
Acknowledgements

We would like to express our gratitude towards the following persons who facilitated the
composition and completion of this master thesis. First of all:

? Gunnar Brataas (IDI, NTNU), our adviser, for excellent guidance and construc-
tive feedback throughout the project.

? Peter Hughes (IDI, NTNU), our co-adviser, for value inputs throughout the
thesis.

In addition we appriciate the value inputs and moral support from the other performance
evalution students at IDI: Erik&Erlend&Geir.

Trondheim, 22nd June 2005

blank side

Preface

This paper is a master thesis conducted at IDI, NTNU during the spring 2005. The overall
objective in this paper is to look at the technical factors and the cost involved in assesing
the scalability for large scale Internet sites.

Below is a short summary of each chapter in our master thesis.

Chapter 1 - Introduction: This chapter introduces the problem definition and the pre-
liminary work.

Chapter 2 - Method: This chapter will present the concepts of the Structure and Per-
formance Specification method (SP-method), which is the method we use to asses
the scalability of the system.

Chapter 3 - System: In this chapter we will present the system used for our scalability
experiment, both the hardware and the software used. This is done so that the
experiments can be easily reproduced either on the same hardware, or on different
on hardware.

Chapter 4 - SP: In this chapter the system introduced in Chapter 3 is presented with
the SP notation, described in Chapter 2. We will first explain the operations on the
components and then explain the connections between the components, which are
described as complexity functions.

Chapter 5 - Scalability: This chapter will present the concepts of scalability, and out-
line the likely scaling scenarios in our thesis.

Chapter 6 - Measurements: This chapter will explain how the measurements of the
components are performed, discuss relevant issues connected to this, and give an
outline of a measurement plan.

Chapter 7 - Resource Function Workbench: This chapter will present a framework
for automatization of the measurements needed in our thesis. This includes both the
collection and the post-prosessing of the results.

Chapter 8 - Results: In this chapter we will present an overview of the results from our
experiments.

Chapter 9 - SP-parameterization: In this chapter we will parameterize the SP-model
identified in Chapter 4, based on the results of the measurements presented in Chap-
ter 8.

Chapter 10 - Dynamic model: In this chapter we will construct and solve a dynamic
model for our systems.

Chapter 11 - Discussion: In this chapter we will discuss the main findings in our thesis,
and look at them in connection with the scaling scenarios outlined in Chapter 5. We
will also explain the implications these findings have on read-intensive web sites like
TV2i.

Chapter 12 - Method evaluation: This chapter will evaluate the work and the meth-
ods used in this thesis.

Chapter 13 - Conclusion: This chapter gives a summary of the important findings and
the evaluation, and highlight areas for further work.

Appendix: The Appendix consists of four chapters:

• The first chapter presents a survey, which investigated the likely growth sce-
narios for web sites, and it was conducted by interviewing some of the major
news sites in Norway.

• The next chapter describes a classification of open source load generators. This
was used to find suited load generators for this thesis.

• The third chapter in the appendix, is a detailed walkthrough of the files scripts
in connection with the resource function workbench.

• In the fourth chapter in the appendix, we have included three of the most
important scripts in our RFW.

• In this last chapter, we presents all the measurement for our systems.

Web site: In connection with this thesis we have produced a web site, available on
http://www.stud.ntnu.no/groups/diplomgisleruud. This web site contains this report
in an electronic format, all the measurements from our experiment, the spreadsheets
used and the script used in our RFW.

Contents

Figures III

Tables V

1 Introduction 1

1.1 Problem definition . 1

1.2 The TV2i system . 2

2 Method 5

2.1 Structure and Performance model . 5

2.1.1 Introduction . 5

2.1.2 The SP framework . 5

2.1.3 Complexity matrix . 6

2.1.4 The static model . 7

2.1.5 Dynamic model . 7

3 System 9

3.1 Introduction . 9

3.2 System relationship . 9

3.3 System configuration . 11

3.3.1 Hardware configuration . 11

3.3.2 Software configuration . 12

3.4 Similarities and discrepancies from the TV2i system 15

4 SP 17

4.1 Operations . 17

4.1.1 Load generator . 17

4.1.2 Web server . 17

4.1.3 Database server . 19

4.1.4 CPU, disk and LAN . 19

4.2 Complexity functions . 19

4.2.1 Parameters used in the complexity functions 20

4.2.2 Load generator - Web server . 21

4.2.3 Web server - CPU web server . 21

4.2.4 Web server - Disk web server . 22

4.2.5 Web server - Database server . 22

4.2.6 Database server - CPU Database . 23

4.2.7 Database server - Disk Database . 23

4.3 Classification of the complexity functions 23

I

CONTENTS CONTENTS

5 Scalability 27

5.1 Scaling scenarios . 28

5.1.1 The focus in this thesis . 31

6 Measurements 33

6.1 Scale-up . 33

6.2 Operating point . 34

6.3 How to isolate resource demand . 35

6.4 Measuring Tools . 36

6.4.1 CPU tools . 36

6.4.2 IO tools . 36

6.5 Workload . 37

6.6 Controlling the caches . 37

6.7 Replications and run length . 39

6.8 Measurement plan . 39

6.8.1 Introduction . 40

6.8.2 Test system . 40

6.8.3 What to be measured . 40

6.8.4 What not to be measured . 41

6.8.5 Schedule . 41

7 Resource Function Workbench 43

7.1 Background theory . 43

7.2 Description of workbench . 44

7.2.1 Outline of solution . 44

7.2.2 Detailed description . 47

8 Results 53

8.1 Experiment results on old web server . 53

8.2 Experiment results on new web server . 54

8.3 Experiment results on the database . 55

8.4 Disk measurement . 55

8.5 Comparison of the web servers . 57

9 SP-parameterization 59

9.1 Function pattern f1 . 59

9.2 Function pattern f2 . 59

9.3 Function pattern f3 . 60

9.4 Function pattern f4 . 65

10 Dynamic model 69

10.1 Background theory . 69

10.2 Method . 70

10.3 Model construction . 71

10.4 Model solution . 73

10.5 Evaluation . 78

11 Discussion 79

11.1 Impact of increased article size . 79

11.2 Scale-up . 81

II

CONTENTS CONTENTS

11.3 Connection between web server and database 83
11.4 Capacity planning . 83

12 Method evaluation 87
12.1 SP method . 87
12.2 Resource function workbench . 87
12.3 Measuring process . 88
12.4 Dynamic model . 88
12.5 Work process . 89

13 Conclusion 91

Bibliography 93

Appendix i

A News sites survey i
A.1 Key findings . i
A.2 Participants . i

B Open source software adaption v

C RFW - File walkthrough vii
C.1 Conf files . vii

C.1.1 Skeleton files . viii
C.2 Scripts . x

C.2.1 Initiate scripts . xi
C.2.2 Measurementscripts . xii
C.2.3 Measurementscript oldnodes . xiv

C.3 DB . xiv
C.4 start-stop scripts . xv

D RFW script xvii
D.1 measure.sh . xvii
D.2 formatmeasurement.sh . xviii
D.3 formatmeasurement.sh . xix

E All measurements xxv
E.1 Old web server . xxv
E.2 New web server . xxxii
E.3 Database . xxxviii

F Original problem definition xli

III

List of Figures

1.1 The components in the TV2i system . 2

1.2 SP-model of the TV2i system . 4

2.1 Example of a SP diagram . 6
2.2 Example of a complexity matrix . 7

2.3 The relationship between the static and dynamic model 8

3.1 The system used in our experiment . 9

3.2 The parts of an article in our system . 10
3.3 Sequence diagram of our system . 11
3.4 Major components in the TV2i system . 15

3.5 Comparison of web servers . 16

4.1 SP model of the system . 18

4.2 Simplified model . 20

5.1 Different types of scaling functions . 28

6.1 Example output of the vmstat command . 36

6.2 Example output of the iostat command . 36
6.3 Excerpt from an experiment log . 40

7.1 Elements of a Resource Function Workbench 44
7.2 Main scripts in the workbench . 45
7.3 Example of result file . 46

7.4 How the experiment is started . 48
7.5 Breakdown of the measure script . 49

7.6 Generateload breakdown . 50
7.7 How the experiment is stopped . 51

8.1 Throughput (Tps) versus image size on old web server 54

8.2 Throughput (Tps) versus image size on new web server 54
8.3 Throughput (Tps) versus text size on the database 55

8.4 KB read on disk read vs. image size on new web server 56
8.5 Comparison of Tps vs. image size between old and new web server 57

9.1 CPU cycles used vs. image size on old web server 61

9.2 CPU cycles used vs. image size on new web server 62
9.3 Comparison of the CPU cycles . 63

9.4 Parameterization of the new and old web server 65
9.5 CPU cycles used vs. text size on database server 66

IV

LIST OF FIGURES LIST OF FIGURES

9.6 Disk read on new web server . 67

10.1 Scalability method . 70
10.2 Closed QN model of our system . 72
10.3 Breakdown of the contention model . 73
10.4 Explanation of validation process . 75

11.1 Throughput on the old and new web server and the database 80
11.2 Comparison of throughput on old and new web server vs. image size 82
11.3 Throughput vs. utilization on the old web server 84

V

List of Tables

4.1 Parameters used in the complexity functions 21
4.2 Size and properties of the matrices used . 24
4.3 Function patterns . 24

6.1 Scale factors between Clustis and Clustis2 35
6.2 Sessions needed on new node . 42
6.3 Sessions needed on old node . 42
6.4 Sessions needed on new database node . 42

9.1 CPU cycles on new old server . 61
9.2 CPU cycles on new web server . 63
9.3 CPU cycles on database server . 65

10.1 Input parameters to model M0 . 74
10.2 Comparison between measured and predicted response time 76
10.3 Comparision between predicted and measured R

′

CPU M1 76
10.4 Real scale-up factor between system S0 and S1 77
10.5 Comparison between predicted and measured R

′

LAN for M1 77

12.1 How the work was distributed during our work process 89

VI

blank side

blank side

Chapter 1

Introduction

The trend for read-intensive news sites is to use more and larger multimedia content,
especially images. This is driven by the fact that more and more readers use broadband
to access the Internet, and in addition the screen sizes have gone up. Increased article size
could possibly have wide implications for the web sites, and they should know how this
affects their systems. How will improving the hardware of the system help them to cope
with these changes?

This paper will look into the technical factors and the cost involved in assessing the
scalability for large scale Internet sites. We use a system which resembles read-intensive
large-scale Internet sites, to perform this scalability exploration.

This chapter introduces the problem definition and the preliminary work.

1.1 Problem definition

In this section we will present the final version of the problem definition. This version has
some slight modifications from the original one, which can be found in Appendix F. The
problem definition has been made in cooperation with Gunnar Brataas.

”In the Ruud & Tveiten project [21] the overall objective was to study the
practical and economic feasibility of exploring the scalability of a large-scale
read-intensive Internet site for TV2 Interaktiv. Using the SP terminology, a
limited number of classes of complexity functions were identified, serving to
structure the scalability assessment method. However, the resulting method
was not validated with actual measurements.

The main objective of this thesis is to continue the work started in [21]: i.e. to
explore the practical and economical feasibility of assessing the scalability of a
read-intensive large-scale internet site. Since the TV2 Nettavisen infrastructure
was hard to measure, the essence of the infrastructure has to be reproduced in
a controlled environment. For practical reasons Open Source Software will be
used together with the Clustis2 computational cluster of PCs. The similarities
and discrepancies between TV2i’s infrastructure and the selected system should
be described.

1

Introduction 1.2 The TV2i system

The static properties of the test baseline will be modeled using the SP method.
Scaling scenarios will drive the scalability exploration and should be described
in detail. In practice, strict and uniform scaling is rare. Some scaling scenarios
should therefore consider differential and non-uniform scaling.

For each class of measurements a test plan should be both described and vali-
dated by measurements at the level of detail which makes it possible for others
to revalidate the actual measurements performed. It is still an open question if
it is possible to parameterize a complete scalability model, or if only some ex-
amples of each complexity function class should be measured. If a complete set
of measurements is performed, the resulting static model should be validated
in combination with a dynamic model.

To measure the components needed in the SP model will in the general case
require a Resource Function Workbench [25], a tool which aids in the actual
measurement and makes it easier to reuse the complexity functions. To develop
this is a useful result in its own right. To describe and develop a suitable
Resource Function Workbench is in this diploma a secondary objective.”

1.2 The TV2i system

In our project [21], we studied TV2 Nettavisen. This is a large-scale read-intensive Internet
news site, currently the third biggest site in Norway with just under one million weekly
readers [17]. Figure 1.1 shows an overview of the major component in the TV2i system.

Cisco load balancer
Database server

Internet

Escenic Journalist Server

Firewall
Web servers

(Escenic application server & Apache server)

NetApp SAN

Web Caches

Figure 1.1: The components in the TV2i system

2

1.2 The TV2i system Introduction

TV2i configuration

All the servers in the TV2i system run Red Hat Linux, and the local network is Gigabit
Ethernet.

The web caches in the TV2i system are running Oracle software, and are configured on 3
computers. The web caches speed up the response time for the end-users and minimize the
number of requests to the back-end server. The web caches have a hit ratio of around 92%,
which is very high. Therefore only a small number of requests hit the back-end server.

Apache is used on the web server. Its job is to serve HTTP requests from the web caches,
and to ask the application sever (the Escenic end-user server) for a static file or to retrieve
an image from the NetApp and return it via the HTTP protocol back to the web caches.
Escenic, which is a content management system, is running in cooperation with Apache.
The main task for the Escenic End-user Server is to make queries to the database, and
convert this information into a static format (HTML), which in turn is served to the
Apache web server. A JDBC driver is also running on the web server. This driver is an
open connection between the Escenic End-user server and the database, and improves the
performance of this connection.

NetApp is a network storage solution, which is connected to the web servers through a 1
Gigabit local network. It stores the images and graphics used on the web site. It consists
of an unknown number of disks, connected together as a RAID solution.

TV2i uses a storage area network (SAN) to allow multiple hosts connect to multiple storage
devices. This means that more than one database server can work against the same data.
The SAN solution uses a fiber channel to connect the Oracle database servers to the SAN.
The Oracle database servers run on two Dell servers, currently only one of the two servers
is in operation, with the other in cold standby.

The Escenic Journalist Server is the server the journalist applications interact with, to
update and publish articles. In our project, we decided not look further into this part of
the system, and rather have a customer focus. The main reason for this is because there
are so many more users than journalists in the system.

SP-model of the TV2i system

Based on the SP model of the TV2i system described in [2], we studied in our project
the important components in the TV2i system and their connections, and looked for
possibilities to simplify the model. In [21] we found that the TV2i system is a large and
highly complex system, so that further limitations were needed to make the scalability
assessment of the system feasible.

In [21] the system was divided into two main parts, one serving the end-users and one
serving the journalists. The focus was on the end-user part, and the reasons for this were
that the end-users are the customers, and that they have a higher demand for response
time. In addition there was expected a high growth in the number of end-user, and not
in the number of journalists. The final SP model of the TV2i system in [21] is shown in
Figure 1.2 on next page. This model shows the components of the TV2i system and the
connection between them, and a further description the modeling concept is described in
Chapter 2.

3

Introduction 1.2 The TV2i system

Because of TV2i’s focus on growth in end-users, we have tried to simulate a read-intensive
news site, so that our results can be applied to TV2i end-user part.

Oracle 9.2i
RAC

Enterprise DB

Escenic End-
User Server

Web Cache

End User
Browser

Apache Static
Web Server

Thin JDBC
Driver

ISP, Firewall,
Local Network

Escenic
Journalist

Server

Cisco Load
Balancer

NetApp

NetApp

Processing

Memory

Communication

Local NetworkLocal NetworkLocal NetworkLocal Network
Database

Server HW
ESC4,5,6

Server HW
Web Cache

HW

Figure 1.2: SP-model of the TV2i system

4

Chapter 2

Method

This chapter will present the concepts of the Structure and Performance Specification
method (SP method), which is the method we use to asses the scalability of the system.

2.1 Structure and Performance model

The system in this thesis is described using the Structure and Performance Specification
method (SP method). This method is a conceptual framework that describes the software
and hardware components in the system, and the relations between them. The SP method
was developed by Peter H. Hughes in 1988 [9], and its purpose is to make it easier to work
with load and performance analysis.

2.1.1 Introduction

SP deals with hierarchical models that span from software on the top to hardware at
the bottom. To illustrate the SP-model we can imagine that we have a large system.
This system can be considered as a ”black box”, because we do not know anything about
the components it contains. The SP-model aids us to open up this ”black box”, so we
can examine the subcomponents of the system. These subcomponents can be systems,
which can be further broken down into new subsystems. Finally, we will be left with
components that can not be further decomposed, and these are called devices (hardware).
This system breakdown makes the performance analysis easier, as it is easier to calculate
the performance on a subsystem than on the overall system. The overall performance can
then be found through aggregating the performance of the subsystems.

2.1.2 The SP framework

The SP framework consists of boxes, and lines representing relationships between them
(see Figure 2.1 on page 6). The boxes represents both hardware and software components
in the system. Each of the boxes has one or more operations, represented by a circle with
the name of the operation.

There are software components on all the levels in the hierarchy, except on the bottom

5

Method 2.1 Structure and Performance model

System

Disk
O

p
er

a
tio

n
O

p
e

ra
tio

n

CPUCommunication
O

p
er

a
tio

n

O
p

e
ra

tio
n

O
p

e
ra

tio
n

O
p

e
ra

tio
n

O
p

e
ra

tio
n

Figure 2.1: Example of a SP diagram

layer where there are only hardware devices. These software components both offers and
requires services (operations). The hardware devices offer services, and do not require
services from any other components. The hardware devices are components like CPU,
disk and network.

The lines are relations between the services the components require from the lower level
components, and offer to the higher level ones. In Figure 2.1 CPU offer an operation,
while System requires (invokes) an operation from the CPU.

There are 3 different types of relations between the boxes. The thick line illustrates mem-
ory storage relations, the thin line process relations, and the dash-dot line communication
relations between the boxes. Software components have at least a processing and a memory
relation to a component on a lower level in the hierarchy.

2.1.3 Complexity matrix

The SP framework identifies all the components that are involved in the system. To specify
the system further, we need identify the relationships between the components. This is
done by mapping the operations offered on the lower level with the operations required
on the higher level. This is accomplished using complexity matrices. The operations on
the higher level are written in the first column, and the operations offered from the lower
level are written in the first row. The operations on each component can be real-world
operations, but do not need to be real-world. Some operations can be aggregated for the
purpose of the SP-modeling.

Each line in the SP-model will be represented by a complexity matrix. In Figure 2.2 module
A has six operations that invoke the four operations offered by module B. If the operation
A1 uses operation B2 twice, the number 2 should be written at the intersection between
the two operations. Vetland et al. claims in [22] that ”each row in a complexity matrix
is a vector that represents the mean number of times each service of the sub component
is invoked as a consequence of an operation of the superior component being invoked.”

6

2.1 Structure and Performance model Method

A

B
A2

B
1

B
2

B
4

B
3

A1

A3

A4
A5
A6

Resulting compexity matrix between
component A and B

B
2

B
1

B
4

B
3

A
2

A
1

A
6

A
5

A
4

A
3

Figure 2.2: Example of a complexity matrix

The matrix element cij can either be zero, a constant, or a function depending on some
parameters. The elements that depend on a number of parameters are called complexity
functions. Complexity functions can result in a non-linear scaling effect for the relations,
which is of special interest in a performance analysis view.

2.1.4 The static model

A static model describes how the services offered by the system are being used. The
SP-method specifies the performance-related attributes of any software component inde-
pendently of its environment and independently of any particular workload. The static
model requires that the work (e.g. the services required) and load (e.g., arrival rate) are
separated. We can summarize the SP method in three steps:

• First the system is divided into logical components, and then the relations between
the individual components are determined.

• Secondly the services on each component are identified.

• Finally, the properties of the connections are described as matrices. The matrices de-
scribe the relations between each connected component’s services. When multiplying
all these matrices, we get the top level service demand.

2.1.5 Dynamic model

The dynamic model will be thoroughly described in Chapter 10, but we introduce the
connection with the static model here. A static model can not alone answer many questions

7

Method 2.1 Structure and Performance model

related to scalability, it is only when it is used in connection with a dynamic model it can
answer scalability questions and be used for predictions. While the static model captures
the work involved in performing the operations, the dynamic model enable us to model
how the load (e.g. different number of users) will affect the system. The static model
provides parameters to the dynamic model via mapping of service demands to resource
demands. Figure 2.3 shows the connection between the static and dynamic model.

Performace
estimates

Services at
user interface

Dynamic model

Static
model

Devolved Work

Work

Load

Figure 2.3: The relationship between the static and dynamic model

The load parameters are applied directly to the dynamic model while the mapping be-
tween offered services (operations) and resources are modeled by the static model. In a
scalability study the dynamic model is made to investigate and experiment with the effects
of competition of computer resources.

The dynamic model can either be represented state-based or object-based. The state-based
is more solution-oriented than the object-based which is more descriptive. The state-based
representation is illustrated by modeling an open source queuing-network, representing
the servers and queuing centers of the system. while the object-based representation is
illustrated by e.g. activity diagrams.

8

Chapter 3

System

In this chapter we will present the system used for our scalability experiments, both the
hardware and the software used. This is done so that the experiments can be easily
reproduced either on the same hardware, or on different on hardware. Section 3.4 will
explain how this system resembles the system originally explored at TV2i.

3.1 Introduction

Our mission is to measure on a system fairly similar to the TV2i system, to prove the
feasibility of our methodology, so that they can apply it to their system.

To continue the work started in our project work, we have installed a system that re-
sembles the TV2i system. Our system is based on open source products and has fewer
components compared to the TV2i system shown in Figure 1.1 on page 2, but all the
significant components in the TV2i system are replaced by nearly equivalent components
in the new system, except the web caches. Although the new system is highly simplified,
the methodology of performance and scalability assessment of the systems will be similar.
The major components of the new system are shown in Figure 3.1.

Apache web server MySQL database server

Load
generator

Figure 3.1: The system used in our experiment

3.2 System relationship

This section will explain how the three components in our system work together. Our
system works in the same way as a news web site, where the users request articles (news).
Because of this, we will first explain the different parts of an article in our system.

9

System 3.2 System relationship

Article defined

ImagesText

Article

O
 v e rh e a d

Figure 3.2: The parts of an article in our system

As we can see in Figur 3.2, an article consists of three main parts:

• Text: This is the part written by the journalists, and it contains the actual news
content. It is stored in a MySQL database on the database server disk. All articles
must contain a text part.

• Images: An article can contain zero or more images. The number of images is
determined by the number of links to an image in the text part. The images are
stored on the web server disk.

• Overhead: This is the overhead in the article, that is additional information mainly
used internally by the web server and the web browser. This is typically some of
the HTML code (layout information). On real news sites this overhead can be fairly
large, but in our system it is very small, and thus we will not look into it.

Article request

The sequence diagram in Figure 3.3 on page 11 explains how and in which order the
different components are involved, when the load generator requests an article. This
sequence diagram is slightly simplified , as we have not included the establish and release
connection phases.

1. The load generator requests an article from the web server.

2. As an article always contains a text part, the web server requests the text from the
data base server.

3. The database processes the request, and text part is returned to the web server. The
web server then returns it to the load generator.

4. The load generator sees if there are any image links in the text. And if it is, it sends
out one request for each image link.

5. The web server processes the image requests, and return the images.

10

3.3 System configuration System

Load generator Web server Database server

Request article

Request text

Request image
LOOP

0:N
(where N is number of

images in article)

T IM
 E

Figure 3.3: Sequence diagram of our system

6. Article request complete.

Note: When we are measuring on the components we have to seperate the system. So we
are either just requesting images or just text.

3.3 System configuration

This section will explain our systems in detail. Subsection 3.3.1 will introduce the hardware
used, while subsection 3.3.2 will explain the software used.

3.3.1 Hardware configuration

The systems are configured on Clustis2, which is a computational cluster, owned by IDI,
NTNU. It consists of 21 computation nodes, which are coordinated by a master node1.
There are two types of nodes in this cluster, 17 identical new ones, and 4 old nodes. Both
types of nodes in the cluster are running the same version of Red Hat Linux. The nodes in
the cluster are connected through Gigabit Ethernet. This network is private to the nodes,
and only accessible through a front-end/login server.

Originally, we expected to use the old nodes in the cluster, but unfortunately the network
card in these nodes did not function properly under heavy load. In addition, these old
nodes were down for a long period of time. Our solution to these problems was to get a
node with similar hardware specification as the old nodes but with 1Gbit/s network card2.

1For more information about Clustis2 see their website: http://clustis2.idi.ntnu.no
2This card was bought and installed by us.

11

System 3.3 System configuration

There are some small configuration difference between our old node and the old Clustis
nodes. Our old node is a standalone node, on the same subnet, with the same operating
system. However, a shared disk area, available in Clustis is not available. This has
complicated our process a bit, as the disk area contained the system files, and these had
to be copied over to the old node. This should not affect the experiments.

The old servers (our node in Clustis) in our test system, have the following specification:

• A single AMD Athlon MP 1600+ (clocked at 1.4 GHz)

• 1GB of RAM

• A 18GB SCSI disk3

• 1GBit network card

• Linux kernel 2.4.21-15.EL

The new servers (nodes in Clustis2) in our test system have the following specification:

• A single 3.4 GHz Intel P4 processor

• 1GB of RAM

• A 36GB SCSI disk4

• 1GBit network card

• Linux kernel 2.4.21-15.EL

We will refer to the new servers as Clustis2 nodes, and the old one as Clustis node.

3.3.2 Software configuration

Our system is configured with a web server, a database server and a load generator. An
overview of the software used, can be seen below. A more detailed description of each
component is described later in this section.

• Apache web server

– Version: httpd-2.0.52

– Downloaded from: http://httpd.apache.org/download.cgi

• PHP

– Version: 4.3.10

– Downloaded from: http://www.php.net/downloads.php

• MySQL

3www.seagate.com/cda/products/discsales/marketing/detail/0,1081,336,00.html
4www.seagate.com/cda/products/discsales/marketing/detail/0,1081,541,00.html

12

3.3 System configuration System

– Version: mysql-standard-4.1.9-pc-linux-gnu-i686

– Downloaded from: http://dev.mysql.com/downloads/mysql/4.1.html

• Hammerhead2

– Version: 2.1.3

– Downloaded from: sourceforge.net/project/showfiles.php?group id=15206&release id=42907

Apache web server

We use the Apache HTTP web server (Apache), which is the most popular web server5 on
the marked. Apache is developed as a HTTP web server for various desktops and operating
system. The goal for Apache is to provide a secure, efficient and extensible server which
provides HTTP services in sync with the current HTTP standards.

More information about the Apache project can be found on: http://httpd.apache.org

Out of the box Apache is not able to handle more than 256 simultaneous requests, which
is not sufficient for our experiment. To overcome this problem we increased this limit in
the Apache configuration file.

PHP

Together with the Apache web server we use PHP. In this experiment PHP acts as the
content management layer. PHP is an open source server-side scripting language for
creating Web applications. It is the most popular dynamic Web content technology for
use with Apache servers. PHP offers also excellent connectivity to most of the common
databases, including MySQL as we use. PHP was downloaded as source code, and compiled
into binary files, with no special options, and then copied into the Apache folder. We use
it to fetch text from the database and build it into HTML and deliver it to the Apache
server.

More information about PHP can be found on: http://www.php.net

MySQL

The system is configured with a MySQL database server, which is the world’s most used
open source database server. The database is easy to customize and configure, and is also
known for its high performance and reliability. The MySQL comes as a binary file, and it
was set up using the installation guide.

More information about MySQL can be found on: http://www.mysql.com

Load Generator

A load generator is used to generate a large number of HTTP requests to the web server.
There are many such tools available on the marked today, and much work has been put

5Apache serves more than 40 million sites, which is around 70 percent of the available web sites (Ac-
cording to the February 2005 Netcraft web server survey)

13

System 3.3 System configuration

into choosing the one. We were dependent on a well working load generator to get reliable
and reproducible measurements.

To choose the best suited load generators, we tried to classify the ones available by some
requirements, both to get an overview over the available load generators on the marked, and
to aid in choosing the ones to look further into (see Appendix B). After this classification,
we were left with a few promising alternatives. Grinder was the one which was initially
chosen, with Siege and Hammerhead2 close by.

During the initial phase of our project we used Grinder as load generator. Grinder was
our first choice, as it has previously been used successfully in similar projects at NTNU.
Another reason for choosing Grinder was that it is fairly simple to write system specific
test in JYTON (Java PYTHON). The Grinder is a downloaded as a jar file (Java Archive
file), and was trivial to install and well documented.

Unfortunately, Grinder proved to be highly CPU and memory intensive. It handled a ”few
large” connections very well, but was unable to generate many fairly small connections.
Even when running Grinder on 6 nodes in parallel, we were not able to generate a high
stable number of connections. Many of the servers collapsed under its own load, which
made the load on the target machine drop abruptly. Because of this, another load generator
was needed. It was clear that something written in a programming language like C, which
is the native language on Linux, was preferable, since it runs much more efficient than a
JAVA solution like Grinder.

Siege and Hammerhead2 came out favorable from the load generator classification (see
Appendix B), and both of these tools were installed and tested thorough.

Siege is an HTTP regression testing and benchmarking utility. It was designed to let
web developers measure the performance of their code under stress, to see how it will
stand up to load on the internet. It is written in C, and designed to be used on a Linux
platform, although it has been successfully ported to other UNIX flavors. Siege is easy
to install and use, but unfortunately Siege had some flaws. It was hard to control what
resources it requestet and in addition the output produced by the program was poor.

Hammerhead2 is a stress testing tool designed to test out web servers and web sites.
The rate at which Hammerhead2 attempts to pounds a site is fully configurable. It man-
ages to create a stable number of request on the system. There are however, some small
statistical variation, but the number of users in the system are more or less constant.

Hammerhead2 is not as trivial to install as Siege, its documentation is not as well written,
and there have not been released a new version in 2 years. However, Hammerhead2 works
very well in practice.

One of the strengths with Hammerhead2 is that the behavior is very configurable. Ham-
merhead2 loads a set of scenarios, and these scenarios states what resources that should
be targeted on the target machine.

More information about Hammerhead2 can be found on: http://hammerhead.sourceforge.net

14

3.4 Similarities and discrepancies from the TV2i system System

3.4 Similarities and discrepancies from the TV2i system

The new system in this thesis is meant to reflect the TV2i system, and although the final
result of our study can not be directly used for the TV2i system, the method (SP) and the
approach for deciding scalability problems can however be directly applied to the TV2i
system. This is because the similarities between the systems are sufficient.

At first sight it is not easy to see the similarities between a highly costly and complex
system like the TV2i system, and our three servers with open source software. This
section will give a thorough description of the similarities and discrepancies between the
two systems.

The main difference between the systems is the degree of complexity in terms of; costs,
number of components and software. Their basic function is however the same. They both
serve end-users with static web pages through a Web server (Apache) and both systems
fetch the content for the web pages from a database and convert it into HTML, in other
word they are both a read-intensive website.

As was shown in the Ruud&Tveiten project [21], many of the components in the TV2i
system could be ignored in a scalability study. The reason these components could be
dropped is because they were not regarded as a possible scalability problem. The major
components in the initial TV2i system are illustrated in Figure 1.1, while Figure 3.4 shows
the components we ended up with looking at. If we compare this to the major components
in the new system (see Figure 3.1), we see the similarities quite clearly. We are not looking
at the Web caches in this study, although the web caches is an interesting component, it
is hard to recreate these in our system (because of license cost). As long as the cache hit
on the web caches is relatively constant, the scalability of the web caches is independent
of the scalability of the web system.

Database server

Internet

Web servers
(Escenic application server & Apache server)

Web Caches

Figure 3.4: Major components in the TV2i system

In the TV2i system the web server ran a content management solution called Escenic based
upon Java, but we use PHP. The different between the two solutions can be seen in Figure
3.5 on next page. As we can see there is not a big difference, except that the complexity
in Escenic is believed to be larger than in PHP. The measurement techniques used on our
web server could be applied to the TV2i server.

The database server in the TV2i system was an Oracle Real Application Cluster, but we
have chosen to use MySQL. The approach for deciding scalability problems is however
believed to be the same. The Oracle RAC is much more complicated, as it consists of
several nodes attached to a SAN solution.

What we have ended up with, is a system which is similar enough to the TV2i system,
so that the approach can be directly applied in the TV2i system. The software compo-
nents are not the same and the components in our system is less complicated. But the

15

System 3.4 Similarities and discrepancies from the TV2i system

Hardware

Apache

Escenic End-user
server

HTTP requests

WEB SERVER

Thin JDBC driver

OC4J

D
a

ta
b

as
e

 r
eq

u
es

ts

(a) The configuration of the TV2i web
server

ApachePHP

Hardware

D
a

ta
b

a
se

 r
eq

u
e

st
s

HTTP requests

WEB SERVER

(b) The configuration of the new web server

Figure 3.5: Comparison of our web server and the TV2i web server

overall approach for deciding scalability problems will be the same, and this increases the
feasibility for TV2i to use the SP method for assessing the scalability of the system.

16

Chapter 4

SP

In this chapter the system introduced in Chapter 3 is presented with the SP notation
described in Chapter 2. This terminology is used to break down the system in order to
perform a scalability analysis on it. Figure 4.1 on next page shows the system presented
with SP notation. We will explain the operations on the components and then explain
the connections between the components. For a deeper introduction to the relationship
between the web server and the database and how the articles are build up, see Chapter
3.2.

There are three main components in our system (introduced in Chapter 3.3); the load
generator, the web server and the database server. Each of these components offers one or
more operations. In addition the system has components on a lower level, namely CPU,
disk and the network. All the operations shown in Figure 4.1 are explained in the following
subsections.

4.1 Operations

4.1.1 Load generator

The load generator sends Request Article to the Apache web server through the local
network (LAN), and it is the only operation on the load generator. The Request Article
operation will always invoke one Get Text operation on the web server. In addition, one
Request Article will invoke no, one or several Get Image operations. This is dependant of
how many images the article contains, and all this is further explained in Chapter 3.2.

4.1.2 Web server

On the Apache web server component there are two operations, namely Get Text and
Get Image. When the web server receives a Request Article from the load generator it
determines which of the Get Text and Get Image operation to use. The Get text operations
will invoke the database, where the texts are stored. The Get image operations invoke
the CPU and disk on the web server, where the images are stored. See Chapter 3.2 for
further explaination.

17

S
P

4
.1

O
p
e
ra

tio
n
s

Load
generator

M
yS

Q
L

database
server

A
pache / P

H
P

w

eb server

D
atabase
disk

D
atabase
C

P
U

W

eb server
disk

W
eb server
C

P
U

Read block

LA
N

LA

N

Read block

Select text

Instruction

Instruction

Request Article

Transfer package

Transfer package

Gettext
Get image

F
igu

re
4
.1

:
S
P

m
od

el
o
f
th

e
system

1
8

4.2 Complexity functions SP

We assume that no images are deleted, so we have dropped such an operation. The Apache
web server is running on hardware, consisting of a disk and a CPU, where the memory is
included in the CPU component. The web server communicates with the Load generator
and the database server through LAN.

4.1.3 Database server

The operation on the MySQL database server is Select text, which invokes the Read block
operation on the disk and the Instruction operation on the CPU. We have defined our
system to only be a readable web site, thus we only need the Select text operation on the
database server. Insert text and Delete text operations would have been necessary if we
included a journalist part that published, changed and deleted articles on the web site.

4.1.4 CPU, disk and LAN

The CPU is a device on the lowest level in the SP-model, another device on the lowest
level is memory. These two components work very close together, so it is very hard to
separate one from the other in our measurements, thus we have decided to include the
memory in the CPU unit and have defined its only operation to be Instruction. A CPU
executes several types of instructions, but we will not distinguish between different kinds
of instructions. It is hard enough to perform measurements on the CPU, and we will not
make it harder by distinguish between different operations. The CPU is measured by how
many CPU cycles it can process in a second, and not by how long it takes to process a
single instruction.

The disks are also devices on the lowest level, and they offer the operations Write block
and Read block. The Read block and Write block operations on disks work with blocks of
data. As a natural consequence of our focus on the read intensive part on the web site,
we have dropped Write block operations on the disks.

The Local Area Network (LAN) is the physical connection between the main components,
and it offers a Transfer package operation. The load generator, the web server and the
database server sends and receives packages through the LAN. The LAN component is an
important component, but can be hard to parameterize.

4.2 Complexity functions

The SP-model of the complete system, shown in Figure 4.1 contains ten relations between
the components. According to the SP method presented in Chapter 2, this will result in
ten complexity matrices. However, for the purpose of our scalability analysis is it useful
to do some simplifications to the model.

The LAN components and the connections to and from the LAN components will not be
considered as separate components in the further scalability analysis. This is because they
are not believed to be important in our scalability analysis, as they are not thought of as
bottlenecks device. In addition is it hard to measure on the LAN components.

The reduced model is presented in Figure 4.2 on page 20. It should be noted that this

19

SP 4.2 Complexity functions

figure is not a valid SP model, but it illustrates which relations in the SP-model shown in
Figure 4.1 we will construct complexity matrices for.

We will in the next subsections present the construction of the complexity matrices for
the relations shown in Figure 4.2.

Load
generator

MySQL
database

Apache / PHP
web server

Database
disk

Database
CPU

Web server
disk

Web server
CPU

R
e

ad
 b

lo
ck

R
e

ad
 b

lo
ck

In
st

ru
ct

io
n

In
st

ru
ct

io
n

65

4

3

2

R
e

qu
e

st
 a

rt
ic

le

1

G
e

t
te

x
t

G
e

t i
m

a
g

e

S
e

le
ct

 t
e

xt

Figure 4.2: Simplified model to show which relations that are investigated further

4.2.1 Parameters used in the complexity functions

The lines in Figure 4.2 describe the dependencies between the components. For each
link between the components there exists a complexity matrix, which describes the work
invoked on the inferior component by the superior component in the model. One operation
on the superior component requires either a constant number of operations, or a complexity
function describing the number of operations invoked on the inferior component.

The complexity functions introduces a set of parameters which are explained in Table
4.1. These parameters will help us in grouping the functions and aid us in making a test
design for each of the classes. The next subsections introduces all the complexity functions
for each matrix, and then Chapter 4.3 summaries the functions and finds patterns of the
complexity functions. These complexity function patterns will then after the measurements
be parameterized in Chapter 9.

20

4.2 Complexity functions SP

Parameter name Description of parameter

CGet Text Average number of CPU cycles to process one Get Text operation
CGet Image Average number of CPU cycles to process one Get Image operation
CSelect Text Average number of CPU cycles to process one Select Image operation
CReadblock Average number of CPU instructions to process one Read block operation
I Average number of Images in the articles
DVText Average data volume of a Text file
DVImage Average data volume of an Image file
DB The data block size on the disks

Table 4.1: Parameters used in the complexity functions

4.2.2 Load generator - Web server

C1 G
et

T
ex

t

G
et

Im
ag

e

Request Article 1 f(I)

Explanation of complexity functions
The Request article operation on the load generator will always invoke 1 Get Text operation,
see Chapter 3.2. The number of Get Image operation invoked is determined by the number
of images in an article (I). This number is found through measurements. The complexity
matrix contains one complexity function (one pattern), and the complexity function is
shown in Equation 4.1. The parameterization is explained in Chapter 9.1.

f =

(

I

)

(4.1)

4.2.3 Web server - CPU web server

C2 In
st

ru
ct

io
n

Get Text f

(

CGet Text

)

Get Image f

(

CGet Image, DVImage

)

Explanation of complexity functions
The Get operations invoke the Instruction operation on the CPU, and the number of
Instructions that is invoked for each of the Get Text and Get Image operations have to
be found through measurement. The Get Text operation forwards a request for an article
from the load generator to the database, and this operation requires a number of CPU
cycles to process. Equation 4.2 describes that number. As this function only forwards a
standard request, it is not dependent on the data volume, thus it is assumed to be fixed.

21

SP 4.2 Complexity functions

The parameterization of this function is shown in Chapter 9.2.

f = CGet Text (4.2)

The number of Instructions invoked by the Get Image operation is determined by the
number of instructions required to process an average image request (CGet Image), the
number of instructions required to read an image from the disk (per image size) (CRead)
and the data volume of the image (DVImage). This function describes the number of CPU
cycles needed to process an operation for reading an image, and is shown in Equation 4.3.
The parameterization of this function is shown in Chapter 9.3.

f =
CGet Image

DVImage

(4.3)

This complexity matrix contains of two different functions, which makes two patterns.

4.2.4 Web server - Disk web server

C3 R
ea

d
b
lo

ck

Get Text 0

Get Image f

(

DVImage, DB

)

Explanation of complexity functions
The Get Text operation does not invoke any operations on the disk, since there are no
articles stored on this disk, see Chapter 3.2. The images are stored on the disk and
the number of Read block operations invoked by Get Image is determined by the data
volume of the image (DVImage) and the data block size (DB). The function describes the
number of read block operations on the web server, and is shown in Equation 4.4. The
parameterization of this function is shown in Chapter 9.4.

f =
DVImage

DB
(4.4)

4.2.5 Web server - Database server

C4 S
el

ec
t

T
ex

t

Get Text 1

Get Image 0

Explanation of complexity functions
The operation Get Text on the web server invokes 1 Select Text operation. No other
operations are invoked in this matrix, and since there are no complexity functions there
are not any patterns.

22

4.3 Classification of the complexity functions SP

4.2.6 Database server - CPU Database

C5 In
st

ru
ct

io
n
s

Select Text f

(

CSelect text, DVText

)

Explanation of complexity functions
The Select Text operation invokes a number of Instructions which is determined by the
number of instructions required to process an average article request (CSelect text), and the
data volume of the image (DVText). The function describes the number of CPU cycles
needed to process an operation for reading an article, and is shown in Equation 4.5. The
parameterization of this function is shown in Chapter 9.3.

f =
CGet Text

DVText

(4.5)

This complexity matrix contains of one function, which makes 1 pattern.

4.2.7 Database server - Disk Database

C6 R
ea

d
b
lo

ck

Select Text f

(

DVText, DB

)

Explanation of complexity functions
A Select Text operation invokes a number of Read block operations that are determined by
the data volume of the requested article (DVArticle), and the block size (DB). The function
describes the number of read block operations needed on the database disk, and is shown
in Equation 4.6. The parameterization of this function is shown in Chapter 9.4.

f =
DVText

DB
(4.6)

This complexity matrix contains of one function, which makes 1 pattern.

4.3 Classification of the complexity functions

Table 4.2 on next page gives an overview over the matrices elements in the matrices
presented in the previous subsections. Each row gives a brief summary of each matrix.
The second column states the number of matrices element, while the third column shows
how many elements which are non-zero, and the fourth column shows how many of the

23

SP 4.3 Classification of the complexity functions

non-zero element which are ones. The last column patterns, show how many distinct
function patterns there are in each matrix. A pattern is a group of complexity functions
which are dependant on the same type of parameters. Zero and ones in the matrices are
not regarded as patterns. Table 4.2 shows that there are 6 patterns totally.

Matrix # elements 6= 0 1 Patterns

C1 1 x 2 = 2 2 1 1
C2 2 x 1 = 2 2 0 2
C3 2 x 1 = 2 1 0 1
C4 2 x 1 = 1 1 1 0
C5 1 x 1 = 1 1 0 1
C6 1 x 1 = 1 1 0 1

SUM 9 8 2 6

Table 4.2: Size and properties of the matrices used

The complexity functions found can be grouped for designing different measurement test,
based on what variables to be measured. We have in Table 4.2 identified 6 different
patterns of complexity functions. A further study of the functions shows that some of the
patterns in different matrices are pretty equal. Some of these patterns can have a common
solution to a function that occurs in many matrices, and these patterns are placed in the
same group. In Table 4.3 identical function patterns are given the same denotation (group)
in the first column.

Matrix C1, in Chapter 4.2.2:

Pattern Function

f1 f

(

I

)

Matrix C2, in Chapter 4.2.3:

f2 f

(

CGet Text

)

f3 f

(

CGet Image, DVImage

)

Matrix C5, in Chapter 4.2.6:

f4 f

(

DVImage, DB

)

f3 f

(

CSelect Text, DVText

)

Matrix C6, in Chapter 4.2.7:

f4 f

(

DVText, DB

)

Table 4.3: Function patterns

We have four pattern groups in total, and the next subsections will explain the function
patterns according to P. H. Hughes classification presented in [10]. A pattern is placed in
a test design determined according to its dependence or independence of three properties:

• Load - which can affect overheads such as context switching, garbage collection,
connections etc.

24

4.3 Classification of the complexity functions SP

• Data name accessed - which can affect cache hits.

• Data size accessed - which can affect message lengths, buffer occupancy, memory
utilization, etc.

Pattern f1

This pattern describes how many Request Article operations from the load generator that
are for images per article request. This pattern is load independent, data name indepen-
dent and data size independent and is the core test in Hughes’ test design.

”It has simple and compound variations, according to the context required by
the particular operation being measured.” [10]

Pattern f2

This pattern describes the number of CPU cycles required to process a Get Text operation.
The pattern only forwards a request of a constant size, and thus it is data size and data
name independent. The pattern is assumed to be load dependent. To parameterize this
pattern we have to run the test described under pattern f1 with m multiple threads. m
should be varied from 1 to some way beyond the planned operating point. All the load
dependent cases have to be run with m multiple threads.

Pattern f3

This pattern describes the number of CPU cycles needed to process the Get Image/Select
Text operation. Since this pattern is determined by the file size, reading it is dependent
on data size and data name access. It is also assumed to be dependent on the load.

To parameterize this function we have to control the cache effects, which we will do and
that is described in Chapter 6.6. An other important factor is .. to eliminate the effect by
operating with specific data sizes, or size distributions.[10] This means that the results are
only valid the data size tested.

Pattern f4

This pattern describes the number of Read block operations on the disk. The pattern is
data size dependent, data name dependent and load dependent, which leads to the same
test design as described in function pattern f3.

25

blank side

Chapter 5

Scalability

This chapter will present the concepts of scalability, and outline the likely scaling scenarios
in our thesis. Scalability is a well known term, and there exists several different definitions
of the word. In its simplest form it can be defined as an IT systems ability to handle
growth. Peter Hughes, Gunnar Brataas et al. have come up with the following definition
[12]

”An architecture is scalable with respect to an IT profile and a range of desired
capacities if it has a viable set of instantiations over that range”

By IT profile we mean all other requirements than capacity, e.g. quality of service and
functional requirements, and with viable we mean that it is feasible both economical and
technical.

Scaling dimensions

Hughes, Brataas [8][12] has identified three important scaling dimensions a typical e-
business application would contain.

• Processing capacity describes the rate at which specific work can be performed. E.g.
disk service rates.

• Storage capacity describes the amount of capacity that can be stored at some level.
E.g the capacity of a database.

• Connectivity the total number of access points to a system or subsystem. E.g. can
be the maximum number of simultaneous users to a web cache or the maximum
connections of an Ethernet cable.

”The physical resources used are different for each dimension. For ease of exposition we
will refer to them collectively as size.”[12] This enables us to define a scaling function for
each dimension, which delivers a certain capacity for a certain size.

27

Scalability 5.1 Scaling scenarios

Scaling functions

A scaling function plots capacity and size in a particular scaling dimension. Some things
scale linear and some things scale non-linear. Hughes, Brataas et.al.[12] identifies three
different scaling functions. One linear, one super linear (indicating economies of scale) and
one sub linear (indicating diseconomies of scale).

C
ap

a
ci

ty

Size

+
0

-

Figure 5.1: Different types of scaling functions: + super scalable, 0 linear scalability, and
– non-scalability

Scalability and requirements

As we have seen, a system is scalable in respect to an IT profile that is a set of requirements
other than capacity. Typical requirements for a web system can be divided into functional
and non-functional requirements (reliability, security, cost, quality of service).

5.1 Scaling scenarios

To evaluate the scalability of a system, several scenarios are needed to test the system
against. The system is scalable for a given scenario if it can handle the growth we imagine
in the range of that scenario and still fulfill the requirements. A scaling scenario is a set
of functions, one for each of the scaling dimensions, which indicates the future growth of
the system.

The way a system is scaled can be considered both with respect to a particular scaling
dimensions or all scaling dimensions together. When the size changes by the same factor

28

5.1 Scaling scenarios Scalability

in all dimensions, it is called strict scaling[3] . The term uniform scaling is used with
respect to only one dimension, when all the sizes of the subsystems are changed by the
same factor.

Scaling is closely related to growth of a system, and in a large system it is unlikely that uni-
form scaling is possible, because of different architectural limitations. One might imagine
that one wants to change the storage capacity of the different server types with different
ratios. According to Hughes, Brataas et.al. in [12] non-uniform or skewed scaling may
complicate the formulation of scaling functions and make the analysis harder.

To continue the process started in [21], we choose to set up a system which resembles the
TV2i system. In other words, our system models a Norwegian news site and with this
starting point we will outline some likely scaling scenarios.

To help us in predicting the likely growth scenarios, we have contacted leading Norwegian
news sites, and asked them for their opinion regarding the future of news sites. Based on
their input, we will try to outline the most likely scaling scenarios. The entire survey can
be found in Appendix A.

User definition

It is important to establish the terms simultaneous users and concurrent users. In this
thesis concurrent users describes virtual users that are visiting a site without requesting
any file. Think of all the people reading a internet news site, but not actually clicking to
request a resource. Simultaneous users or simultaneous requests describe the users that
execute requests within the system within a small time frame.

Increased data volume of articles

In the past Internet articles has usually been fairly short, with a small amount of low-
resolution pictures, and this has kept the total data volume of an article fairly small. The
main historic reason for this, was the low amount of bandwidth available for the Internet
user, but this has changed with the introduction of broadband. According to our survey,
almost every participant believes that the articles will experience a massive increase in
size.

Some expect an increase in the text length, but this will not contribute so much to an
increase in total size. It is the use of multimedia content (image, video, sound) which will
account for the massive increase. One of our participants expects that an increase in the
resolution of the images is likely because the average screen size has gone up. TV2i has
seen that articles with more multimedia content are more popular, than articles with little
or no multimedia content. Aftenposten and Dagbladet have started to use video in each
article from the World championship in Nordic Sports, and this indicates that multimedia
content will be more common.

Increased use of video is highly interesting, but because video on the Internet is normally
streamed, thus running on dedicated hardware, we do not look into that. The reason
video on internet is streamed rather than downloaded, is because the user does not have
to download the entire clip, before viewing it. For one possible approach on assessing the
scalability of a video streaming architecture see [11].

29

Scalability 5.1 Scaling scenarios

These trends make it possible to think that the total size of each article (text size +
multimedia content) will increase in the years to come, even a tenfold increase is not
impossible. The reason for this is because multimedia content is much larger than text.

Today most of the articles on a web site system are in the region from 50 KB to 100
KB, this is the total article size (text, images, overhead). Images are currently between
10-30KB, but we choose to start at 100KB, because we believe based on our survey that
this will be a normal size in near future. We will look at images in the interval from 100KB
to a 1000KB.

Text size is currently between 5KB-20KB, and we choose to look at the interval from
10KB to 300KB. 300KB might sound very large, but we choose to include this, as we
might imagine that larger documents can be put our for viewing, e.g. goverment reports
etc.

The impact of an increased data volume is believed to be significant, each request will take
more resources to process, the archive will increase much faster and the caches will need
more memory.

Increased number of users

There are a constant growth in the Internet usage, and according to TNS Gallup[17]
approximately 47% of the Norwegian people over thirteen have daily access to Internet.
This is a doubling in the coverage in just 4 years, and this growth is expected to continue.
This means that more and more people have access to the Internet, and thus we can expect
a general increase in Internet usage.

The largest web site in Norway has increased its number of daily reader by 280% since
2001, from 307.000 to 820.000[17]. Similar growth has been experienced by other large and
medium sized sites as well. This growth is expected to continue, although it is important
to understand that there is an upper limit on the number of Internet users in Norway.

Number of daily readers is just one way of measuring users. We are more interested in
number of simultaneous requests. This is because simultaneous requests say something
about the load on the website, while daily readers do not give this information.

Most of the web sites, predicts that the user behavior will change, and that each user
will access the web sites more frequently. P̊al Nisja in TV2i predicts that each user will
spend three to five times more time on the Internet. This means that the number will
simultaneous requests will increase, but there will not be an increase in the number of
unique users. Each user will put more strain on the system.

In addition to an organic growth, we have to think about non-organic growth (mergers or
acquisitions). We might see a consolidation in the Internet news segment, where we might
experience that larger web site buys or merges with smaller web sites, thus increasing their
customer base over night. As such growth happens over a very short time span, assessing
the scalability is ever more important.

There is in other words very likely, that the number of simultaneous request will increase in
the years to come, through an increase in the number of daily readers and/or an increased
in the time spendt by each daily reader.

30

5.1 Scaling scenarios Scalability

Increased number of articles

An increase in the number of articles published per day can have a large impact on a
system. The storage will reach it limits faster. According to our survey, there is however
no indication that the number of articles published per day will increase a lot. To begin
with, the number of articles published a day varies from 10 to 250, between the different
sites. So the number of articles per day seems to be more site specific, so a general trend
about an increase in this number can not be drawn.

Increased use of ”pay per click”

To earn more money, web sites may want to demand payment for reading articles and
accessing the archives. According to our survey, most of them agree that this will not
common, but it might happen for the archive. This aspect is interesting when looking at
scalability, because the user would have to log into the site using a secure connections.
The use of secure sockets leads to increased work on the CPU, because it takes more CPU
power to establish and maintain a secure connection than a normal one [14].

Increased number of web robots

A web crawler is a program that visits web sites and reads their pages and other information
in order to create entries for a search engine index. The reason that web crawlers can
decrease hit rate is that they do not necessarily ask for the most popular objects. Menascè,
Almeida and Riedi conclude in [1] that ”the presence of robots causes a significant increase
in the miss ratio of a server side cache. Crawlers have a referencing pattern that completely
disrupts locality assumptions”. A decrease in web cache hit will lead to increased load on
the back-end servers.

5.1.1 The focus in this thesis

Based on our survey we choose to focus on one scaling scenario, namely increased article
size. This scenario has to subscenarios: increased text size (from 10KB to 300KB) and
increased image size (100KB to 1000KB).

We will measure on how these subscenarios affect the performance of the system. The
reason we focus on these scenario, is because it is the most likely one, and because it is
unkown to what degree they will affect the system. When we know how they affect the
system, we will be able to say something about how the system handles increased number
of users.

31

blank side

Chapter 6

Measurements

This chapter will explain how the measurements on the system components are performed,
discuss relevant issues connected to this, and give an outline of a measurement plan. The
purpose of our measurement is two folded; first of all it is to investigate the implications of
increased image size on the web server and increased text size on the database component.
Secondly it is to investigate how the increased image size, acts on different hardware (a
scale-up experiment).

6.1 Scale-up

Our experiment will use two types of nodes, and we will compare the component perfor-
mance (web server and database) between them. This is a so called scale-up experiment,
where the hardware is upgraded. We will not look into replication, which is the other
way a system can be scaled. When dealing with a scale-up experiment it is important to
establish the scale factors between the different hardware.

We will first measure on the web server component installed on the old node, and then
perform the same measurement on a new Clustis2 node with the same operating point
(see section 6.2).

CPU

In our experiment we will measure the CPU utilization, and from that together with the
clock speed derive the CPU usage of a component. It is crucial to find the scale factor
between our two CPU’s, that is how much faster the new one is than the old one. Our
two nodes have different CPU architecture, one is an Intel CPU and the other an AMD
processor. This complicates the process of finding the scale factor, because the CPU speeds
given by the manufactures are not directly comparable.

The old node is running with an AMD Athlon 1600+ processor which is clocked at 1.4
GHz1, and the new node is running with an Intel Pentium 4 processor clocked at 3.4 GHz.
If we just divide the clock speed on each other; 3.4 GHz divided by 1.4 GHz we obtain a
scale-up factor of 2.4.

1Found on, http://tinyurl.com/b4qut

33

Measurements 6.2 Operating point

However, AMD processors are performing more instructions per clock cycle than an In-
tel processor2. AMD has a rating system, which converts their processor into an Intel
equivalent. According to this rating system our AMD processor corresponds to a 1.6 GHz
Intel Pentium 3 processor. This gives a scale-up factor of 2.1. However, since our Intel
processor is a Pentium 4, which is believed to be faster than the Pentium 3 at the same
clock cycle time, the estimate of 2.1 seems a bit to low.

Based on this we chose to opt for a scale-up factor of 2.43.

IO

CPU is one important factor, another one is disk performance. Both disks run at the
same disk speed, namely 10.000 RPM. The new node have a disk seek time of 4.7 ms,
while the old node has a seek time of 5.2 ms. The disk transfer rate is the third important
parameter for disk performance, the new disk has a formatted internal transfer rate of
maximum 78MB/s, while the old one only has 63.2MB/s. So the new disk has a scale-up
factor on 1.23 on transfer rate, and 1.1 on seek time. We will there use an overall scale-up
factor of 1.1 on the entire disk, as the smallest scale-up factor will be the deciding one. In
addition, we believe that the transfer is high enough and never fully utilized even on the
old disk.

Storage space could be an interesting scale factor to look at, but we will not look into it
as we are not directly looking into any scaling scenarios concerning disk growth.

Network

Both nodes have a 1Gbit network card. Initially the old node only had 100Mbit card, but
as we wanted to be sure that the network was not the bottleneck, we upgraded it to a
1Gbit card. Because the network bandwidth is more than sufficient, further measurement
on network will be neglected. The network traffic will generate some load on the CPU,
but this will be hard to isolate from the rest of the web component.

Scale-up factors

The scale factor between our standalone Clustis node and the Clustis2 nodes, varies as
seen between the different components. We have in other words non-uniform scaling. The
nodes are more or less the same, the main difference is the CPU performance (2.4), and a
moderate better disk with a scale-up factor of 1.1.

6.2 Operating point

Under a scale-up the both systems must run on the same operating point. Operating point
is a way of ensuring that it is possible to compare to different system under a scale-up. In
[12] Brataas, Hughes et.al proposes that the operating point can be determined according

2Found in article available from http://pclt.cis.yale.edu/pclt/PCHW/clockidea.htm
3This consists with preliminary findings in Geir Bostad’s (IDI, NTNU) master thesis

34

6.3 How to isolate resource demand Measurements

Component Clustis Clustis2 Scale factor

CPU AMD 1600+ Intel 4 3,4GHz 2.4
Mem 1GB 1GB 1
Disk 1.1

Network 1Gbit 1Gbit 1

Table 6.1: Scale factors between Clustis and Clustis2

to two criterias, either equivalent utilization or equivalent response time. In our experiment
we choose to use equivalent utilization, mainly because it was more feasible to get reliable
measurements on the CPU than on the response time.

The operation point should be fixed on the bottleneck device, in our case the CPU is the
bottleneck device. This means that the CPU utilization on the old node, and the new
node should be equal during the experiments. This implies that we expect to put a higher
load on the new web server, as that probably will be able to cope with more requests on
the same utilization. We have chosen to have the same operating point on the database
server and the web server.

Choosing the operating point is mainly a pragmatic question, as the operating should
reflect the load on the system in its natural operating environment. Normally someone
with good domain knowledge on a given system would say what operating point the system
would run on, and that would have been chosen. It our case, we are free to choose the
operating point.

We wanted the operating point to be fairly high, but it must not be so high that the
CPU is saturated. To support us in choosing the operating point, we performed a series
of measurements on the old node with different image size. These measures gave us result
from 0% CPU utilization to 100% (see figure 11.3 on page 84). As the graphs were fairly
linear, we could have chosen almost any point. We ended up with using an operating point
of 60% on the nodes. Ideally we would have performed the measurements on more than
one operating point, but this was not possible because of time constraints.

6.3 How to isolate resource demand

When trying to quantify the parameters in the complexity function, we are actually trying
to measure the resource demand. That is the work the operation puts on a given resource,
e.g. we are trying to find the number of CPU cycles an operation uses. On real live system
this can be very hard as many programs use the same resource simultaneously. One of
the main missions in our experiment is to be able to isolate the resource usage by the
operation we want to parameterize. To be able to truly isolate the resource demand for a
single operation is almost impossible, but it should be possible to get a good approximation.

The way we isolate the resource demand, is to run a given number of identical operations
on the computer simultaneously, so the CPU reach the operation point. We can then
calculate the CPU usage for a single operation. During our experiment CPU load should
ideally only be coming from the web component or the database, however we might imagine
that some other components can consume CPU time during our measurement. However,
since the CPU idle is 100% before we put any load of the system, and quickly returns to

35

Measurements 6.4 Measuring Tools

100% after the experiment is completed, we believe that we have managed to isolate the
web and db components in our experiment.

6.4 Measuring Tools

For our experiment we have relied on standard measuring tools available on the Unix/Linux
platform. The advantage with these is that they are unobtrusive, that is they do not put
a high load on the system, thus not interfering with the measurement results. They take
a snapshot of the system state every second, and this is recorded in a file.

6.4.1 CPU tools

To capture the CPU utilization we use the standard Linux tool, vmstat. It manages to
capture the CPU idle utilization every second. We can then find the CPU utilization by
subtracting this result from 100. In addition to the CPU idle time, vmstat reports a lot of
other performance statistics see Figure 6.1. We are however not looking into any of them.

Figure 6.1: Example output of the vmstat command

6.4.2 IO tools

To capture IO usage, namely disk writes per second and disk read per second, we used the
standard Linux tool iostat. It captures these parameters with a granularity of one second.
When performing this command on the nodes, we get a lot of unnecessary information. It
captures statistics for each device, (see Figure 6.2), but we only need to look at /dev/sda2
which is the device where our temporary data is located. We are only looking at the rKB/S
(KB read per second), wKB/s (KB written per second), and the %util, for the /dev/sda2.

Figure 6.2: Example output of the iostat command

36

6.5 Workload Measurements

6.5 Workload

According to P. H. Hughes [8] the following information is needed to characterise the
workload:

• work
The set of operations or commands invoked upon the system from the environment

• load

- In a closed system, this is the number of independent processes which are con-
currently generating work.

- In an open, the arrival rate of work at system

• sequence
This is needed for very detailed studies, involving behavior which is dependent on
the system state, and thus dependent of the sequence of the operations.

When we are measuring on a system, we must determine the workload put on the system.
On existing system, this can be quite difficult. E.g. If we are trying to determine the
workload on an Internet system, the characteristics of Internet traffic must be understood.
Internet traffic is known to exhibit some characteristics; inter-arrival time distribution,
burstiness, heavy-tail distribution [16][15][7][19], and these must be understood in order
to make a workload.

On our system it is quite easy to determine the workload, because our system is used for
experimental purposes. As for the work, we are requesting the same operation over and
over again4. This is either Get image or Get text (see Chapter 4, depending on whether
we are testing on the web server or the database server.

Our system is a closed model, because the number of users in the system is constant (see
discussion in Chapter 2.1.5). The number of independent processes varies between the
different image and article sizes, and the number of processes used for each can be seen
in section 6.8.5 on page 41. The think time Z, that is the time the process spend after
completing a request before sending a new one is zero.

In our model we do not need to worry about the sequence, as we only run identical
operations.

6.6 Controlling the caches

A big issue in our experiment has been how we were going to control the cache effects.
Caches exist on several different levels in a modern computer, both on hardware and
software. Caches speed up the process, and we have to control these caches in order to
find out how much they account for. Because there are so many caches on so many different
layers it is very hard to fully understand the full effects of the caches.

There are several methods the cache can be controlled.

4This was the only way, we could isolate the resource demand

37

Measurements 6.6 Controlling the caches

1. The caches could be turned off. In other words the request always experience a cache
miss.

2. The caches can be filled with all the data which are used. (Always cache hit)

3. A combination of method 1 and 2.

Controlling these caches is inherently difficult. If it had been feasible, the ideal solution
would have been to perform all the three solutions outlined in order to determine the
effects of cache. The method with full cache hit and cache miss, would have enabled us
to get an upper and lower band on the performance. While the third method, is the one
which resembles real news sites.

In our system, we have managed to turn the caches on program level off, that is any
caching within Apache and MySQL. We are however unable to turn off the disk cache and
the primary memory. So in order to 100% cache miss ratio, we would have to requests
images/articles sequential in order of 2 times the primary memory (2GB). This is possible
on large image sizes, where we would have to have 2000 images for 1000kB which were read
sequential. On small image/text sizes, e.g. 10KB we would need 200.000 images/texts,
and this is not feasible.

It would have been possible for set the system up so that every requests would experi-
ence a cache hit, but this implies that there would have been no reading on disk. Since
parameterization of disk was one of our goals, we would have lost valuable information.

This leaves us with only one feasible solution, a mix between cache hits and cache miss.
The most important thing for us was that the experiments between the different systems
(the new and the old) and between the image sizes were comparable. Our solution was to
use a fixed number of images/articles, and look at it from a real-life web server perspective.
This is the most likely scaling scenario from the news sites standpoint.

We chose to use 2000 images/text files on each size, 2000 was chosen because this is about
one month worth of images for a news server5. More images/articles than this is not likely
to be stored on the same disk, it is much more likely to be put in an archive solution. Just
to be sure, we checked what happened it we used 4000 images/articles instead, but it gave
more or less the same results. A further doubling was impossible because of storage space
on the disk.

A drawback with this method is that the cache effects will be larger on smaller image/text
sizes, as more of them can be found in the primary memory. However, since the Apache
connections have to be in the memory as well, this decrease the available cache space
available on small image/text sizes as they have more connections which needs memory.
The cache hit ratio will not be constant, but vary between the different image/text sizes.
However, this solution should be the most realistic and the best way to simulate a real
web site.

The timeline in this project has been extremely tight and, and more investigation into the
cache effects would have been desirable. The chosen method is however a very realistic
method and gives a good impression of the effect of increased article size on real systems.
The server can be seen as being in an operating state, where some articles may be found in

5We wanted to have the same number of images and articles, because of this we use 2000 articles as
well

38

6.7 Replications and run length Measurements

the cache but other may be fetched. But because we are going to run each test 10 times,
and for a 100 seconds this should even out.

6.7 Replications and run length

There are many similarities between simulations and measurements, as both experience
statistical variations and noise which is desirable to remove. There are many ways to
perform a measurement / simulation, concerning run length and the number of replications.
One solution is to have one long run, another is to choose many individual replications
and run them for a shorter time.

We opted for a solution with a fairly short run length and where each experiment was
executed 10 individual times, as this gives us confidence that the results were reproducible.
In addition, if the experiment for some reason was invalid, less time has been lost than if
we had one long test that was invalid. If an experiment of 3 hours is invalid, 3 hours is
lost, while if a shorter test of 10 minutes is, invalid only 10 minutes is lost.

Each individual experiment had a run time of 100 seconds. This may seem fairly short,
but it was apparent that the system reached a steady state fast, so a longer runtime would
not give any more precision. In addition time was of the essence, as we were performing
a large amount of measurements.

In most measurements only the steady-state performance is of interest that is the per-
formance after the system has reached a stable state. The initial state before this one is
called the transient state, and results from this part should not be included in the final
results. The problem of identifying this initial state is called removing end effects. Raj
Jain[13] has proposed six methods for identifying and solving this problem. We have gone
for the initial data deletion, where we delete the end effects before and after the steady
state. This was accomplished by looking through the logs. Figure 6.7 show an excerpt
from such an experiment log, and from this the end effect phase can easily be identified
(the first 7-8 seconds). Our solution is to remove the 20 first and the 20 last second of an
experiment. This ensures that we only use the results from the steady state, this method
is perhaps a bit crude and a more sophistical method could have been used, but we wanted
to make sure that we only used data from the steady state.

6.8 Measurement plan

Based on the considerations we have outlined in this chapter we will device a measurement
plan for our experiment. In the next sections we describes a measurement plan6. This is
not an extremely detailed plan, as most of the measurement is done automatically.

6Loosely based on the IEEE std 829 standard for test planning. According to the IEEE 829 test
planning process there are eighteen factors to consider, and for that reason we have to do some appropriate
modifications to the standard to fit the purpose of our measurement plan.

39

Measurements 6.8 Measurement plan

FS800-S42-RT100

{...}

VMSTAT LOG

99

100

100

100

100

100

100

62

49

38

41

35

43

37

{...}

Figure 6.3: Excerpt from an experiment log

6.8.1 Introduction

This measurement plan specifies all system testing activities to be done on the old Clustis
system, and the new Clustis2 system.

6.8.2 Test system

The system is configured on Clustis2, which consist of 17 new nodes and one old node. Both
type of nodes in the cluster are running Red Hat Linux, and for a throughout description
of the system, see Section 3.3. For measurements on the web component two nodes are
needed, and for the measurement on the database component five nodes are needed.

6.8.3 What to be measured

We will measure transactions per second, CPU and disk statistics for each measurement.
All measurements are performed with operating point on CPU equal 60% and with the
test harness explained in Chapter 7.

• web measurements on old node to simulate increased image size.
Image sizes in KB: 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.

• web measurements on new node to simulate increased image size
Image sizes in KB: 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.

• database measurements on new node to simulate increased article size
Text sizes in KB: 10, 50, 100, 200, 300.

40

6.8 Measurement plan Measurements

The image/text sizes used will be the range which our scaling scenarios are viable over.
This range was determined in Chapter 5.

The test scenario

For an experiment to be valid, the median utilization during the test run must be between
55% and 65%. We allow this because it is almost impossible to get an operation point of
exactly 60%.

We have chosen to use the median to find the operating point, and not the mean average
CPU utilization. Our measurements logs show both the values, and in most cases both the
average and the median give approximately the same result. All the ”good” measurements
with a stable CPU utilization give almost the same value, and we could have chosen either
of the values. However, some times there is a difference, that is in those cases were some
of the samples in the measurements can be considered as outliers. For some reason the
CPU drops to 0% utilization some times, and outliers like that affect the average much
more than the median. If the difference between median and average is too large the
measurement is not accepted.

6.8.4 What not to be measured

We will not measure on the network, as that is believed to be more than sufficient when
it is all 1Gbit/s.

6.8.5 Schedule

In this section the parameters used for each image/text size is listed. In our experiments,
there is only one parameter in addition to image/text size and that is number of sessions.
Sessions is a parameter used by the load generator to determine how many request per
second it should put on the target machine.

Numbers of sessions for each image/text size where found through trial and error. First
we established the number of sessions needed to get a valid measurement for the largest
image/text size and the smallest image/text size. We had then found the upper and
lower bound, and then we found it on the middle image/text size. From these three
measurements it was pretty easy to determine the other image/text sizes, as the number
of sessions increased pretty fixed with increased image/text sizes. To find the number of
sessions needed, we had to try about three for each size.

It proved much harder to measure on small image sizes than on large image sizes. For
the web measurements on the new node we use the number of sessions from Table 6.2 on
next page, for web measurements on the old node those from Table 6.3, and for database
measurements on new node the sessions from Table 6.4.

It is important to note that in Table 6.4, the number of sessions is the total number of
sessions. Since measurements on the database require two load generators, each of the
two load generators should be initiated with half of the total. E.g. if total sum is 1800
sessions, each load generator should have 900 sessions.

41

Measurements 6.8 Measurement plan

Image size (KB) 10 50 100 200 300 400 500 600 700 800 900 1000

Sessions 3000 1700 1038 537 372 290 160 88 60 42 35 30

Table 6.2: Number of sessions needed on new node to produce valid web mesurement for a
given image size

Image size (KB) 10 50 100 200 300 400 500 600 700 800 900 1000

Sessions 312 225 221 135 118 80 63 57 52 43 37 34

Table 6.3: Number of sessions needed on old node to produce valid web mesurement for a
given image size

Text size (KB) 10 50 100 200 300

Sessions ≈ 4000 ≈ 3700 ≈ 3000 ≈ 2400 ≈ 1900

Table 6.4: Number of sessions needed on new node to produce valid database mesurements
on a given text size

42

Chapter 7

Resource Function Workbench

This chapter will present a framework for automatization of the measurements needed in
our thesis. This includes both the collection and the post-processing of the measurements.
Capturing resource functions on computer systems is a highly time consuming and com-
plicated activity, thus creating the need for a workbench which aids the process. This
chapter will outline our framework for such a workbench, inspired by Vetland, Woodside,
Bayarov and Curtouis [25], and Vetland and Hughes [22]. The workbenches outlined in
these articles are a highly general one, but the one we have designed is more domains spe-
cific. The reason for this is because it would be too costly to make a domain independent
workbench.

This process of designing and implementing this framework has in itself been one of the
most time consuming tasks in the entire thesis. Because of this we will explain our solu-
tion in detail in this chapter, hoping that future projects within this area can reuse our
framework.

All the scripts introduced in this chapter, are presented in further detail in Appendix C,
some of the source code can be found in Appendix D and the entire source code is available
on the thesis website [20].

7.1 Background theory

Vetland et. al. came up with the following six requirements on resource functions, the
process and tool for measuring them in [22][25].

1. A test configuration is required, which should be reproducible and representative.

2. It should be easy to create a test for a new component, since software technology is
constantly changing.

3. It must be possible to run the measurement experiment automatically, over different
processing environments, so that the information can be maintained as models and
versions change.

4. It must be possible to apply the parameter changes in the experiments and run them
many times over ranges of parameter values.

43

Resource Function Workbench 7.2 Description of workbench

5. A compact representation is needed for the function which captures the variation of
the demand, as the parameters change.

6. It should be possible to combine resource functions from different sources. E.g.
theoretical reasoning and expert judgement.

These requirements leads to an application that can be illustrated by Figure 7.1. The
first four requirements are covered by the left hand side of the figure. Requirement 3 to
6 illustrates the need to store the results in a proper manner, and this is solved by the
components in the right hand side of the figure.

Test script

Result table

Function fitting

Result browserHarness Instrumentation

Component

Test manager

Experiment

Figure 7.1: Elements of a Resource Function Workbench [25]

7.2 Description of workbench

Based on the requirements outlined and Figure 7.1, we designed our workbench. Our main
goals for constructing such a workbench were:

• Automate the measurement process in order to save time and make it feasible.

• Make it easy to measure on different baselines (hardware).

• Save the results in a manner which is human readable, parsable and reusable.

• Save time for future projects in this area, by making it possible for others to reuse
our workbench.

7.2.1 Outline of solution

Figure 7.2 on 45 shows the three main scripts in our workbench. Startexperiment and
stopexperiment sets up our test harness (system), while measure is the test manager and

44

7.2 Description of workbench Resource Function Workbench

- System is set up on a selected baseline
- Temporary files are created

- System is removed from selected baseline
- Temporary files deleted

Startexperiment

Stopexperiment

Measure - Actual measurement on a selected component is performed
- Repeated for N times.

Figure 7.2: Main scripts in the workbench

test script. The instrumentation used in this workbench is two standard measuring tools
for the Unix/Linux platform, namely vmstat and iostat. More information about our
instrumentation can be found in Chapter 6.4. The resources we measured on was the
CPU and IO usage for a given component, either database or web server.

An experiment is a series of individual measurements on a given component for a given set
of parameters. The parameters are set in the measure script, together with the experiment
name. The experiment name should be descriptive, and indicate whether measurement
was done on web server, database or old or new nodes.

The output for each individual measurement is saved in a folder, named after the experi-
ment name and the date (experimentname-date). This is done to increase the tracability
of the measurement, and to keep all the measurements from a single experiment in the
same place.

The output for each measurement, has a filename which indicates the parameters used.
E.g.: FS900-S35-RT100, indicates that 900 is the file size1, 35 is the number of session
and 100 is the runtime of the measurement. An excerpt from such a file, can be found in
Figure 7.3 on page 46, and this format is both human readable and easy to parse with a
script.

These individual result files are parsed with interpretmeasurements.sh to create a Excel
friendly format for the entire experiment. In Excel we use spreadsheet to automatically
calculate the standard deviation and confidence interval and plot graphs. Much of this
calculation could have been done with this script, but we did not find it necessary.

1Either text or image size, and this should be clear from the experiment name.

45

Resource Function Workbench 7.2 Description of workbench

FS900-S35-RT100

################ GENERAL DATA #####################

Filesize:900

Total number of connections:2012

Average number of connection per sec:33.53

Failed request:0

################ VMSTAT DATA #####################

Utilization CPU, Median:41

Utilization CPU, Max number:71

Utilization CPU, MIN number:13

Utilization CPU, Arithmetic mean:40.48

################ IOSTAT DATA #################

Disk utilization [Arimetric mean]:11.049

Disk utilization [Median]:19.05

Disk utilization [MAX]:20.51

Disk utilization [MIN]:4.29

Disk KB read [Arimetric mean]:41344.403

Disk KB read [Median]:30687.5

Disk KB read [Max value]:149228.57

Disk KB read [Min value]:14394.12

Iostat KB write [Arimetric mean]:148.96

Iostat KB write [Median]:0

Iostat KB write [MAX value]:1220.00

Iostat KB write [MIN value]:0.00

----------- LOG FILES ------------------

Figure 7.3: An example result file for an individual measurement. In this case with image
size 900, 35 session on the load generator, and with a runtime of 100 seconds.

46

7.2 Description of workbench Resource Function Workbench

7.2.2 Detailed description

This section will include a walkthrough of an experiment, how it is done, and what must
be done.

The first thing which must be done is to reserve the number of nodes needed. This is
because Clustis is a shared cluster. This reservation ensures exclusivity on the nodes used.

If we are measuring on the web server component, two nodes are needed, one for the load
generator and one for the web server. When we are measuring on the database component,
five nodes are needed; two load generators servers, two web servers and one database server.
This is because the database server handles much more, and smaller connections which
creates the need for more hardware to generate enough load.

The nodes are reserved using the reserve-nodes.sh script2. This script check for available
nodes, reserves the number needed, and binds the IP addresses of the nodes requested to
global variables. This way, the scripts only need to use variables instead of IP addresses.
E.g. $WEBSERVER instead of the 10.255.255.128.

After the nodes are reserved, the startexperiment script is executed. The components are
then automatically installed on the nodes, and the system is up and running. This script
is only runned when changes to the baseline is needed, e.g. when changing from measuring
on old nodes to new nodes. The scripts initiated by the startexperiment can be seen in
Figure 7.4 on page 48. First it copies local files over to local node disk (mysql-data.sh and
Images-data.sh), then it transform the skeleton files into updated config files (transform-
skel-files). E.g. transform-skel-files.sh transform the IP address for the web server in the
load generator configuration file.

After the experiment baseline is set up, we use the measure script to set the parameters
for the experiment, and this script is manually edited before each experiment according to
the measurement plan. The parameters that needs to be set is what file sizes that should
be measured on, what sessions that should be used, and the experiment name.

After the parameters are determined, the measure script is executed on the load generator
node. The file runs sequential through a series of individual measurements, where one of
these measurements with a runtime of 100 seconds3 takes about 5 minutes to complete.
This part of the script is indicated by the loop in Figure 7.5 on page 49. We usually measure
about 150 combinations of file size and sessions at a time. When this is completed, the
measurements are outputted into a Excel friendly format vy the interpretmeasurements
script.

The scripts initiated by the measure script can be seen in Figure 7.5. Generateload and
formatmeasurement is the actual measurement process, and this is run in a loop for each
individual measurement. A further breakdown of the generateload script can be seen in
Figure 7.6 on page 50. The most important thing to notice here is the three script which
run in parallel, namely start hammerhead, capturecpuusage and captureiousage. These run
in parallel because the actual measurement has to be done, while the component is under
load from the load generator.

At that time we usually run stopexperiment, to clean up the server logs. The scripts
initated by the stopexperiment can be seen in Figure 7.7 on page 51.

2Thanks to Geir Bostad for providing us with an almost complete script
3which is the run time decided in Chapter 6

47

Resource Function Workbench 7.2 Description of workbench

Reserve-nodes.sh

Start-apache.mysql

Start-mysql.sh

startexperiment.sh

Transform-skel-files.sh

mysql-data.sh

Images-data.sh

Legend

Read

Write

Runconf

.reserved_nodes.sh

Experiment
running

Start

Figure 7.4: How the experiment is started

48

7.2 Description of workbench Resource Function Workbench

Legend

Read

Write

Measure.sh

(See breakdown)

Removeimage.sh

Runconf

Log files

Result
files

Stop

Start

interpretmeasurements.sh

Excel friendly
format

Generateload.sh

Formatmeasurement.pl

Formatmeasurement.sh

LOOP1:N times

Figure 7.5: Breakdown of the measure script

49

Resource Function Workbench 7.2 Description of workbench

Legend

Read
Write

Generateload.sh

Copyimage.sh

Makescenario.sh

Captureiousage.sh

Start Hammerhead

Capturecpuusage.
sh

Runconf

Hammerhead
conf

Result files

Stop

Start

Figure 7.6: Generateload breakdown

50

7.2 Description of workbench Resource Function Workbench

Stop-apache.sh

Stop-mysql.sh

Stopexperiment.sh
.reserved_nodes.sh

Runconf

Experiment
stopped

Start

Legend

Read

Write

Figure 7.7: How the experiment is stopped

The workbench is set up so that it can be easily moved from one installation to another, all
scripts read a single configuration file called runconf. This file set all the global variables,
any changes which affect the program should be set here. This should make it fairly easy
to reuse our workbench, however since the Clustis cluster is a fairly odd architecture, there
is probably some scripting which needs to be done in order to reuse all of our scripts. The
one script which is most likely to be easily reused is the measure scripts, because this is
more or less hardware (system) independent. This was the script which took the longest
to make, so it is good that it is the most reusable.

It should also be noted, that the entropy of the workbench increased during the phase of
the thesis. The reason for this was the old node used, was a stand alone Clustis node. It
did not have a shared home area, as the other nodes. So some alternations to the scripts
were needed to make it work. It should however be noted, that it is mainly hacks on
the start and stop experiment which was performed, and no alternations to the measure
script.

51

blank side

Chapter 8

Results

In this chapter we will present an overview of the results from our experiments. A detailed
presentation of results for each individual image size or text size can be found in Appendix
E. In addition to this, the spreadsheets with all the measurement data used to calculate
the confidence interval and means can be found on our web site [20].

As mentioned in our measurement plan (see Chapter 6), the measurements are runned
with a run time of 100 seconds. For a measurement to be valid the CPU utilization
has to be between 55% and 65%, and on each image or text size we want 10 individual
valid measurements. This was accomplished for most of the measurements, but because
it was hard to get a stable load on the small image sizes, some of them have fewer valid
measurements.

To find the throughput on exactly 60% CPU utilization, we used linear regression. We
also calculated a 95% confidence interval for this result, which shows how reliable and
reproducible the measurements are. The confidence interval for each image or article size
are shown within the graphs as vertical error bars.

8.1 Experiment results on old web server

Figure 8.1 on page 54 shows the overall results for the experiments on the old web server.
The graph shows that as the image image size increases the throughput on the web server
decreases, and this behavior was expected.

There was an unexpected interval in the graph, and that is the shape of the curve between
image sizes 10 KB and 100 KB. The result for image size 50 KB is lower than for image
size 100 KB. We had expected a smooth curve and throughput (Tps) around 250 for
image size 50 KB, but this odd result can be explained with our problems of getting
valid measurements on image sizes below 100 KB. This is reflected in the large confidence
interval for these image sizes.

53

Results 8.2 Experiment results on new web server

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Figure 8.1: Throughput (Tps) versus image size on old web server

8.2 Experiment results on new web server

Figure 8.2 shows the overall results on the new web server. The graph has a smooth curve,
and is pretty much as we expected it to be. However, the curve decreases faster than
expected for the small image sizes. The graph shows a large confidence interval for image
size 50 KB, and on image size 10 KB there is a infinite confidence interval that not is
shown in the graph. The infinite confidence interval is a result of few measurements on
this image size (we were only able to get two valid test runs).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Figure 8.2: Throughput (Tps) versus image size on new web server

To see the effects of the scale-up on the CPU, we have compared the two web components

54

8.3 Experiment results on the database Results

against each other in section 8.5.

8.3 Experiment results on the database

Figure 8.3 shows the overall results from the experiments on the database server, which
were performed on the new nodes. The database was able to handle much higher number
of sessions than the web servers, so we used two load generators and two web servers to
perform the measurements on the database. We did not measure on larger article text size
than 300 KB since an article text not is likely to be any bigger, see Chapter 5.

The graph in Figure 8.3 shows that the measurements have a large confidence interval.
It was problematic to generate a stable load with the load generators for such a high
number of simultaneous connections as we needed on the database. Even though the large
confidence interval, the curve is as expected and the curves shape is decreasing and relative
linear.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

0 50 100 150 200 250 300

Text size (KB)

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Figure 8.3: Throughput (Tps) versus text size on the database

8.4 Disk measurement

We have experienced some problems with the disk measurements, and main reason is that
the measuring tools have not been functioning as expected.

55

Results 8.4 Disk measurement

Old node

On the old node the measuring tools1 did not report any reading what so ever. This is
extremely strange, and even when we tried to copy images with image size of 1000 MB,
the tool reported no disk activity.

New node

On the new nodes, we managed to get results for disk, for image sizes over 400KB. The
reason we only get reading above 400KB, is most likely caching. On the small image sizes
all the images are in memory.

We have 2000 images on each image size, and for image size 400 KB gives this a total
image volume of 800 000 KB (≈0.8 GB). The memory has 1 GB storage space, so all the
images for this image size fits in the memory. For image size 500 KB the total image
volume is larger than the memory and the CPU have to read from disk. This fits well with
the fact, than the reported reading increases as the image size increases, as the cache miss
ratio is increasing.

The results obtained on the new web server is shown in Figure 8.4. The values in the graph
are the average reading during a test period for each image size. It should be noted that,
there seems to be disk activity only a few times during a measurements. So we consider
these measurements to be quite unreliable. However, to get any results we have decided
to use the average read during the test period.

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

K
B

 r
ea

d
on

 d
is

k

Figure 8.4: KB read on disk read vs. image size on new web server

1We tried several of the tool available on Linux, we even compiled them up ourself

56

8.5 Comparison of the web servers Results

Comment

It is very strange that we do not get any disk reads on the old server. Everything is the
same between the measurements on the old and the new node. The number of images
and the primary memory are the same, so there should be no difference in caching. The
test harness and the measuring process is the same, so there are no difference in how the
results are collected.

8.5 Comparison of the web servers

The graph in Figure 8.5 compares the throughput between the old and the new web server.
As we see the new web server performs much better on the small image sizes, where the
CPU is the bottleneck. On large image sizes the throughput is more or less the same. We
believe this is because on larger image sizes, the disk becomes the bottleneck. And as both
disk has more or less the same performance, the number of transaction are more or less
the same.

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Old webserver
New webserver

Figure 8.5: Comparison of Tps vs. image size between old and new web server

57

blank side

Chapter 9

SP-parameterization

In this chapter we will parameterize the SP-model identified in Chapter 4, based on the
results of the measurements presented in Chapter 8. Parameterization is very hard to get
exact due to several reasons; it is hard to manage to truly isolate the resource demand
and the available measuring tools are relatively coarse. As a result of this, we have to base
the parameterization on some assumptions and approximations, which will be explained
in the following subsections. All the parameters used in the complexity functions is shown
in Table 4.1 on page 21.

9.1 Function pattern f1

To parameterize this function pattern we need to find the average number of images per
article at the measured web system. This function pattern is only dependant of how many
images an article consists of. If the articles consists of 3 images on average, this function
states that one request from the load generator will request three image requests. As
we have measured on a test system, we have not modeled a web site with an average
number of images per article. We have varied the number of image per article, but the
parameterization of the function in Equation 9.1 should be easy to complete. I in the
equation is the average number of images in the articles, see Table 4.1 on page 21.

f1 = I (9.1)

9.2 Function pattern f2

Function pattern f2 is the number of CPU cycles used by the web server to process a
Get Text request to the database server. This request fetches the text. To parameterize
this function we need to measure the Utilization on the CPU when running the Get Text
operation. This function is extremely hard to determine, as it requires almost no CPU.
Our measurements showed almost no utilization when performing a large number of this
operation per second. From this we assume that this operation use a minimal number of
CPU cycles.

We assume that the cost for a Get Text operation is similar to the Get Image operation.

59

SP-parameterization 9.3 Function pattern f3

We can then use the parameterization of the Get Image operations in the next section 9.3
to calculate the number of CPU cycles used for a Get Text operation. We assume that Get
Text operation is maximum 1 KB, we can then find the cost of this operation by inserting
1 KB into equation 9.11 (old node) and equation 9.8 (new node) on page 65.

f2,oldws = 2.02 ∗ 106 (9.2)

f2,newws = 0.50 ∗ 106 (9.3)

This is a quite crude approximation, but it is believed to be a worst case approximation.

9.3 Function pattern f3

To parameterize this function we need to measure the CPU utilization when running the
Get text/Get image operations, and the text size / image size has to be known. This
function pattern describes how many CPU cycles the web server use to execute the Get
text or Get image operation.

Since it was impossible to measure how many CPU cycles exactly one operation uses, we
had to estimate it. We measured how many identical transactions (operations) the CPU
served per second (Tps) for a given CPU utilization. Thus we were able to find the number
of CPU cycles used for one operation by using Equation 9.4, which we believe gives a good
approximation.

]CPU Cycles =
SpeedCPU ∗ UtilizationCPU

Tpsimage size or text size
(9.4)

Let us explain the equation we have introduced:

1. SpeedCPU is the speed of the CPU, and this is known through the configuration of
the system. This speed is given in Hz and gives us the total number of CPU cycles
executed in a second.

2. UtilizationCPU is the operating point we have chosen, which is 60%. By multiplying
this value with the total number of CPU cycles executed in a second, we get the
total number of CPU cycles that are used in a second to execute operations.

3. Tpsimagesizeortextsize is the throughput (Tps) for each image size or text size at op-
erating point 60%, which have been found through measurements and regression
analysis. These values are presented in Appendix E. We know from item 2 how
many CPU cycles that are used in a second, and by dividing this number with the
number of operations in a second (Tps) we find how many CPU cycles that is used
by one operation. This will distribute any overhead evenly between the operations.

We assume that no of the CPU cycles used in a second, is used by other operation
than the operation we have measured. This assumption can be made, because we
are pretty sure we have managed to isolate these operations (see Chapter 6.3).

60

9.3 Function pattern f3 SP-parameterization

We have measured on three components, respectively web servers with a CPU speed at 3.4
GHz and 1.4 GHz, and database server with a CPU speed 3.4 GHz. Equation 9.4 is the
basis for the parameterization of function pattern f3 for each of the measured components.

Old web server

We use the formula from Equation 9.4 to calculate the number of CPU cycles used on the
old web server. The calculation with image size 1000 KB is shown in equation 9.5, while
the results for the other image sizes is shown in Table 9.1. The SpeedCPU for the old
web server is 1.4 GHz and the UtilizationCPU is 60%. This applies for all the image sizes
on the old web server, while the throughput is individual for each image size, and can be
found in Appendix E.

For image size 1000 KB the Tps is measured to be 32 transactions per second, if we Insert
this into Equation 9.4 we find the CPU cycles used for one Get image operation on image
size 1000 KB, see Equation 9.5.

]CPU CyclesOld,1000KB ≈
1.4 ∗ 109 ∗ 60%

32
≈ 25.96 ∗ 106 (9.5)

Image size 10KB 50KB 100KB 200KB 300KB 400KB
CPU cycles ≈ 2.84 ∗ 106 4.61 ∗ 106 3.92 ∗ 106 6.47 ∗ 106 7.75 ∗ 106 10.71 ∗ 106

Image size 500KB 600KB 700KB 800KB 900KB 1000KB
CPU cycles ≈ 13.52 ∗ 106 15.09 ∗ 106 17.12 ∗ 106 20.65 ∗ 106 23.83 ∗ 106 25.96 ∗ 106

Table 9.1: CPU cycles used on the old node

0

2500000

5000000

7500000

10000000

12500000

15000000

17500000

20000000

22500000

25000000

27500000

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

C
P

U
 c

yc
le

s
pe

r
tr

an
sa

ct
io

n

Figure 9.1: CPU cycles used vs. image size on old web server

61

SP-parameterization 9.3 Function pattern f3

The graph in Figure 9.1 shows an increase in CPU cycles as the data volume increases.
This growth is approximately linear, and by linear regression we have found a function
matching the red line in the graph. This line gives the parameterization of function pattern
f3 for the old system, and is presented in Equation 9.11.

f3,oldws = 23207 ∗ Image size + 2 ∗ 106 (9.6)

New web server

The calculation of the CPU cycles used on the new web server is done in the same way as
the old web server. The UtilizationCPU is still 60%, but the SpeedCPU for the new web
server is 3.4 GHz. These parameters apply for all the image sizes on the new web server,
while the throughput is individual for each image size.

For image size 1000KB the throughput, TpsImage size is measured to be 28 transactions
per second, see Appendix E. Inserted in Equation 9.4 we find the CPU cycles required
for one Get Image operation on image size 1000 KB in Equation 9.5. The results of the
calculations of the other image sizes are shown in Table 9.2.

]CPU CyclesNew,1000KB ≈
3.4 ∗ 109 ∗ 60%

28
≈ 72.94 ∗ 106 (9.7)

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

C
P

U
 c

yc
le

s
pe

r
tr

an
sa

ct
io

n

Figure 9.2: CPU cycles used vs. image size on new web server

The graph in figure 9.2 shows the CPU cycles used for one operation on each image size
for the new web server. The shape of the graph is very interesting as it have a clear break
and the graph can be divided into two linear parts. The clear break is between image size
400 KB and 500 KB. These two linear parts create the function pattern for the new web

62

9.3 Function pattern f3 SP-parameterization

Image size 10KB 50KB 100KB 200KB 300KB 400KB
CPU cycles ≈ 0.89 ∗ 106 1.27 ∗ 106 2.13 ∗ 106 4.13 ∗ 106 5.96 ∗ 106 7.81 ∗ 106

Image size 500KB 600KB 700KB 800KB 900KB 1000KB
CPU cycles ≈ 13.12 ∗ 106 23.89 ∗ 106 35.48 ∗ 106 51.19 ∗ 106 61.31 ∗ 106 72.94 ∗ 106

Table 9.2: CPU cycles used the new web server

server. We could have used polynomial regression, but since the two parts are so clearly
linear we choose linear regression, given in Equation 9.8.

This parameterization function found is different from what we expected, as we had ex-
pected a linear graph like that one for the old web server in the last section. Now we
have two linear functions where the slope of the regression on the large image sizes is 6.7
times bigger than the slope for the regression for the small image sizes. There is some-
thing odd about this function, and in the next paragraph we will give a more plausible
parameterization for the CPU on the new web server.

f =

{

18227 ∗ Image size + 479791 for Image size ≤ 486KB
122025 ∗ Image size − 5 ∗ 107 for Image size ≥ 487KB

(9.8)

Alternative parameterization If we study Figure 9.3, we see that the new web server
seemingly use more CPU cycles than the old web server on image sizes from 500 KB to
1000 KB. This is unexpected and odd behavior, as there is no reason why the new web
server should use any more cpu cycles that the old one. We have indentified two two
plausible explainations for this behavior.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

C
P

U
 c

yc
le

s
pe

r
tr

an
sa

ct
io

n

New web server
Old web server

Figure 9.3: Comparison of the CPU cycles used vs. image size on the old and new web
server

It could be some kind of experimental error. However, since all the experiments are

63

SP-parameterization 9.3 Function pattern f3

performed exactly the same way and the software used are identical between the two, this
is not very likely.

The other plausible explanation for the break is because our approximation (Equation 9.4
on page 60) of CPU cycles is based on the fact that all the reported CPU utilization is
used by the Get image operation, and this is the case as long the CPU is the bottleneck.

On the small image sizes up to 400 KB the CPU is the bottleneck, while the disk is the
bottleneck for image sizes from 500 KB to 1000 KB. This is supported by measurements
performed on the new web server, see Figure 8.4 on page 56. As can be seen from this
figure there are reading on disk from image size 500 KB and upwards. From the same
figure we can see that there is no reading on image sizes below 400 KB, this indicates a
cache hit ratio of a 100% in this interval. When the image size increases above 400 KB
the cache hit ratio will decrease and this leads to disk reads.

So when the bottleneck is changing from the CPU to the disk between image size 400
KB and 500 KB, the approximation of CPU cycles starts to get wrong. When the disk
is bottleneck not all of the reported CPU utilization is used by the Get image operation.
Some of the reported utilization is IO wait, since our measurement tool report IO wait as
an active CPU state. This means the reported utilization is higher than the number of
CPU cycles used by the actual operation. We use Equation 9.4 on page 60 to calculate
the CPU cycles used by the operation, in this equation is Tps and the CPU speed right
while the CPU utilization is to high and this leads to an overestimate for the CPU cycles
used.

This happen on the old web server as well, but not nearly as evident. The reason for this
is because the old CPU is slower and that the degree of overestimation is higher on the
new CPU.

Because of this, we believe that a better approximation for the CPU cycles used on the
new node, is to continue the liner regression function for the interval 10 KB to 400 KB all
the way up to a 1000 KB. This can be seen in Figure 9.3. We then see that the relation
between the CPU cycles used on the new and the old web server is relative constant. The
parameterization for the new CPU is then given as function in Equation 9.9.

f3,newws = 18227 ∗ Image size + 479791 (9.9)

Database

The CPU cycles used on the database server are calculated the same way as the CPU
instruction on the web servers. The calculation on the database system for text size 300
KB is shown in equation 9.10. The values in the equation are 1.4 ∗ 109, which is the speed
of the CPU, 60% which is the utilization on the CPU, and 1493 which is Transaction per
second found in Chapter 8

]CPU CyclesDB,300KB ≈
(1.4 ∗ 109) ∗ 60%

1493
≈ 0.562 ∗ 106 (9.10)

By replacing TPStextsize in equation 9.4 with the Tps for each text size, the CPU cycles

64

9.4 Function pattern f4 SP-parameterization

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

C
P

U
 c

yc
le

s
pe

r
tr

an
sa

ct
io

n

Parameterization new web server

Parameterization old web server

Figure 9.4: Parameterization of the new and old web server

used for one operation are found. The results of the calculations for the other text sizes
are shown in Table 9.3.

Text size 10KB 50KB 100KB 200KB 300KB
CPU cycles ≈ 0.344 ∗ 106 0.353 ∗ 106 0.376 ∗ 106 0.453 ∗ 106 0.562 ∗ 106

Table 9.3: CPU cycles used on the database

The graph in Figure 9.5 shows that the number of CPU cycles increases as the data volume
increases, and we can see that linear regression fits the measured values quite good. The
red line in the graph is found through linear regression, and this line match the equation
9.11, which is the parameterization of function pattern f3 for the database on the new
node.

f3,DB = 764.97 ∗ Text size + 316605 (9.11)

9.4 Function pattern f4

To parameterize this function we need to measure how much data that is read on disk, and
we need to know the data block size used on the disk. The disk measurements proved to be
very hard as we had problems with our measurement tools, and this is explained in Chapter
8.4. As a consequence of this we were unable to perform a complete parameterization for
this pattern for all the test components.

65

SP-parameterization 9.4 Function pattern f4

0

100000

200000

300000

400000

500000

600000

0 50 100 150 200 250 300

Image size (KB)

C
P

U
 c

yc
le

s
pe

r
tr

an
sa

ct
io

n

Figure 9.5: CPU cycles used vs. text size on database server

New web server

We have some results for disk reading on the new web server, see Figure 9.6. The graph
shows that there are readings on disk for the large image sizes. The reason there is only
reading on the large image sizes and that may be because on the small image sizes all the
images are in memory during a test run, but the memory is not big enough to have all the
large images in the memory during a test run (this is further explained in Chapter 8.4).
Ideally, we should have eliminated the caching completely to get read result for all image
sizes, but this was unfortunately not feasible, and this is further discussed in Chapter 6.6.

Since the measurements are uncertain, the parameterization is uncertain as well. However,
we make a parameterization based on the measurements on the new web server. The
values on the image size from 10 KB to 400 KB are all zero, and therefore we can only
do a parameterization within the range from 500 KB to 1000 KB. Through regression in
this range we have found the regression function to be: y = 60.2 ∗ Image size − 9120.6.
By dividing this by the block size on disk (512 KB), we found the number of read blocks
by the complexity function in Equation 9.12, which should be the parameterization of
function pattern f4.

f4,newws =
60.2 ∗ Image size − 9120.6

512
for Image size ≥ 500KB (9.12)

66

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

K
B

 r
ea

d
on

 d
is

k

Figure 9.6: Disk read on new web server

blank side

blank side

Chapter 10

Dynamic model

In this chapter we will construct and solve a dynamic model for our systems. While a
static model devolves the resource demands for the components in a given system, it can
not be used for predicting the performance for a given load. A dynamic model combines
the static work with a load, and can be used to predict the performance for a system. We
will use a method outlined by Peter Hughes and Gunnar Brataas.

10.1 Background theory

We will model our dynamic model as a Queue Network (QN), that is a network of intercon-
nected queues, where a queue stands for a resource centre (e.g. disk, CPU or network) and
the queue for that resource. A queue is characterized by a function S(N), which represent
the service time for a given queue length n. There are three types of resources.

• Load-independent resources, where the service time, S(n) is independent of the num-
ber of users in the queue.

• Load-dependant resources, where the service time, varies according to the number of
users in the queue.

• Delay resources, which represent situations where there is no queuing. And where
the total time spent in the resource is the requests service time.

Not all of the requests in a QN network need to be identical in terms of resources used and
resource demand. It is therefore possible to have different classes of requests, each with its
own resource demand and different workload intensity parameters (e.g. inter-arrival time).
E.g. one might imagine that one type of requests are more CPU resource consuming than
other, e.g. large SQL queries compared to small ones.

The classes can either be open or closed. If all classes in a QN are open then we call it an
open QN, if all are closed then it is a closed QN. It is also possible to have a mixed QN,
where some classes are open and some closed. An open QN does not put any constraints
on the maximum number of requests present in the system, while the closed have a finite
number of requests in the system. According to [16] a closed QN can arise when we want
to model a system with a maximum degree of multiprogramming. Whether a QN is open

69

Dynamic model 10.2 Method

or closed affects the way the model is solved, either way it is solved through fairly easy
operational laws.

One of the main advantages with QN models are that they are fairly easy and quick to
solve. In order to solve our QN, we have to assume that it is separable. According to
Peter Hughes [8], a separable network is one where the customers and the resource centres
performs in a way which the performance of each centre can be found in isolation from
the rest of the network. ”In practice most systems violate the assumptions required for
separability, but the resulting inaccuracies are often less significant than other errors”[8]

10.2 Method

Peter Hughes identifies in [8] the three normal stages in using a system model for scalability
studies as; construction stage, projection stage and validation stage.

In the construction stage the baseline model is build, parameterized and its workload
identified. We then validate the model against performance data, in our case the overall
response time for one Get image request. The projection stage contains a modification
analysis, where we identify the difference between the baseline system and a projected
system. We then try to asses how these changes affect the input parameters for the
projected model. The final stage in the process is the validation stage, where we verify
any changes in the model.

(5) Prediction

System ModelParameters

S0

S1

M0

M1

Performance measurements

(1) Performance measurements (2) Predictions

(3) Comparison

(4)
Modification

analyis

(6) Validation

Relative size

System spec.

System spec.

Figure 10.1: Scalability method (Peter Hughes and Gunnar Brataas, 2005)

Figure 10.1 is a more schematic overview of the processes involved in a scalability assess-
ment using dynamic models, and it gives a clear overview of the processes involved in the
projection stage and the validation stage. We will use the method outlined in this figure

70

10.3 Model construction Dynamic model

to aid us in assessing the scalability using dynamic models. As we can see from the figure
the method consists of six steps.

In our thesis we have two different systems, one running on our old node; from now on
denoted as S0 (baseline system), and one system running on new nodes (S1).

Unfortunately we do not have the disk parameterization for S0, and this prevents us
from performing stages (2) Prediction and (3) Comparison. We can however calculate an
approximation of the disk residence time for S0, to use in the later stages of the method.
This can be done because we have all the input parameters to model M0 but one. In
addition, we have the output parameter for M0, and then are left with a simple equation
with one unkown (disk residence time), which can be solved.

Because we have found an approximation for the disk on S0, we can find the disk residence
time for the disk on system S1, since we know this disk is 10% faster (see Chapter 6.1) .
We will then have a complete set of input parameters to model M1.

The steps we will perform are described in the list below.

• Model construction stage: We will construct a dynamic model for the systems; S0

and S1 (see section 10.3)

• Find the input parameters to M0

• Perform a modification analysis between system S0 and S1 stage (4) in Figure 10.1.

• Execute stage (5) in the figure, and calculate the predicted output values for model
M1.

• (6) Validate the predicted output parameter1 from model M1, against the perfor-
mance measurements for system S1.

• If the output created by M1 does not match the performance measurements for
system S1, we will try to identify the reasons for this.

10.3 Model construction

Model construction is always a trade off between precision and cost. A more precise model
is more costly to make and solve, while an imprecise model is easy to make and solve, but
not might not be accurate enough to use for predictions.

Based on the discussion in Chapter 3.2 on page 9 about how our system prosesses a request,
the system can be represented as the QN shown in Figure 10.2 on page 72. We have chosen
to represent the system as a closed model, because the load generator produces a fairly
constant number of requests. This implies that in our test runs, the number of users in
the system is more or less constant. It should be noted that Internet sites normally are
modelled as open systems, but because of the way we conduct our experiment it must be
closed. The LAN is represented as a load dependant device, because the service time in
the network increases at high network utilizations.

1The overall response time for one image request

71

Dynamic model 10.3 Model construction

LAN

CPU DISK

CPU DISK

R
 e trie v e a rtic le

Article fetched

DATABASE SERVER

WEB SERVER

Arriving requests

Finished requests

M clients

R
 e trie v e im

 a g e

Image fetched

L o a d g e n e ra to r

Figure 10.2: Closed QN model of our system

72

10.4 Model solution Dynamic model

This is a fairly complete model, but unfortunately we do not have enough information to
solve it, as we lack information about the IO on the database. We also know that the
database server handles more requests, and is therefore less likely to be the bottleneck,
and we will therefore choose to focus on the request image part.

The system breakdown can be seen in Figure 10.3, and this represent our system model
for system S0 and S1.

We have a single-class network, with 10 sets of input parameters. This is because we have
10 image sizes from 100KB to 1000KB, all with different parameters

CPU

Get image

Image fetched

Load generator

LAN

M clients

DISK

Webserver

Figure 10.3: Breakdown of the contention model

Since our QN is closed, it can be solved through Mean Value Analysis (MVA). MVA is
a recursive process based on three equations (Residence time equation 10.1, Throughput
equation 10.2 and Queue length equation 10.3)2.

R
′

(n) =

{

Di for delay resource
Di[1 + ni(n − 1)] for queuing resource

(10.1)

X0(n) =
n

∑K
i=1 R

′

i(n)
(10.2)

ni(n) = X0(n)xR
′

i(n) (10.3)

10.4 Model solution

In this section we will follow the stages identified in Figure 10.1, for assessing the scala-
bility using dynamic models. We can however, not perform stage (2) Prediction and (3)
Comparison, because we need to use the performance measurements and the parameters
measurements for system S0 to approximate the disk demand.

2To see how these equations are derived, see Chapter 9 in [16]

73

Dynamic model 10.4 Model solution

(1) Parameters measurements

This stage involves determining the input parameters to the dynamic model M0, and it
is important to note that there is one set of parameters for each image size. Our model
consists of three resources which needs parameters, and these have been found through
measurements and approximations.

We will now explain the input parameters for model M0, and how they were quantified.
All the input parameters are given as residence time, R

′

.

• R
′

cpu: This one is found by dividing the number of CPU cycles used for a given image
size on the CPU clock speed. These results are discussed in Chapter 9.

• R
′

LAN : This is the time spent in the network by one request. This time consists of
two main parts; the time used for establishing and releasing the connection, and the
transfer time. From the load generator we get the establish and release time. We
assume the transfer time is close to zero, as it is small files which are transferred
over a 1Gbit/s Ethernet.

• R
′

disk: This is found through approximation, as we do not have any measurements
for it. We find this by subtracting R

′

cpu and R
′

LAN from the overall response time.
This is a bit cyclic, but it is the only way we can find an estimate. The impact of
cyclic calculation is that the approximation for the disk is highly dependant on the
accuracy of the other parameters.

The values for these input parameters to M0 can be seen in Table 10.1.

Image size (KB) R
′

disk R
′

cpu R
′

LAN

100KB 1.70 ms 2.80 ms 7.00 ms

200KB 2.38 ms 4.62 ms 12.50 ms

300KB 6.97 ms 5.54 ms 11.00 ms

400KB 6.35 ms 7.65 ms 7.50 ms

500KB 6.34 ms 9.66 ms 6.50 ms

600KB 10.22 ms 10.78 ms 9.50 ms

700KB 11.77 ms 12.23 ms 10.00 ms

800KB 10.75 ms 14.75 ms 8.50 ms

900KB 10.98 ms 17.02 ms 7.50 ms

1000KB 13.46 ms 18.54 ms 7.50 ms

Table 10.1: Input parameters to model M0

(2) Predictions and (3) Comparison

According to the method these stages should compare the performance measurements
(overall response time), against the output of model M0 calculated in stage (2) Predic-
tion. Since we are missing the disk demand we are unable to do a complete prediction,
we have to use performance measurements R to find the residence time on disk (R

′

disk).

74

10.4 Model solution Dynamic model

(4) Modification analysis

The modification analysis describes the relative size of the system specifications between
systems S0 and S1. This analysis is performed in Chapter 6.1 on page 34. The CPU is
expected to be 2.4 times faster, and the disk is expected to be 10% faster in system S1

than in S0. The network performance (R
′

LAN) is believed to be the same, as they have
the same network card. However, some differences between the two systems might occur
as the new system has a higher throughput on small image sizes, which can lead to more
queuing in the network. Network performance can also be dependant on the CPU, so we
might see that system S1 have better performance than S0.

(5) Prediction

Based on the input parameters to M0 (see Table 10.1) and the modification analysis we
can predict the input parameters to M1. This is done by dividing the input parameters
for M0 with the scale-up factor for each parameter found in the modification analysis.

E.g. the R
′

CPU for M1 is found by dividing the R
′

CPU for M0 by 2.4, as we assume that
the new CPU will execute 2.4 times faster. Based on these calculated input parameters
for M0, we can solve the model, and find the predicted output parameters for system M1.

(6) Validation

Input M0
(Table 10.1)

Modification
analysis

Predicted
values

M1

Measured
values on
system

(S1)

Validation

Gives Input M1 Gives

Figure 10.4: Explanation of validation process

In this stage we compare the predicted output values for M1, with the measured values on
system S1. This is done to check to what degree we have managed to find a model which
can produce sound predictions for the system (S1). The output parameter is the overall
response time for a single Get image request.

Table 10.2 on page 76 shows the predicted overall response time and the measured response
time on S1. As we can see, the deviation between the two system are quite large, thus
our model can not be seen as very accurate. There are many possible error sources for
these deviations, and one of the most probable is the measured overall response time
itself. These measurements are quite uncertain as they are produced by Hammerhead2,
and because we do not have total control on how Hammerhead2 calculates them.

75

Dynamic model 10.4 Model solution

Image size Predicted overall response time Measured overall response time

100KB 10ms 22 ms

200KB 17ms 23 ms

300KB 20ms 34 ms

400KB* 16ms N/A

500KB 16ms 19 ms

600KB 23ms 13 ms

700KB 22ms 12 ms

800KB 24ms 12 ms

900KB 24ms 13 ms

1000KB 27ms 14 ms

Table 10.2: Comparison between measured and predicted overall response time for model
M1 (*We did not manage to get any good measured values for 400 KB)

To locate the probable errors sources, we can compare the predicted input parameters to
M1 to the one we have parameterized for CPU and LAN.

Validation of R′
CPU

Table 10.3 shows the predicted and the measured R
′

CPU . And as we can see the predictions
are quite good, it is the same magnitude. As the measured values is lower than predicted,
the CPU in system S1 is performing better than expected.

Image size (KB) Predicted (ms) Measured (ms) Deviation (ms)

100KB 1.17 ms 0.63 ms 0.54 ms

200KB 1.93 ms 1.22 ms 0.71 ms

300KB 2.31 ms 1.75 ms 0.56 ms

400KB 3.19 ms 2.30 ms 0.89 ms

500KB 4.03 ms 2.82 ms 1.21 ms

600KB 4.49 ms 3.36 ms 1.13 ms

700KB 5.10 ms 3.89 ms 1.21 ms

800KB 6.15 ms 4.43 ms 1.72 ms

900KB 7.09 ms 4.97 ms 2.12 ms

1000KB 7.73 ms 5.50 ms 2.23 ms

Table 10.3: Comparision between predicted and measured R
′

CPU M1

Alternative scale-up on CPU

The results for the CPU presented in Table 10.3, shows that the predicted values are higher
that the measured values. Because there is a almost constant error ratio, this can idicate
that the actual scale-up factor of the CPU should have been higher.

In Table 10.4 we propose new scale-up factors between the input parameters to S0
3 and

3These can be found in Table 10.1 on page 74

76

10.4 Model solution Dynamic model

the measured value for system S1. From this we can conclude that the actual relation
between them is around 3.4.

Image size (KB) Real scale-up factor based
on measurments on S0 and S1

100KB 4.4

200KB 3.8

300KB 3.2

400KB 3.3

500KB 3.4

600KB 3.2

700KB 3.1

800KB 3.3

900KB 3.4

1000KB 3.4

Table 10.4: Real scale-up factor between system S0 and S1

Validation of R′
LAN

Table 10.5 shows that for most of the image sizes the prediction for the residence time
(R′

LAN) is quite poor. From Table 10.5 we see that the measured residence time, drops
abrubtly from image size 400KB to 500KB. It would be wrong for us to draw any conclu-
sions on the reason for this drop, as the measured values are so uncertain.

It is quite clear that much of the inaccuracy in the dynamic model is caused by the
measurements on this component. The reason we have presented the data in Table 10.5
is to show that they can account for much of the error in the dynamic model, and not
because the results are useful.

Image size (KB) Predicted (ms) Measured (ms)

100KB 7.00 ms 14 ms

200KB 12.50 ms 9.75 ms

300KB 11.00 ms 11.50 ms

400KB 7.50 ms 14.20 ms

500KB 6.50 ms 1.00 ms

600KB 9.50 ms 2.00 ms

700KB 10.00 ms 1.00 ms

800KB 8.50 ms 1.00 ms

900KB 7.50 ms ≈ 0.00 ms

1000KB 7.50 ms ≈ 0.00 ms

Table 10.5: Comparison between predicted and measured R
′

LAN for M1

77

Dynamic model 10.5 Evaluation

10.5 Evaluation

It was an open question whether or not it would be possible for us to construct and solve
a dynamic model for the systems, and we think it still is an open question. The precision
of dynamic QN models are totally dependant of the quality of the input parameters and
the control parameters. We feel that while some of our input parameters are good (like
the CPU), some are highly uncertain. E.g. the total response time for system S0 and S1.

We believe it would have been easier to get good results if we had used equal response time
instead of equal utilization, because then we would had far more reliable measurements
on the overall response time.

The project time line has also been very tight and this has put a limit to the number
of measurements we were able to do. And the overall response time measurements has
suffered of this. However, we feel that since our experiment is easily reproduced, it should
be quite easy for someone to finish the job with the dynamic model.

78

Chapter 11

Discussion

In this chapter we will discuss the main findings in our thesis, and look at them in connec-
tion with the scaling scenarios outlined in Chapter 5. We will also explain the implications
these findings have on read-intensive web sites (E.g. TV2i which was looked at in our pre
project [21]).

11.1 Impact of increased article size

We have performed our experiments on three different components:

• A web server running on an old node

• A web server running on a new node.

• A database server running on a new node.

On all of these three components, we can see a distinctive reductions in the throughput1

(Tps) as the image/text size increases. This can be seen Figure 11.1 on page 80. This
effect was expected, but it is larger than we initially though, especially on the small image
sizes on the web servers.

In Chapter 5 we pointed out that we will use image size 100 KB and text size 10 KB as
a starting point for our discussion. The measurements on the new web server, see Figure
11.1(a), show that throughput is reduced to one fifth when the image size is increased from
100 KB to 500 KB. This is a considerable reduction in the throughput for a web site. On
the old web server the throughput is reduced by almost one fourth, when the image size
increases from 100 KB to 500 KB. The reason why we use choose to focus on this interval
is because this is most probable image size in near future.

As we can see from the Figures 11.1(a) and 11.1(b), the throughput is reduced more for
the small image sizes than the large ones.

On the database the throughput is reduced by about 25% when the text size is increased
from 10KB to 200KB (see Figure 11.1(c)). This indicates that the database are much

1Measured by number of request served by second (Transactions per second)

79

Discussion 11.1 Impact of increased article size

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

(a) Tps per image size on new web server

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

(b) Tps per image size on old web server

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

0 50 100 150 200 250 300

Text size (KB)

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

(c) Tps per article text size on the database

Figure 11.1: Throughput on the old and new web server and the database

80

11.2 Scale-up Discussion

more robust for future increases in text size than web servers in image size. To confirm
this, we can compare the decrease in throughput between the two in the same interval, 100
KB to 300 KB. In this interval the database were reduced by 33% while the web server is
reduced by 62%.

Implications for news sites

Most of the web sites interviewed in our survey (see Chapter A) predicts an increase in
the article size, and particular in the image size. Although, it is common knowledge that
increased article/image size leads to decreased throughput on the database/web servers,
this has previously not been quantified.

Our findings shows that the first step from 100 KB to 200 KB have an bigger impact than
the next step from 200 KB to 300 KB. The trend is that the impact of increased image
size is getting smaller as the image size increased. So a increase from 900 KB to 1000 KB
has less impact on the throughput.

At the same time as the image size is increased, the web site is expected to serve the same
number of customers (throughput). This implies that unless the news sites have spare
capacity on their current system, they will have to make alternations to their system,
which can be costly.

The need for larger articles should be closely weighted up against the cost involved in
handling the increased article sizes. There are two main solutions on how a system can be
altered, that is either through replication or scale-up. Replication is to use more hardware
at a given level (e.g. install a second CPU in the server), while a scale-up is to improve
the hardware at a given level (e.g. more memory, better CPU, etc). We have in our thesis
explored the effects off the latter solution, namely a scale-up. Looking at scale-up is more
interesting, as replication is easier.

11.2 Scale-up

In our experiment we measured on two web server components, where the main difference
between them was the CPU performance. In Chapter 6.1, we identified that the new CPU
had a scale-up factor of 2.4, while the disk had a scale-up factor of 1.1. This does not
mean that we expected the new web server to have 2.4 times higher throughput, as the
throughput could depend on several factors (e.g disk and memory size). However, the
throughput on the new web server was expected to be higher than on the old web server.

As can be seen in Figure 11.2 on page 82, the difference between the throughput on the
new and the old web server decreases as the image size increases. On the largest image
sizes the throughput are more or less the same.

If we study the interval from 100 KB to 500 KB, there is a considerable difference in the
throughput between the old and the new component, with an average difference factor of
3.4. The throughput in this interval is mainly dependent on the CPU as there is no reading
on disk, see Chapter 8.5, and the CPU is the bottleneck. This explains this factor, however
a factor of 3.4 is 70% larger than our expected scale-up factor of 2.4. This indicates some
super linear effects. It is interesting to note that that this factor of 3.4 was found in

81

Discussion 11.2 Scale-up

Chapter 10.4 as well, these two findings indicates that perhaps the scale-up of 2.4 is too
low.

The reason for the large difference on the small image sizes is because the new web server
execute each connection more effectivly than the old web server. Since each connection is
read more efficiently from memory, the difference in the throughput will be much larger
with many connections than few connections. The difference in throughput increase pro-
portionately with the number of connections. There is no difference on the large image
sizes since the disk is the bottleneck device, as there is almost no scale-up on disk.

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 100 200 300 400 500 600 700 800 900 1000

Image size (KB)

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Old webserver
New webserver

Figure 11.2: Comparison of throughput on old and new web server vs. image size

Implications for news sites

The fact that a scale-up of the processor leads to a considerable increase in throughput,
is important for news web sites to keep in mind. For them it means that upgrading the
hardware will help them in serving more customers per server. When we are performing
a scale-up, it is important to identify the bottleneck in the system, as a scale-up is only
possible if the bottleneck component either is replicated with more components or replaced
by a better performing component. What this implies is that the performance of the overall
system does not improve unless the performance of the bottleneck component is improved.

However, it is hard to predict the effects a scale-up of one or more components (a non-
uniform scaling) will have on the throughput. This is because the throughput have different
levels of dependency on the components on different image/text sizes. As we have seen
the effects of the scale-up on the throughput varied between the different image sizes (a
increase in throughput by 4.5 on 100 KB, but only an increase by a factor of 3.2 on image
size 300 KB).

82

11.3 Connection between web server and database Discussion

11.3 Connection between web server and database

Another interesting finding in our experiment is that the web server has a much lower
throughput than the database server on identical hardware. So on a news site, the web
server component would be the bottleneck. In the same way a disk or a CPU can be
replicated, a web server node could be replicated, so that two web servers uses the same
database. In this section we calculate how many web servers a database server can support
on identical hardware.

Scenario calculations In this example we will use an imaginary news site with two 100
KB images per article, and a article text size of 10 KB. We will let this imaginary system
run on the new nodes, and use the measurements data for these. The new web server can
serve 9572 100 KB images per second, while the database can serve 2245 articles of text
size 10 KB per second.

Since each article contains two images the web server can only serve 468 (b957/2c) articles
per second. In addition, the web server must forward the Get article request to the
database, which requires some resources. We can therefore estimate that each web server
can serve ≈ 400 articles per second. This means that each database server can serve five
web servers (b2245/400c), given that there is no non-linear effects.

Another point, is that the news sites find it more likely to experience an increase in image
size than in text size (see Appendix A), and this means that each database can serve even
more web servers.

Implications for news sites

For a news sites these findings are important because it implies that it possible to replicate
at the web server layer. And if there are no non-linear effects when connecing more and
more web servers to a database, it should be fairly easy for news site to calculate at what
point they need to make changes to their database.

11.4 Capacity planning

Figure 11.3 on next page shows a near linear relationship between throughput and CPU
utilization for each of the image sizes and this was expected. On image size 100 KB the
graph can be interpreted of having a polynomial shape, but we feel a linear tred line fits
even better. However, it should be noted that while the throughput vs. utilization is a
near linear relationship, response time vs. utilization is not linear. And response time is
very important for websites, as the customer should never have to wait too long.

Since the throughput vs. utilization relationship is a near linear one, it is easy for web site
to predict how increased number of user will affect the web site. If we study the graph in
Figure 11.3 we can imagine two example scenarios.

2All numbers are for a operating point of 60% on the CPU

83

Discussion 11.4 Capacity planning

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

Utilization, CPU (%)

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

1000 KB
500 KB
300 KB
100 KBExample 1

Example 2

Figure 11.3: Throughput vs. utilization on the old web server

84

11.4 Capacity planning Discussion

Example 1 If news sites currently use images size of 100 KB and run at 50% CPU
utilization, the graph in Figure 11.3 shows that the throughput is 240 Tps. Now if this
web site want to have a throughput of 270 Tps, then they can use the regression line to
find the new utilization, in this case it will be around 80%.

Example 2 Now if another web site with image size 300 KB and throughput of 40 Tps
want to increase the image size to 500 KB but keep the same throughput. They can then
use Figure 11.3 to find how this will affect their utilization. From the figure we see they
currently have a CPU utilization of 20%, but that it will raise to around 30%.

Implications for news sites

As we have seen in example 1 and 2, the linear relationship between throughput and
utilization makes it easier for web sites to plan the implications of increased load and/or
increased image/text size. However, it is important to remember that the response time
will also increase as the throughput and the utilization increases. This will on some point
be bigger than the customers can accept, and this point should be identified.

85

blank side

Chapter 12

Method evaluation

We will in this chapter evaluate the work and the methods used in this thesis, based on
our experiences throughout the thesis.

12.1 SP method

We have used the SP method to model the components and the connections between the
components in our test systems. The SP method provides a useful framework that really
aids in understanding the system and the connections between the components. As with
all modeling tools, finding the right granularity is hard. It is always desirable to model
the system with a high granularity, but this requires deep domain knowledge about all the
parts in the system. In addition, a fine model is costly to solve. On the other side, a too
coarse model limits the applications of the model.

We are happy with the level of detail in our model, as we have tried to get a model which
we could understand completely and be able to solve. Even though our model looks quite
simple, getting a full grasp of it required a lot of domain knowledge. This is one of the
problems with scalability assessments; it is a domain which requires deep knowledge in
many areas (hardware, software, programming, statistics, etc.).

12.2 Resource function workbench

Making a framework for automating the collection and processing of the measurements, has
together with the installation and setup of the components been the most time consuming
processes during this thesis. Making the framework took about five weeks to complete,
where the main activity was scripting.

Although, this was a secondary objective according to our problem definition, it was
fundamental in order to be able to perform and manage the measurements. In addition,
this part is highly useful as it makes it easy to recreate our measurement, and could
potentially be very useful for future projects within this area.

87

Method evaluation 12.3 Measuring process

12.3 Measuring process

Even with the resource function workbench, the measuring process has been quite demand-
ing and time consuming. As measuring is a time consuming process we had to perform
less measurements that we would have liked. We would recommend future projects in
this area to use the pre project before Christmas to establish the system baseline and a
the framework for the measurements; this way they will get more time to perform and
interpret the measurements.

During the measurements we have encountered some challenges with choosing the right
load generator, and we have actually tested out two load generators before the one we
ended up using. This was just bad luck, as there was no way of knowing their shortcomings
before we had tested them.

We also had some challenges specific to the new system. The database component needed
two load generators and two web servers in parallel to reach the decided operating point.
It took some time to configure these components to work in parallel, as we needed to
merge the results of the two individual measurements.

Looking back, there is a possibility that we should have used equal response time to
determine the operating point, both because response time is an important factor on the
Internet, and because it makes it easier to solve the dynamic model.

However, we found it more feasible and more reliable to use the equal utilization. We
focused the measurements on the CPU which was the expected bottleneck in the system,
and we choose the operating point to be 60% CPU utilization. On the small file sizes this
operating point required a very high number of connections, and we could possibly have
chosen a lower operating point, which could have made our measurements a bit easier.

Even though the measuring process took much time, we are very satisfied with the results,
especially the CPU and throughput measurements. Later tests have proved them to be
highly reproducible, and thus we can conclude that these measurements are reliable and
sound.

12.4 Dynamic model

To fully exploit the dynamic model, the response times and residence time on each com-
ponent in the system are required. Since we were unable to measure the residence time
on disk, the model lost much of its precision. In addition, when we are uncertain of the
measured overall response time, the model looses some of its value.

One of the challenges with using a dynamic model in a scalability assessment is to perform
a good modification analysis. We have focused on the major components in the system
and found the relative size between them. A complicating factor in this process was the
fact that we have non-uniform scaling, that is that the scale-up is different between the
components.

We feel however, that creating a dynamic model has been very useful, and we believe it
can make valuable predictions if the accuracy of the parameters are improved. This should
be feasible, as our measurements can be easily recreated.

88

12.5 Work process Method evaluation

12.5 Work process

We are happy with the way the work process of this thesis has been conducted. We
early understood the value of a structured approach, as the task was very comprehensive
and had to be completed in a short time span. Because of this, we started the project
by breaking down the work into smaller parts and setting a deadline for each part. We
understood that the writing would have to be a continuous task, so we have been writing
throughout the entire project.

Table 12.1 show how much time we have spent in the different phases during our work
process. The table shows the allocation of the work during the 20 weeks that were available.
The most interesting thing about this table is to see that a large time of this project was
spendt on system installation and the RFW. This work had to be done properly, as it
created the fundation of our thesis.

The measurements took about 6 weeks to complete, and this may seem like a long time,
but measurements are time consuming. Each individual experiment took about 5 minutes
and we have nearly 700 of them. In addition, the cluster was unstable and down for longer
periods of time.

Time – Work phase

3 weeks – Installation and system configuration

blank linje
blank linje
5 weeks – Resource Function Workbench
blank linje
blank linje

blank linje
blank linje
6 weeks – Measurements
blank linje
blank linje
blank linje

blank linje
3 weeks – Interpretation of measurements data
blank linje

blank linje
3 weeks – Writing
blank linje

Table 12.1: How the work was distributed during our work process

89

blank side

Chapter 13

Conclusion

We have in this thesis continued the work started in our project [21], i.e. to explore the
practical and economic feasibility of assessing the scalability of a read-intensive large-scale
Internet site. To do this we have installed the main components in a news site using open
source software. This scalability exploration has been driven by the scaling scenario of
increased article size.

We have managed to assess the scalability of our system in a good way, but it has been more
time consuming and knowledge demanding than expected. This means that the feasibility
of such a study is lesser than we expected, but if the experiences and the method of this
thesis are applied, such a study should be more feasible. We have assessed the scalability
of a general web architecture, and this means that our approach can be applied to all
read-intensive web sites and not just the one looked at in the [21]. This general focus is
one of the strengths with this thesis.

One of the objectives in our thesis was to make a resource function workbench (RFW)
that is a framework which aids in the measuring and data interpretation. We feel that our
RFW is one of the most important outcomes from this thesis, because it should be easy
to reuse, thus saving time for future projects and making the feasibility of such a study
higher.

In Chapter 11 we discuss the main findings in our thesis, and one of the most important is
that the impact of increased article size on the throughput is bigger than expected. A small
increase in article size, especially image size, leads to a clear decrease in the throughput.
This reduction is larger on the small image sizes that on the large ones. This has wide
implications for news sites, as many of them expect to increase the article size and still
use the same system.

Another major finding is that it is hard to predict the effects a scale-up of one or more
components (a non-uniform scaling) will have on the throughput. This is because the
throughput have different levels of dependency on the components on different image/text
sizes. As we have seen the effects of the scale-up on the throughput varied between the
different image sizes (a increase in throughput by 4.5 on 100 KB, but only an increase by
a factor of 3.2 on image size 300 KB).

In our case we have performed a non-uniform scaling, where we have increased the CPU
by 2.4 and the disk by 1.1 On some image sizes and text sizes, the overall throughput was
increased by a factor 10, but on others there was almost no improvement. The implications

91

Conclusion

this have for web sites, is that it is hard for them to predict how system alternations will
affect the overall throughput. As it is dependant on the current image and article size.

It was an open question whether or not a dynamic model of the system could be constructed
and solved. We have managed to construct the dynamic model, but the predictions it
makes are a bit crude. However, we feel that creating a dynamic model has been very
useful, and we believe it can make valuable predictions if the accuracy of the parameters
are improved. This should be feasible, as our measurements should be easy to recreate.

This thesis has been very demanding, because scalability requires a wide field of knowledge
(statistics, hardware, software, programming, measurements etc). This has made this work
very instructive, as we have gained knowledge in so many different aspects of computer
science. Ideally, the thesis should have a larger time span, as the there are so many
time consuming phases, which would have been interesting to spend more time on. As
consequence of this short time span there are some further work which can be conducted
in order to gain further valuable knowledge.

• Perform more measurements with different cache levels to fully explore its effects.

• Look into the problems with the disk measurements on the old disk.

• Spend some time validating the response time, so that the accuracy of the prediction
made by the dynamic model can be increased.

• Investigate the effects of a scale-up on the database.

• Measure on a system which allows the same scale-up on all major components (mem-
ory, CPU and disk).

• Continue the work of the resource function workbench, to make it less domain spe-
cific.

92

Bibliography

[1] Almeida, V., and Bestavros, A. Characterizing reference locality in the WWW.

[2] Brataas, G. Scalability Exploration at TV2 Interaktiv. June 2004.

[3] Brataas, G., and Hughes, P. H. Exploring architectural scalability. WOSP’04:
Workshop on Software and Performance, California, USA.

[4] Buret, J., and Droze, N. An overview of load test tools.

[5] Christiansen, T., and Torkington, N. Perl Cookbook, second edition ed.
O’Reilly & Associates, Inc., August 2003.

[6] Coar, K., and Bowen, R. Apache Cookbook, first edition ed. O’Reilly & Associates,
Inc., November 2003.

[7] Dilley, J. Web server workload characterization. Hewlett-Packard Laboratories.

[8] Hughes, P. H. Lecture notes in performance engineering, IDI, 2005.

[9] Hughes, P. H. SP Principles. STC Technology Ltd, 1988.

[10] Hughes, P. H. Considerations relating to SP model paramaterisation. IDI working
paper. October 2004.

[11] Hughes, P. H., and Brataas, G. Scalability of a work-station cluster architecture
for video-on-demand applications. LNCS 1786, Springer Verlag, 2000, pp. 277 - 293.

[12] Hughes, P. H., Brataas, G., Fagerli, J.-A., and Landmark, O. C. Exploring
the scalability of an enterprise architecture. Working paper, IDI, NTNU.

[13] Jain, R. The art of Computer systems performance analysis. John Wiley & Sons
Inc, April 1991.

[14] Mainkar, V. Performance implications of security protocols. Retrieved on the 20
May from the World Wide Web:
www.cse.iitb.ac.in/∼varsha/ allpapers/softwarePerformance/ssl.pdf.

[15] Menascè, D., Ribeiro, F., Almeida, V., Fonseca, R., Riedi, R., and Jr,

W. M. In Search of Invariants for E-Business Workloads. Proceedings of the 2nd
ACM conference on Electronic commerce, Minneapolis, Minnesota, United States.

[16] Menascè, D. A., and Almeida, V. A. F. Capacity Planning for Web Services.
Prentice Hall PTR, 2002. Metrics, Models, and Methods.

93

BIBLIOGRAPHY BIBLIOGRAPHY

[17] Møgelstue, K. Hvem besøker nettstedene. From TNS-Gallup, retrieved on the 18
February, available online at:
http://www.tns-gallup.no/arch/img.asp?file id=204861&ext=.ppt, January 2005.

[18] Newham, C., and Rosenblatt, B. Learning the bash shell, first edition ed. O’Reilly
& Associates, Inc., 1995.

[19] Pitkow, J. E. Summary of WWW Charaterizations. Proc. World Wide Web Conf.
(January 1999).

[20] Ruud, J., and Tveiten, O. G. Master thesis website. This is the website in
connection to the master thesis, available online at:
http://www.stud.ntnu.no/groups/diplomgisleruud.

[21] Ruud, J., and Tveiten, O. G. Feasibility of scalability exploration for large-scale
internet sites, November 2004.

[22] Vetland, V., Hughes, P. H., and Sølvberg, A. Improved parameter capture
for simulation based on composite work models of software. To appear in proceedings
of the 1993 Summer Computer Simulation Conference, Boston.

[23] Walpole, R. E., Myers, R. H., and Myers, S. L. Probability and Statics for
Engineers an Scientists, sixth edition ed. Prentice Hall International, INC., 1998.

[24] Wang, H., and Wang, C. Open Source Software Adoption: A Status Report. IEEE
SOFTWARE (March/April 2001).

[25] Woodside, M., Vetland, V., Courtois, M., and Bayarov, S. Resource Func-
tion Capture for Performance Aspects of Software Components and Sub-system. Pub-
lished by Springer-Verlag Berlin Heidelberg 2001.

94

Appendix A

News sites survey

In order for us to make scaling scenarios which reflects real news sites, we contacted around
20 of the largest news sites in Norway, and asked them about the future growth of their
website. The question and answers can be found below.

Some of our participants have asked to remain anonomous, but we have asked a a large
variety of norwegian news sites, and we have mostly received answeres from the smaller
players in the marked.

A.1 Key findings

It seems like almost all the newspapers agree that the total article size will increase a lot
in the years to come, not so much because of increased text size, but because of increased
use of multimedia. Almost all also predicts that the users will start using the Internet
more frequently.

A.2 Participants

• TV2 Interaktiv (TV2i), P̊al Nisja

• Teknisk Ukeblad (Tu), Tore Stensvold

• Stavanger Aftenblad (Sa), Kjell T. Skurnes

• Anonymous (An), medium size Norwegian newspaper

• Drammens Tidende (DT), Lars Lager Espevalen

• ITavisen (It), Tore Neset

i

News sites survey A.2 Participants

Question: Is the size of the articles likely to increase in the years to
come?

TV2i: Have noticed that articles with more multimedia (images, video, sound)
content is more popular than other articles, because of this it is very likely that
they will increase the number of images and video. But it is also likely they will try
to write more in-depth articles, and move away from the short writing format on
the web. They do not have an idea of how much, but because video and images is
much bigger that text, a many doubling is likely.

Tu: Thinks the article size will increase, both in terms of text and in terms of
multimedia content, mainly images and video.

Sa: Thinks the article size, in terms of text, will decrease on the web, while the
articles which are published in the printed copy of the paper will increase. The
article size, will however increase, as the number of multimedia content (images,
video, sound) will increase a lot.

An: The text of some of the articles will increase, while other still will be quite short.
Some articles will increase a lot, because of increased use of illustration (images,
sound and video). He also predicts an increase in the quality of the multimedia
posted, e.g. higher resolution on the images and video.

Dt: A distinct increase in the use of multimedia (images, sound, video), will lead
to an increase in article size, but the text will stay more or less the same.

It: Finds it hard to predict, they try to write long if they have the opportunity, and
writes short if the news must reach the marked. He does not mention multimedia
(images, video and sound).

Summary: As we can see, almost every one expects a massive increase in the
overall article size. It is not so much an increase in the text, but the increase
will come as a result of increased use of multimedia (sound, images, and video).

Table A.1: Question 1 in survey

Question: Do you think web sites will begin to charge money for some
of its content (Pay-per click, Pay-per view)?

TV2i: Yes, in form of extra services like WebTV, article archive, more in-depth
articles. The general news will however be available for everyone

Tu: Do not believe in this, if so it had to be very special things.

Sa: Not for news in general. Might happen for special things.

An: Not for news in general, might work for niche products

Dt: Not for news in general, might work for niche products

It: Not relevant for us.

Summary:As we see, there is a wide agreement that charging for the news content
is unlikely. However it might happen to niche products, like access to the archive.

Table A.2: Question 2 in survey

ii

Question: Will the number of articles increase (number of articles pub-
lished per day, number of articles on the front page, the number of arti-
cles in the archive.)

TV2i: They publish around 250 articles per day, and do not think that this is going
to increase. They will rather work more with the articles they publish

Tu: Probably more articles per day, but it all depends on how much people are able
to read. The number of articles (headlines) on the front page will stay the same

Sa: The number of articles on the front page will increase a lot, each article will
have a much shorter time span. The news site will become much more dynamic,
with more articles published a day. They think people will only access the news site
for a quick glance at the news.

An: Expects an increase in the number of articles published a day. They also
predict that the full archive will be closed with a pay per view solution.

Dt: The number of articles on the front page will probably stay the same, perhaps
a moderate increase. The number of articles published per day, varies from day to
day. At the most they published 38 articles, much more than this is not likely.

It: They see no reason for increasing the number of articles per day, the have 10
articles per day as an upper limit.

Summary: There is no clear trend here, all though most of them agree that there
is an upper limit for how many articles which is reasonable to publish per day. This
limit depends on the size of the web site, the larger the site, the larger the limit.
Some of them believe in an increased number o f articles per front page

Table A.3: Question 3 in survey

blank side

News sites survey A.2 Participants

Question: Do you believe the number of users will increase, or have we
reached a limit on users in Norway. What do you believe the limit for
your site is?

Tv2i: They believe the Internet will grow into a medium available to everyone (sex
and age), and that people will use it more frequently (daily). They also believe that
the time spent on Internet may double within the next 3 to 5 years.

Tu: Believes that large web sites is beginning to get close to the limit, but that
smaller web pages is likely to experience further grow.

Sa: Believes in a large growth in the number of users, mainly because of the in-
creased use of technical devices and thee increased use of broadband. Also thinks
that people will access the same site more frequent (several times a day)

An: Thinks that we on a national level, will see an increase in the number of users
and an increase in how often they access web sites. He believes that more people
will read their web site on a daily basis, mainly because local web sites will become
more important and more accessible for most people

DT: Finds it hard to predict, as this is closely connected to how you measure users.
It: Find it hard to predict. Though they had reached the limit last year, but have
experienced a 25% growth during the last year.

Summary: Most believe there is an upper limit of user in Norway, and that the
largest web sites are beginning to get close to it. However most of them believe that
the behavior of the user is likely to change. They expect that each user will access
the site much more frequent.

Table A.4: Question 4 in survey

iv

Appendix B

Open source software adaption

To generate load on the web system we needed a load generator which satisfies the re-
quirements for the measurements. After searching the web, we found that there exists a
huge number of load generators available, both open source and commercial products. For
us, only open source generators are of current interest, and all commercial products was
thrown out immediately. We found several interesting load generators, and picked out 6
to look further in to.

As we not know much about any of these we needed a quick evaluation to find the best
fitted generator. Based on the open source software classification in [24], we defined a set
of attributes and characteristics to decide what generator that fit our requirements best.
By assessing a value to each of the attributes defined, we can specify a generator capability
to meet the measurements requirements. The following list describes the characteristics
and the possible values we can assign.

1. Technical Support: the amount of available support for the load generator. Available values:

• – Support limited to direct and individual support from developer.

• + Support based on community-oriented group support.

• ++ Support from commercial entities providing comprehensive support for the load generator.

• — No longer being developed or supported.

2. Documentation: the amount of available documentation from developer or other entities.

• – No or minimal documentation.

• + Documentation of the basic configuration and functionality, and not fully updated to the latest
version.

• ++ Complementary and thoroughly documentation and explanation of all the functionality and pos-
sibilities of the load generator.

3. Backward compability: the effort required by an existing system to maintain compability with the load
generator. Available values:

• – The load generator is either in its first stable release or its functionality has been modified such that
systems using a previous version would require significant effort to upgrade to the current one.

• + A moderate effort are required to upgrade to the current version.

• ++ virtually no effort is required to upgrade to the current version.

4. Binary Availability: Official or unofficial binary distributions are available. Available values:

• Yes.

• No.

5. Platform dependency: If the generator requires a specific operating system. Available values:

v

Open source software adaption

• Unix

• Linux

• Windows

• BSD

• Multiplatform (Java-based)

6. Software license: The licensing format.

• GPL - applies to all open source applications developed by the Gnu organization.

• LGPL - covers the various libraries developed be the Gnu organization.

• BSD - includes all derivatives of the BSD license, such as the X-Windows license ”X”.

• Apache license - The Apache Software Foundation uses various licenses to distribute software and
documentation, to accept regular contributions from individuals and corporations, and to accept larger
grants of existing software products.

7. Current development status: Available values:

• Development release: The load generator is still being actively developed and features added.

• Stable: a stable, widely installed version of the load generator exists, with ongoing development efforts
underway.

• Discontinued: Load generator development effects have effectively stopped.

Load generator T
ec

h
n
ic

al
su

p
p
or

t

D
o
cu

m
en

ta
ti
on

B
ac

k
w

ar
d

co
m

p
ab

il
it
y

B
in

ar
y

A
va

il
ab

il
it
y

P
la

tf
or

m
d
ep

en
d
en

cy

S
of

tw
ar

e
L
ic

en
se

C
u
rr

en
t

d
ev

el
op

m
en

t
st

at
u
s

N
ot

es

OpenSTA + + ++ Y Windows GPL Stable opensta.org

Hammerhead2 + + + Y Linux, GPL Stable hammerhead.sourceforge.net

Solaris,
FreeBSD

Grinder + ++ + Y Multiplat. BSD Stable grinder.sourceforge.net

JMeter + + - Y Multiplat. Apache license, Stable jakarta.apache.org/jmeter

version 2.0

Siege + + + Y Linux, GPL Stable joedog.org/siege
Solaris

Dieseltest - - - Y Windows LGPL Stable sourceforge.net/projects/dieseltest

Table B.1: Load generator characteristics

Based on the evaluation of the load generator characteristics, shown in Table B, we decided
to look further into Hammerhead2, Siege and Grinder. OpenSTA and Dieseltest required
Windows platform and were excluded for that reason. JMeter was the weakest load gener-
ator from the characterization and was also excluded. Among Grinder, Hammerhead and
Siege came Grinder out as the best alternative, and was our first choice.

vi

Appendix C

RFW - File walkthrough

In this chapter all the files in the workbench will be introduced and explained. All the
following files read the runconf file, so this is not listed under each file.

The main directories in our experiment are organized in the following way.

• conf

– skeletonfiles

• scripts

– initiate

– start-stop-scripts

– measurementscripts

– measurementscripts oldnode

– DB

• measurement logs

C.1 Conf files

This directory contains the configuration file for our experiment.

.current run path

• Location: $HOME directory

• Purpose: This is an important file, it tells the location of the runconf file. This is the
only file in addition to the runconf.sh file, which needs to be altered if the location
of the installation path is changed.

• Reads: N/A

• Outputs: N/A

vii

RFW - File walkthrough C.1 Conf files

runconf.sh

• Location: conf

• Purpose: This is the main configuration file which set all the global variables. This
configuration file is sourced (read) by all the scripts, and this ensures that we only
need to change the global variables in one place. If we e.g. move the MySQL server
binary, we only need to change this in runconf.

• Reads: This configuration file, reads the .reserved nodes.sh file, to get the IP adresses
for the servers which we have reserved.

• Outputs: N/A

.reserved nodes

• Location: conf

• Purpose: Is a file outputted by the reserve-node.sh script. It contains a list of reserved
nodes.

• Reads: N/A

• Outputs: N/A

.reserved nodes.sh

• Location: conf

• Purpose:Contains a list of export variables statements, on the format export WEB-
SERVER=”192.0.0.0”. This file is then read into runconf.sh.

• Reads: N/A

• Outputs: N/A

dummy.job

• Location: conf

• Purpose: This file is a dummy.job used in the reserve-node.sh script. This dummy
job is sent to the clusters job scheduler, which reserves time at given nodes.

• Reads: N/A

• Outputs: N/A

C.1.1 Skeleton files

This directory contains the skeleton files, that is files which are used as templates and needs
to be altered for each individual measurement, or in case some of the global variables are
changed.

viii

C.1 Conf files RFW - File walkthrough

dummy.job.template

• Location: conf/skeletonfiles

• Purpose: Is used by the reserve node script, it is a dummy job which is sent to the
cluster to hold then nodes.

• Reads: N/A

• Outputs: N/A

select.php.skel

• Location: conf/skeletonfiles

• Purpose: Is the skeleton file for the PHP page which is used to test the database.
This skeleton file is copied into the apache directory, and the IP adress of the DB
set.

• Reads: N/A

• Outputs: N/A

hammerhead.conf.skel

• Location: conf/skeletonfiles

• Purpose: This is the skeleton file for the hammerhead load generator. This file
is copied to the hammerhead.conf file (see below) in the start of the experiment.
When it is copied the IP adress of the target machine, logdirectory and some other
parameters is set.

• Reads: N/A

• Outputs: N/A

hammerhead.conf

• Location: conf/skeletonfiles

• Purpose: This file is copied to a local configuration file for each measurement, where
the right session and runtime is set.

• Reads: conf/hammerhead.conf.skel

• Outputs: N/A

ix

RFW - File walkthrough C.2 Scripts

http.conf.skel

• Location: conf/skeletonfiles

• Purpose: This is the skeleton file for the apache web server configuration file, this
file is copied into the apache directory, and the IP adress of the web server is set.

• Reads: N/A

• Outputs: N/A

skel.scn

• Location: conf/skeletonfiles

• Purpose: This is a skeleton file for the scenario files used by Hammerhead. This
file is read each time a scenario is created, we use around 2000 scenarios for each
measurement.

• Reads: N/A

• Outputs: N/A

C.2 Scripts

This directory contains the script used in the workbench. All scripts read (sources) the
runconf.sh configuration files, where all the global variables are set.

startexperiment.sh

• Location: scripts/

• Purpose: This is the main script for starting a new experiment. The sequence of the
script can be seen in Figure 7.4 on page 48. What it basically does is to SSH into
the reserved nodes, and starts the given service on that machine.

• Reads: N/A

• Outputs: N/A

stopexperiment.sh

• Location: scripts/

• Purpose: This is the main script for stopping an experiment. The sequence of the
script can be seen in Figure 7.7 on page 51. What it basically does is to SSH into
the reserved nodes, and stops the given service on that machine.

• Reads: N/A

• Outputs: N/A

x

C.2 Scripts RFW - File walkthrough

measure.sh

• Location: scripts/

• Purpose: This is the main measurement script, here the experimentname and the
test are made.

• Reads: N/A

• Outputs: N/A

measureoldnodes.sh

• Location: scripts/

• Purpose: This script is the same script as measure.sh except that is has been altered
to work on old nodes.

• Reads: N/A

• Outputs: N/A

Dbmeasure.sh

• Location: scripts/

• Purpose: This script is the same script as measure.sh except that is has been altered
to work on the database.

• Reads: N/A

• Outputs: N/A

C.2.1 Initiate scripts

This directory containts the initiate scripts which run just before or just after the experi-
ment is commenced.

reserve-nodes.sh

• Location: scripts/initiate

• Purpose: This script has two arguments, number of nodes needed, and time needed.
This scripts job is to reserve nodes in the Clustis cluster, so that you have exclusivity
of the nodes in the period you run the experiment. This script is written by Geir
Bostad (geirbo@idi.ntnu.no), and altered by us to fit our cause.

• Reads: runconf.sh, dummy.job.template

• Outputs: conf/.reserved nodes in the conf dir. This file contains a list of the hostname
of the reserved nodes.

xi

RFW - File walkthrough C.2 Scripts

transform-skel-files.sh

• Location: scripts/initiate

• Purpose: This scripts task is to copy the skel files into their given configurations
files. It is done this way so all the changes can be done in runconf.sh. E.g. ipadress
must be specified in all these files.

• Reads:

• Outputs:

mysql-data.sh

• Location: scripts/initiate

• Purpose: This scripts copies the mysql data to a local temporary directory on the
Database node.

• Reads: runconf.sh

• Outputs: Mysql data directory in a temp directory on local node.

reserved nodes hack.sh

• Location: scripts/initiate

• Purpose: This is a small scripts, which translates the list of reserved nodes, from
hostname to ipadress. The reason for this is that the apache server does not work
if you address it with hostname. It outputs the file .reserved nodes.sh, which list
the different servers (Mysql, Web, Hammerhead2) with a given ipadress. This file is
read by runconf.sh, so these variables are global.

• Reads: N/A

• Outputs: conf/.reserved nodes.sh

C.2.2 Measurementscripts

generateload.sh

• Location: measurementscripts/

• Purpose: This is the script which initiates the load, and coordinates the measurement
for an individual measurement. For further information abotu this script see section
7.2.2, and in particular figure 7.6.

• Reads: N/A

• Outputs: N/A

xii

C.2 Scripts RFW - File walkthrough

capturecpuusage.sh

• Location: measurementscripts/

• Purpose: This script is executed on the machine which is measured on, it runs vmstat
and captures the cpu usage on the machine for a given time. It outputs time.log
which is a timestamp used in the postprocessing, and vmstat.log which is a log file.

• Reads:

• Outputs: /home/jorgenru/source/hammerhead/time.log, /home/jorgenru/source/ham-
merhead/vmstat.log

captureiousage.sh

• Location: measurementscripts/

• Purpose: This script is similar to the capturecpuusage.sh except that is captures IO
usage instead.

• Reads:

• Outputs: /home/jorgenru/source/hammerhead/iostat.log

copyimage.sh

• Location: measurementscripts/

• Purpose: This scripts copies the images of a given filesize to a local directory on the
web server node.

• Reads:

• Outputs: Images for a given filesize in temporary directory.

formatmeasurement.sh

• Location: measurementscripts/

• Purpose: This script processes the log files outputtet by each individual measure-
ment, and prints it to a human readable and parse friendly format.

• Reads: /home/jorgenru/source/hammerhead/*.log (log files outputtet by load gen-
erator, captureiousage and capturecpuusage.

• Outputs: measurement logs/EXPERIMENT NAME/FSX-SY-RTZ, where X, Y, Z
are parameters.

xiii

RFW - File walkthrough C.3 DB

interpretmeasurements.sh

• Location: measurementscripts/

• Purpose: This script parses the logfiles outputtet by the formatmeasurements.sh
script, into excel friendly format.

• Reads: measurement logs/EXPERIMENT NAME/*

• Outputs: measurement logs/EXPERIMENT NAME.txt

makescenario.sh

• Location: measurementscripts/

• Purpose: This scripts makes scenarios for the load generator for the web component.

• Reads: conf/skeletonfiles/scenario.skel

• Outputs: /home/jorgenru/source/hammerhead/scenario/*.scn

removeimage.sh

• Location: measurementscripts/

• Purpose: This script removes the images of a given filesize after each individual
measurement, to save disk space.

• Reads: N/A

• Outputs: N/A

C.2.3 Measurementscript oldnodes

This section contains measurement scripts which had to be slightly altered to fit on to the
old node. These will not be listed here as they are only the scripts in Measurementscript
see section C.2.2 with small alternations. The scripts can however be found on the website
[20].

C.3 DB

This directory contains measurement scripts which had to be altered to measure on the
database.

xiv

C.4 start-stop scripts RFW - File walkthrough

makescenariosDB.sh

• Location: DB/

• Purpose: This script makes scenarios for the load generator for the DB component.

• Reads: conf/skeletonfiles/scenario.skel

• Outputs: /home/jorgenru/source/hammerhead/scenario/*.scn

generateload.sh

• Location: DB/

• Purpose: This har the same function as the other generateload, but this is a bit
alternated to work on the database.

• Reads: N/A

• Outputs: N/A

formatmeasurement.sh

• Location: DB/

• Purpose: Same purpose as the other formatmeasurement.sh, but with some tiny
alternations to work with DB.

• Reads:

• Outputs: DB/.reserved nodes.sh

C.4 start-stop scripts

These scripts does exactly what the names implies, they start and stop services, namely
Apache and Mysql. These scripts must be run on the nodes where the service is run.

start-apache Starts Apache, this script is a wrap-around on the standard apachectl
script.

stop-apache Starts Apache, this script is a wrap-around on the standard apachectl
script.

start-mysql Starts mysql, wraparound on the standard mysqld safe startup script.

stop-mysql Stops mysql. It is a hack on the mysql.server script, it reads the PID and
kill mysqld.

xv

blank side

Appendix D

RFW script

In this chapter we have included includes three of the scripts from the RFW. The rest of
them can be found on the web site [20] in connection to this thesis.

D.1 measure.sh

This is the scripts which control an experiment. The experiment name is set, and the test
are defined.

Listing D.1: Measurementscript.sh

#!/ bin /bash
Vers ion : 1 .4 (10−04−2005) Author : Jorgen Ruud

Purpose : This i s the main measurement s c r i p t . Here the experimentname and the
t e s t to be performed are s e t .

This s c r i p t i s runned without any arguments .

export EXPERIMENTNAME=”Test−on−new−webserver”

cd ‘ cat $HOME/ . cur rent run path ‘ ; source runconf . sh #load con f i g

#Example o f a t e s t on image s i z e 300 with 372 s e s s i o n s .
f i l e s i z e=”300 ”

f o r s e s s i o n in ”372 ”
do
$MEASUREMENTSCRIPTS/ genera te load . sh $ f i l e s i z e $ s e s s i on $RUNTIME
s l e ep $SLEEPTIME
$MEASUREMENTSCRIPTS/formatmeasurement . sh $ f i l e s i z e $ s e s s i on $RUNTIME
echo ”I ’m done . I w i l l j u s t s l e ep in 20 seconds ”
s l e ep 20

done

Add more t e s t s here
#

xvii

RFW script D.2 formatmeasurement.sh

D.2 formatmeasurement.sh

This script is a wraparound for the formatmeasurement.pl script presented later in this
chapter. This script has to do with the postprosessing of the results.

Listing D.2: Measurementscript.sh

#!/ bin /bash
Vers ion : 1 .2 (10−04−2005) Author : Olav G i s l e Tveiten

Purpose : This i s a wraparound s c r i p t f o r the p e r l s c r i p t with the same name .
I t check that the aprop ia te l o g s f i l e s has been made ,
Runs the pe r l s c r i p t
Dele t e s the l o g f i l e s .

cd ‘ cat $HOME/ . cur rent run path ‘ ; source runconf . sh

#Test that l o g f i l e s has been wr i t t en .
i f t e s t −e ”$HAMMERHEAD LOGDIR/hh . l og ”
then
echo ”hhr . l og e x i s t s ”
e l s e
echo ”no hhr . l og ”
e x i t
f i

i f t e s t ”−e $HAMMERHEAD LOGDIR/time . l og ”
then
echo ”time . l og e x i s t s ”
e l s e
echo ”no t ime log”
e x i t
f i

i f t e s t ”−e $HAMMERHEAD LOGDIR/vmstat . l og ”
then
echo ”vmstat . l og e x i s t s ”
e l s e
echo ”vmstat . l og does not e x i s t ”
e x i t
f i

i f t e s t ”−e $HAMMERHEAD LOGDIR/ i o s t a t . l og ”
then
echo ” i o s t a t . l og e x i s t s ”
e l s e
echo ” i o t a t . l og does not e x i s t ”
e x i t
f i

Removes une s s i c a ry in fo rmat ion .
cat $HAMMERHEAD LOGDIR/hh . l og | grep ˆ . | grep −v ˆRead | grep −v ˆSTART | grep −v

S ta r t i n g | awk −F ’ ’ ’{ pr i n t $4 } ’ > $HAMMERHEAD LOGDIR/ reques t . l og

#Ca l l s the PERL s c r i p t .
$MEASUREMENTSCRIPTS/ formatmeasurement . p l $1 $2 $3

echo ”Appending vmstat and i o s t a t l og to FS−F i l e l o g f i l e s ”

echo ”IOSTAT LOG” >> $EXPERIMENT LOGDIR/FS$1−S$2−RT$3
cat $HAMMERHEAD LOGDIR/ i o s t a t . l og >> $EXPERIMENT LOGDIR/FS$1−S$2−RT$3
echo ”VMSTAT LOG” >> $EXPERIMENT LOGDIR/FS$1−S$2−RT$3
cat $HAMMERHEAD LOGDIR/vmstat . l og >> $EXPERIMENT LOGDIR/FS$1−S$2−RT$3

xviii

D.3 formatmeasurement.sh RFW script

echo ”Removing LOGS”
rm $HAMMERHEAD LOGDIR/hh . l og
rm $HAMMERHEAD LOGDIR/hhr . l og
rm $HAMMERHEAD LOGDIR/time . l og
rm $HAMMERHEAD LOGDIR/vmstat . l og
rm $HAMMERHEAD LOGDIR/ reques t . l og
rm $HAMMERHEAD LOGDIR/ i o s t a t . l og

echo ”Removing images , to f r e e d i sk space ”

echo ”Logging i n t o $WEBSERVER”
$RLOGIN $WEBSERVER ”cd $MEASUREMENTSCRIPTS ; . / removeimage . sh $1” &
s l e ep 5

D.3 formatmeasurement.sh

This is a perl script written to interpret the logs of an experiment, and create a human
readable and a parseable output of these file. It also deletes the end effects.

Listing D.3: Measurementscript.sh

#!/ usr /bin / pe r l −w
use POSIX;

Vers ion : 1 .8 Author : Jorgen Ruud
#
Purpose : This s c r i p t i s part o f the po s tp r o s e s s i n g o f the r e s u l t .
I t ana lyse s the l o g s and outputs , the approp i ra te r e s u l t s
#
I t w i l l take a s e r i e s o f l o g f i l e s , generated by
− Hammerhead : hh . l og and hhr . l og
− Capturecpuusage : time . log , vmstat . l og
− Capture iousage : i o s t a t . l og
#
And output a r e s u l t f i l e with the name : FS{ f i l e s i z e }−S{ s e s s i o n s}−RT{ runtime}
#

SUBFUNCTIONS

This i s our way o f c a l c u l a t i n g the average opera t ing point .
S e l f wr i t t en because there i s some massuing o f the r e s u l t s
Takes an array o f opera t ing po int s as input , and p r i n t s out
the r e s u l t s .

sub ca l cu l a t e av e r ag e {
my @resu l ta r ray ;
my $MAX=0;
my $MIN=100000;
my $counter =0;
my $average =0;
my $median=0;
my $sum=0;
my @l i s t = @ ;
chomp (@ l i s t) ;
my @sorted = so r t @ l i s t ;
f o r each (@sorted) {

i f ($ < $MIN) {$MIN=$ }
i f ($ > $MAX) {$MAX=$ }
$counter++;
$sum=$ +$sum ;
}
$average=$sum/$counter ;

xix

RFW script D.3 formatmeasurement.sh

#Check f o r odd and even .
$modulo = $counter % 2 ;

i f ($modulo == 0) {
my $n = f l o o r ($counter /2) ;

$median=0.5∗($ sor t ed [$n−1]+$sor t ed [$n+1]) ;
} e l s e {

my $n = ($counter +1) /2 ;

$median=$sor ted [$n] ;
}

$ r e s u l t a r r a y [0]= $average ;
$ r e s u l t a r r a y [1]= $median ;
$ r e s u l t a r r a y [2]=$MAX;
$ r e s u l t a r r a y [3]=$MIN ;
$ r e s u l t a r r a y [4]= $counter ;

r e turn @resu l ta r ray ;

}

#
This sub func t i on takes two argument .
ARGS: TIME, INTEGER
Returns : a new TIME.
#

sub incrementc lock {
my $time = $ [0] ;
my $increment = $ [1] ;
my @t imesp l i t = s p l i t (/ : / , $time) ;
my $hours = $ t ime s p l i t [0] + 0 ;
my $minutes = $ t ime s p l i t [1]+ 0 ;
my $seconds = $ t ime s p l i t [2] + 0 ;
my $re s1 = ($increment + $seconds) /60 ;

i f ($ r e s1 < 1) {
$ f i n a l s e c o nd s=$seconds+$increment ;
$ f i n a lm inu t e s=$minutes ;
$ f i n a l h o u r s=$hours ;

} e l s e {
$min = f l o o r ($ re s1) ;

$ f i n a l s e c o nd s = $seconds + $increment −($min ∗60) ;

INNNER LOOP TEST FOR MINUTES
$hour re s = ($min + $minutes) /60 ;

i f ($hour re s < 1) {
$ f i n a lm inu t e s=$min+$minutes ;

$ f i n a l h o u r s=$hours ;

} e l s e {

$hour = f l o o r ($hour re s) ;
$ f i n a lm inu t e s = $minutes + $min −($hour ∗60) ;
$day re s = ($hour + $hours) /24 ;

INNER LOOP TEST FOR HOURS
i f ($day re s < 1) {

$ f i n a l h o u r s=$hour+$hours ;
} e l s e {

$day = f l o o r ($day re s) ;
$ f i n a l h o u r s = $hours + $hour −($day ∗24) ;

}

xx

D.3 formatmeasurement.sh RFW script

}
}

Have to t e s t whetever are below 10 , i f they are , they are
padded with a ze ro .
i f ($ f i n a l h o u r s < 10) { $ f i n a l h o u r s=”0 $ f i n a l h o u r s” ;}
i f ($ f i n a lm inu t e s < 10) { $ f i n a lm inu t e s=”0 $ f i n a lm inu t e s ” ;}
i f ($ f i n a l s e c o nd s < 10) { $ f i n a l s e c o nd s=”0 $ f i n a l s e c o nd s” ;}

r e turn ” $ f i n a l h o u r s : $ f i n a lm inu t e s : $ f i n a l s e c o nd s” ;
} ;

Subrout ine . Trims a s t r i n g f o r wh i t e space s .
sub tr imwhitespace ($)
{

my $ s t r i n g = s h i f t ;
$ s t r i n g =˜ s /ˆ\ s +//;
$ s t r i n g =˜ s /\ s+$ // ;
r e turn $ s t r i n g ;

}

Global v a r i a b l e s .
#

Found through commandline .
$FILESIZE = tr imwhitespace ($ARGV[0]) ;
$SESSIONS = tr imwhitespace ($ARGV[1]) ;
$RUNTIME = trimwhitespace ($ARGV[2]) ; # The o v e r a l l experimentt ime

#These are changed from a s k e l f i l e . And these v a r i a b l e s are changed in runconf . sh
$TRANSIENTBURNTIME =”20” ; #Wait n seconds to come in steady s t a t e .
$ENDTRANSIENT=”20” ; #Do not look at the n l a s t measurements

$MEASURETIME=$RUNTIME−$ENDTRANSIENT−$TRANSIENTBURNTIME;

#These are changed from a s k e l f i l e . And these v a r i a b l e s are changed in runconf . sh
$LOGDIR = ”/home/ jorgenru / source /hammerhead ” ;
$OUTDIR= ”/home/ jorgenru / mas t e r th e s i s /measurement logs ” ;

#
MAIN PROGRAM
#

This opens the time . log , and f i n d s the s t a r t t ime o f the experiment .

open (TIMELOG, ”$LOGDIR/time . l og ”) | | d ie ” could not open time . l og ” ;
whi le (<TIMELOG>) {

@timelog = s p l i t (/\+/ , $) ;
$STARTDATE = $timelog [1] ;
}

c l o s e (TIMELOG) ;

GLOBAL VARIABLES

$MAXCONNECTIONS=”0” ;

$exper iments ta r t=incrementc lock ($STARTDATE, ($TRANSIENTBURNTIME+1)) ;

This opens the hh . log , and f i n d s out how many reques t that has been
served , dur ing the experiment .

@counter=0;

f o r ($ i =0; $i<$MEASURETIME; $ i++){

xxi

RFW script D.3 formatmeasurement.sh

open (HHLOG, ”$LOGDIR/ reques t . l og ”) | | d ie ” could not open reques t . l og ” ;

$counter [$ i]=0;

whi le ($cur rent = <HHLOG>) {
my $t e s t = tr imwhitespace ($cur rent) ;

i f ($ t e s t eq $exper iments ta r t) {
$counter [$ i]++;
$MAXCONNECTIONS++;

}

}

c l o s e (HHLOG) ;

$exper iments ta r t = incrementc lock ($exper iments ta r t , 1)

}

Average connec t i on per second (j u s t be j u s t i f i e d to two dec imals)
$averagereq=$MAXCONNECTIONS/$MEASURETIME;

#
This s e c t i o n f e t c h e s the IDLE th ings . And put i t in a array .

open (VMSTAT, ”$LOGDIR/vmstat . l og ”) | | d ie ” could not open vmstat . l og ” ;

$k=1;
$q=0;

whi le ($measuredata = <VMSTAT>) {

Were i n s i d e the va l i d data
i f ($k > $TRANSIENTBURNTIME && $k<=($RUNTIME−$ENDTRANSIENT)) {

$ope r a t i ng po in t r e s u l t [$q]= tr imwhitespace ($measuredata) ;

#pr i n t ”\n” . ” $ope r a t i ng po in t r e s u l t [$q] ” ;
$q++;
}

$k++;
}

c l o s e (VMSTAT) ;

@vmstatresult = ca l cu l a t e av e r ag e (@ope r a t i ngpo in t r e su l t) ;

IOSTAT

open (IOSTAT, ”$LOGDIR/ i o s t a t . l og ”) | | d ie ” could not open i o s t a t . l og ” ;

$k=1;
$q=0;

whi le ($ iodata = <IOSTAT>) {

my @data = s p l i t (/ : / , $ i odata) ;

Were i n s i d e the va l i d data

i f ($k > $TRANSIENTBURNTIME && $k<=($RUNTIME−$ENDTRANSIENT)) {
$ i o s t a t r e s u l t [$q]= tr imwhitespace ($data [2]) ;

$ i o r ead [$q]= tr imwhitespace ($data [0]) ;

xxii

D.3 formatmeasurement.sh RFW script

$ i owr i t e [$q]= tr imwhitespace ($data [1]) ;

#pr i n t ”\n” . ” $ope r a t i ngp o in t r e su l t [$q] ” ;
$q++;
}
$k++;

}

c l o s e (VMSTAT) ;

@ i o s t a t op e r a t i ngpo in t = ca l cu l a t e av e r ag e (@ i o s t a t r e s u l t) ;
@ ios ta t r ead = ca l cu l a t e av e r ag e (@ioread) ;
@ios ta twr i t e = ca l cu l a t e av e r ag e (@iowrite) ;

#
Lets check f o r f a i l u r e s in the experiment .
#

open (HHRLOG, ”$LOGDIR/hhr . l og ”) | | d ie ” could not open hhr . l og ” ;
whi le (my $ f a i l=<HHRLOG>) {

@hhrlog = s p l i t (/\ : / , $ f a i l) ;
my $ f a i l u r e s = $hhrlog [0] ;
my $numfa i lu re s = $hhrlog [1] ;

i f (tr imwhitespace ($ f a i l u r e s) eq ” Fa i l u r e s ”) {

i f ($numfa i lu re s == 0) {
$ f a i l o u t pu t = ”0” ;
} e l s e {
$ f a i l o u t pu t = ” $numfa i lu re s” ;
p r i n t $ f a i l o u t pu t ;
}

}
}

c l o s e (HHRLOG) ;

#
Print the r e s u l t s o f t h i s s c r i p t to the f i l e ” $ l o g f i l e ”
#

#$dato =‘date +%d−%m−%H.%m.%S ‘ ;
$ l o g f i l e = ”FS$FILESIZE−S$SESSIONS−RT$RUNTIME” ;

open (LOG, ”>$OUTDIR/ $ l o g f i l e ”) | | d ie ” cannot append : $! ” ;

p r i n t LOG ” $ l o g f i l e ” ;
p r i n t LOG ” \n\n #################### VMSTAT ######################\n” ;
p r i n t LOG ”\n F i l e s i z e : ” . ”$FILESIZE” ;
p r i n t LOG ”\n Total number o f connec t i ons : ” . ”$MAXCONNECTIONS” ;
p r i n t LOG ”\n Average number o f connec t i on per sec : ” . ” $averagereq ” ;
p r i n t LOG ”\n Median : ” . ” $vmstat re su l t [1] ” ;
p r i n t LOG ”\n Number o f samples : ” . ” $vmstat re su l t [4] ” ;
p r i n t LOG ”\n Max number : ” . ” $vmstat re su l t [2] ” ;
p r i n t LOG ”\n MIN number : ” . ” $vmstat re su l t [3] ” ;
p r i n t LOG ”\n Ar i tmetr i c mean : ” . ” $vmstat re su l t [0] ” ;
p r i n t LOG ”\n Fa i l u r e s : ” . ” $ f a i l o u t pu t ” ;
p r i n t LOG ”\n \n” ;
p r i n t LOG ”\n############### IOSTAT DATA ######################\n” ;
p r i n t LOG ”\n I o s t a t u t i l i z a t i o n [Ar imet r i c mean] : ” . ” $ i o s t a t op e r a t i n gp o in t [0] ” ;
p r i n t LOG ”\n I o s t a t u t i l i z a t i o n [Median] : ” . ” $ i o s t a t op e r a t i n g po in t [1] ” ;
p r i n t LOG ”\n I o s t a t u t i l i z a t i o n [MAX] : ” . ” $ i o s t a t op e r a t i n g po in t [2] ” ;

xxiii

RFW script D.3 formatmeasurement.sh

pr i n t LOG ”\n I o s t a t u t i l i z a t i o n [MIN] : ” . ” $ i o s t a t op e r a t i n g po in t [3] ” ;
p r i n t LOG ”\n −−−−−−−−−−−−−−−−−−−− \n” ;
p r i n t LOG ”\n I o s t a t read [Ar imet r i c mean] : ” . ” $ i o s t a t r e ad [0] ” ;
p r i n t LOG ”\n I o s t a t read [median] : ” . ” $ i o s t a t r e ad [1] ” ;
p r i n t LOG ”\n I o s t a t read [Max] : ” . ” $ i o s t a t r e ad [2] ” ;
p r i n t LOG ”\n I o s t a t read [Min] : ” . ” $ i o s t a t r e ad [3] ” ;
p r i n t LOG ”\n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ;
p r i n t LOG ”\n I o s t a t wr i t e [Ar imet r i c mean] : ” . ” $ i o s t a tw r i t e [0] ” ;
p r i n t LOG ”\n I o s t a t wr i t e [Median] : ” . ” $ i o s t a tw r i t e [1] ” ;
p r i n t LOG ”\n I o s t a t wr i t e [MAX] : ” . ” $ i o s t a tw r i t e [2] ” ;
p r i n t LOG ”\n I o s t a t wr i t e [MIN] : ” . ” $ i o s t a tw r i t e [3] ” ;
p r i n t LOG ”\n \n \n \n” ;
p r i n t LOG ”−−−−−−−−−−− LOG FILES −−−−−−−−−−−−−−−−−−−−−−−−−−\n” ;
c l o s e (LOG) ;

xxiv

Appendix E

All measurements

This section gives a more detailed overview of the measurements for each file size (image/-
text) on all the system we have measured.

For many of the measurements is the regression line found decreasing, which is odd, but
not a problem. The reason is that the graph is shown over a small interval in the x- and
y-direction and that we have a relative small set of samples. It is important to notice that
the scale on the axis that varies a lot between the file sizes.

E.1 Old web server

This section contains the information for the measurements on each file size on the old
web server. For each we list Tps, which is transaction per second at utilization 60% found
by regression.

File size 10 KB

y = -1,1642x + 365,84

200

220

240

260

280

300

320

340

54 56 58 60 62 64 66

Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.1: Old web server, 10 KB

• Tps: ≈ 296
• Confidence interval: ±24.5
• KB read on disk: N/A
• # Samples: 9

Comment: Since we needed a huge
number of connections on small file sizes,
the measurements on file size 10 KB
was difficult. For that reason have
we 9 test runs. Figure E.1 shows the
test runs as dots, and the red line
shows the regression line. The regres-
sion line is decreasing, which is be-
cause the graph only shows a small area
and the number of samples is relative
few.

xxv

All measurements E.1 Old web server

File size 50 KB

y = 7,2443x - 253,66

140

160

180

200

220

240

260

280

54 56 58 60 62 64 66

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.2: Old web server, 50 KB

• Tps: ≈ 182
• Confidence interval: ±28.0
• KB read on disk: N/A
• #Samples: 9

Comment: File size 50 KB is also hard
to measure because of the high number
of connection, and that is the reason why
we only have 9 samples. It is notable
that there is a large confidence inter-
val, which one explanation for the rel-
ative low Tps compared to file size 100
KB.

File size 100 KB

y = -0,7086x + 256,49

195

200

205

210

215

220

225

55 56 57 58 59 60 61 62 63 64

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.3: Old web server, 100 KB

• Tps: ≈ 214
• Confidence interval: ±4.6
• KB read on disk: N/A
• #Samples: 10

Comment: The samples are relative
concentrated around 215 Tps, but we
got one sample that is very low. This
outlier makes the regression line de-
creasing. It is notable that the Tps
is higher than for 50 KB, and the
confidence interval is a lot smaller,
which makes this measurements very re-
liable.

xxvi

E.1 Old web server All measurements

File size 200 KB

y = -2,641x + 288,25

100

110

120

130

140

150

160

54 56 58 60 62 64 66

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.4: Old web server, 200 KB

• Tps: ≈ 129
• Confidence interval: ±9.7
• KB read on disk: N/A
• #Samples: 10

Comment: N/A

File size 300 KB

y = -1,0062x + 168,75

96

98

100

102

104

106

108

110

112

114

116

118

55 56 57 58 59 60 61 62 63 64 65

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.5: Old web server, 300 KB

• Tps: ≈ 108
• Confidence interval: ±4.6
• KB read on disk: N/A
• #Samples: 10

Comment: This samples is not very
good as it is very scattered.

xxvii

All measurements E.1 Old web server

File size 400 KB

y = -0,9777x + 137,09

74

75

76

77

78

79

80

81

82

83

58,5 59 59,5 60 60,5 61 61,5 62 62,5 63 63,5

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.6: Old web server, 400 KB

• Tps: ≈ 78
• Confidence interval: ±1.3
• KB read on disk: N/A
• #Samples: 10

Comment: 9 of the samples for 400
KB is pretty concentrated, with one out-
lier that increase the confidence inter-
val.

File size 500 KB

y = 0,1158x + 55,168

61

61

62

62

63

63

64

64

58 58,5 59 59,5 60 60,5 61 61,5

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.7: Old web server, 500 KB

• Tps: ≈ 62
• Confidence interval: ±0.6
• KB read on disk: N/A
• #Samples: 10

Comment: This samples is relative con-
centrated, and the confidence interval is
only about 1% of the Tps, which is very
good.

xxviii

E.1 Old web server All measurements

File size 600 KB

y = 0,1983x + 43,778

55

55

55

55

56

56

56

56

56

57

58 58,5 59 59,5 60 60,5 61 61,5 62

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.8: Old web server, 600 KB

• Tps: ≈ 56
• Confidence interval: ±0.4
• KB read on disk: N/A
• #Samples: 10

Comment: The measurements on 600
KB are a good collection of samples. The
graphs scale makes the measurements
looks scattered.

File size 700 KB

y = -0,0888x + 54,385

44

45

46

47

48

49

50

51

52

57,5 58 58,5 59 59,5 60 60,5 61 61,5 62

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.9: Old web server, 700 KB

• Tps: ≈ 49
• Confidence interval: ±1.4
• KB read on disk: N/A
• #Samples: 10

Comment: The samples is rela-
tive concentrated, except from one
that makes the confidence interval
larger.

xxix

All measurements E.1 Old web server

File size 800 KB

y = -0,0408x + 43,119

38

39

39

40

40

41

41

42

42

43

56 57 58 59 60 61 62 63 64

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.10: Old web server, 800 KB

• Tps: ≈ 41
• Confidence interval: ±0.9
• KB read on disk: N/A
• #Samples: 10

Comment: N/A

File size 900 KB

y = 0,0345x + 33,175

34

34

35

35

36

36

37

58 58,5 59 59,5 60 60,5 61 61,5

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.11: Old web server, 900 KB

• Tps: ≈ 35
• Confidence interval: ±0.5
• KB read on disk: N/A
• #Samples: 10

Comment: N/A

xxx

E.1 Old web server All measurements

File size 1000 KB

y = 0,0233x + 30,957

31

31

32

32

33

33

34

34

58 58,5 59 59,5 60 60,5 61 61,5

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.12: Old web server, 1000 KB

• Tps: ≈ 32
• Confidence interval: ±0.5
• KB read on disk: N/A
• #Samples: 10

Comment: N/A

xxxi

All measurements E.2 New web server

E.2 New web server

The measurements on the new web server were done by requesting images on the web
server.

File size 10 KB

y = 43,871x - 346,98

2000

2100

2200

2300

2400

2500

2600

2700

54 56 58 60 62 64 66 68

Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.13: New web server, 10 KB

• Tps: ≈ 2285
• Confidence interval: N/A
• KB read on disk: N/A
• # Samples: 2

Comment: The measurements on 10
KB were very hard to do. There
were needed a large number of con-
nections, and the load generator was
not able to generate a stable load to
the system. That is the reason for
only having 2 samples, which makes the
measurements on 10 KB very uncer-
tain. With only 2 samples is there not
possible to calculate a confidence inter-
val.

File size 50 KB

y = -24,925x + 3095,7

1465

1485

1505

1525

1545

1565

1585

1605

1625

1645

1665

57 58 59 60 61 62 63 64 65

Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.14: New web server, 50 KB

• Tps: ≈ 1600
• Confidence interval: ±105.0
• KB read on disk: N/A
• #Samples: 8

Comment: It was also hard to gener-
ate a stable load for 50 KB, and there-
fore only 8 samples in this measure-
ment. Of the graph the samples looks
very scattered, but the confidence in-
terval is lower than 6.6% of the Tps,
which makes the measurement relative
reliable.

xxxii

E.2 New web server All measurements

File size 100 KB

y = 13,428x + 151,59

840

860

880

900

920

940

960

980

1000

1020

56 57 58 59 60 61 62 63

Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.15: New web server, 100 KB

• Tps: ≈ 957
• Confidence interval: ±28.0
• KB read on disk: N/A
• #Samples: 10

Comment: 100 KB also needed a high
number of connections, but now was
the load generator able to handle it,
and generate a stable load to the web
server.

File size 200 KB

y = -0,9005x + 548

475

480

485

490

495

500

505

510

515

520

54 55 56 57 58 59 60 61 62 63 64 65

Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.16: New web server, 200 KB

• Tps: ≈ 494
• Confidence interval: ±13.3
• KB read on disk: N/A
• #Samples: 10

Comment: N/A

xxxiii

All measurements E.2 New web server

File size 300 KB

y = 0,6619x + 302,53

320

325

330

335

340

345

350

355

360

365

54 55 56 57 58 59 60 61 62 63 64 65

Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.17: New web server, 300 KB

• Tps: ≈ 342
• Confidence interval: ±11.5
• KB read on disk: N/A
• #Samples: 10

Comment: N/A

File size 400 KB

y = 0,6542x + 221,95

200

210

220

230

240

250

260

270

280

290

300

56 57 58 59 60 61 62 63 64

Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.18: New web server, 400 KB

• Tps: ≈ 261
• Confidence interval: ±26.2
• KB read on disk: N/A
• #Samples: 10

Comment: These samples have a
large confidence interval, because of 2
samples that is outliers. The rest
of the samples are very nice concen-
trated.

xxxiv

E.2 New web server All measurements

File size 500 KB

y = -4,1012x + 401,56

140

145

150

155

160

165

170

175

180

55 56 57 58 59 60 61 62 63 64

Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.19: New web server, 500 KB

• Tps: ≈ 155
• Confidence interval: ±7.4
• KB read on disk: 16137KB
• #Samples: 10

Comment: N/A

File size 600 KB

y = 0,1832x + 74,395

84,0

84,5

85,0

85,5

86,0

86,5

87,0

57 58 59 60 61 62 63 64

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.20: New web server, 600 KB

• Tps: ≈ 85
• Confidence interval: ±1.0
• KB read on disk: 29083KB
• #Samples: 10

Comment: N/A

xxxv

All measurements E.2 New web server

File size 700 KB

y = 0,096x + 51,739

56,0

56,5

57,0

57,5

58,0

58,5

59,0

56 57 58 59 60 61 62 63 64

Utilization, CPU

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.21: New web server, 700 KB

• Tps: ≈ 58
• Confidence interval: ±0.5
• KB read on disk: 37939KB
• #Samples: 10

Comment: N/A

File size 800 KB

y = 0,1913x + 28,379

38,5

39,0

39,5

40,0

40,5

41,0

41,5

56,5 57,5 58,5 59,5 60,5 61,5 62,5 63,5
Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.22: New web server, 800 KB

• Tps: ≈ 40
• Confidence interval: ±0.3
• KB read on disk: 41217KB
• #Samples: 10

Comment: N/A

xxxvi

E.2 New web server All measurements

File size 900 KB

y = 0,0447x + 30,591

32,2

32,4

32,6

32,8

33,0

33,2

33,4

33,6

33,8

56 57 58 59 60 61 62 63
Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression

Figure E.23: New web server, 900 KB

• Tps: ≈ 33
• Confidence interval: ±0.3
• KB read on disk: 41471KB
• #Samples: 10

Comment: N/A

File size 1000 KB

y = 0,0306x + 26,134

27,0

27,2

27,4

27,6

27,8

28,0

28,2

28,4

28,6

28,8

29,0

55 56 57 58 59 60 61 62 63
Utilization, CPU (%)

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

(T
ps

)

Linear regression

Figure E.24: New web server, 1000 KB

• Tps: ≈ 28
• Confidence interval: ±0.3
• KB read on disk: 50163KB
• #Samples: 10

Comment: N/A

xxxvii

All measurements E.3 Database

E.3 Database

The database measurements required a very high number of connections, and two load
generators are used to generate load to the database. These measurements for the DB
are generaly reliable and reproducible. All of the measurements have a confidence interval
that is less than 10% of Tps, which makes the measurements reliable.

File size 10 KB

y = 46,149x - 323,57

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

54 55 56 57 58 59 60
Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression line

Figure E.25: Database server, 10 KB

• Tps: ≈ 2445
• Confidence interval: ±239.2
• KB read on disk: N/A
• # Samples: 9

Comment: N/A

File size 50 KB

y = 0,8411x + 2104

2000

2025

2050

2075

2100

2125

2150

2175

2200

2225

2250

54 55 56 57 58 59 60

Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression line

Figure E.26: Database server, 50 KB

• Tps: ≈ 2379
• Confidence interval: ±205.4
• KB read on disk: N/A
• #Samples: 10

Comment: N/A

xxxviii

E.3 Database All measurements

File size 100 KB

y = -9,6087x + 2813

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

56 58 60 62 64 66
Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression line

Figure E.27: Database server, 100 KB

• Tps: ≈ 2236
• Confidence interval: ±85.2
• KB read on disk: N/A
• #Samples: 10

Comment: The samples on this file size
are the best on the database server. The
confidence interval is small and the con-
centration is good, except from one out-
lier.

File size 200 KB

y = 23,93x + 417,56

1600

1700

1800

1900

2000

2100

53 55 57 59 61 63 65 67
Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression line

Figure E.28: Database server, 200 KB

• Tps: ≈ 1853
• Confidence interval: ±113.5
• KB read on disk: N/A
• #Samples: 9

Comment: N/A

xxxix

All measurements E.3 Database

File size 300 KB

y = 3,238x + 1299,1

1320

1370

1420

1470

1520

1570

52 54 56 58 60 62 64
Utilization, CPU (%)

Tr
an

sa
ct

io
n

pe
r

se
co

nd
 (T

ps
)

Linear regression line

Figure E.29: Database server, 300 KB

• Tps: ≈ 1493
• Confidence interval: ±112.6
• KB read on disk: N/A
• #Samples: 8

Comment: N/A

xl

Appendix F

Original problem definition

Some minor changes has been done on the original problem definition, and the original
one is found below.

” In the Ruud & Tveiten project[21] the overall objective was to study the
practical and economic feasibility of exploring the scalability of a large-scale
read-intensive Internet site for TV2 Interaktiv. Using the SP terminology, a
limited number of classes of complexity functions were identified, serving to
structure the scalability assessment method. However, the resulting method
was not validated with actual measurements.

The main objective of this thesis is to continue the work started in [21]: i.e. to
explore the practical and economical feasibility of assessing the scalability of a
read-intensive large-scale internet site, based on the test plan described in [21].
Since the TV2 Nettavisen infrastructure was hard to measure, the essence of the
infrastructure has to be reproduced in a controlled environment. For practical
reasons Open Source Software will be used together with the Clustis2 compu-
tational cluster of PCs. The similarities and discrepancies between TV2i’s
infrastructure and the selected test baseline should be described.

The static properties of the test baseline will be modeled using the SP method.
For scaling exploration the granularity of the SP model should be finer in ar-
eas with non-linearity (drill-down). Scaling scenarios will drive the scalability
exploration and should be described in detail. In practice, strict and uniform
scaling is rare. Some scaling scenarios should therefore consider differential
and non-uniform scaling.

For each class of measurements a detailed test plan should be both described
and validated by measurements at the level of detail which makes it possible
for others to revalidate the actual measurements performed. It is still an open
question if it is possible to parameterize a complete scalability model, or if
only some examples of each complexity function class should be measured. If
a complete set of measurements is performed, the resulting static model should
be validated in combination with a dynamic model.

To measure the components needed in the SP model will in the general case
require a Resource Function Workbench [25], a tool which aids in the actual
measurement and makes it easier to reuse the complexity functions. To develop

xli

Original problem definition

this is a useful result in its own right. To describe and develop a suitable
Resource Function Workbench is in this diploma a secondary objective.”

xlii

	Figures
	Tables
	Introduction
	Problem definition
	The TV2i system

	Method
	Structure and Performance model
	Introduction
	The SP framework
	Complexity matrix
	The static model
	Dynamic model

	System
	Introduction
	System relationship
	System configuration
	Hardware configuration
	Software configuration

	Similarities and discrepancies from the TV2i system

	SP
	Operations
	Load generator
	Web server
	Database server
	CPU, disk and LAN

	Complexity functions
	Parameters used in the complexity functions
	Load generator - Web server
	Web server - CPU_web server
	Web server - Disk_web server
	Web server - Database server
	Database server - CPU_Database
	Database server - Disk_Database

	Classification of the complexity functions

	Scalability
	Scaling scenarios
	The focus in this thesis

	Measurements
	Scale-up
	Operating point
	How to isolate resource demand
	Measuring Tools
	CPU tools
	IO tools

	Workload
	Controlling the caches
	Replications and run length
	Measurement plan
	Introduction
	Test system
	What to be measured
	What not to be measured
	Schedule

	Resource Function Workbench
	Background theory
	Description of workbench
	Outline of solution
	Detailed description

	Results
	Experiment results on old web server
	Experiment results on new web server
	Experiment results on the database
	Disk measurement
	Comparison of the web servers

	SP-parameterization
	Function pattern f1
	Function pattern f2
	Function pattern f3
	Function pattern f4

	Dynamic model
	Background theory
	Method
	Model construction
	Model solution
	Evaluation

	Discussion
	Impact of increased article size
	Scale-up
	Connection between web server and database
	Capacity planning

	Method evaluation
	SP method
	Resource function workbench
	Measuring process
	Dynamic model
	Work process

	Conclusion
	Bibliography
	Appendix
	News sites survey
	Key findings
	Participants

	Open source software adaption
	RFW - File walkthrough
	Conf files
	Skeleton files

	Scripts
	Initiate scripts
	Measurementscripts
	Measurementscript_oldnodes

	DB
	start-stop scripts

	RFW script
	measure.sh
	formatmeasurement.sh
	formatmeasurement.sh

	All measurements
	Old web server
	New web server
	Database

	Original problem definition

