
Abstract

Systems that efficiently provide support for adaptive work processes in a mobile environ-
ment do not exist according to our knowledge. Such systems would increase efficiency
and safety in environments where work is inherently mobile, ad-hoc, and requires input
from a set of heterogeneous sources. Traditional work support systems are normally not
capable of dynamic change and plans must be made before work is started. This con-
flicts with most work processes, which are dynamic and where plans cannot be completely
pre-defined.

Current workflow systems are for the most part not capable of handling dynamic change
in the workflow process execution. Those that do exist are geared more towards long-term
adaptability of the workflow process and not towards in-situ planning of activities.

In this report we provide an overview over current research related to adaptive workflow,
activity theory, situated actions, and context-awareness. Then, we further explore the
concept of adaptive workflow and context-awareness and how this can be implemented
in a prototype workflow enactment service. A set of requirements for such a system is
elicited from this exploration. We also provide a possible scenario for usage of adaptive
context-aware workflow technology.

From these requirements we have created an overall architecture that supports adaptive
context-aware mobile work. Our focus within this architecture is on context-aware adap-
tive workflow systems.

We finally present the design and implementation of a prototype application supporting
context-aware adaptive mobile work processes. This prototype has been named Pocket-
Flow and is implemented in embedded visual C++ for Microsoft PocketPC 2003 second
edition.

i

ii

Preface

This report is a result of work on the master thesis by Frode Hauso and Øivind Røed at
the department for Computer and Information Science (IDI) at the Norwegian University
of Science and Technology (NTNU) in the spring of 2005.

We would like to thank our supervisor, PhD Fellow Carl-Fredrik Sørensen, for his support
and invaluable insights, ideas, and comments during our work. In addition, we would
like to thank Morten Aarbakken and Aker Verdal for help on providing a scenario for our
work, and Thirunavukkarasu Sivaharan for providing the CORTEX Publish-Subscribe
Component Framework.

Trondheim 15th of June 2005

——————— ———————
Frode Hauso Øivind Røed

iii

iv

Contents

I Introduction 1

1 Introduction 3

1.1 Background . 3

1.2 Motivation . 4

1.3 Problem Definition . 4

1.4 Limitation of Scope . 5

1.5 Outline of the Report . 5

1.6 Readers Guide . 7

2 Research Methods 9

2.1 Research Questions . 9

2.2 Engineering Approach . 10

2.3 Literature Survey . 10

2.4 Scenario Building and Requirement Elicitation 10

2.5 The XP Development Methodology . 11

II State-of-the-Art 13

3 Workflow 15

3.1 Benefits of Workflow Technology . 15

3.2 Workflow Example . 15

3.3 Terminology . 15

3.4 Types of Workflow Systems . 17

3.4.1 Collaborative . 17

v

CONTENTS

3.4.2 Ad-Hoc . 17

3.5 WfMC’s Workflow Reference Model . 17

3.5.1 Interface 1: Process Definition . 17

3.5.2 Interface 2 and 3: Workflow APIs 19

3.6 Adaptive Workflow and Exception Handling 19

3.6.1 Exceptions . 19

3.6.2 Handling Exceptions . 20

3.6.3 Adaptive Workflow . 21

3.7 Workflow Modelling . 24

3.8 Summary . 24

4 Context-Aware Computer Systems 25

4.1 Context and Context-Classifications . 26

4.2 Context-Aware Computing . 27

4.3 Challenges in Context-Aware Computing 28

4.4 Advantages of Context-Aware Computing 29

4.5 Summary . 30

5 Activity Theory and Situated Actions 31

5.1 Situated Actions . 31

5.2 Activity Theory . 31

5.2.1 The Basic Principles of Activity Theory 31

5.2.2 Principles Derived from Activity Theory 32

5.3 Situated Planning . 33

5.4 Relevance for Adaptive Mobile Work Processes 34

5.5 Summary . 34

6 Sensors and Actuators 35

6.1 Sensors Like Dust and Brilliant Rocks . 35

6.2 Wireless Sensor Networks . 35

6.3 SensorML . 36

6.4 Actuators . 37

6.5 Intelligent Artifacts . 37

6.6 Summary . 38

vi

CONTENTS

7 Development Frameworks 41

7.1 CORTEX . 41

7.1.1 The Sentient Object Model . 41

7.1.2 CORTEX Middleware . 43

7.2 CLIPS . 44

7.3 Lua Language . 44

III Scenario 47

8 Application Scenario - Aker Verdal 49

8.1 Current Work Environment . 49

8.1.1 Work Processes . 49

8.1.2 Steel Plate Workflow . 49

8.1.3 Structural Tubular Workflow . 50

8.2 Future Work Environment . 52

8.2.1 Mobile Robots . 52

8.2.2 Collaboration . 53

8.2.3 Impact on Human Work Processes 54

IV Requirements 55

9 Requirements for the PocketFlow Prototype 57

9.1 Functional Requirements . 57

9.1.1 Basic Workflow System . 57

9.1.2 Context-Aware Workflow System . 58

9.1.3 Adaptive Ad-Hoc Workflow System 59

9.1.4 Mobility Requirements . 60

9.2 Non-Functional Requirements . 60

9.2.1 Separation of Concerns . 60

9.2.2 High Level of Responsiveness . 61

9.2.3 Connectivity . 61

9.2.4 Component Harvesting . 61

vii

CONTENTS

9.3 COTS Components . 61

9.3.1 CORTEX Middleware . 62

9.3.2 CLIPS . 62

9.3.3 Mobility and Context-Aware Workflow Prototypes 62

9.4 Technical Constraints . 62

9.4.1 WfMC Reference Model . 62

9.4.2 MS Embedded Visual C++ . 63

9.4.3 PocketPC 2003SE Handheld Device 63

9.5 Discussion . 63

10 Use Cases 65

10.1 PocketFlow Use Case Overview . 65

10.2 Use Case: Enact Workflow . 65

10.2.1 Use Case: Sensor and Actuator Setup 67

10.2.2 Use Case: Generate New Activities 68

10.2.3 Use Case: Remove Activities . 68

10.3 Use Case: Cooperating Workflow . 69

V Architecture and Design 71

11 The PocketFlow Architecture 73

11.1 Introduction . 73

11.2 Architectural Drivers . 73

11.2.1 AD1 - Decentralised Workflow Management 73

11.2.2 AD2 - Autonomous Workflow Clients 73

11.2.3 AD3 - Event Based Asynchronous Communication 73

11.3 Stakeholders . 74

11.4 High-Level Architecture Overview . 74

11.4.1 Mobile Worker . 75

11.4.2 Workflow Client . 75

11.4.3 GUI . 75

11.4.4 Fragment Workflow Enactment Service (FWES) 75

viii

CONTENTS

11.4.5 Workflow Context Integration Service (WCIS) 75

11.4.6 Data Storage . 76

11.4.7 Cooperative Workflow Integration Service (CWIS) 76

11.4.8 Context Service . 76

11.4.9 Sensor . 77

11.4.10Actuator Service . 77

11.4.11Actuator . 77

11.4.12Server-Based Workflow Enactment Service 77

11.5 The Sentient Object Model and the Intelligent Artifact Paradigm 77

11.5.1 Sentient Object Model . 77

11.5.2 Intelligent Artifact Paradigm . 78

11.6 Limitation of Scope . 78

12 Design 79

12.1 Design Patterns . 79

12.1.1 Model View Controller Pattern . 79

12.1.2 Dependency Injection Pattern . 80

12.1.3 Observer Pattern . 80

12.1.4 Singleton Pattern . 80

12.2 FWES Package . 80

12.2.1 Note on Thread of Execution . 81

12.2.2 IApplication Interface . 81

12.2.3 IWorkflowClient Interface . 81

12.2.4 IExceptionHandler Interface . 82

12.2.5 QueryExecuter Class . 82

12.2.6 WorkflowEnactmentService Class . 82

12.2.7 WorkflowProcessExecuter Class . 83

12.2.8 XPDLLoader Class . 84

12.3 FWES EnactmentRepresentation Package 85

12.4 FWES Exception Package . 85

12.5 FWES Scripting Package . 86

12.6 WCIS Package . 86

ix

CONTENTS

12.6.1 ContextIntegrator Class . 86

12.6.2 Interpreter Class . 87

12.6.3 ContextExceptionHandler Class . 88

12.6.4 WorkflowFragmentLoader Class . 89

12.7 WCIS Application Package . 89

12.7.1 Setup Application . 89

12.7.2 Actuator Application . 90

12.8 Utils Package . 90

12.9 GUI . 90

12.10Discussion . 91

VI Implementation and Testing 93

13 Implementation 95

13.1 Software Metrics . 95

13.1.1 Summary of High Level Software Metrics 95

13.1.2 Object Oriented Design . 95

13.1.3 Structural Metrics . 96

13.2 Code Samples . 97

13.2.1 Starting a Context-Aware Workflow Process 97

13.2.2 Generating New Activities . 97

13.2.3 Asserting Transition Exceptions . 98

13.2.4 Evaluate Activity Transition . 98

13.2.5 Actuator Workflow Application Execution 102

13.3 Project Structure . 102

13.4 Encountered Problems . 103

14 Testing 105

14.1 Testing Strategy . 105

14.2 Use of Logging . 105

14.3 Unit Testing with PocketUnit . 106

14.3.1 FWES . 106

x

CONTENTS

14.3.2 WCIS . 106

14.3.3 Utils . 107

14.4 Manual Testing . 107

14.5 Not Tested . 107

14.6 Debugging . 107

14.6.1 The ASSERT Macro . 107

14.6.2 Debugging in Embedded Visual Studio 108

VII Discussion and Conclusion 109

15 Discussion 111

15.1 Evaluation of PocketFlow . 111

15.1.1 Supported Requirements . 111

15.1.2 Evaluation of the Workflow Enactment 113

15.1.3 Evaluation of the Adaptive Workflow Implementation 114

15.1.4 Evaluation of the Context Implementation 114

15.2 Evaluation of the Research Questions . 114

15.2.1 RQ1 . 114

15.2.2 RQ2 . 115

15.2.3 RQ3 . 115

15.3 Evaluation of Research Method . 115

16 Further Work 117

16.1 Prototype Implementation . 117

16.2 Deployment and Testing . 119

16.3 Exploration of Social Aspects . 119

17 Conclusion 121

17.1 Workflow for Mobile Workers . 121

17.2 Context-Awareness in Workflow . 121

17.3 Adaptive Workflow . 121

17.4 PocketFlow . 122

xi

CONTENTS

VIII Appendix 123

A Tools 125

A.1 Programming Tools . 125

A.1.1 Embedded Visual Studio . 125

A.1.2 CCCC . 125

A.1.3 Doxygen . 125

A.2 Modelling Tools . 125

A.2.1 Together Architect . 126

A.2.2 Visio . 126

B Class Diagrams 127

B.1 WCIS Package . 127

B.2 FWES and WCIS Connection . 127

B.3 FWES Package . 127

B.3.1 Enactment Representation Package 127

C Workflow Fragments XML Schema 131

D Actual Parameters XML Schema 133

E XPDL Template Example 135

F Workflow Fragments File Example 139

G CLIPS Knowledge Base 143

H Context-Aware Workflow Example 145

I CD-ROM 153

J Glossary 155

xii

List of Figures

3.1 Workflow example . 16

3.2 Workflow definitions . 16

3.3 WfMC’s workflow reference model . 18

3.4 WfMC’s workflow reference meta-model . 19

4.1 Dimensions of ubiquitous computing [30] . 25

5.1 Hierarchical levels of an activity [35] . 32

6.1 A sensor network divided into a hierarchy 36

6.2 Components of an intelligent artifact . 37

7.1 The sentient object model [63] . 42

8.1 Assembled steel jackets at Aker Verdal . 50

8.2 Simplified steel plate workflow . 51

8.3 Simplified structural tubular workflow . 51

8.4 Mobile robot . 52

10.1 PocketFlow use case overview . 66

10.2 Cooperation use case . 69

11.1 Architecture overview . 74

12.1 The dependency injection pattern [16] . 80

12.2 FWES class diagram . 81

12.3 Workflow process enactment overview . 83

12.4 WCIS class diagram . 86

xiii

LIST OF FIGURES

12.5 Exception handling . 88

12.6 GUI screenshot . 91

12.7 GUI active screenshot . 92

B.1 WCIS class diagram . 128

B.2 FWES and WCIS connection class diagram 129

B.3 FWES class diagram . 129

B.4 Enactment representation class diagram . 130

H.1 Context-aware workflow . 145

H.2 Context-aware workflow after transition exception 145

xiv

List of Tables

3.1 Relationship between types of workflow exceptions and changes to the work-
flow model . 20

6.1 Knowledge stored in an intelligent artifact 38

6.2 Rules of an intelligent artifact . 38

12.1 Supported XPDL elements . 85

13.1 Summary of software metrics . 95

15.1 Supported basic workflow system requirements 112

15.2 Supported context-aware workflow system requirements 112

15.3 Supported adaptive ad-hoc workflow system requirements 113

15.4 Supported mobility requirements . 113

xv

LIST OF TABLES

xvi

Part I

Introduction

1

2

Chapter 1

Introduction

This chapter presents the background, motivation, and problem definition for our work
and outlines the structure of this report.

1.1 Background

Our master thesis is related to the MOWAHS research project [34] at NTNU [38]. MOWAHS
is a project carried out jointly by the Software Engineering and Database Technology
groups at IDI [25] and has two main parts; process support for mobile users using mobile
devices, and support for transactions/workspaces incorporating work documents.

The MOWAHS project states three main goals for their research:

• Help understanding, and continuously assess and improve work processes in virtual
organisations.

• Provide a flexible, common work environment to execute and share real work pro-
cesses and their artifacts, applicable on a variety of electronic devices.

• Distribute the results to the community at large.

The approach taken by MOWAHS to achieve these goals is to iteratively define a flexible
work environment for virtual organisations. This work environment should support pro-
cesses and their transactions. Such a support is often implemented in test beds for process
support that realise real scenarios.

This report partly addresses all three goals by proposing a work environment on mobile
devices, which is tested by a prototype implementation of an adaptive, ad-hoc workflow
system. Results from this work can be used to help the understanding of adaptive, mobile
work processes, and thus contribute to the overall goals of MOWAHS.

3

Introduction

1.2 Motivation

The motivations for developing support for mobile, adaptive work processes in a context-
aware workflow system are described below.

Increased efficiency and safety in workflow systems

Adaptive, mobile work processes can provide great benefits in industrial applications.
Better support for process enactment in mobile environments can be achieved by taking
the mobile work environment into account when performing work, and thus incorporate
and integrate a more dynamic behaviour into the enactment. This could possibly increase
efficiency because the system can automate the collection of data and the execution of
services. Safety can also be increased since workers will have an increased awareness of
the environment. Also the knowledge of people and actuators in an environment can help
reduce safety risks, where an environment may include applications that preserve a safe
work environment based on sensed data and embedded knowledge about the environment.

Support for mobility in computer systems

The evolution of new technology has in the recent years resulted in an increased use
of devices such as PDAs and mobile phones. This has led to lower prices and more
applications available for the consumer marked. Users of such devices can benefit from
systems that take contextual information into account, and provide relevant information
and services to the user based on guidelines, preferences, activities, etc.

The planning paradox

Traditional workflow systems have difficulties supporting unexpected changes and devia-
tions from the process model. Organisations need to organise their work according to plans
even though work is by nature ad-hoc and situated. This is referred to as the planning
paradox [5], and is a motivating factor for creating support for work processes which is
adaptive and reactive to changes in the environment.

1.3 Problem Definition

We can envision a scenario in a offshore shipyard (Chapter 8) where a workflow (Chapter 3)
is highly dynamic and can not be properly defined until the worker is in a specific location.
In such an environment there is a need to adapt the workflow process at run-time which
may include the use of context-sources (Chapter 4) to extract required information from,
and sending actuation orders to, the physical environment while executing the workflow.
There may also be several mobile workers in the same location, often with conflicting
interests. Since the workflow can not completely be specified before the worker is at the
correct location, there is a need for some sort of template system (Chapter 3.6.3) where
the template contains the overall high-level workflow. This template is then instantiated
by using information retrieved from the context sources in the worker’s environment.

The rapid improvement in sensor technology, mobile equipment, and wireless communi-
cation enables us in a not too distant future to build workflow systems that support a
higher degree of adaptivity and context-awareness. To our knowledge there has not yet
been built such a workflow system. The main objective for this thesis is to develop a

4

1.4 Limitation of Scope

workflow prototype which uses contextual information from the environment to adapt a
workflow process to it’s environment. By creating an architecture (Part V) and a proof
of concept prototype (Part VI) we are able to test our thoughts on these issues with our
specific implementation. We will in the rest of the report use PocketFlow as the name of
our prototype.

Chapter 2.1 describes in more detail the problems we set out to solve.

1.4 Limitation of Scope

Issues related to wireless communication will not be dealt with in this report, and we
assume reliable and stable connectivity. We also assume that the client will be disconnected
from the central workflow enactment service.

Even if such issues still poses important challenges, they are not addressed in our work
but are thoroughly examined in other research, e.g. [42] which deals with challenges in
mobility management and wireless communication.

1.5 Outline of the Report

Part I - Introduction

• Chapter 1 - Introduction: Contains background, motivation, and problem definition.

• Chapter 2 - Research Methods: Presents the research questions examined in this
thesis as well as the research methods used to provide the results.

Part II - State-of-the-Art

• Chapter 3 - Workflow: Gives an introduction to workflow technology with a strong
emphasis on adaptive workflow processes.

• Chapter 4 - Context-Aware Computer Systems: Gives an introduction to context
and context in computer systems.

• Chapter 5 - Activity Theory and Situated Actions: Gives an introduction to activity
theory and situated actions and discusses the difference between the two theories.

• Chapter 6 - Sensors and Actuators: Gives an introduction to the notion of smart
dust, wireless sensors and actuators, and the intelligent artifact paradigm.

• Chapter 7 - Development Frameworks: Presents the frameworks used in the devel-
opment of PocketFlow.

Part III - Scenario

• Chapter 8 - Application Scenario - Aker Verdal: Presents a possible scenario for
usage of the PocketFlow prototype. The current work processes are described, and
then new work processes that takes benefit of context-awareness are introduced.

5

Introduction

Part IV - Requirements

• Chapter 9 - Requirements for the PocketFlow Prototype: Presents functional and
non-functional requirements for the PocketFlow prototype, as well as COTS compo-
nents and the technical constraints for the architecture.

• Chapter 10 - Use Cases: Presents the use cases that form the basis for the architecture
and design of PocketFlow.

Part V - Architecture and Design

• Chapter 11 - The PocketFlow Architecture: Presents the high level architecture for
PocketFlow.

• Chapter 12 - Design: Presents the implementation of the architecture from Chapter
13.

Part VI - Implementation and Testing

• Chapter 13 - Implementation: Gives a discussion of implementation metrics and
presents the project structure as well as code examples.

• Chapter 14 - Testing: Presents the unit tests for PocketFlow as well as a description
of the debugging process.

Part VII - Discussion and Conclusion

• Chapter 15 - Discussion: Presents a discussion of the results from this thesis.

• Chapter 16 - Further Work: Presents what parts of the PocketFlow prototype that
need further work.

• Chapter 17 - Conclusion: Gives the concluding remarks for this thesis.

Part VIII - Appendix

• Appendix A - Tools: Presents the tools used when developing the PocketFlow pro-
totype.

• Appendix B - Class Diagrams: Presents the UML diagrams for the PocketFlow
prototype.

• Appendix C - Workflow Fragments XML Schema: Presents the XML schema for
workflow fragments.

• Appendix D - Actual Parameters XML Schema: Presents the XML schema for actual
parameters used in the workflow enactment.

6

1.6 Readers Guide

• Appendix E - XPDL Template Example: Presents the XPDL workflow template
used in Appendix H.

• Appendix F - Workflow Fragments File Example: Presents workflow fragments file
used in the XPDL in Appendix H.

• Appendix G - CLIPS Knowledge Base: Presents the CLIPS knowledge base used in
the example workflow.

• Appendix H - Context-Aware Workflow Example: Presents a context-aware workflow
example included the log file from the execution.

• Appendix I - CD-ROM: Gives a presentation of the accompanying CD-ROM.

• Appendix J - Glossary: Gives a short description of central terms in this thesis.

1.6 Readers Guide

This report contains both conceptual descriptions as well as technical descriptions of our
work on adaptive mobile work processes. The state-of-the-art part (Part II) provides the
reader with discussions on relevant topics and is especially useful for readers new to this
research area. Own contribution is documented in the scenario (Chapter 8), requirements
(Part IV), and architecture (Chapter 11) in a conceptual manner. For an additional more
detailed, technical description, the reader is referred to the design (Chapter 12), imple-
mentation (Chapter 13), and testing (Chapter 14) chapters. Discussion and conclusions
(Part VII) contain a summary of our findings and is recommended for all readers.

7

Introduction

8

Chapter 2

Research Methods

This chapter presents research questions, research methods and software engineering method-
ologies used in the work on our master thesis.

2.1 Research Questions

We have defined important aspects of our work by stating a set of research questions which
are listed below.

RQ1 How can a workflow process adapt to environmental changes, and how
can a workflow process modify the environment?

This research question relates to how a workflow client can use contextual information from
the environment to evaluate transitions for work processes and possibly open new paths
to process goals. A workflow client may perform scheduling of activities, synchronisation
of environmental context with related activities, or perform actuations as a reaction to
contextual changes. Such a process enactment with correct state transitions should be
achieved also when the workflow client is disconnected from a central workflow server.

RQ2 How can we achieve automatic definition of activities based on process
goals and environmental context?

Template work processes can be instantiated by using context which may make it possible
to achieve automatic definition of activities based on contextual conditions and process
goals. This kind of adaptivity for work processes is a combination of using pre-planned
templates and contextual information captured in-situ.

RQ3 How can we achieve ad-hoc workflow enactment in a mobile computing
environment?

For instance how can we decide when a workflow construct needs to be created without a
priori knowledge of the environment around the mobile worker?

The rest of this chapter covers the research methods we used when working with these
research questions.

9

Research Methods

2.2 Engineering Approach

Zelkowitz [64] defines the engineering approach.

Engineers develop and test a solution to a hypothesis. Based on the results of
the test, they improve the solution until it requires no further improvement.

An engineering approach is suitable for our work since the main goal for our master thesis
is to develop a solution to the problem definition stated in Chapter 1.3. We have developed
a proof of concept prototype which is an improvement to previous developed prototypes
by Nguyen and Nødtvedt [39].

2.3 Literature Survey

To answer our research questions, we have done a literature survey. This survey gives us
an understanding of the relevant aspects of our problem domain. The Internet provided
us with articles, journals, etc. from research sites where NTNU have licence.

• Association for Computing Machinery (ACM) [1]

• Springerlink [50]

• Cite Seer [49]

• IEEE Xplore [26]

In addition, a large number of publications have been made available through a shared
bibliography in the MOWAHS project.

2.4 Scenario Building and Requirement Elicitation

This report includes one scenario which provides a showcase for a possible deployment
environment for our proof-of-concept prototype. This scenario also helps us to understand
relevant requirements for systems with support for adaptive, mobile work processes.

Scenario Building - Field Study at Aker Verdal

The scenario is based on a limited field study of a yard environment by visiting Aker
Verdal in Nord-Trøndelag. During this visit we were shown their production facilities
which provided us with valuable information. Our application scenario in Chapter 8 is
based on this field study. We have previously elaborated other scenarios and analysed
related requirements in a previous project [21].

Requirements Elicitation

We are evolving previously stated requirements ([21] and [39]) by incrementally developing
a proof-of-concept prototype. Requirements are found and refined with the increased
understanding of the problem domain.

10

2.5 The XP Development Methodology

2.5 The XP Development Methodology

We need a software engineering methodology that takes into consideration that our master
thesis only spans five months, and that requirements most likely will change as a result of
our increased understanding of the problem domain. In order to rapidly build a running
prototype, we need a methodology which facilitates implementation and testing of small
increments in an evolutionary manner. A software engineering methodology which is
known to work for small teams and speed up development is eXtreme Programming (XP)
[19].

Extreme programming is a lightweight discipline for software engineering which is based
on principles of simplicity, communication, feedback, and courage. It can be summed up
in a set of practises which aim to help developers achieve rapid development of software
in a environment of changing requirements. Important XP practises are [19]:

Coding standards The use of coding standards makes communication easier between
both current developers and future maintainers.

Simple design XP is concerned with making the simplest design possible and not spend
time on features that might not be needed later. This helps keeping the cost of change
low and makes the project more flexible to changing requirements.

Small releases XP stresses that releases should be as small as possible while delivering
enough value to make them worthwhile.

Testing In XP the focus is on validating the software at all times. Programmers write
tests cases before they write code, often called test-driven development. This way of doing
test first design may help us to keep focus on what we are trying to achieve and develop
software that fulfils our requirements.

Refactoring Refactoring is a technique which involves changing existing code without
changing the functionality. This is a good way to improve design and code to reflect our
increased understanding of the problem domain.

We will only use those parts of the XP metodolgy that we find relevant for our work. These
practises have helped us reach a satisfactory implementation of our previously proposed
architecture in [21].

11

Research Methods

12

Part II

State-of-the-Art

13

14

Chapter 3

Workflow

Since the architecture presented in this report heavily depends on workflow technology,
we will in this chapter give a short introduction to workflow and workflow management
systems before we present some research and solutions to adaptive workflow and workflow
templates. While this topic is covered in our previous report [21], we repeat the most
important parts.

3.1 Benefits of Workflow Technology

Workflow technology is created to support automation of business processes where doc-
uments, information, or tasks are passed between participants according to a defined set
of rules to achieve, or contribute to, an overall business goal [23]. The goal of our ar-
chitecture is a system that can support mobile work processes. The scenario in Chapter
8 show that an implementation of such a system requires automation of procedures like
sending information about activities and sending new activities based on a set of rules.
Workflow technology will therefore give us the required theory and model to more easily
create such a system. In addition, we have the benefit from an industry standard which
should increase the life-span of our implementation. While workflow technology is very
useful, it is also a very large field with a large number of standards. We will therefore take
care to only use those parts that give us the most benefit.

3.2 Workflow Example

Figure 3.1 shows a simple workflow with a set of activities and the transitions between
them. A workflow process can be considered to be a directed graph of activities. After
an activity has been split, we dub that part of the graph as a thread of execution. For
instance, when Activity2 split into three new activities, each of the activities become
separate threads of execution. When Activity3 joins with Activity6 the Activity3 thread
of execution is terminated. The same occurs when Activity5 joins with Activity7.

3.3 Terminology

To provide a common ground for further discussion we will look at some of the workflow
terminology. Workflow is standardised by the Workflow Management Coalition (WfMC)

15

Workflow

Figure 3.1: Workflow example

[56], a non-profit, international organisation that promotes the use of workflow by es-
tablishing standards and terminology for connectivity between workflow products. The
coalition is the primary standards body for workflow. The workflow terminology is found
in [11] and the most important terms are presented in Appendix J.

Figure 3.2 shows the WfMC definitions [11] and the relationships between them.

Figure 3.2: Workflow definitions

16

3.4 Types of Workflow Systems

3.4 Types of Workflow Systems

There exist many types of workflow systems that support a wide range of work environ-
ments. We will for our work create a workflow system that is both collaborative and
ad-hoc. A short introduction of these system types follows.

3.4.1 Collaborative

A collaborative workflow focuses on groups working together toward common goals, also
called groupware. We have in our architecture taken collaboration into account, but it is
not the main focus of our work.

3.4.2 Ad-Hoc

Ad-Hoc workflows are created on-the-fly by the current participants, and the process
definitions are very flexible. We will have a more detailed look at ad-hoc workflow systems
in Chapter 3.6. Our work will focus on single workers or small groups of workers in an
ad-hoc environment. In essence our solution is an ad-hoc workflow.

In the next section we will explore the WfMC’s workflow reference model.

3.5 WfMC’s Workflow Reference Model

To support interaction between workflow products, WfMC has defined the workflow ref-
erence model shown in Figure 3.3. This model is divided into five interfaces. Interface 6-8
are still under development and are currently not a part of the official workflow reference
model. In our work, we try as much as possible to adhere to the standards described
in interface 1, but since the workflow reference model is not created for dynamic ad-hoc
workflow systems, there are some deviations. Interface 2 could potentially be a benefit
for someone wanting to use our workflow engine in their own work, but because of time
constraints we will only use this specification when it does not interrupt our work. A short
description is included anyway.

The reference model provides a common vocabulary for describing business processes, a
functional description of the software components needed to support workflow, and the
definition of interfaces between the software components. It tries to be as technology
neutral as possible.

3.5.1 Interface 1: Process Definition

This interface integrates the process definitions to the workflow enactment service in the
form of an interchange Process Definition Language (PDL) and API 1 calls.

The process definition provides an environment for a rich description of a process that can
be used for the following [55]:

• Act as a template for the creation and control of instances of that process during
process enactment.

1Application Programming Interface

17

Workflow

Figure 3.3: WfMC’s workflow reference model

• For simulation and forecasting.

• As a basis to monitor and analyse enacted processes.

• For documentation, visualisation, and knowledge management.

Using a standard method of representing workflow process definitions makes it possible to
use standard tools for modeling business processes, while reducing our workload by not
having to create our own process definition language.

Meta-Model

To provide a common method to access and describe workflow definitions, a workflow
process definition meta-model has been established. This meta-model identifies common
entities within a process definition. A variety of attributes describe the characteristics of
this limited set of entities. Based on this model, vendor specific tools can transfer models
via a common exchange format we will describe next. Figure 3.4 shows the meta-model
promoted by the WfMC. The System and Environmental Data element is of special interest
to us. This element contains data which are maintained by the workflow management
system or the local system environment that can be accessed in the workflow process
enactment, and used in the evaluation of conditional expressions. In our work, we will use
this element as an interface to context sources (Chapter 4.1).

Process Definition Language: XPDL

To support a variety of different tools that analyse, model, describe, and document business
processes, there is a need for a standard interchange format that transfer workflow process

18

3.6 Adaptive Workflow and Exception Handling

Figure 3.4: WfMC’s workflow reference meta-model

definitions between the separate products. WfMC has created and promotes a formal
specification, the XML [62] Process Definition Language (XPDL) [55]. XPDL supports
all the entities in the workflow reference meta-model. See [55] for definitions of all the
entities and their corresponding XPDL tags, and Appendix E for an example.

We will rely on XPDL for loading of workflow processes. In addition we will use XPDL
to store workflow templates and fragments (discussed in Chapter 3.6.3).

3.5.2 Interface 2 and 3: Workflow APIs

Interface 2 and interface 3 have been combined by the WfMC, and cover the workflow APIs
(WAPIs). These APIs allow external applications to access management engine services.
This makes it possible to have a single end-user interface and function set to easily replace
the workflow engine. WAPIs have traditionally been written for the C language, but have
in the recent years also been written for the Java language.

This set of APIs is not that important to us since we are not making a commercial
workflow system that needs to interoperate directly with other workflow systems. That
type of communication is in our system maintained by using context.

3.6 Adaptive Workflow and Exception Handling

In this section, we present exceptions and exception handling in workflow systems as well
as research on adaptive workflow processes.

3.6.1 Exceptions

Kammer et al. [28] divide exceptions into two main categories: expected exceptions and
unexpected exceptions. Expected exceptions are exceptions that are modelled into the

19

Workflow

workflow at design time, while unexpected exceptions naturally can be very hard to model
at design time. Expected exceptions are not very interesting in our work, since they are
already covered by the WfMC workflow reference model. We will therefore only look at
unexpected exceptions and possible methods of handling them without manual interven-
tion. It is also important to note that we only discuss exceptions in the business process
execution. Other exceptions like network disconnections, varying network bandwidth, and
hardware or software malfunctions are not covered here.

Exceptions occur at three different levels in the organisation [28]:

• Employee level Impact is limited to a single individual.

• Group level Impact stretches across a group working on the same project, process
etc.

• Organisational level Impact is organisation wide, covering more than one group.

Unexpected exceptions can be classified into three groups. The first group is minor excep-
tions that can safely be ignored, which Kammer et al. [28] calls noise. Another group of
exceptions contains those that are relatively unique to a workflow process, but still force
the workflow process to change. They call this type of exceptions idiosyncratic. The last
group of exceptions is evolutionary exceptions that require changes in the organisational
workflow model. In our work, we try to reduce the number of unexpected exceptions by
providing workflow fragments and templates to automatically generate new activities.

Since the focus of our report is adaptive mobile work for single workers and small groups
of workers, we will not discuss exceptions and adaptations at the organisational level,
but instead concentrate on idiosyncratic exceptions and noise. See Table 3.1 for the
relationship between the types of exceptions and what changes they inflict on the workflow
model.

Exception Type Change in Workflow Model
Noise No impact.
Idiosyncratic exceptions Changes to specific instance of workflow, but

the workflow type (the general model) re-
mains the same.

Evolutionary exceptions Evolution of general workflow model, affect-
ing future instances of work process as well.

Table 3.1: Relationship between types of workflow exceptions and changes to the workflow
model

3.6.2 Handling Exceptions

If we want to avoid unexpected exceptions stopping our workflow execution, we need
methods to automatically detect and avoid, ignore, or handle the exceptions. Kammer et
al. [28] suggest that the system should tolerate minor deviations, handle changes to the
process instance, and support evolution and optimisation of the process model. We will
only cover the two first suggestions since the third handles evolutionary exceptions.

20

3.6 Adaptive Workflow and Exception Handling

Tolerating Minor Deviations

Minor or insignificant deviations to the workflow process, or noise, can safely be ignored
and a workflow system should be able to safely detect and ignore them. This may for
instance be solved by setting limits on how much fluctuation of the operational parameters
that can be accepted.

Handling Changes to the Process Instance

Exceptions with larger impact on the workflow process than noise traditionally involve a
stop in the process execution, and manual interaction by one or more workflow participants
before the workflow process can be started again. This can be avoided by letting the
workflow process instance be adaptive or ad-hoc. We will in the next section describe
what an adaptive or ad-hoc workflow process is.

3.6.3 Adaptive Workflow

Cardoso et al. [8] classify the different types of dynamic change into two main categories:
primitive change and composite change. Primitive changes are composed of atomic changes
that can either be fully executed, or not executed at all. They further divide primitive
changes into immediate changes and incremental changes. Immediate changes can be in-
troduced without changing the correctness and consistency of the workflow, while with
incremental changes, the entire change cannot be executed without introducing inconsis-
tency. Composite changes are sequences of primitive changes.

Atluri and Chun [4] define three types of dynamic changes:

• Profile Change Changes to the goals of the business process.

• Exceptions Unexpected exceptions that arise during a task execution.

• Rule Change Changes to business rules and regulations.

If we consider exceptions to be a type of change [8], an adaptive workflow is a workflow
able to adapt to exceptions and external changes and input. External changes and input
can be profile change, rule change, or context sources (see Chapter 4). An adaptation can
result in restructuring the workflow, either by inserting, deleting, modifying, redoing, or
undoing activities.

Methods for supporting adaptive workflow include:

Late Binding

Defer binding of objects to the workflow process instance to the last moment. This results
in a separation of an object’s data from its behaviour. We will in Chapter 12.1.2 discuss
a design pattern that allows us to achieve this.

21

Workflow

On-The-Fly Workflow Process Composition

The definition of the workflow process is not completed until run-time when it is con-
structed from a workflow template. The template is instantiated at run-time by connecting
to external actors, sensors, and actuators needed by the workflow process.

Partial Execution

Allow the execution of incomplete workflow processes, or workflow process fragments. By
not requiring the workflow process to be complete, we can for instance execute all activities
that are complete while waiting for later activities to be completed. For instance, when
waiting for a sensor to come into the range of the workflow enactment system.

Reusable Process Fragments and Component Libraries

Fragments, stubs, or templates for work processes or tasks are stored in a data store either
on the workflow client, distributed in the environment, or on a centralised server.

Creating Workflow Processes On-The-Fly

Mangan and Sadiq [31] introduce an approach to building flexible workflows. We have
taken their model and converted it into a model more closely resembling the WfMC ref-
erence model. The model consists of

• a set of fragments from which an instance can be built. These fragments are stored
in a fragment pool (data store). From these fragments we can build

– a set of activities.

– a complex sub-process.

• a set modeling constructs that can be used to compose the fragments for a given
instance.

– Sequence.

– Fork / Synchronise (AND Split / AND Join in workflow terminology).

– Multiple executions.

Mangan and Sadiq [31] propose to not include choice-merge construct to reduce
complexity and removing the possibility of deadlocks.

• a set of constraints that will define the rules under which valid instances can be built.
Mangan and Sadiq [31] identify three levels of constraint specification.

– Selection constraints.

– Termination constraints.

– Build constraints.

22

3.6 Adaptive Workflow and Exception Handling

Selection Constraints Selection constraints determine which workflow fragments should
be included when building the workflow instance.

Mangan and Sadiq [31] divide selection constraints into three types.

• Prerequisite constraints which indicate that the fragment is dependent on e.g. a
completed activity.

• Companion constraints which are another type of dependency where the fragment
requires other fragments which must also be selected.

• Incompatible constraints. The fragment may be incompatible with other fragments.

Termination Constraints Rules determining when the goal of the workflow process
has been obtained and the workflow process needs to be terminated.

Build Constraints This includes rules that may for instance specify availability of
resources, maximum load, and performance requirements.

Mangan and Sadiq [32] present a method for mapping constraints to a relational data
base, including an ORM2 specification. They propose to use SQL3 to check for constraint
violations.

We believe the approach for building flexible workflows proposed by Mangan and Sadiq
[32] is a good solution for our problem of enacting adaptive workflow processes, but we
further believe a system supporting this approach will be too complex for our application.
We will therefore use some of their ideas to create a simpler, less complex system while
still making sure it can easily be expanded to a more complete system in the future.

Workflow Templates

Atluri and Chun [4] introduce the notion of self-describing workflows and workflow man-
agement system stubs.

“Self-describing workflows are partitions of a workflow that carry sufficient
information to be managed by a local task execution agent, rather than a
central workflow management system. A workflow management system stub
is a light-weight component that can be attached to a task execution agent,
which is responsible for receiving the self-describing workflow, modifying it and
re-sending it to the next task execution agent.”

Workflow templates are pre-planned workflow processes that are general enough to en-
compass several similar work processes. They can be instantiated by adding contextual
data, other templates, or workflow fragments. A fragment is equal to a workflow stub.

2Object Relation Model
3Structured Query Language

23

Workflow

3.7 Workflow Modelling

We have found UML 2 Activity Diagrams to be suitable to modelling workflow processes.
Activity diagrams have in UML 2 been greatly expanded to support workflow modelling
and provide these benefits:

• Decomposition. An activity diagram activity can be decomposed into subsidiary
activity diagrams. This should make it easy to create sub-flows in the workflow
process.

• Partitioning. It is possible to divide an activity diagram into partitions that shows
the performer of the activities. The partitions can be divided into a two-dimensional
grid.

• Signals. An activity can listen to signals, as well as send signals. This can be
leveraged to provide modeling of context dependency.

• Flow final. A flow final makes it possible to end a thread of execution without ending
the entire workflow process.

• Standard. The UML is a standard language. It is therefore a large amount of
modelling tools created for helping modellers.

We will not go into more detail since workflow modelling evaluation is not part of our
work. Fowler [17] gives a more detailed overview of the activity diagrams constructs.

3.8 Summary

To provide work support for mobile workers, we need a system capable of handling a set
of activities with conditions determining when the activities should be executed. The set
of activities needed, will continuously change when the mobile worker is doing his work.
Workflow technology with an extension for adaptive workflow is therefore important to
our work.

We will in PocketFlow use a combination of all the ideas explored in the previous section.
This will be further explained in Chapter 11 and Chapter 12.

24

Chapter 4

Context-Aware Computer Systems

Weiser [60] presents a vision of a world where computers are integrated seamlessly into
our environment. These computers are aware of their surroundings and can adapt their
behaviour accordingly. Such ubiquitous computing is not feasible today, but improve-
ments in technology related to embedded devices and sensor technology give rise to a
more pervasive environment, supporting the development of context-aware applications.
Lyytinen [30] presents an overview of the dimensions of ubiquitous computing in Figure
4.1.

Figure 4.1: Dimensions of ubiquitous computing [30]

This figure presents the dimensions on making the computer invisible. Lyytinen proposes
the main challenge in relation to ubiquitous computing to be the integration of large scale
mobility with the pervasive computing functionality.

This chapter will refer to definitions of important terms related to context-awareness and
presents some of the important challenges and benefits concerning the development of
context-aware applications.

25

Context-Aware Computer Systems

4.1 Context and Context-Classifications

A good understanding of context will help application designers utilise the possibilities of
offering useful services and context-aware behaviour in applications. Relevant literature
provides us with several definitions of context. Some authors provide examples to define
context, while others use synonyms like the environment or situation of an entity. Dey and
Abowd [14] believe these definitions are too specific, and propose the following definition
of context:

“Context is any information that can be used to characterise the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves.”

The definition provided by Dey et al. is related to the development of the Context Toolkit
[13], a framework consisting of toolkit components that can be combined to determine
the contextual state of an application. Greenberg [20] argues that context is a dynamic
construct, which means that in most cases it is difficult for designers of context-aware
applications to list the set of contextual states that may exist, what information can
accurately determine a contextual state, and what appropriate action should be taken
from a particular state. He acknowledges the usefulness of Deys definitions and supporting
framework, but emphasise how this is an elegant solution which only works to design
context-aware applications for simple and highly routine contextual situations.

Our approach to context-aware computer systems is with the coordination of activities
in adaptive, mobile work processes. For our purpose, we need to extend the definition of
context provided by Dey and Abowd. Instead of focusing on the user and the interaction
between a user and an application, our focus is on processes executing in an application
environment. These processes involve activities, possibly competing for resources. In this
setting, activities in the context-aware application’s environment are the context. This
approach to context may be related to activity theory presented by Nardi [36]. Nardi
states the following about context in an activity system:

“Activity theory proposes a very specific notion of context: the activity itself
is the context. What takes place in an activity system composed of object,
actions, and operation, is the context. Context is constituted through the
enactment of an activity involving people and artifacts.”

Chapter 5 gives an introduction to activity theory and situated actions.

The sentient object model [15] is presented in Chapter 7.1. This model presents a method
to provide coordination of actions through the environment based on clients sensing their
physical environment, and reacting to the sensed information according to a set of rules.
As part of this model, definitions of context and context-awareness are provided.

A definition of context for the purpose of the sentient object model is [15]:

26

4.2 Context-Aware Computing

“Any information sensed from the environment which may be used to describe
the situation of a sentient object. This includes information about the under-
lying infrastructure available to the sentient object.”

This definition focuses on coordination of sentient objects, operating without the need of
an infrastructure.

Dey [14] defines the primary context types for characterising the situation of an entity as:
location, identity, activity, and time. These primary context types can be used to acquire
other relevant (secondary) information about the entity.

4.2 Context-Aware Computing

Context-awareness has become synonymous with the terms adaptive, reactive, responsive,
situated, and context-sensitive in relevant literature. Previous definitions of context-aware
computing can be categorised as focusing on using context or adapting to context [14].
When systems are limited to using context, the relevant services provided are sensing,
interpreting, and reacting to contextual changes in the environment. Adaptive context-
aware systems dynamically change and adapt their behaviour based on the context of the
user and application.

Dey and Abowd [14] propose the following definition of context-awareness:

“A system is context-aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the users task.”

This is a general definition of context-awareness. It includes both systems that are using
context and systems that are adapting to context as context-aware.

In the sentient object model, context-aware is defined as [15]:

“The use of context to provide information to a sentient object, which may be
used in its interactions with other sentient objects, and/or the fulfilment of its
goals.”

This definition is focusing on achieving coordination through the environment rather than
provide information and services to the user.

When it comes to categorising features for context-aware applications, Dey and Abowd
[14] propose a categorisation that combines ideas from previous taxonomies. The result is
the following three categories of features that context-aware applications may support:

• Presentation of information and services to a user.

• Automatic execution of services.

• Tagging of context to information for later retrieval.

27

Context-Aware Computer Systems

When working with aspects of activity coordination and adaptive workflow systems, we
need to emphasise how these application features can provide benefits not only to users,
but also to other (workflow) services. We therefore tailor these features for our process-
centered approach to context, and include other services as well as users as the target of
these features.

4.3 Challenges in Context-Aware Computing

Context-aware computing often involves the use of mobile devices, which have limited
resources. Compared to static devices, mobile devices are small and suffer from limited
power due to its size and weight. Data is transmitted through open airspace, making
communication vulnerable to security violations. Wireless LAN, Bluetooth, and infrared
communication are popular and in widespread use. The wireless connectivity is highly
variable in performance and reliability.

Satyanarayanan [45] discusses some of the challenges in the emerging field of pervasive
computing. For a computing system to be pervasive, it also has to be context-aware, and
Satyanarayanan list the following challenges in the field of context-aware computing [46]:

1. How is context represented internally?

2. How is this information combined with the system and application state?

3. Where is context stored?

4. Does it reside locally, in the network, or both?

5. How frequently does context information need to be consulted?

6. What is the overhead of taking context into account?

7. What techniques can one use to keep this overhead low?

8. What are the minimal services an environment has to provide to make context-
awareness feasible?

9. Is historical context useful?

10. What are the relative merits of different location-sensing technologies?

11. Under what circumstances should one be used in preference to another?

12. Should location information be treated just like any other context information, or
should it be handled differently?

For our work, challenges to be especially aware of in this list are how context is stored (3
and 4), how frequently it has to be consulted (5), and what the overhead for taking context
into account (6) is. These challenges relate to aspects of communication. An increase in
context sources and workflow clients within a system constitute a severe challenge with
regards to keeping the generation of messages at an acceptable level.

28

4.4 Advantages of Context-Aware Computing

Our approach to context-aware computing is process-centered, which give rise to challenges
related to context-aware process support. Sørensen et. al. [53] discuss some of these
challenges in the research area of pervasive computing and workflow/process support with
smart work processes.

Context-aware process support calls for a specification of pre/post-conditions related to
process goals, and Sørensen et al. emphasise the need to develop models which facilitates
integration between process models and the context-rich environment. A part of this
integration involves creating protocols and semantics for information exchange between
the real-world environment and the process environment. If order to achieve adaptation,
specification of environmental behaviour related to an activity is important. There also
has to be a specification of a uniform representation of sensors and actuators.

Another major challenge for context aware computer systems is related to the planning,
specification, and performance of activities based on the environmental context. This in-
volves managing process changes to ensure a consistent state of the process, and managing
the dynamics of ad-hoc activities and process changes.

4.4 Advantages of Context-Aware Computing

Context-aware computing is about making our lives easier. There is a great potential for
advantages by using context-aware features in real-life applications. For this to happen,
research in this field must be able to make systems automate the collection of contextual
information, and use this data to take the appropriate actions in the actual situations.

Smart work processes

Sørensen et. al. [53] introduce the notion of smart work processes. One of the main
advantages of context-aware computer systems is the ability to provide work support for
workers performing mobile work. Such smart work processes are sentient and adapt to
relevant context by sensing the environment, perform context-based reasoning to reach
process goals, and perform actuations which may change the workflow.

Potential for improved usability

When applications have available information about a user’s context, it is possible to make
several improvements in usability. The identity of a user can be detected automatically
when needed, and available nearby resources can be presented to the user according to
user-defined policies.

Automation of services

Context-aware computing can automate the execution of services for users and simplify
everyday activities.

Increased safety

There are several industry scenarios that can benefit from increased safety by using applica-
tions that incorporate contextual information. E.g. by monitoring pressure, temperature,
and other contextual parameters, applications can take actions to prevent accidents from
happening.

29

Context-Aware Computer Systems

Increased efficiency

Context-aware applications have a potential for increasing efficiency when implemented as
workflow systems.

4.5 Summary

A good understanding of context, context-awareness, and the challenges related to these
terms are important if we want to build systems with support for adaptive workflow. The
use of implicitly sensed information allows the application’s behaviour to be customised
to the user’s current situation. Definitions of context and context-awareness by Dey and
Abowd help us understand what types of context, and what kind of context-aware features
to incorporate in applications.

Although definitions provided by Dey and Abowd are helpful, they are not satisfactory
with regards to the requirements we state for adaptive workflow systems in Chapter 9. We
focus on processes and activities as important contextual information for use in workflow
enactment, rather than viewing the user and the interaction between users and applications
as the main focus. We therefore emphasise on how application features should be available
to other (workflow) services as well as to the users of the application.

30

Chapter 5

Activity Theory and Situated
Actions

This chapter investigates how aspects of activity theory and situated actions can be used
to achieve situated planning within workflow systems and help us create a more dynamic
workflow.

5.1 Situated Actions

Research in the area of cognitive science and artificial intelligence has created a large
number of models for human behaviour. These models heavily rely on planning, and how
humans use conscious plans to achieve the objective of an activity. Situated action models
[37] are developed in contrast to such planning models of human actions. While models
in cognitive science represent activities that are carefully planned, situated action models
depend on the surroundings, and recognise the environment as an important shaper of
activities.

Situated action models emphasises the way activities grow out of the particularities of a
given situation, and therefore recognise that actions are always situated into a context,
and impossible to understand without that context. With situated actions, the unit of
analysis is the relation between the individual and the environment.

5.2 Activity Theory

Activity theory is a formal theory of human work activities and a philosophical framework
for studying human work practises.

5.2.1 The Basic Principles of Activity Theory

The basic concept and unit of analysis in activity theory is the human activity, which has
three main characteristics [5].

Activities are directed towards a material or an ideal object An activity is
directed towards an object that motivates the activity. This object distinguishes one
activity from another.

31

Activity Theory and Situated Actions

Activities are mediated by different artifacts Activity theory emphasise that hu-
man activities are mediated by tools as well as other artifacts.

Activities are social within a culture Human activities depend on the culture they
are a part of.

Activities are composed of subject, object, actions, and operations [35]. The structure
of activities can be represented as a hierarchy with three levels; activities, actions, and
operations. Figure 5.1 shows the hierarchical levels of an activity [35].

Figure 5.1: Hierarchical levels of an activity [35]

Activities are realised through goal-directed actions. Actions that are participating in ac-
tivities have an immediate defined goal, and cannot be understood without reference to the
corresponding activity. One activity may be realised through different actions depending
on the situation. Actions are implemented through automatic operations. Operations do
not have goals, but are used to adjust actions to the current situation. They are dependent
on the conditions of the corresponding actions using them.

In the study of context and activity theory, Nardi [35] explains how activities themselves
become context as stated in Chapter 4.1.

“Activity theory, then, proposes a very specific notion of context: the activity
itself is the context. What takes place in an activity system composed of object,
actions, and operation, is the context.”

5.2.2 Principles Derived from Activity Theory

Adams et al. [2] have derived ten principles from activity theory that help the under-
standing of work practises. These principles represent the authors’ interpretation of the
central themes of activity theory.

Activities are hierarchical This principle states that activities consist of one or more
actions, and actions consist of one or more operations.

Activities are communal Activities are almost always communal. This means that
activities often involve several participants working towards a common objective.

Activities are contextual The context of an activity deeply affects the way an objec-
tive is achieved.

32

5.3 Situated Planning

Activities are dynamic Activities evolve asynchronously, and historical analyses are
often needed to understand the current context.

Mediation of activity An activity is mediated by tools, rules, and division of labour.

Actions are chosen contextually Actions and operations are created, maintained and
made available to any activity. Activities are then able to make contextual choices from
the available actions and operations.

Actions are understood contextually An action’s goal may be different from the
objective of the activity in which the action is a component. An action may have a
successful execution in reference to the overall objective of the activity.

Plans guide work Plans act as guidance of work processes and are modified in accor-
dance to contextual information.

Exceptions have value Deviations from a plan can give rise to a learning experience
which can incorporate additional exceptions into future executions.

Granularity based on perspective A piece of work may be an activity or an action
depending on the perspective of the viewer.

5.3 Situated Planning

Bardram [5] gives the following definition of a plan based on activity theory:

“A cognitive or material artifact which supports the anticipatory reflection of
future goals for actions, based on experience about recurrent structures in life.”

Traditional workflow systems have difficulties supporting unexpected changes and devi-
ations from the original process model. These difficulties can be understood within the
planning paradox ; work is by nature ad-hoc and situated, but most organisations need
pre-defined plans in order to organise their work. Bardram [5] approaches this paradox by
viewing plans in relation to situated actions and activity theory. Both activity theory and
situated actions emphasises the connection between plans and the contextual condition
for realising these plans in actual work.

An important distinction is the difference between a plan and the instantiation of a plan.
Plans are resources, and independent of concrete, situated activities. An instantiation of
a plan applies the plan to a concrete problem where situated actions are adjusted to their
contextual state. Since an instantiation depends on its contextual conditions, some actions
will mirror the plan while others will not. After the completion of an instantiated plan,
a comparison of the plan and its actual instantiation may reveal deviations that can give
rise to learning.

Bardram [5] describes how situated actions are not to be viewed as the opposite of plan-
ning. Plans are made out of situated actions and realised in-situ. Situated planning
involves planning while executing and the ability to modify a plan based on occurring
events. Situated planning can therefore be characterised as the building, altering, sharing,
executing, and monitoring of plans within cooperative work activities [5].

33

Activity Theory and Situated Actions

5.4 Relevance for Adaptive Mobile Work Processes

The theories described in this chapter are mainly HCI1 research, but still useful for our
work on adaptive mobile work processes and context-aware workflow systems. Both situ-
ated action models and activity theory provide help on understanding how work processes
and workflow can be made more adaptive and support situated process and activity plan-
ning.

The situated action research provides a way of thinking about work as something that
depends on the surroundings in addition to pre-defined plans. This view of actions which
is situated into a context is relevant for our work on increased adaptivity for work processes.

Activity theory provides a division of work by abstracting an activity into hierarchical
levels as shown in Figure 5.1. This representation of work provides a decomposition of
activities into manageable pieces which facilitates more flexible work processes and also a
more dynamic workflow.

In general, an understanding of situated planning as a combination of pre-defined tem-
plates using situated actions is useful when developing context-aware workflow systems.
By using situated planning as a way of thinking may provide great benefits in relation to
supporting context-aware work. Sørensen et al. [53] introduce the notion of smart work
processes, which automatically adapt themselves based on reasoning on the contextual
state of the environment. They recognise how situated actions and planning are a natural
part of a support environment for smart work processes. By using the contextual state
of the environment, activities can be created in-situ, either by the workflow client, or by
the environment itself with an intelligent artifacts approach [51]. The potential bene-
fits of situated planning are often related to increased safety and efficiency in the work
environment.

5.5 Summary

When working with adaptive mobile work processes, plans are important, but not suffi-
cient. Plans need to be instantiated based on information of the current situation. Both
situated actions and activity theory may address issues in situated planning. Bardram [5]
recognises this, and his conceptualisation of planning in-situ makes it possible to address
planning in a way that does not require a rigid match between process models and actual
work.

Using activity theory is a more formal approach to planning than situated actions. The
hierarchical levels of an activity may be a good way of representing work.

1Human Computer Interaction

34

Chapter 6

Sensors and Actuators

Sensors are increasingly becoming smaller, more powerful, and smarter. This makes some
of Weiser’s visions [60] possible, and we will start this chapter with an introduction of smart
dust, before we present wireless sensor networks and the sensors themselves. Actuators
and intelligent artifacts will also be covered.

6.1 Sensors Like Dust and Brilliant Rocks

Satyanarayanan introduces in [47] the idea of sensors like dust, or smart dust. The
idea involves smart sensors that can be produced in such volumes that they essentially do
not have an individual cost. These sensors contain the actual sensing hardware, wireless
connectivity, a small memory, a small CPU, and a small battery. When the sensors are
deployed in their target environment they self-configure and react to the environment.
For instance, if sensors are put into concrete when it is mixed, they can send data of the
moisture level and temperature in the concrete. When the battery is depleted, the sensors
are discarded since they have served their purpose. This type of sensors can be said to be
immersive since they are embedded into the environment.

There is also a need for non-immersive sensors, like security cameras with image recog-
nition. These sensors will be more expensive and hence not as easily deployed in large
numbers. Satyanarayanan calls this type of sensors brilliant rocks since they have greater
processing power and self- and environmental awareness.

6.2 Wireless Sensor Networks

Wireless sensor networks are self-organising, self-regulating, and self-repairing networks of
wireless sensors nodes [12]. They combine processing, sensing, and peer-to-peer commu-
nications into tiny embedded devices [22]. The basic mode of operation for wireless sensor
networks is different from traditional computer networks, due to their tight integration
with the environment [44]. They are often deployed in large numbers and have to operate
unattended for long periods of time. This makes it necessary to sacrifice some higher level
functionality to make the sensor nodes as small and energy efficient as possible. To achieve
higher level functionality, a hierarchy of sensor nodes is needed. The simple nodes connect

35

Sensors and Actuators

to higher level nodes operating as gateways. These gateway nodes provide access to larger
networks and can also access even higher level nodes in the hierarchy as shown in Figure
6.1 [22].

Figure 6.1: A sensor network divided into a hierarchy

In reference to Satyanarayanan, the lowest level of sensor nodes shown in Figure 6.1 is
smart dust, while the two next levels can be considered to be brilliant rocks.

There are several challenges when deploying wireless sensor networks. Algorithms for
routing in a hierarchical peer-to-peer network are very complex. Power must be used
sparingly when the sensor node is running with a battery as the power source. The network
must be extremely scalable and have a long-term performance that does not degrade over
time. Additionally, sensor nodes may be exposed to harsh weather, theft, and malicious
attacks. There exists several approaches to wireless sensor networks security [24], but since
they are not important to our work we will not elaborate on them in this report.

6.3 SensorML

We will not use SensorML in our work since we do not focus on communication between
the workflow client and sensors, but a short description is included since future work on
PocketFlow could benefit from it. SensorML is a XML schema for defining the geomet-
ric, dynamic, and observational characteristics of a sensor and is developed by the Open
Geospatial Consortium [59].

The purpose of SensorML is to:

1. Provide general sensor information in support of data discovery.

36

6.4 Actuators

2. Support the processing and analysis of sensor measurements.

3. Support the geolocation of the measured data.

4. Provide performance characteristics (e.g. accuracy, threshold, etc.).

5. Archive fundamental properties and assumptions regarding sensors.

Although SensorML originally was intended for the Space Time Toolkit [58] it is general
enough to be used in other implementations.

6.4 Actuators

An actuator is an object capable of performing some action. It may be a physical object
like an engine, an application invocation, or something more abstract like a workflow
activity. In the sentient object paradigm an actuator is defined as an entity that consumes
software events, and reacts by attempting to change the state of the real world in some way
via some hardware device. This may be the truth if one only considers physical devices to
be actuators. In activity theory, an operation can be considered to be an actuator for an
activity, in a workflow system an actuator may be an IT tool or manual work.

We will not discuss hardware since it is not relevant to our work.

6.5 Intelligent Artifacts

Strohbach et al. [51] presents the notion of intelligent artifacts. Figure 6.2 shows the
components of an intelligent artifact.

Figure 6.2: Components of an intelligent artifact

• Sensors This may be any of the sensor types discussed above.

37

Sensors and Actuators

• Perception Converts sensor data into observations meaningful to the application.

• Knowledge base Contains the domain knowledge of the artifact and dynamic
knowledge about its situation in the world.

• Inference Processes the knowledge in the knowledge base and knowledge provided
by other artifacts, and infer actions for the artifact to take.

• Actuators Actuate the inferred actions.

The knowledge base consists of facts and rules where facts are the foundation for decision-
making and action-taking, and rules are used to infer further knowledge based on facts
and other rule types. Strohbach et al. [51] categorise knowledge and rules in Table 6.1
and Table 6.2.

Domain knowledge Domain knowledge built into the artifact, e.g. facts describing
the physical nature of the artifact or general world knowledge.

Observational
knowledge

Knowledge describing the situation of an artifact in the known
world. It is based on facts that result from sensor-based obser-
vation.

Inferred knowledge Knowledge inferred from previously established facts, which
may be based on domain knowledge, observation, previous in-
ference, and knowledge made available by cooperation artifacts.

Table 6.1: Knowledge stored in an intelligent artifact

Inference rules Rules that describe inference of new facts from previously es-
tablished facts.

Actuator rules Rules that describe the facts that must be established in order
to trigger an action.

Table 6.2: Rules of an intelligent artifact

An important aspect of intelligent artifacts is cooperation. Cooperation enables the arti-
facts to do cross-artifact reasoning and collaborative inference of knowledge. This is done
by sharing knowledge in the artifact’s knowledge base with other artifacts in what becomes
a distributed knowledge base.

Since intelligent artifacts are autonomous entities with reasoning capabilities they can
solve our problem of coordination between workflow participants. Integration of intelligent
artifacts into PocketFlow is because of time constraints outside the scope of our work, but
should be considered for future work.

6.6 Summary

Sensors which can be used in ubiquitous applications exist, but they are mostly used for
research. Hill et al. [22] present the state of the technology today. We will in our work

38

6.6 Summary

emulate sensors and actuators, but the technologies described above will be very useful
for creating realistic scenarios and test-beds for evaluating the proposed technology.

39

Sensors and Actuators

40

Chapter 7

Development Frameworks

This chapter presents frameworks which enable the development and testing of context-
aware computer systems by providing a publish-subscribe middleware for event communi-
cation and an expert system for reasoning about context data.

7.1 CORTEX

CO-operating Real-time senTient objects: architecture and EXperimental evaluation (COR-
TEX) [57] is a research project and states its general objective as:

“The CORTEX project will investigate appropriate architectures and paradigms
for the construction of applications composed of collections of what may be
called sentient objects - mobile intelligent software components that accept in-
put from a variety of different sensors allowing them to sense the environment
in which they operate before deciding how to react.”

We will now briefly present the sentient object model and the CORTEX middleware to give
an understanding of why the CORTEX project is relevant when developing context-aware
computer systems.

7.1.1 The Sentient Object Model

Future pervasive environments may make it possible to develop applications consisting of
mobile software components acting with a high degree of autonomy upon the environment
via actuators based on input from sensors. The components have “intelligence” and co-
operate via different network technologies. It is these components Fitzpatrick [15] terms
sentient objects. Sentient objects interact using an event-based inter process commu-
nication. Figure 7.1 illustrates the sentient object model and its three main components;
sensor capture and fusion, context representation, and inference engine.

The sentient object model provides the application developer with abstractions for sensors
and actuators, and makes it unnecessary to do low level interaction with various hardware
devices directly.

In the sentient object model, a sensor is defined to be [15]:

41

Development Frameworks

Figure 7.1: The sentient object model [63]

“An entity that produce software events in reaction to a stimulus detected by
some real-world hardware device.”

An actuator in the sentient object model is defined as [15]:

“An entity which consumes software events, and reacts by attempting to change
the state of the real world in some way via some hardware device.”

A sentient object is defined as [15]:

“An entity that can both consume and produce software events, and lies in
some control path between at least one sensor and one actuator.”

Several characteristics of sentient objects are important when dealing with ubiquitous
computing environments [7]:

Sentience Perceive the state of the environment.

Autonomy Operate independently in a decentralised manner.

42

7.1 CORTEX

Proactiveness Act in anticipation of future goals or problems.

Since the sentient object model relies on event-based communication, it is not dependent
on centralised control.

The sensory capture component of the sentient object model receives input from sensors
which needs to be integrated to determine the contextual state of the sentient object.
Major issues to address in this area are data filtering and sensor fusion.

Context representation deals with the representation of contextual information in a way
that is useful to the sentient object and can easily be exchanged amongst sentient ob-
jects. Raw sensor data often needs to be transformed before it may be considered useful
information.

Sentient objects are context-aware in the sense that they interact with their environment
with the help of sensors and actuators. An inference engine performs reasoning, and is the
“intelligent” part of a sentient object. It is realised as an expert system with a knowledge
base and a set of rules for deriving output.

7.1.2 CORTEX Middleware

Middleware can conceal programming complexity from application developers. CORTEX
[63] has designed and implemented a flexible middleware for building dependable sentient
computing applications. This middleware addresses several important research challenges
related to context-awareness, use of communication models, QoS management, and routing
in mobile ad-hoc networks.

To support a high level of configuration and reconfiguration, they have chosen to base
their middleware on OpenCOM [10]. OpenCOM is a lightweight and efficient component
object model based on COM.

Component Frameworks

A Component Framework (CF) is targeted at a specific domain, and has rules and in-
terfaces that make sense in that domain. We briefly describe the publish-subscribe CF
and the Context CF which provide a basis for building applications based on the sentient
object model.

The Publish-Subscribe CF does not rely on any separate infrastructure. It supports a
decentralised approach for discovering peers, for routing event notifications, and for event
filtering. Events are represented as XML-based data, which provides interoperability and
extendability of the event dialect. This is important since all subscribers should be able
to interpret events without a priori knowledge.

Since the number of publishers and generated messages may be large, a subscription lan-
guage is defined. The Filter Event Language (FEL) and its associated parser support
subject filter and content filter. If a subscriber wants to receive all temperature related
events, the FEL statement

// temperature / []

43

Development Frameworks

is an example of a subject filter for which all temperature events are received. The state-
ment

// temperature/%sensorName%=&room1&

is an example on a FEL statement for a content filter which only receives notifications on
temperature events from the room1 sensor.

The Context CF is an implementation representing a sentient object and consists of two
parts; sensor capture and fusion, and the inference engine. Sensor capture and fusion deals
with sensor data and perform data fusion in order to manage uncertainty. The inference
engine and its associated knowledge base is the “intelligence” of a sentient object. The
inference engine used in the Context CF is based on CLIPS 1 [43]. CLIPS supports rule-
based, object-oriented, and procedural programming paradigms. The Context CF uses
the rule-based paradigm with rules that have an if and a then part.

A proof-of-concept demonstrator based on the notion of autonomous cooperating vehicles
has been developed [63]. This demonstrator is using instances of the middleware CFs.

Since CORTEX middleware is based on the sentient object model, characteristics of appli-
cations which use this middleware are sentience, autonomy, and proactiveness [7], but also
decentralisation and adaptivity [63]. These applications do not rely on any single central
server, and have to cope with changing conditions during their lifetime. They will also
have to interact with a physical environment while providing real-time services.

7.2 CLIPS

The C Language Integration Production System (CLIPS) [43] is a tool for building expert
systems and is widely used both in industry and academia. It provides a complete envi-
ronment for building rule- and/or object-based expert systems. CLIPS has been designed
for integration with other languages such as C, C++, Java etc., but can also be run as a
stand-alone tool.

Knowledge representation in CLIPS is provided through both heuristic and procedural
paradigms. The heuristic paradigm represents knowledge as rules, which specifies actions
to be performed for a given situation. For a rule to trigger, a set of conditions must be
satisfied. These conditions are represented as facts. Facts and rules are used within a
inference engine to derive the outcome when CLIPS is running.

A procedural paradigm is also supported in CLIPS for knowledge representation. New
functions can be defined and called just like built-in functions of CLIPS. This gives the
user a possibility to define new executable elements to CLIPS that perform useful effects.

7.3 Lua Language

Lua is a programming language created at the Computer Graphics Technology Group
of the Pontifical Catholic University of Rio de Janeiro in Brazil. The language is cre-
ated to provide scripting to extend conventional programming languages like C++. It is
implemented in ANSI C and is considered to be very fast [40].

1C Language Integrated Production System

44

7.3 Lua Language

Lua can in our work be used to allow advanced queries, and to extend the functionality of
the workflow enactment without having to modify the source code of the system.

45

Development Frameworks

46

Part III

Scenario

47

48

Chapter 8

Application Scenario - Aker Verdal

The main objective of this chapter is to present a relevant scenario for our work on adaptive
mobile work processes based on a field study at the production unit of Aker Verdal [29].
Aker Verdal is a large construction site (800.000 square meters) and produces jackets
and other marine concrete structures for offshore oil and gas production. Involved in the
production are more than 700 workers and engineers. Chapter 8.1 gives an introduction to
the work environment of Aker Verdal and covers how work is done today, while Chapter 8.2
covers our thoughts on possible future improvements to the work environment by creating
a pervasive computing environment facilitating the implementation of adaptive, mobile
work processes.

8.1 Current Work Environment

Figure 8.1 gives an overview of assembled steel jackets at the construction site of Aker
Verdal. The weight of these steel jackets range from 1.000 to 20.000 tonnes and have
heights ranging from 75 to 215 meters. Construction of these structures involves welding,
cutting, and assembly of steel plates and tubes.

8.1.1 Work Processes

When modelling the production unit of Aker Verdal, our focus is on two work processes;
a simplified steel plate workflow and a simplified structural tubular workflow.

8.1.2 Steel Plate Workflow

Figure 8.2 shows a simplified flowchart for the overall steel plate workflow. Steel plates
are ordered from a manufacturer and processed at Aker Verdal for use in steel structures.

This work process consists of three main parts; pre-fabrication, pre-fabrication assembly,
and final assembly.

Pre-fabrication is the first part of the steel plate workflow. Cutting information from
a 3D-model is exported into cutting geometry which makes it possible to nest parts in a

49

Application Scenario - Aker Verdal

Figure 8.1: Assembled steel jackets at Aker Verdal

nesting program, allocate steel plates and generate code for CNC-equipment1. Steel plates
are then fetched from the warehouse and placed in a pipeline for automatic processing by
a cutting robot. This cutting robot performs cutting according to data retrieved from the
local area network. A human worker is supervising the operation. After cutting, the steel
plate is transported to another pipeline for processing at a marker robot. The purpose of
this marking is to point out where other steel components are to be placed on the plate.
The marker robot operates automatically by using data retrieved from the Local Area
Network (LAN) and is also supervised by a human worker. The marked steel plate is then
transported for pre-fabrication assembly.

In pre-fabrication assembly, steel plates are again fetched from the warehouse and assem-
bled on a flake2. Markings are added to the plates to ease the placement of parts from the
pre-fabrication stage of the process. Relevant parts from pre-fabrication are then added
which make the steel plate ready for the final assembly.

The last part of this workflow is the final assembly. The steel plates are transported for
assembly at the main construction site and used in one of the steel structures produced at
Aker Verdal.

There may be times in this workflow when parts are placed in the storage warehouse rather
than being transported to the next processing entity right away.

8.1.3 Structural Tubular Workflow

Figure 8.3 shows a flowchart of the overall structural tubular processing workflow. Like
steel plates, structural tubulars are also ordered from a manufacturer and processed at

1Computer Numerically Controlled - computer controlled machine tools for the purpose of manufactur-
ing complex parts repeatedly

2A scaffold lowered over the side of a steel structure to support workers

50

8.1 Current Work Environment

Figure 8.2: Simplified steel plate workflow

Aker Verdal for use in steel structures.

Figure 8.3: Simplified structural tubular workflow

Like the steel plate workflow, this work process also consists of three main parts; pre-
fabrication, pre-fabrication assembly, and final assembly.

Pre-fabrication is the first part of the structural tubular workflow. Cutting informa-
tion from a 3D-model is exported to cutting geometry and code is generated for CNC-
equipment. Allocated tubular is fetched from a warehouse for processing by a cutting
robot. The cutting robot performs the cutting and is supervised by a human worker.

In pre-fabrication assembly, the tubular is transported to the section assembly area. Weld-
ing is here performed by a welding robot. This welding is supervised by a human worker
who also performs a visual inspection of the weld. The whole section is then transported

51

Application Scenario - Aker Verdal

to the painting area for painting. The section needs to be painted to withstand corrosion
and is painted by a painting robot. The painted section is then transported to the area
for final assembly.

In the final assembly, the section is assembled into a large steel structure.

Between each of these processing steps there may be times when the tube is placed in
storage rather then immediately being transported to the next processing entity.

8.2 Future Work Environment

Construction sites and shipyards such as Aker Verdal are hazardous work environments,
which makes robots important as an addition to the existing workforce. This section
proposes a future work environment for Aker Verdal by using mobile robots in a pervasive
computing environment. These changes in the environment are not meant to be feasible
in the near future, but are meant to act as a showcase for a future implementation of a
system with support for mobile, adaptive work processes.

8.2.1 Mobile Robots

Robots can operate in hostile environments, performing work that is dangerous for hu-
man workers. The most common use of robots in construction of large steel structures
is welding, but they may also be used in maintenance work, such as painting, cleaning,
and inspections. Mobile robots can work on large structures by using tracks or as climb-
ing/walking robots, sometimes alongside common workers. Figure 8.4 [3] shows a picture
of a climbing and walking mobile robot used for welding and maintenance work.

Figure 8.4: Mobile robot

52

8.2 Future Work Environment

There is a potential for increased efficiency in addition to the safety aspects. Altering
complex robotic welding systems to handle single patterns is expensive. By using coop-
erating, mobile robots; reduced need for pre-planned activities leads to great savings in
welding time [61].

To improve efficiency and safety, the worker is carrying a mobile terminal running a
context-aware application which relies on tagging of relevant equipment in such a way
that the context-aware application can identify its presence and use its information to
automate and provide safe work processes. The mobile terminal is typically a robust PDA
with WLAN support for identifying equipment.

Possible benefits of introducing mobile, cooperating robots in yards are [61]:

• Reduced risk of death or injury.

• Savings in welding times.

• Increased robotic welding accuracy.

• Reduced re-work rate.

• Reduced construction time.

These benefits relate to aspects of safety and efficiency.

8.2.2 Collaboration

Shipyard robots need to be mobile, and have some kind of coordination of their activities.
Each mobile robot should be able to schedule work independently, and thus have some
sort of “intelligence” supporting their execution of activities. Such mobile robots have a
high degree of autonomy, and rely on advanced sensing technology for this purpose. One
proposed solution is to use vision-guided robots to achieve automatic welding. This makes
them able to do work without having a pre-programmed path, and thus saving time when
setting up new complex welding jobs. The Wondemar [61] project suggests applications
of such “intelligent” mobile robots to be: painting, welding, riveting, and in-situ cutting.

Intelligent Artifact Approach

These robots may use an intelligent artifact approach [51] to their collaboration. Intelli-
gent, cooperative artifacts are able to asses their situation without the need of a separate
infrastructure. The intelligent artifact approach relies on: embedded domain knowledge,
perceptual intelligence, and rule-based inference. Strohbach [51] describes a set of com-
ponents as an architecture of a cooperative artifact. These components will for this yard
scenario be the following:

Sensing Each mobile robot needs to include sensor devices for observation of phenomena
in the physical world, such as other robots or workers. This can e.g. be done by using
robots with vision capabilities.

53

Application Scenario - Aker Verdal

Perception This component associates sensor data with meaning in terms of the appli-
cation. Location and sensor data observed by vision may provide meaningful terms used
in the coordination of activities.

Knowledge base Contains the domain knowledge and dynamic knowledge about its
situation. Domain knowledge for these mobile robots may be which robots exist in the
environment and information about their welding. Dynamic knowledge may be observed
robots and their location, as well as other information about cooperating artifacts.

Inference Knowledge and rules are used together to infer new knowledge about the
world. Rules for mobile robots may for instance be about how to deal with situations
where two robots compete for the same resource.

Actuators Actions that have been inferred are effected by actuators. Actuators for
mobile robots may be different kinds of equipment for welding, painting, etc.

8.2.3 Impact on Human Work Processes

The future work environment described above have a strong impact on how human workers
conduct their work. Work is to a greater extent automated via cooperation, and workers
become more of a supervisor over equipment that ideally autonomically asses their own
situation. A greater control over the situation on the workplace is achieved since the
environment is feeding contextual information to workers and equipment. The mobile
worker receives notifications of errors and warnings, and must make decisions in cases
where the system is not capable of inferring a decision.

Increased control over the workplace includes increased efficiency and safety. Efficiency
and safety are two of the main reasons for developing a context-aware work environment
and should be the main impact on human work processes.

54

Part IV

Requirements

55

56

Chapter 9

Requirements for the PocketFlow
Prototype

This chapter presents the functional and non-functional requirements for PocketFlow, and
is partly based on the requirements presented by Nguyen and Nødtvedt [39] and in our
depth project [21].

9.1 Functional Requirements

The functional requirements for an adaptive, ad-hoc workflow system are described in the
next sections. These requirements are probably not complete since we only concentrate
on the requirements specific for our approach.

9.1.1 Basic Workflow System

Here we present the requirements for a general workflow system. We only require a simpli-
fied workflow system for our work, without all the advanced features one would normally
find in commercial workflow management systems. We will for instance not require exter-
nal tools for modelling the workflow, monitoring it, etc.

Our workflow system must be able to enact one workflow process at a time. We will not
allow multiple concurrent workflow processes on one client to prevent complexity. It is
also not considered to be important to the applications built upon our architecture.

The workflow process will be loaded from an XPDL file (see Chapter 3.5.1). We will use a
subset of the XPDL to reduce implementation time. The workflow process is divided into
activities which may be split and joined by transitions to create a graph of execution (see
Figure 3.1 for an example). Transitions may have a condition that is required to evaluate to
true before the transition can be executed. When a transition condition does not evaluate
to true, a transition exception must be sent to the correct exception handler. A workflow
process also contains applications and/or participants that execute the activities.

The workflow system must also be able to communicate with workflow clients when ac-
tivities are executed, and provide documentation when manual interaction is required. A
workflow client can either be human or a system component.

57

Requirements for the PocketFlow Prototype

The requirements for a simplified basic workflow system is summarised below.

F1 Adhere to the WfMC interface 1 meta-model. Support a subset of the XPDL
process definition language.

F2 Interpret and enact a subset of the process definitions defined in the XPDL.

F3 Use activities completed by other workflow participants as precondition for
own activities. In other words, waiting until another workflow participant has
completed his activity before executing an activity.

F4 Evaluate conditions for transitions between activities by checking data fields
in the workflow process.

F5 Perform enactment of a single workflow process or workflow process fragment.
A single worker should not be executing several work processes concurrently.

F6 Provide workflow enactment feedback and information to the mobile worker.
I.e. work lists and documentation.

F7 Support receiving feedback and information from the mobile worker.

F8 Communicate with other workflow clients in order to send and receive activi-
ties.

F9 Exception handling of transitions that do not have a satisfied condition.

F10 A workflow process must be able to execute external workflow applications.

9.1.2 Context-Aware Workflow System

Expanding the requirements for a general workflow system, this section adds support for
context-awareness. A context-aware system needs to be able to find and connect to context
sources, get information from context sources, and send information to context sources.
The information must be filtered based on rules. This information is then used to provide
conditions in activity transitions, as well as trigger the generation of new activities and
transitions.

F11 Interpret and enact process definitions needed for context-aware workflows.
Context information should be used in the evaluation of workflow transitions
(precondition for activities). In other words, context information is used to
provide data fields in the workflow process.

F12 Ad-hoc start of processes and activities based on context information.

F13 Filter sensor data, based on rules, to provide data the context client can use
directly. This may include

• collection and aggregation of sensor data to provide an abstraction of
the data. This makes it easier to use the data in the workflow process
enactment.

58

9.1 Functional Requirements

• collection of sensor history for use in the workflow process enactment.

• documentation for the user. Such as procedures, blueprints, etc.

F14 Service for the discovery and look-up of context sources. Must be able to
handle a large number of diverse context sources in a distributed and ad-hoc
network.

F15 Support both polling and publish / subscribe mechanisms for context informa-
tion retrieval from context sources, sensors, and actuators.

F16 Support the definition of context source look-up, polling, and conversion of the
context information between the context representation and the workflow rep-
resentation as XPDL elements. Rules and context source look-up information
is stored in XPDL documents.

F17 Support the sending of actuation orders to actuators.

9.1.3 Adaptive Ad-Hoc Workflow System

By further expanding the requirements for a context-aware workflow system we add addi-
tional requirements for an adaptive ad-hoc workflow system. An adaptive ad-hoc workflow
system must be able to use context information to generate new activities by instantiating
workflow fragments. These fragments must be stored in a persistent storage and loaded
on demand.

The workflow system must be able to receive activities and requests to remove activities
from other participants of the distributed workflow process. For instance, security man-
agers responsible for controlling the security aspects of the workflow may need to remove
existing activities or add new activities to prevent dangerous situations from arising.

Furthermore, the workflow system should be able to handle unexpected situations and
contextual states by performing situated planning with the help of exception handling.
This may include creating new activities based on a set of rules, workflow fragments,
context sources, and manual interaction. Manual interaction should enable the system to
”learn” new workflow process enactment paths.

The workflow system must also be able to coordinate its workflow with other workflow
clients with conflicting interest to decide, based on predefined and ad-hoc rules, which
workflow client gets priority. For instance, when two workflow clients require the same
machine to be in two different states at the same time.

An adaptation can result in restructuring the workflow, either by inserting, deleting, mod-
ifying, redoing, or undoing activities.

F18 Perform distributed enactment of concurrent processes over several workflow
clients that possibly compete for resources.

F19 Support template-based workflow enactment. This means instantiating general
workflow processes by connecting to context-sources.

59

Requirements for the PocketFlow Prototype

F20 Perform situated planning by supporting exception handling of undefined con-
textual states by creating new activities based on a set of rules, workflow
fragments, context sources, and/or manual interaction.

F21 Support manual interaction from the mobile worker to create, modify, or re-
move activities.

F22 Provide persistent storage of rules, workflow fragments and templates, work-
flow history, and documentation for the user.

F23 Support central storage of workflow templates.

F24 Must be able to receive activities from other participants of the distributed
workflow process.

F25 Must be able to coordinate the workflow process with other workflow clients
with conflicting interest to decide, based on predefined and ad-hoc rules, which
workflow client gets priority.

F26 Support re-validation of selected process paths, if the current path does not
lead to the process goal. This means that if during the execution of a workflow
process, it is discovered that the current context-based transitions do not lead
to the process goal, the process may need to backtrack to a previous state and
then re-validate the process path by checking context sources.

9.1.4 Mobility Requirements

A mobile worker requires a mobile device to be able to perform his work. This mobile
device must be able to participate in heterogeneous networks while at the same time
provide the mobile worker seamless communication. While this is not the focus of our
work we include some general mobility requirements.

F27 Support for physical mobility and network mobility.

F28 Handling of unreliable communication. Unreliable communication should not
halt the workflow process unless there are security issues involved.

F29 Support for disconnected operations and asynchronous communication. The
workflow process must be autonomous when the mobile worker is outside the
range of supported networks.

F30 Support for session mobility. The mobile worker should be able to seamlessly
take his current workflow session from one network to another.

9.2 Non-Functional Requirements

9.2.1 Separation of Concerns

It is important to provide a clear separation of concerns between the modules of the
architecture since PocketFlow will be used as a proof-of-concept application. This will

60

9.3 COTS Components

make it easier to provide loose coupling and promote reuse. Parnas [41] lists these benefits
to modularisation and separation of concerns:

1. Managerial: Development time should be shortened because separate groups would
work on each module with little need for communication.

2. Product flexibility: It should be possible to make drastic changes to one module
without the need to change others.

3. Comprehensibility: It should be possible to study the system one module at a time.
The whole system can therefore be better designed because it is better understood.

9.2.2 High Level of Responsiveness

The architecture must be able to respond quickly to changes in the environment. For
instance when a dangerous situation arises, PocketFlow must be able to adapt quickly by
for instance generating new activities. A high level of responsiveness is therefore important,
and the architecture should support multithreaded services.

9.2.3 Connectivity

Our architecture also makes several assumptions with regards to the network connectivity.

Access to High-Quality Wireless Network

Our tests will be run on the standard 802.11b [54] WLAN technology.

Stable Connectivity

Since our tests will be run inside a building without much interference, the connectivity
should be stable.

9.2.4 Component Harvesting

We make sure we do not “reinvent the wheel”. There is no point in trying to create
components from scratch when there are available components; either commercial, free,
academic, or open source.

9.3 COTS Components

This section describes the COTS 1 components used in PocketFlow. Note that we do not
limit COTS to only be commercial software, but also include open source, academic, and
free software.

1Commercial Off The shelf Software

61

Requirements for the PocketFlow Prototype

9.3.1 CORTEX Middleware

The CORTEX project presented in Chapter 7.1, proposes a middleware implementing
the sentient object paradigm. The CORTEX middleware in PocketFlow provides us with
a stable platform for ad-hoc communication between sensors, actuators, and workflow
clients. It also enables us to create sensor and actuator services by using the event filter
capabilities in the Publish-Subscribe Component Framework (CF).

The CORTEX Publish-Subscribe Middleware (PSM) can be deployed and registered on
several PDAs. The middleware makes it easy to set up one PDA as a sensor, publishing
events. Another PDA with PSM installed can then be set up to receive certain types of
events by defining event channels and subscribe to them. PSM is, in other words, used to
provide communication between workflow clients and between workflow clients and context
sources.

The CORTEX middleware covers all connectivity requirements above.

9.3.2 CLIPS

CLIPS is an expert system which can easily be integrated with C/C++. A short intro-
duction to CLIPS is given in Chapter 7.2. The CLIPS expert system fills our need for an
expert system that can represent the contextual state of the environment with facts and
provide reasoning over this representation based on rules.

CLIPS is initialised with a knowledge base stored in a file on the device. This knowledge
base defines a production system consisting of rules and facts. With CLIPS integrated in
our implementation, we can assert and retract facts and generate contextual-events based
on rules that may trigger when the workflow client system executes.

The CLIPS component helps us implement requirements involving ad-hoc distributed
workflow enactment and situated planning, as well requirements covering context as work-
flow process constructs.

9.3.3 Mobility and Context-Aware Workflow Prototypes

Nødtvedt and Nguyen have in their master thesis [39] developed several workflow proto-
types in Java that incorporates contextual information caused by mobility. While we do
not use their implementation directly we use the provided prototypes as inspiration for
parts of our design.

9.4 Technical Constraints

We have identified several technical constraints for PocketFlow based on the requirements
and COTS components. A technical constraint is a limitation in the architecture imposed
by a component used in the design.

9.4.1 WfMC Reference Model

The WfMC reference model Interface 1 defines a standard for interconnection between
workflow systems and is presented briefly in Chapter 3.5.1. Our workflow enactment

62

9.5 Discussion

model must contain the elements in the XPDL standard to be able to use this reference
model.

9.4.2 MS Embedded Visual C++

The CORTEX middleware is implemented as OpenCOM object created in embedded
visual C++. Since we have decided to use the CORTEX middleware as a basis for our
communication we are forced to implement PocketFlow in MS Embedded Visual C++ [33]
since this is currently the only programming language for Pocket PC 2003 enabling access
to the CORTEX middleware COM2 objects.

9.4.3 PocketPC 2003SE Handheld Device

A Fujitsu Siemens handheld device is used for deployment of the implementation. This
device supports wireless technologies such as Bluetooth / WLAN, and is shipped with the
Microsoft Pocket PC 2003SE operating system. We must therefore make sure we only use
functionality available on this platform.

9.5 Discussion

A system with full support for all the listed requirements is outside the scope of this thesis,
and we therefore concentrate on the requirements for an adaptive context-aware workflow
enactment service. Requirements covering cooperation are not considered to be the focus
of our work. We do not provide much discussion on requirements covering context-source
discovery and abstraction since this is already covered by the CORTEX middleware.

2Component Object Model

63

Requirements for the PocketFlow Prototype

64

Chapter 10

Use Cases

This chapter describes the use cases for the PocketFlow arhitecture. These use cases are
high-level descriptions of how PocketFlow performs workflow enactment and interacts with
other actors.

10.1 PocketFlow Use Case Overview

Figure 10.1 shows an overview of a mobile worker, using the the PocketFlow system to
enact a workflow. The workflow enactment involves communication with sensors, actu-
ators, and the Publish-Subscribe Middleware (PSM) to send and receive events. It also
involves communication with other workflow clients to send and receive activities. The
use cases presented in this chapter is meant to provide a high level understanding of the
PocketFlow system. Parts of the PocketFlow system is therefore considered to be actors
in the use cases. The Do mobile work use case is very general in nature since our focus is
on adaptive ad-hoc workflow systems and not standard workflow systems.

10.2 Use Case: Enact Workflow

This use case presents the overall enactment of a workflow process in PocketFlow along
with possible extensions to the basic path.

Actors: Mobile worker, sensor, actuator, PSM (Publish-Subscribe CF middleware), and
remote workflow client.

Trigger: Mobile worker downloads a work order to his PDA.

Main success scenario:

1. The use case starts when the mobile worker downloads a work order to his PDA.

2. PocketFlow loads the workflow process template.

3. Use Sensors and Actuators Setup (Chapter 10.2.1).

4. PocketFlow starts the workflow enactment.

65

Use Cases

Figure 10.1: PocketFlow use case overview

5. PocketFlow runs the workflow enactment.

6. PocketFlow terminates the workflow enactment when the workflow process goal has
been reached.

Extensions:

5 a) PocketFlow receives a sensor update from a sensor.

1. PocketFlow updates the knowledge base.

2. PocketFlow updates corresponding data field in the workflow process.

3. Use Generate New Activities (Chapter 10.2.2).

4. Use Remove activities 10.2.3.

5 b) PocketFlow derives the need to send an actuation order.

1. The PSM sends the actuation order to the correct actuator.

5 c) PocketFlow encounters an enactment exception.

1. PocketFlow determines the correct exception handler for the exception.

2. The exception handler inserts the exception in the knowledge base.

3. Use Generate New Activities (Chapter 10.2.2).

4. Use Remove activities 10.2.3.

66

10.2 Use Case: Enact Workflow

5 d) PocketFlow receives an activity from a workflow participant.

1. PocketFlow updates the workflow process.

5 e) PocketFlow needs to provide feedback to the mobile worker.

1. PocketFlow display information on the PDA screen to the mobile worker.

5 f) Mobile worker has completed an activity.

1. PocketFlow marks the activity as completed and continues workflow en-
actment.

5 g) PocketFlow needs to send an activity to a workflow participant.

1. If the workflow participant is the mobile worker then
(a) PocketFlow sends the activity to the mobile worker via some user

interface.
end if

2. If the workflow participant is a remote workflow client then
(a) PSM sends the activity to the remote workflow client.
end if

5 h) PocketFlow stops the workflow enactment. If the state required by the
stopping event is obtained then

1. Continue step 5.

end if

10.2.1 Use Case: Sensor and Actuator Setup

Sensor and actuator set-up for PocketFlow involve using the PSM to setup event channels
and subscribe to specified sensors.

Actors: PocketFlow, sensor, and actuator.

Trigger: PocketFlow needs to instantiate a workflow process template.

Main success scenario:

1. The use case starts when a workflow process template needs to be instantiated.

2. The PSM part of PocetkFlow looks up sensors and actuators in range.

3. The PSM part of PocetkFlow subscribes to the specified sensors and actuators.

Extensions:

2 a) PSM can not look up specified sensors or actuators because they are not in
range.

1. PocketFlow creates an enactment exception.

67

Use Cases

10.2.2 Use Case: Generate New Activities

The workflow may be changed during enactment. New activities are generated when
needed, and integrated with the workflow.

Actors: PocketFlow and remote workflow client.

Trigger: PocketFlow knowledge base is updated.

Main success scenario:

1. The use case starts when the expert system is run after a knowledge base update.

2. If the expert system infer a need to generate new activities based on the knowledge
base then

(a) PocketFlow generates new activities.

(b) PocketFlow integrates the activities with the workflow process.

(c) PocketFlow notifies listening workflow clients of the new activities.

(d) Remote workflow clients receive the notification and act as required.

end if

10.2.3 Use Case: Remove Activities

The workflow may be changed during enactment. Activities are removed when needed,
and changes are integrated with the workflow.

Actors: PocketFlow and remote workflow client.

Trigger: PocketFlow knowledge base is updated.

Main success scenario:

1. The use case starts when the expert system is run after a knowledge base update.

2. If the expert system infer a need to remove activities based on the knowledge base
then

(a) PocketFlow removes activities.

(b) PocketFlow integrates the changes with the workflow process.

(c) PocketFlow notifies listening workflow clients of the removed activities.

(d) Remote workflow clients receive the notification and act as required.

end if

68

10.3 Use Case: Cooperating Workflow

Figure 10.2: Cooperation use case

10.3 Use Case: Cooperating Workflow

Cooperating workflow clients are described in Figure 10.2.

Actors: Mobile workers and PocketFlow.

Trigger: Two or more mobile workers are located in the same area with conflicting process
goals.

Main success scenario:

1. The use case starts when two mobile workers enter the same location with conflicting
process goals.

2. Use Generate new activities 10.2.2.

3. Use Remove activities 10.2.3.

Extensions:

1 a) PocketFlow derives a need for coordination because two or more mobile
workers compete for resources.

1 b) PocketFlow derives a need for coordination because a dangerous situation
is detected (safety).

1 c) PocketFlow derives a need for coordination because two or more mobile
workers starts doing the same work.

69

Use Cases

70

Part V

Architecture and Design

71

72

Chapter 11

The PocketFlow Architecture

11.1 Introduction

This architecture is a continuation of the work started in [21], and is meant to provide a
common understanding of the problems surrounding adaptive and mobile work processes.
The architecture is intended to provide a basis for a complete system, and as such the
design in Chapter 12 is simplified. We will clearly state when there has been a simplifica-
tion.

11.2 Architectural Drivers

We use architectural drivers to define what we want to achieve with our architecture. The
following architectural drivers are chosen to be the main focus of our architecture.

11.2.1 AD1 - Decentralised Workflow Management

Workflow clients provide local workflow enactment based on contextual information from
the environment. This includes support for workflow templates and fragments (see Chapter
3.6.3). Coordination of work can also be performed decentralised, and should optimally
include all actors capable of reporting their progress.

11.2.2 AD2 - Autonomous Workflow Clients

All workflow clients can consume and react to events from the environment without relying
on centralised control.

11.2.3 AD3 - Event Based Asynchronous Communication

The CORTEX Publish-Subscribe middleware supports event based asynchronous commu-
nication between workflow clients and the environment. In other words, it does not rely on
the presence of any separate infrastructure, and can be used in an ad-hoc mobile network.

73

The PocketFlow Architecture

11.3 Stakeholders

Since this is an academic research project, the number of stakeholders is rather limited.

• End user While we have created an architecture to support the scenario described
in Chapter 8, we do not have an actual end user since this is a proof-of-concept
architecture.

• Our self We are implementing the architecture in our master thesis. (Developers
and Acquirers)

• MOWAHS May acquire the architecture and improve on it in the future. It is also
conceivable that MOWAHS may use it as a proof-of-concept, and as a test-bed for
new research. (Users and Maintainers)

11.4 High-Level Architecture Overview

Figure 11.1: Architecture overview

An overview of our architecture is presented in Figure 11.1. A high-level description of
each of the components in this figure is presented below.

74

11.4 High-Level Architecture Overview

11.4.1 Mobile Worker

A mobile worker is an entity that uses a workflow client to cooperate with other mobile
workers. The entity may be a person or a machine, but for our purpose we assume that it
is a human worker.

11.4.2 Workflow Client

The workflow client is the computer system running the workflow enactment service and
the services it depends on. For a human worker this computer system would typically be
a PDA while a machine could use a wider range of computer systems.

11.4.3 GUI

The graphical user interface gives information to, and receives commands from, a human
user. The GUI must be adapted to a small screen size. A more advanced implementation
of this architecture could potentially integrate other methods of communication between
the user and the workflow client, but that is outside the scope of our work.

The GUI component covers the requirement for feedback to user on workflow enactment
status.

11.4.4 Fragment Workflow Enactment Service (FWES)

The fragment workflow enactment service is an extension of a standard workflow enactment
service that can execute workflow process fragments in addition to standard workflow
processes.

The FWES consists of two parts; A workflow enactment service and a XPDL parser. The
workflow enactment service allows heavy modification of the workflow process at run-time.
The XPDL parser is able to parse incomplete XPDL documents (workflow fragments) and
insert them into the workflow enactment service. See Appendix E for a XPDL template
example.

An implementation of this component should cover the requirements for a basic workflow
system (Chapter 9.1.1), except the requirement for feedback to the user on workflow en-
actment which is covered by the GUI component and the requirements for communication
with other workflow clients which is covered by the WCIS component.

11.4.5 Workflow Context Integration Service (WCIS)

This service integrates the FWES with the context-services and actuator-services. It is
responsible for look-up of, and subscription to, sensors and actuators, receiving context
events from sensors and actuators, sending actuation request to actuators, handling tran-
sition exceptions in the FWES, and creating new activities based on rules.

An implementation of the WCIS component should cover some of the requirements we
have specified for a context-aware workflow system (Chapter 9.1.2). Requirements for
being able to interpret and enact process definitions needed for context-aware workflows
and ad-hoc start of processes/activities based on contextual information are covered with
support from the FWES component.

75

The PocketFlow Architecture

11.4.6 Data Storage

The data store provides persistent storage of workflow templates and fragments, pre- and
post-condition rules, history, and enactment information.

This component should cover requirement for persistent storage of rules, workflow frag-
ments, templates, workflow history, and user documentation for easy retrieval.

11.4.7 Cooperative Workflow Integration Service (CWIS)

The cooperative workflow integration service is responsible for the management and co-
ordination of activities in a multi-actor environment. Coordination is based on policies,
which enables the workflow enactment service to send messages about coordination needs,
competitive resources etc. to all involved parties. Relevant coordination can for the work-
flow enactment service be to send the state of the currently executing activity, and then
possibly prepare other users for new activities to be started within a time limit. Other
coordination messages may be communication with other users, including the need for ar-
tifacts, services, actuators, or a preferred environmental state. The cooperative workflow
integration service can also send contextual events to workflow clients based on coordi-
nation reasoning. These events may include information about the need for artifacts,
services, actuators, or an environmental state with priorities concerning demands of dif-
ferent kinds. The coordination of the client workflow enactment service may derive new
process fragments which can be distributed to other clients based on their needs.

In an implementation, this component should be integrated with the WCIS since they
share functionality, but we have separated them for readability.

This component covers many of the requirements we have specified for an adaptive, ad-hoc
workflow system (Chapter 9.1.3). Relevant requirements relate to distributed enactment of
concurrent processes over several workflow clients, support for situated planning by having
exception handling of undefined contextual states, the possibility of receiving activities
from other participants of the distributed workflow process, and coordination of workflow
clients with conflicting interests.

11.4.8 Context Service

A context service manages sensors and provides contextual events to context clients ac-
cording to their rules and preferences. When a context service receives an event from a
sensor it will filter it based on the context client’s rules and preferences, provide reasoning
on the sensor data, and convert it into something the context client can use.

A context service can use one or more context services other than itself to discover and
manage sensors by either subscribing to the context services as a context client, or by
downloading the other context services’ lists of context sources. Context services can be
realised as software run on a user client, or as physical devices in the work environment.

This component should cover requirements for the discovery and look-up of context sources
and the support for polling and publish-subscribe mechanisms for context information
retrieval.

76

11.5 The Sentient Object Model and the Intelligent Artifact Paradigm

11.4.9 Sensor

A sensor is an electronic sensor, capable of sending sensor data digitally. It has a simple
mechanism for marshalling SensorML data, in addition to support for broadcasting data
periodically, or receiving poll requests from a context source. Sensors may vary from very
simple, to smart and autonomous entities.

This component should cover requirement related to support for polling and publish-
subscribe retrieval of context information.

11.4.10 Actuator Service

An actuator service is responsible for look-up of actuators, validation of actuation orders,
and initiating actuation orders in an environment. For instance, by starting/stopping an
engine, executing IT tools, sending messages, etc.

Like the Context Service, this component should cover requirements for the discovery
and look-up of context sources and support polling and publish-subscribe mechanisms for
context information retrieval. The requirement for sending actuation orders should also
be covered by this component.

11.4.11 Actuator

An actuator is responsible for executing actuation commands received from an actuator
service. Actuators may be physical devices, applications, or other workflow enactment
services.

Like the sensor, this component should cover requirements related to support for polling
and publish-subscribe retrieval of context information.

11.4.12 Server-Based Workflow Enactment Service

A central workflow enactment service is responsible for managing the complete, high-level
workflow process for all the involved participants. This involves sending workflow processes
to users based on plans. These workflow processes are templates which are instantiated
by the workflow client by using context information from the environment.

This component should cover the requirement for central storage of workflow templates.

11.5 The Sentient Object Model and the Intelligent Artifact
Paradigm

The PocketFlow architecture uses ideas and concepts from both the sentient object model
and the intelligent artifact paradigm.

11.5.1 Sentient Object Model

The WCIS component of the PocketFlow architecture described in Figure 11.1 shares
several similarities with the sentient object model described in Chapter 7.1.1. Both the

77

The PocketFlow Architecture

PocketFlow architecture and the sentient object model receive events and can possibly
trigger responses as actuations to the environment. The state of the environment is rep-
resented in a knowledge base on the workflow client.

11.5.2 Intelligent Artifact Paradigm

The architecture described in Figure 11.1 also has several similarities with the intelli-
gent artifact approach described in Chapter 6.2. The intelligent artifact architecture has
a knowledge base consisting of rules, domain knowledge, and observational knowledge.
For the PocketFlow architecture, the WCIS and CWIS components creates the domain
knowledge during the set-up of a new workflow process (context-sources etc.), while con-
text updates are a kind of observational knowledge which is added to the knowledge base
during execution of the workflow. The intelligent artifact approach uses a distributed
knowledge base to enable cross-artifact reasoning. This feature is not supported in the
PocketFlow architecture, but the CWIS will to some extent be able to coordinate different
workflow clients based on predefined and ad-hoc rules.

11.6 Limitation of Scope

The next chapter presents a more detailed design of these architectural components. Our
focus is on the FWES and the WCIS components, and while the CWIS component is
important for a fully working prototype, it will not be examined in detail because of time
constraints.

Our ambition for development of this architecture is to reach a satisfactory implementation
of the FWES and the WCIS components which is usable for testing with workflow processes
and contextual information. A full scale implementation of this architecture requires work
far beyond the scope of our master thesis.

78

Chapter 12

Design

In this chapter we present a more detailed description of the components in the architec-
ture. All diagrams are UML diagrams. We will only describe the most important classes
and packages in the design. For further documentation, see Appendix I.

The packages in the workflow client are ordered as follows:

FWES
app l i c a t i o n
EnactmentRepresentation
except ion
s c r i p t i n g

WCIS
app l i c a t i o n

u t i l s

12.1 Design Patterns

We have in our design used some common design patterns. In this chapter we will give a
brief description of each pattern.

12.1.1 Model View Controller Pattern

The model view controller pattern [52] is based on separating software into three distinct
parts.

• Model: The model contains any business logic needed in the application.

• View: The view contains classes responsible for rendering the user’s view.

• Controller: The controller classes works as a connection between the model and the
view.

From this pattern we get a clear separation of concerns since the model does not know
anything about the view. If the view or the model changes, only the controller needs to
be changed.

79

Design

When designing PocketFlow we used this pattern to provide context integration and for
displaying the GUI. In both cases the workflow client component is considered to be the
model.

12.1.2 Dependency Injection Pattern

To further ensure that we have loose coupling and clear separation of concerns, we base
the design on the dependency injection pattern [16]. The dependency injection pattern is
based on the idea that there is a separate object responsible for assembling the dependent
objects in the application as shown in Figure 12.1. By using interfaces, these objects do
not know of the implementation of other objects.

Figure 12.1: The dependency injection pattern [16]

All parts of the workflow enactment service requiring a connection to other components
are in our design defined by interfaces. The workflow enactment only uses these interfaces
in the enactment. The application implementing the workflow client must then specify the
implementation of those interfaces by injecting the classes into the workflow enactment
service.

12.1.3 Observer Pattern

The purpose of the observer pattern [18] is to define a one-to-many dependency between
objects so that when one object changes it’s state, all it’s dependents are notified and
updated automatically. We use this pattern in the workflow process executor in Chap-
ter 12.2.7. The workflow process executor launches a thread that observes the workflow
enactment with activities and transitions working as subjects to the observer thread.

12.1.4 Singleton Pattern

The purpose of the singleton pattern [18] is to ensure that there exists one and only one
instance of a class in the application process. This makes it both easy to get an instance
of the class, and to prevent duplication of the instance.

12.2 FWES Package

This is an implementation of the FWES component described in the architecture. Figure
12.2 shows a diagram of the most important classes in the fragment workflow enactment
service and the relationships between them.

80

12.2 FWES Package

Figure 12.2: FWES class diagram

12.2.1 Note on Thread of Execution

We will use the term thread of execution to describe a single linear path of activities
and transitions in the graph of execution as described in Chapter 3.2.

12.2.2 IApplication Interface

This is an interface all workflow applications must implement. A workflow application
must be registered with the workflow enactment service before the workflow process is
started if it is to be used.

The interface forms the basis for calling external applications from the workflow. We
will therefore use workflow applications to implement context-awareness in the workflow
enactment as shown in the Sensor and Actuator Setup use case in Chapter 10.2.1. This is
an implementation of requirement F10, and is used as a means for communication from
the FWES component to the WCIS component in the implementation of requirements
F14, F15, F16, F17, and F19.

12.2.3 IWorkflowClient Interface

This is an interface all workflow clients must implement. A workflow client must be
registered with the workflow enactment service before the workflow process is started if
it is to be used. Workflow clients can be listeners, performers, or both. If the workflow
client is of the listener type, it will receive a notification when an activity is starting and
when an activity has completed. A performer workflow client will receive an activity for
it to perform. This activity must then be completed before the thread of execution can
continue. Both listener and performer workflow clients are notified of workflow execution
status change.

81

Design

The IWorkflowClient interface is a direct implementation of requirements F6, F8, and as a
communication means from the FWES component to the WCIS component in requirement
F25.

12.2.4 IExceptionHandler Interface

The exception handler must implement the IExceptionHandler interface. An exception
handler is responsible for interpreting exceptions in the workflow enactment. There can
exist one and only one exception handler in the workflow enactment service. The current
implementation will only send a transition exception to the exception handler.

This interface implements requirement F9 and partially requirement F20.

12.2.5 QueryExecuter Class

The query executor is responsible for evaluating transition conditions. Conditions are
specified as simple Lua script expression [40] on the form:

getDataFie ldValue (”<data f i e l d name>”) <equa l i t y operator> <value>

where <data field name> is any data field in the current workflow process, <equality
operator> is any of “==”, “~=”, “<”, “>”, “<=”, or “>=”, and <value> is the desired value
of the data field.

This class helps the WorkflowProcessExecuter in implementing requirement F4.

12.2.6 WorkflowEnactmentService Class

The workflow enactment service contains zero or one executing workflow process, and
works as an interface between workflow clients and applications, and the workflow process
executor. It supports starting, pausing, resuming, and stopping the workflow enactment.

When the workflow enactment service receives

• an execution request to an application from the workflow process executor, it looks up
in the application registry and sends the execution request to the correct application.

• a status update, activity starting, or activity ended notification from the workflow
process executor, it will look up in the workflow client registry and send the notifi-
cations to all the workflow clients marked as workflow listeners.

• a register activity event from the workflow process executor it will look up the correct
workflow client and register the activity with it.

The WorkflowEnactmentService class also function as the main accesspoint to the workflow
enactment for workflow clients.

The workflow enactment service works as an interface from the WCIS and GUI components
to the FWES component in requirements F7, F8, F12, F18, and F24 and in the Enact
workflow use case in Chapter 10.2.

82

12.2 FWES Package

12.2.7 WorkflowProcessExecuter Class

The workflow process executor is responsible for the enactment of a single workflow process.
It launches in a separate observer thread (see Chapter 12.1.3) so the workflow enactment
service may continue to be responsive.

Note that the workflow process executor will not enact all process constructs defined in
the XPDL. We only support activities with implementation and route type of activities.
Block activities and subflows are not supported. We further restrict the split and join
transition restriction to only be of the “AND” type. We do not support the procedure
type implementation of the tool type. See [55] for more information about these types.

Figure 12.3: Workflow process enactment overview

83

Design

Figure 12.3 shows the workflow process enactment performed by the WorkflowProcessEx-
ecuter class. The workflow process is started by loading the initial XPDL document from
the file system. This is a simplification of requirement F23. After the workflow process
is loaded, the workflow process executor enters the workflow enactment engine which is
started by loading the first activity. The workflow enactment engine is a controller based
on the observer pattern where we have a operating system thread responsible for managing
the loading of activities, evaluation of transitions, and removal of finished activities. After
the first activity is loaded, we enter the controller loop which will run as long as there
are activities and transitions not yet executed. Activities are launched in separate oper-
ating system threads and these send a message to the observer when they have finished
execution. When this happens, the observer will evaluate the transitions and transition
restrictions of the activity. If it does not have a transition, that thread of execution will
terminate. If the activity has a split transition restriction, we evaluate all the transitions
in the split. If it has a transition, this is evaluated. When an activity is starting or
has completed and when the workflow enactment status has changes, e.g., the workflow
enactment is finished; the workflow enactment service is notified.

Transitions are evaluated by evaluating their condition. A transition without a condition
always evaluates to true. Transition conditions evaluate to true if the specified data field
has the specified value. If a transition evaluates to true, the activity the transition points
to is loaded and enacted. If the transition evaluates to false, a transition exception is
created and sent to the exception handler. The controller will then wait for the data field
to be updated before evaluating the transition again. If the activity the transition points
to has a join transition restriction, the activity will only be loaded when all transitions
pointing to it has been satisfied.

This class implements requirements F1, F2, F3, F4, F5, and in cooperation with the
WorkflowEnactmentService class requirements F6, F7, F8, F9, F10.

12.2.8 XPDLLoader Class

The XPDL loader is responsible for loading XPDL documents. It supports loading of both
complete and incomplete XPDL documents. We have done our best to support the XPDL
standard as it is, but some changes had to be made. The supported elements and changes
are summarised in Table 12.1. Any elements not listed are not supported.

Supported XPDL elements
FormalParameters Fully supported.
Package Attributes ignored.
Application Description attribute not supported. ExtendedAttributes ele-

ment not supported.
WorkflowProcess ProcessHeader, RedefinableHeader, FormalParameters,

DataTypes, ActivitySets, and ExtendedAttributes elements
not supported. Only Id and Name attributes supported.

Activity Limit, BlockActivity, StartMode, FinishMode, Priority, Dead-
Line, SimulationInformation, Documentation, and Extende-
dAttributes elements not supported.

Implementation SubFlow element not supported.

84

12.3 FWES EnactmentRepresentation Package

Tool ExtendedAttributes not supported. Type loaded, but only AP-
PLICATION type used in the workflow enactment.

ActualParameters Modified the XPDL standard to support array values. This is
considered to be a shortcoming of the current XPDL standard.
See Appendix D.1 for the new XML schema for this element.

TransitionRestriction Fully supported
Join Fully supported, but only AND type used in the workflow en-

actment.
Split Fully supported, but only AND type used in the workflow en-

actment.
TransitionRef Fully supported.
Transition ExtendedAttributes element not supported.
Condition Only Type CONDITION supported.
Participant ExternalReference and ExtendedAttributes elements type sup-

ported.
ParticipantType Only Type SYSTEM and HUMAN supported.
DataField ExtendedAttributes, Length, and Description elements not sup-

ported.
DataTypes Only BasicType and ArrayType supported
BasicType REFERENCE, DATETIME, and PERFORMER Type not

supported.
ArrayType Modified the XPDL standard to an array of BasicTypes. This

modification should be considered a limitation if support for
other data types than BasicType and ArrayType is added.

Table 12.1: Supported XPDL elements

This class implements requirements F1 and F2.

12.3 FWES EnactmentRepresentation Package

This package contains all classes representing elements in the workflow enactment repre-
sentation. See Appendix B.3.1 for a class diagram. All elements are explained in detail
in [55]. These classes together implement the domain model for requirements F1 and F2
and provide a basis for all other classes using the workflow process.

12.4 FWES Exception Package

The exception package contains the implementation of workflow exceptions, and imple-
ments requirement F9. Only the TransitionException class currently exist. This class
extends the WorkflowException class and describes a transition exception. A transition
exception occurs when a transition condition does not evaluate to true. The transition
exception contains a reference to the transition that caused the exception.

85

Design

12.5 FWES Scripting Package

The scripting package contains classes that simplify the usage of scripting in the applica-
tion. These classes are tightly integrated with their respective scripting language.

The LuaWorkflowProcess class represents a workflow process in the Lua language. Cur-
rently it supports executing a transition condition query in the workflow process. It helps
the QueryExecuter class in implementing requirement F4.

12.6 WCIS Package

We have in this component included some of the functionality of the CWIS component
from the architecture in Chapter 11 in addition to the WCIS functionality.

Figure 12.4: WCIS class diagram

12.6.1 ContextIntegrator Class

The ContextIntegrator class is responsible for managing context sources and context infor-
mation. It is registered as a listener workflow client with the workflow enactment service,
and will therefore receive all updates from the workflow enactment service. The context
integrator is implemented with the singleton design pattern (Chapter 12.1.4). This enables

86

12.6 WCIS Package

other classes, such as context-aware workflow applications and the exception handler, easy
access to the context integrator instance.

The context integrator is capable of looking up sensors and actuators, handling transition
exceptions, executing actuation commands, and receiving and interpreting context infor-
mation from external actors. This context information is interpreted in the Interpreter
class.

To be able to respond correctly according to rules, the context integrator uses a CLIPS
(Chapter 7.2) expert system. When a change in the workflow enactment is notified to the
context integrator, either from external sources or from the workflow enactment service,
the CLIPS knowledge base is updated. If the facts in the knowledge base matches a
rule, CLIPS triggers the correct method in the context integrator. Currently, the only
supported method is “load new activity”.

All work done in the context integrator is done in a separate thread so the application
calling the context integrator can continue execution right after a call to the context
integrator.

The ContextIntegrator class implements requirements F11, F12, F16, F17, F19, F22, F24,
and F25. It also partially implements requirements F13, F14, and F15 by integrating it
with the CORTEX Publish-Subscribe CF.

12.6.2 Interpreter Class

The interpreter implements a CORTEX FEL (Chapter 7.1.2) event parser. It is used as a
component in the context integrator.

The FEL event must be on the form:

<sub j e c t>
<Type>eventTypeName</Type>
. . .

</ sub j e c t>

The subject tag name is replaced with the name of the FEL event subject. The Type tag
content holds the event type for this event. All other tags are considered to be part of the
event. Currently only the “updateSensor” event is supported. This event is on the form:

<sub j e c t>
<Type>sensorUpdate</Type>
<FieldName>xxx</FieldName>
<Value>xxx</Value>

</ sub j e c t>

The FieldName tag holds the sensor data field that has been updated and the Value tag
holds the new value of that data field.

This class helps the ContextIntegrator class to integrate with the CORTEX Publish-
Suscribe CF.

87

Design

12.6.3 ContextExceptionHandler Class

When an exception occurs in the workflow enactment, the exception is sent to an exception
handler. The context exception handler is a simple exception handler that just redirects
the exception to the context integrator. Figure 12.5 shows how the exception handling of
a transition exception works.

Figure 12.5: Exception handling

The workflow process executor detects a transition exception since a transition condition
did not evaluate to true and sends a transition exception to the exception handler. Since
this, in our case, is the context exception handler the transition exception is redirected to
the context integrator. The context integrator inserts the fact that a transition exception
has occurred into the CLIPS expert system. If an “add activity” CLIPS rule fires because

88

12.7 WCIS Application Package

of this fact, the context integrator will add the required activities to the workflow process.
The workflow enactment is paused, then the new activities are loaded by the workflow
fragment loader into the workflow process, and finally the workflow process is resumed.
Appendix H shows how an example workflow generates new actities from a transition
exception.

This is an interface between the FWES component and the CWIS component when a
workflow exception occurs. It is therefore a partial implementation of requirements F9
and F20.

12.6.4 WorkflowFragmentLoader Class

This class is responsible for loading workflow fragments from a XML file into the workflow
process. The XML file must be of the form specified in the XML schema presented in
Appendix C. Figure 12.5 shows how the loading of new activities occur. Currently only
loading of transitions with activities and dependencies is supported.

The fragments have access to external information by using “?” as the value. External
values are supported as described below:

• Transitions

– First transition use the From value from the original transition. Current value
is ignored.

– Last transition use the To value from the original transition. Current value is
ignored.

• Activities

– May use the performer from the Activity found by using the From value from
the original transition.

• Transitions

– May use the condition from the original transition.

The WorkflowFragmentLoader class is a partial implementation of requirement F20.

12.7 WCIS Application Package

The application package contains workflow applications. Workflow applications are used
by the workflow process during workflow enactment. These applications must be registered
with the workflow enactment service before they can be used in the workflow enactment.

12.7.1 Setup Application

This application is responsible for setting up sensors and actuators for workflow processes
and takes two arrays as input parameters: One array of sensors and one array of actuators
to look-up and subscribe to. The setup application relies on the context integrator to do
the actual work.

This is a direct implementation of requirement F16.

89

Design

12.7.2 Actuator Application

The actuator application takes the actuator id and an actuator command as input param-
eters and uses the context integrator to execute the actuator command.

This is a direct implementation of requirement F17.

12.8 Utils Package

This package contains various utilities shared by the components in the workflow client.

It has a:

• CLIPSSupport class providing CLIPS support for the application. This class en-
capsulates common functionality to make CLIPS easier to use. See Chapter 7.2 for
more information about CLIPS.

• ScriptSupport class providing access to the Lua scripting language. It provides a sim-
plified interface for executing scripts and setting up the Lua scripting environment.
See Chapter 7.3 for more information about Lua.

• StringUtils class since string conversion is often needed when developing a C++
application. This class simplify the common cases.

12.9 GUI

This is a simple GUI that provides an interface between the mobile worker and the workflow
process enactment. It also provides a starting point for the workflow client application.

Figure 12.6 shows the elements in the GUI. An explanation of the elements is provided
below:

Workflow Enactment Status This text field displays the current status of the workflow
enactment. The workflow enactment can be in a started, paused, or stopped state.

Workflow Control Buttons These buttons control the workflow enactment. Start starts
the workflow enactment, Pause pauses the workflow enactment, R resumes the workflow
enactment, and Stop stops the workflow enactment.

Performer Name The name of the performer this workflow client (the GUI) represents.
This is important because the workflow enactment service will only send activities to the
GUI if the name is correct.

XPDL File Path The path to the XPDL file containing the workflow process to load
when the workflow enactment is started.

Browse for XPDL File Button Opens the XPDL file selection dialogue.

Current Activity This text field shows information about the current registered activity.
The mobile worker using the GUI is supposed to execute the activity manually and then
push the Activity completed button.

90

12.10 Discussion

Figure 12.6: GUI screenshot

Activity Completed Button The mobile worker can notify the workflow enactment
service that the activity has been completed by pushing this button.

Data Field Id The Id of the data field to update.

Data Field Value The new value of the data field identified by the data field id text
field. Pushing the Set button will set the new value.

Completed Activities List This is a list of activities completed in the workflow enact-
ment service. Note that this includes all activities, including those the mobile worker has
not performed.

Figure 12.7 shows the GUI when the workflow process enactment is running.

The GUI is an implementation of requirements F6 and F7.

12.10 Discussion

This design does not completely implement the architecture described in Chapter 11. We
have done the simplifications described below.

• Data store is implemented as flat files stored on the device, and not in a data base.

• Cooperative workflow integration service is not implemented. Some parts of it is
included in the workflow context integration service though.

• Server based workflow enactment service is replaced by a XPDL file stored on the
device.

91

Design

Figure 12.7: GUI active screenshot

• Re-validation of process paths is not included in the design because of time con-
straints.

92

Part VI

Implementation and Testing

93

94

Chapter 13

Implementation

This chapter gives an overview of the implementation by discussing relevant software
metrics, project code structure, code samples, and encountered problems. The metrics are
generated with the CCCC (Appendix A.1.2) tool.

13.1 Software Metrics

Software metrics help us understand the implementation of PocketFlow and provides mea-
surements on issues related to object-oriented design and structural dependencies.

13.1.1 Summary of High Level Software Metrics

Table 13.1 presents an overview of high level software metrics for the implementation of
PocketFlow.

Metric Value
Number of Modules 53
Lines of Code 3636
Lines of Comment 702
LOC/COM 5.179

Table 13.1: Summary of software metrics

The“number of modules”metric is counted as the number of non-trivial modules (includes
all classes, and any other module for which member functions are identified) and “lines of
code” as the number of non-blank, non-commented lines of source code. The LOC/COM
metric describes lines of comment pr. lines of code and is therefore a measurement on how
well commented the code is.

13.1.2 Object Oriented Design

Here we discuss four of the six metrics proposed by Chidamber and Kemerer [9]. See
Appendix I for a detailed presentation of these metrics per module on the included CD-

95

Implementation

ROM. The four metrics are; weighted methods per class, depth of inheritance tree, number
of children, and coupling between objects.

Weighted Methods per Class (WMC)

This metric is the sum of a weighting function over each module. Two versions of this
metric are used. The first (WMC1) uses the nominal weight of 1 for each function. The
second (WMCv) uses the nominal weight of 1 for each function accessible for other modules
and 0 for private functions. Too high WMC1 and WMCv values for a module indicate that
the module probably is too complex and should be decomposed into several less complex
modules. All of our modules show a low value for WMC1 and low to moderate values for
WMCv. Since the major part of these methods are getter and setter functions, we are
confident we have good modularisation of our code.

Depth of Inheritance Tree (DIT)

This metric describes, for each module, the longest path of inheritance ending at that
module. Our implementation has only 0 or 1 as values on modules for this metric, which
indicates high possibility of easy reuse of the modules.

Number of Children (NOC)

This metric counts, for each module, how many modules that inherit from it. Our imple-
mentation has moderate values for this metric which again indicates easy reuse of modules.

Coupling Between Objects (CBO)

The CBO metric counts, for each module, the number of other modules that are coupled
to it. High coupling indicates a lack of module encapsulation. For our implementation, the
ContextIntegrator, WorkflowProcess, and WorkflowProcessExecuter modules exhibit mod-
erate CBO values, and the rest of the modules low CBO values. Since the WorkflowProcess
modules works as an interface between a large number of modules, and since Workflow-
ProcessExecuter and ContextIntegrator is the main modules in the workflow client module,
we believe our implementation can be considered to have loose coupling.

13.1.3 Structural Metrics

Here we discuss the fan-in, fan-out, and information flow measure metrics for our imple-
mentation. The fan-in metric represents, for each module, the number of modules which
pass information into it. Fan-out represents, for each module, the number of other mod-
ules for which it passes information. The information flow metric is a metric for structural
complexity which is calculated as the square of the product of the fan-in and fan-out of a
single module.

Most of our modules show low fan-in and fan-out values, except the WorkflowEnact-
mentService, WorkflowProcessExecuter, and WorkflowProcess. This is expected since these
modules also have a larger number of couplings to other modules.

96

13.2 Code Samples

13.2 Code Samples

In this section we will demonstrate source code to make statements presented previously
in the report more understandable. Note that this is only a short introduction to the
PocketFlow source code and the reader should refer to the source code on the CD-ROM
(Appendix I) to get a complete understanding.

13.2.1 Starting a Context-Aware Workflow Process

Listing 13.1 shows the instantiation of a workflow enactment service capable of running a
context-aware workflow process.

Listing 13.1: Starting a context-aware workflow process
1 WorkflowEnactmentService workflowEnactmentService = new WorkflowEnactmentService();
2 workflowEnactmentService−>loadWorkflowProcess(CONTEXT AWARE WORKFLOW);
3 workflowEnactmentService−>registerWorkflowClient(this); // in this case the GUI class
4 workflowEnactmentService−>registerWorkflowClient(ContextIntegrator::getInstance());
5 workflowEnactmentService−>registerApplication(new Setup());
6 workflowEnactmentService−>registerApplication(new Actuator());
7 workflowEnactmentService−>setExceptionHandler(new ContextExceptionHandler());
8

9 ContextIntegrator::getInstance()−>start(KNOWLEDGE BASE FILE,
WORKFLOW FRAGMENTS FILE);

10

11 workflowEnactmentService−>startWorkflowProcess();

In this example we run a context-aware workflow process with two context-aware workflow
applications: Setup and Actuator, the context integrator as a workflow client, and the GUI
as a workflow client. We also use a context-aware exception handler.

The constants in Listing 13.1 are as follows:

• CONTEXT AWARE WORKFLOW: The path to the XPDL file containing the
context-aware workflow process.

• KNOWLEDGE BASE FILE: The path to the CLIPS knowledge base.

• WORKFLOW FRAGMENTS FILE: The path to the workflow fragments file.

Note that the context integrator is started before the workflow process since the workflow
process may need to setup actuators and sensors when starting. This is a requirement of
this prototype. Context integrator processes should also be able to run autonomically and
provide services to workflow processes.

This is an implementation of the dependency injection pattern described in Chapter 12.1.2.

13.2.2 Generating New Activities

The ContextIntegrator::generateNewActivity method shown in Listing 13.2 is executed (the
ASSERT macro is explained in Chapter 14.6.1) when the CLIPS expert system derives
the need for new activities.

97

Implementation

Listing 13.2: Generating new activities
1 void ContextIntegrator::generateNewActivity(CString transitionFragmentId, CString

originalTransitionId) {
2 TRACE(T(”ContextIntegrator::generateNewActivity()”));
3 FWES::EnactmentRepresentation::WorkflowProcess∗ workflowProcess = this−>

workflowClient workflowEnactmentService−>getWorkflowProcess();
4 ASSERT(workflowProcess != NULL);
5 Transition∗ originalTransition = workflowProcess−>getTransitionById(originalTransitionId);
6 ASSERT(originalTransition != NULL);
7 CString from = CString(originalTransition−>getFrom());
8

9 this−>workflowClient workflowEnactmentService−>pauseWorkflowProcess();
10 this−>workflowFragmentLoader−>loadActivities(transitionFragmentId, originalTransition,

workflowProcess);
11 Transition∗ newTransition = workflowProcess−>getTransitionByFrom(from);
12 ASSERT(newTransition != NULL);
13

14 this−>workflowClient workflowEnactmentService−>updateTransition(originalTransition,
newTransition);

15 this−>workflowClient workflowEnactmentService−>resumeWorkflowProcess();
16 }

First the original transition, (the transition that caused the generation of new activities),
is loaded from the workflow process. Then the workflow process enactment is paused,
before new activities are loaded into the workflow process. Finally, the workflow process
enactment is resumed.

13.2.3 Asserting Transition Exceptions

Listing 13.3 shows how transition exceptions are asserted into the CLIPS expert system.
The transition exception is asserted with it’s identifier (Id) to make it possible to get the
reference to the transition at a later time (e.g. when generating new activities).

Listing 13.3: Asserting transition exceptions
1 void ContextIntegrator::handleTransitionException(FWES::exception::TransitionException∗

transitionException) {
2 TRACE(T(”ContextIntegrator::handleTransitionException()”));
3 ASSERT(transitionException != NULL);
4 ASSERT(transitionException−>getTransition() != NULL);
5 this−>clipsSupport−>assertString(L”(transitionException \”” + transitionException−>

getTransition()−>getId() + ”\”)”);
6 this−>clipsSupport−>run(CLIPS MAX RUN TIME);
7 }

13.2.4 Evaluate Activity Transition

The WorkflowProcessExecuter::evaluateActivityTransition method shown in Listing 13.4
is responsible for evaluating any transition(s) an activity may have.

98

13.2 Code Samples

Listing 13.4: Evaluate activity transition
1 void WorkflowProcessExecuter::evaluateActivityTransition(Activity∗ activity) {
2 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::evaluateActivityTransition

(); Activity Id: %s”), activity−>getId());
3 // check if the activity has some transition restrictions
4 bool hasSplit = false;
5 if (!(activity−>getTransitionRestrictions().empty())) {
6 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::

evaluateActivityTransition(); Has transition restrictions”));
7 std::vector<TransitionRestriction∗> restrictions = activity−>getTransitionRestrictions

();
8 std::vector<TransitionRestriction∗>::iterator currentRestriction;
9 for (currentRestriction = restrictions.begin(); currentRestriction != restrictions.end();

currentRestriction++) {
10 if ((∗currentRestriction)−>isSplit()) {
11 evaluateSplitRestriction((∗currentRestriction)−>getSplit());
12 hasSplit = true;
13 }
14 }
15 }
16 else {
17 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::

evaluateActivityTransition(); No transition restrictions”));
18 }
19 // ok no transitions restrictions, do we have a transition?
20 Transition∗ transition = this−>workflowProcess−>getTransitionByFrom(activity−>getId())

;
21 if (!hasSplit && transition != NULL) {
22 evaluateTransition(transition);
23 }
24 else {
25 // nope, this is the end of this thread of execution
26 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::

evaluateActivityTransition(); No transition”));
27 }
28 removeRunningActivity(activity);
29 }

First the activity is checked for any transition restrictions. If it has one or more transi-
tion restrictions, all split transition restrictions are evaluated in the WorkflowProcessEx-
ecuter::evaluateSplitRestriction method shown in Listing 13.5.

Finally, if the activity has a transition and no split transition restrictions were detected
earlier, the transition is evaluated in the WorkflowProcessExecuter::evaluateTransition
method shown in Listing 13.6.

Listing 13.5: Evaluate split transition restriction
1 void WorkflowProcessExecuter::evaluateSplitRestriction(Split∗ split) {
2 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::evaluateSplitRestriction()”)

);
3 std::vector<TransitionRef∗> transitionRefs = split−>getTransitionRefs();

99

Implementation

4 std::vector<TransitionRef∗>::iterator currentRef;
5 for (currentRef = transitionRefs.begin(); currentRef != transitionRefs.end(); currentRef++)

{
6 TransitionRef∗ theTransitionRef = ∗currentRef;
7 // get the real transition
8 Transition∗ theTransition = this−>workflowProcess−>getTransitionById(

theTransitionRef−>getId());
9 if (theTransition != NULL) {

10 evaluateTransition(theTransition);
11 }
12 else {
13 STLOG WRITE(T(”WorkflowProcessExecuter::evaluateSplitRestriction(); Error:

Was going to evaluate the transition with id %s but it was not found!”),
theTransitionRef−>getId());

14 }
15 }
16 }

The WorkflowProcessExecuter::evaluateSplitRestriction method shown in Listing 13.5 loads
the transition for each of the transition references in the split transition restriction and
evaluates it in the WorkflowProcessExecuter::evaluateTransition method shown in Listing
13.6

Listing 13.6: Evaluate transition
1 void WorkflowProcessExecuter::evaluateTransition(Transition∗ transition) {
2 if (transition == NULL) {
3 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::evaluateTransition();

Error! The transitions was NULL!”));
4 return;
5 }
6

7 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::evaluateTransition();
Transitions id=%s, from=%s, to=%s”), transition−>getId(), transition−>getFrom(),
transition−>getTo());

8 if (transition−>isSatisfied() == false) {
9 if (transition−>getCondition() != NULL) {

10 Condition∗ condition = transition−>getCondition();
11 bool satisfied = this−>queryExecuter−>evaluateCondition(condition−>

getXpression());
12 if (satisfied) {
13 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::

evaluateTransition(); Transition condition satisfied.”));
14 transition−>setSatisfied(true);
15 }
16 else {
17 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::

evaluateTransition(); Transition condition not satisfied.”));
18 this−>waitingTransitions.push back(transition);
19 // notify the exception handler
20 PostThreadMessage(this−>executerThreadId,

THRD MESSAGE NOTIFY TRANSITION EXCEPTION, (WPARAM)
transition , 0);

100

13.2 Code Samples

21 return; // must wait for the condition to be satisfied
22 }
23 }
24 else {
25 // transition without condition is always true
26 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::evaluateTransition

(); No condition, setting satisfied = true”));
27 transition−>setSatisfied(true);
28 }
29 }
30 // the condition must be satisfied, create the new activity
31 Activity∗ nextActivity = this−>workflowProcess−>getActivityById(transition−>getTo());
32 if (nextActivity != NULL) {
33 bool create = true;
34 if (nextActivity−>hasJoinRestriction()) {
35 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::evaluateTransition

(); Has join transitions restriction”));
36 // this must be joined
37 create = evaluateJoinTransition(transition);
38 }
39 if (create == true) {
40 HANDLE nextActivityThread = addRunningActivity(nextActivity);
41 }
42 else {
43 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::evaluateTransition

(); Transition with id %s must wait for join”), transition−>getId());
44 }
45 }
46 else {
47 STLOG WRITE(T(”WorkflowProcessExecuter::evaluateTransition(); Error: Should

have created a new activity with id %s but it was not found!”), transition−>
getTo());

48 }
49 }

Transitions are evaluated by evaluating their condition as shown in Listing 13.6. A tran-
sition without a condition always evaluates to true. Transition conditions evaluate to true
if the specified data field has the specified value. If a transition evaluates to true the
activity the transition points to is loaded and enacted. If the transition evaluates to false,
a transition exception is created and sent to the exception handler. The controller will
then wait for the data field to be updated before evaluating the transition again. If the
activity the transition points to has a join transition restriction, the activity will only be
loaded when all transitions pointing to it have been satisfied as shown in Listing 13.7.

Listing 13.7: Evaluate join transition
1 bool WorkflowProcessExecuter::evaluateJoinTransition(Transition∗ transition) {
2 if (transition == NULL) {
3 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::evaluateJoinTransition

(); Error! The transition was NULL!”));
4 return false;
5 }

101

Implementation

6 PROCESS EXECUTER TRACE(T(”WorkflowProcessExecuter::evaluateJoinTransition();
Transition id=%s, from=%s, to=%s”), transition−>getId(), transition−>getFrom(),
transition−>getTo());

7 std::vector<Transition∗> joinTransitions = this−>workflowProcess−>getTransitionsByTo(
transition−>getTo());

8 std::vector<Transition∗>::iterator currentTransition;
9 for (currentTransition = joinTransitions.begin(); currentTransition != joinTransitions.end();

currentTransition++) {
10 if ((∗currentTransition)−>isSatisfied() == false) {
11 return false; // not all join transitions have been satisfied
12 }
13 }
14 return true; // all joined transitions are now satisfied
15 }

13.2.5 Actuator Workflow Application Execution

Listing 13.8 shows an example of how a workflow application may connect to context
sources. In this case it is an actuation order to an actuator. Firstly the actuator retrieves
its parameters, then the actuator command is sent to the context integrator.

Listing 13.8: Actuator workflow application execution
1 void Actuator::application execute(FWES::EnactmentRepresentation::WorkflowProcess∗

workflowProcess, std::vector<FWES::EnactmentRepresentation::ActualParameter∗>
actualParameters) {

2 TRACE(L”Actuator::application execute()”);
3 ASSERT(workflowProcess != NULL);
4 ASSERT(actualParameters.size() == 2);
5 ASSERT(actualParameters[0]−>getBasicValue() != NULL);
6 ASSERT(actualParameters[1]−>getBasicValue() != NULL);
7

8 CString actuatorName, actuatorCommand;
9 if (actualParameters[0]−>getIndex() == 1) {

10 actuatorName = actualParameters[0]−>getBasicValue()−>getStringValue();
11 actuatorCommand = actualParameters[1]−>getBasicValue()−>getStringValue();
12 }
13 else {
14 actuatorName = actualParameters[1]−>getBasicValue()−>getStringValue();
15 actuatorCommand = actualParameters[0]−>getBasicValue()−>getStringValue();
16 }
17 contextIntegrator−>executeActuatorCommand(actuatorName, actuatorCommand);
18 }

13.3 Project Structure

The project is divided into three static libraries1, and two executables implementing the
libraries.

1A library statically linked into an executable at compile-time, as apposed to dynamic link libraries
which are linked at run-time.

102

13.4 Encountered Problems

WorkflowClient

This is a static library containing the workflow client described in Chapter 12.

Clips

This project constains the CLIPS expert system static library.

Luacelib

The luacelib static library contains the Lua language execution engine.

GUI

The GUI project contains the GUI executable. It links to the WorkflowClient, Clips, and
Luacelib static libraries.

Unit

The Unit project contains the unit test suite executable. We will discuss unit testing in
the nest chapter. The unit executable links to the WorkflowClient, Clips, and Luacelib
static libraries.

13.4 Encountered Problems

We encountered problems with unstable network connectivity during the integration of the
CORTEX middleware into our implementation. The CORTEX middleware is developed
and tested using IPAQ PDAs. The Fujitsu Siemens PDAs we used are very unstable when
used in ad-hoc wireless network mode. We decided to simulate how the PDA receives
events by loading events from local storage instead. Even though this problem prohibited
us from testing our implementation on several PDAs over a wireless network, it does not
have a major effect on testing of our design and discussion of our research questions.

103

Implementation

104

Chapter 14

Testing

This chapter presents how we conducted testing, which testing framework we used, and
descriptions of the tests we performed.

14.1 Testing Strategy

Since our development is based on the XP methodology, we have written and run tests
during implementation in a incremental manner. All unit tests have been run on a Fujitsu
Siemens PDA, and not on the emulator. The steps carried out when testing a module
were:

1. Copy test resources to the device (XPDL, etc.).

2. Compile and link project files in Embedded Visual Studio.

3. Deploy unit.exe to the device.

4. Run the unit tests on the device and receive feedback on test outcome.

5. View generated log.

14.2 Use of Logging

We have during the development of PocketUnit made heavy use of logging. In PocketFlow
we have two types of logging; trace and regular log. Trace logs will only be executed when
the application is built with the DEBUG flag. Regular logs are always executed regardless
of if the DEBUG flag is set or not. The log is written to a file with the name “<executable
name> log.txt”.

The generated log file has been an important help in detecting and fixing errors quickly,
especially when executing more than one operating system threads.

105

Testing

14.3 Unit Testing with PocketUnit

All unit tests are run with the PocketUnit test framework. PocketUnit along with test-
classes are included on the accompanying CD-ROM (Appendix I). The rest of this chapter
presents unit tests for the PocketFlow implementation.

14.3.1 FWES

The FWES package described in Chapter 12.2 is tested with the following unit test cases.

TestXPDLLoader Test Case

The purpose of this unit test is to test the XPDL-loader for loading of XPDL-documents
from local storage on the device. A workflow process with associated applications, activ-
ities, participants, and data fields are loaded. The test checks if the elements are loaded
correctly, have the right types, and not a NULL value.

TestWorkflowProcessExecuter Test Case

The purpose of the TestWorkflowProcessExecuter unit test is to test the execution of a
workflow process, and check if transitions trigger between activities based on data field
values. The test creates a workflow process, sets up a workflow enactment service, and
starts the workflow process executor.

TestQueryExecuter Test Case

The TestQueryExecuter unit test is responsible for testing the evaluation of transition con-
ditions. A transition workflow element is loaded from XPDL with conditions. Expressions
are retrieved from conditions and evaluated against data field values.

TestEnactmentRepresentation Test Case

The purpose of this unit test is to test the representation of workflow process elements for
use in enactment. For instance, test if data fields are set to the correct data types with
the correct values.

14.3.2 WCIS

The WCIS package is described in Chapter 12.6 and is tested with the following unit test
cases.

TestWorkflowFragmentLoader Test Case

The purpose of the TestWorkflowFragmentLoader test case is to test loading of workflow
fragments from local storage on the device. After the new fragments have been loaded,
the workflow process is tested if it contains all the new elements.

106

14.4 Manual Testing

TestContextAwareWorkflow

This test runs the simple context aware workflow process show in Appendix H. After the
workflow process is run it is checked for new elements.

14.3.3 Utils

The utils package is described in Chapter 12.8 and is tested with the following unit test
cases.

TestClips Test Case

The TestClips unit test is responsible for testing the CLIPS integration with the WCIS
component. The test includes loading a knowledge base from file, defining external C
functions, asserting facts in knowledge base, and running the expert system.

TestScriptExecuter Test Case

This test case tests that the script support executes condition evaluations correctly.

14.4 Manual Testing

While we try to do automated testing as much as possible there are situations where this
is not feasible. For instance when testing the GUI widgets, it is often necessary to sift
through the log file to find where an error occurred.

14.5 Not Tested

The code coverage of our tests is far from 100%, and refactoring of the code should be
done with great care. In addition we have no tests for external code like the CORTEX
middleware, CLIPS, and Lua.

14.6 Debugging

When programming in any language, and especially in C++ since it is not protected by a
managed virtual machine like Java and C#, there will occur unknown errors often setting
the application in an unrunnable state. To avoid this we have used the ASSERT macro
as well as the debugging facilities in MS Embedded Visual Studio.

14.6.1 The ASSERT Macro

The ASSERT macro in C++ helps us identify potentially dangerous situations that may
lead to a fatal error (a crash). For instance, by using the ASSERT macro we can check if
a variable that never should have the NULL value actually does not have the NULL value
like this: “ASSERT(variable != NULL)”. If the variable is in fact NULL, an error dialogue
containing the file and the line where the assertion error occurred is shown on the device.
It is then usually trivial to find the error. When the application is built without the
DEBUG flag the ASSERT macro is removed from the executable. The ASSERT macro
is therefore non-intrusive.

107

Testing

14.6.2 Debugging in Embedded Visual Studio

The MS Embedded Visual Studio debugging environment provides us with an excellent
platform for finding unexpected errors in the application. It is especially useful for finding
fatal errors that cause the application to crash since it gives us the stack trace to the fatal
error.

108

Part VII

Discussion and Conclusion

109

110

Chapter 15

Discussion

In this chapter we evaluate the design and implementation of PocketFlow and provide a
discussion on supported requirements, what we have achieved, and which aspects remain
unresolved. We also evaluate the research questions and how our research methods helped
us in our work.

15.1 Evaluation of PocketFlow

Not all requirements have been implemented in the PocketFlow prototype. Here we discuss
the supported requirements and how the workflow enactment and context-awareness are
implemented.

15.1.1 Supported Requirements

We present a summary of which requirements that are supported by PocketFlow, since
we have defined several requirements outside the scope of our work. A requirement can
be supported by the architecture, the design, the implementation, or not at all. Any
requirement supported by the implementation is also supported by the design, and any
requirement supported by the design is also supported by the architecture.

Table 15.1 shows the supported requirements for a basic workflow system. PocketFlow sup-
ports all requirements except F3 which is only supported by the design, some requirements
are only partly supported. The workflow enactment service not completely functional. En-
actment of block and sub-process activity type are for instance not supported. The GUI
implementation is also rather basic.

Id Description Supported
F1 Adhere to the WfMC interface 1 meta-model. Support a subset

of the XPDL process definition language.
Implementation

F2 Interpret and enact a subset of the process definitions defined
in the XPDL.

Implementation

F3 Use activities completed by other workflow participants as pre-
condition for own activities.

Design

111

Discussion

F4 Evaluate conditions for transitions between activities by check-
ing data fields in the workflow process.

Implementation

F5 Perform enactment of a single workflow process or workflow
process fragment.

Implementation

F6 Provide workflow enactment feedback and information to the
mobile worker.

Implementation

F7 Support receiving feedback and information from the mobile
worker.

Implementation

F8 Communicate with other workflow clients in order to send and
receive activities.

Implementation

F9 Exception handling of transitions that does not have a satisfied
condition.

Implementation

F10 A workflow process must be able to execute external workflow
applications.

Implementation

Table 15.1: Supported basic workflow system requirements

While PocketFlow has support for all context-aware workflow system requirements in the
design, not all requirements are supported by the implementation as shown in Table 15.2.
This is the result of not being able to implement the CORTEX Publish-Subscribe CF
middleware in PocketFlow because of the networking problems described in Chapter 13.4.

Id Description Supported
F11 Interpret and enact process definitions needed for context-aware

workflows. Context information should be used in the evalua-
tion of workflow transitions (pre-condition for activities).

Implementation

F12 Ad-hoc start of processes and activities based on context infor-
mation.

Design

F13 Filter sensor data, based on rules, to provide data the context
client can use directly.

Design

F14 Service for the discovery and look-up of context-sources. Design
F15 Support both polling and publish / subscribe mechanisms for

context information retrieval from context-sources, sensors, and
actuators.

Design

F16 Support the definition of context-source look-up, polling, and
conversion of the context information between the context rep-
resentation and the workflow representation as XPDL elements.

Implementation

F17 Support the sending of actuation orders to actuators. Implementation
Table 15.2: Supported context-aware workflow system re-
quirements

We believe PocketFlow is a good starting point to develop adaptive workflow systems, but
there are several unresolved issues in our implementation as shown in Table 15.3. This
is again mostly due to our inability to get the CORTEX Publish-Subscribe CF middle-

112

15.1 Evaluation of PocketFlow

ware to work with the unreliable network connection, but also because our focus when
implementing the prototype was not on cooperation between several mobile workers.

Id Description Supported
F18 Perform distributed enactment of concurrent processes over

several workflow clients that possibly competes for resources.
Architecture

F19 Support template-based workflow enactment. Implementation
F20 Perform situated planning by supporting exception handling

of undefined contextual states by creating new activities based
on a set of rules, workflow fragments, context-sources, and/or
manual interaction.

Implementation

F21 Support manual interaction from the mobile worker to create,
modify, or remove activities.

Architecture

F22 Provide persistent storage of rules, workflow fragments and
templates, workflow history and documentation for the user
for easy retrieval.

Architecture

F23 Support central storage of workflow templates. Architecture
F24 Must be able to receive activities from other participants of the

distributed workflow process.
Design

F25 Must be able to coordinate with other workflow clients with
conflicting interest to decide, based on predefined and ad-hoc
rules, which workflow client gets priority.

Architecture

F26 Support re-validation of selected process paths, if the current
path does not lead to the process goal.

Architecture

Table 15.3: Supported adaptive ad-hoc workflow system re-
quirements

As shown in Table 15.4, PocketFlow does not support any of the mobility requirements ex-
plicitly. Some of these requirements may be supported by the CORTEX Publish-Subscribe
CF middleware, but this has not been tested.

Id Description Supported
F27 Support for physical mobility and network mobility. Not supported
F28 Handling of unreliable communication. Not supported
F29 Support for disconnected operations and asynchronous commu-

nication.
Not supported

F30 Support for session mobility. Not supported
Table 15.4: Supported mobility requirements

15.1.2 Evaluation of the Workflow Enactment

The workflow enactment support in PocketFlow should be considered simplistic since it
does not support important constructs such as sub-flows, but we strongly believe it is
easily extended to support a more complete workflow enactment. PocketFlow should also

113

Discussion

handle more workflow enactment exception types when, for instance, an enactment element
is missing or has an invalid value.

15.1.3 Evaluation of the Adaptive Workflow Implementation

Our implementation of adaptive workflow is based on an expert system that is responsible
for modifying the workflow according to facts and rules. The local workflow enactment
service and external entities like context-sources and other workflow clients update the
fact data store on the expert system, and the expert system triggers relevant functions if
its rules match the facts. While this arguably creates an adaptive and ad-hoc workflow, it
does have a few shortcomings. The rules in the data store are not shared between workflow
participants, and there is no learning involved (i.e. no new rules are created at run-time).
We believe this is a serious shortcoming of the current implementation, but it should not
be too hard to implement this in a future version of PocketFlow.

15.1.4 Evaluation of the Context Implementation

We believe the current CORTEX Publish-Subscribe CF is useful for look-up of context-
sources, and for handling communication, but because of the WLAN problems on our
devices we cannot be certain.

Furthermore, we believe our implementation of context in the workflow process execution
is non-intrusive with the WfMC reference model since we do not use any non-standard
constructs. Theoretically, it should be possible to use the same architecture for implemen-
tation of context in any standard-compliant workflow enactment service.

15.2 Evaluation of the Research Questions

Both the literature study and prototype development helped us reach partial answers to
our research questions. We summarise our findings below.

15.2.1 RQ1

How can a workflow process adapt to environmental changes, and how can a
workflow process modify the environment?

This research question is divided into two parts; we will discuss each part separately.

How can a workflow process adapt to environmental changes? A workflow pro-
cess can use context as pre-conditions for activities. This is solved by using data fields
in the workflow process as context representation. Transitions in the workflow enactment
may then use these data fields as transition conditions.

When a transition is not satisfied a transition exception is created, and based on the expert
system rules and facts, new activities may or may not be created.

It is also possible that an environmental change happens outside the context-sources known
by the workflow process. The expert system will intercept these changes and based on the
expert system rules and facts, new activities may or may not be created.

114

15.3 Evaluation of Research Method

This approach works as long as rules can be defined for all possible environmental states.
In the real world that is not possible since there is too many changing environmental
states. We therefore propose to expand our approach with a distributed knowledge base
with learning capabilities, as proposed by the intelligent artifacts approach.

How can a workflow process modify the environment? The workflow process can
modify the environment by using actuators and sending activities to other workflow clients.
If we consider actuators to be any software or hardware unit in the environment that can
execute commands, it should be possible to modify the entire environment. Actuations
are sent either from the workflow process itself or from the expert system. Activities are
exclusively sent by the expert system.

While we have not looked into security aspects of modifying the environment, we believe
this approach is feasible.

15.2.2 RQ2

How can we achieve automatic definition of activities based on process goals
and environmental context?

We use an expert system to decide when and how new activities are created. The expert
system use rules and facts to infer the correct action. Activities are created by loading
and instantiating workflow fragments, where workflow fragments are parts of a workflow
process that may be used in several workflow processes. When the workflow fragments are
loaded into the workflow process, the workflow process can be considered to be a template
since the workflow process has not connected to any context-sources. After the workflow
template has connected to its context-sources, the workflow process is fully functional.

Again this approach is heavily dependent on good rules in the expert system. As mentioned
in RQ1, we need a distributed knowledge base capable of learning new rules.

15.2.3 RQ3

How can we achieve ad-hoc workflow enactment in a mobile computing envi-
ronment?

The solutions for RQ1 part one and RQ2 also applies to RQ3. We need a distributed rule
base with several workflow clients performing cooperative reasoning. This reasoning could
be based on virtual organisation theory (see [27] for a more detailed discussion). By using
workflow fragments, again distributed among the workflow clients, we can achieve ad-hoc
workflow definition and hence ad-hoc workflow enactment.

15.3 Evaluation of Research Method

We used an engineering approach to research when trying to develop solutions for the
problem definition from Chapter 1.3. This approach has included scenario building with
requirements elicitation and prototype development with use of elements from the extreme
programming methodology.

Literature Survey

115

Discussion

The literature survey has provided us with an understanding of relevant topics, which has
proven useful when discussing aspects of our architecture and design.

Scenario Building and Requirements Elicitation

Our field study at Aker Verdal and the related scenario building were useful as a showcase
for an environment that can benefit from the kind of future technology we envision in
our work. This helped us understand the requirements needed for a system supporting
adaptive mobile work.

Extreme Programming

Our use of the XP-methodology worked well when developing the PocketFlow prototype.
Throughout the implementation we defined unit tests which are described in Chapter 14.3.
The requirements and design were incrementally improved in a evolutionary manner, based
on our increased understanding of the problem domain. We used code review to discover
programming errors quickly. Other practices such as pair programming were deemed too
risky since we did not have any experience with them, and because of the scope and
type of this project. The project was partly exploratory, investigating new technological
possibilities and thus we had to split our attention to different parts of the architecture in
the implementation phase. In that respect, we have not performed a XP project by the
book, but adopted the practises most useful for our project.

116

Chapter 16

Further Work

This chapter focus on issues we deem to be important, but have not had time to address.

16.1 Prototype Implementation

Support for more XPDL elements

The enactment representation package (12.3) and the workflow process executor (12.2.7)
needs to be extended with support for additional XPDL elements for the prototype to
perform more advanced workflow enactment. The elements which needs to be supported
includes subflows, XOR split and join, and more transition condition types.

Support for advanced fragment loading

Chapter 3.6.3 provides state-of-the-art on creating workflow processes on the fly. Design
and development of a more dynamic fragment loading should be considered as an important
part of any further work. With the current implementation, it is only possible to load
transitions which in turn load activities and other dependencies.

Advanced GUI

PocketFlow GUI for PDAs is described in Chapter 12.9. This GUI needs to be extended to
provide the mobile worker with more information on the workflow enactment. Additional
information can be images, documentation, etc., which provide an increased understanding
of the state of the environment, and increased support for the work to be done.

SQL database

Workflow clients may in a future implementation use an SQL database for persistent
storage of information related to the contextual state of the environment. This information
can then be used to provide workflow enactment and sensor data history. It can also be
used to enable learning in the workflow definition process, creating activity templates, etc.

Use WfMC interface 2 and 3

Future work may consider using WfMC interface 2 and 3 to standarise interoperability
with other workflow systems. This may help integrate PocketFlow with other standard
compliant systems.

117

Further Work

Increased scripting support

Lua scripts allow advanced queries and are used by the query executor. Increased scripting
support would make the prototype more flexible since more parts of the code can be
modified without recompiling the application.

Support for more types of workflow enactment exceptions

When enacting a workflow process, we only throw an exception whenever there is a tran-
sition exception. Ideally, we should throw an exception for any anomaly in the workflow
process execution. For instance, when workflow applications or other workflow elements
can not be found, etc.

Support for additional context event types

The context integrators interpreter (12.6.2) supports interpretation of sensor update events.
Logic for interpreting received activities and workflow fragments is not implemented.

Support for SensorML

Chapter 6.3 introduces SensorML, a standard for communication between workflow clients
and sensors. Future work should consider the usefulness of introducing SensorML in the
prototype design.

CORTEX Publish-Subscribe CF and Context CF

The CORTEX Publish-Subscribe CF is not integrated with our prototype implementation
due to device problems. With PDAs working in wireless ad-hoc mode, the prototype
should be integrated with PocketFlow and tested in a “pervasive” environment.

Design and implementation of the CWIS component

The CWIS component is described in the architecture (11.4.7), but is not elaborated
in the design and implementation of PocketFlow. A design and implementation of this
component would be useful in order to gain further understanding of the architecture and
a more useful prototype.

Server-based enactment service

The server-based enactment service is described as part of the architecture in Chapter
11.4.12. This part of our architecture needs to be addressed in future implementations of
PocketFlow. The retrieval of workflow processes for workflow clients is currently simulated.

Support for distributed knowledge

Both the sentient object model and the intelligent artifact paradigm rely on a distributed
knowledge base. Workflow clients should have part of their knowledge base shared and
distributed over all entities participating in the workflow enactment.

Mobility and networking

We have not looked into mobility and networking problems when executing adaptive mobile
work processes. This should be considered for future work since a real-life application is
very dependent on this.

118

16.2 Deployment and Testing

16.2 Deployment and Testing

When the implementation is updated according to the remaining work described in Chap-
ter 16.1, testing needs to be done in a lab-setting with PDAs and laptops simulating a
pervasive environment. For this testing, IPAQ PDAs would be a natural choice since they
were used during the development of the CORTEX middleware. We encountered problems
with our Fujitsu Siemens PDAs (13.4) when using them with this middleware.

Future testing of PocketFlow will explore and measure in more detail how successfully
a workflow client is at integrating contextual information into the enactment, and how
well it handles an increase in context-source subscriptions. Answers to these and related
questions are important to understand the usefulness of this research.

To further improve the stability and usefulness of the PocketFlow prototype, more unit
tests needs to be created. While 100% code coverage is unrealistic, developers can with
good code coverage, refactor the prototype with confidence since the unit tests will catch
any problems introduced.

16.3 Exploration of Social Aspects

Social aspects often receive little attention when dealing with context in context-aware
systems. This may lead to problems with users that are not willing to adopt these systems.
Bellotti [6] argues that the human aspects of context means that context-aware systems
cannot be made to act on our behalf and that users must interact with these systems.

Real-life situations often involve a high degree of variability, where different outcomes
depend on different conditions. Since it is hard to model outcomes in advance, allowing the
system to take actions based on context may propose great risks when human participants
are involved. Due to this, Bellotti argues that systems cannot execute autonomically based
only on context-awareness, but must involve users in action outcomes. Bellotti proposes
two key features to be supported in any context-aware infrastructure: intelligibility and
accountability [6]:

Intelligibility Context-aware systems that seek to act upon what they infer about the
context must be able to represent to their users what they know, how they know it, and
what they are doing about it.

Accountability Context-aware systems must enforce user accountability when, based
upon their inferences about the social context, they seek to mediate user actions that
impact others.

Another social aspect of context in context-aware systems involves privacy, which may be
an major problem in future applications. In a working environment though, we want to
make much information available to ease the coordination of activities and add safety to
the working environment. This is not personal information, and issues related to privacy
are less of a concern in this setting.

Satyanarayanan [48] describes privacy as the Achilles heel of pervasive computing. Real-
isation of the visions of Weiser [60] suffers from problems with privacy as acknowledged

119

Further Work

by the author. For a system to infer actions on the user’s behalf, as much information
as possible must be available to the system to minimise the need for explicit interaction.
This need will in many cases conflict with privacy issues.

These social aspects need further exploration in order to successfully deploy context-aware
systems in a pervasive environment.

120

Chapter 17

Conclusion

This chapter provides conclusions and a summary of our findings during the work on this
report.

17.1 Workflow for Mobile Workers

A complete implementation of the WfMC reference model is probably too advanced to
be of any use for mobile workers. It is in our opinion better to support a basic subset of
the reference model capable of enacting one workflow process at a time. By additionally
making the enactment context-aware it should be possible to build simple yet powerful
applications.

17.2 Context-Awareness in Workflow

We believe that using context in workflow process enactment is feasible and will be in-
creasingly important in the future due to improvements in sensor technology in recent
years. Development of prototypes supporting context-aware workflow processes are there-
fore important research which may speed up development of this new technology.

This technology is not mature, despite improvements in sensor technology. Ad-hoc WLAN
is unstable, something we experienced during implementation. Hard work is needed in
order to make this technology reliable and user friendly.

We also found, during the design of PocketFlow, that context can be integrated into a
workflow system without having to extend the WfMC reference model. Nødtvedt and
Nguyen had another approach in their master thesis and concluded that an extension is
needed (context information integration interface) [39]. By using standard constructs such
as workflow applications, exception handlers, and workflow clients in concert we achieve
the same goal. We believe this is a better approach since any workflow enactment system
potentially can be made context-aware

17.3 Adaptive Workflow

An adaptive workflow system must be able to respond to context changes by generating
activities which update the workflow enactment according to specified rules and facts in

121

Conclusion

an expert system. These workflow changes must be communicated to other workflow
clients. If each workflow client have its own expert system with a knowledge base and
this knowledge is distributed, such adaptive workflow may give rise to learning among the
workflow clients in the environment. We believe an expert system based adaptive workflow
enactment service is a good solution to the problem, and that the PocketFlow prototype
should be able to solve this.

17.4 PocketFlow

We strongly believe the PocketFlow prototype is a good foundation for further exploration
of context-aware adaptive workflow systems. Since it is developed for PDAs, it is easy to
deploy in a realistic environment. Testing in a lab setting should give more answers to the
usefulness of this research.

The PocketFlow is currently able to interpret and enact adaptive context-aware workflow
processes on a PDA. This workflow process enactment is able to generate new activities
based on a set of rules in an expert system and integrate them into the running workflow
process. While we are not able to connect to real context-sources as mentioned in Chapter
13.4, the prototype is able to interpret context information in a meaningful way.

122

Part VIII

Appendix

123

124

Appendix A

Tools

Here we present the tools used when developing the PocketFlow proof-of-concept proto-
type.

A.1 Programming Tools

Programming tools include all tools used during development.

A.1.1 Embedded Visual Studio

Embedded Visual Studio is a specialised version of Visual Studio based on Visual Studio
6. It only supports development in Embedded Visual C++. Embedded Visual Studio 3
supports PocketPC 2002 development, while Embedded Visual Studio 4 supports Pock-
etPC 2003 and PocketPC 2003 SE development. Since we must code in eVC++, Visual
Studio 2005 would have been the perfect choice, but sadly it is still in production and
the current beta version (as of 2005.02.8) is not stable enough for development. Hence we
must choose Embedded Visual Studio 4.

A.1.2 CCCC

The C and C++ Code Counter (CCCC)1 is an effective tool for analysing code. It gives
an overview of useful software metrics related to object oriented design and structural
dependencies.

A.1.3 Doxygen

Doxygen is a documentation system for C++, C, Java, and other programming languages.
It can generate documentation from documented source files and extract code structure
from undocumented source files.

A.2 Modelling Tools

Modelling tools are used for UML modelling, flowcharts and ad-hoc diagrams.
1http://sourceforge.net/projects/cccc

125

Tools

A.2.1 Together Architect

Borland’s Together Architect is a tool for designing software solutions using UML. It
supports round-trip engineering which is very useful when using it with Visual Studio.

A.2.2 Visio

Microsoft Visio is used for high-level design when UML is not suitable. The UML imple-
mentation in Visio 2003 is not good enough, but Visio provide support for other types of
diagrams.

126

Appendix B

Class Diagrams

This appendix present the main class diagrams for the PocketFlow implementation. For
more details, see the source code and documentation on the accompanying CD-ROM
(appendix I).

B.1 WCIS Package

Figure B.1 shows the most important classes in the Workflow Context Integration Service
and the relationships among them.

B.2 FWES and WCIS Connection

Figure B.2 shows the connection between the FWES and the WCIS. Note that the con-
nection is implemented purely through interfaces.

B.3 FWES Package

Figure B.3 gives an overview of the main Fragment Workflow Enactment Service classes
and their relationships.

B.3.1 Enactment Representation Package

Figure B.4 shows the class diagram for the enactment representation.

127

Class Diagrams

Figure B.1: WCIS class diagram

128

B.3 FWES Package

Figure B.2: FWES and WCIS connection class diagram

Figure B.3: FWES class diagram

129

Class Diagrams

Figure B.4: Enactment representation class diagram

130

Appendix C

Workflow Fragments XML Schema

Listing C shows the XML schema used for the workflow fragments XML file. The any
element at line 12 is any valid XPDL element.

Listing C.1: Workflow fragments XML schema
1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <!−−
3 Schema for Workflow Fragments xml file.
4 −−>
5 <xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
6 <xsd:element name=”WorkflowFragment”>
7 <xsd:attribute name=”id” type=”xsd:string” use=”required” />
8 <xsd:attribute name=”type” type=”xsd:string” use=”required” />
9 <xsd:complexType>

10 <xsd:sequence>
11 <xsd:element ref=”Depends” minOccurs=”0” maxOccurs=”1” />
12 <xsd:any minOccurs=”1” maxOccurs=”1” />
13 </xsd:sequence>
14 </xsd:complexType>
15 </xsd:element>
16 <xsd:element name=”Depends”>
17 <xsd:complexType>
18 <xsdd:element ref=”WorkflowFragmentRef” minOccurs=”0” />
19 </xsd:complexType>
20 </xsd:element>
21 <xsd:element name=”WorkflowFragmentRef”>
22 <xsd:attribute name=”id” type=”xsd:string” use=”required” />
23 </xsd:element>
24 </xsd:schema>

131

Workflow Fragments XML Schema

132

Appendix D

Actual Parameters XML Schema

Listing D shows the XML schema we used to replace the original XPDL schema for the
ActualParameters element. This was done because XPDL does not support sending arrays
as actual parameters.

Listing D.1: Actual parameters XML schema
1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <!−−
3 Schema for the ActualParameters XPDL element.
4 −−>
5 <xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
6 <xsd:element name=”ActualParameters”>
7 <xsd:complexType>
8 <xsd:sequence>
9 <xsd:element ref=”ActualParameter” minOccurs=”0” />

10 </xsd:sequence>
11 </xsd:complexType>
12 </xsd:element>
13 <xsd:element name=”ActualParameter”>
14 <xsd:attribute name=”Index” type=”xsd:integer” />
15 <xsd:complexType>
16 <xsd:choice>
17 <xsd:element ref=”ArrayValue” minOccurs=”0” />
18 <xsd:element ref=”BasicValue” minOccurs=”0” />
19 </xsd:choice>
20 </xsd:complexType>
21 </xsd:element>
22 <xsd:element name=”ArrayValue”>
23 <xsd:complexType>
24 <xsd:sequence>
25 <xsd:element ref=”ArrayItem” minOccurs=”0” />
26 </xsd:sequence>
27 </xsd:complexType>
28 </xsd:element>
29 <xsd:element name=”BasicValue” type=”xsd:string” />
30 <xsd:element name=”ArrayItem” type=”xsd:string” />
31 </xsd:schema>

133

Actual Parameters XML Schema

134

Appendix E

XPDL Template Example

Listing F.1 shows an example workflow process. We call this workflow process context-
aware since it uses a WCIS workflow application.

Listing E.1: XPDL example XML document
1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <Package xmlns=”http://www.wfmc.org/2002/XPDL1.0” xmlns:xpdl=”http://www.wfmc.org

/2002/XPDL1.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance” xmlns:xyz=”
http://www.xyzeorder.com/workflow” xsi:schemaLocation=”http://www.wfmc.org/2002/
XPDL1.0 http://wfmc.org/standards/docs/TC−1025 schema 10 xpdl.xsd” Id=”0” Name=”
sample workflow process”>

3 <PackageHeader>
4 <XPDLVersion>0.09</XPDLVersion>
5 <Vendor>mowass</Vendor>
6 </PackageHeader>
7 <WorkflowProcesses>
8 <WorkflowProcess Id=”1” Name=”paintjob” AccessLevel=”PUBLIC”>
9 <ProcessHeader />

10 <FormalParameters />
11 <DataFields>
12 <DataField Id=”roomTemperatureReading” IsArray=”false”>
13 <DataType>
14 <BasicType Type=”FLOAT” />
15 </DataType>
16 <InitialValue>−1</InitialValue>
17 </DataField>
18 </DataFields>
19 <Participants>
20 <Participant Id=”painter”>
21 <ParticipantType Type=”HUMAN” />
22 <Description>Person in room</Description>
23 </Participant>
24 </Participants>
25 <Applications>
26 <!−− WCIS = Workflow Context Integration Service −−>
27 <Application Id=”WCISSetup”>
28 <FormalParameters>

135

XPDL Template Example

29 <FormalParameter Id=”sensorLookupTable” Index=”1” Mode=”IN”>
30 <DataType>
31 <ArrayType DataTypes=”STRING” />
32 </DataType>
33 </FormalParameter>
34 <FormalParameter Id=”actuatorLookupTable” Index=”2” Mode=”IN”>
35 <DataType>
36 <ArrayType DataTypes=”STRING” />
37 </DataType>
38 </FormalParameter>
39 </FormalParameters>
40 </Application>
41 </Applications>
42 <Activities>
43 <Activity Id=”init”>
44 <Description>initialize applications</Description>
45 <Implementation>
46 <Tool Id=”WCISSetup” Type=”APPLICATION”>
47 <ActualParameters>
48 <!−− this is an extension to the XPDL standard! −−>
49 <!−− http://www.openbusinessengine.org/wiki/Wiki.jsp?page=

XPDLIssues: 55.) The DataField IsArray attribute provides
for array−typed process attributes, but (neglecting the
deprecated ArrayType) it is impossible to describe a
FormalParameter as an array type, or even to define a
DeclaredType which is an array. These limitations make it
impossible to pass arrays to tools or sub−flows. MUST −−
>

50 <ActualParameter Index=”1”>
51 <ArrayValue>
52 <ArrayItem>roomTemperatureReading</ArrayItem>
53 </ArrayValue>
54 </ActualParameter>
55 </ActualParameters>
56 </Tool>
57 </Implementation>
58 </Activity>
59 <Activity Id=”paint”>
60 <Description>manual paint job</Description>
61 <Implementation>
62 <No/>
63 </Implementation>
64 <Performer>painter</Performer>
65 </Activity>
66 </Activities>
67 <Transitions>
68 <Transition Id=”1” From=”init” To=”paint”>
69 <Condition TYPE=”CONDITION”>getDataFieldValue(”

roomTemperatureReading”) > 20</Condition>>
70 </Transition>
71 </Transitions>
72 </WorkflowProcess>

136

73 </WorkflowProcesses>
74 </Package>

137

XPDL Template Example

138

Appendix F

Workflow Fragments File Example

Listing F.1 shows an example workflow fragments file.

Listing F.1: Workflow fragments file example
1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <!−−
3 The fragments have access to this external information:
4 Transitions:
5 First transition use the From value from the Transition exception.
6 Last transition use the To value from the Transition exception.
7

8 Activities:
9 May use the performer from the Activity found by using the From value from the Transition

exception.
10

11 Transitions:
12 May use the condition from the Transition exception.
13 −−>
14 <WorkflowFragements>
15 <WorkflowFragment id=”splitter1” type=”ACTIVITY”>
16 <Activity Id=”splitter1”>
17 <Description>just a simple splitter</Description>
18 <Route />
19 <TransitionRestrictions>
20 <TransitionRestriction>
21 <Split Type=”AND”>
22 <TransitionRefs>
23 <TransitionRef Id=”transition2”/>
24 <TransitionRef Id=”transition3”/>
25 </TransitionRefs>
26 </Split>
27 </TransitionRestriction>
28 </TransitionRestrictions>
29 </Activity>
30 </WorkflowFragment>
31

32 <WorkflowFragment id=”turnOnHeater1” type=”ACTIVITY”>

139

Workflow Fragments File Example

33 <Activity Id=”turnOnHeater1”>
34 <Description>manual activity for turning on heater 1</Description>
35 <Implementation>
36 <No/>
37 </Implementation>
38 <Performer>?</Performer>
39 </Activity>
40 </WorkflowFragment>
41

42 <WorkflowFragment id=”turnOnHeater2” type=”ACTIVITY”>
43 <Depends>
44 <WorkflowFragmentRef id=”WCISActuator” />
45 </Depends>
46 <Activity Id=”turnOnHeater2”>
47 <Implementation>
48 <Tool Id=”WCISActuator” Type=”APPLICATION”>
49 <!−− this is an extension to the XPDL standard! −−>
50 <ActualParameters>
51 <ActualParameter Index=”1”>
52 <BasicValue>heater2PowerSwitch</BasicValue>
53 </ActualParameter>
54 <ActualParameter Index=”2”>
55 <BasicValue>on</BasicValue>
56 </ActualParameter>
57 </ActualParameters>
58 </Tool>
59 </Implementation>
60 </Activity>
61 </WorkflowFragment>
62

63 <WorkflowFragment id=”turnOffHeater1” type=”ACTIVITY”>
64 <Activity Id=”turnOffHeater1”>
65 <Implementation>
66 <No/>
67 </Implementation>
68 <Performer>?</Performer>
69 </Activity>
70 </WorkflowFragment>
71

72 <WorkflowFragment id=”turnOffHeater2” type=”ACTIVITY”>
73 <Depends>
74 <WorkflowFragmentRef id=”WCISActuator” />
75 </Depends>
76 <Activity Id=”turnOffHeater2”>
77 <Implementation>
78 <Tool Id=”WCISActuator” Type=”APPLICATION”>
79 <!−− this is an extension to the XPDL standard! −−>
80 <ActualParameters>
81 <ActualParameter Index=”1”>
82 <BasicValue>heater2PowerSwitch</BasicValue>
83 </ActualParameter>
84 <ActualParameter Index=”2”>

140

85 <BasicValue>off</BasicValue>
86 </ActualParameter>
87 </ActualParameters>
88 </Tool>
89 </Implementation>
90 </Activity>
91 </WorkflowFragment>
92

93 <WorkflowFragment id=”merge1” type=”ACTIVITY”>
94 <Activity Id=”merge1”>
95 <Route/>
96 <TransitionRestrictions>
97 <TransitionRestriction>
98 <Join Type=”AND” />
99 </TransitionRestriction>

100 </TransitionRestrictions>
101 </Activity>
102 </WorkflowFragment>
103

104 <WorkflowFragment id=”transition1” type=”TRANSITION”>
105 <Transition Id=”transition1” From=”?” To=”splitter1” />
106 </WorkflowFragment>
107

108 <WorkflowFragment id=”transition2” type=”TRANSITION”>
109 <Transition Id=”transition2” From=”splitter1” To=”turnOnHeater1” />
110 </WorkflowFragment>
111

112 <WorkflowFragment id=”transition3” type=”TRANSITION”>
113 <Transition Id=”transition3” From=”splitter1” To=”turnOnHeater2” />
114 </WorkflowFragment>
115

116 <WorkflowFragment id=”transition4” type=”TRANSITION”>
117 <Transition Id=”transition4” From=”turnOnHeater1” To=”turnOffHeater1”>
118 <Condition TYPE=”CONDITION”>?</Condition>>
119 </Transition>
120 </WorkflowFragment>
121

122 <WorkflowFragment id=”transition5” type=”TRANSITION”>
123 <Transition Id=”transition5” From=”turnOnHeater2” To=”turnOffHeater2”>
124 <Condition TYPE=”CONDITION”>?</Condition>
125 </Transition>
126 </WorkflowFragment>
127

128 <WorkflowFragment id=”transition6” type=”TRANSITION”>
129 <Transition Id=”transition6” From=”turnOffHeater1” To=”merge1” />
130 </WorkflowFragment>
131

132 <WorkflowFragment id=”transition7” type=”TRANSITION”>
133 <Transition Id=”transition7” From=”turnOffHeater2” To=”merge1” />
134 </WorkflowFragment>
135

136 <WorkflowFragment id=”transition8” type=”TRANSITION”>

141

Workflow Fragments File Example

137 <Transition Id=”transition7” From=”merge1” To=”?” />
138 </WorkflowFragment>
139

140 <WorkflowFragment id=”heater1IsOn” type=”DATAFIELD”>
141 <DataField Id=”heater1IsOn” IsArray=”false”>
142 <DataType>
143 <BasicType Type=”BOOLEAN” />
144 </DataType>
145 <InitialValue>false</InitialValue>
146 </DataField>
147 </WorkflowFragment>
148

149 <WorkflowFragment id=”heater2IsOn” type=”DATAFIELD”>
150 <DataField Id=”heater2IsOn” IsArray=”false”>
151 <DataType>
152 <BasicType Type=”BOOLEAN” />
153 </DataType>
154 <InitialValue>false</InitialValue>
155 </DataField>
156 </WorkflowFragment>
157

158 <WorkflowFragment id=”WCISActuator” type=”APPLICATION”>
159 <Application Id=”WCISActuator”>
160 <FormalParameters>
161 <FormalParameter Id=”actuatorId” Index=”1” Mode=”IN”>
162 <DataType>
163 <BasicType Type=”STRING” />
164 </DataType>
165 </FormalParameter>
166 <FormalParameter Id=”actuatorCommand” Index=”2” Mode=”IN”>
167 <DataType>
168 <BasicType Type=”STRING” />
169 </DataType>
170 </FormalParameter>
171 </FormalParameters>
172 </Application>
173 </WorkflowFragment>
174 </WorkflowFragements>

142

Appendix G

CLIPS Knowledge Base

Listing G shows the knowledge base used during workflow enactment in PocketFlow. It is
very simple and used only to test the generation of activities in the workflow enactment.

Listing G.1: CLIPS knowledge base
1 ;;∗∗∗
2 ;; Simple Knowledge base for a work process which controls temperature
3 ;;∗∗∗
4

5

6 (deftemplate ciTemplate
7 (slot contextIntegrator (type EXTERNAL−ADDRESS))
8)
9

10 ; Definition of facts
11 (deftemplate room facts
12 (slot heater (type SYMBOL) (default off)) ; Actuator: heater status
13 (slot temperature (type INTEGER) (default 0)) ; Room temperature sensor reading
14 (slot maxTemperature (type INTEGER) (default 20)) ; Ideal room temperature
15 (slot paintingRobot (type SYMBOL) (default ready)) ; The state of the painting robot
16 (slot workflowFragmentId (type INTEGER) (default 0)) ; Workflow fragment
17 (slot generateActivity (type SYMBOL) (default yes)) ; Activity generation only once
18)
19

20 ; Initial values for room facts
21 (deffacts room facts
22 (heater off)
23 (temperature 0)
24 (maxTemperature 20)
25 (paintingRobot ready)
26)
27

28 ; Initial value for generateActivity
29 (deffacts generateActivity fact
30 (generateActivity yes)
31)
32

143

CLIPS Knowledge Base

33 ; Rule for turning heater on when temperature is low (Actuation)
34 (defrule rule−turn−heater−on
35 ?f1 <− (heater off)
36 (room facts (maxTemperature ?maxTemp))
37 (room facts (temperature ?temp))
38 (> ?maxTemp ?temp)
39 ?f2 <− (generateActivity yes)
40 ?exception <− (transitionException ?transitionId)
41 =>
42 (assert (heater on))
43 (retract ?f1)
44 (retract ?f2)
45 (printout t ”Heater is turned on”)
46 (generateNewActivity ”transition1” ?transitionId)
47 (retract ?exception)
48)
49

50 ; Rule for turning heater off when temperature is high (Actuation)
51 (defrule rule−turn−heater−Off
52 ?f1 <− (heater on)
53 (room facts (maxTemperature ?maxTemp))
54 (room facts (temperature ?temp))
55 (> ?maxTemp ?temp)
56 =>
57 (assert (heater off))
58 (retract ?f1)
59 (printout t ”heater is turned off”)
60 (generateNewActivity workflowFragmentId)
61)
62

63 ; Rule for testing
64 (defrule rule−testing
65 (wearetesting true)
66 (ciTemplate (contextIntegrator ?value))
67 =>
68 (printout t ”testing started...”)
69 (printout t ?value)
70)

144

Appendix H

Context-Aware Workflow Example

The log file in Listing H.1 is printed to the file system when enacting the context-aware
workflow shown in Figure H.1. This is a simple workflow where the first activity sets up
sensors and actuators by using a context-aware workflow application. After this is done
the transition to the paint activity is evaluated. Since the “roomTemperatureReading”
data field currently has the value “-1” a transition exception is created. This transition
exception is caught by the CLIPS expert system which generates new activities. The
workflow will now look like Figure H.2 and is enacted. We have used the GUI to control
the manual part of the workflow process.

Figure H.1: Context-aware workflow

Figure H.2: Context-aware workflow after transition exception

See Appendix E for the XPDL template, Appendix F for the workflow fragments, and
Appendix G for the CLIPS knowledge base used in this workflow.

Listing H.1: Log file
1 ===
2 Log is started on 06.06.2005, at 16:18:11:000, executable: \GUI.exe (ProcID: 0x52db727e),

compile time : Jun 6 2005 14:53:00

145

Context-Aware Workflow Example

3 ContextIntegrator::start()
4 WorkflowFragmentLoader::setFragmentsFilePath()
5 WorkflowFragmentLoader::setFragmentsFilePath(); File path = \workflowFragments.xml
6 ContextIntegrator::initialiseExpertSystem()
7 ClipsSupport::initializeEnvironment()
8 ClipsSupport::defineFunction2(); Function name: generateNewActivity
9 ClipsSupport::load(); File name: \KnowledgeBase.CLP

10 ClipsSupport::reset()
11 ContextIntegrator::ContextIntegratorThread(); Thread started
12 WorkflowEnactmentService::loadWorkflowProcess()
13 WorkflowProcessExecuter::loadProcess()
14 WorkflowProcessExecuter::start()
15 WorkflowEnactmentService::notifyWorkflowStatusChange()
16 WorkflowProcessExecuter::ProcessExecuterThread(); Thread was started
17 WorkflowProcessExecuter::addRunningActivity(); Activity Id: init
18 WorkflowEnactmentService::registerActivity()
19 WorkflowEnactmentService::notifyActivityStarting()
20 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
21 WorkflowProcessExecuter::ActivityExecuterThread(); Thread started
22 WorkflowProcessExecuter::ActivityExecuterThread(); IMPLEMENTATION TYPE TOOL
23 WorkflowProcessExecuter::ActivityExecuterThread(); TOOL TYPE APPLICATION
24 WorkflowProcessExecuter::executeApplication()
25 WorkflowEnactmentService::executeApplication()
26 WorkflowEnactmentService::executeApplication(); Trying to find the application with Id ”

WCISSetup”
27 Setup::application execute(); WorkflowProcess Id: 1
28 ContextIntegrator::subscribeToSensor()
29 WorkflowProcessExecuter::ActivityExecuterThread(); Activity Id=init
30 WorkflowProcessExecuter::ActivityExecuterThread(); Thread ended Activity Id=init
31 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY COMPLETED ACTIVITY
32 WorkflowProcessExecuter::evaluateActivityTransition(); Activity Id: init
33 WorkflowProcessExecuter::evaluateActivityTransition(); No transition restrictions
34 WorkflowProcessExecuter::evaluateTransition(); Transitions id=1, from=init, to=paint
35 ScriptSupport(); Initializing Lua
36 LuaWorkflowProcess::evaluateCondition()
37 ScriptSupport::doString(); Lua script: wp result = (getDataFieldValue(”

roomTemperatureReading”) > 20)
38 LuaWorkflowProcess::lua getDataFieldValue()
39 LuaWorkflowProcess::lua getDataFieldValue(); DataField Id==roomTemperatureReading
40 LuaWorkflowProcess::getDataFieldValue(); DataType was BasicType
41 ScriptSupport(); Closing Lua
42 WorkflowProcessExecuter::evaluateTransition(); Transition condition not satisfied.
43 WorkflowProcessExecuter::removeRunningActivity(); Activity Id: init
44 WorkflowEnactmentService::notifyActivityEnded()
45 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
46 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY TRANSITION EXCEPTION
47 ContextExceptionHandler::handleException()
48 ContextExceptionHandler::handleException(); Message: whoho! FIXME, Transition Id: 1
49 ContextIntegrator::handleTransitionException()
50 ClipsSupport::assertString(); Fact: (transitionException ”1”)

146

51 ClipsSupport::run()
52 ClipsSupport; From stdout: Heater is turned on
53 ContextIntegrator::clipsGenerateNewActivity()
54 ContextIntegrator::clipsGenerateNewActivity(); Fragment id: transition1, Original transition id:

1
55 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
56 ContextIntegrator::ContextIntegratorThread(); Create new activity, Transition fragment id=

transition1, Original transition id=1
57 ContextIntegrator::generateNewActivity()
58 WorkflowProcessExecuter::suspend()
59 WorkflowEnactmentService::notifyWorkflowStatusChange()
60 WorkflowFragmentLoader::loadFirstTransition()
61 WorkflowFragmentLoader::loadTransition(); Transition fragment Id: transition1
62 WorkflowFragmentLoader::loadDependencies()
63 WorkflowFragmentLoader::loadTransition(); Adding transition with Id: transition1
64 WorkflowFragmentLoader::loadActivity(); Activity fragment Id: splitter1
65 WorkflowFragmentLoader::loadDependencies()
66 WorkflowFragmentLoader::loadActivity(); Has transition restrictions
67 WorkflowFragmentLoader::loadTransition(); Transition fragment Id: transition2
68 WorkflowFragmentLoader::loadDependencies()
69 WorkflowFragmentLoader::loadTransition(); Adding transition with Id: transition2
70 WorkflowFragmentLoader::loadActivity(); Activity fragment Id: turnOnHeater1
71 WorkflowFragmentLoader::loadDependencies()
72 WorkflowFragmentLoader::loadActivity(); No split transition restriction
73 WorkflowFragmentLoader::loadTransitionByFrom(); From: turnOnHeater1
74 WorkflowFragmentLoader::loadDependencies()
75 WorkflowFragmentLoader::loadTransition(); Adding transition with Id: transition4
76 WorkflowFragmentLoader::loadActivity(); Activity fragment Id: turnOffHeater1
77 WorkflowFragmentLoader::loadDependencies()
78 WorkflowFragmentLoader::loadActivity(); No split transition restriction
79 WorkflowFragmentLoader::loadTransitionByFrom(); From: turnOffHeater1
80 WorkflowFragmentLoader::loadDependencies()
81 WorkflowFragmentLoader::loadTransition(); Adding transition with Id: transition6
82 WorkflowFragmentLoader::loadActivity(); Activity fragment Id: merge1
83 WorkflowFragmentLoader::loadDependencies()
84 WorkflowFragmentLoader::loadActivity(); Has transition restrictions
85 WorkflowFragmentLoader::loadActivity(); No split transition restriction
86 WorkflowFragmentLoader::loadTransitionByFrom(); From: merge1
87 WorkflowFragmentLoader::loadDependencies()
88 WorkflowFragmentLoader::loadTransition(); Adding transition with Id: transition7
89 WorkflowFragmentLoader::loadTransition(); Transition fragment Id: transition3
90 WorkflowFragmentLoader::loadDependencies()
91 WorkflowFragmentLoader::loadTransition(); Adding transition with Id: transition3
92 WorkflowFragmentLoader::loadActivity(); Activity fragment Id: turnOnHeater2
93 WorkflowFragmentLoader::loadDependencies()
94 WorkflowFragmentLoader::loadDependencies(): Has dependency with id: WCISActuator
95 WorkflowFragmentLoader::loadDependencies(); Found fragment with id: WCISActuator and

type: APPLICATION
96 WorkflowFragmentLoader::loadDependencies()
97 WorkflowFragmentLoader::loadActivity(); No split transition restriction
98 WorkflowFragmentLoader::loadTransitionByFrom(); From: turnOnHeater2
99 WorkflowFragmentLoader::loadDependencies()

147

Context-Aware Workflow Example

100 WorkflowFragmentLoader::loadTransition(); Adding transition with Id: transition5
101 WorkflowFragmentLoader::loadActivity(); Activity fragment Id: turnOffHeater2
102 WorkflowFragmentLoader::loadDependencies()
103 WorkflowFragmentLoader::loadDependencies(): Has dependency with id: WCISActuator
104 WorkflowFragmentLoader::loadDependencies(); Found fragment with id: WCISActuator and

type: APPLICATION
105 WorkflowFragmentLoader::loadDependencies()
106 WorkflowFragmentLoader::loadActivity(); No split transition restriction
107 WorkflowFragmentLoader::loadTransitionByFrom(); From: turnOffHeater2
108 WorkflowFragmentLoader::loadDependencies()
109 WorkflowFragmentLoader::loadTransition(); Adding transition with Id: transition7
110 WorkflowFragmentLoader::loadActivity(); Activity fragment Id: merge1
111 WorkflowFragmentLoader::loadActivity(); The activity fragment was already loaded.
112 WorkflowEnactmentService::updateTransition()
113 WorkflowProcessExecuter::evaluateNewTransition()
114 WorkflowProcessExecuter::resume()
115 WorkflowEnactmentService::notifyWorkflowStatusChange()
116 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY EVALUATE NEW TRANSITION
117 WorkflowProcessExecuter::evaluateTransition(); Transitions id=transition1, from=init, to=

splitter1
118 WorkflowProcessExecuter::evaluateTransition(); No condition, setting satisfied = true
119 WorkflowProcessExecuter::addRunningActivity(); Activity Id: splitter1
120 WorkflowEnactmentService::registerActivity()
121 WorkflowEnactmentService::notifyActivityStarting()
122 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
123 WorkflowProcessExecuter::ActivityExecuterThread(); Thread started
124 WorkflowProcessExecuter::ActivityExecuterThread(); IMPLEMENTATION TYPE NO
125 WorkflowProcessExecuter::ActivityExecuterThread(); Activity Id=splitter1
126 WorkflowProcessExecuter::ActivityExecuterThread(); Thread ended Activity Id=splitter1
127 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY COMPLETED ACTIVITY
128 WorkflowProcessExecuter::evaluateActivityTransition(); Activity Id: splitter1
129 WorkflowProcessExecuter::evaluateActivityTransition(); Has transition restrictions
130 WorkflowProcessExecuter::evaluateSplitRestriction()
131 WorkflowProcessExecuter::evaluateTransition(); Transitions id=transition2, from=splitter1, to=

turnOnHeater1
132 WorkflowProcessExecuter::evaluateTransition(); No condition, setting satisfied = true
133 WorkflowProcessExecuter::addRunningActivity(); Activity Id: turnOnHeater1
134 WorkflowEnactmentService::registerActivity()
135 WorkflowProcessExecuter::ActivityExecuterThread(); Thread started
136 WorkflowEnactmentService::notifyActivityStarting()
137 WorkflowProcessExecuter::evaluateTransition(); Transitions id=transition3, from=splitter1, to=

turnOnHeater2
138 WorkflowProcessExecuter::evaluateTransition(); No condition, setting satisfied = true
139 WorkflowProcessExecuter::addRunningActivity(); Activity Id: turnOnHeater2
140 WorkflowEnactmentService::registerActivity()
141 WorkflowEnactmentService::notifyActivityStarting()
142 WorkflowProcessExecuter::evaluateActivityTransition(); No transition
143 WorkflowProcessExecuter::removeRunningActivity(); Activity Id: splitter1
144 WorkflowEnactmentService::notifyActivityEnded()
145 WorkflowProcessExecuter::ActivityExecuterThread(); Thread started

148

146 WorkflowProcessExecuter::ActivityExecuterThread(); IMPLEMENTATION TYPE TOOL
147 WorkflowProcessExecuter::ActivityExecuterThread(); TOOL TYPE APPLICATION
148 WorkflowProcessExecuter::executeApplication()
149 WorkflowEnactmentService::executeApplication()
150 WorkflowEnactmentService::executeApplication(); Trying to find the application with Id ”

WCISActuator”
151 Actuator::application execute()
152 ContextIntegrator::executeActuatorCommand()
153 WorkflowProcessExecuter::ActivityExecuterThread(); Activity Id=turnOnHeater2
154 WorkflowProcessExecuter::ActivityExecuterThread(); Thread ended Activity Id=turnOnHeater2
155 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
156 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY COMPLETED ACTIVITY
157 WorkflowProcessExecuter::evaluateActivityTransition(); Activity Id: turnOnHeater2
158 WorkflowProcessExecuter::evaluateActivityTransition(); No transition restrictions
159 WorkflowProcessExecuter::evaluateTransition(); Transitions id=transition5, from=

turnOnHeater2, to=turnOffHeater2
160 ScriptSupport(); Initializing Lua
161 LuaWorkflowProcess::evaluateCondition()
162 ScriptSupport::doString(); Lua script: wp result = (getDataFieldValue(”

roomTemperatureReading”) > 20)
163 LuaWorkflowProcess::lua getDataFieldValue()
164 LuaWorkflowProcess::lua getDataFieldValue(); DataField Id==roomTemperatureReading
165 LuaWorkflowProcess::getDataFieldValue(); DataType was BasicType
166 ScriptSupport(); Closing Lua
167 WorkflowProcessExecuter::evaluateTransition(); Transition condition not satisfied.
168 WorkflowProcessExecuter::removeRunningActivity(); Activity Id: turnOnHeater2
169 WorkflowEnactmentService::notifyActivityEnded()
170 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
171 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY TRANSITION EXCEPTION
172 ContextExceptionHandler::handleException()
173 ContextExceptionHandler::handleException(); Message: whoho! FIXME, Transition Id:

transition5
174 ContextIntegrator::handleTransitionException()
175 ClipsSupport::assertString(); Fact: (transitionException ”transition5”)
176 ClipsSupport::run()
177 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
178 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY DATA FIELD UPDATED
179 WorkflowProcessExecuter::evaluateDataField()
180 ScriptSupport(); Initializing Lua
181 LuaWorkflowProcess::evaluateCondition()
182 ScriptSupport::doString(); Lua script: wp result = (getDataFieldValue(”

roomTemperatureReading”) > 20)
183 LuaWorkflowProcess::lua getDataFieldValue()
184 LuaWorkflowProcess::lua getDataFieldValue(); DataField Id==roomTemperatureReading
185 LuaWorkflowProcess::getDataFieldValue(); DataType was BasicType
186 ScriptSupport(); Closing Lua
187 WorkflowProcessExecuter::evaluateDataField(); The transition is now satisfied
188 WorkflowProcessExecuter::evaluateTransition(); Transitions id=transition5, from=

turnOnHeater2, to=turnOffHeater2

149

Context-Aware Workflow Example

189 WorkflowProcessExecuter::addRunningActivity(); Activity Id: turnOffHeater2
190 WorkflowEnactmentService::registerActivity()
191 WorkflowEnactmentService::notifyActivityStarting()
192 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
193 WorkflowProcessExecuter::ActivityExecuterThread(); Thread started
194 WorkflowProcessExecuter::ActivityExecuterThread(); IMPLEMENTATION TYPE TOOL
195 WorkflowProcessExecuter::ActivityExecuterThread(); TOOL TYPE APPLICATION
196 WorkflowProcessExecuter::executeApplication()
197 WorkflowEnactmentService::executeApplication()
198 WorkflowEnactmentService::executeApplication(); Trying to find the application with Id ”

WCISActuator”
199 Actuator::application execute()
200 ContextIntegrator::executeActuatorCommand()
201 WorkflowProcessExecuter::ActivityExecuterThread(); Activity Id=turnOffHeater2
202 WorkflowProcessExecuter::ActivityExecuterThread(); Thread ended Activity Id=turnOffHeater2
203 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY COMPLETED ACTIVITY
204 WorkflowProcessExecuter::evaluateActivityTransition(); Activity Id: turnOffHeater2
205 WorkflowProcessExecuter::evaluateActivityTransition(); No transition restrictions
206 WorkflowProcessExecuter::evaluateTransition(); Transitions id=transition7, from=

turnOffHeater2, to=merge1
207 WorkflowProcessExecuter::evaluateTransition(); No condition, setting satisfied = true
208 WorkflowProcessExecuter::evaluateTransition(); Has join transitions restriction
209 WorkflowProcessExecuter::evaluateJoinTransition(); Transitions id=transition7, from=

turnOffHeater2, to=merge1
210 WorkflowProcessExecuter::evaluateTransition(); Transition with id transition7 must wait for join
211 WorkflowProcessExecuter::removeRunningActivity(); Activity Id: turnOffHeater2
212 WorkflowEnactmentService::notifyActivityEnded()
213 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
214 WorkflowEnactmentService::notifyCompletedActivity()
215 WorkflowProcessExecuter::notifyCompletedActivity();
216 WorkflowProcessExecuter::ActivityExecuterThread(); Activity Id=turnOnHeater1
217 WorkflowProcessExecuter::ActivityExecuterThread(); Thread ended Activity Id=turnOnHeater1
218 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY COMPLETED ACTIVITY
219 WorkflowProcessExecuter::evaluateActivityTransition(); Activity Id: turnOnHeater1
220 WorkflowProcessExecuter::evaluateActivityTransition(); No transition restrictions
221 WorkflowProcessExecuter::evaluateTransition(); Transitions id=transition4, from=

turnOnHeater1, to=turnOffHeater1
222 ScriptSupport(); Initializing Lua
223 LuaWorkflowProcess::evaluateCondition()
224 ScriptSupport::doString(); Lua script: wp result = (getDataFieldValue(”

roomTemperatureReading”) > 20)
225 LuaWorkflowProcess::lua getDataFieldValue()
226 LuaWorkflowProcess::lua getDataFieldValue(); DataField Id==roomTemperatureReading
227 LuaWorkflowProcess::getDataFieldValue(); DataType was BasicType
228 ScriptSupport(); Closing Lua
229 WorkflowProcessExecuter::evaluateTransition(); Transition condition satisfied.
230 WorkflowProcessExecuter::addRunningActivity(); Activity Id: turnOffHeater1
231 WorkflowEnactmentService::registerActivity()
232 WorkflowProcessExecuter::ActivityExecuterThread(); Thread started
233 WorkflowEnactmentService::notifyActivityStarting()

150

234 WorkflowProcessExecuter::removeRunningActivity(); Activity Id: turnOnHeater1
235 WorkflowEnactmentService::notifyActivityEnded()
236 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
237 WorkflowEnactmentService::notifyCompletedActivity()
238 WorkflowProcessExecuter::notifyCompletedActivity();
239 WorkflowProcessExecuter::ActivityExecuterThread(); Activity Id=turnOffHeater1
240 WorkflowProcessExecuter::ActivityExecuterThread(); Thread ended Activity Id=turnOffHeater1
241 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY COMPLETED ACTIVITY
242 WorkflowProcessExecuter::evaluateActivityTransition(); Activity Id: turnOffHeater1
243 WorkflowProcessExecuter::evaluateActivityTransition(); No transition restrictions
244 WorkflowProcessExecuter::evaluateTransition(); Transitions id=transition6, from=

turnOffHeater1, to=merge1
245 WorkflowProcessExecuter::evaluateTransition(); No condition, setting satisfied = true
246 WorkflowProcessExecuter::evaluateTransition(); Has join transitions restriction
247 WorkflowProcessExecuter::evaluateJoinTransition(); Transitions id=transition6, from=

turnOffHeater1, to=merge1
248 WorkflowProcessExecuter::addRunningActivity(); Activity Id: merge1
249 WorkflowEnactmentService::registerActivity()
250 WorkflowEnactmentService::notifyActivityStarting()
251 WorkflowProcessExecuter::removeRunningActivity(); Activity Id: turnOffHeater1
252 WorkflowEnactmentService::notifyActivityEnded()
253 WorkflowProcessExecuter::ActivityExecuterThread(); Thread started
254 WorkflowProcessExecuter::ActivityExecuterThread(); IMPLEMENTATION TYPE NO
255 WorkflowProcessExecuter::ActivityExecuterThread(); Activity Id=merge1
256 WorkflowProcessExecuter::ActivityExecuterThread(); Thread ended Activity Id=merge1
257 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
258 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY COMPLETED ACTIVITY
259 WorkflowProcessExecuter::evaluateActivityTransition(); Activity Id: merge1
260 WorkflowProcessExecuter::evaluateActivityTransition(); Has transition restrictions
261 WorkflowProcessExecuter::evaluateTransition(); Transitions id=transition7, from=merge1, to=

paint
262 WorkflowProcessExecuter::evaluateTransition(); No condition, setting satisfied = true
263 WorkflowProcessExecuter::addRunningActivity(); Activity Id: paint
264 WorkflowEnactmentService::registerActivity()
265 WorkflowProcessExecuter::ActivityExecuterThread(); Thread started
266 WorkflowEnactmentService::notifyActivityStarting()
267 WorkflowProcessExecuter::removeRunningActivity(); Activity Id: merge1
268 WorkflowEnactmentService::notifyActivityEnded()
269 WorkflowProcessExecuter::ProcessExecuterThread(); Has more activities or waiting transitions
270 WorkflowEnactmentService::notifyCompletedActivity()
271 WorkflowProcessExecuter::notifyCompletedActivity();
272 WorkflowProcessExecuter::ActivityExecuterThread(); Activity Id=paint
273 WorkflowProcessExecuter::ActivityExecuterThread(); Thread ended Activity Id=paint
274 WorkflowProcessExecuter::ProcessExecuterThread();

THRD MESSAGE NOTIFY COMPLETED ACTIVITY
275 WorkflowProcessExecuter::evaluateActivityTransition(); Activity Id: paint
276 WorkflowProcessExecuter::evaluateActivityTransition(); No transition restrictions
277 WorkflowProcessExecuter::evaluateActivityTransition(); No transition
278 WorkflowProcessExecuter::removeRunningActivity(); Activity Id: paint
279 WorkflowEnactmentService::notifyActivityEnded()

151

Context-Aware Workflow Example

280 WorkflowEnactmentService::notifyWorkflowStatusChange()
281 WorkflowProcessExecuter::ProcessExecuterThread(); Thread ended
282 WorkflowEnactmentService::clearWorkflowProcess()
283 WorkflowEnactmentService::clearWorkflowProcess()
284 WorkflowProcessExecuter::stop()

152

Appendix I

CD-ROM

The accompanying CD-ROM constains

• the code for PocketFlow and other dependencies: Note that you must select Pock-
etPC2003 as the target environment to be able to build the application.

• the WorkflowClient API documentation: Doxygen generated documentation for the
source code for the WorkflowClient part of PocketFlow.

• the WorkflowClient CCCC documentation: The CCCC documentation described in
Chapter 13.

To start the main menu select the index.html file and open it in your favourite web
browser.

153

CD-ROM

154

Appendix J

Glossary

Actuator

An object that can perform some action. It may be a physical object, an application
invocation, or something more abstract like a workflow activity.

Activity

A description of a piece of work that forms one logical step within a process. An activity
may be a manual activity, which does not support computer automation, or a workflow
(automated) activity. A workflow activity requires human and/or machine resources(s) to
support process execution; where human resource is required an activity is allocated to a
workflow participant.

Activity Instance

The representation of an activity within a (single) enactment of a process, i.e. within a
process instance.

Activity Theory

A formal theory of human work activities and a philosophical framework for studying
human work practices.

Business Process

A set of one or more linked procedures or activities which collectively realise a business ob-
jective or policy goal, normally within the context of an organisational structure, defining
functional roles and relationships.

CLIPS

C Language Integrated Production System.

CORTEX

CO-operating Real-time senTient objects: architecture and EXperimental evaluation.

COTS

155

Glossary

Commercial Off The shelf Software.

CWIS

Cooperative Workflow Integration Service.

eVC++

embedded Visual C++.

FEL

Filter Event Language

FWES

Fragment Workflow Enactment Service.

MOWAHS

MObile Work Across Heterogeneous Systems.

PDA

Personal Digital Assistant.

Process Definition

The representation of a business process in a form which supports automated manipulation,
such as modelling, or enactment by a workflow management system. The process definition
consists of a network of activities and their relationships, criteria to indicate the start
and termination of the process, and information about the individual activities, such as
participants, associated IT applications and data, etc.

Process Instance

The representation of a single enactment of a process, or activity within a process, including
its associated data. Each instance represents a separate thread of execution of the process
or activity, which may be controlled independently and will have its own internal state
and externally visible identity, which may be used as a handle, for example, to record or
retrieve audit data relating to the individual enactment.

PSM

Publish-subscribe middleware.

Sentient Object

Mobile, intelligent software component which is able to sense its environment via sensors
and react to sensed information via actuators.

Ubiquitous Computing

An environment where computers are integrated seamlessly into the environment, are
aware of their surroundings, and can adapt their behaviour accordingly as proposed by
Weiser [60].

WCIS

156

Workflow Client Integration Service

Workflow

The automation of a business process, in whole or part, during which documents, infor-
mation or tasks are passed from one participant to another for action, according to a set
of procedural rules.

Workflow Management System

A system that defines, creates, and manages the execution of workflows through the use of
software, running on one or more workflow engines, which is able to interpret the process
definition, interact with workflow participants and, where required, invoke the use of IT
tools and applications.

WLAN

Wireless Local Area Network.

XML

eXtensible Markup Language.

XPDL

XML Process Definition Language, standard used to describe workflow.

157

Bibliography

[1] ACM. Association for Computing Machinery portal. http://www.portal.acm.org/,
Accessed June 7th 2005.

[2] Michael Adams, David Edmond, and Arthur H.M. ter Hofstede. The
application of activity theory to dynamic workflow adaptation issues.
http://sky.fit.qut.edu.au/ adamsmj/The Application of Activity Theory to Dy-
namic Workflow Adaptation Issues.pdf.

[3] Manuel Armada and Pablo Gonzales de Santos. Climbing and walking robots for the
maritim industries. http://www.ensieta.fr/naval design/CCIV ma.pdf.

[4] Vijayalakshmi Atluri and Soon Ae Chun. Handling Dynamic Changes in Decentralized
Workflow Execution Environments. pages 813–825, 2003. LNCS 2736.

[5] Jakob E. Bardram. Plans as Situated Action: An Activity Theory Approach to
Workflow Systems. In 5th European Conference on Computer Supported Cooperative
Work, Lancaster University, UK, 7-11 September 1997. Kluwer Academic Publishers.

[6] Victoria Bellotti and Keith Edwards. Intelligibility and Accountability: Human Con-
siderations in Context-Aware Systems. Human-Computer Interaction (HCI) Journal.
Special Issue: Context-Aware Computing, 16(2–4):193–212, 2001.

[7] Gregory Biegel and Vinny Cahill. A Framework for Developing Mobile, Context-aware
Applications. In Second IEEE International Conference on Pervasive Computing and
Communications (PerCom’04), pages 361–365, Orlando, Florida, March 14-17 2004.
IEEE Computer Society Press.

[8] Jorge Cardoso, Zongwei Luo, John Miller, Amit Sheth, and Krys Kochut. Survivabil-
ity architecture for workflow management systems. In Proceedings of the 39th Annual
ACM Southeast Conference (ACMSE’01), pages 207–216, 2001.

[9] Shyam R. Chidamber and Chris F. Kemerer. Towards a metrics suite for object
oriented design. volume 26, pages 197–211, New York, NY, USA, 1991. ACM Press.

[10] Michael Clarke, Gordon S. Blair, Geoff Coulson, and Nikolaos Parlavantzas. An
Efficient Component Model for the Construction of Adaptive Middleware. In Proc. of
IFIP/ACM Middleware 2001, Heidelberg, Germany, November 2001. IEEE CS Press.

158

BIBLIOGRAPHY

[11] The Workflow Management Coalition. Workflow Management Coalition - Terminol-
ogy & Glossary. Technical report, The Workflow Management Coalition (WfMC),
February 1999. Document Number WFMC-TC-1011.

[12] David E. Culler and Wei Hong. Wireless sensor networks: Introduction. Communi-
cations of the ACM, 47(6):30–33, 2004.

[13] Anind K. Dey. Providing Architectural Support for Building Context-Aware Applica-
tions. PhD thesis, College of Computing, Georgia Institute of Technology, Atlanta,
GA, USA, December 2000.

[14] Anind K. Dey and Gregory D. Abowd. Towards a Better Understanding of Context
and Context-Awareness. In Workshop on The What, Who, Where, When, and How of
Context-Awareness, as part of the 2000 Conference on Human Factors in Computing
Systems (CHI 2000), The Hague, The Netherlands, April 2000. ACM Press. Also
GVU Technical Report GIT-GVU-99-22.

[15] Adrian Fitzpatrick, Gregory Biegel, Siobhán Clarke, and Vinny Cahill. Towards a
Sentient Object Model. In Workshop on Engineering Context-Aware Object Oriented
Systems and Environments (ECOOSE), Seattle, WA, USA, November 2002.

[16] Martin Fowler. Inversion of control containers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html.

[17] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[19] Mike Grant. Introduction to extreme programming. http://www.acm.jhu.edu/peer-
teach/xp/xp.pdf.

[20] Saul Greenberg. Context as a Dynamic Construct. Human-Computer Interaction
(HCI) Journal. Special Issue: Context-Aware Computing, 16(2–4):257–268, 2001.

[21] Frode Hauso and Øivind Røed. Adaptive mobile work processes, student depth
project. Technical report, 2004.

[22] Jason Hill, Mike Horton, Ralph Kling, and Lakshman Krishnamurthy. The Platforms
Enabling Wireless Sensor Networks. Communications of the ACM, 47(6):41–46, 2004.

[23] D. Hollingsworth. The Workflow Management Coalition – The Workflow Reference
Model. Technical report, Workflow Management Coalition, Lighthouse Point, Fla.,
January 1995. Technical Report WFMC-TC00-1003, version 1.1.

[24] Ning Hu, Randy K. Smith, and Phillip G. Bradford. Security for fixed sensor networks.
In Proceedings of the 42nd annual Southeast regional conference, pages 212–213. ACM
Press, 2004.

[25] IDI. IDI website. http://www.idi.ntnu.no, Accessed October 7th 2005.

159

BIBLIOGRAPHY

[26] IEEE. IEEE Xplore portal. http://ieeexplore.ieee.org/Xplore/DynWel.jsp, Accessed
June 7th 2005.

[27] Kristoffer Jacobsen. Organizing mobile work processes in pervasive computing envi-
ronments, master thesis. Technical report, 2005.

[28] Peter J. Kammer, Gregory Alan Bolcer, Richard N. Taylor, Arthur S. Hitomi, and
Mark Bergman. Techniques for Supporting Dynamic and Adaptive Workflow. Com-
puter Supported Cooperative Work, 9(3/4):269–292, 2000.

[29] Aker Kværner. Aker verdal. http://www.akerkvaerner.com/Internet/AboutUs/
GroupStructure/FieldDevelopmentEurope/AkerVerdal.htm.

[30] Kalle Lyytinen and Youngjin Yoo. Issues and Challenges in Ubiquitous Computing.
Communications of the ACM, 45(12):62–65, December 2002.

[31] Peter Mangan and Shazia Sadiq. On building workflow models for flexible pro-
cesses. In CRPITS ’02: Proceedings of the thirteenth Australasian conference on
Database technologies, pages 103–109, Darlinghurst, Australia, Australia, 2002. Aus-
tralian Computer Society, Inc.

[32] Peter J. Mangan and Shazia W. Sadiq. A constraint specification aproach to building
flexible workflows. volume 35, pages 21–39, 2003.

[33] Microsoft. MS Embedded Visual C++. http://msdn.microsoft.com/mobility
/othertech/eVisualc/default.aspx, Accessed October 18th 2004.

[34] MOWAHS. MObile Work Across Heterogeneous Systems. Web:
http://www.mowahs.com, 2004.

[35] Bonnie A. Nardi, editor. Context and Consciousness: Activity Theory and Human-
Computer Interaction, pages 69–102. MIT Press, 1996.

[36] Bonnie A. Nardi, editor. Context and Consciousness: Activity Theory and Human-
Computer Interaction, pages 73–76. MIT Press, 1996.

[37] Bonnie A. Nardi, editor. Context and Consciousness: Activity Theory and Human-
Computer Interaction, pages 71–73. MIT Press, 1996.

[38] NTNU. NTNU website. http://www.ntnu.no, Accessed June 6th 2005.

[39] Jon Ole Nødtvedt and Man Hoang Nguyen. Mobility and context-awareness in work-
flow systems. Technical report, Dep. of Computer and Information Science, NTNU,
Norway, June 2004. Diploma thesis (174 p.).

[40] Computer Graphics Technology Group of PUC-Rio. The programming language lua.
http://www.lua.org/.

[41] David L. Parnas. On the criteria to be used in decomposing systems into modules,
pages 411–427. Springer-Verlag New York, Inc., New York, NY, USA, 2002.

160

BIBLIOGRAPHY

[42] Thomas F. La Porta, Krishan K. Sabnani, and Richard D. Gitlin. Challenges for
Nomadic Computing: Mobility Management and Wireless Communications. Mobile
Networks and Applications, 1(1):3–16, 1996.

[43] Gary Riley. CLIPS – A Tool for Building Expert Systems.
http://www.ghg.net/clips/CLIPS.html, 2003.

[44] Kay Römer, Oliver Kasten, and Friedemann Mattern. Middleware Challenges for
Wireless Sensor Networks. ACM SIGMOBILE Mobile Computing and Communica-
tions Review, 6(4):59–61, 2002.

[45] M. Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE Personal
Communications, 8(4):10–17, August 2001.

[46] M. Satyanarayanan. Challenges in Implementing a Context-Aware System. IEEE
Pervasive Computing, 1(3):2–2, July-September 2002.

[47] M. Satyanarayanan. Of Smart Dust and Brilliant Rocks. IEEE Pervasive Computing,
2(4):2–4, October-December 2003.

[48] M. Satyanarayanan. Privacy: The Achilles Heel of Pervasive Computing? IEEE
Pervasive Computing, 2(1):2–3, January-March 2003.

[49] Cite Seer. Cite Seer portal. http://citeseer.ist.psu.edu/, Accessed June 7th 2005.

[50] Springer. Springer portal. http://springerlink.metapress.com/, Accessed June 7th
2005.

[51] Martin Strohbach, Hans Gellersen, Gerd Kortuem, and Christian Kray. Intelligent
Artefacts: An Embedded Systems Approach for Cooperative Assessment of Situa-
tions in the World. In The Sixth International Conference on Ubiquitous Computing
(Ubicomp 2004), Nottingham, England, September 7-10 2004.

[52] Sun Microsystems, Inc. Model-view-controller.
http://java.sun.com/blueprints/patterns/MVC-detailed.html.

[53] Carl-Fredrik Sørensen, Alf Inge Wang, and Reidar Conradi. Support of smart work
processes in context rich environments. Submitted to MOBIS‘2005, Leeds UK.

[54] The IEEE Working Group for WLAN Standards. IEEE 802.11 Wireless Local Area
Networks. http://grouper.ieee.org/groups/802/11/, 2002.

[55] The Workflow Management Coalition. Workflow Process Definition Interface – XML
Process Definition Language, 2002.

[56] The Workflow Management Coalition. Welcome to WFMC. http://www.wfmc.org,
2003.

[57] Universidade de Lisboa, Lancaster University, Trinity College Dublin and Universität
Ulm. CORTEX project homepage. http://cortex.di.fc.ul.pt, 2001.

161

BIBLIOGRAPHY

[58] Earth System Science Center University of Alabama in Huntsville. Sensor Modeling
Language (SensorML). http://vast.uah.edu/SpaceTimeToolkit, Accessed June 7th
2005.

[59] Earth System Science Center University of Alabama in Huntsville. Uni-
versity of Alabama in Huntsville, Earth System Science Center Home Page.
http://vast.nsstc.uah.edu/SensorML/, Accessed June 7th 2005.

[60] Mark Weiser. The Computer for the 21st Century. IEEE Pervasive Computing,
1(1):18–25, January-March 2002. Reprinted from Scientific American, 1991.

[61] Wondermar. Shipyard scenario. http://www.wondermar.net/, Accessed October 18th
2004.

[62] World Wide Web Consortium – W3C. Extensible Markup Language (XML).
http://www.w3.org/XML/, 2002.

[63] Maomao Wu, Adrian Friday, Gordon Blair, Thirunavukkarasu Sivaharan, Paul
Okanda, Hector Duran Limon, Carl-Fredrik Sørensen, Gregory Biegel, and René
Meier. Novel Component Middleware for Building Dependable Sentient Comput-
ing Applications. In Proceedings of the ECOOP’04 Workshop: Component-Oriented
Approaches to Context-Aware Systems, Oslo, Norway, June 14th 2004.

[64] Marvin V. Zelkowitz and Dolores R. Wallace. Experimental Models for Validating
Technology. Computer, 31(5):23–31, May 1998.

162

	I Introduction
	Introduction
	Background
	Motivation
	Problem Definition
	Limitation of Scope
	Outline of the Report
	Readers Guide

	Research Methods
	Research Questions
	Engineering Approach
	Literature Survey
	Scenario Building and Requirement Elicitation
	The XP Development Methodology

	II State-of-the-Art
	Workflow
	Benefits of Workflow Technology
	Workflow Example
	Terminology
	Types of Workflow Systems
	Collaborative
	Ad-Hoc

	WfMC's Workflow Reference Model
	Interface 1: Process Definition
	Interface 2 and 3: Workflow APIs

	Adaptive Workflow and Exception Handling
	Exceptions
	Handling Exceptions
	Adaptive Workflow

	Workflow Modelling
	Summary

	Context-Aware Computer Systems
	Context and Context-Classifications
	Context-Aware Computing
	Challenges in Context-Aware Computing
	Advantages of Context-Aware Computing
	Summary

	Activity Theory and Situated Actions
	Situated Actions
	Activity Theory
	The Basic Principles of Activity Theory
	Principles Derived from Activity Theory

	Situated Planning
	Relevance for Adaptive Mobile Work Processes
	Summary

	Sensors and Actuators
	Sensors Like Dust and Brilliant Rocks
	Wireless Sensor Networks
	SensorML
	Actuators
	Intelligent Artifacts
	Summary

	Development Frameworks
	CORTEX
	The Sentient Object Model
	CORTEX Middleware

	CLIPS
	Lua Language

	III Scenario
	Application Scenario - Aker Verdal
	Current Work Environment
	Work Processes
	Steel Plate Workflow
	Structural Tubular Workflow

	Future Work Environment
	Mobile Robots
	Collaboration
	Impact on Human Work Processes

	IV Requirements
	Requirements for the PocketFlow Prototype
	Functional Requirements
	Basic Workflow System
	Context-Aware Workflow System
	Adaptive Ad-Hoc Workflow System
	Mobility Requirements

	Non-Functional Requirements
	Separation of Concerns
	High Level of Responsiveness
	Connectivity
	Component Harvesting

	COTS Components
	CORTEX Middleware
	CLIPS
	Mobility and Context-Aware Workflow Prototypes

	Technical Constraints
	WfMC Reference Model
	MS Embedded Visual C++
	PocketPC 2003SE Handheld Device

	Discussion

	Use Cases
	PocketFlow Use Case Overview
	Use Case: Enact Workflow
	Use Case: Sensor and Actuator Setup
	Use Case: Generate New Activities
	Use Case: Remove Activities

	Use Case: Cooperating Workflow

	V Architecture and Design
	The PocketFlow Architecture
	Introduction
	Architectural Drivers
	AD1 - Decentralised Workflow Management
	AD2 - Autonomous Workflow Clients
	AD3 - Event Based Asynchronous Communication

	Stakeholders
	High-Level Architecture Overview
	Mobile Worker
	Workflow Client
	GUI
	Fragment Workflow Enactment Service (FWES)
	Workflow Context Integration Service (WCIS)
	Data Storage
	Cooperative Workflow Integration Service (CWIS)
	Context Service
	Sensor
	Actuator Service
	Actuator
	Server-Based Workflow Enactment Service

	The Sentient Object Model and the Intelligent Artifact Paradigm
	Sentient Object Model
	Intelligent Artifact Paradigm

	Limitation of Scope

	Design
	Design Patterns
	Model View Controller Pattern
	Dependency Injection Pattern
	Observer Pattern
	Singleton Pattern

	FWES Package
	Note on Thread of Execution
	IApplication Interface
	IWorkflowClient Interface
	IExceptionHandler Interface
	QueryExecuter Class
	WorkflowEnactmentService Class
	WorkflowProcessExecuter Class
	XPDLLoader Class

	FWES EnactmentRepresentation Package
	FWES Exception Package
	FWES Scripting Package
	WCIS Package
	ContextIntegrator Class
	Interpreter Class
	ContextExceptionHandler Class
	WorkflowFragmentLoader Class

	WCIS Application Package
	Setup Application
	Actuator Application

	Utils Package
	GUI
	Discussion

	VI Implementation and Testing
	Implementation
	Software Metrics
	Summary of High Level Software Metrics
	Object Oriented Design
	Structural Metrics

	Code Samples
	Starting a Context-Aware Workflow Process
	Generating New Activities
	Asserting Transition Exceptions
	Evaluate Activity Transition
	Actuator Workflow Application Execution

	Project Structure
	Encountered Problems

	Testing
	Testing Strategy
	Use of Logging
	Unit Testing with PocketUnit
	FWES
	WCIS
	Utils

	Manual Testing
	Not Tested
	Debugging
	The ASSERT Macro
	Debugging in Embedded Visual Studio

	VII Discussion and Conclusion
	Discussion
	Evaluation of PocketFlow
	Supported Requirements
	Evaluation of the Workflow Enactment
	Evaluation of the Adaptive Workflow Implementation
	Evaluation of the Context Implementation

	Evaluation of the Research Questions
	RQ1
	RQ2
	RQ3

	Evaluation of Research Method

	Further Work
	Prototype Implementation
	Deployment and Testing
	Exploration of Social Aspects

	Conclusion
	Workflow for Mobile Workers
	Context-Awareness in Workflow
	Adaptive Workflow
	PocketFlow

	VIII Appendix
	Tools
	Programming Tools
	Embedded Visual Studio
	CCCC
	Doxygen

	Modelling Tools
	Together Architect
	Visio

	Class Diagrams
	WCIS Package
	FWES and WCIS Connection
	FWES Package
	Enactment Representation Package

	Workflow Fragments XML Schema
	Actual Parameters XML Schema
	XPDL Template Example
	Workflow Fragments File Example
	CLIPS Knowledge Base
	Context-Aware Workflow Example
	CD-ROM
	Glossary

