
Abstract

Today, more and more applications are web based. As these systems are getting
larger and larger, the need for testing them is increasing. XP and other agile
methodologies stress the importance of test driven development and automati-
cally testing at all levels of testing. There exists a few open source automatical
testing frameworks for web applications’ features. These are, however, rather
poor when it comes to usability, efficiency and quality factors.

This project has created a tool for automatic acceptance testing, called AutAT,
which aimes at being an improvement when compared to the previous tools’
testing features. The tool has been empirically tested to verify that it is better
when it comes to the parameters usability, efficiency and quality. The results
from this test clearly show that AutAT is superior to available state of the art
open source tools for acceptance testing.

Keywords: AutAT, Automatic Acceptance Test, Web Application, Feature
Testing Tool, Test Driven Development

i

Preface

This master thesis documents the work done by Stein K̊are Skytteren and Trond
Marius Øvstetun from January to July 2005. This thesis is related to the
BUCS (BUsiness-Critical Software) project run by the Department of Computer
Science and Information Science (IDI) at the Norwegian University of Science
and Technology (NTNU). It is also related to Bekk Consulting AS (BEKK)
and focus on open source software through their BEKK’s Open Source Software
(BOSS) projects.

We would like to thank Professor Tor St̊alhane at IDI, NTNU and Trond Arve
Wasskog and Christian Schwarz at Bekk Consulting AS for all their guidance
and invaluable feedback during our work on this thesis. We really appreciate
their time and efforts helping us.

We would also like to thank the participants in our test session: Tore Aabakken,
Ola Sætrom, Arne Johan Hestnes, Thor Marius Henriksen, Øyvind Rød, Frode
Hauso, Carl-Henrik Wolf Lund and Michael Sars Norum.

Trondheim, July 1, 2005

Stein K̊are Skytteren Trond Marius Øvstetun

iii

Contents

I Introduction 1

1 Motivation 3

2 Problem Definition 4

3 Project Context 5

4 Readers Guide 6

5 Project Process 8

6 Research Question and Method 11
6.1 Goal . 12
6.2 Questions . 13
6.3 Metrics . 14

II Prestudy 25

7 eXtreme Programming – XP 27
7.1 Values . 28
7.2 Principles and Practices . 29

8 Testing 31
8.1 V-model . 31
8.2 Different types of testing . 33

8.2.1 Black Box Testing . 33
8.2.2 White Box Testing . 34
8.2.3 Human Testing . 34

8.3 Extreme testing – Test Driven Development 35
8.4 Testing Web Applications . 36
8.5 Summary . 37

9 State of the Art - Existing Testing Technologies 38
9.1 xUnit . 38
9.2 JUnit . 39

9.2.1 jWebUnit . 40

v

9.2.2 HTMLUnit . 41
9.3 FIT . 42

9.3.1 WebFixture . 43
9.3.2 HTMLFixture . 43

9.4 FitNesse . 44
9.5 Selenium . 46
9.6 Canoo WebTest . 46
9.7 Summary and Comparison . 48

10 Technology Platform 50
10.1 Web . 50
10.2 Standalone . 51
10.3 Eclipse Plugin . 51

10.3.1 RCP - Rich Client Platform 52
10.4 Summary - The Choice . 52

11 The Eclipse Architecture 53
11.1 The Platform Runtime and Plugin Architecture 54

11.1.1 The Workbench, SWT and JFace 55
11.1.2 Workspaces . 56

11.2 GEF . 56
11.3 The Team API . 57

12 The Graphical Editor Framework 58
12.1 Model-View-Controller . 59
12.2 Command . 60
12.3 Chain of Responsibility . 61
12.4 State . 62
12.5 Abstract Factory . 62
12.6 Factory Method . 63

III Contribution 65

13 Requirements 67
13.1 Vision . 67
13.2 User Stories . 68

14 Design 70
14.1 Domain model . 70
14.2 Architecture . 73

14.2.1 Using the File System . 75
14.2.2 AutAT Internals . 76

15 Implementation 80
15.1 AutAT Common . 80
15.2 AutAT Core . 81

15.2.1 XML Schemas . 82

15.3 AutAT Exporter . 84
15.4 AutAT UI . 85
15.5 AutAT Software Metrics . 87

16 Testing 90

17 User Documentation 92
17.1 Installation . 92
17.2 Usage . 93

18 User Testing Session 98
18.1 Background . 98
18.2 FitNesse . 98
18.3 AutAT . 99
18.4 Evaluation . 99

IV Evaluation 101

19 Research Analysis and Goal Attainment 103
19.1 Threats to Validity . 103
19.2 Measurements . 104
19.3 Answers . 108
19.4 Goal Attainment . 111

20 Discussion 113
20.1 AutAT Tool . 113

20.1.1 Test Framework . 113
20.1.2 Eclipse . 114
20.1.3 GEF . 114
20.1.4 AutAT Itself . 114

20.2 Experiment . 114
20.3 Personal Experiences . 116

21 Conclusion 117

22 Future Work 118
22.1 Future Work with the AutAT Tool 118
22.2 Future Empirical Experiments . 119
22.3 Future Work at NTNU and BEKK 119

V Appendix 121

A Questionnaire for AutAT testing 123
A.1 Background and Experience . 123
A.2 FitNesse . 123

A.2.1 Time Usage . 123

A.2.2 Statements . 124
A.3 AutAT . 124

A.3.1 Time Usage . 125
A.3.2 Statements . 125

A.4 Comparison: FitNesse versus AutAT 126
A.4.1 Statements . 126

B Testing Exercises 128
B.1 Exercise 1: Test the Front Page 128
B.2 Exercise 2: List All Artists . 128
B.3 Exercise 3: Register New Artist 129
B.4 Exercise 4: View Info About Artist and Register a New Album . 129
B.5 Exercise 5: Repeating Checks . 129

C FitNesse Commands 131
C.1 General commands in FitNesse 131
C.2 Commands for using jWebUnit with FitNesse 131

C.2.1 Checks for text and links 131
C.2.2 Navigation commands . 132
C.2.3 Checks for forms . 132
C.2.4 Enter values to a form . 132

C.3 Example . 132

D Statistical Background 133
D.1 Analysing the Number of Testers 133
D.2 Binary Probability Distribution 134

E User feedback 135
E.1 M1 - Fit Knowledge . 135
E.2 M2 - AutAT Time Usage . 136
E.3 M3 - FitNesse Time Usage . 136
E.4 Time Analysis . 136
E.5 M4 - AutAT’s Ease of Learning 138
E.6 M5 - FitNesse’s Ease of Learning 139
E.7 M6 - Compared Ease of Learning 139
E.8 Analyzing Ease of Learning . 140
E.9 M7 - AutAT’s Ease of Use . 140
E.10 M8 - FitNesse’s Ease of Use . 141
E.11 M9 - Compared Ease of Use . 141
E.12 Analyzing Ease of Use . 141
E.13 M10 - AutAT’s Syntax Complexity 142
E.14 M11 - FitNesse’s Syntax Complexity 142
E.15 M12 - Compared Syntax Complexity 143
E.16 Analyzing Syntax Complexity . 143
E.17 M13 - AutAT’s Overview . 144
E.18 M14 - FitNesse’s Overview . 144
E.19 M15 - Compared Overview . 145

E.20 Analyzing Overview . 145
E.21 M16 - Modifying Tests . 146
E.22 Analyzing Modifying Tests . 146
E.23 M17 - AutAT Errors . 147
E.24 M18 - FitNesse Errors . 147
E.25 Error Analysis . 147
E.26 M19 - User Feedback . 149

E.26.1 FitNesse . 149
E.26.2 AutAT . 150
E.26.3 Comparison: FitNesse versus AutAT 152

F XML schemas 153

List of Figures

5.1 Project Process . 9

6.1 GQM Method . 12
6.2 GQM-Tree Example . 12

7.1 Cost of change . 27

8.1 V-model of testing . 32

9.1 The xUnit Architecture. 39
9.2 FitNesse example using WebFixture 45

11.1 The Eclipse architecture . 54
11.2 A sample view of the Eclipse Workbench 55

12.1 GEF Dependencies . 58
12.2 An overview of the MVC pattern in GEF. 60
12.3 The most important methods in the GEF Command class. 60
12.4 The AbstractEditPolicy class from GEF 61
12.5 The Tool interface with its most important methods. 62
12.6 The EditPartFactory interface in GEF. 62
12.7 The CreationFactory interface in GEF. 63

14.1 Top-level domain model . 71
14.2 The form and form elements. 72
14.3 Transitions . 72
14.4 StartPoint . 73
14.5 The AutAT plugin and dependencies in Eclipse 74
14.6 Example AutAT project hierarchy 75
14.7 The internal structure of the AutAT plugin 76
14.8 The structure of the UI package 77
14.9 The structure of the GEF package 78

15.1 Central classes in the Common package 81
15.2 A full test shown with the AutAT plugin 86
15.3 The wizard when creating a new test 88
15.4 The start point editor . 89

17.1 New Update Site . 93

x

17.2 Select AutAT . 93
17.3 The AutAT Perspective . 94
17.4 Provide a Base URL . 94
17.5 The AutAT Navigator . 95
17.6 Create a new test . 95
17.7 Create a new Start Point . 96
17.8 An empty test . 96
17.9 Provide input values to a form 97
17.10The final test . 97

18.1 Test Session . 99

List of Tables

6.1 Metric 1 – FIT knowledge . 15
6.2 Metric 2 – AutAT time usage . 15
6.3 Metric 3 – FitNesse time usage 15
6.4 Metric 4 – AutAT’s ease of learning 16
6.5 Metric 5 – FitNesse’s ease of learning 16
6.6 Metric 6 – Compared ease of learning 17
6.7 Metric 7 – AutAT’s ease of use 17
6.8 Metric 8 – FitNesse’s ease of use 18
6.9 Metric 9 – Compared ease of use 18
6.10 Metric 10 – AutAT’s syntax complexity 19
6.11 Metric 11 – FitNesse’s syntax complexity 19
6.12 Metric 12 – Compared syntax complexity 20
6.13 Metric 13 – AutAT’s overview . 20
6.14 Metric 14 – FitNesse’s overview 21
6.15 Metric 15 – Compared overview 21
6.16 Metric 16 – Modifying tests . 22
6.17 Metric 17 – AutAT errors . 22
6.18 Metric 18 – FitNesse errors . 23
6.19 Metric 19 – User feedback . 23
6.20 Relationship between Questions and Metrics 24

9.1 Basic FIT example showing division 42
9.2 WebFixture example . 43
9.3 HTMLFixture example . 44
9.4 Selenium example . 47

15.1 Key software metrics . 87

D.1 Number of testers analysis . 133

xii

List of Listings

9.1 jWebUnit example . 40
9.2 HTMLUnit example . 41
9.3 Canoo WebTest example . 47
15.1 Reading a Test from XML (from TestConverter.java) 82
15.2 Saving a Test to XML (from TestConverter.java) 82
15.3 XML schema for start points . 83
15.4 XML schema for tests . 84
15.5 The abstract class DirectoryWalker 85
15.6 Implementation of test conversion for WebFixture 85
F.1 XML schema for start points . 153
F.2 XML schema for tests . 154

xiii

Part I

Introduction

1

This part is the background and foundation for the project. It starts out with
a chapter about motivation before it focuses on the problem definition, the
project context, the readers guide and the project’s process in next chapters.
The final chapter is a description of the project’s research question and method.

2

Chapter 1

Motivation

The use of the eXtreme Programming (XP) and other agile methods for software
development has now been widely adopted. Most of these methods stress the
use of Test Driven Development (TDD). TDD states that the tests for the
software system under development are written before the actual software, and
as far as possible the tests must be automatic.

The tests to write come in two different categories. The first category is Accep-
tance tests. The Acceptance tests are like a living requirements document for
the system, and the customer is responsible for both writing and maintaining
these tests. The acceptance tests are tests for the software system as a whole,
when all are accepted, the system is considered finished. The second category
consist of Unit and Integration tests. These tests are the responsibility of the
developers, and test smaller parts of the software system and the cooperation
between the parts.

Many tools and frameworks exist for creating and running unit and integration
tests. With regards to acceptance tests, the collection of tools and frameworks
is smaller. Some exist, but are in general difficult for the customers to use,
understand and trust. As the goal of XP is to have the customer or end user
write, run and maintain the tests this situation is not satisfactory.

Many of the systems developed using XP are web-based systems. Testing of such
systems has traditionally been done manually, using hours to input data and
check for correct output. Clearly, a method for automating most of these tests
can save both money and time for the customer as well as for the developing
organization.

3

Chapter 2

Problem Definition

The aim of this master thesis is to develop a new tool that will serve as proof
of concept for creating and maintaining acceptance tests for web-based applica-
tions’ features. The tool will be called“AutAT – Automatic Acceptance Testing
of Web Applications”. An important part of this thesis is to explore the domain
of testing web applications and address potential improvements in the field of
study.

The tool is to be empirically tested to check whether or not it is an improvement
with respect to usability, quality and efficiency compared with state of the art
tools. The main focus is software developers working with test driven develop-
ment and open source software as it is an important focus for BEKK. We will
use the Goal-Question-Metric method to identify a good set of questions and
metrics to support our goal.

This tool as a proof of concept should be a basis for a larger, future tool for
developing web acceptance tests and distributed freely as open source software
as part of the BEKK Open Source Software (BOSS) site1.

1http://boss.bekk.no

4

Chapter 3

Project Context

This project is carried out partly at the Software Engineering Group which is
a part of the Department of Computer and Information Science at the Norwe-
gian University of Science and Technology (NTNU) in Trondheim, where it is
associated with the BUsiness-Critical Software1 (BUCS) project. The BUCS
project is funded by the Norwegian Research Council. It works closely together
with Norwegian IT-industry and do research on how to develop methods to im-
prove support for development, operation and maintenance of business-critical
systems/software.

This project is also carried out in cooperation with Bekk Consulting AS (BEKK)
which is a leading Norwegian business consulting and technology service com-
pany. BOSS2 is BEKK’s Open Source Software website where they host infor-
mation about their Open Source projects. BEKK dedicates a lot of their time
to create useful open source tools, and BOSS is a way of giving back to the
Open Source Software community. Most projects at BEKK create web appli-
cations, and tey try to use the XP methods. XP requires automated testing,
but automatic acceptance testing web applications is difficult as it is poorly
supported or has low usability within today’s tools. A new and better tool for
the purpose will make the process of creating and maintaining tests easier.

1http://www.idi.ntnu.no/grupper/su/bucs/
2http://boss.bekk.no

5

Chapter 4

Readers Guide

This chapter contains a brief overview of the entire report, giving a short de-
scription of the issues discussed in each part.

Part I – Introduction

The first part sets the focus for the rest of the document. It contains the
motivation, problem definition, context, this readers guide and an overview of
the project’s process. It ends with an overview of the project’s research question
and method.

Part II – Prestudy

The prestudy is the background information for this project. The main topics
here are eXtreme Programming (XP), testing and state of the art testing tech-
nologies. It also evaluates technology platforms for AutAT before it looks at
the Eclipse architecture and the Graphical Editing Framework (GEF).

Part III – Contribution

The contribution focuses on the development of AutAT. It starts out with an
chapter on requirements, before it goes on with design, implementation and
testing. A short user documentation for the system is provided as an introduc-
tion to AutAT’s use. The final chapter in this part describes the user testing
session.

Part IV – Evaluation

This part first addresses the research question and goal attainment which is
connected to the research question and method in the first part and the user

6

CHAPTER 4. READERS GUIDE

testing session described in the final chapter of Part III. This part also discusses
this project, before it concludes and presents some suggestions for future work.

Part V – Appendix

The appendix contains the questionnaire for the AutAT test session, a set of
testing exercises and FitNesse commands used in the testing session in addition
a part on statistical background and user feedback with some analysis. Final
the complete XML schemas used in the AutAT file system are shown.

The CD

The CD that is delivered with this report contains the source code for the
AutAT Eclipse plugin. It also contains a folder with JavaDoc created from the
source code. For mor information, see the readme.txt file in the root folder.

7

Chapter 5

Project Process

The project process has been influenced by eXtreme Programming (XP), even
though the graphical overview of the project process shown in Figure 5.1 seems
more like a waterfall model. However, the implementation phase will be per-
formed as a series of iterations in accordance with the XP method. The repre-
sentation of the phases or activities in the figure are not meant to be “correctly”
sized and spaced according to their duration. The figure merely shows the
activities that have been performed during the project’s lifespan.

The activities in Figure 5.1 are:

• Start – The project started out with a set of meetings with the project
stakeholders, to set the direction of this project.

• Problem definition – Working out the problem definition found in
Chapter 2.

• XP/agile methods – Getting to know XP and agile methods. An
overview of XP is presented in Chapter 7.

• Testing – Getting to know the domain of testing better. There is an brief
overview of testing in Chapter 8.

• State of the Art – A survey looking into and evaluating the most popular
open source testing frameworks with an emphasis on acceptance testing
web applications. The results are described in Chapter 9.

• User stories – This phase looks at the requirements for the application.
These are presented as user stories in Chapter 13.

• Domain analysis – The domain analysis elaborates on what tests for
web applications consist of, and how they can best be represented to the
users.

• User test design – Doing the basis for how we would like to empirically
test the system, presented in Chapter 6.

8

CHAPTER 5. PROJECT PROCESS

Figure 5.1: The Project Process

9

CHAPTER 5. PROJECT PROCESS

• Paper test – Paper tests are useful to early communicate and discuss
design choices and how the finished system can be. A session with paper
prototypes showing the results of the domain analysis was held before the
actual implementation started.

• Implementation choices – The application can be implemented using
several technologies. This phase tries to look at possibilities and finally
come up with a design to be implemented.

• GEF – The Graphical Editor Framework (GEF) is a complex framework.
Getting to understand its workings and how it integrates into Eclipse was
quite a process. This activity took place in parallell with the implemen-
tation of the application, in a “learning by doing”-fasion. An overview of
Eclipse and GEF is presented in Chapter 11 and Chapter 12 respectively.

• Implementation – This phase is the actual implementation phase. This
phase is done in “cooperation” with many of the nearby phases. It also
involves continuous testing of the system.

• User testing – This is the data collection phase for the empirical study
which is designed in the user test design phase. An overview of this session
is given in Chapter 18.

• Test result analysis – The user testing creates a lot of data that has to
be analyzed and is used for evaluating this project.

• Documentation – For this tool to be used for others than its developers
it should contain a user documentation (see Chapter 17).

• Presentation – It is natural to present the results from the project for
representatives from BEKK. They want to see what has been done, and
be able to use the results of the project in the future.

• Report – Under the whole process the report is always in mind.

• Delivery – Finally the report and the software is delivered to BEKK as
well as to NTNU. Hopefully, the delivery will not be the end of the project
as the intention is for it to be an open source project and live on and be
further developed in the future.

10

Chapter 6

Research Question and
Method

GQM (Goal-Question-Metric) is a method that can be used to build research
questions in a structured and organized matter. The method was originally
developed by V. Basili and D. Weiss, and expanded with concepts from D.
Rombach [21]. There are many years of academic research and practical expe-
rience behind the method and it is widely used in the field of software process
improvement. Here GQM is used for structuring the projects research and the
software evaluation.

The GQM-method can be described as shown in Figure 6.1. It contains four
phases as described by [21]:

• Planing – In this phase the project is selected, defined, characterised,
and planned. The result is a project plan.

• Definition – The goal, questions, metrics and hypotheses are defined and
documented.

• Data collection – During this phase the actual data collection is per-
formed. This results in a set of collected data.

• Interpretation – The collected data is processed with respect to the
defined metrics into measurement results. This provides answers to the
defined questions, which ultimately leads to an evaluation of the goal
attainment.

The method uses a measurement model called a GQM-tree. An example is
shown in Figure 6.2. There are three levels in the GQM-tree [20]:

• Goals – Describe the purpose of the measurements.

• Questions – Provide the answers supporting the goal when they are
answered.

11

CHAPTER 6. RESEARCH QUESTION AND METHOD

Figure 6.1: An overview of the GQM Method. Source: Solingen et. al. [21]

• Metrics – Associated with one or several questions. They are used for
answering the questions in a measurable way.

Figure 6.2: GQM-Tree Example.

The next section describes the project goal. Afterwards, we present the ques-
tions and metrics, used in the analysis in Chapter 19.

6.1 Goal

According to St̊alhane[19], GQM uses a standard template for defining its goal
:

Analyze object(s) of study
for the purpose of intention
with respect to focus
as seen from perspective point of view
in the context of environment.

There might be several goals for one project. However, for this project we have
defined only one GQM-goal. It is rather large as its focus has three aspects.
It might have been better to split it into three different GQM-goals, but for
simplicity we decided to keep it as one.

GOAL:

Analyze AutAT
for the purpose of evaluating it as a prof of concept

12

CHAPTER 6. RESEARCH QUESTION AND METHOD

with respect to usability, quality and efficiency of writing ac-
ceptance tests
as seen from software developers’ point of view
in the context of test driven development of web applications.

6.2 Questions

The GQM questions must, as mentioned earlier in this chapter, contribute to
the goal when answered. We have identified seven questions that support our
goal. These questions are associated with one or several metrics in Section 6.3.
An overview of these associations is given in Table 6.20.

Question 1 Quality

How much does the use of AutAT increase the quality of tests with
respect to a state-of-the-art framework like FitNesse?

In this context, quality is measured by the number of errors in the test file.
Syntactic quality and the number of syntactic errors will be important as well
as semantic errors. By semantic error we check to see if the right checks are
done at the right web page and if the test setup which means having the right
start page, is correct.

This question will be answered with metrics M17 – AutAT errors, and M18 –
FitNesse errors, which will be used to compare AutAT with the state-of-the-
art framework FitNesse. We also believe that the number of FitNesse errors
are effected by the testers knowledge to FIT which is measured by M1 – FIT
knowledge as FitNesse is an extension to FIT.

Question 2 Efficiency

What is the increase in efficiency by developing acceptance test with
AutAT?

It is natural to think of efficiency as the time used to definine different kinds of
tests. By defining the same tests with AutAT and a state-of-the-art framework
like FitNesse, differences in time used can be measured. The metrics used for
answering this question are M2 – AutAT time usage and M3 – FitNesse time
usage. M1 – FIT knowledge will probably affect FitNesse time usage as FitNesse
is an extension to FIT.

Question 3 Usability

How good it the perceived usability of the AutAT test tool?

The perceived usability is measured by M7 – AutAT’s ease of use and M8 –
FitNesse’s ease of use to be able to compare them. M9 – Compared ease of
use is used to see how the testers compare these tools. However, it is not
only the ease of use that will affect the usability. We believe that the syntax
complexity is important as well. So we use M10 – AutAT’s syntax complexity,

13

CHAPTER 6. RESEARCH QUESTION AND METHOD

M11 – FitNesse’s syntax complexity and M12 – compared syntax complexity
for being able to see what the user think about the syntax. The same will
be done with the overview as we believe that being able to get an overview of
the tests will increase the usability. We use M13 – AutAT’s overview, M14 –
FitNesse’s overview and M15 – Compared overview for measuring the overview.
In addition the ability to modify tests are important so M16 – Modifying tests,
is to be considered when deciding upon the question of usability.

Question 4 Learning

How easy does the user feel it is to learn to use AutAT compared
to a state-of-the-art framework like FitNesse?

For measuring how easy an user feel it is to learn AutAT we use M4 – AutAT’s
ease of learning, and M5 – FitNesse’s ease of learning. We will also compare
them by using M6 – Compared ease of learning. The testers prior FIT knowledge
will probably affect the results so M1 is importantm because as mentioned
earlier FitNesse is an extension to FIT.

Question 5 GUI

What are the strengths, weaknesses and possibilities of the AutAT
application and especially its graphical interface?

This question addresses some of the basic user feedbacks that are measured by
M19 – Users feedback. This is important as it focuses on other aspects than
the rest of the questions. It requires a qualitative analysis in order to answer
this question.

These questions are linked to the metrics in the next section in Table 6.20 on
page 24.

6.3 Metrics

The GQM-metrics are used to give answers to the questions by measuring dif-
ferent areas of interest as mentioned earlier. The metrics are listed in the tables
6.1 to 6.19.

14

CHAPTER 6. RESEARCH QUESTION AND METHOD

Name
M1: FIT knowledge

Definition Experience in using FIT. The user evaluates his or
hers experience on a 4 point scale:

• 4 - Using it at a daily basis.
• 3 - Tried it.
• 2 - Heard about it.
• 1 - Unknown.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet where the tester uses the
scale presented in the definition.

Expected value Generally expecting none or little knowledge and
experience and should as a result average some-
where between 1 and 2.

Table 6.1: Metric 1 – FIT knowledge

Name
M2: AutAT time usage

Definition Time spent on defining five different exercises in Au-
tAT. The exercises can be found in Appendix B.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Measure the time in minutes a user spend on defin-
ing five different types of tests in AutAT.

Expected value AutAT should be quite fast which means no more
than 7 minutes per test.

Table 6.2: Metric 2 – AutAT time usage

Name
M3: FitNesse time usage

Definition Time spent on defining five different exercises in Fit-
Nesse. The exercises can be found in Appendix B.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Measure the time in minutes a user spend on defin-
ing five different types of tests in FitNesse.

Expected value FitNesse should be quite slow, but no more than 10
minutes per test.

Table 6.3: Metric 3 – FitNesse time usage

15

CHAPTER 6. RESEARCH QUESTION AND METHOD

Name
M4: AutAT’s ease of learning

Definition A user’s perceived ease of learning AutAT. It is
evaluated by presenting it as the statement “easy
to learn” when it comes to AutAT upon which the
tester answers on a 4 point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with the statement and the
scale presented in the definition above.

Expected value AutAT should be easy to learn, which means that is
should score on average somewhere between 3 and
4.

Table 6.4: Metric 4 – AutAT’s ease of learning

Name
M5: FitNesse’s ease of learning

Definition A user’s perceived ease of using FitNesse. It is eval-
uated by presenting it as the statement “easy to
learn” when it comes to FitNesse upon which the
tester answers on a 4 point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with the statement and the
scale presented in the definition above.

Expected value FitNesse should be quite difficult to learn which
means that the result should average somewhere
close to 2.

Table 6.5: Metric 5 – FitNesse’s ease of learning

16

CHAPTER 6. RESEARCH QUESTION AND METHOD

Name
M6: Compared ease of learning

Definition A user’s perceived ease of learning AutAT compared
to FitNesse. It is evaluated by presenting it as the
statement ”AutAT is easier and faster to learn than
FitNesse” upon which the tester answers on a 4
point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with a statement and the
scale presented in the definition above.

Expected value AutAT should be easier to learn than FitNesse
which means that the result should average some-
where 3 and 4.

Table 6.6: Metric 6 – Compared ease of learning

Name
M7: AutAT’s ease of use

Definition A user’s perceived ease of using AutAT. It is evalu-
ated by presenting it as the statement “ease of use”
when it comes to AutAT upon which the tester an-
swers on a 4 point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with the statement and the
scale presented in the definition above.

Expected value AutAT should be easy to use, which means that is
should score on average somewhere between 3 and
4.

Table 6.7: Metric 7 – AutAT’s ease of use

17

CHAPTER 6. RESEARCH QUESTION AND METHOD

Name
M8: FitNesse’s ease of use

Definition A user’s perceived ease of using FitNesse. It is eval-
uated by presenting it as the statement“ease of use”
when it comes to FitNesse upon which the tester
answers on a 4 point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with the statement and the
scale presented in the definition above.

Expected value FitNesse should be quite difficult to use which
means that the result should average somewhere
close to 2.

Table 6.8: Metric 8 – FitNesse’s ease of use

Name
M9: Compared ease of use

Definition A user’s perceived ease of using AutAT compared
to FitNesse. It is evaluated by presenting it as the
statement ”AutAT is easier to use than FitNesse”
upon which the tester answers on a 4 point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with a statement and the
scale presented in the definition above.

Expected value AutAT should be easier to use which means that
the result should average somewhere between 3 and
4.

Table 6.9: Metric 9 – Compared ease of use

18

CHAPTER 6. RESEARCH QUESTION AND METHOD

Name
M10: AutAT’s syntax complexity

Definition The perceived complexity of syntax of AutAT. It is
evaluated by presenting it as the statement “simple
syntax” when it comes to AutAT upon which the
tester answers on a 4 point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with a statement and the
scale presented in the definition above.

Expected value AutAT should have an easy syntax which means
that the answers should be better than 3.

Table 6.10: Metric 10 – AutAT’s syntax complexity

Name
M11: FitNesse’s syntax complexity

Definition The perceived complexity of syntax of FitNesse. It
is evaluated by presenting it as the statement “sim-
ple syntax” when it comes to FitNesse upon which
the tester answers on a 4 point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with a statement and the
scale presented in the definition above.

Expected value FitNesse is believed to have a rather poor syntax
and should on average be rated somewhere close to
2.

Table 6.11: Metric 11 – FitNesse’s syntax complexity

19

CHAPTER 6. RESEARCH QUESTION AND METHOD

Name
M12: Compared syntax complexity

Definition The perceived complexity of syntax compared of
AutAT compared to FitNesse. It is evaluated by
presenting it as the statement “AutAT has simpler
syntax than FitNesse” upon which the tester an-
swers on a 4 point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with a statement and the
scale presented in the definition above.

Expected value AutAT should have an easier syntax which mens
that the result should average close to 4.

Table 6.12: Metric 12 – Compared syntax complexity

Name
M13: AutAT’s overview

Definition How well AutAT’s interface is arranged, so it is eas-
ily surveyable. It is evaluated by presenting it as
the statement “easily surveyable” when it comes to
AutAT upon which the tester answers on a 4 point
scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with a statement and the
scale presented in the definition above.

Expected value AutAT should have a well arranged interface so the
result should average close to 4.

Table 6.13: Metric 13 – AutAT’s overview

20

CHAPTER 6. RESEARCH QUESTION AND METHOD

Name
M14: FitNesse’s overview

Definition How well FitNesse’s interface is arranged, so it is
easily surveyable. It is evaluated by presenting it
as the statement “easily surveyable” when it comes
to FitNesse upon which the tester answers on a 4
point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with a statement and the
scale presented in the definition above.

Expected value FitNesse should be rated as a poorly arranged in-
terface so the result should average close to 2.

Table 6.14: Metric 14 – FitNesse’s overview

Name
M15: Compared overview

Definition How well AutAT’s interface is arranged, so it is eas-
ily surveyable, compared to FitNesse. It is eval-
uated by presenting it as the statement “AutAT
is easier surveyed than FitNesse” upon which the
tester answers on a 4 point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with a statement and the
scale presented in the definition above.

Expected value AutAT should have a better arranged interface so
the result should average close to 4.

Table 6.15: Metric 15 – Compared overview

21

CHAPTER 6. RESEARCH QUESTION AND METHOD

Name
M16: Modifying tests

Definition AutAT enables easy modification of tests compared
to FitNesse. It is evaluated by presenting it as the
statement “AutAT tests are easier to modify than
FitNesse tests” upon which the tester answers on a
4 point scale:

• 4 - Agree.
• 3 - Somewhat agree.
• 2 - Somewhat disagree.
• 1 - Disagree.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with a statement and the
scale presented in the definition above.

Expected value AutAT test should be perceived as easier to modify
which means somewhere between 3 and 4 on the
scale.

Table 6.16: Metric 16 – Modifying tests

Name
M17: AutAT errors

Definition Number of errors in tests defined by using AutAT.
Errors counted are semantical and syntactical as ex-
plained in Question 1 – Quality.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Counting the number of errors made by the user in
five tests defined by a user using AutAT.

Expected value AutAT tests should have almost no errors meaning
2 to 4 error totaly as we believe that the graphical
interface prevents most syntactic errors.

Table 6.17: Metric 17 – AutAT errors

22

CHAPTER 6. RESEARCH QUESTION AND METHOD

Name
M18: FitNesse errors

Definition Number of errors in tests defined by using FitNesse.
Errors counted are semantical and syntactical as ex-
plained in Question 1 – Quality.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Counting the number of errors errors made by the
user in five tests defined by a user using FitNesse.

Expected value FitNesse tests should have some errors as tying er-
rors and similar will cause some syntactic errors.

Table 6.18: Metric 18 – FitNesse errors

Name
M19: User feedback

Definition The feedback which the users comes up with after
using the tool for the first time. The reason for this
is to capture aspects that the other questions do
not cover. The emphasis will be on the strengths,
weaknesses and opportunities of AutAT.

When to mea-
sure

During the user test session after the prototype is
finished.

Procedure for
measuring

Using a question sheet with open areas for feedback
on several subject concerning AutAT and its basic
features.

Expected value There may be some bugs, but the main concept is
good. This metric may provide feedback that the
other metrics might not capture.

Table 6.19: Metric 19 – User feedback

The metrics can be linked to the questions according to matrix in Table 6.20.

The results from the data collection and the interpretation will be presented i
Chapter 18.

23

CHAPTER 6. RESEARCH QUESTION AND METHOD

Questions
Metrics Q

1
-

Q
uality

Q
2

-
E

ffi
ciency

Q
3

-
U

sability

Q
4

-
L
earning

Q
5

-
G

U
I

M1 - FIT knowledge X X X X
M2 - AutAT time usage X
M3 - FitNesse time usage X
M4 - AutAT’s ease of learning X
M5 - FitNesse’s ease of learning X
M6 - Compared ease of learning X
M7 - AutAT’s ease of use X
M8 - FitNesse’s ease of use X
M9 - Compared ease of use X
M10 - AutAT’s syntax complexity X
M11 - FitNesse’s syntax complexity X
M12 - Compared syntax complexity X
M13 - AutAT’s overview X
M14 - FitNesse’s overview X
M15 - Compared overview X X
M16 - Modifying tests X
M17 - AutAT errors X
M18 - FitNesse errors X
M19 - User feedback X

Table 6.20: The Relationship between Questions and Metrics.

24

Part II

Prestudy

25

This part is the background information for this project in general and for
the contribution which is the next part in particular. It looks at eXtreme
Programming (XP), testing and state of the art testing technologies before it
evaluates different technology platforms for AutAT. The two last topics in this
part is the Eclipse architecture and the Graphical Editing Framework (GEF).

26

Chapter 7

eXtreme Programming – XP

eXtreme Programming (XP) is a relatively new software development method-
ology. It emerged in the middle of the 1990s, as a result of Kent Beck1 wanting
to try an alternative to the standard waterfall model normally used at the time
(1996) [16]. XP is now the most popular of the agile methodologies.

The main goal of using XP is to lower the cost of change in a development
process. In a normal waterfall model, the cost of change ascends rapidly as
time moves forward. The aim of XP is to keep the cost of change lower. An
illustration of this is given in Figure 7.1.

Figure 7.1: Cost of change

While the traditional waterfall process is a sequential model [22], XP is an
iterative development methodology. The software is developed one piece at a
time, in a series of iterations. Each iteration can be seen as a “mini waterfall
project”. The result of an iteration is the release of new functionality for the
users that can be used right then without waiting for the next iterations. This
leads to each iteration adding business value to the customers. At the end of
all iterations, the developed system is complete.

1http://en.wikipedia.org/wiki/Kent Beck

27

CHAPTER 7. EXTREME PROGRAMMING – XP

XP introduces a set of basic values, principles and practices that tries to make
the project better prepared to handle, and indeed embrace change throughout
the process.

Note that the description of XP in this chapter is based on the revised second
edition of “eXreme Programming explained” by Kent Beck [23] where and the
values, principles and practices have been revised after a few years of experience
with XP.

7.1 Values

XP use five values to help a project team focus on what is most important for
the team (as opposed to the individual developer) and guide the development
process: Communication, Simplicity, Feedback, Courage and Respect.

Communication. It is important to exchange knowledge between project
members. When someone in a team has a problem, it is often likely that some
other team member can think of an easy solution from previous experience. If
not, it will likely be both easier and faster to solve the problem when more than
one person is working on it. When a solution to a problem is shared among all
team members similar problems will be solved more quickly in the future.

Simplicity. The phrase“Do the simplest thing that could possibly work” is one
of the most used guidelines when dealing with XP. The focus is to do exactly
that. The simplest solution that will get the job done. Simple solutions are
easier to comprehend, understand and implement for the project team. The
goal is not to provide a solution for “what may possibly happen tomorrow”,
but design the system for the needs of today and (if need be) change it to
accomodate new demands in the future.

Feedback – is vital to the project progress. The development team needs
feedback from the customers, the system and the team itself. When feedback
is given, the team can adjust to changing circumstances. As circumstances are
always changing, feedback must be a continous activity from the very start of
the project.

Courage will be manifested in many ways, supporting the other values of
XP. One must have the courage to implement the simplest solution, instead
of a more complex one that “might be needed later”. One needs courage to
do something about a problem. One needs courage to speak the truth about
something, in turn enabling good communication. Without a bit of courage
(and encouragement to show it) the other values of XP will be hard to achieve.

Respect is a value that supports the four other of XP. In order to make a
project work, any project with any development methodology, the participants
need to respect one another, what they are doing and the goal they are working
towards. To quote Kent Beck [23, p. 21]:

28

CHAPTER 7. EXTREME PROGRAMMING – XP

If members don’t care about each other and what they are doing,
XP won’t work. If members of a team dont care about a project,
nothing can save it.

7.2 Principles and Practices

The practices of XP are the manifestation of how to behave in a project. They
are down-to-earth advice of how to organize a team and the work to be done.
Practices alone are not worth much. However, when linked to a set of values
they make sense. This linking is done by the set of principles provided by XP.
These principles are described in detail in [23, ch. 5], we will not discuss them
here.

As for the practices of XP, they are taken to extremes in what they say. Not
all practices will suit all teams and organizations, but one of the things about
these practices is that a team may choose to use a subset of them, selecting
the ones which will likely result in the greatest improvement for the them. The
most central practices are described here, for a complete description, see [23,
ch. 7].

Sit together in a space big enough for the whole team. This will allow the
team to communicate easily, and everyone can get help and discuss opinions
and ideas at once.

The Whole Team is all the people, with their individual skills and areas of
expertise necessary for the project to succeed. This team includes represen-
tatives from the customer, someone who can clearify requirements and make
decisions.

Energize work simply means to respect oneself. Don’t work more than you
can be productive, stay home when you are sick. The rationale for this prac-
tice is that a 60 hour week is not necessarily more productive than a 40 hour
week. Indeed, in many cases the extra hours are counter-productive, as well as
demotivating.

Pair programming is about two minds thinking better than one, and two
sets of eyes seeing better than one. The process is a dialog between two people,
taking turns at the keyboard. The effects are clear, pair programmers keep each
other on track, brainstorm efficiently, clarifies ideas and lowers frustration by
taking over when your partner is stuck.

User Stories are short descriptions of functionality visible to the user. “A
user story is the smallest amount of information (a step) necessary to allow
the customer to define a path through the system” [1]. User stories are the
basis for early planning in XP, as opposed to requirements or use cases in more
traditional methodologies. By using stories early and estimating how much
effort it is needed to implement the story, the customer is forced to consider

29

CHAPTER 7. EXTREME PROGRAMMING – XP

which are most important to achieve the business goals the system is meant to
meet, and the cost of implementing each of them.

Short planning cycles, release often leads to more detailed and more accu-
rate plans. XP is a iterative methodology. The first plans are high level, stating
which user stories are to be included in which release. The detailed planning
(and design) of each of these stories are delayed until they are actually needed.
This helps keep the focus on what is important right now, not what is to be
done in three months.

Test-First Programming (or Test Driven Development (TDD)) refers to the
development model in XP. The idea is to write tests for each part of software
before the software itself is implemented. This goes all the way from acceptance
tests at the top, down to unit tests for each low-level module. More on TDD is
given in Section 8.3.

Incremental Design refers to the value of simplicity. We do not make a design
today for what might come next week. If, when the time comes, the design does
not fit, refactor2 the software to make the design fit the new constraints.

Continous integration should be automatic and part of any XP project. An
integration build is performed any time the code base has changed. When
someone updates a part of the software, the software is rebuilt, all tests are
run (unit as well as acceptance tests), and a deployment is performed (if only
to a testing environment). The goal is to avoid problems when integrating
and deploying the software as a whole later. Using traditional methods, there
has often been a problem when integrating the finished modules. When this
integration process starts early, these problem should no longer be problems.

2Refactor – rewrite, redesign or reimplement parts of the already implemented software to
make it better (faster, easier to understand etc.) while still keeping the same functionality.

30

Chapter 8

Testing

Testing is an essential part of any software development process. Many defini-
tions of testing have been used over the years. Some of these focus on testing
as a means to prove that no errors are present in a program or that the soft-
ware does what it is supposed to do. However, neither of them is correct. Any
non-trivial software system will contain bugs [2]. A test can not prove that an
error is not present, it can only prove that an error is present. Even though a
program does what it is supposed to do, it might still be full of errors if it also
does things it is not supposed to do. We have adopted the following definition
of testing software, from [16].

Testing is the process of executing a program with the intent of
finding errors.

This definition of testing leads to the realization of what constitutes a well
designed test. A well designed test is one that has a high probability of proving
the presence of errors in the code it tests. A successfull test is one that finds
bugs, not one that run through without any errors. We will not discuss test-case
design here.

The testing of a software system is performed at different levels and at different
times during the development process. The first section in this chapter takes
a look at a traditional model of testing a software system. The next section
describes several testing paradigms, before we explain the workings of Test
Driven Development, a rapidly growing type of testing. Lastly we will look at
some of the characteristics of testing web applications and some of the related
key challenges.

8.1 V-model

The V-model of software testing is shown in Figure 8.1. This model shows a
traditional view of how to develop an application and how testing relates to
development.

31

CHAPTER 8. TESTING

Figure 8.1: V-model of testing

Any software development process starts with a set of requirements from a
customer. The requirements describe what the customer wants to achieve by
developing the software product. The system requirements describe some busi-
ness cases that the customer wants to adress, and state what the system must
achieve in order to successfully adress the business case.

In order to make sure that the system does what the customer wants it to and
thus meet his business need, a set of Acceptance Tests are created. These tests
are based on the requirements for the system, and illustrate how the user will
use the system. The acceptance tests are used by the customer to validate that
the system actually does what she wants it to do.

The requirements lead to the design of a computer system. This system is
delivered to the customer who uses it to meet his business needs. A System
Test is created to check that the system meets its specification. Although both
the Acceptance Tests and the System Test check the system as a whole, the
focus is a bit different. The System Test checks that the system is developed in
accordance with the way it was defined in the specification while the Acceptance
tests will check that the system is actually what the customer wants and needs.

The purpose of acceptance and system testing is to provide confidence in the
functionality of the system. This might seem like a contradiction to the defi-
nition of testing given in the introduction to this chapter, but it is not. When
a test that is designed to uncover errors fails to uncover errors, the confidence
that the system is working as wanted increases.

Most software systems will be divided into modules or subsystems. A module
is a part of the system responsible for providing a part of its total functionality.
The decomposition of the system into modules lead to a set of Integration
Tests. These tests check that a module does what it is supposed to do, and
that communication between the module and its surroundings is correct i.e.

32

CHAPTER 8. TESTING

that it adheres to the interface descriptions it implements.

A module is composed of still smaller parts. These parts are called components
or units. In an object-oriented world classes and their operations will be units.
Units are tested with Unit Tests. A unit test will check that the unit performs
correctly in isolation, i.e. that its operations will return correct results and that
its state is correct after operations are executed.

The arrows between the different types of tests in Figure 8.1 indicate a hierarchy
of tests. At the bottom we have unit tests for the smallest units of software.
When these units are combined into a module, they are tested as a whole by
the integration tests. When the modules are put together to form the complete
system, the system tests will ensure the system behaves as prescribed. When
a customer is handed the finished system, the acceptance tests check that the
software performs the way the customer needs it to perform in order to meet
the business needs. Accordingly, there does not seem to make much sense to
perform any of the tests at a higher level before all the tests at lower levels are
declared OK. Surely, a integration test of a module will never be expected to
pass when some of the units in the module do not pass their unit tests, and so
on.

8.2 Different types of testing

Two common strategies for testing software are black box testing and white box
testing. Both of these two strategies involve running software on a computer.
A third form of testing is done without using a computer – human testing.

8.2.1 Black Box Testing

Black box, data-driven or input/output testing tests a piece of software from a
requirement point of view. Tests consist of a set of input values and expected
output values. The results of running the software with the input values are
compared to the expected output values. If they match, the test pass, if not it
fails.

In order to find all errors in a program, a possibly huge number of input and
output values must be provided [16]. This inculdes both valid and invalid input
values. As in many cases, the validity of an input value is dependent on previous
input, all sequences of input values must also be tested. From this, it is easy
to say that an exhaustive test using all input values is virtually impossible
in practice. One exception is systems with binary input data (such as a set
of sensors) and binary output (such as an alarm going off or not) that are
often tested extensively, using all possible combinations of input values. By
selecting the right set of input/output values however, one might say a piece of
software has been tested enough to believe that it will perform as described in
its specification.

33

CHAPTER 8. TESTING

8.2.2 White Box Testing

White box testing is another traditional way of testing software. While black
box testing tests software from the outside, not caring about how it looks on
the inside, white box testing use knowledge of the software’s internal logic when
designing tests. White box tests are designed to execute all statements in a part
of the software. Sometimes white box testing is also referred to as logic-driven
testing since the test design is driven by knowledge of the software’s internal
logic when designing the tests.

However, only executing all statements in the program is not enough. One
goal when designing white box tests is to achieve exhaustive path testing. This
means executing all possible paths through a program. A program will usually
have many points where a logic decision (i.e. an if-statement) determines the
furter execution. Like exhaustive black box testing, this means (in most cases)
a huge number of tests [16]. However, one can design tests that will produce
both a true and a false outcome at each branch point. This will lead to all
branches in a program being executed at least once.

One problem with white box testing is that it is quite possible to test all paths
through the software, but if you ignore the specification, the software might
still be erroneous. An exhaustive path coverage test may not show whether the
software actually produces the results it should according to its specification.

8.2.3 Human Testing

A form of testing often neglected is human testing. Many feel that a computer
program is written solely for a computer to read, not humans, and the only
way to test it is to execute it on a computer [16]. However, the human eye is
often quite effective in finding errors in source code. Human testing can be di-
vided into two quite similar categories: Program Inspections and Walkthroughs
(sometimes called Desk Checking). Human testing can be viewed as a form of
white box testing, as it uses the source code of a program directly. However,
while the source code is used to design the input set for a white box test it is
read by humans during the actual test in a human testing session.

Both Program Inspections and Walkthroughs [16, ch. 3]involve a team reading
a piece of code before meeting to find errors in the code they have read. The
purpose of the meeting is not to correct these errors, merely to record their pos-
sible existence. The basic difference between an inspection and a walkthrough
is that in a walkthrough, the participants will “play computer”, manually exe-
cuting a test case, while in a inpection they will just read the program and use
a set of check-lists to look for errors.

34

CHAPTER 8. TESTING

8.3 Extreme testing – Test Driven Development

With the advance of eXtreme Programming (see Chapter 7) and other sim-
ilar agile methodologies for software development, a new form of testing has
emerged. Some call it Extreme Testing, some call it Test-First Development
and some use the name Test Driven Development (TDD). No matter what name
you use, the concept is the same. Tests are written before the software it will
test. Normally unit tests, integration tests and acceptance tests as described in
Section 8.1 are specified. It is not so common to define system tests in a TDD
project, but rather use the acceptance test more actively in the development
organization.

All the tests must be automatic. This lets a developer easily run the tests to
check how she is progressing and that nothing gets “broken” when adding new
functionality or changing existing code. It is also easy to integrate with tools
for continous integration (described in Section 7.2).

Unit tests are written right before (a pair of) programmers start coding a new
software unit. The tests follow two simple rules: all units must have a set of
unit test before the coding begins, and all unit tests must pass before a software
unit is released. The reasons for writing the test before the software itself are
many:

• assure that the code will meet its specification

• express the result of the code

• provide a tool for telling when the software unit is finished (i.e. when all
unit tests pass)

• gives a better understanding of the specification and requirements

• act as a safety net when refactoring designs later

A large software project may have hundreds, or indeed thousands of unit tests.
These tests will be a valuable part of the application they test, and must be
maintained the same way the application’s source code is maintained, ensuring
they show the latest changes in requirements and design decisions.

Just as unit tests, acceptance tests are written before the software. Acceptance
tests in XP are based on the user stories (see Section 7.2) of the project. When
the development team starts analyzing a new user story in detail as part of a
iteration planning process, they expect the customer to come up with a set of
acceptance tests for that user story. The team itself may contribute to these
tests to help the customer. These acceptance tests act as the specification of
what the system must do in order to fulfill the business needs of the customer.
XP states that acceptance tests must be automated, just as unit tests. However,
in practice it is often difficult to automate all acceptance tests. To check the
layout and coloring of a user interface for instance, is hard to automate fully.
Checking values as displayed to the user, on the other hand, is relatively easy
to automate.

35

CHAPTER 8. TESTING

Acceptance tests are performed by the customer in order to check the software
is performing satisfyingly. However, it may also be (and most often is) used as
part of the build process, like unit tests. Then the development team can easily
check how many acceptance tests pass and how many fail and be able to tell
something about the general progress of the development effort.

8.4 Testing Web Applications

Developing web applications introduces new testing challenges. Some of these
are a result of the architecture of web applications, some are a result of users
using different web browsers and a high focus on the GUI of the applications
and some are a result of the development process.

A web application is based on a client-server architecture. The user interacts
with the application through a web browser, sending requests and recieving
responses from the server. In most web applications, the server will process
all the business logic in the application while the browser (client) just shows
the results to the user. The server is (most) often composed of several parts
or layers. A typical web application will be deployed in a web container, have
some business logic deployed on an application server and use some data stored
in a database.

The layering of web applications make testing harder. When a component must
be deployed in an application server to work properly, it is difficult to unit test
the component. It needs to have a running instance of the application server
(often a heavy process) which in turn might need a database connection. This
database must be set up with a correct set of data before each test is run. As we
see, a lot of dependencies are already present that complicates the test and will
not let the component be tested in isolation. New frameworks for developing
web applications emerge that focus on making the systems more testable. One
example is the Spring framework 1 that tries to make both the development
environment and process more lightweight and suited for unit testing.

Many or most web applications use a database server to store data. The data
stored in the database range from the content shown on the web pages to secu-
rity constraints related to a user. In order to make integration tests that check
that a component (that has already been unit tested) performs as expected
when connected to a database, the state of the database must be consistent
across test executions. For instance, in order to test that a user can log on,
the user must be registered in the system before the test can be executed. The
execution order of two tests also make impact. The state of the system might
be changed by the first test, affecting the second. This is of course a problem
with all systems that maintain state across different interactions, not only web
applications.

1http://springframework.org

36

CHAPTER 8. TESTING

So far we have focused on testing on the server side of a web application.
However, also the client side must be tested. Traditionally, client side testing
has been performed manually, typing values into forms, reading text and clicking
on links and buttons and so on. Such testing is time-consuming and error prone.
A tester need to manually type all input text, and manually move the mouse
around to click on links. He must also wait for the responses from the web
server to reach him. When typing values, it is easy to make typing mistakes,
and it is easy to miss a typing error when reading text.

The fact that a web application is viewed in a browser is both a good and a bad
thing. It removes the need for a user to install the software on his computer.
The application can be reached from any computer with a browser and a con-
nection to the internet, if we disregard the use fo firewalls, ip-filters and other
security measures. However, different browsers (and even different versions of
the same browser) have different capabilities. The layout may vary, text may
be misplaced and images may be located at different places. In addition, many
web applications use JavaScript as part of the interaction. JavaScript capabili-
ties are different in different versions, and is often called a “testing nightmare”.
Due to the different capabilities of different browsers, at least some tests must
be run using several browsers.

8.5 Summary

It is important to test new software to ensure high quality. Software testing
will occur at several levels of detail within the application, ranging from the
smallest modules or classes to functional acceptance testing.

Test can be designed either with or without knowledge of the internal logic of
the software, and either before or after the application is implemented. The use
of TDD in many projects emphasize the creation of a test before the software as
a critical part of the design process, using automatic acceptance-, integration-
and unit-tests.

Testing of web applications introduces new challenges related to the very nature
of the applications. Some tests for web applications can hardly be automated,
but many can. If they are automated, they can be executed more often, at a
much lower cost. This will in turn help organizations using TDD to develop
applications, and will probably increase the quality of the applications they
develop.

37

Chapter 9

State of the Art - Existing
Testing Technologies

This chapter will examine some of the open source solutions that are available
for testing web-applications’ features today. Some of these solutions are general
for testing software systems, while others are created especially for testing web-
applications.

We will show how a sample test of a web system may look using different
solutions. The sample system is a simple CD database. It will let a user register
artists, register CDs to these artists, and browse the registered artists. Our
sample test will check that the welcome-page of the system is correct (its title
is correct, a welcome message is displayed and links to listing and registering
artists). Then we want to register a new artist. This will include checking
that a form is correct (has a field for registering the artists name and in which
genre it belongs) and submitting values for these fields. After submitting, a
confirmation page shall be displayed to the user.

9.1 xUnit

The xUnit testing family started with Kent Beck publishing a unit test frame-
work in 1999 [10]. The framework was written in the Smalltalk programming
language under the name SUnit 1. It was later ported to Java by Erich Gamma
calling it JUnit. JUnit will be discussed in Section 9.2. Ports for other lan-
guages have later emerged, among others C++ has CppUnit, .Net has NUnit
and Python has PyUnit. These are all free, open source software tools.

In addition to the basic xUnit family members there are several extensions
that add to the functionality, targeting specialized domains instead of working
as standalone tools [10]. Some examples of these extensions are XMLUnit
that is an extension to JUnit and NUnit for testing XML, JUnitPerf which

1http://sunit.sourceforge.net/

38

CHAPTER 9. STATE OF THE ART - EXISTING TESTING
TECHNOLOGIES

is an extension that tests code performance and scalability and HTMLUnit
and jWebUnit that tests web-based applications on top of JUnit. HTTPUnit
also tests web-based applications, but at a lower level” as it deals with HTTP
requests and response objects.

In [10], Hamill states that the basic architecture of all xUnits is the same. The
central classes of any xUnit framework are shown in Figure 9.1. The TestCase
class is the base class for an unit test, all unit tests extends this class. A
TestRunner class simplifies running tests and viewing details about the results,
a GUI TestRunner is included in most of the xUnits to increase the visibility of
the feedback. The TestRunner most often use a form of naming convention to
decide which operations it will run on a TestCase implementation.

Figure 9.1: The xUnit Architecture.

The TestFixture class has the responsibility to ensure that the tests run in
isolation and the state of the system is correct when a test is run. This is done
in the two operations setUp() and tearDown() which are envoked just before a
test and just after a test, respectively.

A TestSuite maintains a collection of TestCases. When the TestRunner executes
a TestSuite, this will in turn run all the test cases it contains. The final base
class is the TestResult class, which sole purpose is to report how the tests run.
It collects any errors and failures as well as counting the tests that pass. These
results can then be reported by the framework.

9.2 JUnit

The xUnit testing framework for Java is JUnit2 which was create by Eric
Gamma [10]. It is the de facto standard for Java testing [4]. The architec-

2http://www.junit.org

39

CHAPTER 9. STATE OF THE ART - EXISTING TESTING
TECHNOLOGIES

ture of JUnit follows that of the general xUnit as described in the previous
section.

The framework has a GUI version that can run the tests. However, most Inter-
active Development Environments (IDEs) like Eclipse3 and IntelliJ4 have added
support for JUnit tests. The advantage of this integration is that it is much
easier to handle tests and run them when a developer always has the tool for
the job at hand.

JUnit is the basis for jUnit extensions such as jWebUnit and HTMLUnit as
mentioned earlier. These two extensions are described next.

9.2.1 jWebUnit

jWebUnit5 is an extension to jUnit for testing web pages. jWebUnit aims to
make testing web pages and applications easy, providing a simple-to-use API6.
This API provides methods for asserting the presence and correctness of links,
general text, form input elements etc. jWebUnit also lets the user navigate
simply by pressing links or buttons or by form entry and submission.

Our example test is shown in Listing 9.1. The WebTester class is responsible
for the actual interaction with the web application and performing the checks.

Listing 9.1: jWebUnit example �
1 public void testCDDBjWebUnit () {
2 WebTester t e s t e r = new WebTester () ;
3 t e s t e r . getTestContext () . se tBaseUr l (”http ://www. cddb . com”) ;
4 t e s t e r . beginAt (”/ ”) ;
5
6 t e s t e r . a s s e r tT i t l eEqua l s (”CDDB”) ;
7 t e s t e r . a s s e r tTextPre sent (”Welcome to the CDDB”) ;
8 t e s t e r . assertLinkPresentWithText (”L i s t a l l a r t i s t s ”) ;
9 t e s t e r . assertLinkPresentWithText (”Reg i s t e r new a r t i s t ”) ;

10
11 t e s t e r . c l ickLinkWithText (”Reg i s t e r new a r t i s t ”) ;
12
13 t e s t e r . a s s e r tT i t l eEqua l s (”Reg i s t e r new a r t i s t ”) ;
14 t e s t e r . assertFormElementPresentWithLabel (”Name”) ;
15 t e s t e r . assertFormElementPresentWithLabel (”Genre ”) ;
16 t e s t e r . assertSubmitButtonPresent (”save ” , ”Save a r t i s t ”) ;
17 t e s t e r . setFormElementWithLabel (”name” , ”Pink Floyd ”) ;
18 t e s t e r . setFormElementWithLabel (”Genre ” , ”Rock”) ;
19 t e s t e r . submit () ;
20
21 t e s t e r . a s s e r tT i t l eEqua l s (”Ar t i s t r e g i s t e r e d : Pink Floyd ”) ;
22 }� �

3http://www.eclipse.org
4http://intellij.com
5http://jwebunit.sourceforge.net
6Application Programming Interface

40

CHAPTER 9. STATE OF THE ART - EXISTING TESTING
TECHNOLOGIES

9.2.2 HTMLUnit

HTMLUnit7 is another jUnit extension for testing web pages. HTMLUnit will
parse the HTML pages being tested, transforming it into a DOM-tree8. A
DOM-tree (Document Object Model) is a object oriented view of a structured
document. It consists of a root object that holds references to a hierarchy of
sub objects. The test can then traverse this DOM-tree, performing checks or
setting values on each element in the tree.

The example test using HTMLUnit is shown in Listing 9.2. As we see, HTM-
LUnit differs from jWebUnit in that it cannot directly perform many of the
assertions that jWebUnit can. As an example, with jWebUnit we can check the
presence of a link directly by calling the operation assertLinkPresentWithText()
as seen on line 7 in Listing 9.1. The same check with HTMLUnit first must
find a link by its name before we can check the actual text with a normal jUnit
assertion, as seen on lines 8–9 in listing 9.2.

Listing 9.2: HTMLUnit example �
1 public void testCDDBhtmlUnit () throws Exception {
2 WebClient webc l i ent = new WebClient () ;
3 URL ur l = new URL(”http ://www. cddb . com”) ;
4
5 HtmlPage frontPage = (HtmlPage) webc l i ent . getPage (u r l) ;
6 a s s e r tEqua l s (”CDDB” , frontPage . ge tT i t l eText ()) ;
7
8 HtmlAnchor l i s tAnchor = (HtmlAnchor) f rontPage . getAnchorByName (

” l i s t A r t i s t s ”) ;
9 a s s e r tEqua l s (”L i s t a l l a r t i s t s ” , l i s tAnchor . asText ()) ;

10 HtmlAnchor r eg i s t e rAnchor = (HtmlAnchor) frontPage .
getAnchorByName (” r e g i s t e r A r t i s t ”) ;

11 a s s e r tEqua l s (”Reg i s t e r new a r t i s t ” , r eg i s t e rAnchor . asText ()) ;
12
13 HtmlPage r e g i s t e rPage = (HtmlPage) r eg i s t e rAnchor . c l i c k () ;
14 a s s e r tEqua l s (”Reg i s t e r new a r t i s t ” , r e g i s t e rPage . ge tT i t l eText ()

) ;
15
16 HtmlForm form = reg i s t e rPage . getFormByName(”regsterForm ”) ;
17 HtmlTextInput name = (HtmlTextInput) form . getInputByName (”name”

) ;
18 HtmlTextInput genre = (HtmlTextInput) form . getInputByName (”

genre ”) ;
19 name . se tVa lueAtt r ibute (”Pink Floyd ”) ;
20 genre . s e tVa lueAtt r ibute (”Rock”) ;
21
22 HtmlPage conf irm = (HtmlPage) form . submit () ;
23 a s s e r tEqua l s (”Ar t i s t r e g i s t e r e d : Pink Floyd ” , conf irm .

ge tT i t l eText ()) ;
24 }� �

7http://htmlunit.sourceforge.net
8http://www.w3.org/DOM/

41

CHAPTER 9. STATE OF THE ART - EXISTING TESTING
TECHNOLOGIES

9.3 FIT

FIT (Framework for Integrated Test)9 is a general framework for acceptance
testing created by Ward Cunningham.

Tests are defined using HTML tables in normal HTML documents. These doc-
uments can be edited in any editor, including those most familiar to customers,
such as Microsoft Word and Excel. The first row of the table defines which
Fixture (to be explained shortly) to use. Then, the following rows of the table
are tests or actions performed with this fixture.

A central concept in FIT is the Fixture. A fixture is a special class or module
to which the FIT testing engine will delegate the tests. A fixture can do just
about anything, but in most cases they simply act as mediators. A mediator will
transform the input from the table to a form suitable as input for a component
of the software. It will then invoke an operation with the given input and
transform the result back to a form that FIT can verify against the expected
result in the table.

A basic example of a test table in FIT is given in Table 9.1. Here a Fixture called
eg.Division is used. This fixture is an example where each row in the table is a
single test. The two first columns, numenator and denominator are parameters
while the last column, quotient() is the expected result. This particular example
will first divide 1000 by 10 and check that the result equals 100, then divide 50
by 10 and check this result equals 5.

eg.Division
numenator denominator quotient()
1000 10 100
50 10 5

Table 9.1: Basic FIT example showing division

FIT tests can be executed in several ways. A FIT runner will parse the input
HTML page, execute the Fixtures within it and produce an output file. The
output file will be a copy of the input file, with some cells in the tables colored
green or red, telling whether the test passed or failed. Different flavors of
such runners exist. The standard runner processes a single HTML page and is
executed from a command line. Other command line runners take a folder as
parameter and will process all HTML files in the folder and any subfolders. Yet
other runners are created for use with build tools such as ANT10 or Maven11,
and can process a set of files or folders as part of the overall build of the system.

A Fixture must be executed by a runner in its own language, and can only test
applications written in the same language. However, FIT runners are created
for many different programming languages, including Java, C++, .Net, ruby

9http://fit.c2.com
10http://ant.apache.org
11http://maven.apache.org

42

CHAPTER 9. STATE OF THE ART - EXISTING TESTING
TECHNOLOGIES

and Python, allowing developers to use FIT to test applications developed in
any of the supported languages.

In most cases, the development team is expected to extend basic Fixtures,
adapting them to the system under test. However, some fixtures for common
actions and tests exist. Most of these specific Fixtures are created for the Java
implementation of FIT. These include JdbcFixture for testing simple database
access and WebFixture and HTMLFixture for testing web pages.

9.3.1 WebFixture

WebFixture is an extension to jWebUnit for use with FIT. It provides the same
functionality as described in Section 9.2.1 for interacting with a web application.
However, it use the FIT form of writing tests and the FIT testing engine for
executing them. The cd database example test is shown in Table 9.2.

As we see from the example, the syntax use user-friendly keywords for perform-
ing checks, pressing links or submit buttons and entering values.

net.sourceforge.jewbunit.fit.WebFixture
base url http://www.cddb.com
begin /
check title equals CDDB
check text present Welcome to the CDDB
check link List all artists
check link Register new artist
press link Register new artist
check title equals Register new artist
check form element present with label Name
check form element present with label Genre
check submit button present Save artist
enter with label Name Pink Floyd
enter with label Genre Rock
press submit
check title equals Artist registered: Pink Floyd

Table 9.2: WebFixture example

9.3.2 HTMLFixture

HTMLFixture is the HTMLUnit extension to jUnit. HTMLFixture is for HTM-
LUnit what WebFixture is for jWebUnit. The same practice of dealing with
full DOM representations of the tested web pages apply.

The first part of our example test is shown in Table 9.3.

43

CHAPTER 9. STATE OF THE ART - EXISTING TESTING
TECHNOLOGIES

com.jbergin.HtmlFixture
http://www.cddb.com frontPage
Element 1 head cddbHead
Element 2 body cddbBody
Focus cddbHead
Type Focus title 1 titleText
Text CDDB
Focus cddbBody
Has Text Welcome to the CDDB
Type a 1 listLink
Type a 2 registerLink
Focus listLink
Text List all artists
Focus registerLink
Text Register new artist
Click registerPage

Table 9.3: HTMLFixture example

9.4 FitNesse

FitNesse is an extension to the original FIT framework that was described in
Section 9.3. The FitNesse project has decided to integrate the FIT framework
with a wiki. A wiki is a web based editing system. It lets users edit all the web
pages it manages, and provides a way to add new pages in a simple manner.
The wiki framework consists of a set of templates controlling the layout of the
pages, the users only have to contibute the acutal content on the pages.

A special syntax is required for the wiki system to function. One part of this
syntax deals with the creation of new pages and links to these pages from
existing ones. When a word in a page is written using CamelCase (several
word put together as one, with the first letter of each word capitalized), a new
page is created for editing, and a link to this new page is placed at the page
where the word is used.

The actual tests are, as in the original framework, written as HTML tables. The
writing of tables in FitNesse is simplified by the wiki syntax. When editing a
page, a user can add a table by starting a new line with a pipe symbol, |. These
tables have the same meaning as when using FIT, and the same Fixtures can
be used. In Figure 9.2, the sample test of the CD database is shown in Fitnesse,
first the normally displayed version, then the view when editing the test.

The same rules for running tests apply for FitNesse as for FIT. As discussed in
Section 9.3, a runner can only run Fixtures developed in the same programming
language. However, tests are arranged differently in FitNesse than in FIT.
Tests pages are organized together in a TestSuite in a hierarchical manner. A
TestSuite will consist of Tests and possibly new TestSuites. FitNesse runners

44

CHAPTER 9. STATE OF THE ART - EXISTING TESTING
TECHNOLOGIES

Figure 9.2: FitNesse example using WebFixture

45

CHAPTER 9. STATE OF THE ART - EXISTING TESTING
TECHNOLOGIES

will execute all tests on the page if envoked on a single Test page. If envoked
on a TestSuite page it will execute all tests on the TestSuite page as well as all
tests on sub pages.

To execute a Test or TestSuite in FitNesse, the user can navigate to the web
page and click a link to start the test and view the results right away. This
corresponds to the normal way of running FIT test from a command line tool.
In addition, there also exit FitNesse runners that can be integrated into build
tools such as ANT and Maven, just as for FIT.

9.5 Selenium

The Selenium test system is in many ways similar to FIT using WebFixture.
Selenium tests are written as HTML tables, as in FIT. The commands used in
Selenium are similar to those of WebFixture, providing navigation and checks
to validate pages, but the similarities end there.

While WebFixture is based on Java simulating a web browser, Selenium is based
on JavaScript12 and is executed using a real web browser. When the user want
to execute a Selenium test she must use a web browser to connect to a web
server running the Selenium installation. The server will provide the tests to
the browser, the test is parsed in the browser, and the browser will execute the
test. The user can then watch as the test progress, as well as view all results
when the test is finished.

One minor limitation in Selenium is the fact that it can only test web ap-
plications located at the same server as the Selenium installation itself. This
limitation is due to security limitations in JavaScript. The effect is that the
tests and Selenium must be deployed at the same server as the system being
tested. This also makes it harder to execute Selenium tests as part of a system
build, but it is possible and work is well underway to make this integration
easier.

If we assume that Selenium and the tests are deployed in a subfolder of our CD
database, our example test will look as shown in Table 9.4.

9.6 Canoo WebTest

Canoo WebTest represents different way to write tests for web applications.
While the previously discussed systems FIT, FitNesse and Selenium use HTML
tables to define the tests, Canoo has chosen to use XML (eXtended Markup
Language)13 for representing the tests and ANT to run the tests.

12http://research.nihonsoft.org/javascript/CoreReferenceJS15/
13http://www.w3.org/XML/

46

CHAPTER 9. STATE OF THE ART - EXISTING TESTING
TECHNOLOGIES

CD Database Test
open /index.html
verifyTitle CDDB
verifyTextPresent Welcome to the CDDB
verifyText link=listAllArtists List all artists
verifyText link=registerNewArtist Register new artist
clickAndWait registerNewArtist
verifyTitle Register new artist
verifyElementPresent name
verifyElementPresent genre
verifyElementPresent saveArtist
type name Pink Floyd
type genre Rock
clickAndWait saveArtist
verifyTitle Artist registered: Pink Floyd

Table 9.4: Selenium example

Canoo defines an ANT task which consist of a series of steps to be performed
when testing a web application. Each step can represent a check for a link, a
check for text, form entry or submission or clicking a link.

The sample test of the CD database is shown as a Canoo WebTest in Listing
9.3.

Listing 9.3: Canoo WebTest example �
1 <t a r g e t name=”testCDDB”>
2 <t e s tSpec>
3 <c on f i g
4 host=”www. cddb . com”
5 port=”80 ”
6 pro to co l=”http ”
7 basepath=”” />
8 <s t ep s>
9 <invoke u r l=”/ ” />

10 <v e r i f y T i t l e t ex t=”CDDB” />
11 <ver i f yText text=”Welcome to the CDDB” />
12 <ver i fyElementText type=”A” text=”L i s t a l l a r t i s t s ” />
13 <ver i fyElementText type=”A” text=”Reg i s t e r new a r t i s t ”

/>
14 <c l i c kL ink l a b e l=”Reg i s t e r new a r t i s t ” />
15
16 <v e r i f y T i t l e t ex t=”Reg i s t e r new a r t i s t ” />
17 <ver i fyElement type=”FORM” text=”reg i s te rForm ” />
18 <se lectForm name=”reg i s te rForm ” />
19 <ver i fyElement type=”INPUT” text=”name” />
20 <ver i fyElement type=”INPUT” text=”genre ” />
21 <s e t InputF i e l d name=”name” value=”Pink Floyd ” />
22 <s e t InputF i e l d name=”genre ” value=”Rock” />
23 <c l i ckButton name=”saveAr t i s t ” />
24
25 <v e r i f y T i t l e t ex t=”Ar t i s t r e g i s t e r e d : Pink Floyd ” />

47

CHAPTER 9. STATE OF THE ART - EXISTING TESTING
TECHNOLOGIES

26 </ s t ep s>
27 </ te s tSpec>
28 </ ta r g e t>� �

9.7 Summary and Comparison

In this chapter, we have looked at some of todays most commonly used systems
for testing web applications. These systems are in many ways similar. They
provide means for navigating web applications by clicking links and submitting
values to forms. They also allow the tester to validate pages with regards to
their title and content such as links and text.

The simplest systems are those based on jWebUnit. Both when using jWebUnit
and when using WebFixture, the user can validate the precence of a link with
a given text by using one simple command. When using HTMLUnit, Canoo
and Selenium, this check is more complicated. All these systems require you
to supply the HTML name attribute as well as the actual text you want to be
displayed to the user as a link. HTMLUnit complicates this check even further
as you must select the link before you can perform the actual check.

Another benefit of jWebUnit and WebFixture is the ability to validate input
elements in HTML forms and enter values to these elemens by using the text
label displayed to the user on the web page. None of the other systems have
this ability, but use the name attribute here as well. When using jWebUnit,
the user can choose to use the name attribute if she wants to use this option
instead.

The way in which a user defines tests is the most differentiating attribute of the
testing systems. For a customer or user to be able to write and understand the
tests, they must be defined in a “form” the user easily can relate to.

One fundamental difficulty with all the systems discussed in this chapter is to
understand all the commands or keywords used in a test. They can be learned,
memorized or written on a piece of paper for reference, but they may still seem
foreign to customers.

Using jUnit (with either jWebUnit or HTMLUnit) involves writing Java code.
While this would probably be the most natural choice for a programmer, for a
non-programmer writing tests as JUnit tests will seem like a pretty impossible
task. Most modern IDEs14 will give much assistance to writing tests correctly,
providing syntax highlighting and code-completion. Still, the user needs to
understand how a programming language works to make sense of such tests.

As for Canoo, which use XML for defining tests, the case is much the same as
for the jUnit-based ones. XML is not a format any user or customer is used
to reading or writing. As with Java code, modern tools can help by providing

14Integrated Development Environments

48

CHAPTER 9. STATE OF THE ART - EXISTING TESTING
TECHNOLOGIES

highlighting, auto-completion and validation, but a test will still be difficult to
understand.

When using FIT, the tests are HTML tables. These tables can be created and
modified with any tool that can save a file as HTML, including Microsoft Word,
that may be familiar to customers. The problem is to understand how to write
a test. Tests are defined by naming a fixture and then giving it commands. The
customer must remember the commands, how they work and what parameters
they will expect.

One additional challenge that presents itself with FIT, Canoo and Selenium
is the problem of distributed editing. How can a development team and a
customer synchronize their efforts with regards to test management? Often,
several people working from seperate locations will manage the tests together.
A normal way to synchronize might include using e-mail to communicate the
latest changes between all the people of the team. As tests often are quite
dynamic, changes might occur often. These changes should be recorded to
reflect how requirements change through the course of the project. Using e-mail
for keeping track of the different versions and in particular the latest version
will be a challenging task.

This is one of the problems FitNesse tries to solve. FitNesse will keep track
of changes to the tests, and will keep all files at a centralized location. Then,
all team members (both customers and developers) can view them and modify
them. However, FitNesse still requires the user to know commands and Fixture
names, as well as the wiki syntax used to define tests and testsuites.

In conclusion, we see that all the systems described in this chapter have chal-
lenges, in particular for non-programmers. What is needed is a system which
allows the customer to easily create, modify and view tests and share these with
the development team while at the same time providing the same functionality
as the existing solutions.

49

Chapter 10

Technology Platform

This chapter describes three technology platform alternatives that can be used
for creating the AutAT application. To make the selection we made a list with
each platforms advantages and disadvantages. We consider this more than
sufficient for both our supervisors and for us to decide which platform to use.

The first section will look at Web as the technology platform. The next section
looks at AutAT as a standalone application, before Eclipse and its Plugin fea-
tures are considered. Finally, will we summarize and decide which platform we
are going to use.

10.1 Web

There are several arguments that can be used for and against using a Web
Application as the platform for AutAT. The main reasons for selecting Web as
the platform are:

• Easy to control when several users are using the tool at the same time so
everyone in the project team will se the same version of a test. Providing
version contol of the tests will also be quite easy.

• Easy to make sure that all tests are stored in the same place.

• Everybody can use it with only a web browser installed, which makes it
a lot easier to work with on different operating systems.

The main reasons for not choosing web is:

• Poor support for rich graphical functionality like drag and drop.

• Lots of clicking on links and buttons will result in a rather poor user
experience due to loading time.

• Cut and paste functionality will be difficult to apply.

50

CHAPTER 10. TECHNOLOGY PLATFORM

• The Web has poor support for creating a graphical solution like the one
that we would want.

10.2 Standalone

There are many ways of building a “fat” client. The choice of underlying pro-
gramming language does not affect the reasons for developing this kind of ap-
plication. The advantages of building a ”fat” standalone client are:

• Keyboard shortcuts for navigating.

• Enables Cut and Paste.

• Graphical layout which support drag and drop functionality for changing
the “flow” on the pages.

• Table/property view of the tests where one can do changes directly.

• It can be designed in a way that makes it easy for software customers to
define tests.

• There are few constraints restricting possible realizations of the applica-
tion.

The disadvantages of creating a standalone application are:

• The software must be installed on the user’s computer.

• Can be difficult to handle distributed test modifications.

• A lot of functionality that is not core functionality requires services of
other applications like support for distributed development and version
control.

10.3 Eclipse Plugin

The main reasons for choosing to build a ”fat” client which is integrated into
the Eclipse Platform as a plugin is as follows:

• Integrated in an IDE (Interactive Development Environment) which many
developers use.

• Keyboard shortcuts for navigating.

• Graphical layout which support drag and drop functionality for changing
the ”flow” on the pages.

• Table/property view of the tests where one can change do changes directly.

• Enables integration with other tools that are available as plugins such as
the Team API

51

CHAPTER 10. TECHNOLOGY PLATFORM

• There are many Eclipse plugins already available like GEF (Graphical
Editor Framework)1, that can be used when developing AutAT to provide
parts of the functionality.

The reasons for not using Eclipse as a platform are:

• Might be confusing for a software customer with all the other Eclipse
functionality or plugins.

• The Eclipse framework lay some restricts on the different application re-
alizations that can be implemented.

By using the RCP possibility that is described next, one can turn an Eclipse
plugin into an standalone application.

10.3.1 RCP - Rich Client Platform

The Eclipse Rich Client Platform2 is the minimum set of plugins that are needed
to build a rich application. This is possible because Eclipse, according to [17], is
architected so its components can be used to build almost any client application.

As described in [17], RCP applications use the dynamic plugin model and the
user interface is built with the same toolkits and extensions points. This ap-
proach enables us as application developers to customize the layout and func-
tionality at a fine-grained level. Many applications can also benefit from using a
wide range of the plugins that are available as they provide a lot of functionality.
Examples are the Help UI and the Team API plugins.

10.4 Summary - The Choice

All of these platforms are probably good choices for this kind of application.
However, the choice is to create an Eclipse plugin as it has most of the features
that the standalone application provides. It can also be used with other plugins
as a mean to proved a wide range of functionality within the same application.
It can be transformed into a standalone application through RCP if the use
of a plugin later is found inappropriate. This is an advantage as it provides
flexibility and therefore can reduce some of the risks associated with the AutAT
application concept. We also believe that the software customer should write
tests together with the developers which means that an user interface that most
developers can relate to is preferred.

1http://www.eclipse.org/gef
2http://www.eclipse.org/rcp/

52

Chapter 11

The Eclipse Architecture

This chapter will give an introduction to the Eclipse Platform (or simply Eclipse),
its core concepts, key components, central plugins and how they all fit together.
As Eclipse is chosen to be the platform for AutAT, it is useful to understand
how Eclipse is organized and how the plugin system works.

The Eclipse Platform is designed to be a foundation onto which it is possible to
build and integrate a rich set of tools. Originally it was designed to be a tool for
application development, but since its birth it has grown into something more.
As the Eclipse Foundation states on its homepage1:

The Eclipse Platform is an IDE for anything, and for nothing in
particular.

The Platform architecture can be visulized as shown in Figure 11.1. The basic
foundation is the Eclipse Platform Runtime. This part is responsible for actually
running the Platform, interacting with the local file system and handling all the
plugins that are available, and is described in more detail in Section 11.1.

A workspace is the set of items a user is currently working with. The workspace
concept is discussed in Section 11.1.2.

For most users, Eclipse is synonymous with the Workbench. The workbench
is the user interface (UI) of a running instance of the Eclipse Platform, and is
what the user will interact with. The Workbench and the concepts related to
it is discussed in Section 11.1.1.

Another key design decision fundamental to the Platform is the choice to make
it platform independent. This choice will make it available to the widest pos-
sible user group. Today, the Platform is running on most operating systems,
including MS Windows, Linux, Mac OS X and different flavours of Unix.

1http://eclipse.org

53

CHAPTER 11. THE ECLIPSE ARCHITECTURE

Figure 11.1: The Eclipse architecture

11.1 The Platform Runtime and Plugin Architec-
ture

The Platform Runtime is the core of the Eclipse Platform. When a user starts
Eclipse, an instance of the Runtime is created. This instance is then responsible
for starting the other parts of Eclipse. All functionality in Eclipse is provided
by plugins. A plugin is the smallest unit of functionality that can be delivered
seperately. The Runtime will keep track of all installed plugins, how they are
configured and dependencies between them.

A basic set of extension points is provided by the Platform Runtime. An exten-
sion point is a point where a plugin can connect to provide its functionality. The
Runtime keeps track of which plugins connect to which of its basic extension
points. In addition to the basic points provided by the Runtime, a plugin may
contribute extension points of its own. In this way a new plugin may use or
extend functionality of plugins that are already installed in Eclipse. As stated,
all functionality in Eclipse is provided by plugins. This has led to the fact
that Eclipse itself is implemented as a set of plugins, where some plugins use
the extension points provided by the Runtime, while others again use points
provided by the first plugins. The Runtime is responsible for keeping track of
all extension points, what they mean and how they are used.

While all installed plugins are listed and inspected at startup, they are not
started before they are needed. When a plugin is activated, it will stay active
for the lifetime of the Runtime instance. A plugin includes a XML file containing
the definition of the plugin, the extension points it provides and which extension

54

CHAPTER 11. THE ECLIPSE ARCHITECTURE

points it provides extensions for. This is what lets the Runtime figure out when
to activate a particular plugin, and allows “passive” activation of the plugins.

11.1.1 The Workbench, SWT and JFace

The User Interface (UI) of Eclipse is provided by a plugin called the Workbench.
The workbench provides the overall structure of Eclipse, and provides many
common extension points for new plugins. A typical example of how a running
instance of Eclipse will look like is shown in Figure 11.2. This example shows
a set of projects in the active workspace (described in Section 11.1.2) in the
upper left part. The largest part is an active Editor showing the contents of a
file. Files are normally manipulated using an Editor, and editors can specialize
their behaviour to the content of a certain file type. Examples of editors are
the Java source editor and XML editor. These will provide syntax highlighting
and automatic completion. The two last parts of the sample are views, that
show a document outline of the currently active editor (down left) and a list of
tasks and problems (down right). Both of these are commonly used.

Figure 11.2: A sample view of the Eclipse Workbench

A plugin that provides functionality to Eclipse will often create its own editor for
manipulating files. They may also provide one or more views for use. These can
be integrated into a perspective that creates an initial layout, opening the views
and editor as needed. Editors, views and other parts of the UI are developed
using the SWT and JFace frameworks provided by Eclipse.

55

CHAPTER 11. THE ECLIPSE ARCHITECTURE

SWT (Standard Widget Toolkit) is a framework providing a common API
for graphics and widgets in an OS (Operating System) independent manner. It
will use the underlying window system as much as possible, making applications
look native to the OS the user is running. SWT provides standard widgets a
developer can use, such as windows, lists, tables and plain text areas.

JFace is a UI toolkit built upon SWT. It provides a simple way to perform
common tasks such as showing images, providing dialogs for the user, guiding
the user through a wizard and showing progress of longer operations. JFace
also lets the developer define actions that the user can execute from anywhere
in the UI. An action can be linked to a menu element, a button or to an item
in a tool bar.

11.1.2 Workspaces

A workspace is a collection of directories and files the user is working with. The
workspace is organized as one or more projects, a project maps directly to a
directory in the file system. The plugins installed in Eclipse can manipulate the
directory structure and the content of the files in a project. A plugin will use
abstractions provided by the Platform Runtime to actually manipulate the file
system.

A project may be tagged with one or more project natures. A project nature
gives the project certain properties plugins can use to function properly. Such
natures can define which plugins are applicable to the project as well aspa-
rameters for how to use a tool provided by this plugin, allowing for a greater
opportunity for customization. As an example, the standard Java project na-
ture will include properties such as a classpath, which compiler to use and
dependencies to external libraries and other projects.

When a plugin is started, it may register itself as a Listener to the workspace.
If it does, it will be notified when changes occur. These changes may be the
addition of new files or directories or changes made to existing files. This will
allow the plugin to act to these changes, i.e. to update a view of the changed
resources.

11.2 GEF

The Graphical Editor Framework (GEF) is a plugin allowing developers to
easily create graphical editors for Eclipse. The principles and patterns used by
GEF are described in detail in Chapter 12.

56

CHAPTER 11. THE ECLIPSE ARCHITECTURE

11.3 The Team API

The Team API is a central Eclipse plugin for any working on a shared project.
This plugin provides the means for placing a project in a central repository,
which may again provide version control and configuration management. A
repository provider just needs to use the extension points provided by the Team
API to provide access to a new type of repository through a new plugin. Since
all these plugins provide the same functionality according to the Team API, the
user will interact with them in similar ways. This means she does not need to
learn a whole new system for every type of repository.

Today, implementations for the most common team repositories exist, including
CVS (Concurrent Versions System)2, Subversion3 and ClearCase4.

2http://www.gnu.org/software/cvs/
3http://subversion.tigris.org/
4http://www-306.ibm.com/software/awdtools/clearcase/

57

Chapter 12

The Graphical Editor
Framework

The Graphical Editor Framework(GEF)1 which is the result of an Eclipse
project2, makes it easier for developers to create a rich graphical editor from an
existing application model as described in [9]. It can be used to build all kinds
of applications but is generally used for applications like activity diagrams, class
diagram editors and state machines. This fits well with what we want AutAT
to be able to do and it is therefore a natural technical choice.

This chapter will describe the structure of GEF and the patterns that are the
foundation of the framework. However, the purpose is not to give an detailed
overview of the GEF API or the patterns, but rather a short introduction to
some of the major design decisions in GEF that are important for developers
wanting to use the framework.

GEF is related to other Eclipse components as shown in Figure 12.1 [11].

Figure 12.1: GEF Dependencies. Source: [11]

1http://www.eclipse.org/gef/
2http://www.eclipse.org/projects/index.html

58

CHAPTER 12. THE GRAPHICAL EDITOR FRAMEWORK

As shown in the figure GEF is composed of two main components. One is
Draw2d which is used to draw the figures in the GEF framework. Draw2d has
an efficient layout and rendering support, provides several figures and layout
implementations including connection anchoring and routing and provides an
overview window for viewing an outline of larger figures [9].

The other component is GEF itself. GEF provides simple tools for single and
multiple selection, creation and connection which can be displayed on the in-
cluded palette. It has a controller framework that is part of its implementation
of the MVC pattern described in Section 12.1. GEF relies on policies that can
be “installed” into different parts of the controller for translating interaction
with the graphical view to changes in the model. The policies are part of the
Chain of Responsibility pattern (see Section 12.3) and will do its part in de-
ciding what to do when a user event occurs in the view. Undo and Redo are
built-in tools that are realized with the Command pattern discussed in Section
12.2 and GEF’s CommandStack.

Patterns and Pattern Languages are ways to describe best practices,
good designs, and capture experience in a way that it is possible for
others to reuse this experience.

Pattern Library - Hillside.net3

According to Gamma et. al. [7] there are four essential elements to a pattern:
its name; the problem that it tries to solve; the solution it suggest; and conse-
quences and trade-offs that are results of using the pattern. [7] also describe a
formal way of describing patterns and categorize them according to their scope
or purpose.

According to [15] there are six patterns that are commonly encountered in GEF
and it is the use of these patterns that gives this framework its flexibility. These
patterns are presented in the following sections.

12.1 Model-View-Controller

The Model-View-Controller(MVC) pattern was conceived in 1978 [18]. It is a
common way of organizing an application into layers of abstractions, with each
layer responsible for its own part. The MVC pattern as it is used in GEF is
shown in Figure 12.2.

According to [7] the Model of the MVC pattern is an application object. In the
case of GEF, this can be any Java Object. The View is the screen representation
of the model, as visible to the user. In GEF, the view is implemented by a
set of figures implementing the IFigure interface. Finally, the Controller is an
EditPart type [15], and is responsible for reacting to the user’s input. It will use
its edit policies (see Section 12.3) together with the tools described in Section
12.4 and the commands described in the Section 12.2, for changing the model.

3http://hillside.net/patterns

59

CHAPTER 12. THE GRAPHICAL EDITOR FRAMEWORK

Figure 12.2: An overview of the MVC pattern in GEF.

By applying the Observer pattern [7] with the EditPart as a subject listening
for changes to the model, the view can be updated with the changes to keep
the view and model consistent. This pattern is outside the GEF architecture
a will not be discussed here, but it can be noted that it is often used in GEF
based applications.

12.2 Command

The main purpose of the Command pattern, which is a behavioral pattern, is
to let “requests” be objects[7]. This enables logging, queuing and support for
undoable operations, which can be problematic when modifying objects directly.
The solution is according to Larmen [14] to let a task be an class the extends a
common interface.

In GEF, the common interface is the abstract Command class. The most impor-
tant methods are displayed in Figure 12.3. For an overview of all the methods
with a better description and the default subclasses look in the GEF API [8].

Figure 12.3: The most important methods in the GEF Command class.

The CommandStack class is an implementation of a command stack. It manages
executing, undoing, and redoing of Commands, as well as keeping track of
whether the data is saved or not.

60

CHAPTER 12. THE GRAPHICAL EDITOR FRAMEWORK

12.3 Chain of Responsibility

In [3], Braude writes that the purpose of this behavioral pattern is to let a
collection of objects provide functionality together rather than just a single
object.

The consequences of the Chain of Responsibility pattern is that it reduces cou-
pling, as an object does not need to know which other objects will handle a
request [7]. It also adds flexibility in distributing responsibility to different ob-
jects. However, it is not guaranteed that an object that will handle a particular
request exists.

In GEF the edit polices are responsible for handling the requests. The edit
polices extends the abstract AbstractEditPolicy class or any of its subclasses.
They are added to an EditPart which is the controller in the GEF MVC ar-
chitecture described in Section 12.1. The installed edit polices may all respond
to a request with Commands (see the previous section) which then are chained
together to provide the collective functionality [15]. By using the edit policies
instead of making an EditPart implement this behaviour itself increases code
reusability and makes code management and readability easier [8].

Figure 12.4 shows the main parts of the AbstractEditPolicy and the interfaces
it implements (for a full description, see the GEF API [8]). It implements
the two interfaces EditPolicy and RequestConstants. The EditPolicy defines
the method getCommand(Request). A Request encapsulates the information
needed by an EditPart to perform various functions [8]. By comparing the
passed Request to the constants defined in the RequestConstants interface, an
EditPolicy implementation will find the Command that is to be executed as a
response to the user action.

Figure 12.4: The AbstractEditPolicy class from GEF (not exhaustive).

61

CHAPTER 12. THE GRAPHICAL EDITOR FRAMEWORK

12.4 State

The State pattern provides a state-based set of operations and allows an object
to change behaviour when its state changes [12].

In GEF, the change is implemented by either switching tools in GEF editors, or
by letting the tools (that implements the Tool interface) itself can have several
states [15]. For example, a create tool causes the editor to behave differently to
a mouse down event than it would when a select tool is active.

According to the GEF API [8], tools process low-level events which they turn
into higher-level operations encapsulated as Requests. Figure 12.5 displays some
of methods in the Tool interface. The whole description of the interface and
that of the standard GEF tools which implements the interface, can be found
in the GEF API [8].

Figure 12.5: The Tool interface with its most important methods.

12.5 Abstract Factory

The Abstract Factory pattern is an creational pattern [7]. In [12], Hunt de-
scribes this pattern as used for creating families of related or dependent objects.

This pattern is applied when creating EditPart classes. The abstract factory
is the EditPartFactory interface that has one method as shown in Figure 12.6.
The createEditPart(EditPart context, Object model) method, will create an
EditPart given the specified context and model.

Figure 12.6: The EditPartFactory interface in GEF.

Another interface that acts as an abstract factory is the CreationFactory inter-
face. The class CreationTool uses an CreationFactory to create new EditParts

62

CHAPTER 12. THE GRAPHICAL EDITOR FRAMEWORK

when the GEF creation tool creates a new object in the model. The Cre-
ationFactory can be seen in Figure 12.7. Its two methods getNewObject() and
getObjectType() returns a new object and the new object’s type. A further
description can be found in the GEF API [8].

Figure 12.7: The CreationFactory interface in GEF.

12.6 Factory Method

Just as the Abstract Factory pattern, the Factory Method pattern is a creational
pattern [7]. This patterns uses an abstract class with a method for creating an
object, but it is up to the subclass to decide which class to instantiate.

In GEF, this pattern is applied to the installed edit policies that must implement
one or more factory methods defined in an abstract superclass.

In [15], Majewski indicates that is is possible to use this method to explic-
itly create child edit parts without using the factory pattern described in the
previous section.

63

CHAPTER 12. THE GRAPHICAL EDITOR FRAMEWORK

64

Part III

Contribution

65

This part focuses on the development of AutAT. It starts out with an chapter
describing the requirements. It goes on with design, implementation and testing
before provide a basic user documentation for the system. The final chapter
describes the user testing session.

66

Chapter 13

Requirements

Extreme Programming (XP) (described in detail in 7) is different from tradi-
tional software engineering processes. One of the great advantages of XP is its
emphasis on customer involvement and short development cycles that results in
early, concrete and continous feedback according to [23]. This is an advantage
as many customers does not know or sometimes does not understand what the
software they are buying will do. Other reasons are the problem of commu-
nicating what they want and that the customer change their mind regarding
what they want. There are probably numerous other reasons why requirement
engineering is so difficult. Ultimately this means that spending lots of time
gathering requirements and documenting it in great detail through the use of
tools like UML use cases is a waste of time. Astels et. al. recommend against
using use cases in [1]. XP uses user stories to capture user requirements which
are described in Section 13.2.

This project is under the influence of XP which means that we are working close
with our supervisors at BEKK as they can be considered to be our customers.
The implemetation is a prof of concept where we want to be able to adjust the
program with respect to the users feedback. Because of this the requirements
are a vision and a set of user stories that are described in the next sections.
This has been more than sufficient to communicate the systems requirements.

13.1 Vision

In [1], Astel et. al. says that a system should start out with a vision for the
system that should describe where the project should end up. This is related to
this projects problem definition that is described in Chapter 2 and to the GQM
goal in Chapter 6. Astel et. al. argue that the vision should be a less than 25
words statement about the purpose of creating the system. Our vision is:

The purpose of AutAT is to increase usability, quality and efficiency
when writing acceptance tests for web applications, especially in the
context of test driven development.

67

CHAPTER 13. REQUIREMENTS

13.2 User Stories

A introduction to user stories is given in Section 7.2 on page 29. The project’s
users stories are:

US 1 Register Project

The user wants to create a new project. The user supplies a name and a
description for the project. The project will contain acceptance tests for a
single web application.

US 2 Register User Story

Within an existing project, the user will create a new user story.

US 3 Nested User Stories

User stories can be nested, providing more detailed stories or variations.

US 4 Start Points

A start point is a place where a test can start. It consists of a URL within the
web application, and is given a logical name that the user can easily refer to.
The user must be able to define and use such points.

US 5 Create Test

When a user story is defined, a test can be created and is added to that story.
The test will illustrate one possible execution of the user story. This execution
will involve navigating between web pages within the web application by clicking
on links or by submitting a form, and viewing and validating the web pages’
content.

US 6 Edit Test

The user can edit a test at a later stage.

US 7 Extension Points

Some tests may stop in an Extension Point. These tests are extendable, meaning
that other tests may continue from one of this test’s extension points. The
extending test will perform the steps in the first test before continuing with
their own steps. This is an alternative to starting a test at a Start Point as
described in US 4.

US 8 Aspects

An aspect is a set of test steps that can be apply to many tests or parts of tests.

US 9 Parameterized Tests

Some tests should be executed several times, with different input values to the
forms submitted and different text shown on pages. The user can provide these
different sets of inputs and outputs and be able to map these to form elements
and checks on pages.

68

CHAPTER 13. REQUIREMENTS

US 10 Share project

Several people must be able to work on the same project with its user stories and
tests. Every person working on the project need to see additions and changes
performed by the others.

US 11 Export Tests

The user shall be able to export the tests in a project, in order to integrate these
tests with Continuous Integration Tools such as CruiseControl1 and AntHill2.

US 12 Run tests

The system shall run all tests or tests for a single user story and give feedback
to the user what parts of each test passed and which parts failed.

US 13 Statistics

The system can show and save statistics showing which part of tests passed and
failed at a certain point in time.

US 14 Check Tests with SiteMap

The user can define pages and links between them that indicates if it should be
possible to “go” between them. The program tests whether it is possible to go
between all te pages in this “SiteMap” by using the tests and test data that is
entered.

We believe that these requirements are sufficient for developing AutAT.

1http://cruisecontrol.sourceforge.net
2http://www.urbancode.com/projects/anthill

69

Chapter 14

Design

This chapter will describe the design of the AutAT application. The first section
will describe a domain model for the system. The domain model is the result
of further analysis of the user stories listed in 13.2. This model will act as the
base for the design of the AutAT application.

The domain model will be mapped to architectural choises in Section 14.2.

The design in this chapter is targeted at US 1–8 and 10–11. US 9, 12, 13
and 14 have been delayed to later iterations in the development of AutAT. In
accordance with the XP practices, the design does not target the “problems of
tomorrow”.

14.1 Domain model

A domain model is a model of the problem domain used when developing a
computer system. In our case, the domain is tests for web applications. The
requirements for the system are shown as user stories in Chapter 13. These
requirements have led to the top-level model shown in Figure 14.1. This model
shows the concepts of the domain, for readability the properties of each concept
is not shown.

In the model, we see the concept of a Project. This is a direct mapping from
US 1. A set of User Stories is associated with a project. These are the stories
the web application is supposed to support, as described in Section 7.2. US 2
deals with the relationship between a project and its user stories, while US 3
states that user stories can be nested.

A Test is one possible execution of a user story. As there are many possibilities
with regards to such executions, there will most often be necessary to have more
than one test for a user story. As stated in US 5, a test will consist of a series
of steps. As each step in an interaction with a web application involves a web
page, steps are shown as Pages in the model. A page will consist of a collection
of Elements. An element is what a user can see on a web page, such as a text,

70

CHAPTER 14. DESIGN

a link or a form. A test can check if these elements are present and correct or
if some element is missing.

Figure 14.1: Top-level domain model

Of the elements on a page, links and texts are the simple ones. A Form is
a more complex entity, consisting of several sub-elements as shown in Figure
14.2. A form on a web page will consist of one or more Form Elements. A form
element can be a single-line text field, a multi-line text area, a password field,
a select (drop-down) list, a set of radio buttons and (submit-)buttons.

An Aspect as described in US 8 will perform the same checks a page can perform.
An aspect will consist of a set of Elements, just as for a page. The purpose of
an aspect is to group together repeating checks such as checking a copyright
statement, a login form or logout link. An aspect will add its checks to the
checks already present in any page it is connected to. However, an aspect will
not be able to be part of a transition as described next.

As a user interaction with a web application usually consists of more than
looking at one page, the user will also navigate between pages. This navigation
is shown in Figure 14.1 as a Transition connecting two pages. A transition

71

CHAPTER 14. DESIGN

Figure 14.2: The form and form elements.

will start at one page, and stop at the next, and is executed either by clicking
on a link or entering values to a form and then pressing a button. These two
cases are shown in more detail in Figure 14.3. Clicking a link will result in a
LinkTransition, a simple entity.

The more complex case of submitting a form with values requires a set of
values connected to the fields in the form. A FormTransition is connected to
the FormElement from Figure 14.2. The FormTransition also holds FormInput
values to enter as input before submitting the form.

Figure 14.3: Transitions

US 4 and 7 deal with how a test will start. US 4 will let a test start at a specific

72

CHAPTER 14. DESIGN

URL within the tested web application. US 7 will let a test continue where
another test stopped. This can let the first test do some basic set up, such as
performing login, before the second test does its business. This results in the
concept of a StartPoint shown in Figure 14.1. In a conceptual manner, a Start
Point can be thought of as shown in Figure 14.4. Here all tests will start at
a start point. This start point will be either a simple URL or it will be an
extendable test.

Figure 14.4: StartPoint

14.2 Architecture

The domain model described in the previous section is a more detailed view of
the first eight user stories. These are the ones dealing directly with how a user
will create and manipulate projects and their respective user stories and tests.
This model, as well as the rest of the user stories in Section 13.2, are the base
of the architecture for AutAT.

The choice to implement AutAT as a plugin for Eclipse was described in Chapter
10. This choice has certain implications for the overall architecture of AutAT.
First of all, it has to integrate into Eclipse and the metaphors used in the Eclipse
Platform. The overall architecture of Eclipse and the consepts of a Workspace
and the Workbench are described in Chapter 11. Secondly, some of the user
stories for AutAT will be supported by other plugins that AutAT will have to
relate to.

As we can se from Figure 14.5, AutAT will become a component within an
Eclipse installation. It will be depending on the Eclipse runtime to provide ac-
cess to the local filesystem, AutAT’s use of the local filesystem will be described
in Section 14.2.1. The use of the Team API to provide access to a remote file
system will also be described in the same section.

The internal design of the AutAT plugin will be described in more detail in
Section 14.2.2.

73

CHAPTER 14. DESIGN

Figure 14.5: The AutAT plugin and dependencies in Eclipse

74

CHAPTER 14. DESIGN

14.2.1 Using the File System

The Eclipse Workbench consists of a collection of projects, as described in
Section 11.1.1. The domain model for AutAT also contains the concept of a
project. The AutAT plugin will use the built-in project hierarchy in Eclipse
to organize the AutAT projects. As normal Eclipse projects consist of a set of
folders and files, so will an AutAT project.

As we see in the domain model, a project consists of several user stories which
may contain nested user stories. In the AutAT eclipse project structure, a file
system folder will act as a metaphor for a user story. By giving the folders the
names corresponding to the user stories for the system, this will provide the
link to the document containing the stories.

As for the tests themselves, each test will be stored in a seperate file within the
folder representing its user story. A folder may contain several tests. The files
will be based on XML for saving the tests. XML is relatively easy to use for
storing structured data, as is the case from our domain model. We choose the
file-extension .aat for the files containing an automatic acceptance test.

User story 4 define start points as a combination of a name and a URL. These
pairs must be collected in a central place in order for AutAT to easily handle
them. For this purpose, we will introduce a new file specific to an AutAT
project. As with the tests this file will be based on XML, and it will be placed
in the root folder of the project. We call this file NamesAndURLs.urls. By
giving this file a static name, AutAT will know where to find it, and each test
will only need to keep a reference to the start point it is using.

Figure 14.6 shows how we want an example AutAT project to look for a project
named “CDDB”. The project base folder contains two folders in addition to
the file containing start points. The folder tests is introduced to contain the
user stories and tests for the system, while the folder generated is to contain
exported tests, as specified in US 11. The project contains three user stories
and five tests.

CDDB
|-tests
|-Front Page
|--testFrontPage.aat

|-Register New Artist
|--testRegisterPinkFloyd.aat
|--testRegisterToriAmos.aat
|--testInvalidRegistration.aat

|-Register new Album
|--test Register new Album for Rolling Stones.aat

|-generated
|--NamesAndURLs.urls

Figure 14.6: Example AutAT project hierarchy

75

CHAPTER 14. DESIGN

US 10 specifies the need to be able to share a project between several people
working on the project. This is where the Eclipse Team plugin comes to play.
This plugin allows for the use of centralized repositories providing configuration
management, file sharing and version control as described in Section 11.3. This
allows us to thus satisfy US 10. Different teams may choose to use different
repositories, as long as the technology is supplied through a plugin.

14.2.2 AutAT Internals

The actual implementation of the AutAT plugin will be divided into four high-
level packages as shown in Figure 14.7. The four packages is the AutAT core,
AutAT common classes, the AutAT User Interface and a set of exporters. These
packages will be described in the following sections.

Figure 14.7: The internal structure of the AutAT plugin

AutAT Common

The AutAT Common package will contain the common classes used by the other
packages. This includes the class model derived from the domain model, that
will be used by all other packages. These classes are the same as in the domain
model, but have added properties such as names, identifiers, descriptions, texts
and such.

AutAT Core

The AutAT Core is responsible for handling the tests in a project. These
responsibilities include reading tests from files, converting them from XML to
objects as defined in the AutAT common package, and performing the reverse

76

CHAPTER 14. DESIGN

operation to save them to files. The conversion also includes linking the start
points into the tests.

This core functionality will be used by the other parts, exporters and the UI.

AutAT Exporters

An Exporter will be a component that will transform a test from its object
representation into some form that can be executed. The idea is to let several
exporters co-exist, providing differing executable tests. The first implementa-
tion will be an exporter that will use the jWebUnit WebFixture extension to
FIT, providing HTML files that FIT can process.

AutAT UI

For the users of AutAT the User Interface is probably the most important part.
As we see from Figure 14.8, the UI package consists of four sub-packages that
will provide its part of the functionality for the user.

Figure 14.8: The structure of the UI package

First we have the Eclipse Specialization package. This package will contain
property pages for each project and preference pages for the AutAT plugin.
These will be used to customize the bahaviour of a project and for the AutAT
plugin respectively.

Secondly a set of Actions will be needed. An action is a process that will
be triggered from some point in the UI. Actions include exporting tests and
running tests. Again, these will plug into existing extenstion points provided
by the Eclipse platform.

A Wizard is a dialog window guiding the user through a series of steps when
performin a complex task. AutAT will need wizards to create new projects and

77

CHAPTER 14. DESIGN

to create new tests. The wizards will perform the setup necessary in order to get
started. When creating a new project required folders and files will be created,
when creating a new test the least possible information that can constitute a
test will be created.

By far the largest part of the UI is the GEF package. This package will contain
the graphical test editor. As this is such a important part, its design will be
discussed more closely.

AutAT UI GEF

The structure of the GEF package is closely linked to the patterns described
in Chapter 12. However, not all the packages within GEF contribute to the
patterns.

Figure 14.9: The structure of the GEF package

The Editor package contains the implementation of the editors that are created
for AutAT. There are two editors: the test editor and the an editor for viewing
and manipulating the set of start points. The start point editor will not use the
GEF patterns, just handle a file in its own way by showing a list of the defined
start points.

The test editor on the other hand, will use all the GEF related patterns. The
editor will be started when a user opens a test file (*.aat). This will load the
model into memory (see the MVC pattern in Section 12.1) and create controllers
from the edit parts in the controller package corresponding to the test. It
will also create the visual representation of the test using parts from the view
package.

When creating controllers, the Abstract Factory pattern from Section 12.5 is
used. A Factory for edit parts will be provided in the factory package. A
Factory for creating new elements in a test will also be provided.

78

CHAPTER 14. DESIGN

The Policies package contains the Edit Policies for tests. These are part of
the Chain of Responsibility pattern (Section 12.3). As the user interacts with
the system, the policies will figure out which command from the Command
package to execute. These commands will implement the Command pattern
from Section 12.2. Some commands will start a Wizard that asks the user for
information to complete. This information can be the name of a link when
navigating, or values to submit in a form.

The Actions package is to contain executable actions that are not used by the
edit policies. This includes normal undo and redo functionality and contextual
(right-click) menus in the editor.

The packages dnd and DirectEdit provide basic additions to the view. dnd
provides drag-and-drop functionality, while DirectEdit is to give the user the
ability to edit text (such as page title, the text on a link) directly in the view
by simply clicking on the text to edit.

This division of the different parts of the editor into packages with their own
specific responsibilities and mappings to widely accepted patterns will keep the
design as simple as possible. It will also make future additions easier due to the
modularity of the design.

79

Chapter 15

Implementation

This chapter will describe the implementation of the AutAT Eclipse plugin.
We provide one section on each of the main parts of the application. First we
describe the Common package in Section 15.1, before we show the internals of
the Core package in Section 15.2. The Exporter package contains functionality
to create WebFixture test for FIT and is described in Section 15.3. The GUI
implementation is described in Section 15.4, while the final section of the chapter
shows key metrics related to the implementation of AutAT, such as a class-count
and lines-of-code.

15.1 AutAT Common

The AutAT Common package contains the “value-objects” in the application.
It is based on the domain model described in Section 14.1, but has some mod-
ifications. First of all, the Project and User Story concepts are not a part of
this object model. Secondly, all the classes have added properties such as names
and identifiers as well as get- and set-operations to manipulate these properties.
For the central concepts, this is shown in Figure 15.1.

Properties have been added to complete the form elements, the transitions and
input values. In order to keep this chapter simple, these are not shown here.

One deviation from the domain model is the Aspects. In the original domain
model, an aspect is owned by a project and can be joined to any number of pages
within any number of tests. This has not been a priority when implementing
AutAT. However, we wanted to show the concept of an aspect and how it can
look and work, therefore aspects was moved into a test. Now an aspect is owned
by a test, and can be joined to any pages within this test.

The design in 14.1 included extendable tests. This has been left out of the
initial implementation due to time pressure.

The Common package will be used by the other packages. The Core package will
populate the objects with values based files in the file system, the UI package

80

CHAPTER 15. IMPLEMENTATION

Figure 15.1: Central classes in the Common package (identifiers not shown)

will show graphical editors representing the Common model and the exported
tests will be based on the values from a populated object model.

15.2 AutAT Core

The AutAT Core is responsible for handling tests and startpoints, reading these
from files and saving updates to files. As described in Section 14.2.1 AutAT
defines two file formats, one for saving tests and one for saving start points.
Both these formats will use XML as internal representation of the data they
hold.

The Java programming language has built in libraries for handling XML. How-
ever, these seem harder to use than the libraries provided by the JDOM project1.
The JDOM libraries provide an easier abstraction for the elements in the XML
document, and navigation and general handling of these elements is easier than
with the standard Java libraries. Thus, JDOM was chosen to handle the docu-
ments.

The AutAT Core package is implemented using the Builder pattern described
in [7]. This pattern divides the effort of constructing a complex object (i.e a
Test) between several objects, each responsible for a smaller part of the total.
In the case of AutAT, one class (TestConverter) will be responsible for reading
and saving a test. This will in turn use new classes (i.e. PageConverter) to
handle the different parts that constitute a Test. An illustration of how this
works is shown in Listings 15.1 and 15.2. The first listing converts a test from
XML to an object representation, while the second does the inverse operation.

1http://jdom.org

81

CHAPTER 15. IMPLEMENTATION

Listing 15.1: Reading a Test from XML (from TestConverter.java) �
1 public stat ic Test fromElement (Element testElement , URLList u r l L i s t

) {
2 Test t e s t = new Test () ;
3
4 Attr ibute idAtt = testElement . g e tAt t r ibute (” id ”) ;
5 t e s t . s e t I d (idAtt . getValue ()) ;
6
7 Attr ibute nameAtt = testElement . ge tAt t r ibute (”name”) ;
8 t e s t . setName (nameAtt . getValue ()) ;
9

10 Element desc = testElement . getChi ld (”d e s c r i p t i o n ”) ;
11 t e s t . s e tDe s c r i p t i on (desc . getValue ()) ;
12
13 Element s t a r tPo in t = testElement . getChi ld (”connect ionPoint ”) ;
14 ConnectionPoint connPoint = Connect ionPointConverter .

fromConnectionPoint (s ta r tPo int , u r l L i s t) ;
15 t e s t . s e tS ta r tPo in t (connPoint) ;
16
17 Element pagesElement = testElement . getChi ld (”pages ”) ;
18 L i s t pages = PageConverter . fromPagesElement (pagesElement) ;
19 t e s t . setPages (pages) ;
20 . . .
21 . . .
22 return t e s t ;
23 }� �

Listing 15.2: Saving a Test to XML (from TestConverter.java) �
1 public stat ic Element fromTest (Test t e s t) {
2 Element retVal = new Element (” t e s t ”) ;
3 retVal . s e tAt t r i bu t e (” id ” , t e s t . ge t Id ()) ;
4 retVal . s e tAt t r i bu t e (”name” , t e s t . getName ()) ;
5
6 Element desc = new Element (”d e s c r i p t i o n ”) ;
7 desc . setText (t e s t . g e tDe s c r i p t i on ()) ;
8 retVal . addContent (desc) ;
9

10 Element s t a r tPo in t = ConnectionPointConverter .
fromConnectionPoint (t e s t . g e tSta r tPo in t ()) ;

11 retVal . addContent (s t a r tPo in t) ;
12
13 Element pages = PageConverter . fromPages (t e s t . getPages ()) ;
14 retVal . addContent (pages) ;
15 . . .
16 . . .
17 return retVal ;
18 }� �

15.2.1 XML Schemas

An XML schema2 is a XML-based description of the structure of a XML doc-
ument. The schema will define:

2http://www.w3.org/XML/Schema

82

CHAPTER 15. IMPLEMENTATION

• which elements are permitted to appear in the document

• which attributes defines an element

• the data types for each element and attribute, as well as default values
and whether values are required or optional

• relationships between elements, which elements are sub-elements of others
and the ordering of such sub-elements

The AutAT plugin has two file formats to handle, one for tests, the other for
start points. For each of these, a seperate XML schema has been defined.
Listing 15.3 shows the schema for the start points, while Listing 15.4 shows
a part of the schema for a test. The complete schema for a test is found in
Appendix F.

Listing 15.3: XML schema for start points �
1 <?xml version=”1 .0 ”?>
2 <xs:schema
3 xmlns :xs=”ht tp : //www.w3 . org /2001/XMLSchema”
4 targetNamespace=”ht tp : // autat . s ou r c e f o r g e . net ”
5 xmlns=”ht tp : // autat . s ou r c e f o r g e . net ”
6 elementFormDefault=”q u a l i f i e d ”>
7
8 < !−− t ype f o r the mapping e lements −−>
9 <xs:complexType name=”mappingType ”>

10 <x s : a t t r i b u t e name=”id ” type=”x s : s t r i n g ” use=”requ i r ed ” />
11 <x s : a t t r i b u t e name=”name” type=”x s : s t r i n g ” use=”requ i r ed ” />
12 <x s : a t t r i b u t e name=”ur l ” type=”x s : s t r i n g ” use=”requ i r ed ” />
13 </xs:complexType>
14
15 < !−− t ype f o r the c o l l e c t i o n o f mapping e lements −−>
16 <xs : e l ement name=”urlMappings ” >
17 <xs:complexType>
18 <xs : s equence>
19 <xs : e l ement name=”mapping ” type=”mappingType ” minOccurs

=”0 ” maxOccurs=”unbounded ” />
20 </ xs : s equence>
21 </xs:complexType>
22 </ xs : e l ement>
23
24 </xs:schema>� �

83

CHAPTER 15. IMPLEMENTATION

Listing 15.4: XML schema for tests �
1 <?xml version=”1 .0 ”?>
2 <xs:schema
3 xmlns :xs=”ht tp : //www.w3 . org /2001/XMLSchema”
4 targetNamespace=”ht tp : // autat . s ou r c e f o r g e . net ”
5 xmlns=”ht tp : // autat . s ou r c e f o r g e . net ”
6 elementFormDefault=”q u a l i f i e d ”>
7 . . .
8 . . .
9 < !−− the t e s t type , base e lement in the t e s t documents −−>

10 <xs : e l ement name=”t e s t ”>
11 <xs:complexType>
12 <xs : s equence>
13 <xs : e l ement name=”de s c r i p t i o n ” type=”x s : s t r i n g ” />
14 <xs : e l ement name=”connect ionPoint ” type=”

connectionPointType ” />
15 <xs : e l ement name=”pages ” type=”pagesType ” />
16 <xs : e l ement name=”aspec t s ” type=”aspectsType ” />
17 <xs : e l ement name=” t r a n s i t i o n s ” type=”

t rans i t i onsType ” />
18 </ xs : s equence>
19 <x s : a t t r i b u t e name=”id ” type=”x s : s t r i n g ” use=”requ i r ed ”

/>
20 <x s : a t t r i b u t e name=”name” type=”x s : s t r i n g ” />
21 </xs:complexType>
22 </ xs : e l ement>
23
24 </xs:schema>� �

15.3 AutAT Exporter

The Exporter package contains the functionality used to transform the AutAT
Common representation of a test into a representation that is suitable for some
testing framework to execute. As one of the user stories (US 11) specifies
the need to be able to change testing framework easily, we have created a
simple abstract class to extend in order to export tests. This class performs the
traversal of the project, telling the implementor to convert one input file and
save it to an output file. The signature of the abstract class DirectoryWalker
is shown in Listing 15.5, and the initial implementation of the converter method
for WebFixture is shown in Listing 15.6. Parts of the classes are omitted for
readability.

84

CHAPTER 15. IMPLEMENTATION

Listing 15.5: The abstract class DirectoryWalker �
1 public abstract class DirectoryWalker implements

IRunnableWithProgress {
2 protected URLList u r l L i s t ;
3 protected St r ing baseUrl ;
4
5 public DirectoryWalker (IP ro j e c t p r o j e c t) {
6 . . .
7 }
8
9 public boolean walkProject (IP ro j e c t p r o j e c t) {

10 . . .
11 }
12
13 /∗∗
14 ∗ Converts a s i n g l e f i l e .
15 ∗
16 ∗ @param inF i l e The f i l e con ta in ing the t e s t .
17 ∗ @param ou tF i l e The f i l e to conta in the r e s u l t .
18 ∗ @return <code>true </code> i f s u c c e s s f u l , <code>f a l s e </code>

o therw i s e .
19 ∗/
20 public abstract boolean conve r tF i l e (F i l e i nF i l e , F i l e ou tF i l e) ;
21
22 public void run (IProgressMonitor monitor) throws

Invocat ionTargetExcept ion , Inter ruptedExcept ion {
23 progMonitor = monitor ;
24 walkProject (thePro j e c t) ;
25 }
26 }� �

Listing 15.6: Implementation of test conversion for WebFixture �
1 public boolean conve r tF i l e (F i l e i nF i l e , F i l e ou tF i l e) {
2 Test t e s t = ToFromXML. fromXML(inF i l e , u r l L i s t) ;
3
4 ToFromFIT . toFIT (te s t , outFi l e , baseUrl) ;
5
6 return true ;
7 }� �

The implementation of the WebFixture converter ToFromFIT is done in the
same way as the AutAT Core, using the builder pattern and JDOM for creating
HTML files. We will not discuss this implementation further here.

15.4 AutAT UI

We will not dive into the inner workings of the AutAT user interface more than
described in the design chapter. We feel this does not give much more value
to our description of the implementation. However, we will show the results as
percieved by the user.

85

CHAPTER 15. IMPLEMENTATION

The most central part in the AutAT user interface is the graphical test editor.
This is the editor a user will interact with to create, edit and view a test. An
example of the Eclipse workbench with an AutAT test is shown in Figure 15.2.
This shows how a test appear to the user. We will explain its parts here.

Figure 15.2: A full test shown with the AutAT plugin

The main window is the editor window itself. This consists of two parts: the
left is a palette that contains the set of elements the user can add to the work
area. The user first select the type of element she wants to add to the test (i.e.
a Page, an Aspect or a Transition), then the mouse cursor will change to reflect
her choice, and when she clicks in the work area, the selected element is added.

When a new test is opened, it will only contain the start point the user selected
when creating the test. As the user adds the first page, a transition (an arrow)
will be created, connecting the two. Pages are shown with a light blue header.
The user can continue to add elements to her test, checks for text or links on
pages or new pages. A form is represented by a yellow area inside a page.
When a user has added a form to a page, she can add form elements (such as
textfields and buttons) to this form. An aspect is also shown. This is similar
to a page, but has a gray header. The aspect is connected to pages by adding
a connection, just like when navigating between pages using links.

To navigate between two pages in a test, the user adds a connection between
them. This will trigger a dialog box: if the user selected to navigate by pressing

86

CHAPTER 15. IMPLEMENTATION

a link, she must provide the text of the link to click; if she selected to submit a
form, she must select which form to use and enter values into the fields it has
defined.

Figure 15.2 also shows two other AutAT components. In the bottom left corner,
an outline of the currently active test is shown. This is a down-scaled version
of the test, useful when the test becomes visually larger than the available
screen area. Below the editor window, the property editor is used. This is
an alternative to edit text directly in the editor window. This will show the
values of the currently selected element in the editor window, and the user can
manipulate the values directly.

Figure 15.3 shows the two pages of the wizard that guides the user through the
process of creating a new test. The first page (top) makes the user choose a lo-
cation to place the new test (a user story within the project), provide a filename
and a regular name for the test. He is also asked to give a description of the
test. The second page makes the user choose a start point where he wants the
test to start. These are the start points defined in the file NamesAndURLs.urls
with the start point editor (described shortly). The second page also lets the
user define a new start point. This will invoke a new dialog window for him to
enter the details of the start point.

The wizard for creating a new AutAT project is similar to the one for creating
a new test. It ask the user for information on where to store the project, its
name and the URL of the web application it will test. This wizard is not shown
here.

Every test will start at some start point within the web application. These
starting points are kept in the file NamesAndURLs.urls in the project root folder.
The editor shown in Figure 15.4 is used to edit the starting points. The editor
consists of a table showing the defined start points (their names and urls) that
can be edited at will. The add button will add a new start point to this list.

15.5 AutAT Software Metrics

Table 15.1 shows the key metrics for the AutAT application.

Metric Count
Number of packages 22
Number of classes 180
Lines of code 3877
Average lines of code per class 21.5
Maximum lines in a class (autat.ui.gef.editors.GraphicalTestEditor) 137

Table 15.1: Key software metrics

87

CHAPTER 15. IMPLEMENTATION

Figure 15.3: The wizard when creating a new test

88

CHAPTER 15. IMPLEMENTATION

Figure 15.4: The start point editor

89

Chapter 16

Testing

We have written a lot of nice things on XP and Test Driven Development
earlier. Some would say that doing manual tests in XP is like doing witchcraft
in a church. What some consider even worse (we would not even think of an
analogy) is doing “ad hoc manual testing” in XP. However, for some parts of
the AutAT application this is what we have done.

The nature of AutAT as a proof of concept is to explore the possibilities of
how we can visualize and maintain acceptance tests for web applications. To
write detailed accepance tests for an exploratory effort only seemed like a way
to limit the possible outcomes, and we figured there was no way we could tell in
advance what was “right or wrong”, but we could evaluate different solutions as
to which is “better or worse” on the way. Also, many within the XP community
find GUI testing hard to automate. They recommend writing the GUI of an
application as thin as possible, focus automatic testing on the layers beneath
the GUI and use manual tests for the actual GUI [5]. For these reasons, there
were not specified formal tests for the GUI of AutAT.

To say that no formal tests were specified, is not the same as saying no testing
did occur. We constantly evaluated the solutions we were building to find ways
to improve them. This process started early with the first paper prototype that
was evaluated. The feedback from this session lead to a few design changes to
the first computerized release. The implementation of the AutAT GUI was a
constant evaluation of how the layout should be and how users should inter-
act with the system. This constant evaluation generated small, invcremental
changes that in sum improved the finished product.

The parts of AutAT below the GUI were devloped in a more formal fashion. A
modified version of TDD was used. Unit tests and the classes they tested were
developed side-by-side. The Core classes, the classes in the Common package
and unit tests for them were developed in parallell. When a property was added
to a common class, tests were also modified in order to reflect the new reality.
The WebFixture exporter was developed in the same fashion. As changes in
any of the classes occured, they would make some unit test fail and either the

90

CHAPTER 16. TESTING

test or the class were corrected so that the test passed again.

The user testing session and the empirical study of the results from this act
as a form of acceptance test for the project. The results reflect how we have
achieved the vision of increasing the efficiency and usability when writing tests
and increasing the quality of the tests.

Some might say this is a short description of the testing process in a project
that promotes testing. However, as we have argued above the project is mainly
a proof of concept, trying to explore future possibilities. We feel that the testing
we performed was enough for our purposes. As argued by Hutcheson in [13]
testing software is an effort balancing the costs of the testing with the amount
of testing needed.

91

Chapter 17

User Documentation

This part contains the user documentation for AutAT. First we show a detailed
installation procedure, before we describe how to create a test in AutAT. The
test we will create is the same as used as an example in Chapter 9, a test for a
simple CD database system.

17.1 Installation

The installation procedure presented here is rather detailed. For those familiar
with Eclipse the short installation is to install Eclipse, GEF and then AutAT.

First install the Eclipse Platform (preferably 3.1 that is used in this manual).
Eclipse can be downloaded from http://www.eclipse.org/downloads/index.php.
Extract the downloaded file. In the eclipse catalog that you just extracted,
open the eclipse executable.

GEF is required for running AutAT, as AutAT uses features provided by the
GEF plugin. Installing GEF is done through the update manager in Eclipse
which found by clicking Help − > Software Updates − > Find and Install....
Select Search for new features to install and click Next >. Select Eclipse.org
update site and click Finish. Select the Eclipse.org update site. Click OK and
wait for the Update Manager to complete its search (this might take some time).
Expand the Eclipse update site, and select Graphical Editing Framework after
expanding the GEF catalog. Note that the version of GEF should be the same
version as the Eclipse Platform. Click Next > and accept the terms in the
licence agreement. Click Next > again and then Finish. Wait and click Install.
When the installation is complete, you will be prompted to restart Eclipse.

The process of installing AutAT is similar as installing GEF. It uses an update
site, just as GEF. Click Help − > Software Updates − > Find and Install...
before selecting Search for new features to install. Click New Remote Site... and
type AutAT for the name and http://autat.sourceforge.net/update/ as shown
in Figure 17.1. Click OK. Select AutAT and click Finish.

92

CHAPTER 17. USER DOCUMENTATION

Figure 17.1: Installing a new New Update Site

Select AutAT from the search results as shown in Figure 17.2 and click Next >.

Figure 17.2: Select AutAT

Accept the licence agreement and click Next >, Finish and Install. Restart
Eclipse after the installation.

After Eclipse has been restarted, AutAT is ready to be used.

17.2 Usage

Here we will show a step-by-step guide to create a test in AutAT. The test
will first check the welcome page of the system, then register a new artist. We
assume the user is at least a little experienced with using Eclipse.

93

CHAPTER 17. USER DOCUMENTATION

The first interaction with AutAT is to open the AutAT Perspective. The AutAT
perspective is shown in Figure 17.3.

Figure 17.3: The AutAT Perspective

Create a New AutAT Project by right-clicking in the navigator view to the
left in the perspective, selecting New Project. Select AutAT − > New AutAT
Project and click Next >. Give the project the name “CDDB”, and keep the
default location. Click Next >. Type “http://cddb.ovstetun.no” as the Base
URL as shown in Figure 17.4 and click finish.

Figure 17.4: Provide a Base URL

94

CHAPTER 17. USER DOCUMENTATION

A new project will appear in the navigator view, as shown in Figure 17.5. The
“tests” folder will contain the user stories and tests for the web application.

Figure 17.5: The AutAT Navigator

Create a New Test by right-clicking on the tests-folder and selecting New − >
Other.... Select AutAT − > New AutAT-test and click Next >. Choose a file
name, a name for the test and a description as shown in Figure 17.6. Click Next
>.

Figure 17.6: Create a new test

95

CHAPTER 17. USER DOCUMENTATION

Now you must provide a Start Point for the test. None have been created, so
the list of available points is empty. Click Add startpoint to add one. Type the
values shown in Figure 17.7 and click OK. Click Finish to create the test.

Figure 17.7: Create a new Start Point

An empty test will appear in the Editor window, as shown in Figure 17.8. We
will add pages, checks and transitions to complete the test. To add an element
to the test, select the appropriate field in the palette to the left in the editor
window.

Figure 17.8: An empty test

Start by adding a new page to the test. Type the title “CDDB”. An arrow
connecting the start point and this page will appear in the test. Add a text
“Welcome to the CDDB” and two links with the texts “List all artists” and
“Register new artist” to the page. Create a new page for registering a new artist,
with the title “Register new artist”. Connect the first page to the second with
a new Connection. Add a form to the second page, containing two textfields
(“Name” and “Genre”) and a submit button with the text “Save artist”.

96

CHAPTER 17. USER DOCUMENTATION

The last page will be a page confirming we added a new artist. Create a page
with the title “Artist registered: Pink Floyd”. Connect this to the second page
with a FormInputConnection. You will be prompted to select the form to fill,
as shown in Figure 17.9. Type the values as shown in the figure.

Figure 17.9: Provide input values to a form

The final result is shown in Figure 17.10.

Figure 17.10: The final test

97

Chapter 18

User Testing Session

The user testing session that is the data collection phase in the GQM-method
presented in Chapter 6, had four parts. It started out with some background
information, then we worked with FitNesse, before we worked with AutAT.
The last part was an evaluation summing up the session. These parts will be
explained further it next sections.

Eight users participated in the session.

18.1 Background

The first part of the testing session was a short introduction to the field of
testing and especially acceptance testing. The purpose was to motivate the
tester for the test session and to let them know the background of AutAT. The
philosophy behind Test Driven Development was described as an explanation to
why there were no real web site to test against. One aspect that we emphasized
was customer involvement which is important in XP and one of the reasons for
stating this project.

Before the next session the user filled out the first – Background and Experience
– section of a questionnaire. The questionnarie can be found in Appendix A.

18.2 FitNesse

This part stated out with a short demonstration of FIT in general and Fit-
Nesse i particular. The demonstration lasted approximately fifteen minutes,
and showed how to use the test functionality provided by jWebUnit’s WebFix-
ture for FitNesse. For aiding the testers in defining their tests we had prepared
a little “helper” that can be found in Appendix C – FitNesse Commands.

After this introduction the tester performed the exercises that we had prepared
as one can see in Figure 18.1. They can be found in Appendix B – Testing

98

CHAPTER 18. USER TESTING SESSION

Exercises. All the testers measured the time it took for completing each exercise.

Figure 18.1: The Test Session

After completing the exercises or exeding the time limit of 40 minutes, the users
answered the questions found in Section A.2 of the questionnaire.

18.3 AutAT

This part was similar to the previous part. We started with a minimal intro-
duction to AutAT focusing on the graphical user interface. The functionality
was demonstrated and explained. This demonstration lasted approximately ten
minutes.

After the introduction, the testers performed the same exercises as in the Fit-
Nesse session. They can be found in Appendix B. Again, the time used was
measured and recorded.

After the testers had completed the tests they answered the questions shown in
Section A.3 which focuses on all important aspects of AutAT.

18.4 Evaluation

Finally there was an evaluation session that began with the users answering the
final section (A.4) of the questionnaire which is trying to compare AutAT and
FitNesse.

There was also a more informal discussion lasting for about half an hour where
the testers talked about what they liked, what they did not like, their general
opinions and feedback and so forth.

99

CHAPTER 18. USER TESTING SESSION

100

Part IV

Evaluation

101

This part sums up the project. It first addresses the research question and goal
attainment before it has a discussion of the important aspects of the project.
Then we provide conclusions to the project and presents the future work.

102

Chapter 19

Research Analysis and Goal
Attainment

The purpose of this chapter is to analyse and evaluate AutAT with respect to
GQM. As seen in the begin of Chapter 6 the goal is linked to a goal attainment,
the questions to answers and metrics are linked to measurements. Measure-
ments, answers and the goal attainment is described in this chapter. First in
the chapter is a section on the threats to validity as it is important for a good
evaluating of AutAT.

19.1 Threats to Validity

In this section we will try to look at the most important threats to research
validity. Wohlin et. al. [24] proposes a set of possible threats that we use as a
basis for our list of threats to validity.

• Low statistical power
Low statistical power means that there is little ability for a test to reveal a
true pattern in the data. There are rather few testers in our experiment,
but by using paired t-test we believe it is sufficient for doing a good
analysis according to Section D.1. An other, closely related, subject is
that statistical purists might argue that it is wrong to convert the ”agree”
to ”disagree” scale into a 1 to 4 discrete scale. However, according to Dyb̊a
in [6] who uses Stevens and Tukey, it is more important to be able analyze
data than to let an overpurified view dictate how data can be used. Their
view allows us to do the conversion described above.

• Reliability of measures
One should get the same output if one measure a phenomenon twice.
As many of the questions and metrics tries to capture subjective human
thoughts we can not be sure that the response will be the same doing
the same experiment twice. However, guidance to how one should do the

103

CHAPTER 19. RESEARCH ANALYSIS AND GOAL ATTAINMENT

exercises helps.

• Maturation
The testers might react differently as time passes. However, as there
where little time between testing FitNesse and AutAT, we do not think
that this is a serious threat in our case.

• Selection
There is at natural variation i human performance. It is a problem that we
invited people that we know to the test session instead of doing a random
pick out of the population. An other problem is that people within the
selected group are different. However, as we can use paired student t-tests,
variation due to selection will have little effects on the results.

• Compensation
The users can be affected by us giving them pizza for participating in the
experiment. This is however not much of an payback for close to three
hours of their time, so it should not affect the results much. In addition,
the students are also used to such treatment in other experiments. Thus
makes this a minor threat in our case.

• Experimenter expectancies
There is a chance that testers can bias the results of a study, consciously
or unconsciously, based on what they expect from the experiment. It is
possible that the users think that we show the state-of-the-art framework
FitNesse and our solution AutAT that we propose as a solution for im-
provement. However, we explained that it was an experiment and proof
of concept that might be totaly wrong and that an honest review was
important. Thus makes this a rather small threat in our case.

19.2 Measurements

The measurements in this section are linked to the metrics defined in Section
6.3. A detailed overview of all the statistical data can be found i Appendix E.

The user testing session described in Chapter 18 had eight testers. In addition,
some people at BEKK have tested the software doing the same exercises as the
participants in our user testing session. We value their efforts, but as there was
only one that actually sent us the filled in questionnaire and the AutAT files
we are not going use that contribution accept for measure M19 - User feedback.
The reason for excluding this contribution is that we cannot be sure that the
process they used was the same as for our experiment and that everything was
done according to the instructions.

104

CHAPTER 19. RESEARCH ANALYSIS AND GOAL ATTAINMENT

M1 - Fit knowledge

This metric is shows that there is little or no knowledge of FIT as it average
1.25 as indicated in Section E.1. There where no respondents that had better
knowledge than “Heard about it” on the four point scale. This means that the
two tools was analysed without bias.

M2 - AutAT time usage

The total of average time used on each exercise by the users is according to
Section E.2 24.81 minutes – 24 minutes and 49 seconds.

M3 - FitNesse time usage

As one can see in Section E.3 the total of average time used on each exercise in
the user test was 37.56 minutes – 37 minutes and 34 seconds.

M4 - AutAT’s ease of learning

In Section E.5 it is stated that most of the tester thought that AutAT is rather
easy to learn.

M5 - FitNesse’s ease of learning

All but one of the testers of FitNesse answered “Somewhat agree” with the
statement “Easy to learn” when considering FitNesse as one can see in Section
E.6.

M6 - Compared ease of learning

When comparing ease of learning between AutAT and FitNesse which is M6,
most testers thought that AutAT was clearly easier to learn than FitNesse.
However, the average is not larger as one user totaly disagreed as one can see
in the stats on page 139.

M7 - AutAT’s ease of use

The testers on average stated “Somewhat agree”when faced with the statement
“Easy to us” with respect to AutAT as seen Section E.9.

105

CHAPTER 19. RESEARCH ANALYSIS AND GOAL ATTAINMENT

M8 - FitNesse’s ease of use

When faced with the statement “Easy to use” with respect to FitNesse at ques-
tion 6 in the questionnaire (see Appendix A), the testers answered on average
1.5. That means that they are between “Disagree” and “Somewhat disagree”
when faced with the “Easy to use” statement.

M9 - Compared ease of use

On metric 9 on page 18 the testers averaged 3.75, which means that they almost
agree with the statement “AutAT is easier to use than FitNesse”.

M10 - AutAT’s syntax complexity

With an average of 3.25 according to Section E.13, the testers average between
“Agree” and “Somewhat agree”. However, closer to “Somewhat agree” when it
comes to the statement “Simple syntax” when considering AutAT.

M11 - FitNesse’s syntax complexity

With an average of 2.5 the users are, as seen in Section E.14, neutral to whether
FitNesse has a simple syntax or not.

M12 - Compared syntax complexity

When asked to consider the statement “AutAT has an easier syntax than Fit-
Nesse”, the testers averaged 3.63 and six out of eight fully agreed with the
statement according to Section E.15.

M13 - AutAT’s overview

As seen in Section E.17, the testers averaged 3.5 upon the metric 13. It means
that they between “somewhat agree” and “agree” to the statement “easy to get
an overview” with respect to AutAT.

M14 - FitNesse’s overview

The average for metric 14 according to Section E.18 is 1.5. This means that
the testers feels that it is rather difficult to get an overview of FitNesse.

106

CHAPTER 19. RESEARCH ANALYSIS AND GOAL ATTAINMENT

M15 - Compared overview

E.19 Seven out of eight agreed with the statement“It is easier to get an overview
of AutAT than FitNesse”, and the last tester somewhat agreed.

M16 - Modifying tests

The results from M16 that are presented in Section E.21, indicate that the ma-
jority of the testers felt that it was easier to modify AutAT tests than FitNesse
tests. Most testers agreed with that and the average was 3.63, which means
that the tester was leaning more towards “agree” than “somewhat agree”.

M17 - AutAT errors

As indicated in Section E.23 the total of average of syntactic and semantic
(as described in Q1 – Quality, on page 13) errors for each exercise was 3.75.
Exercise 3 was the toughest with 1.5 errors on the average, which means that
its responsible for 40 % the errors.

M18 - FitNesse errors

The total number of average of syntactic and semantic errors for each exercise
was 8.79 as stated in Section E.24.

M19 - User feedback

There were a lot of user feedback that the other metrics did not capture. This
feedback can be seen in Section E.26. Most of the feedback is small changes
that can make AutAT better. One major feature that some would like is “Copy
& Paste”. Other possible features are to look at tests at higher levels and
connecting them there, choose from a list of links when one is creating a link
connection, create a start page and a start point when creating a new test, the
graphical editor should scroll automatically and is should be possible to look
at tests at a higher level an connect them there. An other thought is that it
should be possible to tree structure tests.

There are some errors that are important to notice (and for us to fix). One is
that a few of the testers had problems saving their AutAT files. There where
one that thought that there was an different “Look&Feel” from what he was
used to, and there were some problems with input in forms when creating the
form input connection.

The were some negative sides like one thought that some of the terms were
confusing. An other is that the test pages should not be based on its name/title,
but that it should be possible to add the tittle to a page or an aspect like a text,

107

CHAPTER 19. RESEARCH ANALYSIS AND GOAL ATTAINMENT

link or form. Some thought that it was difficult to write tests in the property
view. Others thought that it was not a good idee to use Eclipse.

On the positive side, there are some things that the testers thought were good;
aspects, easy to get an overview, quite fast, easy for nontechnical users to
understand, and that it can enable quicker writing of tests. Some stated that
they thought it was a very nice concept and prototype. Several of the testers
thought that this project can do much for automatic acceptance testing web
pages.

One thought that the difference between FitNesse and AutAT in the empirical
study would have been greater if we had used other test candidates than well
educated computer scientists.

19.3 Answers

The metrics in the previous section is used to answers the questions in the
GQM-tree as described in the beginning of Chapter 6. The answers to the
questions in Section 6.2 in the introduction are described in this section.

Q1 – Quality

The quality is as stated in Question 1, dependent on the number of errors
in the tests developed by AutAT which is Metric 17 and FitNesse which is
Metric 18. It is also dependent on the users knowledge of FIT. However, in the
measurement of M1 which is found in the previous section, all the testers had
so little knowledge of FIT that it has no influence on respectively the number
or FitNesse errors.

The total number of average errors on the exercises are measured by M17 and
M18. Their values are are 3.75 and 8.79. Using this numbers there is a 57 %
improvement when using AutAT.

This might not be very accurate, but according to Section E.25, AutAT is better
than FitNesse with repect to quality on all the exercises by a these p-values:

• Exercise 1: 0.0901

• Exercise 2: 0.0257

• Exercise 3: 0.1084

• Exercise 4: 0.0555

• Exercise 5: 0.0052

By using all the totals for every tester, there is a 1.60 % chance that we are
wrong in concluding that AutAT is not better than FitNesse. For the total we
have used all the values that where given. It does not give a complete picture
as some of the tester did not complete all the FitNesse exercises (as one can see

108

CHAPTER 19. RESEARCH ANALYSIS AND GOAL ATTAINMENT

in E.24) but we still used their total of tests they completed. This means that
the 1.60 % chance of being wrong could be lower as we used the total errors all
together for these testers on the AutAT exercises. However, we feel that it is
sufficient for concluding that AutAT is better than FitNesse when it comes to
quality, as 1.60 % is better than the 5 % that we use for alpha in our statistical
tests.

Q2 – Efficiency

This answer depends on M1 – FIT knowledge, M2 – AutAT time usage, and M3
– FitNesse time usage. There was hardly any FIT knowledge measured by M1
so this did not influence the time spent on developing the tests with FitNesse.

The total average time used on each exercise was by using FitNesse 37 minutes
and 34 seconds, and by using AutAT 24 minutes and 49 seconds as respectively
indicated by measuring M3 and M2. This is approximately a 34 % improvement.

However, for concluding that the mean times are actually different we have
performed a t-test that can be seen in Section E.4. We conclude that AutAT
is better than FitNesse with the following p-values:

• Exercise 1: 0.0044

• Exercise 2: 0.0758

• Exercise 3: 0.0090

• Exercise 4: 0.0036

• Exercise 5: 0.0108

If we pool all the data, the t-test gives us a p-value less than 0.0001 when
concluding that AutAT has a lower mean value than FitNesse when it comes
to time usage. However, some of the participants did not finish all the FitNesse
exercises. It was rather unfortunate, but we used the times they had totaly
anyway. However, a p-value less than 0.0001 could probably be even smaller
giving us more certain results, but doing it this way has a few advantages as we
can use pair t-test. This means that learning and the time usage are the only
thing that might influence the results.

As we did the FitNesse tests first and followed on with AutAT using the same
exercises, it is possible that the tester could learn the detailed content of the
tests. This means that the users would not have needed to read the exercises
doing them on AutAT. This is unlikely as the testers complained about having
to read the exercises twise, but in order to be sure we added 2 minutes to the
total time used by every users on AutAT. We did the t-test again and came up
with the same result and approximately the same possibility of doing an error
as without adding the 2 minutes.

We conclude that we believe that AutAT is more efficient than FitNesse.

109

CHAPTER 19. RESEARCH ANALYSIS AND GOAL ATTAINMENT

Q3 – Usability

As we indicated when defining Q3 on page 13, there are several metrics that
contribute to the answer to this question.

The measurements for M7 – AutAT’s ease of use, M8 – FitNesse’s ease of
use and M9 – Compared ease of use, indicate clearly that AutAT is easier to
use than FitNesse. The reason is that testers indicated that they on average
stated “Somewhat agree” on M7 and right between “Disagree” and “Somewhat
disagree” on M8. The t-test shown in Section E.12 that compares M7 and M8,
indicates that AutAT has better perceived ease of use. With a p-value of 0.0013,
which is pretty good. Also upon M9 almost all the tester thought that it was
clearly easier to use AutAT than FitNesse. Also considering Section E.12, with
a p-value of 0.0039.

Considering syntax complexity AutAT is superior to FitNesse as indicated by
the measurement for M12 with a p-value of 0.035. Just considering the indi-
vidual measurements for AutAT and FitNesse, respectively metrics M10 and
M11, it is clear that AutAT is better than FitNesse when it comes to syntax
simplicity even though FitNesse’s syntax is seen as neither complex nor simple.
According to the t-test (see Section E.16) comparing M10 and M11, AutAT has
a simpler syntax than FitNesse. However, the p-value is 0.07. This is not as
good as we had hoped for.

The M13 – AutAT’s overview measurement indicates that it is fairly easy to get
an overview over AutAT in contrary the M14 – FitNesse’s overview measure-
ment indicates that it is rather hard to get an overview over FitNesse’s tests.
However, the M15 – Compared overview, measurement concludes that almost
every tester feels that it is quite a lot easier to get an overview of AutAT than
with FitNesse. The p-value is 0.0039. The t-test indicates when comparing
M13 and M14, that it is easier to get an overview in AutAT than in FitNesse.
The p-value is less than 0.001 which is rather low, as one can see in Section
E.20.

The measurement of M16 – Modifying tests, state that it is quite a lot easier
to modify test with AutAT than with FitNesse. According to Section E.22 the
p-value is 0.0039.

Looking at all measurements together it is quite clear that the perceived us-
ability of AutAT is a lot better than FitNesse as AutAT is better on all mea-
surements.

Q4 – Learning

As we stated when we defined Question 4 on page 14, the perceived ease of
learning is dependent on M4 – AutAT’s ease of learning, M5 – FitNesse’s ease
of learning and M6 – Compared ease of learning. It is also dependent on whether
or not the tester has prior knowledge of FIT which is measured by M1.

110

CHAPTER 19. RESEARCH ANALYSIS AND GOAL ATTAINMENT

It is clear that AutAT is somewhat easier to learn as the measurement of M4
states that most of the tester thought that AutAT is rather easy to learn and
that measurement of M5 concluded that the FitNesse was somewhat easy to
learn. The t-test (see Section E.8) gives us a p-value of 0.003. When on also
consider M6 which states that the median tester think that AutAT is easier
to learn, it is rather clear that most testers probably would learn AutAT a lot
easier than FitNesse. The p-value here is 0.035.

Overall we are pretty confident in concluding that AutAT is easier to learn than
FitNesse.

Q5 – GUI

According to Q5 on page 14: this question is answered by M19 – User feedback.
The measurement tries to look at some of the strengths, weaknesses and possi-
bilities that the testing session revealed. The strengths are the positive side of
the application for instance that it is easy for nontechnical users to understand
as well as for programmers.

Some of the opportunities for the AutAT tool are actually some of its bugs
and others are small features that some of the testers wanted. When these are
implemented, and most of them can be implemented really easily, the system
will be quite a lot better.

There are some errors that are harder to cope with, and are therefore the
weaknesses of the system. One such error is that some of the participants
thought that the “Look&Feel” was a little unusual. Other negative sides are
that some of the users thought that some of the terms that we are using is
confusing and that having to use the Eclipse platform was rather negative.
However, if there are many users that do not care for the Eclipse platform we
consider to turn it into a RCP system (see Section 10.3.1).

There are also some strengths to consider. The most important ones are that it
can enable faster writing of tests, give a better overview and enables nontech-
nical users to easier write and understand acceptance testes.

Overall are there a lot of possibilities and strengthes on one side and some
weaknesses on the other side. It is clare that if we had used other types of
testers with less technical experience, the results would probably have been
different. However, as AutAT is a prototype and a proof of concept, it is quite
promising.

19.4 Goal Attainment

The Goal Attainment is based in the GQM-Goal found in Section 6.1 as shown
in Figure 6.1. We believe that AutAT is a good concept and better than the
state-of-the art framework FitNesse when it comes to usability, quality and

111

CHAPTER 19. RESEARCH ANALYSIS AND GOAL ATTAINMENT

efficiency of writing tests as the answers in the previous section have revealed.
However, we have only been considering a software developers point of view an
test driven development of web applications.

As a result we would say that the Goal is well attained.

112

Chapter 20

Discussion

The projects’s problem definition in Chapter 2 has two major areas of interest.
The first is to create a tool for automatic acceptance testing of web applications
and the second is to do an empirical evaluation of the tool. These two areas
are addressed in this discussion, before we add a few personal experiences that
we would like to share with our readers.

20.1 AutAT Tool

There are several interesting aspects related to the AutAT tool. Firstly, the
underlying technologies like the testing framework, Eclipse and GEF. And sec-
ondly, and probably more interesting is the tool itself.

20.1.1 Test Framework

We used jWebUnit and its WebFixture for FIT (as described in Chapter 9) as
our foundation for executing the acceptance tests. It was a natural choice for us
and has worked well. There are arguably a lot of features that cannot be tested
with this framework. One of the problems is JavaScript which quite often causes
jWebUnit to fail. When doing test driven development, this should not be a
problem, as the sofware can be suited to fit the tests, but many applications will
need to use JavaScript. However, jWebUnit proved to be more than sufficient
to use since this is a proof of concept.

Whether is a good choice for the future development of AutAT is hard to
say. However, AutAT is designed to handle a change in the underlying testing
technology. As a result it can meet future demands, either by changing to
another test framework or by modifying jWebUnit.

113

CHAPTER 20. DISCUSSION

20.1.2 Eclipse

To develop plugins for the Eclipse Platform is actually quite easy, due to the
good support within Eclipse itself and the plugin development tools. As Eclipse
itself is built as a set of plugins, the tools for developing plugins is well sup-
ported. When it comes to how well the testers liked the platform there were
some that liked it while others disliked it. We, however, think that it is nice
and has enabled us to provide a lot of functionality quickly.

20.1.3 GEF

When starting to use the Graphical Editor Framework (GEF) the complexity
seems high, as with any complex framework. However, after some initial studies
we were pleased with this tool as it provided a good foundation for creating a
tool like AutAT. The final iterations of the development process when we knew
the framework well, were highly productive.

20.1.4 AutAT Itself

The reason for creating AutAT was to use it as a proof of concept. As it is
a proof of concept it contains bugs and not all the features are implemented.
However, for checking whether or not it is a step in the right direction it is
appropriate. That it is a proof of concept does not mean that it is poorly im-
plemented or just a prototype. AutAT can be developed further to a larger and
better tool. AutAT was also developed a little further after the test session to
remove some of the minor errors and adding a few minor features that increases
the usability and makes it faster to use.

The differences between AutAT and other acceptance testing tools for web
applications are many. On is the graphical user interface that is easy to work
with and to get an overview of than the earlier text based systems. AutA also
introduces new ideas like aspects which let the tester do the same checks on
several while only defining it once. By using the existing tools, the same check
must be repeated by hand every time it is to be used. The use of ascpects
reduce redundancy in the tests.

20.2 Experiment

The results from the experiments were presented in the previous chapter. We
would have liked to have done even more experiments. However, we are really
satisfied as it gave us the answers we needed when it comes to testing AutAT
as a proof of concept.

Most of the feedback indicates that we have made the right decisions. We would
like to add a quote from our supervisor at BEKK (original in Norwegian and

114

CHAPTER 20. DISCUSSION

translated to English). Even though he is deeply involved in the project it
makes all the hard work rewarding when someone like what we have done:

115

CHAPTER 20. DISCUSSION

Norwegian:

Jeg bøyer meg i støvet. Det programmet dere har laget er vidun-
derlig!

Vil ansl̊a at man med litt finpussing av GUI blir 5 ganger (!) mer
produktiv med AutAT enn med FitNesse (hovedsakelig pga. psykologi
og gjenbruk) og har mye større oversikt og f̊ar bedre kvalitet. Fit-
Nesse ser ut som et sliten traver i forhold.

AutAt vs FitNesse = Java vs Assembly

English:

Hats off. The program you have developed is wonderful!

My estimat is that one will be five times(!) more productive with
AutAT than with FitNesse after the GUI has be fine tuned (mainly
because of psychology and reuse) and one has a far better overview
and gets better quality. FitNesse looks like a old and tired horse in
comparison.

AutAt vs FitNesse = Java vs Assembly

– Christian Schwarz, BEKK Consultant and project supervisor

20.3 Personal Experiences

We have enjoyed working with this project mainly due to the wide range of
aspects that we have had to work with. First of all is getting to know test
driven development better. It has also been interesting to get to know the
insides of Eclipse and GEF along with its patterns. An other interesting aspect
is the empirical testing session that we really think is the most important test
when it comes to this project as it checks whether or not this is an useful tool
and if it should be developed further. The most creative and difficult aspect
was to figure out what we should and could do to make this tool superior to
earlier web acceptance testing tools and frameworks.

The cooperation with our supervisors at BEKK and NTNU has been great com-
pared to other projects that we have worked with. We have had the possibility
to work on our own, to come up with ideas and been given great feedback which
really helped us. Analyzing the empirical data has been rewarding as Professor
St̊alhane, our supervisor at NTNU, without doubt is amazing when it comes to
statistics.

Even though we are formally finished with this project at the delivery of this
report, we do not consider our work with AutAT finished. There are many new
features that we want to add, and we enjoy working with the people at BEKK.
We will continue to work on the open source AutAT project to make it better
in the future and help developers all over the world.

116

Chapter 21

Conclusion

The problem definition has two major topics. First to create a tool for ac-
ceptance testing web applications. The AutAT tool is able to test the basic
functionality of web pages. It is different to earlier tools as there are new ideas
that try to increase the tool’s usability, quality and efficiency.

The tool has been empirically tested. The results are quite clear: AutAT is an
improvement when it comes to quality and efficiency compared to state of the
art tools of test driven development.

The tool aimed at being a proof of concept and a basis for a larger, future
tool for developing web acceptance tests. We believe that we have hit what we
aimed for, and we are going to add AutAT to the BEKK Open Source Software
(BOSS) site in the near future. It is already added to SourceForge.net1 which
BOSS uses as a repository.

This tool can potentially ease test driven development of web applications, and
it will be developed further and used by BEKK and anybody else that wants
to download it.

1The world’s largest development and download repository for Open Source code and ap-
plications

117

Chapter 22

Future Work

This project could not address all possible features or do a larger empirical
study. However, the following issues are possible points of interest for future
work and are addressed in this chapter. There is also a section on the future
work at NTNU and BEKK.

22.1 Future Work with the AutAT Tool

The test session and the presentation we had at BEKK at the end of this
project helped us to identify a set of possible improvements. These and the
requirements that we did not implement in addition to some thoughts that we
got along the way are listed here as possible future work.

• Improve form support. There are some form elements like for instance
radio button that are not implemented.

• Title on a page should be an element that can be added to an aspect or
a page instead of having to be set on a page. The existing “title” should
instead be a logical name.

• It should be possible to run tests in AutAT instead of having to export
the test to FIT.

• A statistic module should be added so on can see how well the system
is doing. It is also useful for getting feedback on the progress in the
development process.

• Global aspects in addition to the aspects that are in AutAT today. Global
aspects can be reused in many different tests in a project. Today’s aspects
are only available for one test.

• Extending tests means that it should be possible to start a test from where
an previous test ends. This is useful for applications that requires user to
do a set of actions like logging in, before it can do anything else.

118

CHAPTER 22. FUTURE WORK

• Parameterized tests and data test set is having a data set that can be used
to fill in a form. By parameterize the test it is also possible to check that
it is a piece of information on the next page which is in the data set and
is related to the input in the form.

• To have other exporters can be interesting as jWebUnit does not have to
be the prefered choice for all applications.

• Building a new testing framework might be interesting as it is not sure
that today’s testing frameworks supports all that we might like to test in
the future.

• Customized resource navigator instead of the standard version that Au-
tAT uses now. The reason for having such a navigator is to use the
metaphors defined more closely, letting the user see user stories instead
of folders organizing the tests.

• Load and performance testing can be added, using the already defined
tests in the system.

• A site map tries to lay out all the pages in an application. It should then
use the other test in the system to go between pages to see if it is possible
to visit them all.

22.2 Future Empirical Experiments

Testing AutAT on one or more of BEKK’s projects is interesting as it is a “real
life” study where it is possible to really determine whether or not this is a good
tool. These tests will include real customers, providing valuable feedback from
non-techincal users. BEKK is interested in doing such an experiment and the
tool is ready for it.

22.3 Future Work at NTNU and BEKK

BEKK and NTNU have decided to continue this project by proposing it as a
student project for student at the final year in master program in computer
science this fall semester and also the following spring semester as a master
thesis.

119

CHAPTER 22. FUTURE WORK

120

Part V

Appendix

121

The appendix contains chapters concerning the empirical experiment: the ques-
tionnaire for the AutAT test session, a set of testing exercises and FitNesse
commands used in the testing session. Then we present some statistical back-
ground and user feedback with some analysis. The last chapter shows the XML
schemas for the files produced and used by AutAT.

122

Appendix A

Questionnaire for AutAT
testing

This first section of this questionnaire should be before the doing any of the
exercises in Appendix B

A.1 Background and Experience

1 FIT knowlegde

• Using it at a daily basis.

• Tried it.

• Heard about it.

• Unknown.

A.2 FitNesse

Answer this section after doing the five test exercises on FitNesse.

A.2.1 Time Usage

2 What is the time usage (minutes):

1. – Exercise:

2. – Exercise:

3. – Exercise:

4. – Exercise:

123

APPENDIX A. QUESTIONNAIRE FOR AUTAT TESTING

5. – Exercise:

A.2.2 Statements

What is your opinion about this statements regarding FitNesse?

3 Easy to learn

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

4 Simple syntax

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

5 Easy to get an overview

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

6 Easy to use

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

7 Other comments about FitNesse?

A.3 AutAT

Answer this section after doing the five test exercises on AutAT.

124

APPENDIX A. QUESTIONNAIRE FOR AUTAT TESTING

A.3.1 Time Usage

8 What is the time usage (minutes):

1. – Exercise:

2. – Exercise:

3. – Exercise:

4. – Exercise:

5. – Exercise:

A.3.2 Statements

What is you opinion of this statements regarding AutAT?

9 Easy to learn

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

10 Simple syntax

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

11 Easy to get an overview

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

12 Easy to use

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

125

APPENDIX A. QUESTIONNAIRE FOR AUTAT TESTING

13 What do you generally think of AutAT (its strengths, weaknesses and op-
portunities)?

14 What do you think of the AutAT perspective (its strengths, weaknesses and
opportunities)?

15 What do you think of AutAT’s NamesAndURL editor (its strengths, weak-
nesses and opportunities)?

16 What do you think of AutAT’s GraphicalTest editor (its strengths, weak-
nesses and opportunities)?

17 What do you think of AutAT’s Property view (its strengths, weaknesses and
opportunities)?

18 Other comments about AutAT?

A.4 Comparison: FitNesse versus AutAT

The purpose of this section is to compare FitNesse against AutAT.

A.4.1 Statements

What is you opinion of these statements regarding AutAT versus FitNesse?

19 AutAT is easier and faster to learn than FitNesse

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

20 AutAT has an easier syntax than FitNesse

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

21 It is easier to get an overview of AutAT than FitNesse

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

126

APPENDIX A. QUESTIONNAIRE FOR AUTAT TESTING

22 AutAT is easier to use than FitNesse:

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

23 It is easier to modify tests with AutAT than with FitNesse

• Agree.

• Somewhat agree.

• Somewhat disagree.

• Disagree.

24 Other comments about AutAT versus FitNesse

127

Appendix B

Testing Exercises

This exercise will create a few tests for a web-based cd database. The database
lets users save artists and relate albums to these artists. The users can then
list and modify the registered artists and albums.

The system we are testing is located at http://cddb.ovstetun.no

B.1 Exercise 1: Test the Front Page

Create a new test, starting from the front page. This page is located at the
local URL “/Welcome.do”.
The front page should be titled “Welcome”
Check that the page contains a welcome text.
Check that the page contains a link named “List all artist”
Check that the page contains a link named “Register new artis”

B.2 Exercise 2: List All Artists

Create a new test, starting from the front page.
Follow the link named “List all artists”
The new page should be titled “All artists”
Check that the following artists are listed:

• Tool

• Tori Amos

• Seigmen

Check that the following artists are NOT listed:

• Vikingarna

• NoName

128

APPENDIX B. TESTING EXERCISES

B.3 Exercise 3: Register New Artist

Start at the front page, choose “Register a new artist”.
The registration page should be titled “Register new artist”, and contain a form
with the following items:

• A textfield labeled “Name”

• A textfield labeled “Genre”

• A submit button labeled “Save artist”

Enter values into these fields, registering the artist “Span” in a genre named
“Rock”.
The next page should be titled “New artist - Span”, containing a confirmation
text stating “Registration successful, Span registered”.

B.4 Exercise 4: View Info About Artist and Register
a New Album

The list of all artists is located at the local URL “/ListArtists.do”.
Start a new test from this location. The page should still be titled “All artists”.
The artist names should be links. Click the link named “Seigmen”.
The next page should be titled “Artist info - Seigmen”.
Check that the albums “Metropolis” and “Total” are present.
Check for a link named “Register new album”.
Follow this link to a new page titled “Register new album”, containing a form
with the textfields “Name”, “Year” and “Rating” and a submit button named
“Save album”.
Enter the values “Pluto”, “1992” and “7”.
The next page will contain a confirmation message, with the title “Album reg-
istered”.

B.5 Exercise 5: Repeating Checks

Now we want to check that some elements are present on several web pages.
We start on the front page, then follow a link named “Genre” which leads to
a page titled “Genres”. Here we click a link named “Pop”, and come to a new
page named “Genre: Pop”.

For all these pages, we want to check that the following elements are present:

• A link named “About”

• A link named “Forum”

• A link named “Contact”

129

APPENDIX B. TESTING EXERCISES

• A form containing a textfield labeled“Search”and a submitbutton labeled
“search”

• A text: “Copyright 2005 tm and sk”.

130

Appendix C

FitNesse Commands

Here is a description of how FitNesse works and the commands that can be
used.

C.1 General commands in FitNesse

Fitnesse uses a general wiki syntax. The pages can contain regular text to
describe what the test is doing. What is special is that when you use Camel-
Case (alternation of capitalized an non-capitalized) letters, a new page will be
created. When a page starts with the word Test (as in TestNewPage), it will
be interpreted as a test, and can be executed. Subpages are separated by a
punctuation, as in TestSuperPage.TestSubPage

The cells in a table row are separated by a | (pipe). The first row is the name of
the fixture used to run the test. When using jwebunit, the first row in a table
is always:
|!-net.sourceforge.jwebunit.fit.WebFixture-!|

C.2 Commands for using jWebUnit with FitNesse

A jwebunit test must be initialized with the following lines:
|base url |<base url>| location of web application
|begin |<page>| URL appended to the location. This location will be the first
page of the test.

C.2.1 Checks for text and links

|check|title equals|<value>| checks the title of the active page
|check|text (not) present|<value>| checks that <value> is present (or not)
|check|link (not present)|<value>| link with the <value> as text is present (or

131

APPENDIX C. FITNESSE COMMANDS

not)

C.2.2 Navigation commands

|press|link|<text>| presses the link with the given text

C.2.3 Checks for forms

|check|form element present with label|<value>|
|check|submit button (not) present|<value>| checks that a submit button with
the given text is present
|check|button present (not) with text|<value>| checks that a button (not sub-
mit button) with the given text is present

C.2.4 Enter values to a form

|enter with label|<label>|<value>| enters <value> into the form element with
label <label>
|press| submit| submits the form.

C.3 Example

|!-net.sourceforge.jwebunit.fit.WebFixture-!|
base url	http://www.idi.ntnu.no/ ovstetun/test	
begin	/index.php	
check	title equals	Test side
check	form element present with label	Name:
check	submit button present	Save
enter with label	Name:	testName
press	submit	
check	text present	Name:
check	text not present	jalla tekst

132

Appendix D

Statistical Background

This appendix addresses some some of the underlying statistics.

D.1 Analysing the Number of Testers

Using:
Type I error: 0.05 Type II error: 0.20

Gives an ES approximately 32.

N ≥ ES

(‖x−y|
SD

)2

SD =
√

SD2
x

nx
+ SD2

y

ny

As N is 8, ‖x−y|
SD has to be larger than 2 to make sure that we have enough

tester.

As on can see in Table D.1 which uses data from t-tests in Appendix E, these
values are good except for the simple syntax analysis where is close to being
good enough. One can also argue that N should be 16 as we use paired t-tests,
then there are no problems with any of the values.

Section Analysis ‖x−y|
SD

E.4 Time, total all exercises 5.70
E.25 Errors, total all exercises 2.65
E.8 Ease of learning 4.25
E.16 Syntax complexity 1.82
E.20 Overview 6.11
E.12 Ease of use 3.97

Table D.1: Number of testers analysis

133

APPENDIX D. STATISTICAL BACKGROUND

D.2 Binary Probability Distribution

The binary probability distribution is used as p-values for the analyses where
one look at how the users have compared AutAT with FitNesse in Appendix D.

N∑
i=n

(N
i)pipN−i

p = 1
2 N = 8

n (8n)1
2

n 1
2

8−n ∑8
i=n (8i)

1
2

i 1
2

8−i

8 0,00390625 0,00390625
7 0,03125 0,03515625
6 0,109375 0,14453125
5 0,21875 0,36328125
4 0,2734375 0,63671875
3 0,21875 0,85546875
2 0,109375 0,96484375
1 0,03125 0,99609375
0 0,00390625 1

134

Appendix E

User feedback

This appendix contains all the user feedback from the test session and the data
analysis.

Number of testers: 8

For an evaluation of the number of testers see Section D.1.

Testers occupation: 100 % last year Master of Technology in Computer Science.

E.1 M1 - Fit Knowledge

Setting value for each item:

1. Unknown.

2. Heard about it.

3. Tried it.

4. Using it at a daily basis.

Tester: 1 2 3 4 5 6 7 8
Fit knowledge: 1 1 1 1 1 1 2 2

Average: 1.25
Median: 1
Highest value: 2
Lowest value: 1

135

APPENDIX E. USER FEEDBACK

E.2 M2 - AutAT Time Usage

Tester: 1 2 3 4 5 6 7 8 Average
Exercise: 1 3 3 8 5 7 2.5 4 3 4.44
Exercise: 2 4 3 4 4 5 3.5 7 6 4.56
Exercise: 3 5 5 5 10 5 5 5 4 5.5
Exercise: 4 4 7 6 6 7 5.5 8 5 6.06
Exercise: 5 4 5 4 5 5 3 4 4 4.25
Total: 20 23 27 30 29 19.528 22 24.81

E.3 M3 - FitNesse Time Usage

Tester: 1 2 3 4 5 6 7 8 Average
Exercise: 1 10 7 9 6.5 20 5 11 7 9.4375
Exercise: 2 3 3 5 6.5 10 3 9 6 5.69
Exercise: 3 8 6 5 10 10 6 7 7 7.38
Exercise: 4 8 9 6 10 - 8 9 7 8.14
Exercise: 5 7 6 10 7 - 3.5 - 8 6.92
Total: 36 31 35 40 40 25.536 35 37.56

Average only counts finished test.

E.4 Time Analysis

For this analysis we have used M2 - AutAT Time Usage, and M3 - FitNesse
Time Usage. We are using a t-test to check whether or not AutAT is better
than FitNesse when it comes to time usage.

Exercise 1
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 9.4375 4.4375
Variance 22.10267857 4.245535714
Observations 8 8
Pearson Correlation 0.559937503
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat 3.592106041
P(T<=t) one-tail 0.004416144
t Critical one-tail 1.894577508

136

APPENDIX E. USER FEEDBACK

Exercise 2
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 5.6875 4.5625
Variance 7.495535714 1.816964286
Observations 8 8
Pearson Correlation 0.731868107
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat 1.609049749
P(T<=t) one-tail 0.075820406
t Critical one-tail 1.894577508

Exercise 3
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 7.375 5.5
Variance 3.410714286 3.428571429
Observations 8 8
Pearson Correlation 0.563970591
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat 3.071015748
P(T<=t) one-tail 0.009020863
t Critical one-tail 1.894577508

Exercise 4
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 8.142857143 5.928571429
Variance 1.80952381 1.702380952
Observations 7 7
Pearson Correlation 0.386620647
Hypothesized Mean Difference 0
Degrees of Freedom 6
t Stat 3.991012001
P(T<=t) one-tail 0.003596141
t Critical one-tail 1.943180905

137

APPENDIX E. USER FEEDBACK

Exercise 5
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 6.916666667 4.166666667
Variance 4.641666667 0.566666667
Observations 6 6
Pearson Correlation 0.318573492
Hypothesized Mean Difference 0
Degrees of Freedom 5
t Stat 3.296704942
P(T<=t) one-tail 0.010776801
t Critical one-tail 2.015049176

Total, all exercises
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 34.8125 24.8125
Variance 22.56696429 17.42410714
Observations 8 8
Pearson Correlation 0.741814919
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat 8.699176724
P(T<=t) one-tail 2.65924E-05
t Critical one-tail 1.894577508

Total, all exercises adjusted for reading
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 34.8125 26.8125
Variance 22.56696429 17.42410714
Observations 8 8
Pearson Correlation 0.741814919
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat 6.959341379
P(T<=t) one-tail 0.000109678
t Critical one-tail 1.894577508

E.5 M4 - AutAT’s Ease of Learning

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

138

APPENDIX E. USER FEEDBACK

3. Somewhat agree.

4. Agree.

Tester: 1 2 3 4 5 6 7 8
Easy to learn: 4 3 3 4 4 4 4 4

Average: 3.75
Median: 4
Highest value: 4
Lowest value: 3

E.6 M5 - FitNesse’s Ease of Learning

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

Tester: 1 2 3 4 5 6 7 8
Easy to learn: 3 3 3 3 3 3 2 3

Average: 2.89
Median: 3
Highest value: 3
Lowest value: 2

E.7 M6 - Compared Ease of Learning

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

Tester: 1 2 3 4 5 6 7 8
AutAT is easier and faster
to learn than FitNesse:

4 3 1 4 3 4 4 4

Average: 3.38
Median: 4

139

APPENDIX E. USER FEEDBACK

Highest value: 4
Lowest value: 1

E.8 Analyzing Ease of Learning

For this analysis we have used M4 - AutAT’s Ease of Learning, and M5 -
FitNesse’s Ease of Learning. We are using a t-test to check whether or not
AutAT is better than FitNesse when i comes to ease of learning.

Ease of Learning
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 2.875 3.75
Variance 0.125 0.214285714
Observations 8 8
Pearson Correlation -0.21821789
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat -3.861740991
P(T<=t) one-tail 0.00309876
t Critical one-tail 1.894577508

Having 7 users stating“somewhat agre”or“agree”and 1 user stating“somewhat
agree” or “agree” by coincidence is rather unlikely. As seen in Section D.2 the
p-value is 0.04.

E.9 M7 - AutAT’s Ease of Use

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

Tester: 1 2 3 4 5 6 7 8
Easy to use: 4 3 2 3 4 2 3 3

Average: 3
Median: 3
Highest value: 4
Lowest value: 2

140

APPENDIX E. USER FEEDBACK

E.10 M8 - FitNesse’s Ease of Use

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

Tester: 1 2 3 4 5 6 7 8
Easy to use: 1 2 2 1 3 1 1 1

Average: 1.5
Median: 1
Highest value: 3
Lowest value: 1

E.11 M9 - Compared Ease of Use

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

Tester: 1 2 3 4 5 6 7 8
AutAT is easier to use than
FitNesse

4 3 4 3 4 4 4 4

Average: 3.75
Median: 4
Highest value: 4
Lowest value: 3

E.12 Analyzing Ease of Use

For this analysis we have used M7 - AutAT’s Ease of Use, and M8 - FitNesse’s
Ease of Use. We are using a t-test to check whether or not AutAT is better
than FitNesse when it comes to ease of use.

141

APPENDIX E. USER FEEDBACK

Ease of Use
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 1.5 3
Variance 0.571428571 0.571428571
Observations 8 8
Pearson Correlation 0.25
Hypothesized Mean Difference 0
df 7
t Stat -4.582575695
P(T<=t) one-tail 0.001267998
t Critical one-tail 1.894577508

Having 8 users stating“somewhat agre”or“agree”and 0 user stating“somewhat
agree” or “agree” by coincidence is unlikely. As seen in Section D.2 the p-value
is 0.004.

E.13 M10 - AutAT’s Syntax Complexity

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

Tester: 1 2 3 4 5 6 7 8
Simple syntax: 4 3 3 3 4 3 3 3

Average: 3.25
Median: 3
Highest value: 4
Lowest value: 3
¨

E.14 M11 - FitNesse’s Syntax Complexity

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

142

APPENDIX E. USER FEEDBACK

Tester: 1 2 3 4 5 6 7 8
Simple syntax: 1 3 2 4 3 3 1 3

Average: 2.5
Median: 3
Highest value: 4
Lowest value: 1

E.15 M12 - Compared Syntax Complexity

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

Tester: 1 2 3 4 5 6 7 8
AutAT has an easier syntax
than FitNesse:

4 2 4 4 4 4 3 4

Average: 3.63
Median: 4
Highest value: 4
Lowest value: 2

E.16 Analyzing Syntax Complexity

For this analysis we have used M10 - AutAT’s Syntax Complexity, and M11 -
FitNesse’s Syntax Complexity. We are using a t-test to check whether or not
AutAT is better than FitNesse when it comes to syntax complexity.

143

APPENDIX E. USER FEEDBACK

Syntax Complexity
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 2.5 3.25
Variance 1.142857143 0.214285714
Observations 8 8
Pearson Correlation -0.288675135
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat -1.655031853
P(T<=t) one-tail 0.0709458
t Critical one-tail 1.894577508

Having 7 users stating“somewhat agre”or“agree”and 1 user stating“somewhat
agree” or “agree” by coincidence is rather unlikely. As seen in Section D.2 the
p-value is 0.04.

E.17 M13 - AutAT’s Overview

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

Tester: 1 2 3 4 5 6 7 8
Easy to get an overview: 4 3 3 4 3 3 4 4

Average: 3.5
Median: 3.5
Highest value: 4
Lowest value: 3

E.18 M14 - FitNesse’s Overview

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

144

APPENDIX E. USER FEEDBACK

Tester: 1 2 3 4 5 6 7 8
Easy to get an overview: 1 2 1 1 3 1 1 2

Average: 1.5
Median: 1
Highest value: 3
Lowest value: 1

E.19 M15 - Compared Overview

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

Tester: 1 2 3 4 5 6 7 8
It is easier to get an
overview of AutAT than
FitNesse:

4 4 4 3 4 4 4 4

Average: 3.88
Median: 4
Highest value: 4
Lowest value: 3

E.20 Analyzing Overview

For this analysis we have used M13 - AutAT’s Overview, and M14 - FitNesse’s
Overview. We are using a t-test to check whether or not AutAT is better than
FitNesse when it comes to overview.

145

APPENDIX E. USER FEEDBACK

Ease of getting an overview
t-Test: Paired Two Sample for Means
Mean 1.5 3.5
Variance 0.571428571 0.285714286
Observations 8 8
Pearson Correlation -0.353553391
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat -5.291502622
P(T<=t) one-tail 0.000566892
t Critical one-tail 1.894577508

Having 8 users stating“somewhat agree”or“agree”and 0 user stating“somewhat
agree” or “agree” by coincidence is unlikely. As seen in Section D.2 the p-value
is 0.004.

E.21 M16 - Modifying Tests

Setting value for each item:

1. Disagree.

2. Somewhat disagree.

3. Somewhat agree.

4. Agree.

Tester: 1 2 3 4 5 6 7 8
It is easier to modify tests
with AutAT than with Fit-
Nesse:

4 3 4 3 4 4 3 4

Average: 3.63
Median: 4
Highest value: 4
Lowest value: 3

E.22 Analyzing Modifying Tests

Having 8 users stating“somewhat agree”or“agree”and 0 user stating“somewhat
agree” or “agree” by coincidence is unlikely. As seen in Section D.2 the p-value
is 0.004.

146

APPENDIX E. USER FEEDBACK

E.23 M17 - AutAT Errors

Tester: 1 2 3 4 5 6 7 8 Average
Exercise: 1 1 0 3 1 0 0 1 0 0.75
Exercise: 2 0 0 1 0 2 0 0 0 0.38
Exercise: 3 1 3 2 1 1 3 0 1 1.5
Exercise: 4 0 1 0 0 1 2 1 1 0.75
Exercise: 5 0 0 1 0 1 0 1 0 0.38
Total: 2 4 7 2 5 5 3 2 3.75

Average only counts finished tests.

E.24 M18 - FitNesse Errors

Tester: 1 2 3 4 5 6 7 8 Average
Exercise: 1 2 3 3 0 0 1 2 0 1.38
Exercise: 2 4 1 2 0 2 2 0 1 1.5
Exercise: 3 2 4 3 0 4 2 1 1 2.13
Exercise: 4 5 3 4 1 - 1 1 1 2.29
Exercise: 5 2 1 2 0 - 2 - 2 1.5
Total: 15 12 14 1 6 8 4 5 8.79

Average only counts finished test.

E.25 Error Analysis

For this analysis we have used M17 - AutAT Errors, and M18 - FitNesse Errors.
We are using a t-test to check whether or not AutAT is better than FitNesse
when it comes to number of errors.

Exercise 1
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 1.375 0.75
Variance 1.696428571 1.071428571
Observations 8 8
Pearson Correlation 0.503322296
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat 1.488351394
P(T<=t) one-tail 0.090131186
t Critical one-tail 1.894577508

147

APPENDIX E. USER FEEDBACK

Exercise 2
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 1.5 0.375
Variance 1.714285714 0.553571429
Observations 8 8
Pearson Correlation 0.219970673
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat 2.346242607
P(T<=t) one-tail 0.025685384
t Critical one-tail 1.894577508

Exercise 3
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 2.125 1.5
Variance 2.125 1.142857143
Observations 8 8
Pearson Correlation 0.504184173
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat 1.357241785
P(T<=t) one-tail 0.108418773
t Critical one-tail 1.894577508

Exercise 4
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 2.285714286 0.714285714
Variance 2.904761905 0.571428571
Observations 7 7
Pearson Correlation -0.572896485
Hypothesized Mean Difference 0
Degrees of Freedom 6
t Stat 1.868257106
P(T<=t) one-tail 0.055473277
t Critical one-tail 1.943180905

148

APPENDIX E. USER FEEDBACK

Exercise 5
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 1.5 0.166666667
Variance 0.7 0.166666667
Observations 6 6
Pearson Correlation 0.292770022
Hypothesized Mean Difference 0
Degrees of Freedom 5
t Stat 4
P(T<=t) one-tail 0.005161708
t Critical one-tail 2.015049176

Total, all exercises
t-Test: Paired Two Sample for Means

FitNesse AutAT
Mean 8.125 3.75
Variance 25.55357143 3.357142857
Observations 8 8
Pearson Correlation 0.40487462
Hypothesized Mean Difference 0
Degrees of Freedom 7
t Stat 2.674283672
P(T<=t) one-tail 0.015900802
t Critical one-tail 1.894577508

E.26 M19 - User Feedback

E.26.1 FitNesse

Comments about FitNesse.

• Quite fast, but rather cumbersome.

• Should have been modular so one could do checks on every page by defin-
ing them in one place.

• Too much writing.

• Difficult syntax. Easily writing errors.

• Inconsistent syntax.

• Really boring.

149

APPENDIX E. USER FEEDBACK

E.26.2 AutAT

What do you generally think of AutAT (its strengths, weaknesses
and opportunities)?

• Shoud not be based on the title/name of a page.

• Some start difficulties.

• Quite fast.

• Error when saving the tests.

• Too much manual work when creating projects and tests. The wizards
should do more.

• Easy for non-technical personnel to understand.

• Easy to get an overview.

• Aspects are good.

• Some terms are confusing.

• It looks promising, thinks that is can enable faster writing of tests and is
suitable for others than programmers.

• “It’s totaly slick!” :-)

What do you think of the AutAT perspective (its strengths, weak-
nesses and opportunities)?

• A little bit to small editor area. Should scroll automatically.

• A little bit unusual “Look&Feel”. Had some trouble with the “Drag’n
Drop”.

• Connections could have started directly from the links on the pages.

• “Nice and tidy”.

• Should be able to look at tests at an higher level and connecting them
there.

• Easy to get an overview.

• Some difficult menus.

• Should be able to choose from a list of links when one is creating a link
connection.

• Should be able to create a start page when one defines a test, not before.

• A little bit to much ”mouse work”. Should be able to use more keyboard
shortcuts.

• Should be able to copy and paste elements.

150

APPENDIX E. USER FEEDBACK

• It gives a very nice graphical overview of all the tests.

What do you think of AutAT’s NamesAndURL editor (its strengths,
weaknesses and opportunities)?

• Should auto save.

• Not easy to understand right away how it should be linked with the rest
of the system.

• Should not have to click “Add” for adding a new element, but rather just
start to edit in the table.

• Should be able to create a new start point when a new test is create.

• “Works fine”.

• The “Add” button should be on top and more visible.

What do you think of AutAT’s GraphicalTest editor (its strengths,
weaknesses and opportunities)?

• Should start inn edit mode so one can start to fill the text in the elements
right away.

• Very nice concept, but there are a few minor bugs.

• Should be possible to edit with double click in the figure.

• “Works fine”.

• Should automatically return to being a pointer when something is added.

• The tool should still be selected when something is added.

• I didn’t care much for the colors.

• Should be able to right click on a page that one has created and add a
link, a form, etc.

What do you think of AutAT’s Property view (its strengths, weak-
nesses and opportunities)?

• Takes up a lot of space.

• Should not have a name on a form.

• Too wide.

• A little bit difficult to write test.

• Should work more like an Excel spreadsheet.

• Didn’t use it much.

151

APPENDIX E. USER FEEDBACK

• Thinks it was easy for getting an overview and pretty self explanatory.

• A little bit too much “‘mousing”.

Other comments about AutAT

• Should have ”tree structured” tests.

• Should be possible to “Copy & Paste”.

• Very good prototype.

• “Nice and Nice and Nice”.

• Can probably do much for automatic acceptance testing web pages.

• Some problems with form input connection (had to add values after the
connection was established.

E.26.3 Comparison: FitNesse versus AutAT

Other comments about AutAT versus FitNesse

• AutAT is a better solution, but I do not like that it requires an IDE.

• The reason it was somewhat hard to learn was that Eclipse was somewhat
difficult.

• The advantage with FitNesse is that is easy to edit with “Cut & Paste”.

• A lot easier to get an overview with a graphical user interface.

• AutAT is a lot more customer friendly, but I am still not sure that it is
something that I would have given to a customer.

• The difference between AutAT and FitNesse would probably have been
greater with other user groups than programmers.

• “AutAT Rules”.

152

Appendix F

XML schemas

The XML schemas used in AutAT. Listing F.1 shows the start point format,
while Listing F.2 shows the format for a test.

Listing F.1: XML schema for start points �
1 <?xml version=”1 .0 ”?>
2 <xs:schema
3 xmlns :xs=”ht tp : //www.w3 . org /2001/XMLSchema”
4 targetNamespace=”ht tp : // autat . s ou r c e f o r g e . net ”
5 xmlns=”ht tp : // autat . s ou r c e f o r g e . net ”
6 elementFormDefault=”q u a l i f i e d ”>
7
8 < !−− t ype f o r the mapping e lements −−>
9 <xs:complexType name=”mappingType ”>

10 <x s : a t t r i b u t e name=”id ” type=”x s : s t r i n g ” use=”requ i r ed ” />
11 <x s : a t t r i b u t e name=”name” type=”x s : s t r i n g ” use=”requ i r ed ” />
12 <x s : a t t r i b u t e name=”ur l ” type=”x s : s t r i n g ” use=”requ i r ed ” />
13 </xs:complexType>
14
15 < !−− t ype f o r the c o l l e c t i o n o f mapping e lements −−>
16 <xs : e l ement name=”urlMappings ” >
17 <xs:complexType>
18 <xs : s equence>
19 <xs : e l ement name=”mapping ” type=”mappingType ” minOccurs

=”0 ” maxOccurs=”unbounded ” />
20 </ xs : s equence>
21 </xs:complexType>
22 </ xs : e l ement>
23
24 </xs:schema>� �

153

APPENDIX F. XML SCHEMAS

Listing F.2: XML schema for tests �
1 <?xml version=”1 .0 ”?>
2 <xs:schema
3 xmlns :xs=”ht tp : //www.w3 . org /2001/XMLSchema”
4 targetNamespace=”ht tp : // autat . s ou r c e f o r g e . net ”
5 xmlns=”ht tp : // autat . s ou r c e f o r g e . net ”
6 elementFormDefault=”q u a l i f i e d ”>
7
8 < !−− t ype f o r the s t a r tPo in t −−>
9 <xs:complexType name=”startPointType ”>

10 <x s : a t t r i b u t e name=”id ” type=”x s : s t r i n g ” use=”requ i r ed ” />
11 </xs:complexType>
12
13 < !−− t ype f o r connect ionPoint −−>
14 <xs:complexType name=”connectionPointType ”>
15 <xs : s equence>
16 <xs : e l ement name=”s ta r tPo in t ” type=”startPointType ”

minOccurs=”0 ” maxOccurs=”1 ”/>
17 </ xs : s equence>
18 </xs:complexType>
19
20
21 < !−− t ype f o r l i n k e l ement : l inkType −−>
22 <xs:complexType name=”linkType ”>
23 <xs : s impleContent>
24 <x s : e x t en s i on base=”x s : s t r i n g ”>
25 <x s : a t t r i b u t e name=”not ” type=”xs :boo l ean ” />
26 </ x s : e x t en s i on>
27 </ xs : s impleContent>
28 </xs:complexType>
29
30 < !−− t ype f o r t e x t e l ement : tex tType −−>
31 <xs:complexType name=”textType ”>
32 <xs : s impleContent>
33 <x s : e x t en s i on base=”x s : s t r i n g ”>
34 <x s : a t t r i b u t e name=”not ” type=”xs :boo l ean ” />
35 </ x s : e x t en s i on>
36 </ xs : s impleContent>
37 </xs:complexType>
38
39 < !−− t ype f o r form t y p e s : formFieldType −−>
40 <xs:complexType name=”formFieldType ”>
41 <x s : a t t r i b u t e name=”id ” type=”x s : s t r i n g ” />
42 <x s : a t t r i b u t e name=”name” type=”x s : s t r i n g ” />
43 </xs:complexType>
44
45 < !−− t ype f o r form e lement : formType −−>
46 <xs:complexType name=”formType ”>
47 <x s : c h o i c e minOccurs=”0 ” maxOccurs=”unbounded ”>
48 <xs : e l ement name=”t ex tF i e l d ” type=”formFieldType ” />
49 <xs : e l ement name=”textArea ” type=”formFieldType ” />
50 <xs : e l ement name=”password ” type=”formFieldType ” />
51 <xs : e l ement name=”button ” type=”formFieldType ” />
52 <xs : e l ement name=”submit ” type=”formFieldType ” />
53 </ x s : c h o i c e>
54 <x s : a t t r i b u t e name=”id ” type=”x s : s t r i n g ” />
55 <x s : a t t r i b u t e name=”name” type=”x s : s t r i n g ” />

154

APPENDIX F. XML SCHEMAS

56 <x s : a t t r i b u t e name=”not ” type=”xs :boo l ean ” />
57 </xs:complexType>
58
59 < !−− t ype f o r a l i s t o f e l emen t s : elementsType −−>
60 <xs:complexType name=”elementsType ”>
61 <x s : c h o i c e minOccurs=”0 ” maxOccurs=”unbounded ”>
62 <xs : e l ement name=” l i n k ” type=”linkType ” />
63 <xs : e l ement name=”text ” type=”textType ” />
64 <xs : e l ement name=”form ” type=”formType ” />
65 </ x s : c h o i c e>
66 </xs:complexType>
67
68
69 < !−− t ype f o r a s i n g l e page : pageType −−>
70 <xs:complexType name=”pageType ”>
71 <xs : s equence>
72 <xs : e l ement name=” t i t l e ” type=”x s : s t r i n g ” />
73 <xs : e l ement name=”elements ” type=”elementsType ” />
74 </ xs : s equence>
75 <x s : a t t r i b u t e name=”id ” type=”x s : s t r i n g ” use=”requ i r ed ” />
76 <x s : a t t r i b u t e name=”xPos ” type=”x s : i n t e g e r ” use=”requ i r ed ” />
77 <x s : a t t r i b u t e name=”yPos ” type=”x s : i n t e g e r ” use=”requ i r ed ” />
78 </xs:complexType>
79
80 < !−− t ype f o r a l i s t o f page s : pagesType −−>
81 <xs:complexType name=”pagesType ”>
82 <xs : s equence>
83 <xs : e l ement name=”page ” type=”pageType ” maxOccurs=”

unbounded ” />
84 </ xs : s equence>
85 </xs:complexType>
86
87 < !−− t ype f o r a s i n g l e a s p e c t : aspectType −−>
88 <xs:complexType name=”aspectType ”>
89 <xs : s equence>
90 <xs : e l ement name=” t i t l e ” type=”x s : s t r i n g ” />
91 <xs : e l ement name=”elements ” type=”elementsType ” />
92 </ xs : s equence>
93 <x s : a t t r i b u t e name=”id ” type=”x s : s t r i n g ” use=”requ i r ed ” />
94 <x s : a t t r i b u t e name=”xPos ” type=”x s : i n t e g e r ” use=”requ i r ed ” />
95 <x s : a t t r i b u t e name=”yPos ” type=”x s : i n t e g e r ” use=”requ i r ed ” />
96 </xs:complexType>
97
98 < !−− t ype f o r a l i s t o f a s p e c t s : aspectsType −−>
99 <xs:complexType name=”aspectsType ”>

100 <xs : s equence>
101 <xs : e l ement name=”aspect ” type=”aspectType ” minOccurs=”0 ”

maxOccurs=”unbounded ” />
102 </ xs : s equence>
103 </xs:complexType>
104
105 < !−− t ype f o r s imple t r a n s i t i o n s : s impleTransi t ionType −−>
106 <xs:complexType name=”simpleTrans i t ionType ”>
107 <x s : a t t r i b u t e name=”from ” type=”x s : s t r i n g ” use=”requ i r ed ” />
108 <x s : a t t r i b u t e name=”to ” type=”x s : s t r i n g ” use=”requ i r ed ” />
109 </xs:complexType>
110

155

APPENDIX F. XML SCHEMAS

111 < !−− t ype f o r l i n k t r a n s i t i o n : l inkTrans i t ionType −−>
112 <xs:complexType name=”l inkTrans i t ionType ”>
113 <x s : a t t r i b u t e name=”from ” type=”x s : s t r i n g ” use=”requ i r ed ” />
114 <x s : a t t r i b u t e name=”to ” type=”x s : s t r i n g ” use=”requ i r ed ” />
115 <x s : a t t r i b u t e name=”text ” type=”x s : s t r i n g ” use=”requ i r ed ” />
116 </xs:complexType>
117
118
119 < !−− t ype f o r form input va l u e s −−>
120 <xs:complexType name=”formInputValue ”>
121 <x s : a t t r i b u t e name=”id ” type=”x s : s t r i n g ” use=”requ i r ed ” />
122 <x s : a t t r i b u t e name=”value ” type=”x s : s t r i n g ” use=”requ i r ed ” />
123 </xs:complexType>
124
125 < !−− t ype f o r form t r a n s i t i o n : formTransit ionType −−>
126 <xs:complexType name=”formTransit ionType ”>
127 <x s : c h o i c e minOccurs=”0 ” maxOccurs=”unbounded ”>
128 <xs : e l ement name=”t ex tF i e l d ” type=”formInputValue ” />
129 </ x s : c h o i c e>
130 <x s : a t t r i b u t e name=”from ” type=”x s : s t r i n g ” use=”requ i r ed ” />
131 <x s : a t t r i b u t e name=”to ” type=”x s : s t r i n g ” use=”requ i r ed ” />
132 <x s : a t t r i b u t e name=”formId ” type=”x s : s t r i n g ” use=”requ i r ed ” />
133 </xs:complexType>
134
135 < !−− t ype f o r aspec t t r a n s i t i o n : aspec tTrans i t ionType −−>
136 <xs:complexType name=”aspectTrans i t ionType ”>
137 <x s : a t t r i b u t e name=”from ” type=”x s : s t r i n g ” use=”requ i r ed ” />
138 <x s : a t t r i b u t e name=”to ” type=”x s : s t r i n g ” use=”requ i r ed ” />
139 </xs:complexType>
140
141 < !−− t ype f o r a l i s t o f t r a n s i t i o n s −−>
142 <xs:complexType name=”trans i t i onsType ”>
143 <x s : c h o i c e minOccurs=”0 ” maxOccurs=”unbounded ”>
144 <xs : e l ement name=”s imp l eTrans i t i on ” type=”

s impleTrans it ionType ” />
145 <xs : e l ement name=” l i nkTran s i t i o n ” type=”l inkTrans i t ionType ”

/>
146 <xs : e l ement name=”formTrans i t ion ” type=”formTransit ionType ”

/>
147 <xs : e l ement name=”aspec tTrans i t i on ” type=”

aspectTrans i t ionType ” />
148 </ x s : c h o i c e>
149 </xs:complexType>
150
151
152 < !−− the t e s t type , base e lement in the t e s t documents −−>
153 <xs : e l ement name=”t e s t ”>
154 <xs:complexType>
155 <xs : s equence>
156 <xs : e l ement name=”de s c r i p t i o n ” type=”x s : s t r i n g ” />
157 <xs : e l ement name=”connect ionPoint ” type=”

connectionPointType ” />
158 <xs : e l ement name=”pages ” type=”pagesType ” />
159 <xs : e l ement name=”aspec t s ” type=”aspectsType ” />
160 <xs : e l ement name=” t r a n s i t i o n s ” type=”t rans i t i onsType ” /

>
161 </ xs : s equence>

156

APPENDIX F. XML SCHEMAS

162 <x s : a t t r i b u t e name=”id ” type=”x s : s t r i n g ” use=”requ i r ed ” />
163 <x s : a t t r i b u t e name=”name” type=”x s : s t r i n g ” />
164 </xs:complexType>
165 </ xs : e l ement>
166
167 </xs:schema>� �

157

Bibliography

[1] David Astels, Granville Miller, and Miroslav Novak. A Practical Guide to
eXtreme Programming. Prentice Hall PTR, first edition, 2002.

[2] Robert V. Binder. Testing Object Oriented Systems. Addison-Wesley, first
edition, October 1999.

[3] Eric Braude. Software design: from programming to architecture. John
Wiley & Sons, Inc, first edition, 2004.

[4] Eric M. Burke and Brian M. Coyner. Java Extreme Programming Cookbook.
O’Reilly, first edition, March 2003.

[5] Lisa Crispin and Tip House. Testing Extreme Programming. Pearson Ed-
ucation, 2003.

[6] Tore Dyb̊a. Enabling Software Process Improvement: An Investigation of
the Importance of Organizational Issues. PhD thesis, Norwegian University
of Science and Technology, 2000.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: elements of reusable object oriented software. Addison–Wesley
Publishing Company, first edition, March 1994.

[8] GEF. GEF API – can be found within the GEF SDK.
http://download.eclipse.org/tools/gef/downloads/drops/R-3.0.1-
200408311615/GEF-SDK-3.0.1.zip, 2005.

[9] Graphical Editing Framework. Graphical Editing Framework website.
http://www.eclipse.org/gef, 2005.

[10] Paul Hamill. Unit Test Frameworks. O’Reilly, first edition, November
2004.

[11] Randy Hudson and Pratik Shah. GEF In Depth tutorial.
http://www.eclipse.org/gef/reference/GEF

[12] John Hunt. Guide to the Unified Process featuring UML, Java and design
patterns. Springer-Verlag, first edition, 2003.

[13] Marnie L. Hutcheson. Software Testing Fundamentals: Methods and Met-
rics. Wiley, 2003.

158

BIBLIOGRAPHY

[14] Craig Larman. Applying UML and patterns: an introduction to object-
oriented analysis and design and Unified Process. Prentice Hall PTR, sec-
ond edition, 2002.

[15] Bo Majewski. A Shape Diagram Editor. December 2004.

[16] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The
Art of Software Testing. John Wiley & Sons, second edition, November
2004.

[17] Eclipse RCP. Eclipse Rich Client Platform. http://www.eclipse.org/rcp,
May 2005.

[18] Trygve Reenskaug. The Model-View-Controller(MVC): Its Past
and Present. http://heim.ifi.uio.no/ trygver/2003/javazone-jaoo/-
MVC pattern.pdf, 2003.

[19] Tor St̊alhane. SPIQ: Etablering av Måleplaner. SPIQ notat, June 1998.

[20] Tore Dyb̊a and Kari Juul Wedde and Tor St̊alhane and Nils Brede Moe
and Reidar Conradi and Torgeir Dingsøyr and Dag Sjøberg and Magne
Jørgensen. SPIQ: Metodeh̊andbok. 3 edition, 2000.

[21] Rini van Solingen and Egon Berghout. The Goal/Question/Metric
Method: a practical guide for quality improvement of software development.
McGraw-Hill Publishing Company, 1999.

[22] Hans van Vliet. Software Engineering: Principles and Practice. John Wiley
& Sons, second edition, August 2000.

[23] Kent Beck with Cynthia Andres. Extreme Programming Explained: Em-
brace Change. Addison–Wesley: Pearson Education, second edition,
November 2004.

[24] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Reg-
nell, and Anders Wesslén. Experimentation in Softeware Engineering: An
Introduction. Kluwer Academic Publishers, 2000.

159

	I Introduction
	Motivation
	Problem Definition
	Project Context
	Readers Guide
	Project Process
	Research Question and Method
	Goal
	Questions
	Metrics

	II Prestudy
	eXtreme Programming -- XP
	Values
	Principles and Practices

	Testing
	V-model
	Different types of testing
	Black Box Testing
	White Box Testing
	Human Testing

	Extreme testing -- Test Driven Development
	Testing Web Applications
	Summary

	State of the Art - Existing Testing Technologies
	xUnit
	JUnit
	jWebUnit
	HTMLUnit

	FIT
	WebFixture
	HTMLFixture

	FitNesse
	Selenium
	Canoo WebTest
	Summary and Comparison

	Technology Platform
	Web
	Standalone
	Eclipse Plugin
	RCP - Rich Client Platform

	Summary - The Choice

	The Eclipse Architecture
	The Platform Runtime and Plugin Architecture
	The Workbench, SWT and JFace
	Workspaces

	GEF
	The Team API

	The Graphical Editor Framework
	Model-View-Controller
	Command
	Chain of Responsibility
	State
	Abstract Factory
	Factory Method

	III Contribution
	Requirements
	Vision
	User Stories

	Design
	Domain model
	Architecture
	Using the File System
	AutAT Internals

	Implementation
	AutAT Common
	AutAT Core
	XML Schemas

	AutAT Exporter
	AutAT UI
	AutAT Software Metrics

	Testing
	User Documentation
	Installation
	Usage

	User Testing Session
	Background
	FitNesse
	AutAT
	Evaluation

	IV Evaluation
	Research Analysis and Goal Attainment
	Threats to Validity
	Measurements
	Answers
	Goal Attainment

	Discussion
	AutAT Tool
	Test Framework
	Eclipse
	GEF
	AutAT Itself

	Experiment
	Personal Experiences

	Conclusion
	Future Work
	Future Work with the AutAT Tool
	Future Empirical Experiments
	Future Work at NTNU and BEKK

	V Appendix
	Questionnaire for AutAT testing
	Background and Experience
	FitNesse
	Time Usage
	Statements

	AutAT
	Time Usage
	Statements

	Comparison: FitNesse versus AutAT
	Statements

	Testing Exercises
	Exercise 1: Test the Front Page
	Exercise 2: List All Artists
	Exercise 3: Register New Artist
	Exercise 4: View Info About Artist and Register a New Album
	Exercise 5: Repeating Checks

	FitNesse Commands
	General commands in FitNesse
	Commands for using jWebUnit with FitNesse
	Checks for text and links
	Navigation commands
	Checks for forms
	Enter values to a form

	Example

	Statistical Background
	Analysing the Number of Testers
	Binary Probability Distribution

	User feedback
	M1 - Fit Knowledge
	M2 - AutAT Time Usage
	M3 - FitNesse Time Usage
	Time Analysis
	M4 - AutAT's Ease of Learning
	M5 - FitNesse's Ease of Learning
	M6 - Compared Ease of Learning
	Analyzing Ease of Learning
	M7 - AutAT's Ease of Use
	M8 - FitNesse's Ease of Use
	M9 - Compared Ease of Use
	Analyzing Ease of Use
	M10 - AutAT's Syntax Complexity
	M11 - FitNesse's Syntax Complexity
	M12 - Compared Syntax Complexity
	Analyzing Syntax Complexity
	M13 - AutAT's Overview
	M14 - FitNesse's Overview
	M15 - Compared Overview
	Analyzing Overview
	M16 - Modifying Tests
	Analyzing Modifying Tests
	M17 - AutAT Errors
	M18 - FitNesse Errors
	Error Analysis
	M19 - User Feedback
	FitNesse
	AutAT
	Comparison: FitNesse versus AutAT

	XML schemas

