
1

2

Preface

This is a master thesis for the Master of Technology program at the Department of Computer and
Information Science (IDI) at the Norwegian University of Science and Technology (NTNU).
The assignment was given by Fast Search and Transfer ASA. The report and underlying work
was done in five months, spring 2005.

The author would like to thank fellow student Hans Christian Falkenberg for useful discussions,
and collaboration on previous work, and mentor Øystein Torbjørnsen for constructive feedback.

Trondheim, 22nd June 2005

——————————
Nils Grimsmo

3

Abstract

This report explores the problem of substring search in a dynamic document set. The operations
supported are document inclusion, document removal and queries. This is a well explored
field for word indexes, but not for substring indexes. The contributions of this report is the
exploration of a multi-document dynamic suffix tree (MDST), which is compared with using
a hierarchy of static indexes using suffix arrays. Only memory resident data structures are
explored. The concept of a “generalised suffix tree”, indexing a static set of strings, is used in
bioinformatics. The implemented data structure adds online document inclusion, update and
removal, linear on the single document size.

Various models for the hierarchy of static indexes is explored, some which of give faster update,
and some faster search. For the static suffix arrays, the BPR [SS05] construction algorithm is
used, which is the fastest known. This algorithm is about 3-4 times faster than the implemented
suffix tree construction. Two tricks for speeding up search and hit reporting in the suffix array
are also explored: Using a start index for the binary search, and a direct map of global addresses
to document IDs and local addresses.

The tests show that the MDST is much faster than the hierarchic indexes when the index fresh-
ness requirement is absolute, and the documents are small. The tree uses about three times as
much memory as the suffix arrays. When there is a large number of hits, the suffix arrays are
slightly faster on reporting hits, as there they have better memory locality. If you have enough
primary memory, the MDST seems to be the best choice in general.

4

Contents

Preface 3

Abstract 4

1 Introduction 10

2 Background 11
2.1 Notation . 11
2.2 Suffix trees . 12

2.2.1 Tries . 12
2.2.2 Suffix tree definition . 13
2.2.3 Representing suffix trees . 14
2.2.4 Searching in suffix trees . 16
2.2.5 Building suffix trees . 17

2.3 Suffix arrays . 21
2.3.1 Searching in suffix arrays . 22
2.3.2 Building suffix arrays . 23

2.4 Hierarchic indexes . 24
2.4.1 Method 1 . 24
2.4.2 Method 2 . 26

3 Multi-document Dynamic Suffix Trees 28
3.1 Definition . 28
3.2 Document insertion . 29
3.3 Document deletion . 29
3.4 MDST implementation . 31
3.5 Node model . 31

3.5.1 struct nodes . 31
3.5.2 Compact array nodes . 31
3.5.3 Large and small internal nodes . 32

3.5.3.1 Re-using space for internal nodes 34
3.5.3.2 Deleting nodes from chains 35

3.5.4 Leaf node addresses . 35
3.6 Parenthood . 36

3.6.1 Sibling lists . 36
3.6.1.1 Sibling list space cost summary 37

5

3.6.2 Hash map . 37
3.6.2.1 Lost head positions . 38
3.6.2.2 Hash map keys . 38
3.6.2.3 Implicit small nodes . 38

3.6.3 Linked hash map . 39
3.6.3.1 Insertion and removal in linked hash map 39
3.6.3.2 Split end markers . 40
3.6.3.3 Linked hash map space cost summary 40
3.6.3.4 Hash map implementation 40

3.6.4 Child arrays . 42
3.6.4.1 Unsorted child arrays . 43
3.6.4.2 Sorted child arrays . 43
3.6.4.3 Deleting from child arrays 44
3.6.4.4 Doubling factor . 44

3.6.5 Parent–child implementation summary 44
3.7 Document ID update model . 44

3.7.1 Eager bottom-up document ID clean-up 46
3.7.2 Lazy document ID clean-up . 47
3.7.3 Updating document IDs in small–large chains 48

4 Hierarchic index implementation 49
4.1 Method 1 . 49
4.2 Method 2 . 50
4.3 Comparing method 1 and method 2 . 50
4.4 Suffix arrays for multiple documents . 51
4.5 Document ID map . 52
4.6 Start index for binary search . 53

5 Results 54
5.1 Test data . 54
5.2 Test system . 55
5.3 Comparison of node models for MDST . 55

5.3.1 General test on zipf data . 56
5.3.2 Varying text randomness . 58
5.3.3 Varying alphabet size . 59
5.3.4 Varying number of hits . 60
5.3.5 Real world data . 61
5.3.6 MDST conclusion . 62

5.4 Tuning of hierarchic models using BPR . 62
5.4.1 Testing method 1 and method 2 . 63
5.4.2 Testing docID map . 64
5.4.3 Testing binary search start index . 65
5.4.4 Hierarchic index conclusion . 66

5.5 Comparison of static and dynamic indexes . 67
5.5.1 Varying document size . 67
5.5.2 Varying freshness requirement . 69

5.5.3 Varying number of hits . 69
5.5.4 Varying query length . 70
5.5.5 Increasing total data size . 71

5.6 Critique of the tests . 72

6 Conclusion 75
6.1 Use cases . 75
6.2 Further work . 76

Bibliography 78

List of Figures

2.1 Suffix trie for the string ”abbabaabab” . 13
2.2 Suffix tree for the string “abbabaabab” . 14
2.3 Python program for searching in a suffix tree. 16
2.4 Python program for finding all hits. 17
2.5 Suffix tree for “abbabaabab” after step 6 and 7 18
2.6 Conceptual suffix tree building . 19
2.7 Python program for building suffix tree . 19
2.8 rescan function . 20
2.9 scan function . 21
2.10 Suffix array for the string “abbabaabab”. 22
2.11 Searching for the “leftmost” match of a pattern. 23
2.12 Method 1 for hierarchic indexes . 25
2.13 Method 2 for hierarchic indexes . 26

3.1 Traversing a suffix tree . 29
3.2 Deleting a string from a suffix tree . 30
3.3 Suffix tree for the string ”ababa” . 33
3.4 Large and small internal nodes in the suffix tree for “ababa” 34
3.5 Example field sizes . 37
3.6 Node fields required for storing node using sibling lists 37
3.7 Node references with implicit small nodes 39
3.8 Example field sizes . 40
3.9 Fields with linked hash maps . 41
3.10 Child arrays. 42
3.11 Summary of parent–child models . 45
3.12 MDST for “xag”, “xabcd”, “xabe” and “xabcf” 46
3.13 Inheritingdocid andhpos from children. 47

4.1 Pseudocode for method 1 . 50
4.2 Pseudocode for method 2 . 51
4.3 Work per document . 52
4.4 Maximum number of indexes . 52

5.1 Test parameters . 55
5.2 Using zipf data. Values sampled during run. 57
5.3 Varying text randomness. 58
5.4 Statistics for varying text randomness. 59

8

5.5 Varying alphabet size, random data. 60
5.6 Average query time, varying number of hits. 60
5.7 Document inclusion time in seconds . 61
5.8 Average query time inµ-seconds . 61
5.9 Memory usage in megabytes . 62
5.10 Average document inclusion time. 63
5.11 Average query time. 64
5.12 Maximum memory usage for sampled period, over total size of data indexed. 64
5.13 Increasing number of documents, constant data size. 65
5.14 Average query time. Varying data size. 66
5.15 Inclusion time. Varying data size. 66
5.16 Total inclusion with varying document size, constant data size. 67
5.17 Minimum and maximum inclusion time, 40MB total data. 68
5.18 Memory usage . 68
5.19 Average inclusion time for varying freshness requirements 69
5.20 Reporting a variable number of hits for a set of documents. 70
5.21 Reporting one hit, varying query length. 71
5.22 Inclusion time. Increasing data size. 72
5.23 Query time. Increasing data size. 73
5.24 Average for sampled period. Increasing data size. 73
5.25 Memory usage. 74

9

Chapter 1

Introduction

Searching for a pattern in a string is a well known problem, which has very different properties
in different applications. In desktop applications, such as word processors, you search for
simple patterns in a small dynamic text. In bioinformatics, you search for complex patterns in
a larger static text. In web search engines, you search for very simple patterns in huge amounts
of data. There are many applications with complexities between these. For a more thorough
overview of the text search problem, the reader is referred to any text book on the subject, or
[FG04], which is the report from a preliminary project for this master degree thesis.

The main problem discussed in this report is providing fast substring search on a dynamic set
of documents. For term search, this is a very mature field. For example, web search engines
give term search on a dynamic document set. In the bioinformatics literature, a suffix tree for a
static set of strings is sometimes called a generalised suffix tree. The author has not been able
to find any literature on such trees for dynamic sets of strings.

An example of an application were there is a lot of data, which must be searchable instanta-
neously, is the news bulletins of news agencies, or the stock prices at an exchange market. The
former usually requires only word searches, while the latter also requires more complex range
searches for numbers and so on. This report investigates full substring search for a rapidly
changing document set. Whether this ever will be useful in any major application is an open
question. The most probable might be to offer substring search as an addition to other types of
search, where this is useful and affordable.

Chapter 2 of this report gives an overview of the existing methods which were used as a foun-
dation for this work: The suffix tree, the suffix array, and hierarchic indexes in general. Suffix
trees and suffix arrays are well known substring indexes. A hierarchy of indexes is necessary
to use the very static suffix array on a dynamic problem. Chapters 3 and 4 describe the details
and implementation for solving the dynamic document set problem. Test results are given in
chapter 5.

10

Chapter 2

Background

This chapter describes the basics of suffix trees (section 2.2) and suffix arrays (section 2.3),
which are substring indexes, allowing fast substring search. The trees are dynamic structures
allowing updates, while the arrays are static of nature. Therefore we also investigate how to turn
static searching problem into dynamic searching problems by using hierarchic indexes (section
2.4). The first parts of this chapter are only concerned with single document problems, while
the last part discusses dynamic sets of documents.

2.1 Notation

The following notation is used in the rest of the report. Less frequently used notation is intro-
duced as needed.

Σ The alphabet.

σ The size of the alphabet.

T The text we search in.

Ti Theith suffix ofT .

Ti...j The substring ofT from inclusivepositioni to exclusivepositionj.

n The length ofT in symbols.

P A query string.

m The length ofP in symbols.

occ The number of occurrences ofP in T .

11

CHAPTER 2. BACKGROUND

2.2 Suffix trees

Suffix trees are very powerful text indexes with optimal asymptotic space and time requirements
for both construction and search:Θ(n) andO(m). The first description of linear time suffix
trees was given by Weiner in [Wei73], but in this text we use the description by McCreight
in [McC76] as a starting point, as it gives a simpler and more readable overview. Although
suffix trees are asymptotically optimal, they have not been widely used outside the realm of
bioinformatics, because the construction algorithm is complex, and because they use a lot of
space compared to word indexes. They also do not work well on disk in their basic form.
The implementation from [Kur99] uses20n bytes in the worst case, and around10n bytes in
practice, while word indexes typically use less thann bytes per input character.

In the following descriptions, Greek letters will be used to denote strings, uppercase letters will
be used to denote unknown characters, and lowercase letters will be used to denote constant
characters. An over-lined string, such asα, refers to the node representing the stringα in a tree.

2.2.1 Tries

Before we define suffix trees, we define the trie, which is a flexible data structures that can be
used for indexing words.

Definition 2.1: A trie of a set of words is a rooted tree such that each edge represents a
symbol, the symbols on the outgoing edges of a given node are unique, and the paths from the
root node to the leaves spell the words in the set.

Note that you can check whether a trie contains a wordP of lengthm in O(m) time. Since
the paths of unique words are unique, there is one leaf node for each of the words. In the worst
case, no words share common edges (start with a unique symbol), and if the total length of the
words isN , there areN edges andN + 1 nodes.

Definition 2.2: A suffix trie is a trie representing all suffixesTi of a stringT of lengthn
padded with a unique end-of-string symbol $.

A suffix trie for the string “abbabaabab” is shown in figure 2.1.

Since $ is a unique symbol, all suffixes are unique words, and will correspond to a unique path
in the tree and a unique leaf node. Counting the last suffix of the padded string, “$”, there will
ben + 1 leaf nodes. The suffixes are of lengthn + 1 to 1. In figure 2.1, the number in a leaf
node is the starting position of the string spelled by the path to the node. The left to right order
of the leaves gives the sorted order of all the suffixes of the string.

Remark2.3: Given a random string, the expected maximal longest common prefix of a suffix
with any other suffix increases onn, and decreases onσ. If you view the alphabet size as a
constant, the expected number of edges not shared with another suffix isΘ(n) − Θ(log n) =

12

CHAPTER 2. BACKGROUND

root

10

$ a b

a b

9

$ a b

a b a

b

a

a

b

a

b

1

$

b

7

$ a

a

b

a

b

2

$

a

b

4

$

b

8

$ a b

a b a

b

a

a

b

a

b

0

$

b

6

$

a

b

3

$

a

b

5

$

Figure 2.1: Suffix trie for the string ”abbabaabab”

Θ(n) for all suffixes, as they have an average length of1
n

∑n+1
i=1 i ∈ Θ(n). Therefore the

expected number of edges in a suffix trie for a random string is inΘ(n2).

2.2.2 Suffix tree definition

A suffix tree is an improvement over the suffix trie, which retains theO(m) lookup time, but
consumesΘ(n) space. It is given by the following definition:

Definition 2.4 ([McC76]): A suffix tree is a suffix trie where all non-root nodes with a single
child have been removed, and the related edges have been merged. The resulting tree has a root
node, branching nodes and leaf nodes.

A suffix tree of a string is the same as a Patricia trie [Mor68] of all suffixes.

Remark2.5: Note that the first symbol on each outgoing edge of a given node is still unique.
If the unpadded stringT is empty, the root will have only one child, on the symbol “$”. IfT is
non-empty, the root will have at least two children, as “$” does not occur inT .

13

CHAPTER 2. BACKGROUND

You see the suffix tree for the string “abbabaabab” in figure 2.2. Notice how all suffixes are
represented by a unique path from the root to a leaf. The dashed lines are suffix links, explained
in section 2.2.5.

root

1,10

$

1,5

a

1,2

b

2,3

b

6,5

abab$

2,9

$

2,4

a

10,1

babaabab$

7,4

abab$

3,7

b

4,7

$

9,2

aabab$

3,8

$

3,6

a

11,0

babaabab$

8,3

abab$

5,6

b$

Figure 2.2: Suffix tree for the string “abbabaabab”

Theorem 2.6 ([McC76]): A suffix tree of a string of lengthn hasΘ(n) nodes.

Proof. Trivial from the fact that all internal nodes are branching and that there aren + 1 leaf
nodes.

2.2.3 Representing suffix trees

The actual representation of suffix trees used here is adapted from [Kur99], which the most
acclaimed suffix tree implementation, and is used in the MUMmer software [MUM]. This
representation is also used as a starting point for the multi document tree described in chapter
3.

Even though a suffix tree hasΘ(n) nodes, it might not be clear how to represent it inΘ(n)
space, as the length of the strings represented by the edges is not constant. We solve this by
representing an edge by the starting and ending point in the actual stringT , stored in the child
node. This requires keeping a copy ofT . As shown in [Kur99], instead of saving the starting and
ending-point of the edge, you can save the head position (hpos) anddepth of a node, defined
below.

14

CHAPTER 2. BACKGROUND

• Ti — Theith suffix ofT .

• headi — The longest prefix ofTi which is equal to a prefix ofTj for a j < i.

• taili — Ti minus the prefixheadi.

• node.depth — The length of the string represented by the edges fromroot to node.

• node.hpos — The starting position of the string represented by the edges fromroot to
node. (Explained below.)

In figure 2.2, the pair of numbers inside the nodes represent thedepth andhpos of the node
respectively.

Given thatheadi is the head of the suffixTi, there will be an internal nodenode, with the edges
from root to node spellingheadi. This must be, sinceheadi was the longest common prefix
with anyTj with j < i, which means the symbol afterheadi must be different inTi andTj for
anyTj with prefix headi andj < i. node.hpos can be set toi, andnode.depth is |headi|. In
an implementation, thehpos of a node is naturally set to the lowesti such thatnode represents
headi, that is the second lowest indexi such that the string spelled by the path to the node is a
prefix ofTi.

Remark2.7 ([Kur99]): The starting point of an edge fromparent to child is child.hpos +
parent.depth, and the ending pointchild.hpos + child.depth.

Example2.1: Consider the edge between the nodes labelled(2, 3) and (3, 6) in figure 2.2.
The starting position of the string represented by the edge between them is(3, 6).hpos +
(2, 3).depth = 6 + 2 = 8, and the ending position(3, 6).hpos + (3, 6).depth = 6 + 3 = 9. The
represented string is thenT8...9 = “c”.

Remark2.8 ([Kur99]): The following property is always true: If the nodex has a descendant
y, thenTx.hpos ... x.hpos+x.depth = Ty.hpos ... y.hpos+x.depth. This just states that the path from the
root to an internal node is a prefix of all strings represented by paths from the root to the nodes
in the subtree of this node. Likewise, if for nodesx andy, Tx.hpos andTy.hpos share a common
prefix of lengthx.depth, y must be a descendant ofx.

There are many different ways of representing the parent-child relationships of the nodes, as
described in [Kur99]. The simplest is to let each node have afirstchild and abranchbrother
pointer, formingsibling lists. To find the edge starting with a given character, you must traverse
all the children of a node, following thefirstchild and branchbrother pointers. This adds
an extra factorO(σ) to the child lookup time, giving total costs ofO(mσ) andO(nσ). (The
alphabet size is often viewed as a constant and ignored.)

Chapter 3 also describes other solutions. If you use hash tables, you can getΘ(1) expected
lookup, or if you use balanced search trees or sorted arrays, you can getO(log σ) lookup. The
reason why sibling lists is often used, is that they are space efficient and simple. Given very
small alphabets, as in DNA, it is near optimal. There are many possibilities for combining

15

CHAPTER 2. BACKGROUND

various techniques, which is one of the reasons there are so many variants on suffix trees and
arrays [FG04].

2.2.4 Searching in suffix trees

Searching for a patternP in the suffix tree of a textT is straight forward. You start at the root
node, and match the characters ofP with characters on edges of of the tree, until either the
entire pattern is matched, or there is no outgoing edge on the correct character, meaning there
were no hits. A functionfindnode for searching for a pattern in a suffix tree is shown in figure
2.3. It returns the node representing the longest common prefix withP found in T , and the
length of this prefix. Notice that this search might end up on an edge between two nodes.

def findnode(P):
node = root
i = 0
while i < len(P):

next = node.getchild(P[i])
if not next:

break
i += 1 # know first char matches
while i < next.depth and i < len(P):

if P[i] != T[next.hpos + i]:
return node , i - 1

i += 1
node = next

return node , i

Figure 2.3: Python program for searching in a suffix tree.

If all of P is matched, the paths from the root to the nodes in the subtree below all haveP as a
prefix, by the definition of the suffix tree. For a given node, the path from the root to the node
spellsThpos...hpos+depth. This means all thehpos found in the subtree represent starting positions
whereP is a substring ofT . Thehpos of leaf nodes are unique, and no internal node has a
hpos not seen on a leaf node in the subtree below it. Therefore, thehpos of the leaf nodes gives
the complete hit set. Code for the functionfindhits, finding all hits for a pattern, is given in
figure 2.4.

If there is an internal node which has ahpos not seen in any leaf below it, there are three
possibilities: EitherThpos is not represented by a leaf in the tree, ordepth = n + 1 − hpos,
meaning it is both an internal node and a leaf node, or, remark 2.8 does not hold. In either case,
it is not a valid suffix tree forT .

Theorem 2.9: If node.getchild() takesΘ(1) time, finding all occurrences of a patternP
of lengthm in a textT using the functionfindhits takesO(m + occ) time.

Proof: In the functionfindnode, both the while loops increment the variablei, which starts
at zero and is never more thanm. All operations inside the loops takeΘ(1) time, giving a total
of O(m). In the functionfindhits, the subtree below is traversed depth first. This subtree has
occ leaf nodes. Since all internal nodes are branching, there are at mostocc − 1 internal nodes
in the subtree, and the traversal takesΘ(occ) time. Hence, the total running time isO(m+occ).

16

CHAPTER 2. BACKGROUND

def findhits(P):
hits = []
node , matched = findnode(P)
if matched < len(P):

return hits
else:

hits.append(node.hpos)
stack = [node]
while stack:

node = stack.pop()
for child in node.getallchildren ():

if child.isleaf:
hits.append(child.hpos)

else:
stack.append(child)

return hits

Figure 2.4: Python program for finding all hits.

2.2.5 Building suffix trees

An online demo on linear time construction of suffix trees can be seen athttp://grimsmo.
dyndns.org/~nils/suffix/. This was created for a lecture held by the author and a fellow
student, Hans Christian Falkenberg, in the course TDT4125 Algorithm construction at NTNU.
The slides from the lecture can be found athttp://www.idi.ntnu.no/~nilsgri/diploma/
suffix_lecture.pdf.

The linear time suffix tree construction algorithm of [McC76] is a bit complex and difficult to
explain, as is other construction algorithms known to the author. Examples and informal expla-
nations are given between the formal definitions. The algorithm adds the suffixes in decreasing
order of their length.T0 is added first, andTn last. If the suffixes are naively added to the tree
one by one, the running time isO(n2), as the total length of all the suffixes is

∑n+1
i=1 i ∈ Θ(n2).

Linearity is achieved by avoiding to redo work which has been done before. To make it possible,
we need to introduce suffix links:

Definition 2.10 ([McC76]): If internal nodeXα represents the stringXα, whereX is a
single character, andα is a possibly empty string,Xα will have a suffix link to the internal
nodeα.

Remark2.11: During the suffix tree construction, only the internal node created in the previous
iteration will fail to have a suffix link.

Example2.2: In figure 2.2,ab has a suffix link tob, andaba has a suffix link toba.

The algorithm can be explained informally as follows. In each step you add a suffix of the
string. After this string is added, there will be a unique path from the root node to a new leaf
node, representing this suffix. The path is guaranteed to be unique because we have an end
marker which is does not exist anywhere else in this string. The end marker does not occur in
the same position in any of the suffixes, as they all have unique lengths. To add a suffix, you
search downwards through the tree as long as the prefix of the suffix seen so far exists in the
tree. You have then found the longest common prefix with any of the suffixes added previously.

17

CHAPTER 2. BACKGROUND

You are now either in a node, or you are on an edge. If you are on an edge, you split it, and
insert a new internal node. Finally, you add a leaf child, representing the rest of the suffix.

During the construction, we need the following definitions:

• locusof stepi — The internal node representingheadi.

• contracted locusof stepi — The last internal node on the path fromroot to leafi which
existed before iterationi.

In figure 2.5 you see the suffix tree for the string “abbabaabab” after iteration 6 addingT6 =
abab, and iteration 7 addingT7 = bab. The nodes created in the current iteration are drawn
filled. The contracted locus and locus of iteration 6 are the nodesab andaba, while for iteration
7 it is ba andbab.

root

1,5

a

1,2

b

6,5

abab$

2,3

b

2,4

a

10,1

babaabab$

7,4

abab$

9,2

baabab$

3,6

a

11,0

babaabab$

8,3

abab$

5,6

b$

root

1,5

a

1,2

b

6,5

abab$

2,3

b

2,4

a

10,1

babaabab$

7,4

abab$

3,7

b

4,7

$

9,2

aabab$

3,6

a

11,0

babaabab$

8,3

abab$

5,6

b$

Figure 2.5: Suffix tree for “abbabaabab” after step 6 and 7

The following explanation is visualised in figure 2.6.

The formal algorithm is as follows: Assume that we are in iterationi of the algorithm, and that
headi−1 from the last iteration wasχαβ, whereχ, α andβ are possibly empty strings. Letχ
have a length of at most one. Letχα be thecontracted locus, andχαβ the locusof iteration
i− 1. χ is empty only ifχαβ is empty.

Begin iterationi by following the suffix link ofχα to α. χα must have a suffix link, as a it was
created in an iteration previous to the last. Fromα, yourescan the stringβ, and from the node

18

CHAPTER 2. BACKGROUND

Figure 2.6: Conceptual suffix tree building

αβ, you scan the stringγ. αβγ is the longest common prefix ofTi with any suffixTj added
previously, meaningj < i. A Python implementation of the McCreight construction algorithm
is given in figure 2.7. The functionrescan, given in figure 2.8, jumps from node to node,
following a path which you know is in the tree. The functionscan, looks at every character,
finding a stringγ of unknown length. These functions will create a new node if the locus ofTi

did not already exist. The function build adds a leaf node in each iteration.

def build():
last_locus = root
last_contracted = root
for i in xrange(0, N + 1):

old , betaend = rescan(last_contracted , last_locus , i)
last_locus.sufflink = betaend
contracted , locus = scan(old , betaend , i)
locus.addchild(LeafNode(depth = n - i, hpos = i))
last_locus = locus
last_contracted = contracted

Figure 2.7: Python program for building suffix tree

Example2.3: In iteration 7 in figure 2.5,head6 from iteration 6 was aba. Using the naming
from figure 2.6,χ = a, α = b andβ = a. Werescan β = a, andscan to find γ = b.
We conclude thathead7 = αβγ = bab. The string “abbabaabab” was chosen because it has
non-emptyχ, α, β, andγ in a single step.

During rescan you jump from node to node, until you reach the positionαβ. If it is not an
explicit node, you create it. After the rescan, you set the suffix link ofχαβ to αβ.

Lemma 2.12: If χαβ is the head of Ti−1, the stringαβ exists in the tree, at the start of
iterationi of the suffix tree construction,

Proof: Sinceχαβ was thehead of Ti−1, there exists aj < i − 1, such thatTj hasχαβ as a

19

CHAPTER 2. BACKGROUND

prefix. Since suffixes are added to the tree in decreasing order of their length,Tj is represented
in the tree in iterationi− 1. As j < i − 1 andj + 1 < i, Tj+1 must be represented in the tree.
Therefore the stringαβ must exist in the tree before iterationi, andrescan can jump from
node to node, as the first character on all downward edges from a given node are unique.

Remark2.13: If a new node was created duringrescan, γ will be empty. The reason is as
follows: χαβ was the longest common prefix ofTi−1 andTj for any j < i − 1. This means
Ti−1[|χαβ|] 6= Tj[|χαβ|], andTi[|αβ|] 6= Tj+1[|αβ|]. If the γ in iterationi is non-empty, there
must be aTk, j 6= k < i, such that|lcp(Tk, Ti)| > |αβ|. But then,Ti[|αβ|] = Tk[|αβ|] 6=
Tj+1[|αβ|], lcp(Tk, Tj+1) = αβ, and sincek < i andj + 1 < i, αβ must exist in the tree before
iterationi.

Lemma 2.14 ([McC76]): The total time used on rescanning isO(n).

Proof: For every old node encountered during the rescan, there is a non-empty part of the string
T that will be part of theχα of next round, and hence never be rescanned again. Therefore, the
number of nodes encountered during the rescan isO(n). The work done in rescan is linear on
the number of nodes seen.

Code for therescan function is given in figure 2.8.

def rescan(last_contracted , last_locus , i):
start = last_contracted.sufflink
if last_contracted == last_locus:

beta was empty
return start , start

charsleft = last_locus.depth - last_contracted.depth
if last_contracted == root:

alpha was empty
charsleft -= 1

node = start
while charsleft > 0:

old_node = node
node = node.getchild(T[i + node.depth])
charsleft -= node.depth - old_node.depth

if charsleft < 0:
we stopped on an edge between two nodes
new = BranchNode(depth = node.depth + charsleft , hpos = i)
old_node.replacechild(node , new)
new.addchild(node)
return old_node , new

else:
we stopped on a node
return node , node

Figure 2.8:rescan function

After you have rescanned the stringβ, you mustscan downward from the nodeαβ, until you
have found the entire ofheadi, denotedαβγ. The function scan looks at every character on the
path fromαβ to αβγ. If αβγ does not exist explicitly, you create it. Finally, you create the
child leafi of αβγ. Code for thescan function is given in figure 2.9.

Lemma 2.15 ([McC76]): The total time used on scanning isO(n).

20

CHAPTER 2. BACKGROUND

Proof: Every character successfully scanned will be a part of theχαβ of next iteration, and
hence never scanned again.

def scan(old , beta_end , i):
if old != betaend:

return old , betaend
node = beta_end
while True:

parent = node
node = node.getchild(T[i + node.depth])
if not node:

return parent , parent
matched = 0
for k in xrange(parent.depth , node.depth):

if T[node.hpos + k] != T[i + k]:
newnode = BranchNode(depth = parent.depth + matched , hpos = i)
parent.addchild(newnode)
newnode.addchild(node)
return parent , newnode

else:
matched += 1

Figure 2.9:scan function

Together, following the suffix link from the last locus, runningrescan andscan, finds the
longest common prefix of ofTi with anyTj with j < i.

Theorem 2.16 ([McC76]): The algorithmbuild builds a suffix tree for a stringT . The paths
from the root to the leaves in this tree have a one to one correspondence to the suffixes of the
string.

Proof: In iterationi you add one leaf node to the tree, such that the path from the root to this
leaf spellsTi. Since it is a tree, this results in only one new path. If an internal node is created,
it is inserted to split an edge, and then given a leaf child. Hence all internal nodes have at least
two children.

Theorem 2.17 ([McC76]): The suffix tree construction runs inΘ(n) time.

Proof: Excluding the cost ofrescan andscan, the cost of the operations in each of then + 1
iterations isΘ(1), totalling toΘ(n). As the time spent inrescan andscan is Θ(n), the total
cost of the construction algorithm must beΘ(n).

Note that all this is under the assumption that child lookup and insertion isΘ(1). If for example
sibling lists are used, construction takesO(nσ) time, and search isO(mσ + occ). This is
discussed in chapter 3.

2.3 Suffix arrays

Suffix arrays (also known as PAT-arrays [GBYS92]) where discovered almost twenty years after
the suffix tree. The suffix array is a more space efficient, and in many ways simpler, alternative

21

CHAPTER 2. BACKGROUND

to the suffix tree. [MM91] gives a thorough description of construction and use. The build
algorithm in the article isO(n log n), and search is done inO(m + log n + occ) time. Since
their discovery, a lot of research has been done on suffix array construction and use.

Definition 2.18: A suffix arraySA for a stringT of lengthn padded with $ is a list of integers
such thatTSA[i] < TSA[j] for 0 ≤ i < j ≤ n.

In other words, the suffix array gives the order of the suffixes ofT . As long as the end marker
$ is unique, no two suffixes are lexicographically equal.

Example2.4: The suffix array for the string “abbabaabab” is shown in figure 2.10. If you look
at the suffix tree in figure 2.2, you notice that thehpos of the leaf nodes in the lexicographically
ordered depth first walk of the tree are the elements of the suffix array for the string.

i SA[i] TSA[i]

0 10 $
1 5 aabab$
2 8 ab$
3 3 abaabab$
4 6 abab$
5 0 abbabaabab$
6 9 b$
7 4 baabab$
8 7 bab$
9 2 babaabab$

10 1 bbabaabab$

Figure 2.10: Suffix array for the string “abbabaabab”.

2.3.1 Searching in suffix arrays

Searching with the suffix array is the same as performing a binary search in the leaf nodes of
the suffix tree. Note that a straight forward implementation givesO(m log n + occ) worst case
time complexity, as you may compare almost the entire patternP with TSA[i] for every jump in
the binary search.

This can be avoided by knowing how much ofP matched in last iteration, and by pre-generating
information about the longest common prefixes of the centre and the left and right border in the
binary search. This is described in [MM91]. If cleverly implemented, you need about two bytes
extra per input character to getO(m + log n + occ) search. In practise, a simplified variant
without extra data structures is often used. If you maintain how much is matched with both the
left and the right border in the search, you know that the match with the centre is at least the
minimum of these two values. This gives good search performance on real data (see [MM91]),
and no overhead on construction, but has worst case search timeO(m log n + occ).

22

CHAPTER 2. BACKGROUND

When you want to enlist all hits for a pattern, you need to binary search for both an indexi
with the property thatP is a prefix ofTSA[i] and,i = 0 or TSA[i−1] < P (the “leftmost” hit),
and an indexj with the property thatP is a prefix ofTSA[j] and,j = n or P < TSA[j+1] (the
“rightmost” hit). Code for finding the leftmost hit is given in figure 2.11. Finding the rightmost
hit is done similarly.

def search(T, SA, P):
left = 0
right = len(T) - 1 # assuming already padded
matched = 0
l_matched = 0 # matched on left border
r_matched = 0 # matched on right border
while left < right:

middle = (left + right) / 2
j = matched
while True:

if j == len(P) or P[j] < T[SA[middle] + j]:
right = middle
r_matched = j
break

elif P[j] > T[SA[middle] + j]:
left = middle + 1
l_matched = j
break

j += 1
matched = min(l_matched , r_matched)

while matched < len(P) and T[SA[left] + matched] == P[matched]:
matched += 1

if matched == len(P):
return left

else:
return -1

Figure 2.11: Searching for the “leftmost” match of a pattern.

Since theO(m + log n + occ) search of [MM91] is not used in the following experiments, it
will not be discussed further. It gives a higher construction cost, but significantly faster search
only on artificial worst-case data.

2.3.2 Building suffix arrays

Suffix array construction has received a lot of attention the last few years. Doing a radix sort
of all the suffixes gives a running time ofO(n2). [MM91] shows how to sort the suffixes in
O(n log n) time. In 2003, [KA03], [KS03] and [KSPP03] independently discovered similar
algorithms for doing it inΘ(n) time. Recently, however, attention has been given to various
O(n2) algorithms which are much faster than the known linear algorithms in practise. The
fastest so far is the Bucket Pointer Refinement (BPR) algorithm of [SS05].

The BPR algorithm will be used for index construction in the comparisons in chapter 5. Since
the software from the authors of [SS05] will be used directly, the algorithm will not be discussed
further here.

23

CHAPTER 2. BACKGROUND

2.4 Hierarchic indexes

To make an index for a dynamic set of documents, you must somehow include the changes to
the set in your index. Some index structures are dynamic of nature, and allow updates. The
suffix tree is such a structure. How to adapt the suffix tree to dynamic document sets is explored
in chapter 3. Other structures are very static of nature. For example, the suffix array does not
allow updates. The cost of inserting one value into the middle of the array has a cost ofO(n),
as you must moveO(n) entries to the right. Since the cost of building a suffix array has almost
linear cost in practise, updating the suffix array is not much cheaper than just rebuilding it (given
that the array representation stays in its basic form).

To solve our problem of searching dynamic document sets using static indexes, we must find
a way to include our updates. One extreme is to maintain one index, which is rebuilt on every
change. This gives effective search, but a very high inclusion and deletion cost. Another ex-
treme is to maintain one index for every document. This gives low inclusion and deletion cost,
but expensive search.

Using something in between these two extremes gives both effective searches and updates. You
maintain a set of indexes of different sizes, which are rebuilt with proportional intervals. In
a practical application, the biggest index might be rebuilt once a week, but the smallest every
minute. Deletions can be handled using a blacklist, leaving the document data in the index until
it is rebuilt.

Two principles for hierarchies of static indexes are explored in this chapter. Both are taken from
[OvL80], which is a theoretical analysis of general dynamic searching problems. Let them be
called method 1 and method 2. Both methods have a parameterk used to prioritise between
search and update cost. In short terms, method 1 maintains indexes of sizeski, and up tok − 1
indexes for eachi ∈ Z+, while method 2 maintains one index of sizebi · ki for each i, with
bi < k. Method 1 with highk is fastest on updates, while method 2 with highk is fastest on
searches.

We use the following terminology from [OvL80]:

• QS(n) is the cost of querying a static structure withn elements.

• PS(n) is the cost of building a static structure withn elements.

Likewise, we useQ1
D(n), P 1

D(n), Q2
D(n) andP 2

D(n) as the cost for the dynamic indexes using
method 1 and 2. In the following discussion, documents are considered to have unit length.
This differs from the practical implementation in chapter 4.

2.4.1 Method 1

Method 1 is defined as follows:

24

CHAPTER 2. BACKGROUND

Definition 2.19 ([OvL80]): A dynamic index using method 1 consists of a set of static in-
dexes of sizeski | i ∈ Z+ for a given constantk, with less thank indexes of each sizeki.

The index is maintained by upholding this property. When a document is added, it is saved as
an unsorted index of sizek0 = 1. If there are nowk indexes of size1, they are merged into an
index of sizek0k = k. If there are nowk indexes of sizek1, these are merged into an index of
sizek2, and so on. Note that you only have to build in the last merging step, after gathering all
the contents of this final static index.

A set of indexes fork = 3 is shown in figure 2.12. When a document is added, the 3 indexes of
size 1 are merged to an index of size 3. Now there are 3 indexes of size 3, which are merged to
an index of size 9.

Figure 2.12: Method 1 for hierarchic indexes

Theorem 2.20 ([OvL80]): The cost of a query to a dynamic index of sizen using method
1 is Q1

D(n) = O(k logk n)QS(n), and the cost of building the index iteratively isP 1
D(n) =

O(logk n)PS(n).

Intuitively, Q1
D(n) has aO(k logk n) factor because there are in the worst casek − 1 indexes of

each of theblogk nc+ 1 sizes, and each of these must be queried.

Q1
D(n) ∈

blogk nc∑
i=0

O(k)Qs(k
i) ⊆

blogk nc∑
i=0

O(k)Qs(n) = O(k logk n) QS(n)

Each document will be built into an index of sizeki at most once, and the cost per document for
building a static index of sizem is PS(m)/m. Hence the total cost per document for a document
throughout its history is

∑
i O(1)PS(ki)/ki

P 1
D(n) ∈ n

blogk nc∑
i=0

O(1) PS(ki)

ki
⊆ n

blogk nc∑
i=0

O(1) PS(n)

n
= O(logk n) PS(n)

Remark2.21: Notice that when settingk = n, P 1
D(n) = O(1)PS(n), and there is no overhead

building a dynamic index, butQ1
D(n) = O(n)QS(n), giving a very high query cost.

25

CHAPTER 2. BACKGROUND

2.4.2 Method 2

Method 2 differs from method 1 in that no two indexes have the same size. It is similar tok-ary
number systems.

Definition 2.22: A dynamic index of sizen using method 2 consist ofi static indexes of sizes
kibi | 0 ≤ bi < k, 0 ≤ i ≤ blogk nc.

A set of indexes fork = 3 is shown in figure 2.13. If one document is added, it will be merged
into the smallest index. If another is added, it will be merged into the index with capacity 18
together with the two smallest indexes.

Figure 2.13: Method 2 for hierarchic indexes

Adding a document to the index is similar to adding 1 to ak-ary number: Find the lowest digit
which has abj less thank − 1. For all i below j, bi = k − 1, which means that the value of
1 +

∑j−1
i=0 kibi = 1 + (k − 1)

∑j−1
i=0 ki = 1 + (k − 1)(kj − 1)/(k − 1) = kj. We setbi = 0 for

all i < j, and increasebj by one. When indexing, this equals moving the contents of indexes
0 . . . j − 1 into indexj.

If documents are of varying size, we do things a bit different than when addingk-ary numbers.
We find the smallest index which has room for its own content, the new document, and contents
of all smaller indexes. Still only one index will be built during a document inclusion.

Theorem 2.23 ([OvL80]): The cost of a query to a dynamic index of sizen using method
2 is Q2

D(n) = O(logk n)QS(n), and the cost of building the index iteratively isP 2
D(n) =

O(k logk n)PS(n).

The query time is trivial from the fact that there are at mostblogk nc+1 indexes with a maximal
query costQS(n).

Q2
D(n) ∈

blogk nc∑
i=0

O(1) QS(ki(k − 1)) ⊆
blogk nc∑

i=0

O(1) QS(n) = O(logk n)QS(n)

With method 2, a document may be added to an index more than once, at mostk − 1 times.
Hence, the indexing cost is

26

CHAPTER 2. BACKGROUND

P 1
D(n) ∈ n

blogk nc∑
i=0

O(k − 1)
PS(ki(k − 1))

ki
⊆ n

blogk nc∑
i=0

O(k)
PS(n)

n
= O(k logk n) PS(n)

Remark2.24: Notice that the costs forQ2
D(n) = P 1

D(n), andP 2
D(n) = Q1

D(n). We can get
Q2

D(n) arbitrarily low by increasingk, at the cost of more expensive document inclusions.

An implementation of method 1 and 2 is discussed in chapter 4.

27

Chapter 3

Multi-document Dynamic Suffix Trees

This chapter describes a data structure for maintaining a substring index for a dynamic set of
documents.

3.1 Definition

We begin by stating the goals of the data structure. We want to maintain a substring index of
a set ofd documentsD = {T 0, T 1, . . . , T d−1} of total lengthN (when the strings are padded
with an end marker). Given a documentT k of lengthnk, and a query stringP of lengthm, we
want the following functionality:

• Insert documentT k in Θ(nk) time.

• Delete documentT k in Θ(nk) time.

• Find one occurrence ofP in D in O(m) time.

• Find allocc occurrence ofP in D in O(m + occ) time.

We also want the data structure to be space efficient.

Updating a document is the same as deleting the old version from the index and inserting the
new. [McC76] shows how to update the suffix tree for a document in time expected sub-linear
on the length of the document, but linear in the worst case. For typical applications of indexes
for document sets, your input would usually be a new version of the document, and a full scan
to find changes is necessary anyway. Therefore, incremental editing along the lines of [McC76]
is not explored.

Definition 3.1: A multi-document dynamic suffix tree (MDST) for a set of documentsD =
{T 0, T 1, . . . , T d−1} is a compressed trie of all suffixes ofT k$k for all k ∈ 0 . . . d− 1, where all
end markers$k are unique symbols.

28

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

End markers are preferably kept unique, to simplify tree maintenance. If we use a common
end marker $, and two documents end with the stringα, there will be at least two suffixes that
share the nodeα$ as a terminal node. We could solve this by either having outgoing edges of
length zero to leaf nodes containing document IDs and head positions, or we could keep a list of
such pairs inα$. Either solution gives a more complex and space consuming implementation.
Unique end markers are simple and fast, if implemented well.

Remark3.2: Instead of having explicit end markers, increasing the size of your alphabet by
d, you simulate this uniqueness in your implementation, where all strings are extracted from
depth andhpos of parent and child nodes. (depth andhpos were defined on page 14).

3.2 Document insertion

The algorithm for inserting a document into the tree is identical to that ofbuild in figure 2.7,
except that all nodes are given a document IDdocid. The string on the edge between the nodes
parent andchild are taken from the document referenced bychild, with the starting and ending
point extracted as shown in example 2.1. The code for rescanningβ (figure 2.8) and scanning
γ (figure 2.9) is almost identical.

Inserting a document into a MDST has the same time complexity as building a suffix tree for
this document.

3.3 Document deletion

Given a suffix tree for a stringT of lengthn, you can traverse all suffixes of decreasing length
in Θ(n) time. Code for this is given in figure 3.1. The proof for the running time is similar to
that forrescan in figure 2.8 in chapter 2. For all internal nodes visited in downward traversal,
there is a substring ofT that will never be visited in downward traversal again.

def traverse(tree , T):
node = tree.root
for i in xrange(len(T)):

while not node.isleaf:
parent = node
node = node.getchild(T[i + parent.depth])

node = parent.sufflink

Figure 3.1: Traversing a suffix tree

Lemma 3.3: The leaf nodes for all suffixes are visited in the decreasing order of their length
by the algorithmtraverse.

Proof: By induction oni: Assume thatTi = χατ is seen in iterationi, whereχ is at most one
character and empty only ifχα is empty, andχα is the last internal node seen in the downward

29

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

traversal. Thenχα will have a suffix link toα. α must be a prefix ofTi+1 sinceχα is a prefix
of Ti, and hence downward traversal fromα will lead to the leafατ , andατ = Ti+1, since
χατ = Ti.

When you want to disassemble a suffix tree, you find and remove all the leaf nodes in some
order, and maintain the property that all internal non-root nodes are branching. Then you must
end up with a tree consisting of only the root node.

To remove a documentT p from the MDST, we traverse its suffixes in order longest to shortest,
as in figure 3.1. In iterationi, we removeleaf p

i (with hpos = i) representingT p
i . If the parent

node has only one child left after the removal, it is merged into the grandparent. Python code
for this is given in figure 3.2. If we do not have parent pointers in the internal nodes, we follow
the suffix link of the grandparent node of last iteration, to make sure we always have a valid
grandparent set. This gives a constant extra cost per iteration, and hence a linear extra total cost.

def deldoc(tree , docid , T):
node = parent = tree.root
for i in xrange(len(T)):

while not node.isleaf:
grandparent = parent
parent = node
node = node.getchild(T[i + parent.depth])

parent.removechild(node)
if len(parent.children) == 1 and parent != tree.root:

onlychild = parent.getallchildren ()[0]
grandparent.replacechild(parent , onlychild)

node = grandparent.sufflink

Figure 3.2: Deleting a string from a suffix tree

Lemma 3.4: If there is an internal nodeχα for a non-emptyχ, it will be deleted before an
internal nodeα.

Proof: Assume we are removing the documentT p. If there is an internal nodeχα for a non-
emptyχ, andχα is a prefix ofT p

j , there must be aq andi such thatχα is the longest common
prefix of T p

j andT q
i , and eitherp 6= q or j < i. (Or else the nodeχα would not exist.) If

χα is merged with its parent, we must be in iterationj of removingT p. Sincej < j + 1, and
j < i < i + 1 or p 6= q, by lemma 3.3, there are at least two leaf nodes in the subtrees below
α that are not visited before the leaf node representingT p

j , andα must still be in the tree when
χα is deleted.

Lemma 3.5: After iterationi, all internal nodes are deleted or branching.

Proof: At iteration0, all internal nodes are branching, by definition 2.4. Before iterationi, all
internal non-root nodes are deleted or branching by induction. During iterationi, the only nodes
deleted areleafi and possibly its parent. If the parent has only one child left after the deletion,
the parent is also deleted, or it is still branching. If the parent is not the root, the grandparent
of leafi must have at least two children, by the inductive hypothesis. If the parent ofleafi is
deleted, the single child will be merged into the grandparent, which will have the same number
of children as before iterationi.

30

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

Theorem 3.6: The algorithmdeldoc in figure 3.2 removes a documentT k from a suffix tree.

Proof: After iterationi, the leaf nodes representing suffixesT k
0 , . . . , T k

i are deleted by lemma
3.3, and all internal non-root internal nodes are deleted or branching by lemma 3.5. After
iterationn, all leaves fromT k are deleted, so no suffixes of the padded string exist in the tree.
Since all internal non-root nodes have children, and all leaves refer to unremoved documents,
all strings in the tree are substrings of unremoved documents.

After deleting a document from the MDST, it might be left with internal nodes withdocid
referring to this document. How to deal with this is described in section 3.7.

3.4 MDST implementation

Almost all of the code for the MDST was prototyped in Python, and then rewritten in C++. Dif-
ferent solution were tried concerning how nodes are represented, how the parent-child relation-
ship is implemented, and how document IDs were updated. This is described in the following
sections.

3.5 Node model

The implementation used in the following work is heavily inspired by [Kur99]. The observa-
tions added are those related to updatability and managing multiple documents.

3.5.1 struct nodes

The easiest way to model a tree is by allocating a memory chunk for each node, using structures
built into the language, astruct in C, or an object in an object oriented language. This causes
a space overhead per node needed for memory management.

3.5.2 Compact array nodes

Instead of using such structures, you can manually allocate chunks of memory, and pack your
nodes into them. The simplest and fastest way of storing the array of nodes is defining each
field in a node to be one computer word. The size of a node will then be the number of fields
multiplied by the size of a word. Another way is letting each field require an individual number
of bytes. This requires a few more operations when storing or extracting a value. To use a
minimum amount of space, you might want to use an individual number of bits per field. Note
that a higher addressing resolution requires more bits for storing a node address in a suffix link

31

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

or a child pointer. To avoid this problem, you could let the size of a node be divisible by some
factor, and use a lower resolution for node addresses, and a higher resolution for node content.

As there is a variable number of internal nodes added per document, and some internal nodes are
left when removing a document, all internal nodes are preferably put into one array. References
to internal nodes can be a node number, or an offset into the array. The latter is needed if nodes
are of variable size. Typical data stored in an internal node isdocid, depth, hpos, sufflink and
possiblyparent. In addition you need information about its children. This is described later in
section 3.6.

Leaf nodes have different properties. When you add a document of lengthn, you know that you
will needn + 1 leaf nodes. When you remove a document, you also know that all of the leaf
nodes will be deleted, as shown in chapter 3. Therefore, we could allocate one array for the leaf
nodes of each document, which is deallocated when the document is removed. This would give
a space overhead for the memory manager linear on the number of documents, which is usually
affordable.

If the leaves are inserted into the array in the order in which they are created, thehpos and
depth of a leaf can be deduced from the position in the array, and thedocid is given by which
array the leaf resides in. If a leaf is placed in positionj, then

• leaf.hpos = j

• leaf.depth = (n + 1)− j

wheren is the unpadded length of the related document.

You can see the space usage for the node models in figure 5.2(d) on page 57.

3.5.3 Large and small internal nodes

As observed in [Kur99], a suffix tree contains a lot of redundant information on average. Con-
sider an iteration of the construction algorithm, illustrated in figure 2.6. If an internal node
χαβ is created in iterationi− 1, and an internal nodeαβ is created in iterationi, we know the
following (adapted from [Kur99]):

• χαβ.docid = αβ.docid

• χαβ.depth = αβ.depth + 1

• χαβ.hpos = αβ.hpos− 1

• χαβ.sufflink = αβ

32

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

So, when a chain of nodes with followinghpos are created during the addition of a document,
we can compact the nodes in the chain. We name the last node a large node, and each of the
other nodes in the chain small nodes. For each of the small nodes, we record the distancedist
to the large node, which is the difference inhpos anddepth. We know that:

• small.docid = large.docid

• small.depth = large.depth + small.dist

• small.hpos = large.hpos− small.dist

• small.sufflink = small + 1

If the nodes are saved consecutively in an array,small.dist multiplied with the size of a small
node will also be the distance to the large node in the array. Node that all nodes in a small–large
chain always refer to the same document.

Example3.1: Consider the suffix tree for the string “ababa”, shown in figure 3.3. The internal
nodesaba(docid = 0, depth = 3, hpos = 2, sufflink = ba), ba (docid = 0, depth =
2, hpos = 3, sufflink = a) anda (docid = 0, depth = 1, hpos = 4, sufflink = root), will
be created consecutively by the algorithmbuild in figure 2.7 on page 19. We see that we only
need to save thedocid, depth, hpos andsufflink of a. An array containing the internal nodes
for this tree is shown in figure 3.4

0,0,0

0,1,4

a

0,2,3

ba

0,2,4

$

0,3,2

ba

0,3,3

$

0,5,1

ba$

0,4,2

$

0,6,0

ba$

Figure 3.3: Suffix tree for the string ”ababa”

Remark3.7: One bit of thedocid field of a large node, and one bit of thedist field of a small
node could be reserved for distinguishing between large and small nodes. These fields should
have the same offset in the nodes in the implementation.

33

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

0 1 2 3 4 5 6 7 8 9
root aba ba a

0 0 0 0 2 1 0 1 4 0

d
ocid

d
epth

h
pos

su
f
f
lin

k

d
ist

d
ist

d
ocid

d
epth

h
pos

su
f
f
lin

k
Figure 3.4: Large and small internal nodes in the suffix tree for “ababa”

Note that small and large nodes was only implemented for the linked hash map parent-child
model. The reason for that is that in this model, small nodes need no space (see 3.6.2.3).
With sibling lists and variable size internal nodes, memory management is more complex, as
described below.

3.5.3.1 Re-using space for internal nodes

Internal nodes are also added and removed, as the set of indexed documents changes. To main-
tain the linearity in space, the space freed deleting nodes must be reused. If we implement only
large nodes (see section 3.5.3), all stored items have the same size. We can keep track of the
free space by maintaining a linked list of all free node positions. Thenextfree pointers of the
elements of the linked list can be saved in the free node positions, requiring no extra space.
Allocating and deallocating space for a node takesΘ(1) time.

If you have both large and small nodes, you get two problems. The size of the next chunk
available might not be the same size as the element you want to save. Secondly, a chain of
small nodes and their large node must be saved consecutively.

The first problem can be solved by making sure the size of a large node is a multiple of the size
of a small node. When creating a chain of small nodes, you make sure that the space consumed
by the small nodes is a multiple of the size consumed by a large node. If, for example, the size
of a large node is twice the size of a small node, the number of small nodes in a chain must be
0 modulo 2. This reduces the small to large node ratio on average.

The second problem is not trivial. When creating small nodes, you do not know how long the
chain of nodes is going to be, and hence do not know the amount of space required to save the
entire chain. One possibility is creating the chain of nodes in a temporary array, and copying
them into the global array when the chain is finished. This leads to a new problem: How do
we locate consecutive free space in the array? If free node locations are saved in a linked list,
chunks of free space cannot be merged without traversing the entire list, givingO(N) time cost
for node allocation. If you keep a doubly linked list, you can merge two free chunks inΘ(1)
time. As long as all nodes have space for saving two node offsets, this works.

You still have the problem of finding a free chunk of proper size when inserting a chain. If there
areF free chunks, this takesO(F) time, and if the memory is very fragmented, this is a high

34

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

price to pay.

Instead of re-solving this general problem, you could use the space allocation routines inherent
in your programming language. But this might give a higher space cost than not using small
nodes at all. Luckily, for the linked hash map child model discussed in section 3.6, small nodes
take zero space in the node array. Only large nodes need to be stored explicitly, meaning the
simple linked list memory management can be used.

3.5.3.2 Deleting nodes from chains

If the large node in a chain is deleted before a small node, the small node will lose itsdocid,
hpos anddepth information. Luckily, this will never happen.

Corollary 3.8: If nodea is stored to the left ofnodeb in a small–large chain,nodeb will not
be deleted beforenobea.

Proof: Directly from lemma 3.4 and the fact thatnodea = αβ andnodeb = β for someα and
β.

Remark3.9: When a node is deleted from the front of a small–large chain, thebackdist field
of the large node must be decremented.

3.5.4 Leaf node addresses

If you limit the document size to 4GB, and the number of documents to 4G,docid, depth, and
hpos require 4 bytes each, while pointers to leaf nodes (docid||hpos) require 8 bytes each,

A more space efficient and flexible solution, is setting a cap on the total size of all documents
inserted. To do this, you need a global node addressing. It is trivial for internal nodes, as they
are allocated dynamically in a global array. A single bit can be used for determining whether a
node is a leaf or an internal node.

It is a bit more complicated for leaf nodes, which are preferably saved in one dynamically
allocated array per document. Instead of addressing the leaf by an index into an array, you can
address a leaf by an absolute memory address. Then the size of the node pointers must be a full
memory address. Absolute addressing should preferably not be used for internal nodes, as the
address of a node may change when this array is reallocated as more space is required.

Another possibility is managing the space for the leaves yourself, letting all leaf pointers be
offsets into a global array. This adds the complexity of fragmentation and reusing free chunks
of variable sizes.

One problem with global leaf addressing is extracting thehpos, docid anddepth fields. Given a
leaf address, you must find which document it belongs to, and the offset from the first leaf. This

35

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

can be done by maintaining a sorted list or search tree of the starting offsets of the leaf arrays
of all documents. Extracting a field from a leaf node would then takeO(log d) time, whered is
the number of documents in the MDST.

Alternatively, you can pad all documents so that their size is a multiple ofr for a given integerr,
and store the document ID for everyrth position. Such a solution is described for suffix arrays
for multiple documents in section 4.5.

In our implementation, one array of leaf nodes per document is used, and leaf indentifiers are
docid||hpos.

3.6 Parenthood

Perhaps the most difficult choice for the implementation of a suffix tree is theparent → child
relationship. These are the main goals:

• Finding the child of a node on a given character should takeΘ(1) time.

• Adding or removing a child should takeΘ(1) time.

• Listing all c children of a node should takeΘ(c) time.

• The space required for storing allparent → child relationships should beO(N). (There
are at most2N − 1 nodes, each having at most one parent.)

In addition, the solution should be space efficientin practise. If you want to index 1GB of data,
it makes a lot of difference whether you use10n or 100n extra bytes of memory. We shall see
that fulfilling all these requirements is not easy. A summary of the properties of the different
solutions is given in section 3.6.5.

3.6.1 Sibling lists

A simple and quite effective solution is using sibling lists. Each node have a pointer to its
“leftmost” child (firstchild), and each of the children have a pointer to a “right” brother
(branchbro), forming a chain of siblings. This is one of the solutions described in [McC76]
and [Kur99], and is used in the MUMmer software [MUM].

The fields required for the various node types are shown in figure 3.6. Notice that theparent
field is only needed with the eager document ID update model, described in section 3.7. The
backdist field is only needed if small nodes are used, as described in section 3.5.3.

36

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

3.6.1.1 Sibling list space cost summary

Example3.2: Let the maximum field values be those given if figure 3.5. The fields required for
each data type is shown in 3.6. Large and small nodes should be padded so the size of a small
node is a multiple of the size of a large node. In the worst case, this givesN · 28+N · 6 = 34N
bytes space needed.

Remark3.10: [Kur99] gives a conjecture that there is an upper bound on the share of internal
nodes that are large nodes is somewhere around0.7n. Indexingbible.txt from the Canterbury
corpus gave0.3n large and0.4n small nodes. Indexingworld192.txt gave0.22n large,0.43n
small nodes. When doing a run with 60% inclusions and 40% deletions on 4KB texts from a
zipf distribution,0.15n small and0.24n large nodes were seen after 5000 requests.

Variable Bits Bytes Max Fields
maxdoc 23 3 8M docid
maxlen 24 3 16M depth, hpos
noderef 48 6 - firstchild, branchbro, sufflink
maxdist 7 1 128 dist, backdist

Figure 3.5: Example field sizes

Node type Large node Small node Leaf node
Field firstchild firstchild branchbro

branchbro branchbro
(parent) (parent)
docid dist
depth
hpos
sufflink
backdist

Bytes 28 13 (14 padded) 4

Figure 3.6: Node fields required for storing node using sibling lists

3.6.2 Hash map

Hash map implementations are discussed in both [McC76] and [Kur99].

There is both a constant and a linear space overhead when maintaining a hash map. You have
to store the size of the map and the fill rate. To keep the amortised cost of insertion and deletion
at Θ(1) expected time, you must use a doubling scheme for increasing the size of the map. As
the number of children per node is not known during construction, half of the slots in the maps
are wasted in the worst case. Given that the number of children has a uniform distribution in
2 . . . σ, the expected amount of wasted entries in a hash map using doubling is(

∑σ
i=2 2dlog2 ie−

i)/(σ − 2), which is42.5 for an alphabet of size256.

37

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

[McC76] and [Kur99] propose that you should maintainonehash map for the children ofall
nodes, using the ID of the parent concatenated with the symbol as key, and the ID of the child as
value. We name this mapchildmap. We know that there is an upper bound on the total number
of children,2N − 2, and if we known the string distribution the documents are taken from, we
can make a lower educated guess.

3.6.2.1 Lost head positions

[Kur99] proposes using thehpos as the ID of an internal node, as thehpos of an internal node in
a single suffix tree is unique. This is because in iterationi, at most one internal node is created,
and it is givenhpos = i. Using a combination ofdocid andhpos doesnotgive uniqueness in our
MDST implementation, ashpos are inherited upwards when removing a document. As there
are more leaves than internal nodes in a subtree, and all the leaves have a unique combination
of docid andhpos, it is possible to to maintaindocid||hpos uniqueness. Then you would lose
theΘ(1) amortised update cost per node, as you possibly need to traverse the entire subtree to
find a uniquedocid||hpos. A better idea is to use the node number, or the node offset in the case
of variable size nodes, as keys in the hash. Document ID update is discussed in section 3.7.

3.6.2.2 Hash map keys

Since the internal nodes are allocated globally, the size of the keys are dependent on the max-
imum total document size, and not the sum of the maximum number of documents and the
maximum document size. The space required for a key is this, plus the space required for stor-
ing a symbol. The size of a value in the hash map depends on the model for addressing leaves,
described in section 3.5.4. The difference for the hash map solution, is that leaf nodes do not
have to be stored explicitly anywhere, as they have nobranchbro field.

In our implementation we refer to a leaf bydocid andhpos.

3.6.2.3 Implicit small nodes

In the sibling list implementation with large and small nodes of section 3.6.1, the fields in the
small nodes weredistance, firstchild andbranchbro. With the hash map solution, the latter
two are not required. Thedistance field can be encoded in the node identifier, so all nodes in
the chain oflarge are identified bydistance||large, giving a space overhead equal to the size
of the distance field. Small nodes do not have to be stored explicitly. Note that this solves all
the memory management problems discussed in section 3.5.3.1.

Figure 3.7 proposes a reference scheme for the various node types, which can be used for the
values in the hash map. Thenextchar andprevchar fields are used in the linked hash map
described in section 3.6.3 The size required for a reference is one bit, plus the maximum of the
space for a small node and for a leaf node.

38

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

Node type Leaf bit Distance Address Next character Prev. character
Large node 0 0 . . . 0 nodeno nextchar prevchar
Small node 0 dist nodeno nextchar prevchar
Leaf node 1 docid hpos nextchar prevchar

Leaf bit Document Head pos Next character Prev. character

Figure 3.7: Node references with implicit small nodes

3.6.3 Linked hash map

The hash map implementation so far gives expectedΘ(1) child lookup and child insertion, but
to list all children you need to traverse the entire alphabet, and look for children on all symbols,
with a total cost ofΘ(σ). This cost is critical when you want to list all occurrences of a string,
and must traverse an entire subtree. The price for listing allocc occurrences of a patternP of
lengthm is O(m + occ · σ). A sparse tree gives the worst performance.

It is possible to combine the properties of sibling lists and hash maps, with less extra space than
the sum of the space needed for implementing the individual techniques. If each value in the
hash map is expanded with a reference to the next and previous child of the parent, a sibling
list is formed. This reference needs only to be the first symbol on the edge to the next child,
which does not require much space, given a small alphabet. The node itself should also have a
field for the first character referenced. Note that this does not have to be the first character in
alphabetical order.

With a linked hash map, you can lookup a child inΘ(1) expected time, and list allc children in
Θ(c) expected time.

Since we only want to save large nodes explicitly, we would like the small nodes to extract the
first character (firstchar) in the linked list of their children from the related large node.

3.6.3.1 Insertion and removal in linked hash map

When inserting a node into the child chain, it should be inserted in the second position, so that
you neither have to updatefirstchar field of the parent nor traverse the entire list. This gives
Θ(1) child insertion. The reason you do not want to change thefirstchar field, is that this
must be valid for all nodes in a node chain if you use small and large nodes. To getΘ(1) child
removal, you need a double linked list. We add aprevchar field to the entries in the hash
map. A hash map with sibling lists gives optimalΘ(1) lookup, insertion and deletion, andΘ(c)
traversal. This is under the assumption that a hash map hasΘ(1) cost of all operations, which
is not true in theory. But in practise, this is the amortised cost.

Theorem 3.11: The character on the edge to the first child added to the first node in a small–
large chain, is a validfirstchar for all the nodes in the chain.

Proof: Given the nodesαβ andβ are in the same small–large chain, and that the first seen

39

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

occurrence ofαβ is at positioni in the documentT k. T k
i is αβτ for someτ . ThenT k

i+|α| is βτ ,

and the first character inτ is a validfirstchar for bothαβ andβ.

Remark3.12: When deleting a child on the same character as given in thefirstchar field, this
field must be updated. As when updatingdocid andhpos, this value should be chosen from the
leftmost element in the small–large chain. Proofs for this can be found in section 3.7.3 later.

3.6.3.2 Split end markers

In a single document suffix tree, a node will only have one child on the unique end marker “$”.
In MDST we need multiple end markers, as many documents can end with the same substring.
If the end markers are treated as characters, the fieldsfirstchar, prevchar andnextchar must
be large enough to hold a document id. Given a maximum number of documents of 16 million,
this enlarges these fields from 1 to 3 bytes.

An elegant solution to this is to split the end markers into strings representing thedocids. These
do not have to be stored explicitly, but can be generated on the fly. In an implementation, the
end marker should preferably always start with the same unique character, typically binary zero,
to reduce the number of outgoing edges from nodes when indexing texts which do not use the
entire alphabets.

3.6.3.3 Linked hash map space cost summary

Example3.3: Let the maximum field values be those given if figure 3.8. The fields required
for each data type is shown in 3.9. A large node would requires 16 bytes. Forchildmap, a hash
key 6 bytes, a hash valuemax(7, 8) = 8 bytes, totalling to 14 bytes. If the space overhead for
the hash map is a factor ofγ, the total space requirement isN ·16+2N ·14 ·γ = (16+28 ·γ)N
bytes.

Variable Bits Bytes Max Fields
maxdoc 23 3 8M docid
maxlen 24 3 16M depth, hpos
nodeoff 32 4 4G nodeno
maxdist 7 1 128 dist, backdist
maxchar 8 1 256 char, nextchar, prevchar

Figure 3.8: Example field sizes

3.6.3.4 Hash map implementation

There are two main ways of implementing a hash map. Either you use open hashing or closed
hashing. The idea in either, is that for each key, you want to find a position to store or get the

40

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

Large Key Int. ref Leaf ref
docid dist leafbit leafbit
depth nodeno dist docid
hpos char nodeno hpos
sufflink nextchar nextchar
backdist prevchar prevchar
firstchar
16 6 7 8

Figure 3.9: Fields with linked hash maps

related value in expectedΘ(1) time. The problem is that you have limited storage space, and
you do not know anything in advance about the incoming keys. This means that you probably
get collisions between differing keys, hashing to the same position in your storage area.

In open hashing, you solve this problem by maintaining an array of linked list. If two keys hash
to the same value, the key–value pairs will be in the same linked list. It is common to let this
structure grow until the number of key–value pairs is equal to the size of the array before it is
resized. A good hash function hashes keys evenly distributed into the array. There is a space
overhead in open hashing related to the pointers in the linked list. If the pointers are memory
addresses, the overhead per pair is the size of such an address. On a 32 bit machine, it is 4
bytes, while on a 64 bit machine, it is 8 bytes. This means that the linked hash map parent–
child implementation will be much less space efficient on a 64 bit machine if open hashing is
used. Open hashing is what is used in Silicon Graphics’ freely available implementation of
hash_map, which is an extension of the C++ Standard Template Library.

In closed hashing, all key–value pairs are put directly into the array. If there is a key collision, a
new position is found for the second pair. The new position can be found by increment (linear
probing), or by applying the hash function on a combination of the old position and the key. The
latter is called double hashing, and spreads the keys better, but has worse cache performance.
In closed hashing, you cannot let the array fill to 100% before you resize, as you then would
need linear time to locate pairs. It is common to let the fill be at most 50%. You then need∑∞

i=0 i · 0.5i+1 = 1 jumps on average to locate a key.

Closed hashing has much better space performance than open hashing when the sizes of the
keys and values are small. You need approximately twice the space needed for just storing the
pairs. If the keys and values are larger than memory addressees, open hashing is the most space
effective.

A closed hash map has been implemented and tested. It was more space efficient, but much
slower than SGI’shash_map on large numbers of pairs. Therefore the standard open hash
implementation is used.

41

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

3.6.4 Child arrays

The linked hash map has better expected asymptotic behaviour than the sibling lists, but they are
rather complex. Looking up an entry requires many operations: Finding the hash value of the
key, handling key collisions, and extracting the value. For a low number of children, the sibling
lists are faster. Child traversal is rather slow in practise for both these models, as they have bad
memory locality. The children traversed in the linked lists are spread throughout memory.

A simpler solution is to store pointers to the children of each node in a separate array, giving
good memory locality on traversal. If these arrays have room forσ entries, there isO(Nσ) space
overhead, as there areN or less internal nodes. Instead we can use arrays of varying sizes, are
reallocate the child pointers when more space is needed. We apply the common strategy of
array doubling. When an internal node is created, it is given space for two children, which we
know it will use. If a third child is added, it is given space for four children, and so on. To get
good cache performance, the first character of the edge of each child should be stored in the
array with the pointers. If we did not do this, we would have to extract thehpos anddocid from
each child, and then extractT child.docid[child.hpos + parent.depth + 1].

To avoid the time and space overhead of allocating and deallocating arrays, we use the type of
container which is used for storing the fields of nodes, explained in section 3.5.2. Child arrays
of equal size are stored in one container, so that all elements in this container are of equal size.
This means free elements can be kept in a linked list, and space allocated and deallocated in
constant time. When more elements are needed, the container space is increased.

A layout for this design is given in figure 3.10.

Figure 3.10: Child arrays.

Theorem 3.13: Child arrays using doubling has a space overhead of6N times the size of a
node reference, as long as no nodes are deleted. Space logarithmic on the size of the alphabet
is needed for managing the containers.

42

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

Proof: Each container is at least half full, and each child array in each container is at least half
full, so at least one fourth of the space is used for children. There are at most2N children,
which means we an overhead of(4 − 1)2N = 6N pointers. For each container, you need to
store its size, and a pointer to the first free element in the free list. When we use doubling, there
arelog2 σ child array containers.

Note that as with the linked hash map, there is no need to store leaves explicitly. They are
uniquely identified by the document ID and head position stored in their identifier. But small
nodes need more than zero space, as they need a pointer to their child array. Small nodes has
not been implemented for this model.

3.6.4.1 Unsorted child arrays

The entries in a child array can be stored in a random order. To find space for an entry, locate the
child on a given character, or delete an element, you traverse the array until you find the right
slot, usingO(c) amortised time, wherec is the number of children for a given node. The array
has less than twice as many slots as the node has children. If reading memory is cheaper than
writing, a random order is favourable, as you only have one write for each insertion/deletion,
except when reallocating.

3.6.4.2 Sorted child arrays

Another strategy is to let the children in an array be sorted on the first character on the edge
going to them. Then you could do child lookup inO(log c) time, wherec is the number of
children. Traversal, insertion and deletion would beO(c). When inserting or deleting, you
would need to shift a portion of the array left or right. If you kept a counter on the number of
children in each array, you would get a constant factor speedup, at the cost of the space for the
counter. Remember that the child arrays are half full in the worst case.

In practise, binary search is only faster than linear traversal if the number of children is above a
certain limit, as more arithmetic operations are needed in each step. For small alphabets, sorting
the arrays does not pay off. Usually, only nodes near the root have a large number of children.
One possibility would be to only use sorted arrays for such nodes, and unsorted arrays for the
rest.

If you have a very small alphabet, for example DNA, the best solution might be to fix the child
array size toσ. You would then get direct lookup, insertion, and deletion, as all symbols would
have a predefined position.

43

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

3.6.4.3 Deleting from child arrays

When removing an entry from a child array, the number of elements left should be counted. If
the fill is below a certain level, typically 25%, the array should be reallocated. Child operations
still take linear amortised time, as with regular array doubling.

You get a more difficult problem if the number of child arrays of a given size decreases over
time. Internal nodes have pointers into this container, which must be updated if the child arrays
are moved around. The problem is the same both when the pointers are internal indexes and
direct memory addresses. You would need to scanO(N) internal nodes for references, a high
price to pay. In a test with 3000 document insertions and 2000 document deletions run in a
mixed order, the number of child arrays did not decrease over time for any size. Shrinking child
array containers has not been implemented.

3.6.4.4 Doubling factor

When using array doubling on a regular array, the worst case amortised work done onn inser-
tions is

∑
i=0

n

di
≤ d

d− 1
n

whered is the doubling factor. We can tune the space and time performance by adjusting
this parameter. If we setd = 1.5, we get at most 50% space overhead in each child array
container. Reallocating memory is a cheap operation. Therealloc system call is used, which
only moves data if it cannot get the adjacent memory area. Compared to the rest of the suffix
tree construction, it is fast even when data is moved. In the tests in chapter 5, a doubling factor
of 1.1 was used, at the cost of about 10% time cost increase on document inclusions over a
doubling factor of 2.

3.6.5 Parent–child implementation summary

The table in figure 3.11 gives a summary of the properties of the various node models.σ is the
size of the alphabet, andc is the number of children for a given node.

3.7 Document ID update model

In a multi-document dynamic suffix tree, an internal node can have multiple children with a
docid different from itself. Therefore, after you have deleted a document from a MDST, there

44

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

Implementation Lookup Insertion Deletion Traversal
Sibling lists O(c) Θ(1) O(c) Θ(c)
Sorted sibling lists O(c) O(c) O(c) Θ(c)
Hash map Θ(1) Θ(1) Θ(1) Θ(σ)
Linked hash map Θ(1) Θ(1) Θ(1) Θ(c)
Unsorted array O(c) O(c) O(c) Θ(c)
Sorted array O(log c) O(c) O(c) Θ(c)
Full array Θ(1) Θ(1) Θ(1) Θ(σ)

Figure 3.11: Summary of parent–child models

might be internal nodes left with adocid referring to the deleted document. Because you tra-
verse the tree following suffix links, you do not necessarily see all related internal nodes. These
nodes must be updated, if you do not want to keep a copy of the document.

Remark3.14: A suffix tree representing multiple strings may contain a nodeα, even when none
of the suffix trees representing the individual strings contain a nodeα. Proof by construction in
example 3.4.

Example3.4: Consider the MDST for the strings “xag”, “xabcd”, “xabe” and “xabcf” shown
in figure 3.12(a). The numbers inside the nodes aredocid, depth andhpos. Notice that none
of the suffix trees for the individual strings have an explicit nodea, as “a” is always followed
by the same character (it occurs only once in each string). The first string will have a nodeag$,
the second a nodeabcd$, and so on. But in the MDST, there will be a nodea, after you have
added “xag$” and “xabcd$”, which between them have both ‘g” and “b” after “a”. This node
is naturally described by the tuple(1, 1, 1), as the scan forT 1

1 = “abcd” will halt betweenroot
andag.

Remark3.15: When removing a document from an MDST withdeldoc from figure 3.2, there
may be a node referencing the document ID, which is not visited. Proof by construction in
example 3.5.

Example3.5: We remove the string “xabcd” from the MDST in example 3.4. Downward
traversal takes us viaxa, xab and xabc to the leafxabcd, which is deleted, along with the
parentxabc. Then we follow the suffix link from grandparentxab to ab. Downward traversal
takes us viaabc to the leafabcd, which is deleted. Notice that the nodea was never visited.
The following iterations will not touch the subtree rooted ata, as neither “bcd”, “cd” nor “d”
contain “a”.

The following sections describe two methods for solving this problem.

45

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

0,0,0

1,1,1

a 1,2,0

xa*

0,3,1

g$

2,2,1

b

0,4,0

g$

2,3,0

b

3,3,1

c

2,4,1

e$

3,4,0

c

2,5,0

e$

1,5,1

d$

3,5,1

f$

1,6,0

d$

3,6,0

f$

(a) Before removing “xabcd”

0,0,0

1,1,1

a 0,2,0

xa*

0,3,1

g$

2,2,1

b

0,4,0

g$

2,3,0

b

3,5,1

cf$

2,4,1

e$

3,6,0

cf$

2,5,0

e$

(b) After removing “xabcd”

Figure 3.12: MDST for “xag”, “xabcd”, “xabe” and “xabcf”

3.7.1 Eager bottom-up document ID clean-up

After the removing a documentTk from an MDST withdeldoc the tree may be left with inter-
nal nodes referring to that document, even ifdeldoc is modified to update nodes seen during
traversal. It may not be affordable to keep a copy of all deleted documents. One possibility is
doing a top-down traversal of the entire tree, but the cost would beΘ(N), linear on the size of
all documents.

A better solution is doing a bottom up traversal from the nodes seen indeldoc, updating all
nodes with invaliddocid. If done naively, this would costO(n2

k), as you may walk the same
path multiple times. If you traverse each path at most once, the cost will beΘ(nk).

Remark3.16: A bottom up traversal of the suffix tree requires parent pointers, which will give
a linear extra total space cost.

When a node with an invaliddocid is seen, a newdocid andhpos must be inherited from one
of the children, possibly recursively. Python code for this is given in figure 3.13.

Lemma 3.17: If there is a node having adocid referring to a deleted document, there is a
node in the subtree below it with differentdocid.

Proof: By theorem 3.6, after deleting a document withdeldoc, all leaves referring to the given
document are deleted. So any internal node must have a descendant with adocid referring to

46

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

def heritdocid(self , node):
oldid = node.docid
child = node.children [0]
newid = child.docid
if isremoved(newid):

heritdocid(child)
newid = child.docid

node.docid = newid
node.hpos = child.hpos

Figure 3.13: Inheritingdocid andhpos from children.

another document.

Theorem 3.18: After removing the documentTk, a bottom up traversal runningheritdocid
on all internal nodes withdocid = k takesO(nk) time.

Proof: Each call toheritdocid takesΘ(1) time, excluding the recursive step.heritdocid
is called on a total ofO(nk) nodes, as there are at mostnk internal nodes withdocid = k
becausebuild creates more leaf nodes than internal nodes. No node is visited more than once
by heritdocid, as all nodes visited have havedocid = k before the visit, anddocid 6= k after
the visit. The upward traversal takesO(nk) time if nodes are marked when first seen, and seen
nodes are not traversed again.

3.7.2 Lazy document ID clean-up

A method of updating document IDs that does not require parent pointers, is doing a lazy
update on nodes when an invalid document ID is seen when using the MDST. In the bottom-up
traversal, only internal nodes need parent pointers, as all internal nodes with leaves from the
deleted document are always visited in the traversal. So the amount of space you save is the
size of a pointer times the number of internal nodes.

The cost of this solution is having to check if the document ID is valid each time you acquire
a node by following a suffix link, or retrieving a child node. When a node with an invalid
document ID is found, you must callheritdocid on the node.

Theorem 3.19: The total work of lazy update of nodes is worst case linear on the total length
of all documents removed,R.

Proof: From the proof of theorem 3.18, we know that the number of invaliddocids left after
removingTk is O(nk). So after removing documents of total lengthR, O(R) invalid docids
are left in the tree. From theorem 3.18 we know that a constant amount of work is done in
heritdocid for each invaliddocid seen. Hence, the total work isO(R).

Remark3.20: Given lazy update, lookup of a single patternP of lengthm might take longer
thanO(m) time. That would happen if it hits a long column of nodes with invaliddocids. The
probability of this is low in practise.

47

CHAPTER 3. MULTI-DOCUMENT DYNAMIC SUFFIX TREES

Timings and memory usage for lazy and eager update is found in chapter 5.

3.7.3 Updating document IDs in small–large chains

When a document is removed from an MDST, some internal nodes withdocid referring to the
given document may be left in the tree, as described in section 3.7. When updating a node
belonging to a small–large chain, you must reset thedocid andhpos of the large node. But, you
have to make sure that these values are representative forall the nodes in the chain.

Theorem 3.21: A docid andhpos valid for first node in a small–large chain will always be
valid for all the nodes in the chain when they are translated by the distance to the leftmost node.

Proof: If a nodea andnodeb belong to the same small–large chain, andnodea is created before
nodeb, it meansnodea = αβ andnodeb = β, for someα andβ. We know thatαβ must be a
prefix of a suffixT k

i of an unremoved documentT k, sincenodea is not deleted. Letαβτ = T k
i ,

whereT k is an undeleted document. Chosedocida andhposa from the child ofnodea on the
first symbol inτ . T k

i+|α| = βτ , soβ is a prefix ofT k
i+|α|. Hencedocidb = k = docida and

hposb = i + |α| = i + nodea.dist−nodeb.dist = hposa + nodea.dist−nodeb.dist is valid for
nodeb.

Remark3.22: To find the leftmost node in a chain, the large node must have abackdist field,
which is equal to thedist of the leftmost node.

48

Chapter 4

Hierarchic index implementation

In section 2.4, two strategies for hierarchic indexes were discussed, called method 1 and method
2, both having a parameterk. This chapter discusses the implementation of these two methods,
and gives two tricks for speeding up search: A document ID map, and a start index for the
binary search.

A difference from the theoretical description earlier, is that we do not consider documents to
have unit size. Sizes of sets of documents and indexes are rounded up to the nearest valid size.
Notice that numbers are added before they are rounded. An index using method 1 containing
two documents of sizek10/2 will be considered to have sizek10, not2k10.

4.1 Method 1

In method 1, there are at mostk − 1 indexes of each sizeki. The indexes can be maintained
on a stack, where smaller indexes are closer to the top. When a new document is put onto the
stack, we leave it as an unprocessed index. Then, as long as there arek indexes of equal size on
top of the stack, we pop them off the stack and push their content as an unprocessed index onto
the stack. Then we process the unprocessed index on top of the stack.

Example4.1: We want to add a document to the indexes shown in figure 2.12 on page 25,
where the stack grows from left to right, andk = 3. We push the new document onto the stack
as an unprocessed index. Then, there are 3 indexes of size 1 on top of the stack, and these are
merged. Then, as there are now 3 indexes of size 3, these are merged. There are now 2 indexes
of size 9. At last, the topmost index is processed.

If the documents are not considered to have unit size, an alteration of the algorithm must be
done. When a document is put onto the stack as an unprocessed index, it is merged with the
index below it as long as that is considered smaller. Then the normal procedure is followed.
Interpreted sizes should be rounded up to the nearest power ofk. This is shown in figure 4.1.

49

CHAPTER 4. HIERARCHIC INDEX IMPLEMENTATION

from math import *

def reprsize(k, realsize):
return ceil(log(realsize) / log(k))

def add1(k, stack , document):
stack.append(document)
while (True):

while len(stack) > 2 and reprsize(k, stack [-1]) > reprsize(k, stack[-2):
stack.push(stack.pop() + stack.pop())

if len(stack) < k:
break

merge = True
for i in xrange(len(stack) - 1, len(stack) - k, -1):

if reprsize(k, stack[i]) != reprsize(k, stack[i-1]):
merge = False
break

if merge:
content = 0
for i in xrange(k):

content += stack.pop()
stack.append(content)

else:
break

return amount of work done and the number of indexes in use
return stack[-1], len(stack)

Figure 4.1: Pseudocode for method 1

4.2 Method 2

In method 2, there are at most one index of each “size type”,bik
i | 0 ≤ bi < k, 0 ≤ i ≤

blogk nc. When a document is added, the smallest index which can contain the new document,
itself, andall smaller indexes is rebuilt rebuilt to contain all of this.

Example4.2: A set of indexes withk = 3 are shown in figure 2.13 on page 26. They have fill
1/2, 6/6, 9/18, and 0/54, which means thatb0 = 1, b1 = 2, b2 = 1 andb3 = 0 (using the notation
of chapter 2). Notice that indexi has a maximum capacity ofki(k − 1). If we want to add one
document to the index,b0 is increased to 2. The total number of documents is now 17. When
we want to add another document, we find that the firstbj < k − 1 is b2 = 1. We setb0 andb1

to 0, and increaseb2 to 2, meaning that we move the new document, and the contents of index
0 and 1, into index 2. The fill of the indexes is now 0/2, 0/6, 18/18, and 0/54.

Code for method 2 is shown in figure 4.1. When a maximum fill is given for each index, you do
not have to calculate the nearest power ofk.

4.3 Comparing method 1 and method 2

If PS(n) andQS(n) are the costs of indexing and querying of static document sets, we have the
following for dynamic sets with method 1 and 2:

50

CHAPTER 4. HIERARCHIC INDEX IMPLEMENTATION

def add2(k, fill , limit , document):
content = document
j = 0
while True:

content += fill[j]
fill[j] = 0
if content < limit[j]:

break
j += 1

fill[j] = content
numind = 0
for i in xrange(len(fill)):

if fill[i] > 0:
numind += 1

return amount of work done and the number of indexes in use
return content , numind

Figure 4.2: Pseudocode for method 2

P 1
D(n) = O(logk n)PS(n)

Q1
D(n) = O(k logk n)QS(n)

P 2
D(n) = O(k logk n)PS(n)

Q2
D(n) = O(logk n)QS(n)

With method 1, you can get the indexing cost arbitrarily close toPS(n) by increasingk, at the
price of getting a very high query time. With method 2, you get a query time close toQS(n), at
the price of a very high indexing cost.

Below in figures 4.3(a) and 4.3(b) you see the average work per document plotted against the
number of documents added. It is assumed that documents have unit size, and thatPS(n) = n.
Figures 4.4(a) and 4.4(b) shows the maximum number of indexes during the runs, which is
equal to the upper limit ofQD(n) if QS(n) = 1.

See how both methods are equal fork = 2. Real timings for method 1 and 2 used with BPR
can be found in chapter 5.

4.4 Suffix arrays for multiple documents

When you index multiple documents with a suffix array, you concatenate them, and build the
suffix array for the resulting string. You can either separate the documents with a unique symbol,
or check that hits are within document boundaries when you list them. It is much more efficient
than having multiple suffix arrays, because of the nature of the binary search. If you have
documents of sizesn0, n1, . . . , nd, greater than 1, you know that

51

CHAPTER 4. HIERARCHIC INDEX IMPLEMENTATION

 0

 5

 10

 15

 20

 1 10 100 1000 10000

co
st

 /
do

c

inclusions

k=2
k=10

(a) Method 1

 0

 5

 10

 15

 20

 1 10 100 1000 10000

co
st

 /
do

c

inclusions

k=10
k=2

(b) Method 2

Figure 4.3: Work per document

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000 10000

m
ax

im
um

 n
um

be
r

of
 in

de
xe

s

inclusions

k=2
k=10

(a) Method 1

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000 10000

m
ax

im
um

 n
um

be
r

of
 in

de
xe

s

inclusions

k=10
k=2

(b) Method 2

Figure 4.4: Maximum number of indexes

log(n0 + n1 + · · ·+ nd) ¿ log n0 + log n1 + · · ·+ log nd

When you search for a pattern, you get a set of positions in the global string, which you want
to map into local positions in documents. You can save the starting positions of the documents
in an array, with a space cost ofΘ(d). To map a hit, you perform a binary search in the starting
positions. When you have found the right document, you subtract its starting position from the
global position. With this approach, findingocc occurrences of a pattern takesO(m + log n +
occ log d) time.

4.5 Document ID map

To avoid the binary search for the right document, you could save the document ID for every
position in the global string in an array. But this is not very space efficient. It almost doubles

52

CHAPTER 4. HIERARCHIC INDEX IMPLEMENTATION

the space requirements of the suffix array.

Instead, you can save the document ID for everyr-th position for some factorr, and pad all doc-
uments to a multiple ofr. When you want to map the global positioni, you find the document
ID in positionbi/rc.

As long asr is much less than the average document length, there is very little space overhead.
r does not need to be very large. Ifr = 8 and document IDs take 4 bytes, you need1

2
N bytes

extra for the map.

4.6 Start index for binary search

When you perform many binary searches in a suffix array, you often do steps which were
identical in previous searches. Given an even character distribution in the string, all searches
starting with the same character share the first couple of steps.

To avoid repeatedly doing to much of the same work, you could make an index of prefixes of
lengths of the suffixes of the string, giving the binary search left and right border for each
prefix. As the length of the prefixes increases, the number of entries in the index grows towards
N , giving a high space overhead, so you should keeps small. In practise, you shouldnot use a
hash map for the index, as the overhead of lookup in the hash map is probably greater than the
cost of performing the extra steps in the binary search. This is assuming that you have a RAM
model machine. If the suffix array resides on disk and the start index in memory, it would not
be true.

A good solution in practise is to have an array indexing all possible substrings of lengths from
σ. For any string fromΣs found in the text, the index should give the position of the leftmost
and rightmost occurrence in the suffix array. The space cost for this is2σs times the size of a
pointer. A good choice fors is 2, having a space requirement of2 · 2562 · 4B = 219B = 512KB
with an alphabet of size 256 and pointers of 4 bytes. Fors = 3, the space requirement is
128MB.

If you have an even character distribution, you would on average savelog2 n−log2
n
σs = log2 n−

log2 n+log2 σs = s log2 σ steps. Ifn is sufficiently large, the save is independent ofn, meaning
the gain is relatively smaller the more data you have.

Note that when searching for longer strings, or strings with many hits, the search time is domi-
nated by them or theocc term. Then using the start index does not give much advantage.

53

Chapter 5

Results

5.1 Test data

To be able to test various dimensions of the problem complexity, most of the tests are run on
computer generated test data. Some of the data contains just random words in a given length
range, from a given alphabet, while some data contains words from a dictionary, to simulate
real-world data.

A dictionary of a given number of words is created, and words are selected from this dictionary
using a zipf distribution. The probability for seeing a word is inversely proportional to the rank
of the word. For therth word:

p(r) =
1

r
· 1∑R

i=1
1
i

where R is the total number of words in the dictionary. Words for the zipf dictionary were gener-
ated with lengths from the length distribution found inbible.txt from the Canterbury Corpus
[BP]. Random words were generated with random lengths uniformly distributed between an
upper and a lower limit. The characters in the words in the zipf dictionaries were selected with
a first order Markov chain, using a zipf distribution.

A test contains a set of requests to an index: Include a document, remove a document, or find
matches for a query. Document update is simulated with removal and addition. Finding what
has changed in a document, and updating the indexes accordingly, usually has a higher cost than
just flushing the old version and inserting the new. The queries are randomly selected phrases
from the indexed documents, of a minimum and maximum length. For some tests, a maximum
is given for the number of reported hits. There is also a freshness requirement for the index.
This gives how many new documents can be requested for addition before they are actually
added. This is included because some of the methods like to batch updates, and are greatly
affected by this parameter.

54

CHAPTER 5. RESULTS

The parameters for the tests in this chapter are given i figure 5.1. When “inclusions”, “removals”
and “queries” are given in percentages, such requests are run in a random order. When they are
given as integer numbers, the requests of each type are run separately, in the listed order.

alphasize datasize docsize freshness general general2 numdocs random reporting
inclusions 30% 1 40960-20 10000 30% 30% 1-16384 30% 30%/17%
removals 20% 0 0 0 20% 20% 0 20% 20%/0%
queries 50% 10000 0 0 50% 50% 1000 50% 50%/83%
num. requests 2000 - - - 10000 30000 - 4000 10000/6000
file size 4KB 1KB-64MB 1KB-2MB 4KB 4KB 4KB 2MB-128B 4KB 4KB
alphabet size 4-128 26 26 26 26 26 26 26 26
random words 100% 0% 0% 0% 0% 0% 0% 0-100% 0%
zipf dictionary 0% 100% 100% 100% 100% 100% 100% 100-0% 100%
zipf dict. size - 10000 10000 100000 100000 100000 10000 100000 100000
min. word - 1 1 1 1 1 1 1 1
max. word - 20 20 20 20 20 20 20 20
freshness req. 0 0 0 0-256 0 0 0 0 0
min. query 30 5 - - 30 5 3 30 3
max. query 30 5 - - 30 5 3 30 3
max hits 1 1 - - 1 ∞ 1000 1 1-1000

Figure 5.1: Test parameters

5.2 Test system

All the tests were run on an 2.2 GHz AMD Athlon 64 3500+, giving 4374 bogomips. It
has 64+64 KB level 1 cache, and 512 KB level 2 cache. 3.6 GB of RAM was available.
The system was running Debian for AMD 64, and Linux version 2.6.10. All software was
compiled with GCC version 3.4.4, using the options-O3 -finline-functions -fno-rtti
-fno-exceptions.

5.3 Comparison of node models for MDST

Many different underlying node models for the MDST were tested. They differ in how nodes
are stored, how the parent-child relationship is implemented, and howdocid update is done for
internal nodes after document removal. See chapter 3 for detailed descriptions.

Nodes are either stored using thestruct concept in the C programming language, or in a
compact byte-addressed array. The former has a space and time overhead during node cre-
ation/deletion. The latter gives the possibility for data fields of any number of bytes. Many
different ways of implementing the parent–child relationship of nodes are possible. We test
sibling lists, linked hash maps and child arrays. After a document has been removed, it may
leave internal nodes with its now invaliddocid. This can be fixed with a eager or lazy update
scheme.

The following implementations were tested:

55

CHAPTER 5. RESULTS

• compact node, sibling lists, eager update (MDST comp.sibl.e)

• compact node, sibling lists, lazy update (MDST comp.sibl.l)

• compact node, linked hash map, eager update (MDST comp.lhm.e)

• compact node, linked hash map, lazy update (MDST comp.lhm.l)

• large/small compact node, linked hash map, lazy update (MDST comp.lhm.s)

• compact node, child array, eager update (MDST comp.arr.e)

• compact node, child array, lazy update (MDST comp.arr.l)

Originally, struct nodes were included in some of the tests, but they performed worse than
the compact nodes in all manners. Inclusion, removal and query time was higher, and they used
more memory. They are slower because of worse memory locality and space allocation costs.
They are excluded from the test plots to make the differences between the rest of the models
clearer.

5.3.1 General test on zipf data

The first test is a general test on document inclusions, removals and queries. The parameters
from the column “general” in figure 5.1 are used. You see the results in figure 5.2. Requests of
different types are given in a random order, and averages, minimums and maximums are given
for each time interval in the graphs. Since there are more inclusions than removals, the amount
of data increases over time. Only one hit is reported for each query, to make sure the cost is
equal for all queries. A test of hit reporting is included in section 5.3.4.

In general, inclusion time increases over time. For all methods, the cost of memory reallocation
increases as the size of the data increases. For the sibling lists and the child arrays, the inclu-
sion time also increases because the out-degree of the nodes increases as the amount of data
increases, and there is aO(σ) factor in finding the child of a node. For the linked hash map, the
inclusion time varies more. This is probably because of the cost of reallocating space for the
child map. When a hash map is resized, all elements must be re-entered.

On document inclusion, child arrays (MDST *.arr.*) are faster than sibling lists (MDST *.sibl.*),
which again are faster than the linked hash maps (MDST *.lhm.*), even though the former two
have a linear dependency on the size of the alphabet. This is due to the greater overhead in
maintaining the linked hash map. (See section 5.3.3 for a test of varying alphabet sizes.) Using
small nodes (MDST comp.lhm.s) gives a small performance penalty on inclusion, but almost
no space advantage. This is because most of the space is used for the parent-child map, which
is very memory inefficient on the used 64-bit architecture.

Lazy update (MDST *.*.l) gives much faster document removal than eager update (MDST
..e). This is because in the latter, we do a bottom up traversal of the entire tree after removing

56

CHAPTER 5. RESULTS

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 2000 4000 6000 8000 10000

se
cs

Request number

MDST comp.sibl.e
MDST comp.sibl.l

MDST comp.lhm.e

MDST comp.lhm.l
MDST comp.lhm.s
MDST comp.arr.e

MDST comp.arr.l

(a) Average inclusion time.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 2000 4000 6000 8000 10000

se
cs

Request number

MDST comp.sibl.e
MDST comp.sibl.l

MDST comp.lhm.e

MDST comp.lhm.l
MDST comp.lhm.s
MDST comp.arr.e

MDST comp.arr.l

(b) Average removal time.

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000

us

Request number

MDST comp.sibl.e
MDST comp.sibl.l

MDST comp.lhm.e

MDST comp.lhm.l
MDST comp.lhm.s
MDST comp.arr.e

MDST comp.arr.l

(c) Average query time.

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000

M
B

Request number

MDST comp.sibl.e
MDST comp.sibl.l

MDST comp.lhm.e

MDST comp.lhm.l
MDST comp.lhm.s
MDST comp.arr.e

MDST comp.arr.l

(d) Memory usage.

Figure 5.2: Using zipf data. Values sampled during run.

the superfluous nodes. Lazy update only gives a minor performance penalty on inclusion and
queries.

Removal time increases the most over time for the eager update. Even though it should be linear
on the size of the document, there will on average be more internal nodes above the leaf nodes
of a document the bigger the tree is. As the tree fills up, the number of internal nodes above the
leaves of a document grows. When removing a document, there is also a downwards traversal,
and this becomes more expensive with sibling lists and child arrays as the tree fills up.

On queries, child arrays are fastest, linked hash maps second, and sibling lists slowest. Child ar-
rays have the same asymptotic performance as sibling lists, but have much better cache locality.
The linked hash map has optimal expected theoretical performance, but worse memory locality
and more expensive operations make them slower than the child arrays. In this test, only one
hit was reported. You will see in a test in section 5.3.4 that the sibling lists are more favourable
than linked hash maps when many hits are reported.

From this test, we conclude that the implementation using compact nodes, child arrays and lazy
update gives the best overall performance. In later tests we drop the small node implementation,

57

CHAPTER 5. RESULTS

as it did not give much space gain.

5.3.2 Varying text randomness

The data in the former test was generated from words in a zipf distribution. Below follows a
test of how the models react on varying randomness in the data. The parameters are given in
the column “random” in figure 5.1. A portion of the words in the documents are taken from a
zipf distribution, while some are random words.

Figure 5.3(a) shows that the sibling lists perform worse on document inclusion with more ran-
dom data. This is probably due to the cost of child traversal. On random data the average
out-degree of nodes at the top of the tree is higher. The cost of child traversal with child arrays
depends less on the number of children in practise, because of caching effects.

We see that the difference between lazy and eager update on document inclusion is visible for
the sibling lists, but not for the child arrays. This is because of a small implementation detail.
With the sibling lists, the first character on child edges are not stored in the children themselves.
To extract this character, the document ID of the child must be checked, and if it refers to an
undeleted document, a new document ID and head position must be inherited from a node in
the subtree below. In the child arrays, the first character on the outgoing edges are stored within
the array. It is not certain why inclusion time differs for eager and lazy update with the linked
hash map. It might have to do with with more expensive child access on updates.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 0.2 0.4 0.6 0.8 1

se
cs

Randomness

MDST comp.sibl.e
MDST comp.sibl.l

MDST comp.lhm.e
MDST comp.lhm.l

MDST comp.arr.e
MDST comp.arr.l

(a) Average inclusion time

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 0.2 0.4 0.6 0.8 1

se
cs

Randomness

MDST comp.sibl.e
MDST comp.sibl.l

MDST comp.lhm.e
MDST comp.lhm.l
MDST comp.arr.e
MDST comp.arr.l

(b) Average removal time

Figure 5.3: Varying text randomness.

In figure 5.4 you see some statistics for the suffix trees in the given run: The average out degree
of internal nodes, the average depth of internal nodes measured in symbols, the average depth
of internal nodes measured in nodes, and the fill in the tree. The latter is a percentage of the
theoretical maximum number of internal nodes. You see that as the randomness increases, the
average depth in chars approaches the average depth in nodes, which is expected.

The out degree of nodes is also measured separately in levels of the tree. The level is the distance

58

CHAPTER 5. RESULTS

from the root measured in nodes. The reason there are more nodes on level 1 than on level 0 is
the split document end markers, explained in section 3.6.3.2. An end marker always starts with
a unique character, binary zero, but might contain any binary character. You see that the tree is
almost always full on level 0, 1 and 2. On level 3, the out degree increases with the randomness.
On level 4, the opposite happens. The average depth decreases, and the splits move up in the
tree.

The internal fill ratio in figure 5.4(a) is inversely proportional to the average out degree in figure
5.4(b). It seems to be almost constant. Characters in a random string play the role of words
in strings from a dictionary. The reason the internal fill is not entirely constant, but seem to
decrease slightly with increasing randomness, is that the words in the zipf distribution were
created with a first order Markov model. Which character follows another is not random. This
means nodes will have fewer children, and that more nodes are needed to make theN paths to
leaf nodes.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.2 0.4 0.6 0.8 1

Y
-a

xi
s

Randomness

Avg. depth in nodes Internal fill ratio. Avg. depth in chars

(a) Tree fill and average depths.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1

Y
-a

xi
s

Randomness

Avg. out degree
on level 0
on level 1

on level 2
on level 3
on level 4

on level 5

(b) Out degrees.

Figure 5.4: Statistics for varying text randomness.

When running a test with the 32nd Fibonacci string, which is about3.4 · 106 characters long,
the internal fill was measured to exactly 1. The average depth in characters was9.3 · 105, and
the average depth in nodes30.1.

5.3.3 Varying alphabet size

This test measures how the alphabet size impacts the performance of the MDST variants. The
parameters for the test are given in the column “alphasize” in figure 5.1. Random data is used.
In theory, the sibling list model should have a linear time dependency on the alphabet size, and
the linked hash map model should be independent of it.

As you can see in figures 5.5(a) and 5.5(b), the dependency of the alphabet size is as expected
for the sibling lists and the linked hash map. The child arrays seem independent of the alphabet
size. This is due to cache effects.

59

CHAPTER 5. RESULTS

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 20 40 60 80 100 120 140

se
cs

Alphabet size

MDST comp.sibl.e
MDST comp.sibl.l

MDST comp.lhm.e
MDST comp.lhm.l

MDST comp.arr.e
MDST comp.arr.l

(a) Average inclusion time.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

us

Alphabet size

MDST comp.sibl.e
MDST comp.sibl.l

MDST comp.lhm.e
MDST comp.lhm.l

MDST comp.arr.e
MDST comp.arr.l

(b) Average query time.

Figure 5.5: Varying alphabet size, random data.

Remember that this is an artificial test. Since we have random data, the average LCP is very
short, and the nodes at the top of the tree have a very high out-degree. For all models, the query
cost goes down fromσ = 4 to σ = 20. This is because with a smaller alphabet, the average LCP
is higher, and the number of nodes you must traverse to find a string is higher. Traversing many
nodes is more expensive in practise than traversing long edges. This test runs long queries,
reporting only one hit. If more hits were reported, sibling lists would have performed better.

5.3.4 Varying number of hits

Below in figure 5.6 follows a test for reporting a variable number of hits. As it should be, the
cost per hit reported seem to be linear above a certain number, for all models tested. The child
arrays and the sibling lists are much simpler, and the traversal of the children of a node requires
fewer operations. Hence they are faster than the linked hash maps.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000

us

Max hits reported

MDST comp.sibl.e
MDST comp.sibl.l

MDST comp.lhm.e
MDST comp.lhm.l

MDST comp.arr.e
MDST comp.arr.l

Figure 5.6: Average query time, varying number of hits.

60

CHAPTER 5. RESULTS

5.3.5 Real world data

Below in figures 5.7, 5.8 and 5.9, follow the results for a test on some documents from the
Canterbury Corpus [BP]:E.coli (4.5 MB), bible.txt (3.9MB) andworld192.txt (2.4
MB). We test the inclusion of a single document, and running 1000 queries of length 10 to 30,
reporting all hits. For reference, Stefan Kurtz’ suffix tree implementation from the MUMmer
software package [MUM] is included. It is described in [Kur99]. The BPR suffix array con-
struction algorithm [SS05] is also included, where a simple binary search with no additional
data structures is used.

E.coli bible.txt world192.txt
MDST struct.sibl.e 5.916 5.347 3.125
MDST struct.sibl.l 5.299 4.581 2.548
MDST comp.sibl.e 5.886 5.055 2.894
MDST comp.sibl.l 6.532 5.631 3.295
MDST comp.lhm.e 13.515 9.109 5.470
MDST comp.lhm.l 12.826 9.127 5.516
MDST comp.lhm.s 34.473 17.284 9.959
MDST comp.arr.e 3.958 2.560 1.345
MDST comp.arr.l 3.927 2.570 1.377
Kurtz 3.897 3.288 1.743
BPR hier m1 k2 d0 s0 1.330 1.352 0.748

Figure 5.7: Document inclusion time in seconds

The sibling list variants have roughly the same performance on document inclusion. Notice
that the linked hash map variants perform worst onE.coli, which has a small alphabet of size
4. We see that Kurtz’ implementation is about 50% faster than our sibling list implementation.
There are probably two main reasons for this: The code is more optimised and it does less. Our
child array implementation is fastest the trees, but BPR’s suffix array sorting is faster.

E.coli bible.txt world192.txt
MDST struct.sibl.e 5.8 9.5 14.5
MDST struct.sibl.l 5.5 8.7 13.6
MDST comp.sibl.e 5.1 8.3 13.2
MDST comp.sibl.l 5.4 9.1 14.7
MDST comp.lhm.e 7.2 12.4 23.2
MDST comp.lhm.l 7.9 12.9 23.8
MDST comp.lhm.s 8.5 14.0 28.2
MDST comp.arr.e 4.1 5.6 8.9
MDST comp.arr.l 4.2 6.0 10.0
Kurtz 5.0 12.2 15.4
BPR hier m1 k2 d0 s0 7.4 7.3 7.7

Figure 5.8: Average query time inµ-seconds

On queries, the linked hash map implementation is clearly slower, as child traversal when re-

61

CHAPTER 5. RESULTS

porting hits is more expensive. On texts with bigger alphabets and/or more random text, the
linked hash map performs good when reporting only one hit, as shown in figure 5.5(b) earlier.

In this test our sibling list code performs slightly better than Kurtz’ on queries inbible.txt
andworld192.txt. Our code might be more optimised for enlisting many hits. The child
arrays are again the fastest of the trees. The suffix array performs similarly on this test. It is
relatively slow on finding a single hit, but fast on reporting many.

E.coli bible.txt world192.txt
MDST struct.sibl.e 475 393 239
MDST struct.sibl.l 359 297 180
MDST comp.sibl.e 130 103 62
MDST comp.sibl.l 114 90 55
MDST comp.lhm.e 462 346 229
MDST comp.lhm.l 445 333 221
MDST comp.lhm.s 434 310 206
MDST comp.arr.e 141 112 68
MDST comp.arr.l 124 99 61
Kurtz 73 51 30
BPR hier m1 k2 d0 s0 28 24 15

Figure 5.9: Memory usage in megabytes

The lazy sibling list implementation with compact nodes is the most space efficient (figure 5.9),
but it uses more space than Kurtz’ implementation. This is because it does not use small nodes,
and has more fields in the nodes. The child arrays does not use much more memory than the
sibling lists. The suffix array is by far the most memory efficient.

5.3.6 MDST conclusion

The compact node tree with child arrays and lazy update seem to be a clear winner among the
MDST models. It it just as fast or faster on all tests, and does not use much more memory than
the most space effective model. It will be used in the comparisons with the static indexes.

5.4 Tuning of hierarchic models using BPR

Using static indexes to solve dynamic indexing problems was explored in section 2.4 and chap-
ter 4.

Since we have found no freely available implementations of substring indexes for dynamic doc-
ument sets, the MDST will be compared with a hierarchy of static indexes, which are partially
rebuilt on document inclusion. The Bucket-Pointer Refinement method (BPR) of [SS05] will

62

CHAPTER 5. RESULTS

be used, as it is currently the fastest known suffix array construction algorithm. It is freely avail-
able fromhttp://bibiserv.techfak.uni-bielefeld.de/bpr/, and is released under the
GNU General Public Licence.

In the following tests, a configuration of a hierarchic index index using BPR is listed as “BPR
hier m=(0|1) k=(2|10) d=(0|1) s=(0|1|2)”. The parameterm tells which hierarchic model to use,
k is the index size factor,d tells whether or not to use the document ID map, ands is the length
of prefixes in the start index. All of these were explained in chapter 4.

5.4.1 Testing method 1 and method 2

For k = 2, method 1 and 2 are equal. Choosing which method you want to use, and whichk,
depends on whether you want to prioritise insertions or queries. For fast document insertions,
you use method 1 with a highk, and for fast queries, you use method 2 with highk.

Average insertion times for the test “general” from figure 5.1 are shown in figure 5.10. The left
plot gives the average of each sampled period, while the right shows the average for the entire
run. The high averages come in periods where one of the bigger indexes in the hierarchies must
be rebuilt. As in the theoretical case, method 1 and 2 are identical fork = 2.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 2000 4000 6000 8000 10000

se
cs

Request number

BPR hier m2 k10 d0 s0
BPR hier m2 k2 d0 s0

BPR hier m1 k2 d0 s0
BPR hier m1 k10 d0 s0

(a) Average for sampled period.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 2000 4000 6000 8000 10000

se
cs

Request number

BPR hier m2 k10 d0 s0
BPR hier m2 k2 d0 s0

BPR hier m1 k2 d0 s0
BPR hier m1 k10 d0 s0

(b) Average for entire run.

Figure 5.10: Average document inclusion time.

The query cost when reporting one hit is given in figure 5.11. As expected, method 1 with
k = 10 is the most expensive. Notice how the drops in query cost relate to the peaks in inclusion
cost seen in figure 5.10(a). A large index is built, and all smaller indexes are merged into this.
The query cost for one big index is much less than for many small.

Figure 5.12 shows the memory usage for the given run. Notice that the graph has some drops,
even though more data is added to the index than removed. When a document is requested to
be removed, it is left in its index. It is put in a blacklist, and the space will not be freed before
the containing index is merged into a bigger index.

63

CHAPTER 5. RESULTS

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000

us

Request number

BPR hier m2 k10 d0 s0
BPR hier m2 k2 d0 s0

BPR hier m1 k2 d0 s0
BPR hier m1 k10 d0 s0

(a) Average for sampled period.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000

us

Request number

BPR hier m2 k10 d0 s0
BPR hier m2 k2 d0 s0

BPR hier m1 k2 d0 s0
BPR hier m1 k10 d0 s0

(b) Average for entire run.

Figure 5.11: Average query time.

 0

 10

 20

 30

 40

 50

 60

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

M
B

Bytes indexed

BPR hier m2 k10 d0 s0
BPR hier m2 k2 d0 s0

BPR hier m1 k2 d0 s0
BPR hier m1 k10 d0 s0

Figure 5.12: Maximum memory usage for sampled period, over total size of data indexed.

5.4.2 Testing docID map

How to map global string positions into document IDs and local position for a suffix array of
concatenated strings was described in section 4.5. You either binary search for the document,
or find it in a partial lookup array, mapping global position to document IDs. The local position
is found in constant time by subtracting the starting position of the document. The following
test varies the sizes of the documents, keeping the total data size fixed. When using the map,
the price for finding the right document is theoretically constant, but when using binary search,
it grows logarithmically on the number of documents, which is the inverse of the document size
in this test.

Average query times with and without the document ID map are given in figure 5.13(a). The
parameters for the test is given in the column “numdocs” in figure 5.1. You see that the binary
search is cheaper than the direct lookup for a small number of documents. This is because of
caching effects. The starting positions for all documents fit into a small number of cache lines,
as they are stored subsequently. The entries in the document ID map are spread over a large
array. As a query hits one portion of it, another portion might be flushed from the cache.

64

CHAPTER 5. RESULTS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 16 64 256 1024 4096 16384

us

Number of documents

BPR hier m1 k2 d0 s0 BPR hier m1 k2 d1 s0

(a) Average query time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 4 16 64 256 1024 4096 16384

se
cs

Number of documents

BPR hier m1 k2 d0 s0 BPR hier m1 k2 d1 s0

(b) Total time for all document inclusions.

Figure 5.13: Increasing number of documents, constant data size.

This test runs very short queries with many hits, which means the listing of hits dominates over
them andlog n terms. For other types of queries, the effect of the document ID map would be
less significant. As you see in figure 5.13(b), there is no noticeable cost for building it.

The conclusion of this test is that the document ID map should be used as long as the number
of documents is not very small.

5.4.3 Testing binary search start index

Using a start index for the left and right border in the binary search for queries was described
in section 4.6. The cost and effect of this index is dependant on the data size, and the length of
the prefixes indexed,s. The time cost of building the index is linear on the size of the data and
has an additionalΘ(σs) space and time cost.

In figure 5.14 you see the query speedup of using the start index. Parameters for this test are
given in the column “datasize” in figure 5.1 Two plots are shown, one for small data sizes,
and one for larger. Remember from section 4.6 that the savings on using the start index is
independent of the data size in theory. With a givens, you saves log2 σ steps in the binary search
on average for random data. In the test, the difference in query cost seems to be approximately
constant for the differents on varying data size, as we go above a certain level.

Remember that this is a very artificial test, only one hit is reported per query. With many hits,
the binary search would account for less of the time cost, and the advantage of the start index
would be even smaller. The speedup is also related to the alphabet distribution. It is highest
with a large alphabet with a uniform distribution.

The build cost for the varyings is given in figure 5.15. The cost of building a start index seems
to be around 5% fors = 1, and 15% fors = 2.

65

CHAPTER 5. RESULTS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1e+03 2e+03 4e+03 8e+03 2e+04 3e+04 7e+04

us

Data size

BPR hier m1 k2 d1 s0 BPR hier m1 k2 d1 s1 BPR hier m1 k2 d1 s2

(a) On a small scale.

 0

 2000

 4000

 6000

 8000

 10000

 12000

1e+03 4e+03 2e+04 7e+04 3e+05 1e+06 4e+06 2e+07 7e+07

us

Data size

BPR hier m1 k2 d1 s0 BPR hier m1 k2 d1 s1 BPR hier m1 k2 d1 s2

(b) On a larger scale.

Figure 5.14: Average query time. Varying data size.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

1e+03 2e+03 4e+03 8e+03 2e+04 3e+04 7e+04

se
cs

Data size

BPR hier m1 k2 d1 s0 BPR hier m1 k2 d1 s1 BPR hier m1 k2 d1 s2

(a) On a small scale.

 0

 10

 20

 30

 40

 50

 60

1e+03 4e+03 2e+04 7e+04 3e+05 1e+06 4e+06 2e+07 7e+07

se
cs

Data size

BPR hier m1 k2 d1 s0 BPR hier m1 k2 d1 s1 BPR hier m1 k2 d1 s2

(b) On a larger scale.

Figure 5.15: Inclusion time. Varying data size.

Whether or not using a start index is profitable, depends on the size of the data, the text distri-
bution, and whether inclusions or queries are prioritised. As you see, it has little effect when
the data is large. The search code is written for random access memory. When considering a
non-uniform memory access model, possibly with magnetic disk, things might be different.

5.4.4 Hierarchic index conclusion

Using method 1 or 2 withk = 2 seems to be a good choice in the used setup, as it both has
rather fast queries (figure 5.10) and document inclusion (figure 5.11). Using a document ID map
is advantageous when there are more than just a few documents, while the start index does not
give much effect. The variant marked asBPR hier m1 s2 d1 s0 will be used in the following
tests.

66

CHAPTER 5. RESULTS

5.5 Comparison of static and dynamic indexes

This section compares the Multi-document Dynamic Suffix Tree with hierarchies of suffix-
arrays created with the BPR algorithm.

5.5.1 Varying document size

The major difference between the MDST and the hierarchic suffix arrays, is that the MDST has
construction timeΘ(N), whereN is the total size of the data indexed, while hierarchic method
1 needsO(k logk N)PS(N) time, and method 2 needsO(logk N)PS(N) time. The upper bound
for PS(N) for BPR in [SS05] isO(N2), but experiments in [SS05] show it is just as fast as any
known Θ(N) method, even for artificial data. In practise, its running time can be viewed as
linear. As seen in figure 5.7, it is about 4 times faster than the MDST.

The following tests add a constant amount of data to the index, varying the document size. The
test parameters can be found in the column “docsize” in figure 5.1. Both a test of 2MB, and
a test of 40MB are given in figure 5.16, where the total time spent on document inclusions is
shown.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1e+03 4e+03 2e+04 7e+04 3e+05 1e+06 4e+06

se
cs

Document size

MDST comp.arr.l BPR hier m1 k2 d1 s0

(a) 2MB.

 0

 50

 100

 150

 200

 250

 300

 350

1e+03 4e+03 2e+04 7e+04 3e+05 1e+06 4e+06

se
cs

Document size

MDST comp.arr.l BPR hier m1 k2 d1 s0

(b) 40MB.

Figure 5.16: Total inclusion with varying document size, constant data size.

The MDST is faster in this test. For the inclusion of a total of 2MB, the hierarchic indexes are
faster from file size 512KB and up, where the number of files is from 4 to 1. This makes sense,
as BPR is 2-4 times faster than the MDST on a single document. When the total data amount is
increased to 40MB, the number of files at 2MB is 20, and the MDST is faster.

For the hierarchic indexes, if the document size is bigger thanki, you will not have to rebuild
indexes of sizesk0 to ki. If there is only one document, there is no overhead with the hierarchic
indexes. For a given total amount of data, the hierarchic indexes clearly prefer large documents.

You also see a slight decrease in the total cost for the MDST when there are larger but fewer

67

CHAPTER 5. RESULTS

documents. This has to do with document management.

The figures 5.17(a) and 5.17(b) give the minimum and maximum time for document inclusion.
There might not be many, if any, applications for substring indexes where the time deviation is
important. In a real application, the big indexes would be rebuilt in a separate thread. Queries
would be given to the old indexes and a set of small fresh indexes, until the new big indexes are
finished.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1e+03 4e+03 2e+04 7e+04 3e+05 1e+06 4e+06

se
cs

Document size

MDST comp.arr.l BPR hier m1 k2 d1 s0

(a) Minimum time.

 0

 5

 10

 15

 20

 25

1e+03 4e+03 2e+04 7e+04 3e+05 1e+06 4e+06

se
cs

Document size

MDST comp.arr.l BPR hier m1 k2 d1 s0

(b) Maximum time.

Figure 5.17: Minimum and maximum inclusion time, 40MB total data.

Memory usage for the methods is shown in figure 5.18. As can be seen, both methods use an
amount approximately linear on the total data size, and independent of the document sizes. The
space needed for document management is insignificant. The MDST uses about three times the
memory of the hierarchic suffix arrays.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1024 4096 16384 65536 262144 1.04858e+06 4.1943e+06

M
B

Document size

MDST comp.arr.l BPR hier m1 k2 d1 s0

Figure 5.18: Memory usage

Queries was not tested here, because many parameters influence which method is better. Various
tests for queries are given later in this chapter.

Most of the rest of the tests are run on 4KB files. Originally this was chosen because this was
the point at which the MDST with sibling lists had the same performance as the hierarchic
indexes in this test. The child arrays were implemented last, and turned out to be much more

68

CHAPTER 5. RESULTS

effective. But it would not make sense to change the rest of the test to use 10MB files. 4KB
is representative for many applications. On the web, most documents are between 1KB and
10KB, when HTML tags are removed. Therefore, the 4KB tests are kept as they were.

5.5.2 Varying freshness requirement

In most real-life cases, it is not necessary to index a document the moment it is received. The
inclusion may be postponed for a given time, or the index is updated after some best effort
scheme. Since our tests are not run in a “real-time” environment with incoming documents,
the freshness requirement is given as "how many documents can we postpone adding before we
have to add them".

Figure 5.19 shows average document inclusion times for a varying freshness requirement. Pa-
rameters for the test are given in the column “freshness” in figure 5.1. When you compare with
the test of variable file sizes in figure 5.16, you see that more slack on the freshness requirement
is the same as indexing bigger files given the same amount of data. It is not certain why there is
a peak in the plot for the hierarchic indexes.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 1 2 4 8 16 32 64 128 256 512

se
cs

Freshness requirement

MDST comp.arr.l BPR hier m1 k2 d1 s0

Figure 5.19: Average inclusion time for
varying freshness requirements

This test concludes that hierarchic indexes should be avoided if you have an absolute freshness
requirement. Note that this is for the given setup of substring indexes. The results might be
different for another update model of the hierarchic indexes.

5.5.3 Varying number of hits

The cost of reporting a large number of hits has the same complexity for a suffix tree and a
suffix array when thelog n term does not dominate. Reportingocc occurrences costsΘ(occ)
time in addition to the cost of locating one hit. But in practise the cost is not the same. In a
suffix tree, you must traverse the entire subtree below a given point, which has bad memory

69

CHAPTER 5. RESULTS

locality. In a suffix array, you just read a range of consecutive memory locations, which gives a
good memory locality and cache utilisation.

Interesting behaviour was seen when experimenting with this test. In the first setup, the hier-
archic indexes performed unexpectedly bad (figure 5.20(a)). It turned out this was because the
were many requests for document deletion given to the indexes. Parameters are given in figure
5.1. A large portion of the documents reside in the largest index in the hierarchy, which is not
rebuilt before all indexes are full. So if there are a lot of deletions, there will be a lot of false
hits which have to be traversed before the requested number of hits are found. Because of this,
a similar test without document removals was run. The results can be seen in figure 5.20(b).
The averages given in both figures are measured for the last 10% of the requests. As you can
see, the hierarchy of suffix arrays is much faster when there are no deletions. Hit reporting is
also faster for the lazy MDST, as no document ID cleanup must be performed.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000

us

Max hits reported

MDST comp.arr.e BPR hier m1 k2 d1 s0

(a) With removals.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000

us

Max hits reported

MDST comp.arr.l BPR hier m1 k2 d1 s0

(b) Without removals.

Figure 5.20: Reporting a variable number of hits for a set of documents.

To speed up queries in the hierarchic indexes, one should consider rebuilding indexes when
they contain to many removed documents. This is not done in the tested implementation. More
rebuilds would give a higher maintenance cost.

5.5.4 Varying query length

In figure 5.21 follows a test measuring lookup time for varying query length, reporting 1 hit.
The query length is varied between 1 and 50. Only one hit is reported. For the hierarchic
indexes, the cost increases greatly up to a query length of 10. Queries are sampled evenly from
the data, so common words in the distribution are seen often when the queries are short. This
means the same jumps will be performed in the binary search often, meaning more accesses to
CPU cache, and less to main memory.

It is not certain why we do not see the same effect with the MDST. The plot shows that the cost
of finding the right position in the tree is low compared to the overhead of processing the query.

70

CHAPTER 5. RESULTS

The cost is almost constant. It might mean that the suffix tree has better memory locality than
the virtual tree seen in the binary search of the suffix array.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50

us

Query length

MDST comp.arr.l BPR hier m1 k2 d1 s0

Figure 5.21: Reporting one hit, varying query length.

This test might not be very relevant in practise, as searches with a single hit is not very common.

5.5.5 Increasing total data size

Below follows a test of increasing total data size. Documents of 4KB are added to the indexes.
Inclusions and queries run mixed, and average times are collected periodically, both for the
sampled period and the entire run. The parameters are taken from the column “general2” in
figure 5.1.

As can be seen in figure 5.22, the MDST is about three times faster than the hierarchic indexes
on document inclusion, and has a much lower time deviation. Figure 5.22(d) shows that the
maximum inclusion time is about 400 times the average for the hierarchic indexes, 4.8 versus
0.012 seconds. Note that this deviation could be hidden by running the rebuild of the big
indexes in separate threads. The minimum inclusion time is the same in all sampled periods for
the hierarchic indexes. It is the cost of building the smallest index. If all documents have the
same size, this happens in every second inclusion. For the MDST, the minimum and maximum
are very close to the average.

In figure 5.23 you see the average and maximum query times seen in the sampled periods. A
short query is given to the index, and all hits are returned. The two methods perform roughly
the same, and query time seems to grow linearly. There are very many hits for some of the
queries, and the time to report these clearly dominates. As many as 150000 hits were reported
at the most.

Figure 5.24(a) shows the average removal times. For the hierarchic indexes, it is very low, while
for the MDST, it is close to the average inclusion time. In the MDST, postponing the removal of
a document does not give any advantage. The cost is always linear on the size of the document.
For the hierarchic indexes, the cost of fully removing a document is dependant on the total data
size in the worst case, and blacklists are much preferred. If you just used a blacklist in the

71

CHAPTER 5. RESULTS

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 5000 10000 15000 20000 25000 30000

se
cs

Request number

MDST comp.arr.l BPR hier m1 k2 d1 s0

(a) Average for sampled period.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 5000 10000 15000 20000 25000 30000

se
cs

Request number

MDST comp.arr.l BPR hier m1 k2 d1 s0

(b) Average for entire run.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 5000 10000 15000 20000 25000 30000

se
cs

Request number

MDST comp.arr.l BPR hier m1 k2 d1 s0

(c) Min. for sampled period.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5000 10000 15000 20000 25000 30000

se
cs

Request number

MDST comp.arr.l BPR hier m1 k2 d1 s0

(d) Max. for sampled period.

Figure 5.22: Inclusion time. Increasing data size.

MDST, and left data there, the tree would get a higher fill, and document inclusion would be
slightly slower. Hit reporting would also be more expensive.

Figure 5.24(b), shows the average for all operations: Inclusions, removals and queries. The
increase in query time as the data grows makes up for most of the increase in the total average.
We see that the MDST is still slightly faster than the hierarchic indexes.

Figure 5.25 shows the memory usage for this test. The values would be lower for the hierarchic
indexes if there were no document deletions. Remember from figure 5.9 that they use about one
fourth of the memory of the MDST with child arrays.

5.6 Critique of the tests

The tests run in the experiments in this report are artificial. The results might have more the-
oretical than practical validity, but the give many clues as to how real-world systems could be

72

CHAPTER 5. RESULTS

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5000 10000 15000 20000 25000 30000

us

Request number

MDST comp.arr.l BPR hier m1 k2 d1 s0

(a) Average for sampled period.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5000 10000 15000 20000 25000 30000

us

Request number

MDST comp.arr.l BPR hier m1 k2 d1 s0

(b) Maximum for sampled period.

Figure 5.23: Query time. Increasing data size.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 5000 10000 15000 20000 25000 30000

se
cs

Request number

MDST comp.arr.l BPR hier m1 k2 d1 s0

(a) Removal time.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 5000 10000 15000 20000 25000 30000

se
cs

Request number

MDST comp.arr.l BPR hier m1 k2 d1 s0

(b) Average for all operations.

Figure 5.24: Average for sampled period. Increasing data size.

made, and especially how to set up experiments for real systems.

The test environment is a bit different from most real situations. The requests are given sequen-
tially to the system, and are performed one by one. In most systems indexing large amounts of
data, inclusions and queries are run in separate threads. This is essential for hierarchic indexes.
The system cannot wait while the biggest indexes are rebuilt. Therefore, the big indexes are
rebuilt as a new copy, while the old indexes, plus the small fresh indexes are queried. When the
build is done, the old index is replaced with the new. When this is run in separate threads, the
long latencies are hidden.

In most systems, unique documents found are returned from queries, not all pairs of documents
and local positions. This adds some complexity, but it would be the same in both the tested
MDST and in the hierarchies of suffix array. For inverted file word indexes, reporting only
documents is a cheaper problem.

73

CHAPTER 5. RESULTS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5000 10000 15000 20000 25000 30000

M
B

Request number

MDST comp.arr.l BPR hier m1 k2 d1 s0

Figure 5.25: Memory usage.

Keeping data and indexes in RAM is also not possible in most applications. The amount of
data is usually far too large. It would be very interesting to run the same experiment on similar
structures on disk.

There are two main reasons the test environment and tools were designed as they were. Firstly,
completing the project had to be feasible within the given time frame. Secondly, this artifi-
cial environment gives very good insight in the behaviour of the data structures in different
situations, as the test parameters are adjusted very easily.

74

Chapter 6

Conclusion

The child array model for the MDST was implemented during the last weeks of writing this
report, and it changed many of the conclusions drawn. It was conceived and implemented
because effects of memory caching was seen in many of the tests. Especially notable was the
difference between the binary search and the direct lookup in figure 5.13(a). The author has not
seen child arrays used in articles describing suffix trees before, probably because a doubling
factor of 2 would make them space inefficient. But a doubling factor of1.1 worked very well
here.

Before the child arrays were implemented, the lazy update sibling lists were compared with
the hierarchic index. The latter were faster for documents larger than 4KB in the test shown
in figure 5.16. It was concluded that the MDST was only better for small documents. It is of
course possible that the hierarchic indexes could see a similar speedup, and that the conclusions
would change again.

6.1 Use cases

If the tests in this report are representative, we can draw some conclusions about in what cases
you should choose what type of index. If the size of your document set is large, but there is
little change, then the hierarchies of suffix arrays are the better choice. They use one third of
the memory, and report hits faster when there are few document removals.

If you have small documents, many updates, and an absolute fresness requirement, then the
MDST is clearly better. The hierarchy spends a lot of time rebuilding many small indexes.
Note that this is for the compared hierarchic index using method 1 withk = 2. For a higherk
with method 1, inclusion costs would be much lower, at the cost of slower queries.

The MDST should also be chosen if queries need to be fast, and you have a rapidly changing
document set. In our setup this would mean that the ratio of deletions to inclusions is high. The
given implementation of hierarchic indexes did not do very well on queries if there had been a

75

CHAPTER 6. CONCLUSION

lot of deletions in the document set. Note that this could be different in another implementation.

All this is under the assumption that the environment is comparable to our artificial testing
environment.

6.2 Further work

The most important step after these experiments would be to run a similar experiment on disk
based substring indexes. This would not be an easy step. There is currently a lot of research
being done on disk resident suffix structures, and much work would have to be done to become
familiar with this. Both suffix trees and suffix arrays work very badly on disk in their basic form,
as they have bad spatial locality. Disk based indexes also makes the implementation much more
complex, as data must be stored and accessed in a clever order, and multi-threading must be
used to get good performance. Creating an efficient disk based substring index for dynamic
document sets would be a very important achievement, both scientifically and commercially.

A simpler thing that could have been done is to set up experiments more similar to a real life
scenario, where queries and new documents come in through different pipelines, and indexes are
built in the background. This would hide the great time deviation for document inclusions with
the hierarchic indexes. If you had such a setup, you could also tune the factork in your hierarchy
implementation to minimize the load on your system, based on the amount of inclusions versus
the amount of queries.

76

Bibliography

[BP] Tim Bell and Matt Powell. The canterbury corpus.

[FG04] Hans Christian Falkenberg and Nils Grimsmo. Introduction to string searching and
comparison of suffix structures and inverted files. Technical report, Norwegian
University of Science and Technology, 2004.

[GBYS92] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New indices for text:
Pat trees and pat arrays. pages 66–82, 1992.

[KA03] Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix ar-
rays.Combinatorial Pattern Matching, 14th Annual Symposium, CPM 2003, More-
lia, Michocán, Mexico, June 25-27, 2003, Proceedings, 2003.

[KS03] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction. In
Proc. 13th International Conference on Automata, Languages and Programming.
Springer, 2003.

[KSPP03] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time
construction of suffix arrays. InCombinatorial Pattern Matching: 14th Annual
Symposium, pages 186–199. Springer-Verlag Heidelberg, 2003.

[Kur99] Stefan Kurtz. Reducing the space requirement of suffix trees.Softw. Pract. Exper.,
29(13):1149–1171, 1999.

[McC76] Edward M. McCreight. A space-economical suffix tree construction algorithm.J.
ACM, 23(2):262–272, 1976.

[MM91] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string
searches. 1991.

[Mor68] Donald R. Morrison. Patricia - practical algorithm to retrieve information coded in
alphanumeric.Journal of the ACM, 15(4):514–534, 1968.

[MUM] The Institute for Genomic Research MUMmer. Webpage.
http://www.tigr.org/software/mummer/.

[OvL80] Mark H. Overmars and Jan van Leeuwen. Some principles for dynamizing de-
composable searching problems. Technical Report RUU-CS-80-1, Rijksuniversitet
Utrecht, 1980.

77

BIBLIOGRAPHY

[SS05] Klaus-Bernd Schürmann and Jens Stoye. An incomplex algorithm for fast suffix
array construction. InProceedings of ALENEX, 2005.

[Wei73] P. Weiner. Linear pattern macthing algorithms. InIEEE 14th Annual Symposing on
Switching and Automata Theory, pages 1–11, 1973.

78

