Abstract

Unmanned Aerial Vehicles (UAVs) have a tremendous appeal. One can imagine
a large number of applications such as search-and-rescue, traffic monitoring,
aerial mapping, etc. Helicopters are particularly attractive due to their Vertical
Take Off and Landing (VTOL) capabilities. The research on UAVs has shown
rapid development in recent years, and offers a great number of challenges.
This thesis is the result of a project which is a part of the Autonomous Remote
Controlled Helicopter (ARCH) project at the Department of Computer and
Information Science, Norwegian University of Science and Technology. The
ARCH project has already gained public interest, when it was featured on a
television program (Schrédingers katt, NRK. September 2004).

The object of this thesis is divided into three main sections. Firstly, it is to
create and describe a remote control system for controlling the UAV in semi-
autonomous mode, that will also enable the UAV to autonomously follow objects
(pursuit-mode). Secondly, it is to create and describe a virtual cockpit which is
to be used with the remote control system. Finally, it is to create and describe
an image stabilization system, which can stabilize the visual information sent
from the UAV to the ground and the virtual cockpit.

These three components have been combined and integrated into the client pro-
totype called ARCH Groundstation. Together, these three components provides
a platform for an operator to control the ARCH UAYV in semi-autonomous mode.
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Chapter 1

Introduction

ARCH (Autonomous Remote Controlled Helicopter) is a research project at
the Norwegian University of Science and Technology (NTNU), Department of
Computer and Information Science (IDI). The project aims to create an un-
manned helicopter, which will eventually be able to fly autonomously based on
Global Positioning System (GPS) coordinates, map data and sensor readings.
The ARCH project has already gained public interest, when it was featured on
a television program (Schrodingers katt, NRK. September 2004). This thesis is
a subproject within ARCH.

The remainder of this chapter contains some general background information
about earlier experiences with unmanned aerial vehicles, and a clarification of
what this project work seeks to accomplish in concrete terms. Henceforth, the
abbreviation UAV will be used for unmanned aerial vehicle.

1.1 Background

The emerging area of UAV research has shown rapid development in recent
years, and offers a great number of challenges. Much previous work has focused
on low-level control capability, with the goal of developing a controller, which en-
ables autonomous flight from one waypoint to another. Historically, the greatest
use of UAVs has been in the areas of intelligence, surveillance and reconnaissance
(military). UAVs have increasingly become more important in recent conflict
areas, and are predicted to become even more important in future conflicts
[Doherty 2004]. While UAVs play an increasing role in these mission areas, civil
access to these various UAV assets is now emerging and intelligent UAVs will in
the future play an equally important role in civil applications. For both military
and civil applications, there is a desire to develop more sophisticated UAVs with
more intelligent capabilities. UAVs have tremendous appeal. One can imagine a
large number of applications such as search-and-rescue, traffic monitoring, aerial
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mapping, etc. Helicopters are particularly attractive due to their Vertical Take
Off and Landing (VTOL) capabilities. Earlier projects completed within the
ARCH include the creation of an operator control unit on the ground called the
Groundstation as well as an API and communication protocol to support com-
munication between the helicopter and Groundstation. An offline-path planner
has also been created, which also enabled several helicopters to work together
to achieve a desired degree of sensor-coverage (i.e. camera coverage).

1.2 Motivation

A reliable unmanned aircraft will open the door to numerous possible applica-
tions that would be impractical or impossible with a manned aircraft. There is,
for instance, a logical limitation to how small a manned aircraft can be. This
limits both flexibility and price. A miniature UAV would be able to operate in
tight, inaccessible and highly dangerous environments. There are several areas
where UAVs would be a natural choice.

1.3 Objective

The main goal of this project is to make it possible to pilot the ARCH UAV in
semi-autonomous mode. This means that an operator should be able to gain
control of the, normally fully autonomous, helicopter from a remote location
e.q. the ground. The main goal is composed of four more specific subgoals:

e Create a remote control system (RCS) which enables an operator to con-
trol the UAV from a remote location. The operator controls the UAV
through the UAV’s onboard control system which stabilizes the UAV. This
computer-assisted control will make it easier for an operator to control the
UAV compared to having direct control of it.

e Move the visual information from the UAV to the remote location to enable
an operator to pilot the UAV as if she or he were sitting inside the UAV.
Also, to reduce the pilot’s workload, place the primary flight information
as a graphical overlay on top of the visual information to create what is
known as a Head Up Display (HUD).

e Create a Digital Image Stabilizing (DIS) system. To stabilize the visual
information sent from the UAV to the remote location.

e Enable the UAV to autonomously follow objects through the remote con-
trol system. There is an ongoing project within the ARCH project to
develop a tracking system. This system will be able to identify and track
objects on a video image. The RCS is to be able to use this system to
make the UAV able to pursue objects autonomously.
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The aim is to implement a prototype for controlling the UAV in semi-autonomous
mode, with all of the mentioned subgoals integrated. The implemented proto-
type is intended to be refined into a full-featured software system for controlling
the autonomous helicopter in future work.

1.4 Structure of the document

The next chapter provides an introduction to unmanned aerial vehicles. It de-
scribes what they are and what they can be used for. It also describes some of
the display systems found in todays conventional aircrafts. This provides some
background information for the display system developed in this thesis. In chap-
ter 3 the platform developed for the ARCH project is presented. Chapter 4 gives
a brief summary of the theory necessary in order to understand the background
and motivation for some of the choices made in this thesis. In chapter 5 the
results of this thesis work is presented along with a short description of how
they were tested. A discussion regarding various relevant aspects of the thesis
will be given in chapter 6 and a summary presented in the concluding chapter.






Chapter 2

Unmanned aerial vehicles

Unmanned aerial vehicles, commonly referred to as UAVs, are defined as pow-
ered aerial vehicles sustained in flight by aerodynamic lift over their flight path
and guided without an onboard crew. They may be expendable or recover-
able, and can fly autonomously or be piloted remotely. A number of UAVs
presently exists. Their capabilities in terms of payload (weight carrying capa-
bility), accommodations (volume), mission profile (altitude, range, duration)
and onboard systems (control and data acquisition) vary significantly. Histori-
cally, the greatest use of UAVs have been in the areas of intelligence gathering,
surveillance and reconnaissance (military). For more information concerning
UAVs see [UAV Web]. While UAVs play an increasing role in these mission ar-
eas, civil access to these various UAV assets is now emerging. The following two
subsections will examine what a UAV is, and how it can be put to good use. The
last subsection will describe the display systems currently used in piloted air-
crafts. In order to effectively pilot an unmanned aircraft these display systems
must be moved from the aircraft to the remote location i.e. groundstation.

2.1 What is a UAV

Degree of autonomous behavior

& o S
———

Autonomous
vehicle

Remote-controlled

Fly-by-wire

Figure 2.1: Degree of autonomous behavior
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As mentioned UAVs can either fly autonomously or be piloted remotely. The
word autonomous is often used for a wide range of vehicles with different levels
of autonomity, meaning the vehicle’s ability to solve tasks without intervention
from an operator. A typical autonomous vehicle is able to assist the operator
by performing a number of sub-tasks on its own, which makes the operator
able to focus on the main task or mission. The focus is on a vehicle’s ability
to perform autonomous navigation and, when considering aerial vehicles, the
ability to maintain a fixed position or heading by itself. Unmanned vehicles can
therefore be categorized by their degree of autonomity, as illustrated in figure
2.1.

2.1.1 Remote-controlled vehicle

Figure 2.2: Remote-controlled car

(copied from [RC Web])

Remote-controlled vehicles are vehicles without any form of built-in navigation
or control. Examples of such are remote-controlled cars (figure 2.2), planes and
helicopters. The vehicle is completely dependent on the operator’s constant
input. A remote-controlled helicopter would crash to the ground if not for
continuous monitoring and handling by the operator. Some types of remote-
controlled vehicles, for example helicopters, demands a great deal of skill from
the operator.

2.1.2 Fly-by-wire

On some vehicles, the operator’s inputs are converted into the correct settings
for the engine and controls. The principle is known as fly-by-wire. More on
fy-by-wire can be found at [NASA Web]. The vehicle has a higher degree of
autonomity than a remote-controlled vehicle, but is still dependent on the op-
erator’s or pilot’s input. The technology is known from fighter-planes, as the
ones shown in figure 2.3, where fly-by-wire makes the plane stable. A modern
fighter-plane is deliberately constructed unstable to make it as maneuverable as
possible. This means that it’s impossible for a human pilot to keep the plane
stable in the air without assistance from computers. Another example is the
B-2 stealth bomber-plane which is constructed without a tail-rudder to lower
the radar-reflection. The bomber turns with only a combination of bank- and
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B-2
SPIRIT

(a) F-18 Hornet (b) B-2 Stealth
Bomber

Figure 2.3: Planes with fly-by-wire technology

(copied from [FAS2 Web, FAS3 Web])

height-rudders. These properties are hidden from the pilot by the plane’s fly-
by-wire system, which makes the plane handle like a conventional airplane with
a tail-rudder.

A more simple version of fly-by-wire can be found in modern cars today. We
know them as Anti-Spin-Control (ASC), Anti-lock Braking System (ABS) and
Electronic Stabilisation Programme (ESP). When the driver presses the brake or
accelerator pedal, the inputs are sent to the car’s computer, where the optimal
brake or engine power is calculated.

There is no clear distinction between fly-by-wire systems and autonomous sys-
tems. Fighter planes are, for instance, capable of leveling themselves if the
pilot should pass out because of G-forces or for other reasons be incapable of
controlling the plane.

2.1.3 Autonomous vehicles

(a) Mars Rover (b) Tomahawk
missile

Figure 2.4: Autonomous vehicles

(copied from [Mars Web, FAS Web])

Autonomous vehicles are generally defined as vehicles that are capable of in-
telligent motion and action without requiring either a guide to follow or the
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constant input of an operator.

The well known Mars-Rover, from NASA’s Mars exploration project shown in
figure 2.4 (a), had a built-in intelligent navigation and control system. The
distance (487 million kilometers) and the time delay (27 minutes) between the
vehicle on Mars and the operator on Earth made the rover impossible to operate
by hand. Instead, NASA! had to make it operate on its own. The rover was
able to autonomously navigate to a desired position and perform the necessary
tasks. More on the Mars-rover can be found at [Mars Web].

Another example is the tomahawk missile, figure 2.4 (b), which is a so-called
fire- and-forget weapon system (more on the tomahawk missile can be found
at [FAS Web]). This means that the missile will find its way to the target by
itself. The missiles are able to cover great distances over mountains and cities
before hitting a specific target with high precision. Modern missiles are capable
of circling the target and compare what is sees with stored photos to positively
identify the target before hitting it.

A less advanced form of an autonomous system is the autopilot system used in
commercial and large private aircrafts, where the pilot’s only job between take-
off and landing is to monitor the system. Common to all these autonomous
systems are the high demands that are put on the onboard hardware and soft-
ware. In return, the demands to the operator lessens, often to the extent that
the entire vehicle can be operated through simple commands and instructions.

2.2 The usage of UAVs

There is a lot of ongoing research on autonomous or unmanned aircrafts. The
reason for this is that a reliable unmanned aircraft will open the door to numer-
ous possible applications that would be impractical or impossible with a manned
aircraft. There is, for instance, a logical limitation to how small a manned air-
craft can be. This limits both flexibility and price. A miniature UAV would be
able to operate in tight, inaccessible and highly dangerous environments. There
are several areas where UAVs would be a natural choice. The following examples
are based on UAVs in the form of remote-controlled helicopters, because this
project work focuses on such a vehicle.

2.2.1 Search and Rescue

Vision-guided UAVs can quickly and systematically search a very large area to
locate victims of an accident or a natural disaster, as illustrated in figure 2.5.
They can then visually lock on to objects at the site or at stranded victims, to
guide rescue forces to the scene. This would help focus the efforts of search and

I National Aeronautics and Space Administration
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Figure 2.5: Search and Rescue

(copied from [AHP Web])

rescue crews to the rescue operation instead of on the time-consuming search
operation.

UAV’s can more easily be deployed in such weather conditions, which would
normally prevent human piloted search and rescue operations. They may be
sacrified, and thus could be used in very dangerous conditions to attempt saving
human lives. For example, they could fly close to a forest fire to look for stranded
individuals, search in contaminated areas, and identify potential radioactive
leaks after a nuclear reactor accident.

2.2.2 Surveillance

Figure 2.6: Patrolling

(copied from [AHP Web])

UAVs can patrol an area and report interesting or unusual activity. They can
perform a variety of surveillance operations ranging from around-the-clock bor-
der patrol to looking for potential danger on the battlefield. They could keep
watch on an area non-stop by automatically landing and refueling from ground
stations in or near the area, as illustrated in figure 2.6. They are also capable of
automatically locating and identifying suspicious activity, and visually lock-on
to objects or persons involved until ground forces arrive.
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2.2.3 Law enforcement

Figure 2.7: Chase

(copied from [AHP Web])

Besides being unmanned, small UAVs would be relative inexpensive. This makes
them suitable for being placed in harm’s way. UAVs could fly overhead to
aid the police in dangerous high-speed chases or criminal search operations, as
illustrated in figure 2.7. Stationed on top of buildings in urban areas, they can
be dispatched in in seconds and relay images from trouble spots. This real-time
imagery could assist the tactical assessment of the situation by human experts
who dispatch police units to the scene.

2.2.4 Inspection

Figure 2.8: Inspection

(copied from [AHP Web])

It is cost effective to have one or more small UAVs in the air compared to
conventional aircrafts. This makes them a good alternative when installations
need to be inspected. UAVs could inspect high voltage electrical lines in remote
locations. They could also inspect large structures such as bridges, dams and
oil-riggs effectively and at a small cost, as illustrated in figure 2.8. The fact
that they are unmanned, and therefore expendable would make them useful for
inspecting buildings and roads for potential damage after an earthquake. Or
they can locate hazardous materials in waste sites by providing aerial imagery to
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human experts or by automatically identifying waste containers and materials
using on-board vision systems.

2.2.5 Aerial photography and mapping

-
[ 3

Figure 2.9: Mapping

(copied from [AHP Web])

UAVs are able to fly and maneuver a lot closer to the ground than what could
be considered safe for a conventional aircraft. This makes the UAVs able to
build more accurate topological maps than conventional aircraft, thus achieving
substantial cost savings. Unlike airplanes, they can fly close to the ground
while carrying cameras or range sensors to build high resolution 3D maps, as
illustrated in figure 2.9. They can also fly in smaller and more constrained areas
to build highly detailed elevation maps.

2.3 Display Systems

The cockpit display systems provide a visual presentation of the information
and data from the aircraft sensors and systems to the pilot in order to enable
the pilot to fly the aircraft safely and carry out the mission. They are thus vital
to the operation of any aircraft as they provide the pilot with:

e Primary flight information

e Navigation information

e Engine data

Airframe data

e Warning information.

Often there is a wide array of mission spesific information to view. The pilot is
able to rapidly absorb and process substantial amounts of visual information,
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but it is clear that the information must be displayed in such a way that it can
easily be assimilated, and unnecessary information must be filtered out to ease
the pilot’s task in high work load situations. A number of technologies have
been developed to improve the pilot-display interaction, and this is a continuing
activity as new technology and components become available. Examples of these
developments are:

e Head Up Displays (HUDs)
e Helmet mounted displays (HMDs)
e Multi-function colour displays

e Digitally generated colour map displays

This subject can readily fill several books. Attention has, therefore, been concen-
trated on providing an overview and explanation of the basic principles involved
in the topics most relevant to this project. For a more in-depth look at flight
display systems see [Collinson 2002], which is the basis for this overview.

2.3.1 Head Up Displays

HUDs and the progressive development of these are without a doubt the most
important advance in the visual presentation of data to the pilot in the past
forty years or so. The first production HUDs went into service in 1962 in
the BUCCANEER strike aircraft in the UK. The HUD has enabled a major
improvment in man-machine interaction (MMI) to be achieved, as the pilot is
able to view and assimilate the essential flight data generated by the sensors
and systems in the aircraft whilst keeping hers or his head up and maintaining
full visual concentration on the outside world.

A HUD basically projects a collimated display on a transparent screen which is
positioned in the pilots forward line of sight, so that she or he can view both the
displayed information and the outside world scene at the same time. Because
the display is collimated, that is focused at infinity (or a long distance ahead), it
overlays the outside world scene. The pilot is thus able to observe both distant
outside world objects and displayed data at the same time without having to
change the direction of gaze or re-focus the eyes.

The advantages of head up presentation of essential flight data such as the
artifical horizon, pitch angle, bank angle, flight path vector, height, airspeed and
heading can be seen in figure 2.10. The figure shows a typical HUD as viewed by
the pilot. The pilot is thus free to concentrate on the outside world during fight
manoeuvres and does not need to look down at the cockpit instruments or head
down displays. For instance in combat situations, it is essential for survival that
the pilot is head up and scanning for possible threats from all directions. The



2.3. Display Systems 13

Figure 2.10: Head Up Displays

(copied from [F-16 Web])

abillity to remain head up in combat has made the HUD an essentail system
on all modern combat aircraft. The HUDs have also been widely retro-fitted
to earlier generation figthers and strike aircrafts. It should be noted that there
is a transition time of one second or more to re-focus the eyes from viewing
distant objects to viewing near objects a metre or less away, such as the cockpit
instruments and displays and adapt to the cockpit light enviroment.

Using a Forward Looking Infra-Red (FLIR) sensor, an electro-optical image of
the scene in front of the aircraft can be overlaid on the real world scene with a
raster mode HUD. The TV raster image generated from the FLIR sensor video is
projected on to the HUD and scaled one to one with the outside world enabling
the pilot to fly at low altitude by night in fair weather. This provides a realistic
night operation capabillity to the fighters. HUDs are also being installed in civil
aircrafts for reasons such as:

1. Increased safety while landing the aircraft in conditions of severe wind
shear using the HUD to provide a flight path director display which allows
for the effects of wind shear. The flight path is computed from the flight
path vector derived from the INS?, airspeed and height from the air data
system and the aircraft’s aerodynamic characteristics.

2. To display automatic landing guidance to enable the pilot to land the
aircraft safely in conditions of very low visibility due to fog, as a back up
and monitor for the automatic landing system.

3. Enhanced vision using a raster mode HUD to project a FLIR video image
of the outside world from a FLIR sensor installed in the aircraft. As shown
in figure 2.11.

2Inertial Navigation System, this system is described in section 3.1.2.
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Figure 2.11: HUD projecting a FLIR video image

(copied from [F-16 Web])

2.3.2 Helmet Mounted Displays

The advantages of HUDs have been described in the previous section. The
HUD, however, only presents the information in the pilot’s forward field of
view, and this is somewhat limiting. Significant increases in this field of view
are not practicable, because of the cockpit geometry constraints. Especially
with helicopters the pilot requires visual information head up, when she or he is
looking in any direction. This requirement can only be met by a helmet mounted
display (HMD). A HMD can provide, in effect, a “HUD on the helmet”, as shown
in figure 2.12. This can display all the information to the pilot which is normally
shown on a HUD, but with the pilot able to look in any direction. The HMD
also enables a very effective night/poor visibility viewing system to be achieved
by displaying the TV image from a gimballed® infrared sensor unit which is
slaved to follow the pilot’s line of sight. The pilot’s line of sight with respect to
the airframe is measured by a head positioning system. Such a helmet can also
incorporate night viewing goggles which are integrated into the HMD optical
system.

2.3.3 HMDs and the virtual cockpit

The concept of a “virtual cockpit”, where information is presented visually to
the pilot by means of computer generated 3D imagery, is being very actively

3Gimbals: An appliance for permitting a body to incline freely in all directions, or for
suspending anything, as a barometer, ship’s compass, chronometer, etc., so that it will remain
plumb, or level, when its support is tipped, as by the rolling of a ship. [Gimbals Web].
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Figure 2.12: Helmet Mounted Display

(copied from [Airforce Web])

researched in a number of establishments both in the USA and the UK. The in-
creasing use of remote piloted vehicles (RPVs) and their control from a “parent”
aircraft or ground station is another future application for HMDs and virtual
cockpit technology. It should be noted that RPVs can include land vehicles or
underwater vehicles as well as airborne vehicles.

A correctly designed binocular HMD (BHMD) is a key component in such sys-
tems, because it is able to present both a display of information at infinity and
also stereo images so that the pilot sees a 3D image. The ability to generate
3D displays opens up entirely new ways of presenting information to the pilot
(and crew), the objectives being to present the information so that it can be
visually assimilated more easily and in context with the mission. When head
up, the pilot views the outside world directly, or inderectly by means of a TV
display on the HMD from a sensor unit. When looking down at the instrument
panel, the virtual cockpit computer system recognises the pilot’s head down
sight line and supplies this information to the display generation system. The
display generation system then generates a stereo pair of images of the appro-
priate instrument display on the panel which corresponds to the pilot’s line of
sight. Thus, looking down into the cockpit at the position normally occupied
by a particular instrument display will result in the pilot seeing a 3D image of
that instrument display appearing in the position it normally occupies - i.e. a
virtual instrument panel display.

Novel ways of presenting information to the pilot by means of the BHMD include
displaying a 3D “pathway in the sky” as a flight direction display, which can be
overlaid on the normal outside scene or on a computer generated outside world
scene created from a terrain data base.






Chapter 3

The ARCH UAV

ARCH (Autonomous Remote Controlled Helicopter) is a research project at
NTNU. The project aims to create an unmanned helicopter which will eventually
be able to fly autonomously based on GPS coordinates, map data and sensor
readings. This chapter contains information about the different components
that are currently developed in the ARCH project. Both the aerial vehicle itself
and the operator control unit on the ground.

3.1 ARCH- Autonomous Remote Controlled He-
licopter

The first two sections contains information about the components that the
ARCH helicopter is presently comprised of. The final section describes how
the different hardware components were mounted on the helicopter.

3.1.1 Hardware platform

The ARCH helicopter is originally Thunder Tiger’s' Raptor 90 remote con-
trolled helicopter, which is commercially available, the specifications for the
Raptor 90 can be found in table 3.1. It is augmented with a mini-ITX board
running a Linux version called Gentoo. This board constitutes the heart of the
control system. Mini-ITX is an ultra-compact (17x17 cm.) mainboard form-
factor developed by Via Technologies Inc. There is also an on-board Inertial
Measurement Unit (IMU) from Rotomotion (Rev 2.4 6DOF IMU Kit). This is
a 6 degrees of freedom (6DOF) inertial measurement unit. The unit measures
rotation and acceleration about/along the x, y and z axis. Both the mini-ITX

IThunder Tigers web-page is available at: http://www.tiger.com.tw/

17
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| Item | Value |
Full length of fuselage 55.5”
Full width of fuselage 7.487
Total height 18.75”
Main rotor diameter 62.2”
Tail rotor diameter 10.24”
Gear ratio 8.45:1:4.6 (90)
All up weight approx. 4.76 kg+

Table 3.1: Specifications for the Raptor 90

board, the IMU and the Raptor 90 helicopter are shown in figure 3.1. The most
important instruments of the IMU are:

e Three gyroscopes, which measure rotational values without reference to
external coordinates.

e Three accelerometers, which measure acceleration in three directions of a
body-centered coordinate systern.

e A magnetometer, which measures the heading toward the magnetic north
pole.

—

(c) Raptor 90 helicopter

Figure 3.1: The main components of the helicopter

The magnetometer, which is a digital compass, is together with a Global Po-
sitioning System (GPS) unit used to calculate the position of the UAV. The
GPS is a worldwide radio-navigation system formed from a constellation of 24
satellites and their ground stations. GPS uses these "man-made stars" as refer-
ence points to calculate positions accurate to a matter of meters. In fact, with
advanced forms of GPS it is possible to make measurements to better than a
centimeter. The GPS receiver used on the helicopter is from U-blox, shown in
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figure 3.2 (a), its size is 71 x 41 x 11 mm and with a precision of about 2,5
meters.

There is also a small camera mounted on the helicopter to provide live, high-
quality video from the helicopter to the ground-station. The camera is a Pro X2
from Hicam, as shown in figure 3.2 (b), which is a Charge Coupled Device (CCD)
camera which requires a 4.8 volt power source. This is conveniently the same
power-level which the helicopter operates on. It also has its own transmitter
and receiver which enables it to transfer the video to the Groundstation without
affecting the rest of the onbord system. At the Groundstation the signal is
received as a normal video-in signal. There is of course also an onboard power-
supply to power all of these components. This power-supply was originally a
battery for a laptop computer. The platform is still evolving, and additional
sensors will be added in the future.

(a) GPS (b) Camera (c) Transmitter

Figure 3.2: The peripheral components of the helicopter

3.1.2 Software platform

As mentioned in the previous section, the mini-ITX board runs a Linux operat-
ing system. The heart of the control system is the Inertial Navigation System
(INS). The INS calculates orientation and position from gyro and accelerometer
readings. The real world data from these sensors are fed into a Kalman filter.
A Kalman filter is a filter which is used to estimate the state of a system from
measurements which contain random errors. Estimating variables such as posi-
tion and velocity for aerial vehicles typically requires a Kalman filter. A more
in-depth description of the Kalman filter can be found in [Kalman 60]. Many
INS implementations exist, most of these are only available commercially. An
open source project called Autopilot is used as a basis for the ARCH project.
Autopilot is a complete control system for unmanned helicopters. It provides
a three-axis Electronic Flight Instrument System (EFIS). The system provides
the instrumentation for attitude, engine and position. The entire design and all
software is available as Free Software, licensed under GPL?. The goal of the au-
topilot project is to provide a do-it-yourself autopilot kit. For more information
about the autopilot project see [Autopilot Web].

2General Public License, see http://www.gnu.org/copyleft/gpl.html
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Since Autopilot is an open source project there is a risk that the codebase
will not remain backwards compatible. Therefore it was deemed necessary to
implement an own Application Program Interface (API) for the ARCH project.
All communication through and from the autopilot control system goes through
this API. Software units using this API to communicate with the UAV control
system are called clients, clients can be either local (i.e. running on-board the
UAV) or remote. Details on this API can be found in appendix B.

3.1.3 Assembly

The components described in section 3.1.1 are all bought “off the shelf”. How-
ever, a great deal of time and engineering has been invested in mounting the
different components on to the helicopter. The mini-ITX board, IMU, GPS
and power-supply are all secured to a container called the inner container as
illustrated in figure 3.3 and 3.4. The inner container is basically a plastic case
with a lid, which enables quick and easy access to the components.

|
| [
| |

Hard drive — —IMU

mini-ATX GPS

(a)

Figure 3.3: Inner container (illustrated)

When the helicopter is in flight, the inner container is secured inside an outer
container. The outer container is similar to the inner container, only bigger,
and it is fixed to the helicopter itself. The inner container is placed inside the
outer container but it is not in direct contact with the outer container. There is
a layer of bubble-wrap in between the inner and outer container to minimize the
vibrations on the inner container. Besides containing the inner container, the
outer container acts as a undercarriage to the helicopter. Therefore, a training
gear has been fixed to the container. A training gear is basically four poles
mounted to the helicopter in a way which makes it virtually impossible to make
the rotor-blades hit the ground. The poles on this helicopter are mounted in
an angle to absorb most of the impact in any “not so soft” landings. Figure 3.5
illustrates where the different components are mounted on the helicopter. And
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(a) overview

Figure 3.4: Inner container

Figure 3.6 shows the helicopter and undercarriage, the white casing behind the
helicopter was placed there to pick up spills from the exhaust and is not part of
the helicopter.

GPS antenna

Camera —

Outer

Bubble-wrap

i
! e

——— Training gear

Figure 3.5: Helicopter (illustrated)

3.2 OCU - Operator Control Unit

The Operator Control Unit (OCU) is the collective term of all the components,
software and hardware, that combined enables an operator to control the UAV.
This section contains information about the components that constitute the
OCU. Both the actual hardware parts and the software applications are de-
scribed.
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Figure 3.6: Helicopter

3.2.1 Hardware platform

The OCU is a laptop, which is used to, among other things, send high-level
commands such as waypoints to the helicopter. In order to pilot the helicopter
from the OCU there must also be a joystick connected to it. Any joystick which
is configured and calibrated on the OCU should do, although it would be most
convenient with a joystick with four axes. On the ARCH project the Logitechs
Freedom 2.4 joystick, figure 3.7 (a), is used. In order for an operator to see where
she or he is flying the OCU must also be able to receive the video signal sent
from the helicopter. This is done by connecting the cameras receiver described
in section 3.1 to an analog to digital video decoder. On the ARCH project
a decoder from Hauppauge is used, figure 3.7 (b). This was chosen because
it connects to the OCU through USB and it is supported on most operating
systems.

(a) Logitech Freedom 2.4 (b) Hauppauge WinTV
PVR USB2

Figure 3.7: Components on the Operator Control Unit
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3.2.2 Software platform

In order to test new applications the ARCH GroundStation prototype was de-
veloped. The purpose of the GroundStation is to enable people to monitor and
control the helicopter’s actions. It is meant to provide an interface to UAVs,
where a user can plot flight paths, designate areas for UAVs to cover and have
direct control of an UAV. The GroundStation is connected to the helicopter
through a wireless LAN. Although the helicopter could function well on its own,
it is assumed that the helicopter will always be connected to the GroundStation.
This means that the reach of the wireless LAN, or the lack thereof, implies a se-
rious restriction on the reach of the helicopter. This is something that will have
to be changed or fixed before the ARCH helicopter can perform tasks of signif-
icance beyond research and development. For more information concerning the
Groundstation see appendix C. To make the GroundStation able to run on any
platform, the entire application is written in the programming language Java.
Because there is no native support for polled input, such as joysticks, in Java an
open source project called Jinput has been used in the ARCH project. The JIn-
put project hosts an implementation of an API for game controller discovery and
polled input. The API itself is pure Java and presents a platform-neutral com-
plete portable model of controller discovery and polling. It can handle arbitrary
controllers and returns both human and machine understandable descriptions
of the inputs available. The implementation also includes plug-ins to allow the
API to adapt to various platforms. These plug-ins often contain a native code
portion to interface to the host system. This allows the GroundStation to stay
platform-neutral by applying different plug-ins on different platforms. For more
details on the JInput project see [Jinput Web]. In order to view and manipulate
the video sent from the helicopter to the Groundstation, the Java 2 Platform,
Standard Edition (J2SE) has been extended with an optional package called
Java Media Framework API (JMF). JMF enables audio, video and other time-
based media to be added to applications and applets built on Java technology.
It enables a developer to capture, playback, and stream multiple media formats
by providing a powerful toolkit to develop scalable, cross-platform technology.
For more information on JMF see [JMF Web|. Table 3.2 shows the different
versions of the packages and the programming language used.

| Software | Version |
Java J2SE 5.0

JMF 2.1.1e
JInput 1.5

Table 3.2: Software versions






Chapter 4

Theory

This chapter contains the theory on which the proposed solutions, in this thesis,
are based upon. The first section describes the theory behind motion estima-
tion and motion correction. It also presents four different approaches to motion
estimation. The second section describes the underlying theory used when draw-
ing computer graphics. This teory is utilized when implementing the Head Up
Display.

4.1 Digital Image Stabilizing

Image stabilizing is defined as the process of generating a compensated video
sequence, where image motion by the camera’s undesirable shake or jiggle is
removed [Kinugase et al. 1990]. Recent Digital Image Stabilizing (DIS) systems
are realized using digital image processing techniques instead of mechanical
motion detection techniques using gyros or fluid prism [Uomori et al. 1990].
The image stabilization task may be subdivided into two basic systems, namely:
the motion estimation system and the motion correction system.

In general, the motion estimation system generates several local motion vectors
from sub-images in different positions of the frame. The generation of these mo-
tion vectors is known as image mapping or image regstration. Image registration
may be defined as a spatial mapping between two images. If we define these
images as two 2D arrays of a given size denoted by I; and Iy where I1(z,y) and
I>(x,y) each map to their respective intensity (or other measurement) value,
then the mapping between images can be expressed as:

IZ(xvy) =1 (f(ﬂ?, y)) (41)

where f is a 2D spatial-coordinate transformation, i.e., f is a transformation
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which maps two spatial coordinates, x and y, to new spatial coordinates =’ and
/!

v, (also illustrated in figure 4.1):

(@' y") = f(z,y) (4.2)

The image registration problem is to find the optimal spatial transformations
so that the images are matched for the purpose of determining the parameters
of the matching transformation. These parameters will then become the motion
vectors, which will be used in the motion correction system.

Image B

By | Bi2|B3 | By

By | Byy|Bos| Boy | Bys /426
By Bsz/ Baafl By By | Byg
By, BJ 54;{ By, /445 Bys
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Be1 E/E;/Q %3 /664 Bis | Beg
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Figure 4.1: Example of spatial-coordinate mapping

Motion estimation methods may be loosely divided into the following four
classes:

e Algorithms that use image pixel values directly, e.g., correlation methods
[Barnea et al. 1972].

e Algorithms which use the frequency domain, e.g., Fast Fourier Transform (FFT)-
based methods [De Castro et al. 1987] .

e Algorithms which use low-level features such as edges and corners, e.g.,
feature-based methods [Brown et al. 1992].
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e Algorithms which use high-level features such as identified (parts of) ob-
ject, or relation between features, e.g., graph-theoretic methods [Rao et al. 2004].

The motion correction system determines the global motion of a frame by appro-
priately processing these local motion vectors, and decides whether the motion
of a frame is caused by undesirable fluctuation of the camera or intentional
panning. The stabilized image is generated by reading out the proper block of
fluctuated image in the frame memory [Paik et al. 1992].

The following four subsections presents an overview of the theory behind the
different classes of motion estimation, by introducing four different methods, one
from each class, (this brief overview is based on the excellent presentation in
[Brown et al. 1992].) Finally a brief description of the theory behind a motion
correction system will be given.

4.1.1 Motion estimation based on correlation methods

Cross-correlation is the basic statistical approach to image registration. It is
often used for template matching or pattern recognition where the location and
orientation of a template or pattern is found in an image. By itself, cross-
correlation is not a image registration method. It is a similarity measure or
match metric, i.e., it gives a measure of the degree of similarity between an
image and a template. However, there are several image registration methods
for which it is the primary tool. These methods are generally useful for images
which are misaligned by small rigid or affine transformations. For example
translation which is the most relevant in image stabilizing. For a template T’
and image I, where T is small compared to I, the two-dimensional normalized
cross-correlation function measures the similarity for each translation:

S5, T - uy - v)
\/szyﬂ(aj—u,y—v)

C(u,v) (4.3)

If the template matches the image exactly, at a translation of (i, j), the cross-
correlation will have its peak at C(, 7). (See [Rosenfeld et al. 1982] for a proof
of this using the Cauchy-Schwarz inequality.) Thus, by computing C over
all possible translations, it is possible to find the degree of similarity for any
template-sized window in the image. Notice that the cross-correlation must be
normalized since local image intensity would otherwise influence the measure.

The cross-correlation measure is directly related to the more intuitive measure
which computes the sum of differences squared between the template and the
image at each location of the template:

D(u,v) = 35 (T, y) — I — uy —v))? (4.4)
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This measure decreases with the degree of similarity since, when the template
is placed over the image at the location (u,v) for which the template is most
similar, the differences between the corresponding intensities will be smallest.
The template energy, defined as ) Zy T?(x,y), is constant for each position
(u,v) that is measured. Therefore, one should normalize as before, using the
local image energy >, 5", I*(x —u,y —v).

A related measure, which is advantageous when an absolute measure is needed,
is the correlation coefficient:

covariance(I,T) 20 2y(T(@,y) — pr)(L(x — u,y —v) — pr)

e, wy =) - )2, X, (T, y) - pr)?
(4.5)

where pur and op are mean and standard deviation of the template and pj
and o7 are mean and standard deviation of the image. This statistical mea-
sure has the property that it measures correlation on an absolute scale ranging
from [-1,1]. Under certain statistical assumptions[Brown et al. 1992], the value
measured by the correlation coefficient gives a linear indication of the similarity
between images. This is useful in order to quantitatively measure confidence or
reliability in a match and to reduce the number of measurements needed when a
prespecified confidence is sufficient [Svedlow et al. 1987]. In motion estimation
the template or pattern is a sub-image of the previous frame in the video.

The most common correlation method is known as the Block Matching Al-
gorithm (BMA). The full search BMA under the Mean Absolute Difference
(MAD) and Mean Square Error (MSE) criteria can be considered as an opti-
mal solution for motion estimation [Musmann et al. 1985]. However, the full
search BMA requires large amount of computations, which causes time delay
[Liu et al. 1993, Gharavi et al. 1990]. In motion estimation it is possible to re-
duce the computation time by exploiting the fact that , usually, the image will
only have moved a limited amount of space from one frame to another. (As
shown in figure 4.2.) This will make it possible to achieve satisfactory results
using a limited search space. The limited search space will enable the motion
estimation to be performed in real-time.

4.1.2 Motion estimation based on FFT methods

The methods that fall into this class register images by exploiting several use-
ful properties of the Fourier Transform. Translation, rotation, reflection, and
scaling all have their counterpart in the Fourier domain. Furthermore, the
transform can be efficiently implemented in either hardware or using the Fast
Fourier Transform. These methods differ from the methods in the previous
section, because they search for optimal match according to information in the
frequency domain as opposed to in the image domain. By using the frequency
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Figure 4.2: Block Matching Algorithm

domain, the Fourier methods achieve excellent robustness against correlated and
frequency-dependent noise.

The most useful method for motion estimation and the most basic one that uses
Fourier analysis is called Phase Correlation. It can be used to register images
which have been shifted relative to each other. In order to describe this method
one needs a few of the terms used in Fourier Analysis. The Fourier transform
of an image f(z,y) is a complex function; each function value has a real part
R(wg,wy) and an imaginary part I(ws,wy) at each frequency (ws,wy) in the
frequency spectrum:

F(wg,wy) = R(wg,wy) + il (wg, wy) (4.6)

where ¢ = y/—1. This can be expressed alternatively using the exponential form
as:

F(wg,wy) = [F (W, wy)| exp’@een) (4.7)

where |F(wg,wy)| is the magnitude or amplitude of the Fourier transform and
where ¢(wz,wy) is the phase angle. The square of the magnitude is equal to the
amount of energy or power at each frequency of the image and is defined as:

F(wswy)[? = B (o) + 2w, ) (4.8)

The phase angle describes the amount of phase shift at each frequency and is
defined as:

Hwa, wy) }

-1
O(wz, wy) = tan [R(wm,wy)

(4.9)
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Phase correlation relies on the translation property of the Fourier transform,
sometimes referred to as the Shift Theorem. Given two images f1 and fo which
differ only by a displacement (d,,dy), i.e.,

fa(z,y) = fi(z — dyyy — dy) (4.10)

their corresponding F} and F, will be related by:

F(wa, wy) = expi@edeteonds) By () (4.11)

In other words, the two images have the same Fourier magnitude, but a phase
difference directly related to their displacement. This phase difference is given
by exp“®1=#2)_ If one compute the cross-power spectrum of the two images
defined as:

P (wg, wy) F3(wa, wy)

— (wadstwydy) 4.12
* eXp .
[ (@) 5 (@ ) (4.12)

where F*is the complex conjugate of F, the Shift Theorem guarantees that
the phase of the cross-power spectrum is equivalent to the phase difference
between the images. Furthermore, if we represent the phase of the cross-power
spectrum in its spatial form, i.e. by taking the inverse Fourier transform of
the representation in the frequency domain, we will have an impuls function.
Such a function is approximately zero everywhere, except at the displacement
position, which is needed to optimally register the two images. The Fourier
registration method for images, which have been displaced with respect to each
other, therefore involves determining the location of the peak of the inverse
Fourier transform of the cross-power spectrum phase. Since the phase difference
for every frequency contributes equally, the location of the peak will not change
if there is noise that is limited to a narrow bandwidth, i.e., a small range of
frequencies. Thus this technique is particularly well suited for images with this
type of noise.

There are several extensions to this method available (i.e. [De Castro et al. 1987])
which enables the method to register images which are both translated and ro-
tated with respect to each other. However, a real-time motion estimation system
is primarily interested in translative displacement, therefore these extensions will
not be a part of this brief overview.

4.1.3 DMotion estimation based on feature-based methods

One of the more known image registration algorithms that employs feature-
based methods is the Morphological Pyramid Image Registration (MPIR) al-
gorithm [Zhongxiu et al. 2000]. The MPIR algorithm uses the low level shape
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features to determine the global affine transformation model along with the
radiometric! changes between the images. The images are represented by a
Morphological Pyramid (MP)?, as the MP’s have the capability to eliminate
details and to maintain shape features. The Levenberg Marquardt non-linear
optimization algorithm is employed to estimate the matching parameters. This
algorithm is capable of measuring, to sub-pixel accuracy, the displacement be-
tween images subjected to simultaneous translation, rotation, and shearing.

Mathematical morphology is a set-theoretic approach to image analysis [Zhongxiu et al. 2000].
The morphological filters, such as Open and Close, can be designed to preserve

edges or shapes of objects, while eliminating noise and details in an image. Suc-

cessive application of morphological filtering and sub-sampling [Morales et al. 1995]

can construct the Morphological Pyramid (MP) of an image:

I.=[I,_10K)eK]|d L=01,2 .n (4.13)

Where K is a structuring element, d is a down sampling factor, o and e are
open and close filters. Thus the image at any level (pyramid level) L can
be created. The spatial-mapping function and parameters in MPIR are de-
scribed by a global affine transformation. The global affine transformation
[Alliney et al. 1986, Brown et al. 1992|, includes translation (fz,ty), rotation
(0), scaling (sz, sy), and shearing (shz, shy) and can be described as

(§> - (sflzy (1))((1) Sifx)(séc °y> (4.14)
(e e ) () (5)

where (p,q) and (r,c) are points in respectively the first and second gray scale
image. With six parameters, the above equation can be simplified to:

(-(x2)(0)(z)  we
q a4 a5 C (077

The affine transformation can accommodate shearing in addition to scaling,
translation, and rotation. In most practical cases, consideration of illumination
changes is sufficient, but it may also be necessary to compensate for bright-
ness and contrast between images, which are caused by radiometric variation in

imaging. The intensity-mapping function and parameters in MPIR, take care of
the changes in brightness and contrast and are expressed by:

LWhile the arrangement of pixels describes the spatial structure of an image, the radiomet-
ric characteristics describe the actual information content in an image. Every time an image is
acquired on film or by a sensor, its sensitivity to the magnitude of the electromagnetic energy
determines the radiometric resolution.

2A pyramid is a set / sequence of images with decreasing resolution.
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92 = arg1 + ag (4.16)

where g1 and go are the gray scale images. The Levenberg-Marquardt (LM) al-
gorithm is used to estimate the transformation parameters iteratively. The LM
nonlinear optimization algorithm is well suited for performing image registra-
tion based on least-squares criterion. Combining the spatial mapping and the
intensity mapping functions, the complete relationship between the two input
images is achieved:

g2(r,¢) = arg1(p, q) + ag] + n(r,c) (4.17)

where n(r,c) is due to noise existing in both images, and the eight transforma-
tion parameters ax, k = 1,2,...,8 are unknown. They are estimated using the
intensity-based method for matching, since image registration methods based
on initial intensity values can make effective use of all data available. The
parameters (a1 to ag) are estimated by the procedure similar to the one in
[Keller et al. 2002].

4.1.4 Motion estimation based on graph theoretic meth-
ods

These methods use high level features such as identified parts of an object or re-
lationships between features. One of the more commonly known algorithms that
employs these methods is image registration using Genetic Algorithms (GAs).
GAs have been known to be robust for search and optimization problems. Im-
age registration can take advantage of the robustness of GAs in finding the best
transformation between two images.

GA was formally introduced by John Holland and his colleague [Holland. 1975].
It is based on the natural concept that diversity helps to ensure a populations
survival under changing environmental conditions. GAs are a simple and ro-
bust methods for optimization and search and have intrinsic parallelism. GAs
are iterative procedures that maintain a population P of candidate solutions
encoded in form of chromosome string. The initial population can be selected
heuristically or randomly. For each generation, each candidate is evaluated and
is assigned the fitness value that is generally a function of the decoded bits con-
tained in each candidates chromosome. These candidates will be selected for the
reproduction in the next generation based on their fitness values. The selected
candidates are combined using the genetic recombination operation crossover.
The crossover operator exchanges portions of bit string hopefully to produce
better candidates with higher fitness for the next generation. The mutation
is then applied to perturb the string of chromosome as to guarantee that the
probability of searching a particular subspace of the problem space is never zero
[Zheng et al. 1993]. It also prevents the algorithm from becoming trapped on
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local optima [Xie et al. 2003], the reproduction process is illustrated in figure
4.3. Then, the whole population is evaluated again in the next generation and
the process continues until it reaches the termination criteria. The termina-
tion criteria may be triggered by finding an acceptable approximate solution,
reaching a specific number of generations, or until the solution converges.

/\0 Mutation

Selection

Best 10%

7

The enti lation fr N ]
e entire population from the Grassovar The population for the

CURRENT generation NEXT generation

Figure 4.3: An abstract view of generational replacement in a genetic algorithm.

(This process is repeated many times, once for each iteration requested. The goal should be

that each generation is better than the previous one, or at least no worse.)

Instead of linearly searching the whole search space , GA-based search tech-
niques are used to selectively explore the huge search space. Unlike traditional
linear search, the GAs adaptively explore the search solution space in a hyper-
dimension fashion [Holland. 1975, Goldburg. 1989]. Consider for instance the
search solution space of possible 232 solutions which, in sub-pixel image regis-
tration, could be the combination of rotation and x-y translations. It is obvious
that searching the whole space using linear search is impractical. Even sampling
this search space by a fraction of 10° still leaves over 4,000 possible solutions.
To solve image registration by GA, the transformation from one image to the
next needs to be expressed in the form of a chromosome. An example of how
this can be done is given in table 4.1. Table 4.1 shows three transformations,
rotation and x-axis and y-axis translations, encoded in the 32-bit chromosome
string. Using a bit encoding scheme for the chromosome string, a 12-bit field is
used to represent possible relative rotation of the input image to the reference
image. Likewise, 10 bits are used to express translation in x-axis and 10 more
for the y-axis. After the transformation from one image to the next is expressed
in the form of a chromosome, image registration can be solved by applying a
standard GA algorithm as explained above.

4.1.5 Motion correction systems

A motion correction system needs to be able to cope with irregular conditions,
such as moving objects and intentional panning that degrade the performance of
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[12bits | 10bits | 10bits |
| Rotation | Translation X | Translation Y |

Table 4.1: Encoding of transformation into chromosome string

the DIS system. The motion correction system determines the global motion of
a frame by appropriately processing local motion vectors, and decides whether
the motion of a frame is caused by undesirable fluctuations of the camera or
intentional panning. The stabilised image is generated by reading out the proper
block of fluctuated image in the frame memory, as illustrated in figure 4.4.

Time

Figure 4.4: Reading proper block of image, with moving object, into frame
memory

Various algorithms have been developed to estimate the global motion of a frame
from local motion vectors [Liu et al. 1993, Musmann et al. 1985, Okada. 1996,
Kinugase et al. 1990]. Most of these algorithms are complicated and computa-
tion will accordingly bring about a high level of costs.

In an image with motion, some sub-images with moving objects can produce
motion vectors which are significantly different from the other motion vectors.
Figure 4.4 shows an image that has moving objects in some sub-images. Figure
4.5 shows the correlation measure calculated using equation 4.3 from sub-image
S1 which has no moving objects and sub-image S2 with moving objects respec-
tively. In figure 4.5, for display, the correlation measures are normalized using
w where Cjhazis the maximum C;(m,n) within the search range. It is
shown that there does not exist a distinct maximum correlation value in figure
4.5 (b).

In general, motion vectors from the sub-images with moving objects are not



4.1. Digital Image Stabilizing 35

0.2999 v

09998 : 1 Tl e
09939 ’

05998

0.9997 |

0.9995 |

0.9995 | 09997

09994 0,999,

(a) from sub-image S1 which has no motion(b) from sub-image S2 which contains mov-
ing objects

Figure 4.5: Correlation measures

reliable and should be excluded from the global motion decision process. More-
over, since the movement, from the camera shaking, is relative slow compared
to the frame rate of the video camera, two successive frames fluctuated by the
camera shaking should have similar global motion.

Based on these properties of the camera’s movement [Ko et al. 1998] propose
a simple and robust motion correction scheme where global motion decision is
performed using current local motion vectors (V{, V4, V{, V) and the previous
global motion vector Vgt_l. In the proposed algorithm, the global motion vector
is obtained by:

V) = median {V}, V3, V4§, V{, Vi~'} (4.18)
Local motion vectors affected by undesirable conditions such as moving objects
can be viewed as impulses. It is known that the median filter is very effective in
eliminating impulses. Therefore, the median-based method in equation 4.18 can
exclude such abrupt local motion vectors and produce a global motion vector
similar to the previous one.

After determining the global motion vector, the motion correction system de-
cides whether the motion of a frame is caused by the camera shaking or in-
tentional panning. For this decision, the global motion vector of a frame is
integrated with a damping coefficient, and the integrated motion vector desig-
nates the final motion vector of a frame for motion correction. The integrated
motion correction vector V,, for estimating intentional panning is given by:

t __ t—1 t
Vi=DVIT 4V (4.19)

where Vgt is a global motion vector and D;(0 < D7 < 1) is a damping coefficient
for smooth panning.
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4.2 Drawing graphics

When drawing computer graphics, especially when drawing on top of other
graphics, it is useful to be able to transform the objects or the position of the
objects that are drawn. A transformation changes the positions of points in the
plane. A set of points, when transformed, may as a result acquire a different
shape. The transformations that move lines into lines, while preserving their
intersection properties, are special and interesting, because they will move all
polylines into polylines and all polygons into polygons. These are the affine
transformations. Every affine transformation can be expressed as a transforma-
tion that fixes some special point (the "origin") followed by a simple translation
of the entire plane. These point-fixing transformations are the linear ones. For
more details on affine transformations see [Angel 2000], which this short pre-
sentation is based on.

Transforms are used most commonly to adjust a view’s drawing area by trans-
lating the view’s origin to some prescribed location on the screen. However,
it is also possible to use transforms to arbitrarily scale or rotate shapes within
their view. Because transformations occur relative to the origin of the local
coordinate system, several transforms may need to be concatenated together to
generate the proper effect. For example, Figure 4.6 shows a rectangle and the
result of rotating it 45 degrees. To rotate the rectangle around its origin, you
need to translate that origin to the center of its coordinate system, apply the
rotation, and then translate the rectangle back to its original location.

K X

(a) Unmodified rectangle  (b) Rectangle rotated 45 degrees

Figure 4.6: Affine Transform

Affine transforms are usually represented using homogeneous coordinates: given
a point (x,y) in the traditional plane, its canonical homogeneous coordinate is
(x,y,1). The Affine transforms are represented in Homogeneous coordinates
because the transformation of point A by any Affine transformation can be
expressed by the multiplication of a 3x3 Matrix and a 3x1 Point vector.

The above property is not trivial. For example, a translation in normal Cartesian
space results in the addition of a Point vector to the Point vector to transform
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while in Homogeneous space, the same translation transformation results in a
matrix/vector multiplication. There are four commonly used Affine Transfor-
mations: translation, scaling, rotation and shearing, which will be described in
further detail in the following subsections.

Rather than applying separate transforms to translate, scale, and rotate a single
shape, it is possible to combine a group of transforms into a single transform
and apply only that transform. Therefore, it is possible to build up a complex
transform by invoking the individual rotate, scale, shear, and translate methods
in the proper sequence.

4.2.1 Translation

|

Figure 4.7: Translate

Translation matrix:

8

~ o
<

T = (4.20)

o O =
o = O
—_

To translate a point in the xy-plane to a new place by adding a vector <
ty, ty >, it is not difficult to see that between a point (x,y) and its new place
(Ztrans, Ytrans), We have Tipans = € + ty and Yerans = y + ¢, Figure 4.7 il-
lustrates the concept of translation. And equation 4.21 shows an example of
the translation of point (z,y) by multiplication with a translation matrix in
homogeneous space.

Ttrans 1 0 tz x
Ytrans = 0 1 ty * Yy (421)
1 0 0 1 1

4.2.2 Scaling

Scaling matrix:
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Figure 4.8: Scale

sz 0 0
S=10 s, 0 (4.22)
0 0 1

Scaling transformations stretch or shrink a given object and as a result, change
lengths and angles. The meaning of scaling is making the new scale of a coor-
dinate direction n times larger. In other words, the x coordinate is "enlarged"
n times, as illustrated in 4.8.

Scaling can be applied to all axes, each with a different scaling factor. For exam-
ple, if the x- and y-axis are scaled with scaling factors S, and S, respectively,
the transformation matrix is:

Tscale Sm 0 0 X
Yscale = 0 Sy 0 * Yy (423)
1 0 0 1 1

4.2.3 Rotation

-
|

Figure 4.9: Rotate

Rotation matrix (with © measured in radians)
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cos® sin® 0
R(®)=| —sin® cosO 0 (4.24)
0 0 1

A rotation transformation simply rotates the reference system, as illustrated in
figure 4.9. If a point (x,y) is rotated an angle © about the coordinate origin to
become a new point (o, Yrot), the relationships can be described as follows:

Trot cos® sin® 0 T
Yrot | = | —sinO® cosO® 0 [ x| y (4.25)
1 0 0 1 1

4.2.4 Shearing

-
|

Figure 4.10: Shear

Shearing matrix:

1 shy O
SH=|sh, 1 0 (4.26)
0 0 1

Shear is the translation along an axis, e.q. the x-axis, by an amount that
increases linearly with another axis, y-axis. It produces shape distortions as
if objects were composed of layers that are caused to slide over each other, as
illustrated in figure 4.10.

How far a direction is pushed is determined by a shearing factor. On the
xy-plane, one can push in the x-direction, positive or negative, and keep the
y-direction unchanged. Or, one can push in the y-direction and keep the x-
direction fixed. The following is a shear transformation in the x-direction with
shearing factor a:

Tshear 1 o O T
Yshear | = | 0 1 0 [ x| vy (4.27)
1 0 0 1 1
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The shear transformation in the y-direction with shearing factor g is the follow-
ing:

Tshear 1 00 x
Yshear - 6 1 0 * ) (428)
1 0 0 1 1



Chapter 5

Experiments, design and
results

This chapter contains a presentation of the three different components developed
for this thesis. Each component is described in its own section. The final section
describes how these three components are combined and integrated into the
Groundstation.

5.1 Remote Control System

A computer based Remote Control System (RCS) which enables a pilot to con-
trol the helicopter through the Groundstation with a joystick has been devel-
oped. There are several scenarios where it is preferable to have the option of
letting a human pilot take control of the autonomous aircraft. Whether it is
because the task is still to complex to be performed by a computer or it needs
a human’s judgement. To reference some of the examples given in chapter 2 of
possible usages of UAVs, if a UAV was assisting the police in a chase and it sud-
denly was engaged by the ones it was chasing, then a human pilot could quickly
take control of the helicopter and perform the necessary evasive actions. An-
other example is when using a UAV for inspecting a large building for damage,
e.q. after an earthquake, a human expert could manually navigate the UAV to
look at all the things necessary to establish whether or not the building would
be safe for humans to enter.

Operating a UAV in a semi-autonomous mode requires communication between
the helicopter and the Groundstation. During the autumn of 2004 Jarle An-
finsen and this author developed, as a subproject for ARCH, a protocol for
communication between the helicopter and the Groundstation and and an API
for the server (helicopter). The work was part of the course TDT4715 Algorithm

41
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Construction and Visualization at NTNU. The intention of the course was to
act as an introduction and preparation for the post-graduate thesis. The de-
tails of this communication protocol can be found in appendix B. However, this
protocol was designed first and foremost for a helicopter in fully autonomous
mode. An autonomous helicopter is usually controlled with simple messages
i.e. fly to a given waypoint. Therefore, in the existing communication protocol,
whenever a message is received on the helicopter it must send a response back to
the sender to confirm that the message is received. In semi-autonomous mode,
however, there is a need to continuously send control signals (messages) to the
helicopter. To have the helicopter send a response back to the sender each time
it receives a control signal would not only be pointless, it would also put an
unnecessary amount of traffic on the communication line. Therefore, there was
a need to extend both the ARCH API and the communication protocol so that
it would be more suitable for semi-autonomous mode.

In the API a new function for receiving commands, which does not need to be
acknowledged, from the Groundstation has been added. The new API inter-
face function is provided here with its function signature accompanied with a
description of its functionality and intended usage.

void ARCH_client_perform_task(const int unit_id, const vector<ARCH arg> params) -
This function is used for sending control signals when piloting the
helicopter through semi-autonomous control. This function first sets
the parameters to be performed on the helicopter, and then performs
them.

Table 5.1 shows the new message added to the list of messages used between
the ARCH server and clients. In the table, the reference to the corresponding
interface function in the API is given. The code for the protocol message is
also given, together with a representation of the succeeding arguments. The
different arguments in the message are seperated with the '%’ character. In this
representation, the operator + is used to indicate one or more repetitions of its
operand. The term bytes indicates an array of bytes. In the current version of
the system, all of the units treat all of their parameter values as doubles.

| Interface function | Code | Arguments |
| ARCH_client _perform _task | 303 | int%(int%bytes%)+ |

Table 5.1: New messages from client to server

A control signal (message) sent from the Groundstation to the helicopter would
normally look something like:

303%9%0.0%10%0.21%11%0.14 %2 %-5
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The first word, 303, is the code corresponding to the interface function ARCH_client_perform_task
of the API. Message identification codes are always interpreted as integers. The

second word, 9, is also interpreted as an integer, this is the identification code

for the pitch attitude angle of the helicopter. The third word, 0.0, is the he-

licopter’s desired pitch angle, in radians. The same follows for the remaining

three pairs where 10 is the code for the bank attitude angle, 11 is the code

for the yaw attitude angle and 2 is the code for the altitude. The altitude is

specified in meters and uses a negative axis which makes -5 five meters above

the ground.

Before the control signals (messages) can be sent to the helicopter, they need to
be obtained from the pilot. These signals are obtained through a joystick con-
nected to the Groundstation. As described in chapter 3 the entire Groundstation
is written in the programming language Java. Because there is no native sup-
port for polled input such as a joystick in Java runtime, an open source project
called JInput has been utilized to connect the joystick to the Groundstation.
When in semi-autonomous mode the joystick is polled and its values are con-
verted into suitable values for the helicopter before they are transmitted to it
from the Groundstation. To allow the onboard control system some time to
work, in order to keep the helicopter stable, a control message is only sent to
the helicopter when the input signals from the joystick differ from the last time
the joystick was polled. Algorithm 1 describes the actions taken each time the
joystick is polled.

Algorithm 1 Poll joystick

1. Every tenth millisecond do

2. v+« j // Read values from joystick

3. If v#w,qg do // If new values differs from old values do

4 send(convert(v)) // Send message to helicopter, containing only the values
// that are different

5. Voig < v // Set new values = old values

When piloting the helicopter in semi-autonomous mode the pilot does not have
direct control of the helicopter. The system can be compared to the fly-by-
wire systems described in chapter 2, where the onboard system assists the pilot
with flying the aircraft. Since there are very few who are capable of piloting a
helicopter, the computer assisted mode is preferable because it makes it possible
for anyone to pilot the helicopter. In semi-autonomous mode the angle of the
pilots’ joystick is proportional with the attitude angle of the helicopter. For
instance if the pilot moves the joystick forward, the helicopter will pitch forward,
which again makes the helicopter move forward. But the helicopter will maintain
the current altitude, roll angle and yaw angle. If the pilot was to let go of the
joystick, or move it to the neutral position, the helicopter would go into a hover-
mode at its current position.

There are three different flight-modes in the current remote control system.
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There is one called absolute altitude, one called relative altitude and one called
pursuit-mode which will be described later on. When piloting in absolute al-
titude mode, the altitude lever on the joystick will correspond directly to an
altitude of the helicopter. For instance at the minimum position of the altitude
lever the helicopter would be two meters above the ground, and at the maxi-
mum position the helicopter would be ten meters above the ground. In relative
altitude flight-mode, however, the altitude lever on the joystick controls the
rate of climb of the helicopter. When the altitude lever is at neutral position,
the helicopter will maintain its altitude. The more the altitude lever is moved
towards its maximum position, the faster the helicopter will gain height, and
vice versa. Both of these flight-modes have their own advantages, in absolute
altitude mode it is virtually impossible to crash the helicopter and it is very
easy to move fast between two set heights. In relative altitude mode, one has
significantly greater capabilities due to the fact that there are no restrictions on
where to fly.

The pursuit-mode separates itself from the other flight-modes, because the op-
erator does not control the helicopter. Instead, the helicopter follows an ob-
ject by itself. There is an ongoing subproject within the ARCH project where
the goal is to develop a system, which can recognize and “lock on” to objects
in a video image. This system uses the Condensation algorithm (Conditional
Density Propagation), which enables it to track agile moving objects, in the
presence of dense background clutter. For more information on the Conden-
sation algorithm see [Condensation Web|. The pursuit-mode in the RCS was
developed under the assumptions that this tracking system is available on the
Groundstation. The ARCH tracking system is scheduled to be finished June
2005, and it should be just a matter of plugging it into the Groundstation to
enable the RCS to use it for following objects. In pursuit-mode the RCS controls
the helicopter based on the inputs from the tracking system. The input is in
the form of a bounding box'. The first bounding box received from the tracking
system is set as the reference bounding-box. The RCS pilots the helicopter to
make all of the following bounding boxes as close to the reference bounding box
as possible. For instance, if the new bounding box is smaller than the reference
bounding box, the helicopter moves forward. And the smaller it is compared to
the reference, the faster the helicopter will fly towards it.

As described in chapter 3 the helicopter’s control system is an open source
project called Autopilot. Unfortunately, their current control system has a
somewhat limited flight envelope®. The consequence of this is that if the heli-
copter surpasses a certain speed, the control system will no longer be able to
maintain a stable flight. The helicopter will start to oscillate more and more
until it crashes. To avoid this from happening when piloting the helicopter
in semi-autonomous mode some restrictions have been placed on the remote
control system. When the pilot moves the joystick to one of its extremities,

LA bounding box, or minimum bounding box, is the smallest possible rectangle completely
enclosing the object.
2Flight Envelope — Normal operating environment, within which an aircraft is safe to fly.
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the pitch or roll angle of the helicopter will never surpass twelve degrees. This
ensures that the helicopter will never gain enough speed to move outside the
control system’s flight envelope. With these restrictions in place a pilot is free
to navigate the helicopter in semi-autonomous mode wherever and in whatever
way she or he chooses. The helicopter will remain stable and with predictable
flight characteristics. Should the pilot for some reason become incapable of pi-
loting the helicopter, she or he would simply have to let go of the joystick and
the control system would level the helicopter and go into a hover-mode.

At present date the ARCH helicopter is not yet fully operational. Therefore, it
has not been possible to test the remote control system in real life. However,
it has been tested extensively in the simulator. The simulator is part of the
Autopilot project and was designed to test the onboard control system. Figure
5.1 shows a screen-shot of one of the testing runs in the simulator. For more
information concerning the simulator and on the autopilot project in general
see [Autopilot Webl].

[ Fixed |
[" Rear |
[ Follow |
[ Cockpit |

[ Top (Morth)

[ Top (Head)

Packets|14136 [ Reconnect | Exit

Figure 5.1: Testing in simulator

Because the tracking system is not yet available in the Groundstation, the
pursuit-mode had to be tested by using a custom developed test system which
was integrated into the Groundstation. The test system allowed for the posi-
tioning of a bounding box inside the virtual cockpit, which will be described in
the following section. The position and size of the bounding box were sent to
the RCS as input, and one could observe the helicopter follow the “virtual” rec-
tangle in the simulator. A screen-shot from the virtual cockpit in pursuit-mode
is shown in figure 5.2.

Piloting the helicopter, in semi-autonomous mode, from the Groundstation ob-
viously has some significant limitations. One of the most obvious limitiations is
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Figure 5.2: Pursuit-mode

the situation were one does not know the helicopters position and are not able
to see what the helicopter sees. The proposed and implemented solution is the
virtual cockpit which will be described in the following section.

5.2 Virtual Cockpit

One of the challenges of an UAV, in semi-autonomous mode, is to move the pilot
physically from the aircraft to the ground, but at the same time keep his/hers
“eyes” in the air. To be able to operate an UAV, in a semi-autonomous mode,
the pilot needs to see what the UAV is seeing. The result of this is a virtual
cockpit. The goal of the virtual cockpit is to recreate the important parts of the
cockpit on the ground, or rather the information the pilot could acquire in the
actual cockpit. As for a pilot of a standard aircraft there is a significant amount
of data a pilot of an UAV needs to assimilate. It has become common to put
primary flight information on top of the visual information. This function is
known as Head Up Display (HUD) and is described in chapter 2. HUDs are
used to cut down on the pilots workload.

The most important part of the virtual cockpit is the visual information from
the helicopter. The camera mounted on the helicopter is equipped with its own
transmitter which transmits the video signal to the ground. On the ground
the signal is received with the corresponding receiver and the signal is sent
to the Groundstation through an analog-to-digital converter. This equipment
is described in chapter 3. In order to enable the Groundstation to display this
visual information, a package called Java Media Framework has been used. With
all of this working together a pilot using the virtual cockpit in the Groundstation
would be able to see what the UAV is seeing.

In order to put the primary flight information on top of the visual information
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Figure 5.3: Example of a Head Up Display

the flight information must first be sent from the helicopter to the Groundsta-
tion. The ARCH API and communication protocol, described in appendix B,
already supports this functionality. The Groundstation simply subscribes to the
desired information, and the helicopter sends this information continuously to
the Groundstation until the Groundstation unsubscribes. The information sent
from the helicopter to the Groundstation in semi-autonomous mode is shown in
table 5.2.

| ID | Parameter | Description | Data type |
2 z Altitude in meters, negative axis double
3 VX Velocity, in meters per second, along the x-axis double
4 vy Velocity, in meters per second, along the y-axis double
5 A Velocity, in meters per second, along the z-axis double
9 phi Attitude angle in radians, roll double
10 theta Attitude angle in radians, pitch double
11 psi Attitude angle in radians, yaw double

Table 5.2: Information sent from helicopter to Groundstation

After obtaining the flight information the Groundstation must draw this infor-
mation on top of the visual information. Over the years several HUD designs
have been developed. All with the intent of making it as easy as possible for
the pilot to assimilate all the important flight data. As described in section 2.3
a HUD can provide a lot of mission specific information. However, there is a
great deal of essential flight data which acts as a common denominator between
the different HUD designs. The essential flight data includes the pitch angle
and bank angle in form of an artificial horizon, height, airspeed and heading.
Although different HUD designs present the data in different ways, almost every
HUD includes these data. Figure 5.3 shows an example of a HUD design with
the essential flight data marked.
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The one item, which looks more or less the same in all of the commonly known
HUD designs, is the artificial horizon, which appears as a “ladder” in the middle
of the HUD. The “ladder” stays orthogonal to the horizon independent of the
aircraft’s attitude. If the aircraft’s pitch increases, it will appear as if the aircraft
is climbing up the “ladder” and vice versa. This makes it non-trivial to draw the
artificial horizon on the HUD. Because the “ladder" needs to stay orthogonal to
the horizon, the ladder’s position on the HUD will change continuously according
to the aircrafts attitude. Instead of continuously calculating the position of every
line that needs to be drawn on the ladder, it would be easier and “cleaner" to use
affine transformations, which are described in chapter 4. In order to be able to
draw the artificial horizon in the same manner regardless of the attitude of the
helicopter, it is necessary to perform several transformations both before and
after drawing. The first step is to translate the “window” where the “ladder” is
to be drawn. The translation will put the center of the ladder into the center
of the reference system. How much the “window” needs to be translated in the
vertical direction depends on the pitch of the helicopter. The second step is to
rotate the “window”. The window is to be rotated with the inverse of the roll
angle of the helicopter. This will compensate for the roll angle of the helicopter
and make the “ladder” stand orthogonal to the horizon. After the “ladder” is
drawn into the “window”, the “window” needs to be rotated back to its original
angle. This is done by rotating it with the roll angle of the helicopter. Finally
the window has to be translated back into its original position. This is done
by translating it with the inverse of what it was translated with in the first
step. The steps needed to draw the artificial horizon are illustrated in figure
5.4. Transformations are used when drawing the ARCH HUD, not only for
the artificial horizon but also when drawing the heading and speed indicators.
On these two indicators translations are used much in the same way as on the
artificial horizon.

The design of the ARCH HUD is a quite simple design and it is based on other
HUD designs which have been proved to work for many years. The current
design of the ARCH HUD displays only navigation information. However, the
architecture of the HUD module is designed in such a way that the HUD “engine”
is separated from the graphics, as illustrated in figure 5.5. In this figure the HUD
class provides an interface for creating families of related or dependent objects
without specifying their concrete class. This is done to make it very quick
and easy to change the way the HUD appears to the pilot. This also makes
it possible to have multiple HUD designs/modes, which the pilot can switch
between during flight.

The implemented HUD design is called navigation-mode and is shown in figure
5.6. As shown in the figure all the primary flight data is available through the
HUD. Both the speed on the left-hand side and the rate-of-climb on the right-
hand side is in m/s. The altitude displayed in the bottom right corner, is given
in meters and the heading, also displayed at the bottom part of the display, is
given in degrees.

To make the helicopter easier and less stressful to pilot, a digital image stabilizer
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Figure 5.4: Drawing the artificial horizon

has been developed. This component is described in the following section.
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Figure 5.5: HUD Architecture
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Figure 5.6: HUD (navigation-mode)

5.3 Image stabilization

One of the goals of this report is to propose an image stabilization solution for
the video signal which is transmitted from the helicopter to the Groundstation.
Because a small helicopter like the ARCH UAYV is quite exposed to vibrations
and shaking (i.e. wind), stabilizing the video signal would make the helicopter
easier and less stressful to pilot on the ground. Methods introduced in chapter
4 can be used to stabilize a video signal such as this. This section describes
which methods that have been applied in the ARCH project and why.

In the previous chapter four different classes of motion estimation were pre-
sented. Two of these classes stands out by appearing more suitable for real-time
image stabilization than the others. Namely, motion estimation based on cor-
relation methods and FFT methods. In order to make an analysis of the two
methods as to which is the most suited for the ARCH project, two motion esti-
mation systems have been developed. One using a correlation method and one



5.3. Image stabilization 51

using a FFT method. The following sections will describe the two systems and
finally compare them. Section 5.3.4 will describe the proposed motion correction
system.

5.3.1 Motion estimation based on a correlation method

The motion estimation system, which uses a correlation method, developed
for the ARCH project is a block matching algorithm (BMA). This algorithm
performs binary motion estimation using 1-bit planes which are extracted from
a video sequence. This motion estimation technique can be realized using only
Boolean functions, which have significantly reduced computational complexity,
while at the same time maintaining motion estimation accuracy, as shown in
[Ko et al. 1998].

Before the algorithm itself is presented, the bit-plane decomposition of a gray-
scale image is introduced. Let the gray-level of the pixel at location (x,y) in the
t-th image frame with 2% gray-levels be represented as:

ft($,y) = GK,12K71 + CLK722K72 + ...+ a121 + a020 (51)

where ax,0 < k < K — 1, is either 0 or 1. Let the k-th order bit-plane image
be denoted by b (x,y). This plane contains all the k-th order (ax) bits. For
example in the case of a 8-bit image, an image is composed of eight 1-bit planes
bi(x,y) ~ b(z,y), ranging from plane 0 to plane 7. Figure 5.7 shows the eight 1-
bit planes, which together make the gray-scale image. It is important to notice
that only the higher order bit-plane images contain visually significant data,
whereas the other bit-planes contribute to more subtle details within the image.

The algorithm estimates four local motion vectors from four sub-images (51, Se, S3, S4)
placed in appropriate positions in the bit-plane. Each motion vector of a sub-
image in the current bit-plane is determined by evaluating bit-plane matching

over sub-images in the previous bit-plane and selecting the sub-image which
yields the closest match. This approach assumes that all pixels within the sub-
image have uniform motion and the range of the motion vector is constrained

by the search window. Let the size of each sub-image be M x N and a search
window be (M + 2p) * (N + 2q). For bit-plane matching, the definition of the
correlation measure is given by:

Ci(m,n) = > bi(z,y) @b (x+m.y+n) (5.2)
(w)y)esi

where b} (z,y) and bz_l(x,y), respectively, are the current and previous k-th
order bit-planes, and @ is the exclusive-OR, operator. At each (m,n), —p <
m < p and —q¢ < n < ¢, within the search range, the proposed matching
method calculates C;(m, n) which is the number of unmatched bits between the
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(a) Original image

(g) bg(.’E, y) (h) b1 (w7y) (1) bo(w, y)

Figure 5.7: Example of generating bit-planes from gray-scale image
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reference sub-image in the current bit-plane and the compared sub-image in the
previous bit-plane. The smallest C;(m,n) yields the best matching for S;, and
thus the local motion vector V; from S; is obtained as

Vit = argmin {C;(m,n),—p <m < p,—q¢ < n < q} (5.3)

Since this algorithm performs motion estimation using a single bit-plane, it is
important to select an appropriate bit-plane for bit-plane matching. In this
algorithm the 4-th order bit-plane, bf(z,y), is utilized to estimate the local
motion vector since it contains both the global information and details of the
original image. The entire algorithm is described in algorithm 3 which uses the
auxiliary algorithm, algorithm 2. Both algorithms require access to some or all
of two images, the current frame and the previous one.

Algorithm 2 Correlation

Input: C,P

1. For each pixel p(;,) in C

2. extract the bit, from the 4-th bit-plane, in p(,,) into bitl

3. extract the bit, from the 4-th bit-plane from the corresponding position
of p(zy) in P into bit2

4. sum = sum + (bitl @ bit2)

5. return sum

Algorithm 3 Motion estimation based on Bit-Plane Matching

1. Extract 4 sub-images (S7,S3,S%,S}) from the image

2. For each sub-image S}

3 P — SZ“I // the corresponding sub-image in the previous frame
4. szn «— OO

5. For each sub-image C); inside the search-window of S;

6 C < use the Correlation algorithm with C; and P as input

7 If C < Chin

8 C’mzn =C

9 Vi < the position of Cin

5.3.2 Motion estimation based on a FFT method

The motion estimation system, which uses a FFT method, developed for the
ARCH project uses phase correlation to estimate motion. The theory behind
phase correlation was used as an example of a FFT based method in chapter
4. This algorithm also estimates four local motion vectors from four sub-images
(51, 52,53, 54) placed in appropriate positions in the frame. The local motion
vectors can be found by applying the Fourier Transform to the sub-image of
both the current and the previous frame:

FS! FourierTrans form(S?) (5.4)
FSI™' = FourierTransform(Si™')
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where S! and Sf ~1. respectively, are corresponding sub-images from the current
and previous frame. And then calculating the cross-power spectrum by:

FSt+ FS1

FOP = 1pstaps ]

(5.5)

where F''S* is the complex conjugate of F'S. And finally take the inverse Fourier
Transform of FCP:

CP = FourierTransform™(FCP) (5.6)

This will result in a image, C' P, which has a distinct peak at the location where
the center of the previous frame was located. As shown in figure 5.8. The
entire algorithm for motion estimation based on phase correlation is described
in algorithm 4. Algorithm 4 uses a function called fft, which stands for fast
Fourier transform (FFT). The FFT is a discrete Fourier transform algorithm
which reduces the number of computations needed for N points from 2N? to
2N 1g N, where lg is the base-2 logarithm. Fast Fourier transform algorithms
generally fall into two classes: decimation in time, and decimation in frequency.
The Cooley-Tukey FFT algorithm first rearranges the input elements in bit-
reversed order, then builds the output transform (decimation in time). The
basic idea is to break up a transform of length N into two transforms of length
% using the identity:

N-1 ¥-1 -1
—27ink —27i(2n)k —27i(2n+1)k
E apexp” N = E asp,exp N+ E A9n11 €XP N (5.7)
n=0 n=0 n=0
N N
2 -1 —2mink ok 71 ad —2mink
N —2mik T
= E agven exp 2 +exp ¥~ E ag exp 2
n=0 n=0

This is called the Danielson-Lancos lemma. For more information about the
Fast Fourier transform see [FFT Web|. Algorithm 4 also uses a function called
conj, which stands for complex conjugate. The complex conjugate of a complex
number z = a + bi is defined to be z* = a — bi. The conjugate of a matrix
A = (a;;) is the matrix obtained by replacing each element a,; with its complex
conjugate, A* = (afj). For more information concerning the complex conjugate
see [Conj Webl].

5.3.3 Bit-plane matching or phase correlation

There are three main criteria when deciding which of the two algorithms is
the more suitable for the ARCH project. Most important may be how well it
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(a) Image (b)  Translated
image

(c) Phase corre-
lation

Figure 5.8: Inputs and output of phase correlation

Algorithm 4 Phase Correlation

1. Extract 4 sub-images (S7,S3,S%,S})) from the image

2. For each sub-image C, C € ST

3. P — S?_l // the corresponding sub-image in the previous frame

4. FC «— fIt(C) // Fast Fourier Transform of current sub-image

5 FP «— fft(P) // Fast Fourier Transform of previous sub-image

6 FM «— FC % conj(FP) // multiply the current frame with the complex
// conjugate of the previous frame

7. AFM «— |FM|

8. FCP — % // finish calculating the cross-product between the current
// and previous frame

9. CP — fit—'(FCP) // apply the inverse Fourier transform on the
// cross-product

10. point < max(CP) // locate location of the peak

performs under less than perfect conditions, since the video signal that will be
transmitted from the helicopter to the Groundstation may be subject to a great
deal of noise. The second most important criterion is the performance of the
algorithm, especially since this will have to be performed in real-time. The final
criterion is how much memory the algorithms use. This is not really a crucial
factor, because the Groundstation is run on a laptop which have more than
enough memory needed to perform any kind of motion estimation. But in any
case the less memory an algorithm needs the better, and is therefore a part of
this assessment.

Real world signals usually contain departures from the ideal signal that would be
produced by the camera mounted on the helicopter. Such departures are referred
to as noise. Noise arises as a result of unmodelled or unmodellable processes
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(a) original im- (b) translated
age image

Figure 5.9: test-images

Figure 5.10: 1-D Gaussian distribution with mean 0 and standard deviation 1

going on in the production and capture of the real signal. It is not part of the
ideal signal and may be caused by a wide range of sources, e.g. variations in the
detector sensitivity, environmental variations, the discrete nature of radiation,
transmission or quantization errors, etc. It was mentioned in chapter 4 that since
the Fourier methods used the frequency domain, the methods achieved excellent
robustness against correlated and frequency-dependent noise. This implies that
the phase correlation algorithm is more robust against noise than the bit-plane
matching algorithm. The reason why both of this algorithms were implemented
was to run different tests on them and compare them with each other. To test
how robust the two algorithms are against noise, they have both been used to
estimate the motion between two images (figure 5.9) with increasing noise.

The two images have been corrupted with additative noise with a Gaussian
distribution. The 1-D Gaussian distribution has the form shown in Figure 5.10.
This means that each pixel in the noisy image is the sum of the true pixel value
and a random Gaussian distributed noise value. To increase the noise in the
images a coefficient has been added, which can be set to an increasingly larger
number to obtain an increasingly noisier image:

N(Ly) = I(Ly) + G(p) * O (5.8)

Where N is the noisy image, I is the original image, G(p) is a random Gaussian
distributed noise value and o is the coefficient which can be set to obtain the
desired degree of noise. Figure 5.11 shows some samples of images with different
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degree of noise where the two different motion estimators have been applied. On
each image the estimated motion is illustrated with a thin black line from the
center of the image to where the algorithm believes the center of the next frame
is.

The graph in figure 5.12 shows the results from running these algorithms on
increasingly noisier image pairs. The y-axis in the graph is the euclidean dis-
tance® from the actual center of the next frame to where the algorithm believes
the center of the next frame to be. From the graph it is easy to see that the
phase correlation algorithm is considerably more robust against noise than the
bit-plane matching algorithm. While the bit-plane matching algorithm starts to
“wander off” when o > 1300, the phase correlation algorithm stays “on target”
while o < 140000. It is clear to see from the images in figure 5.11 that it is
impossible to pilot the helicopter based on the video signal if the noise on that
signal is as dominant as the ones corrupted with ¢ > 10000. Therefore, the
phase correlation algorithm is more than enough robust against noise. Whether
or not the bit-plane matching algorithm is robust enough is more uncertain. It is
quite accurate while o < 1300, and as seen from the images in figure 5.11 there
is quite a bit of noise when ¢ = 1000. However, when comparing the two, the
phase correlation algorithm is clearly preferable when it comes to performing
under imperfect conditions.

Performance (complexity and computation time) is another important criterion
because motion estimation has do be done in real-time. It is found that the size
of the sub-images (block size) greatly affects the performance of the two motion
estimators. It is easy to see that the smaller the block size, the smaller the
computation time will be. However, the blocks should be large enough to group
pixels with similar motion but should also be small enough to separate pixels
with different motion and multiple-object movement. In bit-plane matching the
size of the search window (neighbourhood) also greatly affects the performance.
Therefore, it is important to adjust the neighbourhood to be as small as possible
while making sure that the movement between two frames will not reach outside
the neighbourhood. One of the weaknesses of the bit-plane matching algorithm
is that in order to obtain good accuracy the complexity and computation time
might be high, because it searches every single “frame” inside the neighbour-
hood to find the matching block. The proposed phase correlation algorithm,
in contrast, has much lower complexity by measuring the motion directly from
phase correlation. Table 5.4 shows the time both of the motion estimators used
to estimate the motion from the example image pair showed in figure 5.13. This
image pair differs from the one used when testing with noise. This was done to
give the bit-plane matching algorithm a better starting point, because it makes
it possible to use a smaller search-window. It will also give more realistic results
since the movement between each frame from the video-signal will not be very
large. All the computations are performed on a computer with the specifica-
tions given in table 5.3. The block size used is 32x32 and the search window

3The Euclidean distance can be considered to be the shortest distance between two points,
and is basically the same as Pythagoras’ equation when considered in 2 dimensions
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Figure 5.11: Motion estimation on noisy images
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Figure 5.12: Test results from motion estimation

used in the bit-plane matching is 5x5. From the results it is easy to see that
compared to the bit-plane matching algorithm, the phase correlation algorithm
is very computationally efficient.

| Item | Version |
Processor 686 Intel(R) Pentium(R) 4 CPU 3.00GHz
Memory 512 DDR
Kernel version 2.6.8.1-12mdksmp
Operativ system Linux

Table 5.3: Technical specifications on the computer

® 1 SN

(a) original im- (b)  translated
age image

Figure 5.13: Image pair used in performance test

Memory usage is the final criterion. Because the bit-plane matching algorithm
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| Motion Estimator | Time |

Bit-plane matching | 45 ms
Phase correlation 18 ms

Table 5.4: Performance of motion estimators

only checks for correlation between different “images” it only needs to hold the
integer with the number of mismatched bits between the two “images” which
currently has the lowest number of mismatched bits. Therefore, the bit-plane
matching algorithm hardly uses any memory at all, unlike the phase correlation
algorithm which needs to hold on to different “versions” of the two images during
the process. Therefore, when it comes to memory usage, the bit-plane matching
algorithm is clearly favourable.

Based on these test criteria the phase correlation algorithm seems to be the bet-
ter alternative. Even though it uses more memory than the bit-plane matching
algorithm, its memory usage is relative moderate. Because memory usage is
the least important criterion and the phase correlation algorithm proved to be
considerably more robust against noise, and even a bit more effective, the phase
correlation algorithm is used as a motion estimator in the ARCH project.

5.3.4 Motion correction

After the motion has been estimated between two frames the new frame needs
to be corrected in respect to the previous one in order to remove shaking, vibra-
tions, etc. The motion correction system implemented for the ARCH project is
based on the theory on motion correction systems presented in chapter 4. This
motion estimation system performs global motion decision using local motion
vectors (Vif, V4, V4, V), which are estimated by the motion estimator, and the
previous global motion vector Vgtfl. The global motion vector Vgt is obtained
by taking the median of these five motion vectors. The median of vectors is
determined by separately selecting medians of each vector elements. The me-
dian filter is effective in eliminating impulses. Therefore, it can exclude such
abrupt local motion vectors, caused by moving objects, and produce a global
motion vector similar to the previous one. A motion correction system must
also decide whether or not the movement from one frame to another is caused
by shaking or intentional panning. For this decision, the global motion vector of
a frame is integrated with a dampening coefficient, and the integrated motion
vector designates the final motion vector of a frame. The final motion vector
V1 is given by:

t __ t—1 t
Vi=DVI 4V (5.9)

where V/ is a global motion vector and D;(0 < D; < 1) is a damping coefficient
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for smooth panning. The structure of the motion correction system is shown in
figure 5.14. Figure 5.15 illustrates the effect of the image correction system.
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Figure 5.14: Basic structure of the motion correction system
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Figure 5.15: Illustration of image correction

5.4 Integrating it all into the Groundstation

The final task was to integrate all of the components into the existing Ground-
station. This is done to provide a complete system, which enables the ARCH
UAV to operate in semi-autonomous mode. Details about the Groundstation
can be found in appendix C. To add the new functionality a new tab was added
to the GUI of the Groundstation called 'Remote Control’. On this tab a user
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can gain access to all the functionality described in the previous sections. Fig-
ure 5.16 shows all the components integrated into the ARCH Groundstation.
Notice the right side where it is possible to turn the remote control system on
and off. It is also possible to choose whether or not to use the image stabi-
lizer. At the lower part of the pane it is possible to switch between the different
flight-modes. To disengange the pursuit-mode the pilot can choose one of the
other flight-modes or simply move the joystick, this will automaticly put the
helicopter in absolute altitude mode.

Connection | Waypoints | IMUData | Pathfinder | Remote Control

Remote Control Panel:

[ stabilize image

Figure 5.16: The Groundstation GUI



Chapter 6

Discussion

The solutions presented in the previous chapters are not the only solutions which
could have been chosen. This chapter discusses the choices that have been made,
and points out issues, which have emerged during the work.

6.1 Remote control system

One of the most fundamental questions that should be asked when developing
new technology is whether or not the new technology will meet genuine demands.
In chapter 2 several scenarios are described, which show the need for UAVs with
both autonomous and manual capabilities. It was decided that an operator
should not be able to gain direct control of the UAV. An operator may rather
control the helicopter in semi-autonomous mode, which is a lot like a fly-by-
wire system, which is also described in chapter 2. In semi-autonomous mode
the onboard control system keeps the UAV stable in the air. The result is a UAV
that anyone can operate. The UAV will naturally have a more limited flight
envelope in semi-autonomous mode than if the operator were to have direct
control of it. However, having direct control of the UAV, would require great
skills from the operator.

In the current version of the remote control system, there are two different
flight-modes in which an operator can control the UAV. They differ in the
way an operator controls the altitude of the UAV. It is possible to extend the
remote control system to support many different flight-modes, which allows an
operator to have various degrees of control of the UAV. If for instance there is a
scenario, where an operator wishes to maintain a specific altitude to the ground,
a flight mode could be developed where the onboard control system maintains
the correct altitude as the pilot navigates the UAV around.

The last feature in the current version of the remote control system is the
pursuit-mode. In pursuit-mode the remote control system makes the UAV fol-
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low an object autonomously. The pursuit-mode is developed under the assump-
tion that the tracking system, which is currently under development within the
ARCH project, is already present in the Groundstation. Because the ARCH
UAV is a helicopter, which will pitch and roll quite a bit when flying, the cam-
era is used for the tracking system needs to be mounted on a gimball. Without
mounting the camera on a gimball, it would be difficult to determine if a reg-
istered motion comes from the actual object’s movement or the UAV’s. For
instance, if the tracking system was to detect that the object was moving up-
wards on the video image. Is this detection based on the actual object gaining
altitude, or is it based on the helicopter pitching forward. Certainly, it is pos-
sible to use the onboard IMU to compensate for the movements of the UAV.
However, the movements of a helicopter are quite significant, for instance if
a helicopter flies at full speed forward, the nose points more or less straight
to the ground. Therefore, there is a chance that the objects would disappear
completely from the video image when the helicopter moves, if the camera was
not mounted to a gimball. There is a weakness in the current version of the
pursuit-mode. As described in section 5.1, it follows the bounding box received
from the tracking system. If the bounding box gets smaller, it moves the UAV
closer to the object. However, if it were following an oblong object, for instance
another helicopter, and this object turned around its own axis, the bounding
box would either become bigger or smaller. This would result in the UAV mov-
ing respectively away or towards the object, without the object moving away
or towards the UAV. A possible future solution would be to have the tracking
system recognize the object it’s tracking and determine whether it is the long or
short part of it which makes out the bounding box. This would make it possible
to avoid this unwanted behaviour. There is still room for improving the pursuit-
mode feature. Instead of following the bounding boxes directly, one could for
instance use several bounding boxes over a given time frame to calculate the
objects trajectory, and follow this trajectory instead. This would perhaps give
the UAV smoother movements when following an object. However, since the
tracking system is not yet available in the Groundstation, these ideas have been
difficult to test and have therefore not been a priority in this thesis.

6.2 Virtual cockpit

As described in section 5.2, the virtual cockpit is necessary to achieve the full
benefits of the remote control system. The work on the virtual cockpit has
focused on creating a framework, where different HUD designs can be used.
The retrieval of the flight information from the UAV and converting this to
the proper format has been separated from the actual appearance of the HUD.
Therefore, changing the appearance of the HUD is very quick and easy. The
main functions to the current HUD design have been to test that the virtual
cockpit functions properly and to show the functionality of a HUD. However,
designing the best looking or most usable HUD for a pilot has not been a priority
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in this work. Separating the HUD’s appearance from the “engine”, that runs the
HUD, has made it possible to easily add several HUD “look and feels”, which
an operator can interchange between in flight. It is thought that in the future
different HUDs can show different mission specific information, and an operator
can switch between these HUDs, depending on the task she or he is currently
performing.

6.3 Image stabilization

A choice was made to stabilize the video signal using digital image process-
ing techniques, instead of mechanical motion detection techniques - using gyro
sensors or fluid prism. With the computational power of today’s computers,
it is possible to perform real-time image stabilization, using only digital image
processing techniques, which is preferred because, among other things, there is
no need for additional sensors. However, there are already gyro sensors present
at the UAV, which could have been used to perform motion detection. The
mechanical techniques require of course less computational power, which would
make more resources on the Groundstation available for other tasks. If image
stabilization, based on mechanical motion detection techniques were to be used,
the stabilization would most likely have to be done onboard the UAV, because
it would be very difficult to synchronize the video signal transmitted from the
UAYV, and the output from the gyros transmitted from the UAV to the ground.
The fully digital approach was chosen in the end, because a lot more resources
are available on the ground than on the UAV. So, everything that does not need
to be on the UAV, should not be placed there. And the gyros, which are crucial
to the onboard control system, were not utilized.

In chapter 4 different digital image processing techniques that could be used for
motion estimation were described. Based on this, two different motion estima-
tors were developed and described in chapter 5. These two motion estimators
were tested to determine which one was the most suitable for this task. Finally,
the one using the phase correlation technique was chosen. It was chosen mainly
because it showed excellent robustness against noise and it was somewhat more
effective than the motion estimator using a bit-plane matching technique. When
performing time-critical operations such as real-time operations, there is always
a compromise between the amount of work and the time it takes to perform
it. The motion estimator, developed in this thesis, estimates motion from four
sub-images each with a block-size of 32x32. It is important that the blocks are
large enough to group pixels with similar motion, but they should also be small
enough to separate pixels with different motion and multiple-object movement.
With block-sizes smaller than 32x32 the motion estimater were no longer able
to estimate the correct motion. Therefore, 32x32 was a lower bound for the
block-size. It would perhaps have been preferable with a larger block-size than
32x32, or more than four sub-images in each frame. However, this was not pos-
sible to perform in real-time with the motion estimator developed in this thesis.
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Like the rest of the Groundstation, the image stabilization system is written
in the programming language Java. This is done from the desire to keep the
entire Groundstation as platform-neutral as possible. However, Java is not fa-
mous for its performance, therefore larger block-sizes or more sub-images could
be possible by implementing the image stabilization system in a language with
higher performance capabilities, such as C/C++. But this would result that
the Groundstation no longer would be able to run on an arbitrary platform.
In theory it is possible to write C/C++ programs which can run on arbitrary
platforms. But is necessary to recompile it on every platform, and only use
programming libraries which are present at every possible platform. This would
make changing the platform a cumbersome process and the Groundstation would
no longer be truly platform-neutral.

Other options to obtain higher performance are also possible, for instance: the
Fourier Transform could be implemented in hardware or utilizing the fact that
estimating the local motion vectors of each frame are ideal for parallel process-
ing. However, optimizing the image stabilization system outside the boundaries
of Java was considered to be outside the scope of this thesis.

After the local motion vectors from a frame have been estimated, a global motion
vector must be calculated. Several algorithms already exist, which are described
in [Liu et al. 1993, Musmann et al. 1985, Okada. 1996, Kinugase et al. 1990].
However, most of these algorithms are quite complex. In this thesis a simple and
robust decision algorithm for determining the global motion vector is proposed.
The median-based correction scheme proposed in this thesis has proved to be
quite robust to irregular conditions such as moving objects.

6.4 Test results

A couple of test runs were made on the ARCH UAV itself. However, it seems
that the inner container is still too exposed to the vibrations of the helicopter.
The result of this is that the onboard computer is not able to write to the hard
disk in flight. It would seem that more work needs to be done in softening the
vibrations on the inner container. Placing it inside a layer of bubble-wrap was
apparently not enough. Another option which is currently considered is using
something that is less vulnerable to mechanical influence than a hard disk to
store the data on.

Because the ARCH project is at an early stage of development and the ARCH
UAV is not yet fully operative, the possibilities to test the different components
developed in this thesis have been limited. The result of this is that both the
RCS and the HUD in the virtual cockpit have only been tested on simulated
data. Even though the tests in the simulator have been very promising, further
testing on the actual UAV is necessary. This is especially true with the pursuit-
mode feature in the RCS, which needs to be combined with the tracking system
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- currently under development within the ARCH project - before it can be
properly tested.

The digital image stabilization system was mostly tested with images that were
translated to one another with a known distance and direction. This was done to
test that the system estimated the correct motion, and extracted the correct sub-
block from the images. The DIS was of course also tested on video streams, but
here it was difficult to give an exact measure of the quality of the stabilization.
However, the stabilized video streams did appear significantly smoother and
more pleasant to look at.






Chapter 7

Conclusion and future work

The work presented in this thesis consists of three main parts:

e A remote control system which enables operators to control the ARCH

UAV in semi-autonomous mode has been proposed and developed. The
RCS includes a set of different flight-modes, with the possibility to expand.
These different flight-modes gives an operator various ways of controlling
the UAV, and the operator may choose the flight-mode most suitable
for the current task. One of the flight-modes separates itself from the
others, i.e. that the operator no longer controls the UAV. Instead the
RCS makes the UAV follow an object autonomously. This flight-mode is
called pursuit-mode and it makes use of a tracking system currently under
development within the ARCH project to enable it to autonomously follow
objects.

A virtual cockpit which keeps the pilots “eyes in the sky” has been proposed
and developed. The virtual cockpit displays the video image, sent from the
camera mounted on the UAV’s nose, to the ground. On top of this visual
information a HUD is drawn, containing the primary flight information.
The look of the HUD itself has been based on a best-of-breed (BOB)
design. The appearance of the HUD has been separated from the rest of
the HUD’s generator, which makes it easy to change the look of the HUD
if this should be desired in the future. It is even possible to have several
HUD designs which the operator can switch between in flight.

A digital image stabilization system has been proposed and developed.
The task of the DIS is to stabilize the video image transmitted from the
UAV to the Groundstation. The DIS uses phase correlation to estimate
the motion between two subsequent frames. It then uses this and prior
information to determine whether or not this motion is caused by shaking
or intentional panning. Finally it extracts and displays the correct sub-
block from the current frame.
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These three parts are all combined and integrated into the Groundstation to
provide a fully functional platform for an operator to control the UAV. Because
the ARCH UAV itself is not yet operational, this platform has not been tested
to the desired degree.

The following issues have been identified for further investigation;

e Practical tests with the actual UAV will have to be performed. This
also includes more testing with the RCS’s pursuit-mode after the tracking
system is integrated into the Groundstation.

e Designing the optimal look for the HUD. Either by studying other HUD
designs or designing one from scratch with the guidance from future users
of this system. Because the needs and views from future users of this
system might differ from that of actual pilots.

e Improving the performance of the DIS. This involves both improving the
current implementation and perhaps looking outside the boundaries of
Java.

e More functionality can be added, both with different HUD designs and
more flight-modes, to accommodate more flight mission requirements.



Appendix A

Glossary

ABS

API

ARCH

ASC

BMA

Ctt

CCD

DIS

DOF

Anti-lock Braking System. A computer system in cars that prevents
the driver from locking the brakes when braking hard

Application Program Interface. It’s the specific methods prescribed
by a computer operating system or an application program by which
a programmer writing an application program can make requests of
the operating system from another application

Autonomous Remote Controlled Helicopter. Ongoing research project
at IDI, NTNU.

Anti-Spin-Control. A computer system in cars that prevents the
car-wheels from spinning

Block Matching Algorithm. Algorithm used to estimate the motion
between two images

C++ is an object-oriented programming language. C++ is a super-
set of the language C.

Charge Coupled Device. CCD is a light-sensitive integrated circuit
that stores and displays the data for an image in such a way that
each pixel (picture element) in the image is converted into an elec-
trical charge, the intensity of which is related to a color in the color
spectrum.

Digital Stabilization System. A system for stabilizing a video-image
based purely on digital image processing techniques

Degree Of Freedom. The number of directions in which an object is
able to move
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Glossary

EFIS

ESP

FLIR

fly-by-wire

GA

gimbals

GPL

GPS
GUI

HMD

HUD

IMU

INS

Java,

LAN

LM

Electronic Flight Instrument System. A system that provides the
instrumentation for attitude, engine and position

Electronic Stabilisation Programme. An active safety feature in cars
which can help to improve the occupants safety by registering and
helping to correct oversteer, understeer and loss of stability in the
vehicle.

Forward Looking Infra-Red sensor which captures the visual infor-
mation with an infra-red sensor.

A term used, originally in aircrafts, when the operator no longer
has direct control of the aircraft. Instead, the operators’ inputs are
converted into the correct settings for the engine and controls

Genetic Algorithms. GAs are simple and robust methods for opti-
mization and search

An appliance for permitting a body to incline freely in all directions

General Public License is intended to guarantee your freedom to
share and change free software

Global Positioning System. System used to calculate the position

Graphical User Interface. Denote a graphical rather than a purely
textual user interface to a computer

Helmet Mounted Display. Displays information as a graphical over-
lay inside the helmet of a pilot

Head Up Display. Displays information as a graphical overlay in the
pilot’s line of sight

Inertial Measurement Unit. A unit that measures rotation and ac-
celeration about/along the x,y and z axis

Inertial Navigation System. System that calculates orientation and
position from gyro and accelerometer readings

Java is an object oriented programming language, which is platform-
neutral

Local Area Network is a group of computers and associated devices
that share a common communications line or wireless link and typ-
ically share the resources of a single processor or server within a
small geographical area

The Levenberg-Marquardt algorithm is a non-linear optimization
algorithm
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MAD
MMI

MP

MPIR

MSE

OCU

RCS

RPV
STL

UAV

USB

VTOL

Mean Absolute Difference is a correlation criterion

Man-Machine Interaction. The subject of how man interacts with
machine

Morphological Pyramid is a data structure which represents images
with decreasing resolution

Morphological Pyramid Image Registration is an algorithm that em-
ploys feature-based methods in order to perform image registration

Mean Square Error is a correlation criterion

Operator Control Unit is the collective term for all the components,
software and hardware, that combined enables an operator to control
the UAV

Remote Control System, enables a pilot to control the UAV from
the Groundstation

Remote Piloted Vehicles. Vehicles guided without an onboard crew

Standard Template Library. Library often used when programming

in C/C++

Unmanned Aerial Vehicle. Powered aerial vehicles sustained in flight
and guided without an onboard crew

Universal Serial Bus is a plug-and-play interface between a computer
and add-on devices

Vertical Take Off and Landing. Capability of specific aerial vehicles,
such as helicopters.






Appendix B

ARCH API and
communication protocol

specifications

The ARCH API and the ARCH server (which parses messages using the ARCH
communication protocol) has been written in the C++ programming language
as a layer above the existing autopilot software system.

The autopilot software system is available under GPL at [Autopilot Web].

This appendix provides an overview of the interface functions used in the ARCH
API, the messages used in the communication protocol and the unit parameters
which are currently supported.

B.1 ARCH API interface functions

The detailed description of the API interface functions in this section is pro-
vided as a list of C++ interface function signatures. Each interface function is
accompanied with a description of its functionality and intended usage.

ARCH_interface (ARCH_client* client) - This is the constructor interface function,
used for creating a new interface objects upon which the other in-
terface functions may be called. Implicitly assumes that the ARCH
server is running on the local machine. Takes a pointer to an
ARCH_client Object as argument, because the ARCH_client class defines
an interface for callback functions used to push data from the ARCH
server to the client.
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ARCH_interface (ARCH_client* client, char* remote_address) - Has the same effect as
the constructor described above, except that this one is used in cases
where the interface object is used to connect to an ARCH server on
a remote machine, specified by the remote_address parameter.

void ARCH_unit_data(const int unit_id, vector<ARCH_arg>& data_list) - This func-
tion can be used in cases where it is desirable to pull data from the
server instead of waiting until they are pushed upon the client ob-
ject. The argument unit_id specifies the helicopter unit from which
data is to be fetched. The argument data_list is a reference to an
STL' vector. After the function call has finished, this vector will
have been filled with data from the specified helicopter unit.

void ARCH_unit_data(const int unit_id, const int arg_id, double& arg_value) - This
function has the same functionality as the one described above, ex-
cept that it is used for fetching data from only one of the parameters
of the specified helicopter unit. For example, this function could be
used in cases where only, say, the altitude was needed, and not all
of the parameters from the INS/GPS unit.

bool ARCH_client_subscribe(const int unit_id, vector<int> param_ids) - This func-
tion is used to subscribe to parameters of helicopter units. The argu-
ment unit_id specifies the helicopter unit which is to be subscribed
to. The argument param_ids iS a vector containing the ids of the spe-
cific parameters of the subscription. For example, a subscription to
the GPS coordinates of the helicopter would specify the id of the
INS/GPS unit as the first argument, and the next argument would
be a vector containing the ids of the parameters northing, easting
and down, respectively. Returns ¢rue if the operation succeeds.

bool ARCH_client_unsubscribe(const int unit_id, vector<int> param_id) - This func-
tion has the exact opposite functionality of the one above - it is used
to unsubscribe to helicopter units. The arguments of the function
has the same meaning as the arguments of the function described
above. Returns true if the operation succeeds.

bool ARCH_client_begin_task(const int unit_id) - This function is used to specify
the beginning of a new task on a helicopter unit, specified by the
argument unit_id. Note that if a previous task was defined by the
client on this unit, but not yet requested, this previous task will be
deleted as a result of a call to this function. Returns true if the
operation succeeds.

bool ARCH_client_end_task(const int unit_id) - This function is used to specify the
end of a task on a helicopter unit, specified by the argument unit_id.
Returns true if the operation succeeds.

IStandard Template Library
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bool ARCH_client_request_task(const int unit_id) - This function is used to re-
quest a registered task to be performed on the helicopter. The task
will be performed immediately if possible. If not, the task will be
queued up and performed when possible. The value true is returned
if the operation succeeds, but not until the entire task has been per-
formed. Note that since the call is blocking, clients might want to
call this function in a separate thread to enable execution to con-
tinue while waiting for the response. For example, a task such as
moving to a new waypoint may take a considerable amount of time.
If false is returned, either the helicopter was not able to complete
the specified task, the task has been aborted by a client with higher
privileges, or no task to be performed has been registered.

bool ARCH_abort_task(const int unit_id) - This function is used to abort the task
currently being performed by the helicopter. Clients may abort their
own tasks and the tasks of clients with lower privileges. Returns true
if the operation succeeds. Note that false will also be returned as a
result of the corresponding request-call to the client that requested
the task.

bool ARCH_suspend_task(const int unit_id) - This function is used to suspend the
task currently being performed by the helicopter. The task will not
be deleted, and the request-call corresponding to the task that is
being suspended will still be blocked (no value will be returned).
Clients may only suspend their own tasks or tasks of clients with
lower privileges. Returns true (to the calling client) if the operation
succeeds.

bool ARCH_resume_task(const int unit_id) - This function causes the helicopter to
resume the last task that was suspended. If no task has been sus-
pended, or if the helicopter for some reason is not able to resume
the task, false will be returned. Otherwise, true will be returned.

bool ARCH_client_set_parameters(const int unit_id, const vector<ARCH_arg> params) -

This function is used to set the parameters of a task to be performed
on the helicopter. Typically, a sequence of calls to this functions will
be used to specify a task. For example, if the task to be performed is
to move along a flight path specified by a sequence of waypoints, this
function should be called as many times as there are waypoints in the
flight path, with each function call corresponding to one waypoint.
Returns true if the helicopter is able to accept the parameters.

bool ARCH_current_task_parameters_count(const int unit_id, int& count) - This func-
tion is used to get the number of parameter updates in the task
currently being performed on the helicopter. The argument unit_id
specifies the unit on which the task is being performed, and the ar-
gument count is a reference to an integer. If the result of the function
call is true - that is, if a task is currently being performed on the
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specified unit - the argument count will have been set to the number
of parameter updates in the current task.

bool ARCH_current_task_parameters(const int unit_id, const int index,

vector<ARCH_arg>& arguments) - This function is used to get one of the
parameter updates of the task currently being performed on the unit
specified by the argument unit_id. The argument index specifies the
index of the parameter in the sequence of parameter updates which
constitutes the task. The function call returns true if there is a task
currently being performed on the specified unit and index is in the
range [0,n), where n is the number of parameter updates. A typical
usage scenario for this function would be to first use the function
described above to get the number of updates in the current task,
and then use this number as a limit in a loop that continuously calls
this function to investigate each of the individual updates.

bool ARCH_current_task_parameters_invalidate(const int unit_id, const int index) -
This function can be used to invalidate (delete) a parameter update
from the task currently being performed on the unit specified by the
argument unit_id. The function will return true if the invalidation
of the parameter update was successful.

Typically, the three functions described last will be used by a client to traverse
all of the parameter updates of a task to be performed on a helicopter unit.
The invalidate function can be used to remove a parameter update from the se-
quence. An example scenario could be an onboard client with micro-navigation
capabilities. Such a client should not only have the ability to suspend and re-
sume the task of a lower privileged client, but also remove waypoints from the
suspended task that are not valid any more after the micro-navigation task has
been completed (steering around an unknown obstacle, for example).

The interface also includes the class ARCH_client. This class contains a pure
virtual callback function. Clients using the API should subclass this class and
provide an overloaded implementation of the callback function. The function-
ality of the callback function is now described.

virtual void ARCH_unit_data(int unit_id, vector<ARCH_arg> data) - This function is
called on the client when new data is available from the unit specified
by the argument uwnit_id. The function will only be called if the
client is subscribing to parameters of the unit. The argument data
is a vector containing values for unit parameters on which the client
is subscribing. For example, if the client is subscribing to GPS
coordinates from the INS/GPS unit, this function will be called each
time the INS/GPS unit provides updated coordinate estimates. The
first argument will be the id of the GPS/INS unit, while the second
argument will be a vector containing three ARCH_arg elements, each
of which contains an id and a value.
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The data type ARCH_arg, used in many of the above described interface functions,
is simply a container that holds a parameter id and a parameter value. For a
more detailed insight into this data type, readers are encouraged to inspect the
source code of the ARCH server and API themselves.

B.2 ARCH protocol messages

This appendix gives a description of the ARCH communication protocol. The
ARCH protocol must be used by remote clients, which cannot use the ARCH
API presented in the last section (though remote clients written in C++ may use
the ARCH API to communicate with the server directly instead of implementing
code for parsing and generating protocol messages).

B.2.1 Description

The ARCH API presented in appendix B.1 is designed in such a way that
the ARCH communication protocol can be deduced nearly directly from the
interface function signatures. This way, understanding and implementing the
ARCH communication protocol is greatly eased through the similarity with the
API. The main ideas behind the protocol are:

e Communication between the ARCH server and the remote client is achieved
through textual messages sent over the communication link (TCP/IP).
Messages are sent as sequences of bytes/characters, terminated by the
special character \n.

e Each message is composed of a number of words. Each word in a message
is terminated with the token %. In the current implementation, all of
the helicopter units convert words into numbers - integers or doubles.
However, future helicopter units may choose to treat the words as raw
byte data.

e The first word of a message is a special code identifying the operation
which is to be performed. Each interface function in the API has such a
code associated with it. There are also codes for the interface functions’
return values. A specification of these codes can be found in the next
section.

e All of the word succeeding the first one corresponds to parameters of the
interface function. Interface functions which include a vector of either
integers or ARCH_arg objects take this vector as their last argument. This
enables the protocol messages which correspond to these interface func-
tions to treat the n last words of a message as elements of a vector, where
n is the total number of words in the message minus the number of argu-
ments preceding the vector. For vectors which consist of ARCH_arg objects,
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n is assumed to be an even number. For a pair of words, the first one will
be treated as an integer corresponding to the id of the parameter. The
interpretation of the last one will depend on the helicopter unit. The IMU
and INS/GPS units treat all of these values as doubles.

e In cases where arguments of an interface function are references to vari-
ables, i.e. variables that are updated by the function if the function call
succeeds, words with values corresponding to the values of these variables
will be sent as a message from the server to the client. Note that in all
cases where references to variables are taken as a function argument, these
reference variables appear as the last arguments of the function. If a func-
tion has n arguments, where p of them are parameters acting directly upon
the server and ¢ of them are reference variables to be filled with values
from the server, the corresponding protocol message from the client to the
server will contain p words in addition to the first identification word. If
the operation on the server succeeds, the client will receive a message from
the server consisting of ¢ words corresponding to the reference variables
of the interface function.

Some examples will make the ideas described above clearer. The first example
shows a message where the client is requesting a task on the IMU unit:

302%1%

The first word, 302, is the code corresponding to the interface function ARCH_client
_request_task of the API. Message identification codes are always interpreted as
integers. The second word, 0, is also interpreted as an integer in this case, be-
cause the first argument of the corresponding interface function is an integer. As
one can see, this is the id of the helicopter unit upon which a task is requested.
Since this function call returns a boolean value, a message should be sent from
the server to the client indicating if the request was successful or not. Thus,
the following message will be sent as a response from the server to the remote
client:

1000%302%1%

The identification word is in this case 1000, a special id reserved from boolean
responses. The first argument, 302, indicates that this is a response to a message
type of id 302. The last argument, I, indicates that the boolean result of the
operation on the server was true. If the result was to be false, this would have
been indicated by 0 being included as the last argument instead of 1. The next
example shows a message corresponding to an interface function where a vector
is one of the arguments:

200%0%0%476.32%1%300.11%2%-40.0%
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The identification word, 200, corresponds to the interface function ARCH_client_
set_parameters. Lhe first argument is an integer specifying the id of the helicopter
unit that the client is specifying parameters for. In this case it is 0, which is
the id of the INS/GPS unit. The succeeding sequence of words is treated as
the contents of the vector. Since this vector contains ARCH_arg objects, an even
number of words is expected. As one can see, the number of words is six in this
case, so the message is a valid one. Pairs of words are, in this case, treated as
pairs of integers and doubles, since the INS/GPS unit is expecting parameter
ids as integers and parameter values as doubles. The parameter ids, 0, 1 and
2, corresponds to the desired coordinates of the helicopter. The values, 476.32,
300.11 and -40.0, corresponds to the values of the desired coordinates. The
last example of this section illustrates a sequence of messages where the server
responds to the client’s request by sending parameter values back to the client:

500%0% - client to server
500%17% - server to client
1000%500%1 - server to client

The first message is sent from the client to the server. The identification word,
500, corresponds to the interface function ARCH_current_task_parameters_count. As
one can see from the presentation of the API in section B.1, the first argument
of this function is the id of the helicopter unit from which the client is trying to
fetch the number of task parameters. This parameter is included as a word in
the message from the client to the server. The second parameter of the interface
function, however, is a reference variable intended to be updated with a value
from the server. Therefore, a message with the same identification word as the
first one is sent as a response from the server to the client. The first word of this
message corresponds to the first argument of the interface function which is a
reference parameter. In addition, the client also received a message indicating
that the operation on the server succeeded. If the operation on the server did
not succeed, the client would only have received a message indicating that the
operation had failed (that is, a message with identification word 1000).

B.2.2 Protocol messages

This section specifies the structure of the messages used in the API. Table B.1
specifies the messages used between clients and the ARCH server. Table B.2
specifies the messages used between the ARCH server and clients. For both
of these tables, references to the corresponding interface functions in the API
are given. The code for the protocol message is also given, together with a
representation of the syntax of the succeeding arguments. In this representation,
the operator + is used to indicate one or more repetitions of its operand. The
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term bytes indicates an array of bytes. In the current version of the system, all
of the units treat all of their parameter values as doubles. The meaning of the
arguments of the different protocol messages can be inferred directly from the
description of the corresponding interface function in section B.1. Therefore,
they are not repeated here.

Table B.1: Messages from client to server

Interface function | Code | Arguments |
ARCH_unit_data 2 nt%
ARCH_client_subscribe 100 int%(int%)+
ARCH_client_unsubscribe 101 int%(int%)+
ARCH_client_set_parameters 200 int%(int%bytes%)+
ARCH_client_begin_task 300 int%
ARCH_client_end_task 301 mt%
ARCH_client_request_task 302 nt%
ARCH_abort_task 400 mt%
ARCH_suspend_task 401 nt%
ARCH_resume_task 402 mt%
ARCH_current_task_parameters_count 500 nt%
ARCH_current_task_parameters 501 mt%
ARCH_current_task_parameters_invalidate 502 nt%int%

Table B.2: Messages from server to client

Interface function | Code | Arguments | Comment
ARCH_unit_data 1 int% (int%bytes%)+ | Sent to subscribed clients
ARCH_unit_data 2 (int%bytes% )+ Response to client
ARCH_current_task_ 500 nt% Response to client
parameters_count

ARCH_current_task_ 501 (int%bytes)+ Response to client
parameters

Table B.3 presents protocol messages which does not have any corresponding
interface function in the APIL.

B.3 Unit parameters

This section presents the unit parameters defined for the helicopter unit interface
which has currently been implemented. For each parameter, flags are given to
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Table B.3: Special messages

Description

| Code | Arguments |

Comment

Boolean return value

1000

int%(0/1)%

First argument is code of
request-message

indicate if it is settable and readable. A settable parameter is a parameter that
may be set by a client through a task on the unit. A readable parameter is a
parameter that may be read and subscribed to by clients. Flags surrounded by
parentheses indicate that the feature is planned but has not been implemented
in the current version of the system. Table B.4 shows the parameters defined
for the INS/GPS unit. The INS/GPS unit has the unit id 0.

Table B.4: Parameters for the INS/GPS unit

| ID | Parameter | Description | Data type | Settable | Readable
0 y Position double Y Y
1 X Position double Y Y
2 z Position double Y Y
3 vy Velocity double Y
4 VX Velocity double Y
5 vz Velocity double Y
6 P Rotational velocity double Y
7 q Rotational velocity double Y
8 r Rotational velocity double Y
9 phi Attitude angle double (Y) Y
10 theta Attitude angle double Y Y
11 psi Attitude angle double (Y) Y







Appendix C

ARCH GroundStation

The purpose of the GroundStation is to enable people to monitor and control
the helicopter’s actions. It is meant to provide an interface to UAVs, where a
user can plot flight paths and designate areas for UAVs to cover. The Ground-
Station is connected to the helicopter through a wireless LAN. Although the
helicopter could function well on its own, it is assumed that the helicopter will
always be connected to the GroundStation. This means that the reach of the
wireless LAN, or the lack thereof, implies a serious restriction on the reach of
the helicopter. This is something that will have to be changed or fixed before
the ARCH helicopter can perform tasks of significance beyond research and
development. In the next section a description of what can be done from the
Groundstation and how to do it is given. Thereafter follows a more technical
description of how the Groundstation is constructed and why it’s constructed
the way it is.

C.1 Functional description

The GroundStation is the gateway to communicating with one or more UAVs.
Its purpose is to allow users to easily and intuitively monitor and control the
helicopter. In the Graphical User Interface (GUI) the functionality is divided
into several tabs. All information received from the helicopter will be printed
in the status window, on tab 1 shown in figure C.1. After connecting to a
helicopter, a user is able to navigate through the different tabs to perform
different tasks. The following subsections will describe the different tabs, and
the functionality provided in them.

XV
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LT

Figure C.1: Connection tab

C.1.1 Connection tab

The connection tab is the first thing that meets the user when the Groundstation
is started. In this tab the users are able to subscribe or unsubscribe on different
information available on the UAV. If, for example, the user wishes to receive
information on the whereabouts of the UAV, he/she can subscribe to the GPS
coordinates of the UAV. This subscription will make the UAV send its GPS
coordinates to the GroundStation regularly. The GroundStation will, in turn,
print this in the subscription info panel shown in figure C.1. In later versions this
could easily be converted to plotting the UAV’s position on a map, instead of
only printing it in the subscription panel. This is, however, not yet implemented
in the GroundStation. The general info panel shown in figure C.1 prints general
info from the UAV and information about what the GroundStation is doing.
This panel is available independently of which tab the user is operating.

C.1.2 Waypoints tab

In the waypoints tab, the user can either type in the waypoints by hand in the
“plot waypoints” panel, or open and upload a text file containing the desired
waypoints in the “Read / Upload Waypoints” panel. This is shown in figure C.2.
The text-file containing the waypoints must be in the following format:

North FEast Down
North FEast Down

North FEast Down
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Tabs — |

Map

Plot Waypoints

Read-Upload -
Waypoints

General Info

Figure C.2: Waypoints tab

The user should also be able to designate waypoints by clicking on the map in
figure C.2, but this is not implemented yet. The waypoints tab is a low-level
flight control panel, where a user can control the UAV’s movement by telling
it where to fly. The UAV will move in a straight line between the waypoints
given and in the altitude given, independent of the terrain. This functionality is
for testing purposes only, and does not serve any purpose outside research and
development. For a novice user, it would be more natural to use the functionality
provided in the Pathfinder tab described in section C.1.4.

C.1.3 IMUData tab

The IMUData tab is, at present, meant as an example tab showing how one
can create a new tab for each new sensor or functionality one puts on the UAV.
In the IMUData tab, the users are able to set specific values on the Inertial
Measurement Unit (IMU).

C.1.4 PathFinder tab

In the PathFinder tab, the user is able to make the GroundStation calculate
the optimal path between two positions on the map by pressing the “calculate
path” button shown in figure C.3. The input-box in figure C.4 is then presented
to the user. In the current version, the only single path-planner available in the
GroundStation is the shortest path planner. In later versions, the users also will
be able to choose other single UAV pah planners.
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Tabs — [

Calculate path ——

Calculate Total
Coverage  — |

Map

General Info —_|

Figure C.3: PathFinder tab

The user is also able to make the GroundStation calculate a total coverage path
for one or more UAVs that will enable the UAVs to cover the entire area with
some sort of remote sensing devices, e.g cameras. This can be achieved by
pressing the “Calculate total coverage” button. The input-box in figure C.4 is
then presented to the user. Again, many of the options on the input-box are
for testing purposes, allowing the ones creating the “total coverage” methods
to experiment with different variables. The average user would not have to be
concerned with many of these variables.

It is also thought that the user will be able to designate waypoints by clicking
on the map in figure C.3 or drag a rectangle across the map to designate an
area to be covered. However, this is not implemented in the current version.

4 Plugin arguments

Camerafield-of view angle:
AV altitude:

Waypoint generator, queue size:

Waypoint generator, resolution reduction factor:
Waypoint generator, X skip factor:

Waypoint generator, Y skip factor:

Waypoint generator, visibiity rays per location:

Waypoint generator, max number of uncovered locations:
Waypoint generator, queue refresh threshold:

Number of UAVs:

Waypoint partition search, Cmax:

Waypoint partition search, alpha:

Waypoint partition search, T0: 10000
Single UAV path search, Cmax:
Single UAV path search, alpha:
Single UAV path search, T0:
UAY speed:

TR E T

Survey date: 1712005
Survey time of day: 1200
X reference coordinate: o
¥ reference coordinate: o
Laitude for reference coordinate: 634167
UAVX-coorainate stend point 50 | {1 ongituge for reference coordinate: 104167
UAVy-coordinate at end paint 50 |
e S || Timezone 1

number of waypoints 5]

Figure C.4: Input-boxes for 'calculate path’ and ’calculate total coverage’



C.2. Architectural description Xix

C.2 Architectural description

The architecture of the Groundstation is divided into three layers: communication-
, logic- and GUI layer, as shown in figure C.5. The communication layer uses
the ARCH protocol, described in, appendix B, and enables the layer above to
communicate with the helicopter without worrying about loss of packages or
other underlying problems. Because the ARCH protocol is designed to support
more advanced onboard clients, only selected features of the ARCH protocol are
supported by the GroundStation. The features supported in the Groundstation
are mainly the ones that read parameters from a UAV and update parameters
to make it perform tasks.

e |

COMMS

l

Figure C.5: The GroundStations’ architecture (high level).

The GroundStation is used in research and development of the ARCH UAV.
This requires the GroundStation to have a high degree of modifiability because
of the constant need to add new features and options. This makes it important
to be able to control the time and cost to implement, test, and deploy changes.
One way to do this is to reduce the number of modules that are directly affected
by a change. Although there is not necessarily a precise relationship between
the number of modules affected by a set of changes and the cost of implementing
these changes, restricting modification to a small set of modules will generally
reduce the cost. Another thing is to prevent ripple effects. A ripple effect from a
modification is the necessity of making changes to modules not directly affected
by it. For instance, if module A is changed to accomplish a particular modifica-
tion, then module B is changed only because of the change to module A. B has
to be modified because it depends, in some sense, on A. To avoid this, one can
deploy tactics like hiding information where the goal is to isolate changes within
one module, and prevent changes from propagating to others, maintaining ex-
isting interfaces where one creates abstract interfaces that mask variations, and
restricting communication paths where one reduces the modules with which a
given module shares data. To accommodate this need, the architecture is highly
modular with few couplings between the modules, which makes it fast and easy
to add or remove modules. As can be seen from figure C.6, there is only one
link between each module, none of the other modules know of each other. This
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makes it quick and easy to change, add or replace modules.

Gui
GuiTab
GuiTab
GroundStation GuiFrame
GuiTab

TepClient

Figure C.6: The GroundStations’ architecture (low level)

When creating any application that is to be used by users, one must always be
concerned with usability. Usability is concerned with how easy it is for users to
accomplish a desired task and the kind of support the system provides to the
user. Usability is enhanced by, among other things, giving the user feedback as
to what the system is doing, and by providing the user with the ability to issue
usability-based commands such as cancel and undo, to support the user in either
error-correction or more efficient operations. Researchers in human-computer
interaction have used the terms “user-initiative”, “system-initiative” and “mixed-
initiative” to describe which of the human-computer pairs takes the initiative
in performing certain actions and how the interaction proceeds. For example,
when issuing a “calculate path” command, the user issues the command “user-
initiative”, and the system responds. During the “calculate path”, however, the
system may put up a progress indicator, “system-initiative”. Thus “calculate
path” demonstrates “mixed initiative”.

To use the “calculate path” example again: When a user issues a “calculate
path” command, the system must be listening for it, in this way there is the
responsibility to have a constant listener that is not blocked by the actions of
whatever else is going on. When the system takes the initiative, it must rely on
some information, a model, about the user, the task being undertaken by the
user or the system state itself. In the GroundStation, progress bars are used
on actions that takes a perceptible amount of time to make the system appear
more responsive. We have also made it possible to abort any action that deals
with the UAV at any time. Since the GroundStation still is used mainly for
research and development, much work has not been put down in the current
GUI. However, the functionality has been separated into natural groupings to
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make it intuitive and effective for a user to operate.
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