
Abstract

Atmel is inventing a new microcontroller that is capable of running Java pro-
grams through an implementation of the Java Virtual Machine. Compared to
industry standard PCs the microcontroller has limited processing power and
main memory. When running interactive programs on this microcontroller it is
important that the program interruption time is kept to a minimum.

In a Java Virtual machine the garbage collector is responsible for reclaiming
unused main memory and making it available for the Java program again. This
process creates a program interruption where the Java program is halted and
the garbage collector is working.

At the project start the Atmel Virtual Machine was using the mark-sweep
garbage collector. This garbage collector could produce a program interruption
greater than one second and was not suitable for interactive programs.

The Memory-Constrained Copying algorithm is a new garbage collection
algorithm that is incremental and therefore only collects a little bit of main
memory at a time compared to the implemented mark-sweep garbage collector.

A theoretical comparison of the mark sweep algorithm and the Memory-
Constrained Copying algorithm was performed. This comparison showed that
the mark-sweep algorithm would have a much longer program interruption than
the Memory-Constrained Copying algorithm. The two algorithms should in the-
ory also produce equal throughput. The penalty for the short program interrup-
tion time in the Memory-Constrained Copying algorithm is its high algorithmic
complexity.

After a few modifications to the Virtual Machine, the Memory-Constrained
Copying algorithm was implemented and tested functionally. To test the pro-
gram interruption and throughput of the garbage collection algorithms a set
of benchmarks were chosen. The EDN Embedded Microprocessor Benchmark
Consortium Java benchmark suite was selected as the most accurate benchmarks
available.

The practical comparison of the two garbage collection algorithms showed
that the theoretical comparison was correct. The mark-sweep algorithm pro-
duced in the worst case an interruption of 3 seconds, while the Memory-Constra-
ined Copying algorithm’s maximum program interruption was 44 milliseconds.

The results of the benchmarking confirms the results that the inventors of
the Memory-Constrained Copying algorithm achieved in their test. Their test
was not performed on a microcontroller, but on a standard desktop computer.
This implementation has also confirmed that it is possible to implement the
Memory-Constrained Copying algorithm in a microcontroller.

During the implementation of the Memory-Constrained Copying algorithm
a hardware bug was found in the microcontroller. This bug was identified and
reported so the hardware could be modified.
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Chapter 1

Introduction

This report begins with the project assignment and is followed by an outline of
the following chapters.

1.1 Project assignment

The project assignment can be found below and is followed in this report without
any additions or corrections.

“Java has, in contrast to for example C++, automatic allocation and
deallocation of memory. To be able to reuse memory, objects with
no references have to be collected and reassigned to free memory.
This process is known as garbage collection. Garbage collection is
closely tied with memory allocation, since garbage collection often
is part of or cooperating with memory allocation.

Atmel’s new microcontroller is able to run Java programs by an
implementation of the Java Virtual Machine (JVM). This JVM im-
plementation collects memory with the mark-sweep garbage collec-
tor. This garbage collection algorithm needs to stop the execution
of Java programs for a relatively long time while collecting garbage.
For a microcontroller designed to run interactive Java programs, e.g.
games, this is not preferable.

Memory-Constrained Copying (MC2) is a garbage collection algo-
rithm designed to be used in a microcontroller with a small memory
that runs interactive programs. The algorithm is incremental and
collects just a little bit of the Java memory at a time. This leads to
shorter program interruptions.

The project contains the following tasks:

• Compare the mark-sweep and MC2 garbage collection algo-
rithms.

• Implement the MC2 algorithm in the Atmel Java Virtual Ma-
chine.

1



CHAPTER 1. INTRODUCTION

• Test the implementation.
• Choose a set of relevant applications and benchmarks.
• Compare the program interruption and throughput between the

MC2 and the mark-sweep implementations, using the chosen
applications and benchmarks.”

1.2 Outline

This report is partitioned in two parts. The first part consists of the report itself,
while the second part includes the source code for the MC2 garbage collector
and the white paper for the microcontroller. The second part is not available
for the general public.

This report closely follows the sequence of tasks from the project assignment
and the chronological sequence of the work. The chronological sequence can be
seen in the project schedule in figure 9.1 on page 95. The only exception to this
is the mark-sweep implementation changes. These are included in chapter 4,
although they were completed after the benchmarks were chosen.

After this introduction this report continues with a background chapter,
chapter 2. This chapter will provide information about key concepts from the
project assignment.

In chapter 3 the mark-sweep and MC2 algorithm are described and com-
pared on a theoretical basis. This chapter also includes a pseudo-code for the
algorithms.

A description of the microcontrollers memory system and the modifications
of the Atmel Virtual machine are included in chapter 4. The modifications of
the mark-sweep implementation is also part of this chapter.

The design choices and implemented solutions when implementing the MC2

algorithm are presented in chapter 5.

Chapter 6 describes the test system and the functional test method used
to test that the MC2 implementation was correct. A description of the test
programs and test method are also included in this chapter.

In chapter 7 a set of benchmarks for comparing the program interruption
and throughput of the garbage collection implementations are chosen. This
chapter begins with a selection of candidate benchmarks and is followed by an
evaluation of these before a suitable candidate is chosen.

The results of the benchmarking are found in chapter 8. This chapter in-
cludes a set of test cases and the program interruption time and throughput
results of these tests.

The last chapter in this part of the report, chapter 9, contains the conclusion.
The results, a project experiences and possible future work can be found here.

The second part begins with a description of the files included on the source
code CD, in appendix A. The CD is located in a folder on the last page of this
part.

The last appendix, appendix B, contains a white paper for the new Atmel
microcontroller.
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Chapter 2

Background

This background chapter begins with an introduction to some key concepts
from the project assignment, like Java, garbage collection and microcontrollers.
A short introduction to the Memory-Constrained Copying algorithm is also
included.

The introduction was originally written in the project leading to this diploma
[Amu04], except the Memory-Constrained Copying section. The introduction
found here is a revised edition of the one found in the project report.

2.1 Java

The Memory-Constrained Copying garbage collection algorithm will be imple-
mented in a Java Virtual Machine that implements a specific Java edition. The
Java Virtual Machine runs on a microcontroller that is able to run Java code.
For readers unfamiliar with the Java programming language, Java editions and
the Java Virtual Machine, a short introduction is included here.

This information was gathered from Russel Winder and Graham Roberts
book “Developing Java Software, 2nd edition” [WR00], except the Java editions
section, section 2.1.1. The source of this subsection is “J2ME In A Nutshell, A
Desktop Quick Reference”, by Kim Topley [Top02].

The Java programming language was developed by James Gosling and other
engineers from Sun Microsystems. Java was originally developed to replace
C++ and had these key features:

Object orientation This is a programming language design that aims to make
the programmer represent real-world objects as objects in the program-
ming language.

Platform independence Java programs can be executed on almost every
platform. This is possible by compiling the Java code to an intermedi-
ate Java bytecode. This Java bytecode is then interpreted in a special
program, called the Java Virtual Machine, on the target platform.

3



CHAPTER 2. BACKGROUND

Rich library with networking functions The Java Application Program-
ming Interface (API) comes with many library classes, supporting features
like: networking, input/output, graphical user interface libraries and much
more. The Java API has grown from around 100 classes in the earliest
version (Java version 1.0) to almost 3000 classes in Java 2 version 5, the
newest version.

Execute remote code securely Java also includes a framework for executing
code outside the machine the main program runs on. This enables the
creation of a distributed system. The creators have also taken measures
to make the execution secure.

In addition to these key features, the Java language is also a garbage collected
language. This means that garbage collection (See section 2.2) is a specified
feature of the language.

2.1.1 Java editions

This figure is based on a figure from [Top02].

Figure 2.1: Difference in API between Java editions.

Java is distributed in three editions, targeting many different devices from
mobile phones to big enterprise servers. The main difference between these
editions is in the Java API (See figure 2.1). The three editions are:

Java 2 Enterprise Edition (J2EE)

The enterprise edition is targeting business applications and has a very rich API
library. This library consists of the standard J2SE API, SQL and transaction
support, XML support and servlet support to name a few features.

Java 2 Standard Edition (J2SE)

This Java edition is targeting normal workstation environments and is the main
Java edition.

4
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Java 2 Micro Edition (J2ME)

The J2ME is a stripped down version of the J2SE. It targets mobile phones,
PDAs and other products with a small amount of memory and limited processing
power.

The J2ME market is wide and rich. It was therefore necessary to create two
subsets of the J2ME. A specification of such a subset is called a configuration.
This configuration also includes a specification of what capabilities the processor
running Java has. Today there exists two J2ME configurations: The Connected
Limited Device Configuration (CLDC) and the Connected Device Configuration
(CDC).

In addition to the configurations there exists several profiles. The profiles
extends the functionality of the configurations to make the J2ME usable in
different settings. This arrangement and the existing profiles are shown in figure
2.2.

Profiles are colored grey and configurations are white. This figure is based on
a figure from [Top02].

Figure 2.2: Relationship between profiles and configurations in J2ME.

Connected Limited Device Configuration

A typical CLDC device has minimum 128 kB of ROM, flash memory or RAM
to store the Virtual Machine and Java Program code in. It also has at least 32
kB of RAM to be used by the Virtual Machine.

In the CLDC specification the following features have been removed from
the standard Java API (J2SE) and the Virtual Machine:

Reflection Reflection is a tool that allow programs to determine the class of
an object, get the methods, fields and constructors of a class and allow
the program to run methods in classes that are not known until runtime.
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Weak references Weak references offers the user programs to interact with
the garbage collector in a limited way. An object pointed to by only a
weak reference is always collected when running garbage collection.

Java Native Interface The Java Native Interface (JNI) offers the user to
write code that interacts with the target platform running the Java Vir-
tual Machine. The user writes code (typically in C) and can execute this
by invoking the function as a normal Java method. Native functions still
exists in the library classes, but the user’s interface for native functions
are removed.

Deamon threads and thread groups Deamon threads are automatically ter-
minated if all other non-deamon threads are terminated in the JVM.
Thread groups offers a way to group threads and starting and stopping
these groups.

Object Finalization When the garbage collector collects an object it is sup-
posed to run the finalize() method on all objects. This could in the
worst case lead to that the object resurrects itself by calling a method
that stores a pointer to this object.

Error and exception handling The normal JVM contains many error and
exception classes. These classes are not essential because the JVM never
can recover from an error situation. To save memory these classes have
been removed.

Floating point instructions These instructions are removed from the CLDC
specification of the Java Virtual Machine.

Currently there exists only two CLDC profiles:

Mobile Information Device Profile (MIDP) The MIDP is a CLDC pro-
file specially targeting mobile phones and pagers, but also smaller PDAs.
It extends the CLDC API with a special MIDlet environment, user inter-
face, networking and persistent storage. An application that runs on a
MIDP device is called a MIDlet.

PDA profile The PDA profile is similar to MIDP, but is targeting PDAs with
larger screens and more main memory. The PDA profile makes it possible
to build more sophisticated user interfaces than the MIDP.

Connected Device Configuration

The CDC profile is targeted at devices that has a minimum of 2 MB of memory
and a 32-bit processor. The device is also often directly connected to the Internet
or a local intranet.

A CDC Virtual Machine must implement all the features of the Java 2
Virtual Machine specification [LY99], but have some small differences in the
API.

CDC profiles:
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Foundation profile This profile is the foundation for most of the other CDC
profiles. This profile extends the J2ME CDC API to contain almost all
classes from the J2SE API, except the GUI (Graphical User Interface) and
RMI (described below) classes.

RMI profile RMI stands for Remote Method Invocation. This profile adds a
subset of the J2SE RMI package to the CDC. The RMI package allows
a RMI client to invoke Java methods on an RMI server. Only the client
RMI functions are included, because a CDC device often is used in the
role of a RMI client.

Personal profile The personal profile provides the CDC with a graphical user
interface. This profile is under development.

Game profile The game profile is intended to support gaming software on a
CDC device. This profile is under development.

2.1.2 Running Java programs

To run programs written in Java code, the program first have to be compiled
into a Java classfile containing Java bytecodes. The classfile then has to be
executed in a Java Virtual Machine implementation on the target platform.
This process is shown in figure 2.3.

Figure 2.3: Compiling and running a Java program.

Java Virtual Machine

Java programs are, when compiled, transformed into class files containing Java
bytecodes. To be able to run these Java bytecodes on the target platform,
the platform must have an implementation of the Java Virtual Machine. The
specification of the Java Virtual Machine can be found in the book “The Java
Virtual Machine Specification, second edition” by Lindholm and Yellin [LY99].

The Java Virtual Machine interprets the Java bytecodes and transforms
these into machine instructions that the target platform can understand and
execute. Prior to the execution of the program the Java Virtual Machine has
to do the following:

• Load the class files and API library.
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• Verify the loaded classes.

• Initialize the system library classes.

While running Java bytecodes, the Virtual Machine has some responsibili-
ties: It must perform method invocation, run native methods, perform memory
allocation and run the garbage collector when necessary.

The Java bytecode instruction set does not provide input/output instruc-
tions or memory mapped input/output of any kind. Therefore to be able to
communicate with its surroundings the Java Virtual Machine includes some-
thing called Java native methods.

These methods can be called like any other Java method, but they consist
of code that is native to the platform the Java Virtual Machine is executed on
(often compiled C code). These methods provide the JVM with the ability to
produce textual output or read input from the keyboard, for instance.

2.2 Garbage collection and memory allocation

To understand the different types of garbage collection algorithms one have
to have a understanding of what garbage collection is. A short introduction
to garbage collection is therefore included in this section. This information is
based on [mem05].

Some programming languages, like C, have explicit memory management. In
an explicit memory management system, it is the programmer’s responsibility
to allocate and deallocate memory as needed. Many programming errors stem
from memory allocation/deallocation errors and pointer management. These
errors can be tricky to locate, if your program is of some complexity. Therefore
implicit memory allocation (Garbage collection) was introduced to assist the
programmer. Garbage collection was invented by John McCarty as a part of
the first Lisp system.

In a programming language that supports garbage collection, memory man-
agement becomes an automated task, carried out by the runtime system. The
programmer still has to allocate memory, but deallocation is now carried out by
the system.

Deallocation of memory is carried out either when the memory is full dur-
ing an allocation or at regular intervals. The garbage collector have to scan
through all the references in the system, looking for blocks in the memory that
is unreachable. An unreachable block is an object that no references point to.
If a block is unreachable, then it is of no use to the user program and can be
reassigned to the pool of free memory. A block that is reachable is called a live
block.

Sometimes it can be difficult to separate a reference from an integer, for
instance. This is especially the case when the runtime system does not keep
information about the type of the variable. If this is the case the garbage
collector needs to use a conservative estimate to establish the amount of free
memory. This is called a conservative collector. The opposite, an exact collector,
can calculate the memory exactly.
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2.2.1 Example without garbage collection

This section includes an example which illustrates the problems that can occur
without garbage collection. The example program allocates memory for an array
containing ten integers. This array will only be used inside the procedure and
will be deallocated explicitly at exit. Example code in C is shown in figure 2.4.

1. void main(){
2. int *array;
3. array = (int *)malloc(sizeof(int)*10);
...
10. array[0] = 10;
11. array[1] = 9;
...
20. printf("%i\n" , array[0]);
21. printf("%i\n" , array[1]);
...
30. free(array);
31. return;
32. }

Figure 2.4: Memory management without garbage collection.

In this example an array, capable of holding 10 integers, is allocated from the
heap (Line 3). Later the array is initialized with values, from line number 10.
Then these values are displayed with the printf() function (Line 20). Before
returning from the function, the memory that kept the array is deallocated using
free() in line 30.

If the programmer does not deallocate the memory before exiting (by omit-
ting line 30), the program never reclaims the array. This is often called a memory
leak. If several memory leaks exists in the program, it may run out of memory
after a while.

Another problem occurs if the programmer have changed the pointer by
accident (For example by replacing line 20 and 21 with printf("%i\n" ,
*(array++));) and then deallocated it, believing that it was the original pointer
that was deallocated. This often damages the internal structures the runtime
system uses to keep track of free and used memory. This will confuse the allo-
cator when a new memory block is allocated and the program would eventually
crash.

If a chunk of memory is deallocated prematurely (by calling free() on line
19 instead of line 30, for instance), it creates a dangling pointer (A pointer that
points to unreliable data.). When the program tries to access the object that
the dangling pointer points to, after the object was deallocated, the object may
still be intact. But at a later stage this part of the memory could have been
overwritten. If the program then accesses the object, it will read data that are
incorrect and probably fail.

In a more complex program these errors can be hard to find, because the
consequences can occur at a much later stage (or not at all) and not directly
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after executing the faulty line of code.

2.2.2 Example with garbage collection

This is the same example as the previous, but the code is written in Java, a
language that supports garbage collection (See code in figure 2.5). Although the
code in this example looks somewhat different than in the previous example, all
the lines in this example are semantically equivalent to the corresponding lines
in the previous example.

1. void main(String[] args){
2. int[] array;
3. array = new int[10];
...
10. array[0] = 10;
11. array[1] = 9;
...
20. System.out.println(array[0]);
21. System.out.println(array[1]);
...
31. return;
32. }

Figure 2.5: Memory management with garbage collection.

Notice that in this example line number 30 is missing. In the previous
example this line deallocated the array of integers.

After this method is executed the garbage collector notices that the array
is inaccessible. It is inaccessible because no pointers exists in the system that
is a reference to the array. The only reference existed inside the scope of the
method and were not returned or stored in any way. The garbage collector can
then reclaim this memory and make it available for reuse when invoked. Notice
that the programmer does not need to invoke the garbage collector explicitly.

Memory leaks are avoided because the programmer never have to free the
objects explicitly. This task is the runtime system’s responsibility and it will
never reclaim an object if there still exist a pointer to it. Dangling pointers are
also impossible by the same reason.

2.2.3 Garbage collection algorithms

There are two main types of garbage collection algorithms, tracing algorithms
and reference counting algorithms:

Tracing algorithms Tracing algorithms focus on determining which objects
are reachable and then reclaim all the other objects. This is the most
common type of garbage collector implemented.
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Reference counting algorithms These algorithms focus on determine when
objects become unreachable and collects these when it happens. Reference
counting keeps track of live objects using a counter that counts references
to this object. If the count reaches zero, the object is unreachable and is
reclaimed by the garbage collector.

Both the mark-sweep and Memory-Constrained Copying algorithms are trac-
ing algorithms.

2.3 The Memory-Constrained Copying algorithm

The increasing popularity of Java enable handheld devices, like mobile phones
and PDAs, has created a need for a high performance garbage collector for
devices with a limited amount of processing power and main memory. The
most popular algorithms for such devices are mark-sweep and mark-compact
algorithms [SMB04]. These algorithms suffer from high program interruption
time.

The MC2 algorithm is a new garbage collection algorithm designed specifi-
cally for embedded devices that runs interactive programs. It was invented by
Sachindran, Moss and Berger at the university of Massachusetts. The article
was published in the beginning of 2004 [SMB04].

The only known implementation of this algorithm is the inventor’s test im-
plementation in the Jikes Research Virtual Machine (implementing the J2SE
API) developed by IBM. This runs on a modern desktop computer with a Pen-
tium 4 processor and 512 MB RAM.

The MC2 algorithm has not been tested yet in a real microcontroller with a
Java Virtual Machine implementing the J2ME API. This implementation will
therefore be the first run a real embedded system and will make it possible to
confirm the results presented in the article [SMB04].

The Memory-Constrained Copying algorithm details are presented in section
3.3.

2.4 Microcontrollers

The garbage collection algorithm will be part of a Java Virtual Machine that
runs on a microcontroller. Here follows a short description of microcontrollers
in general. This information is gathered from [Dua98].

A microcontroller is a special component, dedicated to controlling an elec-
tronic device and can be found in devices like dishwashers, cars, CD/MP3-
players and mobile telephones. Microcontrollers have a processor, internal mem-
ory, I/O modules, clock generator and timers (example block diagram in figure
2.6). These controllers are often designed to have a low power consumption
because many of the devices that use microcontrollers are battery powered.

A microcontroller can often be placed directly in the device that it should
control, hooked up to control lines, programmed and then function properly.
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A general purpose microprocessor (found in most personal computers) cannot
function without a large number of supporting components like external mem-
ory, mother board, hard drives, network controllers and so on. Microcontrollers
are therefore more suited to be used in small electronic devices, called embedded
systems.

The picture is copied from [Atm03].

Figure 2.6: Example block diagram of a microcontroller.

2.4.1 Java on a microcontroller

Java ability to “Compile once, run everywhere” makes Java a suitable platform
for creating games and other applications for mobile telephones and other de-
vices that use microcontrollers. The idea is that the producer of a Java program
can create a program package and spread it to all its users by the Internet or
some other means of communication.

The limited capabilities of the microcontroller, both regarding processing
powers and memory size, makes it hard to run Java program efficiently. The
main reasons for this is that the Java byte codes needs to be interpreted to
be executed on must architectures. Garbage collection also reduces the exe-
cution. There have been a discussion recently about if Java is suitable for a
microcontroller, like in [Nis05].
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2.5 Atmel’s 32-bit microcontroller

A short description of the microcontroller that the garbage collection algorithm
is implemented for is presented here. This information is found in [Atm04a].

In appendix B the microcontroller white paper is included for readers in-
terested in this new microcontroller. The white paper in this appendix is the
property of Atmel and is not available for the general public, because it is still
in the late stages of development.

At the time of this writing, the microcontroller is not yet available. The
microcontroller is still in the late stages of development and Atmel has a working
prototype that can run complex programs.

Atmel’s new 32-bit microcontroller is designed for cost-sensitive embedded
applications. It is designed to have a low power consumption and high code
density.

Some key features:

• 32-bit load/store Reduced Instruction Set Computer (RISC) architecture.

• 15 general purpose registers.

• Unified memory model for easy access to the entire data and program
memory space.

• Pipelined architecture.

• Branch prediction.

• Optional extensions for Java, SIMD and coprocessors.

To be able to run Java programs the microcontroller must have a Java Ex-
tension Module (JEM) that enables the microcontroller to run many of the Java
bytecodes directly on the processor. Some bytecodes are too complex to be ex-
ecuted directly and these instructions are “trapped” and executed as a small
RISC program. Below follows an example that shows how trapped bytecodes
are handled.

Figure 2.7 shows a Java program running on the microcontroller. First the
Virtual Machine is initialized. After the initialization is finished, a special retj
instruction is executed. This instruction puts the microcontroller in Java mode,
which enables execution of a Java program containing Java bytecodes. The
microcontroller will now interpret the program as Java bytecodes instead of
RISC instructions.

The Java program executes, but after a few steps a invokestatic command
is executed. This command is too complex to be run in hardware and triggers a
Java trap. The controller is set back to RISC mode and jumps to a predefined
place in the main memory. This place contains a small RISC program that
performs the invokestatic command. After the trap is completed the retj
command is executed again. This takes the controller back into Java mode and
the execution of the Java program continues. After the Java program is finished,
the microcontroller returns to RISC mode.
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Figure 2.7: Java traps.

2.5.1 Atmel’s Java Virtual Machine

In addition to the Java extension module, the microprocessor must have a Java
Virtual Machine to comply with the Java Virtual Machine specification [LY99].
Atmel’s Java Virtual Machine implementation is called the Atmel Virtual Ma-
chine (AVM).

Because the AVM is running on a microprocessor and is implementing the
CLDC spec, a part of the verification process is taken out of the AVM and is
performed by a preverifier (This is shown in figure 2.8). The preverifier makes
the in-device verification faster by including some extra information in the class
file.

A figure of the relationship between the AVM and the Java Extension Module
(JEM) is shown in figure 2.9. The JEM contains the hardware support for the
Java bytecodes. The JEM is also responsible for invoking the correct trap for the
instructions not supported in hardware. Some Java traps perform operations
on objects and must therefore have access to the heap where the objects are
stored. Java traps are also used to invoke other methods and must therefore
have access to the method area. The scheduler is responsible for letting every
thread run once in a while and the garbage collector is responsible for managing
the heap.

At the project start the AVM used an implementation of the mark-sweep
garbage collection algorithm. This algorithm has a too high program interrup-
tion time to be used in combination with interactive programs. Tests done in
the project leading to this diploma showed that the program interruption time
could be greater than one second in some cases.
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Figure 2.8: Compiling and running a Java program for the AVM.

2.6 Background summary

This chapter has described some terms from the project assignment and should
make a reader, with little knowledge of the terms, better suited to understand
this report.

The next chapter will contain a theoretical comparison of the implemented
mark-sweep algorithm and the new MC2 algorithm.
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The grey area to the left represent the software parts of the Virtual Machine,
while the white box to the right represents the hardware module. This figure

is copied from [Atm04b].

Figure 2.9: The relationship between the AVM and the JEM.
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Chapter 3

A theoretical comparison
between the mark-sweep
algorithm and the MC2

algorithm

In the project leading to this diploma the mark-sweep algorithm was imple-
mented in the AVM, despite MC2 being the most suitable algorithm. The rea-
son for this was the hardware changes needed and the complexity of the MC2

algorithm [Amu04].

This chapter examines and compares the mark-sweep and the MC2 algorithm
to try to estimate their relative performance and to get a better understanding
of the new algorithm before implementation.

3.1 A note about pseudo-code

Pseudo-code is a generic way to describe an algorithm without using the syntax
of a programming language. A natural human understandable language (like
English) is used instead. There exists no common standard for pseudo-code and
people have different opinions about how it should be written.

The pseudo-code within this report follows the three standards of good
pseudo-code from Brian Shelburne at the university of Wittenberg [Bri05]:

1. Number each instruction. This is to enforce the notion of an
ordered sequence of operations. Furthermore we introduce a
dot notation (e.g. 3.1 come after 3, but before 4) to number
subordinate operations for conditional and iterative operations.

2. Each instruction should be unambiguous (that is the computing
agent, in this case the reader is capable of carrying out the
instruction) and effectively computable (do-able).
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3. Completeness. Nothing is left out.[Bri05]

An indentation of subordinate instructions is used instead of the dot nota-
tion.

3.2 The mark-sweep algorithm

The mark-sweep algorithm implemented in the AVM is a version of the Deutch-
Schorr-Waite pointer reversal algorithm modified by Thorelli [Tho72],[SW67].
The difference between this version and the original Thorelli modified Deutch-
Schorr-Waite algorithm is that the implemented algorithm does not need a mark
stack in the marking phase and therefore saves memory [Amu04].

In this section the Deutch-Schorr-Waite (DSW) algorithm is examined, in-
stead of the standard mark-sweep algorithm. By comparing the DSW with the
MC2 algorithm one can get a more realistic result because the DSW is the al-
gorithm implemented in the AVM. Information about the standard mark-sweep
algorithm can be found in [Jon96].

Pseudo-code for the mark-sweep algorithm can be found in algorithms 3.1,
3.2, 3.3, 3.4 and 3.5. Because this garbage collection algorithm is a modified
version of an algorithm there exists no pseudo-code for it. The pseudo-code
in this section was therefore written based on the source code for the actual
implementation of the garbage collector.

This algorithm will also be explained in more detail in the following subsec-
tions.

3.2.1 Heap layout

The mark-sweep algorithm does not partition the heap up into different regions,
but stores its objects on an uniform heap. An example mark-sweep heap is
shown in figure 3.1.

Used memory is colored grey and free space is colored white.

Figure 3.1: Heap organization with the mark-sweep algorithm.

Because the mark-sweep algorithm does not compact the heap, fragmenta-
tion can become a problem. Fragmentation occurs when the algorithm reclaims
unreachable memory between live objects. After a long time of execution the
memory can consist of several small holes which no object fits into and thus
wasting a lot of memory.

Figure 3.2 shows an example of fragmentation. In A) the heap contains
four objects occupying the whole heap. B) shows the heap after object 2 has
been reclaimed. Now there is 20 KB of free memory where object 2 used to be.

18



3.2. THE MARK-SWEEP ALGORITHM

Algorithm:allocate(class)1

Comments:This function is called when a new object is allocated.
set freeListElement to first element of free memory block list2

while size of freeListElement is less than size of instance of class do3

next freeListElement4

end5

if no suitable freeListElements found then6

gc()7

set freeListElement to first element of free memory block list8

while size of freeListElement is less than size of instance of class do9

next freeListElement10

end11

if no suitable freeListElements found then12

exit13

end14

end15

make new instance of class at freeListElement16

set objectPointer to point to the new object17

add remaining space of freeListElement to freeList18

return objectPointer19

Algorithm 3.1: Mark-sweep: Pseudo-code for the allocate procedure.

Object 4 is reclaimed in C). If the system now wanted to allocate an object,
40 KB large, this request would be rejected, because no free memory block is
larger than 20 KB.

3.2.2 Memory allocation

Because the free memory can occur in between objects, the mark-sweep garbage
collector needs to keep a list of free memory to manage this free space. When
space for an object is needed, this list is traversed by an insertion algorithm
(Consult [Sta98] for details about insertion algorithms.) until a suitable block
is found.

Algorithm:gc()1

Comments:This function is called from the allocate function when the
heap is full, in intervals or explicitly from the user’s Java
program by the Java method System.gc().

for all root pointers do2

mark(root)3

end4

sweep()5

cleanup()6

Algorithm 3.2: Mark-sweep: Pseudo-code for the gc procedure.
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Figure 3.2: Fragmentation example.

If the insertion algorithm does not find a suitable block for the object to be
allocated in, the garbage collector is invoked. When it finishes, the insertion
algorithm is invoked again. If no free block exists that can hold the object is
found, after garbage collecting, the JVM exits with an error code.

The pseudo-code for the mark-sweep algorithm’s allocation procedure can
be found in algorithm 3.1.

3.2.3 Garbage collection

The mark-sweep algorithm, consists of three phases (pseudo-code in algorithm
3.2):

1. The Mark phase.

2. The Sweep phase.

3. The Cleanup phase.

These phases will be described in detail in the next subsections.

The mark phase The mark phase is the most complex and important part
of the garbage collection algorithm (pseudo-code in algorithm 3.3). Here lies
the differences between the standard implementation and the pointer reversal
algorithm implemented in the AVM.

The mark phase begins with discovering the garbage collection roots. In
Java, the garbage collection roots are stored in static class fields and in each
frame on the call stack. These roots are pointers that points into the heap, and
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defines the source for the graph of live objects. All objects pointed to by the
root pointers are then traversed with the pointer reversal algorithm.

For an object pointed to by a root pointer, all objects reachable by this object
must be marked. When scanning an object, the garbage collector must mark
and scan all objects the scanned object points to. Normally one would need to
keep a stack of objects to keep track of which object to return to and how many
pointers that have been scanned. In the pointer reversal algorithm, the mark
stack is avoided by reversing the line of pointers (Normal pointers in the Java
objects.). To keep track of which pointer that is reversed a counter is stored
in the object header (This header normally just contain the word 0xCAFE). An
example with the pointer reversal algorithm is shown in figure 3.3.

Only pointers are shown in objects. An M in the object header symbolizes the
Mark bit.

Figure 3.3: Pointer reversal example.

In subfigure A) of the example, the garbage collector is scanning object B.
To reach object B, it has previously scanned object A (Pointed to by an object
root.). Both objects A and B therefore have the mark bit set (indicated with an
M in the header). Two pointers are kept, one that points to the current object
(current) and one that points to the previous object (previous).

Observe that the topmost pointer in subfigure A) has been reversed and is
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now pointing towards the object root. Notice that the header in object A also
has been overwritten with a number. This indicates that it was the first pointer
from Object A that was reversed when moving to object B. This information is
necessary to rebuild the pointer graph when retreating from an object.

In the next subfigure the collector starts scanning object C, pointed to by
object B. Before leaving object B it reverses the pointer originally pointing to
object C. This pointer now points to the previous object, A. Object C is marked
after changing the pointer.

In subfigure C) the garbage collector have finished marking object C and
have reversed the pointers again, so that the pointer to object C is restored.
The current pointer now points to object B and the previous pointer points
to object A. In subfigure D) the collector have finished marking. The pointer
originally pointing to A has also been restored. The object tree is now restored
to its original form and all objects in the tree have been marked. All object
headers are also restored.

The sweep phase During the sweep phase the garbage collector scans the
heap and inserts the garbage objects (The ones with the mark bit set to zero)
into the list of free memory. Pseudo-code can be found in algorithm 3.4.

The cleanup phase The cleanup phase (see algorithm 3.5) scans through
every remaining object and clears the mark flag to prepare for the next garbage
collection cycle.

3.3 The Memory-Constrained Copying algorithm

The Memory-Constrained Copying algorithm is a special garbage collection al-
gorithm designed for embedded devices and was developed by Sachindran, Moss
and Berger at the university of Massachusetts [SMB04].

A pseudo-code for the Memory-Constrained Copying algorithm can be found
in algorithms 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11. Except for the nurseryMark()
procedure. This procedure is not specified in the MC2 paper and can be chosen
when implementing the algorithm. The MC2 paper did not include a pseudo-
code of the algorithm (except the write barrier) so the following pseudo-code is
written based on the description of the algorithm in the MC2 paper [SMB04].

A textual description of the MC2 algorithm can also be found in the following
subsections.

3.3.1 Heap layout

The MC2 heap consists of several equal sized windows. One window holds the
newly created objects and is called the nursery. The older objects occupies the
rest of the windows (the old generation windows).

Figure 3.4 shows the MC2 heap organization. The nursery section is the
window to the left, the rest belongs to the old generation.
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Used memory is colored grey and free space is colored white.

Figure 3.4: Heap organization with the MC2 algorithm.

3.3.2 Memory allocation

Memory is allocated from the nursery section of the heap. The objects in the
nursery is allocated serially from one end of the nursery to another. This makes
allocation of object with the MC2 algorithm fast. See pseudo-code in algorithm
3.7.

3.3.3 Garbage collection

Nursery collection (see pseudo-code in algorithm 3.8) happens when the nursery
is running full. The nursery is marked and the marked objects are copied to
the old generation in one sweep. Because the nursery is so small, the program
interruption is kept to a minimum.

After every nursery collection, the collector checks the old generation. If the
old generation is more than 80 percent full it triggers an old generation marking.
This marking is not performed at once, but incrementally: A little bit of the
heap is marked for every nursery allocation (see algorithm 3.9). The collector
calculates how much memory it will need to mark to finish marking before the
old generation has only one empty window left. If this threshold is reached, the
collector stops program execution and marks the rest of the old generation.

During marking the nursery section can run full with new objects and the
nursery must be collected. All live objects from the nursery are then collected
and put in the old generation, with the mark bit set.

When the whole heap is marked, the collector enters the copying state.
With every following nursery allocation, a little bit of old generation copying is
“piggybacked” to the allocation. In the copying phase all live objects are copied
to a new window, except windows with a large number of live objects (e.g. 95%
live objects). These windows are just skipped because the gain in memory is
not worth the time required to copy all the live objects. A pseudo-code for the
old generation marking procedure can be found in algorithm 3.10.

After all live objects have been transferred from a window, the window
is marked as empty and can be filled with new objects. The copying phase
continues until all the objects in the old generation are copied.

An example of a garbage collection cycle with MC2 is shown in figure 3.5.
Subfigure A) shows the initial layout, right after the old generation reached the
80 % occupation mark. To the left is the single nursery window and to its right
are the old generation windows. Because the threshold has been reached, the
garbage collector starts an old generation marking.
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Allocated memory is colored grey, marked objects are colored dark grey and
unallocated memory is white.

Figure 3.5: MC2 garbage collection example.

In subfigure B) a nursery collection has taken place (observe the new marked
objects in the old generation) and some marking have also been done during
nursery allocation. The objects copied to the old generation from the nursery
are automatically marked because they was alive during the nursery collection.
In subfigure C) the whole old generation is marked and there is only one free
window left. This triggers the copying phase.

The copying phase is carried out during nursery allocation. In subfigure D)
the first object has been allocated in the nursery and the live objects from the
first old generation window have been copied to the last old generation window.
The unmarked (unreachable data) is not copied to the new windows. These
objects are just left in the window and eventually overwritten by new objects.

In the last subfigure, all the live data in the old generation is copied to new
windows, discarding unreachable data. Nursery collection can now continue as
normal until the old generation reaches the 80% threshold again and triggers
marking. Observe that window number ten, counting from left to right, has not
been copied. This is because it is a high occupancy window and was therefore
not copied during this phase.
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3.4 Comparison

Atmel’s microcontroller does not have many spare resources when running Java
code, concerning both processing power and main memory. It is therefore vital
that the garbage collection algorithm consumes as little of these resources as
possible.

The algorithms are compared with respect to four measures: memory uti-
lization, program interruption, throughput and algorithmic complexity. Because
Atmel expects this microcontroller to run mostly interactive Java applications
the most critical measure is the program interruption time, followed by the
throughput and at last the memory utilization and the algorithmic complexity.
These priorities stem from [Amu04].

3.4.1 Memory utilization

Some garbage collection algorithms have heap layouts that require them to re-
serve some space for permanent structures managing the heap. Other algorithms
can have a need to reserve some part of the heap to make it possible to move
around objects. In a microcontroller these structures can “waste” valuable heap
space that could have been used to store objects.

The mark-sweep algorithm treats the whole heap as a single unit and does
therefore not need any data structures to manage the heap. Because it does not
move objects around either, it does not need to reserve storage to copy the ob-
jects into and can utilize the heap to its maximum. The mark-sweep algorithm
suffers from fragmentation because it never compacts the heap. Fragmenta-
tion could lead to that the algorithm must terminate the Java Virtual Machine
because it cannot find a suitable room for an object on the heap.

The MC2 algorithm organizes its heap space in equal sized windows, man-
aged by a data structure. This will waste some heap space in each window. The
algorithm will stop user program execution and run the garbage collection until
completion if only one completely free window exists, in the marking phase, and
there is not enough room to allocate new objects in the other windows. One
window is therefore at any time available on the heap. The reason for keeping
one window free is that in the copying phase there must exist one free window
to copy the objects into. This algorithm does not suffer from fragmentation on
an object level, but the window organization of the heap can lead to fragmenta-
tion. The MC2 algorithm can, in contrast to the mark-sweep algorithm, move
objects around and therefore counter this problem.

The MC2 algorithm therefore utilizes the heap memory a little less efficiently
than the mark-sweep algorithm. The amount of memory wasted is depending
of the window size and the size of the data structures. For a heap with e.g.
one nursery and 10 old generation windows the MC2 will be able use around
ten percent less memory for objects. Fragmentation is a problem for both
algorithms, but the MC2 algorithm has an advantage because it can overcome
this fragmentation by compacting the heap.
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3.4.2 Program interruption

Program interruption occurs when the focus of the Central Processing Unit
(CPU) shifts from the user program to another process, like garbage collection.
If these program interruptions are very short the user would not notice, but
longer program interruptions can be very frustrating. Because the AVM is
designed to be used with interactive programs, like games, program interruption
is important.

The mark-sweep algorithm is a typical “stop the world” algorithm. When
garbage collection is triggered it runs until completion, totally regardless of what
other programs that may be running. When the garbage collector encounters
many small, interlinked objects, like in a binary tree, the marking period may
take a substantial amount of time.

The MC2 algorithm is designed to have a short program interruption time.
The incremental design of this algorithm makes it possible for the normal pro-
gram execution to run along with the garbage collector.

The figure 3.6 shows an example of how large the program interruption can
be with the two algorithms. When the mark-sweep garbage collector starts, it
occupies all available CPU time, leaving no time to the user program.

The MC2 algorithm starts its marking when the heap is 80% full. Normal
programs still allocate memory when the garbage collector marks the heap. This
allocation happens more slowly than in the mark-sweep example because the
garbage collector runs in the background. The copy phase also lets the user
program continue as normal and therefore the total garbage collection time for
MC2 is longer than for mark-sweep.

This means that the program interruption of the MC2 is significantly smaller
than the mark-sweep interruption. The MC2 article confirms this:

“The pause times for MC2 is 10-17 times lower than a copying gar-
bage collector and 7-13 times lower than mark-sweep in a heap that
is 1.8 times the program live size[SMB04].”

3.4.3 Throughput

The throughput of the algorithms have an impact on how long time it takes to
execute a program. Although this does not have a great impact for an interactive
program, CPU intensive tasks, like image decoding, are more affected.

The mark-sweep algorithm only marks live objects and attaches unreachable
objects to a free list. It does not therefore create much overhead, when compared
to an algorithm that must copy every live object from one place to another.

The MC2 algorithm has a much greater overhead than the mark-sweep al-
gorithm when garbage collecting. This is mainly because it has to copy every
live object from one window to another in the copy phase. Memory allocation
is much faster because the nursery is managed like a stack, in contrast to the
free list from the mark-sweep algorithm.

The MC2 article reports that the throughput of the algorithm closely matches
the throughput of the mark-sweep algorithm:
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“We compared the performance of MC2 with a non-incremental gen-
erational mark-sweep collector and a generational mark-compact col-
lector, and showed that MC2 provides throughput comparable to that
of both of those collectors [SMB04].”

This could indicate that the loss of throughput in copying is covered by the
gain in memory allocation for the MC2 algorithm.

3.4.4 Algorithmic complexity

The algorithmic complexity is a measure of how complex the algorithm is and
therefore how difficult it is to implement and maintain the algorithm. This is
also called the essential complexity, the complexity in an implementation that
you cannot remove (In opposition to the accidental complexity, which is caused
by the programmer while implementing the algorithm.) [McC93].

The algorithmic complexity of the garbage collection algorithm is directly
cost related. Algorithmic complexity means that it is more difficult to maintain
the implementation and it would require more time and concentration.

The mark-sweep algorithm’s essential complexity is rather low. The garbage
collector is invoked, from the object allocation code, each time the heap runs
full. The algorithm then marks the heap, sweeps it and then returns to the Java
program again.

The MC2 algorithm has a more complex behavior. It is invoked from the
object allocation code, like the mark-sweep algorithm, but it is also invoked
when the write barrier is triggered. The MC2 algorithm deals with a more
complex heap structure and can be in several states, like old generation marking,
old generation copying and normal state.

The MC2 algorithm is therefore a more complex algorithm than mark-sweep.
This could be a problem while implementing and debugging the MC2 algorithm
and one should therefore be very careful not to include accidental complexity
in the MC2 implementation also.

3.5 Comparison summary

The comparison (Summary in table 3.1.) shows that the critical program in-
terruption should be much smaller with the MC2 than with the mark-sweep.
The total execution time should be around equal and the memory utilization
should be a bit smaller with the MC2 algorithm. The MC2 algorithm has a
much higher algorithmic complexity than the mark-sweep algorithm.

The low program interruption of the MC2 algorithm looks very promising
and encourages the implementation of the algorithm, especially because it is a
high priority requirement for the garbage collector. The next chapter contains
a short introduction to the Java memory system in the microcontroller and the
changes performed on the AVM before implementing the MC2 algorithm.
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Algorithm:Mark(Root)1

Comments:This function is called from the gc function to mark an object
root on the heap.

set currentObject to Root2

set previousObject to NIL3

while currentObject not equals NIL do4

if currentObject not marked then5

set mark bit in currentObject6

end7

read counter from header of currentObject8

if counter equals 0xCAFE then9

set counter to 010

end11

while counter is less than number of fields in currentObject and no12

pointers are found do
if currentObject[counter] is an object pointer and this pointer13

points to an unmarked object then
pointer is found14

end15

increase counter with 116

end17

if pointer is found then18

store counter in currentObject’s header19

store pointer to previousObject at currentObject[counter - 1]20

set previousObject to currentObject21

set currentObject to the object pointed to by the pointer found22

else23

set tempObject to currentObject24

set header of currentObject to 0xCAFE25

set currentObject to value of previousObject26

load counter from currentObject’s header27

set previousObject to currentObject[counter - 1]28

set currentObject[counter - 1] to tempObject29

end30

end31

Algorithm 3.3: Mark-sweep: Pseudo-code for the mark procedure.

Algorithm:sweep()1

Comments:This function is called from the gc function after the heap has
been marked.

for all objects on heap do2

if object is not marked then3

insert object into free list4

end5

end6

Algorithm 3.4: Mark-sweep: Pseudo-code for the sweep procedure.
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Algorithm:cleanup()1

Comments:This function is called from the gc function to clean up and
prepare for the next garbage collection.

for all objects on heap do2

clear mark bit in object3

end4

Algorithm 3.5: Mark-sweep: Pseudo-code for the cleanup procedure.

Algorithm:writeBarrierTriggered(sourceObject, targetObject)1

Comments:This function is called when the write barrier is violated. The
pseudo-code for this function was copied from [SMB04]

if sourceObject is not in nursery then2

if targetObject is in nursery then3

set nurseryMark in targetObject4

else5

if state is oldGenerationMarkingState then6

if sourceObject is in old generation and mark bit is set in7

sourceObject then
if mark bit is not set in targetObject then8

push targetObject on mark stack9

end10

end11

end12

end13

end14

Algorithm 3.6: MC2: Pseudo-code for the writeBarrierTriggered func-
tion.

Algorithm:allocate(class)1

Comments:This function is called when a new object is allocated.
if free space in nursery is less than size of instance of class then2

nurseryCollect()3

end4

push a new instance of class on nursery5

set objectPointer to point to new instance6

return objectPointer7

Algorithm 3.7: MC2: Pseudo-code for the allocate function.

29



CHAPTER 3. A THEORETICAL COMPARISON BETWEEN THE
MARK-SWEEP ALGORITHM AND THE MC2 ALGORITHM

Algorithm:nurseryCollect()1

Comments:This function is called from the allocate function when the
nursery is full.

if state equals oldGenerationCopyingState then2

oldGenerationCopy()3

end4

if state equals oldGenerationMarkingState then5

oldGenerationMark()6

end7

for every root pointer in nursery do8

nurseryMark(root object)9

end10

for every marked object in nursery do11

find free oldGenerationWindow12

copy object to oldGenerationWindow13

end14

reset(nursery)15

if oldGenerationMarkThreshold reached then16

set state to oldGenerationMarkingState17

end18

Algorithm 3.8: MC2: Pseudo-code for the nurseryCollect function.
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Algorithm:oldGenerationMark()1

Comments:This function is called from the nursery collector when an old
generation marking increment should be done.

for every root pointer do2

if object pointed to by root is not marked then3

push root on mark stack4

end5

end6

while mark stack not empty and mark threshold not reached do7

set targetObject to object popped from mark stack8

set mark bit in targetObject9

for all objects pointed to by targetObject do10

if object is not marked then11

push object on mark stack12

end13

end14

end15

if mark stack is empty then16

while there exists a window that is not in a group do17

find a set of windows that together can fill up one free window18

with objects
Add these windows to a group19

end20

set state to oldGenerationCopyingState21

end22

Algorithm 3.9: MC2: Pseudo-code for the oldGenerationMark function.

Algorithm:oldGenerationCopy()1

Comments:This function is called from the nursery collector when an old
generation copying increment should be done.

set windowGroup to first window group2

set targetWindow to first free window3

for all windows in windowGroup do4

for all live objects in window do5

copy object to targetWindow6

end7

end8

if no more windowGroups then9

set state to normalState10

end11

Algorithm 3.10: MC2: Pseudo-code for the oldGenerationCopy function.
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Algorithm:gc()1

Comments:This function is called explicitly by the user’s Java program
by the Java method System.gc().

while state equals oldGenerationMarkingState do2

oldGenerationMark()3

end4

while state equals oldGenerationCopyingState do5

oldGenerationCopy()6

end7

nurseryCollect()8

set state to oldGenerationMarkingState9

while state equals oldGenerationMarkingState do10

oldGenerationMark()11

end12

while state equals oldGenerationCopyingState do13

oldGenerationCopy()14

end15

Algorithm 3.11: MC2: Pseudo-code for the gc function.

Measure Priority Mark-sweep Comment
vs. MC2

Program H MC2 best Incremental marking lowers
interruption program interruption.

Throughput M Equal performance The loss from the more
complex GC is gained by
the more efficient alloca-
tion.

Memory
utilization

L Equal performance MC2 must always have one
free window, wasting some
space. MC2 can deal with
fragmentation.

Algorithmic
complexity

L Mark-sweep best MC2 more complex.

Table 3.1: Summary of the comparison between the mark-sweep and the MC2 algo-
rithm.
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The grey line shows how full the heap is and the black line shows the garbage
collection CPU time in each time increment. The M in the MC2 garbage
collection marks the marking phase of the collection and the C marks the

copying phase.

Figure 3.6: Program interruption comparison.
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Chapter 4

Preparations before
implementing the MC2

algorithm

First in this chapter is a little introduction to the Java memory interface for
readers unfamiliar with the AVM. This chapter also includes a description of
the modifications performed on the AVM before the MC2 algorithm could be
implemented.

4.1 Java memory interface

This short introduction covers the object and array structure, the object handles
and special Java instructions designed to assist the garbage collector.

4.1.1 Objects and arrays

The object and array structure at the project start is shown in figure 4.1. Ob-
jects and arrays consists of a header and data. The header is all fields below
the stippled line in the figure.

A description of the object header items is found in table 4.1 and array
header items are found in table 4.2.

4.1.2 Object handles

The handle bit is a part of the status register in the microcontroller. If the
handle bit is not set all object references (including arrays references) are direct
pointers. If the handle bit is set, the references are indirect. This is shown in
figure 4.2.

Because objects are word aligned, the two least significant bits of an object
address will always be zero. To assist the garbage collector it was decided that
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Figure 4.1: Object and array structure.

Field Description
Cafe header The word 0xCAFE.
Lock The lock data structure associated with this

object. When using Java threads a thread can
lock an object and make it impossible to ac-
cess it by other threads.

Size The total size of the object.
Class reference A reference to the class of the object.

Table 4.1: The object header items.

object can only be placed in the user space at addresses lower than 0x4000
0000. This design makes the two most significant bits in the handle zero.

This makes it possible to set status bits for every object. The address of the
real object is obtained by masking away the two most significant and two least
significant bits when accessing an handle. These status bits are shown in figure
4.3 and a short description of these can be found in table 4.3.

To illustrate how the handles work two examples are provided below. One
that does not use handle and one that does. These examples show how a field in
an object is stored using the putfield instruction. The putfield instruction
takes two operands, one pointer to the object to store the field in and the value
to store. In addition to the operands, the putfield instruction is followed by
a two byte index in the Java bytecode. This index is used as an offset to the
object address, when storing the field.

Figure 4.4 shows the code for the implementation of the putfield instruc-
tion. In the code objectref is the second element on the operand stack and
value is the first element. The first line checks if the objectref is a null pointer
and throws a NullPointerException if it is. The line if(SR(H)) checks if the
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Field Description
Cafe header The word 0xCAFE.
Size The total size of the array, including the

header.
Class reference/Tag A class reference if it is an array of objects or

a tag describing an array of primitive types
(e.g. integers).

Array length The number of items in the array.

Table 4.2: The array header items.

Figure 4.2: Object handles.

handle bit is set in the status register. If it is the two next lines accesses the
object handle and masks away the status bits. This address is stored in the
temporary value addr. If the handle bit is not set the objectref is stored di-
rectly in addr. After this the index bytes are added to the addr value and the
value is stored at this location. The last line decreases the Java Operand Stack
Pointer (JOSP) with two. This pops the two operand elements of the stack.

Example without handles

This example shows how fields are stored in an object without using object
handles.

In figure 4.5 an example of the putfield command without using object
handles is shown. In subfigure A) the Java bytecodes are shown to the left. The

Figure 4.3: Object handle with array, immortal and mark bit.
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Bit Description
A The array bit is set to one if the address field

in the handle points to an array.
I The immortal bit tells if the object should be

collected by the garbage collector or not.
M When the garbage collector marks an object

it sets the mark bit to one.
X Unused.

Table 4.3: The object handle status bits.

Instruction format:
putfield(0xB5), indexbyte1, indexbyte2

Operand stack:
..., objectref, value -> ...

if (objectref == NULL)
throw NullPointer exception;

if(SR(H))
R11 <- *objectref;
addr <- (R11 & 0x3FFF FFFC);

else
addr <- objectref;

*(addr + ((indexbyte1 << 8 | indexbyte2) << 2)) <- value;

JOSP <- JOSP - 2;

This code is copied from [Atm04a].

Figure 4.4: Code for the putfield instruction.

program counter (PC in the figure) is pointing to the putfield opcode. On the
Java operand stack the value to be stored (0x0000 0042) is on top of the stack.
Underneath this is the reference to the object to store the value into. These
elements have been put on the stack by the aload 0 and iload 1 bytecodes
found over the putfield bytecode. At the right side of the figure a bit of the
main memory is shown, containing the object pointed to by the object reference
on the stack. This object has four fields all containing the value 0x0000 0000.

In subfigure B) the putfield instruction has been carried out. The program
counter has advanced to the next instruction and the two operands have been
popped of the stack. The value 0x0000 0042 has been stored in field two of
the object, because of the 0x0002 offset after the putfield instruction in the
bytecode.
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Figure 4.5: putfield example without handles.

Example with handles

This example shows how the putfield instruction is carried out when object
handles are enabled.

Figure 4.6 shows the same Java bytecode as in the previous example, but
now object handles are enabled. In subfigure A) the object reference on the
Java operand stack points to an object handle in the main memory, instead of
pointing directly to the object. The handle contains the address to the object
in addition to some special status bits (These status bits are not shown.).

In subfigure B) the field has been stored in the object. To access the object
the object handle pointed to by the object reference must be read. This value
must be masked with the value 0x3FFF FFFC before the real address of the
object appears.

4.1.3 Special Java instructions

The MC2 article [SMB04] mentions that the incremental nature of the marking
can cause trouble when pointers between objects change. This is called a pointer
mutation. It is therefore necessary to record pointer mutations to counter this
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Figure 4.6: putfield example with handles.

error source. The following example (Figure 4.7) shows what can happen if
pointer writes are not recorded.

In subfigure A) both objects 1 and 3 are marked during one increment of
the marking phase. Normal program execution continues and at some point
(subfigure B) in the figure) the pointers in objects 1 and 2 are swapped, making
object 1 point to an unmarked object, object 3. In subfigure C) the marking
continues, but object 4 is never marked because all pointers from object 1 was
scanned in subfigure A) and the marker does not know that the pointer in
object 1 has changed. Object 1 now has the mark bit set and is therefore never
rescanned. Object 4 is then, falsely, reclaimed as garbage in the copy phase,
leaving a dangling pointer behind.

To speed up nursery marking the MC2 paper suggests that one should also
record storing of pointers pointing into the nursery. If such pointers are not
recorded the nursery collector must scan through the whole heap to find all
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This figure is copied from [SMB04].

Figure 4.7: Error during incremental marking.

pointers pointing into the nursery, slowing down the collection enormously. For
example if there is one nursery and ten old generation windows. The number of
handles traversed is ten times greater if one does not record nursery pointers.
This assumes a even distribution of handles among the windows.

writebarrier(sourceObject, sourceSlot, targetObject){
if(sourceObject not in nursery){

if(targetObject in nursery)
record sourceSlot in nursery remset

else if(targetObject in old generation){
if(sourceObject is not mutated){
set mutated bit in sourceObject header
record sourceObject in mutated object list

}
}

}
}

This code was found in [SMB04].

Figure 4.8: code for the MC2 write barrier.

In figure 4.8 the code for the MC2 write barrier is shown. The write barrier
takes care of both storing pointer mutations in marked objects and storing
nursery pointers. Because the write barrier only records storing of pointers
to objects and arrays only three bytecodes are affected. These bytecodes are
described in table 4.4.

Because these instructions are executed directly by the CPU the microcon-
troller hardware had to be modified to support the MC2 algorithm. In the four
sections below the hardware changes made in the microcontroller is described.
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Bytecode Description
putfield This bytecode stores a reference in an object.

It is also used to store integers, floats and
other word-sized variables in an object.

aastore This bytecode stores a pointer in an array of
pointers.

putstatic This instruction is used to store references, in-
tegers and floats to a class in a static context.

Table 4.4: Bytecodes that stores object pointers.

Java Barrier Configuration Register

The Java Barrier Configuration Register (JBCR) stores a pointer to the bound-
ary between the old generation and the nursery. This makes it possible for the
hardware to check if an object lies in the nursery or in the old generation.

To avoid having a separate enable bit for the write barrier, the write barrier
can be disabled by inserting a value greater than 0x3FFF FFFC. The masking
of the status bits in the object handle forces objects to be stored in addresses
lower than 0x3FFF FFFC.

putfield

The putfield bytecode is used to store integers, floating point and other vari-
ables in addition to object references. There is no easy way for the CPU to
know which type the value is at runtime, so every putfield can be a pointer
store.

During linking, the class loader have access to information about what type
is stored by the putfield command. This information is used to change the
bytecode into either putfield quick or putfield2 quick. To be able to only
test for write barrier violation when storing object pointers, a new Java in-
struction is programmed into the microcontroller. This command is called
aputfield quick. The linker must be modified (in software) to substitute
putfield with aputfield quick when storing a pointer in the object.

The MC2 write barrier pseudo-code in figure 4.8 tells that only pointer stores
to objects in the old generation need to be trapped. The boundary between the
nursery and the old generation, stored in the JBCR, can be used by the CPU to
check if the pointer’s value is in the old generation. If it is, the instruction will
be trapped and carried out in software. This reduces the number of trapped
instruction and increases execution speed of the aputfield quick command.

aastore

The aastore command stores an object reference in a pointer array. This
pointer store must also be checked for write barrier violation in the same manner
as aputfield quick.
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This will only require changes in hardware because the aastore bytecode
only is used to store pointers and therefore does not need to be treated differently
in the linker.

putstatic

The putstatic bytecode can be handled entirely in software. The reason for
always processing putstatic in software is that every store to the static fields of
a class is a change of the garbage collection root pointers. These root pointers
changes must always be processed by the garbage collector and is therefore
handled in software.

Write barrier example

The following example shows the write barrier functionality.

Figure 4.9: aputfield quick example with write barrier.
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In figure 4.9 A) the small Java code, on the left side, has been executed until
the aputfield quick instruction was reached. There are now two elements on
the Java operand stack. The topmost item is the element to store in the object
and the object on the bottom is the object to store the element in. The JBCR
points to the border between the old generation and the nursery.

The object reference on the bottom of the stack points to a handle in the
main memory. This handle points to object 1, which lies in the nursery section
of the Java heap. when the aputfield quick command is reached the CPU
will check if the pointer in the handle to the object is greater than the JBCR
register. If it is the CPU will jump to a specific RISC program and execute it.
This can be seen in the aputfield quick code in figure 4.10 on line 5 and 6.
The rest of the code is equal to the code for the putfield quick command.

Instruction format:
aputfield_quick(0xE7), indexbyte1, indexbyte2

Operand stack:
..., objectref, value -> ...

if(objectref == NULL)
throw NullPointer exception;

if(SR(H))
R11 <- *objectref;
if ((R11 & 0x3FFF FFFC) >= JBCR)
TRAP 0;

addr <- (R11 & 0x3fff fffc);
else

addr <- objectref;

*(addr + ((indexbyte1 << 8 |indexbyte2) << 2)) <- value;

JOSP <- JOSP - 2;

Figure 4.10: Code for the aputfield quick instruction.

When the first aputfield quick in the example is executed the CPU ob-
serves that the object lies in the nursery and the aputfield quick instruction
therefore does not violate the write barrier.

In subfigure B) the object reference on the bottom of the stack points to a
handle that points to an object in the old generation. When the CPU executes
this aputfield quick instruction it will notice that the address of the object is
greater than the value in the JBCR register and jump to the write barrier trap
handler.
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4.2 Modifications in the AVM

The AVM was fully functional at the project start and was capable of handling
a garbage collection algorithm. To be able to make the MC2 implementation
efficient some modifications needed to be done. The modifications done to the
AVM was:

• Make the array and object structure similar.

• One common function for allocating objects and handles.

• Fixing the mark-sweep implementation.

These modification is described in greater detail in the following subsections.

4.2.1 Make the array and object structure similar

The object and array structure shown in figure 4.1 on page 36 shows that
the object and array structure is not equal. The Java Virtual Machine spec-
ification [LY99] states that arrays are also objects (A subclass of the class
java.lang.Object). The headers should therefore be equal to be able to treat
arrays as objects. This will also reduce the algorithmic complexity of the gar-
bage collector, because arrays and objects can be treated in a similar manner.

Because arrays also are classes they must have a class data structure that
defines every array class and a reference to a lock object in the array header.
Before the project start arrays just had a string that defined them and no lock
reference.

When moving objects around one need to update the address pointing to the
object in the object’s handle. It is therefore important that locating a specific
object’s handle goes as fast as possible. Earlier this was done by traversing
a list, but when copying several objects this approach becomes too resource
demanding and must therefore be altered.

Implemented changes

The object and array header was made equal by rearranging the fields in the
header and by including a lock object for arrays (See figure 4.11). In addition
to this a reference to the handle was included in the object and array header
to speed up the header location. A description of the items found in the object
and array header is found in table 4.5.

The class structures for array classes will be generated dynamically when
needed to save space.

4.2.2 One common function for allocating objects and han-
dles

At the project start handles and objects were created separately by calling
a function called jmalloc() and halloc(), for object and handle allocation
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Figure 4.11: The new object and array structure.

Field Description
Cafe header The 0xCAFE word marking the beginning of an

object.
Handle reference A reference to the object’s handle.
Lock A reference to a lock data structure.
Class reference A pointer to the class structure of the object.
Length The number of elements in an array or the

number of fields in an object.

Table 4.5: The new object and array header items.

respectively. This created a situation where one could allocate an object and
not a handle for this object and vice versa. The creation of the object header
was left to the function that called jmalloc() and halloc(). This created the
possibility of a situation where the header has not been initialized or a handle
not located for the object.

To make object creation more efficient and secure a common code for allo-
cating objects and handles should be made. This code should return a handle
when the handle bit is enabled and an object reference when the handle bit is
disabled.

Implemented changes

A common assembly macro was created that allocates an object, makes an
object header and returns a handle or an object reference (Depending on the
handle bit.). The reason for using an assembly macro instead of a C procedure
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is that a function call would have reduced the performance of the trap library
significantly. For C functions, the macro is put inside an assembly function.
This assembly function can be called directly from the C code.

When running with garbage collection, the garbage collector’s allocation
code is invoked and allocates memory and a handle for the object.

The fusion of the handle allocation and object allocation code made it neces-
sary to change the garbage collection interface. The garbage collector interface
is an interface in C that every garbage collector must implement. This makes
it easy to make a new garbage collector if necessary. The interface makes it
possible for the linker to change the garbage collection algorithm at compile
time.

This interface now includes the following functions:

void avm initializeHeap() Sets up the heap according to the garbage collec-
tor’s organization of the heap.

void avm collectGarbage() Invokes the garbage collector.

void *avm gcObjectAlloc(Klass *klass, int size, int length, int mask)
Allocates a new object of size size and class klass. The length field tells
the number of fields in the object (if other than in the class data struc-
ture.). A pointer to a handle with the mask bits from mask is returned to
the caller.

int avm freeMemory() Calculates the amount of free memory and returns
it to the caller.

int avm totalMemory() Calculates the amount of total memory and returns
it to the caller.

4.2.3 Fixing the mark-sweep implementation

The rearrangement of the object structure (See section 4.2.1), the rearrange-
ment of the garbage collector interface (See previous section) and the imple-
mentation of threads made it necessary to fix the mark-sweep implementation,
before benchmarking the mark-sweep algorithm against the MC2 algorithm.

Implemented changes

The mark-sweep collector was modified to use a C structure for Java object
headers. A C structure for the free heap space was also implemented. These
changes made it necessary to entirely reimplement the Deutch-Schorr-Waite
marker and the sweep function.

The collector was also modified to implement the garbage collector inter-
face. This was accomplished by removing the avm halloc() function, that allo-
cated an object handle, and including its code in the object allocating function
(avm gcObjectAlloc()).

The change of the object and array structure also made it necessary to
reimplement the avm verifyHeap() function used to verify the heap before and
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after garbage collecting to debug the algorithm. This function is very similar to
the one found in section 6.2.2.

4.3 Preparation summary

This chapter has described the hardware support necessary to make the MC2

algorithm work on the Atmel microcontroller and the software changes made in
the AVM.

After these changes the AVM is now ready to run the MC2 algorithm effi-
ciently. The mark-sweep implementation is also fixed and ready to be bench-
marked against the MC2 algorithm.

The design and implementation details of the MC2 algorithm are presented
in the next chapter.
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Chapter 5

Designing and
implementing the
Memory-Constrained
Copying garbage collector

This chapter covers the implementation of the MC2 garbage collector in the
AVM. Since the algorithm have been described in section 3.3 only design choices
and the implemented solutions are described here.

5.1 Heap layout

The MC2 heap is partitioned in several windows, as shown previously in figure
3.4 on page 23. The window partitioning creates a few design issues that needs
to be solved:

• Data structure to manage the heap windows.

• Managing object handles.

• Handling objects larger than one window.

• Immortal objects.

• Heap management.

• Initial number of windows.

5.1.1 Data structure to manage the heap windows

To manage the heap windows a data structure needs to be created to keep a
record of the type, size and free space in each window. This also makes it easier
to add or remove fields later if necessary.
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Implemented solution

Each heap window will contain a header that contains the items in table .

Field Description
size The size of the window, in bytes.
free The number of free bytes in this window.
type The type of the window, e.g. old generation

window.
current A pointer to the next field to place data in this

window. This pointer points to a place inside
the data array described below. The current
pointer can be used as a stack pointer in each
window, telling the memory system where to
put newly created objects.

occupancy This value displays the number of bytes that
marked objects occupy in this window. If the
occupancy of a window is more than 95% dur-
ing copying, the contents of this window will
not be copied, due to the small gain in free
space and the large overhead.

next A pointer to another window of the same type.
This is used to link together e.g. old genera-
tion windows.

data An array of the data in this window. This is
where objects and handles are stored.

Table 5.1: The heap window data structure.

Each of the elements in the header occupies 4 bytes, so the header totally
occupies 24 bytes of memory (not counting the data array).

A function for allocating windows was also implemented. This function sets
up the window header and allocates enough room for the window on the heap.

5.1.2 Managing object handles

Figure 5.1: Objects and handles on the heap without garbage collection.

In the AVM object handles are, without garbage collection, stored from the
bottom of the heap, while the objects are stored from the top. This is shown in
the figure 5.1. This arrangement is not suitable for the MC2 garbage collector
because of the window partitioning.

When an object handle is created it cannot be moved. If one should move
an object handle the whole heap has to be scanned for pointers to this handle.
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This creates too much overhead to be realized in practise. Therefore the object
handles must be placed where they can stay for the lifetime of the object.

Because object lifetimes differs, there will be free handles among the occupied
handles after garbage collecting. These free handles must be organized in order
to reuse the space.

Implemented solution

The MC2 garbage collector will store its handles in special handle windows on
the heap. Initially one handle window will be allocated, but more windows can
be allocated when needed.

Because free handles exist among the occupied ones, the free handles are
arranged in a linked list to ensure that every handle is reused when deallocated.
The current pointer in the handle window will be used to point to the first
element of this linked list. The list will be terminated with the word 0xFFFF
FFFF. Figure 5.2 shows an example of this list structure.

Figure 5.2: Handle free list example.

When an object is deallocated its handle is then linked into the list of free
handles. This makes the handle window fragmented, but because every han-
dle occupies 4 bytes of memory every fragment in the handle window can be
reused without compacting. A handle window that is completely empty can be
deallocated.

5.1.3 Handling objects larger than one window

When the heap consists of windows of a certain size there must be a way to
handle objects and arrays larger than the size of one window. If such a method
do not exist the Java Virtual Machine would have to exit when trying to allocate
an object larger than one window.

In the MC2 test implementation, by Sachindran, Moss and Berger, all objects
larger than 8 kB are stored in a special region for large objects. If an object is
larger than 8 kB its size is rounded up to a number of pages and placed in this
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region. The rest of the free space in the window are used as space for smaller
objects [SMB04].

Implemented solution

The MC2 solution was implemented and the free space in each window after
placing the large object is used as if it was a normal old generation window.
The large object is automatically promoted to the old generation.

When the large object is collected the window is emptied and deallocated.
Otherwise, if the large object is alive all other objects are copied out of this
window and current pointer is set to point right after the end of the large
object. The window can now store more old generation objects.

5.1.4 Immortal objects

Immortal objects are special Java objects that never should be garbage collected,
even though there does not exist a Java pointer to these from other objects.
Such objects are created by the class loader while dynamically loading a class,
for example.

Because these objects never will be collected it is more convenient to place
these objects in a separate section.

Implemented solution

To have a separate place to store immortal objects, a special heap window for
immortal objects will be created. When an immortal object is allocated it will
be placed directly in this window and is kept there until the AVM exits.

If the window for immortal objects runs full a new window is created and
linked into the list of immortal windows with the next pointer in the window
data structure.

5.1.5 Heap management

Because windows can be allocated and deallocated (like large object windows)
a structure for managing the heap must be kept to ensure that no space is lost
when allocating.

Implemented solution

To manage the heap a new window type is made, the unused window. This
window will contain the space not used by other windows. When allocating a
window a suitable unused window is found and the window is divided into the
window to allocate and a new unused window with the remaining free space.
The unused heap windows will be linked together by the next field in the heap
window data structure.
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If the heap becomes very fragmented, in the old generation copying phase,
windows could be moved from one location to another to defragment the heap.
Because every live object in a window is copied in this phase there is little
extra overhead by performing this operation. Handle windows on the other side
cannot be moved until they are empty. If such a window is mixed in between
other windows defragmentation may become impossible. Therefore all handle
windows are placed from the other end of the heap to reduce the amount of
interference with other windows.

Allocated memory is colored grey, marked objects are colored dark grey and
unallocated memory is white.

Figure 5.3: Heap defragmentation example.

In figure 5.3 an example heap defragmentation is shown. In subfigure A)
the copying phase has just started in the old generation. To simplify nursery
collection is left out of this example. All windows have been marked and the
two large object windows contain only unmarked objects.

In subfigure B) the two large object windows have been collected and con-
verted to a unused window. This creates a hole in the heap between the immortal
window and the old generation window.

In subfigure C) the data in the old generation window to the right in subfigure
B) has been copied to the free old generation window. To defragment the heap
the old generation window was moved next to the immortal window reducing
the number of unused window fragments.
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5.1.6 Initial number and size of windows

When the AVM initializes, it will call a function in the garbage collector interface
called avm initializeHeap(). This function must set up the heap according
to the heap structure for the current garbage collection algorithm.

The MC2 garbage collector must make one nursery window, one window for
immortal objects, one window for handles and some old generation windows.
The size of these windows must also be decided.

Implemented solution

The window size will not be fixed to a certain size, but defined in the config file
for the AVM. The user can therefore change the size of windows to suit his/her
needs.

The initial number of old generation windows will also be user configurable
in the same manner.

During the implementation a window size of 8 kB and 10 old generation
windows will be used, to stress both the nursery and old generation collection.

5.1.7 Heap windows summary

A short summary of the window types, numbers and size are included here in
table 5.2.

Window type Initial number Size
Nursery window 1 Defined in config file.
Old generation window 10 Defined in config file.
Handle window 1 Defined in config file.
Immortal object window 1 Defined in config file.
Large objects window 0 N * 4kB blocks (Must be larger

than large object.).
Unused window 1 Remaining heap space.

Table 5.2: Summary of window types.

5.2 Write barrier trap

During Java program execution the write barrier will detect pointer mutations
in marked objects and the storing of pointers into the nursery. This information
must somehow be stored until the garbage collector is invoked again.

It is also important that this process is as fast as possible. These trapped in-
structions are without the MC2 garbage collector executed directly in hardware.
It is preferable that the write barrier trap therefore does as little as possible.
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Implemented solution

The storing of mutated pointers in already marked objects can only happen
during the old generation marking phase. During the old generation marking
phase a mark stack is present (see section 5.6) and the write barrier can place
the mutated pointer directly on this stack. This will ensure that the garbage
collector scans this object the next time it is invoked.

Nursery objects that are pointed to from the old generation are given a
nursery mark. The remaining unused status bit in the object handle is used
for this purpose. The object handle with all status bits are shown in figure
5.4. When the write barrier is triggered because of the storing of a pointer to
an object in the nursery the nursery object is given the nursery mark by the
barrier.

Figure 5.4: Object handle with array, immortal, mark and nursery mark bit.

5.3 Locating object pointers

When scanning the frame stack or an object there must be a way to tell what
is a pointer to an object and what is not. In the AVM there is no way of telling
during runtime for example what type of value is stored at the top of the stack.
This stack lies in the microcontroller hardware and does not contain any type
information.

The garbage collection algorithm must therefore treat any value as a possible
pointer and is therefore a conservative garbage collector. A method must be
made that checks if a value really is a pointer.

Implemented solution

A function was made that checks if a value points to a valid object handle or
not. If all the following checks succeeds the value can point to a valid object
and must therefore be treated as an object pointer:

• The value points into a handle window.

• The value is pointing to a word boundary. Handles are always stored as
words along the word boundaries.

• The possible pointer points to a place outside the handle window. This
means that it is not part of the handle free list, because a member of the
handle free list will always point into the handle window.
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5.4 Object allocation

When an object needs to be created the object allocation code of the garbage
collector will be invoked. This procedure will allocate room for the object in
either the nursery window, immortal window or in a window for large objects.

5.4.1 Allocating memory from the native library

From the native Java methods it may be necessary to allocate objects on the
Java heap. This can lead to errors when allocating more than one object:

For instance when allocating a Java string a character array is first allocated
and then a string object. When the string object is created the character array
is stored in the string object. If the nursery was full after allocating the array,
the array would be collected when the string object was being allocated because
no reference to the array could be found on the heap. The pointer to the
now collected character array would be stored in the string object, creating a
dangling pointer.

Implemented solution

Every object allocated on the heap in the native library is temporarily made
immortal. After all object pointers have been saved on the frame stack the
objects are made mortal again by a recursive procedure.

5.4.2 Locating nursery handles

When performing nursery collection it is important that locating objects handles
in the nursery is as fast as possible to discover the objects that have been given
the nursery mark.

Another problem is deallocating handles after nursery collection. When the
nursery collection is over there are still handles in the handle windows that
points to the objects in the nursery. These handles must be found and inserted
into a list of free handles to reuse this space.

This information already exists in the list of handles, but scanning through
this list, searching for nursery pointers is a too resource demanding job. The
reason for this is that there are many more handles pointing into the old gener-
ation than there are nursery pointers.

One other solution is to traverse the list of objects in the nursery window
and access the handle from the object header. The problem with this solution
appears when the collector is moving from one object to the next. The size of
the object (including header) used as an offset to the next object is not constant
or very easy to establish. The size field in the header tells only how many fields
there are in the object or array. The class reference must then be consulted
to find the correct size of each field. This value has to be multiplied with the
number of fields and added to the header size.
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Implemented solution

To speed up the locating of nursery handles a list of pointers to the handles are
placed at the other end of the nursery window, growing the other way. This
is shown in figure 5.5. This way locating the handles is a very easy task and
requires a minimum of resources. This comes at the cost of less space for objects
in the nursery.

Figure 5.5: Heap example with nursery handle pointers.

In the proceeding “Object-Oriented Architectural Support for a Java Pro-
cessor” by Vijaykrishnan, Ranganathan, and Gadekarla [VRG98] an average
object size is calculated by running a series of Java benchmarks. They found
that the average object size is 30 bytes (or around 8 words). When including
the object header the average object size becomes 13 words.

This means that in the nursery every 14th word of memory is lost due to the
handle pointer and the available space for objects in the nursery is 7% smaller.

With around ten old generation windows, a nursery window, a handle win-
dow and a window for immortal objects, the total waste of heap space is lower
than 0,5%. In this setting such a small waste is insignificant.

5.5 Nursery collection

The MC2 paper [SMB04] does not mention the garbage collection method used
to copy objects from the nursery to the old generation. One is therefore free to
choose a garbage collection method for this window.

In the project leading to this diploma [Amu04] the copying algorithm and the
mark-copy algorithm was examined. These two algorithms detects live objects
in a region and copies them into another.

The mark-copy algorithm is a modification of the mark-sweep algorithm
where the sweep phase has been replaced by a copy phase. The copy phase
copies all live objects from the current region of the heap into another region.
This requires the region to be scanned twice by the collector, once for mark and
once for copy. The nursery collection is not incremental and can therefore use
the Deutch-Schorr-Waite algorithm for the marking phase (this method does
not require a mark stack).
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The copying algorithm only scans the live objects in the nursery region once.
It uses the already copied objects in the old generation windows as a mark stack
and keeps track of which objects are already scanned with two pointers. When
an object is encountered in the mark stack all objects referred to by this object
is pushed on the stack. This process continues until there are no more items on
the mark stack.

Implemented solution

The copying algorithm looks very promising. It should be faster than the mark-
copy algorithm because it only scans the live objects once. This algorithm
cannot tell, before starting to copy objects, how much space it will require in the
old generation for the live objects. If the old generation runs full during copying
it is not in a consistent state and an old generation collection is impossible. An
old generation copying in the middle of the nursery collection would also have
ruined the mark stack of the algorithm because it is depending on the sequence
of objects.

With the mark-copy algorithm the amount of old generation space needed
is known after marking all live objects. The nursery collector can then check
that there is enough room on the heap and call the old generation collector if
necessary. Therefore the mark-copy collector will be implemented as the nursery
collector.

The Deutsch-Schorr-Waite algorithm like described in section 3.2 is imple-
mented as the marking algorithm. This algorithm will only scan objects in the
nursery and will not follow pointers to objects in other windows.

After every live object in the nursery have been marked all handles that still
points to objects in the nursery must be collected and placed in the handle free
list.

An average of the percentage of nursery object that have survived, the Nurs-
ery Survival rate (NSR), is also kept. This value is used by the old generation
marker.

If the old generation collector is in the marking state, the objects copied to
the old generation windows are marked with the normal mark bit. Pointers to
objects in the old generation that has not been marked are pushed onto the
mark stack if the old generation collector is in the marking state.

5.6 Old generation marking

When the old generation windows are 80% full the marking of the old generation
starts. The garbage collector will then mark a certain amount of bytes between
each nursery collection.

To calculate the amount of bytes to mark the MC2 paper suggests using the
following formula after every nursery collection [SMB04]:

numMarkIncrements = availSpace/(NSR ∗ nurserySize)
markIncrementSize = totalBytesToMark/numMarkIncrements
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totalBytesToMark = totalBytesToMark −markIncrementSize

NSR is the average Nursery Survival Rate, calculated by the nursery collector
every time it is invoked. The availspace variable is the available space in the
old generation when old generation marking is triggered. numMarkIncrements
tells how many nursery collections there will be before the heap runs full. The
totalBytesToMark value is initialized to the size of the windows to mark at the
end of every old generation copying, because in the worst case all objects in the
old generation are live. The markIncrementsSize gives the number of bytes to
mark between the nursery collections.

The reason for calculating this value is that marking should be finished just
when there is no more than one single empty old generation window left of space
in the old generation. The marker has then spread out its marking as much as
it can and therefore created as little program interruption as possible.

Implemented solution

The marking phase starts with putting all root pointers, found in static variables
and the frame stack, onto the mark stack. For every object pointer on the mark
stack the object is scanned and all pointers from this object that is not already
marked are placed on the top of the stack. The marker keeps track of the size
of the marked objects and returns if the number of marked bytes is greater than
markIncrementSize.

Marking terminates when the stack is empty. This puts the garbage collector
in copying mode.

5.6.1 Mark stack

When marking objects in the old generation a mark stack needs to be kept in
order to find out which objects to mark next. This mark stack must be placed
somewhere on the heap or memory must be allocated to keep it.

When scanning large object graphs, the mark stack can overflow. This over-
flow must be detected and dealt with to ensure that no data is lost.

Implemented solution

During the incremental marking the garbage collector will let the normal Java
execution proceed as normal until there is only one empty old generation heap
window left. The reason for this is that in the copying phase one heap window
must be free to have somewhere to put the objects when copying from one
window to another. This window will not be used under the old generation
marking and can therefore contain the mark stack for the marker.

If an overflow in the mark stack window is encountered a new window will be
allocated for this purpose. This window will be deallocated again when empty.
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5.7 Old generation copying

When the copying state is started the occupancy of each window has been
calculated. This number tells the rate of live objects in the window. The
copying starts with grouping these windows into groups that together fills a
whole window. All windows with an occupancy over 95% is considered a high
occupancy window and is not copied. This lowers the program interruption
[SMB04].

In every subsequent nursery collection, the old generation copying “piggy-
backs” the processing of one old generation group. This frees up one old gener-
ation window for the nursery objects to be put in [SMB04].

Implemented solution

Due to the object handles all objects in a window must be scanned to either
copy a live object or to free the object handle. If a grouping of windows is
performed all these windows have to be scanned entirely before returning from
the copying procedure. In this MC2 implementation it is therefore better to
process one window during each copying increment. This will free up one old
generation window every increment and give a shorter program interruption.

Object copying is performed by a special assembly function that is designed
to copy objects. It uses the ldm (load multiple) and stm (store multiple) in-
structions to speed up the copying. These instructions loads and stores multiple
words from the main memory and into the register file.

When all live objects from the old generation windows are copied the old
generation garbage collector is put back in the normal state.

5.8 User triggered garbage collection

In Java the user can trigger the garbage collection at any time by calling the
method System.gc(). This invocation can happen at any time in the garbage
collection cycle, like in the middle of the old generation marking. The garbage
collector must then stop garbage collecting in incremental steps and run the
collector until completion.

Implemented solution

When System.gc() is called the state of the garbage collector is read. If the
garbage collector is in the old generation marking state or the old generation
copying state, the old generation collector is invoked and run until the state is
back to normal again.

When in the normal state a nursery collection is performed, followed by old
generation marking and old generation copying until back to normal state again.
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5.9 Remembered sets, sequential store buffers
and card tables

The MC2 article states that to record stored pointers between windows it uses
remembered sets, sequential store buffers and card tables to remember these
pointers. These data structures makes it easier to perform marking because one
can scan the heap linearly instead of scanning it like pointer tree during the
marking phase [SMB04].

These data structures must be updated every time a pointer store is per-
formed. This means that putfield, aastore and putstatic should run entirely
in software, both performing the actual store and updating these data struc-
tures.

In addition these data structures would have to be stored in each heap
window, wasting some space on the heap. The MC2 article reports that this
overhead occupies at most 5% of the heap [SMB04].

Making the putfield, aastore and putstatic bytecodes run entirely in
software is not preferable, because this would mean that the execution time of
these instructions would be severely reduced.

Remembered sets, card tables and sequential store buffers will therefore not
be implemented in this MC2 implementation.

5.10 Source code

The garbage collector’s source code can be found on the CD found in appendix
A. The code in this appendix is the property of Atmel and is not available for
the general public.

5.11 Implementation summary

The Memory-Constrained Copying algorithm is now implemented in the AVM.
To verify that it behaves correctly it must be tested functionally. The test setup
and test procedures are presented in the next chapter.
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Chapter 6

Testing the garbage
collector implementations

To test the correctness of the garbage collection implementation, the AVM is
run in a sophisticated test environment. This environment is designed to test
Atmel’s 32-bit microcontroller, because it is not manufactured yet. This chapter
includes a description of the test setup, test procedures, test programs and the
result of the testing.

6.1 Test setup

Because the microcontroller is not realized in silicon yet, hardware and software
simulators are used to test the garbage collector. This section describes general
hardware-software co-simulation techniques and the two test environments used
to test the algorithm, the software simulator and the hardware simulator.

This introduction was written in the project leading to this diploma [Amu04]
and was revised and included here.

6.1.1 Hardware-software co-simulation

Hardware-software co-simulation is used to validate the hardware portion as
well as the software run on a system and the interaction between them. In the
construction of a complex embedded system a hardware-software co-simulation
provides the designers with valuable information about the correctness of the
design. It also makes it possible to test different hardware and software designs
without taping out a new part every time. This is both time and cost saving
[HB97].

The simulation can be done in several detail levels. The more detailed,
the slower the simulation will run. This list describes a few detail levels (The
number of instructions per second is just a relative number. Assuming software
simulators run on the same computer.):
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The nanosecond accurate processor model This technique models the hard-
ware in great accuracy, at a transistor level. A standard computer may
run 1 to 100 instructions per second with this model.

The cycle accurate processor model This model has a structure very sim-
ilar to the real processor, with pipelines, interlocks and functional units.
Around 50 to 1000 instructions are executed per second.

The instruction set accurate processor model This processor model mod-
els the instruction set architecture of the target processor, but does not
provide correct timing. Units like pipelines and caches are not included.
This model can run about 10000 to 100000 instructions per second.

The model-free synchronizing handshake In the synchronizing handshake
the hardware is run in a hardware simulator and synchronized with the
software with a special handshake. The software is compiled for the host
system. The performance of the hardware simulator limits the execution
speed of this model.

The virtual operating system This model abstracts both the processor and
operating system away and provides the software with an interface that
resembles the operating system’s. This provides a very good relative speed,
but it hides away all the hardware details.

The bus functional processor model The processor in this model is replaced
with a set of test vectors. This helps validating hardware, but does not
aid the software validation.

The designers must choose a detail level that provides just enough details
and minimizes simulation time.

Table 6.1 shows the corresponding hardware-software co-simulation levels
for the software and hardware simulators used in this project.

Co-simulation level Simulator
The nanosecond accurate processor model Hardware simulator
The cycle accurate processor model Software simulator
The instruction set accurate processor model Instruction set simulator
The model-free synchronizing handshake
The virtual operating system
The bus functional processor model

Table 6.1: The relationship between the simulators and the hardware-software co-
simulation levels.

6.1.2 Software simulator

The software simulator is developed at Atmel and is a software model of the
microcontroller at a cycle accurate level. See section 6.1.1 for a description of
these levels.
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Figure 6.1: Software simulator screen shot.

The microcontroller model is encapsulated in a Graphical User Interface
(GUI). A picture of this user interface is shown in figure 6.1. The simulator is
capable of showing a lot of information in various windows. A short description
of some of these windows follows here:

Breakpoints This window allows the user to set various breakpoints. The
breakpoints are defined in a C like syntax, like “(R6 & 0x00405000) &&
R3 > 0;”.

Memory view The memory view shows a map of the whole address space
of the microcontroller, with both virtual and physical addresses and the
values stored here.

Pipeline view The pipeline registers are shown in this window. This is a very
useful tool for debugging complex instructions.

Status register The status register is shown in this window. The status reg-
ister shows if the microcontroller is in Java mode and if the handle bit is
set, among other things.

General registers These registers represents the top of the Java stack in Java
mode.

Disassembly window The disassembly view is capable of showing the disas-
sembled program code in both assembly and C code when available.
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Output window The output window displays the output of the program, al-
lowing the program to communicate directly with the user.

The software simulator is a very useful tool for complex debugging opera-
tions. Because the microcontroller model is rather complex the simulation takes
quite a while. On a reasonably fast computer it takes about 6 minutes for the
AVM to finish classloading and starting to run its first Java instruction. This
is without classfile verification, which adds around 15 minutes to the execution.

An instruction set accurate simulator plug-in exists to this simulator. This
plug-in removes all the complexity of the pipeline and caches and the simulation
therefore runs about 1000 times faster.

6.1.3 Hardware simulator

A nanosecond correct simulator (see section 6.1.1) is also developed for this
microcontroller and runs on special hardware. Figure 6.2 shows how the com-
ponents are connected and how they communicate. This hardware simulator
runs up to 1000 times faster than the cycle accurate simulator.

Figure 6.2: The hardware test setup.

Mistral

The Mistral is a circuit board with a large Xilinx FPGA (Field Programmable
Gate Array). This circuit board was developed by Atmel Rousset, France.
Connected to this card is a top card, which contains many connectors for I/O
devices like a LCD screen, PS/2 (for mouse and keyboard), DDR RAM, PCI
card, audio and VGA to name a few. The Top card was developed by Atmel
Norway.

Vitra and Pathfinder

The Vitra and Pathfinder are parts of a debug system for embedded processors
developed by Ashling. The Vitra communicates with the microcontroller run-
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ning on the FPGA via the NEXUS 5001 protocol (also known as IEEE-ISTO
5001TM-2003).

The Vitra is connected to a personal computer via ethernet or USB. The
Pathfinder debug software can then communicate with the Vitra and display
the state of the microcontroller in its Graphical User Interface. For more infor-
mation, see Ashling’s Pathfinder home page [Ash05].

6.2 Testing procedures

A brief summary of the programs used to test the algorithms is presented in
this section, as well as the functional test specification and the test method.

6.2.1 Test programs

This section describes the Java test programs used to test the garbage collection
implementations.

The Prime and GCTest programs were initially written for the mark-sweep
algorithm implemented in the project leading to this diploma [Amu04]. They
have been rewritten and made more suitable for testing the MC2 implementa-
tion.

Prime

This test program calculates the first 100 prime numbers and prints them out
on the standard output. The algorithm was found in the book “Programming
languages, concepts and construct” by Ravi Sethi [Set89]. Prime creates an
object for each prime number and additional objects every time it prints out a
prime number and produces a rather large call stack.

The program also have stored a static array of the primes that is used to
verify that every prime number is correct.

This program terminates very quickly, but during its execution it creates
some objects and arrays and it is therefore suitable to test the garbage collection
and object allocation code and verify that this behaves correctly.

InfinitePrime

This program calls the Prime test program in an infinite while loop. The pro-
gram will create a lot of objects very rapidly, stressing the nursery collection
and old generation marking and copying procedures.

GCTest

The GCTest is a program designed to stress test the garbage collection algo-
rithm. It calls a number of small programs randomly.
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This program tests all aspects of the garbage collector. The small programs
creates a lot of different objects and arrays, from single stand alone objects to
large binary trees.

Below follows a short description of each test program:

Prime The prime number program presented above.

BioMaxima This test program was written to test that the algorithm func-
tioned with a large number of objects on the heap. The test program uses
a biologically inspired algorithm to find the maxima of a complex function
with a large definition space. This test program was inspired by Dr. ing.
Gunnar Tufte’s lecture about biologically inspired hardware systems in
the course “TDT 1 Advanced Computer System Design”.

This algorithm first makes an initial generation of 32 random solutions.
All these solutions are run through a complex function and their scores
are recorded. The list of solutions in the generation is then sorted on their
score. The top five solutions are transferred to the next generation. The
remaining solutions are generated by mutating and combining random
solutions from the previous generation. When the maxima is found, the
number of generations is displayed and the algorithm terminates.

The algorithm is designed to use a lot of memory to stress the garbage
collector’s object creation code.

TestNative A small program that tests the native functions of the AVM. This
includes reading from a file, opening a file, copying an array and dynami-
cally loading a class.

ArrayNewTest This program makes a few arrays of different types (short,
integer, long), some multi-dimensional arrays and a few objects.

This program ensures that the array classes that are not used very often
in normal programs (like arrays of doubles for instance) works.

GCBench The GCBench algorithm is a Java garbage collection benchmark
algorithm written by John Ellis and Pete Kovac of Post Communications
[EK05]. It creates a long lived array of doubles and many long-lived and
short-lived binary trees.

This algorithm stresses the nursery collector, the old generation marker
and the old generation copying code, because a tremendous amount of
objects are created to build all the binary trees.

6.2.2 Functional testing

To test that the garbage collector and memory allocator functions properly a
function, avm verifyHeap(), has been implemented in the garbage collector.
This function scans the heap before and after each nursery and old generation
collection to verify that the heap is in a stable state both before and after
collecting garbage.

The first thing this function checks is that the heap window data structure
is intact. The following checks are made:
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• Every heap window is reachable by the program code (by a direct pointer
or through a linked list) and has the right type.

• The size field in each window is correct and that a new window follows
after this window.

The avm verifyHeap() function then scans all heap windows except handle
windows. During this pass the function checks the following in each window:

• Every object and array is connected to a valid handle and that this handle
points back to the object again.

• Every object and array has the 0xCAFE header intact.

• The size of each object and array equals a number of whole words (4 bytes)
and that an object follows directly behind this one.

• The free space in each window equals the size of the window minus the
size of every object in it.

Then the handle windows of the heap is scanned and the following checks
are made in every window:

• Every handle points to a valid object or array and that the handle reference
in the object header points back to the handle again.

• Every free list item points to a another free list item.

• Every word scanned is either a valid handle or in the free handles list.

• The handle free list terminates with the word 0xFFFF FFFF

The avm verifyHeap() function can be turned off at compile time, by the
definition VERIFY HEAP in the AVM configuration file. This makes it possible to
use the verifier as a debug tool, if needed after this project has ended.

If an error is encountered in a window the function will report which error
occurred and the window it occurred in. It will also print a map of the heap
windows to ease debugging.

This function can not test that the live object graph is the same before and
after garbage collecting. This would in addition to the tests performed be an
ultimate test of the garbage collector’s correctness. Such a function will require
a lot of storage and processing power to perform. It is also almost impossible
because of the lack of type information in stored values.

During algorithm testing and development, this function will be executed
every time before and after the garbage collector is invoked. By running the
verifier every time most functional errors will be discovered and corrected at an
early stage.
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6.2.3 Test method

To make the testing of the garbage collector easier the test programs run on the
AVM will be of increasing complexity. This would hopefully lead to the discovery
of bugs early in the test procedure, because the less complex programs are easier
to debug. The test method can be seen in figure 6.3.

Figure 6.3: Flow diagram of the garbage collector test method.

To test the nursery collector and heap initializing function the Prime test
program will be run first. The second test program is the Infinite Prime program
which stresses the nursery and old generation collector. The last test program
is the GCTest program. This program is much more dynamic than the other
two and tests all aspects of the garbage collector and creates a rather complex
object graph.

If an error is found in the garbage collector, it is fixed and the testing starts
over again with Prime.
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6.3 Testing results

The avm verifyHeap() function was invoked every time before and after the
garbage collector was called. When this function reported an error it was imme-
diately fixed and the test case rerun to ensure that the bug was corrected. The
test have been run on both the MC2 algorithm and the mark-sweep algorithm.

This function have been very useful and have led to the discovery of many
bugs that would have been hard to locate otherwise. A description of the most
critical errors caught with the avmverifyHeap() function can be found below:

• An addition error made the size of free heap windows four bytes less than
it should be. Over time this meant that the heap kept getting smaller and
smaller until a new window could not be allocated.

• An error in the old generation copying phase that did not insert a large
object window in the right list after copying out every live object, except
the large object itself.

• A falsely deallocation of handles of live objects in certain situations. The
object itself was copied and the handle updated, but after copying the
object the handle was deallocated.

6.4 Test summary

The MC2 and mark-sweep implementation have been put thorough a thorough
test and it has been verified that the heap structures and objects were in a sane
condition both before and after garbage collection.

The garbage collectors are after the functional testing more suited to run the
benchmarks with fewer problems than if the testing not had been performed.

First a benchmark must be chosen to test the garbage collection algorithms
with. The selection of a benchmark is following in the next chapter.
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Chapter 7

Choosing a garbage
collection benchmark

In this chapter proper benchmarks for the comparison of the mark-sweep and
Memory-Constrained Copying implementations are chosen. First an introduc-
tion to benchmarks and benchmarking is included. Then a few factors that
influence the benchmarking is discussed before the available benchmark can-
didates are discussed and a benchmark for comparing the garbage collector’s
performance is found.

7.1 Benchmarking and benchmarks

The information in this section is gathered from Patterson and Hennessy’s book
“Computer Architecture: A Quantitative Approach” [PH90].

To measure the relative performance between two entities (like computers
or algorithms) it is important to have a set of tests that can be run on both
these entities to produce some kind of score that is comparable. A set of tests
like this is often referred to as a benchmark.

Benchmark programs span from real programs like Microsoft Word to pro-
grams tailor made to test a computer’s performance, like Dhrystone (A classical
synthetic benchmark [Wei84]). According to [PH90] the most ideal way to test
the performance of a computer is:

“A computer user who runs the same programs day in and day out
would be the perfect candidate to evaluate a new computer. To eval-
uate a new system the user would simply compare the execution time
of her workload – the mixture of programs and operating system com-
mands that users run on a machine [PH90].”

This test is very hard to perform in practise as it is a non-autonomous test
that require a real person. Therefore benchmarks are made that try to simulate
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the users stimuli on a system and by that create a measure of computer’s perfor-
mance. Benchmarks are classified by the level of accuracy which they simulate
the real world applications.

7.1.1 Benchmark categories

In [PH90] benchmarks are categorized in five different levels. Below is a descrip-
tion of these levels in decreasing order of accuracy and prediction:

Real applications

Real applications are off-the-shelf programs that are run on the target system.
These applications are sometimes less suitable as benchmarks as they often are
dependent on the operating system or compiler. To port these programs to
another platform one probably have to modify the source and maybe eliminate
an important activity like graphical user interface.

Modified or scripted applications

These applications use the building blocks of off-the-shelf applications to build
a benchmark. These building blocks are either modified or scripted with a
simulation of user stimuli. This can both enhance portability or make the
benchmark focus on one specific system unit to test, like CPU throughput.

Kernels

Kernels are extracts of small key pieces of program code from off-the-shelf pro-
grams used to evaluate performance. Kernels are best used to isolate perfor-
mance of individual features of a machine to explain the differences in perfor-
mance of real programs.

Toy benchmarks

Toy benchmarks are often between 10 and 100 lines of code and produce a result
the user already know before running the program. Examples of such programs
are the tower of Hanoi or quicksort. These benchmarks are easy to write and
will run on almost all platforms.

Synthetic benchmarks

Synthetic benchmarks try to match the average frequency of operations and
operands of real world programs. Synthetic benchmarks lies even further from
reality than kernels because kernel code is extracted from real programs, while
synthetic code is created artificially to match an average execution profile.
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7.1.2 Benchmark suites

Benchmarks are often delivered as a benchmark suite, consisting of many differ-
ent benchmarks. These suites try to measure the performance using a variety of
benchmarks so that the weakness of one benchmark is lessened by the presence
of the others.

Embedded benchmark suites

Embedded benchmark suites are harder to define due to the large range of
embedded system requirements (hard realtime, soft realtime and overall cost-
performance). Many designers make embedded benchmark suites that reflects
the application performance as a kernel or as a modified version of the applica-
tion.

For embedded systems the most recognized benchmarks are the EDN Em-
bedded Microprocessor Benchmark Consortium’s (EEMBC, pronounced “em-
bassy”) benchmark suite . The EEMBC benchmark suite consists of 34 bench-
marks from five different industries: automotive/industrial, consumer, computer
networking, office automation and telecommunication [PH90].

7.2 What to measure

In chapter 3 the mark-sweep and MC2 algorithms were compared against each
other, theoretically, in four different categories: program interruption, through-
put, algorithmic complexity and memory utilization.

In the following practical comparison it would be nice to be able to test the
implementations in all these categories, but the resources in this project does
not allow this. Only the program interruption and throughput will be measured,
as stated in the project assignment (see chapter 1).

7.2.1 Program interruption

Program interruption is the time the user’s Java program is interrupted from
its normal behavior so that the garbage collector can do its work. It is therefore
the time from the garbage collector algorithm is invoked and until it returns
back to the Java program again.

In the book “Usability Engineering” Jacob Nielsen [Nie93] mentions the
three important limits when measuring program interruption (or response time
as it is called in his book). These limits are described in table 7.1.

The goal for each garbage collection implementation is therefore to get the
program interruption down to under 0.1 seconds or less every time the garbage
collector is invoked.

Note that it is only the actual garbage collection that is timed during the
benchmarking. Object allocation is not considered garbage collection and is
therefore excluded.
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Limit Description
0.1 second is about the limit for having the user feel that the system is

reacting instantaneously, meaning that no special feedback
is necessary except to display the result.

1.0 second is about the limit for the user’s flow of thought to stay unin-
terrupted, even though the user will notice the delay. Nor-
mally, no special feedback is necessary during delays of more
than 0.1 but less than 1.0 second, but the user does lose the
feeling of operating directly on the data.

10 seconds is about the limit for keeping the user’s attention focused
on the dialogue. For longer delays, users will want to per-
form other tasks while waiting for the computer to finish, so
they should be given feedback indicating when the computer
expects to be done. Feedback during the delay is especially
important if the response time is likely to be highly variable,
because users will then not know what to expect.

This table is quoted from [Nie93].

Table 7.1: Program interruption limits.

7.2.2 Throughput

The throughput of the garbage collection implementation says how fast the
garbage collector can collect each garbage object. Or said in another way how
much overhead the garbage collection implementation puts on the normal Java
execution. The lower throughput, the longer total execution time the user
program will have.

The goal for the garbage collection implementation is to have as high through-
put as possible to create as little overhead as possible for the Java program.

7.2.3 Factors that influence the measuring

The goal of the benchmarking is to test the relative performance of the garbage
collection algorithms, but when running the tests it is the actual implementation
of these algorithms that is tested against each other. The code effectiveness will
therefore affect the performance of the algorithms in one way or another.

7.3 Benchmark candidates

The AVM implements the J2ME CLDC 1.1 standard (see section 2.1.1). All
programs run on the AVM must therefore be compatible with this standard.

Unfortunately many real life programs and benchmarks, like Jbenchmark
used to test J2ME CLDC mobile telephones, also require that the MIDP profile
is implemented in addition to the CLDC configuration.

The MC2 article reports that they used a benchmark from Standard Per-
formance Evaluation Corporation (SPEC) [SMB04]. This benchmark requires

76



7.3. BENCHMARK CANDIDATES

that the JVM implements the J2SE 1.1 API and is therefore unsuitable for the
AVM [SPE05].

A wide search has been performed on the web and at Atmel to find bench-
marks for the garbage collector. The alternatives found are presented in table
7.2.

Benchmark Suitable Requirements
for the AVM

specJVM No J2SE API requirement
JBenchmark No J2ME MIDP requirement
EEMBC Java benchmarks Yes
CaffeineMark Yes originally requires J2SE, but

an embedded version exists
that use J2ME CLDC v 1.1

VolanoMark No Server benchmark, requires
J2SE

JMark No Network computer bench-
mark, requires J2SE

Table 7.2: Benchmark alternatives.

One more option is also possible: To write a new benchmark for a J2ME
CLDC v 1.1 Java Virtual Machine. This option is also included in the evaluation.

The three benchmark alternatives suitable for the AVM are listed below:

• Write a self-composed benchmark.

• The EEMBC Java benchmark suite.

• The CaffeineMark benchmark.

A description of these candidates follows in the subsections below.

7.3.1 Write a self-composed benchmark

A self-composed benchmark could be written that test an JVM implementation
with a high level of accuracy. The resources in this project are too few to begin
such a task.

A not so resource demanding option is to use some of the programs from
the functional testing of the garbage collectors. The test programs, from the
GCTest program (See section 6.2.1), could be timed and run to produce some
kind of score, telling how fast the execution was.

This benchmark would then fall in under the toy benchmark category.

7.3.2 The EEMBC Java benchmark suite

The EEMBC Java benchmark suite is designed to test the performance of a
J2ME implementation of a Java Virtual Machine. A white-paper for this bench-
mark suite can be found on the EEMBC Java Benchmark web page [EEM03].
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The EEMBC Java benchmark suite consists of six benchmarks that uses the
key pieces from real life programs to perform the benchmarking. The EEMBC
Java benchmark suite therefore falls in under the kernel benchmark category.

A description of these six benchmarks are found below [EEM05]:

PNG image decoder This benchmark decodes a 19 kB PNG (Portable Net-
work Graphics) image. The decoding is mathematically intensive and does
a lot of array copying.

Chess game The chess game benchmark plays three games of chess with ten
moves against itself. The algorithm builds up a tree of legal moves and
uses a heuristic search to find the best move. This method does a lot of
method calls, allocates many arrays and is intensive in native code use.

XML parser This benchmark parses an XML document into a Document Ob-
ject Model (DOM) tree and performs node searching and node manipula-
tion of the tree. This benchmark allocates a lot of objects and performs
many string and string buffer manipulations.

Cryptographic package The cryptography benchmark encrypts a 4 kB text
string, decrypts it again and compares the two plain text pieces. It uses
the following cryptographic algorithms: DES, 3-DES, IDEA, Blowfish and
Twofish. This benchmark is mathematically intensive and uses large byte
arrays as buffers for the plain- and crypto text.

Regular expression package This benchmark scans a text string and tries
to match it with a regular expression. The benchmark exercises String
matching and I/O.

Parallel benchmark The parallel benchmark performs merge sorting and ma-
trix multiplication using a varying number of parallel Java threads. This
stresses the Thread implementation of the Java Virtual Machine.

7.3.3 The CaffeineMark benchmarks

CaffeineMark was written by Pendragon software in 1997. It tests the different
parts of a JVM and produce a geometrically average score that tells how fast
the execution was. CaffeineMark can be found on the home page of Pendragon
software [Pen05].

The original CaffeineMark benchmark consists of the following parts:

Sieve The Sieve of Eratosthenes. Finds prime numbers.

Loop The loop test uses sorting and sequence generation to measure compiler
optimization of loops.

Logic Tests the speed with which the virtual machine executes decision-making
instructions.

Method The Method test executes recursive function calls to see how well the
JVM handles method calls.
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String Various string manipulation tests.

Float Simulates a 3-D rotation of objects around a point.

Graphics Draws random rectangles and lines.

Image Draws a sequence of three graphics repeatedly.

Dialog Writes a set of values into labels and editboxes on a form.

In the embedded CaffeineMark the Dialog, Image and Graphics tests are
removed because these functions are not part of the CLDC standard.

The CaffeineMark benchmark does not report its accuracy level on the home
page. It is therefore assumed that the benchmark would, by looking at the
description of the tests, be in the toy benchmark category.

7.4 Choosing a benchmark

The goal of the benchmarking is to measure the garbage collector’s program
interruption time and throughput when running Java programs on the micro-
controller.

The benchmarking should simulate the operations performed by a real per-
son as closely as possible and therefore have a high level of accuracy. This re-
quirement makes the EEMBC Java benchmark suite the preferred benchmark,
because it is a kernel level benchmark, because the self-composed benchmark
and CaffeineMark would be in the toy category. There are a things to consider
before making the decision final.

CaffeineMark tests various parts of the JVM, but it does not include a
test of the memory management system. The only test in CaffeineMark that
uses objects are the String test, which allocates a few StringBuffers, and float
which allocates some matrixes. This makes the CaffeineMark unsuitable because
object creation will be a insignificant part of the score.

Some of the EEMBC Java benchmarks did not work correctly on the AVM
at the project start, because of recent changes in the AVM implementation. The
debugging of these benchmarks is hard due to their complexity. It was therefore
hard to estimate the amount of work needed to make them function properly
again.

The self-composed benchmark’s test programs already work as they have
been used in the GCTest algorithm, but a method for calculating the throughput
must be made because some of the tests make the count register (used to measure
the program execution time) overflow. A sequence of the test programs must
also be established and the benchmark must then be tested before performing
the actual benchmarking.

All in all it is more work to make the EEMBC Java benchmark suite function,
but the gain in accuracy of the benchmark makes the EEMBC Java benchmark
suite the most reasonable choice. The EEMBC Java benchmark suite is therefore
selected as the benchmark to use when comparing the garbage collectors.
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To make sure that some benchmarking will be performed before the project
ends the focus was kept on one benchmark at a time. The most interesting
benchmarks, from a garbage collection viewpoint, will be fixed first. The fol-
lowing order was chosen:

1. XML parser.

2. Chess game.

3. Regular expression package.

4. PNG decoder.

5. Cryptographic package.

The parallel benchmark is excluded because the thread support is not fully
implemented or tested in the AVM at the time of the benchmarking.

7.5 How to measure program interruption and
throughput

This section describes how the program interruption and throughput will be
measured.

7.5.1 Program interruption

To measure the program interruption time every call to the garbage collector
must be timed and the result must be recorded. The clock() function call will
be used to time the execution of the garbage collector. This function returns
the value of the processor’s count register, which is incremented for each clock
cycle. To get the execution time one must simply divide the number of clock
cycles with the clock frequency of the microcontroller.

In addition to this a C function is written that records the frequency of
program interruption times in a table. This table is printed out at the end of
the Java program execution. The average and maximum program interruption
time is also calculated and displayed.

7.5.2 Throughput

The EEMBC Java Benchmark suite produces a score after each benchmark is
finished telling how fast the benchmark was completed relative to a specific Java
Virtual Machine run on a specific processor. This score can be used to measure
how much overhead the garbage collector adds to the user program. The score
is a linear score, proportional to the program execution time, and can therefore
be used to compare directly how much faster an implementation is compared
to another. Note that the throughput is inverse proportional with the program
execution time.
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The score of the benchmarks is calculated by invoking the Java native
method system.currentTimeMillis(). This method used the clock() C func-
tion that reads a 32-bit count register that tells how many clock cycles the CPU
has been executing. Because it is only 32 bits in this counter the counter will
overflow after a short time and therefore make the benchmark score negative or
at least unreliable.

The system.currentTimeMillis() method was therefore reimplemented
using special performance counters in the CPU that generated an interrupt
when overflowing. An interrupt handler was also written that took care of this
incident.

7.6 Choosing benchmark summary

Three benchmark candidates were found for the benchmarking of the garbage
collectors, the EEMBC Java benchmark suite, CaffeineMark and writing a self-
composed benchmark. The EEMBC Java benchmark suite was selected due to
its higher accuracy of predicting the performance of the garbage collectors.

The next chapter contains the results of the benchmarking of the garbage
collection algorithms.
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Chapter 8

A comparison between the
mark-sweep and the MC2

implementations

This chapter contains the results of the benchmarking of the mark-sweep and
the Memory-Constrained Copying implementations. The test system is first
described. The test parameters are specified and followed by a description of the
test cases. After this the results from the program interruption and throughput
tests are presented and commented.

8.1 Test system

The test system is the hardware simulator described in section 6.1.3. The AVM
will be run on the Mistral board with 2 MB internal memory and at a clock
frequency of 25 MHz. The real microcontroller will run at a speed of 100 -
150MHz, so the speed of the Mistral is four to six times less.

Due to the reduced speed the benchmark results will be multiplied by five
to simulate a clock speed of 125 MHz. This will produce a result that is ap-
proximately equal to the result expected from the real microcontroller.

8.2 Test parameters

There are a few parameters that are interesting when testing the garbage col-
lector. These parameters and their values in the test cases are discussed in
this section. To limit the number of test cases only the two most significant
parameters are tested, the heap size and the MC2 heap window size.
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8.2.1 Heap size

The size of the heap is an interesting parameter when testing the garbage collec-
tion implementations. The heap size will affect the mark-sweep implementation
the most because it always uses the maximum available space on the heap to
store objects in. The MC2 algorithm will use as much space as it needs and
keep room on the heap to allocate windows for handles and normal and large
objects, and will therefore be less affected.

Because the garbage collector will run in a Java Virtual Machine that im-
plements the CLDC specification (See section 2.1.1.) it is expected to be run
in an environment with a small Java heap. The benchmarking will therefore be
most realistic with a small heap size.

A CLDC device is designed to run with a Java heap of 32 kB or more [Top02],
but the benchmarks are resource demanding and a larger heap size must be used.
Ideally it would be preferred to test the garbage collectors with three different
heap sizes: small (500 kB), medium (1 MB) and large (4 MB).

Unfortunately, the Atmel test system setup development status at the time
of benchmarking did not allow for testing with 4MB of Java heap. The garbage
collectors will therefore only be benchmarked with a heap of 500 kB and 1 MB.

8.2.2 Memory-Constrained Copying heap window size

The MC2 heap window size has an impact on the MC2 implementation’s per-
formance, because it governs the frequency of garbage collection cycles. The
smaller the window size is the more often nursery and old generation collections
must be run.

Because this parameter only affects the MC2 implementation it will be run
in two versions, one with a small heap window size (8 kB) and one with a large
heap window size (16 kB).

8.3 Test cases

This section contains a description of the test cases that will be used in the
benchmarking. Every benchmark will be run with the MC2 implementation
with two different window sizes and the mark-sweep implementation in turns.
A description of the test cases can be found in table 8.1.

At the time of the benchmarking only three of the five benchmark candidates
were working: kXML, chess and regular expression (regexp). The benchmarking
will be carried out with only these three and the remaining three will be left as
future work.

The kXML benchmark also did not work with a 500 kB heap, so this test is
excluded. In both MC2 test cases and the mark-sweep test case the reason for
the failure is fragmentation, on a heap window level and object level respectively.

The mark-sweep heap fragmentation is not possible to counter because mark-
sweep cannot defragment the heap. The MC2 algorithm can defragment the
heap, but because of project resource issues this problem is left as future work.
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Test case Benchmark GC Algorithm Heap size MC2 window size
1 Chess MC2 500 kB 8 kB
2 Chess MC2 500 kB 16 kB
3 Chess Mark-sweep 500 kB N/A
4 Chess MC2 1MB 8 kB
5 Chess MC2 1MB 16 kB
6 Chess Mark-sweep 1MB N/A
7 Regexp MC2 500 kB 8 kB
8 Regexp MC2 500 kB 16 kB
9 Regexp Mark-sweep 500 kB N/A
10 Regexp MC2 1MB 8 kB
11 Regexp MC2 1MB 16 kB
12 Regexp Mark-sweep 1MB N/A
13 kXML MC2 1MB 8 kB
14 kXML MC2 1MB 16 kB
15 kXML Mark-sweep 1MB N/A

Table 8.1: Test cases for garbage collection benchmarking.

8.4 Test results

This section contains the test results from the test cases. Only selected figures
from the benchmarking are shown, the rest are displayed in tabular form. The
complete data set from the benchmarking can be found in an Excel file on the
CD in appendix A.

8.4.1 Program interruption time

Figure 8.1 shows the program interruption time distribution for test case 1, 2
and 3 running the chess benchmark. In the figure one can observe that the
program interruption time distribution for the MC2 implementation lies in the
range zero to four milliseconds and that the mark-sweep lies in the 40 to 58
millisecond range. The number of occurrences of MC2 program interruptions
are larger than the number of occurrences with the mark-sweep implementation.

This figure shows that the MC2 implementation will interrupt the Java pro-
grams much more often than the mark-sweep implementation, but the interrup-
tion time is much shorter.

A summary of the result from all test cases are shown in table 8.2. This
table shows the average and maximum program interruption time as well as the
number of garbage collector invocations.

The table shows that the trend from the last figure is repeated in all test
cases: MC2 gives many small program interruptions, but mark-sweep produce
a few longer interruptions.

In the kXML benchmark many objects was created in a short period of time
and stressed the garbage collectors. This can be observed in the number of
garbage collections invocations and the program interruption time. The mark-
sweep implementation pauses the Java execution on average for about one sec-
ond. According to Nielsen’s program interruption limits (See section 7.2.1) this
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Test Test case Avg. program Max program Num. GC
case specification int. time int. time invocations
1 Chess, MC2, 500k, 8k 0,53 3 6342
2 Chess, MC2, 500k, 16k 0,66 3 2462
3 Chess, MS, 500k 44,71 52 67
4 Chess, MC2, 1M, 8k 0,53 3 6342
5 Chess, MC2, 1M, 16k 0,66 3 2462
6 Chess, MS, 1M 91,72 95 31
7 Regexp, MC2, 500k, 8k 0,25 2 822
8 Regexp, MC2, 500k, 16k 0,34 2 358
9 Regexp, MS, 500k 34,00 37 8
10 Regexp, MC2, 1M, 8k 0,25 2 822
11 Regexp, MC2, 1M, 16k 0,34 2 358
12 Regexp, MS, 1M 71,75 88 4
13 kXML, MC2, 1M, 8k 1,44 40 41814
14 kXML, MC2, 1M, 16k 1,84 44 21042
15 kXML, MS, 1M 1003,41 3097 183

Table 8.2: Program interruption results.

would not only spoil the user’s sense of the program to react instantaneously,
but also interrupt the person’s flow of thoughts.

Also notice that the MC2 results are equal for the Chess and Regexp bench-
mark with the same heap window size and different heap size. This happens
because the MC2 implementation will not allocate more windows than necessary
on the heap to leave some room for large object windows or handle windows.
This means that even though there is 1 MB available it will use below 500 kB of
heap memory. The mark-sweep collector shows a different result when altering
the heap size: both the average and maximum program interruption time seems
to double when the heap size doubles. This happens because the mark-sweep
implementation scans the whole heap in the sweep state.

The heap window size of the MC2 collector does not seem to affect the
program interruption time that much, but the number of garbage collection
invocations are almost doubled with half window size.

This shows that the program execution time of the MC2 implementation
is much smaller than the program interruption of mark-sweep and therefore
confirms the MC2 article’s statement:

“The pause times for MC2 is 10-17 times lower than a copying gar-
bage collector and 7-13 times lower than mark-sweep in a heap that
is 1.8 times the program live size [SMB04].”

It is now interesting to see if all the small program interruptions from the
MC2 implementation will yield a larger program execution time compared to
running with the mark-sweep collector. This can be discovered by looking at
the throughput of the benchmarks, covered in the next subsection.
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8.4.2 Throughput

The throughput of the garbage collection implementations are tested by using
the score from the EEMBC Java benchmarks. To produce a more comparable
result the score from each benchmark will be normalized, so that the case with
the highest score gets a normalized score of 1 and all the other a score between
1 and 0. The higher the throughput of the garbage collector, the smaller is the
score and therefore also the program execution time.

The normalized throughput results from the chess benchmark (test case 1,
2, 3, 4, 5 and 6) are shown in figure 8.2. This figure shows that the score of the
test cases are almost equal for the chess algorithm. The mark-sweep collector
has the two highest scores and therefore the lowest throughput and the highest
program execution time.

Test Test case Normalized
case specification score
1 Chess, MC2, 500k, 8k 0,98
2 Chess, MC2, 500k, 16k 0,95
3 Chess, MS, 500k 1,0
4 Chess, MC2, 1M, 8k 0,98
5 Chess, MC2, 1M, 16k 0,95
6 Chess, MS, 1M 0,99
7 Regexp, MC2, 500k, 8k 1,00
8 Regexp, MC2, 500k, 16k 1,00
9 Regexp, MS, 500k 1,00
10 Regexp, MC2, 1M, 8k 1,00
11 Regexp, MC2, 1M, 16k 1,00
12 Regexp, MS, 1M 1,00
13 kXML, MC2, 1M, 8k 0,48
14 kXML, MC2, 1M, 16k 0,44
15 kXML, MS, 1M 1,0

A smaller score is better.

Table 8.3: Throughput results.

In the throughput results in table 8.3 one can see that the throughput does
not differ much in the test cases, with the exception of mark-sweep in the kXML
benchmark.

The reason why the kXML benchmark is so slow with mark-sweep is that all
the small objects fragments the heap and makes the mark-sweep implementation
traverse the free list very often and it has to insert all the collected objects into
the free list. Because the kXML benchmark generates so many small objects
this list can get long and it will therefore take some time to traverse the it.

All in all this throughput benchmark shows that the score in every test case
is equal or lower for the MC2 implementation. The lower score means that the
MC2 collector have a higher throughput and lower total program execution time
than the mark-sweep implementation.

This means that the overhead from the MC2 implementation is less than
or equal to the overhead from the mark-sweep implementation in all test cases.
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This confirms the MC2 article’s statement:

“We compared the performance of MC2 with a non-incremental gen-
erational mark-sweep collector and a generational mark-compact col-
lector, and showed that MC2 provides throughput comparable to that
of both of those collectors [SMB04].”

8.5 Benchmark result summary

The MC2 garbage collection implementation is now benchmarked against the
mark-sweep implementation. The benchmarking confirmed the expected result
from the theoretical comparison of the implementations: The MC2 collector will
produce a lot of small program interruptions and the mark-sweep collector will
produce a few long program interruptions.

The throughput of the implementations was almost equal between the MC2

and mark-sweep implementations, except in the kXML benchmark where mark-
sweep had to insert every unused object into its free list.

All the tasks done according to the project assignment are now done. This
report continues with a final chapter, describing the results, project experiences
and possible future work.
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Figure 8.1: Chess benchmark test results with 500 kB heap.
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A smaller score is better.

Figure 8.2: Throughput result from the chess benchmark.
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Chapter 9

Conclusion

This chapter presents the results of the project and an evaluation of the project
process itself. A list of possible enhancements for the garbage collectors are also
included.

9.1 Main contributions

This project has led to many changes in the AVM and some changes in the
microcontroller hardware, besides the implementation of the garbage collector.
The main results are:

• The MC2 algorithm has been implemented.

• The MC2 article’s results have been confirmed.

• The mark-sweep algorithm is working again.

• The AVM has been improved.

• Hardware bug found.

The results are presented in greater detail in the following subsections.

9.1.1 The MC2 algorithm has been implemented

The AVM now includes an implementation of the MC2 algorithm that has been
tested functionally (see chapters 5 and 6). This implementation creates a shorter
program interruption time for the user’s Java programs than the earlier imple-
mented mark-sweep implementation.

This implementation is the first MC2 implementation that is run on a real
microcontroller with dedicated hardware to support it.
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9.1.2 The MC2 article’s results have been confirmed

The MC2 algorithm has now been implemented and tested in a microcontroller
running with limited processing power and main memory. The benchmarking of
the implementation shows that it outperforms the mark-sweep implementation
in program interruption time and has a throughput that is equal or better than
mark-sweep (see chapter 8).

This confirms the MC2 article’s statement about program interruption time:

“The pause times for MC2 is 10-17 times lower than a copying gar-
bage collector and 7-13 times lower than mark-sweep in a heap that
is 1.8 times the program live size [SMB04].”

It also confirms the statements about throughput:

“We compared the performance of MC2 with a non-incremental gen-
erational mark-sweep collector and a generational mark-compact col-
lector, and showed that MC2 provides throughput comparable to that
of both of those collectors [SMB04].”

9.1.3 The mark-sweep implementation is working again

The rearrangement of the object structure (see section 4.2.1) and the imple-
mentation of threads made it necessary to fix the mark-sweep implementation.
The mark-sweep collector has been fixed (see section 4.2.3) and is now working
again in the AVM and has been functionally tested and benchmarked with the
same programs as the MC2 implementation.

The user of the Atmel Virtual Machine now can choose whether to use the
mark-sweep or the Memory-Constrained Copying implementation by editing the
config file.

9.1.4 The AVM has been improved

The AVM has been modified to support an efficient MC2 implementation (see
section 4.2). These modifications have made the AVM closer to the JVM specifi-
cation [LY99] because arrays are now a subclass of the type java.lang.Object.

The AVM is now safer to use because objects and handles are allocated by a
cleaner interface that ensures correct initialization. This prevents many errors
due to incorrect object initialization.

When benchmarking the implementations many errors were found due to the
fact that the AVM never had run such complex programs before. The EEMBC
Java benchmarks had been run before, but in a stripped down version because
of the large memory requirement. One example of such an error was in the Java
object lock system:

Java objects can be locked when accessing them to prevent that other threads
access the object at the same time. During the first benchmark run the AVM
ran out of C heap space, due to the locks never being deallocated after use (An
object lock is allocated in the C heap of the main memory).
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9.1.5 Hardware bug found

A hardware bug was found after the changes in the microcontroller architecture
that broke the special write barrier functions that only the MC2 implementation
uses. This bug was identified and fixed. For a more detailed description of this
bug see section 9.2.1.

If this bug had not been found before the microcontroller was realized in
silicon the cost of repairing it would have been enormous compared to finding
and fixing it in this project.

9.2 Project Experiences

This section contains a section about implementation challenges. A short eval-
uation of the process flow in this project is also included.

9.2.1 Implementation challenges

This section contains the main implementation challenges that was encountered
during this project.

Few Mistral boards

During the development of the garbage collector there has been a shortage of
Mistral boards. At most Atmel had three Mistral boards for use. One of these
was always occupied for module verification and one of them was occupied for
Java debug protocol implementation. The third Mistral board was a few times
brought to customers for a week at a time and was therefore unavailable.

This led to a shortage of development boards and a halt in the development.
Fortunately the Java Debug board could be borrowed for short periods and the
implementation could continue.

The Atmel Virtual Machine

Developing a garbage collector for the AVM was a bit of a challenge. The AVM
is still under development and is not totally compliant with the J2ME CLDC
1.1 specification. It has not been tested very thoroughly, so one can expect to
find a few errors when running complex Java programs that have never been
run on the AVM before.

For instance there was a bug in the method invocation code that made the
current frame overwrite an object lock because of an addition error. This error
only appeared in specific cases depending on the number of arguments that were
passed to the methods invoked. The lock error did not appear at once, but after
a long time of execution. This made it difficult to locate the bug, but once it
was found it was easily fixed.

When an error appears in the Java execution it is not given that the error
stems from the source code. It can also stem from the C compiler, the assembler,
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the microcontroller hardware or the Vitra/Pathfinder system. The most likely
source of errors is in the software running on the controller and this source
should be thoroughly checked before looking for other sources.

Changing the nursery collector

During the implementation of the MC2 algorithm it was first decided that the
copying algorithm should be used as the nursery collector garbage collection
algorithm. This algorithm was implemented and tested and was working prop-
erly.

When the old generation marker was implemented it was clear that the
copying algorithm would not work as a nursery collector because it could not
guarantee that the live objects from the nursery would fit in the old generation
before copying. The mark stack of objects in the old generation would also have
been destroyed when the old generation collector was invoked. Another nursery
collector therefore had to be implemented.

The mark-copy collector was the next logical choice and was implemented
very rapidly. The reason for the rapid implementation was that the copying
implementation had sorted out some bugs in the allocator code and that the
mark-copy used the Deutch-Schorr-Waite marker that had been implemented
in another version for the mark-sweep collector.

All in all the change of nursery collector delayed the project by two days
approximately.

Implementing and debugging a memory management system

When implementing a memory management system, like the MC2 is part of, it
is crucial that every memory reference is correct when returning control to the
user program.

If the object graph in a Java Virtual Machine is not equal before and after
garbage collecting errors may appear in the user program. Sometimes the er-
rors are insignificant and do not crash the execution, like when every “2”-digit
in the program output disappears and the program continues (This case was
encountered while debugging the MC2 implementation.), but most of the time
the errors crash the program after a while.

When the effects of an error is observable a long time after the error has
happened, it is difficult to find the error. Pathfinder’s data- and program trace-
and data watchpoints (See section 6.1.3) was very handy when debugging these
errors.

Changes in the microcontroller architecture

In January 2005 the pipeline of the microcontroller was redesigned to make
it more efficient. The instruction set architecture was also updated and the
assembler for the microcontroller was updated. These changes was completed
in week 14 and a new bit-file was ready for the Mistral prototype board.
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Because of the instruction set changes the trap library and some other as-
sembly files had to be modified and tested. In addition to this a hardware
bug was found in the aputfield quick and aastore instructions. When these
instructions were executed they stored the next instruction address (normally
stored in the link register) in the Java Barrier Configuration Register (JBCR)
when the write barrier was violated. This made the microcontroller execute the
same instruction one more time and destroyed the Java operand stack and the
object or array the pointer should be stored in.

A test case was produced that confirmed and located the hardware bug
and a fix could be made in the RTL-code. The microcontroller design with the
hardware fix was then scheduled for synthesis the next night. The first synthesis
stopped because the Mistral FPGA was too small for the design. Some I/O
modules was removed and the synthesis was rescheduled to the next night. The
next morning the second synthesis was found unusable during testing because
of a misplacement of the instruction cache. The design was fixed and the third
synthesis worked perfectly and the situation was back to normal again.

The new instruction architecture set and the hardware bug caused the testing
of the MC2 implementation to stop for about a week.

9.2.2 Status meetings

During this project weekly status meetings were held at Atmel with Morten
Haaker and Lars Even Almås. During these meetings the project status was
compared to the project plan and the recent changes in report were reviewed.

Lars Even also took part in the many technical discussions outside the status
meetings. His opinions and suggestions were a valuable contribution to the
design and implementation of the garbage collection algorithm and support
functions.

9.2.3 The project schedule

The project schedule is shown in figure 9.1, and contains the following tasks:

Figure 9.1: Project schedule.

Project start Make the project schedule, create a report document and a
disposition.

Compare algorithms Compare the mark-sweep and the MC2 algorithm against
each other.
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Implement the MC2 algorithm Implement the MC2 algorithm in the At-
mel Virtual Machine.

Test the implementation Test the MC2 implementation functionally.

Choose benchmarks Choose a set of test programs to analyze the perfor-
mance of the implementations.

Fix MS garbage collector Changes made in the AVM after the mark-sweep
algorithm was implemented has made it necessary to fix the mark-sweep
implementation to make it work again.

Compare performance Benchmarking the implementations and compare the
performance.

Write documentation Write the project report (this document).

During this project the project schedule was followed closely. Every task
was finished when expected, except for the fixing of the mark-sweep algorithm.
This task was completed one week earlier and therefore more time was spent
benchmarking.

One of the reasons why the mark-sweep algorithm was done so quickly was
that the Deutsch-Schorr-Waite marker was already implemented and tested as
nursery marker for the MC2 algorithm.

The gain in time was very handy, since the EEMBC Java Benchmark suite
proved to be hard to get running in the AVM. The complexity of these bench-
marks also led to only three of six benchmarks was running on the AVM before
the project end.

9.3 Future work

This section describes the work that can be done with the garbage collector in
the future.

9.3.1 Optimize the MC2 implementation

Even though the MC2 implementation clearly outperforms the mark-sweep im-
plementation in program interruption time there is still some room for optimiza-
tion.

One of these optimizations is to improve the garbage collectors handling
of static variables. The static variables are scanned entirely in every nursery
garbage collection and marking increment. Scanning of the static variables
means that every static field in every class structure must be visited and checked.
This could be avoided by making the putstatic bytecode tell the garbage
collector when a static variable is overwritten. The garbage collector could then
check if the object was in the nursery, and give it a nursery mark, or if it was
in the old generation and the garbage collector was in the marking state.
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This optimization requires that the putstatic instruction is trapped and
run in software and not executed directly in hardware. This would make the
execution of the Java programs slower. The putstatic command is not the
most frequently used bytecode so it must be tested if the gain in the garbage
collection execution time outweighs the loss in Java execution time.

9.3.2 Make the garbage collectors throw an OutOfMemo-
ryException

At the project end both the MC2 and the mark-sweep garbage collector ter-
minates the AVM with an error code when the heap is full. According to the
Java Virtual Machine specification a OutOfMemoryException should be thrown
when this happens.

This makes the Java program capable of catching the exception and continue
execution or exit properly. To make this possible a method should be created
that creates a new out of memory exception and pushes this object on the Java
stack, returns to the Java program and throws the exception.

9.3.3 Test the MC2 implementation against the remaining
benchmarks

Because only the chess, regular expression and kXML benchmark of the six
EEMBC Java benchmarks were running at the project end the remaining (crypto,
parallel and png) must also be tested with the garbage collection implementa-
tions.

This would also test the garbage collection implementations with several
threads running. This test has been excluded because the thread package had
not been fully implemented at the project end.

The kXML benchmark also needs to be tested with a small heap. At 500 kB
the MC2 implementation encounters many problems mainly because of fragmen-
tation of the heap window structure. The heap must therefore be defragmented
on a window level to ensure that the Java program can continue to run.

9.4 Conclusion summary

A theoretical comparison of the Memory-Constrained Copying algorithm and
the mark-sweep algorithm was done. This comparison showed that in theory
the MC2 algorithm should outperform the mark-sweep algorithm with respect
to program interruption time.

The lower program interruption encouraged the implementation of the al-
gorithm and the AVM was modified to support the algorithm before it was
implemented and functionally tested.

To test the MC2 implementation against the mark-sweep implementation
a set of benchmarks was chosen. The best candidate was the EEMBC Java
benchmark suite.
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The benchmarking showed that the MC2 implementation produced a much
lower program interruption than the mark-sweep implementation. The through-
put of the algorithms were almost equal.

Garbage collection is a nice aid for programmers as it makes certain program
errors, like dangling pointers, impossible. The cost of the garbage collection can
be very large, at least in an embedded setting where there is a limited amount
of processing power.

It is often being discussed whether Java is suitable for embedded systems
[Nis05]. The big issue here is performance, both because Java is an interpreted
language and because it has to collect garbage. Both these factors create an
overhead that can be too much for a microcontroller with already limited powers.

The new microcontroller from Atmel has hardware support for interpreting
the Java bytecodes and is using the new Memory-Constrained Copying algo-
rithm for garbage collection. These enhancements makes the execution of Java
programs very fast and creates a low program interruption. This makes the new
Atmel microcontroller able to run interactive programs without large interrup-
tions.
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