
Abstract

The Xen Virtual Machine Monitor has proven to achieve higher efficiency in
virtualizing the x86 architecture than competing x86 virtualization technolo-
gies. This makes virtualization on the x86 platform more feasible in High-
Performance and mainframe computing, where virtualization can offer attractive
solutions for managing resources between users. Virtualization is also attractive
on the Itanium architecture. Future x86 and Itanium computer architectures
include extensions which make virtualization more efficient. Moving to virtu-
alizing resources through Xen may ready computer centers for the possibilities
offered by these extensions.

The Itanium architecture is “uncooperative” in terms of virtualization. Privi-
lege-sensitive instructions make full virtualization inefficient and impose the
need for para-virtualization. Para-virtualizing Linux involves changing certain
native operations in the guest kernel in order to adapt it to the Xen virtual ar-
chitecture. Minimum para-virtualizing impact on Linux is achieved by, instead
of replacing illegal instructions, trapping them by the hypervisor, which then
emulates them. Transparent para-virtualization allows the same Linux kernel
binary to run on top of Xen and on physical hardware.

Itanium region registers allow more graceful distribution of memory between
guest operating systems, while not disturbing the Translation Lookaside Buffer.
The Extensible Firmware Interface provides a standardized interface to hard-
ware functions, and is easier to virtualize than legacy hardware interfaces.

The overhead of running para-virtualized Linux on Itanium is reasonably
small and measured to be around 4.9 %. Also, the overhead of running transpar-
ently para-virtualized Linux on physical hardware is reasonably small compared
to non-virtualized Linux.

Preface

This master’s thesis was written at the European Organization for Nuclear
Research (CERN), while working for the CERN OpenLab for DataGrid Appli-
cations collaboration. The work is a continuation of previous research at CERN
and NTNU, which has been conducted with fellow student Rune Andresen. We
have looked into the application of virtualization with Xen in CERN’s computa-
tional resources. CERN’s computational Grid is being developed mainly for the
purpose of collecting and analyzing data which will be produced by detectors
in the Large Hadron Collider (LHC), after its experiments commence in 2007.

Most of the work described in this thesis has been conducted by Dan Magen-
heimer at HP Labs Fort Collins, the Xen Team at the University of Cambridge
and affiliates of Intel and SGI. My work at the CERN OpenLab has been in
assisting Dan Magenheimer in porting Xen to the Itanium architecture. This
has involved testing, debugging and analyzing Xen and developing support for
multiple domains on Itanium.

I thank Sverre Jarp, Anne C. Elster and Dan Magenheimer for giving me the
opportunity to work on this project; the developers on the Xen mailing list and,
again, Dan, for long-distance, but helpful, e-mail discussions; Rune Andresen
and Dan for helpful feedback on this thesis; and Andreas Hirstius for helping
with hardware and fixing things that break.

i

Contents

1 Introduction 1
1.1 Virtualization in the Grid . 2

2 Background 6
2.1 Commodity Computer Architecture 7

2.1.1 Interrupts . 8
2.1.2 Privilege Separation . 9
2.1.3 Memory Management . 9

2.2 The x86 Architecture . 11
2.2.1 Memory Management . 11
2.2.2 Process Switching . 13
2.2.3 The Floating Point Unit 13
2.2.4 Interrupts . 14

2.3 The IA-64 Architecture . 15
2.3.1 Key Features . 15
2.3.2 Registers . 17
2.3.3 Hardware Abstraction . 17
2.3.4 Interrupts . 18
2.3.5 Memory Management . 18
2.3.6 The Performance Monitoring Unit 19

2.4 Linux . 20
2.4.1 Interrupts . 21
2.4.2 Time . 21
2.4.3 Processes . 23
2.4.4 Kernel Entry & Exit . 24
2.4.5 Performance Monitoring 25

2.5 Virtualization . 26
2.5.1 Virtual Machine Monitors 27

2.6 Xen Virtual Machine Monitor . 28
2.6.1 Paravirtualization . 29
2.6.2 Event Handling . 30
2.6.3 Memory Management . 30
2.6.4 Time . 31

3 Analysis 32
3.1 Virtualization on Intel Architecture 32
3.2 The Xen Hypervisor . 35

3.2.1 Para-virtualization . 36

ii

3.2.2 System Startup . 36
3.2.3 Memory Management . 37
3.2.4 Hypercalls . 38
3.2.5 Event Channels . 42
3.2.6 Time and Scheduling . 43

4 IA-64 Implementation 46
4.1 Analysis . 46

4.1.1 Privilege-Sensitive Instructions 47
4.1.2 Optimized Para-virtualization 47
4.1.3 Transparent Para-virtualization 48
4.1.4 Memory Management . 48
4.1.5 Hypercalls . 49
4.1.6 Virtual Hash Page Table 52
4.1.7 Performance Monitoring 52

4.2 Para-virtualization . 53
4.3 Optimized Para-virtualization . 55
4.4 Memory Management . 56
4.5 Firmware Interface Emulation . 56
4.6 Events . 57
4.7 Further Work . 57

5 Performance Analysis 59
5.1 Experimental Environment . 59
5.2 Methodology . 59

5.2.1 Build Benchmark . 60
5.2.2 Instrumentation . 61

5.3 Results . 61
5.3.1 Build Benchmark . 61
5.3.2 Instrumentation . 62

6 Related Work 64
6.1 Intel Virtualization Technology 65

7 Conclusion 67

A Registers 68
A.1 Some Essential x86 Registers . 68
A.2 Some Essential IA-64 Registers 69

B Instruction Set Architectures 70
B.1 Some Essential x86 Instructions 70
B.2 Some Essential IA-64 Instructions 70

C Source Code 71
C.1 Event Channel Hypercall . 71
C.2 Hypercall Handlers in the Hypervisor 72
C.3 Privileged Operation Counters 73
C.4 Paravirtualization . 73

iii

List of Figures

1.1 The grid layer stack. 4
1.2 An alternative grid implementation. 4

2.1 Virtual address to physical address translation. 10
2.2 Privilege separation in Linux on the x86 architecture. 12
2.3 The format of a bundle. 16
2.4 Flowchart showing how interrupts are handled in Linux. 22
2.5 Illustration of a VMM hosted on a host OS, running two guest

OSs. 27
2.6 The Xen hypervisor, hosting several domains. 29
2.7 Device virtualization in Xen. 31

3.1 Different methods of virtualization. 34
3.2 The domain and vcpu data structures. 36
3.3 Virtual block device initialization phase. 44
3.4 The states and transitions of a frontend block device. 44

4.1 Architecture specific parts of the domain and vcpu data structures. 55

5.1 Bar chart showing the times measured in the build benchmark. . 61
5.2 A chart over the number of para-virtualized operations executed. 63

6.1 VT’s VMX Root and Nonroot execution environments. 66

iv

List of Tables

3.1 The hypercalls of Xen/x86. 39

5.1 The configuration of the OpenLab GRID testbed cluster. 59
5.2 Measured time when compiling Linux. 61
5.3 Measured number of para-virtualized operations executed. 62

v

Chapter 1

Introduction

The Xen Virtual Machine Monitor is a virtualization project from the university
of Cambridge. A presentation of the software is given in the paper “Xen and the
Art of Virtualization” by Paul Barham et al. [B+03]. Xen has recently gained
much popularity partly due to its efficiency and free and open source licensing.
The software developer and user community around the software has grown sig-
nificantly over the last few months, due not only to its inherent benefits, but also
to the attention it has received through popular computer journalism, which has
further boosted its development and given momentum to the project. Powerful
computer technology companies such as Sun Microsystems, Hewlett-Packard,
Novell, Red Hat, Intel, Advanced Micro Devices (AMD), Voltaire and IBM,
have also recognized the potential in the software and have become involved
with the project [Sha05].

Experiences show that Xen is able to utilize commodity PC resources better
than most VMMs, yielding close to native OS (Operating System) resource
utilization [And04, B+03, BA04, F+04b]. Compared to similar technologies
such as VMWare and User Mode Linux, the performance benefits prove to
be significant in most applications. Xen achieves this performance advantage
through an unconventional approach to virtualizing a computer, called para-
virtualization [W+02]. One significant difference from traditional approaches is
that this one allows only modified OSs to run on the virtual machine.

Traditional Virtual Machine Monitors (VMM) have aimed to be able to let
any, or at least a few, OSs run unmodified in their VMM execution environment,
that is, to provide a true virtualization of the architecture. This is necessary
in order to run, for example, Windows XP on the VMM, since most regular
users and software devolpers are not allowed nor able to modify the OS in
order to have it run on custom architectures, be they virtual or real. With
the emergence of main-stream open source licensed OSs, such as Linux and
OpenBSD, software developers are given more freedom to modify the OSs so that
they may possibly run on a given computer architecture. The Xen developers
have taken advantage of this freedom by, instead of completely virtualizing the
PC architecture, providing a more benificial Xen/x86 virtual architecture on
which a modified OS may run.

Many novel applications for virtualization have emerged over the develop-
ment of Xen as, more so than before, researchers and users now have access to a
free, open, and efficient virtualization platform on cheap and powerful comput-

1

ers. Applications such as checkpointing, server consolidation and self-migrating
OSs have become more feasible. Virtualization of computing resources is par-
ticularly attractive in HPC (High-Performance Computing), since this usually
involves the sharing of computing resources among several users. By virtualizing
resources, they may be shared between users more dynamically and securely.

Major computer chip manufacturers such as Intel and AMD, have also rec-
ognized the benefits of having multiple OS instances run simultaneously on a
single processor. Recently, specifications for their Vanderpool (VT) and Paci-
fica processors have been released, which include facilities for enabling efficient
true virtualization. Support for the Vanderpool virtualization architecture has
already been implemented into Xen.

Xen has already shown to provide an efficient virtualization environment
for x86 machines. The objective of this project is to attain and analyze a vir-
tualization environment for the Itanium platform. This is important because
grid computing resources consisting of Itanium machines can benefit from vir-
tualization, as discussed in Section 1.1. The project involves assisting in the
development of the Xen VMM for Itanium.

This master’s thesis presents the work related to porting Xen to the Ita-
nium architecture. Chapter 2 gives an introduction to some of the concepts
used in further discussions in the thesis. Topics that are relevant for analysis of
the virtualization of Itanium include the existing Xen implementation, current
virtualization challenges on Intel architectures and specifics of the IA-64 archi-
tecture. These topics are discussed in Chapter 3. The implementation of Xen
on Itanium is presented in Chapter 4. In order to evaluate the progress in terms
of performance, Chapter 5 analyzes the performance of Xen/ia64. In Chapter
6, a few interesting projects that have relevance to Xen are discussed. Finally,
Chapter 7 concludes the thesis.

1.1 Virtualization in the Grid

The construction of the Large Hadron Collider (LHC) at the European Organ-
isation for Nuclear Research (CERN) is scheduled to complete in 2007. Many
different high energy physics experiments will be performed in the LHC, by
scientists from many parts of the world. An introduction to the LHC and its
experiments can be found at [lhc05]. The particle detectors of the different
experiments will generate massive amounts of data that need to be analyzed
and stored on local and remote computing sites. It is estimated that roughly
15 PetaBytes of data will need to be processed and stored per year when the
experiments start.

Computational grids are set to satisfy the demand for computing and storage
resources, and many grid projects will be involved in the LHC experiments. Ian
Foster and Carl Kesselman [FK] give a good introduction to grid computing.
Also, previous work [Bje04] gives an overview of some important grid computing
projects. One example grid project is the LHC Computing Grid project, which
is being coordinated at CERN.

A computational grid can benefit from virtualization in a variety of ways.
Xen is considered as a virtualization solution and has been evaluated for appli-
cation in HPC in previous work with Rune Andresen [BA04]. The core parts
of the LCG software stack has been ported to the Itanium architecture, which

2

makes the LCG ready to employ Itanium machines. At this moment, three
computing centers are currently contributing Itanium computers to the LCG
[HC05]. By porting Xen to the IA-64 architecture, it will be one step closer to
being realized in grid environments consisting of Itanium machines, such as the
Itanium computers of the LCG and the OpenLab testbed at CERN.

Amit Singh [Sin04] presents an extensive list of virtualization benefits, which
probably can be extended to include many more. Staying within the scope of
HPC, a shorter list, focusing on HPC virtualization benefits, is presented in the
following.

• A general trend in integrated circuit design is that the number of tran-
sistors that can fit per die area increases more rapidly than processor
companies’ capacity to produce new logic. Thus, copying existing logic
from one CPU core into a multi-core CPU, allows new die area to be uti-
lized. Multi-core CPUs, however, face the same limitations as symmetric
multiprocessing (SMP) systems with regards to programming paradigm,
as they essentially are shared memory parallel machines. Virtualization
allows computing resources to be utilized with more flexibility. Different
OSs may be run at the same time, and on a SMP system, OSs may be
pinned to individual CPUs. With the arrival of multi-core CPUs, virtual-
ization will allow these resources to be shared among users on a virtualized
hardware level.

• Parties that have interest in grid computing resources, such as research
institutions or commercial organizations, are organized into Virtual Or-
ganizations (VO). It is important that computations of one VO do not
interfere with computations of another VO. Also, commercial VOs might
want to keep their computations secret from competing VOs. Computa-
tions running in a virtualized environment may be isolated (see Section
2.5) while running on the same physical resources.

Nancy L Kelem and Richard J. Feiertag [KF91] argue that the isolation
provided by a hardware virtualization mechanism can be more easily math-
ematically abstracted than the isolation provided by a traditional time-
sharing OS’s security model. The sufficiency of the hardware virtualization
security model can be evaluated by looking at the isolation at the hard-
ware level. Since hardware virtualization is a simpler mechanism than an
OS and has fewer lines of code, its isolation can be more easily proven.

• When physicists submit a job to a grid, there is a probability that the
job will fail. On a given grid resource, this probability increases with the
amount of time the computation runs. The physicist may waste a lot of
time or be delayed when after a while into the computation, finding that
the computation has failed due to grid failure. Virtualization can allow the
state of the entire OS to be stored in checkpoints, since the virtualization
environment encapsulates the OS (see Section 2.5). In the case of a failure,
the OS can then be brought back to the state it was in before the failure
and continue from there.

• Also, because of encapsulation, a running OS with a computation can
be migrated from one node in the grid to another and continue to run.
This allows the load on the nodes to be balanced more dynamically, and

3

Figure 1.1: The grid layer stack.

Figure 1.2: An alternative grid implementation.

computations may be moved away from a node which is going down for
maintenance.

• An illustration of the grid layer stack is shown in Figure 1.1. The fabric
layer of the grid layer stack consists of, among others, OSs, and this is
the execution environment in which grid computations effectively run. A
computational job is first submitted by the user through a high level user
interface, such as, for instance, a web portal, in the Application layer.
Then the user is authenticated, and the job is allocated resources in the
Middleware layer. Finally, the job is run on a node in the Fabric layer
on the execution environment it provides. In the case of LCG, this is
Scientific Linux CERN [slc05].

Grid computations depend on necessary libraries and dependencies being
satisfied in these OSs. With virtualization, virtualized hardware is exposed
at the fabric layer, as illustrated in Figure 1.2. Instead of submitting a
computational job, the user may submit a complete OS with a filesystem,
containing a computation. The submission and authentication proceeds as
usual, but at the fabric layer, the user is allocated virtualized hardware.
Thus, each user may be given the responsibility of satisfying their own
software dependencies, supplied in their own OS submissions.

4

• Virtualization may enable the utilization of public computing resources,
such as university computer labs or an organization’s workstations. While
one part of a workstation serves the original purpose of providing a tool for
students’ or employees’ work, another part may serve as a computational
resource for a grid, for example during the night when they usually are
not used, or otherwise during low utilization.

• Encapsulation allows the monitoring and provisioning of hardware re-
sources. This further allows the account keeping of VOs’ resource usage,
and resources can be brokered between VOs.

• Upgrades to OSs and software can be done on virtualized hardware with-
out bringing down the computer. In a transitional phase, both old and
upgraded OSs may run simultaneously on the same computer, allowing
upgrades without downtime.

The potential drawbacks of virtualization are also worth mentioning. Multi-
ple processes running simultaneously on the same CPU lead to the cache being
overwritten subsequently by the processes. This is often referred to as thrashing
of the cache and leads to poor utilization of the cache and a significant slow-
down. Naturally, processes running simultaneously in different OSs on the same
CPU will lead to the same problem. Thus, running two OSs simultaneously on
a single CPU is not considered beneficial in HPC when running computations,
in terms of resource utilization.

5

Chapter 2

Background

An OS is a complex piece of software. It manages the computer hardware
and provides a foundation on which user application software can run. All the
hardware devices of a computer, such as harddrives, network interface cards,
keyboards and monitors are managed by the OS. Also, the OS abstracts an
interface to memory management, processes, timers and file systems in order
to make programming of user application software easier. Without an OS, a
computer is essentially useless.

Xen is in many ways similar to an OS. It provides a foundation on which OSs
can run, and, similarly to an OS, it has to manage the computer directly. Pro-
gramming Xen therefore requires knowledge about the computer architecture
it is programmed for. Xen is programmed for the x86 1 architecture. Knowing
the x86 architecture is therefore necessary in order to understand the design
of many parts of Xen software, which are specifically programmed for the x86
architecture. The x86 architecture is presented in Section 2.2.

Knowing the IA-64 2 architecture is of course necessary when programming
system software for it. Therefore, in order to understand how the IA-64 archi-
tecture is different from the x86 architecture and how system programming is
affected by these differences, an introduction to the IA-64 architecture is given
in Section 2.3. The two architectures do, however, have many similarities, which
are basic in many commodity computer architectures. Therefore, some essential
concepts of commodity computer architecture are presented in Section 2.1.

Xen is originally designed with the x86 architecture as the target environ-
ment. The x86 architecture was, however, probably never intended to support
virtualization. This makes efficient virtualization of the architecture difficult
to achieve, which is part of the reason why this has not been achieved with a
near-to-native level of efficiency until recently. Guest OSs that run in the Xen
system are modified to achieve high efficiency. Still, they let user applications
run unmodified. Thus, many aspects of the original OS need to remain intact
in order to still support their interfaces to the user applications. Xen must

1 The term x86 usually refers to Intel, AMD or other chip manufacturers’ PC architectures
that are backwards compatible with the 80386 architecture, except for the ones that use 64-bit
extensions, namely AMD’s Opteron and Intel’s EMT64 technologies. The term IA-32 is also
often used.

2 The term IA-64 refers to Intel’s Itanium processor series, also referred to as Itanium
Processor Family (IPF).

6

therefore facilitate for many aspects of a traditional OS such as memory man-
agement, device drivers and I/O. How Xen provides an efficient platform for
virtualization is discussed in Section 2.6.

Xen heavily leverages code from Linux both in the virtualizing software and
in guest Linux kernels. Understanding Linux helps to understand some general
OS concepts and how Xen virtulizes hardware. Also, this helps to understand
how guest OS are modified to run on Xen. A description of some important
aspects of the Linux OS kernel is given in Section 2.4.

Some important principles in virtualization govern the development of Xen
and are important guidelines that are necessary to follow when implementing
on complementary architectures. Also, looking at other VMM technologies may
help the understanding of Xen. Some important principles of virtual machines
are discussed in Section 2.5, along with some state of the art examples of virtu-
alization technologies.

2.1 Commodity Computer Architecture

The von Neumann model is by far the most prevalent paradigm for modern
computer architectures. It specifies a processing unit and a storage unit, which
cooperate to run a program. Indeed, the most common computer architecture
on desktop computers in use today—the PC, or in more technical terms, x86,
architecture (see Section 2.2)—is an architecture which stems from the von
Neumann model.

X86 processors are usually relatively cheap and common and are therefore
often called commodity hardware. Commodity computers such as the PC are
popular in offices and private homes and are in these contexts used for diverse
applications, such as word processing, games and multimedia. The rich require-
ments of these applications have evolved commodity desktop computers into
powerful all-round computers, capable enough to be used in mainframe com-
puters, both in application servers and scientific computations. Commodity
hardware can be attractive in many HPC applications as well as desktop ap-
plications, but mainly because of its low total cost of ownership compared to
specialized computer hardware. Integrated circuit technology evolves to allow
transistors to be ever smaller, and new applications for commodity processors
are realized. Recently, commodity computer architectures such as the x86, have
been used also in embedded devices, showing how diverse applications evolve as
integrated circuit logic becomes cheaper, less power consuming and smaller.

For some critical applications, however, commodity hardware might not suf-
fice, or other computer architectures may give significant performance benefits
compared to what x86 computers have to offer. While simply relying on the
predictions of Gordon E. Moore [Moo65], that time can let computers catch
up with the performance demands, for a long time often has been a practi-
cal solution, alternative architectures may provide benefits beyond what next
generation x86 processors give. Intel aims, with the IA-64 architecture (see
Section 2.3), to provide a set of architectural improvements in a new computer
architecture more or less independent from the x86 architecture.

One thing that separates commodity computers from many other computers
is the need for a diverse set of ways to interface with the human user, in order to
satisfy the user’s diverse set of requirements. This has played an important role

7

in the development of processor architectures. Many features exist to satisfy
users’ interaction with the system, to support a diverse set of applications and
to increase performance of the system without asking too much of the system
programmer. Some of these features are described in the following sections.
Interrupts are the processor’s method of communicating the event of a user in-
teraction with the system to the processor, which is further discussed in Section
2.1.1. Privilege separation allows the system to be protected from program-
ming mistakes, as discussed in Section 2.1.2. Being von Neumann architectures,
commodity architectures also employ schemes for managing storage, which is
discussed in Section 2.1.3.

2.1.1 Interrupts

In order for a computer to be useful it needs to be able to handle input from
users and react to it. For instance, when a user types a character key on
the keyboard, she expects the computer to react to it by for instance showing
the typed character on the computer display. Similarly, the OS needs to be
notified when a DMA (Direct Memory Access) transfer has completed or a
packet arrives on the network, in order to react to it. When the processor
receives the electrical signal that indicates the press of a certain key or the
completion of a DMA transfer, it then interrupts the current running process
and executes an interrupt procedure.

Interrupts are either maskable or nonmaskable, that is, either they can be
disabled or they can not. Critical events, such as hardware failures, often give
rise to nonmaskable interrupts. The procedure which a particular interrupt is to
execute is called an Interrupt Service Routine (ISR). When an interrupt occurs,
a special table is referenced, indexed by the types of interrupts, and the ISR
corresponding to the interrupt is executed or called.

All devices that deliver interrupts are connected to an interrupt controller
by an Interrupt ReQuest (IRQ) line. Whenever a device needs to interrupt the
processor it raises an IRQ signal, telling the interrupt controller that it is ready
to perform some operation. In basic terms, an x86 interrupt controller further

• stores a vector corresponding to the received signal into its I/O port,

• issues an interrupt to the CPU by raising a signal on the INTR pin,

• waits until the CPU acknowledges the interrupt and then clears the INTR
pin.

The number of IRQ lines is limited, thus some devices share IRQ lines. IRQ
sharing is achieved by having one ISR per device that uses a particular IRQ.
Since the ISR does not know initially which device issued the interrupt, each
ISR related to the particular IRQ is executed; however, each ISR first checks if
it was its particular device that generated the interrupt. Another way devices
share IRQs is by multiplexing them in time.

The processor does not only interrupt itself on external impulse. It may
also issue interrupts when an instruction is erroneous or otherwise problematic,
for instance on divide-by-zero errors or page faults. These internally generated
interrupts are usually called exceptions rather than interrupts.

8

2.1.2 Privilege Separation

In a multi-user time-sharing OS there is a need to protect the underlying exe-
cution environment from malicious or erroneous use. For instance, normal users
should not be allowed to alter the execution of kernel or other users’ processes.
Also, faulty user programs should not be able to break the execution of the ker-
nel by, for instance, altering memory reserved for kernel processes. Thus there
is a need for protecting the memory reserved for the kernel through a privilege
separation mechanism. Similarly, certain instructions should only be allowed to
be executed and, certain registers should only be allowed to be accessed by the
kernel.

Commodity workstation and mainframe computer processors maintain priv-
ilege separation through protection of memory segments or pages (see Section
2.1.3). The protection information for a segment or page is stored as meta-
information which is compared to the running process’ privilege level. Also,
certain registers and instructions, which, for instance, control the processor’s
operation or interaction with other hardware, are protected.

The currently running process’ privilege level, usually referred to as the Cur-
rent Privilege Level (CPL), is kept in a register, which also allows the processor
to check if the process is allowed to execute certain instructions or access certain
registers. If a process with insufficient CPL tries to access protected registers
or execute protected instructions, a Privilege Operation fault is raised by the
CPU, which may be handled as any other exception and recovered or ignored.

2.1.3 Memory Management

Memory is usually addressed differently from a processor and from a user pro-
gram’s point of view. Managing memory directly by its physical addresses
makes programming complex; intstead, the OS may allow memory to be ac-
cessed through virtual addresses. In a virtual addressing scheme, when an ap-
plication addresses a particular memory location, it provides a virtual address,
which then is translated into the corresponding physical address of the memory
location.

There are different ways to virtualize memory access. The two most preva-
lent in commodity computer architecture are segmentation and paging. Segmen-
tation is a technique for logically arranging memory such that different processes
accessing memory do not interfere with each other, thus making programming
easier and more secure. Having privilege separation on a segment lets certain
processes have access to segments that other do not.

Through paging, memory is arranged into pages, which are disjunct memory
ranges that are contiguous in physical memory and in the way they are presented
as virtual memory. Similar to a segment, a page may demand that accesses to
it are privileged. The difference, however, between segmentation and paging, is
that when using segmentation, the program explicitly addresses and manipulates
the segments, while using paging, the program uses a virtually linear address
space which may be non-contiguous in reality. Segmentation and paging in the
x86 architecture is described in Section 2.2.1.

In order to translate a virtual address into a physical address the OS looks
up the address in a page table. The page table is a data structure stored in main
memory, which stores the addresses of the individual pages. The procedure of

9

Figure 2.1: Virtual address to physical address translation.

translating a virtual address into a physical address is illustrated in Figure 2.1.
As the number of pages is potentially very large, the data structure is expanded
into a hierarchy. The top data structure is a page directory, which further holds
several page tables. When a virtual address is translated through the page
table, the directory part of the address points to a page table entry in the page
directory. Further, the table part of the address points to a Page Table Entry
(PTE) in the page table. Finally, the last part of the address is used as an
offset within the page, which is the physical address translation of the original
virtual address. This hierarchical scheme allows for not allocating memory for
page tables until they are actually used, reducing the page table memory profile
proportional to the number of pages used, rather than the number of pages in
the whole virtual address space.

Having to look up addresses through main memory, however, is a costly af-
fair. Given that a virtual to physical address translation may take two or more
memory lookups in addition to the intended physical one, looking up the page
directory, page table and possibly higher level data structures, the overhead of a
pure main-memory approach is significant. Most processors therefore employ a
Translation Lookaside Buffer (TLB) in order to speed up virtual address trans-
lation. The TLB acts as a cache, storing a subset of the possible translations,
after a possibly speculative scheme with regards to which translation is most
likely to occur next. As the TLB is implemented physically close to the core of
the CPU, with high-speed logic, translations are performed with a significant
speedup compared to translations through main memory. TLBs are, however,
limited in the number of translations they can keep. The first time a transla-
tion is used, it must be found in the page table, with the same memory access
overhead. Also, as new translations are used, they will replace older ones, which
again may need to be translated through memory in the future.

10

2.2 The x86 Architecture

The x86 architecture fits quite nicely under the CISC (Complex Instruction Set
Computer) paradigm. Traditionally, computers that fall under this paradigm, in
contrast to RISC (Reduced Instruction Set Computer) computers, afford a less
rich register set due to a higher richness in ISA (Instruction Set Architecture)
complexity. Even though modern x86 CPUs may afford a richer register set,
backwards compatibility often dictates that new registers are redundant.

Segmentation was the first memory management paradigm in the x86 pro-
cessor. It remains a legacy from the processors that were developed before the
80386 processor. The 80386 processor introduced paging, which allowed the use
of virtual memory. The x86 processors of today therefore support both segmen-
tation and paging for managing main memory. How segmentation and paging
of memory is managed in the x86 CPU is discussed in Section 2.2.1.

In Linux, control of the CPU is handed between programs through a mech-
anism called process switching (see Section 2.4). When control is handed from
process p to process q, the x86 CPU can automatically store some of the registers
that are used by p, or p’s hardware context, to memory. After q is finished, and
p is given control of the CPU again, the CPU automatically loads p’s hardware
context from memory into the registers. In the case of segment registers and
general purpose registers, this is further discussed in Section 2.2.2. Hardware
management of FPU (Floating Point Unit) registers is discussed in Section 2.2.3.

The x86 processor as used in PC’s has to interface with many different types
of hardware. Hardware which is external to the CPU, can be communicated
with through a set of different interfaces. I/O ports are the addresses which
some devices are connected through. The I/O ports can be accessed either
through special instructions, or they can be mapped in the physical address
space. Also, as discussed in Section 2.1.1, devices deliver interrupts to the CPU
to notify of certain events. The CPU also notifies itself about certain events,
such as divide-by-zero errors and timer events. Interrupts are further discussed
in Section 2.2.4.

2.2.1 Memory Management

Backwards compatibility has always been preserved in the x86 series architec-
tures. Though segmentation strictly is not necessary for most modern appli-
cations, as it is made redundant by paging, the x86 maintains segmentation in
order to allow support for existing software that uses segmentation. Segmenta-
tion was introduced to make memory management safer and more scalable, by
encouraging or making it easier to manage separation of memory spaces between
user space and kernel space and between code and data. This was achieved by
having different, although possibly overlapping, memory segments for data and
code and assigning them different privilege levels, giving heritage to rings, as il-
lustrated in Figure 2.2. In Linux, only privilege levels zero and three are used, in
which Kernel Mode and User Mode processes run, respectively. These privilege
levels are commonly referred to as “rings”.

Attributes of a segment, such as its size, its physical starting address and
the privilege level required to access it, are stored in its segment descriptor.
Segment descriptors are stored either in the Global Descriptor Table (GDT)
or the Local Descriptor Table (LDT), which are data structures in memory.

11

Figure 2.2: Privilege separation in Linux on the x86 architecture.

Segment selectors are used to reference the segment descriptors in the descriptor
tables. A segment selector points to a specific segment descriptor in the GDT or
LDT through an index and a flag that specifies whether the segment descriptor is
in the GDT or in the LDT. The segment descriptor defines the level of privilege
needed to read or write to its corresponding segment in the Descriptor Privilege
Level (DPL) field.

To make segment addressing faster, the segment descriptor of the currently
used segments are stored in segmentation registers. A particular segmentation
register, which holds the segment identifier of the currently used code segment,
namely the cs register, is significant because it also includes a 2-bit field called
the Current Privilege Level (CPL). This field keeps the privilege level of the
current executing process, one in the range zero through three. Level zero is
the most privileged and allows access to all processor registers and to hardware
device interfaces. Also interrupt handling instructions are instructions of privi-
lege level zero . Intel’s intention of rings one and two is for having the OS run
device handling routines in these levels; however, they are rarely used. Ring
three gives access only to a limited set of registers and instructions, excluding
interrupt handling instructions and hardware device interfaces.

As segments have differentially privileged access, so do pages, though only
two different levels, “User” and “Supervisor”. Pages that are flagged “User”
may be accessed by any process, while pages that are flagged “Supervisor” may
only be accessed by a process when the CPL is less than three.

The pointer to the top level page directory of the current process is kept in
the cr3 control register. Whenever the address space needs to be changed, such
as, for instance, after a process switch, the address of the next process’ page
directory is written to the cr3 register. This, at the same time, triggers a flush
of the TLB, invalidating all the TLB’s translation entries.

12

2.2.2 Process Switching

The x86 CPU can automatically manage the contexts of different processes.
It offers a mechanism for storing a complete CPU state except for FPU and
Streaming SIMD Extensions (SSE) (see Section 2.2.3) states. The most essential
registers that comprise this state are (see Appendix A.1):

• The segment registers—cs, ds and others.

• The general purpose registers—eax, ebx, ecx and similar.

• The pointer to the last executed instruction—eip.

• The pointer to the page directory—cr3.

• The pointer to the Kernel Memory Stack (see Section 2.4.4)—esp.

In order to manage this state, the CPU uses a special segment called the
Task State Segment (TSS). This is the segment in which the context of a process
is stored upon an automatic process switch. The TSS’s segment descriptor is
called the Task Gate Descriptor, which can be stored in a GDT, an LDT or
an Interrupt Descriptor Table (IDT) (see Section 2.2.4). By performing a far
jmp or call instruction, a task may target any segment visible to it through
a GDT, LDT or IDT. As a task enters a segment its CPL is compared to the
segment’s DPL. If the CPL is more or equally privileged than the DPL the task
is allowed to continue, and the CPL assumes the DPL. If the targeted segment
is the TSS, the CPU automatically performs a hardware context switch.

2.2.3 The Floating Point Unit

The floating point capabilities of the x86 architecture has evolved with the
demands for more faster and more efficient floating point calculations in 3D
games, multimedia and HPC. The architectures that x86 is based on, started
out without floating point capabilities, and the x87 floating point co-processor
was later added to extend the processors, with floating point arithmetic capa-
bilities. The external x87 co-processor was accessed as other external devices
and results were returned with external interrupts. The FPUs of modern x86
processors are still logically x87 co-processors, although they are now integrated
into the circuits of the CPU and thus much faster. Also, later, with the Pentium
processor, the MMX extension allowed the FPU to be utilized more efficiently,
directly through MMX registers. In addition, the Pentium III processor intro-
duced the SSE extensions, which perform floating point arithmetic in the XMM
registers, which are separate from the FPU registers. SSE allows one operation
to be executed on multiple vectors in parallel in a single instruction unit. The
SSE extensions have also evolved, and recently SSE2 and SSE3 extensions are
included in Intel’s x86 processors.

The x86 processor still generally performs floating point arithmetic in the
FPU. The registers of the FPU are utilized either through esc instructions or,
as of the Pentium processor, alternatively through MMX instructions. On a
hardware context switch, the processor does not automatically save the FPU or
XMM registers in the TSS as with general registers, so the OS needs to store
and restore these registers manually. The processor does, however, help the OS

13

to save these registers only when needed, that is, only when a process really
uses the FPU or XMM registers. That is, the FPU and XMM state is lazily
managed.

In the cr0 register (see Appendix A.1), the ts flag indicates whether a
context switch is performed, and on every hardware task switch the ts flag is
automatically set. The ts flag may also be changed manually, although this
requires a CPL of 0. When a new task executes it may or may not use the FPU
or XMM registers. If it uses the FPU, the processor will issue an exception,
telling the OS that the FPU context has not yet been loaded. The OS may then
proceed to manually load the FPU context from the TSS and clear the ts flag.
Further attempts to use the FPU or XMM registers will not raise exceptions
as long as the ts flag remains cleared. If the process does not use the FPU,
however, a FPU context switch is not necessary.

2.2.4 Interrupts

A wide range of external devices are connected through a Programmable Inter-
rupt Controller (PIC). The traditional PIC hardware has a few limitations,
such as lack of support for SMP. It has later been replaced with the Ad-
vanced Programmable Interrupt Controller (APIC), which is bacwards compati-
ble with the traditional PICs but has support for SMP. All interrupts—including
exceptions—in the x86 processor are handled through the Interrupt Descriptor
Table (IDT). Interrupts of external devices are handled by the ISRs as IRQs.
Pointers to the ISRs of the interrupts and exceptions are stored in the IDT.

Examples of exceptions are General Protection Fault and Page Fault. The
General Protection Fault is raised whenever the protection mechanisms of the
processor are violated, for example, if a user process crosses into ring zero. The
process should then be notified and possibly terminated. Page Faults are raised
whenever a page that is referenced, is not present in the page table. The OS
should then take the necessary actions to correct the page table and resume the
execution of the faulting process.

One of the most important external interrupts is perhaps the timer interrupt.
It is assigned the IRQ number zero on all x86 processors and is necessary, for
instance, to share the time of the processor between processes, by interrupting
a process when it has used a share of its time. The x86 processor offers a set of
hardware mechanisms for letting software know the time:

• The Real Time Clock (RTC) is a clock that keeps wall clock time and runs
even when the computer is powered off.

• The Time Stamp Counter (TSC) counts the number of CPU clock cycles
since the computer was turned on, i.e. it runs with the same frequency as
the CPU and accumulates from zero.

• The Programmable Interval Timer (PIT) can be programmed to deliver
interrupts at a given time frequency.

• The CPU Local Timer is similar to the PIT, however it only delivers per
CPU interrupts and is only present in recent x86 processors.

14

2.3 The IA-64 Architecture

The Intel Itanium architecture is one of the participants in the great 32-bit to
64-bit leap, which has had a significant impact on the processor industry the
last couple of years. While AMD have chosen a 64 bit extension of the x86
architecture, Intel early decided to break with the old3 x86 architecture and
release the new 64-bit IA-64 architecture through the Itanium processor series.

The Itanium’s shift from the x86 architecture introduces a new paradigm
for programming, which Intel calls Explicitly Parallel Instruction-set Computing
(EPIC). A good introduction to the EPIC paradigm is given by Mark Smoth-
erman [Smo02]. This new architectural paradigm shifts the responsibility of
optimizing the execution of programs from the CPU over to the compiler or
assembly programmer. The compiler or assembly programmer has the responsi-
bility of programming explicitly parallel programs, specifying which instructions
may execute in parallel, as opposed to Pentium architectures, where the CPU
decides the issuing of instructions. At the same time, the IA-64 architecture
has similarities to certain RISC architectures. Among other things, the IA-64
CPU has a large number of registers. Further features of the IA-64 architecture
are summarized in Section 2.3.1. The IA-64 register set is discussed in Section
2.3.2.

The IA-64 processor’s interface to hardware has had the opportunity to be
designed from scratch, independently from legacy x86 interfaces, such as the
BIOS (Basic Input Output System) and the PIC. This makes the new IA-64
hardware interfaces easier to program. The IA-64’s equivalent to the BIOS,
the Extensible Firmware Interface (EFI), is described in Section 2.3.3. This is
followed by a description of the IA-64 architecture’s interface to interrupts, in
Section 2.3.4.

Like the x86 architecture, the IA-64 architecture employs paging of memory.
In order to make virtual address translation more efficient, it also employs a
TLB. The IA-64 TLB is, however, more sophisticated and allows flexible man-
agement of address spaces. Also, maintaining compatibility towards x86 soft-
ware, it has support for segmentation, in IA-32 compatibility mode. Memory
management in the IA-64 architecture is further discussed in Section 2.3.5.

Some computer architectures provide dedicated facilities for monitoring sys-
tem performance, such as the UltraSPARC series’ Performance Control Register
and Performance Instrumentation Counter [E+98]. The original 80386 specifi-
cation did not include support for CPU performance monitoring. Support for
this has been added later, and some of the x86 series’ models, particularly newer
models, do have performance monitoring facilities. These are, however, often ob-
scured, sometimes intentionally, being unstandardized and undocumented. The
IA-64 architecture makes performance monitoring easier, with its Performance
Monitoring Unit (PMU), which is discussed in Section 2.3.6.

2.3.1 Key Features

The Itanium incorporates a set of features that separate it from traditional
architectures. These features play a part in defining the IA-64’s ISA. One of the
most distinctive features is the concept of predication. This is one of the features

3While some argue that the x86 architecture is too old and complicated after many patches
and extensions, others argue “Don’t fix it if it’s not broken”.

15

Figure 2.3: The format of a bundle.

which exposes the programmer with the explicitness of the EPIC paradigm.
Predication avoids costly branch prediction misses by executing the resulting
instructions of either condition—true or false—of a conditional branch while
committing only the result of the condition which was eventually met.

Two other important concepts of the IA-64 ISA also expose the explicitness
of the EPIC paradigm, namely groups and bundles. The software programmer
is given the responsibility of exploiting the instruction level parallelism of the
architecture. Instructions are issued one bundle at a time, and the instructions
in a bundle may be executed in parallel, with a few exceptions. One bundle
consists of up to three instructions, but rules define which instructions may be
bundled together.

The structure of a bundle is illustrated in Figure 2.3. Three instruction
slots, each 41 bits wide, can each hold an instruction. Several different types of
instructions are defined [Intb]:

• Memory (M)—memory instructions.

• Integer (I)—integer instructions not using the ALU.

• Integer (A)—integer instructions using the ALU.

• Branch (B)—branch instructions.

• Floating point (F)—floating point instructions.

• Extended (L+X)—allows 64-bit immediate values to be used, as it spans
two slots.

A template, residing in the least significant five bits of the bundle, defines what
type of instruction is inserted into each slot. For instance, the template 0x10
defines that slot 0 is an M instruction, slot 1 is an I instruction and slot 2 is a
B instruction.

The structures defined by these templates are governed by the availability
of execution units in the processor. If a set of instructions require the use of a
particular type of execution unit, and there are n units of this type available,
then n instructions from this set may execute in parallel. In this case, a template
will define that a bundle may consist of up to n of these instructions.

Grouping of bundles further allows instructions to execute in parallel. When
a set of bundles are grouped together, the processor assumes that the instruc-
tions in these bundles have no dependencies and may be executed in any se-
quence, be it sequential or parallel.

16

The IA-64 architecture specifies a large number of registers. The general
integer and floating point register files both have 128 registers. A potential
problem of having a large number of registers is that a large state may need to
be stored in memory on each context switch, which is a slow process relative to
CPU speed. How the large set of registers is managed in the IA-64 processor is
discussed in Section 2.3.2.

Programming for the IA-64 architecture differs significantly from x86 pro-
gramming. Still, the IA-64 architecture allows x86 programs to run in an IA-32
compatibility mode. This mode, however, does not take advantage of some of
the IA-64’s performance critical features. For example, explicitly parallel pro-
gramming for the IA-64 architecture is not possible given the x86 ISA. Thus,
the IA-32 compatibility mode is provided mostly for backwards compatibility
towards legacy programs.

2.3.2 Registers

In RISC processors, register conventions are needed to dictate how OSs are to
use and manage the registers. This is also adopted by the IA-64 architecture.
The set of registers in an IA-64 CPU is divided into several register files. The
General Register File consists of 128 64-bit registers, r0 through r127. These
are general purpose integer registers. They may be used freely, only constrained
by conventions, except for r0, which is always zero. Convention states that they
are divided into two classes, preserved and scratch. Preserved registers must be
explicitly managed by any process that uses them, that is, on any function
call, the process must itself store the necessary registers in memory. Scratch
registers, however, are at a process’ disposition to use at convenience.

The IA-64 architecture provides the programmer with the illusion of an
unlimited register stack through a mechanism called the Register Stack Engine
(RSE). It makes utlization of the general register file easier for programmers.
It presents the programmer with a logical register stack frame, which consists
of a range of allocated registers. Whenever a branch is executed, the allocated
register stack frame is stored on the stack, and upon return from the branch the
state of the allocated registers is restored from the stack. Registers r32 through
r127 are used by the RSE on Itanium, and any number of registers within this
range may be allocated to a register stack frame.

The register stack stores and retrieves register frames in main memory in
a LIFO (Last In, First Out) manner. Register stack frames stored in memory
can also be accessed directly in memory. The bsp application register points to
where the beginning of the current register stack frame would be in memory if
it were to be put on the stack.

As in the x86 architecture, floating point registers may be managed lazily
in the IA-64 architecture. This may be achieved by disabling access to these
registers, which will cause an exception when a task tries to access them.

2.3.3 Hardware Abstraction

The IA-64 architecture abstracts away small differences in different hardware
implementations through three interfaces called Extensible Firmware Interface
(EFI), Processor Abstraction Layer (PAL) and System Abstraction Layer (SAL).

17

The EFI maintains an interface for booting an OS kernel called EFI boot
services. This includes services for allocating and freeing memory. These ser-
vices are accessed in physical addressing mode only. This is used by OSs for
booting.

The routines for the EFI, PAL and SAL interfaces are accessed through a
table called the EFI system table, which points to the individual routines, in
their respective memory spaces. An OS accesses these routines by looking up in
the table and executing the routines directly. This table is defined by convention
and must be followed by the OSs.

2.3.4 Interrupts

Interrupts are similar in concept in the IA-64 architecture, to the x86 architec-
ture. In the IA-64 architecture, the legacy of the PIC is no longer necessary to
maintain. It is replaced with the Streamlined Advanced Programmable Interrupt
Controller (SAPIC), which allows faster delivery of interrupts and more CPUs
in an SMP system. The IA-64 keeps interrupt handlers in a table called the
Interruption Vector Table (IVT). The starting address of this table is stored in
the iva register.

Similarly to the x86, the IA-64 architecture provides mechanisms for keeping
time.

• The EFI provides an interface for reading wall clock time, similar to the
x86’s RTC, although abstracted.

• The Interval Time Counter (ITC) counts CPU cycles, similar to the x86’s
TSC.

• The Periodic Timer Interrupt allows the delivery of interrupts at a given
frequency, similar to the x86’s PIT.

2.3.5 Memory Management

The IA-64 CPU uses a set of dedicated registers called region registers to make
the TLB more efficient. They divide the address space into logically separate
regions. Each entry in the TLB is tagged with a region id. On a TLB lookup, the
entry of a region register is compared to the region id of the TLB entries. If the
region id differs from the value in the region register, the TLB entry is invalid
for this particular region. Thus, unlike in the x86 architecture, the TLB need
not be flushed on address space changes, as invalid TLB entries are logically
marked as invalid. The IA-64 TLB stores, in addition to address translations,
protection information of the PTEs it stores. This information can be stored
both as a part of the mapping entry in the TLB and in a separate Protection
Key Register file. Protection information in the Protection Key Register file
is accessed through the reference of a protection key. Every TLB entry has a
protection key field.

The IA-64 architecture specifies two TLBs—one for data and one for instruc-
tions. These TLBs are both partitioned into a cache part and a register part.
The cache TLB entries are hardware managed, while the register TLB entries
are managed directly by the OS just like ordinary registers.

18

Whenever a translation entry from virtual address to physical address does
not exist in the TLB, the entry must be found in the page table. This can
be a costly affair, as discussed in Section 2.1.3. The IA-64 architecture allows
entries to be filled into the TLB more efficiently by using the Virtual Hashed
Page Table (VHPT). This feature is also referred to as the hardware walker.

For the hardware walker to function, it requires a logical second page table,
formatted in a special way. There are two different supported page table formats,
namely short-format and long-format. Using the long format, the OS uses a
hash table as its page table, while using the short format, the OS must have
a virtually-mapped linear page table. Linear means that the keys in the table
are linear, so unlike page tables with several levels, which require one lookup
per level, this table only requires one lookup. The table is mapped in virtual
memory, residing in the virtual address space in each region in which it is
enabled, thus it can also be mapped by the TLB.

When a virtual address, va, is to be translated to a physical address, pa,
first the TLB is referenced. Given a miss in the TLB for va, in the traditional
manner, a page fault would be raised, and the OS would walk the tables to find
the PTE that translates va to pa—a costly operation. With the VHPT walker
enabled, however, a miss in the TLB does not raise a page fault. Instead, the
address of the PTE for va, va′, is calculated by the walker. Since the VHPT
resides in virtual address space, and given high spatial locality, the address of
the PTE is with a high probability already in the TLB. Thus, only one extra
memory lookup is needed. If the translation of va′ does not exist in the TLB, a
VHPT Translation Fault is raised, and the OS may continue to look up in the
page table in the traditional manner.

An OS may also choose to skip the page table completely and avoid the
protection mechanisms provided by paging and access memory directly, using
physical addresses. The IA-64 CPU controls whether addresses are physical or
virtual in the psr register, using the dt flag (see Appendix A.2).

2.3.6 The Performance Monitoring Unit

The IA-64 architecture offers, with the PMU, a standardized and documented
facility for monitoring processor performance. The PMU is controlled by a set
of registers that can be programmed to monitor certain performance aspects
of the CPU. Two register files, consisting of the Performance Monitor Data
(PMD) and Performance Monitor Configuration (PMC) registers, respectively,
compose the PMU. The former register file captures performance data, such as
number of processor cycles or instructions executed, while the latter controls
what performance data the former captures.

The IA-64 architecture specifies eight PMC registers and four PMD registers
and their semantics, though 248 PMC and 252 PMD logical registers are reserved
for implementation at different IA-64 architectures’ discretion. For example, the
Itanium processor extends the PMU to include monitoring capabilities of TLB
misses and branching characteristics, among others. The Itanium PMU allows
a user to get the number of cycles or instructions used or the number of a
particular instruction executed by a program, whether in user or kernel space
or both; and to help finding hotspots, the location of where cache or TLB misses
occured in code, can be captured.

19

2.4 Linux

Linux was initially intended by Linus Thorvalds as a surrogate for the Unix
OS on the x86 processor. However, its liberal licensing and the emergence of
the Internet attracted many developers and allowed Linux to soon be ported to
additional architectures such as MIPS, SPARC, Alpha, PA-RISC and, in 2000,
IA-64. An important factor to the growth and popularity of Linux has been
the availability of the free and open source GNU libraries and compiler. Com-
prehensive descriptions of the Linux kernels for the x86 and IA-64 architectures
are given by the books “Understanding the Linux Kernel” by Daniel P. Bovet &
Marco Cesati [BC02] and “IA-64 Linux Kernel - Design and Implementation”
by David Mosberger & Stéphane Eranian [ME02], respectively.

Most modern OSs employ multitasking, that is, they allow multiple pro-
grams, or processes, to run simultaneously. For the OS to provide the illusion
of running different processes simultaneously, it lets each process only to run
for a very short period at a time, before switching to the next process. When
switching to a new process, the kernel stores the register contents—the process’
hardware context—in memory, then brings in another process by loading its
hardware context from memory, and lets it run for a while, and so on. How
the hardware context is managed when switching between tasks, is discussed in
Section 2.4.3.

The timer is an important mechanism in an OS. It is, among others, used
to interrupt a running process when it has used its time share, and pass control
to the next process. The timing mechanisms in Linux are described in Section
2.4.2. The timer signals the kernel when it is time to switch processes through
an interrupt. How the kernel handles interrupts such as these is described in
Section 2.4.1.

Processes can have different privileges in terms of which memory segments or
pages they are allowed to read or write and which instructions they are allowed
to execute. The privilege levels are usually interpreted as protection rings, as
shown in Figure 2.2, . Most OSs run in ring 0 while applications run in ring 3 .
In Unix terms these are called kernel mode and user mode, respectively.

As Unix, Linux has kernel and user processes. While kernel processes run
exclusively in kernel mode, user processes run mostly in user mode but may
also enter kernel mode through system calls. In order for user processes to do
operations that require higher privileges, it has to enter the kernel through a
system call. System calls are further discussed in Section 2.4.4.

Each process—that is, each address space—in Linux has its own page table,
which is kept in physical memory. Linux keeps the page table tree in three levels,
with a Page Global Directory, a Page Middle Directory and a PTE Directory.
A page in Linux can be kept in main memory or moved to the swap space on
a harddisk. The kernel tags a page which has been moved to the swap space
as not present, as opposed to the case in which it resides in main memory, in
which it is tagged present. Also, a page has information about read and write
permission and the dirty-bit which signifies whether a page has been written to.
These attributes are all kept in the page’s PTE.

The traditional approach for finding performance hotspots in Linux is to
instrument the code. Instrumenting, however, can have an influence on the
execution of Linux and return results that are unrealistic, also certain low level
functionality is difficult to monitor using software. The IA-64 port of Linux

20

includes software for utilizing the PMU. This is further discussed in Section
2.4.5.

2.4.1 Interrupts

The kernel manages many devices, such as harddrives, keyboards and network
interface cards. Whenever such a device sends an interrupt to the processor, the
kernel needs to readily respond. If any user space process is running, the kernel
must suspend this process’ operation and start executing the ISR corresponding
to the interrupt. The operations of transferring control from a user process to
the kernel and vice versa are called kernel entry and kernel exit, respectively.
Kernel entry and exits are described in Section ??.

Some actions are time critical and have to be handled immediately, such as
acknowledging an interrupt coming from the interrupt controller. To ensure that
nothing interferes with the execution of a critical action, maskable interrupts are
disabled during execution. Noncritical actions, such as reading keyboard input,
however, are executed without disabling maskable interrupts. This allows more
critical interrupts’ ISRs to execute while less critical ISRs are interrupted and
deferred until later. Some actions may even be deliberately deferred until later.
On such interrupts, the action is only initiated in the ISR, and further execution
continues outside the ISR at a later, possibly more appropriate, time. A high
level description of how Linux handles interrupts is shown in Figure 2.4.

Actions that are deferred until later are based on a kernel mechanism called
softirqs. These are used among others to deliver packets to and from network
cards. Softirqs are executed dynamically by a kernel thread called ksoftirqd,
which is short for Kernel Softirq Daemon. The Kernel Softirq Daemon runs in
parallel with other kernel threads all the while during the kernel’s lifetime.

Tasklets are another type of procedures registered to an IRQ. An important
difference between tasklets and softirqs is that a tasklet can be defined dynam-
ically, i.e. during execution of the kernel. Also, tasklets are serialized in that
two instances of a tasklet can not be executed simultaneously. Two instances
of a softirq, however, may execute simultaneously on several CPUs.

2.4.2 Time

OSs keep track of time for a number of reasons:

• In order to provide the user with the convenience of a time source for use
in different applications.

• In order to allow applications to perform actions at a specific moment.

• In order to allow itself to schedule the execution of processes in a time
sharing environment.

A timer delivers a timer event at a given moment similarly to an alarm
clock. This event is captured as an interrupt by the OS, which the OS then
handles with the corresponding ISR. The OS can also generate timer events
itself, which can be useful to generate alarms for user applications. This can be
implemented by the OS as a list of alarms to be generated which is referenced
at a given frequency. Linux implements this in the dynamic timer mechanism.

21

Figure 2.4: Flowchart showing how interrupts are handled in Linux.

22

x86 Implementation

In order to keep track of wall clock time, Linux uses the PIT to trigger an
interrupt each 10 ms. At each interrupt the kernel updates the system clock,
which gives the clock a resolution of 10 ms. To give the clock higher resolution
the kernel estimates time intervals smaller than 10 ms using the TSC. The PIT
interrupt is also used to deliver timer events to applications.

IA-64 Implementation

Similar to Linux/x86, Linux/ia64 uses a periodic interrupt to update the sys-
tem clock, in this case generated by the Periodic Timer Interrupt, and higher
resolution time intervals are in this case estimated by the ITC.

2.4.3 Processes

Linux keeps track of what a process is doing in a data structure called a process
descriptor. Each time a process is descheduled process state is stored in its
process descriptor, and each time it is scheduled the process state is loaded from
the process descriptor again. The scheduler uses information, such as process
priority, stored in the process descriptor, to schedule the execution of processes.
Also, some hardware context, depending on the computer architecture, are kept
in this data structure. When accounting for other data structures, such as the
current address space and file descriptors, which the process descriptor also
keeps pointers to, the data structure becomes quite complex.

When switching from one process to another, the Kernel Memory Stack
is used to store some of the hardware context. For each process, the process
descriptor and a Kernel Memory Stack are stored in two consecutive pages. The
previous process pushes some of its hardware context onto its Kernel Memory
Stack before being descheduled. Then, the next scheduled process pops its
hardware context from its Kernel Memory Stack to return to the state the
process was before it was previously descheduled. In Linux/x86, the esp register
points to the top of the Kernel Memory Stack. Linux/ia64, in addition, needs
to manage the Kernel Register Frame Stack in the RSE.

A list of processes is maintained as a doubly linked list, in which each process
descriptor has pointers to the previous and next process descriptors in the list.
Also, process descriptors keep pointers to the process descriptors of parent and
child processes.

Linux uses the timer to schedule the execution of tasks. When a timer inter-
rupts the currently running process, as it has depleted its dedicated time slot,
control is taken from the running process and given to the kernel. The kernel
then schedules another process for dispatch. As control is handed over from one
process to another, one process is likely to have its hardware context changed
by another process. Thus, when one process is descheduled, the kernel stores
some of this context into memory, ensuring that the context is restored when
the process is scheduled again. The hardware context of a thread is managed
in a set of three data structures, pt regs, switch stack and thread struct.

pt regs is used to store the scratch registers and is therefore the most used
data structure. It manages state when control is taken from a process and given
to the kernel, through, for instance, a system call or a device interrupt. As

23

register convention dictates, not all hardware context is necessary to manage.
Of the General Register File, preserved registers are by convention managed
by processes themselves, and anyone who implements a user program should
know that these registers may be changed by other processes when control is
given to them. Therefore, only scratch registers are necessary to manage, since
processes are not expected to manage these themselves. Also, since, with a few
exceptions, the kernel does not need floating point registers, these registers are
also not managed by the kernel.

The switch stack data structure is used to manage state when control is
transferred from one user process to another, which is primarily the preserved
registers. The thread struct is used to manage registers that are changed more
rarely and can be set to be used only when the state of these registers changes.

Apart from the three data structures for managing hardware context, higher
level information on each thread is managed in data structures called task struc-
tures. The kernel maintains a list of tasks in a doubly linked list, which is con-
structed by tasks’ task structures pointing to two other tasks’ task structures—
the next and previous tasks in the scheduling queue. Other data maintained
in task structures include process IDs, address space definitions and scheduling
and file system information.

The first process which is started in Linux is the Init process. It initiates
the system and starts most of the services and the shell. All new processes are
forked from existing processes, making a tree of all processes. All processes stem
from the Init process.

x86 Implementation

Even though the x86 architecture allows for automatic hardware context switch-
ing between processes (see Section 2.2), Linux does most of the context switch-
ing manually, thus it can not use the far jmp or call instructions to execute
system calls. By manually storing the register contents into memory through
mov instructions, it achieves the same effect as if using the facilities of the x86
processor. However, when switching from user mode to kernel mode, the x86
architecture forces the OS to fetch the address of the Kernel Memory Stack
from the TSS. Although Linux/x86 employs manual task switching, it is able
to manage the floating point and XMM registers lazily by manually setting the
TS flag in the cr0 register.

2.4.4 Kernel Entry & Exit

System calls let user processes do operations that require ring zero privileges.
The user process executes a special instruction, which further calls a particular
system call procedure, which is executed in kernel mode. After this subroutine
is finished, control is given back to the user process. Examples of system calls
are filesystem and process management operations.

System calls are not regular continuations of the executing process like ordi-
nary function calls are. Rather, a system call involves a change of, among other
things, privilege level, address space and a change from a User Mode Stack to
the Kernel Memory Stack. Also, user processes do not have access to kernel
address space because of protection. The passing of parameters to the system
call, thus, is done differently from that in a function call.

24

Linux often uses registers to pass parameters, though this limits the number
of parameters, as CPUs often have a limited number of registers to use for this
purpose. If registers can not hold enough data for passing parameters, point-
ers to memory are used as parameters. The kernel accesses these parameters
through the user process’ address space, through which also results of the sys-
tem call may be returned. Before doing this, however, the kernel needs to check
the validity of the address.

Linux offers an interface with a set of routines for accessing user process
address space. By using this interface, the kernel can verify that the address
referenced is

1. within user address space—by checking if the address is within the active
segment,

2. valid—otherwise, a page fault exception is raised, and recovery actions are
taken with the page fault handler,

3. accessible, that is, readable or writable.

x86 Implementation

Linux/x86 executes a system call by issuing an interrupt with the int instruction
(see Appendix B.1), with an immediate vector of 0x80. The IDT entry at
position 0x80 points to the procedure which is to be executed, which further
calls the specific system call. Each system call has a specific number, and the
system call to be executed is selected by the user mode process by putting that
number in the eax register.

IA-64 Implementation

Unlike Linux/x86, Linux/ia64 uses the break instruction to perform a system
call. This is, however, somewhat similar to the x86. The break instruction trig-
gers an exception, which is caught in the IVT, and a system call corresponding
to the immediate value given by the break instruction, is called. Since the IA-64
architecture has a richer set of registers, it allows for several more parameters to
be passed in registers than the x86 architecture does. Still, sometimes parame-
ters are too big or too many to be passed in registers, and user process address
space must be utilized.

Managing the state of the RSE makes kernel entry and exit more complex.
The kernel first takes control of the RSE’s mode of operation. Then, to protect
the current register stack frame, which is the user level register stack frame of
the process which is interrupted, the value of bsp is increased such that it points
to the free area after the current register stack frame. The user process’ register
stack frame must be saved in the user backing store and a new register stack
frame is then allocated for the interrupt or exception handler to use.

2.4.5 Performance Monitoring

There is little support for utilizing the performance monitoring facilities of some
x86 CPU models in Linux. x86 performance monitoring facilities are unstan-
dardized and poorly documented, which makes it hard to make a standardized

25

interface. Programmers and users are usually left with the option of instrument-
ing the program, which can take some work and may influence the program’s
execution, which further may influence the results of the measurements. Some
kernel patches do exist, however, which allow utilization of the x86 performance
monitoring facilities, such as Mikael Pettersson’s Perfctr [Pet05].

Linux/ia64 includes support for performance monitoring using the IA-64
PMU, straight from the main source tree. Stéphane Eranian’s Perfmon [Era05]
is integrated into the Linux source, and user space tools such as the Pfmon tool
and the Libpfm library exist to make interfacing with the PMU easier.

2.5 Virtualization

The term Virtual Machine (VM) spans a range of software and hardware mech-
anisms, from bytecode interpreters to virtual computer architectures. The term
signifies what it is—a machine that is virtual in the sense that it imitates real
machines.

The benefits of VMs are many. VMs can be run as a software mechanism on
top of a conventional OS and allow more flexible use of the computer and OS’s
resources. The resources can be divided into separate execution environments,
called domains by Paul Barham et al. [B+03] or in many cases, simply VMs.
Michael Rosenblum [Ros04] gives three essential concepts that are valuable in
virtualization.

• If the VM maintains isolation between domains, execution in one domain
should not adversely affect execution in another domain. Also, one domain
should not be able to inspect the state of another domain.

• Since the VM encapsulates the domains, the VM has access to the do-
mains’ states and can control and monitor their execution. If necessary,
a program running in a domain should not be aware that the underlying
execution environment is virtual.

• Also, VMs that maintain software compatibility allow the programs writ-
ten for the same VM architecture be executed on VMs running on different
hardware architectures.

Different methods for virtualizing a computer architecture exist. One method
involves interpreting each instruction, and then emulating the computer archi-
tecture by simulating what will happen if this instruction is executing on a real
computer architecture. Another method involves running the guest software
directly on the hardware, while executing sections of the software in a monitor-
ing mechanism. The advantage of the former method is that every instruction
may be verified, logged and monitored. The drawback, however, is that a se-
vere performance penalty incurs as each instruction is interpreted, translated
and then executed. In simulating architectures, this method is often referred
to as execution-driven simulation. The advantage of the latter method is that
the guest software runs much faster, as there is less overhead from interpreting
instructions. This method can also be used in simulating architectures, by exe-
cuting instructions on a processor and logging the results, the execution can be
monitored. This latter method is often referred to as trace-driven simulation.

26

Examples of simulators are Bochs [boc05], Simics [sim05a] and SimpleScalar
[sim05b]. These are not as concerned with performance as they are with pro-
viding a tool for simulation. Simply interpreting instructions has a high perfor-
mance impact, but usefulness is regained in the possibilities of monitoring each
instruction. This is useful for design of low level software, such as OSs, and
for simulating new computer architectures. Also, software compatibility is pro-
vided in the sense that the same software may be run across different hardware
architectures.

Other VMs are more concerned with performance, as they aim to provide
the user with a platform for running software for more general practical applica-
tions. Various techniques are used in order to gain performance. The methods
Microsoft’s Virtual PC [msv05] and QEMU [qem05] use, involve translating
blocks of instructions and running them natively, allowing blocks to be rerun
without retranslating. This method gives a performance increase compared to
pure interpreting, and may also still allow software to be run across real archi-
tectures. The method used by VMWare [vmw05] to virtualize an x86 processor
involves running some code directly on hardware and some interpreted, giving
better performance than the former methods. The rationale behind this method
is further discussed in Section 2.5.1. One of the drawbacks with VMWare’s so-
lution is that it only allows x86 software to run on x86 machines.

2.5.1 Virtual Machine Monitors

In virtualizing computer architectures, the mechanism that provides the user
with VMs is often referred to as a Virtual Machine Monitor (VMM) or a hyper-
visor 4. Figure 2.5 illustrates a traditional VMM running in a host OS. The host
OS runs directly on physical hardware, while the VMM runs as a process inside
the host OS’s execution environment, along with other user processes. Two
guest OS are hosted by the VMM and run on the VMM’s virtualized hardware.

OSs are usually designed to run directly on a particular computer architec-
ture, and thus they expect the computer to behave in a certain way. As the
design of an OS has many degrees of freedom, if the VMM fails to virtualize
the processor completely, in every detail, the OS might fail in execution. Most
traditional VMMs aim to let any OS run unmodified on its hypervisor, that is,
to completely virtualize the underlying architecture. While aiming to give its
hosted OSs a virtual architecture logically equal to the OSs native architecture,
VMMs also try to give good performance characteristics.

As an x86 OS kernel protects itself from user processes through the use of
ring protection, as do an x86 hypervisor require the notion of protection in order
to be able protect sensitive system state from alteration and inspection from
domains. Thus, whenever a domain’s execution is performed directly on the
processor—that is, uninterpreted—the guest OS must run in a less privileged
ring than zero. When an OS is run in a ring other than zero, the processor
behaves differently from what the OS expects, and thus the execution may fail.
This is the reason why VMWare interprets and emulates code which belongs to
the guest OS kernel. Xen’s approach to this problem is discussed in Section 2.6.

4The term supervisor is sometimes used when referring to the OS mechanism, which runs
in privileged mode and supervises other software processes. The term hypervisor reflects the
fact that it is a mechanism that lies under (or closer to hardware than) the supervisor and
effectively supervises the supervisors.

27

Figure 2.5: Illustration of a VMM hosted on a host OS, running two guest OSs.

2.6 Xen Virtual Machine Monitor

The Xen VMM addresses the main problem with traditional x86 VMMs, namely
efficient utilization of processor resources. Most OSs require to run in ring zero
and the processor to behave in a certain way. They thus incur the performance
penalties of translation of OS code. Xen attacks this problem at the roots by
modifying the OS so that it behaves differently. Instead of doing this during
execution, the changes are made in the source code before compilation and
execution. This has been inspired by some of the work in Denali by Andrew
Whitaker et al. [W+02].

[B+03] uses the term guest OS to refer to an OS which is hosted in a VMM
and the term domain to refer to the virtual machine in which the guest OS is
running, i.e. on a VMM there are one or more domains, and in each domain
a guest OS is running. Xen does not provide a fully virtualized platform on
which guest OSs may execute. Instead, the guest OS needs to be modified
to run on this platform—the hardware is effectively para-virtualized [W+02].
The modifications do not, however, affect the guest OS’s interface to the user
applications, thus they need not be modified. A few OSs have been modified
in order to run on the Xen/x86 architecture, such as NetBSD and Linux, with
Linux being the most mature. Since Microsoft Windows’ source code is closed for
the public, a port of Windows relies on the willingness and efforts of Microsoft.
Para-virtualization is further discussed in Section 2.6.1.

The components of a complete Xen virtualization infrastructure include a
Xen hypervisor, a privileged domain, one or more unprivileged domains and some
user-space control tools, as shown in Figure 2.6. This contrasts to traditional
VMMs (see Figure 2.5) in that the VMM runs as hosting mechanism, in full
control of the hardware. As the names suggests, the privileged domain has
higher privileges than the unprivileged domain. Control software running in the
privileged domain has the privileges to control the operation of the hypervisor,
including starting, suspending and shutting down unprivileged domains. The
privileged domain is commonly referred to as domain 0.

The usual mechanisms for interrupts from devices are replaced with an asyn-

28

Figure 2.6: The Xen hypervisor, hosting several domains.

chronous event mechanism provided by the Xen hypervisor. CPU resources are
distributed dynamically and fully utilized, while main memory resources are
partitioned among domains. Block and network interface drivers must also be
virtualized in order to divide these resources among domains. The virtualization
of these and other devices is described in Section 2.6.2.

In addition to managing its own memory, the hypervisor needs to manage
the domains’ memory usage to make sure that they do not access each other’s
memory spaces. This is necessary in order to maintain isolation. Memory
management in Xen is further discussed in Section 2.6.3.

The execution of domains is scheduled, similarly to the scheduling of pro-
cesses in Linux. Xen provides three different scheduling algorithms, Borrowed
Virtual Time (BVT) [DC99], Atropos and Round Robin, behind a unified API,
making it easy to add different schedulers. The BVT scheduler is discussed in
Section 2.6.4.

2.6.1 Paravirtualization

In Xen guest OSs, instructions that in some way may reveal that the OS is
running on a VMM are replaced into functional procedures which emulate the
original operation, statically in the source code. The guest OS is modified such
that when it originally would execute privileged instructions, instead it makes
a hypercall into the hypervisor, in which the operations are executed. This
is similar to how a user process makes a system call into the kernel to execute
privileged operations. System state which is protected is virtualized through the
hypervisor. For instance, the hypervisor keeps a virtual CPU for each domain.
When a guest OS would normally write to a protected register, instead, the
hypervisor writes the value to the corresponding virtual register in the virtual
CPU.

29

2.6.2 Event Handling

When sharing a single device resource such as, for instance, a harddrive, two
guest OSs using the device simultaneously can lead to problems. One malicious
or faulty domain can adversely affect the execution of other domains. Also,
if several domains rely on a single device, if the device fails due to hardware
failure, all the domains will be affected. If several domains are to share a device,
it is preferable, in order to enforce isolation and maintain stability, to virtualize
devices’ resources. In order to maintain isolation, one domain does not know
what the other is doing, and if a resource is to be shared, the sharing must be
fair. Similarly, if a device is to be managed only by one domain, the hypervisor
must ensure that only that domain accesses that device. Thus, the hypervisor
manages access to devices. Keir Fraser et al. [F+04b, F+04a] discuss the Xen
I/O model in detail.

The hypervisor uses an event mechanism to manage access. Instead of letting
the domains handle interrupts directly, they are handled within the hypervisor.
This way, the hypervisor can schedule the execution of the ISR of the domain
which manages the device. After recieving an interrupt, the hypervisor schedules
the execution of the corresponding domain and issues to it an asynchronous
event notification. Event notifications are delivered to domains through event
channels. The hypervisor communicates these events with a domain through
a shared memory page. This approach lets guest OSs use their own drivers
unmodified to control devices.

As well as letting domains manage devices directly, a Xen managed system
as a whole can benefit from devices being virtualized. This allows devices to
be shared while ensuring isolation and has other potential benefits. Virtualized
devices are managed in isolated driver domains (IDD). Transfers between an
IDD and a guest OS are serviced by I/O descriptor rings, in which transfers are
asynchronously scheduled. IDDs and guest OSs are notified of queued transfer
descriptors through event channels.

Block devices, such as harddrives, are managed using IDDs, as illustrated in
Figure 2.7. Domain 0 has direct access to a harddrive through the hypervisor’s
event mechanism, while providing an abstraction for other domains through an
IDD, through which they have access to virtual block devices. A driver that
domain 0 uses to provide other domains with a virtual block or network device
is called a backend driver, while a driver that a domain uses to control a virtual
block or network device is called a frontend driver. Domain 0 uses the same
driver as the native driver of the guest OS that instantiates domain 0 uses, to
control the device physically.

2.6.3 Memory Management

Since several domains share the same memory, care has to be taken in order to
maintain isolation. The hypervisor must ensure that two unprivileged domains
do not access the same memory area. Each page or directory table update has to
be validated by the hypervisor in order to ensure that domains only manipulate
their own tables. The domain may batch these operations to make sequential
updates more efficient. Segmentation is virtualized in a similar manner. The
hypervisor makes sure that also domains’ segments do not map memory areas
that overlap or that are invalid in any other way.

30

Figure 2.7: Device virtualization in Xen.

The x86 TLB poses some overhead to Xen/x86. Since the x86 TLB is hard-
ware managed, every switch between domains requires a flush of the entire TLB.
Flushing the TLB makes all previous entries of a given address space invalid,
and thus they have to be reentered when control is given back to the address
space. Different domains have different virtual memory spaces and thus differ-
ent page tables. Switching between page tables invalidates previous entries in
the TLB. Had the TLB been software managed and tagged, only entries used
would need to be invalidated, eliminating the need to flush the TLB.

Domains are allocated physical memory by the hypervisor, which is not
necessarily contigous. This memory does not map directly to the machine’s
physical memory and is in that sense pseudo-physical. The translation from
physical to pseudo-physical is not transparent, and guest OSs need to translate
addresses from pseudo-physical to physical themselves. The hypervisor provides
a machine-to-physical and a physical-to-machine, which map pseudo-physical to
physical addresses and vice versa.

2.6.4 Time

Guest OSs are provided with different mechanisms to manage time that replace
their native counterparts. Wall time is kept by the hypervisor and can be read
by a domain. Also, virtual time is kept and only progresses during a domain’s
execution, which allows correct scheduling of domains’ internal tasks.

Xen needs to shuffle the execution of domains just as native OSs need to
shuffle the execution of tasks in order to maintain the illusion of simultaneous
execution. The BVT scheduling algorithm is presented by Kenneth J. Duda
[DC99]. It allows a domain to be dispatched with low latency. This allows the
domain to be quickly dispatched to respond to events, such as packets arriving on
the network. BVT operates with the concept of Effective Virtual Time (EVT).
Whenever the scheduler selects a new domain to run, it picks the domain with
the lowest EVT.

31

Chapter 3

Analysis

Some of the problems in virtualizing the x86 processor have parallels in the IA-64
architecture. Therefore, lessons learned from previous work in x86 virtualization
are of value to also to IA-64 virtualization. An analysis of x86 virtualization
can thus be helpful. The main problems of virtualization in Intel architectures
are discussed in Section 3.1.

Implementing an IA-64 port of Xen is most efficiently done by trying to reuse
as much code as possible. Many years of work have been put in Gnu General
Public License (GPL) licensed program code, and this code is freely available
to use under the terms of the GPL. Particularly, Xen/ia64 has the possibility
of leveraging code from both Linux/ia64 and the Xen hypervisor, both being
GPL licensed. A discussion of the Xen hypervisor and how this relates to IA-64
follows in Section 3.2.

3.1 Virtualization on Intel Architecture

The x86 architecture is hard to virtualize efficiently. It was not designed with
virtualization in mind, as is, for instance, the Power5 architecture [K+04] of
IBM. Since x86 is a very prevalent computer architecture in many areas of
computing, virtualization has not been applied widely in these areas before.
Rich Uhlig et al. [U+05] give summary of some of the challenges in virtualizing
the x86 architecture.

As previously discussed, a guest OS may not run in ring zero, because the
hypervisor must be protected in order to enforce isolation. VMMs therefore
let the guest OS run in less privileged rings. The method of running an OS in
another ring than that which it was intended to run in, is called ring compression
or depriviligation [U+05]. Ring aliasing [U+05] refers to some of the problems
that may arise when using ring compression. Some problems that may arise
when running an OS deprivileged on Intel architectures, are:

1. Faulting privileged instructions—when running in less privileged rings,
some of the OS’s native instructions may fail and raise exceptions. These
operations are referred to as privileged operations.

2. Faulting access to protected state—some registers are protected from being
written to and possibly read from. A regular instruction trying to access

32

such a register will also cause an exception to be raised, if running with a
CPL other than zero.

3. Nonfaulting privileged instructions—in some cases, an OS’s instruction
may execute without failing and rising an exception, although the result of
the operation is morphed due to it being executed in a less privileged ring.
Such operations are referred to as privilege-sensitive [MC04] operations.

4. Nonfaulting access to protected state—some processor state can be read
unprivileged, while afterthought has shown that this state should have
been protected. This state can contain data which is only correct if ac-
cessed when CPL is zero. Nonfaulting write access to protected state can
be considered a bug in the architecture.

5. Privilege level leakage—refers to the problem of the processor revealing to
the guest OS that it is running deprivileged.

6. Protected state leakage—refers to the leakage of other state that may reveal
to the OS that it is not running natively.

In the following context of virtualization, such instructions and operations which
morph the execution environment of an OS, are collectively referred to as illegal
instructions or operations.

Problems 1 and 2 can be solved dynamically by the hypervisor during run-
time. Since whenever a privileged operation is executed in a ring other than zero,
a Privileged Operation Fault is raised, the hypervisor can capture this exception
and execute an ISR which emulates the intended operation, and then gives con-
trol back to the OS. An efficiency penalty, however, is incurred, as emulating
these operations usually takes longer than executing them directly on the pro-
cessor. Problems 3 through 6 are handled less dynamically. Privilege-sensitive
operations can not be observed by the hypervisor unless they are interpreted.

There are two approaches to virtualizing the guest OSs’ underlying platform.
One method involves replacing privileged and illegal operations with hypercalls,
while another method involves replacing illegal operations with operations that
the hypervisor will trap and handle, as discussed in Section 4.1.2. The latter
method, and also to some extent, the first method, involves virtualizing the
CPU state. This is discussed in Section 4.3.

The various stages in the life of an OS, from programming to execution, are
illustrated in Figure 3.1. For each stage the phase of the OS, the technology used
to address the problems of virtualization and the technique the technology uses
to address the problems. The OS starts out in the programming phase. In this
phase the OS can be modified to run on a virtual execution environment pro-
vided by the hypervisor. This is a very efficient approach since no instructions
need to be interpreted and since modifications can be done more easily with
efficiency being the goal, since programming is done in a high-level language.
Modifications at this stage, however, are more static in that the programming
phase is absolutely necessary for para-virtualization.

In the compilation phase, the compiler can make decisions to make machine
code more virtualization-friendly. L4Ka (see Chapter 6) modifies the assembly
instructions generated by the compiler so that illegal instructions are replaced

33

Figure 3.1: Different methods of virtualization.

34

with routines that emulate the intended instructions. Also, operations are sim-
ulated on a mechanism to reveal illegal memory operations, which are also
replaced. This is called pre-virtualization.

VBlades (see Chapter 6) takes a similar approach by replacing illegal in-
structions and operations with faulting instructions that are trapped by the
hypervisor and emulated (see Section 4.1.2). This usually does not achieve as
good performance as para-virtualization since the emulation routines are slower
than the instructions that are being replaced.

The most dynamic approach is taken by VMWare. By monitoring the ex-
ecution of the OS at runtime it can allow any OS which is able to run on the
underlying physical hardware to also run on its VMM. However, as some in-
structions need to be interpreted or replaced dynamically, dynamic monitoring
also takes a performance hit.

3.2 The Xen Hypervisor

The Xen hypervisor is a minimal Linux-like platform. Like the Linux kernel mul-
tiplexes between user processes, the hypervisor multiplexes between domains;
and like the Linux kernel keeps all its processes’ meta-information, such as
hardware context and scheduling information, the hypervisor keeps domains’
hardware context and scheduling information. In particular the hypervisor’s
virtual CPUs allow the hypervisor to emulate privileged operations. This is
achieved through para-virtualization, which is discussed from a technical point
of view in Section 3.2.1.

Also, like the Linux kernel’s processes interact with the kernel through
syscalls, the Xen hypervisor’s domains interact with the hypervisor through
hypercalls. How hypercalls are implemented in Xen is discussed in Section
3.2.4.

The process of bringing up a complete Xen environment involves booting
the hypervisor, launching domain 0 and launching unprivileged domains. Each
of these subprocesses can be divided into several processes, many involving dif-
ferent runtime systems and complex protocols, making the process complex and
difficult to grasp. Section 3.2.2 describes the process from the Xen hypervisor
is in control of the system when the user powers on the computer to launching
unprivileged domains more thoroughly.

The hypervisor manages, in addition to its own address space, modifications
to domains’ address spaces. Domains have read-only access to their page tables,
and the hypervisor manages page table updates in order to ensure that domains’
address spaces to not overlap. Memory management in Xen is further discussed
in Section 3.2.3.

The hypervisor does not, unlike Linux, need drivers for devices such as net-
work interface cards and harddrives—this is left to the privileged domain. It
is up to the privileged domain to interact with these devices and to virtualize
them such that other domains can use the devices in an isolated manner. The
hypervisor sets up the IRQ subsystem for the machine, and the privileged do-
main registers for these interrupts. The hypervisor then delivers interrupts to
the domain through event channels, which are discussed in Section 3.2.5.

35

Figure 3.2: The domain and vcpu data structures.

3.2.1 Para-virtualization

The Virtual CPU is an important data structure in the Xen hypervisor. Since a
guest OS is not allowed to modify protected registers in the CPU, they instead
keep this state in a virtual set of registers provided by the hypervisor. System
state is kept in memory in data structures as shown in Figure 3.2.

The domain data structure contains information for managing guest OS’s
memory and devices. The domain id variable signifies the id of the domain
which it belongs to. tot pages counts the number of pages the domain cur-
rently has allocated, while page list is a linked list which contains information
about the pages allocated to the domain. *evtchn points to an array con-
taining information about the event channels connected to the domain, while
pirq to evtchn is an array containing the mapping between physical IRQs and
event channels (see Section 3.2.5).

The arch domain substructure contains architecture specific memory man-
agement information. vcpu id holds the id of the virtual CPU, similarly to
domain id for domains, and processor signifies to which physical CPU in an
SMP system the virtual CPU belongs. *vcpu info points to another data
structure, which holds more information about the virtual CPU. timer and
lastschd are used by the scheduler for scheduling decisions. virq to evtchn
contains mapping between virtual IRQs and event channels (see Section 3.2.5).

3.2.2 System Startup

Even though Xen is heavily based on Linux, it’s startup procedure differs in
that control is left to domain 0 early in the process.

1. The command line arguments provided by the boot loader are parsed.

2. Paging is initiated.

36

3. The scheduler (see Section 3.2.6) is initialized.

4. Wrappers for interrupts are initalized.

5. Time management is initalized.

6. The accurate timers (see Section 3.2.6) are initalized.

7. The scheduler is started.

8. Management of the PCI bus is initalized.

After the Xen hypervisor is initialized, the execution of domain 0 may start.
Domain 0 is launched by the following procedure.

1. The hypervisor initializes domain 0’s memory, including a shared memory
page, machine-to-physical mapping and page tables (see Section 3.2.3).

2. The hypervisor adds the domain to the scheduler queue.

3. The guest OS to run in domain 0 is loaded into memory.

4. Execution of the guest OS is started in the scheduler.

5. Domain 0’s guest OS initalizes its virtual and physical IRQs.

6. Initial event channels are set up (see Section 3.2.5).

7. Backend devices are set up (see Section 3.2.5).

The loading of unprivileged domains happens after Xen and domain 0 have
booted. This is performed by user space tools and is dependent on the guest OS
which is to be run. The user space tools run in domain 0 and use the various
operations of the dom0 op hypercall to launch additional domains. For instance,
when launching a paravirtualized Linux guest OS, the user space tool needs to

1. Load the kernel image,

2. Initialize the domain’s memory,

3. Configure the domain’s console port,

4. If the domain is to be used for backed drivers, configure these drivers (see
Section 3.2.5),

5. Create the virtual devices for the domain (see Section 3.2.5).

3.2.3 Memory Management

Domains have read-only access to their page tables. Any changes to a domain’s
page table go through the hypervisor. This way the hypervisor can make sure
that domains do not pages to memory areas outside their designated address
spaces.

Each page has a set of meta-information, which the hypervisor uses to val-
idate a domain’s page table updates. TOT COUNT counts the sum of how many
times a domain uses a page frame for a page directory, page table or for mapping
through a PTE. As long as this value is more than zero, the hypervisor can not

37

make it free for another domain’s inclusion in its memory space. TYPE COUNT
is used for a mechanism which ensures that page tables are not writable from
domains. It specifies that a page frame is in one of three mutually exclusive
modes. Either it is used as a page directory, a page table or writable by the
domain.

Page table updates are issued by domains through the mmu update hyper-
call with the MMU NORMAL PT UPDATE operation (see Section 3.2.4). Before per-
forming an update to the page table of a domain, the hypervisor first checks
TOT COUNT of the page table entry to be modified. If it is zero, the hypervisor
proceeds with checking that the PTE is not in the hypervisor’s private address
space. After the page table entry is updated the TOT COUNT and TYPE COUNT
attributes are updated, and the TLB is flushed.

In order to assist domains in translating pseudo-physical addresses into phys-
ical addresses, the hypervisor maintains the mapping between pseudo-physical
and physical pages. Whenever a domain needs access to physical address space,
for instance to access the physical address of a PTE, it needs to translate the
pseudo-physical address into the corresponding physical address. The hyper-
visor provides two tables, machine-to-physical and physical-to-machine, which
all domains may use. Domains may alter these tables through the mmu update
hypercall through the MMU MACHPHYS UPDATE operation. Changes to the tables
performed by domains are validated by the hypervisor in order to ensure that
the mapped physical addresses are within the domain’s address space.

3.2.4 Hypercalls

Domains issue hypercalls similarly to how Linux processes issue system calls,
issuing an interrupt with a vector signifying the intended operation. Since Xen
targets binary compatibility for libraries and other userspace applications, it
must maintain the system calls of a native Linux environment. Thus, inter-
rupt vector 0x80 remains reserved for system calls. A domain instead issues a
hypercall with an interrupt with vector 0x82, which is unused in native Linux.

Like user processes in Linux, guest OSs do not have access to Xen’s address
space. Parameters for the hypercall that do not fit into registers are left in
the domain’s address space. Pointers to these parameters are passed to the
hypervisor in registers. The variables are then fetched by the hypervisor from
the guest OSs address space, and results are returned by writing directly to the
domain’s address space.

Much of Xen’s operation can be described through its hypercalls, as they are
essential to the method of para-virtualization. An extensive list of hypercalls
that Xen implements is shown in Table 3.1. The set of hypercalls implemented
in Xen may change from version to version; the most essential are discussed in
the following.

update va mapping

As discussed in Section 3.2.3, domains are not allowed to modify their page
tables directly. The hypervisor thus needs to provide an interface for modifying
page tables. The update va mapping hypercall allows a domain to modify a
single page table entry. This is useful, for instance, when handling a page fault.

38

Name Description
set callbacks Registers the event handlers of a domain.
set trap table Installs a pseudo-IDT on a per-domain basis.
update va mapping Allows domains to update page tables one PTE at a

time.
update va mapping-
otherdomain

Allows a privileged domain to update the page tables
of other domains one PTE at a time.

mmu update Batch page table update and pseudo-physical mem-
ory operations for a domain.

set gdt Allows the guest OS to install a GDT.
update descriptor Updates a segment descriptor.
stack switch Stores the hardware context of a domain in the TSS.
fpu taskswitch Sets the TS flag in the cr0 register before a context

switch.
sched op Operations that manipulate the scheduling of do-

mains.
set timer op Issues a timer event after a given amount of time.
dom0 op Operations for managing domains, such as creating

and destroying them.
set debugreg Sets the value of a debug register.
get debugreg Returns the value of a debug register.
dom mem op Increases or decreases a domain’s memory allocation.
multicall Executes a series of hypercalls in a batch.
event channel op Sets up and manages event channels.
xen version Returns the version of the currently running Xen hy-

pervisor.
console io Allows a domain to access the console through the

Xen hypervisor.
physdev op Substitution for OS access to BIOS for recieving PCI

configurations.
grant table op Gives or revokes access to a particular page for a

domain.
vm assist This hypercall is deprecated. It allows a domain to

switch between modes of memory management—for
instance, support for writable page tables and super-
pages.

boot vcpu Used for setting up the virtual CPUs when booting
domains.

Table 3.1: The hypercalls of Xen/x86.

39

update va mapping otherdomain

A privileged domain may want to modify pages that belong to other domains.
The update va mapping otherdomain hypercall updates a page table entry for a
different domain. It may only be executed by a privileged domain.

mmu update

The mmu update hypercall can execute a set of memory management operations
for domains. The operation is specified by a parameter:

• Updating a single PTE at a time is inefficient when a large number of
PTEs need to be updated, since the hypervisor then is entered every time.
MMU NORMAL PT UPDATE updates a set of page table entries in a batch.

• MMU MACHPHYS UPDATE updates a machine-to-physical table entry.

set gdt

The pointer to the current GDT is contained in the gdtr register. Writing to
the register directly, for example, by using mov, or using the lgdt instruction to
load a new pointer into the gdtr, are privileged operations. To install a GDT,
a domain thus needs to use this hypercall. This allows legacy x86 programs that
use segmentation, to use a GDT.

update descriptor

When it comes to a domain modifying a PTE in its page table, the hypervisor
does not allow the domain to change it to an arbitrary value. The same applies
for segmentation. The hypervisor needs to ensure that segment descriptors map
valid segments in memory that belong to the domain. The update descriptor
hypercall is used to manage segment descriptors in the GDT or LDT.

stack switch

Switching the stack pointer is necessary when switching inbetween processes.
This involves updating the esp register to point to the stack of the new process.
Writing a new pointer into the esp register is a privileged operation, and there-
fore it may not be executed by guest OSs, as they run in ring 1. This operation
thus is executed in the hypervisor in Xen, through this hypercall.

fpu taskswitch

The fpu taskswitch hypercall is used to set the ts flag in the cr0 register, as is
required in order to employ lazy management of the FPU and XMM registers,
as described in Section 2.2.3. A guest OS does not necessarily employ lazy
management, however Linux does.

set callbacks

The set callbacks hypercall is used to register callbacks which the hypervisor
may use to send events to a guest OS. They handle the events generated by
the event channel, similar to ISRs to interrupts. It specifies an event selector

40

which maps to a corresponding event handling routine at an event address. The
event selector contains the current segment, and the event address points to an
address within that segment. In the Xenlinux guest OS, the event selector used
is the Xenlinux kernel’s code segment.

set trap table

Some interrupts captured in the hypervisor’s IDT are redirected as events to
guest kernels. For instance, guest kernels must be notified of page faults. The
set trap table hypercall installs a virtual IDT on a per-domain basis. The hy-
pervisor may then use the guest kernel’s IDT to look up the interrupt handling
routine to handle interrupts.

sched op

The sched op hypercall allows a domain to make some hypervisor scheduling
decisions on its own behalf.

• The yield operation tells the hypervisor that it can deschedule the cur-
rently running domain and pick a new domain to schedule.

• block causes the domain to sleep until an event is delivered to it.

• shutdown shuts down, reboots or suspends a domain’s execution.

set timer op

As discussed in Section 2.4.2, an OS uses timers for a various reasons. For in-
stance, an OS uses timers to schedule the execution of processes. The set timer op
hypercall requests a timer event to occur after a given amount of time, delivered
through an event channel.

dom0 op

The dom0 op hypercall is used by domain 0 to manage other domains. It can do
a set of different operations, specified by a parameter. The various operations
include bringing up new domains, pinning domains to CPUs in an SMP system,
pausing a domain and destroying a domain.

set debugreg & get debugreg

The set debugreg and get debugreg hypercalls are used to access the x86 de-
bug registers. This can be useful for debugging purpososes. By using the
set debugreg hypercall, a domain can write a value into a particular debug
register. The get debugreg hypercall returns the value of a particular debug
register.

dom mem op

Domains have a maximal memory limit set when they are created. Within this
limit, domains can increase and decrease their memory allocation during run-
time. The dom mem op hypercall is used for allocating or deallocating memory
for a domain.

41

multicall

The multicall hypercall facilitates the execution of several hypercalls in a batch.
This is provided as an optimization as certain high level operations may need
several hypercalls to execute.

event channel op

The event channel op hypercall offers a set of operations that use or manipulate
the event channel.

• alloc unbound—finds a free port whose state can be changed into unbound.

• bind virq—binds a virtual IRQ to a port.

• bind pirq—binds a physical IRQ to a port.

• bind interdomain—binds two ports together.

• close—closes an event channel.

• send—sends a message over an event channel.

• status—returns the current status of an event channel.

console io

The console io hypercall is mainly for debugging purposes. Like when booting
any OS, when bringing up a guest OS, problems with configuration, drivers or
hardware can make the guest OS fail to boot properly. In Linux, the reason
for such a problem is assessed through the console. Domain 0 will print error
messages directly to the console, for instance a VGA display. Boot messages of
unprivileged domains are printed to their individual consoles. These consoles
can be accessed through the domain’s network interfaces using, for instance,
SSH; however, should the boot of a domain fail, its network interface might not
be available.

This interface allows the user to read from or write to the console of a guest
OS.

3.2.5 Event Channels

There are two methods of communicating events between entities, namely event
channels and shared memory rings. Event channels are used to send event
notifications asynchronously. The notifications are queued and picked up by
domains after they are scheduled for execution. Shared memory rings are used
for sending larger chunks of data between domains, such as, for instance, data
being transferred from a backend block device to a frontend block device.

Event channels are managed by the hypervisor through the event channel op
hypercall (see Section 3.2.4). A domain can have a set of event channel con-
nection points, or ports, which each may connect to one end of a channel. The
other end of a channel connects to either a physical IRQ, a virtual IRQ or a
port of another domain. A physical IRQ refers to the native IRQ of a device,
while a virtual IRQ refers to an IRQ controlled by the hypervisor. This scheme

42

allows, for example, an event generated by a backend driver to be delivered as
a virtual IRQ to a frontend domain.

After an event channel is established, the notification of an event is left
pending as a bitmask in the evtchn upcall pending variable, which is found in
the vcpu info data structure, which again pointed to in the vcpu data structure
(see Figure 3.2). When the value of evtchn upcall pending is non-zero, this
means that there is an event pending. The guest OS reads the value of the
variable through the shared page. If it is non-zero, it executes the pending
interrupts and resets the variable to zero.

The frontend block device driver is a state machine and is controlled by a do-
main controller, which is a set of control tools for managing domains and devices.
This is run in a privileged domain, which is required for managing other domains
and devices. When the frontend driver is initialized, it notifies the controller
through a special event channel, which is called a control interface. This is shown
in Figure 3.3. Note that the constant names have been abbreviated in the figure.
The first message is a BLKIF INTERFACE STATUS UP message constant, which
tells the domain controller that the frontend block device is ready. The domain
controller responds with a BLKIF INTERFACE STATUS DISCONNECTED message.
This transitions the driver from the state closed to disconnected, as illustrated
in Figure 3.4. At the same time, the driver initializes a shared ring buffer and
responds to the domain controller with a FE INTERFACE CONNECT message. The
domain controller then responds with a BLKIF INTERFACE STATUS CONNECTED
message, which also contains information about the event channel of the back-
end driver. This stimulates the driver to connect to the event channel and
transitions the driver into the final connected state. The new event channel
connects to the backend driver and is mapped to an IRQ in the frontend do-
main.

Before the frontend domain is run and the frontend driver is created, the
backend device is set up, also by the domain controller. The domain controller
starts by sending a CMSG BLKIF BE CREATE message to the backend driver.
A handle for the new frontend driver is then put in the backend driver’s hash
table. Then, the domain controller proceeds with a CMSG BLKIF BE VBD -
CREATE message, which initializes a virtual block device in the backend driver.
Finally, a CMSG BLKIF BE VBD CONNECT message makes the backend
driver connect to the new event channel. If one of many error conditions occur,
an error message is returned.

3.2.6 Time and Scheduling

The hypervisor has procedures and data structures for implementing accu-
rate timers. Information about each timer is maintained in data structures,
ac timer, which keep track of, among others

• When the timeout event is to occur,

• Which CPU the timer belongs to,

• A routine which the timer is to execute when it reaches the specific mo-
ment.

The scheduler maintains three different timers:

43

Figure 3.3: Virtual block device initialization phase.

Figure 3.4: The states and transitions of a frontend block device.

44

• s timer is used on each CPU to make decisions about preemtion and
scheduling.

• t timer is used on each CPU to implement a timer for sending timer
interrupts to the running domain.

• dom timer specifies the timeout for domain timers.

Virtual timer interrupts are delivered to the domains through event channels
using virtual IRQs. The hypervisor’s scheduler decides when to deliver the inter-
rupt by setting a new ac timer. Scheduling of domains is performed throught
the enter scheduler() procedure in the hypervisor, which is registered as a
softirq routine. The scheduler depends on the accurate timer for execution of
its softirq, and for each CPU an accurate timer is initialized.

45

Chapter 4

IA-64 Implementation

This chapter presents the implementation of the IA-64 port of Xen, or Xen/ia64.
Many of the solutions used in the vBlades project (see Chapter 6) can be trans-
ferred into Xen/ia64, as they are similar projects in many ways. This, and other
design issues are discussed in the following Section 4.1. The implementation of
the essential aspects of Xen/ia64, such as para-virtualization and memory man-
agement, is presented Sections 4.2 through 4.6. Aspects which are left for future
implementation, are left in Section 4.7.

4.1 Analysis

As discussed in Section 3.1, if a VMM is to successfully virtualize its underlying
architecture, all instructions that make the system behave differently depending
on the CPL, must either be replaced directly in the guest kernel program—that
is, either using para-virtualization or binary translation—or they must generate
faults which the VMM can catch, which makes it possible to emulate the faulting
instruction. Unfortunately, not all IA-64 instructions whose altering of system
state depends on CPL, fault when they should. The problematic privilege-
sensitive instructions of IA-64 are discussed in Section 4.1.1.

Daniel J. Magenheimer and Thomas W. Christian [MC04] have examined
different methods of both virtualizing and para-virtualizing with Linux on the
IA-64 architecture. Their research shows that the IA-64 architecture is also “un-
cooperative” in respect to virtualization and that para-virtualization therefore
is beneficial also on the IA-64 architecture. The IA-64 implementation of Xen
can take advantage of some of the design choices made in vBlades. Particular-
ily the concepts of optimized para-virtualization, transparent para-virtualization
and metaphysical memory are worth taking into consideration and are discussed
in Sections 4.1.2, 4.1.3 and 4.1.4, respectively.

Many of the hypercalls of Xen/x86 are redundant in Xen/ia64. Particularly,
hypercalls that deal with x86 segmentation are not needed in Xen/ia64, as IA-
64 OSs are not expected to use segmentation. Also, the use of metaphysical
memory may alleviate the need for some hypercalls. The relevance of the most
important Xen/x86 hypercalls for Xen/ia64 is analyzed in Section 4.1.5.

The IA-64 architecture sports support for different page sizes. This, however,
poses some problems, since the hypervisor cannot predict the page size of a guest

46

OS which has a user selectable page size, such as Linux has. Particularly, VHPT
support is a feature depending on page sizes; this is discussed in Section 4.1.6.

Finally, in Section 4.1.7, a few implementation issues of the Linux/ia64 Perf-
mon capability are discussed.

4.1.1 Privilege-Sensitive Instructions

There are three privilege-sensitive instructions in the IA-64 architecture. One
example is the cover instruction. It allocates a new register stack frame with
zero registers. This instruction is used in the process of manipulating the RSE
on an interrupt. In a following kernel entry in Linux, the register stack frame
is switched from the user stack frame to the kernel stack frame. This protects
the user level register stack frames from being overwritten by interrupt handlers
(see Section 2.4.4).

The cover instruction itself is not a privileged instruction, so the need to
emulate this instruction is not obvious. However, looking at what the instruction
does in detail reveals that this is indeed a privilege-sensitive instruction. If the
psr.ic flag is clear, a cover instruction writes to the ifs register. Writing to
the ifs register, however, requires a CPL of zero. Therefore, even though cover
may be executed regardless of CPL, it may entail breaching protection, and is
thus privilege-sensitive.

Two other privilege-sensitive instructions are the thash and ttag instruc-
tions. The thash instruction generates the hash address of an address transla-
tion, that is, given an address, it will find the location of that address in the
VHPT hash table. The problem with this instruction is that the location that
the instruction returns is the one of the main page table and not that of a
guest OS. Similarly, the ttag returns tag information about an address, and,
also similarly, the information returned comes from the main page table. These
instructions being unprivileged, a guest OS may execute them without faulting
and the hypervisor being able to catch them. Thus, the guest OS may be given
faulty information.

4.1.2 Optimized Para-virtualization

Modifying an OS to run above the Xen/x86 hypervisor requires some essential
changes in the source code of the OS, as discussed in Section 2.6. There are,
however, certain disadvantages to para-virtualization. Most importantly, port-
ing the OS kernel to the Xen/x86 virtual architecture requires a certain amount
of programming effort. Secondly, adapting existing systems to running Xen re-
quires the substitution of the current, possibly specially adapted, OS kernels.
Moreover, having different binaries for non-virtualized and virtualized instances
of Linux can be an administrative problem for both users and OS providers in
that one extra instance of each OS image needs to be provided.

To alleviate these problems, vBlades introduces the concept of optimized
para-virtualization [MC04]. This means trying to satisfy two goals to an extent
which is feasible—or “optimal”:

• Make the changes necessary to the OS kernel to run on the hypervisor as
little as possible.

47

• Make sure the efficiency of the para-virtualization is not impacted too
much by the former.

These two goals are, however, conflicting, since reducing code impact to, say,
zero, leads to the efficiency impact of interpreting or binary patching virtual-
ization, as discussed in Section 2.5.1. Clearly, the qualifications of these goals
are subjective.

vBlades achieves a compromissorial solution by not modifying the source
code of the guest OS at all; rather, the binary code of the OS kernel is modi-
fied, similarly to binary patching, though between compile-time and run-time.
The instructions that are privilege sensitive are known and can be translated
into other non-privilege-sensitive and privileged or other instructions that raise
exceptions and can then be trapped by the hypervisor. These instructions are
then emulated by the hypervisor. The procedure of translating these instruction
is called a binary translation pass.

4.1.3 Transparent Para-virtualization

The term transparent para-virtualization [MC04] means that the same para-
virtualized Linux kernel compiled binary can be used with both physical hard-
ware and the hypervisor as execution environments, transparently—i.e. the OS
itself knows whether it is running on the hypervisor or on physical hardware. As
noted in Section 4.1.2, having different binaries for running on physical hardware
and on the hypervisor can be an administrative problem. If the performance
difference between a transparently para-virtualized and native OS kernel run-
ning on physical hardware is small enough, an OS provider may simply issue
a single binary, and the user can choose whether to run on a hypervisor or on
hardware.

VBlades uses a special flag to let the OS know whether it is running on
the hypervisor or on hardware. This flag is set in a reserved bit in a privileged
configuration register, such that it will not interfere with normal operation. The
IA-64 architecture specifies that reserved registers are always set to zero. When
an OS is running on the hypervisor, the hypervisor returns the value of the
register to the OS, while setting the flag, letting the OS know that it is running
virtualized. Otherwise, the flag is read as zero by the OS, letting it know that
it is running on hardware.

VBlades have shown that transparent para-virtualization is feasible. Per-
formance differences between native Linux and transparently para-virtualized
Linux are small and expected to be less than 0.1 per cent in disfavor of trans-
parent para-virtualization [MC04].

4.1.4 Memory Management

Region registers allow the address spaces of different processes to separated.
This is exploited to separate the address spaces of domains in vBlades. Updating
the region registers is a privileged operation, so the hypervisor can intercept
updates to these registers by the guest OS and ensure that their address spaces
are isolated.

The hypervisor can not allow a guest OS to access physical memory directly.
This would mean that domains can avoid protection mechanisms and adversely

48

affect other domains’ execution. Sometimes, however, OSs do access physical
memory and thus, in order for OSs to be ported to Xen/x86, physical memory
is virtualized, as discussed in Section 2.6.3.

vBlades virtualizes physical memory in a different manner, referred to as
metaphysical addressing [MC04]. In the metaphysical addressing scheme vir-
tual addresses are translated into addresses within domains’ private address
spaces using region registers, making the guest OS believe it is actually access-
ing physical memory.

This approach to virtualizing physical memory access is advantageous in
that it minimizes the para-virtualization effort for guest OSs, since they may
access virtualized memory transparently, as if natively.

4.1.5 Hypercalls

Many hypercalls are not necessary on the IA-64 architecture, as they deal with
specifics of the x86 architecture. The complete set of hypercalls of Xen/x86 is
listed in Table 3.1. The most important hypercalls are described in more detail
in Section 3.2.4. An evaluation of the relevance of these hypercalls in terms of
Xen/ia64 implementation, follows.

update va mapping

Verifying page table updates can be avoided using the approach of vBlades,
using region registers. Since each domain has its own logically disjunct memory
area, page table mappings can not reference illegal memory areas.

update va mapping otherdomain

Changing the page tables of other domains is not part of the native functionality
of an OS. Though the update va mapping otherdomain hypercall may be useful,
it is not important in an initial implementation and should be deferred until
later.

mmu update

The isolation which is achieved through having page table updates be validated
by the hypervisor, is also favorable in the IA-64 architecture. Also, seperating
the physical address spaces of different domains is necessary to ensure isolation.
However, taking vBlades’ approach to memory virtualization may eliminate
the need for some of this hypercall’s operations. Instead of maintaining the
“machine-to-physical” and “physical-to-machine” tables metaphysical address-
ing has the same effect. This eliminates the need for the MMU MACHPHYS UPDATE
operation.

set gdt

This hypercall allows legacy x86 programs that use segmentation to use a GDT
on the Xen/x86 platform. The list of programs that use segmentation is lim-
ited, particularly in the Linux OS. Still, some legacy programs, programmed for
Microsoft OSs, make use of the LDT. WINE [win05] runs in user space on top
of different OSs and allows programs programmed for Microsoft OSs to run in

49

the host OS. WINE has been known to allow user space programs to modify
the LDT. However, this is not a problem in the IA-64 architecture, as the gdtr
and ldtr registers are directly modifiable by user space code. Moreover, the
IA-64 specification [Intb] reads that the IA-64 architecture is

defined to be unsegmented architecture and all Itanium memory
references bypass IA-32 segmentation and protection checks,

and user level code can

directly modify IA-32 segment selector and descriptor values for all
segments,

including those specified in the GDT and LDT tables. Following that the seg-
mentation registers are not protected, one should expect that guest OSs do not
use segmentation.

update descriptor

Applying the argument above, that the set gdt hypercall is redundant because
the use of segmentation logic is not protected, the update descriptor hypercall
is also redundant.

stack switch

This hypercall is necessary for Linux/x86 because it uses the esp register, which
is protected, to point to the Kernel Mode Stack of the current process. In
Linux/ia64, however, the sp register points to the Kernel Mode Stack. sp is an
alias for r12, which is a general register. Therefore, modifying the Kernel Mode
Stack pointer is not a privileged operation, and followingly the stack switch
hypercall is redundant in Xen/ia64.

fpu taskswitch

Linux/ia64 manages the upper floating point registers, registers f32 through
f127, lazily. Whenever a process has used any of the upper floating point
registers it becomes the fpu-owner. The dfh flag is set in the psr register for
other processes, signifying that access to the upper floating point registers is
disallowed. Thus, when another process tries to use these registers, a Disabled
Floating-Point Register fault is raised. The Linux kernel then proceeds with
storing the upper floating point register state for the fpu-owner. Then, it lets
the faulting process continue with using the upper floating point registers, after
clearing the dfh flag.

Writing to the psr register is a privileged operation, and thus this opera-
tion needs to be virtualized. This can be done either with the fpu taskswitch
hypercall, or the hypervisor can intercept the protection fault from accessing
the register and emulate the operation. The latter solution leads to less para-
virtualization impact on the guest OS kernel.

50

set callbacks

Callbacks registered in the hypervisor are necessary for the functioning of event
channels. The hypervisor uses these callbacks to deliver events from the hyper-
visor to the domain. This hypercall is necessary in order to virtualize block and
network devices and therefore necessary for running unprivileged domains.

set trap table

[MC04] shows another approach to registering the ISRs of guests; the hypervisor
registers the guests’ IVA and on an interrupt transfers execution to the domain’s
ISR in its IVT. Taking this approach, trap tables need not be manually initilized
by a guest domain, making this hypercall redundant. This approach is also more
attractive with regards to an “optimized” implementation.

sched op

The sched op hypercall’s operations, yield, block and shutdown allow domains
to control their own execution. However, the yield and block operations are not
necessary for the domains’ operation. The shutdown operation can be regarded
as necessary if para-virtualized Linux is to behave similar to native, as native
Linux is expected to be shut down when being instructed to do so. In the IA-64
architecture, the shutdown mechanism is accessed through the EFI. Using the
EFI’s shutdown service is a privileged operation, thus, virtualizing this operation
is necessary. The sched op hypercall is one solution. Another solution is similar
to one taken by vBlades, in which the faulting EFI call is intercepted by the
hypervisor and emulated.

set timer op

Linux depends on a timer to schedule tasks. However, the accurate timer (see
Section 3.2.6) may be used to genarate timer interrupts instead the native hard-
ware timers. This hypercall can be considered redundant in Xen/ia64.

dom0 op

This hypercall is used by domain 0 to manage other domains. Since it is needed
to bring up other domains it has high priority.

set debugreg & get debugreg

In Xen/ia64 these should be replaced by hypercalls that manage the Perfmon
interface. However, this is not essential for Xen’s operation and can be deferred
until later; therefore it should have low priority.

dom mem op

Again, looking at the vBlades implementation, the virtual memory address space
is not partitioned between domains. This is because the region registers al-
low domains to have logically separate virtual memory regions. Domains thus
need not request an increase in memory allocation from the hypervisor. The

51

dom mem op hypercall therefore is not necessary for operation and is redun-
dant.

multicall

The multicall hypercall facilitates the execution of several hypercalls in a batch.
This is provided as an optimization as certain high level operations may need
several hypercalls to execute. This hypercall may be implemented on a later
stage and has low priority.

event channel op

The event channel op hypercall is necessary to set up and use the event channel
interface. Event channels are necessary for communication between domains. If
several domains are to share virtualized block and network devices, there needs
to be a communication link between the domain running the backend drivers
and the domains running frontend drivers.

console io

The console io is needed to see what is happening in unprivileged domains.
Seeing the output from guest OSs is pertinent for the development of their
support. However, letting the guest OS print console messages directly to the
same console as domain 0 is sufficient as a provisional solution.

4.1.6 Virtual Hash Page Table

VHPTs are important for Linux/ia64’s performance, and how VHPT should be
implemented in Xen/ia64 is worth discussing. There are three approaches in
this matter—either

• Let each domain have a VHPT maintained by the hypervisor,

• Have a single global VHPT maintained by the hypervisor,

• Or implement both solutions, and let the user choose.

Having a single global VHPT maintained by the hypervisor poses a problem
if different guest OSs have different page sizes. Given that different guest OSs
use different page sizes, every time the hypervisor switches from one domain to
the other, the VHPT must be purged and reinstalled with the page size of the
new domain; this can be a costly affair. One solution to this problem is to have
a minimal page size in the global VHPT, say 4 KB, and let guest OS’s larger
pages be composed of multiples of the smaller global pages.

To maintain a separate VHPT for each domain also poses some problems.
The hypervisor then needs to allocate memory for each of these VHPTs, mem-
ory which is not allowed access to from domains, which makes this a waste of
memory from a domain’s point of view. Thus, every time bringing up new do-
mains requires the allocation of a new such a chunk of free memory, which may
be hard to find, once several domains are running.

52

4.1.7 Performance Monitoring

The PMU of the IA-64 CPU offers the capability of monitoring usage of CPU
resources. By porting Perfmon to the Xen/ia64 platform, existing Perfmon tools
can be used to monitor different domains’s performance characteristics. This
would allow easier identification of possible areas for improvement in Xen code.

An important question is whether to place Perfmon in the hypervisor or
in the para-virtualized Linux kernel. The minimal code impact argument ap-
plies here aswell. The hypervisor can let the guest OS keep its existing Perfmon
functionality and emulate or para-virtualize the interface to hardware. By incor-
porating Perfmon functionality into the hypervisor, the hypervisor can monitor
fine-grained performance aspects of domains without performance impact, sim-
ilar to how the Linux kernel with Perfmon can monitor performance aspects of
processes.

In adapting Xen to Perfmon, a few restrictions are placed:

• In order for Perfmon to monitor different processes, PMU state must be
included in process switches. This also needs to be done when switching
between domains.

• Perfmon uses hooks for process fork and exit, which are used to start
and end, respectively, the monitoring of processes. These hooks are also
needed in the creation and termination of domains if domains are to be
monitored.

• Perfmon uses data structures and a sampling buffer for recording data.
For this, memory allocation and remapping procedures are needed.

• File descriptors are used to interface with Perfmon. Thus, the ability to
create file descriptors is necessary.

• A system call is needed to access Perfmon in the guest kernel, namely
perfmonctl. If Perfmon resides in the hypervisor, this means that a new
hypercall is needed.

• An interrupt handler for PMU interrupts needs to be registered. PMU
interrupts are external interrupts and IRQs may be handled in the hyper-
visor or forwarded to domains.

• If guest kernels are to contain the Perfmon logic, they need access to PMU
registers, which are generally protected. This has to be virtualized in some
manner.

4.2 Para-virtualization

Xen/ia64 lets guest OSs run in ring two. This demotion from their original CPL
of zero has some implications on how CPU state is handled. In order to give
guest OSs the illusion of running on a real platform, the CPU is virtualized, that
is, some registers are emulated. Also, as discussed in Section 4.1.2, privileged
and privilege sensitive instructions need to be virtualized. A few examples of
virtualized and para-virtualized operations are discussed in the following.

53

mov instructions that target the psr register, are privileged instructions,
since the psr register is protected. When such instructions are executed, a
Privileged Operation Fault is raised, and the hypervisor handles the exception
in its IVT. The hypervisor can then find out which instruction generated the
exception in the ifa register. Thus, there is no explicit need to para-virtualize
these instructions. The hypervisor can instead emulate the intended instruc-
tion. Appendix C.4 shows the procedure that virtualizes the mov instruction
for reading the psr register. The vcpu get psr procedure reads the value of
the real psr register, but filters the value such that a CPL of zero is set in the
virtual CPU. Also, the ic and i flags are filtered according to the state of the
virtual CPU.

Linux uses the thash instruction in handling a set of exceptions. One ex-
ample is the Data Dirty Bit fault. It is raised when a page is stored to while
its dirty-bit flag is off in its PTE. The Data Dirty Bit ISR handles the fault by
turning on the dirty-bit in the PTE. In order to get the address of the PTE, the
ISR uses the thash instruction. As described in section 4.1.1, this instruction
is sensitive and must be para-virtualized.

In order to para-virtualize this instruction, it is replaced with the tak in-
struction. This instruction is privileged, and execution of it by a guest OS
running in ring two, will cause a Privilege Operation Fault. This fault is caught
by the hypervisor, and thus the intended thash operation can be emulated.

The cover instruction also needs to be para-virtualized. It is used in a few
places in the Linux source code, particularly in some of the IVT’s ISRs. The
SAVE MIN WITH COVER macro defines the procedure for switching to the kernel
stacks—both the Kernel Memory Stack and the Kernel Register Frame Stack.
This is used to save the context before entering the ISR. In native Linux, the
ifs register is saved as a part of this context. In Xenlinux, the macro is modified
such that if a cover instruction should fail—that is, not being able to update
the ifs register—a fake ifs register, with the right state, is saved instead.

Faults generated by domains are caught by the hypervisor’s IVT since it is
the one running in ring 0. Thus, in order to notify the guest OS of the fault, the
hypervisor reflects the fault to the guest OS. For example, when a TLB miss
occurs in a guest OS, the TLB miss is reflected to the guest OS’s virtual CPU.
The hypervisor calculates the location of the VHPT of the guest OS and stores
it in the virtual CPU’s virtual iha register.

Like Xen/x86, the IA-64 port makes use of the domain and vcpu data struc-
tures (see Figure 3.2). These data structures are made to be architecture inde-
pendent, so they are used without modification. Architecture specific informa-
tion is put in sub-structures, arch domain and arch vcpu. For the purpose of
virtualizing the CPU, the arch vcpu data structure is used.

The arch vcpu and arch domain data structures are illustrated in Figure
4.1. Entries in the data structures are listed ascending, with lower memory
addresses at the bottom. In the arch vcpu the first six bottom entries give
a virtual interface to handling the TLB. By virtualizing the iva register, the
hypervisor can specify the location of the IVT of a domain. Also, the itc and
itm registers are virtualized to allow timing in the domain. metaphysical rr0
specifies the region to use when in metaphysical addressing mode. This value
is set to the real region register by the hypervisor before entering metaphysical
addressing mode.

In the arch domain data structure, active mm is a pointer to another data

54

Figure 4.1: Architecture specific parts of the domain and vcpu data structures.

structure, which contains memory management information about, among oth-
ers, memory areas and page tables. starting rid and ending rid specify the
region id range the domain can use. breakimm specifies the immediate which
is to be used as the parameter to the break instruction when the domain is-
sues a hypercall. shared info va specifies the address of a shared memory area
between the hypervisor and the domain.

4.3 Optimized Para-virtualization

Whenever a privileged instruction is executed with insufficient CPL, a Privilege
Operation fault exception is raised. By extending the Linux/ia64 IVT to include
handlers for this exception, the hypervisor can then take the necessary actions
to emulate the instruction that generated the exception. When a Privilege
Operation fault occurs, the hypervisor looks at the ifa register to find out which
instruction caused the exception. The hypervisor then emulates the instruction
by manipulating, instead of the state of the real CPU, the state of the virtual
CPU.

Emulating privilege sensitive instructions requires a little more work than
privileged instructions. In a binary translation pass, privilege sensitive instruc-
tions are first translated into instructions that fault. These exceptions are then
handled by the hypervisor similar to privileged instructions.

IA-64 binary code has to be examined more carefully than x86 code. Since
instructions are bundled, and some instructions may span more than one slot,
the template needs to be examined to find out the format of the bundles. The
binary translation program reads a bundle at a time, each being 128 bits long.
By looking at the bundle’s template, it can be established whether it can contain

55

a privilege sensitive instruction. For instance, if the bundle is in the format
BBB, one of the instructions can be a cover instruction, since the ISA defines
cover as a B instruction. Since the IA-64 ISA specifies that a cover instruction
must be the last instruction in a group, it must also be the last in a bundle, and
therefore slot 2 may need translation.

Privilege sensitive instructions are replaced with instructions that fault. For
instance, cover is replaced with break.b 0x1fffff. This fault is caught by
the hypervisor and the intended instruction is emulated.

4.4 Memory Management

Each domain is assigned a range of RIDs. The hypervisor manages the state of
the region registers on each domain switch. These registers are stored in a rrs
array, when a domain is descheduled. When a domain is rescheduled, the rrs
values are loaded back into the physical region registers.

Like vBlades, Xen/ia64 uses metaphysical memory in order to give guest
OSs the illusion of having access to physical memory. When a guest OS tries
to address physical memory directly, first, it tries to clear the psr.dt flag (see
Appendix A.2) by executing the instruction,

rsm psr.dt

Since the guest OS has insufficient privileges, the CPU raises a Privilege Opera-
tion fault. This exception is intercepted in the IVT under the General Exception
Vector. By reading the isr register, the hypervisor assesses the cause of the ex-
ception. It can then emulate the instruction on the virtual CPU by using a
replacement routine, vcpu reset psr sm(), storing the state in a virtual psr
register.

Whenever a domain accesses memory, the hypervisor finds this domain’s
mode of memory operation in the domain’s virtual psr register. If it happens
to be metaphysical, the hypervisor first makes sure that the address is within the
domain’s address space. It then calculates the page table entry corresponding to
the physical address. It then translates the address into a corresponding virtual
address, transparently for the domain. The mappings between the virtual and
the physical addresses are calculated by adding a constant, 0xf000000000000000,
to the physical address.

4.5 Firmware Interface Emulation

When the hypervisor loads a guest OS, it is, instead of following the conven-
tion of the EFI system table, given a custom table from the hypervisor, which
replaces it. The new table, instead of pointing to EFI routines, now points to
hypercalls that emulate these routines. This can be done quite elegantly be-
cause of metaphysical memory. This also allows guest OSs that are previously
unmodified to use the emulated EFI routines, which is a more attractive solution
with regards to optimized virtualization.

The guest OS expects the EFI System Table to reside at the beginning
of its physical memory area. Since the guest OS really is using metaphysical
memory, the hypervisor controls where the guest OS will find the EFI System

56

Table. At the start of the domain’s metaphysical memory area, the hypervisor
insterts a fake EFI System Table, along with a corresponding runtime services
table. In the runtime services table, fake replacement routines for the native
EFI routines are insterted. These replacemet routines emulate the real routines
by doing some appropriate operation, or, if they are unimportant, they may
simply fail without causing any problems to the guest OS. Some operations,
such as efi get time and efi reset system, require the hypervisor to access the
real EFI System Table. In this case the emulation routine calls a hypercall,
which makes the hypervisor execute the real EFI routine.

For instance, instead of the native ResetSystem() EFI runtime service, the
domain will call a replacement hypercall, when jumping to the ResetSystem()
address in the fake runtime service table. The hypervisor receives the hypercall
and may decide whether or not to allow the domain to reset the system. If it
decides to allow a system reset, it uses the real runtime service table to execute
the real ResetSystem() EFI routine. In the case of efi get time the system time
is transparently returned to the guest OS.

4.6 Events

During execution of a domain, the hypervisor is still in control over interrupts
and exceptions. The hypervisor’s IVT is still installed, such that interrupts and
exceptions will interrupt the execution of a domain, and control is transferred to
the hypervisor’s ISRs. This way, the hypervisor can catch privileged operations
from a domain and emulate the operation. Thus, General Protection exceptions
are handled directly in the hypervisor, as described in Section 4.3.

External interrupts, however, are left as pending for domain 0, and the
domain is woken from the scheduler. The virtual CPU is notified of the interrupt
by setting a pending interruption variable in the vcpu data structure and the
interrupt vector is stored in the virtual CPU’s virtual irr register.

Hypercalls are invoked with a break instruction (see Appendix B.2). A
vector, imm, is used as an argument, which determines whether it is a hyper-
call or, for instance, a system call. The vector used is defined by the macro
BREAKIMM, and this vector is compared to the domains’ breakimm variable in
their arch domain data structures (see Figure 4.1). This lets each domain de-
fine its own hypercall vector. A second vector determines which hypercall to
execute. This vector is not used as a direct argument to the break instruction,
but loaded into a register before the call.

In the case of the event channel op hypercall, the vector used is defined by
the EVENT CHANNEL OP macro. The two example code snippets in Appendices
C.1 and C.2 show the high-level interface between the hypervisor and the do-
main. An event channel is established between two domains by sending an
evthcn op t data structure to the hypervisor. This data structure contains in-
formation about which two domains and ports it connects. A pointer to this
data structure is then loaded into register r3, and an event channel op hyper-
call is invoked. The hypervisor context switches and stores some of the context,
including r3, in a pt regs data structure. The intended hypercall type is found
in the stored context in memory, and the pointer to the evthcn op t data struc-
ture is found in the r3 variable, also in the stored context. The hypervisor then
continues to establish the event channel.

57

4.7 Further Work

One topic left for future implementation is support for VHPT. Currently, VHPT
needs to be disabled in the guest Linux kernel at compile-time. This is a
reasonable demand in terms of para-virtualization but not in optimized para-
virtualization terms. Guest kernels that have VHPT enabled will need mod-
ification, which violates the principles of optimized para-virtualization. Also,
the option of VHPT is preferable in terms of achieving an as close to native as
possible performance.

As the IA-64 port of Xen nears sufficient stability, starting to pinpoint per-
formance hotspots can be valuable. To do this, it is valuable to make use of the
performance monitoring capabilities of the IA-64 CPU. The natural way of en-
abling performance monitoring in Xen/ia64 is to modify the Perfmon interface
such that it can be used on Xen/ia64.

Currently, there is no mechanism for passing large data structures inbetween
the hypervisor and a domain. Data structures that are passed, have to be sized
within the limits of a page, as there is no guarantee that consecutive pages
in the hypervisor’s memory space are also consecutive in a domain’s memory
space. This is sufficient for some data structures, such as, for instance, messages
that are sent through the event channel op hypercall in order to establish event
channels. However, in the long run, ensuring that larger data structures are
passed complete should be implemented through a copy mechanism.

Support for multiple processors in an SMP system has been deferred until a
later stage, when Xen/ia64 is more stable and functional. SMP is non-trivial,
and implementing support for it at an early stage may complicate development.
Also in Xen/x86 64, the x86 64 port of Xen/x86 (see Section 6), support for
multiple processors has been delayed. Still, supporting multiple processors is
critical for the progress of Xen/ia64 in HPC.

Event channels and the control interface are functional, but still some work
needs to be done in order to make virtual block drivers and network drivers
work. Virtual block and network drivers are necessary for the functioning of
unprivileged domains, and therefore the further development of these drivers
should have high priority.

Entering the kernel through a break exception is costly, and Linux/ia64
developers have begun solving the problem of costly system calls with the im-
plementation of fast system calls. Charles Gray et al. [G+05] show that by
using the epc instruction instead of the break instruction for inducing a system
call, a more than tenfold speedup can be achieved in terms of the number of
CPU cycles required to enter the kernel. A similar speedup may be achieved if
epc is used instead of break in hypercalls.

58

Chapter 5

Performance Analysis

This performance analysis aims to assess the distance to the goal of achieving
reasonable efficiency in paravirtualizing the IA-64 architecture. Section 5.2 ex-
plains the methodology used in measuring the performance of Xen/ia64. The
results of the benchmarks are presented in Section 5.3.

5.1 Experimental Environment

The OpenLab GRID testbed cluster consists of two-way HP rx2600 nodes with
Itanium 2 processors. The nodes run the Scientific Linux CERN 3 (SLC3)
Linux distribution, which is based on Red Hat Enterprise Linux 3. The hard-
ware and software configuration of the machine used for performance analysis
is summarized in Table 5.1.

5.2 Methodology

Two methods are used to analyze the execution of Xenlinux. The first analysis
is a macro-benchmark, and involves building the Xen hypervisor and measuring
the time it takes to complete. Xen is chosen over Linux as the build subject be-
cause building Linux in para-xenlinux halts after around 10 minutes, due to an

Hardware
Model HP rx2600
CPU Itanium 2
CPUs per node 2
Memory 2 GByte
Storage Ultra320 SCSI
Software
OS Linux 2.6.10
OS distribution Scientific Linux CERN 3.0.4
Compiler GCC version 3.2.3 20030502 (Red Hat Linux 3.2.3-42)

Table 5.1: The configuration of the OpenLab GRID testbed cluster.

59

unresolved, though probably short-lived, bug, at the time of writing. Building
Xen takes shorter time and thus avoids this bug. The second analysis instru-
ments the execution and counts the number of virtualized operations executed.
These analyses are discussed in the following sections.

5.2.1 Build Benchmark

A kernel build benchmark is a realistic benchmark. Compiling is very CPU
and memory intensive and should give an overall view of performance. Still,
it should be noted that the build benchmark is not perfect and that results
have some variability due to conditions of the underlying hardware, which is
non-deterministic.

Performance is analyzed by measuring the time it takes to compile the Xen
hypervisor kernel. Time is measured and compilation started by entering

time make

time returns how much time the compilation has used with respect to wall clock,
user mode and kernel mode. Each time, before compiling Xen,

make clean

is run to ensure that Xen is compiled from scratch.
Four data points are measured:

• Native Linux—the native Linux kernel, which runs without virtualization.
In the following, this data point is referred to as native-linux.

• Para-virtualized Xenlinux on bare metal—the transparently para-virtualized
2.6.12 kernel running directly on physical hardware, i.e. without Xen. In
the following, this data point is referred to as native-xenlinux.

• Para-virtualized Xenlinux on Xen—the transparently para-virtualized 2.6.12
kernel on the Xen hypervisor. In the following, this data point is referred
to as para-xenlinux.

• Binary translated Linux on Xen—a Linux 2.6.11 kernel, binary trans-
lated, running on Xen. In the following, this data point is referred to as
privified-linux.

For each data point, five measurements are made, and the best and worst results
are discarded. Then, the average of the three middle results is calculated. All
measurements are made in single user mode, except for privified-linux, which
is run in normal multi-user mode, and thus other processes may influence its
measured performance. Also, privified-linux uses an older version of Xen, in
which the reported CPU frequency is 9/15 of the real CPU frequency, which
makes the time command measure times that are 15/9 of the real time. The real
time from privified-linux measurements are therefore inferred by multiplying
the reported time with 9/15.

60

Time / s Wall User Kernel
native-linux 24.10 22.19 0.88
native-xenlinux 24.45 22.54 0.85
para-xenlinux 25.27 23.02 1.22
privified-linux 33.22 25.65 5.87

Table 5.2: Measured time when compiling Linux.

 0

 5

 10

 15

 20

 25

 30

 35

KernelUserWall

Ti
m

e
/ s

native-linux
native-xenlinux

para-xenlinux
privified-linux

Figure 5.1: Bar chart showing the times measured in the build benchmark.

5.2.2 Instrumentation

The Xen hypervisor is instrumented with counters for measuring the amount of
virtualized privileged operations are executed. Just before starting the compi-
lation benchmark, these counters are zeroed, and just after the benchmark has
finished, the counters are read. A part of the program, showing procedures for
zeroing and reading the counters, is shown in Appendix C.3.

5.3 Results

The results of the two analyses are presented in the two following subsections.

5.3.1 Build Benchmark

The times measured when building Xen in native Linux and Xenlinux are shown
in Table 5.2. The corresponding bar chart is shown in Figure 5.1.

61

Operation Count
rfi 228811
rsm.dt 600
ssm.dt 303
cover 6
itc.d 142387
itc.i 72976
=tpr 1
tpr= 3
eoi 2
itm= 2
thash 3
ptc.ga 19709
=rr 3
rr= 26
Total 10610822

Table 5.3: Measured number of para-virtualized operations executed.

The performance between difference native-linux and native-xenlinux
is small. native-xenlinux takes 1.5 % more time than native-linux. This
shows that transparent para-virtualization is quite feasible on Xen/ia64. The
results also show that para-xenlinux has a reasonably low overhead compared
to native-linux, amounting to 4.9 %. However, similar benchmarks performed
by Dan Magenheimer do not show as high overhead. Finally, privified-linux
takes 38 % more time than native-linux, showing that this method is at the
moment not a very feasible solution. The measurements also verify that most
of the overhead from virtualization in privified-linux come from running in
kernel mode, in which overhead is as high as 567 %.

5.3.2 Instrumentation

Counting privileged operations during kernel compilation, the following num-
bers show some hotspots with possibilities for improvement. Table 5.3 shows a
number of para-virtualized operations of particular interest for locating para-
virtualization overhead. The corresponding bar chart is shown in Figure 5.2.
These para-virtualized operations consume more CPU cycles than their corre-
sponding native operations. As an example, the most numerous para-virtualized
operation is the rfi instruction. Natively, this instruction changes a lot of state
in the CPU (see Appendix B.2). In Xen, this involves changing a lot of state in
the virtual CPU, which lies in memory. Changing the virtual CPU in memory
amounts to more CPU cycles than a native rfi, which only takes around 13
cycles on the Itanium 2 architecture [cpi05].

62

 0

 50000

 100000

 150000

 200000

 250000

rr==rr
ptc.ga

thash
itm=

eoi
tpr=

=tpr
itc.i

itc.d
cover

ssm.dt

rsm.dt

rfi

op

er
at

io
ns

Figure 5.2: A chart over the number of para-virtualized operations executed.

63

Chapter 6

Related Work

A lot of interesting work has been happening both around Xen and within the
general topic of virtualization. One project of particular relevance to Xen/ia64
is vBlades [MC04]. The vBlades VMM runs on IA-64 hardware and success-
fully virtualizes the underlying hardware. At the same time, it supports para-
virtualized guest OSs. Knowledge from the vBlades project has been transferred
to the Xen/ia64 project. The vBlades project has been shelved in favor of the
Xen/ia64 project.

The L4Ka project [l4k05b] at the University of Karlsruhe is doing a lot
of interesting research around virtualization. Pistachio is a microkernel which
runs on many computer architectures, among them IA-64. Marzipan is a VMM
based on the Pistachio microkernel, which also runs on IA-64. Most interesting,
perhaps, is the Pre-virtualization with Compiler Afterburning project [l4k05a].
As illustrated in Figure 3.1, Pre-virtualization refers to the technique of making
the necessary changes to a guest kernel for virtualization at compile-time. It
substitutes virtualization-sensitive operations statically in the kernel, and also
detects sensitive memory operations and substitutes them with calls to the
VMM. This project is under active development, and the developers do not
consider the software to be mature [l4k05b].

vNUMA [CH05] is another virtualization project for the IA-64 architecture.
It seeks to make programming and managing for a distributed memory platform,
such as a cluster, easier. This is achieved by virtualizing a shared memory
platform on the distributed memory platform.

The most exciting development lately within virtualization, however, is Intel
and AMD’s introduction of virtualization extensions on their processors. These
extensions aim to solve one of the main problems with Xen’s para-virtualization
approach: the guest OS needs to be modified. At the same time, efficiency is
maintained. Intel introduces the VT extensions, which is discussed in Section
6.1.

An interesting approach to Linux virtualization on a mainframe is taken by
vServer [P0̈4]. It divides a single Linux execution environment into several sep-
arate execution environments, called Virtual Private Servers (VPS). VPSs are
similar to virtual machines, except that only certain aspects of the native Linux
execution environment are virtualized. The project takes a more pragmatic
approach than Xen by only virtualizing the mechanisms required to provide
execution environments for a set of traditional server applications, such as, for

64

instance, web servers.
Xen has also been ported to the 64-bit extended version of the x86 archi-

tecture, the x86 64 architecture. This port has progressed far, and is more
mature than the IA-64 port. Still, essential features, such as support for SMP,
are lacking. Xen/x86 64 can be regarded as a near future 64-bit virtualization
technology, which is attractive also for this architecture, due to the increased
address space. One interesting challenge that this project has faced, is that the
x86 64 architecture does not support segmentation in 64-bit mode. This means
that the privilege separation scheme of x86 paging (see Section 2.2.1), consist-
ing of the two privilege levels “User” and “Supervisor” is used. Effectively, ring
compression in the x86 64 hardware thus forces guest OSs to run in the “User”
ring.

6.1 Intel Virtualization Technology

With the VT extensions, the problems of ring aliasing are alleviated. This
means that guest OSs do not need to be modified, and thus closed source OSs,
such as Microsoft Windows, can run in a virtual execution environment.

The problem of ring aliasing is solved by introducing a new execution en-
vironment more privileged than ring 0, referred to as VMX Root. This new
environment has the rings 0 through 3 just as traditional processors, and, in-
deed, programs that run in ring 0 in VMX Root behave as if running in ring
0 in a non-VT Intel processor. The VMX Root environment is dedicated to
the hypervisor. The VMX Nonroot environment, however, is dedicated to the
guest OSs. It also gives a similar execution environment with rings zero through
three, except, when the guest OS executes in ring zero, control is handed over to
the hypervisor. The VMX mechanism is illustrated in Figure 6.1. When a guest
VM, running in VMX Nonroot, tries to enter ring zero, VMEXIT is executed, and
control is passed over to the hypervisor running in VMX Root. In effect, the
guest OS is deprivileged without ring compression, thus alleviating the problem
of ring aliasing, while, at the same time, maintaining isolation.

65

Figure 6.1: VT’s VMX Root and Nonroot execution environments.

66

Chapter 7

Conclusion

In terms of virtualization, the IA-64 architecture is an “uncooperative” archi-
tecture. This forces the use of para-virtualization in order to achieve good
performance. However, para-virtualization requires a certain amount of labor.
Thus, trying to make as little as possible changes in the guest OSs’ source code
necessary, allows OSs to be para-virtualized with less effort. Making a small code
impact on the native Linux kernel through optimized para-virtualization is an
interesting approach, but some direct changes to the source code seem necessary
in order to achieve close-to-native performance. Transparent para-virtualization
may alleviate some of the administrative problems of using different OS kernel
binaries for native OSs and para-virtualized OSs. At the same time, perfor-
mance analyses in this thesis show that the performance impact from running
a transparently para-virtualized binary on physical hardware is low.

Certain features of the IA-64 architecture make it more “cooperative” than
the x86 architecture. One uncooperative attribute of the x86 architecture is
the TLB, which needs to be flushed on every change of address space. In the
IA-64 architecture, however, each TLB may individually be invalidated for an
address space, thus eliminating the need for flushing. Region registers further
allow special regions in memory, which can be used, for instance, to implement
the physical memory abstraction, metaphysical memory. The EFI provides
a standardized abstract interface to certain hardware funtions, which makes
it easier to virtualize access to these functions. Also, the IA-64 PMU is, as
opposed to x86 monitoring functions, documented and standardized, and allows
the monitoring of Xen, in order to find performance hotspots.

The IA-64 port of Xen presents itself as a viable future virtualization tech-
nology for Itanium machines. Future Intel architectures will have better support
for virtualization, and Xen is a good candidate for utilizing the virtualization
capabilities of the future architectures. The performance analyses in this thesis
show that Xen/ia64 is at present time not mature enough for production use.
Benchmarks demonstrate that the overhead of using Xen/ia64 is not very high.
However, some parts of Xen still remain to be ported to IA-64, and sporadical
failures during execution reveal that some work remains before Xen/ia64 nears
production quality.

67

Appendix A

Registers

A.1 Some Essential x86 Registers

Mnemonic Description
esp Stack pointer; points to the top of the Kernel Mode Stack

in Linux/x86.
cs Code Segment—points to the code segment of the currently

executing task.
ds, es, fs, gs Data Segments—point to the data segments of the currently

executing task.
eax, ebx, ecx General-purpose register used for general storage of

operands and results in arithmetic and logic operations,
and memory pointers.

eip Points to the executing instruction relative to cs.
cr0 Control Register 0—used to control operating mode and

states of the CPU. It contains the ts flag, which is set at
every context switch in order to indicate for the OS that
FPU state may have changed.

cr3 Points to the currently executing task’s page directory.
gdtr Global Descriptor Table Register—points to the current

GDT. This register is protected.
ldtr Local Descriptor Table Register—points to the current

LDT. This register is protected.

68

A.2 Some Essential IA-64 Registers

Mnemonic Field Description
psr The Processor Status Register manages certain aspects of

the execution environment of the current task, such as
whether interrupts are enabled or not. Accessing this reg-
ister is a privileged operation.

dt The dt flag specifies whether memory is accessed virtually
or physically.

ic Interrupt Collection—this flag specifies whether interrupts
trigger the storing of processor state.

i Interrupt Bit—if set, unmasked external interrupts will in-
terrupt the processor and be handled by the external inter-
rupt handler. Otherwise, the processor will not be inter-
rupted by external interrupts.

cpl Current Privilege Level—this 2-bit field specifies the privi-
lege level of the currently executing process.

dfh Disabled Floating-point High register set—specifies whether
access to the high floating point register set, registers f32
through f127, produces a Disabled Floating-Point Register
fault.

ifs The Interruption Function State register is used by a rfi
instruction to reload the current register stack frame.

ipst Interruption Processor Status Register—has the same for-
mat as psr, only, it is used to restore CPU state after an
rfi instruction.

ip Instruction Pointer—points to the address of the next in-
struction bundle to execute.

iip Interruption Instruction Bundle Pointer—used to restore
ip after an rfi instruction.

ifa Interruption Faulting Address—contains the address of the
instruction that has caused an exception.

isr Interruption Status Register—contains information about
what has caused an exception.

iva Interruption Vector Address—keeps the address of the IVT.
iha Interruption Hash Address—keeps the address of the

VHPT which is used to resolve translation faults.
irr0–irr3 External Interruption Request Registers—shows the vectors

of pending interrupts. Each non-reserved bit in the collec-
tive amount of bits in these registers correspond to one
interrupt vector.

bsp Backing Store Pointer—contains the pointer to the location
in memory which the current register stack frame would be
stored if that were necessary.

sp (r12) Stack Pointer—by convention, this register is used to point
to the Kernel Mode Stack. It is part of the General Register
File.

iim Interruption Immediate—used for diagnosing the reason for
some faults.

f0–f127 Floating point registers—used for floating point calculation.

69

Appendix B

Instruction Set
Architectures

B.1 Some Essential x86 Instructions

Mnemonic Description
lgdt Load Global Descriptor Table—loads an address into the gdtr

register. This instruction is protected.
int Call to Interrupt Procedure—generates an interrupt in the proces-

sor. An immediate parameter points to the interrupt procedure
which is to be called.

mov Move—copies the value of a source operand to a target operand.
The source operand may be an immediate value, a register or a
memory location.

esc Escape—allows interaction with the x87 FPU.

B.2 Some Essential IA-64 Instructions

Mnemonic Parameter Description
rfi Returns the hardware context to that prior to the

interruption.
tak Returns the protection key for a data TLB entry.
cover Allocates a new register stack frame with zero regis-

ters. Updates bsp to the location of a potential next
register stack frame in memory.

break imm Triggers a Break Instruction Fault. imm is loaded
into the iim register.

epc Enter Privileged Code—increases the CPL to the
privilege level given by the TLB entry for the page
containing the epc instruction.

70

Appendix C

Source Code

The program code of Xen is quite extensive, and, since it is open source licensed,
it may be downloaded from the web. The latest Xen/ia64 and Xenlinux/ia64
development versions are downloaded using Mercurial [mer05] from http://
xenbits.xensource.com/ext/xen-ia64-unstable.hg and http://xenbits.
xensource.com/ext/xenlinux-ia64-2.6.12.hg, respectively. Also, nightly
snapshots are taken and distributed in the following package: http://www.cl.
cam.ac.uk/Research/SRG/netos/xen/downloads/xen-unstable-src.tgz.

Some example code snippets are shown in the following appendices.

• Appendix C.1 shows how an interdomain event channel is established from
a domain.

• Appendix C.2 shows the hypervisor’s handling of hypercalls after a break
instruction.

• Appendix C.3 shows two procedures using the interface to the privileged
operation counters in the hypervisor.

• Appendix C.4 shows the virtualization of a privileged mov instruction
which targets the psr register.

C.1 Event Channel Hypercall

void bind_interdomain(int dom1, int dom2, int port1, int port2){
evtchn_op_t op;
evtchn_op_t* opp;

op.cmd = EVTCHNOP_bind_interdomain;
op.u.bind_interdomain.dom1 = dom1;
op.u.bind_interdomain.dom2 = dom2;
op.u.bind_interdomain.port1 = port1;
op.u.bind_interdomain.port2 = port2;

opp = &op;

asm volatile("ld8 r3=%0; "
:: "m" (opp)
: "r3");

71

http://xenbits.xensource.com/ext/xen-ia64-unstable.hg
http://xenbits.xensource.com/ext/xen-ia64-unstable.hg
http://xenbits.xensource.com/ext/xenlinux-ia64-2.6.12.hg
http://xenbits.xensource.com/ext/xenlinux-ia64-2.6.12.hg
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/downloads/xen-unstable-src.tgz
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/downloads/xen-unstable-src.tgz

asm volatile("mov r2=%0; break %1;"
:: "i" (EVENT_CHANNEL_OP), "i" (BREAKIMM)
: "r2", "r8", "memory");

}

C.2 Hypercall Handlers in the Hypervisor

int
ia64_hypercall (struct pt_regs *regs)
{

struct vcpu *v = (struct domain *) current;
struct ia64_sal_retval x;
unsigned long *tv, *tc;

switch (regs->r2) {
case FW_HYPERCALL_PAL_CALL:

//printf("*** PAL hypercall: index=%d\n",regs->r28);
//FIXME: This should call a C routine
x = pal_emulator_static(regs->r28);
if (regs->r28 == PAL_HALT_LIGHT) {

do_sched_op(SCHEDOP_yield);
//break;

}
regs->r8 = x.status; regs->r9 = x.v0;
regs->r10 = x.v1; regs->r11 = x.v2;
break;

(...)

case __HYPERVISOR_dom_mem_op:
#ifdef CONFIG_VTI

regs->r8 = do_dom_mem_op(regs->r14, regs->r15,
regs->r16, regs->r17, regs->r18);

#else
/* we don’t handle reservations; just return success */
regs->r8 = regs->r16;

#endif
break;

case EVENT_CHANNEL_OP: // Evtchn hypercall
evtchn_op_t* op = regs->r3;
do_event_channel_op(op);

default:
printf("unknown hypercall %x\n", regs->r2);
regs->r8 = (unsigned long)-1;

}
return 1;

72

}

C.3 Privileged Operation Counters

long get_privop_counts(char *s, long n)
{

register long r32 asm("in0") = (unsigned long)s;
register long r33 asm("in1") = n;
register long r8 asm("r8");
asm volatile("mov r2=%0; break %1;"

:: "i" (GET_PRIVOP_CNT_HYPERCALL), "i" (BREAKIMM)
: "r2", "r8", "memory");

return r8;
}

long zero_privop_counts(char *s, long n)
{

register long r32 asm("in0") = (unsigned long)s;
register long r33 asm("in1") = n;
register long r8 asm("r8");
asm volatile("mov r2=%0; break %1;"

:: "i" (ZERO_PRIVOP_CNT_HYPERCALL), "i" (BREAKIMM)
: "r2", "r8", "memory");

return r8;
}

C.4 Paravirtualization

IA64FAULT vcpu_get_psr(VCPU *vcpu, UINT64 *pval)
{

UINT64 psr;
struct ia64_psr newpsr;

// TODO: This needs to return a "filtered" view of
// the psr, not the actual psr. Probably the psr needs
// to be a field in regs (in addition to ipsr).
__asm__ __volatile ("mov %0=psr;;" : "=r"(psr) :: "memory");
newpsr = *(struct ia64_psr *)&psr;
if (newpsr.cpl == 2) newpsr.cpl = 0;
if (PSCB(vcpu,interrupt_delivery_enabled)) newpsr.i = 1;
else newpsr.i = 0;
if (PSCB(vcpu,interrupt_collection_enabled)) newpsr.ic = 1;
else newpsr.ic = 0;
*pval = *(unsigned long *)&newpsr;

73

return IA64_NO_FAULT;
}

74

Bibliography

[And04] Rune J. Andresen, Virtual machine monitors, http:
//openlab-mu-internal.web.cern.ch/openlab-mu-internal/
Documents/Reports/Technical/Summer%20Students/vmm.pdf, Aug
2004.

[B+03] Paul Barham et al., Xen and the art of virtualization, SOSP’03,
October 2003, http://www.cl.cam.ac.uk/Research/SRG/netos/
papers/2003-xensosp.pdf.

[BA04] H̊avard K. F. Bjerke and Rune J. Andresen, Virtualization in clusters,
http://www.idi.ntnu.no/~havarbj/clust_virt.pdf, Nov 2004.

[BB03] H̊avard K. F. Bjerke and Christoffer Bakkely, Multiprocessor architec-
ture overview, http://www.idi.ntnu.no/~havarbj/dmark/index.
html, April 2003.

[BC02] Daniel P. Bovet and Marco Cesati, Understanding the Linux kernel,
second ed., O’reilly & Associates, Inc., Dec 2002.

[Bje04] H̊avard K. F. Bjerke, Grid survey, http://www.idi.ntnu.no/
~havarbj/grid_survey/grid_survey.pdf, Aug 2004.

[boc05] Bochs, http://bochs.sourceforge.net/, July 2005.

[CH05] Matthew Chapman and Gernot Heiser, Implementing transparent
shared memory on clusters using virtual machines, USENIX 2005,
General Track, April 2005, pp. 383–386.

[cpi05] Gelato at UNSW WiKi, http://www.gelato.unsw.edu.au/
IA64wiki/, July 2005.

[DC99] Kenneth J. Duda and David R. Cheriton, Borrowed-virtual-time
(BVT) scheduling: supporting latency-sensitive threads in a general-
purpose scheduler., SOSP, 1999, pp. 261–276.

[E+98] Richard J. Enbody et al., Performance monitoring in advanced com-
puter architecture, Workshops on Computer Architecture Education
1998, Jun 1998.

[EM00] Stéphane Eranian and David Mosberger, The linux/ia64 project: ker-
nel design and status update, http://www.hpl.hp.com/techreports/
2000/HPL-2000-85.pdf.

75

http://openlab-mu-internal.web.cern.ch/openlab-mu-internal/Documents/Reports/Technical/Summer%20Students/vmm.pdf
http://openlab-mu-internal.web.cern.ch/openlab-mu-internal/Documents/Reports/Technical/Summer%20Students/vmm.pdf
http://openlab-mu-internal.web.cern.ch/openlab-mu-internal/Documents/Reports/Technical/Summer%20Students/vmm.pdf
http://www.cl.cam.ac.uk/Research/SRG/netos/papers/2003-xensosp.pdf
http://www.cl.cam.ac.uk/Research/SRG/netos/papers/2003-xensosp.pdf
http://www.idi.ntnu.no/~havarbj/clust_virt.pdf
http://www.idi.ntnu.no/~havarbj/dmark/index.html
http://www.idi.ntnu.no/~havarbj/dmark/index.html
http://www.idi.ntnu.no/~havarbj/grid_survey/grid_survey.pdf
http://www.idi.ntnu.no/~havarbj/grid_survey/grid_survey.pdf
http://bochs.sourceforge.net/
http://www.gelato.unsw.edu.au/IA64wiki/
http://www.gelato.unsw.edu.au/IA64wiki/
http://www.hpl.hp.com/techreports/2000/HPL-2000-85.pdf
http://www.hpl.hp.com/techreports/2000/HPL-2000-85.pdf

[Era05] Stéphane Eranian, Perfmon, http://www.hpl.hp.com/research/
linux/perfmon/, June 2005.

[F+04a] Keir Fraser et al., Reconstructing I/O, http://www.cl.cam.ac.uk/
TechReports/UCAM-CL-TR-596.pdf.

[F+04b] Keir Fraser et al., Safe hardware access with the Xen virtual machine
monitor.

[FK] Ian Foster and Carl Kesselman (eds.), The GRID: Blueprint for a new
computing infrastructure.

[G+05] Charles Gray et al., Itanium—a system implementor’s tale, USENIX
2005, General Track, Apr 2005, pp. 265–278.

[HC05] Hannelore Hämmerle and Nicole Crémel, LHC grid tackles multiple
service challenges, CERN Courier 45 (2005), 15.

[Hud05] Paul Hudson, It’s all about Xen, Linux Format 67 (2005), 52–59.

[Inta] Intel, IA-32 intel architecture software developer’s manual, http://
developer.intel.com/design/pentium4/manuals/index_new.htm.

[Intb] Intel, Intel itanium architecture software developer’s manual, http:
//www.intel.com/design/itanium/manuals/iiasdmanual.htm.

[Jar99] Sverre Jarp, Ia-64 architecture: A detailed tutorial, http://cern.ch/
sverre/IA64_1.pdf, November 1999.

[K+04] Ron Kalla et al., IBM Power5 chip: A dual-core multithreaded proces-
sor, IEEE Micro 24 (2004), 40–47.

[KF91] Nancy L. Kelem and Richard J. Feiertag, A separation model for vir-
tual machine monitors, Research in Security and Privacy, IEEE, May
1991, pp. 78–86.

[l4k05a] Afterburning and the accomplishment of virtualization, http://l4ka.
org/projects/virtualization/afterburn/whitepaper.pdf, April
2005.

[l4k05b] The l4ka project, http://l4ka.org/, June 2005.

[lhc05] What’s next at cern?, http://public.web.cern.ch/Public/
Content/Chapters/AboutCERN/CERNFuture/WhatLHC/WhatLHC-en.
html, June 2005.

[MC04] Daniel J. Magenheimer and Thomas W. Christian, vBlades: Optimized
paravirtualization for the Itanium processor family.

[ME02] David Mosberger and Stéphane Eranian, IA-64 Linux kernel design
and implementation, Prentice Hall, 2002.

[mer05] Mercurial distributed SCM, http://www.selenic.com/mercurial/,
July 2005.

76

http://www.hpl.hp.com/research/linux/perfmon/
http://www.hpl.hp.com/research/linux/perfmon/
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-596.pdf
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-596.pdf
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://www.intel.com/design/itanium/manuals/iiasdmanual.htm
http://www.intel.com/design/itanium/manuals/iiasdmanual.htm
http://cern.ch/sverre/IA64_1.pdf
http://cern.ch/sverre/IA64_1.pdf
http://l4ka.org/projects/virtualization/afterburn/whitepaper.pdf
http://l4ka.org/projects/virtualization/afterburn/whitepaper.pdf
http://l4ka.org/
http://public.web.cern.ch/Public/Content/Chapters/AboutCERN/CERNFuture/WhatLHC/WhatLHC-en.html
http://public.web.cern.ch/Public/Content/Chapters/AboutCERN/CERNFuture/WhatLHC/WhatLHC-en.html
http://public.web.cern.ch/Public/Content/Chapters/AboutCERN/CERNFuture/WhatLHC/WhatLHC-en.html
http://www.selenic.com/mercurial/

[Moo65] Gordon E. Moore, Cramming more components onto integrated cir-
cuits, Electronics 38 (1965).

[msv05] Microsoft Virtual PC, http://www.microsoft.com/windows/
virtualpc/default.mspx, July 2005.

[Mun01] Jay Munro, Virtual Machines & VMware, part I, http://www.
extremetech.com/article2/0,1558,10403,00.asp.

[P0̈4] Herbert Pötzl, Linux-vserver technology, http://linux-vserver.
org/Linux-VServer-Paper.

[Pet05] Mikael Pettersson, Perfctr, http://www.csd.uu.se/~mikpe/linux/
perfctr/, June 2005.

[qem05] Qemu, http://fabrice.bellard.free.fr/qemu/, July 2005.

[Ros04] Mendel Rosenblum, The reincarnation of virtual machines, Queue 5
(2004), 34–40.

[Sha05] Stephen Shankland, Xen lures big-name endorsements, CNET
News.com (2005), http://news.com.com/Xen+lures+big-name+
endorsements/2100-7344_3-5581484.html.

[sim05a] Simics, http://www.virtutech.com/, July 2005.

[sim05b] Simplescalar, http://www.simplescalar.com/, July 2005.

[Sin04] Amit Singh, An introduction to virtualization, http://www.
kernelthread.com/publications/virtualization/.

[slc05] Cern linux pages, http://linux.web.cern.ch/linux/, June 2005.

[Smo02] Mark Smotherman, Understanding EPIC architectures and implemen-
tations, ACMSE2002, Apr 2002.

[Tur02] Jim Turley, 64-bit CPUs: What you need to know, http://
www.extremetech.com/article2/0,1558,1155594,00.asp, Febru-
ary 2002.

[U+05] Rich Uhlig et al., Intel virtualization technology, Computer (2005),
48–56.

[vmw05] Vmware, http://www.vmware.com/, July 2005.

[W+02] Andrew Whitaker et al., Denali: Lightweight virtual machines for dis-
tributed and networked applications, Tech. report, University of Wash-
ington, 2002, http://denali.cs.washington.edu/pubs/distpubs/
papers/denali_usenix2002.pdf.

[win05] Wine HQ, http://www.winehq.com/, July 2005.

[Xen05] The Xen Team, Xen interface manual, 2005, Xen programming inter-
face documentation—LATEX source files included in the Xen develop-
ment source distribution.

77

http://www.microsoft.com/windows/virtualpc/default.mspx
http://www.microsoft.com/windows/virtualpc/default.mspx
http://www.extremetech.com/article2/0,1558,10403,00.asp
http://www.extremetech.com/article2/0,1558,10403,00.asp
http://linux-vserver.org/Linux-VServer-Paper
http://linux-vserver.org/Linux-VServer-Paper
http://www.csd.uu.se/~mikpe/linux/perfctr/
http://www.csd.uu.se/~mikpe/linux/perfctr/
http://fabrice.bellard.free.fr/qemu/
http://news.com.com/Xen+lures+big-name+endorsements/2100-7344_3-5581484.html
http://news.com.com/Xen+lures+big-name+endorsements/2100-7344_3-5581484.html
http://www.virtutech.com/
http://www.simplescalar.com/
http://www.kernelthread.com/publications/virtualization/
http://www.kernelthread.com/publications/virtualization/
http://linux.web.cern.ch/linux/
http://www.extremetech.com/article2/0,1558,1155594,00.asp
http://www.extremetech.com/article2/0,1558,1155594,00.asp
http://www.vmware.com/
http://denali.cs.washington.edu/pubs/distpubs/papers/denali_usenix2002.pdf
http://denali.cs.washington.edu/pubs/distpubs/papers/denali_usenix2002.pdf
http://www.winehq.com/

	Introduction
	Virtualization in the Grid

	Background
	Commodity Computer Architecture
	Interrupts
	Privilege Separation
	Memory Management

	The x86 Architecture
	Memory Management
	Process Switching
	The Floating Point Unit
	Interrupts

	The IA-64 Architecture
	Key Features
	Registers
	Hardware Abstraction
	Interrupts
	Memory Management
	The Performance Monitoring Unit

	Linux
	Interrupts
	Time
	Processes
	Kernel Entry & Exit
	Performance Monitoring

	Virtualization
	Virtual Machine Monitors

	Xen Virtual Machine Monitor
	Paravirtualization
	Event Handling
	Memory Management
	Time

	Analysis
	Virtualization on Intel Architecture
	The Xen Hypervisor
	Para-virtualization
	System Startup
	Memory Management
	Hypercalls
	Event Channels
	Time and Scheduling

	IA-64 Implementation
	Analysis
	Privilege-Sensitive Instructions
	Optimized Para-virtualization
	Transparent Para-virtualization
	Memory Management
	Hypercalls
	Virtual Hash Page Table
	Performance Monitoring

	Para-virtualization
	Optimized Para-virtualization
	Memory Management
	Firmware Interface Emulation
	Events
	Further Work

	Performance Analysis
	Experimental Environment
	Methodology
	Build Benchmark
	Instrumentation

	Results
	Build Benchmark
	Instrumentation

	Related Work
	Intel Virtualization Technology

	Conclusion
	Registers
	Some Essential x86 Registers
	Some Essential IA-64 Registers

	Instruction Set Architectures
	Some Essential x86 Instructions
	Some Essential IA-64 Instructions

	Source Code
	Event Channel Hypercall
	Hypercall Handlers in the Hypervisor
	Privileged Operation Counters
	Paravirtualization

