Abstract

A high amount of complex and urgent information needs timely attention in
an operational environment. This requires specialized systems. These sys-
tems should provide immediate access to accurate and pertinent information
when troubleshooting or controlling abnormal situations.

This study is a collaboration between NTNU and Statoil Research Center.
It aims at designing and developing a prototype to improve the operator’s
awareness of alarms, by means of a multi-modal virtual environment. This
will be achieved by creating an extension to the virtual model SnghvitSIM,
using a spatial auditory display in addition to visual elements. The audi-
tory display will provide (1) spatial information about new alarms and (2)
information about the overall state of the facility. The system also offers (3)
beacons to aid navigation within the virtual environment.

To reach these goals, a comprehensive literature study was carried out, inves-
tigating similar concepts and various techniques for developing such systems.
The development was prioritized in the following order, according to the
main objectives: (1) design, (2) functionality and (3) architecture. Within
the design-process, the main focus has been on the spatial auditory display.

The development of the prototype proved successful. The feedback on the
prototype reflects its value as a showcase for future development, containing
new and potentially very effective solutions for tomorrow’s alarm manage-
ment systems.

o
o

Preface

This study is carried out as a part of Havard Sjgvoll’s MSc studies at the Nor-
wegian University of Science and Technology, Faculty of Information Tech-
nology, Mathematics and Electrical Engineering, Department of Computer
and Information Science. It is the result of a master thesis in the field of
Algorithm constructions and Visualization.

The study is conducted as a collaboration between NTNU and Statoil Re-
search Center, and this report has been developed at Statoil’s facilities at
Rotvoll.

I would in particular like to thank my mentor at Statoil/NTNU, Dr. Bjern
Seether, for the opportunity to perform this study and his guidance through-
out the development.

I also want to thank my mentor at NTNU, Sigurd Saue, for invaluable guid-
ance and feedback regarding the acoustic topics of this study. This also goes
for Thomas Hammer and musician Qyvind Brandtsegg. Thanks to Peder
Blekken at Systems In Motion for helping out with the implementation of
the SnghvitSIM AMEX prototype. One should neither forget all Statoil
employees which have been available for questions and interviews, like Per
Ivar Karstad, Vidar Hepsg, Kjell Bjerkeli, Christian Salbu Aasland, Frank
Sinnes, Jan Kjeldstad, Svein Fredrik Fredriksen and the operators at Tjeld-
bergodden.

A special thanks to Solrun Furuholt Pedersen, for her encouragement and
help reading through the study.

Trondheim, 23. Juni 2005

Hévard Sjgvoll

While visual instrumentation has received considerable
attention and guidelines, sound has remained analogous to
a neglected child in light of what could be accomplished.

(Begault 2000)

Contents

I Introduction

1

II

Introduction

1.1 Domain e

1.2 Problem

1.3 Objectives

1.4 Research methodology

1.5 Structure of the report L.
Prestudy

The task

2.1 Overview

Theory and technology

3.1

3.2

3.3

3.4
3.5
3.6
3.7
3.8

3D Sound
3.1.1 Physical acoustic perspective
3.1.2 Psychoacoustic perspective
Reproduction of 3D sound
3.2.1 Directional filtering
3.22 Equalization. oo
3.2.3 Headphone reproduction
3.2.4 Loudspeaker reproduction
3.2.5 Multi-loudspeaker techniques
Auditory displays
3.3.1 Sonification and audification
3.3.2 Auralisation Lo
3.3.3 Earcons and auditory icons
Virtual Reality Modeling Language
Open Audio Library
Coin3D
CSoundo

Sneghvit Simmulator oo

viii CONTENTS
4 Situation today 35
4.1 Alarm management systems 35
4.2 Challenges 36

5 Related work 39
5.1 Alarm management systems 39
5.2 Auditory display L 40
53 Sound design 42
III Own Contribution 47
6 Task specification 49
6.1 A revisit to the purpose of the task 49
6.2 Requirements 49
6.2.1 Definitions 49

6.2.2 Functional requirements 50

6.2.3 Non-functional requirements o0

6.3 Priorities a0

7 Architecture 53
7.1 Overall architecture 53
7.2 Prototype Core o4
7.3 GUI Controller 99
7.4 Audio Controller 55

8 Design 57
8.1 Discussion e e e 57
8.1.1 Organizational challenges o7

8.1.2 Scope of the new system a7

8.1.3 Simulation. 58

814 Hardware a8

8.1.5 Audiointerface, 59

8.1.6 Visualinterface 63

8.1.7 Interaction 63

8.2 Simulation 63
83 Hardware 65
8.4 Audiointerface 66
84.1 Alarmsounds 66

84.2 Beaconsounds, 69

843 Statussounds 71

8.5 Visual interface o 74
85.1 Headupdisplay 75

8.5.2 Virtual objects 0oL 76

CONTENTS ix
8.6 Imteraction., 77

9 Implementation 79
9.1 Development environment 79
9.2 Implementation of requirements 80
9.3 Overview 81
9.4 Alarmso 82
9.4.1 Retrievingalarms 83

9.4.2 Alarm visualization 83

943 Alarmsounds 85

9.5 Beaconsoundso 85
9.6 Statussounds o 86
9.7 Userinteraction, 87
9.8 Final solution o 89
10 Evaluation 91
10.1 Scope 91
10.2 Strengths L 92
10.3 Weaknesses 92
IV Conclusion 95
11 Conclusion and further work 97
11.1 Contribution 97
11.2 Future work 97
Appendix 105

A Workshop: VR, Halden 107
Al Summary 107
A.2 Introductiono 107
A3 Intention of visit 108
A.4 Presentations and demonstrations 108
A41 CREATE 2 109

A.4.2 The LNPP refueling machine training simulator 109

A43 CollabVE 110

A44 Discussiono 110

A45 Social 112

B Study: Tjeldbergodden 113
B.1 Summary e 113
B.2 Introduction 113
B.3 Intention of visit 113

CONTENTS

B.4 Observations
B.4.1 Equipment in the control-room
B.4.2 Environment L.
B.4.3 Alarm management
B.44 Alarmsolving o
B.4.5 New control-room system

B.5 Challenges

B.6 Feedback

B.7 Thoughtsandideas.

C Interview: Per Ivar Karstad

Seminar: Alarm management and control rooms

D.1 Summary

D.2 Introduction

D.3 Intention of visit Lo

D.4 Presentations and demonstrationso
D.4.1 Operator Situation Awareness
D.4.2 Alarm philosophy in Statoil
D.4.3 Future technology
D.4.4 Thoughts and reflections

Installation Guide

User guide
F.1 Interaction.

F.1.1 SnghvitSIM user guide
F.1.2 Keyboard corrections

Source code

G.1 amex.CPP -+ -« « o v e
G2 amex.ho
G.3 amexSoundEngineho
G.4 amexGUIEngineh
G.5 amexAlarmGenerator.h oL

Enclosed CD

129

131
132
132
132

133
133
143
144
152
158

161

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1

5.1
5.2
9.3
5.4

7.1
7.2

8.1

The information gap in today’s information systems.

Traditional operator’s desk with alarm management system. .
Possible new design of operator’sdesk.

Direct and reflected sound waves.
Relationship of the median, horizontal and frontal planes.
Specifying the position of a sound event relative to the head.
Interaural intensity difference and interaural time difference. .
Example of HRTF.
Unequal path lengths from different sound sources.
Cone of confusion. L
Nlustration of front-back confusion.
Relation between distance and intensity.
Directional filtering. oL
Crosstalk signals.
Taxonomy of auditory display.
Example of VRML 3D graphics..
Example of Coin3D 3D graphics.
Sound node geometry. L
Base components of CSound.
Snapshots from the Snghvit Simulator.
Overview of SnghvitSIM software components.

Example of an alarm management system process diagram.

Framework for intervention activities..
Mlustration of the weather forecast sonification.
Paths traveled by participants using different beacons.

2D projection of navigation paths.

Overall architecture of prototype.
Schematic overview of prototype core.

Impact-urgency matrix for calculation of criticality.

12

14
15
15
16
17
18
19
20
21
22
23
25
28
29
31
32
34
34

36

xii

LIST OF FIGURES

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

9.1
9.2
9.3
9.4
9.5

Al
A2
A3
A4

B.1
B.2
B.3
B4

D1
D.2
D.3

F.1

Snehvit field layout. oo 64
Speaker system and configuration used in the prototype. . . . 65
Model of room where hardware will be installed. 66
The four phases of an ADSR envelope. 67
Frequency spectrum of notification alarm. 67
Impulse response of production alarms. 68
Impulse response of safety-critical alarm. 69
Difference between broadband and narrowband signals. 70
Frequency spectrum and impulse response of beacon sound. . 71
Design of sounds used for different status levels. 73
Techniques used to fulfill the visual requirements. 74
An example of an highlighted object. 7
Tree-structure presentation of all commands in prototype. . . 78
Subset of functionality and dataflow in AMEX. 81
Information-box with semitransparent background. 84
Screenshot of AMEX, initial view. 89
Screenshot of AMEX, overview of template. 90
Screenshot of AMEX, close-up of one alarm. 90
Layout tool of CREATE 2. 109
Procedural documentation of the procedure training system. . 110
Example for virtual environment with avatars in CollabVE. . 111
Social event with 17th century dinner at Fredriksten Fortress. 112

Control-room at Tjeldbergodden. 114
Billboard with list of alarms and CCTV. 116
Structure of lines in the alarm list. 116
Coloring of lines in the alarm list. 116
Ian Nimmo, lead speaker of the seminar. 124
Intervention activities during an abnormal situation. 125
Screen captures of the ECS console. 126

Initial view of SnghvitSIM AMEX. 131

List of Tables

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2

F.1

Superior categorization and design of alarm sounds. 61
Pre-arranged alarms used in the prototype. 64
Detailed design of pre-arranged alarms used in the prototype. 69
Configuration of status sounds. 72
Details regarding each type of textual information. 76
List of all available commands in prototype. 78
Implementation of functional requirements 80
Implementation of non-functional requirements 80
List of all available commands in prototype. 132

xiv LIST OF TABLES

Abbreviations

API Application Programming Interface
ADSR Attack, decay, sustain and release
CCR Central Control Room

CCTYV Closed Circuit Television.

CTC Cross Talk Cancellation

DCS Distributed Control System

CLOD Continuous Level of Detail

EAX Environmental Audio Extensions
GUI Graphical User Interface

HTML HyperText Markup Language
ITIL IT Infrastructure Library

HUD Head Up Display

MIDI Musical Instrument Digital Interface
OSC Onshore Support Center

OpenAL Open Audio Library

OpenGL Open Graphics Library

PCM Pulse Code Modulation

RGB Red Green Blue

SA Situation Awareness

SCSSV Surface Control Subsurface Safety Valve

VE Virtual environment

xvi LIST OF TABLES

VR Virtual reality
VRML Virtual Reality Modeling Language

SnehvitSIM Snghvit Simulator

Part 1

Introduction

Chapter 1

Introduction

1.1 Domain

The domain of virtual reality (VR) explores ways in which technology can be
used to immerse people in virtual environments (VE). The research within
this area has lately focused on other sensory stimulus than vision, such as
audition, sense of touch and olfaction'. This is done in order to comple-
ment the more traditional unimodal VR-system, which in many cases will
be inadequate to fulfill the intended purpose of a virtual environment.

LoBrutto states that "film sound serves the story, creates a mood, helps
define the director’s aural vision, and can be the key to bringing the visuals
to life" (LoBrutto 1994). Similarly, sound can be used in VEs, not only to
immerse the user in a new environment, but also to mediate information from
the system. This could be done in order to enhance the visual representation,
or to communicate information which lies beyond our normal field of view.
A multi modal VE can also improve and intensify the user’s situational
awareness and sense of locality within the environment compared to a system
using only visual aids.

Using sound to achieve such communication is an area of research de-
nominated auditory displays. In its original form, the term auditory display
derives from an attempt to use sound to present information that previously
has been mediated through visual aids. This is becoming more and more
relevant, as computer systems, and technology in general, are increasing in
complexity and projected amount of information. This also goes for the sys-
tems used in operational environments, such as a control rooms. From the
earlier mimic boards where the size of the panels restricted the amount of
available information, the development has lead to a whole new situation.
Today’s control rooms are often characterized by complex control systems
and high amount of mediated information. Combining this with a stress-
ful situation and little or no room for failure, enforce a need for specialized

1Sense of smell

4 Introduction

systems. These systems should provide immediate access to accurate and
pertinent information when troubleshooting or controlling abnormal situa-
tions.

The combination of multi-modal VEs, more specifically virtual
models assisted by 3D sound, and operational environments is the
focus and domain of this master thesis.

1.2 Problem

Control room operators, regardless of the type of industry, are facing many
challenges when troubleshooting and controlling their systems. Providing
the right tool for this task is consequently of great importance.

History is rich on examples where a combination of inappropriate system
designs and/or human failure have lead to fatal consequences, sometimes
even with human casualties. The accident at the Three Mile Island nuclear
power plant is an example of such (Bishton 2003). In March 1979, a valve in
the condensate system failed to close properly. This alone should normally
have been taken care of by the operators. However, a series of unfortunate
events resulted in catastrophe. The system used to control the plant was de-
signed to provide audible and visual indications for more than 1500 alarms.
Later investigations revealed that some of these did not work properly. For
instance, one light indicated that a valve had been closed when it still was
open. Another light indicator was covered by a caution tag attached to an-
other valve controller. In other words, the control panels did not indicate to
the operators the true state of affairs in the reactor.

This example illustrates what consequences a faulty control room system can
lead to. Another tragic event worth mentioning, is the Asta train-accident.
The 4th of January 2000 two trains collided, causing 19 lives. The casual
analysis indicated several weaknesses in the control system and the routines.
One interesting point was stated by the investigating committee: "The Com-
mission consider that audible alarms on the rail traffic control center as an
very important and necessary aid to avoid dangerous situations as an result
of safety critical errors. [...] The Commission recommends that an audible
alarm for safety-critical faults should be installed at all rail traffic control
centers as soon as possible.” (NOU 2000).

Even though it is not said anything about its design or mode of opera-
tion, the committee emphasizes the importance of audible alarms in control
rooms. This is an interesting statement which actually has been taken se-
riously by another type of industry; the oil industry. In this domain, most
control rooms and DCSs use audible alarms for safety-critical faults. Many
of these systems also use sound to warn about other unexpected events, such
as alarms and messages. However, the original design of these systems, in-

1.3 Objectives 5

cluding the audio design, may not be scalable with the increasing amount of
data that are produced. The reason for this is the usage of more advanced
technology and new and more detailed types of instrumentation and sensor
technology. Figure 1.1 pinpoints this problem, and emphasize the fact that
more data not necessarily equals more information.

—Data produced ~Information needed——

0 - BE

adly | . | L
iy | R
:::DCS:,} |j) E— O O

- J

‘ More data # More information

Figure 1.1: The information gap in today’s information systems.

More effort is required to design the systems in such a way that they
provide the operators with the right amount of pertinent information. If
this problem is left unsolved, it is reasonable to believe that the situation
sooner or later will come out of hand.

The problem which will be in focus in this master thesis, is how
to improve the operator’s situation awareness and their overview
of the facility’s condition. This includes how to better provide
information about new alarms. The improvement will be seen in
relation with today’s DCSs.

1.3 Objectives

Simultaneous with the construction of the Snghvit facility at Melkgya and
in the Barents Sea, Statoil is developing an interactive virtual model called
SnghvitSIM. The model, containing detailed information about the entire
land based- and subsea installations, will provide real time updates from the
production wells and transport system.

The objectives of this master thesis are to design and develop an extension to
SnghvitSIM to improve the user-interface by means of 3D sound techniques
and improved visual elements. This will be done in order to provide a better
overview of the facility’s condition to the operator.

To summarize, the major objective of this thesis is to develop a
multi-modal prototype that fulfills the following hypothesis:
An interactive virtual representation of a facility assisted by 3D

6 Introduction

sound will give the operators a better overview of the facility’s con-
dition than a traditional control-room. A better overview refers
to identifying possible problems regarding type, severity and lo-
calization.

1.4 Research methodology

Software engineering is a rather young discipline, seen in a research per-
spective (Sim 2004). Within this discipline, the scientific methodology are
built on very few formal sources. Most approaches are built on other well-
established research paradigms. The experimental model of physics is an
example of such (Shaw 2003). The intention of such an methodology is to
answer a number of questions: What is the problem to be solved? What
previous work exist, and what is used as a foundation for the thesis? What
is the contribution? Are the results well grounded?

These are all questions which are covered in this master thesis. A hypothesis
is defined to lead the author throughout the study. A review of the theo-
retical basis and similar research, have been done to build the foundation
for the further work. The selection of relevant topics is seen in context with
the objectives of the master thesis, and it has been emphasized to identify
resembling work if available. Using this knowledge, a design has been sug-
gested and implemented. This includes justification of the chosen approach.
The implementation has combined the available framework of SnghvitSIM
with the author’s own work. Throughout the research and development, in-
formal tests are performed on friends and colleagues for individual feedback.
This has been done to refine the prototype to a better design, but is not
mentioned specific in the thesis.

A final evaluation has been carried out to examine whether the objectives
and goals are achieved. This has been carried out with two different subjects,
representing different backgrounds and views.

1.5 Structure of the report

This report has been structured in 5 different parts:

e Part I, Introduction

— Chapter 1, Introduction presents the domain, problem and objec-
tives of the master thesis.

e Part 11, Prestudy

— Chapter 2, The task gives a brief overview of the task.

— Chapter 3, Theory and technology contains theory and descrip-
tions of technology relevant to the objectives.

1.5 Structure of the report 7

— Chapter 4, Situation today describes today’s situation and its
challenges.

— Chapter 5, Related work presents different work and research re-
lated to the objectives of this master thesis.

e Part 111, Own contribution

— Chapter 6, Task specification contains the requirements and main
priorities for the system.

— Chapter 7, Architecture briefly describes the suggested architec-
ture.

— Chapter 8, Design presents and discuss the chosen design in ac-
cordance with the requirements.

— Chapter 9, Implementation documents the implementation of the
prototype.

— Chapter 10, FEvaluation gives an analysis of the prototype, includ-
ing informal feedback from test subjects

e Part IV, Conclusion

— Chapter 11, Conclusion and further work concludes the thesis and
discuss future work.

The reader should be familiar with common vocabulary and basic ex-
pression used in the areas of acoustics and 3D modeling.

Introduction

Part 11

Prestudy

Chapter 2

The task

Prior to the prestudy, a brief overview of the task will be given. This overview
supplements the hypothesis defined in section 1.3, and gives the necessary
foundation to understand the topics covered in the prestudy.

2.1 Overview

Given the objectives of this master thesis, it is the overall goal to develop
an alternative to the conventional control-room design planned at Snghvit.
This refers to the the control room operator’s point of view, and the alarm
management system in specific. The alarm management system takes care
of all incoming alarms and provides support for monitoring and managing
the facility. An example of such a system and the operator’s desk is depicted
in figure 2.1. The intention of the new design suggested in this master
thesis is to replace parts of the traditional routines and systems. The new
alarm management system will use a virtual model of the facility. Combined
with 3D sound, this system will provide a new way of localizing alarms and
problems, as well as giving information about the overall status of the system.
Hence, the operator’s desk will possibly end up looking like figure 2.2, with
a virtual view and a surround sound system.

It is worth mentioning that the scope of this master thesis is limited
to suggesting a new system for localizing alarms and problems, and not to
replace the entire alarm management system.

12 The task

Figure 2.1: Traditional operator’s desk with alarm management system.

Figure 2.2: Possible new design of operator’s alarm management system
using virtual models and 3D sound.

Chapter 3

Theory and technology

This chapter studies a selection of different theories and technologies within
the fields of acoustics, auditory displays and virtual reality. The selection is
based on the guidelines given in the objectives of this master thesis.

It should be noted that parts of this chapter is based on earlier studies by
the author (Sjovoll 2004).

3.1 3D Sound

The scientific basis of 3D sound can be categorized in 3 parts: physical
acoustics, auditory neurophysiology and psychoacoustics. While physical
acoustics describes the sound waves and how they interact with the envi-
ronment, psychoacoustics studies the relationship between acoustic waves at
the eardrums and the perception of the listener. This relationship is im-
portant to understand when trying to immerse the user in a virtual reality
environment.

After describing the scientific basis, the most common modeling-principles
will be described followed by a description of 3D sound properties which are
used when implementing 3D sound applications.

3.1.1 Physical acoustic perspective

Sounds are normally created by objects oscillating in air, for instance a
loudspeaker membrane. These oscillations will in a normal environment
create sound waves which will propagate in all directions from the source, as
depicted in figure 3.1.

The waves will encounter objects in the environment, and according to
the laws of physics, they will be reflected and diffracted. Combined with
both constructive and destructive interference, a rich acoustic field is created
(Kendall 1995).

14 Theory and technology

?s(/

Figure 3.1: Direct and reflected sound waves.

As shown in figure 3.1, sound waves will interact with the listener in dif-

ferent ways. The direct sound is the one following the shortest path from the
source to the listener, shown as the thick line in the figure. Other waves will
reach the listener after being reflected from a wall or an object, leading to a
time delay compared to the direct sound. These indirect sounds provide the
listener with information used to analyze the environment and the relative
position of the sound event.
Before the sound wave reaches the listeners eardrum, it is also affected by
the interaction with the listener’s body. Both the shoulders and the pinna
work as filters, reinforcing and attenuating different frequencies of the sound
wave. This modification depends on characteristic of both the wave and
the physical attributes of the listener. These properties are measurable and
can be captured and described as a head-related transfer function, HRTF
(Montan 2002). This is normally done by inserting miniature microphones
into the ear canals of a human head or an artificial head. The measure-
ments are done for different azimuth and elevation angles, giving a detailed
description of how the sound reaches the two ears differently.

Before proceeding with more details about the HRTFs, some of the terms
which are used must be defined.

When a sound is equidistant from the two ears of a human, the sound
arrives at each ear from the same direction. This area, in which the sound
sources are equidistant from the two ears, is called the median plane (see
figure 3.2) (Kendall 1995). Sounds originating from the horizontal plane will
have very similar HRTFs, but due to slight asymmetries of the human head,
they will not be identical. The horizontal plane and the frontal plane divides
the head at ear level as depicted in figure 3.2.

Whenever a sound is not equidistant from the two ears, it will arrive at the
eardrums at different times and from different directions. These directions
are described in a coordinate system centered halfway between the ears,

3.1 3D Sound 15

Horizontal
lane

Frontal

Median plane

plane

Figure 3.2: Relationship of the median, horizontal and frontal (lateral) planes
relative to the listener’s head.

pointing forward. The azimuth is defined as the deflection from front center
(0°) in the horizontal plane (see figure 3.3).

v

Distance

Figure 3.3: Specifying the position of a sound event relative to the head in
terms of azimuth, elevation and distance.

Elevation is the horizontal deflection, giving e.g. 90° directly over the
head. The distance is a scalar describing the actual distance from the center

16 Theory and technology

of the listeners head to the sound source.

It is normal to label the two ears differently, according to which one is closest
to the sound source. The closest ear is called the ipsilateral ear, while the
ear furthest away is called the contralateral ear.

As described earlier, HRTFs can be created by doing measurements with
miniature microphones in a person’s ear canals. These functions can later
be used to simulate a sound source situated in space at a given distance,
azimuth and elevation. Comparing the signals at both ears shows that the
sound arriving at the ipsilateral ear is more intense and arrives earlier that
at the contralateral ear. These differences are called the interaural inten-
sity difference (IID) and the interaural time difference (ITD), respectively
(Kendall 1995). Figure 3.4 illustrates these effects.

,
g

ST

™

Figure 3.4: Interaural intensity difference and interaural time difference
caused by a sound source with unequal distance to the two ears.

However, the HRTFs are not completely without faults. It is not always
possible to locate a sound source based on only the HRTFs. This problem
often appears when the origin of the sound is in the median plane, either in
front of, behind, or above the listener. A normal respond to such a signal is
for the listener to move his head to determine the origin of the sound. For
this to work in a virtual environment, one must be able to track the listener’s
head movements.

Figure 3.5 shows a sample HRTF in both time and frequency domain
(Albertalli 2003). As can be seen from the diagrams, the right ear is obviously
the ipsilateral ear, meaning that the sound source is nearer to the right ear
than the left ear. Comparing the two upper diagrams, one can see that the

3.1 3D Sound 17

ITD is approximately 18 samples long.

Left Ear Impulse Response at (45,200 Right Ear Impulse Response at (45,20

0.4
o o 0.2
=] =
= 2
=) 5 0
o] T
= =
________________________ 0.2
20 40 BO 8O 100 120
Samples Samples
Left Ear Frequency Response at (45 20) Right Ear Frequency Response at (45 20)
7 05 N S
& & L N
A N e ralis sEFL G S EEEEE R, B AN PRLHY (B
i) o ' ' '
= =]
= = H H H H
= R Rt R
F A0 -k Ed))) H
= = H H H H
e e e
50 - : : -
] 0.5 1 15 2] 05 1 15 2
Fregquency « 10t Fregquency w10t

Figure 3.5: Example of HRTF, which is the representation of an impulse
response (above) in the frequency domain (below)
Courtesy of Albertalli et al.

3.1.2 Psychoacoustic perspective

So far in this chapter, the physical acoustic properties and neurophysiological
properties have been discussed. The theory of psychoacoustic, which will be
discussed in this chapter, tells how we perceive the sounds around us (Rudi
2000). More specifically, the focus will be on the psychoacoustic mechanisms
for spatial interpretation of sound source location. In particular its angle and
elevation relative to the listener, distance perception, and the effects of the
environmental context will be studied.

Azimuth and elevation perception

The most important cues for localizing a sound source’s angular position
involve the relative difference of the sound wave at the two ears on the
horizontal plane (Begault 2000). This difference is described by the two
frequency-dependent cues; interaural intensity difference and interaural time
difference. These descriptors have been in focus for several studies related to

18 Theory and technology

psychoacoustic theories, and are sometimes referred to as the duplex theory
of sound localization (Strutt 1907).

A

Figure 3.6: Unequal path lengths from different sound sources give different
perception of the sound.

As shown in figure 3.6, a sound source "B" placed at approximately 60 °

azimuth will give unequal path lengths to the two ears, and also unequal
intensities. Experiments show that the impact the IID and the I'TD make
on the perceptual judgments vary in different frequency ranges.
Above 1500 Hz the head will act as an obstacle and create an acoustic
shadow, causing the localization judgments to be dominated by the intensity
difference IID. Below 1500 Hz, longer wavelengths will not be significantly
affected by the head but diffract around it and thereby minimize the inten-
sity difference. However, the interaural time difference is still a fact, and will
consequently dominate the judgment of localization.

When the ITD outreaches the values predicted by the already mentioned
models, another theory become effective: The precedence effect (Wallach,
Newman & Rosenzweig 1949). The precedence effect explains the mecha-
nism of the auditory system, allowing localization of sound sources in the
presence of reverberation. This means that even though the sound waves ar-
rive from different directions because of reflection, the listener’s judgment of
the direction is dominated by the sound reaching him along the most direct
path. Referring to figure 3.1, the listener will easily localize the sound source
correctly and not be confused by the reflected sound waves (thin lines).

Even though the IID and ITD are very useful when trying to localize a
sound source along the interaural axis, they cannot separate acoustic events
in the relative positions above, below, behind or in front (as depicted in
figure 3.7). This ambiguity of location has been called the cone of confusion.

As can be deducted from these results, the classic psychoacoustic experi-
ments supporting the duplex theory of localization do not manage to position

3.1 3D Sound 19

Above

| Rear

In front

Below

Figure 3.7: Cone of confusion.

all sources precisely enough.

A more modern psychoacoustic field of research is binaural hearing by use

of HRTFs in localization (Kendall 1995). As mentioned earlier, the shape of
the head, the torso and especially the outer ear (pinna) affects the spectral
contents of the sound as it propagates from free space to the inner ear.
Because of the irregular shape of the upper body and pinna, it is theorized
that these filtering effects varies with the location of the sound source, and
therefore being spatially dependent. A HRTF will not only contain the
spectral filtering effects, but also both I'TD and IID cues as described in the
duplex theory earlier.
Since each person with given physical characteristics shape the spectrum
of a sound based on the sound’s location, it implies that the localization
will be easier if the sound contain more spectral energy (Morgan 1998). An
example of such a spectrally rich sound is noise. A good illustration of this is
the mating and warning signals of some species of birds. Whenever they feel
endangered, they employ pure tones in order to avoid revealing their own
location. These same birds use spectrally rich mating calls so they can be
easily located (Morgan 1998).

Normally, the HRTFs used are non-individualized HRTFs. This means
that they are measured from a head where both the size and the pinna may
be quite different from your own. This may have different outcome, but
generally individuals can localize a sound better with their own HRTFs than
with those of others. Some individuals however, have superior HRTFs which
sometimes can be used to improve other people’s localization skills. If the
use of non-individualized HRTFs causes a reduction in localization skills,
this will first and foremost be shown as a front/back confusion and elevation
errors (Gardner 1999).

Based on experiments by Blauert (Blauert 1974), an effect called localiza-
tion blur has been documented. This effect explains the difference between
the vertical and horizontal resolution, in which people can locate a sound
source. The experiments show that the horizontal dimension has a higher

20 Theory and technology

resolution, down to a minimum audible angle of 2° in the front. At the sides
and in the back, the angle is increased to 10° and 6°, respectively. In the
vertical dimension, the minimum audible angle starts at 9° in the front, and
increases to 22 ° straight above the head.

The effect of localization blur can be minimized by the use of head move-
ments. By nature, humans make small head movements to gain a better
foundation when trying to localize an acoustic event. This plays an im-
portant role when trying to resolve front/back confusions, especially when
the sound sources are in the median plane where other acoustic information
provides few interaural differences (Kendall 1995).

- -
X=Y P!=Q

Figure 3.8: A dynamic head turn to the right disambiguates whether a sound
source is in front or in back of the listener.

As depicted in figure 3.8, turning the head will disambiguate the possi-
ble front/back confusion. This natural response must be considered when
choosing system for reproducing 3D sound. While a normal speaker setup
will utilize this head movement, the use of headphones will demand head-
tracking to be able to synthesize the result.

Distance cues and reverberation

There are four principal cues to a sound event’s distance: echoes, rever-
beration, overall attenuation and high-frequency attenuation (Morgan 1998).
According to the inverse square law a sound event’s intensity decreases with
r%, given the distance r from the center of the sound. For example, at the
distance of two meters from the sound source, the intensity is % = % of the
sound intensity at one meter (see figure 3.9).

In addition to the attenuation mentioned above, high frequencies are
also attenuated by the absorbency of humidity in air. Consequently, low
frequencies will travel further than high frequencies in open air.

The listening environment gives the sound certain characteristics which
also work as distance cues. These effects are divided in two parts; the early

3.2 Reproduction of 3D sound 21

3 Distance/meters

A

1/9)
Intensity

Figure 3.9: Relation between distance and intensity according to the inverse
square law.

echoes and the following reverberation. The initial or primary wavefront are
known as the echoes and were mentioned in the last section as the precedence
effect. It simply says that the ear will localize a sound in the direction of the
earliest arriving sound event even if the initial echoes arriving at the other
ear are louder. Larger spaces yield larger echoes.

After the initial echoes, a dense fusion of other echoes hits the listener.
This fusion is called reverberation, and is the main contributor for revealing
information about the auditory environment. Only in anechoic chambers, or
in atypical environmental conditions such as within a large, open expanse of
snow-covered ground or on a mountain summit, sound sources will be non-
reverberant (Begault 2000). As a distance cue, reverberation also plays an
important role. The intensity of the primary sound relative to its reverbera-
tion is high when the sound source is close to the listener. For more distant
sound sources, the ratio between the initial sound and its reverberation is
much smaller (Morgan 1998).

3.2 Reproduction of 3D sound

3D sound is conveyed to the listener either through loudspeakers or through
headphones. Both methods have their advantages as well as shortcomings
which must be coped with. In most cases the most favorable method will
depend on the application and setting.

This chapter will examine the underlying techniques for reproducing 3D
sound, possible issues regarding the different approaches and the various
qualities of loudspeakers and headphones.

22 Theory and technology

3.2.1 Directional filtering

Directional filtering is done by taking a monophonic input signal and filter
this to produce a stereo pair of sounds. The filter must use parameters like
azimuth angle and elevation to produce the right filtering. After filtering
all sounds from different locations, all left and right channels are added to
create a stereophonic signal (see figure 3.10).

v Stereophonic
v output signal

Monophonic
source signal

|

|

|

Azimuth, l

elevation Left
|

Figure 3.10: Directional filtering.

An example of a filter as depicted in figure 3.5 is the Finite Impulse Re-
sponse filters (FIR), whose coefficients are the head related transfer functions
(HRTFs) impulse response (Kendall 1995).

3.2.2 Equalization

Equalization is done to eliminate errors as a result of the reproduction
process. One of the potential problems when reproducing sound is the re-
production equipment itself. The characteristics of the equipment, especially
the transducers, tend to become superimposed on the output signals. This
superimposition should be compensated for. Also the transmission path to
the ear drum could be compensated to produce a more correct sound image
(Kendall 1995).

3.2.3 Headphone reproduction

Reproducing 3D sound using headphones is probably the most controlled
method of representing directional cues, but still some challenges exist. Even
though separating left and right sound events is rather easy, the listener often
gets the impression that the auditory images only move along the interaural
axis inside the head. This gets even more difficult when interpreting sources
in the median plane. Because of the absence of time- and intensity-difference
cues (ITD and IID), the main directional cue for the median plane is the
HRTF. This HRTF may be a non-individual HRTF or a HRTF distorted by
for instance a bad equalization. This may be improved either by justifying
the equalization of the headphones, or by exaggerate the front/back spectral
differences of the HRTFs (Kendall 1995).

3.2 Reproduction of 3D sound 23

When using headphones, another topic which should be given attention
is which type to use. As a thumb rule, an open headphone is normally to be
preferred. In this context open means that it does not affect the radiation
impedance as seen from the ear (Kendall 1995).

3.2.4 Loudspeaker reproduction

When using loudspeakers to reproduce 3D sound events, the effect will often
be a convincing reproduction of sources situated straight ahead of a person
and partly from the sides. It gives however weak reproduction of sources
originating from behind (Svensson 2004). The weakness of not supporting
high quality 360 ° representation is probably not the biggest issue when using
loudspeakers. A sound wave created at the right speaker intended for the
right ear will also reach the left ear, causing crosstalk, which again leads to
constructive and destructive interference at the left ear. This is depicted in
figure 3.11 (Kendall 1995).

Crosstalk signals
v R
— —

Crosstalk

Figure 3.11: Crosstalk signals.

Cross-talk cancellation

Crosstalk cancellation (CTC) is a method to remove crosstalk, which is unde-
sired signals reaching the wrong ear. This cancellation is implemented with a
CTC-filter adding inverted signals at both left and right channels. This aims
at canceling the crosstalk from the opposite loudspeaker (Svensson 2004).

A CTC-filter is necessary in all binaural reproductions when using loud-
speakers. This will create a sweet-spot, in which the crosstalk is compensated
for and where the listener will get a correct acoustic image.

24 Theory and technology

The loudspeakers will normally be positioned at +30° azimuth from the
listener and consequently form an equilateral triangle with the sweet-spot. If
the listener moves forward or backwards from the sweet-spot, the distance to
each loudspeaker will remain equal, and therefore the crosstalk cancellation
will remain intact. However, if the user moves sideways away from the sweet-
spot, the cancellation will be less precise and eventually deteriorate. This
could be avoided if the listener’s position was known by for instance tracking,
and used to update the CTC-filter.

3.2.5 Multi-loudspeaker techniques

Another approach to increase the quality of a loudspeaker reproduction sys-
tem is by using a so-called multi-loudspeaker technique. By using more than
two loudspeakers, it is possible to increase the size of the sweet-spot. The
well-known standard Dolby Digital 5.1 and also Dolby Digital 7.1 use 6 and 8
loudspeakers respectively. However, they do not use any HRTFs to calculate
the output. Instead they use conventional panning, which means they play
the same sound on all speakers but at different intensity. This implies that
this solution will need a lot of loudspeakers to perform satisfying, especially
if the sound sources are allowed to be positioned above/below the horizontal
plane.

In addition to surround-systems based on panning, some other techniques
have been developed. Both Sensaura (Sensaura website 2005) and Creative
(Creative website 2005) have developed reproduction systems using HRTFs
and CTC-filters on 4 or more speakers. Such a solution is quite demanding
when it comes to computational power since each speaker need a unique
HRTF and a separate CTC-filter. The result though will be a rather large
sweet-spot with very good localization possibilities compared to e.g. a re-
production system with only 2 loudspeakers.

Wawvefield synthesis is a method based on the principle that if one can re-
produce the particle velocity over a closed surface, the sound pressure inside
the circumscribed volume will be correct. This implies that a large number
of loudspeakers must be used to recreate the entire surface (Svensson 2004).
Another rather complex technique is ambisonics, a method of recording in-
formation about a sound field and reproduce it over some form of loudspeaker
array to give the impression of hearing a true three dimensional sound image.
Even tough ambisonics offers less restrictions than wavefield synthesis when
it comes to the number of speakers required, the number will soon grow large
if a high quality reproduction is demanded. The fact that the ambisonics
encoding (recording) and decoding are completely independent is however a
big advantage (Svensson 2004).

3.3 Auditory displays 25

3.3 Auditory displays

The term Auditory display was first introduced in 1994 by Kramer as an
embryonic! (Cohen 1994). The name derives from the attempt to use sound
to present information that previously have been communicated through
visual aids. In the paper Monitoring Background Activities in Auditory
Display, Cohen (Cohen 1994) summarizes the following reasons for adopting
sound to enlighten the users:

e Audio does not take up screen space.

e Audio easily fades into the background, but users are alerted when it
changes.

e People can process audio information while simultaneously engaged in
an unrelated task (e.g. listening to music whilst editing a paper).

e The well-known cocktail party effect (the ability to selectively attend
to one conversation in the midst of others in a crowded room) allows
users to monitor multiple background processes via the audio channel,
as long as the sounds attributed to each process can be distinguished.

The research on Auditory displays is mainly divided into two different areas
(Vickers 1999): The use of audio in the interface and the use of sound in
visualization (see figure 3.12).

‘ AUDITORY DISPLAY ‘

: ;

‘ User interface applications ‘ ‘ Visualization applications ‘
A4 A l v
Earcons & Soundenhanced Sonification/ .
5 x o . . Auralisation
Auditory icons applications audification

Figure 3.12: Taxonomy of auditory display.

The applications regarding visualization can further be subdivided into
two categories called Sonification/Audification and Auralisation. This con-
cerns how to represent data, and also how to improve the understanding
of a software state through auditory displays. The category User interface
applications covers the types of auditory displays where the user interface is
improved by using acoustic aids, such as the sound of a button being clicked,
or a program being closed. Even though a separation is made of the different
types of auditory displays, it is clear that some applications can be included
in several categories. It is also worth mentioning that some studies use dif-
ferent definitions than those presented here. This taxonomy will however be
used to structure the further explanations.

!Something that is embryonic is at a very early stage of its development

26 Theory and technology

3.3.1 Sonification and audification

Sonification is the process where certain properties of a dataset or events are
mapped to different sounds, preferably related to the semantic of the event
or dataset. The range of the areas where this has been applied is vast, and
is probably the most popular venue of auditory display research.
Audification is a process quite similar to sonification, but instead of mapping
events to different sounds, the data are played directly. Kramer explains
audification as "The direct conversion of data to sounds”"(Kramer 1994).
This may sound strange, but could for instance be implemented by scaling
seismic data up until their values lie in the audible frequency range.

3.3.2 Auralisation

Auralisation is a term often used as a synonym to sonification, but Vick-
ers (Vickers 1999) chooses to separate these as shown in the taxonomy in
figure 3.12. While sonification concerns generic data, auralisation is more
about representing programs and algorithms, often directly associated with
internal items of a program.

CAITLIN (the Computer Audio Interface to Locate Incorrect Nonsense) by
(Vickers 1999) is a system using the auralisation technique which was devel-
oped to assist novice Pascal programmers in debugging their code.

3.3.3 Earcons and auditory icons

Earcons is a term introduced in (Blattner, Sumikawa & Greenberg 1989), and
is a definition of simple musical structures composed from so-called motifs.
These musical structures are mapped to computer objects, operations and
interactions (Vickers 1999). When using earcons, two different approaches
could be chosen: Hierarchical or compound. The hierarchical method could
build an earcon hierarchy from motifs, using the root earcon’s motif as a basis
for the lower levels. By changing certain properties, like pitch or timbre, the
structure of the parent earcon can be preserved even though a new and
distinguishable earcon is produced. An example of this could be an earcon
associated with the state warning, consisting of a motif with a structure
of a single pitch (e.g. a middle C). By changing the timbre of the root
motif several subcategories of warning could be created. For instance could
warning = high temperature could sound like a trumpet, while warning = low
temperature could sound like an organ.

The compound approach associate different earcons to different objects or
operations, a use these to build a meaningful representation of the current
situation. For example, if open program was represented by an organ sound,
and a specific program was represented by a three-note tuba sound, the
sequence of opening this specific program would be represented by an organ
sound followed by a three-note tuba sound.

3.4 Virtual Reality Modeling Language 27

Since no obvious relation between the earcon and the associated object

or operation is required, this relation has to be learned by the listener. An
alternative to earcons, where natural, everyday sounds are used, is auditory
icons. The term was first suggested by Gaver (Gaver 1986), and represent
sounds which imitate the information or action being presented. For exam-
ple, the auditory icon for deleting a file could be the sound of something
being dumped in a trash can. Further information about Gaver’s work is
found in chapter 5.
Even tough little or no training is necessary to use auditory icons, finding
the right sounds can often be difficult. As a result, it is often necessary
to use more metaphorical and less analogical sounds, causing the need of
memorizing these discrete sounds. If the number of different sounds grows
large, one needs some sort of hierarchical structure. Otherwise remembering
all the relations may be difficult. This is probably the reason why auditory
icons have been left behind, compared to earcons, when it comes to formal
research.

3.4 Virtual Reality Modeling Language

The Virtual Reality Modeling Language (VRML) is a file format for describ-
ing interactive 3D objects and worlds. VRML is designed to be used on the
Internet, intranets, and on local client systems. VRML is also intended to
be a universal interchange format for integrated 3D graphics and multime-
dia (VRMLI7, ISO/IEC 14772-1 1997). Lukka defines VRML with these
describing words: "VRML is intended to be for virtual reality what HTML
1s for text - a structured, standard, cross-platform format for static or in-
teractive hyperlinked content.” (Lukka 1999). A VRML file contains a scene
graph which are processed by a program known as a browser. An example
of such a file is depicted in code example 1.

The resulting 3D graphics produced by example 1 is illustrated in fig-
ure 3.13.

3.5 Open Audio Library

Open Audio Library (OpenAL) is a cross-platform library for producing
multi-channel audio output. This allows simulations of 3D arrangements
with multiple sound sources and a listener. The library is developed by
Creative Technologies Ltd and Loki Entertainment Software, and is provided
under the Lesser GNU Public License (LGPL 2005). The OpenAL API is
easily integrated with OpenGL, as both the coding style and conventions
resembles the OpenGL API. Even though OpenAL originally was designed
for audio in games, it is now appropriate for many audio applications (Loki
website: OpenAL Specification and Reference 2005).

28 Theory and technology

Example 1 A VRML scene graph.

#VRML V2.0 utf8

Transform {
translation 0 1 O
children [

Shape {

appearance Appearance {
material Material {
diffuseColor 0 0.8 O

}
geometry Sphere {
radius 0.5

}

The OpenAL functionality revolves around three main kinds of objects:
sources, buffers and listeners. A buffer is filled with audio data, whereas
a source describes an instance of a buffer, a position from which a certain
buffer emanates. The sources can be controlled by setting parameters such
as position, velocity, direction and angles for cones that determine how the
sound is traveling. All parameters are set relative to the listener, which is
the object defining the user’s position in the 3D arrangement.

OpenAL contains functions to support the use of extensions, such as
DirectSound3D and EAX.

3.6 Coin3D

Coin3D is a set of software libraries developed by Systems in Motion (SIM
2005a) for 3D graphics software development. The API is built on top of
OpenGL and is compliant with the Open Inventor 2.1 API. Coin3D comes
with libraries for interfacing Coin with the native Microsoft Windows GUI,
Trolltech’s QT, Xt/Motif on X Windows and the native Mac Os X GUL It
also includes libraries for import and export of various standard file formats.
Coin3D is based on a scene graph (derived from the Open Inventor API)
structure and the data used in the model is stored as nodes in this structure.
An example of such is depicted in example 2. The resulting 3D graphics is
shown in figure 3.14.

The resemblance between a Coin3D scene graph and a VRML scene graph

3.6 Coin3D 29

Figure 3.13: Example of 3D graphics produced by the scene graph in exam-
ple 1.

Example 2 A Coin3D scene graph.

#Inventor V2.1 ascii
DEF Root Separator {
Transform {
translation 0 1 0
b
Material {
diffuseColor 0 0.80000001 0
}
Sphere {
radius 0.5

}

is evident (ref. section 3.4). This is due to the fact that they both derives
from the Open Inventor API.
The Coin3D source code used to produce the scene graph in example 2, and
hence figure 3.14, is illustrated in example 3.

In addition to the 3D graphic support, Coin3D also supports modeling
and rendering of 3D sound. The library contains different classes to support
this. These classes are described in the following sections.

SoAudioDevice

SoAudioDevice is the class used to control the audio device. Coin3D uses
OpenAL to render audio, meaning that a runtime library of OpenAL must
be installed in addition to Coin3D to enable sound support. Configuring

30 Theory and technology

Rotx RotY Dolly

Figure 3.14: Example of Coin3D graphics produced by scene graph in exam-
ple 2.

OpenAL according to a specific speaker configuration can easily be done
by using DirectSound3D as an extension to OpenAL. The available config-
urations will thus be dependent on the DirectSound3D driver and will be
transparent to both Coin and OpenAL. Examples of configurations which
can be used are 5.1 and 7.1-channel systems originally made to support the
respectively Dolby Digital surround formats.

SoVRMULSound

The SoVRMLSound class is used to represent a sound source (node). As
the class name indicates, it is a reimplementation of the VRML97 standard
(VRML97, ISO/IEC 14772-1 1997). Or more specifically, as the following
section will explain, it is a partial reimplementation of the VRML97 stan-
dard.

The VRML97 standard defines sound sources in a different way than e.g.
OpenAL, and it is therefor necessary to introduce the reader to some new
concepts.

¢ Geometry
The geometry of a sound node is defined by two ellipsoids; an inner
ellipsoid and an outer ellipsoid as depicted in figure 3.15. In the in-
ner ellipsoid there is no attenuation of the loudness. The attenuation
between the two ellipsoids is linear.

e Intensity
The intensity adjust the loudness of the sound emitted by the sound

3.7 CSound 31

Example 3 Example of Coin3D source code.

SoSeparator * root = new SoSeparator;
root->setName ("Root") ;
SoSphere * sphere = new SoSphere;
sphere->radius = 0.5f;
SoMaterial * sphereMat = new SoMaterial;
sphereMat->diffuseColor.setValue(0.0f, 0.8f, 0.0f);
SoTransform * sphereTrans = new SoTransform;
sphereTrans->translation.setValue(0.0, 1.0, 0.0);

root->ref();

root->addChild (sphereTrans) ;
root->addChild (sphereMat) ;
root->addChild (sphere) ;

viewer->setSceneGraph(root) ;
viewer->show() ;

node. The value ranges from 0.0 to 1.0, where 0.0 is used when no
sound is emitted. The intensity defines the loudness within the inner
ellipsoid.

e Direction
The direction vector stretches from the location of the sound source
and along the longest diagonal of the ellipsoids.

e Min/Max
As depicted in figure 3.15, the minBack, maxBack, minFront and
maxFront defines the relative position of the ellipsoids’ focus points
relative to the location.

SoVRMULAudioClip

The SoOVRMLAudioClip is a container for audio data that can be referenced
by a sound node (SoOVRMLSound). The container supports audio formats
like the wavefile format in uncompressed PCM format and Ogg Vorbis?.

3.7 CSound

CSound is a programming language designed and optimized for sound ren-
dering and signal processing. Created in 1985 by Barry Vercoe, CSound is

20gg Vorbis: An open source patent-free audio compression format.

32 Theory and technology

0de

P2
. no sound
_20de ' '\L " o P3 .
\ " min ellipsoig ma ellipsoid | g
L i " N | Il
| b . o " pa "
' 8 B N | e
I’ 4 2 \\V—/
L 8 L
1 0 ‘L
minBgck » " P1 3
\Iocati ¢ direction
l-l—n--q—minFrom —-|
e MaxFron ="
m axBack

Figure 3.15: Sound node geometry.

one of the most widely used software for sound synthesis. It supports several
sound synthesis methods, analysis and resynthesis, support for room simula-
tion and 3D modeling, and physical and mathematical instruments modeling
(Boulanger 2005).

CSound is based on four components; the compiler, the orchestra file, the
score file, and the output sound (as depicted in figure 3.16). The compiler
works by first translating a set of text-based instruments, found in the or-
chestra file, into a computer data-structure that is machine-resident. Then
it transforms these user-defined instruments by interpreting a list of note
events and parameter datas that the program "reads" from: a text-based
score file, a sequencer-generated MIDI file, a real-time MIDI controller, real-
time audio, or a non-MIDI devices such as a normal keyboard or a mouse.
Related to the work in this assignment, a text-based score file would be the
desired input type.

Depending on the speed of the computer (and the complexity of the
instruments in the orchestra file), the performance of the compiler can either

be auditioned in real-time, or written directly into a file (raw, wave, aiff or
IRCAM) on the hard disk (Boulanger 2005).

3.8 Snghvit Simulator

The Snghvit Simulator (SnghvitSIM), is developed by Statoil with Systems
In Motion and Geodata as sub contractors. SnghvitSIM is developed using
the awarded Geo2000 system. It is a virtual model of the Snghvit facility,
including the Melkgya process plant and the subsea installations. The user
interacts and navigates within the simulator by a mouse. Most objects are
interactive and have certain actions attached to them, like Open or Goto.
Two snapshots from the simulator are presented in figure 3.17.

3.8 Snghvit Simulator 33

Sound card

i

« 3 Sound file

A

\ cSound

program

Score file Orchestra file
[A A

Figure 3.16: Base components of CSound.

The Geo2000 platform consists of several components which are intercon-
nected through various interfaces. Details regarding some of the components
will now be described.

OpenGL is a low-level graphics library specification.
Coin3D is a high-level 3D graphics library.

Scenery is used for real-time visualization of huge terrain databases, and is
a product of Systems in Motion. The terrain database is built accord-
ing to a quadtree structure, which enables different advantageous tech-
niques, like continuous level of detail (CLOD) and popping-avoidance
(SIM 2005b). The combination of Scenery and Coin3D provides the
ability to view large terrain databases in real-time together with almost
any other type of geometric data.

Scheme is a script language, and is incorporated in the Geo2000 plat-
form using the Guile library. Using Guile to develop wrappers for
internal Geo2000 C++ functions, these functions can easily be called
from Scheme scripts. The usage of Scheme in Geo2000 is an ar-
chitectural decision, providing flexibility for e.g. the user interface
(Thomassen 2005).

An overview of the previously described components, and how they are
related to each other, is depicted in figure 3.18.

34 Theory and technology

(a) Subsea template.

(b) Melkgya process plant.

Figure 3.17: Snapshots from the Snghvit Simulator.

Snghvit Simulator-

Figure 3.18: Overview of SnghvitSIM software components.

Chapter 4

Situation today

Alarm management systems used in operational environments, such as control-
rooms, have during the last decades evolved in many areas. From manual
interaction and mimic boards to highly advanced computer systems as we
see today. Despite this, the conceptual design of the user interfaces remains
the same as it did ten years ago.

This chapter is based on interviews and visits made by the author. This
includes interviews with control-room operators, former control-room man-
agement, alarm management system designers, in addition to participation
at several lectures regarding the topic. Reports from this work are docu-
mented in appendix A to D.

4.1 Alarm management systems

The systems which are used today, also called Distributed Control Systems
(DCS), consists mainly of 2D schematic process diagrams. The process dia-
grams contain real-time data, and are used to investigate and control a plant
or facility. An example is given in figure 4.1.

All alarms are normally listed in separate windows, but are are also rep-
resented in the process diagrams as text or highlighted objects. The com-
plexity of these diagrams are rather high, and the investigation often requires
switching between many diagrams. Information gathered from Statoil tells
that the alarm-rate may rise up to several hundreds an hour. Even though
this may not be the usual scenario, it is obvious that there exist challenges
related to the user interface.

Until now, most of the development has revolved around finding new and
effective layouts for process diagrams. It has undoubtedly been made great
progress here, and today’s layout seem far more intuitive than earlier ver-
sions. Some system vendors have also started to look into 3D graphics and
virtual models. Although this is still on a very early development-stage, it
shows that the interest is present. The initiatives taken so far, aims towards

36 Situation today

=== [W][rome | [ALarus | [TRenDs Level Navigation Up
)E 22-HA-101
T i i
N TAL TAL [1 TAL
\ 1/ = -
X00x <
000X
L w AL
b
00X %
,,,,,,,,,,,,,,,,,,, e
T
Xo0x € 2entom
™ i <
i
000X ¢ o i
w woooxx €
- b W
] X000x 5 i
| T 0K %
- TAL
T | T
; P AR B — 00X %
| ™
f T G e 2f1c1141 |
| XXX e L [
| T I
e i
| 000X € oo
s
i b X
- 00X ¢ u
0 A L]
o 000x
a 00000 SesveTEy
A o e
00K g 00K e
.
|\, DEMIN WATER on I
4 L5 C oocxx %]
wwer 7 s
PoAL
ml
[‘
L
= E X000
I e kN
-0 e Ty votused | 5
c y 22-PA-104A| 22-PA-104B
WASHVATER
< ‘ 22-VE-101

CO2/MEG ABSORBER

15.11.2005 12:59:16 Ready X Tan 1 Operator i

Figure 4.1: Example of an alarm management system process diagram from
Snghvit DCS. Courtesy of Statoil.

systems like remote operations and collaborative environments. Whether
this technology also will be included in alarm management systems or not is
unclear.

According to the objectives of this master thesis, it has also been investi-
gated to what degree sound is used in control rooms and alarm management
systems. The findings have been rather slim, showing a minor degree of
audio utilization. The most common configurations use sound only to catch
the operators attention. This is usually achieved by simple and monotonous
sounds whenever new alarms occur. However, the feedback given from op-
erators and others involved with alarm management systems, shows a great
interest in further development in this area.

4.2 Challenges

Even though much effort is spent to improve user interfaces, these interfaces
does not solve the underlying cause of the challenge; the alarms. It is the
author’s beliefs that the biggest challenge regarding alarm management sys-
tems is to reduce the amount of alarms. This can be done in several ways,
and the best approach is probably a combination of many of them.

The ideal situation would be to avoid all alarms from happening. Instru-
mentation failures, component breakdowns and inaccurate readings are all

4.2 Challenges 37

incidents which could be avoided if the equipment were maintained correctly.
Still, some alarms will always occur. Taking into consideration the highly
advanced processes which often are involved, it is unlikely that these will
ever run fully automated and without any human intervention. In other
words, it is plausible to believe that some sort of alarm management system
always will be required. However, this does not mean that all alarms must
be presented to an operator. Installing some sort of intelligent alarm filter
could possibly retain unnecessary alarms from the operator, giving him or
her more time to focus on other alarms. The filter could for instance be
instructed to remove alarms which came as an expected consequence of an-
other alarm. It could also constantly be monitoring all alarms and easily
maintain a prioritized list of all alarms according to criticality. Other sup-
porting applications, such as trend analyzers, could also be implemented in
this solution. This would improve the quality of the proactive work, and
eventually reduce the amount of alarms even more.

Finally, when the amount of alarms have been significantly reduced, it is
important that the remaining alarms are mediated through an effective in-
terface. Taking into consideration today’s trends, with fewer persons oper-
ating more complex and time-demanding tasks, is like putting more wood
on the fire. By utilizing the possibilities within sound, through conscious or
subconscious mediation, a more effective interface could be developed.

It is important to notice that the alarm management system only fills one
fraction of the systems used to support the operators. Their challenge is to
achieve full situation awareness (SA), which is not gained through the alarm
management system alone. Improving this would nevertheless also improve
the overall situation.

38

Situation today

Chapter 5

Related work

This chapter describes some of the work that has been done in fields that
relate to the objectives of this master thesis.

5.1 Alarm management systems

Tan Nimmo, the president and founder of User Centered Design Services has
more than 35 years experience within the fields of user interfaces and control
room design (Nimmo 2005¢). In his work, he develops a framework to de-
scribe supervisory control (Nimmo 2005b6). This framework outlines distinct
intervention activities that occur during an abnormal situation, categorized
in different stages. This framework is illustrated in figure 5.1.

= —Intervention aclivitigs— — — — = = — = = — —— — ————— —————

s
1
} Reflexive behavior path :
I
| [¥ |
External inputs from ; Orienting =~ Evaluating | Acting T Outputs to process
process 1 N N _ 3 1 (SP, OP%, manual
(Signals, instructions, | Sensmg_, Analysis, thinking Physical andfor 1 adjustments)
environment} | | perception andjor and/or verbal response 1
| |discrimination interpretation :
I
I
| t ¥ I
| Internal feedback !
N o !
A ing

Extemal feedback

Figure 5.1: Framework defined by Ian Nimmo showing intervention activities
during an abnormal situation.

Using this framework in a real context can help to pinpoint possible prob-
lems and areas of improvement within an operations team or related to its
external conditions. In relevance to the objectives of this master thesis, the
first stage (orienting) is the most interesting. This stage involves perceptual
discrimination of an anomaly, i.e. an alarm, in the supervised process.
According to Nimmo, several external contributors may affect this activity

40 Related work

and cause human intervention failure. These contributors are among others:
information overload, inappropriate detail, navigation problems, distracting
environment and missing information. Creating a new design for an alarm
management system, as will be suggested in this master thesis, should in-
clude an evaluation and a list of measures to avoid these. However, according
to the scope and limited amount of time available, this can not be achieved.

By participation at various workshops, much information is gathered re-
garding today’s alarm management systems and future development. This
has been very interesting and has provided valuable information and refer-
ences used throughout this report. Summaries are included in appendix A
and appendix D.

5.2 Auditory display

The expanding usage of auditory displays and the need to convey new types
of information with sounds, leads to a demand for descriptions of best prac-
tice. Matt Adcock et al. address this problem by describing good solutions
to common problems in so-called design patterns (Adcock & Barrass 2004).
In his work he presents six new prototype design patters for auditory dis-
plays, including patterns for system monitoring and situational awareness.
The patterns are written to be easily understood and consists of the follow-
ing sections: Context, problem, forces, solution, rationale and examples. An
example from the situational awareness-pattern, defines one of the problems
like this: "Without appropriate support, the user is not likely to perceive and
understand all the relevant environmental activity.”. The solutions are main-
tained by user groups, which constantly updates the information regarding
new and upcoming problems.
Even though the design patterns have been sparsely used in this master the-
sis, they provide a very useful tool when developing new auditory displays.
Another research project (Kazem, Noyes & Lieven 2003), exploring dif-
ferent designs of auditory displays, is performed by Kazem et al. The project
investigates design guidelines and whether a background auditory environ-
ment can be used to increase a pilot’s situational awareness. Situational
awareness is a term used to describe the operator’s ability to perceive and
understand, as well as predict future events within their operating environ-
ment (Endsley 1994).
The conclusions made from Kazem’s work is very positive, and it is found
that the technology has a potential to enhance the pilot situation awareness
and reduce peripheralisation. This can be achieved by means of an back-
ground auditory display using spatialized sound (3D sound). The design is
meant to provide an impression of the state of the aircraft relative to the
outside world as well as an indication of basic aircraft system state. This is
also verified by Ian Nimmo in his work on operator situation awareness and

5.3 Sound design 41

the impact on control room design (Nimmo 20055).

One of the initiators behind the terms auditory icons and auditory dis-

plays is William Gaver. In his application SonicFinder (Gaver 1989) sound
was added to the components of the Apple Macintosh’s graphical user inter-
face. Files were represented by wood-based noises, applications by metallic
noses and folders by paper-like sounds. Various modifications of the basic
audio parameters were made to represent different features of the interface.
For instance, the larger a file, the deeper its sound. The result from Gaver’s
project has been an inspiration to many new projects and also to further
development in new areas.
Another application worth mentioning is the ARKola simulation, also de-
veloped by Gaver (Gaver, Smith & O’Shea 1991). In this application the
semantics of different machines used to produce soft drinks where mapped
to different analogical sounds.

In co-operation with a local radio station, Hermann et al. have performed
a pilot project using sonification to render and present auditory weather fore-
casts (Hermann, Drees & Ritter 2003). The sonifications include auditory
markers for certain relevant time points, expected weather events like thun-
der, snow or fog and several auditory streams to summarize the temporal
weather changes during the day. The data set used to generate this sonifi-
cation consisted of 9 different dimension, including temperature, humidity,
rainfall, fog etc. Several different designs were tried, from mere pitch- and
level modified sound streams to the usage of auditory icons. The finally used
sonification used a multi-stream of metaphoric auditory icons. The auditory
icons were carefully selected to avoid masking effects and interference. An
example of a sonification is depicted in figure 5.2.

Mediating multi-dimensional data sets is one of the challenges in this
master thesis. Even though the application area used by Hermann is quite
different, the idea of using multiple metaphorical auditory icons may be
worthwhile further exploration.

5.3 Sound design

Auditory warnings in particular have enjoyed comprehensive investigation
in many application areas. Researchers have illustrated the ability to design
highly informational warnings conveying an appropriate level of urgency and
tackling user confusion and compliance issues (Kazem et al. 2003).

In (Catchpole, McKeown & Withington 2004), the authors identify three
important forms of information in an auditory warning: what (semantic),
where (location) and when (perceived urgency). These forms are all ad-
dressed in the design suggested by Catchpole et al.. The results coming
from a series of test concluded that auditory warning pulses may be de-
signed using simultaneous notched noise and tonal signatures. The benefits

42 Related work

emotional

markers bad weather ;

wens | —{Tog @1@7

rainfall

. R
windspeed C_
temperature | i—l——

frost

time markers I—‘ m ’—‘

6 a.m. 12 am. 6 p.m.

time

Figure 5.2: Hlustration of the weather forecast sonification used by Hermann
et al.

achieved by this were highly localizeable warnings due to the broadband
noise. Further, the signals were highly manipulable in accordance to the
urgency of the event and they formed discriminable auditory warning which
mapped well to the mediated event.

This work have some interesting results. Using a combination of broadband
noise and tonal signatures fulfills the demands for both localization and me-
diation of the warning. Replacing the tonal signature with an auditory icon
is an interesting combination which should be investigated closer.

As already have been mentioned several times in this chapter, auditory
icons have been used in many settings to convey information about system
events by analogy with everyday events. This may be due to the fact that
these sounds have the potential to be understood more quickly and easily
than abstract sounds. Graham has in compared auditory icons with con-
ventional sound warnings (Graham 1999). The study was performed for an
in-vehicle collision avoidance application and focused on three main mea-
sures: reaction time, number of inappropriate responses and subjective rat-
ings. The results showed that the participants responded significantly faster
to auditory icons, but that auditory icons also produced more false-positive
reactions. Due to these results, Graham stresses the fact that auditory icons
may be perceived by the listener to be ’gimmicky’ or semi-serious. Auditory
icons should therefor be used sparingly and perhaps in combination with
other types of auditory warnings. This could be abstract sounds, earcons or
speech, each of which has its particular advantages and disadvantages. This
somewhat pessimistic comment of Graham’s should not be forgotten. Huge

5.3 Sound design 43

and easy accessible sound collections enables very creative designs, which
does not necessarily perform according to the designers intention.

More research on the perception of acoustic warnings have been done.

From a psychophysical point of view, Guillaume et al. have evaluated differ-
ent psychological conditions that affects the perceived degree of urgency in
acoustic alarms (Guillaume, Drake, Rivenez, Pellieux & Chastres 2002). It
has also been studied whether or not former research on acoustic parameters
in urgency perception are valid. Guillaume et al. confirms these results ac-
cording to their own findings: "The sequences perceived as the most urgent
were fast, had a high pitch varying temporarily in a random way, irreqular
harmonics and a fast onset ramp. The less urgent sequences had a low rate,
a quite low pitch progressively falling over time, reqular harmonics and slow
onsets. "
When it comes to the listeners reaction and the influence of his or hers psy-
chological condition, the efficiency in inducing perception of urgency were
reduced when the subjects were under a high workload. However, learning
is pointed out as an important element to compensate for this. If the link
between the sequence and alarm notion or urgency was reinforced, less at-
tention was found to be required. With respect to this master thesis, these
results stress the importance of operator training if an auditory display were
included in the alarm management system.

So far, much work regarding the design of auditory icons have been men-
tioned. One topic which has got less attention, is the navigational issues
related to these sounds. In (Catchpole et al. 2004) it is found that broad-
band noise can be used to improve the localization cues of an auditory
warning. Walker et al. takes this research much further and investigates
the performance achieved using different types of beacon sounds (Walker &
Lindsay 2003). A series of subjects were assigned to conditions with dif-
fering auditory beacons and assessed on how quickly and efficiently they
were able to navigate through a series of virtual environments. The research
also included measurements on beacon type effectiveness and the impact of
training. Figure 5.3 show the results of the participants using two different
beacons.

The studies of Walker et al. lead to three main points. First, practice
proved to has a major effect on performance. Second, different beacon sounds
lead to markedly different performance. A 1 second broadband noise burst
centered on 1 kHz gave the overall best results. The two other beacons used
were a pure sine wave and a sonar pulse. The last point showed that using
an auditory navigation system is most effective in cases were the user are
not constrained to a tight path such as corridors or sidewalks. Even though
this is an interesting finding, it is of little interest in the context of this
master thesis. The two first points however adds up to the conclusions that
training and broadband sounds are important keywords when working with
localization and navigation in auditory environments.

44 Related work

Noise Beacon - Map 2 Pure Tone Beacon - Map 2

N
i // =\
B e Pl

(a) Noise beacon. (b) Pure tone beacon.

Figure 5.3: Paths traveled by participants using different beacons in study
by Walker et al.

In (Grohn, Lokki & Takala 2003), similar research is performed with a
somewhat different focus. Groéhn et al. have carried out a navigation test
in a spatially immersive virtual environment. The task of the participants
was to find a series of gates while they navigated through a track guided by
auditory and/or visual cues. The objective of the project was to find which
combination of cues gave the best results. Audio-visual navigation was not
surprisingly the most efficient. The projection of the results is depicted in
figure 5.4. Further analysis of the travel paths indicated that auditory cue
was utilized in the beginning to locate the next gate, and visual cue was the
most important in the final approach to the gate.

According to the objectives of this master thesis, these results are very useful.
Indicating a new alarm with a spatialized sound will probably have good
effect on the user’s perception of the alarm’s origin.

5.3 Sound design 45

Auditory Cue Visual Cue
20 20
15 15
10
5
& a 0
> > .5
10+
15
20
B0 a5 0 s 0 s 10 15 20 25 By s a0 s s 10 15 20 25
X-axis X-axis
(a) Auditory cue. (b) Visual cue.
Both Cues
20
15
10
5
2 0
g
= 5
10
-15
-20
o a5 a0 s 0 5 10 15 20 25

(c) Both cues.

Figure 5.4: 2D projection of the navigation paths in research by Grohn et
al. Coordinates of the starting point (triangle): [12, 4], and end point (dot):

-7, -15].

46

Related work

Part 111

Own Contribution

Chapter 6

Task specification

6.1 A revisit to the purpose of the task

As described in chapter 2, a new system used to localize alarms and problems
shall be developed. This system will be based on SnghvitSIM, developed by
Statoil with Systems In Motion and Geodata as sub contractors. The sys-
tem will utilize the virtual model contained in the SnghvitSIM, and add new
functionality upon the existing framework. This is done to meet the new
system’s requirements regarding alarm management, including both alarm
localization and mediation of the facility’s overall status. The implemented
prototype will consequently be an extension to SnghvitSIM, and is from now
on referred to as Alarm Management Extension (AMEX).

6.2 Requirements

As SnphvitSIM still is in development, and therefore does not contain any
realtime data, the input-data for the prototype must be simulated. The
simulated data will be implemented as a part of the prototype.

6.2.1 Definitions

The following definitions are used in the requirement specification.
Prototype is the system to be implemented (AMEX).

User is the person using the prototype.

Object is a virtual component, e.g. a flange or a valve.

Facility is the sum of all objects, i.e. the entire virtual model.

50 Task specification

6.2.2 Functional requirements

1. The prototype must detect occurring alarms and:

(a) Inform the user
(b) Identify the virtual object which caused the alarm
(c) Be able to move the camera! to the placing of the alarm/object
(d)
)

d
(e

Highlight the object

Attach an audible signal to the object representing the alarms’:
i. Type
ii. Severity

(f) Provide audible information which can be used to localize the
alarm

(g) Provide the user with relevant information about the object

2. The prototype must provide information about the overall status of
the facility, including:

(a) Visual representation

(b) Audible representation

6.2.3 Non-functional requirements

1. The prototype must be implemented in the SnghvitSIM framework

2. The prototype must have an user-friendly and intuitive interface

6.3 Priorities

The main focus of this master thesis has been to demonstrate the possibilities
regarding the usage of virtual models and 3D sound in operational control-
rooms. Hence, it has been deemed most appropriate to focus on the design
of the prototype, and the sound design in specific. The outcome will be a
proof of concept for inspiration rather than a base for further development.
The priorities in the making of the prototype have been:

1. Design
2. Functionality

3. Architecture

lthe camera refers to the users point-of-view in the virtual model

6.3 Priorities 51

It should be noted that this would not have been the case if the outcome
was to be an permanent extension to SnghvitSIM. However, this is not the
case in this study. The prototype will be used for demonstration-purposes
only, and should therefor be easy to use and to set up. Resulting from this,
the primary goals in the design of the prototype have been:

e [llustrate possibilities
e Use of auditory display

e Ease of use

52

Task specification

Chapter 7

Architecture

7.1 Overall architecture

The overall architecture of the prototype consists of different units and is
based on the specifications given in chapter 6. As illustrated in figure 7.1,
the Prototype Core provides information to and from the SnghvitSIM frame-
work and works as a connection link between the other logical units in the
prototype. The Alarm Generator generates random alarms on objects stored
in the Object Information unit. In case of a fully operational system, the
Alarm Generator would be replaced by realtime data from the facility. The
Audio Engine and the GUI Engine is responsible for presenting information
to the user when an incident occurs. These units will use functionality from
the SnghvitSIM framework.

Alarm

Generator

~—-Main units- = ————————— e ———— e ———— ~

\
|
Y

()
i GUI Engine i
Speaker i Prototype Core i
<1 Audio Engine !
A m— |
I
P —
ke SnghvitSIM

Figure 7.1: Overall architecture of prototype.

As the system will use 3D sound, a suitable speaker-setup is also com-

54 Architecture

prised as a part of the prototype.

Further details on the main units are given in the following sections.

7.2 Prototype Core

As the name indicates, the prototype core contains the most crucial func-
tionalities and logic of the prototype. The relationship between the core and
the other prototype units is illustrated in figure 7.2

SnghvitSIM

Initialization
Objects Scenegraph
initialized intialized

/\Timers

Core
post-initialize

Core
pre-initialize

A A
Initialize objects Build scenegraph Updates Interaction
\J \J \/
~ — -Prototype objects- - ——-—-—-—-—-—-—-—-—————— — — — N
! I
: Gul Sound Alarm | A
| Engine Engine Generator |
I I
\ 7

S e e e e e e e e e e e Y e [st User

Figure 7.2: Schematic overview of prototype core.

The initialization process will be done in two steps. The first step, Core
pre-initialization, takes care of creating all objects. This is initiated by the
SnghvitSIM framework. The second step, Core post-initialization, is also
initiated by SnghvitSIM, but subsequent to the SnghvitSIM scenegraph cre-
ation. This procedure is due to the architecture of the SnghvitSIM frame-
work.

After the initialization, all actions are controlled by initiatives from either
the user or core timers. The core timers will at certain intervals request
new alarms. After receiving a new alarm, both the sound engine and the
GUI engine will be updated. User-specific initiatives will be controlled by
event-driven functions, which respond on either mouse or keyboard input.
As mentioned earlier, the prototype core will also be responsible for the
interface towards the SnghvitSIM framework.

7.3 GUI Controller 55

7.3 GUI Controller

The GUI Controller will be responsible for keeping and updating the graph-
ical user interface relevant to the prototype. This includes both virtual
elements and elements in the HUD, used to project information outside the
virtual environment, such as alarm-information, pop-up boxes etc.

All initiatives comes from the prototype core, which use public functions to
send and receive relevant information to and from the GUI Controller.

7.4 Audio Controller

The Audio Controller resembles the GUI Controller, but instead of keeping
and updating graphical elements it takes care of all audio elements. Starting,
stopping and altering sounds are done on initiatives from the prototype core.

56

Architecture

Chapter 8

Design

The requirements specification and system architecture have previous been
presented in chapter 6 and 7 respectively. This chapter aims at giving a
detailed view of the prototype implementation, including both hardware and
software descriptions. A discussion is included in section 8.1 to justify the
chosen approach described in the succeeding sections.

8.1 Discussion

8.1.1 Organizational challenges

Referring to appendix B and appendix D, many challenges must be met if
this prototype is to be fully implemented in an operational environment. The
suggested solution provides a whole new way of operating the control-rooms,
and consequently it also affects the operators and their working routines.
Moving from a 2D workspace, to a fully 3D virtual environment is a big
change, and will for instance require training. In accordance with standard
software development procedures, all involved users should participate in the
specification and validation-process. This will hopefully avoid the feeling of
enforcement, and instead provide an ownership to the system. It is also
important for the users to fully trust the systems and its stability. A good
way to achieve this is to give the operators time to get used to the system,
and avoid forcing it onto them (appendix D.4.4).

8.1.2 Scope of the new system

An important aspect which should be carefully considered, is the usability
and benefits which comes with virtual reality and 3D sound. As far as the
author knows, there has been very few studies which looks into whether
these technologies are fit to cover the entire alarm management process or
not. This has also been confirmed in dialog with Tan Nimmo, president and
founder of User Centered Design Services (Nimmo, 21.05.2005, pers. comm.).

58 Design

Perhaps this new system eventually should be designed as an supportive tool
in addition to today’s 2D systems, instead of a full replacement.

There are no obvious answers to this question, but it is tempting to ask
why virtual environments so far have been very little used in control rooms
(section D.4.4).

However, the scope of the suggested prototype is not to replace the systems
used in the control-rooms today. It will be a showcase to illustrate new
possibilities regarding identification and localization of problems and alarms.
As this only represent a fraction of today’s functionality, much work still
remains.

8.1.3 Simulation

As mentioned in section 6.2, the SnghvitSIM does not receive any real-time
data from the facility yet. It is still under development, and some sort of
simulation will therefor be needed to evaluate the prototype. To keep this
simulation within the scope of the master thesis, it is suggested to select a
small part of the subsea equipment where a set of fake alarms are gener-
ated. It will be emphasized to demonstrate the possibilities and design of
the prototype, more than keeping the simulation fully realistic. However,
the simulated alarms will be discussed with experienced staff to retain the
prototype’s integrity.

8.1.4 Hardware

In a real implementation, choosing the right hardware is much about finding
the best possible configuration within budget. However, when developing
a prototype, things normally change. Important aspects of a prototype are
for instance portability, ease of operation and set-up. The hardware should
be relatively flexible, and in many cases it must also be within a smaller
budget than in a full implementation. At the same time, developing a proto-
type using less quality components will reduce the quality of the output and
consequently reduce the effect of the prototype. In other words, choosing
hardware for a prototype is about making sacrifices in one way or another.
As mentioned previously in this chapter, the prototype which shall be devel-
oped also includes a 3D sound speaker system. Several available technologies
exist (see section 3.2), and the choice of technology will strongly affect the
software implementation. For this prototype, a fairly cheap off-the-shelf sur-
round sound system will be used. This gives great portability at a reasonable
price, but with some limitations on the 3D sound quality. However, the au-
thor believes that for this prototype, the result will be convincing enough.

8.1 Discussion 59

8.1.5 Audio interface

A great part of this master thesis is to design and use good audio. This
may seem quite straight forward, but there are a lot of things to take into
consideration. It is important to remember that the audio and sound itself
is not the essential part, but the information provided by the audio is. The
intention for using audio is to reduce the information overload to the opera-
tors, and provide a new and redundant media for communication to improve
the operator’s situation awareness. Therefore, the audio must be designed
to be very efficient and intuitive at the same time.

The auditory environment considered here is intended to enhance and
reinforce, but not compete with, the visual cues available to the operator.
This implies a multi-modal display of information (Kazem et al. 2003). Tt
is important that the more or less redundant information presented by the
auditory display, does not lead to ambiguity.

The audio used in the prototype can be divided in three main parts.

Alarm sounds Inform about new alarms
Beacon sounds Provide localization cues for alarms
Status sounds Inform about the facility’s overall status

The different types of audio will now be discussed regarding its characteris-
tics, like type of sound, duration and usage.

Alarm sounds

The alarm sounds are similar to those alarms sounds which are used in
today’s alarm management systems. A sound will occur each time a new
alarm occurs. However, there are some major differences. One of the aspects
experienced at Tjeldbergodden (see appendix B), was the ongoing alarm-
sounds. At the beginning these sounds were very stressful, but eventually
they all became noise which did not catch one’s attention. Hence, they had
in general little effect on the operators. Besides, the alarm sounds were only
in a small degree used to mediate information about the alarms. This was
due to the fact that the operators saw a great potential in this feature.

In this prototype, the alarms will be categorized according to its type and
criticality. Each type of alarm will have a specific sound, and some kind of
altering effect will be used proportional with the criticality. Reverberation
is an example of such an effect. This would cause a perception of distance
when the alarm is less severe. Even though the alarm sounds will be spatially
located in the 3D-model, this will not interfere with the manually added
reverberation. This is due to the absence of a reverberation engine in the
prototype. All sounds will however loose intensity proportional with the
distance between the operator and the alarm’s origin.

60 Design

Classification of each alarm’s criticality is an extensive task which is not
within the scope of this master thesis. However, using an impact-urgency
matrix as depicted in figure 8.1 can be a rational approach.

Impact
High Medium Low
= Criticality Criticality

(2]

: 2 3
g g Criticality Criticality Criticality
28 2 < 4
S| =

3 Criticality Criticality Criticality

S 3 4 5

Figure 8.1: Impact-urgency matrix for calculation of criticality, ranging from
1 to 5.

The impact could further be subdivided in a consequence-probability ma-
trix. These matrices should be calculated individually in cooperation with
technical staff such as field operators or control room operators.

The sounds used for each type of alarm should be some sort of a metaphor-
ical auditory icon. It is not practical to use one sound for each alarm, since
this will produce an enormous list of different sounds. The alarms must
therefor be categorized, where each category has a specific sound attached.
This leads to another challenge; how to categorize the alarms. The author
has learned that some control-rooms have categorized the alarms according
to which operator is responsible for it (appendix D). As the operators nor-
mally are responsible for different sections of the facility, section would be
the category keyword. Such a solution offers a rather coarse subdivision of
the alarms, and could possibly be improved by decreasing the scope of each
keyword. After discussing this particular challenge with the operators at
Tjeldbergodden (appendix B), it was suggested to use system as a dividing
keyword. At Tjeldbergodden, the facility is divided into several systems; air
separation unit, methanol plant, gas receiving station, utilities, etc. This
approach requires that the facility are divided into a reasonable number of
physical or logical systems. If the number grows to large, the quantity of
different sounds will probably become too extensive and cause the operators

8.1 Discussion 61

to loose overview.

The alarms mentioned so far are first and foremost addressing one type of
alarms, known as production alarms. These alarms concerns the production
processes of the facility. This could for instance be a pressure drop in a
pipeline, or an open valve which does not respond to a given action. In ad-
dition, two more major types of alarms exist (appendix C and appendix A).
Safety-critical alarms are one important type of alarms which must be me-
diated. These alarms occurs when either human or environmental damage
is at stake. A third category is notifications, which hardly can be defined
as alarms but still contain essential information to the operators. These
two categories differ from the production alarms in several ways. First, in
contrast to the production alarms, these alarms does not have a variable crit-
icality. Safety critical alarms are naturally always critical, while notifications
contains nothing but information about expected events. This leads to an-
other disparity. As the outcome of these alarms either require full attention
(safety-critical alarms) or just a glance with the eyes (notifications), the au-
dible alarm for these should differ from the production alarms. Using only an
altering effect to separate a production alarm within a system from a safety-
critical alarm, may not be enough. Separate auditory icons can therefor be
used for both safety-critical alarms and notifications, without considering
which system is involved. Since the criticality for these alarms are constant,
the alarm sounds used for these alarms could be static and without any vari-
able altering effect. This leads to a categorization and design as summarized
in table 8.1.

Sound design
Type System
Auditory icon Criticality / effects
Safety-critical alarms All Icon #0 Static []
System #1 Icon #1 Dynamic [1, 5]
Production alarms System #2 Icon #2 Dynamic [1, 5]
\ Notifications] Al | Icon #9 | Static [] |

Table 8.1: Superior categorization and design of alarm sounds according to
type and system.

Beacon sounds

The beacon sounds are intended to provide localization cues to the operator.
This means that he or she could turn on the beacon on a specific alarm to
hear its origin. The design and operation mode of this feature is challenging.
For instance; what should it sound like? Should there be any special acoustic
effects modulating the sound? Should there be many active beacons at once?

62 Design

If so, how could they be partitioned?

Since this prototype’s intention is to illustrate possibilities, it is probably
satisfactory to only allow one beacon. The sound should be played in con-
tinuous pulses, and designed such that it provides good localization cues.
Hence, a spectrally rich sound would be preferable (Morgan 1998). Using
spectrally rich sounds for beacons instead of pure tones or speech, is also
the conclusion of Tran (Tran, Letowski & KS 2000) and Walker (Walker &
Lindsay 2003). To avoid misconceptions, the beacon will use a sound with-
out relevance to the alarm sounds.

To increase the localization cues, it is possible to modulate the sound ac-
cording to the operators position. This could be done either by altering the
pitch or the playback-speed of the sound. For instance could the pitch in-
crease when the operator was facing the right direction. Combined with the
distance-controlled intensity already used in the virtual environment, this
could provide good results.

Status sounds

The status sound mediates the facility’s superior status. It represents a
summary of all active alarms, which is reflected in a status level. The sound
which is associated with each level will mainly be created using consonance
and dissonance. This will hopefully lead to a system which sounds nice and
consonant when everything is OK. This effect could be increased by adding
sounds acting on the operators emotions, such the sound of an explosion, fire
or chirping of birds.

Experiences from Tjeldbergodden (appendix B) shows that the operators
in general are well informed about the current status of the facility. This
is also confirmed by the interview of Per Ivar Karstad (appendix C). This
information does not support the usage of a status sound. Even though it
could be an interesting feature, it does not mediate any new information to
the operators and should consequently be eliminated. Looking ahead, this
scenario may change. Implementing intelligent alarm-filtering is an initiative
from many major oil-producing companies (appendix D). This would hope-
fully reduce the amount of alarms in the control-room, which reduces the
operator’s ability to possess an overview. A similar feature to the suggested
status sound could prevent this from happening. Other application areas
are also possible. Forwarding this status sound to other personnel at the
facility could be useful. This could for instance be the field operators, the
shift leader or the operational management. It could also be played in rooms
used by the operators, like the kitchen or bathroom. This would prevent the
operators from loosing overview if they have to leave their desks.

8.2 Simulation 63

8.1.6 Visual interface

The visual interface of the prototype will mainly consist of the already ex-
isting interface of the SnghvitSIM (see section 3.8). However, some new
elements will be necessary to support and control the alarm management
system. As mentioned in section 6.3, the design of the visual interface is not
considered the most important part of the prototype. Therefore, it will first
and foremost be designed on a need-to-have basis. In a full implementation,
or if more time were available, the visual interface would have to be more
throughly considered.

Feedback from for instance Tjeldbergodden (see appendix B) fortified the
importance of a visual list of all active alarms. This will be emphasized in
the prototype, and it should contain relevant information about the alarms.
In addition to this, detailed information about each alarm should be avail-
able. This could be done in several ways, but utilizing the virtual objects
through animations would probably be the best way. An alternative solution
is to present this information through an information board.

8.1.7 Interaction

It is important for the prototype to provide effective and intuitive inter-
action. The intended users of the system will at times work under hectic
circumstances, and should therefor have easy access to all necessary com-
mands.

Due to the restricted scope of this master thesis and the complex framework
of SnghvitSIM, the interaction will use a mixture of mouse and keyboard
for interaction. An ideal solution would probably allow more interaction
through a mouse (or similar devices), since this prevents the user from mov-
ing his/her hands so much. Despite this, the keyboard interaction should
still be easy to grasp through information in the visual interface.

8.2 Simulation

The simulation for the prototype is situated on a subsea template, more
exactly template N in the south-west corner of the Snghvit area (see fig-
ure 8.2). The template is considered a suitable test-bed for the simulation,
with a decent amount of details and infrastructure. A set of alarms have been
pre-arranged for the prototype, all of them related to the subsea-system (sys-
tem 18). The selection has been made in collaboration with Christian Salbu
Aasland who works in the process control division at Statoil Research Center
(Aasland, 28.05.2005, pers. comm.). The alarms are depicted in table 8.2,
and will appear in random order and at random intervals in the prototype.

Due to lack of available 3D models, only the supporting steel structures
of the templates are available in SnghvitSIM AMEX. The wellheads placed

64

Design

TEMPLATE F

SN@HVIT

[f e45 000 N TEMPLATE E

%

TEMPLATE D

7 042500

INFIELD FLOWLI

CORROZION

7 40000 N

28" PRODUCTION
FLOWLIN

7 937 500

E
MAIN UMBILICAL

7935000 N

BATROSS
e TEMPLATE N
w w w w it
2 g 8 g 8
m
g = = 5 5

Figure 8.2: Snghvit field layout.

X 0 Subsea Information: - SCSSV failure

Criticality: ~ n/a

X 1 Subsea '"fo_rm?t'?"i Pipe, high pressure
Criticality: 3

X 2 Subsea Info_rm§t|9n: Pipe, high temperature
Criticality: 1

X | 3 Subsea Information: Hatch open

Criticality: n/a

* SC: Safety critical alarms, P: Production alarms,

N: Notifications

Table 8.2: Pre-arranged alarms used in the prototype.

8.3 Hardware 65

inside these structures, containing all the sensor technology, is not included.
It has therefore been difficult to get a correct spatial placing of the alarms
within the template. Parts of the steel structure have consequently been
used instead of the real objects. For a demonstration purpose, this should
be no problem.

Further details regarding the simulation are described in the remaining sec-
tions of this chapter.

8.3 Hardware

The reproduction system used for this prototype is a Creative GigaWorks
S750 speaker system (figure 8.3(a)), combined with a Create Audigy 4 Pro
soundcard. This solution provides 8 separate channel-output, including one
channel dedicated to the sub-woofer. The satellite speakers will be placed
around the listener in a configuration as depicted in figure 8.3(b)

o o
] 2,
30
o i 9]0‘ =
® /
10
135
°, wo-/i@
(a) Creative GigaWorks S750 7.1 (b) Speaker placement of a 7.1
speaker system used in prototype. speaker system.

Figure 8.3: Speaker system and configuration used in the prototype.

As already mentioned in the previous discussion, this is not an optimal
solution for 3D sound reproduction. However, the quality of the panning is
found to be sufficient for demonstration purposes. In addition to this, an
open headphone is included in the hardware-setup for single-user mode.
The hardware will be installed in a suitable room at Statoil’s Research Cen-
ter, Rotvoll. An illustration of the intended room is included in figure 8.4.
The satellite speakers are placed in the ceiling.

66 Design

Figure 8.4: Model of room where hardware will be installed. Courtesy of
Knut-Olav Fjell, Statoil.

8.4 Audio interface

The audio design describes the the auditory display which will be used in
this prototype. It will consist of different elements, which together will fulfill
the audible requirements given in section 6.2. The elements are categorized
according to the type of information they are mediating.

8.4.1 Alarm sounds

As mentioned in the previous discussion, each new alarm will trigger an
alarm sound. The design suggested here will at the first level categorize all
alarms according to its type. This includes safety-critical alarms, production
alarms and notifications. Further, the production alarms will be subdivided
into different systems, where each system is a physical or logical part of the
facility. In this case, only the subsea-system will be involved. The alarms
will also be given a criticality-factor, resulting in an alteration of the auditory
icon. It has been discussed to use reverberation as an effect to modify the
auditory icon according to its criticality. In order to fortify the difference
even more, the sounds envelope will also be changed. This envelope can
be described by a so-called ADSR envelope, as depicted in figure 8.5. The
envelope shows the sound’s amplitude level at different stages of its duration.
By increasing the attack-rate of a sound, the initial part will sound more
abrupt, and consequently more severe.

It has also been emphasized to make the sounds sufficiently different to
avoid masking and misunderstandings. However, no scientific approach has
been used to confirm this. To achieve an optimal and intuitive meaning of

8.4 Audio interface 67

Amplitude
A

Maximum level —

Decay rate

Sustain level

Attack rate —

Release rate

A

» Time

Figure 8.5: The four phases of an ADSR envelope.

the auditory icons, they should also be evaluated and tested by operational
staff. This has not been performed in this master thesis.

According to table 8.1, three different auditory icons are needed. Among
these, the auditory icon used on production alarms will have 5 different
variations, each representing a criticality level. All auditory icons are created
using cSound alone or in combination with sampled sounds. A description
of all these auditory icons are presented in the following subsections.

Notifications

The notifications in general does not represent any danger, and neither
should the related auditory icon. The sound of an aqualung' has been se-
lected to represent a new notification. The sound does not imitate or relate
to any critical situations, and it fits nicely into the marine subsea environ-
ment. As the frequency spectrum depicted in figure 8.6 shows, the auditory
icon spans a broad band of frequencies. This insures sufficient localization
cues for the user.

SPL (28]

0 100 200 500 1K b3 5k 10H
Fraguency [Hz]

Figure 8.6: Frequency spectrum of notification alarm (aqualung).

1a device that lets divers breathe under water

68 Design

Production alarms

According to the pre-definition of alarms (table 8.2), two different production
alarms are needed: (1) High temperature (criticality 1) and (2) high pres-
sure (criticality 3), where the latter is the least severe alarm. The auditory
icon used to generate both these alarm sounds is composed by two different
samples. The first sample is an air-burst, and the second is the sound of an
explosion. These two sounds are put together differently, according to the
criticality. In (1), the second sound starts after 1 second. In addition to this,
the attack-rate is set high and the reverberation is decreased. In (2), a 2 sec-
ond interval separates the two sounds, and the attack-rate and reverberation
is opposite of (1). This design gives (1) more severe characteristics, with a
shorter interval and more abrupt changes. The impulse response of (1) and
(2) are depicted in figure 8.7(a) and figure 8.7(b), respectively. These figures
shows the difference in interval, attack-rate and reverberation.

It is important to notice that the criticality of an alarm may change during
its existence. If a measuring value exceeds its limits and keeps getting worse,
it would lead to a more severe criticality-factor which also should affect the
design of the sounds. This has not been considered in this prototype.

(a) Most severe production alarm (1). (b) Least severe production alarm (2).

Figure 8.7: Impulse response of production alarms.

Safety-critical alarms

The auditory icon used for the safety-critical alarm is similar to the produc-
tion alarm, composed by two different samples. The first sample is the sound
of a horn used in submarines. The second is an explosion slightly different
from the one used in the production alarm. The intention of choosing the
sound of a horn, is to use something quite different from other sounds to
get the user’s immediate attention. The explosion is used to indicate that
something is wrong. The explosion is shaped with a high attack-rate and
short reverberation (high release-rate). The impulse response of this audi-
tory icon is presented in figure 8.8. As the figure shows, the explosion starts

8.4 Audio interface

69

after approximately 2.25 seconds.

1

0.8
0.6
0.4
w (.2
0|
= -0.2
-0.4

rmplitu

-0.6
-0.8

e

-1
i]

1000

2000 3000

4000 A000
Time [ms]

G000

7000 000 g00c

Figure 8.8: Impulse response of safety-critical alarm.

Having defined all alarm-sounds, table 8.2 in section 8.2 can be updated

as shown in table 8.3.

Type *
ID System Details
sc|P|N
e Information: SCSSV failure
X 0 Subsea e Criticality: n/a
e Auditory icon: Horn + Explosion
e Information: Pipe, high pressure
e Criticality: 3
X 1 Subsea e Auditory icon: Airburst + Explosion
o Attack-rate: Low (0.8 sec)
e Release-rate: Low (2.5 sec)
e Information: Pipe, high temperature
e Criticality: 1
X 2 Subsea e Auditory icon: Airburst + Explosion
o Attack-rate: High (0.1 sec)
e Release-rate: High (1.0 sec)
e Information: Hatch open
X 3 Subsea e Criticality: n/a
e Auditory icon: Water / aqualung

* SC: Safety critical alarms, P: Production alarms, N: Notifications

Table 8.3: Detailed design of pre-arranged alarms used in the prototype.

8.4.2 Beacon sounds

The most important thing when designing the beacon sound, is to make sure
that it provides good localization cues. Work by Catchpole et al. (2004),
Walker et al. (2003), Morgan (1998) and Tran et al. (2000) shows that using
broadband signals provides the best results. A frequency analysis of two

70 Design

different sounds, pink noise, and a pure sine wave, is depicted in figure 8.9.
The figure illustrates the differences between a spectrally rich broadband
signal (noise) and a narrowband signal (pure sine wave), figure 8.9(a) and
figure 8.9(b) respectively. The narrowband signal has its energy concentrated
around a specific frequency (1,8kHz).

e

SPL (4]
o

\

SPL (4]
2

2k 5k 108 0 100 200 2k fk 100

500 1k 500 1k
Freguency (Hz] Fraguency [Hz]

(a) Pink noise. (b) A pure sine wave.

Figure 8.9: Difference between broadband and narrowband signals.

Even though noise may prove to be an appropriate choice, it may have
enervating effects on the listener. To give a more pleasant sound, a com-
promise will be needed. The sound which are designed, using the cSound
software, imitates a gong or a bell. It is composed by sine waves of different
frequencies, and altered by vibrato? and reverberation. The main frequency
is set to 500 Hz. The sound has also been shaped by an envelope to provide
better localization. This is done by making the initial touch more abrupt,
similar to the ADSR-envelope described in figure 8.5.

In addition to provide spatial information about its related alarm, the
beacon must also help the operator to navigate effective in the virtual envi-
ronment. To achieve this, the sound will be altered according to the operators
direction. When the operator are facing the beacon, the sound’s pitch and
speed will be doubled. When facing the opposite direction, the pitch and
speed is set to normal (1.0). A linear transformation will be used for the
directions in between. Increasing the pitch and speed is a common way of in-
dicating a nearby target and should be intuitive for the user to understand.
It is important to notice that when the pitch are increased, the sound’s
energy will be centered at higher frequencies. According to Walker et al.
(2003), the best results are achieved around 1 kHz, which coincide with the
outcome in this case. In other words, the localization cues should improve
as the user closes in on the desired direction.

2A smooth and repeated changing of the pitch up and down from the regular musical
pitch, often done by singers.

8.4 Audio interface 71

The beacon sound is depicted in figure 8.10. While figure 8.10(a) and
figure 8.10(b) illustrates the frequency spectrum at pitch 1.0 and 2.0, fig-

ure 8.10(c) shows the impulse response of three consecutive strokes of the
bell.

SPL [u8]
&
2

SPL 48]

8| -80
-90) -90 \

2k 3 104 0 100 200

2k 5k 104

500 1K 00 1k
Frequency H2] Frequeney [H2]

(a) Frequency spectrum at pitch 1.0. (b) Frequency spectrum at pitch 2.0.

0.a
0.6
0.4
o 0.2

rmplitud

«-0.2
-0.4
-0.6
-0.8

1] 1000 2000 elaluli} 4000 5000 B000 rooo g000
Time [ms]

(c¢) Impulse response of three consecutive strokes.

Figure 8.10: Frequency spectrum and impulse response of the beacon sound.

8.4.3 Status sounds

The status sound mediates information about the overall status of the facility.
The status has been defined on three different levels according to the number
of active alarms. The status levels range from level 0 to level 2, where level 2
is the most critical. There are numerous ways of defining when to escalate the
status level. A common approach is to generate a sum by adding together
each alarm’s criticality-factor. This gives a system where a high number
of critical alarms will escalate the status level more than the same number

72 Design

of non-critical alarms. For this prototype, only 4 different alarms will be
used, and the escalation routines are therefor somewhat simplified. The
configuration used for the prototype is depicted in table 8.4.

Status level Escalation range Playback frequency
Status level 0 [0, 1] alarms Every 10. min
Status level 1 [2, 3] alarms Every 5. min
Status level 2 [4, 4] alarms Every 2.5 min

Table 8.4: Configuration of status sounds.

As table 8.4 shows, the playback frequency for the status sound changes

according to its level. This means that when the situation gets more critical,
the status sound is played more often. Which frequency that is most suitable
at different status levels has not been an objective for careful consideration.
In the case of a full implementation, more testing will be needed. It should
be noted that the frequency has been set high due to demonstration consid-
erations.
Each of the sounds used to mediate a status level, will be composed by
adding together different sequences. A sequence consists of a series of tones
with different frequencies and timber. According to the criticality of the
sound, dissonance will be used to create a sense of danger. This will also be
combined with various auditory icons which acts on the operators feelings.
The suggested design is explained in figure 8.11.

Each of the different designs is composed by three parts; an auditory icon
(or a combination of several), and two different repeating sequences. The
arguments for each part will :

Repeating sequence#1 A steady and consonant sequence of four different
frequencies which are meant to prepare the listener for the subsequent
information. It contains no information about the status level, and is
only used to catch one’s attention.

Frequencies: {200, 300, 400, 100] © 10

Repeating sequence#2 A more savage sequence of four different frequen-
cies followed by a 10 second ending. The sequence is mainly consonant,
but dissonant frequencies are used in the sound for level 1 and 2. The
location of the dissonant frequencies are marked with a vertical wavy
bar.

The opening of the sequence is meant to illustrate or imitate a query,
which could be verbally translated to a series of "Is everything OK?".
This query is answered by a consecutive auditory icon, responding on
the question.

Frequencies: [880, 1100, 780, 970] © 4 + |880, 1100, 580, 370, 180]

8.4 Audio interface

73

Birdsong —— Auditory icon

ding— | —— Repeating sequence #2

—— Repeating sequence #1

sec — f f T
0 10 20 30
{a) Sound design for status level 0
Stress —— Auditory icon
- Repeating sequance #2
ding —- {with dissonance)
—— Repeating sequence #1
sec —| : i : i : i
0 10 20 30
(b) Sound design for status level 1
. —— Auditory icon
Stress
- Repeating sequence #2
ding —» {with dissonance)
—— Repeating sequance #1
sec —| : i : i : i
0 10 20 30

(¢) Sound design for status level 2

Figure 8.11: Design of sounds used for different status levels.

74 Design

Auditory icon Different auditory icons are used to arouse different feelings
in the listener:

e Birdsong is used to mediate that everything is OK.

e Stress is a fluctuating sound with rapid switches between left and
right channel. Is is used to mediate stress.

e Explosions is the most severe sound, used to mediate danger.
Consists of a series of consecutive explosions.

The status sound will be reproduced without any spatial location, hence
normal stereo-sound reproduction.

8.5 Visual interface

Section 6.2 defined several requirements regarding the visual interface of the
prototype. Even though all visual information could be created as virtual
elements, this may not be the best solution. It has therefore been decided
to utilize the HUD to present textual information when this is appropriate.
The visual design has been divided in two different parts; HUD and virtual
objects (VO).

Figure 8.12 repeats the requirements regarding the visual interface and de-
notes what type of technique are used to fulfill it. Details regarding each
type is described in the following subsections. In addition to the require-

Technique
HuD | vo

Requirement

The prototype must detect occuring alarms X
and inform the user

The prototype must detect occuring alarms

1(b) and identify the virtual object which caused X
the alarm
1(d) The prototype must detect occuring alarms X

and highlight the object

The prototype must detect occuring alarms
1(g) |and provide the user with relevant X
information about the object

The prototype must provide information
2 (a) | about the overall status of the facility, X
including visual representation

Figure 8.12: Techniques used to fulfill the visual requirements.

ments described in figure 8.12; the non-functional requirements states that
the prototype must have an user-friendly and intuitive interface. This will
be emphasized during the design.

It should be noted that it is not within the scope of this master thesis to

8.5 Visual interface 75

perform the needed user-testing which are required when designing a graph-
ical user interface (GUI). More effort should be invested to assure that the
right information is presented, and in the right way.

8.5.1 Head up display

As already mentioned, the Head up display (HUD) will be used for textual
presentations. The HUD is a transparent layer placed in front of the user,
similar to a car’s windscreen. This means that independently of the users
location within the virtual environment, the HUD will always be visible.
Some problems comes with this technique. When putting text upon the
HUD, it may be difficult to read, as the background color changes whenever
the user moves or rotates. To cope with this, a semitransparent background
will be used behind the text to make it more visible. In addition to this, the
fontstyle will be outlined to give an even better contrast.

According to the requirements, three types of textual information are needed:
(1) New alarm, (2) a list of all alarms and (3) detailed information about an
alarm. This information will be presented in separate boxes as a result of an
event or user input. For instance, when the system registers the occurrence of
a new alarm, it should respond by displaying (1). If this event also enables
new and event-specific functionality, this should be presented to the user
(more about functionality in section 8.6). Details regarding all three types
of information-boxes, including sketches, are presented in table 8.5. Some
additional comments are included in the following sections.

New alarm

As described in figure ?7, this information should be displayed whenever a
new alarm occurs. At this point, it is not suitable to give all details about
the alarm. The operator needs to make a decision whether or not immediate
attention is needed. The content of the information box will therefor be
limited to the name of the alarm, together with its impact and urgency.
Some logic will also be included regarding what types of commands that are
available, depending on the criticality of the alarm. More details about this
is described in section 8.6.

All alarms

The list or log of all occurred alarms will always be visible in the HUD.
The list will be sorted by each alarm’s timestamp, and the current status
level of the facility will be presented at the bottom of the information-box.
Whenever an alarm is taken care of, the color of the text will change from
white to gray. This gives the operator an easy overview over the alarms that
still is in need of attention. The information presented in the alarm list is

76

Design

Type

Contents

Sketch

(1)
New alarm
(on new alarm)

Message

Name
Urgency
Impact

Commands

Goto
Suppress/
Confirm
Documentation
Trends

! Leaknae !

URGENCY: Low MbacT ¢ Low

GoTo _Superess Doc T Renoy

)
All alarms
(always)

Message

Time

ID

Value

Area
Description
Statuslevel

V Tme [VaLve Aken Oesc

aig

o000 1 3 Lentnes

Commands

n/a

sTATUSLEVEL 1

®)

Alarm detail

Message

Name
Urgency
Impact
Area
Value

LERARA &E

PREA: 18
VarLuve: 3%

v
l*‘
t

(on user input) Fix UReENCY: Low
Trends
Documentation

Hide information

\nener: Low

-_— -
T Rewos

Commands

Doe CLosE

Table 8.5: Details regarding each type of textual information displayed in
the HUD.

selected in accordance with experiences from the alarm-management system
used at Tjeldbergodden (appendix B).

Alarm detail

The detailed description of an alarm are activated on a user request. Its
intention is to assist the user in troubleshooting, and consequently it should
give as much information about the alarm as possible. For instance, using
graphs could be a useful way of illustrating the alarm-object’s measuring
value. However, this kind of functionality is beyond the scope of this master
thesis and is therefor not included.

8.5.2 Virtual objects

The virtual objects are used to identify the origin of alarms within the virtual
environment. This is solved by highlighting the objects which have an alarm
attached to it. The highlighting is accomplished by gradually altering the
object’s color to red, and then back to its original color. The frequency
of alteration is twice each second. Since the object may be hidden behind

8.6 Interaction 77

or inside other objects, the remaining structures are made semitransparent.
An example showing an opaque object within a semitransparent template is
illustrated in figure 8.13.

Figure 8.13: An example of an highlighted object located within a semi-
transparent template.

8.6 Interaction

In order to be effective, the tool must be easy to operate. In this prototype
this is accomplished by means of keyboard commands. While some com-
mands will be universal, meaning that they work regardless of state, others
will only be available at certain situations. An example of this is the com-
mands made available at the occurrence of a new alarm. If a non-critical
alarm occurs, for instance a notification, it should be possible to confirm or
suppress the alarm without any further actions. However, if the alarm is a
safety-critical alarm, suppression should not be available.
As already mentioned, most functionality in the prototype is controlled by
the keyboard. In cases where the commands are made available by an event,
like the showing of an information-box, the commands are indicated by plac-
ing brackets around the letter used to control the command. An example of
this is [CJonfirm, where C is the key used to confirm.
A list of all available commands are listed in table 8.6. Figure 8.14 shows
the same information in a tree-structure.

In addition to the commands mentioned above, the prototype also offers
all interaction possibilities made available by the SnghvitSIM framework. A
description of these is found in the SnghvitSIM user guide.

78 Design

Command Functionality Type / activating event
#* Goto alarm with id # Universal
Shift + #* | Turn on beacon on alarm with id # Universal
Ctrl +#* Turn off beacon on alarm with id # Universal
G Goto alarm, moves camera to alarm On showing of New alarm
S Suppress, mark the alarm as fixed on shgwmg of New alarm, irthe
alarm is of type production-alarm
C Confirm, mark the alarm as fixed on shgwmg of Nev«(.alal.'m, iFhe
alarm is of type notification
D Show documentation of alarm-object On showing of New alarm
T Show trends of alarm-object On showing of New alarm
F Fix the alarm On showing of Alarm detail
T Show documentation of alarm-object On showing of Alarm detail
D Show trends of alarm-object On showing of Alarm detail
C Close the information-box On showing of Alarm detail
Mouse_chck Shows Alarm Detail of object Object is hlghllg_hted, i.e. there is an
on object alarm on the object
* # refers to the ID of an alarm | Not implemented due to limitations of scope

Table 8.6: List of all available commands in prototype.

Universal

Goto
Shift + # Beacon # on
Ctrl + # Beacon # off
mouse click | Show details

If New Alarm If Alarm Detail

G | Goto F | Fix
D [Documentation D | Documentation
T | Trends T | Trends
C | Close
if production If notification
alarm
| S | Suppress | | C | Confirm |

Figure 8.14: Tree-structure presentation of all commands in prototype.

Chapter 9

Implementation

The prototype has been implemented using the design described in chapter 8.
According to the the priorities listed in section 6.3, it has first and foremost
been important to make the prototype work. Due to limitations in time,
this prioritizing has resulted in less effort invested in creating a neat and
structured code. It is also worth mentioning that parts of the functions have
been hardcoded'. Even though this works fine in the prototype, such an
approach would not be possible in a system using real-time data.

This chapter will describe details from the implementation of the proto-
type, AMEX.

9.1 Development environment

AMEX has been developed on a Dell Latitude X200 laptop, using several
different tools. The code is mainly written in C++, using Microsoft Visual
Studio .NET as an editor. Compilation and debugging has been done in
Cygwin, a Linux-like environment for Microsoft Windows. This is due to the
design and limitations of the SnghvitSIM framework. All virtual objects are
generated in 3D studio MAX 6, and exported to AMEX using the VRML
file format. As already mentioned in chapter 8, the cSound programming
language has been widely used when generating sounds and auditory icons.
While some of the sounds are fully generated using this language, some has
also used prerecorded samples as input.

AMEX has been tested both on the laptop and in a visualization-room at
Statoil’s facilities at Rotvoll. The visualization-room is equipped with more
appropriate hardware for this type of applications, including a 2 % 4 meter
visual display and the sound-system suggested in section 8.3.

!data or values inserted directly into the code/program, where it cannot be easily
modified

80

Implementation

9.2 Implementation of requirements

Table 9.1 and 9.2 lists the requirements defined in section 6.2 with additional
comments on how they were implemented in AMEX.

Nr Requirement™ ** Implemented Comment
1(a) Inform the user yes Informed through audible
and visual means
1(b) Identify the virtual object yes Each alarm is attached to a
which caused the alarm virtual object
1(c) Be able to move the camera yes Using goto-functionality or
to the placing of the alar- manual by mouse
m/object
1(d) Highlight the object yes The object gets an altering
color
1(e) Attach an audible signal to yes The auditory icon represent
the object representing the both the alarm’s system and
alarms’ type and severity criticality
1(f) Provide audible information yes Each alarm has a beacon
which can be used to localize sound attached to it
the alarm
1(g) Provide the user with rele- yes An information-box is avail-
vant information about the able for all objects with
object alarms, showing static infor-
mation. A dynamic presen-
tation is not implemented
due to limitations in time.
2(a) Visual representation yes Textual representation in
the HUD
2(b) Audible representation yes A dynamic sound played

regularly which represents
the state of the facility

* Initial text for requirement 1(z): "The prototype must detect occurring alarms

and:"

** Initial text for requirement 2(x): "The prototype must provide information about
the overall status of the facility, including:"

Table 9.1: Implementation of functional requirements

Nr Requirement Implemented Comment

1 The prototype must be im- yes AMEX is an extension to
plemented in the Snghvit- SnphvitSIM
SIM framework

2 The prototype must have yes According to the author’s

an user-friendly and intu-
itive interface

judgment

Table 9.2: Implementation of non-functional requirements

9.3 Overview 81

9.3 Overview

Figure 9.1 shows an overview of AMEX. To keep the figure on a reasonable
level of detail, only a subset of the functionality is included. As the legend
explains, the colored circles represents different components, their functions
and methods.

—legendt — — — — — — — — — — — — — — —

/ \
I

| (Ul souna (G @ !
I \ Engine \ Engine A\ =N |
| rator If... |
\ 7

Alarm Management EXtension

Keyboard input
)
Status T Check S
. status Y %« /
K press &/
Timer

7 L\ Beacon lregive Check/ Check 0 — Y
- {.)— ————— update mouse o (1)
N\ beacon posW

Timer

Mouse click

Timer

New alarm Ratiove

Fo 8 e

If changed f hit Shift + #
A Y
Update @ow
beacon | Alarm j::;
sound Detail

Turn on Turn off
beacon beacon

Uil

Show
alarm
object

@ow Play
New Alarm
Alarm sound

Update
status
sound

Figure 9.1: Subset of functionality and dataflow in AMEX illustrating the
relation between the four components; AMEX Core, GUI Engine, Sound
Engine and Alarm Generator.

As figure 9.1 shows, the initiating events of AMEX are either timers or
user input (mouse or keyboard). Two of the timers are used to check and
update the status- and beacon sound. The third timer is used to trigger a

82 Implementation

new alarm. This timer would be removed if real-time data from the facility
was available.

The mouse- and keyboard input is interpreted by the AMEX Core. After
checking the input, the commands are forwarded to the different components
responsible for the actual event. For instance, if Shift + 3 is pressed, the
AMEX Core tells the Sound Engine to turn on the beacon related to alarm
with id = 3.

A detailed description of the essential functionality is given in the fol-
lowing sections. Parts of the source code will be used when necessary in the
explanations. For the interested reader, the entire source code is included
in appendix G. It is worth mentioning that the AMEX Core initializes the
other components as objects, naming them according to their initials: Sound
Engine = se, GUI Engine = ge and Alarm Generator = ag. The same deno-
tation will be used in the remaining of this chapter.

9.4 Alarms

As have been described in chapter 8, there are four pre-defined alarms in
AMEX. The alarms are created by ag at a random order every 60th second.
The creation of each alarm is initiated by a timer, as illustrated in figure 9.1.
Each alarm is represented by a C++ -struct. The struct contains values
like id, criticality, value, description, position etc. The struct is shown in
example 4.

Example 4 Struct of an alarm

struct alarmstruct{

SbTime * timestamp; // timestamp of alarm

int id; // alarm id

int value; // static value

int area; // area

int criticality; // static criticality

char * description; // textual description

char * description2; // textual description

char * impact_urgency; // textual description

float position[3]; // position of alarmobject
double utm[3]; // position of beacon

float location[3]; // position for Goto()

float rotation[3]; // rotation vector for Goto()
float radians; // amount rotation for Goto()

9.4 Alarms 83

9.4.1 Retrieving alarms

The core::retrieveAlarm() function showed in figure 9.1 is initiated when a
new alarm occurs. The function forwards information about the new alarm
to ge and se which updates the audible and visual information. This includes
highlighting the alarm’s object, updating the alarm list and the overall status
and playing the alarm sound.

9.4.2 Alarm visualization

Alarms are visualized both through virtual objects and by textual presenta-
tions in the HUD. Both types are constructed by ge at start-up, and added
to the scenegraph. To control whether or not these nodes are visible to the
user, they are placed under so-called SoSwitch-nodes. These nodes can be
switched on and off, showing and hiding the underlying objects. At start-up,
only the alarm list is visible to the user.

The four different virtual objects, one for each alarm, are displayed when-
ever their belonging alarm is active. The objects are extracted from the
template used in the simulation, and modified to increase the performance
of AMEX. The VRML-code representing the object is then manually added
an interpolator which changes the color in runtime. The interpolator uses
RGB-values to gradually change the color from one to another. In AMEX,
the color changes from the object’s original color to red and back, once each
second. An example of such a virtual object is seen in example 5.

The HUD, which is used to show 2D textual information, is located within
the SnghvitSIM framework. AMEX utilizes this by defining several inventor-
files (similar to VRML) and add these to the HUD. Each inventor-file rep-
resents an information-box, and consists of a semitransparent background
in addition to the textual information. The content is updated by different
update-functions provided by ge, one for each of the information boxes. This
procedure can be described by the following steps.

1. An update is requested from core

2. ge stores the update information in a local string-array, where each
element in the array represents a line in the information-box

3. ge searches the scenegraph, and locates the proper information-box

4. ge passes the entire string-array to the node describing the information-
box

An illustration of an information-box is depicted in figure 9.2. Even
though this implementation does not provide a high quality graphical layout,
it is a very flexible solution suitable for prototyping. In a real implementa-
tion, a different approach should be considered.

84 Implementation

Example 5 Example of virtual object

#VRML V2.0 utf8
#0bject definition
DEF AlarmObjectl Transform {
translation 4.871 -1.979 -2.871
children [
Shape {
appearance Appearance {
material DEF changeableColor Material {
diffuseColor 0.42 0.75 0.46
}
}
geometry DEF AlarmObjectl_object Cylinder {
radius 0.5 height 2.83
}

}

#Timer
DEF TIME TimeSensor {
cycleInterval 2

startTime 0
stopTime -1
loop TRUE

X

#Color changer

DEF colorChanger ColorInterpolator {
key [0, .25, .5, .75, 1]
keyValue [0.42 0.75 0.46, 1.

0.42 0.75 0.46, 1. , 0.42 0.75 0.46]

}

#Commands

ROUTE TIME.fraction_changed TO colorChanger.set_fraction

ROUTE colorChanger.value_changed TO

changeableColor.set_diffuseColor

Figure 9.2: Information-box with semitransparent background placed in the

HUD.

9.5 Beacon sounds 85

9.4.3 Alarm sounds

Similar to the visual elements, all sound-nodes are created at start-up and
added to SoSwitch-nodes. The different alarm-sounds are placed at the
same coordinates as the related alarm-object, and are played once when
the alarm occurs. The sound node geometry is defined by two ellipsoids (see
figure 3.15), where the outer ellipsoid depends on the users distance d,, to
the alarm. The radius r, of the outer ellipsoid, which in this case is a circle,
is set according to (9.1).
75 if d, <75
o= { dy +20 if d, > 55 6.1

As can be seen from (9.1), r, will be constant whenever the user is within
55 meters of the alarm. If the user is farther away, r, is set to d, + 20. The
addition of 20 is performed to reduce the chance of the sound being silenced
if the user moves away from the alarm. The inner circle’s radius r; is set
to 8.0, meaning that the sound’s intensity is constant when the user comes
within 8 meters of the object. Example 6 shows how this is implemented,
including switching on the parent SoSwitch-node.

Example 6 Updating sound node geometry

//Setting sound node geometry

soundVRMLSoundO->maxFront = std::max(75.0f, distance + 20.0f);
soundVRMLSoundO->maxBack = std::max(75.0f, distance + 20.0f);
soundVRMLSoundO->minFront = 8.0f;

soundVRMLSoundO->minBack = 8.0f;

//Switching on
soundSwitchO->whichChild.setValue (SO_SWITCH_ALL);

9.5 Beacon sounds

Whenever a beacon is activated, core::updateBeacon() is responsible for up-
dating the beacon’s pitch and sound node geometry according to the users
orientation and position. This is controlled by a timer which calls the func-
tion every 0.2 second. The pitch is altered in an inverse ratio with the angle
(0) between the two vectors defined by the user’s direction (u) and the di-
rection to the alarm object (v) . 6 is defined by the dot product (also called
scalar product) of u and v:

cos(f) vt (9.2)

~ Jollyl

86 Implementation

Since both w and v are normalized, the denominator in (9.2) is eliminated.
In AMEX this is implemented as depicted in example 7.

Example 7 Calculate dot product and update beacon

float dotProd = lookatVector.dot(directVector);
se.updateBeaconPitch (BEACON_ACTIVE, acos(dotProd), distance);

As illustrated in example 7, the actual update is performed by
se::updateBeaconPitch(). Since the pitch only is defined in [1.0, 2.0], a trans-
formation is needed on the parameter sent from core::updateBeacon(). The
implemented transformation place emphasis on the lower values, resulting
in an increased pitch for low values of 8. The transformation and update of
sound clip are described in example 8.

Example 8 Transform and update pitch on soundclip

float pitchModified = ((pitch/3.14f) * -1.0f) + 2.0f;
beaconClipX->pitch = pitchModified;

As can be seen from example 7, an additional parameter called distance
is sent to se:updateBeaconPitch(). This is used to control the sound node
geometry of the beacon. Referring to figure 3.15, the maxBack-value (my)
and maxFront-value (my) of the beacon is set according to (9.3).

my = my — { 1175 if d, <75 (9.3)
1.1xd, ifdy>75

d, refers to the user’s distance to the beacon (i.e. the alarm). In other
words, if the user moves more than 75 meters away from the alarm, the size
of the outer ellipsoid is increased. The user will consequently always hear
the beacon. The reason for multiplying the distance with 1.1, is to avoid
that the sound disappears due to the update-frequency when the user moves
away.

9.6 Status sounds

Opposite to the other sounds, the status sounds have no specific location
within the virtual modal, and are therefore not spatialized. Hence, they are
reproduced using normal stereo without any directional effects applied. The
intensity of the sound is constant within 1 kilometer from the template.

As described in section 8.4.3, the status sounds are played at different inter-
vals ¢, controlled by the current status level s.

9.7 User interaction 87

4 % 150 sec. = 10 min. ifs=0
t =< 2x%150 sec. =5 min. its=1 (9.4)
1% 150 sec. = 2.5 min. if s =2

Equation (9.4) can be described by the exponential function (9.5), which
are used in the implementation.

1
= 150(35" - gs +4) forse[0,2] (9.5)

9.7 User interaction

The user can interact with the model either through the mouse or the key-
board. This is accomplished by implementing a so-called event-callback, and
adding this to the SnghvitSIM framework. The event-callback is then called
whenever a new event occurs, such as a mouse-click. The event-callback
used in AMEX, core::amex_event cb(), handles both keyboard-events and
mouse-events. The keyboard-events are handled rather easily, as illustrated
in example 9.

Example 9 Handling a keyboard-event

if (event->is0fType(SoKeyboardEvent::getClassTypeld())) {

//Casting event to keyboard-event

keyboardEvent = (SoKeyboardEvent*) event;

//Key G: Goto alarm

if (SoKeyboardEvent::isKeyPressEvent (keyboardEvent,
SoKeyboardEvent::G)) {

The mouse-events are used to display the details about an alarm (see
figure 9.1). This is done by clicking on a highlighted object. Since Coin3D
does not provide such functionality, a new routine has been developed. The
routine consists of the following steps:

1. Register when the left mouse-button is pressed
e Save the position p; of the mouse

2. Register when the left mouse-button is released
e Save the position py of the mouse

3. Check if the mouse has been moved (|p; — p2| < limit)

88 Implementation

o If yes, show details about the alarm if there is a highlighted object
projected on the screen at po

e If no, abort

Checking whether a highlighted object is projected at ps is a non-trivial
task. One solution is to send an imaginary ray along the z-axis from py and
check which object that first intersects its path. This is supported by Coin3D
using a so-called SoRayPickAction-node. The node, which are used in AMEX,
returns the scenegraph-path to the first object it intersects. Searching this
path gives a potential match with one of the active alarm-objects.

As already stated, evaluating mouse-interaction in a three-dimensional en-
vironment is not trivial. An excerpt from the source code illustrates this in
example 10.

Example 10 Handling a mouse-event

//Check mouse button press

if (SoMouseButtonEvent: : isButtonPressEvent (
mouseButtonEvent, SoMouseButtonEvent::BUTTON1)) {
eventPositionDown = event->getPosition();

//Check mouse button release

} else if (SoMouseButtonEvent::isButtonReleaseEvent (
mouseButtonEvent, SoMouseButtonEvent::BUTTON1)) {
eventPositionUp = event->getPosition();

//Check if mouse is moving
if ((abs(eventPositionDown[0] - eventPositionUp[0]) < 3) &&
(abs(eventPositionDown[1] - eventPositionUp[1]) < 3)) {
//Ray picking
SoRayPickAction rayPicker(currviewer->getViewportRegion());
rayPicker.setPoint (event->getPosition());
rayPicker.apply(currviewer->getSceneGraph()) ;
//Finding object
SoFullPath * pathToPickedObject;
const SoPickedPoint *pickedPoint=rayPicker.getPickedPoint();
if (pickedPoint != NULL) {
pathToPickedObject=(SoFullPath*) pickedPoint->getPath();
SoNode * node = pathToPickedObject->getTail();
//Check if object is an alarm object
if (node->getName() == SbName("amex_alarm_object_0")) {

}

9.8 Final solution 89

9.8 Final solution

Screenshots of the final solution of AMEX is depicted in figure 9.3, figure 9.4
and figure 9.5.

Figure 9.3: Screenshot of AMEX| initial view.

90 Implementation

Figure 9.4: Screenshot of AMEX, overview of template.

by s e R

Figure 9.5: Screenshot of AMEX, close-up of one alarm.

Chapter 10

Evaluation

This chapter evaluates the strengths and weaknesses of AMEX and its funda-
mental concept. The evaluation is mainly based on discussions with Statoil
employees Vidar Hepsg (Hepso, 20.06.2005, pers. comm.) and Kjell Bjerkeli
(Bjerkeli, 21.06.05, pers. comm.). While Hepsg is a social anthropologist,
working in the process control division at Statoil Research Center, Bjerkeli
has 15 years experience as a management technician. He is now working
as an instructor at Statoil’s control-room simulator, which is used to train
operators. The selection of subjects is deliberate to evoke as many issues
and strengths as possible.

The evaluation is structured in three sections; (1) Scope, (2) strengths and
(3) weaknesses. (1) evaluates whether or not AMEX, and its underlying
concept, is a proper platform for further development towards an operative
alarm management system. The different components developed in this mas-
ter thesis, seen in a separate view, is commented in (2) and (3). The auditory
display is an example of such. Detailed discussions about the chosen design
are given in chapter 8, and are generally not repeated here.

10.1 Scope

Both Hepsg and Bjerkeli questioned the possibilities of AMEX as a replace-
ment of today’s alarm management systems. The idea of using a virtual
model to control a system, may be difficult due to its mode of presentation.
While alarm management systems normally are designed as decision support
systems, virtual models are more suitable for exploration. Being able to nav-
igate through a facility is a great feature, but does not necessarily give the
needed overview. Despite being able to move quickly from the location of one
alarm to another, the troubleshooting in AMEX may be very ineffective. It is
analogous to giving the overall alarm management responsibility to the field
operators, and let them hurry around in the facility to find the cause of an
alarm. Having said that, similar solutions to AMEX could still give a valu-

92 Evaluation

able contribution to today’s systems. This could for instance be in relation
with the safety-critical alarms, such as fire or gas leakage. In these situations,
it is important for the operator to know as much as possible about the area
surrounding the alarm. This could for example be knowledge about nearby
personnel, hazardous areas and fresh air supplies. Using AMEX, or simi-
lar systems, this information could be provided very efficient and accurate.
Such visual and audible communication could also be beneficial where non-
experts are involved in troubleshooting or maintenance of the facility. Hepsg
mentions several areas where this could be useful: Vendor-communication,
trend analysis, training of personnel and virtual surveys or status-reports
of the facility. The latter could be solved by aggregating alarm-information
to a higher level and altering e.g. a template’s color according to its overall
state. Such information would be useful for the operative and administrative
management, onshore support centers (OSC), and at briefings during shift
changeovers.

10.2 Strengths

The auditory display developed in this master thesis is according to the
feedback, the biggest strength related to a control-room setting. Using both
audible and visual aids can provide richer and more effective information
than visual presentations alone. Bjerkeli mentions the design of the alarm-
sounds as very interesting. FEven though more studies and adjustments are
needed, it shows a potential feature which relatively easily could be imple-
mented in today’s alarm management systems. Also, the overall status sound
could be an important contribution for future systems. Even though most
operators today are well informed about the overall state of the facility, the
development goes towards fewer and more mobile personnel. Providing such
information to field operator could help him to get a better understanding
of the current situation.

10.3 Weaknesses

As already mentioned, several weaknesses are identified in the fundamental
idea behind AMEX. This relates especially to the possibilities of using this
type of tool for decision support in a control-room. Bjerkli also remarks the
limited human ability of remembering and separating different sounds. As an
alternative to the implemented design in AMEX, he suggests a coarser sub-
division of production-alarms. Dividing the alarms in hydrocarbon-bearing
systems, utilities and fire/gas-systems, could be an alternative approach.

The biggest challenge or weakness, though, is not related to AMEX or its
components directly. Both Hepsg and Bjerkeli identifies the huge amount of
alarms presented to the operators as a serious problem in today’s control-

10.3 Weaknesses 93

rooms. Bjerkeli confirms that at certain critical points, several hundred,
maybe even thousand, alarms are trigged. At this magnitude, no system
can provide a perspicuous image to the operators. Developing a system or
a filter which can reduce the amount of alarms reaching the control-room,
should clearly be brought into focus by the industry.

One should also consider how a system, based on new types of communica-
tion, can be implemented in the organization. Many operators are used to
their standard routines and procedures, and changing these are not some-
thing which should be based on enforcement. This is especially important,
given the essential role of the operators.

94

Evaluation

Part IV

Conclusion

Chapter 11

Conclusion and further work

In this master thesis, a prototype has successfully been developed according
to the objectives of the study. It demonstrates feasible techniques to im-
prove an operator’s overview of a facility, by means of a multi-modal virtual
environment. This includes improved operator awareness and immediate me-
diation of the whereabouts and severity of new alarms. Experience gained
throughout the study indicates a need and craving for new and effective
alarm management systems. This prototype does not solve this challenge,
but it is a showcase for future development, providing potentially very effec-
tive solutions for tomorrow’s alarm management system.

11.1 Contribution

The development of AMEX includes an auditory display which provides (1)
spatial information about new alarms and (2) information about the overall
state of the facility. The system also offers (3) beacons to help navigating
within the virtual environment. The modes of operation and the design
of the auditory icons used in the auditory display, has also been a part of
the contribution. Together with the visual presentation and the suggested
hardware, AMEX illustrates possibilities for further development of alarm
management systems.

11.2 Future work

The author has great believes in further development of the concepts pre-
sented in this master thesis. However, more studies are needed to ensure
usability, and a proper scope of the system. This goes for both the visual
and audible design, and in particular the auditory display. Extensive testing
and inclusion of experienced personnel in the design-phase will be essential.
A deeper study of the domain is also required to make sure all constraints
are allowed for, including an evaluation of the magnitude and characteristics

98 Conclusion and further work

of the alarms. This evaluation could further be used as a basis for developing
an alarm-filter which reduces the amount of alarms that are presented to the
operator. Even though it goes beyond the scope of this master thesis, it has
been identified as a requirement in case of an operative implementation.

Bibliography

Adcock, M. & Barrass, S. (2004). Cultivating design patterns for au-
ditory displays. in ‘Proceedings of ICAD 04-Tenth Meeting of
the International Conference on Auditory Display’. URL vis-
ited 23.04.05: http://www.icad.org/websiteV2.0/Conferences/
ICAD2004/posters/adcock_barrass.pdf.

Albertalli, B. (2003). An intuitive interface for mixing multi-track audio in
three dimensions. Master’s thesis. University of Miami.

Begault, D. R. (2000). 3-d sound for virtual reality and multimedia. Techni-
cal report. Ames Research Center, NASA. Moffett Field, California.
URL visited 24.03.05: http://human-factors.arc.nasa.gov/ihh/
spatial/papers/pdfs_db/Begault_2000_3d_Sound_Multimedia.pdf.

Bishton, D. (2003). Human computer interaction. in ‘Lecture notes in Mul-
timedia Systems’. URL visited 01.02.05: http://www.soc.staffs.ac.
uk/cahl/immcit/usability.ppt.

Blattner, M., Sumikawa, D. & Greenberg, R. (1989). Earcons and icons:
Their structure and common design principles. in ‘Human-Computer
Interaction’. Vol. 4. pp. 11-44.

Blauert, J. (1974). Rdumliches Horen. Also available as translation by Allen,
John S. (1983) Spatial Hearing. S. Hirzel Verlag.

Boulanger, D. R. (2005). Official Csound Website. cSounds. URL visited
10.03.05: http://www.csounds.com.

Catchpole, K. R., McKeown, J. D. & Withington, D. J. (2004). Localizable
auditory warning pulses. in ‘Ergonomics’. Vol. 47. pp. 748-771.

Cohen, J. (1994). Monitoring background activities. in G. Kramer, ed., ‘Au-
ditory Display: Sonification, Audification, and Auditory Interfaces’.
Addison-Wesley, Reading, MA.

Creative website (2005). URL visited 01.06.05: http://www.creative.com.

100 BIBLIOGRAPHY

Endsley, M. (1994). Situation awareness in dynamic human decision mak-
ing: Theory. in R. Gilson, D. Garland & J. Koonce, eds, ‘Situation
Awareness in Complex Systems’. Embry-Riddle Aeronautical Univer-
sity Press,. pp. 27-58.

Gardner, W. G. (1999). 3d audio and acoustic environment modeling. Elec-
tronic Music and Audio Guide. URL visited 04.06.05: http://www.
sonicspot.com/guide/3daudio.html.

Gaver, W. (1986). Auditory icons: Using sound in computer interfaces. in
‘Human-Computer Interaction’. Vol. 2. pp. 167-177.

Gaver, W. W. (1989). The sonicfinder: An interface that uses auditory icons.
in ‘Human-Computer Interaction’. Vol. 4. pp. 67-94.

Gaver, W. W., Smith, R. B. & O’Shea, T. (1991). Effective sounds in complex
systems: The arkola simulation. in ‘CHI’91’.

Graham, R. (1999). Use of auditory icons as emergency warnings: evaluation
within a vehicle collision avoidance application. in ‘Ergonomics’. Vol. 42.
pp. 1233-1248.

Grohn, M., Lokki, T. & Takala, T. (2003). Comparison of auditory,
visual, and audio-visual navigation in a 3d space. in ‘Proceedings
of the 2003 International Conference on Auditory Display’. URL
visited 26.05.05: http://www.icad.org/websiteV2.0/Conferences/
ICAD2003/paper/49%20Grohn . pdf.

Guillaume, A., Drake, C., Rivenez, M., Pellieux, L. & Chastres, V. (2002).
Perception of urgency and alarm design. in ‘Proc of the 8th Int. Conf.
on Auditory Display’. Int. Community on Auditory Display. URL
visited 31.05.05: http://www.icad.org/websiteV2.0/Conferences/
ICAD2002/proceedings/04_AGuillaume.pdf.

Hermann, T., Drees, J. M. & Ritter, H. (2003). Broadcasting
auditory weather reports - a pilot project. i E. Brazil &
B. Shinn-Cunningham, eds, ‘Proc. of the 9th Int. Conf. on Audi-
tory Display’. Int. Community on Auditory Display. Boston Uni-
versity Publications. Boston, MA, USA. pp. 208-211. URL
visited 26.05.05: http://www.techfak.uni-bielefeld.de/ags/ni/
publications/media/HermannDreesRitter2003-BAW. pdf.

Kazem, M. L. N., Noyes, J. M. & Lieven, N. J. (2003). Design considera-
tions for a background auditory display to aid pilot situation aware-
ness. in ‘Proceedings of the 2003 International Conference on Auditory
Display’. URL visited 26.05.05: http://www.icad.org/websiteV2.0/
Conferences/ICAD2003/paper/22%20Kazem.pdf.

BIBLIOGRAPHY 101

Kendall, G. (1995). A 3-d sound primer: Directional hearing and
stereo reproduction. Computer Music Journal pp. 23-46. URL vis-
ited 12.02.05: http://music.northwestern.edu/classes/3D/pages/
sndPrmGK.html.

Kramer, G. (1994). Some organizing principles for representing data with
sound in auditory displays. in ‘Studies in the Science of Complexity’.
Santa Fe Institute. Addison-Weasley. pp. 185-222.

LGPL (2005). URL visited 01.06.05: http://www.gnu.org/copyleft/
lesser.html.

LoBrutto, V. (1994). Sound-on-film: interviews with creators of film sound.
Praeger Paperback.

Loki website: OpenAL Specification and Reference (2005). URL visited
05.03.05: http://www.openal.org/oalspecs-specs/.

Lukka, T. (1999). An introduction to vrml. Linuz Journal. URL visited
05.06.05: http://www.linuxjournal.com/article/3085.

Montan, N. (2002). An audio augmented reality system. Master’s thesis.
KTH, Royal Institute of Technology, Stockholm, Department of
Microelectronics and Information Technology. URL visited 12.02.05:
http://vvv.it.kth.se/docs/Reports/DEGREE-PROJECT-REPORTS/
030409-Nils-Montan.pdf.

Morgan, C. R. (1998). Circumfusion: A composition for real-time computer
music spatialization system. Technical report. Collin County Commu-
nity College. URL visited 20.05.05: http://iws.ccccd.edu/cmorgan/
diffuser/.

Nimmo, I. (2005a). Alarm management and graphics projects. Technical
report. User Centered Design Services, LLC.

Nimmo, I. (2005b). Operator situation awareness and the impact on control
room design. Technical report. User Centered Design Services, LLC.

Nimmo, I. (2005¢). User Centered Design Services, LLC Website. User
Centered Design Services, LLC. URL visited 10.05.05: http://www.
mycontrolroom. com.

NOU (2000). Asta-ulykken, 4. januar 2000. Technical report. Investigating
Commission of the Asta accident.

Rudi, J. (2000). Kort innforing i lydens fysikk og akustikk, pskoakustikk,
digital innspilling og lydbehandling. Institutt for musikk og teater,
UiO. URL visited 18.02.05: http://www.notam02.no/~joranru/
InnforingLyd/.

102 BIBLIOGRAPHY

Sensaura website (2005). URL visited 01.06.05: http://www.sensaura. com.

Shaw, M. (2003). Writing good software engineering research papers. in ‘Proc
of the 25th Int. Conf. on Software Engineering’. IEEE Computer Society.
pp. 726-736.

SIM (2005a). Coin3D developer page. URL visited 25.02.05: http://www.
coin3d.org.

SIM (2005b). SIM Scenery. URL visited 22.03.05: http://www.sim.no/
products/Scenery/.

Sim, S. E. (2004). Research methodology for software. in ‘Seminar in Infor-
mation and Computer Science’. URL visited 04.02.05: http://www.
ics.uci.edu/"ses/teaching/ics280/.

Sjovoll, H. (2004). 3d sound as a psychoacoustic aid in virtual models.

Strutt, J. L. R. (1907). On our perception of sound direction. Phil. Mag.
13, 214-232.

Svensson, P. (2004). 3d sound and sound in multimedia applications. in
‘Lecture notes in T'T1, Fall 2004’. URL visited 31.01.05: http://wuw.
tele.ntnu.no/akustikk/fag/tttl/kursmateriell.

Thomassen, C. A. (2005). Use of augmented reality in geosimulators. Mas-
ter’s thesis. Norwegian University of Science and Technology, Depart-
ment of Computer and Information Science.

Tran, T., Letowski, T. & KS, A. (2000). Evaluation of acoustic beacon char-
acteristics for navigation tasks. Vol. 43. Ergonomics. pp. 807-27.

Vickers, P. (1999). CAITLIN: Implementation of a Musical Program Aural-
isation System to Study the Effects on Debugging Tasks as Performed
by Novice Pascal Programmers. PhD thesis. Loughborough University,
Loughborough.

VRML97, ISO/IEC 14772-1 (1997). URL visited 01.06.05:
http://www.web3d.org/x3d/specifications/vrml/
ISO-IEC-14772-IS-VRMLO7WithAmendmentl/.

Walker, B. N. & Lindsay, J. (2003). Effect of beacon sounds on navi-
gation performance in a virtual reality environment. in ‘Proceedings
of the 2003 International Conference on Auditory Display’. URL
visited 26.05.05: http://www.icad.org/websiteV2.0/Conferences/
ICAD2003/paper/50%20Walker2%20-%20navigation. pdf.

BIBLIOGRAPHY 103

Wallach, H., Newman, E. B. & Rosenzweig, M. R. (1949). The precedence ef-
fect in sound localization. The American Journal of Psychology 62, 315—
36.

104 BIBLIOGRAPHY

Part V

Appendix

Appendix A

Workshop: VR, Halden

This report gives a summary of the different topics presented at the 2005
VR Workshop 02.-03.03.05.

A.1 Summary

The workshop gave a broad presentation on different aspects regarding the
industrial usage of virtual and augmented reality. Some keywords concludes
the workshop:

Interactivity and simplicity: VR is not intended for computer specialists
and should be presented in a natural and intuitive manner.

Collaborative: Environments and objects needs to be shared among users.
This also includes sharing point of view and to include different exper-
tise in an environment.

Usability: It is necessary to bring VR into an industrial setting and assess
the usability regarding the industrial activities and the results (time,
money, security etc.).

Open standards: Further development of VR needs open standards and
joint development to succeed.

The workshop has also given the author many interesting and useful sugges-
tion regarding his master thesis. This information will be used in his further
work.

A.2 Introduction

In September 1998 and November 2001, the Halden Project organized suc-
cessful workshops focusing on the application of virtual reality technology
to topics of interest to the process industry. The third Halden workshop

108 Workshop: VR, Halden

on virtual reality applications took place 2nd - 3rd March, 2005 in Halden,
Norway.

The main topics of the 2005 VR workshop titled VR in the Future Industrial
Workplace: Working Together - Regardless of Distance were:

e Design

e Operations and Maintenance

e Training

e Engineering VR Systems
The workshop was divided into sessions reflecting the main topics of the
workshop. The sessions were organized as a combination of presentations,
demonstrations, and discussions.
A.3 Intention of visit
The intention of the visit was bipartite: First, to participate at presentations
and get an update on recent research and development in the fields of virtual
and augmented reality. Second, to receive feedback on the author’s own ideas
regarding the usage of virtual models and 3D sound in a control-room setting.

A.4 Presentations and demonstrations

The sessions were chaired by Pascal Laureillard, EDF and covered a wide
fields of applications mainly from the industry of oil production and nuclear
power plants:

Design: component design, assembly process, control-room, building de-
sign, scientific visualization

Operations and maintenance: collaborative teamwork, power plant main-
tenance (moving packages, dose-rates, inspection)

Training: refueling operations, maintenance operations

Even though the exact usage of virtual reality may differ in the different
industries, the ideas and concepts proved to be rather similar and relevant
for all participants.

A full summary of all presentations is not included in this report. A few
have been selected according to the authors area of interest.

A.4 Presentations and demonstrations 109

A.4.1 CREATE 2

CREATE 2, Control Room Engineering Advanced Toolkit Environment, is a
suite of tools for designing and testing room layouts. It supports an iterative
design process with multiple participants and provides version management
for tracking design iterations. The toolkit uses interactive 3D technology
to enable designers to rapidly prototype and test designs against guidelines
and recommendations (see figure A.1). CREATE was designed specifically

sl I A 5m @5

Figure A.1: Layout tool of CREATE 2.

to support control room design and testing tasks and have been used by IFE
in several real projects.

The toolkit is developed in Java3D and runs on all standard Internet-browsers.
More information is available at http://www.ife.no/vr.

A.4.2 The LNPP refueling machine training simulator

The LNPP (Leningrad Nuclear Power Plant) training simulator has been
developed by IFE in co-operation with LNPP with the following objectives:

e Improve safety at LNPP by more effective training

1. The refueling operation done using the refueling machine
-Using a simulator system

2. The safety critical maintenance procedures on the refueling ma-
chine
-Using a procedural training system (see figure A.2)

e Enhance the qualifications of LNPP personnel

e Introduce new LNPP employees and visitors to the refueling machine

110 Workshop: VR, Halden

Process *2: Opening of casing doors and corresponding unmount works.

DemoMode =] b Tools |

Using Advice v| b Materials |

Oper:

lath A16001-0.150.58 and the plug A16001-0.150.54 for lower
6ATNO 13463-68, then unscrew 6

ismantle the electro-drive A099-098.00M as an assembly with
post A16001.00.150A of lower drive gate and deliver to servicing
place.

* Move the flange A16001-150.36 in drifing for upper diive gate aside the gate cas
A16001-150.A in order that to have access to semirings A16001-150.31 Extract these
(2un)semiings from circular gnowing-through,then take away the flange for upper
drive

Figure A.2: Procedural documentation of the procedure training system.

The simulator has proved to be very efficient to train personnel both
for refueling and maintenance. The Norwegian government will support the
project for further development towards new functions and scenarios.

A.4.3 CollabVE

The CollabVE project was presented by Michael Louka, IFE and is a soft-
ware library to enable quick and easy development of collaborative virtual
environments. It is primarily used as a test-bed for studying concepts and
implementation strategies that affect the usability of multi-user systems.
The library supports multiple collaboration strategies and is for instance
used to perform usability studies, using a shared virtual control room envi-
ronment. The users are represented in the virtual environments as avatars
and the communication is done through gestures, text, text-to-speech, audio,
video and file sharing. An example of a virtual environment is depicted in
figure A.3.

A.4.4 Discussion

During the Workshop several useful discussions were held with other partic-
ipants and employees at IFE.

Jette Lundtang Paulsen, Risg National Laboratory, Denmark

Paulsen is working at the Risg National Laboratory in Denmark and is cur-
rently assigned to a project called Safesound. Her participation covers the
evaluation and usability-testing of the systems developed. The project is

A.4 Presentations and demonstrations 111

Lift thimble and

Figure A.3: Example for virtual environment with avatars in CollabVE.

sponsored by European Commission’s GROWTH program (GRD1 2001).
Safesound aims at improving safety during aircraft’s ground and flight oper-
ation by means of enhanced audio functionalities. Project’s enhanced audio
functionalities are 'Direct Voice Input’ (DVI), 'Direct Voice Output’ (DVO)
and distance speech capture.

The project also includes using 3D sound to warn the pilots about nearby
planes to avoid dangerous situations.

Alf Ove Braseth, IFE Halden

Alf Ove Braseth is currently working as a research scientist at IFE Halden
in the fields of control-room systems design and user interfaces. Braseth has
earlier been working as an operator at a drilling platform.

Braseth gave the following comments on a presentation of the authors work
and ideas:

e Alarms can be divided in two types:

— Production alarms
— Safety critical alarms
e If one alarm occurs, there will be a natural development with some ex-
pected alarms following the initial one. If for instance a valve does not

open, it is expected that the pressure will rise/drop at some locations.
These expected alarms should not be warned with an audible alarm.

e Overall sound-design:

112 Workshop: VR, Halden

— Production alarms
Every 15. minute give an indication of the current status. The
audio is generated based on the current level of status. A level
is defined as a given number on non-critical alarms regarding the
production. Maybe there should be a signal whenever it occurs,
not repeating - just an indication.

— Safety critical alarms
Usage of auditory icons could be effectfull.- but not repeatedly.
All other sounds should be silenced.

— Overall status
Every x. minute - play some sound to indicate the overall status.
The idea is good.

A.4.5 Social

In the evening, all participants attended to a 17th century dinner at Fredrik-
sten Fortress, followed by a private concert with the Halden band El Corazon
(see figure A .4). This social event lead to many interesting conversations and
discussions with other participants.

Figure A.4: Social event with 17th century dinner at Fredriksten Fortress.

Appendix B

Study: Tjeldbergodden

This trip-report was written after visiting the control-room at Tjeldbergod-
den 13.04.05.

B.1 Summary

The trip to Tjeldbergodden was made to get a broader picture of today’s
work-situation of operators in a control-room environment. The focus has
been how the alarm management is performed and whether or not there exist
room of improvement by means of virtual models and 3D sound compared
to today’s system.

The observations reveals potential improvements regarding the presentation
of alarms to the operator, both visually and audible. There is, however, no
clear-cut solution on how to integrate a virtual model with today’s routines
and way’s of working. Whether this is caused by practical limitations or lack
of innovative thinking is not clear.

B.2 Introduction

The Tjeldbergodden complex in mid-Norway comprises a methanol plant,
an associated pipeline transport system and receiving terminal for gas from
the Heidrun field, and an air separation facility. The complex was built in
the early nineties and is today operated by Statoil.

The visit to Tjeldbergodden was arranged with responsible of extern rela-
tionships, Frank Sinnes, and took place the 13th of April 2005 from 11:00
until 17:00.

B.3 Intention of visit

The intention of the visit was to observe the way operators work in an op-
erational control-room and to give the author a broader picture of their

114 Study: Tjeldbergodden

situation, problems and challenges. The main focus has been on how alarms
and alarms are presented and taken care off by the operators.

B.4 Observations

The control-room at Tjeldbergodden contains two main workplaces, one for
the methanol plant and one for the air separation facility. Each workplace
is operated by at least one person. The work is supervised by the shift-
leader seated in an office nearby. In addition to this, 7-8 field-operators are
assigned to different areas of the facility and are working on orders from the
control-room operators.

B.4.1 Equipment in the control-room

The control-room (illustrated in figure B.1) consists of following main ele-
ments:

Figure B.1: Control-room at Tjeldbergodden.

e Billboard with list of alarms
e Terminals controlling the facility by means of process diagrams
e Computers for regular work, email, Internet etc.

e CCTV, visual surveillance of possible dangerous situations, tankers,
gate etc.

e Radio communication

e Whiteboard with schedule of tankers

e Emergency shutdown panels

e Masterdocuments of facility used to identify and localize objects
e Access to kitchen and suite

When an alarm occurs in the facility, a new line appears on the large
display combined with an audible alarm. This means that both operators are
informed of all alarms, even though their area of interests and responsibility
are limited. Therefor both operators working in the control-room have a
rather extensive overview of the condition of the facility.

B.4 Observations 115

B.4.2 Environment

The environment in the control-room is normally relaxing and without stress.
Other personnel are often dropping by for a chat or coffee and much time are
spend doing non-relevant work. The alarms occurring are mostly non-critical
and the work are more or less routine. This is mainly a consequence of the
character of this type of facility. In a different type of industry, the situation
could be different.

The level of noise in the control-room is rather high and may have different
sources, some which have no relevant purpose:

e Voices/chat from personnel present

Radio communication

The terminals used for controlling the plant produce a beep every time
the mouse is clicked

e Audible alarm
e Phones

If an extended use of audible signals was going to be integrated in this
specific control-room, some measures should be taken to reduce the amount
of background noise.

B.4.3 Alarm management

Whenever an unexpected event occurs in the facility, an audible alarm is
played and a new record is created and presented as a new line in the list
of alarms. The list is available at both workplaces and also displayed at the
billboard in the center of the control-room (see figure B.2). This list is the
basis of the operators work-day and is monitored closely.

Each new line consists of different parameters as depicted in fig B.3: A
timestamp, identification-number of the component, the current measuring
value causing the alarm, a keyword describing the function of the component
and the name of the area where the component is located.

All new alarms are initially marked as unconfirmed. As long as an alarm
is not confirmed by an operator, the area-field of the alarm-line blinks. Un-
confirmed alarmed are thus easy to spot on the billboard. Even though an
alarm in most cases are caused by an unexpected event, some alarms occurs
as an result of an expected event. This could be a valve being opened, an
engine starting etc. These alarms are notifications from the system and do
not need any intervention from the operator. However, these alarms still
contains important information and must therefor be confirmed by an oper-
ator.

116 Study: Tjeldbergodden

Figure B.2: Billboard with list of alarms and CCTV.

Timestamp iD Value Keyword Area

Figure B.3: Structure of lines in the alarm list.

Each line is colored according to the current status of the alarm (see fig-
ure B.4. When the values causing an alarm returns to normal, the line turns
gray (history) and eventually disappears.

Critical error
Timestamp Value Keyword Area Instrumental error
Timestamp Value Keyword Area Normal error

Timestamp Value Keyword Area History

Figure B.4: Coloring of lines in the alarm list.

The audible alarm which, indicates a new alarm, changes according to
the impact of the alarm. A critical error produce a louder signal than a
normal event. However, as the amount of background noise in the control-
room may be rather high, it is not necessarily very easy to hear the difference
between a critical and a non-critical alarm. Another important observation
is that the amount of alarms occurring, which may be several each minute,
soon turn the alarm into "background-noise". The author experienced this
after approximately one hour in the control room.

B.4.4 Alarm solving

When an alarm occurs it is normally because a measuring value is outside
normal range. This could have several reasons, and in some cases it is nec-
essary for the operator to intervene the process to get the situation back to

B.5 Challenges 117

normal. Finding the root-cause of an alarm is not necessarily an easy job
and the solution is seldom listed in a manual. It is something which requires
experience and high amount of knowledge of the facility and the processes
involved. The investigation performed may include looking at trends, check-
ing related elements and processes, history, current work performed in the
area and previous alarms or notifications. It could even include checking
external factors like the weather outside.

Some alarms require that a field-operator is sent out to investigate. This is
controlled by the control-room operator, and requires thus that he/she has
some first-hand experience with the facility.

B.4.5 New control-room system

In cooperation with ABB AS, Statoil Tjeldbergodden is currently working
on a project to develop a new control-room system. The system will replace
the operational system used today and will improve the usability and pro-
vide a more integrated and standardized functionality. The new system are
based on an object-aspect-principle, meaning that an object may be looked
upon from different aspects. New aspects can easily be linked with an ob-
ject through standard Microsoft Windows protocols and could for instance
be the object’s documentation, trend-curve, visual image, history, current
measuring-value etc. The user interface is built on the same elements as
today’s system, a graphical process-diagram of the facility.

The new system is planned to be fully integrated during a main-audit in
2007.

B.5 Challenges

The operators at Tjeldbergodden control-room was asked to identify any
challenges or possible problems with today’s solution which gave the follow-
ing answers:

e The graphical user-interface of the operational terminals could be im-
proved and extended with more relevant information.

e The audible alarm is monotonous and does not reflect any information
about the type of alarm.

e The operators need first-hand experience with the facility to know
anything about distances and dimensions of the elements displayed in
the process-diagrams.

e Each operator must deal with too many monitors and keyboards/mice.

e There are too many alarms occurring.

118 Study: Tjeldbergodden

e The alarms are only sorted according to the timestamp, and not ac-
cording to urgency and/or impact.

B.6 Feedback

The operators was verbally presented to the authors ideas regarding replacing
today’s control-room systems with virtual models assisted by 3D sound. 3
operators listed up the following comments:

e The new design based on virtual models is interesting and could provide
new functionality compared to today’s system.

e Today’s process-diagrams are vital to the operator and can not fully
be replaced by a virtual model.

e The new control-room system being developed in cooperation with
ABB AS could easily provide information to a virtual representation.

e It is unclear whether or not the authors new design could provide
improved functionality compared to today’s system.

B.7 Thoughts and ideas

Some thoughts and ideas have been documented as an result of the visit:

e The operators have a rather extensive overview of the facility’ condi-
tion. It is therefor uncertain what benefits would come from an audible
system informing about the current status-level. If such a system is to
be used, it may be good to use a short and concise sound.

e Whenever one of the operators are leaving the control-room, he/she
must always carry a radio in case of emergency. An audible system
installed in nearby rooms, i.e. the kitchen or bathroom, could keep the
operators informed even though they are not present.

e [t is difficult to avoid the usage of process-diagrams to be able to con-
trol the facility. Replacing today’s solution without using the process-
diagrams requires innovative thinking and training of today’s opera-
tors.

e Solving an alarm requires investigation, often including elements at
great distance from the origin of the alarm. This implies that a virtual
model of the facility may be a less suitable tool than today’s process-
diagrams. Is there a way to interconnect a virtual model and process-
diagram?

B.7 Thoughts and ideas 119

e The alarms should be filtered before they are presented to the operators
in such a way that less important alarms (notifications) are separated
from the real alarms. This filter should also be capable of identifying
relations between alarms.

e The audible alarm could easily be designed to reflect information about
the type of alarm occurring.

120 Study: Tjeldbergodden

Appendix C

Interview: Per Ivar Karstad

Per Ivar Karstad works as a project manager at Statoil Research Center,
Rotvoll. This interview took place in informal settings and resulted in the
following comments:

Operators are often occupied with other tasks than monitoring the
facility. Communication and keeping track of with the technical staff
are one example. Because of this, audio should be used to inform the
operators of occurring alarms when they are not sitting at the desk.

The operators should be able to prioritize which alarm to work with.
Otherwise, some intelligence must be developed to analyze the alarms
regarding urgency and impact prior to the trigging of alarms

An operator should at all times know the status of the facility. Therefor
- an ’overall status’-sound may not be necessary. However, if it is
desirable to reduce staff in some ways - and ’overall status’-sound could
help.

For intelligent alarm-handler: An alarm may be critical/non critical
if combined with some others. This should be checked in advance of
presentation to the operators..

It is very important to inform the operators about safety-critical alarms.

122 Interview: Per Ivar Karstad

Appendix D

Seminar: Alarm management
and control rooms

This report gives a summary of the different topics presented at the alarm
management and control room seminar in Stavanger, 10.-11.05.05.

D.1 Summary

Through the variety of lectures presented at the seminar, several interesting
challenges, solutions and concepts were discussed. Despite the differences,
most lectures revolved around achieving an optimal situation awareness for
the operators. Even though much research and effort are invested in this
area, the development regarding alarm management systems has yet to see
the revolutionary step. The author finds this peculiar, and believes that
virtual reality will become a natural part of control rooms in the near future.
The seminar has also given the author much useful information regarding his
master thesis. This includes both literature and contacts.

D.2 Introduction

The seminar aimed at giving a brief introduction and raise consciousness
regarding the design of control rooms and alarm management systems.

The lead speaker of the seminar were Ian Nimmo (see figure D.1), President
and founder of User Centered Design Services (Nimmo 2005¢). Nimmo is a
well-known lecturer within control-room design and has more than 35 years
of experience in this field. His lectures revolved around Operator Situation
Awareness and his experiences from best-practice projects. Apart from this,
several lecturers from different Norwegian industry companies presented their
own experiences and projects regarding the topic of interest. Some vendors
was also invited to show how their solutions address the problems regarding
alarm management. This included both solutions which are available today,

124 Seminar: Alarm management and control rooms

and future technology under development. The seminar, consisting solely of
lectures, lasted for two days and had over 80 participants.

Figure D.1: Tan Nimmo, lead speaker of the seminar.

D.3 Intention of visit

The intention of the visit was mainly to get an overview of the variety of
today’s alarm-management systems and their enabling technologies.

D.4 Presentations and demonstrations

The different lectures covered many aspects regarding control rooms and
alarm management systems, and can be divided into the following categories:

e Operator Situation Awareness

e Best practices

D.4 Presentations and demonstrations 125

Control room design

— Use of Virtual Reality

— Guidelines and regulations

Alarmphilosophy

Existing systems and experiences

Today’s and future technology

A full summary of all presentations is not included in this report. A few
have been selected according to the authors area of interest.

D.4.1 Operator Situation Awareness

Tan Nimmo from the User Centered Design Services LLC, held an interest-
ing lecture about the importance of operator situation awareness and what
conclusions he has made during his research.

Nimmo defines good situation awareness as achieving high performance in
preventing abnormal situations and designing a work environment to provide
good situation awareness and a proactive operating stance. The term situa-
tion reflects the changing states of a process plant, also including minor and
planned changes like process control moves and maintenance work. In order
to find what elements influence the situation awareness, Nimmo has defined
a framework which outlines distinct intervention activities that occur during
an abnormal situation (see figure D.2). Using this framework in a real con-

= —Intervention aclivitigs— — — — = = — = = — —— — ————— —————

Reflaxive behavior path

s
1
| |
1 I
| [¥ |
External inputs from ; Orienting = Evaluating | Acting t Qutputs to process
process 1 . N e 3 1 (SP., OP%, manual
(Signals, instructions, | Sensmg_, Analysis, thinking Physical andfor 1 adjustments)
environment} | | perception andjor and/or verbal response 1
1 discrimination Interpretation :
I
I
| t ¥ I
| Internal feedback !
N o !
A ing

Extemal feedback
Figure D.2: Intervention activities during an abnormal situation.

text can help to pinpoint possible problems and areas of improvement in the
given setting. Nimmo also talks about alarm management and how an user
interface should be designed to provide good operator situation awareness.
Among others, he stresses the fact that data only becomes information when
it is shown in context. An example which illustrates this is the Apollo XIII
accident in 1966. One of the operators monitoring the spaceship failed to

126 Seminar: Alarm management and control rooms

obtain the readings from an oxygen tank as the pressure raised above critical
limits. This eventually lead to a massive explosion and damages causing the
whole mission to be aborted. A screen capture from the console which was
monitored is depicted in figure D.3. As the figure illustrates, there is clearly
room for improvement in designing this user-interface. However, since the

LM12539 C3M EC3-CRYOQ TAE 0&613
CTE 055:46:51 [1 GET 055:53:47 [i 3ITE
——————— LIFE SUFPORT-———-———— —————PFRIMARY COOLANT----—-
F3571 LM CABIN P PAIA CFO018 ACCUM QTY PCT 4.4
CFOO01 CABIN P PaIA 5.1 CFO016 PUMP p P3ID 45.0
CFO01z 3UIT P PAIA 4.3 AF0Z60 RAD IN T F 738
CFOO03 3UIT F I HzO -1.65
CFO015 COMP P P PSID 0.30
CFOO08 SURGE F P PAIAL 891 CFODE0 RAD OUT T F 35
JURGE QTY LE .67 CFO151 EVAP IN T F 45.7
0z TE 1 CAP P PSID 21 CFO017 STEAM T F 64.7
0z TE 1 CAF P F3ID 17 CFO034 STEAM P PSIA 181
CFO018 EWVAP OUT T F 44,2
CFO036 02 MAMN P P3IA 105
CFO035 02 FLOW LE/HR 0.151
3F0zZ66 ERAD VLV 1/2 ONE
CFOO08 SUIT T F 50.5 CFO157 GLY FLO LE/SHR 215
CFO002Z CABIN F 65 ————SECCNDALRY COOLANT----
CFOO0S COZ PP MMHG 1.5 CFOO7E ACCUM QTY PCT 6.5
- -HzO0-—- - CFOOv70 PUMP P P3ID 9.3
CFOO0S WASTE PCT Z4.4 SF0zZe2 RAD IN T F T8.5
MASTE LE 13.7 AF0Z63 RAD OUT T F 44. 6
CFOO10 POTAELE PCT 104.5 CF9973 STELM P PSIA L2460
POTALELE LE 37.6 CFOO71 EWALP OQUT T F 66.1
CFO460 TURINE NOZ T F 7o CFO120 HEZO-RE3 P3IA Z25.8
CFO461 HZO MOEZ T F T TOTAL FC CUR LHPS
———————— CRYO 3UPPLY--—-—--——————————-02-1--———-0Z-Z-———--—-HZ-1------————-Hi-Z-—-
3CO037-358-39-40 P P3Ih g76.5 S06 Z225.7103-1) 235.1
BCO032-33-30-31 QTY PCT A X /3 T73.24 74,03
3C0041-42-43-44-T F -139 -192 —-417 -416
QTY LE3 251.1 260.0 Z0.681 a0.83

Figure D.3: Screen captures of the ECS console used to monitor the oxygen
tank.

Apollo XIIT accident, much work has been done on developing user inter-
face design elements. Nimmo lists the following elements as the key solution
concepts and innovations:

e Single, integrated view

e Windows management and layout

Navigation scheme

Visual coding schemes, use of color and shapes

Interaction objects

Contextual menus

Task view organization

D.4 Presentations and demonstrations 127

The lecture was based on two papers by lan Nimmo ((Nimmo 2005b) and
(Nimmo 2005a)).

D.4.2 Alarm philosophy in Statoil

Svein Louis Bersaas, working as a senior teamleader at Statoil ASA Karste
NG, gave a presentation of Statoil’s alarmphilosophy. The reason for estab-
lishing such an philosophy was tripartite:

e High alarm rate
e Little or wrong usage of alarm prioritizing
e Little usage of alarm suppression

The alarmphilosophy will be used, together with an ongoing gap analysis,
to increase the consciousness and effort around safety and quality aspects
of alarm management systems. Each of Statoil’s facilities will create such a
philosophy based on the following template:

1. Intention
Central Control Room (CCR) alarm functions
Human factor design principles

Alarm performance requirements

AN

Documentation of alarm management

6. Alarm design

Several examples of content were presented by Bersaas, followed by a de-
scription of the future initiatives.

The author finds Statoil’s alarmphilosophy a very useful tool for creating
guidelines and descriptions of the alarm management process. Even though
the real value lies in the contents, the alarmphilosophy as a framework has
great benefits.

D.4.3 Future technology

Different vendors of alarm management systems, including ABB, Siemens,
Honeywell, Kongsberg Maritime and Emerson Process Management, were
invited to demonstrate their products and plans of development. In general,
these presentations gave little or no indication of any revolutionary designs.
Apart from upgraded alarm management functionality, the user interface
were still based on process diagrams and 2D-graphics. ABB however, did
show a video of a supposedly new type of management tool based on a
virtual model of the plant. Details regarding this tool was not available as
this system was on very early stage.

128 Seminar: Alarm management and control rooms

D.4.4 Thoughts and reflections

Throughout the seminar some thoughts and reflections were noted, for fur-
ther use in the author’s master thesis.

e There has been a great improvement on 2D user interfaces of alarm
management systems, due to much research the last 10-15 years. How-
ever, little effort has been put into exploring the usability of virtual
reality and 3D models.

e There is a close resemblance between the IT Infrastructure Library!
(ITIL) and the way the whole alarm management process should be
designed. This field should be investigated further.

e Several guidelines for control rooms and alarm management systems
exist, including EMMUA (Alarm management guidelines) and guide-
lines from the Norwegian Petroleumstilsynet.

e Using alarm management systems requires that the operator trusts the
system and its stability. Such maturity requires time and cannot be
forced onto the operators.

e None of the other participants had any experience of using sound to
communicate meta-information about alarms, such as type-description.
However, it is quite common to increase the amplitude in accordance
with the alarm’s urgency /severity. Some control-rooms also used sound
to indicate which operator was responsible for the occurring alarm, by
allowing the operator to use his favorite sounds.

e A virtual representation could be used to visualize alarms by automat-
ically displaying the object causing the alarm. The virtual represen-
tation doesn’t need to be interactive as it is not used in investigation
and/or analysis. This approach could be a suitable approach to in-
crease the operator’s tolerance of new technology (virtual models).

NTIL is a best-practice framework for IT service support and delivery

Appendix E

Installation Guide

Due to restrictions given from Statoil, SnghvitSIM is not enclosed this re-
port. This also goes for AMEX, since it is a built-in part of the SnghvitSIM
application.

For demonstrations of SnghvitSIM AMEX, Bjgrn Saether at Statoil Research
Center should be contacted.

The source code and media files (sounds, 3D-models etc) are included on
the enclosed CD (see appendix H).

130 Installation Guide

Appendix F

User guide

Before starting SnghvitSIM AMEX, make sure the volume of the speakers
are set to a proper level, and that they are configured for 7.1 reproduction
(if available).

After the application is started, the screen should look similar to figure F.1.
The application is now in simulation-mode, and alarms will appear at ran-
dom order and intervals.

Figure F.1: Initial view of SnghvitSIM AMEX.

132

User guide

F.1

SnghvitSIM AMEX is mainly controlled by keyboard commands.
of available commands, including when they are available, is described in

Interaction

A list

table F.1.
Command Functionality Type / activating event
F#* Goto alarm with id # Universal
Shift + F#* [Turn on beacon on alarm with id # Universal
Ctrl + F#* | Turn off beacon on alarm with id # Universal
G Goto alarm, moves camera to alarm On showing of New alarm
S Suppress, mark the alarm as fixed On shc_>wmg of New ala_rm, ififhe
alarm is of type production-alarm
C Confirm, mark the alarm as fixed On shc_)wmg of Ne“f .a'af"" if the
alarm is of type notification
D Show documentation of alarm-object On showing of New alarm
T Show trends of alarm-object On showing of New alarm
F Fix the alarm On showing of Alarm detail
T Show documentation of alarm-object On showing of Alarm detail
D Show trends of alarm-object On showing of Alarm detail
C Close the information-box On showing of Alarm detail
Mouse.cllck Shows Alarm Detail of object Object is hlghllg.hted, i.e. there is an
on object alarm on the object

* # refers to the ID of an alarm.
IDO=F10, ID1=F1, ID2=F2, ID3=F3

| Not implemented due to limitations of scope

Table F.1: List of all available commands in prototype.

A few comments on the use of SnghvitSIM AMEX is described in the
following sections.

F.1.1 SnghvitSIM user guide

An early release of the SnghvitSIM documentation and user guide is included
on the enclosed CD (see appendix H).
Tip: Closing the application is done by pressing ESC, ESC.

F.1.2 Keyboard corrections

Due to bugs in the SnghvitSIM framework, using Shift and Ctrl combined
with the numerical keys is not working properly. These updates are included
in table F.1.

Appendix G

Source code

G.1 amex.cpp

Listings of the sourcecode of amex.cpp.

//AMEX -classes

#include "amexGUIEngine.h"
#include "amexSoundEngine.h"
#include "amexAlarmGenerator.h"
#include "amex.h"

//Viewer

#include "../viewer/CLODViewer.h"
#include "../ guile/guile.h"
#include " ../ guile/guilestuff.h"

//Various

#include <SmallChange/nodes/PickCallback.h>
#include <Inventor/sensors/SoTimerSensor.h>
#include <Inventor/SbTime.h>

#include <Inventor/SbDPLine.h>

#include "properties.h"

#include <Inventor/fields/SoSFFloat.h>
#include <Inventor/lists/SbList.h>

#include <Inventor/SbRotation.h>

#include "viewer/CLODViewer.h"

#include <SmallChange/nodes/UTMCamera.h>
extern CLODViewer * currviewer;

#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoMaterial.h>
#include <Inventor/nodes/SoSphere.h>
#include <Inventor/SbLinear.h>

#include <math.h>

//Events & picking

#include "../misc/eventgrabber.h"

#include <Inventor/events/SoButtonEvent.h>
#include <Inventor/events/SoMouseButtonEvent.h>
#include <Inventor/events/SoKeyboardEvent.h>
#include <Inventor/actions/SoRayPickAction.h>
#include <Inventor/SoPickedPoint.h>

#include <Inventor/SoPath.h>

//Menus
#include "../nodes/ShadowText2.h"

//Sensors and timers
#include <Inventor/sensors/SoTimerSensor.h>

amexGUIEngine ge; /*% < Graphical User Interface Engine */
amexSoundEngine se; /*x < Sound Engine x*/
amexAlarmGenerator ag; /*x < Alarm Generator x/

SbVec2s eventPositionDown; /%% < Position of event on button down*/
SbVec2s eventPositionUp; /** < Position of event on button upx*/

int incidentCount; /** < Number of alarms */

134

Source code

from popup-window */

Object currently display at alarm board */
Mapps objects to occurance in alarmlist */

status - sound */

True when alarm-board is displayed */

int statusLevel; /*% < Statuslevel x/

int gotoAlarm ; /** < Which object to goto

int alarmBoardActive; /*x* <

int alarmObjectMap [4]; /*x* <

int alarmActiveMap [4]; /** < Which alarms are active/fixed*/
int status_counter; /** < How long since last

char alarm001[50]; /** < Container for 1st alarm */
char alarm002[50]; /** < Container for 2nd alarm */
char alarm003[50]; /** < Container for 3rd alarm */
char alarm004[50]; /** < Container for 4th alarm */
char status[50]; /*% < Container for statuslevel x/
char heading [50]; /** < Heading for popup */

bool SOUND_ENABLED = true ; /** < Flag to activate sound */

bool POPUP_ACTIVE = false ; /**% < True when popup is displayed */
bool ALARM_BOARD_ACTIVE = false; /*x* <

int BEACON ACTIVE = —1; /*% < Which beacon is enabled */

int STATUS TIMERCONTROL = 150; /*%x < Freq. of status sound */

float X_POSITION = 502898.367475894;

float Y_POSITION = 7931858.305316999;

float Z_ POSITION = —325.1879939097652;

/ * %

¥ Initialize and creates various nodes after scenegraph is
¥ @return true

*/

SbBool amex_post_init(void) {

//MOVE CAMERA TO INITIAL POS
setCameraToAlarm (99);

//BUILD SCENEGRAPH

loaded

SoSeparator * AMEXO1Sep = (SoSeparator x) SoNode::getByName("AMEXO01");

SoSeparator * AMEX_ TEMPLATE_LOCATOR_ Separator —

(SoSeparator *) SoNode::getByName (""AMEX TEMPLATE LOCATOR');

//Add alarm-elements

ge.buildElementGraph (AMEX_TEMPLATE_LOCATOR_ Separator) ;

//Add structures and templates

.buildSceneGraph (AMEX_TEMPLATE_LOCATOR_ Separator) ;

ge
//Add sounds;
se.initialize (0, AMEX_TEMPLATE_LOCATOR_ Separator) ;
se.buildSoundGraph ();
se.buildBeaconGraph ();
se.buildStatusGraph ();

//START TIMERS
//Alarm -timer
srand (static_cast <unsigned >(time (0)));
SoTimerSensor * alarmTimer = new SoTimerSensor();
alarmTimer—>setFunction (retrieveAlarm);
alarmTimer—>setInterval (60.0);
alarmTimer—>schedule ();
//Beacon -timer
SoTimerSensor * beaconTimer = new SoTimerSensor ();
beaconTimer—>setFunction (updateBeacon);
beaconTimer—>setInterval (0.2f);
beaconTimer—>schedule ();
//Status -timers
SoTimerSensor * statusTimer = new SoTimerSensor ();
statusTimer—>setFunction (checkStatusSound);
statusTimer—>setInterval (10.0f);
statusTimer—>schedule ();
//Running checkStatus in beginning

UTMCamera * cam = (UTMCamerax) currviewer —>getCamera ();

SbVec3d cameraLoc = cam—>utmposition.getValue ();

se.updateStatusGraph (0, cameraLoc[0] —X_ POSITION,
cameraLoc[1]+2.0f—Y POSITION,
cameraloc[2] —Z_ POSITION);

return true;

}

[**x

* Retrieves new alarms and communicates with GUIEngine and

* Q@param *data data (not used)

* Q@param *sensor sensordata (not used)

*/

void retrieveAlarm (void * data, SoSensor x sensor) {
ag.callback ();

if (ag.incidentCount > incidentCount) {
incidentCount ++;

SoundEngine

G.1 amex.cpp 135

SbString timeString;

switch(ag.incidentCount) {
case 1:
//Update Alarm list
timeString = ag.incidentArray[incidentCount —1].timestamp—>
format ("%h.%m.%s") ;
sprintf (alarm001 , "%s %i %i %i %s", timeString.getString(),
ag.incidentArray [ag.incidentCount —1].id ,
ag.incidentArray [ag.incidentCount —1].value ,
ag.incidentArray [ag.incidentCount —1].area ,
ag.incidentArray [ag.incidentCount —1].description);
alarmObjectMap[ag.incidentArray[ag.incidentCount —1].id]
//Set alarm active
alarmActiveMap[ag.incidentArray[ag.incidentCount —1].id] = 1;
//Update alarmlist
updateAlarmList (incidentCount);
//Show Popup
gotoAlarm = ag.incidentArray|[ag.incidentCount —1].id;
sprintf(heading, "!! %s !!",
ag.incidentArray [ag.incidentCount —1].description2);
POPUP_ACTIVE = true;
ge.updatePopup(bool(true), heading,
ag.incidentArray [ag.incidentCount —1].impact urgency,
ag.incidentArray [ag.incidentCount —1].criticality);

Il
S

break;
case 2:
//Update Alarm 1list
timeString = ag.incidentArray|[incidentCount —1].timestamp—>

format ("%h.%m.%s") ;
sprintf(alarm002, "%s %i %i %i %s", timeString.getString (),
ag.incidentArray [ag.incidentCount —1].id ,
ag.incidentArray [ag.incidentCount —1].value ,
ag.incidentArray [ag.incidentCount —1].area ,
ag.incidentArray[ag.incidentCount —1].description);
alarmObjectMap[ag.incidentArray[ag.incidentCount —1].id] = 1;
//Set alarm active
alarmActiveMap[ag.incidentArray[ag.incidentCount —1].id]
//Update alarmlist
updateAlarmList (incidentCount);
//Show Popup
gotoAlarm = ag.incidentArray[ag.incidentCount —1].id;
sprintf (heading , "!! %s !!",
ag.incidentArray [ag.incidentCount —1].description2);
POPUP_ACTIVE = true;
ge.updatePopup(bool(true), heading,
ag.incidentArray [ag.incidentCount —1].impact_urgency,
ag.incidentArray [ag.incidentCount —1].criticality);

Il
—

break;
case 3:
//Update Alarm list
timeString = ag.incidentArray[incidentCount —1].timestamp—>

format ("%h.%m.%s");
sprintf (alarm003, "%s %i %i %1 %s", timeString.getString (),
ag.incidentArray [ag.incidentCount —1].id ,
ag.incidentArray [ag.incidentCount —1].value ,
ag.incidentArray [ag.incidentCount —1].area ,
ag.incidentArray [ag.incidentCount —1].description);
alarmObjectMap|[ag.incidentArray [ag.incidentCount —1].id]
//Set alarm active
alarmActiveMap[ag.incidentArray[ag.incidentCount —1].id] = 1;
//Update alarmlist
updateAlarmList (incidentCount);
//Show Popup
gotoAlarm = ag.incidentArray[ag.incidentCount —1].id;
sprintf(heading , "!! %s !!",
ag.incidentArray [ag.incidentCount —1].description2);
POPUP_ACTIVE = true;
ge.updatePopup (bool(true), heading,
ag.incidentArray [ag.incidentCount —1].impact urgency,
ag.incidentArray [ag.incidentCount —1].criticality);

Il
(M

break;
case 4:
//Update Alarm list
timeString = ag.incidentArray[incidentCount —1].timestamp—>

format ("%h.%m.%s") ;
sprintf (alarm004 , "%s %i %i %i %s", timeString.getString(),

ag.incidentArray [ag.incidentCount —1].id ,

ag.incidentArray [ag.incidentCount —1].value ,

ag.incidentArray [ag.incidentCount —1].area ,

ag.incidentArray [ag.incidentCount —1].description);
alarmObjectMap[ag.incidentArray[ag.incidentCount —1].id] = 3;

//Set alarm active

alarmActiveMap[ag.incidentArray[ag.incidentCount —1].id]

Il
—

136 Source code
//Update alarmlist
updateAlarmList (incidentCount);
//Show Popup
gotoAlarm = ag.incidentArray[ag.incidentCount —1].id;
sprintf(heading , "!! %s !!",
ag.incidentArray [ag.incidentCount —1].description2);
POPUP_ACTIVE = true;
ge .updatePopup(bool(true), heading,
ag.incidentArray [ag.incidentCount —1].impact_urgency,
ag.incidentArray [ag.incidentCount —1].criticality);
break;
}
//Update Status, IncidentElements and Sound/Beacon
int occuringlncidentId = ag.incidentArray[incidentCount —1].id;
//Show Alarm object
ge.updatelncidentElements (bool(true), occuringlIncidentId);
//Update sound
if (SOUND_ENABLED) se.updateSoundGraph(occuringlncidentId,
getDistanceToAlarm (occuringlIncidentId),
ag.incidentArray [incidentCount —1].position [0],
ag.incidentArray[incidentCount —1].position[1],
ag.incidentArray [incidentCount —1].position [2]);
if (SOUND_ENABLED) se.updateBeaconGraph(bool(false),
occuringlncidentId, 0.0f ,
ag.incidentArray [incidentCount —1].position [0],
ag.incidentArray[incidentCount —1].position[1],
ag.incidentArray[incidentCount —1].position [2]);
//Update status
updateStatus ();
} else {
//Do nothing
}
}
[* %
* Updates internal alarm-information and communicates with GUIEngine
* Q@param alarmCount Number of alarms
*/
void updateAlarmList(int alarmCount) {
switch (alarmCount) {
case 1:
ge.updatelncidentText (alarmCount, alarmO001 ,
alarmActiveMap[ag.incidentArray[ag.incidentCount —1].id],
o,
o,
0
break;
case 2:
ge.updatelncidentText (alarmCount, alarm002,
alarmActiveMap[ag.incidentArray[ag.incidentCount —1].id],
alarm001 , alarmActiveMap[ag.incidentArray[ag.incidentCount —2].id],
i
i’ 03,
break;
case 3:
ge.updatelncidentText (alarmCount, alarm003,
alarmActiveMap|[ag.incidentArray [ag.incidentCount —1].id],
alarm002, alarmActiveMap|[ag.incidentArray|[ag.incidentCount —2].id],
alarm001 , alarmActiveMap|[ag.incidentArray|[ag.incidentCount —3].id],
"0
break;
case 4:
ge.updatelncidentText (alarmCount, alarm004 ,
alarmActiveMap|[ag.incidentArray[ag.incidentCount —1].id],
alarm003 , alarmActiveMap|[ag.incidentArray[ag.incidentCount —2].1i s
alarm002, alarmActiveMap|[ag.incidentArray[ag.incidentCount —3].i s
alarm001, alarmActiveMap|[ag.incidentArray[ag.incidentCount —4].id]);

break ;

}
}
[*x
* Updates status level according to number of incidents.
* [0,0] = level O
* [1,3] = level 1
* [4,4] = level 2
*/

void updateStatus () {
switch (ge.visibleAlarmElements) {
case O0:
statusLevel
break;
case 1:

0;

G.1 amex.cpp

137

statusLevel = 1;
break;

case 2:
statusLevel = 1;
break;

case 3:
statusLevel = 1;
break;

case 4:
statusLevel = 2;
break;

sprintf(status, "<StatusLevel: %i>", statusLevel);
ge.updatelncidentText (7, status, 0, "", 0, """, 0, "", 0);

/% *x

* Keep’s control over when to play the status -sound

* Q@param *data

* @param *sensor

*/

void checkStatusSound(void % data, SoSensor x sensor) {
//Getting user -position

UTMCamera * cam = (UTMCamerax) currviewer—>getCamera ();

SbVec3d cameraLoc = cam—>utmposition.getValue ();
//increase counter

status_counter = status_counter + 10;

switch(statusLevel) {

case O0:
if (status_counter >= STATUS TIMERCONTROL=x4) {
status_counter = 0;
}
break;
case 1:
if (status_counter >= STATUS_TIMERCONTROL%*2) {
status_counter = 0;
break;
case 2:
if (status_counter >= STATUS_TIMERCONTROLx1) {
status_counter = 0;
}
break;

}

//playing status sound

if (status_counter==0)se.updateStatusGraph(statusLevel,
cameraLoc[0] —X_POSITION,
cameraLoc[1] —Y_POSITION,
cameraLoc[2] —Z_POSITION);

}

/% *

* Updates the beacon-sound’s pitch if rotating

* Q@param *data

* Q@param *sensor

*/

void updateBeacon(void * data, SoSensor * sensor) {
if (BEACON_ACTIVE > —1) {

//Get information from camera about current position

UTMCamera * cam = (UTMCamerax) currviewer —>getCamera ();
SbRotation camrot = cam—>orientation.getValue ();
SbVec3d cameraLoc = cam—>utmposition.getValue ();

//Look -at vector
SbVec3f lookat (0, 0, —1); // init to default view direction
camrot.multVec(lookat , lookat);
const float = camrotValues = lookat.getValue();

//Direct vector
SbVec3d directVec;
directVec.setValue (
ag.incidentArray[alarmObjectMap [BEACON_ACTIVE]].utm|[O],
ag.incidentArray[alarmObjectMap [BEACON_ACTIVE]].utm|[1],
ag.incidentArray [alarmObjectMap [BEACON_ACTIVE]].utm[2]);

directVec —= cameralLoc;
const double x directValues = directVec.getValue();
float directDistance = directVec.length ();

directVec.normalize ();
SbVec3f directVecConst;
directVecConst.setValue(directVec);
//Find the angle between the two vectors
float dotProd = lookat.dot(directVecConst);
//Update Beacon

se.updateBeaconPitch (BEACON_ACTIVE, acos(dotProd), directDistance);

vector

138 Source code

}

[* %

* Returns the distance to an alarm
* Q@param id id of alarm

* Q@return distance

*/
float getDistanceToAlarm(int id) {
float distance = 30.0f; //default if alarm do not exist
for (int i = 0; i<incidentCount ;i++) {
if (ag.incidentArray[i].id id) {
SbVec3f x distanceVec = new SbVec3f;
distanceVec—>setValue (ag.incidentArray[i].utm[0],
ag.incidentArray[i].utm[1],
ag.incidentArray[i].utm[2]);
UTMCamera * cam = (UTMCamerax) currviewer—>getCamera ();
SbVec3d cameraLoc = cam—>utmposition.getValue ();
distanceVec—>operator —=(cameraLoc);
distance = distanceVec—>length ();
}
}
return distance;
}
/**x

* Moves camera to location of alarm
¥ @param alarmId id of alarm

*/
void setCameraToAlarm(int alarmld) {
if (alarmId == 99) {
//Initial position
UTMCamera * cam = (UTMCamerax) currviewer —>getCamera ();
cam—>utmposition.setValue(SbVec3f(502868.0, 7931820.0, —292.916));
cam—>orientation.setValue(0.791249, —0.34784, —0.502923, 1.43665);
} else {
for (int i = 0; i<incidentCount ;i++) {
if (ag.incidentArray[i].id == alarmld) {
UTMCamera * cam = (UTMCamerax) currviewer—>getCamera();
cam—>utmposition.setValue(SbVec3f(
ag.incidentArray[i].location[0],
ag.incidentArray[i].location[1],
ag.incidentArray[i].location [2]));
cam—>orientation.setValue(SbRotation(SbVec3f(
ag.incidentArray[i]. rotation[0],
ag.incidentArray[i].rotation[1],
ag.incidentArray[i].rotation[2]),
ag.incidentArray[i].radians));
}
}
}
}
/ * %
¥ Internal scheme methode .
*/

static SCM g2k amex post_init(void) {
return gh bool2scm(amex post init ());

i
/ * %
* Event callback handler. Checks which type of event and acts if necessary

* Q@param *event event
¥ Qparam *closure data (not used)
¥ Qreturn true/false
x/
static SbBool amex event cb(const SoEvent x event, void x closure) {
SoMouseButtonEvent *mouseButtonEvent;
SoKeyboardEvent xkeyboardEvent;
bool ctrl = event—>wasCtrlDown ();
bool shift = event—>wasShiftDown ();

if (event—>isOfType(SoKeyboardEvent:: getClassTypeld ())) {
keyboardEvent = (SoKeyboardEvent*) event;

if (SoKeyboardEvent::isKeyPressEvent (keyboardEvent,
SoKeyboardEvent:: F10)) {
if (etrl) {
se.beaconSwitch0O—>whichChild.setValue (SO_SWITCH_NONE) ;
se.beaconSwitchl—>whichChild.setValue (SO_SWITCH_NONE) ;
se.beaconSwitch2—>whichChild.setValue (SO_SWITCH_NONE) ;

G.1 amex.cpp

139

se.beaconSwitch3—>whichChild.setValue (SO_SWITCH_NONE) ;
BEACON_ACTIVE = —1;
} else {

if (shift) {

se.updateBeaconGraph(bool(true), 0,
getDistanceToAlarm (0), 0.0f, 0.0f, 0.0f);

BEACON_ACTIVE = 0;

} else {

setCameraToAlarm (0);

}

return TRUE;

(SoKeyboardEvent :: isKeyPressEvent (keyboardEvent,
SoKeyboardEvent : :NUMBER_0)) {
if (etrl) {

se.beaconSwitchO—>whichChild.setValue (SO_SWITCH_NONE) ;

se.beaconSwitchl—>whichChild.
se.beaconSwitch2—>whichChild.
se.beaconSwitch3—>whichChild.
BEACON_ACTIVE = —1;

} else {
if (shift) {

setValue (SO_SWITCH NONE);
setValue (SO_SWITCH_ NONE) ;
setValue (SO_SWITCH_ NONE) ;

se.updateBeaconGraph(bool(true), 0

getDistanceToAlarm (0) ,
BEACON_ACTIVE = 0;

} else {
setCameraToAlarm (0);

}
return FALSE;

0.0f, 0.0f, 0.0f);

if (SoKeyboardEvent::isKeyPressEvent (keyboardEvent,
SoKeyboardEvent : :NUMBER_1)) {

if (ctrl) {
se.beaconSwitchO—>whichChild.
se.beaconSwitchl —>whichChild.
se.beaconSwitch2—>whichChild.
se.beaconSwitch3—>whichChild.
BEACON_ACTIVE = —1;

} else {
if (shift) {
se.updateBeaconGraph(bool(
getDistanceToAlarm (1),
BEACON_ACTIVE = 1;
} else {

setCameraToAlarm (1);

}

return TRUE;

setValue (SO_SWITCH_NONE) ;
setValue (SO_SWITCH_NONE) ;
setValue (SO_SWITCH_NONE) ;
setValue (SO_SWITCH_NONE) ;

true), 1,
0.0f, 0.0f, 0.0f);

if (SoKeyboardEvent::isKeyPressEvent (keyboardEvent,
SoKeyboardEvent::F1)) {

if (ctrl) {
se.beaconSwitchO—>whichChild.
se.beaconSwitchl—>whichChild.
se.beaconSwitch2—>whichChild.
se.beaconSwitch3—>whichChild.
BEACON_ACTIVE = —1;

} else {
if (shift) {
se.updateBeaconGraph(bool(

setValue (SO_SWITCH_ NONE) ;
setValue (SO_SWITCH_ NONE) ;
setValue (SO_SWITCH_ NONE) ;
setValue (SO_SWITCH_ NONE) ;

true), 1

getDistanceToAlarm (1), 0.0f, 0.0f, 0.0f);

BEACON_ACTIVE = 1;

} else {
setCameraToAlarm (1);

}
return TRUE;

if (SoKeyboardEvent::isKeyPressEvent (keyboardEvent,
SoKeyboardEvent : :NUMBER_2)) {

if (event—>wasCtrlDown ()) {
se.beaconSwitchO—>whichChild.
se.beaconSwitchl—>whichChild.
se.beaconSwitch2—>whichChild.
se.beaconSwitch3—>whichChild.
BEACON_ACTIVE = —1;

} else {

setValue (SO_SWITCH_NONE) ;
setValue (SO_SWITCH_NONE) ;
setValue (SO_SWITCH_NONE) ;
setValue (SO_SWITCH_NONE) ;

140

Source code

¥
if

if

if (event—>wasShiftDown ()) {
se.updateBeaconGraph(bool(true), 2,
getDistanceToAlarm (2), 0.0f, 0.0f, 0.0f);
BEACON_ACTIVE = 2;
} else {

setCameraToAlarm (2);

}

return TRUE;

(SoKeyboardEvent :: isKeyPressEvent (keyboardEvent,
SoKeyboardEvent:: F2)) {

if (event—>wasCtrlDown ()) {
se.beaconSwitchO—>whichChild.setValue (SO_SWITCH

NONE) ;

se.beaconSwitchl —>whichChild.setValue (SO_SWITCH_NONE) ;
se.beaconSwitch2—>whichChild.setValue (SO_SWITCH_NONE) ;
se .beaconSwitch3—>whichChild.setValue (SO_SWITCH_NONE) ;

BEACON_ACTIVE = —1;

} else {
if (event—>wasShiftDown ()) {
se.updateBeaconGraph(bool(true), 2,
getDistanceToAlarm (2), 0.0f, 0.0f, 0.0f);
BEACON_ACTIVE = 2;
} else {
setCameraToAlarm (2);

}
return TRUE;

(SoKeyboardEvent::isKeyPressEvent (keyboardEvent,

SoKeyboardEvent : :NUMBER_3)) {

if (event—>wasCtrlDown ()) {

se .beaconSwitchO—>whichChild.setValue (SO_SWITCH_ NONE) ;

se.beaconSwitchl—>whichChild.setValue (SO_SWITCH

NONE) ;

se.beaconSwitch2—>whichChild.setValue (SO_SWITCH_NONE) ;
se.beaconSwitch3—>whichChild.setValue (SO_SWITCH_NONE) ;

BEACON_ACTIVE = —1;

} else {
if (event—>wasShiftDown ()) {
se.updateBeaconGraph(bool(true), 3,
getDistanceToAlarm (3), 0.0f, 0.0f, 0.0f);
BEACON_ACTIVE = 3;
} else {

setCameraToAlarm (3);

}

return TRUE;

(SoKeyboardEvent :: isKeyPressEvent (keyboardEvent,
SoKeyboardEvent:: F3)) {

if (event—>wasCtrlDown ()) {
se.beaconSwitchO—>whichChild.setValue (SO_SWITCH

NONE) ;

se.beaconSwitchl—>whichChild.setValue (SOiszICH:NONE) H
se .beaconSwitch2—>whichChild.setValue (SO_SWITCH NONE) ;
se .beaconSwitch3—>whichChild.setValue (SO_SWITCH NONE) ;

BEACON_ACTIVE = —1;

} else {
if (event—>wasShiftDown ()) {
se.updateBeaconGraph(bool(true), 3,
getDistanceToAlarm (3), 0.0f, 0.0f, 0.0f);
BEACON_ACTIVE = 3;
} else {
setCameraToAlarm (3);

}
return TRUE;

(SoKeyboardEvent:: isKeyPressEvent (keyboardEvent,
if (POPUP_ACTIVE) {
ge .updatePopup(bool(false), "" """ ——1);

SoKeyboardEvent::S)) {

) ;
ge.updatelncidentElements(bool(false), gotoAlarm);

POPUP_ ACTIVE = false;

alarmActiveMap[ag.incidentArray [ag.incidentCount —1].id] = 0;

updateAlarmList (incidentCount);
updateStatus ();
return TRUE;

}

(SoKeyboardEvent :: isKeyPressEvent (keyboardEvent,
if (POPUP_ACTIVE) {

SoKeyboardEvent::G)) {

G.1 amex.cpp 141

setCameraToAlarm (gotoAlarm);

ge .updatePopup(bool(false), "" """ —1);
POPUP_ACTIVE = false;

return TRUE;

}

if (SoKeyboardEvent::isKeyPressEvent (keyboardEvent, SoKeyboardEvent::C)) {
if (POPUP_ACTIVE) {
//I1f a notification, it can be "[Clonfirmed".
ge.updatelncidentElements(bool(false), gotoAlarm);

ge .updatePopup(bool(false), "" """ —1);
POPUP_ACTIVE = false;
alarmActiveMap[ag.incidentArray[ag.incidentCount —1].id] = 0;

updateAlarmList (incidentCount);
updateStatus ();

} else if (ALARM_BOARD_ACTIVE)
ge .updateAlarmBoard (bool(false),
ALARM_ BOARD ACTIVE = false ;

nn nn nn ey
’ ’ ’ 5

}

if (SoKeyboardEvent::isKeyPressEvent (keyboardEvent, SoKeyboardEvent::F)) {
if (ALARM BOARD ACTIVE) {
ge.updatelncidentElements (bool(false), alarmBoardActive);
ge.updateAlarmBoard (bool(false), "" B Mmoo omwiny,
alarmActiveMap [alarmBoardActive] = 0;
updateAlarmList (incidentCount);
ALARM BOARD ACTIVE = false ;
updateStatus ();
return TRUE;

if (event—>isOfType(SoMouseButtonEvent:: getClassTypeld ())) {
mouseButtonEvent = (SoMouseButtonEvent*) event;

if (SoMouseButtonEvent::isButtonPressEvent
mouseButtonEvent, SoMouseButtonEvent::BUTTON1)) {

eventPositionDown = event—>getPosition ();
} else if(SoMouseButtonEvent::isButtonReleaseEvent (
mouseButtonEvent, SoMouseButtonEvent::BUTTON1)) {

eventPositionUp = event—>getPosition ();
if (abs(eventPositionDown[0] — eventPositionUp[0]) < 3) {
//Ray picking
SoRayPickAction rayPicker(currviewer—>getViewportRegion ());
rayPicker.setPoint (event—>getPosition ());
rayPicker.apply(currviewer —>getSceneGraph ());
//Finding object
SoFullPath x pathToPickedObject;
const SoPickedPoint *xpickedPoint = rayPicker.getPickedPoint ();
if (pickedPoint != NULL) {
pathToPickedObject = (SoFullPathx) pickedPoint—>getPath ();
SoNode * node = pathToPickedObject—>getTail ();
if (node—>getName() == SbName("amex alarm_object 0")) {
printf ("Alarm object #0 picked\n");
char alarmInfol[50];
char alarmInfo2[50];
sprintf(alarmInfol ,
" Area: %i "
ag.incidentArray [alarmObjectMap [0]]. area);
sprintf(alarmInfo2,

" Value: %1 "
ag.incidentArray[alarmObjectMap [0]]. value);
alarmBoardActive = 0;

ALARM_BOARD_ACTIVE = true;
ge.updateAlarmBoard (bool (true),
ag.incidentArray[alarmObjectMap [0]]. description2 ,
alarmInfol ,
alarmInfo2 ,
" <11 SAFETY CRITICAL !1>");
} else if (node—>getName() == SbName("amex alarm_object 1")) {
printf("Alarm object #1 picked\n");
char alarmlInfol[50];
char alarmInfo2[50];
sprintf(alarmInfol ,
" Area: %i ",
ag.incidentArray [alarmObjectMap [1]]. area);
sprintf(alarmInfo2 ,

" Value: % i ",
ag.incidentArray [alarmObjectMap [1]]. value);
alarmBoardActive = 1;

ALARM_BOARD_ACTIVE = true;

142

Source code

ge.updateAlarmBoard (bool(true),

ag.incidentArray [alarmObjectMap [1]].

alarmInfol ,
alarmInfo2 ,
"[Urgency: MED]

} else if (node—>getName() ==
printf("Alarm object #2 picked\n");
char alarmInfol[50];
char alarmInfo2[50];
sprintf(alarmInfol ,

" Area: %i

ag.incidentArray [alarmObjectMap [2]].

sprintf(alarmInfo2,
" Value: %1

ag.incidentArray [alarmObjectMap [2]].

alarmBoardActive = 2;
ALARM_BOARD_ACTIVE = true;
ge.updateAlarmBoard (bool (true),

ag.incidentArray [alarmObjectMap [2]].

alarmInfol ,
alarmInfo2 ,
"[Urgency : HIGH]

} else if (node—>getName()
printf ("Alarm object #3 picked\n");
char alarmInfol[50];
char alarmInfo2[50];
sprintf(alarmInfol ,

" Area: %i

ag.incidentArray [alarmObjectMap [3]].

sprintf (alarmInfo2 ,
" Value: %i

ag.incidentArray [alarmObjectMap [3]].

alarmBoardActive = 3;
ALARM_BOARD_ACTIVE = true;
ge.updateAlarmBoard (bool (true),

ag.incidentArray [alarmObjectMap [3]].

alarmlInfol ,
alarmInfo2 ,
"<Notification>");

}
return FALSE;

}

[**

* Initialize class. The method is executed before
*/
void amex_init () {

//Add Eventgrabber

add_event _grabber(amex_event_cb, NULL);

add_guile func(gh_ new procedure0 O,
g2k amex post_init);

incidentCount = 0;

[Impact:
SbName ("amex alarm_object 3")) {

scenegraph is

"amex—post—init",

description2 ,

[Impact: MED]");
SbName ("amex_alarm_object_2")) {

area);

value);

description2 ,

HIGH] ") ;

area);

value);

description2 ,

loaded .

G.2 amex.h 143

G.2 amex.h

Listings of the sourcecode of amex.h.

#ifndef AMEX H
#define AMEX H

#include "../ guile/guile.h"

#include <Inventor/SbBasic.h>

#include <Inventor/lists /SbList.h>
#include <Inventor/SbVec3d.h>

#include <Inventor/SbRotation.h>
#include <Inventor/nodes/SoSelection .h>

//Functions

SbBool amex_ post_init(void);

void amex_init ();

void retrieveAlarm (void x data, SoSensor * sensor);
void updateAlarmList(int alarmCount);

void updateStatus ();

void updateBeacon(void * data, SoSensor * sensor);
void checkStatusSound(void x data, SoSensor * sensor);
float getDistanceToAlarm(int id);

void setCameraToAlarm(int alarmld);

static SbBool amex_event_cb(const SoEvent x event, void % closure);

#endif // AMEX_H

144 Source code

G.3 amexSoundEngine.h

Listings of the sourcecode of amexSoundEngine.h.

#ifndef AMEXSOUNDENGINE H
#define AMEXSOUNDENGINE_ H

#pragma once

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<Inventor/nodes/SoSeparator.h>
<Inventor/sensors/SoTimerSensor.h>
<Inventor/nodes/SoSwitch.h>
<Inventor/nodes/SoTransform .h>

<Inventor /VRMLnodes/SoVRMLAudioClip.h>
<Inventor /VRMLnodes/SoVRMLSound.h>
<Inventor/nodes/SoSphere.h>
<Inventor/nodes/SoMaterial.h>
<Inventor/nodes/SoRotor.h>

<stdlib.h>

#include <ctime>

#include <algorithm>

/ * %

* A class generating and updating audio elements
*/

class amexSoundEngine {

//variables

int

statusLevel;

/** < statuslevel of facility*/

// functions

public:
VAR

* Constructor

*/

amexSoundEngine(void) {}

/% *

* Destructor

*/

“amexSoundEngine(void){ }

SoSeparator xsoundSwitchSep;
SoSeparator xbeaconSwitchSep;

SoSwitch *soundSwitchO;

/*x <
/x%x <

Switch
Switch

all
all beacon

*/
*/

sounds
sounds

for alarm

for

/*x < Switch for alarm sound #0 x/

SoSeparator xsoundSep0;
SoVRMLSound *soundVRMLSoundO;
SoTransform xsoundTransO;

SoSwitch *beaconSwitchO;

Switch for beacon sound #0 x*/

SoSeparator xbeaconSep0;
SoVRMLAudioClip *beaconClipO0;
SoVRMLSound *beaconVRMLSoundO;
SoTransform =beaconTransO;

SoSwitch *soundSwitchl ;

/*x < Switch for alarm sound #1 x/

SoSeparator xsoundSepl;
SoVRMLSound *soundVRMLSoundl;
SoTransform xsoundTransl;

SoSwitch *xbeaconSwitchl ;

Switch for beacon sound #1 */

SoSeparator xbeaconSepl;
SoVRMLAudioClip *beaconClipl;
SoVRMLSound *beaconVRMLSoundl;
SoTransform *beaconTransl;

SoSwitch *xsoundSwitch2;

Switch sound #2 */

alarm

SoSeparator xsoundSep2;
SoVRMLSound *soundVRMLSound2;
SoTransform xsoundTrans2;

SoSwitch *xbeaconSwitch2;

Switch sound #2 */

beacon

SoSeparator xbeaconSep2;
SoVRMLAudioClip #*beaconClip2;
SoVRMLSound *beaconVRMLSound2;
SoTransform xbeaconTrans2;

SoSwitch *soundSwitch3;

/*% < Switch alarm sound #3

*/

SoSeparator xsoundSep3;
SoVRMLSound *soundVRMLSound3;
SoTransform xsoundTrans3;

SoSwitch *xbeaconSwitch3;

Switch sound #3 */

beacon

SoSeparator xbeaconSep3;
SoVRMLAudioClip * beaconClip3;
SoVRMLSound *beaconVRMLSound3;
SoTransform xbeaconTrans3;

SoSeparator xstatusAllSep;

/** < Separator for status sounds */

G.3 amexSoundEngine.h 145

SoSwitch *statusSwitchO; /** < Switch for status sound #0x/
SoSeparator xstatusSepO0;
SoVRMLSound =*statusVRMLSoundO;
SoVRMLAudioClip * statusClipO0;
SoTransform xstatusTransO;
SoSwitch *xstatusSwitchl ; /** < Switch for status sound #1x/
SoSeparator xstatusSepl;
SoVRMLSound =*statusVRMLSoundl;
SoVRMLAudioClip * statusClipl;
SoTransform xstatusTransl;
SoSwitch *xstatusSwitch2; /** < Switch for status sound #2x/
SoSeparator xstatusSep2;
SoVRMLAudioClip * statusClip2;
SoVRMLSound =*statusVRMLSound2;
SoTransform xstatusTrans2;

/* %
* Set status level
* @param level new status level

*/

void setStatus(int level) {
statusLevel = level;

VAR

* Get status level

* Qreturn current level

*/

int getStatus () {
return statusLevel;

}

/% *

* Initialize sound engine and related nodes

* Qparam level inital status level

* Qparam rootSeparator root of scenegraph

*/

void initialize (int level, SoSeparator * rootSeparator) {
printf("Initializing soundEngine..\n");
statusLevel = level;

soundSwitch0 = new SoSwitch;
soundSep0 = new SoSeparator;
beaconSwitch0 = new SoSwitch;
beaconSep0 = new SoSeparator;

soundSwitchl = new SoSwitch;
soundSepl = new SoSeparator;
beaconSwitchl = new SoSwitch;
beaconSepl = new SoSeparator;

soundSwitch2 = new SoSwitch;
soundSep2 = new SoSeparator;
beaconSwitch2 = new SoSwitch;
beaconSep2 = new SoSeparator;

soundSwitch3 = new SoSwitch;
soundSep3 = new SoSeparator;
beaconSwitch3 = new SoSwitch;
beaconSep3 = new SoSeparator;

soundSwitchSep = new SoSeparator;
soundSwitchSep—>addChild (soundSep0);
soundSep0—>addChild (soundSwitchO0);
soundSwitchSep—>addChild (soundSepl);
soundSepl—>addChild (soundSwitchl);
soundSwitchSep—>addChild (soundSep2);
soundSep2—>addChild (soundSwitch2);
soundSwitchSep—>addChild (soundSep3);
soundSep3—>addChild (soundSwitch3);

beaconSwitchSep = new SoSeparator;
beaconSwitchSep—>addChild (beaconSep0);
beaconSep0—>addChild (beaconSwitch0);
beaconSwitchSep—>addChild (beaconSepl);
beaconSepl—>addChild (beaconSwitchl);
beaconSwitchSep—>addChild (beaconSep2);
beaconSep2—>addChild (beaconSwitch2);
beaconSwitchSep—>addChild (beaconSep3);
beaconSep3—>addChild (beaconSwitch3);

//Status
statusSwitchO0 = new SoSwitch;
statusSep0 = new SoSeparator;

146

Source code

}

/ * %

*
*
*

*/

void

statusSwitchl = new SoSwitch;
statusSepl = new SoSeparator;
statusSwitch2 = new SoSwitch;
statusSep2 = new SoSeparator;

statusAllSep = new SoSeparator;
statusAllSep —>addChild (statusSep0);
statusSep0—>addChild(statusSwitch0);
statusAllSep —>addChild (statusSepl);
statusSepl —>addChild (statusSwitchl);
statusAllSep —>addChild (statusSep2);
statusSep2 —>addChild (statusSwitch2);

//Adding all to root

rootSeparator —>addChild (statusAllSep);
rootSeparator —>addChild (soundSwitchSep);
rootSeparator —>addChild (beaconSwitchSep);

Builds scenegraph for status sound, using nodes initialized

soundEngine::initialize ()

@see initialize ()
buildStatusGraph () {

//Status 0

//Transform

statusTrans0 = new SoTransform;
//AudioClip
statusClip0 = new SoVRMLAudioClip;

statusClip0 —>loop = false;

statusClip0—>url = "clips/statuslevel 0.wav";

statusClip0—>startTime = SbTime:: getTimeOfDay ();
//Sound

statusVRMLSound0 = new SoVRMLSound;
statusVRMLSoundO0O—>intensity =0.25f;
statusVRMLSoundO—>spatialize=false;
statusVRMLSound0—>maxFront=1000.0f;
statusVRMLSound0—>maxBack=1000.0f;
statusVRMLSound0—>minFront=900.0f;
statusVRMLSound0—>minBack=900.0f;
statusVRMLSound0—>source = statusClip0;

//Add to switch
statusSwitchO—>addChild (statusTrans0);
statusSwitch0 —>addChild (statusVRMLSound0) ;

//Status 1

//Transform

statusTransl = new SoTransform;
// AudioClip
statusClipl = new SoVRMLAudioClip;

statusClipl —>loop = false;

statusClipl—>url = "clips/statuslevel _1.wav";

statusClipl —>startTime = SbTime:: getTimeOfDay ();
// Sound

statusVRMLSoundl = new SoVRMLSound;
statusVRMLSoundl—>intensity =0.25f;
statusVRMLSoundl—>spatialize=false ;
statusVRMLSoundl—>maxFront=1000.0f;
statusVRMLSoundl—>maxBack=1000.0f;
statusVRMLSoundl—>minFront=900.0f;
statusVRMLSoundl—>minBack=900.0f;
statusVRMLSoundl—>source = statusClipl;

//Add to switch
statusSwitchl —>addChild (statusTransl);
statusSwitchl —>addChild (statusVRMLSound1l);

//Status 2

//Transform
statusTrans2 = new SoTransform;

//AudioClip

SoVRMLAudioClip * statusClip2 = new SoVRMLAudioClip;
statusClip2 —>loop = false;

statusClip2 —>url = "clips/statuslevel _2.wav";
statusClip2 —>startTime = SbTime:: getTimeOfDay ();
// Sound

statusVRMLSound2 = new SoVRMLSound;
statusVRMLSound2—>intensity =0.5f;
statusVRMLSound2—>spatialize=false;
statusVRMLSound2—>maxFront=1000.0f;
statusVRMLSound2—>maxBack=1000.0f ;
statusVRMLSound2—>minFront=900.0f;
statusVRMLSound2—>minBack=900.0f;

G.3 amexSoundEngine.h 147

statusVRMLSound2—>source = statusClip2;
//Add to switch

statusSwitch2 —>addChild(statusTrans2);

statusSwitch2 —>addChild (statusVRMLSound2);

//Adding to parent
statusSwitchO—>whichChild.setValue (SO_SWITCH_NONE) ;
statusSwitchl —>whichChild.setValue (SO_SWITCH_NONE) ;
statusSwitch2 —>whichChild.setValue (SO_SWITCH_NONE) ;
}

/ * x

* Updates status sound position and type of sound to be played

* Q@param statusLevel current status level. Used to decide which sound
* Q@param x x-position

* Q@param y y-position

* @param z z-position

* @see buildStatusGraph ()

void updateStatusGraph(int statusLevel, float x, float y, float z) {
switch(statusLevel) {
case O:
statusSwitchl —>whichChild.setValue (SO_SWITCH_NONE) ;
statusSwitch2 —>whichChild.setValue (SO_SWITCH_NONE) ;

statusTrans0—>translation.setValue(x, y, z);
statusClip0 —>startTime = SbTime:: getTimeOfDay ();
statusSwitchO—>whichChild.setValue (SO_SWITCH_ALL);
break;

case 1:
statusSwitchO—>whichChild.setValue (SO_SWITCH_NONE);
statusSwitch2 —>whichChild.setValue (SO_SWITCH_NONE) ;

statusTransl —>translation.setValue(x, y, z);
statusSwitchl —>whichChild.setValue (SO_SWITCH_ALL);
statusClipl —>startTime = SbTime:: getTimeOfDay ();
break;

case 2:
statusSwitchO—>whichChild.setValue (SO_SWITCH_NONE) ;
statusSwitchl —>whichChild.setValue (SO_SWITCH_NONE) ;

statusClip0 —>startTime = SbTime:: getTimeOfDay ();
statusTrans2—>translation.setValue(x, y, z);
statusSwitch2 —>whichChild.setValue (SO_SWITCH_ALL) ;

break;
}
}
/ * x
* Builds scenegraph for beacon sound, using nodes initialized
* in soundEngine::initialize ()
* @see initialize ()
*/
void buildBeaconGraph () {
//BEACONO
//Transform
beaconTrans0 = new SoTransform;
//AudioClip
beaconClip0 = new SoVRMLAudioClip;
beaconClip0—>loop = TRUE;
beaconClip0—>url = "clips/incident beacon.wav";
beaconClip0—>startTime = SbTime:: getTimeOfDay ();
//Sound
beaconVRMLSound0 = new SoVRMLSound;
beaconVRMLSoundO0—>intensity =1.2f;
beaconVRMLSoundO0—>source = beaconClipO0;
//Adding to Switch
beaconSwitch0—>addChild (beaconTrans0);
beaconSwitch0—>addChild (beaconVRMLSound0) ;
//BEACON1
//Transform
beaconTransl = new SoTransform;

//AudioClip
beaconClipl = new SoVRMLAudioClip;
beaconClipl—>loop = TRUE;

beaconClipl—>url = "clips/incident_beacon.wav";
beaconClipl—>startTime = SbTime:: getTimeOfDay ();
//Sound

beaconVRMLSoundl = new SoVRMLSound;
beaconVRMLSoundl—>intensity =1.2f;
beaconVRMLSoundl—>source = beaconClipl;
//Adding to Switch

148 Source

code

beaconSwitchl—>addChild (beaconTransl);
beaconSwitchl—>addChild (beaconVRMLSoundl);

//BEACON2
//Transform
beaconTrans2 = new SoTransform;
// AudioClip
beaconClip2 = new SoVRMLAudioClip;
beaconClip2—>loop = TRUE;

beaconClip2—>url = "clips/incident_beacon.wav";
beaconClip2—>startTime = SbTime:: getTimeOfDay ();
//Sound

beaconVRMLSound2 = new SoVRMLSound;
beaconVRMLSound2—>intensity =1.2f;
beaconVRMLSound2—>source = beaconClip2;
//Adding to Switch
beaconSwitch2—>addChild (beaconTrans2);
beaconSwitch2—>addChild (beaconVRMLSound2);

//BEACON3
//Transform
beaconTrans3 = new SoTransformj;
//AudioClip
beaconClip3 = new SoVRMLAudioClip;
beaconClip3—>loop = TRUE;

beaconClip3—>url = "clips/incident beacon.wav";
beaconClip3—>startTime = SbTime:: getTimeOfDay ();
// Sound

beaconVRMLSound3 = new SoVRMLSound;
beaconVRMLSound3—>intensity =1.2f;
beaconVRMLSound3—>source = beaconClip3;
//Adding to Switch
beaconSwitch3—>addChild (beaconTrans3);
beaconSwitch3—>addChild (beaconVRMLSound3);

}
/* %
* Builds scenegraph for beacon sound, using nodes initialized

* in soundEngine::initialize ()
* Qparam id beacon -id
* Qparam pitch basis for pitch
* Qparam distance users distance to beacon
*/
void updateBeaconPitch(int id, float pitch, float distance) {
float pitchModified = ((pitch/3.14f)x—1.0f)+2.0f;
switch (id) {
case O0:
beaconClip0—>pitch = pitchModified ;
if (distance > 75) {
beaconVRMLSound0—>maxFront = distance x 1.1f;
beaconVRMLSound0—>maxBack = distance = 1.1f;
} else {
beaconVRMLSound0—>maxFront = 75.0f % 1.1f;
beaconVRMLSound0—>maxBack = 75.0f % 1.1f;

}
break;
case 1:

beaconClipl —>pitch = pitchModified ;

if (distance >75) {
beaconVRMLSoundl—>maxFront = distance = 1.1f;
beaconVRMLSoundl—>maxBack = distance * 1.1f;

} else {
beaconVRMLSoundl—>maxFront =75.0f = 1.1f;
beaconVRMLSoundl—>maxBack =75.0f *x 1.1f;

}

break;

case 2:

beaconClip2—>pitch = pitchModified;

if (distance >75) {
beaconVRMLSound2—>maxFront — distance * 1.1f;
beaconVRMLSound2—>maxBack = distance = 1.1f;

} else {
beaconVRMLSound2—>maxFront =75.0f % 1.1f;
beaconVRMLSound2—>maxBack =75.0f % 1.1f;

break;
case 3:

beaconClip3—>pitch = pitchModified ;

if (distance >75) {
beaconVRMLSound3—>maxFront = distance x 1.1f;
beaconVRMLSound3—>maxBack = distance % 1.1f;

} else {
beaconVRMLSound3—>maxFront =75.0f x 1.1f;
beaconVRMLSound3—>maxBack =75.0f % 1.1f;

G.3 amexSoundEngine.h

149

break;

VEX]
* Updates beacon sound position, amplitude and whether it is played or not
* Q@param enable enables the specific beacon sound
* Q@param id sound-ID (e.g. alarm-id)
* Q@param distance distance from beacon to camera
* Q@param x x-position
* Q@param y y-position
* Q@param z z-position
* Q@see buildStatusGraph ()
*/
void updateBeaconGraph(bool enable, int id, float distance,
float x, float y, float z) {
printf (" Distance: % f\n" , distance);
switch (id) {
case O:
if (enable) {
beaconSwitchl—>whichChild.setValue (SO_SWITCH NONE) ;
beaconSwitch2—>whichChild.setValue (SO_SWITCH NONE) ;
beaconSwitch3—>whichChild.setValue (SO_SWITCH NONE) ;
beaconVRMLSound0—>maxFront = distance % 1.1f;
beaconVRMLSound0—>maxBack = distance * 1.1f;
beaconVRMLSoundO—>minFront = 4.0f;
beaconVRMLSoundO0—>minBack = 4.0f;
beaconSwitch0—>whichChild.setValue (SO _SWITCH ALL);
printf("ID: %i — GO!\n", id); - N
} else {
beaconTransO—>translation.setValue(x, y+0.2f, z);
}

break ;

case 1:

if (enable) {
beaconSwitchO—>whichChild.setValue (SO_SWITCH_NONE) ;
beaconSwitch2 —>whichChild.setValue (SO_SWITCH_NONE) ;
beaconSwitch3 —>whichChild.setValue (SO_SWITCH_NONE) ;
beaconVRMLSoundl—>maxFront = distance % 1.1f;
beaconVRMLSoundl—>maxBack = distance % 1.1f;
beaconVRMLSoundl—>minFront = 4.0f;
beaconVRMLSoundl—>minBack = 4.0f;
beaconSwitchl —>whichChild.setValue (SO_SWITCH_ALL);
printf ("ID: %i — GO!\n", id);

} else {

beaconTransl—>translation.setValue(x, y+0.2f, z);
break;

case 2:

if (enable) {
beaconSwitchO—>whichChild.setValue (SO_SWITCH_ NONE) ;
beaconSwitchl—>whichChild.setValue (SO_SWITCH NONE) ;
beaconSwitch3—>whichChild.setValue (SO_SWITCH_ NONE) ;
beaconVRMLSound2—>maxFront = distance % 1.1f;
beaconVRMLSound2—>maxBack = distance % 1.1f;
beaconVRMLSound2—>minFront = 4.0f;
beaconVRMLSound2—>minBack = 4.0f;
beaconSwitch2—>whichChild.setValue (SO _SWITCH ALL);
printf("ID: %i — GO!\n", id); - N

} else {
beaconTrans2—>translation.setValue(x, y+0.2f, z);

}

break ;

case 3:

if (enable) {
beaconSwitchO—>whichChild.setValue (SO_SWITCH_ NONE) ;
beaconSwitchl—>whichChild.setValue (SO_SWITCH_ NONE) ;
beaconSwitch2—>whichChild.setValue (SO_SWITCH_NONE) ;
beaconVRMLSound3—>maxFront = distance % 1.1f;
beaconVRMLSound3—>maxBack = distance % 1.1f;
beaconVRMLSound3—>minFront = 4.0f;
beaconVRMLSound3—>minBack = 4.0f;
beaconSwitch3—>whichChild.setValue (SO_SWITCH_ALL);
printf ("ID: %i — GO!\n", id);

} else {

beaconTrans3—>translation.setValue(x, y+0.2f, z);
}

break;

150

Source

code

¥
}
/* %
* Builds scenegraph for alarm sounds, using nodes
* in soundEngine::initialize ()
* Q@see initialize ()
*/

void buildSoundGraph () {

//Sound for alarm#0
// Transform
soundTrans0 = new SoTransform;
// AudioClip

initialized

SoVRMLAudioClip * soundClip0 = new SoVRMLAudioClip;

soundClip0—>loop = false;

soundClip0—>url = "../common/models/clips/safety critical.wav";
soundClip0—>startTime = SbTime:: getTimeOfDay ();

// Sound

soundVRMLSound0 = new SoVRMLSound;
soundVRMLSound0—>source = soundClipO0;
soundVRMLSound0—>intensity =1.5f;

//Adding to Switch

soundSwitch0—>addChild (soundTrans0);

soundSwitch0—>addChild (soundVRMLSound0) ;

//Sound for alarm#il
//Transform
soundTransl = new SoTransform;
//AudioClip

SoVRMLAudioClip * soundClipl = new SoVRMLAudioClip;

soundClipl —>loop = false;

soundClipl—>url = "../common/models/clips/alarm03.wav";

soundClipl —>startTime = SbTime:: getTimeOfDay ();

// Sound

soundVRMLSoundl = new SoVRMLSound;
soundVRMLSoundl—>source = soundClipl;
soundVRMLSoundl—>intensity =1.3f;

//Adding to Switch

soundSwitchl—>addChild (soundTransl);

soundSwitchl—>addChild (soundVRMLSoundl);

//Sound for alarm#2
//Transform
soundTrans2 = new SoTransform;
// AudioClip

SoVRMLAudioClip * soundClip2 = new SoVRMLAudioClip;

soundClip2—>loop = false;

soundClip2—>url = "../common/models/clips/alarm0l.wav";

soundClip2—>startTime = SbTime:: getTimeOfDay ();

// Sound

soundVRMLSound2 = new SoVRMLSound;
soundVRMLSound2—>source = soundClip2;
soundVRMLSound2—>intensity =1.4f;

//Adding to Switch

soundSwitch2—>addChild (soundTrans2);

soundSwitch2—>addChild (soundVRMLSound2);

//Sound for alarm#3
//Transform
soundTrans3 = new SoTransform;
//AudioClip

SoVRMLAudioClip * soundClip3 = new SoVRMLAudioClip;

soundClip3—>loop = false;

soundClip3—>url = "../common/models/clips/water.wav";

soundClip3—>startTime = SbTime:: getTimeOfDay ();

//Sound

soundVRMLSound3 = new SoVRMLSound;
soundVRMLSound3—>source = soundClip3;
soundVRMLSound0—>intensity =1.1f;

//Adding to Switch

soundSwitch3—>addChild (soundTrans3);

soundSwitch3—>addChild (soundVRMLSound3);

VEX]

* Updates alarm sound position and amplitude
@param id sound-ID (e.g. alarm-id)

@param distance distance from beacon to camera
@param x x-position

@param y y-position

@param z z-position

@see buildStatusGraph ()

P

G.3 amexSoundEngine.h

151

*/
void
switch
cas
cas
cas
cas

}s

#endif

updateSoundGraph(int id, float distance, float x, float y, float z) {

(id) {

e O0:

soundTransO—>translation.setValue(x, y, z);
soundVRMLSound0—>maxFront = std::max(75.0f, distance + 20.0f);
soundVRMLSound0—>maxBack = std::max(75.0f, distance + 20.0f);
soundVRMLSound0—>minFront = 8.0f;

soundVRMLSound0—>minBack = 8.0f;
soundSwitchO—>whichChild.setValue (SO_SWITCH_ALL) ;

break;

se 1:

soundTransl—>translation.setValue(x, y, z);
soundVRMLSoundl—>maxFront = std::max(75.0f, distance + 20.0f);
soundVRMLSoundl—>maxBack = std::max(75.0f, distance + 20.0f);
soundVRMLSoundl—>minFront = 8.0f;

soundVRMLSoundl—>minBack = 8.0f;

soundSwitchl —>whichChild.setValue (SO_SWITCH_ALL);

break;

se 2:

soundTrans2—>translation.setValue(x, y, z);
soundVRMLSound2—>maxFront = std ::max(75.0f, distance + 20.0f);
soundVRMLSound2—>maxBack = std::max(75.0f, distance + 20.0f);
soundVRMLSound2—>minFront = 8.0f;

soundVRMLSound2—>minBack = 8.0f;
soundSwitch2—>whichChild.setValue (SO _SWITCH ALL);

break ; - -

e 3:

soundTrans3—>translation.setValue(x, y, z);
soundVRMLSound3—>maxFront = std::max(75.0f, distance + 20.0f);
soundVRMLSound3—>maxBack = std ::max(75.0f, distance + 20.0f);
soundVRMLSound3—>minFront = 8.0f;

soundVRMLSound3—>minBack = 8.0f;
soundSwitch3—>whichChild.setValue (SO_SWITCH_ALL);

break;

152 Source code

G.4 amexGUIEngine.h

Listings of the sourcecode of amexGUIEngine.h.

#ifndef AMEXGUIENGINE H
#define AMEXGUIENGINE H

#pragma once

#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoSphere.h>
#include <Inventor/nodes/SoCylinder.h>
#include <Inventor/nodes/SoTransform.h>
#include <Inventor/nodes/SoMaterial.h>
#include <Inventor/nodes/SoSwitch.h>
#include <Inventor/nodes/SoPointLight.h>
#include <Inventor/nodes/SoEventCallback.h>
#include <Inventor/nodes/SoLightModel.h>
#include <Inventor/nodes/SoCamera.h>
#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoTexture2.h>
#include <Inventor/nodes/SoTexture2Transform.h>

#include <Inventor/VRMLnodes/SoVRMLBox.h>
#include <Inventor/VRMLnodes/SoVRMLInline.h>
#include <Inventor/vrmlnodes/SoVRMLGroup.h>
#include <Inventor/vrmlnodes/SoVRMLtransform.h>
#include <Inventor/vrmlnodes/SoVRMLBillboard.h>

#include <Inventor/misc/SoAudioDevice.h>
#include <Inventor/VRMLnodes/SoVRMLAudioClip.h>
#include <Inventor/VRMLnodes/SoVRMLSound.h>
#include <Inventor /VRMLNodes/SoVRMLText.h>

#include <Inventor/SoDB.h>

#include <Inventor/nodes/SoText3.h>
#include <Inventor/nodes/SoText2.h>
#include <Inventor/nodes/SoAsciiText.h>
#include <Inventor/nodes/SoScale.h>

//Menus
#include "../nodes/ShadowText2.h"
[* %
* A class generating and updating graphical elements
*/
class amexGUIEngine {
private:
public:
SoSwitch * templateNormalSwitch ; /* Switch for opaque structure x/
SoSwitch * templateTransparentSwitch ; /* Switch for transparent struct.x*/
SoSwitch * elementO_Switch; /* Switch for alarm-object #0 x*/
SoSwitch * elementl_Switch; /* Switch for alarm-object #1 x*/
SoSwitch % element2_Switch; /* Switch for alarm-object #2 x*/
SoSwitch % element3_Switch; /* Switch for alarm-object #3 x*/
const char x menu[8]; /* Container for alarm listx/
const char x menuGrey[8]; /* Container for alarm list,grey text*/
const char = popup[5]; /* Containter for popup menux*/
const char x alarm[8]; /* Container for alarm info boardx*/
int visibleAlarmElements ; /* Counter of visible alarm elements x/
/ * %
* Constructor
*/
amexGUIEngine (void) {
menu[0] = "Time Id Val Area Desc "y
menu[l] = " "y
menu[2] = "";
menu[3] = "";
menu[4] = "";
menu[5] = "";
menu[6] = " "y
menu[7] = "< StatusLevel 0 >";

menuGrey [0]
menuGrey [1]
menuGrey [2]
menuGrey [3]
menuGrey [4]
menuGrey [5]
menuGrey [6]
menuGrey [7]

G.4 amexGUIEngine.h

153

alarm [0] = " 'l New Alarm !!";
alarm [1] = " "y
alarm [2] = " Object blapp "y
alarm [3] = "";
alarm [4] = "";
alarm [5] = "[Urgency: HIGH] [Impact: LOW]";
alarm [6] = " "y
alarm [7] = "[F]ix [T]rends [D]ocumentation [C]lose";
popup[0] = "!! Pipe, low temperature !!";
popup[l] = " "
popup[2] = "Urgency:HIGH Impact:LOW";
popup[3] = " "y
popup[4] = "[G]oto [S]uppress [D]oc [T]rend";
visibleAlarmElements = 0;
¥
[* %
* Destructor
*/
“amexGUIEngine(void) {}
VAR
* Update scenegraph and sets structures to transparent if enable==true
* Q@param transparent sets template/structures to transparent if true
*/
void updateSceneGraph(bool transparent) {
if (transparent=—true) {
templateNormalSwitch—>whichChild.setValue (SO_SWITCH_ NONE) ;
templateTransparentSwitch—>whichChild.setValue (SO_SWITCH_ ALL);
} else {
templateNormalSwitch—>whichChild.setValue (SO_SWITCH_ALL);
templateTransparentSwitch—>whichChild.setValue (SO_SWITCH_ NONE);
}
/* %
* Update alarm information board
* Qparam enable enable alarm info board
* Qparam stringl textline#0 in alarm info board
* Qparam string2 textline#2 in alarm info board
* Qparam string3 textline#3 in alarm info board
* Qparam string4 textline#5 in alarm info board
*/
void updateAlarmBoard(bool enable, const char stringl [],
const char string2/[],
const char string3|[],
const char string4[]) {
SoSwitch * AMEX ALARM_BOARD_SWITCH —
(SoSwitch %) SoNode::getByName("amex_alarm_overlay_switch");
if (enable) {
ShadowText2 * AMEX_ ALARM_BOARD_TEXT —
ShadowText2 x) SoNode::getByName("amex_alarm_board_text");
alarm [0]=stringl;
alarm [2]=string2;
alarm [3]=string3;
alarm [5]=string4;
AMEX ALARM BOARD TEXT->string.setValues (0, 8, alarm);
AMEX ALARM BOARD SWITCH->whichChild.setValue (SO_SWITCH_ ALL);
} else {
AMEX ALARM BOARD SWITCH->whichChild.setValue (SO_SWITCH NONE) ;
¥
}
/% *
* Update popup
* Q@param enable enable popup box
* Q@param heading heading of popup box
* Q@param string text string of popup box
*/
void updatePopup(bool enable, const char heading](],

const

char string|[],

int

SoSwitch % AMEX_ POPUP_SWITCH —

(SoSwitch %) SoNode::getByName("amex_popup_overlay switch");
if (enable) {

ShadowText2 * AMEX POPUP_TEXT —
(ShadowText2 %) SoNode::getByName("amex_popup_text");
popup [0] =
popup [2] =

heading;
string ;

switch(criticality) {

criticality) {

154

Source

code

case O0:
popup[4] = "[G]oto [C]onfirm
break;
case 1:
case 2:
case 3:

[Dloc [T]rend";

popup[4] = "[G]oto [S]uppress [D]oc [T]rend";

break;
case 99:

popup[4] = "[G]oto [D]oc [T]rend";

break;

}

AMEX_POPUP_TEXT->string.setValues (0, 5, popup);
AMEX_POPUP_SWITCH->whichChild .setValue (SO_SWITCH_ALL);

} else

¥
¥

VAXE]
* Update alarm objects and superimposed

{
AMEX POPUP_SWITCH->whichChild.setValue (SO_SWITCH NONE) ;

information board

* @param enable enable showing of object

* @param id alarm-1ID

*/

void updateAlarmElements(bool enable, int id) {

switch (id) {
case O:

if (enable) {
element0 Switch—>whichChild.
visibleAlarmElements ++;

} else {
element0 Switch—>whichChild.
visibleAlarmElements ——;

}
break;
case 1:

if (enable) {
elementl _Switch—>whichChild.
visibleAlarmElements ++;

} else {
elementl _Switch—>whichChild.
visibleAlarmElements ——;

break ;
case 2:

if (enable) {
element2_Switch—>whichChild.
visibleAlarmElements ++;

} else {
element2_Switch—>whichChild.
visibleAlarmElements ——;

break;
case 3:

if (enable) {
element3 Switch—>whichChild.
visibleAlarmElements ++;

} else {
element3 Switch—>whichChild.
visibleAlarmElements ——;

setValue (SO_SWITCH_ALL);

setValue (SO_SWITCH_NONE) ;

setValue (SO_SWITCH_ALL);

setValue (SO_SWITCH_NONE) ;

setValue (SO_SWITCH_ALL);

setValue (SO_SWITCH_NONE) ;

setValue (SO_SWITCH_ALL);

setValue (SO_SWITCH_NONE) ;

break ;
printf ("Number of alarm elements %i\n", visibleAlarmElements);
if (visibleAlarmElements == 1) {

//Make surrounding structure transparent

updateSceneGraph (bool (true));

details)
details)
details)
details)
details)

} else if (visibleAlarmElements == 0) {
updateSceneGraph (bool(false));

}

/% *
* Update 1list of alarms
* Qparam line line number [0, 4], [7]
* Qparam stringl textline (see code for
* Qparam string2 textline (see code for
* Qparam string3 textline (see code for
* Qparam string4 textline (see code for
* Qparam activel trigger (see code for
* Qparam active2 trigger (see code for

details)

G.4 amexGUIEngine.h 155

* Q@param active3 trigger (see code for details)
* Qparam active4 trigger (see code for details)
*/
void updateAlarmText(int line , const char stringl[], int activel,
const char string2[], int active2,
const char string3[], int actived,
const char string4[], int actived) {
ShadowText2 * AMEX_ ALARMLIST TEXT =
(ShadowText2) SoNode::getByName("amex_menu_text");
ShadowText2 * AMEX_ ALARMLIST TEXT GREY —
(ShadowText2) SoNode::getByName("amex_menu_text_grey");

switch(line) {
case 1:
if(activel) {
menu[2]=stringl;
menuGrey [2]="";
} else {
menu[2]="";
menuGrey [2]=stringl ;
}
break;
case 2:
if (active2) {
menu[3]=string2;
menuGrey [3]="";
} else {
menu[3]="";
menuGrey [3]=string2;

}

if(activel) {
menu[2]=stringl ;
menuGrey [2]="";

} else {
menu[2]="";
menuGrey [2]=stringl ;

break;
case 3:
if (active3) {
menu[4]=string3;

menuGrey [4]="";

} else {
menu[4]="";
menuGrey[4]=string3;

if (active2) {
menu[3]=string2;
menuGrey [3]="";

} else {
menu[3]="";
menuGrey [3]=string?2;

}

if (activel) {
menu[2]=stringl ;
menuGrey [2]="";

} else {
menu[2]="";
menuGrey[2]=stringl;

}

break;

case 4:

if (actived) {
menu[5]=string4;
menuGrey[5]="";

} else {
menu[5]=
menuGrey [5]=string4 ;

nn,
H

i

if (active3) {
menu[4]=string3;
menuGrey [4]="";
} else {
menu[4]="";
menuGrey[4]=string3;

i

if (active2) {
menu[3]=string?2;
menuGrey [3]="";

156 Source code

} else {
menu[3]="";
menuGrey [3]=string?2 ;

if (activel) {
menu[2]=stringl;
menuGrey [2]="";

} else {
menu[2]="";
menuGrey[2]=stringl ;

}

break;

case T7:
menu[7]=stringl;
break ;

}

AMEX ALARMLIST TEXT->string.setValues (0, 8, menu);
AMEX ALARMLIST TEXT GREY->string.setValues (0, 8, menuGrey);

}

void buildElementGraph(SoSeparator % rootSeparator) {
//alarm #0
element0 Switch = new SoSwitch ();
element0 Switch—>setName("element0 Switch");
SoSeparator * element0_Sep = new SoSeparator;

element0 Sep—>setName("elementO Sep");

SoTransform = element0_Trans = new SoTransform;
element0 Trans—>scaleFactor.setValue(1.0f, 1.0f, 1.0f);

Solnput element0 in;

SoVRMLGroup =*element0 VRML = new SoVRMLGroup;
elementO in.openFTile("element A.wrl" ,FALSE);
element0 VRML = SoDB::readAllVRML(&element0 in);

element0_Sep—>addChild (element0_Trans);

element0_Sep—>addChild (element0_VRML) ;
element0_Switch—>addChild (element0_Sep);
element0_Switch—>whichChild.setValue (SO_SWITCH_NONE) ;

//alarm #1
elementl_Switch = new SoSwitch ();
elementl _Switch—>setName("elementl_ Switch");

SoSeparator * elementl_Sep = new SoSeparator;
elementl_Sep—>setName("elementl_Sep");
SoTransform # elementl_Trans = new SoTransform;

elementl_Trans—>scaleFactor.setValue(1.0f, 1.0f, 1.0f);
Solnput elementl _in;
SoVRMLGroup #elementl VRML = new SoVRMLGroup;
elementl _in.openFile("element_ D .wrl" ,FALSE);
elementl VRML = SoDB::readAllVRML(&elementl _in);
elementl_Sep—>addChild (elementl_Trans);
elementl_Sep—>addChild (elementl VRML);
elementl _Switch—>addChild (elementl_Sep);
elementl Switch—>whichChild.setValue (SO_SWITCH_ NONE) ;

//alarm #2
element2 Switch = new SoSwitch ();
element2 Switch—>setName("element2 Switch");

SoSeparator * element2 Sep = new SoSeparator;
element2 Sep—>setName("element2 Sep");
SoTransform #* element2 Trans = new SoTransform;

element2 Trans—>scaleFactor.setValue(1.0f, 1.0f, 1.0f);
Solnput element2 in;
SoVRMLGroup xelement2 VRML = new SoVRMLGroup;
element2 in.openﬁile(”element B.wrl" ,FALSE);
element2 VRML = SoDB::readAllVRML(&element2 in);
element2 Sep—>addChild (element2 Trans);
element2 Sep—>addChild (element2 VRML);
element2 Switch—>addChild (element2 Sep);
element2 Switch—>whichChild.setValue (SO_SWITCH_ NONE) ;

//alarm #3
element3_Switch = new SoSwitch ();
element3 _Switch—>setName ("element3_Switch");
SoSeparator * element3_Sep — new SoSeparator;

element3 _Sep—>setName("element3_Sep");

SoTransform x element3_Trans = new SoTransform;
element3_Trans—>scaleFactor.setValue(1.0f, 1.0f, 1.0f);

Solnput element3 _in;

SoVRMLGroup #*element3_ VRML = new SoVRMLGroup;
element3 _in.openFile("element_C.wrl" ,FALSE);
element3_ VRML = SoDB::readAllVRML(&element3 _in);

element3_Sep—>addChild (element3_Trans);

G.4 amexGUIEngine.h

157

element3_Sep—>addChild (element3_VRML);
element3 _Switch—>addChild (element3_Sep);
element3 _Switch—>whichChild.setValue (SO_SWITCH_NONE) ;

//Adding to root
rootSeparator —>addChild (element0_Switch);
rootSeparator —>addChild (elementl_Switch);
rootSeparator —>addChild (element2 _Switch);
rootSeparator —>addChild (element3_Switch);

}
/ * x
* Builds scenegraph for structures , templates , pipelines etc.
* Qparam *rootSeparator root of scenegraph
*/
void buildSceneGraph(SoSeparator * rootSeparator) {
// Template - normal
templateNormalSwitch = new SoSwitch ()3
SoSeparator * templateSep = new SoSeparator;

Solnput template in;

SoVRMLGroup *templateVRML = new SoVRMLGroup;
template in.openFile("template n_ 12.wrl" ,FALSE);
templateVRML = SoDB::readAllVRML(&template in);

templateSep—>addChild (templateVRML);
templateNormalSwitch—>addChild (templateSep);
templateNormalSwitch—>whichChild.setValue (SO_SWITCH_ALL);

// Template - transparent
templateTransparentSwitch = new SoSwitch ();
SoSeparator *x templateTransSep = new SoSeparator;

Solnput templateTrans_inj
SoVRMLGroup *templateTransVRML = new SoVRMLGroup;

templateTrans in.openFile("template n_ 12 transparent.wrl" FALSE);
templateTransVRML = SoDB::readAllVRML(&templateTrans in);

templateTransSep—>addChild (templateTransVRML);
templateTransparentSwitch—>addChild (templateTransSep);

templateTransparentSwitch—>whichChild.setValue (SO_SWITCH_NONE) ;

//Adding to root
rootSeparator —>addChild (templateTransparentSwitch);
rootSeparator —>addChild (templateNormalSwitch);

}s
#endif

158 Source code

G.5 amexAlarmGenerator.h

Listings of the sourcecode of amexAlarmGenerator.h.

#ifndef AMEXALARMGENERATOR H
#define AMEXALARMGENERATOR_H

#include <algorithm>

#include <cstdlib>

#include <ctime>

#include <iomanip>

#include <iostream >

#include <vector>

#include <Inventor/sensors/SoTimerSensor.h>
#include <Inventor/SbTime.h>

#include <Inventor/SbString.h>

[* %

* A class which generates alarms

*/

class amexAlarmGenerator {

private:

struct alarmstruct{

SbTime * timestamp ; // timestamp of alarm
int id; // alarm id
int value; // static value
int area; // area
int criticality ; // static criticality
char * description; // textual description
char % description2; // textual description
char % impact urgency ; // textual description
float position[3]; // position of alarmobject
double utm|[3]; // UTM-position
float location [3]; // position for Goto ()
float rotation[3]; // rotation vector for Goto ()
float radians; // amount roatation for Goto ()

}s

int alarmActive [5]; /*%< Array of active alarms x/
static const int MAX ATARM = 5; /**< Maximum number of alarms x/

/* %
* Generates a random number
* Qparam lowest_number lower limit of random range
* Qparam highest_number upper limit of random range
* Q@return random number
*/
int random_range(int lowest_number, int highest_ number) {
if (lowest_number > highest_number){
std ::swap(lowest_number, highest_number);
}

int range — highest_number — lowest_number + 1;
return lowest_number + int (range % rand()/(RAND_MAX + 1.0));

}

public:
int alarmCount; /**< Number of active alarms x*/
alarmstruct alarmArray [MAX_ALARM]; /** < Containerarray for alarm-structs x/

VEX]
* Constructor
*/
amexAlarmGenerator(void) {
alarmCount = 0;
for (int i = 0; i<5; i++) {alarmActive[i] = 03}
}
VAR
* Destructor
*/
“amexAlarmGenerator(void) {

/% *
* Generates an alarm and adds to alarmArray
*/
void callback () {
int tmpld = —1;
int tmpValue = —1;
int tmpArea = —1;
int tmpCriticality = —1;

char * tmpDescription;
char % tmpDescription2;

G.5 amexAlarmGenerator.h 159

char x tmplmpact_urgency;

float tmpPosition[3] = {0.0f, 0.0f, 0.0f
double tmpUTM[3] = {0.0, 0.0, 0.0};

float tmpLocation[3] = {0.0f, 0.0f, 0.0f
float tmpRotation[3] = {0.0f, 0.0f, 0.0f

}; //position of sound
//UTM position

}s //used in goto ()

}s //used in goto ()

float tmpRadians = 0.0f;

switch (random_range (0, 3)) {
case O0:
// Thick pipe

if (alarmActive[l]

}

0) {

alarmActive[l] = 1;
alarmCount++;
tmpld = 0;
tmpValue = 53;
tmpArea = 18;
tmpCriticality = 99;

tmpDescription = "SCSSV failure "y
tmpDescription2 = "SCSSV failure";
tmplmpact urgency = " <!! SAFETY CRITICAL !!>";
tmpPosition[0] = 4.871f;

tmpPosition[1] = 1.0f;

tmpPosition[2] = —2.871f;

tmpUTM[0] = 502933.417353;

tmpUTM[1] 7931867.259912;

tmpUTM[2] = —324.391401;

tmpLocation[0] = 502926.0;

tmpLocation[1 7931870.0;

tmpLocation[2 —321.297;

tmpRotation [0 0.486865;

tmpRotation[1 —0.516464;

tmpRotation[2] = —0.70442;

tmpRadians = 1.96918;

]
|
]
|
|

break;

case 1:
//inlet

if (alarmActive[3]

}

0) {

alarmActive[3] = 1;
alarmCount++;
tmpld = 1;
tmpValue = 99;
tmpArea = 18;
tmpCriticality = 3;

tmpDescription = "Pipe, high pressure ";
tmpDescription2 = "Pipe,high pressure ";
tmplmpact_urgency = "Urgency :MED Impact :MED" ;
tmpPosition[0] = 0.2519;

tmpPosition[1] = 2.321;

tmpPosition[2] = —21.9;

tmpUTM[0] = 502946.561913;

tmpUTM [1] 7931879.642961;

tmpUTM|[2] = —322.139355;

tmpLocation[0] = 502990.0;

tmpLocation[1l] = 7931880;

tmpLocation[2] = —306.416;

tmpRotation [0] 0.538709;

tmpRotation[1] 0.504049;

tmpRotation [2] 0.675076;

tmpRadians = 1.89165;

break ;

case 2:
//Thin pipe

if (alarmActive[2] =

=0) {
alarmActive [2] 1;
alarmCount++;
tmpld = 2;
tmpValue = 99;
tmpArea = 18;
tmpCriticality = 1;
tmpDescription = "SCSSV failure ;
tmpDescription = "Pipe,high temperature";
tmpDescription2 = "Pipe, high temperature";
tmplmpact _urgency = "Urgency:HIGH Impact:HIGH";
tmpPosition[0] = —2.44;
tmpPosition[1] = 4.8;
tmpPosition[2] = 0.7029;
tmpUTM[0] = 502927.024922;
tmpUTM[1] = 7931872.017507;
tmpUTM[2] = —321.567013;
tmpLocation[0] = 502922.0;

160

Source code

}s

#endif

tmpLocation[1]
tmpLocation[2]
tmpRotation [0]
tmpRotation[l] =
tmpRotation[2] =
tmpRadians 1.43

break;

case 3:

if (alarmActive[0]
alarmActive[0] =
alarmCount—++;
tmpld 3;
tmpValue = 55;
tmpArea 18;
tmpCriticality
tmpDescription

7931870;
—320.373;
0.790075;
—0.348702;
—0.504171;
812;

0

5
"Hatch open ;

tmpDescription2 = "Hatch open";
tmplmpact urgency = "<Notification>";
tmpPosition[0] = 0.01124f;
tmpPosition[1] = 1.594f;
tmpPosition[2] = 11.27f;

tmpUTM[0] = 502920.970775;
tmpUTM[1] = 7931866.416976;
tmpUTM[2] = —322.075169;
tmpLocation[0] = 502909.0;
tmpLocation[1] = 7931890.0;
tmpLocation[2] = —307.689;
tmpRotation[0] = —0.211038;
tmpRotation[1] = 0.498211;
tmpRotation[2] = 0.840981;
tmpRadians = 3.82565;
}
break ;
}
if (tmpArea != —1) {
SbTime * currentTime = new SbTime(SbTime::getTimeOfDay ());
SbString string;
string = currentTime—>format ("%h.%m.%s");
this —>alarmArray[alarmCount —1].timestamp =
new SbTime(SbTime::getTimeOfDay ());
this—>alarmArray[alarmCount —1].id = tmpld;
this—>alarmArray[alarmCount —1].value = tmpValue;
this —>alarmArray[alarmCount —1].area = tmpArea;
this—>alarmArray[alarmCount —1]. criticality = tmpCriticality;
this—>alarmArray[alarmCount —1].description = tmpDescription;
this—>alarmArray[alarmCount —1].description2 = tmpDescription2;
this —>alarmArray[alarmCount —1].impact_urgency = tmplmpact_urgency;
this —>alarmArray[alarmCount —1]. position [0] = tmpPosition[0];
this —>alarmArray[alarmCount —1]. position[1] = tmpPosition[1];
this —>alarmArray[alarmCount —1]. position[2] = tmpPosition[2];
this —>alarmArray [alarmCount —1].utm[0] = tmpUTM]|[O0];
this —>alarmArray[alarmCount —1].utm|[1] = tmpUTM|[1];
this —>alarmArray[alarmCount —1].utm|[2] = tmpUTM|[2];
this —>alarmArray|[alarmCount —1].location [0] = tmpLocation[0];
this —>alarmArray[alarmCount —1].location[1] = tmpLocation[1];
this —>alarmArray[alarmCount —1].location [2] = tmpLocation[2];
this —>alarmArray|[alarmCount —1].rotation [0] = tmpRotation[0];
this —>alarmArray[alarmCount —1].rotation[1] = tmpRotation[1];
this —>alarmArray[alarmCount —1].rotation [2] = tmpRotation[2];
this —>alarmArray[alarmCount —1].radians = tmpRadians;
} else {

printf("\n");

Appendix H

Enclosed CD

The enclosed CD contains the following directories:

\Data\Models (the 3D models used in AMEX)
\Data\Sounds (the sounds used in AMEX)
\Data\Sourcecode (the sourcecode of AMEX)

\Report (this report in .pdf)

162 Enclosed CD

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

