes the system more flexible and
easier to expand. If someone wants to write a new plugin, the interface to the rest of the
system is defined by the interface of de8g. There is no need for a author of a plugin to
learn the details about the internal log format.

Having the logger a central part of the system we can put common functionality in the
logger instead of having to implement the same functionality in each of the plugins. For

5.2. LOGGER 19

open

dup2

execve

pipe
clone

exit.group

open

dup2
execve

pipe

clone
exit.group

The filename and file descriptor is stored under the process identifier
that opened the file
The filename or the pipe identifier of that the file descriptor points to is
copied to the new file descriptor. If no matching file handle is found on
the issuing process the closes ancestor with a matching file descriptor is
used.

The name of the executable, the arguments and the environment is
stored under the process identifier issuing the system call. The open
files for that process is also cleared since we only want to know about
the files opened after execution, and not any library read prior to the
execution of the command.
both the input and output end are registered as special file descriptors
under the process issuing the system call.

a new process is created in the hash and the parent process identifier is
registered.

The information about the process is sent off to thé &isnt logging
facillity.

Table 5.3: Actions made by the system trace postprocessor

opens a file and returns a file descriptor, a reference to the file in the
table of open files for the current process.

duplicate an existing file descriptor

loads a program from an ordinary, executable file into the current pro-
cess, replacing the current program.

creates a pair of file descriptors, pointing to a pipe inode, and places
them in the array pointed to by the argument

creates a new process and continues execution, just like fork.

the process exits the group.

Table 5.4: System calls interpreted by the system call plugin

20 CHAPTER 5. IMPLEMENTATION

example the plugins does not need to specify the process identifier if the process calling
es3log is the process being monitored. The logger will determine the process identifier of
the caller and use it if an identifier is not specified.

The client log files are where all the information is stored before it is sent of to the ES
core. There is one log file for each session, and the log files are identified by the process
identifier and the time it started. The logger is the only part of the system that is allowed to
write to the client log files, and it is up to the logger to pick the right log file to write to. By
haveing only the logger write to the log files it is easier to ensure that valid syntax is used
in the log files. If this functionality was a part of the plugins it would be harder to keep
bugs in the code from making invalid log files.

Due to a bug in the linux command process status (ps) the start time of a process is
not reported consistently. The start time of a process might differ with a second from each
time ps is ran, even if it is the same process being queried. | assume this is ether because
ps is not able to detect the exact time, or because of a floating point error in the some
implementations. The Berkeley Distribution found in Mac OS X does not seem to have
this bug.

Since the process startup time is used in the filename of the log, by not taking the
process status bug into consideration a log could be split up into more than one file. To
work around this problem I've made the logger use logs with the same process identifier
and startup time only two seconds away. Since the startup time is determined internally in
the logger this workaround is completely invisible to the caller of the logger.

The logger is completely stateless with the exception of the startup time workaround.
The logger does not read anything from the log, and is not aware about previous runs of the
logger. It is up to the plugins to run the logger with the init flag to record general system
information before other entries are made to the log. This could easily be changed to be
automatic in the future, but the plugins should provide some additional information when
it initializes the log.

The usage for esk®g is shown in tablg 5]5.

5.2.2 Internal log file

The internal log of the ESclient is stored in different files inside the /tmp/es3 directory.
Each process has its own log file identified by the process identifier and the time the process
started. We cannot only use the process identifier because they are reused, and are therefore
not unique. The combination of startup time of a process and the time it started is however
unique for a particular computer.

The client log is XML based, table 5.6 shows the allowed elements. Most of the at-
tributes are optional, and some does not need to be specified by the plugin but rather deter-
mined by es3ogger.

The format of the log is not completely valid XML since there are more than one root
element. If the log is encapsulated in a XML-elemet, the document would be valid. This
is infract done by the transmitter before parsing the file. Each root-element is appended to
the log with a single run of the logger, and no state is kept by the logger between the root
elements.

5.3 Transmitter

The transmitter translates the internal log of the client to a format tAe&® understands.

There is no dependency between the processing chains and the transmitter. Therefore the
processing workflows are not dependent on having a connection to a server to be able to
run. In earlier systems this was not the case and it usually led to the system being turned off,
and newer turned on again. The transmitter can be invoked at regular interval to transmit
the workflows stored on the host to the core.

5.3. TRANSMITTER

Usage: es3og [options]
Options are:
-h,—help
—pid <pid>
—pid <pid>
—lpid <pid>
—enter<name>
—leave<name>
—routine<name>
—enviromentenviroment-

—arguments
—time

—stime

—files

—language
—init

—print

21

Display a short usage text.
The process identifier.
The identifier of the parent process.
The process identifier used in the log file name.
Enter block or routinecname>.
Leave block or routinecname>.
Routine<name> is called.
The enviroment in a colon separated list of:
[(type)] <name> = "<value>"
The arguments in a colon seperated list.
The time the event occurred in the format
yyyymmddTHHMMSSZ
The time the process started in the format
yyyymmddTHHMMSSZ
A colon separated list of files on the form:
<filename> [, option1][, option2]...
Options for files are:
READ indicates that the function reads from the file
WRITE indicated that the function writes to the file
PIPE indicated that the file is not a regular file but a pipe
The programming language used.
Make and an entry containing system information in the log. The
plugins should call es®g with this option when it starts up a
new session.
Instead of writing the entry to the internal log files the entry gets
printed to std-out. This option is used for debugging.

Table 5.5: Usage for the logger

22

CHAPTER 5. IMPLEMENTATION

Element name Attraibutes Children
init time time the event was| environment
logged mount-points
pid process identifier of the
process being logged
stime time the process started
pstime time the parent process
started
ppid parent process id
language programming language
used
user user is the program run-
ning under
hostname host the process ran on
exex time time of execution arguments
routine name of the routine exe- enviroment
cuted io
pid processid
ppid parent process id
enter region name of the region en-
tered
leave region name of the region left
mount-points mount*
enviroment variable*
arguments arument*
io pipe*
file*
mount share path of the share mount point [Sting]
mounted
type what filesystem is used
variable name variable name
type type of variable
value value of variable
argument argument’s value[Sting]
pipe read process read from this
pipe
write process wrote to this
pipe
id identifier which s
unique for the scope of
the document
file read process read from this file’s path [Sting]
file
write process wrote to this file

Required attributes are in bold typeset
An asterisks denotes the element can occur zero or more times
Children are Elements except then other is defined by a type enclosed in brackets

Table 5.6: Tags used in the internal log

5.3. TRANSMITTER 23

The output from the transmitter is a message to thede®e. In a ES message the data
opbjects are represented as a file elements, the programs are represented as transformation
elements and the elements are connected together with relation elements.>Thedsage
format is a work in progress, and it's highly likely to change from the format that is used
in this paper. The part of the transmitter that transforms the objects into a language the
ES® core understands is located inside a single method. This makes it easy to change the
message format without doing any major changes to the transmitter.

The transmitter is written in java and uses Sun’s API to parse the XML logs. The logs
are not completely valid XML, they are missing a tag that encapsulates the entire log. This
tag is added before the log is passed to the XML parser. When the parsing is done, objects
are created that correspond to the different elements of the log.

When the logs are parsed the transmitter determines and denotes any relations between
the workflows. This relations are determined by comparing the process identifiers. After
the workflows are processed they are transmitted to the core. Since ttem#Ss at this
point not ready to receive any requests, the current implementation of the client does not
transmit the messages, but writes the them to a file.

This page is intentionally left blank.

Chapter 6

Results

6.1 Achieving the goals

Our goals where to make a model for acquiring lineage from arbitrary earth science com-
putational workflows, and implement the model for IDL and bash. The goals for the im-
plementation was for it to:

e Require minimal interaction with the user after it is set up.

e Be easy to install and configure.

e Does not require administrative privileges to install or run

e Have a way to be reliable enabled and disabled.

e Be resilient to updates of software and configuration on the system it runs.

I've implemented the model for bash and IDL that automatically retrieves linage from
processes and it does not require any interaction from the user to create a new or run a
workflow. To demonstrate this I'm including the results of two example workflows, one
written in IDL and one in bash. The client is easy to install, installation descriptions fits
on less than a page, and does not require administrative privileges to install. The system
is disabled if the environment variabEES3ENABLEIs not set when starting a session.

The implementation is not optimized for performance since this was not one of our goals.
Performance can be improved by making the logger a binary executable, ether by compiling
the perl code or implementing it in a programming language with less overhead.

6.1.1 Resiliency to changes

Itis important that the way metadata is retrieved is resilient to future changes in the software
and the configuration of the host. We are hoping the client could be used with future
releases of software it interacts with. If this is true the code does not need to be constantly
updated, and the user does not have to wait for the latest upgrade of the client before he
upgrades other parts of the system.

It is hard to determine if the client will run with future releases of dependent software
since we cannot be sure of what changes are going to be made the future. The best we can
do is to determine if it is likely for the parts of the software the plugins depend on to change
in the future.

The bash plugin depends on the pattern of system calls issued by bash when it executes
a command and the format of the output of strace. The way bash execute commands has not
changed since bash first was released, and it is unlikely that this will change in the future. It
might be that the system calls issued by bash differs from other operating system to another,

25

26 CHAPTER 6. RESULTS

but it will only be a one time change to the plugin to make it run under a those operating
systems. The current version is tested on Red Hat, Fedora and Gentoo. It is possible that
the output of strace is going to change slightly. There is no note in the changelog of a
change in output-format for the past 10 years. | don'’t think it is likely that we are going to
see any changes that will effect the plugin any day soon.

The IDL plugin relies on the syntax used in the IDL scripts. The syntax of the IDL
language is highly unlikely to change since it has been around a long time. However since
the preprocessor used in the IDL plugin is a stream editor and does not do a complete
lexical analysis of the script it is possible if the user uses a special syntax the preprocessor
might not behave as intended. | can imagine there is a combination of quotation marks,
comments and line breaks that will break the preprocessor. These error does not occur
because the syntax of the language changes, but rather because the users uses an obscure
syntax.

6.1.2 Examples

I have included two example workflows in this paper, one for bash and one for IDL. The
source code and comments can be found in appéndix Eland D. The examples show that the
system is able to retrieve the linage from these scripts without manually changing them in
any way.

Bibliography

[1] Alexandria digital library projecthttp://www.alexandria.ucsb.edu/.

[2] Albert D. Alexandrov, Maximilian Ibel, Klaus E. Schauser, and Chris J. Scheiman.
Ufo: a personal global file system based on user-level extensions to the operating sys-
tem. ACM Trans. Comput. SysfL6(3):207-233, 1998.

[3] James Frew and Rajendra Bose. Earth system science workbench: A data management
infrastructure for earth science products.S8DBM pages 180-189. IEEE Computer
Society, 2001.

[4] Amin Vahdat and Tom Anderson. Transparent result caching. Technical report, Berke-
ley, CA, USA, 1997.

27

h

This page is intentionally left blank.

Appendix A

Abbreviations and Definitions

A.1 List of Definitions

Linage The history of sources and algorithms used to generate a piece of data. This data
can be represented as a directed acyclic graph (DAG)

Metadata Data describing data. An example is a library catalog card, which contains
data about the nature and location of a book: It is data about the data in the book referred
to by the card.

(ADL) Middleware The digital library software developed by the Alexandria Digital Li-
brary project

Overriding (subroutines) Replacing the original subroutine with an alternative. In object
oriented programming, is a language feature that allows a subclass to provide a specific
implementation of a method that is already provided by one of its superclasses. The imple-
mentation in the subclass overrides (replaces) the implementation in the superclass.
ProcedureA subroutine that does not return a value

Routine see: Subroutine

Subroutine A sequence of code which performs a specific task, as part of a larger pro-
gram, and is grouped as one or more statement blocks. Subroutines can be "called”, thus
allowing programs to access the subroutine repeatedly without the subroutine’s code hav-
ing been written more than once. A subroutine can ether be a function or a procedure.

Function A subroutine that returns a value.

A.2 List of Abbreviations

ADL Alexandria Digital Library - A a distributed digital library with collections of georef-
erenced materials.

BASH Bourne Again Shell
DAG Directed Acyclic Graph

29

30 APPENDIX A. ABBREVIATIONS AND DEFINITIONS

EIL Environment Information Lab
ES? Earth System Science Server
ESSWEarth System Science Workbench

HTML Hypertext Markup Language - The document format language used on the World
Wide Web

HTTP HyperText Transfer Protocol - A protocol used to transmit files over the World
Wide Web

IDL Interactive Data Language
TREC Transparent result caching

UFO A Personal Global File System Based on User-Level Extensions to the Operating
System

UCSB University of California, Santa Barabra

XML Extended Markup Language - Cleartext language for specifying structured data

Appendix B

Source Code

B.1 IDL plugin scripts

B.1.1 es3idlprec

#!/usr/bin/perl
use Getopt::Std;

the routines are represented as an array of four text stings:
0: the name of the routine
1: parametters and optional prametters
2. options — boolean options are marked with an leading /
3: arguments passed to EE®G
(FILE=FILE and ROUTINEzname> are implicit)
$ENV{'ES3.IGNORE'} = "es3.idlprec”;
@functions = (
["READ _ASCII", "FILE”, "COMMENT SYMBOL, COUNT, DATASTART,
DELIMITER, HEADER, MISSINGVALUE, NUM_RECORDS,
RECORDSTART, TEMPLATE, /VERBOSE”, "/READ"],
["READ BINARY ", "FILE", "TEMPLATE, DATA _START, DATATYPE,
DATA_DIMS, ENDIAN”, "/READ"],

["READBMP”, "FILE, RED, GREEN, BLUE, IHDR", "RGB”, "/READ"],

["READ_DICOM”, "FILE , RED, GREEN, BLUE”, "IMAGE_INDEX",
"/READ"],

["READ_IMAGE”, "FILE, RED, GREEN, BLUE”, "IMAGE_INDEX",
"/READ"],

["READ_MRSID", "FILE", "LEVEL, SUB RECT”, "/READ"],

["READ_PNG”, "FILE, RED, GREEN, BLUE”, "/ORDER, /VERBOSE,
/TRANSPARENT” , "/READ"],

["READ_SPR”, "FILE", "", "/READ"],

["READ SYLK”, "FILE"”, "/ARRAY, /COLMAJOR, NCOLS, NROWS,
STARTCOL, STARTROW, /USEDOUBLES, /USELONGS”, "/READ"],
["READ _TIFF”, "FILE, RED, GREEN, BLUE",
"CHANNELS, GEOTIFF, IMAGEINDEX, INTERLEAVE,

ORIENTATION, PLANARCONFIG, SUBRECT, /UNSIGNED, /VERBOSE”,

"/READ"],

["TREAD WAV”" , "FILE, RATE”, ", "/READ"],

["READ WAVE”, "FILE, VARIABLES, NAMES, DIMENSIONS”,
"MESHNAMES” , "/READ"],

["READXWD”, "FILE, RED, GREEN, BLUE”, "", "/READ"]

)i

@procedures = (
["READ_JPEG”, "FILE, IMAGE, COLORTABLE”,
"UNIT, BUFFER, COLORS, DITHER, /GRAYSCALE, /ORDER,
TRUE, /TWO.PASSQUANTIZE”, "/READ"],
["READ _INTERFILE” , "FILE , DATA”, ", "/READ"],
["READ_PICT", "FILE, IMAGE, RED, GREEN, BLUE”, "", "/READ"],

31

32 APPENDIX B. SOURCE CODE

["READ_PPM” , "FILE , IMAGE”, "MAXVAL" , "/READ"],
["READ_SRF”, "FILE, IMAGE, RED, GREEN, BLUE”, "", "/READ"],
["WRITE.BMP” , "FILE , IMAGE, RED, GREEN, BLUE”,

"FOURBIT, Ihd, HEADERDEFINE, RGB” , "/WRITE"],
["WRITE_IMAGE” , "FILE , FORMAT, DATA, RED, GREEN, BLUE”,

"APPEND, _EXTRA” , "/WRITE"],

["WRITE_JPEG”, "FILE, IMAGE”, "UNIT, /ORDER,

/PROGRESSIVE, QUALITY, TRUE”, "/WRITE"],

["WRITE_NRIF” , "FILE, IMAGE, RED, GREEN, BLUE”, "", "/WRITE"],
["WRITE_PICT”, "FILE, IMAGE, RED, GREEN, BLUE”, "*, "/WRITE"],
["WRITE_PNG” , "FILE IMAGE, RED, GREEN, BLUE",

"/VERBOSE, TRANSPARENT, /ORDER”, */WRITE"],

["WRITE_PPM" , "FILE , IMAGE”, "ASCII”, "/WRITE"],
["WRITE_SRF”, "FILE , IMAGE, RED, GREEN, BLUE”,

"WRITE_32, ORDER”, */WRITE"],

["WRITE_SYLK” , "FILE , DATA”, "STARTROW, STARTCOL”, "/WRITE"],
["WRITE_TIFF”, "FILE , IMAGE”,

"/APPEND, BITSPERSAMPLE, RED, GREEN, BLUE,
COMPRESSION, GEOTIFF, /LONG, /SHORT, /FLOAT,
ORIENTATION, PLANARCONFIG, /VERBOSE, XRESOL, YRESOL”,

"IWRITE"],

["WRITE.WAV” , "FILE, DATA, RATE", "", "/WRITE"],
["WRITE.WAVE” , "FILE , DATE”, "BIN, NOMESHDEF, DATANAME,

MESHNAME, VECTOR”, "/WRITE”],

["READ _X11BITMAP” , "FILE , BITMAP, X, Y”, "/EXPAND _TO.BYTES",

"|READ"],

["OPENW” | "UNIT, FILE”,

"/APPEND, /COMPRESS, BUFSIZE, /DELETE, ERROR,
/F77Z.UNFORMATTED, /GETLUN, /MORE, /NOEXPANDPATH,
/STDIO, /SWAPENDIAN, SWAP._IF_BIG_ENDIAN,

/ SWAP_IF_LITTLE_ENDIAN , /VAX _FLOAT, WIDTH, /XDR,
/RAWIO” , " /WRITE"],
["OPENR”, "UNIT, FILE”,

"/APPEND, /COMPRESS, BUFSIZE, /DELETE, ERROR,
/F77.UNFORMATTED, /GETLUN, /MORE, /NOEXPANDPATH,
/STDIO, /SWAPENDIAN, SWAP_IF_BIG_ENDIAN,

/ SWAP_IF_LITTLE _ENDIAN , /VAX _FLOAT, WIDTH, /XDR,
/RAWIO” , "/READ”]

)

@routines = (@functions , @procedures);

#print the helptext
sub printhelp{

print STDERR "Usage: es3ddlprec [options] [inputfile]
Options are:

—h Display this usage text

—0 <output—file > Place the output into<file >

—d Create a dummy procedure with the ”
"same name as the output file

—w <output—dir > Create the wrapper routines .pro files ”

"in <output—dir > and exit
-1 List all the routines in the script

—b Box it up
—p Output only the difference
Example 1:

% echo \"PRINT, 'HELLO WORLD' \"” | es3.idlprec | idl

Example 2:
% es3idlprec —o es3.test.pro test.pro
% idl
IDL > .COMPILE es3test.pro

Example 3:
IDL > ES3COMPILE test
IDL > TEST, ’'foo’

B.1. IDL PLUGIN SCRIPTS

exit;

%options =();
getopts ("ho:dw:Ibp™\%options);

print_help if defined $option§h};

#create wrapper routines
if (defined $optiongw}) {
$dir = $options{w};
$dir .= "/ if not ($dir =7 /\/$/);
die ("Output directory not found: '". $dir.”'")
if not(—e $dir);

for $i (0 ... S$#routines){

$filename = $dir.”es3”".Ic($routines[$i][0]).". pro”;
open(file , ">". $filename);
$function = ($i < @functions);
print file ";ES3: IGNOREn";
print file $function?”FUNCTION”":"PRO" ;
print file ” ES3.” . $routines[$i][0] . ",
print file $routines[$i][1];
@options = split (/,[\t\n]=/, $routines[S$i][2]);
for $j (0 ... $#options){

$opt = $options[$j];

$opt =" s/\///;

print file ", ";
print file "\$\n\t\t” if (($j+1)%1==0);
print file $opt . "=" . $opt;

}
print file "\ n\tCOMPILE.OPT HIDDEN\n";

print file "\tES3LOG, ROUTINE="" . $routines[$i][0] . " ,";

print file " FILE=FILE, ";
print file $routines[$i][3] . "\ n”;
if ($function) {
print file "\tRETURN, " . $routines[$i][0] . "(";
} else{
print file "\t” . $routines[$i][0] . ", ";

print file $routines[$i][1];
for $j (0 ... $#options){
$opt = $options[$j];
$opt = $opt . "=" . $opt
if not $opt =" sA/(.*)/$1=KEYWORDSET($1)/;
print file ", ";
print file "\$\n\t\t"” if (($j+1)%1==0);
print file $opt;

print file ")” if ($function);
print file "\nEND\n”;
close(file);

}

exit;

}

#set output stream
if (defined $optiongo}) {
$outputname = $optiongo};

$outputname =" sh.pro//i;

$outputname =" s/«x\///i;

open(output, ">".$options{o});
} else{

open(output, > —");

33

34 APPENDIX B. SOURCE CODE

}

#set input stream
if ($ARGV[O0]) {
open(input, $ARGV[0])
} else{
open(input, '—');

}

#make the dummy process
if(defined $optiondd} and defined $outpuname){
print output "PRO " . $outputname;
print output "\ n\tCOMPILE.OPT hidden\nEND\n\n";
}

#do the parsing

@blocks; #list of blocks/routine we have entered
sub enteg

$block = $.[0];

push(@blocks, $block);

if (defined $optiongb} and not $block =" kbegin>/) {

while ($line =" N\S$[\t]x(;.x)?$/){
while ($line =" A$[\t 1x$/){
$line .= <input>;

}
$line .= "HELP, NAMES=\"x\", OUTPUT=ES3ENVIROMENT & ”;
$line .= "ES3LOG, ENTER=\"" . $block;
$line .= "\", ENVIROMENT=ES3ENVIROMENT\n";
}
while ($line =<input>) {
$original = $line;

if($line =~ /" \t]*;[\t]*ES3:[\ t]*(.*)$/i){
$command = $1;
if ($command =" /ignore/i){
print output $line;
while ($line = <input>) {
print output $line;

}
break;
}
}
next if($line =" /[\t]*HELP,.«ES3LOG/i);
for $i (0 ... $#functions){

my $function = $functions[$i][0];
$line =" s/(["-])($function[\ t]1*x\()/$S1ES3$2/i;

}

for $i (0 ... S$#procedures)
my $procedure = $procedures[$i][0];
$line =~

sI(C(*&)?2[\t 1«(["-1)?)($procedure[\t]*,)/$1ES3$4/i;

if ($line =7 /"(pro|function)[\ t]+([a—zA—Z0-9_:]1+)/i) {
enter($2);
print STDERR $2 . "\ n” if (defined $optiongl });

}

if ($line =" /[\ t]*BEGIN[\ t](;.%)?$/i){
enter(’<script>") if @blocks == 0;
enter('<begin>");

enter("<script>") if (not $line =" /7[\t]*(;.x)?$/
and @blocks == 0);

if ($line =" /"[\t]+END[\ t]=(;.*)?2$/i){
$block = pop(@blocks);
if (defined $optiongb} and not $block =" kbegin>/){

B.1. IDL PLUGIN SCRIPTS 35

$line = "HELP, NAMES=\"=x\", OUTPUT=ES3ENVIROMENT & ";

$line .= "ES3LOG, LEAVE=\"";
$line .= $block."\”, ENVIROMENT=ES3ENVIROMENT\n";
$line .= "END ; " . $block . "\ n”";

}
}

if (defined $optiongp}) {
if(not $line eq $original){

print output " — " . $original;
print output " + " . $line;
}
} else{
print output $line;

}
}

close (input);
close (output);

B.1.2 es3idlwrap

#!/bin/bash
export ES3IGNORE=es3idlwrap

prec="es3idlprec”

if ! which $prec &> /dev/null;

then
echo ” Error: Could not find $prec in PATH”;
exit

fi

help () {

echo "Usage: es3dlwrap [options] [directory]”

echo "Options are:”

echo ” —h,——help Display this usage text”
echo—n " —c,——create Create .es3 and .es3/idl”
echo ” directories if they do not exist”

}

create=false
dir="pwd*
while [—n "$1"]
do
case "$1”
in
—h|——help)
help
exit 0
7c)
create=true
_*)

echo ” Unknown option: " $1

*)”
dir=%$1
esac
shift
done

if [t —d”s$dir”]

36 APPENDIX B. SOURCE CODE

then
echo ” Could not find dir: "$dir™
exit
fi
cd "$dir”
if [! —d ”.es3/idl"]
then
if ["$create” = "true”]
then

mkdir ".es3”
mkdir ".es3/idl”

else
echo ” Error: ES3 is not enabled for dir: *$dir’”
echo ” You need to create the directory ‘pwd‘/.es3/idl”
exit

fi
fi

Is —1 x.pro | while read pro

do
if newer "$pro” ".es3/idl/$pro”
then
name=‘echo $pr¢ sed 'sA(.x\)\.pro/\1/""
if 1 grep—i —e\
"~ \ t]*\(PRO\ |FUNCTION\)[\ t]+*$name\ (["a—z]\|$\)" \
$pro &> /dev/null
then
copts="~—d”
fi
$prec $copts—b —o .es3/idl/$pro $pro
fi
done

B.1.3 es3startup.pro

:ES3: IGNORE

PRO ES3STARTUP
COMPILEOPT hidden
QUIET = !QUIET

IQUIET=1

IF STRMATCH(”:"+GETENV("ES3.ENABLE")+":", " x:idl:x") THEN BEGIN
PATH_.DIRS=STRSPLIT (!PATH, ":” , /EXTRACT)
IPATH=""
FOR | = 0, NELEMENTS(PATHDIRS)—1 DO BEGIN

ES3DIR = PATH.DIRS[I] + "/.es3/idl/”
IF (FILE_TEST(ES3DIR, /DIRECTORY)) THEN BEGIN
SPAWN, "ES3IGNORE=idl_startup es3idlwrap '" + PATH.DIRS[I]+""”

IPATH = IPATH + ":” + ES3.DIR
ENDIF
IPATH = IPATH + ":” + PATH_DIRS][I]
ENDFOR

IF (FILE_TEST (".es3/idl /", /DIRECTORY)) THEN BEGIN
PRINT,”% Loading modules from current directory ...”
SPAWN, "ES3IGNORE=idl_startup es3idlwrap”

CD, ".es3/idl/”
CURRENT=FILESEARCH ("*.pro")
FOR | = 0, NELEMENTS(CURRENT)-1 DO BEGIN
ROUTINE=STRMID (CURRENT[1],0, $
STRPOS(CURRENT[I],”.” ,/REVERSESEARCH))
RESOLVEROUTINE, ROUTINE, /EITHER
ENDFOR
CcD, "../..”
ENDIF
ES3LOG, /INIT

B.1. IDL PLUGIN SCRIPTS

QUIET = IQUIET
PRINT, "% ES3 snooping is enabled for this session”
ENDIF

IQUIET=0

END

37

B.1.4 es3compile.pro

PRO ES3COMPILE, MODULE
FILE=file _search (MODULE, /FULLYQUALIFY _PATH)
IF (FILE) THEN BEGIN
SPAWN, ’'ES3IGNORE=es3compile idlprec.pl—-d -0 es3tmp.pro—b '+FILE
RESOLVEROUTINE, 'ES3TMP', /COMPILE.FULL_FILE, /EITHER
SPAWN, ’'ES3IGNORE=es3compile rm es3tmp.pro’
PRINT, "% ES3 hooked module: " + MODULE
ENDIF ELSE PRINT, "% Could not find module: " $
STRUPCASE (MODULE)
END

B.1.5 es3log.pro

;ES3: IGNORE

FUNCTION ES3ESC, STRING
RETURN=STRJOIN (STRSPLIT (STRING \” , /EXTRACT, $
/PRESERVENULL) , " \\\\")
RETURN=STRJOIN (STRSPLIT(RETURN, " ', /EXTRACT, $
/PRESERVENULL), " \\\"")
RETURN, RETURN
END

PRO ES3LOG, ROUTINE=ROUTINE, FILE=FILE, READ=READ, $
WRITE=WRITE, ENTER=ENTER, LEAVE=LEAVE, $
ENVIROMENT=ENVIROMENT, INIT=INIT
COMPILE.OPT HIDDEN
ARG = "

IF KEYWORD.SET(FILE) THEN BEGIN
ARG=ARG+'——files '"+FILE_SEARCH(FILE , /FULLY_-QUALIFY _PATH)
IF KEYWORD_SET(READ) THEN ARG=ARG+”, READ"
IF KEYWORD_SET(WRITE) THEN ARG=ARG+", WRITE "
ARG = ARG+""”
ENDIF

IF KEYWORD_SET(ROUTINE) THEN ARG=ARG+-—routine "+ROUTINE+" "
IF KEYWORD_SET(ENTER) THEN ARG=ARG+-—enter "+ENTER+" "
IF KEYWORD_SET(LEAVE) THEN ARG=ARG+-—leave "+LEAVE+" "
IF KEYWORD_SET (ENVIROMENT) THEN BEGIN
ARG +='——enviroment "’
FOR | = 0, nelements (ENVIROMENT)-1 DO BEGIN
IF (NOT STRPOS(ENVIROMENT[I], "ES3") EQ 0) THEN BEGIN
SPLIT = STRSPLIT(ENVIROMENT[|], /EXTRACT)
VALUE = STRTRIM(strmid (ENVIROMENT[I], $
STRPOS (ENVIROMENT[], "=")+2),1)
IF STRPOS(VALUE, " '") EQ 0 THEN $
VALUE = strmid (VALUE, 1, $
STRPOS(VALUE, "'", /REVERSESEARCH)—1)
ARG += "(" + SPLIT[1] + ") " + SPLIT[0] + "="
ARG += "\"’' + ES3.ESC(VALUE) + "\":’
ENDIF
ENDFOR
ARG += """
ENDIF

38 APPENDIX B. SOURCE CODE

IF KEYWORDSET(INIT) THEN BEGIN
SYSTEM = 'IDIR=\""+ES3_ESC (!DIR)+"\":’
SYSTEM += 'IPATH=\""+ES3_ESC (!PATH)+"\":"
SYSTEM += 'IVERSION.ARCH=\""+ES3_ESC (! VERSION.ARCH)+\":’
SYSTEM += 'IVERSION.OS3"'+ES3_ESC (! VERSION.OS)+\":"’
SYSTEM += 'IVERSION.OSFAMILY=\""
SYSTEM += ES3ESC (! VERSION.OSFAMILY)+ \":’
SYSTEM += 'IVERSION.RELEASEX"’
SYSTEM += ES3ESC (! VERSION.RELEASE)+\":"’
SYSTEM += 'IVERSION.BUILD.DATE=\""
SYSTEM += ES3ESC (! VERSION.BUILDDATE)+"\":’
SYSTEM += 'IVERSION.MEMORYBITS=\""
SYSTEM += ES3ESC (! VERSION.MEMORYBITS)+'\":’
SYSTEM += 'IVERSION.FILEOFFSETBITS=\""+ $
ES3ESC (!VERSION. FILEOFFSETBITS)+"\":’
ARG=——init ——language idl-—enviroment "'+SYSTEM+'"’

ENDIF

SPAWN, 'ES3IGNORE=idl_startup es3log ' + ARG, OUT

FOR | = 0, nelements (OUT»1DO IF STRLEN(OUT[I]) NE O THEN $
PRINT, OUT[I]

END

B.1.6 Wrapper scripts

es3openr.pro

:ES3: IGNORE
PRO ES30PENR, UNIT, FILE, $

APPEND=APPEND, $
COMPRESS=COMPRESS, $
BUFSIZE=BUFSIZE , $
DELETE=DELETE, $
ERROR=ERROR, $
F77.UNFORMATTED=F77ZUNFORMATTED, $
GET.LUN=GETLLUN, $
MORE=MORE, $
NOEXPAND.PATH=NOEXPANDPATH, $
STDIO=STDIO, $
SWAPENDIAN=SWAPEENDIAN, $
SWAP_IF_BIG_ENDIAN=SWAP_IF_BIG_ENDIAN , $
SWAP.IF_LITTLE _ENDIAN=SWAP._IF_LITTLE_ENDIAN , $
VAX FLOAT=VAX FLOAT, $
WIDTH=WIDTH, $
XDR=XDR, $
RAWIO=RAWIO

COMPILE.OPT HIDDEN

ES3LOG, ROUTINE='OPENR’, FILE=FILE, /READ

OPENR, UNIT, FILE, $
APPEND=KEYWORDSET (APPEND) , $
COMPRESS=KEYWORIBET (COMPRESS) , $
BUFSIZE=BUFSIZE, $
DELETE=KEYWORDSET (DELETE) , $
ERROR=ERROR, $
F77.UNFORMATTED=KEYWORDSET (F7ZUNFORMATTED) , $
GET.LUN=KEYWORD_SET(GETLUN) , $
MORE=KEYWORDSET(MORE) , $
NOEXPAND.PATH=KEYWORD SET (NOEXPANDPATH) , $
STDIO=KEYWORDSET(STDIO) , $
SWAP.ENDIAN=KEYWORD_SET(SWAPENDIAN) , $
SWAP.IF_BIG_ENDIAN=SWAP_IF_BIG_ENDIAN , $
SWAP._IF_LITTLE _ENDIAN=KEYWORD_SET (SWAPIF_LITTLE_ENDIAN) , $
VAX FLOAT=KEYWORD.SET (VAX_FLOAT) , $
WIDTH=WIDTH, $
XDR=KEYWORD_SET(XDR) , $
RAWIO=KEYWORD_SET (RAWIO)

B.1. IDL PLUGIN SCRIPTS

’ END

39

es3openw.pro

;ES3: IGNORE
PRO ES30PENW, UNIT, FILE, $
APPEND=APPEND, $
COMPRESS=COMPRESS, $
BUFSIZE=BUFSIZE, $
DELETE=DELETE, $
ERROR=ERROR, $
F77.UNFORMATTED=F7ZUNFORMATTED, $
GET.LUN=GET.LUN, $
MORE=MORE, $
NOEXPAND.PATH=NOEXPANDPATH, $
STDIO=STDIO, $
SWAPENDIAN=SWAPENDIAN, $
SWAP.IF_BIG_ENDIAN=SWAP_IF_BIG_ENDIAN, $
SWAP.IF_LITTLE _ENDIAN=SWAP_IF_LITTLE_ENDIAN, $
VAX _FLOAT=VAX FLOAT, $
WIDTH=WIDTH, $
XDR=XDR, $
RAWIO=RAWIO
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='OPENW', FILE=FILE, /WRITE
OPENW, UNIT, FILE, $
APPEND=KEYWORDSET (APPEND) , $
COMPRESS=KEYWORLSET (COMPRESS) , $
BUFSIZE=BUFSIZE, $
DELETE=KEYWORDSET(DELETE) , $
ERROR=ERROR, $
F77.UNFORMATTED=KEYWORDSET (F7ZUNFORMATTED) , $
GET_LUN=KEYWORD_SET(GETLUN) , $
MORE=KEYWORDSET (MORE) , $
NOEXPAND.PATH=KEYWORD.SET (NOEXPANDPATH) , $
STDIO=KEYWORDSET(STDIO) , $
SWAPENDIAN=KEYWORD_SET (SWAPENDIAN) , $
SWAP_IF_BIG_ENDIAN=SWAP_IF_BIG_ENDIAN, $
SWAP_IF_LITTLE _ENDIAN=KEYWORD_SET(SWAPIF_LITTLE _ENDIAN) , $
VAX FLOAT=KEYWORD_SET (VAX_FLOAT) , $
WIDTH=WIDTH, $
XDR=KEYWORD.SET (XDR) , $
RAWIO=KEYWORD_SET (RAWIO)
END

es3read_ascii.pro

;ES3: IGNORE
FUNCTION ES3READ_ASCII, FILE, $
COMMENT_SYMBOL=COMMENT.SYMBOL, $
COUNT=COUNT, $
DATA_START=DATA_START, $
DELIMITER=DELIMITER, $
HEADER=HEADER, $
MISSING_VALUE=MISSING_VALUE, $
NUM_RECORDS=NUMRECORDS, $
RECORDSTART=RECORDSTART, $
TEMPLATE=TEMPLATE, $
VERBOSE=VERBOSE
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="READ.ASCII’, FILE=FILE, /READ
RETURN, READASCII(FILE, $
COMMENT_SYMBOL=COMMENT.SYMBOL, $

40 APPENDIX B. SOURCE CODE

COUNT=COUNT, $
DATA_START=DATA_START, $
DELIMITER=DELIMITER, $
HEADER=HEADER, $
MISSING_VALUE=MISSING_VALUE, $
NUM_RECORDS=NUMRECORDS, $
RECORDSTART=RECORDSTART, $
TEMPLATE=TEMPLATE, $
VERBOSE=KEYWORDSET (VERBOSE))
END

es3read_binary.pro

;ES3: IGNORE
FUNCTION ES3READ.BINARY, FILE, $
TEMPLATE=TEMPLATE, $
DATA_START=DATA_START, $
DATA_TYPE=DATA_TYPE, $
DATA_DIMS=DATADIMS, $
ENDIAN=ENDIAN
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="READBINARY’, FILE=FILE, /READ
RETURN, READBINARY(FILE, $
TEMPLATE=TEMPLATE, $
DATA _START=DATA_START, $
DATA_TYPE=DATA_TYPE, $
DATA _DIMS=DATADIMS, $
ENDIAN=ENDIAN)
END

es3read_bmp.pro

;ES3: IGNORE
FUNCTION ES3READ.BMP, FILE, RED, GREEN, BLUE, IHDR, $
RGB=RGB
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='"READBMP’, FILE=FILE, /READ
RETURN, READBMP(FILE, RED, GREEN, BLUE, IHDR, $
RGB=RGB)
END

es3read_dicom.pro

;ES3: IGNORE
FUNCTION ES3READ.DICOM, FILE, RED, GREEN, BLUE, $
IMAGE _INDEX=IMAGE _INDEX
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='"READDICOM’, FILE=FILE, /READ
RETURN, READDICOM(FILE, RED, GREEN, BLUE, $
IMAGE _INDEX=IMAGE _INDEX)
END

es3read_image.pro

;ES3: IGNORE
FUNCTION ES3READ_IMAGE, FILE, RED, GREEN, BLUE, $
IMAGE _INDEX=IMAGE _INDEX
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='READ.IMAGE’', FILE=FILE, /READ

B.1. IDL PLUGIN SCRIPTS

RETURN, READIMAGE(FILE, RED, GREEN, BLUE, $
IMAGE _INDEX=IMAGE _INDEX)
END

es3read.interfile.pro

;ES3: IGNORE

PRO ES3READ_INTERFILE, FILE, DATA
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="READ.INTERFILE', FILE=FILE, /READ
READ_INTERFILE, FILE, DATA

END

es3read._jpeg.pro

;ES3: IGNORE
PRO ES3READ.JPEG, FILE, IMAGE, COLORTABLE, $
UNIT=UNIT, $

BUFFER=BUFFER, $

COLORS=COLORS, $

DITHER=DITHER, $

GRAYSCALE=GRAYSCALE, $

ORDER=ORDER, $

TRUE=TRUE, $

TWO_PASSQUANTIZE=TWO_PASSQUANTIZE
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="READ.JPEG’, FILE=FILE, /READ
READ.JPEG, FILE, IMAGE, COLORTABLE, $

UNIT=UNIT, $

BUFFER=BUFFER, $

COLORS=COLORS, $

DITHER=DITHER, $

GRAYSCALE=KEYWORDSET (GRAYSCALE) , $

ORDER=KEYWORDSET (ORDER) , $

TRUE=TRUE, $

TWO_PASSQUANTIZE=KEYWORD_SET (TWOPASSQUANTIZE)

END

es3read_mrsid.pro

;ES3: IGNORE
FUNCTION ES3READ_MRSID, FILE, $
LEVEL=LEVEL, $
SUB.RECT=SUBRECT
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="READMRSID', FILE=FILE, /READ
RETURN, READMRSID(FILE, $
LEVEL=LEVEL, $
SUB.RECT=SUBRECT)
END

es3read_pict.pro

;ES3: IGNORE

PRO ES3READ_PICT, FILE, IMAGE, RED, GREEN, BLUE
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='READ.PICT’, FILE=FILE, /READ
READ_PICT, FILE, IMAGE, RED, GREEN, BLUE

END

42 APPENDIX B. SOURCE CODE

es3read_png.pro

;ES3: IGNORE
FUNCTION ES3READ_-PNG, FILE, RED, GREEN, BLUE, $
ORDER=ORDER, $
VERBOSE=VERBOSE, $
TRANSPARENT=TRANSPARENT
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="READPNG’, FILE=FILE, /READ
RETURN, READPNG(FILE, RED, GREEN, BLUE, $
ORDER=KEYWORDSET (ORDER) , $
VERBOSE=KEYWORDSET(VERBOSE) , $
TRANSPARENT=KEYWORDSET (TRANSPARENT))
END

es3read_ppm.pro

;ES3: IGNORE
PRO ES3READ_PPM, FILE, IMAGE, $
MAXVAL=MAXVAL
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='"READPPM’, FILE=FILE, /READ
READ_PPM, FILE, IMAGE, $
MAXVAL=MAXVAL
END

es3read_spr.pro

;ES3: IGNORE

FUNCTION ES3READ_SPR, FILE
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='"READ.SPR’, FILE=FILE, /READ
RETURN, READSPR(FILE)

END

es3read_srf.pro

;ES3: IGNORE

PRO ES3READ_SRF, FILE, IMAGE, RED, GREEN, BLUE
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='READ.SRF’, FILE=FILE, /READ
READ_SRF, FILE, IMAGE, RED, GREEN, BLUE

END

es3read._sylk.pro

;ES3: IGNORE
FUNCTION ES3READ._SYLK, FILE, $
ARRAY=ARRAY, $
COLMAJOR=COLMAJOR, $
NCOLS=NCOLS, $
NROWS=NROWS, $
STARTCOL=STARTCOL, $
STARTROW=STARTROW, $
USEDOUBLES=USEDOUBLES, $
USELONGS=USELONGS
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='"READSYLK', FILE=FILE, /READ

B.1. IDL PLUGIN SCRIPTS

RETURN, READSYLK(FILE, $
ARRAY=KEYWORD_SET (ARRAY) , $
COLMAJOR=KEYWORDSET (COLMAJOR) , $
NCOLS=NCOLS, $
NROWS=NROWS, $
STARTCOL=STARTCOL, $
STARTROW=STARTROW, $
USEDOUBLES=KEYWORDSET (USEDOUBLES) , $
USELONGS=KEYWORDSET (USELONGS))

END

43

es3read._tiff.pro

;ES3: IGNORE
FUNCTION ES3READ_TIFF, FILE, RED, GREEN, BLUE, $
CHANNELS=CHANNELS, $
GEOTIFF=GEOTIFF, $
IMAGE _INDEX=IMAGE _INDEX, $
INTERLEAVE=INTERLEAVE, $
ORIENTATION=ORIENTATION, $
PLANARCONFIG=PLANARCONFIG, $
SUB.RECT=SUBRECT, $
UNSIGNED=UNSIGNED, $
VERBOSE=VERBOSE
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="READ.TIFF’, FILE=FILE, /READ
RETURN, READTIFF(FILE, RED, GREEN, BLUE, $
CHANNELS=CHANNELS, $
GEOTIFF=GEOTIFF, $
IMAGE _INDEX=IMAGE _INDEX, $
INTERLEAVE=INTERLEAVE, $
ORIENTATION=ORIENTATION, $
PLANARCONFIG=PLANARCONFIG, $
SUB.RECT=SUBRECT, $
UNSIGNED=KEYWORDSET (UNSIGNED) , $
VERBOSE=KEYWORDSET (VERBOSE))
END

es3read_wav.pro

;ES3: IGNORE

FUNCTION ES3READ.WAV, FILE, RATE
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='READWAV', FILE=FILE, /READ
RETURN, READWAV(FILE , RATE)

END

es3read_wave.pro

;ES3: IGNORE
FUNCTION ES3READ.WAVE, FILE, VARIABLES, NAMES, DIMENSIONS, $
MESHNAMES=MESHNAMES
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='"READWAVE', FILE=FILE, /READ
RETURN, READWAVE(FILE, VARIABLES, NAMES, DIMENSIONS, $
MESHNAMES=MESHNAMES)
END

44 APPENDIX B. SOURCE CODE

es3read_x11 bitmap.pro

;ES3: IGNORE
PRO ES3READ_X11.BITMAP, FILE, BITMAP, X, Y, $
EXPAND_TO_.BYTES=EXPAND.TO_BYTES
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="READ.X11.BITMAP', FILE=FILE, /READ
READ_X11.BITMAP, FILE, BITMAP, X, Y, $
EXPAND_TO_BYTES=KEYWORDSET (EXPAND.TO_BYTES)
END

es3read_xwd.pro

;ES3: IGNORE

FUNCTION ES3READXWD, FILE, RED, GREEN, BLUE
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='READXWD’, FILE=FILE, /READ
RETURN, READXWD(FILE, RED, GREEN, BLUE)

END

es3write _bmp.pro

;ES3: IGNORE
PRO ES3WRITE.BMP, FILE, IMAGE, RED, GREEN, BLUE, $
FOURBIT=FOURBIT, $
Ilhd=Ihd , $
HEADER DEFINE=HEADERDEFINE, $
RGB=RGB
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="WRITEBMP’, FILE=FILE, /WRITE
WRITE.BMP, FILE, IMAGE, RED, GREEN, BLUE, $
FOURBIT=FOURBIT, $
Ilhd=Ihd , $
HEADER. DEFINE=HEADERDEFINE, $
RGB=RGB
END

es3write _image.pro

;ES3: IGNORE
PRO ES3WRITE.IMAGE, FILE, FORMAT, DATA, RED, GREEN, BLUE, $
APPEND=APPEND, $
_EXTRA=_EXTRA
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="WRITEIMAGE', FILE=FILE, /WRITE
WRITELIMAGE, FILE, FORMAT, DATA, RED, GREEN, BLUE, $
APPEND=APPEND, $
_EXTRA=_EXTRA
END

es3write _jpeg.pro

:ES3: IGNORE

PRO ES3WRITE.JPEG, FILE, IMAGE, $
UNIT=UNIT, $
ORDER=ORDER, $
PROGRESSIVE=PROGRESSIVE, $
QUALITY=QUALITY, $

B.1. IDL PLUGIN SCRIPTS 45

TRUE=TRUE

COMPILE.OPT HIDDEN

ES3LOG, ROUTINE="WRITEJPEG', FILE=FILE, /WRITE

WRITEJPEG, FILE, IMAGE, $
UNIT=UNIT, $
ORDER=KEYWORDSET (ORDER) , $
PROGRESSIVE=KEYWORLBET (PROGRESSIVE) , $
QUALITY=QUALITY, $
TRUE=TRUE

END

es3write _nrif.pro

;ES3: IGNORE

PRO ES3WRITE_NRIF, FILE, IMAGE, RED, GREEN, BLUE
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="WRITENRIF’, FILE=FILE, /WRITE
WRITE-NRIF, FILE, IMAGE, RED, GREEN, BLUE

END

es3write _pict.pro

;ES3: IGNORE

PRO ES3WRITE_PICT, FILE, IMAGE, RED, GREEN, BLUE
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="WRITEPICT’, FILE=FILE, /WRITE
WRITE_PICT, FILE, IMAGE, RED, GREEN, BLUE

END

es3write _png.pro

;ES3: IGNORE
PRO ES3WRITE.PNG, FILE IMAGE, RED, GREEN, BLUE, $
VERBOSE=VERBOSE, $
TRANSPARENT=TRANSPARENT, $
ORDER=ORDER
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="WRITEPNG', FILE=FILE, /WRITE
WRITE.PNG, FILE IMAGE, RED, GREEN, BLUE, $
VERBOSE=KEYWORDSET (VERBOSE) , $
TRANSPARENT=TRANSPARENT, $
ORDER=KEYWORDSET (ORDER)
END

es3write _ppm.pro

;ES3: IGNORE
PRO ES3WRITE.PPM, FILE, IMAGE, $
ASCII=ASCII
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="WRITEPPM’, FILE=FILE, /WRITE
WRITE_.PPM, FILE, IMAGE, $
ASCII=ASCII
END

46 APPENDIX B. SOURCE CODE

es3write _srf.pro

;ES3: IGNORE
PRO ES3WRITE_SRF, FILE, IMAGE, RED, GREEN, BLUE, $
WRITE-32=WRITE.32, $
ORDER=ORDER
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="WRITESSRF’, FILE=FILE, /WRITE
WRITE.SRF, FILE, IMAGE, RED, GREEN, BLUE, $
WRITE_32=WRITE.32, $
ORDER=ORDER
END

es3write _sylk.pro

;ES3: IGNORE
PRO ES3WRITE.SYLK, FILE, DATA, $
STARTROW=STARTROW, $
STARTCOL=STARTCOL
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="WRITESYLK’, FILE=FILE, /WRITE
WRITE.SYLK, FILE, DATA, $
STARTROW=STARTROW, $
STARTCOL=STARTCOL
END

es3write _tiff.pro

;ES3: IGNORE
PRO ES3WRITE_TIFF, FILE, IMAGE, $

APPEND=APPEND, $
BITS_.PERSAMPLE=BITSPERSAMPLE, $
RED=RED, $
GREEN=GREEN, $
BLUE=BLUE, $
COMPRESSION=COMPRESSION, $
GEOTIFF=GEOTIFF, $
LONG=LONG, $
SHORT=SHORT, $
FLOAT=FLOAT, $
ORIENTATION=ORIENTATION, $
PLANARCONFIG=PLANARCONFIG, $
VERBOSE=VERBOSE, $
XRESOL=XRESOL, $
YRESOL=YRESOL

COMPILE.OPT HIDDEN

ES3LOG, ROUTINE="WRITETIFF', FILE=FILE, /WRITE

WRITE_TIFF, FILE, IMAGE, $
APPEND=KEYWORDSET (APPEND) , $
BITS_.PERSAMPLE=BITSPERSAMPLE, $
RED=RED, $
GREEN=GREEN, $
BLUE=BLUE, $
COMPRESSION=COMPRESSION, $
GEOTIFF=GEOTIFF, $
LONG=KEYWORD.SET(LONG) , $
SHORT=KEYWORDSET (SHORT) , $
FLOAT=KEYWORD.SET (FLOAT) , $
ORIENTATION=ORIENTATION, $
PLANARCONFIG=PLANARCONFIG, $
VERBOSE=KEYWORDSET (VERBOSE) , $
XRESOL=XRESOL, $
YRESOL=YRESOL

B.2. BASH PLUGIN SCRIPTS

END

es3write _wav.pro

;ES3: IGNORE

PRO ES3WRITE.WAV, FILE, DATA, RATE
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE='"WRITEWAV', FILE=FILE, /WRITE
WRITEWAV, FILE, DATA, RATE

END

es3write _wave.pro

;ES3: IGNORE
PRO ES3WRITE.WAVE, FILE, DATE, $
BIN=BIN, $
NOMESHDEF=NOMESHDEF, $
DATANAME=DATANAME, $
MESHNAME=MESHNAME, $
VECTOR=VECTOR
COMPILE.OPT HIDDEN
ES3LOG, ROUTINE="WRITEWAVE’, FILE=FILE, /WRITE
WRITEWAVE, FILE, DATE, $
BIN=BIN, $
NOMESHDEF=NOMESHDEF, $
DATANAME=DATANAME, $
MESHNAME=MESHNAME, $
VECTOR=VECTOR
END

B.2 Bash plugin scripts

B.2.1 es3straceproc

#!/usr/bin/perl
use Switch;

sub help{
print STDERR "postproc is a parser for strace outpot;
exit;

}
while ($arg=shift (@ARGV)Y
switch ($arg){
case —h” {
help;

case ——help™{
help;
}
}

#include es3log

my $bin_dir = ‘which es3log ‘;
$bin_dir =~ s/\/\//\I/lg;
$bin_dir =7 s/["\/]*x$//;

push (@INC, $bindir);
require "es3log”;

48 APPENDIX B. SOURCE CODE

my %procs;

sub getFile :method{

$pid = @[0];
$fid = @.[1];
$rw = @ [2];

if ($procs{$pid}{'file’ }{$fid}){
return $procg$pid}{ ' file ' }{$fid};
} elsif ($procs{$pid}{'file’ }{$rw.$fid}) {
return "<”.$procs{$pid}{'file ' }{$rw. $fid}.”" >";
} elsif ($procs{$pid}{'parent’}) {
my $parent = $proc$pid}{ parent’'};
return getFile($parent, $fid, $rw);

}

return '<std—in >’ if ($fid == 0);
return '<std—out>" if ($fid == 1);
return '<std—err>" if ($fid == 2);

return '<null >’;

}

my $starttime = 0;
sub writeProc{
my $pid=@[0];
my $ppid = $procg$pid}{ ' parent’};
if ($pid and $procg{$pid}{'cmd’} and not $proc$¢$pid}{’ignore '}){
if (not $procs{$ppid}{’init’}) {
es3.log("——Ipid”, $ppid,"——init”,
"——language”, "bash”);#, ~ —stime”, $starttime);
$procs{$ppid}{’init '} = 1;

}
#print("$pid executed:”. $procg$pid}{’'cmd’}.”\n");
my $file_arg = "";
for $i (0 ... $# $procs{$pid}{’io’ }}){
#print($procg $pid}{’io’ }[$i][0].” ");
$file_arg .= join(",”, @ $procs{$pid}{'io’ }[S$i]});

$file_arg
my @larg;
$larg[0] = "— —pid";
$larg[1] = $pid;
$larg[2] ="——ppid";
$larg [3] = $procY $pid}{'parent’};
$larg[4] ="——Ipid";
$larg [5] = $procq $pid}{ ' parent’'}?$procq $pid}{ ' parent'}: $pid;
$larg[6] ="— —files ";
$larg [7] = $file_arg;
$larg[8] ="——routine ”;
$larg [9] = $procg$pid}{’cmd’};
$larg[9] =" s/™"(.x)"$/$1/;
$larg[10] = "— —arguments”;
$larg[11] = join(", ", @ $procs{$pid}{’'exec.arg '} });
$larg[12] ="— —time";
$larg[13] = tsToStd ($procE$pid}{’execve-time'});
$larg[l4] ="— —stime";
$larg[15] = $starttime;
$larg[16] = "— —enviroment”;
my $env = "";
while (($name, $value) = each@procs{$pid}{’'enviroment '} })) {
$env .= $name . '="' . $value . '":’;

}

$larg[17] = $env;

es3.log(@larg);

delete ($proc§s$pid});
}

}

open(raw, ">/tmp/es3/raw”);

B.2. BASH PLUGIN SCRIPTS

open(input, '=');
my %unfinished;
my $pipes = 1;
while ($line = <input>) {
#putting the<unfinished> and <resumed> lines back together
if ($line =" /7(([0—9]+)[\t]+.x)[\t]+<unfinished\t]+\.\.\.>$/) {
$unfinished{($2} = $1;
next;

}

if ($line =~ s/°([0—9]+)[\t 1+[0 —9:\.]+[\ t]+ <\.\.\.[\t 1+[a—z-0 —9]+(
)J{O}[\t]+resumed>(.x)$/$unfinished $1}$2/){
delete ($unfinished$1});

print raw $line;

if ($line ="/7([0—9]+)[\t J+([0 —9:\.]+)[\ t []+([a—z-0 —9]+)\ ((.x)\)(

){O}[\ t1+=[\t 1([0 9\ —]%)/) {

my $pid = $1;

my $ts = $2;

my $call = $3;

my $unsplitarg = $4;

my @arg = split(/, /,%$4);

my $ret = $5;

if (not $mainpid) {
$mainpid = $pid;
$starttime = tsToStd($ts);

}
if (not $procs($pid}{ start_time '})
switch ($call) {
case "open”{
if($ret =~ /7[0-9]+$/) {
my $pwd = $ $procs{$pid}{’enviroment’}}{"PWD" };
my $fname = @arg[0];
if ($pwd and not $fname =~ /"X//) {

$fname =" s/""//;
$fname = "' . $pwd . '/’ . $fname;
$fname =" sA/["\/]+\/\.\.\//\//g;

}
$procs{$pid}{’'file ' }{ $ret} = $fname;
@op = "READ” if ($arg[1] =~ /QRDONLY/);
@op = "WRITE” if($arg[1] =~ /QWRONLY/);
push(@$procs{$pid}{’io’ }}, [$fname, @op]);
}
}

#case "close{
#print("$pid close @arg[0{n”);

#

case "dup2y

if ($arg[1l] == 0) { #stdin
$file = getFile($pid, $arg[0], 'r’);

} elsif($arg[1] == 1 or $arg[l] == 2§ #stdout/stderr
$file = getFile($pid, $arg[0], 'w’);

} else{
$file = getFile ($pid, $arg[0]);

$procs{$pid}{ ' file ' }{$arg[1]} = $file;

case "execve{

$procs{$pid}{’cmd’'} = $arg[0];

$procs{$pid}{ execve-time '} = $ts;

my @execarg = ();

if ($unsplitcarg =" /".x", \[(.*)\], \[(.*)\1/){
@execarg = split(/, /, $1);
delete (@execrg[0]);
my $enwv.string = $2;
my %enviroment;

49

50 APPENDIX B. SOURCE CODE

if($env_string) {
#print ("ENV:”. $env_string ."\n");
my @enwv.parts = split(/, /, $envstring);
my $lastpart = "";
foreach $part (@enwparts)
it ($part =" /["\\JO\\\\)#"1) {
$valid_part = $lastpart .
($lastpart?”, ":"") . $part;
if ($valid_part =7 /"([a—zA-Z_.0-9]+)=(.x)"/) {
$enviromen{$1}= $2;

#print($1 .”=".$enviromen{$1}.”’\n");
$last_part = ""
} else{
$last.part = $lastpart . ", " . $part;

, }
$procs{$pid}{’ignore '} = $enviromen{ ES3IGNORE'};
%{$procs{$pid}{’enviroment’}} = %enviroment;

}
@{$procs{$pid}{'exec_arg '} } = @execarg;
my @io = ();
$io[0] = [getFile($pid, 0), "READ"];
$io[1] = [getFile ($pid, 1), "WRITE"];
$io[2] = [getFile ($pid, 2), "WRITE"];
for $i (0...2){
push(@$io[$i]}, "PIPE")
if ($i0[$i][0] =7 s/I"<(.%)>$/%1/);

}
@{$procs{$pid}{’io’ }} = @io;

}

case "pipeY
#0 is set up for reading, 1 is set up for writing
$arg[0] =7 s/\[//;
$arg[1l] =" sA]$//;
delete $proc¢$pid}{ file ' }{"${arg[0]}"};
delete $proc§$pid}{'file ' }{"${arg[1]}"};
$procs{$pid}{'file ' }{"r${arg[0]}"} = $pipes;
$procs{$pid}{ ' file ' }{"w${arg[1]}"} = $pipes;
$pipes ++;
#print("$pid pipe r:” . $arg[0] . " w:". $arg[1].\n");

case "clonef{
$procs{$ret}{'parent’'} = $pid

case "exitgroup™
writeProc ($pid);
exit if ($pid eq $mainpid);

}
}
} elsif ($line =7 /7([0—9]+)[\t 1+([0 —9:\.]+)[\ t [+———[\t]+SIGCHLD.x/) {
my $pid = $1;
my $ts = $2;
#print("one of ” . $pid . ” children exitedn”);

For AMD processors
} elsif ($line =7 /[\t 0—9]+exit_group\(["\)]+$/) {
exit;
} else{
print ("ES3 could not parse: " . $line);
}

}

for my $pid (keys %procs)
writeProc ($pid);
}

B.3. LOGGER 51

close(input);

#close (bash);

#%h = %{ $procs{’17884°'}{ file ' } };
#print($h{3}.”\n");

B.2.2 es3include.sh

if ["$ES3_.ENABLE” != "$ {ES3ENABLE#«bash}” —a —z "$ES3BASH_PLUGIN"”]; then
export ES3IGNORE=bashstartup
export ES3BASH_PLUGIN=running
es3.trace () {
if [! —d /tmp/es3/]; then
mkdir /tmp/es3
chmod 777 /tmp/es3
fi
pid=$1
strace—v —s 1000\
—e trace=open,dup2,execve,pipe,clone, exgitoup \
—p $pid —f —F —ttt —0o "| es3.straceproc” &> /tmp/es3/err
chmod a+rw ‘find /tmp/es3/ —user $USER’

echo staring trace
start strace in the background
es3.trace $%$&
wait for strace to start (no, it's not a good solution)
sleep 0.1
unset ES3GNORE
unset ES3BASH_PLUGIN
fi

B.3 Logger

#!/usr/bin/perl
use Switch;
use Sys::Hostname;

sub help{
print STDERR "Usage: es3og [options]
Options are:

—h,——help Display this usage text

—pid <pid> The pid of the process

—ppid <pid> The pid of the parent process

—Ipid <pid> The pid the process should be logged unden
—stime <time> The start time of the process

—enter <name> Enter block or function<name-

—Ileave <name> Leave block or function<name-

—routine <name> Routine <name> is called

”

—enviroment<enviroment> The enviroment in a colon
"seperated list of:
[(type)] <name> =\"<value>\"
exit;

}

my %month
"Jan”
"Feb”
"Mar”
"Apr”
"May”

(7]
1
—~

ooy oy
VVVYVV
BWNRO

52 APPENDIX B. SOURCE CODE

"Jun”
"Jul”
"Aug”
"Sep”
"Oct”
"Nov”
"Dec”

[T L L T L | I |
vV VVYVVYVV
PO~ U
o= - - -

sub tsToStd :method
use Time::gmtime;
if (@-[0]){
my $ts = @[O0];
$gm = gmtime ($ts);

my %d ;

$d{'Y’' } = $gm—>year+1900;
$d{'m’} = $gm->mon;
$d{’'d’} = $gm->mday;
$d{'H" } = $gm->hour;
$d{'M' } = S$gm->min;
$d{’'S’'} = $gm->sec;

for $key ('m’, 'd’, 'H', 'M', 'S’)
$d{$key} = '0’.$d{$key} if ($d{$key}<10);

}
$d{’S"} .= $1 if($ts =" [x(\..%)/);

return "$d{’Y’ }$d{'m’ }$d{’d’ } TSd{'H’ } $d{'M }$d{’S’}Z";
}
}

sub stdToTs :method
use Time::Local;
if (@-[0]) {
my $std = @[0];
if ($std =" /([0—9]{4})([0—9]{2})([0—91{2})(
){0}T([0 —91{2}) ([0 —9]{2})([0 —9]{2})(\.[0 —9]%)?Z/) {
return timegm($6, $5, $4, $3, $2, $1);
}

0;
}
}

sub psToStd : method
use Time::Local;
if (@-[0]){
my @part = split (/[:]1+/, @[0]);
return tsToStd(timelocal ($part[5], $part[4], $part[3],
$part[2], $monthg$part[1]}, $part[6])) if ($part[5]);

}

}

sub escapeXML :method
$line = @[0];
$line =" skl/</g; #<
$line =" shkl/>lg; #>
$line =" s/'/'/g; #’
$line =" s/"/"/g; #”

return $line;

}

sub printenv{
my @enviroment = @
if (@enviroment)

print log-file ” <enviroment-\n”;
for $i (0...$#enviroment]
print log-file ” <variable

print log_file 'type="'.escapeXML($enviroment[$i][0]) .

B.3. LOGGER

}

if $enviroment[$i][0];
print log_file 'name="'.escapeXML($enviroment[$i][1]) .
print log-file 'value="";
print log_file escapeXML($enviroment[$i][2]) . '"";
print log_file "/ >\n";

print log_file " </enviroment\n";

}

usage: geistime(pid>, [default])
sub getstime :method{

}

if (@-[0]) {
my $spid = @Q[0];
my $startstd;

if (@-[1]) {
$startstd = @[1];
} else{
my $startps = ‘ps—p $spid—o "lIstart="——no—headers 2> /dev/null ‘;

$startstd = psToStd($startps);
my $startts = stdToTs($startstd);

#determine if there is a logfile with a simmular start
#time and use that instead
#this is to fix a precsission bug in the ps command
open(ls, "Is —1 /tmp/es3%—$spid 2> /dev/null |");
while ($entry =<lIs>) {
if ($entry =7 /([0—-9]{8}T[0—-9]{6}(\.[0—-9]%)?Z)—([0—-9]+)/) {
if (abs(stdToTs($1)$startts)<3) {
return $1;
}
}

close(ls);

return $startstd;
}
0

sub es3log {

my $init = 0;
my $pid = 0;
my $enter =
my $leave =
my $time = 0;

my @files = ();

my $language = 0;
my @args = @;

my @enviroment = ();
my $arguments = O;

0;
0;

while ($arg=shift(@args))
switch ($arg) {
case —h" {
help

case ™—help™{
help

}

case ——pid” {
$pid=shift (@args);

}

case ——ppid” {
$ppid=shift (@args);

case ™——lpid” {

53

54 APPENDIX B. SOURCE CODE

$lpid=shift (@args);
}
case ——enter” {
$enter=shift (@args);

}

case -—leave” {
$leave=shift (@args);

}

case ™—routine” {
$routine=shift (@args);

}

case ——arguments”{
$arguments=shift (@args);

}

case ——time” {
$time=shift (@args);

}

case ——stime” {

$stime=shift (@args);

case -—files” {
foreach $part (split(/:/, shift(@args)])
push(@files, [split(/,[\t]*/, $part)]);
${files [$#files]}[0] =" s/"(.x)"/$1/;

}

case -—language”{
$language=shift (@args);

}

case™—init” {
$init = 1;

}

case™——print” {
$print = 1;

}

case ——enviroment” {

@all = reverse split(/:/, shift(@args));
while ($part = pop(@all)]
while (((not $part =" /[\\](\\\\)*"$/)

or $part =7 /7["=]x=[\t]x"$/) and @all > 0) {
$missing = pop(@all);
$part .= ':’.$missing;

next if not
$part =" /(\((-*)\))2[\t1x (o) [\t]*=[\t]+"(.%)"/;

push(@enviroment ,[$2, $3, $4]);

for $i (0 ... 2) {
$enviroment[@enviroment 1][$i
$enviroment[@enviroment 1][$i

}

}
}

T s/I\\"I"lg;
BECTANNNVARVI-H

[EN—

}

}

$pid = getppid () if not $pid;

if (not $ppid) {
$ppid = ‘ps—p $pid —o "ppid="——no—headers 2> /dev/null
$ppid =" s/["0-9]//g;

$stime = getstime ($pid, $stime);
$pstime = getstime ($ppid) if ($ppid);

$time=tsToStd (time ()) if not $time;
$user getlogin () if not $user;
$user = $EN{'USER’} if not $user;

if($print){

B.3. LOGGER

open(logfile, ' >-");

} else {
$log_file_name = "/tmp/es3/". $stime . >";
if ($lpid) {
$log_file_name .= $lpid;
} else {

$log_file_name .= $pid;

open(logfile,” >>". $log_file_name);

if ($enter) {
print log-file ’'<enter region="".escapeXML($enter).'"";
if (@enviroment){
print log_file ">\n";
print_env (@enviroment);
print log_-file " </enter>\n";
} else{
print log_-file "/ >";

}
}
if($leave) {
print log_file ’'<leave region="".escapeXML($leave).’'”’;

if (@enviroment){
print log-file ">\n";
print_env (@enviroment);
print log_file " </leave>\n";
} else {
print log-file "/ >";

}
}
if($init) {
print log-file '<init’;
print log_file ’ time="".$time." "’ if ($time);
print log_file ' pid="".$pid."'"" if ($pid);
printf log_file ' stime="%s”"’, $stime if ($stime);
printf log_file ' pstime="%s"’', $pstime if ($pstime);
print log_file ' ppid="".$ppid.""" if ($ppid);

print log_file ' language="".escapeXML($language).'”’
if($language);
print log_file ’ user="" . escapeXML($user) . '’ if($user);
print log-file ' hostname="' . escapeXML(hostname()) . '"’;
print log-file ">\n";
print_env (@enviroment);
open(mount, "mount”);
$mounts = 0;
while ($line = <mount>){
if($line =7 /(.x) on (.x) type ((smbfs)(nfs)) \(.x\)/) {
print log_file " <mount-points>\n” if not $mounts;
$mounts=1;
printf(log_file
" <mount share¥'%s\” type=\"%s\">%s</mount>\n",
escapeXML($1), escapeXML($5), escapeXML($2));
}

close (mount);
print log_file " </mount-points>\n” if $mounts;
print log_file " </init >\n";
} elsif($routine) {
print log_file "<exec”;

print log-file ' time=""'.$time.'""' if($time);

print log_file ' routine="'.escapeXML($routine).’”’
if ($routine);

if ($lpid) {
print log_file ' pid="".$pid.""";
print log_file ’ ppid="".$ppid.""" if ($ppid);

}

55

56 APPENDIX B

if (@enviroment or @files or $argumentsy)
print log-file ">\n";
if ($argumentsy
my @arr = split(/,[]?/, $arguments);
print log_file " <arguments\n";
my $rest = "";
foreach $arg (@arr)f
$arg = $rest . $arg;
it (not $arg =" s/\"(.x["\\J(\\\\)?)\"$/$1/) {
$rest = $arg;
} else {
print log_file ” <arguments”;
print log-file escapeXML($arg);
print log_file " </argument-\n";

}

print log-file " </arguments\n”;

print_env (@enviroment);

if (@files){
print log_file (" <io>\n");
for $i (0 ... $#files){

my $read = O;

my $write = 0;

my $pipe = 0;

for $j (1 ... $# sfiles[$i]}){
$read =1 if ($files[$i][$j] eq "READ");
$write = 1 if ($files[$i][$]] eq "WRITE");
$pipe = 1 if ($files[$i][$j] eq "PIPE");

print log-file (” <".($pipe?’'pipe ': ' file "));
print log_file (' read="true”’) if ($read);
print log-file (' write="true”’) if ($write);
print log_file ($pipe?’ id="":1">");

print log_file (escapeXML($files[$i][0]));
print log_file (($pipe?’/>":" </file >')."\n");

}
print log_file (" <l/io>\n");
}
print log_file " </exec>\n";
} else{

print log_file "/ >\n";

}

close(logfile);

unlink ("/tmp/es3/last”);

symlink ($log-file_.name , "/tmp/es3/last”);
chmod (0666, "/tmp/es3/last™”);

}

unless (—d "/tmp/es3”){
mkdir "/tmp/es3"”;
chmod 0777, "/tmp/es3”;

}

$ENV{'ES3.IGNORE'}="true ”;
es3.log (@ARGV) if (@ARGV);
1;

. SOURCE CODE

B.4. TRANSMITTER

B.4 Transmitter

B.4.1 ExecElement.java

57

package edu.ucsb.eil.es3.client;

import org.w3c.dom.Element;
import org.w3c.dom.NodelList;
import org.w3c.dom.Node;

import java.util.ArraylList;
import java.util.Vector;

[%

x User: haavar

« Date: Apr 13, 2005

* Time: 5:02:13 PM

*/

public class ExecElement extends LogEntfy
Element source;

FileElement[] files = null;
PipeElement[] pipes = null;

private String region;

public ExecElement(Element sourcef)
this.source = source;

Element elements[] = getSubElements(source, "io");
ArrayList fileList = new ArrayList();
ArraylList pipeList = new ArrayList();

for (int i = 0; i < elements.length; i++)
if (elements[i].getTagName (). equals("pipe”))
pipeList.add(new PipeElement(elements[i], this));
else if (elements[i].getTagName (). equals("file"))
fileList.add(FileElement.getFileElement(elements[i]));

}

files = new FileElement[fileList.size ()];
fileList.toArray(files);

pipes = new PipeElement[pipelList.size ()];
pipelList.toArray(pipes);

}

public String[] getArguments (){
NodelList argumentNodes = source.getElementsByTagName (
"arguments”);
if (argumentNodes.getLength(} 0 &&
argumentNodes.item (0).getNodeType () ==
Node . ELEMENTNODE) {
NodelList arguments =
((Element) argumentNodes.item (0)).getChildNodes ();
ArrayList argumentList = new ArrayList();
for (int i = 0; i < arguments.getLength (); i++]
Node subNode = arguments.item(i);
if (subNode.getNodeType () == Node.ELEMENIODE)
argumentList.add(
subNode . getFirstChild (). getNodeValue ());

String [] ret = new String[argumentList.size ()];
argumentlList.toArray(ret);
return ret;

} .

return new String[f};

}

58 APPENDIX B. SOURCE CODE

public String getRoutine (){
return source.getAttribute ("routine”);

}

public int getPid () {
try {
return Integer.parselnt(source.getAttribute ("pid”));
} catch (Exception e){
return —1;
}

}

public String getTime (){
return source.getAttribute ("time”);

}

public PipeElement[] getPipes (]
return pipes;

}

public FileElement[] getFiles (){
return files;

}

public ExecElement[] getlinputs ()
Vector inputs = new Vector(3);
for (int i = 0; i < pipes.length; i++){
ExecElement[] subSet = pipes[i].getlnputs ();
for (int j = 0; j < subSet.length; j++)
inputs .add(subSet[j]);

ExecElement[] ret = new ExecElement[inputs.size ()];
inputs.copylnto(ret);
return ret;

}

public ExecElement[] getOutputs (]
Vector outputs = new Vector(3);
for (int i = 0; i < pipes.length; i++){
ExecElement[] subSet = pipes[i].getOutputs ();
for (int j = 0; j < subSet.length; j++)
outputs.add(subSet[j]);
}
ExecElement[] ret = new ExecElement[outputs.size ()];
outputs.copylnto(ret);
return ret;

public short getType ()
return EXECELEMENT;

}

public String getRegion ()X
return region;

}

public void setRegion(String regionj
this.region = region;
}
}

B.4.2 FileElement.java

B.4. TRANSMITTER

59

package edu.ucsb.eil.es3.client;

import org.w3c.dom.Element;
import org.w3c.dom.Node;

import java.util.Hashtable;

[%

x User: haavar

+ Date: Apr 13, 2005

x Time: 10:20:10 PM

*/

public class FileElement
private static Hashtable all = new Hashtable ();
private Element source;

private FileElement(Element source{)
this.source = source;
}

public static FileElement getFileElement(Element sourcg)
FileElement tmp = new FileElement(source);
if (all.containsKey (tmp.getName()))
return (FileElement) all.get(tmp.getName());
else {
all.put(tmp.getName (), tmp);
return tmp;

}
}
public String getName ()
Node nameN = source.getFirstChild ();

if (nameN!=null) return nameN.getNodeValue ();
else return "7;

}

public boolean getRead (]
return Boolean.valueOf(source.getAttribute ("read”))
.booleanValue ();

}

public boolean getWrite ()}
return Boolean.valueOf(source.getAttribute ("write”))
.booleanValue ();

B.4.3 InitElement.java

package edu.ucsb.eil.es3.client;
import org.w3c.dom.Element;

% %

x User: haavar

+ Date: Apr 13, 2005

* Time: 5:02:04 PM

*/

public class InitElement extends LogEntry
Element source;

public InitElement(Element source]
this.source = source;
}

60 APPENDIX B. SOURCE CODE

public int getPid (){

String pid = source.getAttribute ("pid”);
if (pid '= null) {
try {
return Integer.parselnt(pid);
} catch (NumberFormatException e
}
}

return —1;

}

public String getLanguage ()
return source.getAttribute ("language”);

}

public String getUser (){
return source.getAttribute ("user”);

}

public String getHostname ()
return source.getAttribute ("hostname”);

}

public short getType (){
return INIT.ELEMENT;
}
}

B.4.4 LogEntry.java

package edu.ucsb.eil.es3.client;

import org.w3c.dom.NodelList;
import org.w3c.dom.Node;
import org.w3c.dom.Element;

import java.util.ArraylList;

[%

x User: haavar

+ Date: Apr 13, 2005

x Time: 5:32:15 PM

x/

public abstract class LogEntry
public static final short INITELEMENT = 1;
public static final short EXEELEMENT = 2;
public static final short BOARDEELEMENT = 3;

private boolean processed = false;

public Variable[] getEnviroment ()X
return null;

}

/1 getTime ()
protected static Element[] getSubElements(Element source,
String tagName){
NodelList argumentNodes = source.getElementsByTagName (
tagName);
if (argumentNodes.getLength(» 0 &&
argumentNodes .item (0).getNodeType () ==
Node . ELEMENTNODE) {
NodelList arguments =

B.4. TRANSMITTER

((Element) argumentNodes.item (0)).getChildNodes ();
ArrayList argumentList = new ArrayList();
for (int i = 0; i < arguments.getLength (); i++]
Node subNode = arguments.item(i);
if (subNode.getNodeType () == Node.ELEMENIODE)
argumentlList.add(subNode);

Element[] ret = new Element[argumentList.size ()];
argumentList.toArray(ret);
return ret;

}
return null;

}

protected boolean isTrue(String book)
if (bool == null)

return false;
return (bool.equals("1")|| bool.equalsignoreCase ("true”));

}

public abstract short getType ();

public boolean isProcessed ({
return processed;

}

public void setProcessed (§
processed = true;

}

61

B.4.5 LoglnputStream.java

package edu.ucsb.eil.es3.client;

import java.io.lOException;

import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java.io.File;

[%%

User: Haavar Valeur

Date: Apr 13, 2005

Time: 3:18:38 PM

This class adds one line to the start and one line to the
end of a filestream This is used to put thees3-client—log>
tag around the client log so it can be parsed by a xml
parser

* ¥ X X ¥ X *

*/

public class LoglnputStream extends FilelnputStregm
private byte[] head = <es3-client—log>".getBytes ();
private byte[] tail = "</es3-client—log>".getBytes ();
private int pos = 0;

LoglnputStream (String fileName)
throws FileNotFoundException
super(fileName);

}

LoglnputStream (File file)
throws FileNotFoundException
super(file);

}

62 APPENDIX B. SOURCE CODE
public int available () throws IOExceptioq
return head.length + tail.length- pos +
super.available ();
}
public int read(byte[] b, int off, int len)
throws IOException{
int read = 0;
int rlen = 0;
rlen = Math.min(len, head.length- pos);
if (rlen > 0){
System . arraycopy (head, pos, b, off, rlen);
read += rlen;
pos += rlen;
rlen = Math.min(len— read , super.available ());
if (rlen > 0) {
super.read(b, off + read, rlen);
read += rlen;
}
rlen =
Math.min(len — read , head.length + tail.length pos);
if (rlen > 0){
System . arraycopy (tail , pos- head.length, b, off + read,
rlen);
read += rlen;
pos += rlen;
}
return read > 0 ? read :—1;
}
public int read(byte[] b) throws IOExceptioq
return read(b, 0, b.length);
}
public int read () throws IOExceptior
byte[] ret = new byte[1];
read(ret, 0, 1);
return ret[0];
}

public boolean markSupported (§
return false;

}

B.4.6 PipeElement.java

package edu.ucsb.eil.es3.client;
import org.w3c.dom.Element;

import java.util.Hashtable;
import java.util.Vector;

[%

x+ User: haavar

+ Date: Apr 13, 2005

* Time: 8:51:34 PM

*/

public class PipeElemen{

B.4. TRANSMITTER

private static Hashtable pipes = new Hashtable ();
private static Vector counterParts;

private Element source;

private String name;

private ExecElement father;

public PipeElement(Element source , ExecElement fathdr)
this.father = father;
this.source = source;
name = source.getAttribute ("id");

if (!isStandardPipe ()){
/I'Vector pipes;
if (pipes.containsKey (getName())]
counterParts = (Vector) (pipes.get(getName()));
} else{
counterParts = new Vector(3);
pipes.put(this , getName());

counterParts.add(this);

public boolean isStandardPipe ({)
return (getName (). startsWithgstd—"));

}

private String getName ()
return name;

}

private boolean getRead(}
return Boolean.valueOf(source.getAttribute ("read”))
.booleanValue ();
}

private boolean getWrite (X
return Boolean.valueOf(source.getAttribute ("write ™))
.booleanValue ();
}

private ExecElement[] getlO(boolean inj
Vector valid = new Vector ();

for (int i = 0; i < counterParts.size (); i++]
PipeElement candidate = (PipeElement) counterParts.get(
i);

if (candidate.getExec() != father &&
((in && candidate .getWrite ())]|
('in && candidate .getRead ())))
valid.add(candidate.getExec ());

ExecElement[] ret = new ExecElement[valid.size ()];
valid.copylnto(ret);
return ret;

}

private ExecElement getExec (§
return father;

}

public ExecElement[] getOutputs ({
return getlO(false);

}

63

64 APPENDIX B. SOURCE CODE

public ExecElement[] getlinputs ()
return getlO (true);

}

B.4.7 Transmitter.java

package edu.ucsb.eil.es3.client;

import java.io x;
import java.util.ArraylList;
import java.sql.Timestamp;

[%%

« User: haavar

« Date: Apr 13, 2005

* Time: 3:05:23 PM

*/

public class Transmitter{
private static final String TMEDIR
private static ArraylList logNames

= "/tmp/es3/";
= new ArrayList();
public Transmitter (){

File tmpDir = new File (TMRDIR);

File [] logFiles = tmpDir.listFiles (

new LogFilenameFilter ());
for (int i = 0; i < logFiles.length; i++)
addLogFileName (logFiles[i].getName ());

Log[] logs = new Log[logFiles.length];
try {
PrintStream out = new PrintStream (
new FileOutputStream (
"Itmp/es3/es3message .xml”"));

for (int i = 0; i < logs.length; i++){
try {
logs[i] = new Log(logFiles[i]);
WorkflowMessage workflow = logs[i].getWorkflow ();

workflow . writeXML (out);

} catch (FileNotFoundException ej
e.printStackTrace ();

}

} catch (FileNotFoundException ej
e.printStackTrace ();

}
}

public static void addLogFileName (String fileName)
logNames . add (fileName);

}

%%

x Look for exciting logs matching the starup time and pid
x For now it used the filename , but the pid and stime

x is no longer used at a filename this function needs to
x match those with the contents of the logfile

*

x @param stdTime Startup time of the process

x @param pid The process id

« @return the filename of the logfile

*/

B.4. TRANSMITTER

public static String getLogID(String stdTime, int pid{
long ts = stdToTimeStamp(stdTime);
for (int i = 0; i < logNames.size (); i++X
String fileName = (String) logNames.get(i);
if (fileName.endsWith("zZ-" + pid)) {
long fileTS = stdToTimeStamp(fileName.substring (0,
fileName . lastindexOf("2Z-") + 1));
if (Math.abs(fileTS — ts) < 10«1000) return fileName;
}
}
return null;

}

public static long stdToTimeStamp (String stdTim¢g)
/lyyyy—mm-dd hh:mm:ss . fffffffff
if (!stdTime.matches(""[0-9]{8}T[0—-9]{6}(\\.[0—9]+)?Z%"))
throw new lllegalArgumentException (
"Could not parse time: '" + stdTime + "'");
String Y = stdTime.substring (0, 4);

String M = stdTime.substring (4, 6);

String D = stdTime.substring (6, 8);

String h = stdTime.substring (9, 11);

String m = stdTime.substring (11, 13);

String s = stdTime.substring (13, stdTime.lengthQ 1);
String time;

if (s.lastindexOf(".”) < 0) s +=".";

s +="000000000";

s = s.substring (0, s.indexOf(".”) + 9);

time =Y+"-"+M+"-"4+D+ """+ h+"" +m+":" +
S;

return Timestamp.valueOf(time).getTime ();

}

public static void main(String arg[]X
// System.out. printin(

/1l stdToTimeStamp ("20050508T050836.000122"));
new Transmitter ();

}

private class LogFilenameFilter implements FilenameFiltgr

public boolean accept(File dir, String fileName{)
return fileName .matches(

[0 —9]{8}T[0-9]{6}(\\.[0-9]+)?Z—[0-9]+$");

65

B.4.8 \Variable.java

package edu.ucsb.eil.es3.client;

import org.w3c.dom.Element;

[%

+ User: haavar

« Date: Apr 13, 2005
* Time: 5:08:37 PM

x/

public class Variable{

String value;
String type;

66 APPENDIX B

String name;

public Variable (Element source]
value = source.getAttribute ("value”);
type = source.getAttribute ("type”);
name = source.getAttribute ("name™”);

}

public String getValue (){
return value;
}

public String getType (){
return type;
}

public String getName (){
return name;
}

}

. SOURCE CODE

B.4.9 WorkflowMessage.java

package edu.ucsb.eil.es3.client;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.DocumentBuilder;

import javax.xml.transform.TransformerFactory;
import javax.xml.transform. T Transformer;

import javax.xml.transform.TransformerException;
import javax.xml.transform.OutputKeys;

import javax.xml.transform .dom.DOMSource;

import javax.xml.transform.stream.StreamResult;
import java.io.PrintStream;

import java.util x;

[%
x User: haavar
+ Date: Jun 8, 2005
x Time: 1:53:57 PM
x/
public class WorkflowMessagd
ArraylList files = new ArrayList();
ArrayList transformations = new ArrayList();
Hashtable relations = new Hashtable ();
String locallD;
public WorkflowMessage (String locallD Y
this.locallD = locallD;
}

private String addObject(FileElement file{
if (!files.contains(file))
files.add(file);
return "F—" + files .indexOf(file);

}

public String addObject(ExecElement transf)
if (!transformations.contains(transf))
transformations.add(transf);
return "T—"+ transformations.indexOf(transf);

B.4. TRANSMITTER 67

}

public void addRelation(FileElement file ,
ExecElement transf)
Relation rel = new Relation(addObject(file), addObject(transf));
relations .put(rel, rel);

}

public void addRelation(ExecElement transfl,
ExecElement transf2)
Relation rel = new Relation(addObject(transfl), addObject(transf2));

relations . put(rel, rel);

}

public void addRelation (ExecElement transf ,
FileElement file){
Relation rel = new Relation(addObject(transf), addObject(file));

relations .put(rel, rel);

}

public void writeXML(PrintStream out){
try {

DocumentBuilder builder =
DocumentBuilderFactory . newlnstance ()
.newDocumentBuilder ();

Document doc = builder.newDocument();

Element workflowE = doc.createElement (”"workflow”);

doc.appendChild (workflowE);

workflowE . setAttribute ("locallD”, locallD);

for (Iterator it = relations.values (). iterator ();
it.hasNext();) {

Element relationE = doc.createElement("relation”);
workflowE . appendChild (relationE);
Relation relation = (Relation)it.next();
relationE . setAttribute ("to”, relation.to);
relationE . setAttribute ("from”, relation.from);

}

for (int i = 0; i < files.size(); i++){
FileElement file = (FileElement) files.get(i);
Element fileE = doc.createElement(”file");
workflowE . appendChild (fileE);
fileE . setAttribute ("name”, file.getName());
fileE.setAttribute ("id”, addObject(file));

for (int i = 0; i < transformations.size (); i++)
ExecElement exec = (ExecElement) transformations.get(
i)

Element transfE = doc.createElement(”transformation™”);
workflowE . appendChild (transfE);
transfE . setAttribute ("routine”, exec.getRoutine ());
transfE . setAttribute ("id”, addObject(exec));
int pid = exec.getPid();
String time = exec.getTime ();
if (pid >0 && time != null) {

String ref = Transmitter.getLoglD(time , pid);

if (ref !'= null)

transfE . setAttribute ("workflow”, ref);

}

String [] argumetnts = exec.getArguments ();

if (argumetnts.length> 0) {
Element argsE = doc.createElement(”arguments”);
transfE .appendChild (argsg);

68 APPENDIX B. SOURCE CODE

for (int j = 0; j < argumetnts.length; j++)
Element argE = doc.createElement(”argument”);
argsE.appendChild(argE);
argE . appendChild (
doc.createTextNode (argumetnts[j]));

}

Transformer transformer =
TransformerFactory.newlnstance ()
.newTransformer ();
transformer.setOutputProperty (OutputKeys.INDENT, "yes”);
transformer.transform (new DOMSource(doc),
new StreamResult(out));

} catch (ParserConfigurationException €)
e.printStackTrace ();

} catch (TransformerException e
e.printStackTrace ();

}
}

private class Relatiof
String from;
String to;
Relation (String from, String tof
this.from = from;
this.to = to;

}

public String toString (
return to+—"+from;

}
}

B.4.10 XMLParser.java

package edu.ucsb.eil.es3.common;

import org.w3c.dom.Document;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.ParserConfigurationException;
import java.io.lOException;

import java.io.lInputStream;

[%
« User: Haavar Valeur
+ Date: Sep 3, 2004
x Time: 3:23:18 PM
x/
public class XMLParser{
private DocumentBuilder builder = null;

public XMLParser () {
DocumentBuilderFactory domFactory =
DocumentBuilderFactory . newlnstance ();

B.4. TRANSMITTER

domFactory . setlgnoringElementContentWhitespace (true);
domFactory . setlgnoringComments(true);
domFactory .setNamespaceAware (true);

try {
builder = domFactory.newDocumentBuilder ();
} catch (ParserConfigurationException €)
e.printStackTrace ();
}

public Document parse(InputStream in{)
return parse(new InputSource(in));
}

public Document parse(java.io.Reader xmlIRequegt)
return parse(new InputSource(xmlRequest));
}

public Document parse (InputSource inpuf)
if (input == null) return null;

Document doc = null;

try {
doc = builder.parse(input);

} catch (SAXException e)
e.printStackTrace ();

} catch (1OException e}
e.printStackTrace ();

}

return doc;

69

This page is intentionally left blank.

Appendix C

Short installation instructions

General instalations steps

e Unpack the client package where you want it. The client directory you unpacked is
from now on referenced &8S3C. HOME .

e Add the ’bin’ folder insideES3C HOME to your executable path. This can be
done by adding it to th6PATHenviroment variable in your .profile, .baginofile or
.bashrc files depending on your preferences or system setup.

Logs entries are made in /tmp/es@focess-start-time-<pid> and /tmp/es3/last will be

a symlink to the latest log.

$ES3ENABLEmay contain multiple languages separated by colon. To disable plugins
unset theSES3ENABLEvariable or remove the desired plugin from the variable and restart
the session.

IDL plugin

e Add the 'idl' folder insideES3C_ HOME to the IDL-path. If you already are set-
ting your $IDL_PATH environment variable in some of your startup scripts you can
add the folder to the list. If you don’t hav#DL _PATH set, setting it would delete
the default idl searchpath. In the latter case it is easier to add the line "PATH =
"ES3CHOME/idl:" + IPATH” where ES3C_HOME is the client directory to the
startup script made in the next step.

e Make idl run the command ‘es&artup‘ on startup. To make idl run a command at
startup we use a startupscirpt. A startup-script is a script that is pointed to by the
environment variabléIDL_STARTUPIf you have a startup-script file you are using
then you add the command 'es8artup’ to the last line of your script. If you don’t
have a starup-script file you create a text file with one line: “&fsBtup’ and set the
SIDL_STARTURenviroment variable to point at the file.

To enable the bash plugin you need to add ":idl” to the environment vars&i$& ENABLE

Bash plugin:

e Toinstall the bash plugin you need to source theEB3C HOME /bash/es3nclude.sh
in a starupscript that is ran every time you start bash. I've done this by adding the
line ”. ES3C_.HOME /bash/es3nclude.sh” whereeS3C_HOME is the home of the
client to my .bashrc file. Make sure it runs the script every time you start bash, not
only when you start a new login session.

To enable the bash plugin you need to add ":bash” to the environment va$ieBBENABLE

71

This page is intentionally left blank.

Appendix D

IDL example workflow

To demonstrate the the use of the IDL plugin I've chosen to use a IDL script written by Tom
Painter. The script is called modscalgance and is used to clean up values in pictures that
is a part of one of his workflows.

Figure[D.] shows the overall linage of the script. This script reads and writes to 5
files. The fact that the script reads and writes from the same file is not a problem for the
client, but it makes it harder to interpret the behavior of the program. There is only one
transformation because there was only a single procedure call in the example code.

D.1 Source code

D.1.1 Original source code

This is the source code before it has been processed.

pro modscagcleanse , prefix=prefix ,ns=ns, nl=nl
; modscagcleanse

; IDL program to clean up under and overflow of MODSCAG run plus
; using snow cover to remove unnecessary grain size estimates.

Input

; prefix = prefix for all of the MODSCAG output filenames
; ns = number of samples

; nl = number of lines

Output
; rewrite of the MODSCAG files

; t.h.painter
; 1.19.2005

; open snow file
openr,1,string (prefix ,’snow. pic’)
snow=fltarr (ns,nl)

readu,1,snow

close ,1

; cleanse snow file

if (min(snow) It 0.0) then snow(where(snow It 0.1))=0.0
snow (where(snow It 0.1))=0.0
if (max(snow) gt 1.0) then snow(where(snow gt 1.0))=1.0

output snow file
openw,10, string (prefix , ’snow. pic’)

73

74 APPENDIX D. IDL EXAMPLE WORKFLOW

tillveg.pic

tillother.pic

S0
il

Modscagcleanse

tillother.pic

0
g

tillveg.pic

Figure D.1: A DAG representing the information flow of modsadgance

writeu ,10,snow
close ,10

; open grain size file
openr,1,string (prefix,’grnsz.pic’)
grnsz=fltarr (ns,nl)
readu,1,grnsz
close,1

cleanse grain size file
grnsz (where(snow It 0.2))=0.0

; output grain size file
openw,10, string (prefix ,’grnsz.pic’)
writeu ,10, grnsz

close ,10

; open vegetation file
openr,1,string (prefix,’veg.pic’)
veg=fltarr(ns,nl)

readu,1l,veg

close ,1

cleanse vegetation file
if (min(veg) It 0.0) then veg(where(veg It 0.0))=0.0
if (max(veg) gt 1.0) then veg(where(veg gt 1.0))=1.0

; output vegetation file
openw,10, string (prefix ,’veg.pic’)
writeu ,10,veg

close 10

; open rock file
openr,1,string (prefix,’'rock.pic’)

D.1. SOURCE CODE 75

rock=fltarr (ns,nl)
readu ,1,rock
close ,1

cleanse rock file
if (min(rock) It 0.0) then rock(where(rock It 0.0))=0.0
if (max(rock) gt 1.0) then rock(where(rock gt 1.0))=1.0

; output rock file
openw,10, string (prefix ,’rock.pic’)
writeu ,10,rock

close ,10

open other file
openr,1,string(prefix,’other.pic’)
other=fltarr (ns, nl)
readu,1,other
close ,1

; cleanse other file
if (min(other) It 0.0) then other(where(other It 0.0))=0.0
if (max(other) gt 1.0) then other(where(other gt 1.0))=1.0

; output other file
openw,10, string (prefix ,’other.pic’)
writeu ,10, other

close 10

end

D.1.2 Preprocessed source code

Below is the source code after it has gone through the preprocessing stage. In this example
the procedures openr and openw, which opens files for reading and writing, have been
changed to the wrapper functions. The code for the wrapper functions can be found in
sectior] B.1.p. The third and the third last line of the script is a call to the logger to record
the execution of the modscadense procedure.

;edit

pro modscagcleanse , prefix=prefix ,ns=ns, nl=nl

HELP, NAMES="x", OUTPUT=ES3ENVIROMENT & ES3LOG, $
ENTER="modscagcleanse”, ENVIROMENT=ESENVIROMENT

; modscagcleanse

IDL program to clean up under and overflow of MODSCAG run plus
; using snow cover to remove unnecessary grain size estimates.

; Input

; prefix = prefix for all of the MODSCAG output filenames
; ns = number of samples

; nl = number of lines

; Output
; rewrite of the MODSCAG files

; t.h.painter
; 1.19.2005

; open snow file

ES3.openr,1,string (prefix,’snow.pic’)
snow=fltarr (ns,nl)

readu,1,snow

close ,1

76 APPENDIX D. IDL EXAMPLE WORKFLOW

; cleanse snow file

if (min(snow) It 0.0) then snow(where(snow It 0.1))=0.0
snow (where(snow It 0.1))=0.0
if (max(snow) gt 1.0) then snow(where(snow gt 1.0))=1.0

output snow file
ES3openw,10, string (prefix ,'snow. pic’)
writeu ,10,snow
close 10

; open grain size file
ES3 openr,1,string(prefix,’grnsz.pic’)
grnsz=fltarr (ns,nl)
readu,1,grnsz
close ,1

; cleanse grain size file
grnsz (where(snow It 0.2))=0.0

output grain size file
ES3openw,10, string (prefix ,’grnsz.pic’)
writeu ,10,grnsz
close ,10

; open vegetation file
ES3.openr,1,string (prefix,’'veg.pic’)
veg=fltarr(ns,nl)

readu,1,veg

close ,1

; cleanse vegetation file
if (min(veg) It 0.0) then veg(where(veg It 0.0))=0.0
if (max(veg) gt 1.0) then veg(where(veg gt 1.0))=1.0

; output vegetation file
ES3openw,10, string (prefix ,’'veg.pic’)
writeu ,10,veg

close 10

; open rock file
ES3openr,1,string(prefix,’'rock.pic’)
rock=fltarr (ns,nl)

readu,1,rock

close ,1

; cleanse rock file
if (min(rock) It 0.0) then rock(where(rock It 0.0))=0.0
if (max(rock) gt 1.0) then rock(where(rock gt 1.0))=1.0

output rock file
ES3.openw,10, string (prefix , 'rock. pic’)
writeu ,10,rock
close ,10

; open other file
ES3.openr,1,string (prefix,’ other.pic’)
other=fltarr (ns,nl)

readu,1,other

close ,1

; cleanse other file
if (min(other) It 0.0) then other(where(other It 0.0))=0.0
if (max(other) gt 1.0) then other(where(other gt 1.0))=1.0

; output other file
ES3.openw,10, string (prefix ,’other.pic’)

D.2. CLIENT INTERNAL LOG FILE 77

writeu ,10, other
close 10

HELP, NAMES="x", OUTPUT=ES3ENVIROMENT & ES3LOG, LEAVE="modscagcleanse”,
ENVIROMENT=ES3ENVIROMENT
END ; modscagcleanse

D.2 Clientinternal log file

All the linage information was extracted from the script and can be found as exec ele-
ments in the log file included below. Additional information about the computer and the

parameters is included at the start and bottom of the file.

<init time="20050522T234606Z" pid="31002" stime="20050522T234604Z2"
pstime="20050522T234256Z" ppid="30920" language="idl” user="haavar”
hostname="spitting-duck.bren.ucsb.ed®
<enviroment-
<variable name="IDIR” value="/home/rsi/idl6.1"/>
<variable name="IPATH” value ="/home/haavar/probulator//idl:

/home/haavar/probulator//idl/wrappers:/home/rsi/i@l.1/lib/hook:

/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6
/home/rsi/idL6

.1/lib/macros:
.1/lib/obsolete:
.1/1lib/utilities:
.1/lib/itools/components:
.1/1lib/itools/framework:
.1/lib/itools/ui.widgets:
.1/1lib/itools:
.1/lib/wavelet/source:
.1/1lib/wavelet/data:

1/ lib:

.1/examples/data:
.1/examples/dataccess/sdf:
.1/examples/dataaccess:

.1/ examples/doc/dicom:
.1/examples/doc/itools:

.1/ examples/doc:
.1/examples/HFTIFF:
.1/examples/imsl:
.1/examples/misc:
.1/examples/project:
.1/examples/visual/ utility:
.1/examples/visual:
.1/examples/widgets/wexmast:
.1/examples/widgets:
.1/examples/demo/demodata:
.1/examples/demo/demosrc:
.1/examples/demo/demoslideshows/slideshowsrc:
.1/ examples/demo:

.1/ examples:
/home/haavar/painters

example?/

<variable
<variable
<variable
<variable
<variable
<variable
<variable

name="!VERSION

name ="!VERSION
name ="!VERSION
name ="!VERSION

</enviroment-
<mount-points>

<mount share="dab15:/ed15/rsi” type="nfs7home/ rsi</mount>
<mount share="dab15:/edl5/user69/haavar” type="nfégfiome/haavax/mounty

</mount-points>

<linit>
<enter

region="modscagleanse®
<enviroment>

.ARCH" value="x86%
name ="1VERSION.
name="!VERSION.
.RELEASE” value="6.1%

.BUILDDATE” value="Jul 14 2004"/>
.MEMORMBITS"” value="
name="1VERSION.

0S” value="linux%
OFAMILY " value="unix"/ >

327>

FILEOFFSETBITS” value =" 64"/>

78 APPENDIX D. IDL EXAMPLE WORKFLOW

<variable type="UNDEFINED” name="GRNSZ” value="&It;Undefined> ;%
<variable type="INT” name="NL" value="2"5
<variable type="INT” name="NS” value="2"%
<variable type="UNDEFINED” name="OTHER” value="&It;Undefined> ;"™
<variable type="STRING” name="PREFIX" value="data/till%
<variable type="UNDEFINED” name="ROCK” value="&It;Undefined>”
<variable type="UNDEFINED” name="SNOW” value="&It;Undefined>"*
<variable type="UNDEFINED” name="VEG” value="&It;Undefined>"%
</enviroment>
<lenter>
<exec time="20050522T234610Z" routine ="OPENR"
<io>
<file read="true”>/home/haavar/painter/data/tillsnow . pidfile >
<lio>
<lexec>
<exec time="20050522T234610Z" routine ="OPENW’
<io>
<file >/home/haavar/painter/data/tillsnow . pidfile >
<lio>
<lexec>
<exec time="20050522T234611Z" routine ="OPENR"
<io>
<file read="true”>/home/haavar/painter/data/tillgrnsz . picfile >
<lio>
<lexec>
<exec time="20050522T234612Z" routine ="OPENW'
<io>
<file >/home/haavar/painter/data/tillgrnsz .pifile >
<lio>
<lexec>
<exec time="20050522T234613Z" routine ="OPENR"
<io>
<file read="true”>/home/haavar/painter/data/tillveg.p«dfile >
<lio>
<lexec>
<exec time="20050522T234613Z" routine ="OPENW'
<io>
<file >/home/haavar/painter/data/tillveg . pidfile >
<lio>
<lexec>
<exec time="20050522T234614Z" routine ="OPENR"
<io>
<file read="true”>/home/haavar/painter/data/tillrock .pidfile >
<lio>
<lexec>
<exec time="20050522T234614Z" routine ="OPENW’
<io>
<file >/home/haavar/painter/data/tillrock .p«dfile >
<lio>
<lexec>
<exec time="20050522T234615Z" routine ="OPENR"
<io>
<file read="true”>/home/haavar/painter/data/tillother .pidfile >
<lio>
<lexec>
<exec time="20050522T234616Z" routine ="OPENW'
<io>
<file >/home/haavar/painter/data/tillother.pidfile >
<lio>
<lexec>
<leave region="modscagleanse®
<enviroment>
<variable type="FLOAT” name="GRNSZ” value="Array[2, 2]"%
<variable type="INT” name="NL" value="2"5
<variable type="INT” name="NS” value="2"%
<variable type="FLOAT” name="OTHER” value="Array[2, 2]"b
<variable type="STRING” name="PREFIX" value="data/till%

D.3. ES? WORKFLOW MESSAGE

<variable type="FLOAT” name="ROCK” value="Array[2, 2]"L
<variable type="FLOAT” name="SNOW" value="Array[2, 2]"b
<variable type="FLOAT” name="VEG” value="Array[2, 2]"b

</lenviroment>
</leave>

79

D.3 ES workflow message

The initial ES' message only contains the linage, and a lot of the additional information
gets lost. This information is likely to be used in future versions of thé lB8ssage. The
ES® message below contains the linage retrieved from the test run of madiszatse. The

log contains enough information to reconstruct the DAG in fi§uré D.1.

<?xml version="1.0" encoding="UTF8"?>

<workflow locallD="20050522T234606Z31002">
<relation to="T-3" from="F—-1"/>
<relation to="T-1" from="F-0"/>
<relation to="T-6" from="F-3"/>
<relation to="T-7" from="F-3"/>
<relation to="T-8" from="F—-4"/>
<relation to="T-2" from="F-1"/>
<relation to="T—4" from="F-2"/>
<relation to="T-9” from="F—4"/>
<relation to="T-0" from="F-0"/>
<relation to="T-5" from="F-2"/>

<file name="/home/haavar/painter/data/tillsnow.pic” id="B"/>
<file name="/home/haavar/painter/data/tillgrnsz.pic” id="E"/>
<file name="/home/haavar/painter/data/tillveg.pic” id=R"/>

<file name="/home/haavar/painter/data/tillrock.pic” id="RB"/>
<file name="/home/haavar/painter/data/tillother.pic” id="B"/>

<transformation
<transformation
<transformation
<transformation
<transformation
<transformation
<transformation
<transformation
<transformation
<transformation
</workflow>

routine ="OPENR”
routine ="OPENW"
routine ="OPENR”
routine ="OPENW"
routine ="OPENR”
routine ="OPENW"
routine ="OPENR”
routine ="OPENW"
routine ="OPENR”
routine ="OPENW"

id="F0"/>
id="F1/>
id="F2"/>
id="F3"/>
id="F4">
id="F5"/>
id="F6"/>
id="F7"/>
id="F8">
id="F9"/>

This page is intentionally left blank.

Appendix E

Bash example workflow

To show the functionality of the bash plugin | have written a tiny bash script. | chose to
write my own script to demonstrate the plugin since | thought the bash scripts | found that
where a part of a real scientific workflows where too long to use in an example. When
the scripts grow large it is harder for humans to interpret the output. When the system is
running this data is submitted to the &Sre and no human needs to interpret the messages.

Figure[E.1 shows the linage the plugin retrieved from this bash script. Each command
executed in the bash script that is not a part of the scripting language is represented as a
transformation. In this example we have information flowing between the transformations,
and we have some that are missing input or output. In the script the output from sed was
stored in a variable in the scripting environment, and this does not show up in the logs. The
command echo was invoked in a subshell to print something to the screen, and did not take
any inputs and therefore it shows up in the graph as a transformation with no inputs and not
outputs.

When you run a script with the bash plugin connected you can expect a lot of transfor-
mations, and many of them will miss either input or output. Only a small number of outputs
will be connected to each-other. This is by my opinion a good representation what happens
when a bash script is executed, since it is not a lot of information that flows between the
different commands.

E.1 Source code

#!/bin/bash

uid=‘cat /etc/passwd| grep haavar]| \

sed —n "s/A\Cx\)\{2\}\([0 9]\ +\).«/\2/p""

if [$uid —1It 500]
then
/bin/echo You are a default user

else
/bin/echo You are a normal user
fi

E.2 Client internal log files
This is the internal log files of the client and they show all the information recoded when

the script ran. Not all this information is used in the message sent to the server, but this is
information | expect that will be used in the future. There are two log files because bash

81

APPENDIX E. BASH EXAMPLE WORKFLOW

/etc/passwd

cat

grep echo

Figure E.1: A DAG representing the information flow of the bash test script

E.2. CLIENT INTERNAL LOG FILES 83

executed the body of the if-statement in a subprocess. If you look at the parent process
id and the parent startup time attribute of the init element you can see that the second
workflow is a part of the first. This relation needs to be determined by the transmitter
before the workflow is sent to the server.

All the files opened by the process after the exec call was issued are included in the list
of files. Some of the files are not data files read by the process, but libraries used by the
application. It is up to the server to determine the relevance of the files.

E.2.1 20050528T225100.3715217-6843

<init time="20050528T225101Z" pid="6840" stime="20050528T225100.3715212’
language="bash” user="haavar” hostname="spittiaguck.bren.ucsb.edy”
<mount-points>
<mount share="dabl15:/edl15/user69/mtc” type="nfs'home/mte</mount>
<mount share="dabl15:/ed15/rsi” type="nfs7Thome/rsi</mount-
<mount share="dabl15:/edl1l5/software” type="nfs/home/software</mount-
<mount share="dabl5:/edl5/user69/stoms” type="nfgfiome/stoms/mount>
<mount share="dab15:/edl15/user69/frew” type="nfs'home/frew</mount>
<mount share="dabl15:/edl5/user69/haavar” type="nféfiome/haavax/mounty
<mount share="dab16:/edl6a/tm” type="nfs’home/tm</mount>
<mount share="dabl15:/edl15/eil” type="nfs’’home/ eil</mount>
</mount-points>
<linit >
<exec time="20050528T225100.371521Z" routine="/bin/cat”
pid="6844" ppid="6843">
<arguments
<argument-/etc/passwd&/argument-
</arguments
<io>
<pipe read="true” id="std-in"/>
<pipe write="true” id="2"/>
<pipe write="true” id="std—err"/>
<file read="true">/etc/ld.so.cache/file >
<file read="true”>/lib/tls/libc.so.6</file >
<file read="true”>/usr/lib/locale/locale-archive</file >
<file read="true”>/etc/passwa&/file >
<lio>
<lexec>
<exec time="20050528T225101.165831Z" routine="/bin/grep”
pid="6845" ppid="6843">
<arguments-
<argument-haavar</argument-
<l/arguments-
<io>
<pipe read="true” id="2"5>
<pipe write="true” id="3"/>
<pipe write="true” id="std—err"/>
<file read="true”>/etc/ld.so.cache/file >
<file read="true”>/lib/libpcre.so.0/file >
<file read="true”>/lib/tls/libc.so.6</file >
<file read="true”>/usr/lib/locale/locale-archive</file >
<file read="true”>/usr/lib/gconv/gconvmodules.cache/file >
<file read="true”>/usr/share/locale/locale.alias/file >
<lio>
<lexec>
<exec time="20050528T225101.164442Z" routine="/bin/sed”
pid="6846" ppid="6843">
<arguments-
<argumenp—n</argument-
<argument>s/\\ .+ \\)\\{2\\]\ ([0 =91\ \+\\).x/\\2/p</argument>
<l/arguments-
<io>
<pipe read="true” id="3">
<pipe write="true” id="1"/>
<pipe write="true” id="std—err"/>

84 APPENDIX E. BASH EXAMPLE WORKFLOW

<file read="true”>/etc/ld.so.cache/file >
<file read="true”>/lib/tls/libc.so.6</file >
<file read="true”>/usr/lib/locale/locale-archive</file >
<file read="true”>/usr/lib/gconv/gconvmodules.cache/file >
<lio>
<lexec>

E.2.2 20050528T225101.1852127-6838

<init time="20050528T225101Z2" pid="6840" stime="20050528T225101.1852122"
pstime="20050528T225100Z2" ppid="6843" language="bash” user="haavar”
hostname="spitting-duck.bren.ucsb.edw
<mount-points>
<mount share="dab15:/edl15/user69/mtc” type="nfs'/home/mte</mount>
<mount share="dabl5:/ed15/rsi” type="nfsThome/rsi</mount-
<mount share="dab15:/edl1l5/software” type="nfs/home/software</mount>
<mount share="dabl15:/edl5/user69/stoms” type="n#fgliome/stoms/mount>
<mount share="dab15:/edl15/user69/frew” type="nfs'home/frew</mount>
<mount share="dabl15:/edl15/user69/haavar” type="nféfiome/haavax/mounty
<mount share="dab16:/edl6a/tm” type="nfs’/home/tm</mount-
<mount share="dabl15:/ed15/eil” type="nfs’’home/eil</mount-
</mount-points>
<linit>
<exec time="20050528T225101.185212Z" routine="/bin/echo”
pid="6848" ppid="6838">
<arguments
<argumentYou</argumenpg-
<argumentare</argument-
<argumenta</argument-
<argument-normal</argument-
<argument-user</argument
<l/arguments-
<io>
<pipe read="true” id="std-in"/>
<pipe write="true” id="std—out"/>
<pipe write="true” id="std—err"/>
<file read="true">/etc/ld.so.cache/file >
<file read="true”™>/lib/tls/libc.so.6</file >
<file read="true”>/usr/lib/locale/locale-archive</file >
<lio>
<lexec>

E.3 ES workflow message

The ES message format is still in early development, and this is only the information
we have decided to include so far. We will include more in the future, but we have not
decided how to format the information. The messages shown below is to show the concept
or reformatting the internal log to ESnessages.

<workflow locallD="20050528T225100.37152156843">
<relation to="T-2" from="T—-1"/>
<relation to="T-2" from="F—-6"/>
<relation to="T-1" from="F-2"/>
<relation to="T-2" from="F-1"/>
<relation to="T-0" from="T—-1"/>
<relation to="T-0" from="F-3"/>
<relation to="T-2" from="F—-4"/>
<relation to="T-2" from="T—-1"/>
<relation to="T-0" from="T-1"/>
<relation to="T-2" from="F-5"/>
<relation to="T-2" from="F-0"/>
<relation to="T-1" from="F-1"/>

E.3. ES?> WORKFLOW MESSAGE 85

<relation to="T-0" from="F-2"/>
<relation to="T-2" from="T—-1"/>
<relation to="T-1" from="F-0"/>
<relation to="T-0" from="F—-1"/>
<relation to="T-0" from="F-0"/>
<relation to="T-1" from="F-5"/>
<relation to="T-0" from="T-1"/>
<relation to="T-2" from="F-2"/>
<file name="/etc/ld.so.cache” id="F0"/>
<file name="/lib/tls/libc.so.6" id="F1"/>
<file name="/usr/lib/locale/localearchive” id="F-2"/>
<file name—"/etc/passwd” id="F3"/>
<file name="/lib/libpcre.so.0” id="F4"/>
<file name="/usr/lib/gconv/gcon¥modules.cache” id="F5"/>
<file name="/usr/share/locale/locale.alias” id=""/>
<transformation routine="/bin/cat” id="F0">
<arguments
<argument-/etc/passwa/argument-
</arguments
</transformation>
<transformation routine="/bin/sed” id="F1">
<arguments
<argumenp—n</argument-
<argument>s/\\ .+ \\)\\{2\\]\ ([0 =91\ \+\\).*/\\2/p</argument>
<l/arguments-
</transformation>
<transformation routine="/bin/grep” id="F2">
<arguments-
<argument-haavar</argument-
<larguments-
</transformation>
</workflow>
<workflow locallD="20050528T225101.1852124838">
<relation to="T-0" from="F—-0"/>
<relation to="T-0" from="F-1"/>
<relation to="T-0" from="F-2"/>
<file name="/etc/ld.so.cache” id="F0"/>
<file name="/lib/tls/libc.so.6” id="F1"/>
<file name="/usr/lib/locale/localearchive” id="F-2"/>
<transformation routine="/bin/echo” id="F0">
<arguments-
<argumenpYou</argument-
<argument-are</argument
<argumenta</argument-
<argument-normal</argument-
<argumentuser</argument-
</arguments
</transformation>
</workflow>

	Introduction
	Earth System Science Server (ES3)
	What is ES3?
	ES3 technologies

	How does this thesis fit into ES3

	Related research
	Ufo
	Transparent result caching
	Earth System Science Workbench (ESSW)

	Possible techniques
	Instructing the source code
	Overriding routines
	Passive monitoring
	Interpreting the code

	The frameworks
	Interactive Data Language (IDL)
	Instructing the source code
	Overriding functions
	Passive monitoring
	Interpreting the code

	Bash
	Instructing the source code
	Override functions
	Passive monitoring
	Interpreting the code
	Parallels

	Implementation
	Plugins
	IDL plugin
	System call plugin

	Logger
	The logger executable
	Internal log file

	Transmitter

	Results
	Achieving the goals
	Resiliency to changes
	Examples

	Bibliography
	Abbreviations and Definitions
	List of Definitions
	List of Abbreviations

	Source Code
	IDL plugin scripts
	es3_idlprec
	es3_idlwrap
	es3_startup.pro
	es3_compile.pro
	es3_log.pro
	Wrapper scripts

	Bash plugin scripts
	es3_straceproc
	es3_include.sh

	Logger
	Transmitter
	ExecElement.java
	FileElement.java
	InitElement.java
	LogEntry.java
	LogInputStream.java
	PipeElement.java
	Transmitter.java
	Variable.java
	WorkflowMessage.java
	XMLParser.java

	Short installation instructions
	IDL example workflow
	Source code
	Original source code
	Preprocessed source code

	Client internal log file
	ES3 workflow message

	Bash example workflow
	Source code
	Client internal log files
	20050528T225100.371521Z-6843
	20050528T225101.185212Z-6838

	ES3 workflow message

