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Abstract 
 
With an ever-growing competition among software vendors in supplying 
customers with tailored, high-quality systems, an emphasis is put on creating 
products that are well-tested and reliable. During the last decade and a half 
numerous articles have been published that deal with code coverage and its 
effect, whether existent or not, on reliability. The last few years have also 
witnessed an increasing number of software tools for automating the data 
collection and presentation of code coverage information for applications 
being tested. 
 
In this report we aim to present available and frequently used measures of 
code coverage, the practical applications and typical misconceptions of code 
coverage and its role in software development nowadays. Then we take a look 
at the notion of reliability in computer systems and which elements that 
constitute a software reliability model. With the basics of code coverage and 
reliability estimation in place, we try to assess the status of the relationship 
between code coverage and reliability, highlight the arguments for and against 
its existence and briefly survey a few proposed models for connecting code 
coverage to reliability. Finally, we examine an open-source tool for automated 
code coverage analysis, focusing on its implementation of the coverage 
measures it supports, before assessing the feasibility of integrating a proposed 
approach for reliability estimation into this software utility. 
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”There was no ʺbeforeʺ the beginning of our universe,  
because once upon a time there was no time.” 

John D. Barrow  
 
CHAPTER 1: 

Introduction 
CHAPTER 1: Introduction 

This introduction section will briefly state the main motivation and objectives 
related to the project we have been assigned: ”Code Coverage and Software 
Reliability”. Further we explain the project context, try to define the most 
important problems with respect to code coverage and reliability estimation, 
and highlight the direction that we have chosen within the theme. Finally we 
put our goals for the project into concrete terms and give a presentation of the 
report outline and what each chapter will contain. 
 

1.1 Motivation 
 

reating high quality products is a necessity for modern day software 
vendors, and thus finding a testing strategy that will contribute to 
highly reliable software is a challenge for any company in the software 

industry. Code coverage is known to be an indirect indicator of product 
quality, determining to what extent the tests cover the program code to be 
evaluated. As opposed to measures such as test effort, code coverage directly 
measures how thoroughly a system has been exercised. Code coverage as a 
testing strategy has proven to be a feasible approach when testing applications 
that are logic-intensive and hence consist of multiple decision points. 
 
As is the case with most fields of research, code coverage and its relationship 
to software reliability still has room for further exploration. There are plenty 
of publications available on code coverage as a testing strategy, and also on 
what implications code coverage has on the actual reliability of the end 
product. The different articles and their corresponding approaches and results 
do not only suggest that a definite conclusion to the matter is far from 
imminent, but also that the variation in theoretical reasoning and results 
obtained contributes to a blurry overall picture. With this in mind, we feel 
there is a definite need for creating an overview of existing approaches and 
theories. 
 
In spite of several articles and empirical investigations on the subject, the 
seemingly never-ending hunt for perfect reliability estimates goes on. Several 
reliability models are referred to in software literature and we aim at getting to 
know a few of them and even take an in-depth dive into what is considered to 
be an extension to well-known reliability models such as Musa-Okumoto and 
Goel-Okumoto. This extension aims at pre-processing data to be used by 
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reliability models and thus improve the generated reliability estimates. 
Whereas there exist numerous software tools that can automatically track 
coverage measures as testing progresses, there are few, if any, tools that 
implement the existing reliability models to estimate end product reliability 
based on code coverage measures. 
 
On a personal note, our motivation for choosing this topic comes as a result of 
recent projects that we have participated in, where we dealt with testing and 
quality assurance issues in a web context. 
 

1.2 Project Context 
 

his project was assigned to us as a master thesis by the department of 
software engineering at the Norwegian University of Science and 
Technology (NTNU). The “Code Coverage and Software Reliability” 

project is part of an ongoing research project titled Business-Critical Software 
– BUCS.  
 
The main purpose of BUCS is to develop methods for improving support of 
development, operation and maintenance of business-critical systems. The 
project is funded by the Norwegian Research Council and is scheduled to run 
from 2003 to 2007. More information on BUCS can be found on the following 
web site: http://www.idi.ntnu.no/grupper/su/bucs 
 
A time frame of 20 weeks for this thesis implies that we had to restrict our 
focus to chosen parts of the problem domain, and the resulting project scope is 
elaborated in chapter 1.4. 
 

1.3 Problem Definition 
 

he many existing coverage measures present an array of alternatives. 
Although this might seem like a blessing, it poses a real challenge in 
choosing what measure or set of measures that would paint the most 

realistic picture of the actual code coverage, and what set of measures would 
be the most representative with respect to the system’s actual reliability. Code 
coverage measures can be placed in a hierarchy where certain measures are 
said to subsume others, meaning that complete coverage of one measure 
implies complete coverage of the measure it subsumes. We will return to this 
issue in the next chapter. 
 
Articles have been published that propose several ways of connecting code 
coverage to reliability, but would the implementation of an existing reliability 
model be feasible if one was to generate reliability estimates based on code 
coverage values? Software tools that automate code coverage analysis can no 

T 

T 



Chapter 1 Introduction 
 

 3

longer be considered scarce products, however the people creating such tools 
seem reluctant to find ways of coming up with reliability estimation values. 
Perhaps it is merely a sign that the theoretical foundation for the coverage-
reliability relationship has yet to be built, if researches will ever agree on such 
a foundation. 
 
A considerable problem when it comes to existing reliability growth models 
for software, is that they tend to overestimate the reliability of a given 
program, also known as the saturation effect. Hence, several articles suggest 
that a test case that does not increase coverage values, and at the same time is 
unsuccessful in causing one or more failures, should be considered ineffective. 
One of the problems with code coverage is that it is destined to increase as the 
number of test cases applied increases, assuming that complete code coverage 
has yet to be reached and that no test case is repeated. Thus, since both code 
coverage and defect coverage increases as time passes by or test intensity 
increases, it is far from surprising that empirical investigations end up 
concluding that a relationship exists. However, it does not necessarily mean 
that an increase in code coverage drives the detection of new defects. 
 

1.4 Project Scope 
 

n this project we seek to perform a general and rough literature study of 
what has been done with regards to code coverage and its relationship to 
software reliability. Our hope is that such a study will provide us with the 

status of reliability estimation and of code coverage as a testing strategy. We 
intend to use the literature study as a platform for considering the feasibility of 
integrating reliability estimation into an existing code coverage analysis tool. 
 
We will only focus on the relationship between code coverage and reliability, 
and hence neglect other related quality attributes that might prove relevant, 
such as availability. Neither will we attempt to look at how the total reliability 
of a software product can be estimated based on reliability values for 
individual modules or components. Although an interesting prospect, we 
consider the latter challenge to be outside the scope of the current project. 
 

1.5 Project Goals 
 

ur goals for the project can be extracted from what has been written in 
the previous sections, but nevertheless we find it feasible to devote a 
separate section to our expectations. The most evident goal is to get to 

know the basics of code coverage and how it can be employed to form a 
testing strategy. As mentioned earlier in this chapter, there is a myriad of 
coverage measures to choose from, and we want to get an overview of the 
most popular ones, along with their respective strengths and weaknesses. We 
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also seek to familiarize ourselves with the most noteworthy reliability models 
with respect to software. 
 
With the recent emergence of numerous automated tools for code coverage 
analysis, we want to look at one of them in detail and uncover how code 
coverage theory can be implemented in a software program. We will also try 
to highlight possible areas that need improvement and come up with 
suggestions as to additional features that would make the product more 
complete. 
 
Finally, it would be interesting to touch upon how code coverage affects and 
has been affected by the existing software development methodologies. The 
vast majority of the articles we have read on code coverage and reliability 
estimation dates back to the 1990s, and it is during the latter stages of this 
decade that new and test-driven methodologies such as the Rational Unified 
Process and eXtreme Programming were introduced to the software industry. 
Thus, it might be of interest to determine if the presence of these 
methodologies have somehow interfered with the popularity of code coverage. 
 

1.6. Introductory Remarks 
 

hroughout this report we have used the terms software system, 
application and program interchangeably. This is also the case for 
software reliability growth model, software reliability model and 

reliability model. The motivation for this has been to add language variety and 
thus avoid repeating one specific term over and over again. We would also 
like to point out that parts of the information presented early in the report will 
occasionally be referred to or briefly repeated in later chapters for the sake of 
context.  
 

1.7 Report Outline 
 

e have aimed at creating a report structure that follows a logical 
path, starting with a presentation of code coverage, its various 
measures and well-known reliability models, while progressively 

getting more specific as the report goes on. As a consequence, the first three 
chapters are rather broad in their content and can be seen as an introduction or 
build-up for the subsequent chapters. The intention is to build a reference or 
context for chapters 4 through 6, which deal with the core issues of this 
assignment. 
 
Chapter 1 gives an introduction to the project, defining its context, motivation 
and scope and explaining our goals for the assignment. 

T 
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Chapter 2 takes a look at code coverage analysis, the different measures 
available and the impact of test-driven development methodologies on code 
coverage. 
 
Chapter 3 seeks to explain the role of reliability in computer systems, before 
presenting the essentials of software reliability models. 
 
Chapter 4 deals with the relationship between code coverage and reliability by 
looking at proposed models for connecting them, experimental results and 
theoretical considerations as to the existence of such a relationship. 
 
Chapter 5 takes a closer look at the Musa-Okumoto model for reliability 
estimation, as well as a technique which employs coverage information to pre-
process data for use in a reliability model. 
 
Chapter 6 presents an automated tool for code coverage analysis, discussing 
its use and implementation of selected coverage measures, before proposing 
an approach and considering the feasibility of integrating reliability estimation 
into JCoverage. 
 
Chapter 7 rounds off the report by drawing conclusions, describing lessons  
learned, and looks at the possibility of further work. 
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”You got to be careful if you donʹt know where youʹre  
going, because you might not get there.” 

Yogi Berra  
CHAPTER 2: 

Code Coverage 
CHAPTER 2: Code Coverage 

This chapter will look at what code coverage is and present the most popular 
code coverage measures. Moving on, there is a section on how code coverage 
can and ought to be used in practice when testing software, followed by a 
description of common misconceptions and possible pitfalls in using code 
coverage analysis. Finally, we briefly explain the main ways of implementing 
code coverage principles into automated software tools, before rounding off 
this chapter with thoughts on how test coverage has been influenced by the 
modern-day, test-driven software development methodologies. 
 

2.1 Code Coverage Basics 
 

ode coverage analysis, also referred to as test coverage analysis, is 
described as a software testing technique aimed at discovering 
program code that has not been exercised by a set of test cases, in 

Steve Cornett’s “Code Coverage Analysis” [Cor04]. In other words, code 
coverage refers to what extent the designed tests exercise the code base, or 
simply the thoroughness of the test case suite. As mentioned in “Introduction 
to Code Coverage” by Lasse Koskela [Kos04], code coverage can serve the 
purpose of an indirect quality measure – indirect in the sense that it is all 
about to what extent the tests cover the code, and thus an indicator of the 
quality of the tests. Needless to say, code coverage analysis requires the 
availability of source code for the program to be tested. 
 
According to [Kos04], code coverage can be classified as a white box or 
structural testing technique, because assertions are made on class internals as 
opposed to system interfaces. Structural testing compares program behavior to 
the apparent intention of the source code, thus investigating how the program 
works by taking into consideration possible pitfalls in structure and logic. 
Structural testing is sometimes referred to as path testing, since chosen test 
cases lead to different paths through the program structure being exercised 
[Cor04]. 
 
[Cor04] presents code coverage analysis as the process of determining a 
quantitative measure of coverage and then creating additional test cases with 
the purpose of increasing coverage values. Optionally code coverage analysis 
can be used to identify redundant test cases, implying test cases that do not 
contribute to an increase in coverage. The article “Using Simulation for 
Assessing the Real Impact of Test-Coverage on Defect-Coverage” by Lionel 
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C. Briand and Dietmar Pfahl [BP00] claims that test coverage increases 
testing control, and hence improves allocation of test resources, by using 
coverage measures as estimators for the fraction of defects being detected 
during testing. The latter statement is probably what fuels the assumption that 
there exists a significant, causal effect between test coverage and defect 
coverage. One has to keep in mind, though, that code coverage analysis by no 
means ensures the quality of the end product, but merely contributes to the 
quality of the actual test set.  
 

2.2 Code Coverage Measures 
 

here is a multitude of code coverage measures to choose from. We 
begin this section by describing the most well-known measures, while 
later on giving a brief overview of less common measures and finally 

looking at the hierarchy that exist among them. 

2.2.1 Essential Measures 
 
Statement coverage and decision coverage are probably the most straight-
forward and household coverage measures known to the software community, 
but there are a few more that deserve attention. We will look at each of them 
in turn below.  

2.2.1.1 Statement Coverage 
 
Statement coverage, also known as line coverage or basic block coverage, 
indicates to what extent individual statements have been encountered during 
testing. One advantage of this measure is that it can be applied directly to 
object code, and hence does not require source code processing [Cor04]. Its 
widespread use is most likely a result of developers being able to easily 
associate statement coverage with source code lines. Another strength when 
  
1: public class HelloWorld {  

2:   public static void main(String[] args) { 

3:     System.out.print("Hello"); 

4:     System.out.print(" "); 

5:     System.out.println("World!"); 

6:   } 

7: } 

 
compared to alternative measures is the fact that faults are assumed to be 
evenly distributed through the source code, and thus the percentage of 
executable statements encountered reflects the percentage of faults uncovered 

T 
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[Cor04]. In the code example above each line represents a statement, while 
line 3 to 5 forms a block of code. 
 
However, statement coverage poses a few challenges. Its insensitivity with 
respect to certain control structures such as if statements, as well as logical 
operators, is a definite weakness. Hence, it comes as no surprise that [Kos04] 
highlights the inability of statement coverage to assess how thorough the 
program logic has been covered. It simply reports whether each statement has 
been executed at least once, and as such will not report whether or not loops 
have reached their termination conditions, merely if the body of the loop was 
executed or not. 
 
Basic block coverage and block coverage are known as related measures or 
variations of statement coverage. They view each sequence of non-branched 
statements as its unit of code as opposed to individual statements. As a result, 
basic block coverage will consider each branch “equal” to the other, 
irrespective of how much code the branch carries [Kos04]. A code block can 
be seen as a sequence of statements in a program where control enters at the 
first statement and leaves the block at the last statement of the sequence. 

2.2.1.2 Decision Coverage 
 
Decision coverage, some places referred to as branch coverage or basic path 
coverage, is a measure based on whether boolean expressions evaluate to both 
true and false when used in control structures such as if and while 
statements. This causes both paths to be exercised, but does not pay attention 
to how the boolean value was set [Kos04]. Decision coverage includes 
coverage of switch statements, exception handlers as well as interrupt 
handlers. In the method implemented below, decision coverage will reach 
  
1 : public void prnTrail(boolean greeting, boolean weekend) { 

2 :   System.out.println("Thank you for shopping!\n"); 

3 :   if(greeting) { 

4 :     System.out.print("Have a nice "); 

5 :     if(weekend) 

6 :       System.out.println("day!"); 

7 :     else 

8 :       System.out.println("weekend!"); 

9 :   } 

10: } 

 
100% if the created tests trigger the boolean variables greeting and weekend 
to evaluate to both true and false, but for all parts of the code to be 
exercised the tests need to include the test pairs true/true and true/false. 
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As was the case with statement coverage, this measure is simple and intuitive, 
but it avoids the problems caused by the former. Unfortunately, the ignorance 
of branches within boolean expressions which occur due to short-circuited 
operators is a considerable weakness [Cor04]. Short-circuit operators are 
illustrated by the following example, where the last expression will not be 
evaluated given that the first expression is true. This is caused by the logical
   
5 :     if(isRegularCustomer || price > 2000000) { 

 
OR operator, which makes the if statement evaluate to true if at least one of 
the sub-expressions has the value true. Similar cases occur when using the 
AND operator, where it is sufficient for one of the sub-expressions to evaluate 
to false to cause the entire if expression to be false. 

2.2.1.3 Condition Coverage 
 
Condition coverage resembles decision coverage, but has superior control 
flow sensitivity. This is achieved by extending the boolean evaluation of 
decision coverage to consider sub-expressions, separated by logical ANDs and 
ORs, to ensure that each of them evaluates to both true and false. Each sub-
expression is considered independently, without attention being paid to 
whether the complete expression is evaluated both ways [Kos04]. Thus, full 
condition coverage does not imply full decision coverage. This is illustrated 
below where an if statement contains two boolean sub-expressions that are 
tied together by a logical AND operator. As far as this particular case is 
concerned, having one of the boolean sub-expressions never evaluating to 
false translates to complete decision coverage without achieving complete 
condition coverage.  
 
1: public boolean sendSMS(String cellNum, String msg) { 

2:   if(cellNum.getLength() != 0 && msg.getLength() != 0 ) { 

3:     ... 

2.2.1.4 Multiple Condition Coverage 
 
Contrary to condition coverage, multiple condition coverage takes into 
account the complete expression, as well was sub-expressions. It reports 
whether each possible combination of boolean sub-expressions takes place; 
hence the test cases required to achieve complete multiple coverage for a 
condition, is given by the truth table of the condition’s logical operator 
[Cor04].  
 
The main downside of multiple condition coverage is the time-consumption 
involved in using it. It is a tedious task to determine the minimum set of test 
cases required, and the number of test cases required may vary significantly 
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among conditions that have comparable complexities [Cor04]. The fact that 
this measure considers the complete expression as well as sub-expressions 
often leads to a great rise in the number of test cases required, thus 
underlining the tediousness. However, for short-circuiting languages such as 
C, C++ and Java, multiple condition coverage is virtually the same as 
condition coverage. 
 
1: public boolean sendSMS(String cellNum, String msg) { 

2:   if(cellNum.getLength() != 0 && msg.getLength() != 0 ) { 

3:     ... 

 
To reach complete multiple condition coverage in the scenario above, both 
boolean sub-expressions must evaluate to true and false, in addition to 
every possible combination of these combinations being executed. Finally, the 
main expression needs to evaluate to both true and false. The table below 
shows how the if statement evaluates depending on the boolean sub-
expressions. If existing tests, for instance, prove incapable of causing both 
expressions to evaluate to false at the same time, the criteria for multiple 
condition coverage will not have been satisfied. Condition coverage and 
decision coverage will, on the other hand, be satisfied. 

 
Expression Evaluates to 

cellNum.getLength() != 0 T T F F 
msg.getLength() != 0 T F T F 
cellNum.getLength() != 0 && msg.getLength() != 0 T F F F 

2.2.1.5 Path Coverage 
 
Another common coverage measure is path coverage which reports whether 
each possible path in every single function has been covered. [Cor04] defines 
a path as a unique sequence of branches from function or method entrance to 
exit, the latter typically being a return statement or a thrown exception. Loops 
present a delicate challenge to path coverage by possibly introducing an 
enormous number of paths. Making sure every single path is executed can 
thus prove both tedious and infeasible, although the thorough testing that path 
coverage requires can be seen as an advantage. 
 
To deal with an excessive number of paths, several variations of path 
coverage have been proposed. Boundary-interior path testing considers two 
possibilities with regards to loops – zero repetitions or more than zero 
repetitions. Hence, one effectively reduces the number of paths by considering 
two scenarios, regardless of how many possible paths the loop presents. 
Another alternative mentioned in [Cor04] is n-length sub-path coverage, 
which reports whether each path of length n branches has been exercised. 
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Linear code sequence and jump coverage, LCSAJ for short, as well as data 
flow coverage are related measures to path coverage. The former restricts its 
focus to consideration of sub-paths that can easily be represented in the source 
code. A linear code sequence may contain decisions, given that control flow 
continues from one line to the next at runtime [Cor04]. Not only does this 
measure deal with the explosive nature of path coverage, where the number of 
paths grows exponentially with the number of branches, but it is also known 
to be more thorough than decision coverage. Data flow coverage, on the other 
hand, merely considers sub-paths from variable assignments to subsequent 
variable references and has a tendency of turning out overly complex. 
 
1: public float calcPrice(float price, float deliveryCosts) { 

2:   if(price < 200)  

3:     return price + deliveryCosts; 

4:   else 

5:     return price * TAX + deliveryCosts; 

6: } 

 
The code example above presents a method with two possible return 
statements at line 3 and 5. In this case, complete path coverage is only 
achieved when the method has returned both statements. Thus, the test set has 
to include data that causes the price variable to be both less than 200 and 
greater than or equal to 200. 

2.2.1.6 All-uses Coverage 
 
All-uses coverage criteria are based on a program’s data flow as well as its 
control flow and as such all-uses coverage is considered to be an advanced 
coverage measure. It consists of a def-use pair, which in turn consists of two 
statements – the first statement assigns a value to a program variable, while 
the second statement uses the value of the same variable. According to Fabio 
Del Frate, Praerit Garg, Aditya Mathur and Alberto Pasquini in their article 
titled “On the Correlation between Code Coverage and Software Reliability” 
[FGMP95], a def-use pair for a given variable x is covered when control 
reaches the first statement of the pair, and during the same program execution 
control reaches the second statement without reaching a statement that assigns 
a value to x. All-uses coverage is the sum of computational-use and predicate-
use coverage measures – c-use and p-use coverage for short – which will be 
explained next. 
 
To explain what c-use and p-use coverage is, one needs to know what a c-use 
and p-use pair consist of. In the article “Software Reliability Growth With Test 
Coverage” written by Yashwant Malaiya, Michael Naixin Li, James Bieman 
and Rick Karcich [MLBK02], a c-use pair is said to include two points in the 
program, the first where the value of a variable is defined or modified, 
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followed by a point where the variable is used within a computation. C-use 
coverage thus reports the fraction of the total number of c-uses that have been 
covered during testing. As was the case with a c-use pair, a p-use pair includes 
two points in the program – the first point being where the value of a variable 
is defined or modified, followed by a point where the variable is used within a 
conditional expression as a predicate. Hence, complete p-use coverage implies 
complete decision coverage, assuming that all conditional expressions contain 
variables. In the code example below c-use pairs exist on the lines (45, 49), 
(45, 51), (46, 49) and (46, 51). P-use pairs can be found on lines (45, 48) as 
well as (46, 48). 
 
43: ... 

44: int difference = 0; 

45: int myAge = 25; 

46: int yourAge = 65; 

47: 

48: if(myAge < yourAge) 

49:   difference = yourAge - myAge; 

50: else 

51:   difference = myAge - yourAge; 

52:  

53: System.out.println("There's a " + difference  

                 + " year age difference!"); 

 

2.2.2 Alternative Measures 
 
In addition to the coverage measures already described with their respective 
strengths and weaknesses summarized in table 2.1 on the next page, there is a 
wealth of more specific and less widespread measures to choose from. 
Function coverage is used to make sure that each function or method has been 
invoked, and is particularly useful when performing preliminary testing. Call 
coverage is a measure which is used to verify that all function calls have been 
executed. Its purpose is based on the hypothesis that faults typically occur in 
interfaces between modules [Cor04]. The same paper claims that boundary 
test cases often detect so-called off-by-one errors, commonly due to 
misunderstandings when using relational operators. Relational operator 
coverage thus reports whether expressions containing relational operators are 
tested with boundary values. In the for loop below faults may arise if the less- 
than-or-equal-to operator was intended as opposed to the less-than operator. 
 
32: ... 

33: for(int i = 0; i < array.length; i++) { 

34: ... 
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Condition/decision coverage is a hybrid measure derived from more essential 
and basic measures already described in chapter 2.2.1, consisting of the union 
of condition coverage and decision coverage. Its main advantage is its 
simplicity, while at the same time avoiding shortcomings found in both 
condition and decision coverage [Cor04]. Another convenient measure when 
dealing with multithreaded applications is race coverage. Race coverage 
considers multiple threads that execute code simultaneously, thus contributing 
to failure detection when synchronizing access to resources. 
 
Coverage measure Strengths & weaknesses 
 
Statement coverage 

 
+ intuitive 
+ direct application to object code 
+ source code processing not required 
÷ insensitivity with respect to control structures 
 

Decision coverage + intuitive 
+ exercises control structures 
÷ ignores branches within boolean expressions 
which occur due to short-circuit operators found 
in C, C++ and Java 

 
Condition coverage + flow sensitivity 

+ considers sub-expressions 
 

Multiple condition 
coverage 

+ considers both sub-expressions and the 
complete expression 
÷ time-consuming 
 

Path coverage + thorough 
÷ tedious 
÷ complicated loop treatment 
 

All-uses coverage + exercises the relationship between the 
assignment of a value to a variable and the 
subsequent use of that value  
÷ computationally expensive 

 
 

Table 2.1: Summary of essential coverage measures 
 
Finally, we mention mutation coverage, which tests the computational 
structure of a program. According to an article titled “Connecting Test 
Coverage to Software Dependability” by Dick Hamlet [Ham94], mutation can 
be viewed as massive fault seeding and considered a technique for estimating 
how many failures are yet to be found. This coverage measure is known to be 
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computationally expensive and challenging to employ, partly because the test 
data required to achieve high mutation coverage are less obvious and harder to 
collect systematically. [Cor04] mentions weak mutation coverage as a more 
general alternative to relational operator coverage. This variation of mutation 
coverage reports whether there exist test cases that expose the use of wrong 
operators and operands. Mutations typically include exchanging operators, 
data types and adjustment of constants. 

2.2.3 Coverage Measure Hierarchy 
 
As was noted in the introductory chapter of this report, relationships exist 
among measures, with the “stronger” measure said to subsume the “weaker” 
one, thus forming the basis for a subsumption hierarchy. Parts of the hierarchy 
are presented visually in figure 2.1 below. 
 
Decision coverage includes statement or block coverage since execution of 
each branch implies that each statement has been exercised. Complete 
decision coverage is, according to Yashwant Malaiya et al. in the article “The 
Relationship Between Test Coverage and Reliability” [Mal+94], achieved by 
complete p-use coverage. The same article concludes that both branch 
coverage and to a lesser extent p-use coverage correlate significantly with 
block coverage, whereas c-use coverage appears to have no such relation to 
other measures. 
 

 
Figure 2.1  

Subsumption hierarchy – the brighter  
rectangles subsumes the darker ones 
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Yet another measure known to subsume decision coverage, along with the 
ones already mentioned, is path coverage. This is also the case for the hybrid 
measure of condition/decision coverage, which per definition includes 
condition coverage. As was mentioned in chapter 2.2.1.6 when presenting c-
use and p-use coverage, complete p-use coverage implies complete decision 
or branch coverage, assuming that all conditional expressions contain 
variables. 
 
Moving up in the hierarchy, exercising all paths in a program implies that all 
p-uses have been covered, hence resulting in path coverage subsuming p-use 
coverage [MLBK02]. Finally,  [Cor04] places predicate coverage at the top of 
the hierarchy. Predicate coverage is strongly related to path coverage and 
considers paths as possible combinations of logical conditions, thus including 
strong measures such as path coverage and multiple condition coverage 
[Bei90]. 
 

2.3 Practical Code Coverage Application  
 

e have already underlined the fact that code coverage is a more 
feasible and beneficial approach when testing applications that 
contain a large amount of decision points, as opposed to data-

centric systems. Being a structural testing technique, code coverage analysis 
may prove particularly useful if the requirements specification lacks detail or 
simply has not been subjected to regular updates as the development process 
has progressed. Functional testing techniques, on the other hand, rely on an 
up-to-date specification when evaluating test program behavior [Cor04]. 
Figure 2.2 below illustrates the difference between structural and functional 
testing.  

 
 

Figure 2.2 
An illustration of structural 

and functional testing 
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In his article titled “How to Misuse Code Coverage” [Mar99], Brian Marick 
acknowledges the usefulness of code coverage because of its ability to detect 
parts of the source code that have been neglected by the test set. He goes on to 
claim that code is typically covered in sections, where a section represents a 
considerable part of software functionality and not merely a line or two. If 
such a section or part of the code escaped testing unintentionally, the test team 
can direct focus towards that specific part of the program. 

2.3.1 Choosing the Right Coverage Threshold and Measures 
 
Choosing appropriate coverage measures can be quite challenging. The 
coverage tools available on the market tend to support different algorithms as 
well as using their own accent, according to [Kos04]. The author urges 
software developers who aim at integrating code coverage analysis with their 
existing development practice, to be consequent in the decisions being made. 
For popular programming languages such as C, C++ and Java, the general 
advice is to employ condition/decision coverage. Other measures might be 
used in addition to add coverage details and remedy possible weaknesses of 
the chosen measure. 
 
When it comes to coverage thresholds, each project ought to decide on a 
minimum percentage value of code coverage, which has to be attained before 
releasing the software. Such a threshold should take into account the available 
test resources as well as the importance of avoiding post-release failures 
[Cor04]. Generally speaking, one should aim at reaching 80-90% coverage 
prior to release when using traditional coverage measures such as statement 
coverage, decision coverage or even condition/decision coverage. Code 
coverage is likely to increase as more test cases are applied, assuming that no 
test case is repeated and that complete code coverage is yet to be attained. 
 
In the context of coverage thresholds, [Mal+94] refers to experiments where 
fault coverage was a mere 10% at 50% branch coverage. However, when 
increasing branch coverage to 84%, which relatively speaking is a modest rise 
compared to the initial 50% when considering the drastic improvement in 
fault coverage, an impressive fault coverage of 90% was attained. Such results 
support the general comprehension that 80% branch coverage is sufficient for 
most applications. 

2.3.2 Coverage Progress and Effort 
 
In order to make sure that coverage increases in the early stages of testing one 
should aim at attaining a broad coverage through the entire program before 
striving for high coverage percentages in specific areas of the code. This can 
be fulfilled by visiting each feature of the program under test and hence 
increasing the likelihood of detecting obvious or significant failures early on. 
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The initial strategy should be to look for easy-to-find failures with minimal 
testing [Cor04].  
 
Test productivity is a keyword not only when talking about code coverage 
analysis, but also for testing techniques and strategies in general. For the 
purpose of maintaining a high level of test productivity one has to strive for 
achieving optimal results with minimal effort. This implies detecting and 
removing as many failures as possible, while at the same time spending a 
limited time on  creating test cases, adding them to the existing test suite and 
eventually executing them. As such, focus should not rest on reaching 100% 
coverage for each of the initial measures, but rather on choosing appropriate 
intermediate coverage measures and deferring testing to areas deemed 
challenging and critical by an operational profile, if one exists. 
 
Although code coverage has its advantages, it is only one of many testing 
techniques to choose from, and relying on code coverage alone is not the way 
to approach testing activities. However, it is undoubtedly a useful addition to 
other strategies and may serve the purpose of an alerting service, signaling the 
fact that the existing test suite has room for improvement. A challenging 
prospect unfolds when considering software applications that are under 
development while testing is performed. The addition of new modules to the 
existing core application is deemed to cause the entrance of new defects. 
Analysis of such programs are, however, considerably more complex and a 
field of future research [Mal+94]. 
 

2.4 Pitfalls and Misconceptions 
 

everal articles are quick to point out that code coverage analysis by no 
means presents a silver bullet in software testing. Brian Marick 
highlights a few pivotal and common misconceptions concerning code 

coverage in [Mar99] that suggest how this testing technique has the potential 
to mislead unaware software testers. 

2.4.1 Complete Coverage is No Guarantee 
 
According to [Mar99], making sure that all logical expressions evaluate to 
both true and false is hardly sufficient for claiming that testing is 
completed: “Coverage tools can only tell me how the code that exists has 
been exercised. It can’t tell me how code that ought to exist would have been 
exercised”. For instance, faults that can be removed and fixed by adding new 
code – known as faults of omission – may pass tests without being discovered. 
Thus, there is no way of guaranteeing a faultless program in spite of running 
tests and making sure they cover every single line of source code. Coverage 
tools will, however, be able to improve overall quality by detecting possible 
“holes” in the existing test set. 

S 
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Code coverage is also capable of revealing errors in the implementation of 
tests. A particular test may, for instance, do something entirely different than 
what it was set out to do and hence need modification in order to fulfill its 
initial intention. However, the bottom line is that 100% code coverage does 
not imply a program free of faults. 

2.4.2 Code Coverage and the Design of Tests 
 
When performing code coverage analysis it might be tempting to create a set 
of tests that aim for a rapid increase in coverage. Designing tests with high 
coverage percentages in the back of one’s mind is, however, not the way to go 
[Mar99]. On the contrary, focus should be on comprehending why the tests 
being executed failed at exercising the parts of the software or source code 
that ended up untested. Coverage tools will only prove helpful if they are 
utilized to increase understanding, and not if they result in testers leaving the 
thinking and analyzing to the tools. 
 
[Mar99] also mentions the importance of management not using code 
coverage percentages as a means of measuring the quality and end result of 
testing efforts. This will only lead to testers optimizing tests with respect to 
high code coverage, since this will please managers and make sure the goals 
set forth are met. Such a focus is likely to come at the expense of thought-
through tests designed to optimize fault detection. Thus, code coverage serves 
a one-way purpose; notifying testers that additional testing is necessary, but 
not capable of telling that sufficient testing has been carried out. Table 2.2 
below presents a rough overview of what code coverage contributes with and 
what it is not capable of. 
 
Code coverage does Code coverage does not 

 
- report how existing code has 

been exercised 
- improve the quality of a test 

set 
- reveal errors/faults in test 

implementation 
- increase understanding of 

existing tests 
 

 
- detect faults of omission 
- guarantee a fault-free software 

application 
- ensure end product quality 
- indicate that sufficient testing 

has been performed 

 
Table 2.2: Facts and misconceptions of code coverage 
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2.5 Code Coverage Implementations 
 

good number of code coverage tools have emerged lately. JCoverage, 
whose implementation and features we will take an in-depth look at 
in chapter 6, is just one of several household tools to choose from. 

The way these tools implement code coverage theory boils down to two main 
approaches briefly described in [Kos04]: Instrumentation and custom Java 
Virtual Machine – JVM. 
 

2.5.1 Implementation Approaches 
 
Basic instrumentation, also known as source instrumentation, is probably the 
most intuitive way of implementing code coverage in a software tool. It relies 
on manipulating application code by inserting reporting code in strategic 
places of the source code, whereas class instrumentation inserts reporting code 
directly into compiled class files, represented as byte code. This latter 
approach is found in our coverage tool of choice – JCoverage. 
 

 
Figure 2.3 

Implementation sketch 
 

The custom Java Virtual Machine approach causes the virtual machine to take 
responsibility for keeping track of the parts of the loaded classes that have 
been executed. Compared to the instrumentation alternative, this approach is 
yet to enjoy the same popularity. Both strategies are depicted in figure 2.3 
above. There is also a third way of dealing with code coverage 
implementation mentioned in [Kos04]. It involves instrumenting application 
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code through reporting code explicitly, by using wrapper classes responsible 
for inserting code at runtime as opposed to pre-processing source code or byte 
code at build-time. 

2.5.2 Tool Features 
 
The set of features that code coverage tools offer tend to vary slightly, partly 
depending on the coverage measures chosen. However, the most well-known 
ones share a few, but nonetheless essential features, namely related to: 
 
  Ant integration 
  Report formats 
  Source code linking 
  Checks 
  Historical reports 
 
According to [Kos04] most Java projects taking place nowadays use Ant, or 
alternatively Maven, to manage the build process as well as running unit tests. 
As such, proper Ant integration is practically a necessity for any high-quality 
coverage tool. Ant is briefly explained later in chapter 6. Needless to say, 
presenting code coverage reports in an intuitive and well-arranged way is of 
utter importance, although report formats and actual layout will differ slightly 
from tool to tool. Some tools might also provide historical reports to illustrate 
coverage progress from start to finish. 
 
Another requested feature is the linking of source code to code coverage 
reports, where uncovered parts of code are highlighted in an annotated copy of 
the original source code. This helps to guide the user’s attention to code or 
blocks of code yet to be exercised, instead of merely reporting line numbers. 
Finally, incorporating checks into the tool implies notifying the user when 
coverage drops below a pre-defined level.  
 

2.6 The Effect of Test-driven Development 
Methodologies 
 

y now we have concluded that code coverage should be used as an 
indicator as to how thorough the software has been tested and that test 
teams should resist the temptation of designing tests with the purpose 

of reaching 100% coverage. In modern-day development methodologies, tests 
are typically designed prior to the actual code to be tested, thus resulting in 
code being created to satisfy the designed tests. Logically, this might easily 
lead to tests reaching coverage values close to 100%. With tests attaining high 
coverage straight away, code coverage reporting seemingly ends up as a mere 
confirmation that most, if not all parts of the code were exercised. Intuitively, 
this could mean that code coverage analysis is turning into a redundant 

B 
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supplement for applications engineered with test-driven development 
methodologies. 

2.6.1 The Role of Code Coverage 
 
One of the biggest challenges of testing is to decide how much testing should 
be performed. The question of determining when sufficient testing has taken 
place has no evident answer. Earlier in this chapter we pointed out that faults 
will not be found in code that has escaped testing. This fact is reasonably 
obvious to everyone. However, the claim that code can be tested without 
detecting possible faults residing in it is not as intuitive for most of us. This is 
where code coverage contributes by using reported coverage values as a 
confirmation that more testing is necessary. 
 
It is tempting to ask oneself what is really wrong with designing tests that 
achieve complete code coverage. Does creating a test set without the 
conscious strive of having all parts of the code covered, result in more faults 
getting exposed? We believe that it may lead to additional tests being created 
and executed in order to satisfy coverage requirements and that the sum of 
initial tests and supplementary tests will contribute to more faults being 
detected. Another motivation for employing code coverage is its ability to 
guide testers to parts of code not yet exercised, as mentioned earlier. This 
raises the question of whether it is the process of gradually improving the test 
set or the fact that additional tests are performed which encourages this 
recommendation. According to our understanding, code coverage analysis 
provides suggestions and information regarding what parts of the program 
require further testing, and that this piece of information is lost when the 
initial tests already cover substantial parts of the code. As a result, the task of 
deciding how additional tests should be designed is left entirely to the test 
team. 
 
This brings us to consider how test-driven development methodologies leads 
testing to become programming-centric as opposed to software applications 
engineered with traditional development frameworks, where testing is 
typically performed from a user perspective. Even so, tests that exercise 
programs developed with traditional methodologies may be characterized as 
programming-centric if they are designed to satisfy code and code coverage 
criteria intentionally. Our impression of relevant literature is that performing 
testing with an operational profile as a platform is both common and 
recommended. Operational profiles are said to contribute to realistic results by 
seeking to mirror the actual usage and environment of the software. This 
appears to be in line with [Mar99], who encourages use of coverage 
knowledge to encounter user needs that are insufficiently covered by the 
current test set. We will take a closer look at operational profiles and their 
impact on reliability estimation in chapter 4. 
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Once a product is fully developed and testing has covered all parts of the 
code, the question of whether enough testing has been undertaken still stands. 
Software literature suggests that methodologies embracing test-driven 
development tends to achieve 100% code coverage – an understandable 
assertion considering how closely connected tests and application code are. In 
spite of complete code coverage being incapable of guaranteeing fault-free 
software and high quality products, test-driven methodologies thrive on words 
of praise from the software community because of its contribution to end 
product quality. We believe that this boils down to differences beyond the 
testing itself, and that a successful development process must be seen as a 
significant tool in quality work as well as the tests it creates. Figure 2.4 
highlights some aspects that typically separate user-centered testing from 
code-centered. 
 

Figure 2.4 
User-centered versus code-centered development 

 
The perceptions and opinions as far as code coverage is concerned, seem to be 
many and contrasting. What suits certain development environments might 
not match the requirements and preferences of others. Hence, discussions on 
the pros and cons of code coverage and its range of application are deemed to 
carry on. 

2.6.2 Object-oriented Testing 
 
Object-oriented testing introduces new elements and hence new challenges as 
far as software testing is concerned. The two fundamental design features of 
object-orientation are information encapsulation and polymorphism. In short, 
encapsulation hides internal structures from the rest of the program and thus 
creates a considerable challenge, since traditional tests usually are external. 
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This matter can be solved by injecting test functions directly into the classes 
to be tested; however, this is not within the scope of this project. 
 
Polymorphism, on the other hand, represents a greater problem with respect to 
code coverage, since classes can be sub-typed after testing has taken place. 
According to Craig E. Damon in his course notes from the subject “Software 
Engineering” at the University of Vermont [Dam04], additional tests have to 
be designed to ensure that the current class is protected from “unusual”, yet 
perfectly legal sub-classes, because of the introduction of polymorphism. He 
deems existing code coverage measures as insufficient within an object-
oriented context and presents two newly suggested measures tailored to 
object-orientation: 
 

 Functions or methods that have been overridden in sub-class 
 Combinations of sub-class and super-class that have been tested 

 
Thus, it seems as though code coverage is very much alive. However, as is the 
case with software development methodologies, programming languages and 
paradigms as well as technology in general, it needs modifications and 
additions to be tailored to modern-day standards. 
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“We are ready for any unforeseen event which  
may or may not happen.” 

George W. Bush  
 
CHAPTER 3: 

Software Reliability Growth Models 
CHAPTER 3: Software Reliability Growth Models 

With software systems playing an increasingly prominent role in most 
organizations and businesses, regardless of domain, reliability is becoming a 
quality attribute of great focus. Software developers, as well as customers, do 
not only worry about releasing and eventually employing highly reliable 
products – they also seek predictions and estimates as to reliability during 
development and testing. In this chapter we take a look at general challenges 
in attaining reliability and what factors influence it, before moving on to 
existing models for estimating reliability in software products – the software 
reliability growth models. Substantial parts of this chapter is inspired by the 
representation given in “Software Reliability: Measurement, Prediction, 
Application” by John D. Musa, Anthony Iannino and Kazuhira Okumoto 
[MIO87]. 
 

3.1 Reliability of Computer Systems 
 

 multitude of computer systems serve as the backbone of processes 
and services requiring high levels of availability, either because lives 
depend on them or because economical considerations deem their 

reliable operation crucial to the company. Computer systems that manage and 
control day-to-day operation of nuclear plants or web-based shopping 
facilities such as Amazon.com are two examples. Although not all systems are 
labeled indispensible, proper operation and, hence, stable functionality is 
desirable at any time; however, this is not always possible due to the 
economical constraints of the market, which inevitably affect developers. 

3.1.1 Implications of Component Failures 
 
No matter how many considerations are taken or unlikely scenarios predicted, 
things can always find a way of catching users and developers by surprise. In 
the case of critical computer systems, vast amounts of resources are spent to 
avoid the presence of unforeseen actions and operations. In certain critical 
systems, safety might depend on reliable operation of a computer system, thus 
making unreliable systems a risk factor in a safety context. Marvin Rausand 
defines safety management as systematic efforts directed at achieving and 
maintaining a given level of safety, in his book on risk management, 
“Risikoanalyse – Veiledning til NS5814” [MR91]. The safety level could be 
determined by the owner, public authorities or other system stakeholders. The 

A 
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actual work consists in surveying risk factors, managing possible deviations 
and considering actions and initiatives targeted at reducing overall risk. In 
cases where computer systems are part of a critical process there are rigid 
safety requirements to obey. As will be illustrated below, the structure or 
architecture, as well as higher level design of computer systems is likely to 
influence reliability significantly. 
 
Computer systems typically consist of several components that cooperate in 
order to offer system services and functionality. A failure in one of these 
components may lead to service disruption and hence, all components 
constituting a computer system will affect reliability. The fault tree depicted in 
figure 3.1 illustrates the essence of this discussion. 
 

 
Figure 3.1 

Fault tree example – a failing  
component will cause system failure 

 
One way of improving reliability is to introduce redundant components with 
the intention of ensuring system operation in spite of a single component 
failure. The system approach of Redundant Array of Independent Disks – 
RAID – serves as an example of this, where several hard drives are employed 
to avoid loss of data in case of a disk crash. The duplicated functionality will 
lead to additional costs for the organization. An exemplified redundant system 
is represented in terms of a fault tree in figure 3.2 below. As far as this 
instance is concerned, all components are duplicated to guarantee successful 
operation regardless of one or more components failing. In cases where 
several components fail, the system may only continue operation if there 
exists a well-functioning, duplicated component which can resume operation 
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for the failed component. Alternative configurations may also be found; for 
instance one might opt for a more selective strategy and only duplicate 
components that are reckoned to be exceptionally vulnerable. 
 
If probabilities of component failures are available for each and every 
component constituting the overall system, the probability of system failure 
can be computed. Several hardware manufacturers state the likelihood of 
failure for their respective components, hence making it a rather trivial task to 
calculate the probability of failure for the hardware part of a computer system. 
As was the case with hardware components, software modules are also 
capable of failing, typically caused by flaws in design or code. When 
hardware components are seen to fail, on the other hand, physical tear and 
wear is normally the main factor, whereas constructional flaws contribute to a 
lesser extent. 
 
By employing comparative measures of reliability for both hardware and 
software components, these figures can be combined to yield an overall 
measure of system reliability. In order to make realistic assertions as to system 
reliability, fairly accurate estimates are required for each system component. 
Hence, software developers need a means of acquiring reliability estimates, 
with an appropriate level of correctness, for the software they engineer. 
 

3.2 The Importance of Software Reliability  
 

eliability is known to be a prominent quality attribute of a software 
product and thus a property used to describe the qualities of a given 
system. [MIO87] emphasizes quality, costs and schedule as the three 

most essential characteristics of a software application. Because of the 
difficulties in measuring or quantifying quality in software, determining the 
relative importance of the aforementioned characteristics is a challenging task. 
According to [MIO87] this could be a possible explanation with regards to 
general quality problems in the software industry. 
 
Finding the right balance between quality, costs and schedule is of utmost 
importance in order to make a product a commercial success. For instance, a 
computer game crashing every now and then may not be thought of as critical. 
However, it is nonetheless deemed to affect the customer’s attitude towards 
the game itself and the vendor, as well as developers, if problems frequently 
arise as a consequence of unsatisfactory quality. Spending vast resources on 
quality assurance and improvement, on the other hand, runs the risk of 
developing a costly, hard-to-sell product. The third factor – time – comes into 
play in an industry of constant evolvement, where computer games stand the 
risk of being labeled old-fashioned by the time they hit the shelves if timing is 
wrong. Thus, systems stemming from different areas of usage, whether 
computer games, financial applications or real-time monitoring systems, are 

R 
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likely to have a different emphasis with respect to the three characteristics and 
their relative importance.  
 
Being able to quantify the reliability of a software system can be viewed as a 
selling point or a platform for decision-making if the product is considered 
employed in a critical context. For safety-critical applications it becomes all 
the more important that the produced estimates closely mirror the actual, 
observed reliability. Achieved reliability in software is impacted by the 
following three factors, according to [Mal+94]: 
 

 Test strategy – black box or white box 
 The relationship between calendar time and execution time 
 Testing of infrequently executed modules  

 
The third and final factor relates to methods and functions dealing with 
exception handling, error recovery and the likes. [Mal+94] claims that 
reliability can only be predicted with a high degree of precision by having 
tests cover low-usage, yet critical components like those mentioned above. In 
spite of extensive efforts in the past, accurate estimation of reliability has 
proven to be a daunting challenge, thus making improved reliability prediction 
methods a field of active research. In the subsequent section we will present 
the current means of reliability estimation – software reliability models. 
 

3.3 Software Reliability Models 
 

oftware developers often desire a measurable unit of how reliable a 
system under construction is. The reliability measures of the early days 
were limited to quantifying the number of failures in the software. 

Although far from being a feasible indicator, it was used to make rough 
comparisons between various projects. Aside from lacking precision, the 
measure did not convey particularly useful information to end users nor 
developers. 

3.3.1 Introduction to Reliability Models 
 
Nowadays software reliability growth models are employed to statistically 
determine how reliable a given program is. This implies the use of failure data 
gathered during testing to discover trends that could give an indication as to 
the quality of the current system. [MIO87] argues that reliability measures are 
easily graspable even for people without programming knowledge or 
experience. This, in turn, simplifies the process of controlling whether the 
development organization has delivered a product in conformance with a 
service level agreement – not only for customers, but for the vendor as well. 
 

S 
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The reliability growth models have evolved empirically through steady 
development and refinement. Typically, researchers launch hypotheses as to 
what affects reliability and subsequently challenge them through empirical 
experiments. In these experiments, reliability models are put to use and their 
estimates are compared to the real, observed reliability. The actual reliability 
can be measured once the software under scrutiny has been operational for a 
while and hence provided system administrators with useful information of its 
operation. An alternative approach encountered is to utilize existing software 
applications with proven levels of outstanding reliability, and then expose the 
source code to a fault-seeding process. Moving on, the faulty code is tested 
and subsequently investigated through a chosen reliability model. The 
deviations observed from the different models are finally used to discuss the 
pros and cons of each of them. 

3.3.2 Reliability Model Ingredients 
 
A software reliability growth model is a mathematical representation of 
various program properties. The operation of the most renowned models relies 
on two main ingredients – time and failures. We will now take a closer look at 
these two input parameters to the models, which yield reliability estimates for 
a given application. 

3.3.2.1 Time 
 
Most reliability measures connect reliability to some notion of time. However, 
as [MIO87] points out, there is no real hinderance as to the employment of 
other variables considered feasible. This could for instance be the number of 
executed transactions or some other variables capable of quantifying system 
usage. The  use  of  time  in  reliability  estimation  requires  a  set  of  specific
  
Time notion Definition 
Execution time Time during which the program 

utilizes the central processing unit 
(CPU) 

Clock time 
 

Time elapsed between program start 
and termination on a computer. This 
includes idle time – time where the 
software awaits user input or 
information from a different system 
before resuming operation 

Calendar time Regular time corresponding to the 
human-made calendar – the way we 
usually deal with the notion of time 

 
Table 3.1: Time definitions 
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definitions of the term, with the purpose of avoiding ambiguity. Table 3.1 
presents time definitions in accordance with [MIO87].  
 
Reliability growth models that make use of execution time in their estimation 
are considered to be superior [MIO87]. This assertion makes sense assuming 
that idle time does not contribute to increased reliability. Yet there is an 
evident need for calendar time, since it carries an intuitive meaning and 
represents the notion of time which we relate to in our everyday lives. To 
illustrate this case, a reliability measure of 0.95 probability for error-free 
operation in a time period of five execution hours, does not make immediate 
sense to most of us. This is because we do not relate to execution time in the 
same way we relate to calendar time. Thus, by converting the notion of CPU 
time to the familiar calendar time we end up with a probability measure of 
error-free operation that actually conveys processable information. An 
execution time of five hours could, for instance, translate into 48 calendar 
hours of software operation. Naturally, these translations between the different 
time notions are not fixed, but will vary from program to program and from 
environment to environment. 

3.3.2.2 Failures 
 
The second and final input parameter to the reliability growth models is the 
number of failures detected during testing. Failures are measured with respect 
to time, with the possibility of employing any of the three notions of time 
defined in the previous section. Table 3.2 below gives an overview of the 
failure measures as presented in [MIO87]. 
 
Failure measure Definition 
Time of failure Time elapsed between program start 

and failure detection, typically 
measured in seconds 

Time interval between failures 
 

Time elapsed between observed 
failure fn and the previous failure 
detection fn-1 

Cumulative failures experienced up to 
a given time 

The total number of failures observed 
during testing up until time t. This 
measure can be calculated at fixed 
intervals during testing 

Failures experienced in a time 
interval 

Division of testing into time intervals, 
with the number of discovered 
failures in each interval reported 

 
Table 3.2: Failure measures 
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3.3.3 Randomness of Variables 
 
There is some uncertainty involved in the variables entering the reliability 
model, thus encouraging model users to take into account the possible 
imprecision in generated estimates. The fact that the values of variables are 
random does not imply that the same values are unpredictable, but rather that 
the exact value is unknown [MIO87]. The different values which variables can 
take have a distinctive probability associated with them, denoting the 
likelihood of that particular value occurring. The probability of a variable 
being assigned the value x corresponds to the fraction of tests where x is 
registered. Usually, the value range of a variable is known along with the 
average value and to a certain extent its statistical dispersion. It is a common 
perception among people that the assignment of values to variables adheres to 
a uniform distribution, but according to [MIO87] this assignment does not 
need one specific probability distribution as a basis. 

3.3.3.1 Causes of Randomness 
 

Three main reasons are stated in [MIO87] for the randomness in assigning 
values to variables. First, the process of a programmer unintentionally 
injecting faults into the code, resulting in failures when executed, is highly 
complex and unpredictable. Second, software typically runs in environments 
where human knowledge of conditions under which it operates might be 
incomplete. A third and final issue of interest is that failures depend on faults 
and that a program is run under specific conditions which, together with one 
or more faults, trigger a failure. The latter can be viewed as a combination of 
the first and second cause. Knowing the probability of a certain amount of 
failures appearing within a given time interval, a measure of the average 
number of failures can be found by combining probabilities and the 
cumulative number of failures discovered during that period. 

3.3.3.2 Failure Probability Distribution 
 
The more testing and fault removal is performed, the harder it becomes to 
uncover additional failures, and hence the probability of failure detection is 
not constant. The probability of a variable being assigned a given value is 
destined to change with time; for instance, the likelihood of discovering 
exactly two failures during one hour of testing will differ from the probability 
of detecting the same amount of failures in, say, three hours. This is a 
characteristic of random processes, which “can be viewed as a set of random 
variables, each corresponding to a point in time” [MIO87]. Thus, the number 
of failures detected in the application can be represented as a random process, 
characterized by the probability distribution of the random variables and the 
variance with respect to time. [MIO87] elaborates: ”A random process whose 
probability distribution varies with time is called nonhomogeneous. Most 
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failure processes during test fit this situation”. Poisson distributions are 
frequently employed probability models when dealing with random processes.  
When a process changes continuously with respect to time it is referred to as a 
non-homogenous Poisson process – NHPP. 
 
 

 
Figure 3.3 

Probability distribution for number of  
failures found in one and five hours respectively 

 
How time affects a random process is tried illustrated in the example of figure 
3.3 above. Both graphs depict the probability of assigning a given value to a 
variable, based on a table “showing failure distributions of the cumulative 
number of failures experienced at two different time points” in [MIO87]. The 
darker curve denotes the probability of having found x number of failures after 
an hour of testing, while the brighter of the two graphs presents the probability 
after five hours of testing. As one might expect, it is more likely to uncover a 
higher number of failures during a five hour session than during a mere hour 
of testing. 
 
In order to identify and subsequently remove any faults from the software 
prior to its release, faults need to manifest themselves in the form of 
detectable failures. Two main factors of contribution are listed in [MIO87] 
with regards to failure behavior: 
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  The number of faults in the software being executed 

 The execution environment or operational profile of execution 
 
The occurrence of failures is impacted by how long the software has been 
running, the environment in which it operates and, finally, the operational 
profile used during program execution, which in turn is influenced by the 
overall testing strategy.  

3.3.4 Operational Environment 
 
The environment of a software application is made up of external factors such 
as input to the system and output from the system, which describe the 
operational profile [MIO87]. Practically all software systems process some 
kind of input and produce output although it might not be visible to the end 
user. These variables of input and output may have a multitude of states, and 
as a consequence it is not feasible to test all of them. To accommodate for 
this, the amount of data to be processed is reduced to a subset of all possible 
states during testing. The states which variables may “enter” carry different 
probabilities of application during an operational phase. Thus, it is desired that 
state selection for use during testing corresponds to the state probabilities of 
actual operational use. The main intention is to ensure that tests mirror 
expected system usage once the software becomes operational. 
 
Some systems are dependent on requested input to a be of a particular format 
in order to function properly. In the case of unexpected input this may lead to 
failure for systems lacking robustness. Two classes of states can be deduced, 
namely valid and invalid states, which can be dynamically modified by 
conditions and other states. The values classified as invalid may in many cases 
have less likelihood of being put to use according to an operational profile, but 
are perfectly capable of causing failures if exception handling has not been 
implemented for erroneous input data. Although test data have been selected 
from an operational profile there is no guarantee that all possible input data 
from the entire input space will yield expected results. Thus, to be able to 
assess the precision of the reliability estimate one needs to make sure that 
chosen data cover the system’s input space well, in addition to using the 
operational profile as a basis for input selection. 
 
Probabilities for assigning specific states to system variables are defined in the 
operational profile, hence providing a measure as to the probability of a given 
run being chosen during an operational phase. The cumulative probability of 
all possible runs will, logically, be 100%, but because of resource limitations 
it is highly unlikely that all combinations will be exercised during testing. A 
measure referred to as input space coverage is defined in [MIO87], which 
denotes the sum of all probabilities associated with executed test runs. For a 
given run taking place during the operational phase, this measure will state the 
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probability of the same run having been tested prior to operational use. When 
dealing with vast input spaces the measure will be accordingly modest. 
 
As mentioned earlier, it is an infeasible task for most systems, possibly with 
the exception of simple and easy-to-understand applications, to perform tests 
covering the entire input space. In order to increase code coverage, techniques 
are employed which exploit the fact that a lot of input data are similar. Input 
exhibiting a certain level of similarity are hence grouped together and 
assigned a probability which is the sum of each individual input probability, 
which in turn refers to the likelihood of the current input being selected during 
operational use. A particular value or input is chosen from the input class to 
represent its entire group. This technique, referred to as equivalence 
partitioning in [MIO87] and exemplified in figure 3.4, causes a drastic 
reduction as far as the input space is concerned, but increases the risk of 
neglecting states that may result in system failure.  
 

Figure 3.4 
An illustration of equivalence partitioning 

 
All in all, the picture of what parts of the input space ought to be covered 
appears to be a rather blurry one. In [MIO87] it may seem contradictory to 
first emphasize a broad coverage of the input space, thus running additional 
tests to complement the operational profile, while later stating that in practice 
there is no passable way unless some kind of simplification technique is used, 
leaving considerable input data untested. If there is a conclusion to be drawn 
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from this matter it should be that the process of selecting input data for testing 
purposes needs thorough consideration, in order to satisfy input space 
coverage. A more dedicated and in-depth look at operational profiles is taken 
in chapter 4. 

3.3.5 Reliability Modeling 
 
Three factors are said to impact the reliability of software systems. The first 
factor is the introduction of faults in the code, which depends on 
characteristics of the development process as well as the resulting code, such 
as the size of code and developer tools and knowledge [MIO87]. The second 
factor is removal of faults in the code. Because software engineers know there 
is no silver bullet present that will prevent faults from entering program code 
as development progresses, the fault detection and removal processes need to 
be optimized. Fault removal is dependent on time spent on testing, operational 
profile and the quality of repair activities. Some of the revealed faults might 
not be eliminated or  correctly removed as a result of unsatisfactory 
documentation of detected failures or lack of structure and clarity in the 
source code [MIO87]. The third and final factor is the environment, which 
directly governs the operational profile of the system. If the environmental 
representation of the operational profile turns out to be imprecise, it is set to 
affect reliability estimates more or less significantly. 
 
Reliability representation Definition 
Failure intensity Average number of failures per unit 

of time, typically per hour. The 
advantage of this measure is the fact 
that it requires only one number to be 
stated  

Reliability Probability of failure-free operation 
in a given time interval 

Mean Time To Failure Denoting the average number of a 
chosen time unit (minutes, hours, 
days) between successive failures in a 
system. Frequently used by hardware 
vendors, but less common in software 
reliability 

 
Table 3.3: Alternative representations of reliability 

 
[MIO87] claims that “since some of the foregoing factors are probabolistic in 
nature and operate over time, software reliability models are generally 
formulated in terms of random processes”. Existing reliability models are 
distinguished by the probability distribution of failure times and number of 
failures detected, as well as variations in the random process over time. A 
software reliability model specifies a general dependency between the failure 
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process and the aforementioned factors. Because reliability is defined with 
respect to time these models are referred to as time-based models. However, 
this does not rule out the possibility of alternative representations of reliability 
conveying useful information about software reliability. There are a multitude 
of ways of describing the failure process, and this fact is put to good use by 
the models. 
 
The estimates generated by the reliability models can be applied in several 
ways. The most common representations of reliability are presented in table 
3.3 above. Failure intensity is usually the preferred choice because it exists at 
all times and “because they combine additively” [MIO87]. 

3.3.6 Parametrizing the Model of Choice 
 
A reliability model is not a mere function that can be put to use straight away. 
The models are presented as general mathematical expressions with non-
defined parameters that depend on the particular system for which reliability 
estimates are being produced. Thus, the set of parameters associated with the 
model of preference has to be determined before its intended function can be 
performed. The process of determining the parameters can be accomplished in 
one out of two proposed ways [MIO87]: 
 

 Estimation  
– parameters are determined by estimating a value based on failure 

data from early rounds of testing 
 

 Prediction 
– parameters are established by considering properties of the system 

and the development process 
 
Both of these approaches introduce added uncertainty to the numbers used in 
estimating reliability. Uncertainty is typically expressed in the form of 
confidence intervals for parameters used to create a specific instance of the 
chosen model – a model parametrized for a particular software application.  
 
With a parametrized reliability model in place, [MIO87] lists the following 
findings possible: 
 

 The average number of failures experienced at any point in time 
 The average number of failures in a time interval 
 The failure intensity at any point in time 
 The probability distribution of failure intervals 

 
It is desirable for a reliability model to possess a variety of properties. Among 
other things, a model should be capable of giving “good predictions of future 
failure behavior” and be “based on sound assumptions” [MIO87]. The initial 
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property can be viewed as elementary and a matter of course, since the 
fundamental intention behind a reliability model is to quantify the reliability 
of a software system. The second property regarding sound assumptions is 
somehow connected to the first property in that complete confidence can not 
be put in a model whose assumptions are not supported. Model assumptions 
generally relate to how the operational environment of a system, as specified 
in the operational profile, does not change, but is kept constant. 
 
A reliability model may prove useful beyond generating reliability estimates 
for applications. Its ability to enhance communication is underlined in 
[MIO87], stating that high-quality models improve project communication 
and provide a common framework for increased understanding of the 
development process. Additionally, a model is capable of promoting visibility 
to management and other stakeholders. These are essential advantages even if 
the resulting predictions were to end up imprecise or useless at worst, 
especially considering the relatively modest resource consumption involved in 
making use of an existing model. Developing a reliability model from scratch, 
however, requires substantial amounts of theoretical work, tool building and 
accumulation of practical knowledge [MIO87]. 

3.3.7 Model Variants 
 
Several reliability models exist that are geared towards software. The first 
models appeared during the early 1970s, and as of today well over 100 distinct 
models are published. This section is devoted to models fitting the black box 
category – models which view the system as a monolithic unit. White box 
models, on the other hand, regard software systems as a constituted set of 
modules. Each module carries its own reliability and the overall system 
reliability can be estimated by exploiting knowledge of how the individual 
modules execute. For the purpose of this report we have chosen to focus on 
black box reliability models, since models belonging to this category have 
been the ones mentioned explicitly in published articles on code coverage and 
reliability. Black box models distinguish themselves from one another by 
means of: 

 
 Different statistical distributions are used in the models to represent the 

average number of failures experienced versus execution time 
 Diverse assumptions are made 
 Different factors are taken into account that are said to affect reliability 

 
Some models are more renowned and more frequently employed than others, 
and several models are strikingly similar because their foundation is based on 
earlier models. A selection of principal models are presented briefly and in 
cronological order below. The presentation is merely intended to give a flavor 
of the respective elements of each model and the main assumptions they 
make. A more thorough approach is taken in chapter 5 with regards to the 
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Musa-Okumoto model, which will be utilized in considering the possibility of 
reliability model implementation in JCoverage. 

3.3.7.1 Jelinski and Moranda/Shooman (1971) 
 
These practically identical models were two of the earliest reliability models 
to be developed. According to ”Software Reliability Engineering” by Michael 
Rung-Tsong Lyu [Lyu05], they were basically published at the same time 
with no knowledge of one another and make a number of assumptions. Firstly, 
the number of faults in the code is assumed to be fixed prior to testing and 
fault removal is not expected to introduce new faults. Moving on, the number 
of machine instructions is assumed to be more or less constant and an 
operational profile ought to be present. Finally, the detection rate is presumed 
to be proportional to the remaining number of faults in the code. As a result, 
the model is said to have a “hazard rate” that decreases linearly with time 
[Lyu05]. 

3.3.7.2 Littlewood-Verrall (1973) 
 
According to ”A Survey of Software Reliability Models” authored by Ganesh 
J. Pai [Pai02], the Littlewood-Verrall model is one of the most complex ones, 
requiring substantial resources and hence considered to be an expensive 
alternative. The model is referred to as a Bayesian software reliability growth 
model which consider ”reliability growth in the context of both the number of 
faults that have been detected and the failure-free operation. Further, in the 
absence of failure data, Bayesian models consider that the model parameters 
have a prior distribution, which reflects judgement on the unknown data 
based on history e.g. a prior version and perhaps expert opinion about the 
software” [Pai02]. 

3.3.7.3 Goel and Okumoto (1979) 
 
The Goel-Okumoto model assumes that the average number of failures 
experienced can be described by a Poisson distribution and that the expected 
number of failures observed is a finite number in infinite time. Further, the 
amount of failures discovered is assumed to be constant with respect to time, 
as was the case with the Jelinski and Moranda-Shooman models [Pai02]. 

3.3.7.4 Basic Musa (1979) 
 
The same year in which the Goel-Okumoto model was introduced also saw 
the emergence of the Basic Musa reliability model. The main assumption of 
this model is that the number of failures observed at a time t is finite and 
follows a Poisson process. Contrary to existing models at the time, execution 
time is used in the estimation process. Execution time between failures is 
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assumed to be exponentially distributed and the number of failures 
encountered is taken to be constant with regards to time [Pai02]. 
 
3.3.7.5 Musa-Okumoto (1984) 
 
The Musa-Okumoto model, appearing five years after both Okumoto and 
Musa launched their initial reliability models, employs execution time in 
estimation, as was the case with the Basic Musa model. The Musa-Okumoto 
model, exhaustively described in [MIO87] and known as the ”logarithmic 
Poisson execution time model”, predicts fewer failures to be found as time 
and testing progresses. The number of failures is, contrary to the Goel-
Okumoto model, not considered to be a finite number as time approaches 
infinity. 

3.3.8 Reliability Model Usage 
 
For smaller projects, estimation is likely to yield imprecise results, and hence 
the use of reliability models is generally not recommended. For more 
comprehensive projects it is important to take into account the assumptions 
made by the available models and to ensure consistency between the 
assumptions and system data; for instance deciding whether data obtained 
from executed tests fit the probability distribution of the chosen model. As 
[Pai02] points out, there exists no universal model that can be completely 
trusted in all possible situations, since it is virtually impossible to determine 
what factors affect the correctness of any model. 
 
Software reliability models are used for a number of purposes. One intention 
can be to perform retrospective estimation to determine achieved reliability 
from one specific point in time to the present. An alternative target can be 
reliability prediction by parametrizing chosen models and utilizing available 
data. With the existence of numerous models it might be tempting to employ 
all of them and subsequently compare the results to obtain a realistic estimate. 
This strategy is feasible for objects of research, but the use of more than two 
models for real-life projects is seen as economically impractical [MIO87]. 
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”If you think you can, you can. And if you 
 think you canʹt, youʹre right.” 

Henry Ford  
 
CHAPTER 4: 

Code Coverage and Reliability 
CHAPTER 4: Code Coverage and Reliability 

Now that we have covered the essentials of code coverage analysis and taken 
a look at some issues of reliability and estimation through the use of reliability 
growth models, it is time to consider the relationship between code coverage 
and reliability. We begin this chapter by defining some critical terms within 
this context, before moving on to operational profiles and the saturation effect 
– two pivotal factors when it comes to testing and software reliability in 
general. With these elements in place, we further seek to uncover what 
findings and conclusions have been made with respect to the relationship 
between code coverage and reliability. 
 

4.1 Term Definitions 
 

n order to add clarity and avoid ambiguity in the later sections of this 
chapter, we find it useful to define and explain a few essential terms and 
concepts. According to IEEE, reliability is defined as ”the ability of the 

system or component to perform its required functions under stated conditions 
for a specified period of time”. A more mathematical interpretation defines 
reliability as the probability that no error will occur in a given time interval: 
Reliability = P (no error in [0, t >). 
 
However, some articles such as [Ham94], find it necessary to distinguish 
between reliability and dependability – a formal notion of trustworthiness, by 
claiming that an application may well be trustworthy if failures occur that are 
of negligible importance, yet these failures will affect reliability negatively. 
On the other hand, a potentially catastrophic failure may influence reliability 
insignificantly if it occurs in low-usage functionality, yet it is destined to 
affect the user’s confidence in the software greatly. We will get back to the 
issue of dependability, as well as operational profiles, later in this chapter. 
 
Another term frequently referred to, is testability. Statements that are easy to 
reach are said to have high testability, whereas statements that will only get 
exercised in rare scenarios, such as error management code, typically have 
low testability [Mal+94]. Hence, pieces of code or statements with high 
testability are likely to be covered by running a moderate number of tests. 
However, a fault in the source code needs to result in an observable failure 
during testing in order for testers to detect it, and this is not always the case. 
According to [Ham94], a software program with high testability will be seen 

I 
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to fail if capable of failing. The same article believes that testability might be 
a practical way of measuring dependability by using sub-domains of coverage 
testing as a basis for testability measurements. 
 

4.2 Operational Profiles 
 

perational profiles have come to play a vital part in testing and 
software reliability engineering. An operational profile strives to 
mirror actual system usage by allocating realistic probabilities “to 

various subdomains of the identified target input domain”, according to Garg 
Praerit in his article titled “Investigating Coverage-Reliability Relationship 
and Sensitivity of Reliability to Errors in the Operational Profile” [Gar94]. 
The majority of existing time-based reliability models rely on testing being 
executed in accordance with an operational profile of the system. However, as 
we will see, operational profiles pose some intricate challenges as well. A 
conceptual division of the input domain is captured in figure 4.1. 
 

 
Figure 4.1 

The operational profile deals with 
 the identified input domain 

 

4.2.1 Purpose of Operational Profiles 
 
The intuitive purpose of an operational profile is to be able to perform realistic 
testing that resembles how the end product will be utilized. By acquiring 
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knowledge of an operational profile one is able to better understand what test 
cases to apply and in what order. Based on this, testing should be able to 
detect failures and their respective faults in accordance with their occurrence 
frequency. According to John D. Musa in his book “Software Reliability 
Engineering: More Reliable Software Faster And Cheaper” [Mus04], the 
approach of employing operational profiles “rapidly reduces failure intensity 
as test proceeds, and the faults that cause frequent failures are found and 
removed first”.  
 
The Testing Standards Working Party and its “Reliability Guidelines” [TS04] 
emphasizes the usefulness in guiding system testing so that the most critical 
parts and features of the application have benefited from extensive effort and 
hence contributed to optimizing reliability by finding faults in high-usage 
functions. Additionally, the assignment of probabilities to functions in the 
software can drive resource management through both development and 
testing. Another feature of operational profiles is how operations easily map to 
use cases and thus fits in neatly with modern-day object-orientation. For some 
applications it might prove feasible to develop supplementary operational 
profiles that are tailored to different modes of operation and their criticality 
[TS04].  

4.2.2 Problems and Challenges 
 
Most time-based reliability models, such as the well-known Musa-Okumoto 
model, presume that testing is performed based on an operational profile that 
mirrors expected system use. Inevitably, this approach might leave parts of the 
code untested – code that could potentially contain faults resulting in failures. 
Thus, the accuracy of the operational profile is essential. If the match between 
operational profile and actual system usage turns out to be unsatisfactory, the 
parts of code and functionality not exercised or only superficially tested could 
turn out to be considerably more important than what the profile suggested. 
Thus, reliability estimates are at the mercy of profile precision. 
 
There are, however, situations where an operational profile is unknown. If a 
completely new software application is being developed, an operational 
profile would be unavailable. Other systems might not have an existing profile 
because it seems infeasible to estimate it, or that the prospect of developing 
one – facilitating data collection and subsequent analysis – would prove too 
costly. According to [Gar94], an existing operational profile might turn out to 
be insufficient in estimating the reliability for new or considerably modified 
software. An experiment was performed that sought to determine the 
sensitivity of reliability to errors in an operational profile. Two profiles were 
developed and both were employed while testing a UNIX program that 
contained ten injected faults. The experiment revealed that two different 
operational profiles resulted in vastly differing outcomes when testing the 
same program. Hence, there is little doubt that, because of the sensitivity, 
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incorrect estimates in the operational profile may lead to drastically 
misleading reliability estimates 
 
In their article ”On Software Reliability and Code Coverage”, Richard M. 
Karcich, Robert Skibbe, Aditya P. Mathur and Praerit Garg [KSMG96] high-
light the “danger” in relying on incorrect or inaccurate operational profiles 
when choosing a set of tests. They rightfully claim that undiscovered faults 
may lurk in parts of code that will remain untested because of the profile and, 
as we pointed out earlier in this section, instances of inaccuracy could result in 
frequent user execution of poorly tested functionality. The conclusion has to 
be that if a company opts for operational profiles as a corner-stone in testing 
efforts, they better make sure they have the necessary prerequisites and 
resources to attain a satisfactory level of precision. Developing operational 
profiles half-heartedly will most likely result in a less reliable product than if 
testing had been undertaken without the presence of a profile. 
 

4.3 Reliability Overestimation 
 

xisting reliability growth models tend to overestimate the reliability of 
software. One of the main contributors to overestimation is the 
saturation effect. In this section we will look at the latter effect and a 

proposed way of how code coverage can help to make reliability estimates 
more accurate. 

4.3.1 Saturation Effect 
 
Aditya P. Mathur and Vernon J. Rego claim that functional or structural 
testing methods suffer from the phenomenon of saturation effect, in their 
article “White-box Models for the Estimation of Software Reliability” 
[MR96]. This effect refers to limitations of the functional testing methods in 
revealing faults in the tested application. Typically, as testing proceeds fewer 
and fewer faults are being discovered, and some faults are destined to survive 
no matter how many tests are applied. The reason for this is that remaining 
faults may hide in parts of the code that, according to the operational profile, 
represent low-usage functionality, in combination with tests being incapable 
of revealing all faults. Chapter 4.4.3.2 will look at how the use of mutation 
coverage can demonstrate the inability of tests to discover all faults in the 
code. As a result, the fault-detecting ability of functional testing is said to 
saturate with time and effort spent on testing. This is illustrated in figure 4.2, 
where curve A represents fault-detecting behavior as seen by most reliability 
models, whereas B mirrors actual or more realistic progress as testing 
proceeds. 
 
According to Mei-Hwa Chen, Michael R. Lyu and Erik Wong in the article 
“Effect of Code Coverage on Software Reliability Measurement” [CLW01], 

E 
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empirical studies suggest that overestimation exists because of the reliability 
growth models’ inability to take the saturation effect into consideration. These 
models predict an increase in reliability as more time and effort is spent on 
testing, no matter the increase in number of faults detected or the 
improvement in code coverage.  

4.3.2 Pre-process Model for Improved Reliability Estimates 
 
Time-domain reliability models use failure history obtained during testing to 
predict program behavior, often with contribution from one or more 
operational profiles [CLW01]. However, as we have seen, developing an 
accurate operational profile and dealing with the saturation effect of functional 
testing methods pose significant challenges. According to [CLW01], empirical 
and analytical studies reveal an over-optimistic tendency in reliability 
estimates. Clearly, there is a need for techniques that pre-process test data 
before passing them on to the reliability models presented in chapter 3, with 
the purpose of producing improved estimates. 
 

Figure 4.2 
Illustration of the saturation effect 

 
Time-domain models estimate reliability based on the failure rate and the time 
spent on testing. Hence, they predict an increase in reliability when running 
tests that do not discover additional failures. As testing progresses and faults 
causing failures are removed, the time interval between successive failures 
increases, as do the estimates from reliability growth models. The risk of 
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overestimation grows the more redundant a testing effort turns out to be. In 
order to deal with this challenge, an approach is recommended that uses code 
coverage information to adjust failure rates prior to reliability estimation. 
[CLW01] refers to empirical studies suggesting that fault detectability 
statistically correlates with code coverage, and hence that software reliability 
correlates with code coverage. Intuitively then, code coverage information can 
be exploited to assess the effect of a particular test case. Time intervals 
between failures are modified for testing efforts that are redundant with 
respect to a chosen coverage criteria, with the intention of reducing their 
influence on results produced by time-domain reliability models [CLW01]. 
Test cases that neither encounter failures, nor increases code coverage are 
considered ineffective. 
 
We have chosen to follow the test case definition given in “Testing 
Applications on the Web, Second Edition” by Hung Q. Nguyen, Bob Johnson 
and Michael Hackett [NJH03]. They consider a test case to be ”a test that 
(ideally) executes a single well-defined test objective (e.g., a specific behavior 
of a feature under a specific condition). Early in testing, a test case might be 
extremely simple; later, however, the program is more stable, so you will need 
more complex test cases to provide useful information”. Since so-called 
ineffective test cases contribute to an increase in the estimated reliability, even 
after test case data have been pre-processed and hence been given a reduced 
effect on reliability, this technique mainly strikes us as a means of compelling 
testers to further testing. Thus, the practical outcome of employing this 
approach appears to be an expanded test set which may include supple-
mentary tests that uncover no additional failures. 
 
[CWL01] views time and code coverage as essential factors when predicting 
failures, and consequently combines them to extract effective testing efforts. 
A measure, ρ, is used to denote the effective part of the execution time for a 
given test case, and is computed based on the relative increase in time and 
code coverage. An experiment is referred to that was performed in a 
simulation environment, where reliability overestimation from the renowned 
Goel-Okumoto and Musa-Okumoto models was shown to decrease 
significantly by considering effective testing efforts. Moreover, the study 
confirmed that adjusted values for testing efforts based on code coverage 
information resulted in far more accurate estimates from reliability growth 
models when compared to the actual, observed reliability [CLW01]. 
 

4.4 The Code Coverage – Reliability Relationship  
 

he extensive use of failures detected during testing as an indirect 
measure of reliability requires strong assumptions about test cases and 
testing in general. Hence, employing code coverage to estimate reli-

ability seems like a more direct approach, in the sense that thorough, well-
T 
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covered testing is assumed to decrease the likelihood of experiencing failures 
and hence contribute to the trustworthiness and reliability of software. The use 
of code coverage also solves problems related to data collection and 
assumptions regarding test case distribution. Intuitively, a causal effect will 
exist between code coverage and defect coverage. Since both code coverage 
and defect coverage increase with test intensity or time, it is, however, hardly 
surprising that empirical data suggest the presence of a relationship [BP00]. A 
wealth of articles propose their own models and present findings and results – 
both positive and negative – from empirical investigation and theoretical 
analysis. In this section we try to summarize models encountered and 
conclusions reached within the code coverage – reliability relationship, based 
on available publications. 

4.4.1 Models for Relating Code Coverage to Reliability 
 
A few selected models will be presented below to give an overview of ways of 
connecting code coverage to software reliability. The model descriptions aim 
at giving an overall impression of the models and their feasibility, while 
specific details and the determination of parameter values are left to the 
respective articles. 

4.4.1.1 Node-based Reliability Model 
 
Pankaj Jalote and Y. R. Muralidhara describes a coverage-based model in 
their article “A Coverage Based Model for Software Reliability Estimation” 
[JM94]. The model bases its estimation on the coverage history of a program 
and the fact that most software applications consist of several modules. A 
program is represented as a flow graph where each node corresponds to a 
module. The number of times that each of the modules are being exercised is 
registered and used to estimate module reliability along with the runtime 
during system testing. The reliability of a node is assumed to increase in step 
with the number of executions. In the example flow graph depicted in figure 
4.3 below, the edges connecting the nodes represent a possible transfer of 
control and carry a computed weight denoting the probability of a control 
transfer taking place from node a to node b. These probabilities are then used 
to determine the overall reliability of the system. Logically, the sum of all 
edges going out of a node should be 1.0. 
 
The reliability of a node is given by the following equation: 

 
 
 

Here, t denotes the time spent in the system, while λi reports the average 
failure rate of module i with respect to time [JM94]. Total system reliability is 
obtained by traversing different paths, preferably in accordance with an 
operational profile, where path reliability is computed as the product of all 
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reliability values of the nodes or modules it consists of. Each path going from 
start to finish represents a valid execution of the program. According to 
[JM94], the two parameters which require value assignment can be viewed as 
reasonably constant throughout, assuming that all nodes have comparable 
sizes and that similar development techniques have been employed. These 
parameters are, to a large extent, a function of general software properties and 
hence relatively stable within the organization undertaking development 
projects. 
 

 
Figure 4.3 

Node representation of software 
 
[JM94] puts an emphasis on how this coverage-based technique seems more 
effective and cost-effective compared to most existing reliability models, 
which perform random testing until additional failures have been discovered. 
Having computed the reliability estimates for the software, testers can decide 
whether sufficient testing has been done with respect to the entire system or 
specific modules. The approach is considered practical because of how 
achieved coverage directly estimates reliability and thus requires less 
extensive data collection. On the downside, they have no experiments 
verifying the suitability of the model. We also question whether the article 
actually refers to code coverage in the way that we define the term. The model 
assumes that node failures are independent of failures in other nodes, justified 
by the hypothesis that this is the case with large modules or modules of a 
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certain size. Thus, for smaller modules this independence might not be 
present. The fact that coverage is measured based on modules as opposed to 
other code elements might not have such an impact. However, it puzzles us 
how the share of tested code, or modules in this case, appears to be neglected. 
Instead they register the number of times a module is tested and use this 
information as a basis for reliability estimation. This strikes us as a measure of 
test intensity more than of code coverage. 

4.4.1.2 Logarithmic-exponential Model 
 
A logarithmic-exponential approach is presented in [MLBK02] that models 
the relation between time spent during testing, code coverage and reliability. 
In accordance with what was written in [JM94], the article sees code coverage 
as a direct measure of how thoroughly a system has been exercised, in contrast 
to the traditional measure of test intensity. This fact, along with the emergence 
of tools that are capable of tracking coverage measures automatically, suggest 
that the relationship between code coverage and reliability deserves renewed 
attention. Additionally, developing a model that relates code coverage to 
reliability opens up the possibility of computing estimates with respect to 
defect density. 
 
The proposed model employs the logarithmic growth model of Musa and 
Okumoto, and assumes that code coverage follows a logarithmic 2-parameter 
model which can be transformed to a 3-parameter model if feasible. It is based 
on the hypothesis that different parts of the code have different probabilities of 
being executed during testing – just as some faults and failures are less likely 
to be detected than others. In this way [MLBK02] wants to relate a measure of 
code coverage to a measure of defect coverage. The model takes into account 
that not all faults need to be found at 100% coverage, since ”full statement 
coverage can be reached before full branch-coverage because of the sub-
sumption hierarchy”. Test sets should not be randomly chosen from a 
distribution based on an operational profile, but rather selected with the 
purpose of driving testing towards input and program components with a 
greater likelihood of faults and failures being present. This approach is 
expected to speed up detection of failures and the underlying faults causing 
them. Having executed program code with input corresponding to a chosen 
distribution, a reliability growth model can be used to predict the effort 
needed to satisfy product reliability requirements [MLBK02]. However, 
candidate reliability models must be able to estimate reliability based on tests 
that do not employ a data subset of the operational profile. 
 
The article highlights three factors that are considered crucial to the attained 
reliability. These factors are: 
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 Test strategy employed 
  Amount of time spent during testing 
  Testing of low-usage modules 
 
As far as time spent during testing is concerned, this has to be measured as 
execution time instead of calendar time. Parallel testing and automated testing 
tools render possible the execution of considerably more tests and operations 
in the software than what would be the case in an operational phase. The last 
of the three factors is concerned with how thoroughly low-usage functionality 
has been tested. This typically includes code elements such as error-handling 
routines. Although hard to test, they are critical components of the software 
that require high reliability. Interestingly, the importance of testing low-usage 
modules and routines thoroughly seems to be a matter of great dissension. 
Whereas [MLBK02] emphasizes the significance of testing these areas 
properly, others seek to lower the priority of low-usage testing and hence 
focus on the parts of the application that are more frequently exercised. 
 
The reason why a logarithmic growth model is chosen is the defect detection 
behavior when performing non-random testing – that is, selecting a test case 
with the intention of exercising untested functionality. Parameter 
interpretation is a challenge; however, logarithmic models have two 
advantages when used to describe testing efforts and enumerables covered 
[Mal+94]: 
 

 Superior prediction of number of defects 
 Accounts for 100% coverage achieved in finite time 

 
The achieved coverage is, as mentioned earlier, not solely dependent on the 
number of tests applied. The distribution of testability values for several 
enumerables must be taken into account as well [Mal+94]. 

4.4.1.3 Hyper-geometric Distribution Model 
 
In the article titled “Test Coverage Dependent Software Reliability Estimation 
by the HGD Model” by Raymond Jacoby and Kaori Masuzawa, a software 
reliability growth model is presented which is capable of making “estimations 
for various kind of real observed test and debug data” [JM92]. A parameter 
referred to as the “ease of test” function plays a pivotal part in the HGD 
model. This function denotes the number of faults uncovered by a certain test 
instance. Apparently the model does not assume that faults found in previous 
test instances are removed or corrected prior to the execution of the next test 
instance. Thus, faults discovered by a particular instance may well have been 
detected earlier during testing. 
 
The “ease of test” measure is estimated based on an estimate of the initial 
number of faults in the software and a function representing the effort spent 
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on testing. In [JM92] code coverage is then integrated into the function of 
estimating testing efforts. The following “ease of test” function is proposed: 
 

 
 

 
In this equation E[m] is an estimate of the number of faults residing in the 
application, while tc(i) denotes a function showing a linear progression trend 
in code coverage, returning values in the interval 0 to 1. According to [JM92], 
other functions might yield a more realistic picture of the progress. The 
remaining parameter in the equation above, Ci, is a constant suggesting how 
good the tests are at discovering faults. As we already know, there is no 
guarantee that faults will be detected even though the code lines causing them 
are being executed. As a consequence, this constant is a measure of how well 
the tests have been designed to intercept existing faults, and hence Ci is 
assumed to be assigned values between 0 and 1. Taking a closer look at the 
“ease of test” expression, a test with 0% code coverage will, according to the 
function, end up not uncovering any faults, as expected. And even with 100% 
code coverage the number of discovered faults will be dependent on the 
constant Ci, which is also to be expected. 

4.4.1.4 Detectability Profile Model 
 
A method described in [Mal+94] estimates several code coverage measures 
based on detectability profiles. The rationale for a detectability profile is that 
different code lines, functions, blocks of code – often referred to by the 
generic term enumerables – have different probabilities of being executed by 
randomly generated tests. The probability of each enumerable being exercised 
depends on the parts of code in which it is “wrapped”. Enumerables that are 
hidden in code implementing low-usage functionality according to an 
operational profile, will typically have low detectability. In many ways 
detectability relates closely to testability, as defined in chapter 4.1 earlier. 
However, detectability takes into account the probability of the code 
containing faults actually causing an observable failure during testing. 
 
Detectability profiles can be employed as a means of estimating code 
coverage after a given number of tests have taken place. This would assume 
random generation of test sets based on an operational profile, along with an 
established detectability profile. Unfortunately, the creation of an accurate 
detectability profile requires substantial work. By conveying information on 
when given levels of code coverage will be achieved during testing, the 
concept of a detectability profile does not directly improve reliability 
estimation.  On the other hand, one might argue an indirect effect on 
estimating software reliability if code coverage can be verified to improve 
predictions. The main features of this and other models outlined in this 
chapter are summarized in table 4.1. 
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Model Characteristics Strengths & weaknesses 
 
Node-based 

 
- estimation based on 
coverage history 
- flow graph representation 

 
+ less extensive data collection 
÷ no verifying experiments 
÷ assumes independent  node 
failures 

 
Logarithmic-
exponential 

 
- Musa-Okumoto reliability 
growth model 
- relate a measure of code 
coverage to a measure of 
defect coverage 
- driving testing towards 
input and components 
likely to contain faults 

 
+ superior defect prediction 
÷ difficult parameter 
interpretation 
 

 
Hyper- 
geometric 

 
- ease-of-test function 
based on testing efforts and 
initial number of faults 
- code coverage included in 
estimations of testing effort 
 

 
÷ nontrivial determination of 
constants 

 
Detectability 
profile 

 
- detectability profile 
generation for various 
enumerables 
- use of operational profile 
- a means of code coverage 
estimation 
 

 
÷ accurate detectability profile 
requires extensive processing 
 

 
Table 4.1: Summary of models incorporating code coverage 

 

4.4.1.5 Influential Factors to the Coverage – Reliability Relationship 
 
Judging from existing literature on the relationship between code coverage 
and reliability, the findings with regards to impacting factors appear to be 
more suggestive than resolute. [KSMG96] poses the question of whether 
conclusions stemming from experiments conducted on smaller programs, are 
valid for greater and more complex applications. Hence, both size and 
complexity should be viewed as non-negligible factors until experiments 
conclude the opposite. The same article suggests that reliability estimates 
could end up imprecise and at worst misleading, if the number of people 
involved in the development process is relatively small. Then again, defining 
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what numbers are small and what numbers are not, is likely to vary by context 
and company. 
 
Another factor frequently mentioned in articles is the application domain. 
[FGMP95] concludes that the domain does not appear to have any significant 
impact on the code coverage – reliability relationship, but instead assumes that 
factors such as code complexity, as already noted, might play a more pivotal 
role. 

4.4.2 Experimental Results and Conclusions Reached 
 
In this section we will look at what positive findings have been made based on 
experiments described in reliability literature. For now, the focus will be on 
conclusions, hypotheses and reasoning that are in favor of an existing 
relationship between code coverage and reliability. However, the center of 
attention will be the results obtained while giving a proper explanation as to 
how they came about, and not detailed figures of the multitude of experiments 
conducted. 

4.4.2.1 Code Coverage – Reliability Correlation 
 
[Gar94] is one of the articles that produced positive results with respect to the 
aforementioned relationship. In this experiment ten faults were injected into a 
software program with the purpose of investigating the sensitivity of 
reliability to operational profiles. In addition to concluding that two different 
operational profiles provided vastly contrasting results from testing the same 
program –  as was mentioned in chapter 4.2.2 – reliability was seen to increase 
in step with code coverage. Although reliability had a monotonic increase as 
code coverage increased, the variance between different coverage measures 
was significant. Code coverage was also seen to increase the more faults were 
discovered in the sample application. Furthermore, both reliability and code 
coverage showed similar staircase growth curves with respect to remaining 
faults in the program, thus signaling that neither coverage, nor reliability will 
necessarily increase as more faults are found. This does not imply the view 
that the number of remaining faults in a program equals its reliability, but 
rather that this number is assumed to affect reliability to a certain extent. On 
the other hand, reliability was shown to increase when code coverage 
increases – a fact that contradicts the theoretical foundation of existing 
reliability models, namely that reliability grows with each fault uncovered. 
However, such a hypothesis needs confirmation by taking into account the 
various application domains and parameters such as fault density, fault 
distribution and error types of other software programs [Gar94]. Although the 
results obtained show a strong correlation between actual reliability and code 
coverage, there is no foundation for generalizing the results until further 
experiments have taken place. 
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The issue of generalizability of experimental results within the field is a point 
of concern in [KSMG96]. The authors ratify that several experiments have 
been carried out within the topic, however, they remain sceptical as to the 
external validity of these experiments. Typically, the programs selected have 
been small and relatively simple when comparing them to commercial 
software products. Development environment is also launched as a potential 
factor of impact on reliability estimates, in addition to the ones mentioned in 
chapter 4.4.1.5. Smaller programs are on average developed in smaller, less 
complex development environments than what is the case with commercially 
developed systems. Hence, [KSMG96] conducted an experiment with a C 
program containing an amount of code lines in the hundred-thousands range, 
and constructed in an environment consisting of several full-time developers. 
 
Data analysis was performed with two primary intentions in mind; to establish 
the predictive accuracy of the Musa-Okumoto and Goel-Okumoto reliability 
models, and determine the correlation between errors in prediction and 
changes in coverage. [KSMG96] employs the term Mean Test Case To Failure 
– MTCTF, and seeks to predict MTCTF for future weeks based on failure data 
from previous weeks. This measure is computed by dividing the number of 
test cases performed in a given period, by the relative increase in failure 
count.  Results obtained from the experiment indicated that an increase in at 
least one coverage measure was accompanied by an increase in the actual 
MTCTF. Also, the difference between estimated reliability stemming from the 
Musa-Okumoto model, and the actual reliability, was seen to vary 
significantly throughout the testing process. Errors in predicting MTCTF 
seemed to follow at least one of the coverage measures. Thus, if estimation 
errors increased, then so would coverage values, however, ”when the 
coverage measure does not increase or change significantly, the error 
decreases due to the data tracking ability of the Musa-Okumoto model” 
[KSMG96]. Any lack of precision could, according to the authors, be a result 
of not using an operational profile in the experiment. 
 
With reference to the latter experiment, the Musa-Okumoto reliability model 
does not seem to be capable of making MTCTF estimates sufficiently precise. 
This fact is likely due to the model’s lack of knowledge as to how thoroughly 
a system has been tested up until now, and hence, an increase in module 
coverage may result in a drastic increase in the number of failures, yet the 
reliability model will fail to predict this [KSMG96]. During reliability 
estimation, then, improved MTCTF estimates seem likely to result from 
considering coverage in addition to failure data. Statistical correlations 
between the error in MTCTF predictions and the chosen coverage measures – 
module coverage and branch coverage – were computed to 0.76 and 0.60 
respectively. This leads to the hypothesis that high MTCTF estimates from 
reliability models, along with relatively low coverage, indicate an over-
estimation which, in turn, could lead to a non-negligible risk for software 
requiring exceptional reliability. 
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4.4.2.2 Fault Removal Behavior 
 
Fabio Del Frate, Praerit Garg, Aditya Mathur and Alberto Pasquini seek to 
uncover possible connections between code coverage and reliability in their 
article ”On the Correlation between Code Coverage and Software 
Reliability” [FGMP95]. An empirical investigation is performed based on a 
four-step methodology. In short, these four steps are: 
 

1) Selecting software programs for use in the experiment 
2) Generating operational profiles 
3) Creating a set of faults and preparing fault seeding of the chosen 

programs 
4) Generating data for code coverage and reliability, respectively 

 
The first two steps are reasonably straight-forward to comprehend. In step 3 
numerous faults are injected into the program source code based on previously 
created fault sets. The final stage of the methodology implies that the 
reliability of a program has to be measured for each operational profile, every 
time a fault is detected and subsequently removed. Furthermore, the current 
program version has to be executed ”on test data generated randomly from 
the selected operational profile until a failure occurs” [FGMP95]. The fault 
responsible for the largest number of failures must be identified and then 
removed, thus resulting in a new ”version” of the program. 
 
For each of the selected programs, reliability and code coverage values were 
measured after each fault had been removed. Results obtained indicate that 
code coverage may decrease, increase and even remain unchanged upon fault 
removal. One plausible reason for code coverage to decrease having removed 
a fault from the source code, is a phenomenon referred to as fault masking. 
Fault masking implies one fault in the source code preventing a second fault 
from being detected. Once the first fault, in this case, is removed, a marginally 
smaller part of code will be executed, hence resulting in lower code coverage. 
[FGMP95] takes the following approach when explaining fault masking, 
where P represents a random program: ”There is no test case in the input 
domain of P that will reveal f2, and there is at least one test case in the input 
domain of P that will reveal f2 after f1 has been removed”. Another 
explanation for decreasing coverage could be that the fault removal requires 
additional code to be made. If the existing test cases fail to exercise newly 
added code portions, a coverage reduction will be the outcome. This will have 
a greater impact on coverage percentages if the number of code lines added 
are many when compared to the total size of the program. 
 
Analysis also showed that reliability can go in all directions upon removing a 
fault, as was the case with code coverage. Decreasing reliability may also be a 
consequence of fault masking. By removing a fault, a subsequent fault might 
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get exposed and thus lead to the program failing on a more frequent basis. 
However, based on data observations [FGMP95] concludes that ”an increase 
in code coverage is always accompanied by an increased or unchanged 
reliability”. Furthermore, observations of code coverage and reliability 
measures increasing, decreasing or remaining unchanged when faults are 
removed, along with an increase in code coverage resulting in unchanged or 
increased reliability, are claimed to be independent of software complexity 
measures. 
 
Finally, the statistical correlation between code coverage and reliability was 
computed to be in the range of 0.89 to 0.99 for larger programs. However, the 
statistical correlation varies significantly for smaller programs, whereas larger, 
more comprehensive software applications produce higher and more stable 
correlation values. In spite of intensive program executions, [FGMP95] 
reports that none of the coverage measures employed reached their maximum 
levels. 

4.4.3 Critics and Experimental Weaknesses 
 
Not all published articles report positive findings as far as the code coverage – 
reliability relationship is concerned. This section will take the view of the 
ones who are critical to the validity and value of some of the experiments 
performed, and brings up a few questions that are seemingly left unanswered. 
The two main issues revolve around a lack of prioritization as to what parts of 
the code are important and less important, and how much of achieved 
reliability is down to code coverage, and not test intensity solely. 

4.4.3.1 The Effect of Test Intensity on Reliability 
 
High code coverage is claimed to achieve high defect coverage, implying that 
more defects are found in software during testing. This, in turn, is believed to 
improve the quality of testing efforts and contribute to better end product 
quality. [BP00] discusses the matter of whether the claimed relationship 
between code coverage and defect coverage is genuine and existing. The 
question is whether there are other variables or factors that might impact the 
aforementioned measures, that have not been taken into account in empirical 
investigations and experiments performed. [BP00] correctly points out that 
code coverage as well as defect coverage typically increase with time and 
effort spent on testing the software, and hence it is only logical that empirical 
experiments confirm the existence of such a relationship. Focus is therefore 
directed to the internal validity of these experiments and whether a third factor 
unaccounted for, is interfering with the actual outcome. In the book 
”Experimentation in Software Engineering: An Introduction” by Claes 
Wohlin et al. [Woh+00], the issue of internal validity is explained this way: 
”If a relationship is observed between the treatment and the outcome, we must 
make sure that it is a causal relationship, and that it is not a result of a factor 
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of which we have no control or have not measured”. The role of internal 
validity in an experiment is depicted in figure 4.4 below.  
 
In order to prove the correlation between code coverage and defect coverage, 
test intensity has to be accounted for in experiments, or put differently – one 
has to determine whether the combined effect of test intensity and code 
coverage is capable of explaining defect coverage variations better than test 
intensity alone [BP00]. A procedure is presented that assumes testing to not be 
coverage-driven, since that would affect the design of test cases and thus 
make it infeasible to separate test intensity from coverage. The procedure 
requires a sample of projects where defect coverage and code coverage data 
exist that correspond to several test intensity values, such as number of test 
cases and testing efforts. One should keep in mind that similar test intensity 
values are not necessarily comparable across software systems of different 
sizes. If code coverage plays a considerable role, simulated samples are 
expected to, on average, show a poorer statistical correlation than what is the 
case for the actual sample, where the effects of both test intensity and code 
coverage should be visible on the resulting defect coverage. 
 

 
Figure 4.4 

Internal validity represented as the black 
arrow between treatment and outcome 
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In [BP00] an experiment was conducted where code coverage and defect 
coverage was measured in three testing phases. For each of these phases, the 
same level of test intensity was applied and each and every software 
application was exposed to the same set of test cases. The conclusion of the 
experiment was that results obtained did not support the hypothesis that code 
coverage carries an additional and pivotal effect on defect coverage, when test 
intensity is already accounted for. Instead, [BP00] finds it reasonable to 
assume that both code coverage and defect coverage are driven by test 
intensity only, but opens up the possibility of factors such as defect 
distribution, defect types and differing environments impacting the end result. 

4.4.3.2 Absence of Operational Profile Leads to Unweighted Testing 
 
[Ham94] takes a different approach in criticizing the claimed effect of code 
coverage on reliability, starting off by explaining two primary ways of 
developing a test set. Firstly, a best practice for performing code coverage 
testing is described that guides the creation of test sets. Initially, test sets 
should be generated based on specifications, while later on expanding the test 
set to include tests deemed necessary by studying the source code. The code 
coverage of a given test set can then be measured to get an idea as to the 
quality of the tests designed. It is recommended that tests be included in the 
test set that are capable of covering several requirements in the specification, 
since complex operations tend to be more effective at revealing faults in the 
code. The alternative and contrasting way of generating test sets, according to 
[Ham94], is to employ uniformly distributed random tests within functional 
classes. 
 
Mutation coverage, see chapter 2.2.2, can be used as a technique for 
measuring the quality of test sets. The theory behind mutation coverage is that 
the causes of most faults are rather commonplace and uncomplicated. Hence, 
faults that none of the tests are able to uncover might get detected by the 
mutation technique, typically including faults caused by the use of unintended 
logical operators. By producing mutated versions of the software and test each 
of them against the current test set, one can determine which mutations of the 
program that were detected by the test set. Hence, we can observe that faults 
may remain in the code even after all tests have been run. It is not unusual for 
functional test sets to be incapable of detecting an amount of seeded faults, 
and the majority of people in charge of testing activities are aware of the 
difficulty in satisfying the mutation criteria. As a result, testers are tempted to 
create additional tests that are tailored to each mutation, thus disputing the 
recommended best practice for coverage testing. As [Ham94] underlines, if 
fault seeding represents genuine faults in a good way, the hit ratio can be 
looked upon as a quality indicator of testing; however, it is meaningless to 
improve coverage so that the seeded faults remaining can be found. After all, 
the 100% hit ratio will be achieved because of existing knowledge of seeded 
faults. 
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The quality of testing nowadays is based on the failure detection probability of 
the tests – their ability to uncover failures and their underlying faults in 
software. [Ham94] points out that for random testing based on an operational 
profile, the failure detection probability takes on the meaning of failure 
intensity – the reciprocal of Mean Time To Failure, MTTF. In other words, by 
using the system one will encounter failures that are likely to be found during 
actual system usage. This seems pretty inevitable, since MTTF is a 
widespread measure denoting the reliability of software systems. Coverage 
testing contributes to discovering a multitude of failures and hence boasts an 
impressive failure detection probability. This fact is down to code coverage 
directing focus to broader parts of the code and consequently covering parts of 
the source code neglected by alternative testing techniques. The formidable 
failure detection results from avoiding to sample the operational profile, and 
instead sampling according to classes that emphasize failures [Ham94]. The 
main objection to this strategy is that these classes carry no relation to the 
operational profile. As we all know, certain parts of a program are likely to be 
used more than others, and coverage testing may detect failures and 
subsequently remove faults in low-usage functionality and for that reason 
show relatively less interest in high-usage scenarios, compared to testing 
driven by an operational profile. A possible outcome is encountering problems 
in a production phase because of failures hiding in frequently used 
functionality of the software. With this in mind, [Ham94] concludes that 
coverage testing is, at best, no more significant than random testing. Coverage 
testing does not pay attention to the usage profile of a system and would hence 
lead to less intensive testing of its most important parts. As a result, software 
reliability is likely to get affected. 
 
Based on the arguments and reasoning above, coverage testing could have a 
negative impact on reliability even if the test set attains high coverage scores. 
Reliability predictions may consequently be overestimated because of code 
coverage viewing all parts of the code as equally important. According to 
[Ham94], there is little theoretical basis and few experiments that would 
suggest there exists a relationship between code coverage and reliability, 
while at the same time underlining the sharp contrast between the difficulties 
of performing the experiments and their modest results. However, coverage 
testing is thought to uncover more failures than random testing, but that does 
not automatically imply that code coverage contributes to increased reliability. 
 
Although critical of the code coverage – reliability relationship, [Ham94] sees 
code coverage possibly relating to a notion of trustworthiness as defined in 
chapter 4.1. Software quality ought to be measured based on results as 
opposed to time or effort spent on achieving that level of quality. Thus, hours 
spent during testing and failure detection probabilities are inappropriate 
candidate measures as far as software quality is concerned. The reason for this 
is that neither of these measures will provide an answer as to whether the 
software is trustworthy. As was mentioned in the opening section of this 
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chapter, failures occurring in low-usage functionality will affect reliability, 
but leave trustworthiness practically unchanged. In the words of [Ham94]: 
“Catastrophic failures occur because no one has any conception of the 
situations that lead to them”. It seems feasible to make measures of 
trustworthiness independent of any operational profile, thus suggesting that 
code coverage may have a stronger connection to the quality attribute of 
trustworthiness, rather than reliability. 

4.4.3.3 Inconclusive Results 
 
Not all investigations and experiments performed yield conclusive or even 
suggestive results. An automated coverage tool named ATAC is employed in 
a series of tests to determine the correlation between code coverage and the 
number of faults found in “A Coverage Analysis Tool for the Effectiveness of 
Software Testing” by Michael Lyu, Joseph Horgan and Saul London 
[LHL94]. The stated hypothesis is that more faults will be discovered as code 
coverage increases. A number of groups of developers were formed, with each 
individual group responsible for creating a module facilitating automated 
landing of commercial air planes. The resulting modules were tested and code 
coverage, along with the number of detected faults, were measured. The 
findings were deemed inconclusive: ”We did not see strong correlations 
between the total faults detected in the program versions and their coverage 
measures during various testing conditions” [LHL94]. However, the 
hypothesis is not completely rejected as each version was found to have a 
different fault distribution from the outset, thus rendering code coverage as an 
improper measure of the total number of faults residing in the code. 
Additionally, the statistical precision was believed to be reduced since the 
number of discovered faults in each version was relatively modest. 
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”The only real mistake is the one from  
which we learn nothing.” 

John Powell  
 
CHAPTER 5: 

The Musa-Okumoto Model with Data Pre-
processing 
CHAPTER 5: The Musa-Okumoto Model with  Data Pre-processing 

This chapter aims to give a thorough presentation of the reliability model of 
our choice in proposing a feasible approach to integrating reliability 
estimation into an automated tool for code coverage assessment. This software 
tool is an open-source product named JCoverage, and its operation is 
described in the subsequent chapter. Our suggested approach combines the 
use of a well-known reliability model with a technique that employs code 
coverage data to improve the estimates. To be more concrete, the logarithmic 
Poisson execution model by John D. Musa and Kazuhira Okumoto – from this 
point on referred to as the Musa-Okumoto model – is selected, along with the 
technique proposed by [CLW01] and presented in chapter 4. We will now 
consider each of them in turn, starting with the Musa-Okumoto model. 
 

5.1 The Musa-Okumoto Model 
 

he general elements of reliability estimation and the main features of 
reliability models were touched upon in chapter 3. As for the Musa-
Okumoto model it consists of two components: An execution time 

component and a calendar time component. [MIO87] claims that the model 
has high predicative validity, achieved early during the system test phase. The 
required parameters need to be estimated prior to model usage since they do 
not relate to pre-execution characteristics of software and development 
environment. Thus, the task of predicting any parameters seems virtually 
impossible. 
 
The Musa-Okumoto model employs a two-part approach in characterizing 
failure behavior. Initially, execution time is used in estimation, while later this 
notion of time is converted to calendar time to be more understandable to 
testers. This conversion takes place in the calendar time component, which 
characterizes how human and computer resources are utilized in the project. 
Execution time is said to be a preferable measure of time because of its 
superior ability to characterize ”the failure-inducing stress placed on 
software” [MOI87]. 

T 
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5.1.1 Execution Time Component 
 
The execution time component of the model is based on failures appearing as 
described by a non-homogeneous Poisson process. In chapter 3, non-
homogeneous referred to a probability distribution changing with time. This is 
captured in a failure intensity function λ which, accordingly, changes with 
time. The failure intensity describes how the average number of failures 
experienced changes at different points in time. The Musa-Okumoto model 
defines the failure intensity function as: 
 

( ) ( )θμ−λ=μλ exp0  
 
In the equation above, μ represents the cumulative number of failures 
experienced at a given time. λ0 denotes the initial failure intensity – the failure 
intensity at the beginning of execution, whereas θ is a failure intensity decay 
parameter. The purpose of the latter parameter is to describe the relative 
change in failure intensity per failure experienced. When the reliability model 
is put to use the failure intensity is predicted to slowly decrease after a certain 
time. The reason for this, according to [MOI87], is that the parts of the code 
hiding faults even at a late stage of testing are unlikely to be exercised 
particularly often. Typically, these pieces of code have a low probability of 
being tested because of conditions – requiring atypical user input or an 
uncommon environment – that have to be satisfied in order for that code to be 
exercised. 
 
One of the advantages of the Musa-Okumoto Model is its ability to tackle 
non-uniform operational profiles considerably better than some of the other 
reliability models available [MOI87]. A non-uniform operational profile 
results from dealing with a system where the operational profile fails to mirror 
actual system usage. The main reason as to why this particular model handles 
non-uniform operational profiles well, is said to be the Poisson probability 
distribution. This distribution appears to provide a better fit to actual failure 
detection than probability distributions found in a number of competing 
models. Another noteworthy feature of the Musa-Okumoto model is its 
ignorance of the quality of fault repairs, thus allowing new faults to be 
introduced in the code. The following function is used to denote mean failures 
experienced, μ, versus execution time, τ: 

 
 
 

In this case λ0 represents the initial failure intensity as execution begins, while 
θ is the failure intensity decay parameter. This function – mean failures 
experienced versus execution time that is – is infinite at infinite time. An 
expression also exists for determining failure intensity based on execution 
time, with the symbols carrying the same meaning as in previous definitions:  

( ) ( )1ln1
0 += θτλ

θ
τμ
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The Musa-Okumoto model allows us to compute Mean Time To Failure – 
MTTF – given that the failure intensity decay parameter θ is less than 1: θ < 1. 
If this condition is satisfied MTTF can be determined by means of the 
following expression: 

 
                      ( )1<θ  
 

 
Since MTTF may not always be possible to determine, there exists an 
alternative expression for computing system reliability. In the function below, 
τ’ represents execution time measured from the present whereas τ denotes the 
total execution time. As before, θ is the failure intensity decay parameter 
while λ0 corresponds to the initial failure intensity. 
 

 
 
 

 
Making use of the expressions presented thus far makes it possible to quantify 
software reliability of a given product, albeit in different ways. In addition, the 
Musa-Okumoto model proposes further mathematical functions that convey 
useful information for testing purposes. For instance, there are expressions 
which estimate the amount of time required to achieve a fixed reliability goal, 
or the number of detected failures required to reach that same target. We will 
not go into greater detail with respect to these expressions. 
 
When a software program is put to use without any variables changing, 
reliability models are no longer considered to be non-homogeneous Poisson 
processes. Instead, models are reduced to homogeneous Poisson, with the 
number of failures in a fixed time interval corresponding to a Poisson 
distribution. The relationship between reliability, R, and the failure intensity, 
λ, can be expressed as a function of the execution time, τ: 
 

( ) ( )λττ −= expR  
 
Model characteristics include the use of the two parameters λ and 
θ, symbolizing initial failure intensity and failure intensity decay respectively. 
As mentioned earlier in this section, these parameters must be estimated 
before the model can be used. There will always be a certain amount of 
uncertainty in connection with parameter estimation, and this uncertainty is 
set to transmit to the different estimated measures of reliability. Having said 
that, estimation is generally more accurate than what would be the case with 
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prediction, the latter not even facilitated by the Musa-Okumoto model 
[MOI87]. Estimation can be carried out with a statistical method based on 
observed failure times. The use of maximum likelihood estimation to 
determine which parameter values fit observed data the best, could serve as an 
example. 

5.1.2 Calendar Time Component 
 
The calendar time component relates execution time and calendar time at each 
point in time to a ratio between the two notions of time. During periods when 
the system is neither modified nor repaired, this ratio is viewed as a constant. 
The component bases itself on a debugging process with factors of limitation 
affecting its performance. Resources and the utilization of these are assumed 
to be constant during the period in which the model is used. The available 
resources and the resource needs of the process are assessed and possible 
bottlenecks are identified. A planned resource can be measured in quantities 
such as the size of the test team and the number of personnel assigned to fault 
removal tasks. The resource needs of the process are found and quantified as 
resources required per hour of execution time and/or per failure experienced. 
Hence, the ratio between the time units is determined by factors that impact 
and limit testing. [MOI87] lists the following candidate factors: 
 
  Failure identification or test crew 
  Failure correction or debugging personnel 
  Available computer time 
  Other limited resources 
 
Out of the four factors stated above, the first three control the rate of testing, 
with failure correction personnel typically having the most significant effect 
on calendar time prediction. For projects where failure identification and 
failure correction is performed by the same individuals, these two tasks can be 
merged. The resource consumption, χ, for each individual resource in the 
process can be computed as follows: 
 

μμ+τθ=χ rrr  
 
In this formula the resource consumption is a function of both the number of 
failures detected and the amount of CPU time used. The variable θr refers to 
the resource consumption per CPU hour, while μr denotes the resource 
consumption per failure – both of which require necessary adaptation and 
tailoring to each project and resource. 
 
The ratio between execution time and calendar time can be found by using the 
expression below: 
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Pr refers to resource quantity and ρr denotes resource utilization. θr is assigned 
resource consumption per CPU hour, whereas μr represents the resource 
consumption per failure. These measures are explained in the following 
section. The remaining variables – execution time, failure intensity decay 
parameter and initial failure intensity – are the same as for previous 
expressions stated in this chapter.  

5.1.2.1 Description of Resource Measures 
 
Resource quantity is a measure of the amount of resources available. As far as 
computer time is concerned, this measure is in the form of ”prescribed work 
periods” [MIO87]. The same source proposes an example for the purpose of 
comprehension: If there are 80 computer hours available per week and the 
prescribed working week consists of 40 hours, this will yield a resource 
quantity for available computer time of 2. For other resources it is a matter of 
the number of people, and the fact that some may not work full days is not 
taken into account since resource quantity is a measure of available resources 
as opposed to employed resources. 
 
Resource utilization is a measure of the amount of available resources that are 
put to use. ”Resource utilizations are generally estimated from formula or 
practical experience” [MOI87]. Maximum values must be found for the 
period in which the current resource is the limiting factor. The two resource 
usage parameters – θr and μr – represent average values of resource 
expenditure and are affected by factors such as application domain and the 
level of experience among software developers. By collecting data on 
resource usage along with relevant data obtained during testing, the following 
model can be adapted to the data observed: 

 
 
 

 
Additionally, overhead factors such as holidays, vacations, absence, courses 
and administrative duties have to be taken into consideration. By now all 
parameters necessary for making the move from execution time to calendar 
time ought to be presented. 
 

5.2 Code Coverage Pre-process Model 
 

n chapter 4 we introduced a technique developed by Mei-Hwa Chen, 
Michael R. Lyu and Eric Wong and described in detail in [CLW01], 
which reduces the relative weight of tests in reliability estimation that do 

not increase code coverage nor detect additional failures. In this section we 
will try to adopt a more technical perspective with regards to this technique 
than what was the case in chapter 4. 
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5.2.1 Model Rationale 
 
The technique, presented as two different versions in [CLW96] and [CLW01] 
respectively, is based on reliability models using the time between failures as 
a measure of reliability. The line of action is to measure cumulative code 
coverage and number of failures after execution of each test case to assess 
whether it qualifies as an effective testing effort. If a test case turns out to be 
non-effective in this sense, a function is used to reduce the execution time 
employed by that particular test case. This consequently leads to a reduction 
in the reliability estimate. 
 
The heart of both versions is the compression ratio ρi which is computed for 
all tests considered to be non-effective. This is a value which is multiplied by 
the execution time of the non-effective test case, thus resulting in a time 
reduction before data is relayed to the reliability model. The compression ratio 
is computed slightly differently in the two versions, as will be explained 
below; however, they both make use of changes in execution time and 
cumulative code coverage during calculation and are hence comparable. As is 
to be expected, test cases deemed effective will yield a compression ratio of 1 
and consequently leave execution time unchanged. 

5.2.2 Compression Ratio through Smoothing Parameters 
 
The initial version of the technique presented in [CLW96], proposes two 
parameters α and β in computing the all-important compression ratio. These 
parameters, referred to as smoothing parameters, are dependent on the 
software itself and the reliability model of choice, for instance Goel-Okumoto 
or Musa-Okumoto. Unfortunately, information was not obtainable on how a 
given reliability model would impact the parameters. The equation below is 
used to compute the compression ratio by employing the smoothing 
parameters: 

 
 
 
 

In the above expression ti and ci refers to execution time and cumulative code 
coverage respectively, upon termination of test case i. Subscript is used to 
indicate which test case is referred to. The α and β parameters are the 
smoothing parameters mentioned earlier, while δti and δci relate to the change 
in execution time and cumulative code coverage before and after execution of 
the ith test case. 
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5.2.3 Compression Ratio through Scaled Parameters 
 
The second version of the technique, elaborated in [CLW01], is based merely 
on changes in code coverage and the number of failures discovered. In 
practice the parameters c and t are scaled so that their respective numerical 
values are virtually equal. The claimed intention is to stabilize the 
computation of the compression ratio ρ and can be done at various points in 
time. According to [CLW01], code coverage measures are generally scaled so 
as to match the average execution time of test cases. The scaled values of c 
and t are then used in computing ρ. In the estimation itself the original values 
of t are used, but these are adjusted by employment of the estimated 
compression ratio. ”Scaling of the execution time does not affect the reliability 
estimation process” [CLW01]. The expression for calculating the com-
pression ratio in this version is as follows:  

 
 
 
 

In correspondence with the compression ratio equation of the initial version, ti 
and ci denotes execution time and cumulative code coverage respectively, 
upon termination of test case i. Once again, subscript is used to indicate the 
test case of interest. δti and δci refers to the change in execution time and 
cumulative code coverage before and after execution of the ith test case. 
 
For our approach we have chosen the latter of the two versions as the pre-
process technique to be used in conjunction with the Musa-Okumoto software 
reliability model. 
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”Vision is the art of seeing the invisible.” 
Jonathan Swift  

 
CHAPTER 6: 

A Software Implementation of Automated 
Code Coverage Analysis: JCoverage 
CHAPTER 6: A Software Implementation of Automated Code Coverage Analysis: JCoverage 

This chapter is mainly dedicated to JCoverage – a software tool for automated 
code coverage analysis – and its operation and implementation of code 
coverage principles. We start off by describing the context and environment of 
JCoverage before diving into its operation and means of computing code 
coverage measures. Having covered the main functionality and scope of 
JCoverage we move on to pinpoint possible improvements for future versions. 
Finally, we round off this chapter by considering the possibility and 
uncovering the main challenges of integrating the Musa-Okumoto model and 
the code coverage pre-processing technique presented in the previous chapter, 
to yield a reliability measure. 
 

6.1 Characteristics and Environment 
 

n order to compute code coverage for a system, a tool is needed for 
registering which parts of the code are being executed. JCoverage 
facilitates code coverage measurements for programs developed in Java, 

and appears in three different versions with associated licenses. The version 
that we have been examining has a GNU Public License and has not 
undergone improvements found in the other two versions. One of the versions 
is said to scale better, as well as offering support for Java Remote Method 
Invocation. JCoverage is, however, not the only available solution on the 
market for measuring code coverage. The main reason why we ended up 
focusing on JCoverage was its open-source nature, thus providing us with 
access to the source code. This characteristic, in turn, made it possible to 
adopt a more detailed approach in studying how various code coverage 
measures were implemented. 
 
When putting JCoverage to use it might be practical to employ Apache Ant 
and Eclipse simultaneously. Eclipse is an IDE – Integrated Development 
Environment – developed in Java and used to develop other Java applications. 
One of its features is the capability to make XML-based build files which 
specify how the Java application should be compiled. This file can then be 
interpreted by Apache Ant, which is a build tool for automating tasks that are 
performed several times during development. Typical Ant usage includes code 
compilation and related tasks. The tool incorporates a number of possible 
“tasks”, known as small programs intended to solve simple problems. These 

I 
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tasks can be combined to constitute macros in the form of XML files which 
may then be read and executed by Ant. Examples of tasks include the 
generation of Java Archive files, the creation of folders or directories and 
deletion of files. Ant distinguishes itself from other build tools in the sense 
that it is a Java-developed product that can be executed on a number of 
operating systems. With JCoverage being a utility for testing Java code, 
possibly developed on a variety of platforms, it seems only natural that 
JCoverage can be integrated into the development process in the form of an 
Ant task. The environment of JCoverage and its interaction with Ant and 
Eclipse is modeled in figure 6.1 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 6.1 

The respective roles of  
JCoverage, Ant and Eclipse 

 
Technically speaking, coverage data are extracted from a Java program during 
testing in one of three ways. These implementation approaches were presented 
in chapter 2.5 but are briefly reiterated here for the sake of convenience: 
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 Execution through a modified Java Virtual Machine 
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By opting for instrumentation of the source code, additional lines of code are 
added prior to byte code compilation. In the case of byte code instrumentation 
one is not dependent on having source code available, whereas the third and 
final alternative requires modifications to be made to JVM so that information 
is logged during program execution. 
 

6.2 JCoverage Operation 
 

aving introduced the main concepts of JCoverage it is time to look at 
how it goes about to convey coverage information to users. We find 
it feasible to divide its operation into two different phases. The first 

of these deals with the process of instrumentation, while the second deals with 
the computation of coverage measures and the ensuing presentation of 
coverage information of interest. 

6.2.1 Instrumentation 
 
When code coverage is to be measured the first thing JCoverage does is to 
properly instrument the code to be tested. This implies inserting additional 
code that will enable information to be logged to a file, which will later 
provide users with information as to what parts of the code have been 
exercised. JCoverage performs code instrumentation by modifying the byte 
code, or more specifically the class files. Technically speaking, code 
instrumentation is started once a separate instrument task is called in Ant 
which initiates the entire instrumentation process. 
 

 <instrument todir="instr/"> 

  <fileset dir="build/"> 

   <include name="**/*.class"/> 

  </fileset> 

 </instrument> 
 
Extracted parts of an XML file is stated above where Ant is asked to 
instrument all class files residing in the build directory and all its sub-
directories. The build directory is placed in a project directory, while all files 
successfully instrumented are stored in a directory named instr, also within 
the project directory. 
 
When JCoverage is set to instrument a project, all class files of the current 
project are examined. Class files that have already been instrumented or 
merely contain an interface with no executable code are exempted from 
instrumentation. This is solved by attaching an empty interface named 
HasBeenInstrumented to each class file previously instrumented. Class files 
may thus be checked to see if they implement the interface mentioned above 
prior to deciding whether a particular class will be instrumented or not. 

H 
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The source code, which in turn is made into instructions interpreted by the 
Java Virtual Machine, is found in the methods of each class. Consequently, all 
methods belonging to a class are examined when instrumenting that particular 
class. Certain lines of code do not contribute with instructions executed in the 
JVM, for instance lines of comments, blank lines for improved visibility and 
“} else {”. The else case referred to affects the syntax or sequence of 
instructions as they appear in the program, but does not explicitly add 
instructions itself. For this reason JCoverage neglects the execution of these 
lines when computing coverage measures. It also provides users with the 
option of defining elements to be ignored, but we consider this particular 
functionality to be of no great concern at this point. 
 
One line of source code can be represented as one or more elementary 
instructions in the resulting byte code. In order to be able to decide whether a 
line of code has been exercised, JCoverage inserts code ahead of the first 
instruction representing that specific line. As a matter of fact, JCoverage adds 
code before each line that has byte code instructions associated with it. An 
example of code that instruments byte code is stated below. 
 
/** 
 * The core instrumentation. This sequence of instructions is 
 * emitted into the instrumented class on every line of  
 * original Java code. 
 * 
 * NOTE THAT THIS EMITTED CODE IS ALSO LICENSED UNDER THE GNU 
 * GENERAL PUBLIC LICENSE. NON GPL INSTRUMENTED APPLICATIONS    
 * MUST BE LICENSED UNDER SEPARATE AGREEMENT. FOR FURTHER  
 * DETAILS, PLEASE VISIT http://jcoverage.com/license.html. 
 */ 
   
InstructionList emitGetInstrumentationAndTouchLine(« 

LineNumberGen lng) { 
  
  InstructionList il=new InstructionList(); 
 
/** 
 * Obtain an instance of InstrumentationFactory, via a static 
 * call to InstrumentationFactory. 
 */ 
 
  il.append(classGenHelper.createInvokeStatic(« 
  InstrumentationFactory.class,« 

"getInstance",InstrumentationFactory.class)); 
 

In the case above, JCoverage adds code for the purpose of accessing an 
instance of the InstrumentationFactory class. This class loads existing test 
data from a file and saves new data upon terminating program execution. 
 
/** 
 * Create a new instance of Instrumentation (or reuse an  
 * existing instance, if one is already present in the  
 * factory), for the class that we have instrumented. 
 */ 
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  il.append(new LDC(« 

classGenHelper.getConstantPool().addString(« 
classGenHelper.getClassGen().getClassName()))); 

 
  il.append(classGenHelper.createInvokeVirtual(« 

InstrumentationFactory.class,"newInstrumentation",« 
Instrumentation.class,String.class)); 

 

Moving on, JCoverage adds a String object to the stack with the name of the 
class being instrumented. A method of the InstrumentationFactory class is 
called next that returns an already existing instance or alternatively creates 
and returns a new instance of the Instrumentation class. The method 
invoked requires a String object as an input parameter, and the String object 
currently residing on the stack will now become the String argument which 
the method receives. 
 
 
/** 
 * Update the coverage counters for this line of source code,  
 * by "touching" its instrumentation. 
 */ 
 
  il.append(InstructionListHelper.push(« 

classGenHelper.getConstantPool(),lng.getSourceLine())); 
 

 
In the code above, an integer, corresponding to the line number of the source 
code that led to the generated instructions, is pushed onto the stack. This 
integer comes to use in the following code: 
 
 
  il.append(classGenHelper.createInvokeInterface(« 

Instrumentation.class,"touch",void.class,int.class)); 
 
  return il; 
  } 

 
The integer that was pushed onto the stack in the previous code sequence is 
this time used as an argument when calling a method of the Instrumentation 
class. This method increments a counter used to indicate the number of times 
that this specific line has been exercised during testing. The line number is 
used as an index in a data structure for keeping track of the number of 
executions for each line contained in the class. 
 
In order for JCoverage to be able to compute branch coverage, all instructions 
are studied. In the case of if instructions the line number where the if 
construct occurred is registered along with the line number of the first line of 
code immediately succeeding the if clause belonging to the if construct. All 
data that are generated through the execution of an instrumented Java 
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application are stored as serialized Java objects in a file named 
jcoverage.ser. In the case of successive executions the data are aggregated. 

6.2.2 Code Coverage Presentation and Computation 
 
Instrumenting the code is necessary to provide access to and information 
about which parts of the code are being executed. All data must further be 
processed to enable computation and presentation of coverage measures of 
interest. JCoverage offers the possibility of generating coverage reports in 
both HTML and XML format to present line coverage and branch coverage 
scores on different levels.  

 

 
Figure 6.2  

HTML page for presenting coverage  
measures for all packages and classes being tested 
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6.2.2.1 Coverage Reports 
 
The generation of reports can be done by employing an Ant task. This will 
lead to a procedure generating reports based on data stored in the 
aforementioned file jcoverage.ser. In the case of an HTML representation 
of the report, a series of HTML files are created or alternatively modified if a 
report already exists. Code coverage measures are presented for the individual 
classes or Java files, the packages, and in total for all code under test, as 
illustrated in figure 6.2 above. The report lets users navigate through existing 
classes and packages. Each class has a dedicated HTML page where the 
source code is presented. The parts of the code not exercised by the test set are 
highlighted as shown in figure 6.3 below. 
 

 
Figure 6.3 

HTML page generated by JCoverage for presenting the source  
code of a tested class – lines of code left unexercised are highlighted 

 
JCoverage can also produce an XML version of the coverage report. This 
consists of a simple XML file which lists all registered data, as well as 
computed line coverage and branch coverage for each class and its associated 
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methods. This file is useful when exchanging coverage data with other 
applications or when designing a separate and tailored presentation. Having 
said that, it turns out that the XML file generated by JCoverage does not 
satisfy the XML standard, thus running the risk of encountering an error 
message when employed. The coverage report is shown in XML format in 
figure 6.4. 
 

 
Figure 6.4 

XML version of the coverage report 
 

6.2.2.2 Computation of Coverage Measures 
 
JCoverage restricts itself to the computation of two coverage measures, 
namely line coverage and branch coverage. Line coverage denotes the 
percentage of lines of code executed with respect to the total number of lines 
and can be formulated as follows, with lC  representing line coverage, cn the 
number of lines covered and n the total number of lines: 

 
 %100⋅=

n
nC c

l
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Thus, to calculate the line coverage of a given method, the total number of 
code lines must be assessed along with how many of these lines have been 
executed at least once. The same procedure is employed, irrespective of 
whether the line coverage is computed for a class, a package or for the entire 
application under test. Figure 6.5 reports a line coverage of 69% for a simple 
example program. 
 

 
Figure 6.5 

Coverage report for testing of a sample program  
 

For the purpose of computing branch coverage, JCoverage makes use of the 
data structure created during the instrumentation phase, where the line number 
of the if construct was stored, along with the line number succeeding the 
block of code that, if the expression evaluates to true, is executed. This pair 
of lines is then used when calculating the branch coverage. The tool examines 
which of the lines that have been visited during testing, and the relationship 
between the number of visited lines and the total number of lines in the data 
structure is finally returned as the branch coverage. Hence, the computation of 
branch coverage follows the same basic procedure as the one used for line 
coverage, but with a more restricted set of code lines as input. 
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Having evaluated and studied JCoverage’s implementation of branch 
coverage, we find that it does not seem to correspond to our perception of how 
code coverage literature defines the measure. The current implementation 
does not check whether the code inside an if construct is executed if the 
expression evaluates to true. As mentioned earlier, JCoverage merely verifies 
that the line where the if construct appears is exercised, along with the first 
line succeeding the if clause. As a consequence branch coverage can be 
reported at 100% even when one or more if statements have never evaluated 
to true. This situation is illustrated below by means of a constructed and 
straightforward example. 
 

 
Figure 6.6 

An example highlighting the branch coverage dilemma 
 

Figure 6.5 on the previous page displayed a coverage report for the sample 
program used in figure 6.6 right above. Line coverage was computed to be 
69% with branch coverage reaching 100%. As before the yellow lines 
represent lines of code that have not been exercised by the tests performed. 
Figure 6.6 reveals that the entire block of code inside the if statement has not 
been tested, since the boolean variable used to evaluate the expression is set to 
false. It is possible to attain complete branch coverage without having 
achieved complete line coverage, exemplified by line 15 which is not yet 
executed. However, it should not be possible, according to our interpretation 
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of code coverage literature and the branch coverage measure in particular, to 
achieve complete branch coverage without having tested all existing if 
clauses. 
 
Even if JCoverage had been modified to test whether the if clause was 
executed and hence if the expression evaluates to true, we still question if 
this would be sufficient to qualify as branch coverage. According to our 
understanding of branch coverage defined in chapter 2.2.1.2, the measure of 
branch/decision coverage is based on whether conditions evaluate to both 
true and false. This requires all if statements to be combined with 
matching else clauses, as shown below. 
 
11: .. 

12: if(isAscii) { 

13:   in = new AsciiReader(); 

14: } 

15: else { 

16:   in = new UnicodeReader(); 

17: } 

18: return in; 

19: .. 

 
The piece of code above serves as an example to illustrate how all if 
statements must be properly formatted in order to detect that an expression 
evaluates to false. In this specific case, line 15 will be marked as the first 
line succeeding the if construct. This line is then examined to find out 
whether it has been executed when computing the branch coverage. If, 
however, the code stated below is tested, then 100% branch coverage could be 
achieved even if the if expression has never evaluated to false. 
 
87: .. 

88: if(customerNum < 100) { 

89:   price = price * 0.9; 

90:   customerNum++; 

91: } 

92: getCreditCredentials(); 

93: .. 

 
In this case line 92 will be verified when computing the branch coverage, 
since this is the line immediately following the if clause. Line 92 will be 
executed irrespective of whether the if expression evaluates to true or 
false; it is not part of an else clause. Since JCoverage ignores whether the 
logical expression of an if statement returns both true and false, its notion 
of branch coverage appears to resemble a measure known as basic block 
coverage. Basic block coverage, described in chapter 2.2.1.1, is meant to 
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disregard or overlook the size of the different blocks and rather give a picture 
of how well the blocks of code are tested. During testing only the largest 
blocks might be tested, thus resulting in a coverage measure such as statement 
coverage approaching 100%, whereas basic block coverage would detect that 
smaller blocks of code have been ignored. However, we have to make a 
reservation that the naming conventions of the various code coverage 
measures may differ and that a considerable part of this could be down to 
name confusions. This may always be a factor when a defined, agreed-upon 
standard or framework is non-existent. 
 
In addition to questioning the notion of branch coverage employed by this 
tool, we find it necessary to comment upon a few aspects of the line coverage 
measure. The code line below raises one point of concern: 
 
44: .. 

45: if(debug) Logger.println(“Input file not available.”); 

46: .. 

 
When the entire if statement is restricted to a single line of code even line 
coverage may reach 100% although not all parts of the code have been 
executed. A similar situation occurs when the if statement is integrated into 
“different” code on the same line, as exemplified by line 79 below. 
 
77: .. 

78: out = “Loading “ 

79: out += numFiles + “ file” + (numFiles < 1 ? “s” : “”); 

80: .. 

 
Thus, JCoverage does not necessarily paint a correct picture of the situation it 
measures. On the one hand, lines can be said to have been executed since 
certain instructions belonging to them have been exercised and hence, line 
coverage reports these lines as covered. On the other hand, we believe that all 
instructions on a line of code have to be executed in order for sufficient line 
coverage to be reported. If the latter is used as a requirement we know of an 
additional case where parts of a line are left untested, namely the evaluation of 
boolean expressions with short-circuiting support, as explained in chapter 
2.2.1.2. This is mainly an issue when dealing with measures such as condition 
coverage and multiple condition coverage. Since JCoverage implements 
neither of these measures we find it infeasible to take the evaluation of 
boolean expressions into account when assessing whether or not the code is 
covered. 
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6.3 Suggested Improvements 
 

s can be seen from the previous sections of this chapter, JCoverage 
presents a few challenges, most of which center around the chosen 
implementation of code coverage measures. In this section we try to 

explain the efforts needed in order to establish a correspondence between the 
coverage measure definitions of this report and the tool implementation of the 
same measures. 
 
For JCoverage to be able to determine whether an if expression evaluates to 
true, regardless of whether the code to be executed in the case of true is a 
block of code, a single line of code or merely a part of one, the code requires 
additional instrumentation. As of now, instrumentation code is only added at 
the start of each line, whereas the scenario mentioned above would involve 
the insertion of instrumentation code ahead of the first instruction to be 
executed given an evaluation of true. This raises yet another question: How 
should the added lines of instrumentation code count in the computation of 
line coverage and branch coverage respectively? If they count in the same way 
as the original instrumentations did, certain lines might be counted twice and 
impact line coverage accordingly. It hence seems inevitable that data collected 
from this added instrumentation should only be used in computing the branch 
coverage. Alternatively, the instrumentation for line coverage and the 
instrumentations within if clauses can be combined so that a particular line is 
not reported as executed until both instrumentations have been called by 
JCoverage with their respective parameters. 
 
In order for JCoverage to test whether if expressions evaluate to false it can 
instrument if statements as illustrated through the source code excerpt below: 
 
77: .. 

78: if(originalExpression || instr.touchIf(78)) { 

79: .. 

 
For this particular case || instr.touchIf(78) represents the necessary 
instrumentation. This expression will be a method call that returns the value 
false, under any circumstances, with the intention of not interfering with the 
original evaluation of the if statement, while at the same time indicating that 
evaluation has taken place. A call to the method is assumed to be made if 
originalExpression evaluates to false only, since the Java excerpt above 
short-circuits. 
 

A 
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6.4 An Approach to Implementing Reliability 
Estimation in JCoverage 
 

uring the course of this project we have, among other things, studied 
different techniques for estimating software reliability through the 
use of code coverage information. A data pre-processing technique 

and the Musa-Okumoto model were described in chapter 5 as a combined 
means of utilizing code coverage data to come up with realistic and useful 
reliability estimates. In this section we consider the feasibility of integrating 
the aforementioned approach into JCoverage as an added reliability module.  

 
Figure 6.7 

Illustration of the proposed reliability estimation approach 
 
What makes this an attractive strategy, in theory, is that an automated tool for 
tracking code coverage provides coverage information that could be directly 
employed by the pre-processing technique described in chapters 4 and 5, 
before relaying processed data to the Musa-Okumoto model for estimation. 
Implementing such an approach in JCoverage is, however, far from 
straightforward. We emphasize the fact that the notion of automatically 
generating reliability estimates through tool usage is a highly relative one. 
Since reliability might be affected by external factors related to phases of 
system development as well as the application domain, we are fully aware of 
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the fact that reliability estimation requires substantial human intuition, 
consideration and effort. Instead, the approach is intended to simplify the 
more administrative parts of the effort, particularly with regards to the pre-
process technique. 

6.4.1 The Road to Obtaining Reliability Estimates 
 
Throughout this section we will refer to figure 6.7 which depicts the proposed 
course of generating a reliability estimate. The numbers from 1 to 8 in the 
subsequent text refer to corresponding elements in the figure above. 

6.4.1.1 Code Coverage (1) 
 
JCoverage can be used to assess the achieved code coverage once a test case 
has finished execution. An experiment is referred to in [CLW01] where block 
coverage is used with the pre-process technique. However, the authors have 

  
Figure 6.8 

The cumulative frequency of test executions per line of code 
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deferred empirical experiments with other coverage measures such as branch 
coverage, thus ending up on a list of future work. The Musa-Okumoto model 
does not make use of code coverage in its estimation of reliability, but an 
assumption which is made, unravels new challenges as to how code coverage 
is measured. The Musa-Okumoto model assumes, as do several other 
reliability models, that faults are removed instantly – that is, immediately 
following detection. In the words of [MIO87]: ”In actuality, there is always 
some delay, but the effects of the delay are not serious and can easily be 
accounted for”. 
 
It is virtually impossible to completely avoid minor modifications to the 
program code during testing. This poses a number of challenges in JCoverage, 
with the main issue being the way that JCoverage registers code coverage. 
Each line is instrumented prior to test execution, and each time that a line is 
exercised its line number is reported by the tool. A problem occurs when 
wanting to reuse this information after the code has been modified. Figure 6.8 
on the preceding page helps to illustrate the problem at hand, displaying the 
number of times each line of code in a class has been executed. Let us assume 
that a fault is detected in the current class, hence requiring added code or 
modifications of the existing code before testing and JCoverage operation may 
resume. Now the previously registered data will most likely end up with 
incorrect coverage values.  

 
Figure 6.9 

Consequences of adding or modifying code 
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Figure 6.9 above is similar to figure 6.8, except for the introduction of a new 
method getName() on lines 25 through 27. Since this method replaces pre-
existing code it will not be visible to JCoverage that the new method has never 
been executed. The code previously occupying those same lines, the method 
setPhone() in this particular instance, may have been exercised during 
earlier phases of testing, thus causing the lines to be marked as executed. 
Deleting all information of which lines have been tested would require a re-
run of all previous test cases – an impractical outcome both with respect to 
time and resources. A possible solution could be to modify JCoverage so that 
it would be capable of dealing with changes in the code under test. We believe 
this can be done by registering changes in the code, such as the displacement 
of line numbers, the code being removed and the code being added. These 
pieces of information may then be used to update previously registered data so 
as to mirror the actual code. Alternatively, JCoverage would have to be 
modified to accommodate a different way of identifying which lines have 
been executed. 

6.4.1.2 Failures (2) 
 
In order to decide whether a test case should be deemed effective or not, the 
pre-process technique utilizes knowledge of whether that particular test case 
detected one or more failures. Additionally, knowledge of the total number of 
failures is used by the Musa-Okumoto model. It is therefore an important need 
for collecting failure information. An interface must be developed accordingly 
for reporting – for each test case – whether a failure was discovered, either 
based on manual feeding of data from a tester or an interface towards a 
software tool for automatically performing functional testing. As was pointed 
out earlier in this chapter, the Musa-Okumoto model assumes that the faults 
triggering the observable failures are removed at the time of discovery. 

6.4.1.3 Test Time (3) 
 
The time spent on the execution of a test case is measured in execution time –
the amount of time for which the software uses the central processing unit. In 
order for JCoverage to measure execution time we suggest further code 
instrumentations. Code executing without interruptions can be instrumented in 
such a way that time is measured at execution start and termination 
respectively. The elapsed time can then be easily computed. By employing 
this approach all classes must be analyzed to find blocks of code that execute 
uninterrupted. There is no guarantee that the code will run without 
interruptions, since applications typically share CPU usage with the system 
being tested. An ideal scenario would be to execute tests with as few external 
processes as possible competing for processor time. Assuming that CPU usage 
of other applications is modest and constant would solve this problem. 
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6.4.1.4 Pre-process Technique (4) 
 
All the data labeled (1), (2) and (3) in figure 6.7 must be managed so that their 
respective values are observable after execution of each test case. A more 
detailed description was given in chapter 5 as to how the pre-process 
technique reduces the measured execution time of a test case if it failed to 
increase code coverage or the number of failures detected. If a test case is 
considered effective its execution time will remain unchanged. The initial test 
case will always be considered effective for obvious reasons and hence the 
actual execution time will be relayed from the pre-process (4) to the Musa-
Okumoto model (7). The pre-process technique will add up the computed 
execution time of all test cases to yield a total time consumption, which will 
then be used by the Musa-Okumoto reliability model. The latter model also 
needs information as to the number of failures detected during testing (5). 

6.4.1.5 Musa-Okumoto (7) 
 
Before the Musa-Okumoto model can be put to use it needs to be tailored to 
the software program under testing. This is done by means of two parameters 
of the model referred to as initial failure intensity λ and failure decay 
parameter θ. These must be estimated for the projects to be tested. [MIO87] 
suggests that values be estimated by seeking those that match the observed 
failure times from the first stage of testing reasonably well. It does not seem 
natural to include estimation of these values in JCoverage or any other tool for 
that matter, since these parameters ought to be assessed by personnel that is 
capable of interpreting necessary data and making intelligent, thought-through 
decisions. We believe that this is best accomplished by one or more human 
capacities involved with the testing process. In [MIO87] several statistical 
methods are presented for estimating parameter values. 
 
There is one particular aspect we would like to bring up with respect to the 
estimation of parameters and the use of the pre-process technique (4). When 
describing the Musa-Okumoto model in the previous chapter we said 
something along the lines of estimation possibly being performed with a 
statistical method based on observed failure times. In other words, time is 
used as a factor in estimating the model parameters, and we have now decided 
to control time through the pre-process technique. The question now is what 
will happen when the pre-process technique is employed. For instance, the 
model-specific parameters can be estimated  to fit an observed curve without 
the use of the technique and the observed times are then pre-processed prior to 
being fed to the Musa-Okumoto model. As a result, we assume that the 
estimated failure time will no longer follow the same curve. The pre-process 
technique is a general technique also proposed to be used in conjunction with 
the Goel-Okumoto model. Thus, there are no indications as to how the 
technique will affect the parameters of the Musa-Okumoto model. In our 
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opinion it seems natural that the observed data will be pre-processed through 
the use of the technique to ensure equal treatment to all time measures. 
 
In order to move from execution time to calendar time, knowledge is needed 
concerning the limiting factors of testing activities, with factors represented as 
a lack of competent testing personnel or shortage of programmers in charge of 
fault removal and repair. Since these limiting factors will vary during the 
course of the project, the relationship between execution time and calendar 
time is also set to vary. Information concerning this relationship must be 
obtained to be able to assess the amount of time required for achieving a given 
measure of reliability. The relationship between the two notions of time can 
also be found in periods when no code repair is taking place and the failure 
intensity remains constant, hence keeping the aforementioned relationship 
constant. This is destined to happen when, for instance, a software application 
moves from testing to normal, real-life operation. In this case it is the pattern 
of usage, ideally matching the operational profile of the program, that will 
determine the size of the relationship. Even though a system is operational for 
an entire day does not necessarily imply a correspondingly substantial use of 
execution time, since a number of programs – particularly those that require 
some kind of human interaction – typically remain idle for longer periods of 
time. For example, using Microsoft Word for eight hours may correspond to a  
mere hour of CPU processing. 

6.4.1.6 Reliability Estimates (8) 
 
The Musa-Okumoto model provides a means of computing useful quantities. 
Determining a threshold for desired reliability renders possible an estimated 
measure of the number of failures that need to be detected in order to achieve 
the quality goal set forth. It is also possible to estimate the amount of time 
required to reach the same quality goal. Given that the time consumption is 
measured in terms of execution time, an overview is needed as to the overall 
resource consumption during testing in order to translate this measure into a 
number of working days. From this measure it is possible to derive an 
estimated date for when sufficient testing has been performed to yield the 
desired level of reliability. Yet another measure – Mean Time To Failure – 
may also be calculated through use of the Musa-Okumoto model. However, 
because the various measures result from employing a model that uses 
estimated parameters in its operation, there will always be uncertainty 
involved in the values produced. In other words, the uncertainty connected to 
parameter estimation transmits to the resulting values, with the uncertainty 
expressed in terms of confidence intervals. 

6.4.2 Solving the Calendar Time Issue 
 
In describing the calendar time component [MIO87] emphasizes three factors 
that hamper testing in some way and hence form the basis for the relationship 
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between execution time and calendar time, namely failure identification 
personnel, failure correction personnel and computer time. As was explained 
in chapter 5, the need for the limited resources mentioned above is likely to 
vary from project to project. Thus, there is no fixed or constant relationship 
between the two notions of time during the different phases of testing. The use 
of automated testing utilities may contribute to reducing the impact of 
resource limitations of the first type – the number of failure identification 
personnel; especially if the tested system is a pre-existing application with 
ready-to-run tests, thus not requiring new test cases to be generated. We 
underline the use of the word may in the previous sentence since it might be 
tempting to cut down on personnel to save money, which would bring us back 
to where we were prior to introducing test automation. 
 
In our opinion it does not appear to be imperative to implement the calendar 
time component unless there is a specific desire to compute calendar time for 
quantities during fault repair and testing. A simple overview of the current 
testing situation or status can be obtained even without employing a specific 
unit of time. This refers to the measure which indicates the required number of 
detected failures in order to attain a desired reliability target. Instead of 
estimating a ratio between execution time and calendar time at any time 
during testing, a constant ratio can be computed based on the expected profile 
of usage for the software during normal operation. This would suffice in 
converting measures such as MTTF from execution time to calendar time for 
the programs to be used. This proposed solution will not be capable of 
estimating the time consumption, measured in calendar time, required for 
testing purposes to achieve the desired reliability. It will, on the other hand, be 
able to verify the reliability of the end system, once fully developed and 
adequately tested. 
 
Employing JCoverage in the realization of the proposed solution looks 
challenging, at best. As was pointed out earlier in this chapter there were 
several aspects of this tool that did not live up to our expectations. The line 
coverage measure was satisfactory and could possibly be used in a prospective 
realization. However, there are still problems related to re-use of test data 
once faults have been removed from the program under test. Had it not been 
for the fact that execution time needs to be measured for the tested 
application, then no major modifications to JCoverage would seem necessary. 
In this imaginary scenario the XML reports generated by JCoverage itself 
could have been input to the estimation module.  
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6.5 An Alternative Instrumentation Technique and 
Code Coverage Tool 
 

ince the current version of JCoverage appears to be infeasible for our 
implementation approach, an alternative instrumentation technique as 
well as a competing coverage tool were briefly surveyed. The purpose 

of this section is to indicate the presence of more than one fixed way of 
dealing with code instrumentation, and also to show that automated code 
coverage utilities are no longer as scarce as once was the case. 

6.5.1 A General Technique for Source Code Instrumentation  
 
A possible alternative to the instrumentation technique used in JCoverage is 
presented by Ira. D Baxter in his article titled ”Branch Coverage for Arbitrary 
Languages Made Easy” [Bax98]. The article explains how programs that add 
instrumentation to the source code can easily be created for the purpose of 
code coverage measurement. The uniqueness of the presented technique is its 
generality, implying applicability to a wide range of programming languages 
for which code coverage measurement is generally not facilitated. Hence, 
solutions can be made that do not restrict support to popular languages only, 
such as Java, but rather offer support to an array of languages. The 
fundamental idea behind the approach described is to identify basic blocks, 
meaning parts of code which execute coherently as atomic units, and 
subsequently add instrumentation to each of these blocks. The coverage 
measure to be computed is branch coverage, although the notion of branch 
coverage stated in [Bax98] would come closer to qualify as basic block 
coverage according to our definition. The main challenge ahead is to identify 
basic blocks across different programming languages. In this case, a basic 
block can be explained as a piece or collection of code which is executed 
without any transfer of control to another part of the code being made.  
 
The solution portrayed in [Bax98] makes use of so-called strength 
transformation systems that accept source-to-source rewrite rules – rules 
which can be defined for the transformation from source code to instrumented 
source code. Parsers that accompany a number of compiler toolkits will 
typically restrict operation to a given class of programming languages. This is 
the main reason why [Bax98] wants to employ industrial strength 
transformation systems. In order to use a particular programming language, its 
syntax must be defined. Since the industrial strength transformation systems 
are highly configurable it is a rather straightforward matter to define the 
syntax of the languages. Rewrite rules may, for instance, specify patterns to be 
replaced by a different pattern if a certain condition evaluates to true. 
According to [Bax98] it is easy to establish rewrite rules for procedural 
languages since these indicate all points of control transfer with the help of 
explicit syntax.  

S 
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We believe that this 
technique might be used to 
track modifications to the 
source code and hence store 
code coverage data for the 
parts of the code left 
unchanged. Before the source 
code is transformed by means 
of rewrite rules, these rules 
are parsed and modified to 
adapt to the language to be 
transformed. Figure 6.10 
depicted to the right illus-
trates the sequence of 
changes. In addition to the 
instrumentation itself, routines 
are required that initialize the 
data structure and store code coverage information upon completion of 
testing. Functionality for presenting code coverage data obtained from the 
performed tests has to be in place as well. One alternative could be to add the 
instrumentation to the code ourselves, thus gaining full control of the 
instrumentation and being able to ensure that identification of the different 
code elements remain unchanged even when modifications are made to the 
code. This strategy, although time- and resource-consuming compared to 
other solutions, has the prospect of yielding better results. A number of things 
would have to be taken explicit care of, such as the assignment of unique 
identifiers to points of instrumentation. 

6.5.2 A Brief Presentation of Clover 
 
Several alternatives to JCoverage are available on the market, some of which 
are commercial products. We opted for an on-the-surface look at a tool 
belonging to the latter category. Clover is developed by Cenqua Pty Ltd. and 
is a Java code coverage analysis tool which offers one or two coverage 
measures not supported by JCoverage. The developer has also made available 
a version supporting code coverage measurement for applications developed 
through Microsoft .NET. The following code coverage measures are 
supported in Clover: 
 

 Method coverage 
 Branch coverage 
 Statement coverage 

 
These three are measured for projects, packages, files and classes and are 
subsequently presented in reports formatted as either HTML, XML, PDF or 

Definition of language syntax

Rewrite rules

Source code

Instrumented source code

Figure 6.10 
Sequence of modifications to code 
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plain text. Clover ”accurately measures per statement coverage, rather than 
per line coverage” [Cen05]. Historical reports – mentioned as a desirable 
feature of automated code coverage tools in chapter 2.5.2 – can be generated 
to illustrate the development of each coverage measure, as well as other 
project metrics, during the course of the project. Another useful facet of 
Clover is the existence of several plug-ins with support for integrated 
development environments (IDE) used in Java development. These allow 
developers to keep an eye on coverage measures of different parts of the code 
without leaving the IDE. 

 
Figure 6.11 

HTML report generated by Clover 
 
Clover is developed in Java and measures code coverage for applications 
written in Java, as was the case with JCoverage. The basic operation of the 
two tools is similar, following the steps of code instrumentation, test 
execution and report generation. There are, however, a few noteworthy 
differences. Most significantly, JCoverage, being an open-source product, can 
be attained by means of a GNU Public License, whereas Clover is a fully 
commercial product. Further, JCoverage does not instrument lines that call 
log4j – a logger which can optionally be employed for low-level debugging. 
This is said to be an advantage, since the instrumentation of the 
aforementioned lines would run the risk of impacting code coverage metrics 
by making calls to the logger. Finally, the two tools differ somewhat in how 
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they define branch coverage, with Clover’s implementation of the measure 
corresponding significantly better with our definition. The HTML version of 
the generated report, shown in figure 6.11 on the preceding page, informs that 
the if statement on line 328 has been executed once, at which time it 
evaluated to false. The graphical interface for navigation and presenting 
information is comparable to the one found in the API specifications of Java 
or in javadoc-generated documentation of individual projects. 
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”Great is the art of beginning, but  
greater is the art of ending.” 

Lazurus Long  
 
CHAPTER 7: 

Conclusion 
CHAPTER 7: Conclusion 

Having embarked on a journey that has seen us through intermediate 
destinations such as code coverage measures, software reliability models and 
estimation, debates revolving the relationship between code coverage and 
reliability, not to mention the implementation of code coverage basics into 
software utilities, it is now time to bring the expedition to a close, ponder on 
the experiences gained and where to look next. 
 

7.1 Summary 
 

ith more and more actors entering the software market, 
competition is getting fiercer by the day. As additional products 
become available customers are left with the daunting task of 

selecting the right one, thus indirectly putting pressure on software businesses 
to develop first-class products. Hence it is far from surprising that modern-day 
software development methodologies, including the likes of Rational Unified 
Process and eXtreme Programming, pay significant attention to the role of 
testing in achieving reliable, high-quality applications. There is, however, 
always room for improvement. The hunt for means of increasing software 
reliability is still on, with code coverage playing a non-negligable role. 
 
The rationale for employing code coverage in testing efforts is apparent. 
Although there is no guarantee that all existing faults will be uncovered in 
spite of complete code coverage being reported, faults will definitely not be 
found in parts of the code which have been left unexercised. Code coverage 
can improve test set quality, reveal flaws in test implementation and increase 
our understanding of existing tests. The presence of different coverage 
measures provides developers and testers with an array of options as to what 
set of measures to employ for various projects. Although the latter may appear 
to be a blessing, it is, however, just as much a challenge in disguise. The lack 
of a standard culminates into an issue of measure definitions. As a result, each 
publication on the topic must first elaborate on an exhaustive definition of 
each coverage measure used at a later stage, before moving on to the core 
content. During the course of this project we have encountered instances 
where a definition of a particular coverage measure has matched that of a 
different measure, coming from an alternative source. 
 
 

W 
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Automation of reliability models and their estimation is far from straight-
forward. The main challenge rests in the context-dependent parameters which 
require substantial human experience, comprehension and interpretation. The 
uncertainty involved in these parameters will evidently impact the accuracy of 
resulting reliability estimates. Thus, great caution must be taken in the 
employment of such estimates, preferably by considering them as merely 
estimates and not some fixed, definite quantities of product quality. The 
difficulties in estimating software reliability makes it tempting to assume that 
code coverage may not only contribute to increased reliability, but also be 
utilized as a predictor of reliability. 
 
The proposed relationship between code coverage and reliability has in many 
ways been the core theme of this assignment. Having examined a two-digit 
number of articles on the aforementioned relationship, a definite and agreed-
upon conclusion with respect to the matter seems far away. The vast majority 
of experiments referred to in relevant literature reports positive findings, more 
or less, as to the existence of a claimed relationship. However, the big 
question is if these results are overthrown by theoretical and critical remarks 
made by others, having reservations about the internal validity of the 
experiments performed. After all, test intensity increases as code coverage 
increases, thus making it highly questionable whether code coverage 
contributions amount to anything beyond a negligable increase in reliability, 
once test intensity is taken into account. Also, the absence of an operational 
profile in a code coverage-driven test strategy is deemed to result in even, 
unweighted testing, hence possibly dedicating less attention to high-usage 
functionality, relative to an operational profile, at the expense of functionality 
less frequently employed. As a matter of fact, the level of testing required for 
low-usage areas of a software application strikes us a matter of great 
dissension among authors. 
 
Finally, the report was rounded off by examining the internals of a tool for 
automated code coverage analysis. The previously noted problem of non-
uniform definitions of coverage measures manifested itself in the 
implementation of JCoverage. In addition to suggesting imminent 
improvements we also discovered obstacles on our way to proposing an 
approach for integrating reliability estimation into JCoverage. We realize that 
questions can be raised as to the implementability of one or more propositions 
made, but pinpoint the fact that we have mainly focused on unearthing 
opportunities rather than deepen into existing constraints. On a final note, we 
believe that the emergence of code coverage tools, commercial as well as 
open-source, suggests that code coverage is destined to remain on the horizon 
for some time to come. 
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7.2 Further Work 
 

uring the course of this project we have stumbled upon ideas and 
aspects related to both code coverage and reliability that we have had 
to neglect because of lacking relevance or shortage of time. One of 

these ideas would be to go through with the implementation of a reliability 
estimation module, possibly integrated into an appropriate tool for tracking 
code coverage. Upon realization of such an estimation tool or module an 
experiment could be performed to determine or evaluate its usability. The 
resulting observations may then be used to assess improvements or decide 
whether such an implementation was feasible in the first place. 
 
The reliability of software applications is affected by factors of the system 
development process, with the level or quality of performed testing being one 
such factor. In order to improve reliability estimation, propositions are made 
to quantify these factors and subsequently use them in the estimation process. 
However, through the work of this project we have come to learn that 100% 
code coverage by no means implies a code free of faults. We have also seen 
how mutation coverage can be employed to demonstrate the incapability of 
tests in discovering all existing faults. Thus, by combining these observations 
it might prove interesting to uncover how an amalgamation of mutation 
coverage and reliability models would change reliability estimates. A measure 
of mutation coverage should then be combined with the computed reliability 
estimate, so that the varying failure-detecting abilities of tests used during 
estimation can be taken into account. 
 
In the early stages of this report we underlined the danger in designing tests 
with the explicit purpose of achieving complete coverage as soon as possible. 
We also commented on the fact that tests created within agile development 
methodologies such as eXtreme Programming, stand the risk of reaching 
100% coverage. With this in mind, it would be interesting to acquire more 
knowledge as to the relationship between reliability and development 
methodology when reliability is estimated by means of code coverage. We 
also touched upon the position of code coverage after the introduction of 
agile, test-driven methodologies. This issue may deserve more attention, but 
will most likely require tedious research. 
 

D 
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APPENDIX B: 

 Glossary 
 
 

 Application Programming Interface 
Definitions of inter-program communication, typically used for 
abstractions between applications on higher and lower level. 

 
 Black box testing 

Also known as functional testing. Black box testing involves testing the 
system from a user’s perspective, exposing it to different types of input 
and checking whether or not the resulting output is in accordance with 
the specification [Bei90]. 

 
 Enumerable 

Collective term denoting different quantifiable units of program code 
related to code coverage measures, including statements, methods, 
blocks, etcetera. 
 

 Error 
 Incorrect behavior resulting from a fault [Bei90].  
 

 Error handling 
 See exception handling. 
 

 Exception handling 
Also known as error handling. Exception handling consists of code 
that is called upon in the case of system errors requiring treatment. 
The code generally involves operations for restoring system services 
or storing data and notifying users prior to system shutdown. 

 
 External validity  

Validity type that deals with the extent to which results from an 
empirical experiment can be generalized across contexts. 

 
 Failure 

Incorrect behavior of a component [Bei90].  The lack of ability of a 
component, equipment, subsystem or system to perform its intended 
function as designed [Wik05]. 
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 Fault 

Incorrect program or data object – a bug [Bei90]. An abnormal 
condition or defect at the component, equipment or subsystem level, 
which may lead to a failure. 

 
 GNU Public License 

License type that provides everyone with the right to use, copy, modify 
and re-distribute the product as long as the rights specified in the 
license are passed on. Software which is distributed with this license 
associated with it, is referred to as open-source. 
 

 HTML 
 Hypertext Markup Language. Web page format for documents. 
 

 Industrial Strength Transformation Systems 
Tools employed for large scale reengineering, software quality 
analysis and enhancement reverse engineering [Bax98]. 

 
 Integrated Development Environment 

Application for software development where tools such as source code 
editor, compiler, interpreter, automation tool and version control 
system are combined and accessible to developers by means of a 
graphical user interface. 

 
 Internal validity 

Validity type that deals with the extent to which observations from 
empirical experiments can actually be said to be caused by the factor 
accounted for – that there is a causal relationship between treatment 
and outcome. 

 
 Java Virtual Machine - JVM 

Software program available to several platforms. JVM emulates a 
computer where byte code can be executed and given access to 
computer resources, thus facilitating execution of Java applications on 
any platform running a JVM implementation. 

 
 log4j 

Tool for logging information to file and used as low-tech method for 
debugging. 

 
 Maven 

A software project management and comprehension tool. Based on the 
concept of a project object model, Maven can manage a project's 
build, reporting and documentation from a central piece of 
information [Apa05].  
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 Object code 

Intermediate representation of code generated by a compiler after it 
processes a source code file [Wik05]. 

 
 Object-oriented testing 

Testing techniques geared towards applications developed with object-
oriented development methodologies, taking into account distinctive 
characteristics of object-orientation such as polymorphism, 
encapsulation and inheritance. 

 
 Open-source 

Software whose source code is made available, hence giving users the 
right and opportunity to create tailored versions of the program. 

 
 Package 

Intended as a collection of closely related Java classes that solve a 
certain type of problems or deal with a specific, coherent set of 
activities. 

 
 Parser 

Software program which analyzes grammatical expressions of 
program input, based on a formal grammar [Wik05]. 
 

 PDF 
Abbreviation for Portable Document Format – a file format developed 
by Adobe for documents independent of software, hardware and 
operating system. The open-standard format combines text, graphics 
and images. 
 

 Polymorphism 
A software property enabling the existence of several implementations 
of methods in object-oriented programming languages. This is the case 
when classes inherit from the same class and implement new 
functionality in the methods of this class. 

 
 Quality attribute 

A measurable part of the system that is used to quantify its quality. 
 

 Race coverage 
A coverage measure that reports whether two or more threads execute 
the same piece of code simultaneously. Race coverage can be 
employed to detect failures in synchronizing access to resources 
[Cor04]. 
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 Random testing 

Testing technique for random generation of test cases, implying that 
new tests are selected independently of previously executed tests. 

 
 Robustness 

The resilience of the system, especially when under stress or when 
confronted with invalid input [Wik05]. 

 
 Source-to-source rewrite rule 

Description of how a text pattern will be transformed into a different 
text pattern upon the satisfaction of a particular condition. 

 
 Structural testing 

 See white box testing. 
 

 Test-driven development methodologies 
Methodologies for developing software where test cases are created 
prior to the code attempting to satisfy it, with the purpose of 
controlling a given functional requirement. 
 

 Test set 
 A set of input data and expected output data used to test a system.  
 

 Trustworthiness 
Software property denoting dependable, stable and fault-tolerant 
operation while yielding predictable results, typically in one or more 
functions deemed critical. 

 
 White box testing 

Performing tests on functions that are not directly available for the 
users of the final product. 

 
 Wrapper class 

A software class which wraps an inner class and forms the interface of 
the class it wraps. All other classes must now communicate via the 
wrapper class. 

 
 XML 

Extensible Markup Language. A W3C recommendation for creating 
special-purpose markup languages [Wik05]. 
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