Foreword

This report is the result of a master thesis performed by Steffen Holthe
and Jan Steinar Kvilesjo in the 5th year of a Masters Degree at the
Norwegian University of Science and Technology (NTNU) in Trondheim,
Department of Computer and Information Science, 2005. The thesis’ title
is “Highly available database clusters — Repair with large segments”. The
thesis will give an answer to the following problem:

In existing highly available database clusters, node repair is an expensive
operation due to use of the TCP/UDP/IP protocols. The candidates shall
create a prototype of a DBMS, using InfiniBand and RDMA for node repair.
InfiniBand and RDMA open for the possibility to transfer large segments
over a high speed network and in this way improve the performance. The
model will simulate such a system to see how use of this technology
affects the performance and availability compared to existing solutions.
Based on this solution, the candidates will try to discover what segment

size that gives the best overall performance for the system.

The report is written for people with a general database background and
interest in using new network technology in highly available database
clusters. It is performed on behalf of Sun Microsystems and Professor
Svein Erik Bratsberg. We would like to thank Professor Bratsberg and
Mr. Rune Humborstad from Sun Microsystems for good help and
counseling during our work. We would also give a special thanks to Linda
Ring for help with spelling and grammar and Dr. Terje Brasethvik for

help with structuring and quality assurance of the thesis.

Trondheim, Friday 3rd of June 2005

Steffen Holthe Jan Steinar Kvilesjo

111

Abstract

The goal for this master thesis is finding trends and behaviors in a highly
available database cluster using InfiniBand and RDMA. This will be used
to optimize configuration of the segment size in such systems. To find
these trends and behaviors, a mockup model has been developed. The
model consists of a simple DBMS that uses only the main memory for
storing data and a checkpoint method to repair nodes after a node
failure. During a repair, the model simulates use of InfiniBand and

RDMA during checkpointing.

To simulate clients connecting to and using the database, the model
includes write operations on the database and measures how many write
operations it can process per second. During a repair in a database
cluster, one node will flush all of its data to a new node. This is done in
small batches, just like in a checkpoint. In this model, it is simulated by
a checkpoint module continuously simulating flushing data from one
node to another. When the checkpoint is flushing a small part of the
database fragment, the model uses Copy on Write to prevent lockout for

the transactions.

When a node fails the system is repaired by a second node which takes
over as fast as possible. The second node must process transactions
while transferring all of its data to a spare node. To achieve fast repair
time, the system should transfer as big segments as possible. The
problem with big segments is that it takes a long time to perform Copy

on Write on them.

With the mockup model, the repair time is measured, how many write
operations are being performed per second and CPU usage depending on
the segment size and number of clients using the database. This will give

a good indication of what segment size is preferable.

The results from the thesis show that there are huge advantages by
using state-of-the-art technology such as InfiniBand and RDMA for
repair in highly available database clusters. This technology and optimal
configuration improves the availability and this thesis gives an indication
that the segment size should not be more than 1 % of the database size.
With use of InfiniBand and RDMA using this configuration and physical
repair, the availability reaches class 9.

\Y

Contents

Chapters
Chapter 1 Introduction......cccceiianeae. 1
1.1 The asSi@NIMeEnt . ..ottt 1
1.2 HADB ..o 2
1.2.1 The checkpoint modulecccovviiiiiiiiiiiiin e 3
1.2.2 Repair with the checkpoint technique................c.co.cooiiiie. 4
1.2.3 Logical versus Physical repair.......c..cccoeeveiviiiiiiininiininnenen.e. S
1.3 AVAilabilify ..o 6
1.3.1 The availability model.............oooiiiiiii 7
Chapter 2 Technological background.........cccceceieeiniiniiiceinninnnnes 11
2.1 InfiniBandccooiiiiiiii e 11
2.1.1 BacKgroundc.ccoeuiiiuiiiiiiiiiii e 11
2.1.2 Theoretical explanation of the concept.........c..ccoceeiiiininin. 12
2.1.3 The different layers........cccovuiiiiiiiiiiiiiiii 14
2.1.4 InfiniBand versus Ethernet.....................o 15
2.2 R A Lo e 16
2.2.1 BOttlenecCKS ...ouuiuiiiiiiiiiii e 16
2.2.2 Remote Direct Memory ACCESS ..ueuiuirieiiiiiininiiiiieiieneneanene. 16
2.2.3 SDP - An implementation of RDMAccccoiviiiiinininn. 17
2.3 CoPY 0N WL . utitiiiie e 22
2.3.1 The algorithm.......ccoiiiiiiiiii e 23
12 S O] o T<To ¢ o101 1 o | NN 24
2.5 Buffer managementc.oiiiiiiiiiiiiiiii e 25
2.5.1 Java NIO buffer........coooiiiiiii e 26
2.5.2 Using byte bufferscoooiiiiiii 27
Chapter 3 Performance of InfiniBand/RDMAccccceeeeeeneeecencennns 29
I N 03 = U B 1T - PP 29
3.2 ReSponse time ...coeuiuiniiiiiiiiiii e 32
3.3 LAl 0y et e 33
3.4 Bandwidth ... 34
3.5 Summary of RDMA performance........c.coeoeuviiiniiiniiiiiinineninan.. 35
Chapter 4 HypOotheSes ...cccevuiiiiiniiiieiniiiieieiieieiecieiececiriececssscecenes 37
4.1 The hypotheSes ..c.ouuiuiiiiiiii e 37
4.2 Validation of the hypothesesc..coooiiiiiiiiiiiiie 38
Chapter 5 Design of the simulator.......c.cccceveiiiiiiiiiiiiiiiniiiiininnens 39
5.1 The simulator......ccoiiiiiiiiiiiii 40
5.1.1 DataBaseControl.........c.ccocoiiiiiiiiiiiiiiiiiiiii 43

5.1.2 BufferManager, Segment and AdmRoOwWc.ccocceeveniinnne. 49
5.1.3 ClientThread and TransactionController..............c............ 53
S5.1.4 Checkpoint ..o 61
5.1.5 IOController and RDMA.......ccccoiiiiiiiiiiiiiiiiiiiiiceeeea 63
S5.1.0 CPUUSAZE «tutuenininet ittt ettt ettt e e e e eenenes 64
S5.1.7 HiRESTIMEeT eueniiiti e 66

5.2 Result management and graphs.......c.cooveiiiiiiiiiiiiiiiiiininent. 69
5.3 Validation....ocininii e 71
5.3.1 Detection of possible pitfallscocoiiiiiiiiiiiiiiiii 71
5.3.2 Manual inspection of codec.ocoeiiiiiiiiiiiiiiiiii 71
5.3.3 Oral explanation of the codecccooiiiiiiiiiiiiiiiininn.. 71
5.3.4 Inspection of the debug log (white box testing) 72
5.3.5 Black box teSting......ccoeveuiiiiiiiiiiiiii e 72
5.3.6 Regression teStingcoocveuiiiiiiiiiiiiiiiiiiiii e 72
5.3.7 Graphical validationcocevuiiiiiiiiiiin e 72
Chapter 6 ReESULLS..ccciiiiniiniiniinieriniieieniersersncsstescessessrssssescessessessns 77
6.1 Uniform load with one threadc.ocoeiiiiiiiiiiiiiiiins 79
6.1.1 Analysis of graphs....c..coiiiiiiii 79

6.2 Uniform load with five threads..........c.cooiiiiiiiiiii, 85
6.2.1 Analysis of graphs.......ccooviiiiiiii 85

6.3 Uniform load with 25 threadsc..cooiiiii 88
6.3.1 Analysis of graphs....cccoeiiiiiii e 88

6.4 Distorted load with five threadsccccooiiiiiiiiin, 91
6.4.1 Analysis of graphs....ccooiiiiiii 91
Chapter 7 DiSCUSSION...cciiiiiiiiiiiiiiiiiiiiiiiititietietircrietietescescnssnnens 94
7.1 SIMUIAtION ..ooviiiiiiiii 94
7.2 CPU USA . ittt ettt e e 97

7 3 TP S e 98
7.4 Copy 0N Wit .o 100
7.5 ChecKpPOointingc.vuiiiiiii e 101
7.6 Repair time and throughput ... 103
7.7 Availability ..c.ocoveniiniiiii 105
7.8 SOUICE Of @ITOIS . uiuiininiiiiiii et 106
7.9 Summary of hypothesesc.cooviiiiiiiiiiiii e 107
Chapter 8 (0703 ¢ T 1 53 103 o TN 108
Chapter 9 Further WorK......cccciiiiiiiiiiiiiiiiiiiieieiiiiiiecieciscecnnenes 110
Chapter 10 GlOSSATY cccccutiurireiiirintintiociecerentieccscescessnsssscscessnssnnens 112
Chapter 11 Bibliography....cccccceiiieiiiiiiiiirieiiiirieieciriesaciriecacennsens 118
Chapter 12 AppendiX.....ccccveiirierenreniieiersersrsetescessessessssoscessessessns 124

VIII

Graphical content

Graphical content without references are created by the authors.

Figures

FIGURE 1.1: ERROR HANDLING IN HADB [HKO4].......ooiiiiiiiiiieeeee ettt 1
FIGURE 1.2: THE HADB SYSTEM [HKO4] ..coouiiiiiiiiiieeee ettt ettt n 3
FIGURE 1.3: THE CHECKPOINT MECHANISM [HKO4].....cooiiiiiiieiie ettt 4

FIGURE 1.4: FAILURE STATE TRANSITION DIAGRAM ASSUMING MAXIMUM THREE CONCURRENT
NODE FAILURES. THE INTENSITY OF TRANSITIONS FROM STATE S3 TO STATE SA IS GIVEN BY

THE AGGREGATE FAILURE INTENSITY OF THE REMAINING (N-1) NODES. [TOR95]ccueenee. 8
FIGURE 1.5: CLUSTER WITH MIRRORED DECLUSTERING STRATEGY ...ccecvvieveerniienieenireenireenneeenenesnnns 10
FIGURE 2.1: THE INFINIBAND ARCHITECTURE BLENDS IN WITH THE REST OF THE HARDWARE

[RICOT] ettt ettt ettt et et eesb e st b e s ae e be e b e saaessaesseenseenseeseesseesseesseessesseensanns 12
FIGURE 2.2: THIS FIGURE SHOWS THE OSI MODEL.......ccccciiiieiiieeniiieeeiiieeeiereeesnreeeseseesssssesesnsseeens 14
FIGURE 2.3: DMA AND RDMAooi ettt ettt e et e e st e e e et e e e enebaeeenesaaeas 17
FIGURE 2.4: THE SDP MODEL......ceiitttiiitiiiteiteeite sttt e st ettt esiteeitesbeesabeesabeesabeesseeenasesnbeeenseesnses 18
FIGURE 2.5: SDP BUFFERING MODEL........ccittiiiteniiieiieeiieeieeseteesseesiteesssesseesnseesaseesseessseesssesnsees 19
FIGURE 2.6: BCOPY DATA TRANSFER MECHANISM.......cceeitieeiierereenreenereensresseesnseesseesnseessseessesssnees 20
FIGURE 2.7: READ ZCOPY AND WRITE ZCOPY. THERE IS ONE LESS OPERATION AT DATA SOURCE

WHEN USING READ ZICOPYoeitiieiiieiiieeciieeeiteeiteeieeeteesveesteesssaessseesseessaesseesnseesssessssesssseees 21
FIGURE 2.8: STRING CLASS WITH A POINTER TO A STRING ..cuueteruiieieeriienieesieenreenieeesieesnseesnseesnnes 23
FIGURE 2.9: TWO STRING CLASSES POINTING TO THE SAME STRINGeeeveeriienieenireeneeenieeenineennns 23
FIGURE 2.10: TWO STRING CLASSES POINTING TO A COPY OF THE SAME STRINGccceecvvernveennnenn 24
FIGURE 2.11: STEPS DURING RECOVERY [ALIOT....uiieiieiiieeiieeiieeieeeiteeee et 25
FIGURE 2.12: STATE VARIABLESuttiittteittieitteeteeeteeeereesseessseessseesseessseesssessssessssessssessssssnsssansessnses 26
FIGURE 2.13: DIRECT VS. NON-DIRECT BYTE BUFFERcc0tertieitiietieeteeereesreesseeseseessseessesenseesnnes 28
FIGURE 2.14: HOW JAVA NATIVE WORKS (DIRECT BUFFER)eouvitieiieiienieeiieieeieeeaeseeeseeeneeenneenees 28
FIGURE 5.1: THE THREE MAIN PARTS IN THE PROGRAMccccuieriiieniieeniiienieeeieeeieesieesseesnseesnseensnes 40
FIGURE 5.2: CLASS DIAGRAMceeiutiiutieeteesitienteeniteesteesteesseessseesssesssseesssesssssnseessessssessssessssessseeen 41
FIGURE 5.3: DATABASE STRUCTURE0ecettteitteeiteesteesereesseessseessseeseeaseeasessssessssessssessssssnsssensessnses 42
FIGURE 5.4: TRANSACTION CONTROLLERc.uvtiitieitiesitiesteenereessreeseeesseeesesssseessseesssessssssssssensessnses 42
FIGURE 5.5: CHECKPOINTERceceuttttesitteestreeeasteeeassseeesnsseesasssesesssesessssesasssseesssseesssssessesssesesssseeens 43
FIGURE 5.6: RESULT FILE........ctiiiiiiiiieiiieeitieeeeiteeestteeestaeeesseseeesssseaesssseeeassseeessssaeessssessssssesesnsseanns 44
FIGURE 5.7: DATABASECONTROL AS THREAD MANAGER........ceeitteiieiiieeieenteesreenieeenieesseeeseesnnes 47
FIGURE 5.8: SEQUENCE DIAGRAM DATABASECONTROLcoviiiiiiiiiiiiieeeeeeiiieeeeeeeeeeieeeeeeeeeeeaneaeeeas 47
FIGURE 5.9: SYSTEM ARCHITECTUREcccutteitteetiesteesreesseessseesssaesseeasseessessssessssessssessssssssssensessnses 49
FIGURE 5.10: SEQUENCE DIAGRAM SHOWING CLIENTTHREADuuvtiiiiiiiiiiiieeieeeeeeinieeeeeeeeeennaeeees 56
FIGURE 5.11: CLIENTTHREADS WORKING ON THE DATABASE.....cccuttieitiieeeieireeeirieeasereeeeseseeesneneeens 56
FIGURE 5.12: ACTIVITY DIAGRAM CLIENTTHREAD ...cccuttiiiiiiiiiiniieeiie et eieesiieesteesieeesitesieeeiee s 60
FIGURE 5.13 ACTIVITY DIAGRAM FOR CHECKPOINTERceevtiteriieeiieeieeereesreesreesneeenanesnseeenseesnnes 62
FIGURE 5.14: SEQUENCE DIAGRAM FOR CHECKPOINTER.......c.cevctterueenireenireeireeseesseesseensseessneensnes 63
FIGURE 5.15: TASK MANAGEReeitiiitiietieeitieeteeeteesseesseessseessseesesassasassessssesssseessseesssssssssensessnses 75

IX

Tables

TABLE 1.1: AVAILABILITY OF TYPICAL SYSTEMS CLASSES. [GSO1]..ccoiiiiiieiiieieeieeieeeiee e 6
TABLE 2.1: I/O INTERCONNECT ANALYSIS [RICOT]..ccviiiiiieiieciieeieeciteste ettt 13
TABLE 5.1: DISTORTED LOADuttteeitiieeeiteeestieeeatteeessseeessseesassseeesssssesssssssesssssesssssseesssssesesnsseennn 57
TABLE 5.2: THE EFFECT OF COPY ON WRITEcceiiiiiiiiiiiiieiiiieeeirieeereeesstaeeesssaeeessssessnsseeessseeens 58
TABLE 7.1: HYPOTHESES RESULTS ...ccuuttertteeiteetteeieesteesteesiteesseesseeesssesnseeesseesseessseesnseesssesssseeses 107
Graphs
GRAPH 3.1: CPU VS. THROUGHPUT [CALO3H] .eiiieiiiiieeiiiie ettt ettt et eeeavee e eeveeesneaeeeas 30
GRAPH 3.2: CPU UTILIZATION: NO READ-AHEAD [CALO3] ..oiiiiiiiiieiiie ettt 30
GRAPH 3.3: PROCESS PRIVILEGED TIME PER I/O (RELATIVE TO TRADITIONAL I/O) [SMS02]......... 31
GRAPH 3.4: RESPONSE TIME [PANOA] ...ccitiiiiieie ettt sttt sre et sntee et e enseeensaesnnees 32
GRAPH 3.5: RESPONSE TIME SPLIT UP [PANO4]ccvtiiiiiiiiieeiieciteete ettt e e e sve e es 32
GRAPH 3.6: RESPONSE TIME [PANO4]cetiiiiieeie ettt ettt ettt sveetaeesaesstaeenseeensaeensaennseas 33
GRAPH 3.7: LATENCY [BALO3H] ..ottt ettt et e e e e e e sabee e eanaaeesnasaaans 34
GRAPH 3.8: BANDWIDTH [BALO3F] ...ttt ettt e eaae e e saaaeeeas 34
GRAPH 3.9: THROUGHPUT GIGASWIFT TO THE LEFT AND THROUGHPUT EMULEX TO THE RIGHT
[CALD2] ettt ettt ettt et e et e et b e s te e be e b e eateeaa e beenbeeabeereeeaeebeenbeereeeaeeraens 35
GRAPH 5.1: EXAMPLE OF CONFIDENCE INTERVALeecuvtitieeiiesiieeteensreessreesseeessaesseessseesssessssesssnes 49
GRAPH 5.2: THROUGHPUT MEASURE OF COPY ON WRITE.......cccctiiiiieririeniieeieeeieesreesveeseveeseneensnes 51
GRAPH 5.3: THEORETICAL COW AND MEASURED COWcccuiiiiiiiieiiie ettt 73
GRAPH 5.4: CHECKPOINT TIMEccuutiitteeteenireenteenieeenseesteeeseessseesssesssseesssesssessnseessessnsessssesssessseeen 73
GRAPH 5.5: RDIMA ...ttt ettt ettt et e st e st e e sab e e s steestaeensaesabeesnsaesnsaesnsaenseean 74
GRAPH 5.0: CPU USAGEcotiiiiiieiieeiteettesttesteestteesteesteeeseesssaessseessseesssesssesanseesssesssessssessssesnseees 75
GRAPH 6.1: TIME IT TAKES TO PERFORM COPY ON WRITE......cccctteeiieririerireeieeeireereesseessseessveesseens 78
GRAPH 6.2: NUMBER OF COPY ON WRITE OPERATIONScccutiirierieenireesireesteeessesseesseessseesssesssnes 79
GRAPH 6.3: TRANSACTIONS PER SECONDcccicuiieeiiiieenereeesstreeeasereeeasssseessssseessssseesssssesssssseessssseeens 80
GRAPH 6.4: CPU USAGE ...ceiuitiiiieeiie ettt sitte st ettt stte st te st e seteesabe e sttt esatesabeesabeesnbeesabeesaseesaseenseean 80
GRAPH 6.5: NUMBER OF CHECKPOINTSeeiuvteeieerireerueesreeesseessseesseessseesssesssessnseessseesssessssesssesnseees 81
GRAPH 6.6: MEASURED TIME TO PERFORM A CHECKPOINTccccvterieenirierireeeeeesresseesseessseessseensees 81
GRAPH 6.7: NUMBER OF COPY ON WRITE OPERATIONScccutiitienieeireessreesseeeseesseesseessseesssesssees 85
GRAPH 6.8: TRANSACTIONS PER SECONDcccccuiieeiiiieeeereeesereeesereeessssseessssseessssseesssssessssssesssssseeens 86
GRAPH 6.9: CPU USAGEeotiiitieeite ettt ettt ettt e et e st e st e e bt e e sbtesabeesabaesabeesabeesaseesaseeseen 86
GRAPH 6.10: NUMBER OF CHECKPOINTS ...ccutteruitetieerteesteeeueesteesseesseeensnessseessseesseesnsesssseessessseen 87
GRAPH 6.11: MEASURED TIME TO PERFORM A CHECKPOINTccccviiieiiiiieenireeeeieieeeeeireeeeareeeenneeens 87
GRAPH 6.12: NUMBER OF COPY ON WRITE OPERATIONSc.vteitieereerireenereeteeeseesseesseessseessseessnes 88
GRAPH 6.13: TRANSACTIONS PER SECONDcuuiieeiiiieeeeiieeseteeeeereeeessseeessssseessssseesssssessssssesssnsseenns 89
GRAPH 6.14: CPU USAGE ...ttt ittt ettt sttt ettt ettt et bt e st e st e sabeesateesaneebeeen 89
GRAPH 6.15: NUMBER OF CHECKPOINTS ...ccutteriteitieerieeetieeieesteesseesseeenssessseesnseesnseesnsesssseessesssees 90
GRAPH 6.16: MEASURED TIME TO PERFORM A CHECKPOINTeeriieririeriieeireeieesieesseesnseesnneenenens 90
GRAPH 6.17: NUMBER OF COPY ON WRITE OPERATIONSuuteitienieenereenireeireeseesseesseesnseesssesnsnes 91
GRAPH 6. 18: TPS ...ttt ettt e e e e st e e et e e s st e e ssaeestaeessaesnseesnseessseesssaeseean 92
GRAPH 6.19: CPU USAGEutiiiiiiiieeeiiteeeitee e st teeeiteeeseteeestaeeeassseeessssseesssaaesssssaesassseesassseeesnsseeans 92
GRAPH 6.20: NUMBER OF CHECKPOINTS ...ccutteruttertteertierteeeieesiteesseesseeesseessseesnseesnseesnsesssseessesssees 93
GRAPH 6.21: CHECKPOINT TIMEuuteiutieettenitieniteenteeenseesteesseessseessseessseesssesssessnseesnsessssesssseessessseees 93
GRAPH 7.1: NUMBER OF SEGMENTSeeectteiuttenteentteereeesseeasseessseessesssseesssesnsesenseesssessssesssesssesnseees 95

GRAPH 7.2: CPU USAGE ...ttt e ettt e ettt e e e e e s e eaaaa e e e e e e sesaaaeeeeessennaaaneeeeeeann 98

GRAPH 7.3:TPS oottt ettt ettt ettt e et e et e e te e beeabeesseetaesbeeteenseeaseaneas 98
GRAPH 7.4: COPY ON WRITE OPERATIONSccuutiiiitiieentrieeaereeesereeeseseeesssseeessssessssssesesssseessnssesens 100
GRAPH 7.5: NUMBER OF CHECKPOINTSceeiuttetteeuterteesreesiteesteeniteessteenseeesseessseesnseessseessseessseenes 102
GRAPH 7.6: TOTAL RUN-TIME......cccctterutterureeueeetreeueesreesseesaseessseesssessssesnseeesseessseessseesssessssesssseenes 102
GRAPH 7.7: CHECKPOINT TIMEceutterutterureeieeetreeueesnseesseessseesssessssessssesssseesseesssessssessssessssesssseenns 103
GRAPH 7.8: TPS VS. MBSttt ettt sttt te e s e e st e s aae e stbeesaaeessaeensaaeasaesnsaessseees 104
GRAPH 7.9: AVAILABILITY FOR A TWO NODE SYSTEMceeiiutiieiiiieenirieeniereeesereeeaereeessnseeesnsseeens 105
Code

CODE 2.1: COPY ON WRITE ALGORITHM........0teeteerirrerurertreaseesseesseessseesssesssessnseesssessssessssessssessseees 24
CODE 2.2: COMMANDOS IN BYTEBUFFER.......ccccttiittteitieetieeieesteesteessreessseesesesssessseesseesssessssesnseees 27
CODE 5.1: CPU USAGE METHODceiutteeittenitteniteenittesttesteeeseesiteessseessseesssesseesnseesnseessesssseesssesssees 45
CODE 5.2: ADDRESULTSTOEXCEL() ..evveivtetieieeiesiestteteeteeetesteeteesseessessaesseessesssessaessaensenssesssessnes 46
CODE 5.3: CREATION OF SEGMENTBUFFER AND ADMROWcccooiviiiiniiiiniiieiieeiieciee e 50
CODE 5.4: WRITETOSEGMENT() +.eeuvteiutteeteesrienteentreesseesteeasseessseesssesssseesssesssesssseessseesssesssssesssessseees 52
CODE 5.5: COPY ON WRITE ALGORITHM........0teeittertrrereresreeesueesseesseessseessseessesssseesssessssessssesssssssssees 53
CODE 5.6: TRANSACTIONCONTROLLER CONSTRUCTORccecuteierieeieerereenereeseeeseesseesseessseesssesssees 54
CODE 5.7: CLIENTTHREAD CONSTRUCTORceeuttettieiiertieeieesiteesseenieeesssesseesseesnseesseesnseesssesnsees 54
CODE 5.8: TRANSACTIONCONTROLLER WAITING FOR CLIENTS TO FINISHcccovviieeiiireeiieeeeenennn. 55
CODE 5.9: WICHBYTE AND WICHSEGMENTBYTE FUNCTIONcccovtiieiiiieeeiiieeeeiieeeeeireeeenreeeeaveens 57
CODE 5.10: WHICHSEGMENT FUNCTIONS0teetteittterteeeteeesseessseesseessseesssesssesesseesssessssessssesssessssees 57
CODE 5.11: CHECKPOINT CONSTRUCTORc0teeteertreerreeereeesseessseesseessseessseessssenseesssessssessssessssessseees 61
CODE 5.12: GETPROCESSCPUTIME() ...eecuviiitiieeieeiiiesiieetieeteesveesiveesiveessaeesseesssaesssesssseessseesssasnsees 64
CODE 5.13: INI_ONLOAD() .t evertteieeieeiteitetetentestente sttt sttt ittt et sae st st bbb ese e ensenaenaennes 65
CODE 5.14: LOADLIBRARY () +veeuvteetteettenteenirtenteentteesseesteeaseessseesssesnsseesssessessnseesssessssessssesssesnseees 65
CODE 5.15: TIMERTEST CLASS ..tttetteitteeteesrtenteesiteesseesteeesseessseesssesssseesssesssesasseesssessssessssessssessseees 66
CODE 5.16: C++ CODE AND CORRESPONDING JAVA CODEeevvieeiienirienireenieeeeeesseesseessseessseessees 67
CODE 5.17: JAVA_HIRESTIMER _STARTTIMINGc..eeitiaiieniieuientiatieieeeeeeteenteeeeeete e sseesaeeneeeneesneas 68
CODE 5.18: JAVA_HIRESTIMER ENDTIMINGcoriiiiiiiiiiiiiiiieiiete ettt 68
CODE 5.19: PSEUDO CODE FOR UPDATING CELLS IN THE SHEET ...ccuveertteniieeiieeiiesieeereesireesveenaneas 70

CODE 5.20: PSEUDO CODE FOR UPDATING CHARTS, WHERE N IS NUMBER OF SERIES IN THE CHART. 70

XI

Chapter 1

Introduction

This chapter gives a short explanation of the motivation for the
assignment and an introduction to Suns HADB (High Available Data

Base).

1.1 The assignment

The background for this assignment comes from Sun Microsystems and
professor at NTNU, Svein Erik Bratsberg. They want to find out more
about use of InfiniBand when checkpointing a database from one node to
another, especially related to HADB. When severe errors occur or
maintenance is performed in HADB, the whole database fragment is

copied from one node to another to make the new node up to date (Left in

Figure 1.1).
Error

Disk error (Severe) Memory Partial memory
Maintenance corruption corruption
The whole Log based Memory
database is recovery based
copied from recovery

another node

Figure 1.1: Error handling in HADB [HKO04]

For this copy operation it is desirable to transfer as much data as
possible at one connection because of the connection setup time which
occurs for each connection when using RDMA over InfiniBand.

2 1.2 HADB

The transfer rate for InfiniBand in this thesis will be estimated at 8 Gb/s.
When transferring a database from one node to another, one segment of
the database is transferred at a time. Theoretically it would be preferable
to have these segments as large as possible. The segment that is
transferred will have to be marked in the database for Copy on Write
inside the source node. Copy on Write is used to avoid blocking in the
database which will lead to a significant fall in the throughput. Large
database segments will create an expensive internal copy operation in the
main memory and take a lot of resources. The main goal for this thesis is
to collect enough data to be able to make a suggestion as to which
segment size gives a high bandwidth for the copy operation between
nodes and a high throughput inside the source node. The collected data
will validate the hypotheses that will be presented in Chapter 4.

1.2 HADB

HADB was first developed at Telenor in the middle of the 1990s and was
called Clustra [HKO4]. Now the system is called HADB and is used in Sun
Java Enterprise System which is a part of Suns highly available J2EE
Application Server. The project had three main goals (a) Short response
time — 15 ms for 95 % of the transactions, (b) Scalable throughput with
an upper limit of at least 1000 TPS, (c) High availability, not more than 3
minutes downtime per year. The transactions in question were simple

Telecom transactions.

HADB is built on a shared-nothing architecture which consists of several
clusters with Sun UNIX, Windows 2000 or Linux computers. The
different nodes are grouped into sites with communication through
switches (Figure 1.2). Two phase locking is used for concurrency control.
Tables are fragmented horizontally. There are primary nodes and hot-
standby nodes. Hot-standby nodes are identical copies of the primary

nodes. These nodes are able to take over if the primary nodes go down.

Chapter 1 Introduction 3

1
Site A 1 Site B

Node |— i Node
|
1

Node | Node
1
1

Node ! Node
|
1

Node ' '— Node
1

Figure 1.2: The HADB system [HKO4]

During checkpointing HADB wuses the following techniques; Fuzzy
checkpointing, Steal and No-force. A fuzzy checkpoint is non-blocking.
HADB uses two-level logging, one logical record log, and a node-internal
physical log. It guaranties that the internal node log records are written
to disk before the corresponding data pages. Steal means that it is
possible to flush dirty page to disk before the transaction has committed.
No-force means that even if the transaction commits this does not mean
that dirty pages are forced to disk. In this way it is much easier to control
the time and place for disk accesses. Redo during recovery starts on the
penultimate checkpoint since no log records are written to the log after a
checkpoint. Thus it is not possible to assure that the last checkpoint
was performed successfully. This type of checkpoint is called penultimate
fuzzy checkpoints.

The buffer manger, checkpoint manager and the disk interface cooperate
to maintain writing and fetching of pages. The buffer manager uses the
checkpoint manager to empty the dirty page buffer if necessary. The
checkpoint manager scans this buffer for dirty pages at certain time
intervals and pages found are written to disk. The disk interface receives
a request to perform write or read operation. These operations are
handled using asynchronous I/O. The page size used in HADB today can
vary between 4 KB and 16 KB. The max record size is less than half of
the block size.

1.2.1 The checkpoint module

The checkpoint mechanism (Figure 1.3) does not consider the database
log and can be seen as a combined checkpoint and write-ahead
mechanism. A special aspect with the buffer manager in HADB is that
the checkpoint thread is the only thread that performs output of dirty
pages to the disks.

4 1.2 HADB

This thread is activated at regular time intervals, either at certain times

or when the buffer manager detects a certain amount of dirty pages.

Checkpoints are frequently written because this leads to a short recovery
time after a possible crash. Dirty pages are flushed regularly to disk to
avoid that the system will run out of non-dirty pages. This will create a
delay for the system when dirty pages have to be written to disk to free

up space.

T

Node internal log

Checkpoint -
manager \

Disk
interface

Buffer

Reader pool

Figure 1.3: The checkpoint mechanism [HK04]

1.2.2 Repair with the checkpoint technique

HADB has several ways to handle errors. After a node failure the hot-
standby node must copy all of its fragments over to a new node. An
example of a node failure can be a disk error. This repair mechanism
uses the checkpoint technique, but instead of writing to disk as it usually
does, it transfers the data to the main memory on a spare node in the
network. During this repair period the system must process transactions
and transfer all the data to the spare node. This causes extra load on the
node and increases the chances of double faults. Thus it is crucial that
this repair time is as short as possible while providing access for the
transactions. Repair can be performed in two ways, logically or

physically.

Chapter 1 Introduction 5

1.2.3 Logical versus Physical repair

A clustered system can tolerate some level of faults. After a node crash
and a following unsuccessful recovery the repair process reestablishes
this fault tolerance level. Repair involves copying the data and log of one
node to another unused node of the system. This is done by reading,
transferring and inserting and can be done logically or physically.

The meaning of logical repair is that individual data records of the
database are copied. The copy process reads these individual records
from the database by a low-level cursor. Each record is copied into an
outgoing message buffer. When the buffer is full, the message is
transferred, typically containing a few records within one UDP (User

Datagram Protocol) message.

Along with the data copy the log records are also copied. The new copy of
the database is kept updated by applying each log record to the
corresponding data record at the receiving node, given that the records
have arrived. The individual data records and log records are transferred
in parallel using rather small messages. In addition, it takes time to scan
the database record by record and considerable time to insert a database
record by record. Logical repair method is used in HADB today.

Physical repair is quite another process. In physical repair the database
is copied in a rawer format and rather large segments may be copied as a
whole. The advantage of this is that reading, transferring and inserting
the database is much cheaper. If high speed networks are available, e.g.
InfiniBand and RDMA, this may be very advantageous. However, when
copying complete segments, consistency must be ensured by utilizing a
physical log in addition to the logical log.

Logical repair is more flexible than physical repair concerning
declustering strategy. Physical repair requires that source and target
segments become equal. In logical repair two adjacent records may end
at two different nodes, in case distributed sparing is used. Thus, the
replication unit is individual records. However, in HADB mirrored
declustering and separate spares are used. Another drawback of physical
repair is that both data copies become physically equal and they thus
may be more exposed to propagation of errors across nodes (E.g. software

errors).

6 1.3 Availability

1.3 Availability

Availability is the fraction of time that a system performs requests
correctly and within specified time constraints [GR93]. One system
contains multiple modules and these modules can fail. Mean Time To
Fail (MTTF) is referred to as the reliability of one node and is the average
time from a module is set into service, until it fails. After a module fails,
it has to be repaired. The time spent on this repair is measured as Mean
Time To Repair (MTTR) and is referred to as maintainability. Availability
for one module can directly be computed from the reliability and

maintainability measures for the module. Availability A is given by:

_ MTTF
(MTTF + MTTR)

(1.1)

System availability is usually expressed as a percentage. To apply this
idea, suppose a system with an average of one unscheduled outage every
100 days, and the problem takes one day to fix. Such a high failure rate
(1%) dominates the system availability. From the customer’s perspective
the system availability is 99 % (= 100 % - 1 %).

Gray and Siewiorek [GS91] groups systems into seven availability

classes. If A is availability, the availability class C can be expressed as:
C=|lo (;) (1.2)
1o 1- 4 :

In Table 1.1 the classes from 1 to 7 is listed. In 1980 a class 2 was
considered well, in 1990 a class 3 and today a class S is considered well.

System type Unavailability Availability

(min/year)

U A C
Unmanaged 52.560 90 % 1
Managed 5.256 99 % 2
Well-managed 526 99.9 % 3
Fault-tolerant 53 99.99 % 4
High-availability S 99.999 %)
Very-high availability 0.5 99.9999 % 6
Ultra-availability 0.05 99.99999 % 7

Table 1.1: Availability of typical systems classes. [GS91]

Chapter 1 Introduction 7

There can be various reasons for service unavailability. For the user of
the service the reason is of lesser importance, whether it is software bug
or an earthquake. Availability of service has a direct impact on the users
business and the cost of having an unavailable service is an important
factor.

This is why the availability issue is an important one. Systems like
telephone, stock market systems and web shops have large costs and lost
income during service unavailability. Even though precautions are taken,
it is not possible to achieve 100 % continuous service availability. All
methods for fault-tolerance only reduce the probability of failure and do
not fully eliminate it.

1.3.1 The availability model

Since availability for highly available system will be close to 100 % it can
be more convenient to use the unavailability figure. An unavailability of
106 is much easier to understand than an availability of 0.999999
(99.9999 %). Unavailability is calculated by one minus availability.

The total system unavailability is a sum of the unavailability caused by
the various reasons. In a cluster the most common reason for failure is
the node-node double-faults. To calculate availability for one module the
Equation 1.1 is usually used. The availability for a complete cluster has a
different equation. Torbjernsen has developed a failure formula for
complete clusters [Tor95]. To analyze the system behavior, he has
developed a failure model which describes the failure state transition for
node failures. The system for this model has N nodes and no dedicated
spare node storing two replicas of all data and implementing self repair of
lost replicas. The system is in state S;, where O < i < N, when at least one
replica of all data still is available and fragment replicas lost by i node
failures (not due to node failures) not have been reproduced by self
repair. If both replicas of one or more fragments are lost due to node
failures the system is in state S, and is considered unavailable. N is the
total number of nodes in the system.

8 1.3 Availability

Figure 1.4: Failure state transition diagram assuming maximum three
concurrent node failures. The intensity of transitions from state S3 to state
Sa is given by the aggregate failure intensity of the remaining (N-1) nodes.

[Tor95]

Figure 1.4 shows the transition diagram where a maximum of three failed
nodes is allowed. The size and complexity of this model makes it difficult
to understand the overall properties of the system. It is reasonable to
believe that the system will spend most of its time in state So. The
probability of being in any other states S;, i > O, will rapidly decrease with

increasing i.

The system can under no circumstances provide full availability when
the system is in the state S, since all replicas of some data have been
lost. If the system does not provide on-line service during self repair the
system is available only when in state Sp. This repair strategy will be
called off-line self repair.

The opposite strategy, which is called on-line self repair, provides service
during repair and results in only state S, being an unavailable state.
Unavailability is therefore the probability of any time being in a state

when the system is unavailable.

Chapter 1 Introduction 9

The equation for on-line self repair is:

_ 2GZN

UNN,on—line - (13)
PaP;

An = Failure intensity for double failures in state S;

pr = Repair intensity

Pa = Recovery intensity

G = Failure intensity scaling factor for double failures
Z, = Replica fanout

N = Number of nodes

Since on-line self repair must use some of its resources processing user
transactions, less is available to self repair. Thus, the repair is slowed
down, reducing the repair intensity p.,, and therefore increasing
unavailability.

Node failure, replica repair and system recovery are all exponentially
distributed with parameters respectively A, pr and p.. (Replica repair time
will depend on the segment size and communication capacity that is
used in the system). When a node has failed and not yet repaired, the
failure rate for nodes sharing common fragments with it increases by a
factor G to GA.. Z represents the replication strategy used by the system
(replica fanout). When using a cluster with mirrored declustering this
value is set to 1. One module in a mirrored declustering system is two
nodes containing the same fragment of the database. Every primary node
has an independent hot-standby node containing the exact same data
fragments (Figure 1.5). When a node fails, it is repaired by transferring
all the data from the primary or backup node to a new one. This can be
done on-line, while the system is in use. During a repair the node has to
copy all the data and process transactions from the users. Thus the load
on one node will be extra large during repair and the probability for the
node to cause double faults will increase. To minimize this fraction of
time that the node is exposed with extra load, it is important that the
repair is done as quickly as possible.

10 1.3 Availability

Node Ao Node A Node An
Fragment a Fragment Fragment y

Node By Node B4 Node By

Fragment o’ Fragment §§° Fragment y’

Figure 1.5: Cluster with mirrored declustering strategy

For a system with mirrored declustering the equation for unavailability

is:

A2GN
UNN,on—line =
palor

(1.4)

This equation can calculate what unavailability the system will have with
respect to the amount of nodes, probability of node faults and the time it
takes to repair and recover the system. It will be used in Chapter 7.6 to
show what kind of impact the segment size has on the availability of the
system. The theoretical background will be presented in Chapter 2 and 3
to give an understanding of technology used in this thesis.

Chapter 2

Technological background

RDMA over InfiniBand is simulated in this master thesis. To get a good
simulation, the technology must be understood. This chapter describes
this technology, the Copy on Write and Java Buffer technology. The last
two are used in the mockup model of the DBMS.

2.1 InfiniBand

InfiniBand is developed by the InfiniBand Trade Association which is lead
by a steering committee composite of eight member companies. In this
chapter the background and motivation for InfiniBand will be described

before the technical explanation of the concept.

2.1.1 Background

InfiniBand came alive in 1999 as a suggestion to solve future
communication problems related to the limited transaction rate
throughout the PCI port [KimO4a]. In 1999 there were high speed
communications through fiber optics, which was an expensive solution.
InfiniBand is a high speed serial point-to-point link through copper.
Instead of trying to drive lots of wires in a shared bus in parallel, a single
wire at much higher speed is used. After a while this physical approach
was coupled with Remote DMA (RDMA) and the Queue Pair (QP) model of
asynchronous operation, borrowed from the Virtual Interface
Architecture (VIA).

The InfiniBand Trade Association was created as a merge between the
two organizations Next Generation I/O and Future I/O plus Microsoft
(Today this association consists of Dell, Hewlett-Packard, IBM, Intel,

Lanel5 Software, Mellanox, Network Appliance and Sun Microsystems).

11

12 2.1 InfiniBand

The goal for this organization was to connect all servers on the internet
using InfiniBand. They claimed that they would replace PCI in I/0,
Ethernet in the machine room, a cluster interconnect and fiber channel
with one high capacity InfiniBand fabric and a single administration
scheme.

Today the support for InfiniBand is evolving e.g. Linux, which supports
InfiniBand with the release of kernel 2.6.11 [Sla05] and the specification
of InfiniBand v.1.2 lays the groundwork to take InfiniBand up to 120
Gb/s [ITAO4]. InfiniBand is also starting to make gains as a cluster
interconnect. This is particularly true in latency sensitive applications
(e.g. DBMS). In this market it has a latency edge over Ethernet.

2.1.2 Theoretical explanation of the concept

The links in InfiniBand are point-to-point (switched), bi-directional using
2.5 Gb signaling rate and 8b/10b encoding [Kim04b]. The basic 1x cable
is capable of 250 MB/s in both directions simultaneously. The other
bundle sizes are 4x (1 GB/s), 12x (3 GB/s). Release 1.2 adds an 8x
bundle and allow for the signaling speed to be doubled (DDR) or
quadrupled (QDR). The links can be implemented in a printed circuit
board (20+ inches), copper (10 meters) and fiber (up to 10 kilometers).
InfiniBand host adapters, called Host Channel Adapters (HCA), have a
protocol processing engine in them that implements a hardware queue to
accept commands for each communication endpoint in the adapter.
Further, there are other queues
which notify the adapter user

when commands are done.
System
controller

System memory

Queues are used SO the
commands can be performed
asynchronously by the hardware N dapter
without a need to wait for the
operations to complete. The o, ol
commands send and receive
messages or perform RDMA. A

network using InfiniBand consists

controller

of three components (Figure 2.1),

HCA, TCA (Target Channel Figure 2.1: The InfiniBand
architecture blends in with the rest

of the hardware [RicO1]

Adapters) and a InfiniBand switch.

Chapter 2 Technological background

13

HCA provides primary processor to the InfiniBand connection point. The

InfiniBand switch provides a central connection point for multiple TCA to
the HCA [RicO1].

Table 2.1 presents InfiniBand compared to other well known
communication channels. It shows that InfiniBand is better in several
areas.
Feature InfiniBand PCI - X Fiber Gigabit Rapid I/O
Channel Ethernet

Bandwidth 4,16,48 8,51 4 1 16/32
(Gb/s)
Pin Count 4/16/48 90 4 4 40/76
Max Signal Kilometers Centimeters | Kilometers |Kilometers | Centimeters
Length
Transport PCB, PCB Copper, Copper, PCB
Medium Copper, Fiber Fiber

Fiber
Simultaneous | 15 Virtual Supported | 3
Peer-to-Peer |Lanes Transaction
Connections Flows
Native Virtual | Supported
Interface
Multicast Supported Supported
Support
End-to-End | Supported Supported
Flow Control
Memory Supported Supported
Partitioning
Quality of Supported Supported | Supported | Supported
Service
Reliable Supported Supported Supported
Connectivity
Scalable Supported Supported | Supported | Supported
Connectivity
Maximum 4 KB Bus, No 2 KB 9 KB 256 B
Packet Packets
Payload

Table 2.1: I/ O Interconnect Analysis [RicO1]

PCI-X is an upgrade of the classical PCI architecture [Pen02]. There are

reasons to believe that PCI-X will be the next generation of back plane

connectivity for the majority of the computer users.

The way InfiniBand breaks through the bandwidth and other limitations

of the PCI bus is by migrating from the traditional shared bus

architecture into switched fabric architecture. Every node is connected to

each other through the fabric. A node represents either a host device

such as a server or an I/O device (E.g. RAID subsystem).

14 2.1 InfiniBand

The fabric is a collection of interconnected switches and routers.
InfiniBand can guarantee bandwidth and different service levels buy
using virtual lanes [HalO2]. These are located inside the fabric and are
used by the subnet managers. A subnet manager is not necessarily a
separate device; it may be additional intelligence built into the subnet
switch. These lanes are like multiple lanes on a freeway, dedicated for
single-passenger cars and high-occupancy vehicles. The reason why the
lanes are defined as virtual is because there are no physical wires inside
the fabric. InfiniBand v.1.0 defines 16 virtual lanes, where 15 are
dedicated to data traffic and one is dedicated to management. Since all
InfiniBand devices are hot-pluggable, the fabric needs to be able to
reconfigure its topology map on the fly. That is why there is a single lane
dedicated only to management. The subnet managers are also
responsible for negotiating and matching data rates for a point-to-point
channel between two nodes. This can be needed if one node has a 4x
connection and sends data to a storage system with only 1x connection.
Then the subnet manager sets up a 1x connection channel without
dropping packets or impeding any higher speed traffic.

2.1.3 The different layers

To explain the different functionalities Application
of the different layers in the
InfiniBand architecture, the OSI
model is used (Figure 2.2). From this

Presentation
Session

Transport

model the focus is on the four layers
in the bottom (red boxes).These layers Hetees
are the transport, network, data link Data Link
and physical layer and infect the

Physical

behavior of the network.
Figure 2.2: This figure shows

the OSI model

Transport layer

Transport layer is responsible for the actual transportation of the
packages. It controls several key aspects including packet delivery,
channel multiplexing and base transport servicing. For simplicity, the
majority of the transport features draw direct correlation with currently

available networking technologies.

Chapter 2 Technological background 15

Network layer

Network layer is responsible for routing packages between the different
subnets. Each package features a Global Route Header and a 128-bit
IPv6 address for both source and destination nodes. This layer also
provides a unique 64-bit identifier to each device in the network.

Data Link layer

At the packet communication level there are specified two distinct packet
types of data transfer and network management.

e The management packages provide operational control over device
enumeration, subnet directing and fault tolerance.

e Data packages contain the actual information that is transferred.
Each package deploys a maximum of 4 KB of transaction
information.

The link layer also allows for the Quality of Service characteristic of

InfiniBand.

Physical layer

Since InfiniBand has a full duplex nature it has a requirement of only
four wires, a high speed 12x implementation requires only 48 wires. This
is almost just half of what is required in PCI-X. To make it more cost
effective InfiniBand relies on “off the shelf” copper twisted pair and fiber
optic cabling technologies. Theoretically this configuration allows

multiple connections paths scaling up to 120 Gb/s in performance.

2.1.4 InfiniBand versus Ethernet

Compared to Gigabit Ethernet, the InfiniBand architecture has several
advantages, especially concerning the physical layer device model.
InfiniBand specifies a minimum of 0.25 watts per port for operating on
copper up to a maximum distance of 16 meters. In contrast Gigabit
Ethernet technology specifies a minimum of 2 watts per port and this
type of connection is best utilized at distances of 100 meters or more.
This difference makes it possible to develop more efficient hub design for
InfiniBand than Ethernet. InfiniBand is designed especially to support
low latency RDMA semantics for clustering [Lon03]. Gigabit Ethernet
technology must overcome legacy issues to support such critical
technology.

16 2.2 RDMA

Gigabit Ethernet was not specially designed for clustering. By
investigating the message queue depths and performance it is possible to
see that it is not optimal for clustering [WebO1l]. InfiniBand is
constructed for data center distances up to 16 meters. For longer
distances, fiber is needed. With fiber it is possible to reach distances of
up to 10 kilometers, but such distances give significantly higher costs.
Preliminary research shows that InfiniBand has advantages compared to
Ethernet in large clusters [JMO03]. With clusters in the size of 32 CPU’s,
the use of InfiniBand will give a 40 % increased performance.
Researchers emphasize that in small clusters Ethernet will give a
reasonable performance and cost. In large clusters, especially those
serving several users simultaneously, InfiniBand is a more scaleable and

suitable solution.

2.2 RDMA

Remote Direct Memory Access (RDMA) is developed by the RDMA
consortium and lets one computer directly place information into the
memory of another computer. The technology reduces latency by

minimizing demands on bandwidth and processing overhead.

2.2.1 Bottlenecks

In clusters and other network applications the demand for increases in
network speed is growing faster than the processing power and memory
bandwidth of the computer nodes that must process the network traffic
[Pin02a]. As the Ethernet infrastructures are increasing in bandwidth,
the CPUs on the nodes have problems sending data fast enough. RDMA
moves much of the overhead of protocol processing to the Network
Interface Controller (NIC) and puts incoming network packets directly
into the correct destination memory location. This technique eliminates
temporary memory buffering and copying associated with protocol
processing.

2.2.2 Remote Direct Memory Access

Traditional copy uses the CPU to move data from one buffer to another
(Marked with 1 in Figure 2.3). With DMA the CPU programs the DMA
engine and the DMA engine will move the data and notify the CPU when
it is done (Marked with 2 in Figure 2.3).

Chapter 2 Technological background 17

With RDMA the CPU can program the NIC to transfer the data. The NIC
RDMA engine will access the memory directly, transfer the data, store the
data directly in the remote computer memory and notify the CPU when it
is done (Marked with 3 in Figure 2.3).

DMA RDMA
Buffer 1 Buffer 1 Buffer 2
3
- Network o g .E -
S z8 2|5
3 € g

Figure 2.3: DMA and RDMA

RDMA has typically three Data Transfer Mechanisms; RDMA Write,
RDMA Read and Sequence Reliable Diagrams (Sends). These
mechanisms can be combined by the Upper Layer Protocol (ULP) to
create ULP unique sequences that do not require the destination to
process intermediate operations. Examples of ULP are NFS (Network File
System) and SDP (Socket Direct Protocol).

2.2.3 SDP - An implementation of RDMA

The Sockets Direct Protocol (SDP) is an InfiniBand specific protocol
defined by the Software Working Group (SWG) of the InfiniBand Trade
Association (IBTA) [PinO2b][Pin03]. The SDP uses InfiniBand architecture
optimized transfers while maintaining the traditional socket stream
semantics. It implements the in-order delivery in hardware and the NIC
demultiplexes the data stream instead of the operating system. The use
of RDMA reads and writes enables direct data replacement into an
application buffer. In the traditional model the kernel has three levels
that the data must be processed through. This is shown to the left in
Figure 2.4. The SDP bypasses the kernel by using the RDMA semantics.
A RDMA enabled Network Interface Controller (RNIC) is necessary to use
RDMA.

18 2.2 RDMA

This controller can access the memory directly with operations which an
RNIC Interface is expected to perform. These operations are referred to as
verbs and are defined by the RDMA consortium. The network adapter
vendors support the RDMA protocol by using semantics defined by these
RNIC verbs. The SDP model with the kernel bypass is to the right in
Figure 2.4.

Traditional Model SDP Model

Application Application

Sockets

User
Sockets Direct
Protocol

TCPIP TCP/IP ge”;i's
Transport Transport yp
Driver Driver
RDMA
Semantics

Middleware

Hardware
. 08 Modules (SDF)

(RMIG, InfiniBand)
Figure 2.4: The SDP model

The SDP has two ways to copy data from the source to the receiver
[BalO4+]. The first way is referred to as Zero Copy (Zcopy). If the length of
the data is longer than a threshold given by the user, the data will be
transferred directly from the source buffer to the receiver buffer (ULP
buffers). The overhead in Zcopy is associated with pinning the ULP buffer
in memory, advertising the buffer to the Remote Peer, and then
transferring the data. The second copy method is referred to as Buffer
Copy (Bcopy) and this method transfers the data through intermediate
private buffers (SPD private buffer pool). The overhead associated with
Bcopy is associated with copying the data into the send SDP private
buffer pool, sending it directly to the receiver’s SDP private buffer pool,
and then copying it into the ULP buffer. SDP private buffer pool can also
be used if the application requires it. Some applications require the
network to buffer the data for good performance.

Chapter 2 Technological background 19

A mix of Sequenced Reliable Datagram’s (Sends), RDMA read and RDMA
write is used to transfer ULP data. Zcopy uses RDMA reads or writes,
transferring data between RDMA buffers and Bcopy uses sends,
transferring data between send and receive private buffers. The buffering
model is shown in Figure 2.5.

SDP SDP
Private Buffer Private Buffer

Pool Pool

Sends

InfiniBand
Reliable
RDMA read Connected (RC) RDMA read
ROMA, write RDMA, write

Figure 2.5: SDP Buffering Model

Figure 2.5 shows that the SDP Buffering Model has two types of buffers.
The SDP Private Buffer is used for transmission of all SDP messages and
ULP data that is to be copied into the receive ULP buffer. User buffers are
intended to be accessed directly from the source’s ULP buffer to the
receiver’s ULP buffer. Bcopy uses a flow control mechanism similar to the
TCP Sliding Windows protocol (see glossary). It keeps sending data till the

window is full

When the application reads data from the socket buffer, the receiver
sends a control message back to the data source updating its windows
size. Normally, Bcopy is used when the ULP buffer is smaller than the
Bcopy threshold, but applications can also force all transfers to use
Bcopy. This is also known as buffered mode in SDP. The Bcopy transfer

mechanism is show in Figure 2.6.

20 2.2 RDMA

Data Source Receiver
——— ——
Send of data in \
buf:ler Is{mla Data Msg Widaig Receive daia
chunks el L in buffer size
Datg MSQ-WEaIra-b chunks
- .Da- - -
18 Msg Wdaiy L
L™ -
- -
Daty Msg wz;;b'

Gratuitous cradit
Flaw control update is
update may need - = % piggybacked on reverse

to be sent if no -
SDP message *QT@ !:;EI wio 4t channel traffic

sent in reverse
direction

r]
Required msg

- e e . . .
Optional msg

Figure 2.6: Bcopy data transfer mechanism

SDP has also two additional control messages which are used with Read
Zcopy and Write Zcopy. The first is SinkAvail message which allows
destination to RDMA Read from source (Sink represents the receiver).
The second is SrcAvail message, which allows source to RDMA Write to
the destination. These messages are known as Buffer Availability
Notification. The SinkAvail message is used if the receiver already has
posted a receive buffer and the data source has not sent the data
message yet. This is done by first registering the receive user-buffer (for
large message reads). Then a SinkAvail message is sent containing the
receive buffer handle to the source. The data source on a data transmit
call uses this receive buffer handle to directly RDMA write the data into
the receive buffer. The SrcAvail message is used if the data source has
already posted a send buffer and the available SDP window is not large
enough to contain the buffer. This is done by first registering the source
user-buffer (for large message sends). Then a SrcAvail message is sent
containing the transmit buffer handle to the receiver. The data on a data
receive call uses this transmit buffer handle to directly RDMA read the
data into the receive buffer.

Chapter 2 Technological background 21

Figure 2.7 shows the Read and Write Zcopy mechanisms and how they
use the Buffer Availability Notification.

Source Receiver Source Receiver
L]
Sre
Source ma SreAvaj aptionally Receiver
eo;p?fses 0Nt gy tedls Rx 5 exposes
utler Write is o buffer
Receiver available LY
retrisves
buffer 5 |
T
RDMA Read Srofg,
Uses Write
Zeopy
Receivar
1 ;
ROCOE natifies Src sends
Source i source of data ROMA Wy Receiver
ersgicter R?JIM‘: -* receives
i completion data
buwiffiar Src sends Rdmay, A
header o) Recaivar
N racalvas
header for
data

Figure 2.7: Read Zcopy and Write Zcopy. There is one less operation at
Data Source when using Read Zcopy

In general, SDP combines the different copy methods in three different
modes of operation:

e Buffered mode. If the application only wants to send a few dozen
bytes, the data will be sent using send operations to the private
protocol buffer (Bcopy).

¢ Combined mode or transaction mode. This mechanism use
Bcopy to transfer the command and Bcopy or Zcopy for the reply.
Transaction enables fewer messages and lower threshold for
Zcopy.

e Pipeline mode. This mode can use all data transfer mechanisms
(Bcopy, Read Zcopy or Write Zcopy) and the receiver can process
data while the source keeps sending. It can also be used to
continuously pass streaming traffic.

22 2.3 Copy on Write

2.3 Copy on Write

To make highly available database systems, one of the problems to
address is how to keep data available to everyone at all times and still
keep the content consistent [PetO2]. Copy on Write (COW) is a technique
that allows having data available at any time. Traditionally this means
that one would have to operate with copies of all the data. What makes
COW preferable is that it does not make this copy of the data until it is
needed. This means that one only have duplicates of some of the data
and therefore save space and CPU usage. In short, COW is a technique
where two parties share data until one of them tries to write to it. At that
point, a copy of the data is made and the two parties go their separate
ways. This technique is well known from Operating Systems
implementations, where it is used to optimize the file system and in
virtual memory systems. When versioning or snap-shot is needed this is
also a preferred technique because of the low storage overhead and the
ability to version on-line. An alternative to COW for these operations is
split-mirror, which copies the data blocks off-line to a new physical
location on the disk. This requires a large amount of additional storage
and active applications must wait while the data is copied. Although
COW has many advantages it has one major disadvantage. Frequent
snap-shots destroy contiguity, and therefore decrease the performance of
the system. When a new allocation is made for data, it is difficult to place
this near the original allocation. Over time this means that data is spread
all over the disk/memory. Data that is spread all over the disk decreases
the performance since the disk is a mechanical device and therefore
works slowly. The idea of COW in databases is as a low-level concurrency
control. Instead of using traditional locks (latching) which blocks other
transactions out, COW is used to prevent transactions from waiting.
When a transaction tries to update a segment locked by a read operation,

the segment is copied and the transaction updates the new segment.

Chapter 2 Technological background 23

2.3.1 The algorithm

To give a better understanding of COW there will be an example using
the string class [Gre02]. Imagine this string class implemented in such a

way that it only stores a pointer to a string (Figure 2.8).

Figure 2.8: String Class with a pointer to a String

The traditional way to make a copy of such an object would be to create a
new instance of the object. Then allocate enough memory to hold the
string and copy the string from the old object into the newly allocated
memory space. This technique is called a deep copy. If the string data is
particularly large this technique would take too much time and
resources. Then it would be much more effective to copy just the pointer
to the string and have both instances pointing at the same string data
(Figure 2.9).

String

Figure 2.9: Two String Classes pointing to the same String

When using this technique the system has to make sure that if one of the
string objects updates the string data the other does not get its data
modified. To determine whether there is more than one string pointing to
the same data a reference counter is introduced. This counter tells how
many string objects are pointing to this string. When a string object
wants to modify the string data it checks the reference counter. If it
equals 1, the object can perform the modification to the data, but if the
reference counter is greater than 1 it must perform a deep copy and
decrease the reference counter. This technique, when data is not copied
until it is needed, is called Copy on Write (Figure 2.10).

24 2.4 Checkpoint

String

Figure 2.10: Two String Classes pointing to a copy of the same String

In this thesis segments instead of strings are used and only main
memory is used for storing data. Each segment will contain a predefined
number of bytes. Code 2.1 shows the pseudo code for the Copy on Write

algorithm using segments.

if (segment locked by other process)
{
//perform Copy on Write
freeSegment.putSegment (lockedSegment.getSegment ()) ;

freeSegmentPointer = lockedSegmentPointer;

//When the locked segment is unlocked

lockedSegment = freeSegment;

Code 2.1: Copy on Write algorithm

2.4 Checkpoint

In Data Base Management Systems (DBMS) it is necessary to have
recovery mechanisms [HKO4]. If a system fails, the recovery mechanism
will restore it to preserve data and minimize downtime. These systems
use a log to record all changes made on the system. During recovery this
log is redone from the beginning to the end. To prevent this log from
getting infinitely large, the system use checkpoints. A checkpoint is a
consistent snapshot of the system from which this recovery can start.
This checkpoint is also recorded in the log. During recovery the system
typically performs three steps:

1. Analyze the log. The recovery subsystem determines the earliest
log record from which the next pass must start. It also scans the
log forward from the checkpoint record to construct a snapshot of
what the system looked like at the instant of the crash.

2. Redo. Starting at the most recent checkpoint, the log is read
forward and each log record is redone.

Chapter 2 Technological background 25

3. Undo. Goes backward from the end of the log and removes the
effects of all uncommitted updates from the database.

These steps are shown in Figure 2.11.

“start” of oldest Furst possibly ~ Most recent

in-progress lost update to (known) End of Log
transaction do crash checkpoint

(1) Analysis

| (2) REDO

| »>

(3) UNDO

Figure 2.11: Steps during recovery [AliO1]

On a DBMS running on one computer, the system makes a checkpoint
by flushing all updated data to the hard drive and recording the event in
the log. Normally a fuzzy checkpoint algorithm is used to prevent a

system stopping during a checkpoint.

The checkpoint process is usually run as a background process and the
flushing of data to disk is done in small batches. Checkpoints can also
be used in clusters and the HADB is an example of a clustered system,
using checkpoints. This system has two types of checkpoint methods.
The first type is internally at each node and the checkpoint is performed
by flushing the data from memory to the disk. The other checkpoint
method is performed between the nodes. HADB has a hot-standby for
every node and they are kept synchronized by redoing the log. If a node
crashes, the system finds a new node and repairs it with a checkpoint.
The checkpoint transfers all the data from the primary node to the new
hot-standby node. After a checkpoint the log is redone to get the hot-
standby node updated.

2.5 Buffer management

When creating a main memory database one of the important aspects is
how data are stored in memory. A buffer is a container of data in

memory.

26 2.5 Buffer management

This container has a fixed size and contains data of a specific primitive
type. In this implementation Java NIO buffer has been used. This API is
most suited for this task, and explanation of buffers will therefore be

focusing on Java NIO buffers.

2.5.1 Java NIO buffer

A buffer is an object which holds data that is to be written to or that has
just been read [Tra03]. A buffer is essentially an array. Generally, it is an
array of bytes, but other kind of arrays can be used. What separates a
buffer from an array is that it provides structured access to data and
keeps track of the system’s read/write processes. All NIO buffers contain
three state variables and these are used to read/write data from/to the
buffer. Together these variables track the state of the buffer and the data
it contains. These variables are (Figure 2.12):

e Position. The position keeps track of how much data that has
been written. It specifies into which array element the next byte
will go. If 5 bytes are read into the buffer, then the position will be
set to 5 pointing to the sixth element in the array. Likewise, if
there is writing from the buffer. Position keeps track over how
much data that has been received from the buffer. If 2 bytes are
written to a channel the position will be set to 2 referring to the
third element in the array.

e Limit. This variable specifies how much data there is left to get
when writing from the buffer to a channel. When data is read into
the buffer, the limit tells how much room there is left in the buffer.
That’s why: position < limit

e Capacity. Capacity specifies the maximum amount of data that

can be stored in the buffer. It specifies the size of the underlying
array, or at least the amount of data allowed using.

 Capacity

Position

| !
Q0O ()T

Figure 2.12: State variables

Chapter 2 Technological background 27

2.5.2 Using byte buffers

When using buffers in Java NIO one needs to allocate memory space
before one starts working. In NIO the method ByteBuffer.allocate(size)
can be used. This method allocates the underlying array of the specified
size and wraps it in a buffer object.

If this is done manually it will be the same as using these commandos
(Code 2.2):

Byte array[] = new byte[1024];

ByteBuffer buffer = ByteBuffer.wrap(array):;

Code 2.2: Commandos in ByteBuffer

When using byte buffers in Java NIO, there are two choices; direct or
non-direct buffers [SMIO4]. In this thesis direct byte buffers are used.
Direct buffers are allocated in a special way in memory to increase
bandwidth. Sun’s definition gives a better understanding of what a direct

buffer is:

Given a direct byte buffer, the Java virtual machine will make a best effort
to perform native I/ O operations directly upon it. That is, it will attempt to
avoid copying the buffer’s content to (or from) an intermediate buffer before
(or after) each invocation of one of the underlying operating system’s native

I/ O operations.

Allocating and de-allocating direct byte buffers have higher
administrative costs than non-direct buffers. It is recommended for direct
buffers to be allocated primarily for large, long-lived buffers that are
subject to the underlying system's native I/O operations. Since the
content of these buffers may reside in the normal garbage-collection
heap, their impact upon the memory footprint of an application might not
be obvious.

A non-direct buffer is allocated logically to store data. This means the
system does not need to worry about memory allocation [Cha0O2]. Non-
direct buffers are spread all over the memory, while direct buffers are
allocated in a contiguous memory block. This can be seen illustrated in
Figure 2.13.

28 2.5 Buffer management

Direct byte buffer

Non-direct byte buffer

I Allocated '
Free space
space

Figure 2.13: Direct vs. Non-direct byte buffer

Figure 2.14 shows how Java native works. This technique is used when
direct buffer is implemented. The main issue is the connection with the
host operating system. This operation increases the I/O, but is costly in
the meaning of CPU usage.

Host operating system -

Figure 2.14: How Java native works (Direct buffer)

Byte buffers are one of the technology components used in the simulator.
In addition to technology, the preliminary experiences are important to
create the most realistically behaviors of the components. E.g. what is a
realistic bandwidth of the InfiniBand? Chapter 3 describes these
experiences and summaries the settings that will be used.

Chapter 3

Performance of InfiniBand/RDMA

When creating a simulator like the one in this master thesis, it is very
important to find relations to earlier research done on the subject. By
studying benchmarks and identifying important factors, the simulator is
given the optimal settings and behavior. The use of InfiniBand the way it
is intended in this thesis is a new field for research. The approach used
to verify the data is that single relevant subjects from earlier research are
taken out and used as guidelines when creating and calibrating the
simulator. By doing this it will be much easier to predict the results from
the simulator. This theoretical background will also be very important
when setting up hypotheses for the test cases.

In this chapter the most interesting articles are presented. These articles
give different views of the use of InfiniBand and provide many guidelines.
These guidelines have been used during the development of the
simulator. Even though none of the articles describe a system similar to
the one developed in this thesis, is has been possible to see relations in

many areas.

3.1 CPU usage

Conventional TCP/IP communication is a costly method of copying data
between kernel buffers and user process virtual memory at the socket
layer. With RDMA the kernel bypass reduces processing overhead and
thus is should reduce the CPU usage. In Callaghan el al. [Cal03+] RDMA
has been used as an RPC (Remote Procedure Call) transport layer. NFS
has been run with this new transport technique and compared with
traditional transport techniques like Gigabit Ethernet. The article shows
results from an implementation on two Sunblade 1000 machines. These
two machines use two connections.

29

30 3.1 CPU usage

One connection used Sun GigaSwift Ethernet adapters and the other
used Emulex GN9000/VI adapters for RDMA traffic. In both of these
drivers the use of Jumbo frames was enabled. Jumbo frames extend the
normal Ethernet MTU (Maximum Transmission Unit) from 1500 bytes up
to 9000 bytes. With normal frames the performance dropped 40 % on the
Emulex GN9000/VI. A benchmark program was used to measure the
CPU usage. This program read a file of 1 GB sequentially and could vary
read ahead from O to 16 reads ahead. The results were plotted with CPU

usage versus throughput. The

plOt (Graph 31) shows that CPU vs Throughput: GigaSwift vs Emulex GN3000/VI
. . . 10 =

reading the file over GigaSwift, /x/k
even at low throughput from e % _x//*/"’
smaller reads, requires almost §) -
all of the CPU, while at similar 2 " ’X

o
throughput the Emulex RDMA M
requires significantly less CPU. 2 Gigaswit —r—
The authors suspected that 0 ek GREOROV

0 20 40 & 8 100

much of the reduction in CPU Throughput (MB/sec)
use is due to off-load of network Graph 3.1: CPU vs. Throughput
processing into the Emulex [Cal03+]

CPU. This test was also run

: s . CPU Utilization: GigaSwift vs Emulex GN9000/VI
with no read ahead to eliminate 00

‘ ! éigaﬁlwwft'—"—
the effect of asynchronous read Emulex GNIDOD/VI —x—

ahead threads. With this

a0

60

configuration, the plots (Graph g R A S O S
3.2) showed that Emulex RDMA g U
is using between 30 % and 60 B e =

% less of the CPU than the 05 1 2 4 & 16 a o4 128 266 5121024

. . Read Size (KB)
GigaSwift uses for the same

Graph 3.2: CPU Utilization: no
read-ahead [CalO3+]

NFS transfer size. Another
study of CPU usage was done in
2002, by researchers [SMSO02]
who did a study of the impact
from use of direct access I/O on DBMS. This was done by evaluating
impact experimentally. A host server which provided the client API was
connected to an I/O server, which provided the data, with Giganet’s cLAN
implementation of the VI Architecture. Each server had four 400MHz
Pentium II Xeon processors, 1 GB RAM and two 10,000-RPM hot
swappable SCSI disks.

Chapter 3 Performance of InfiniBand /RDMA 31

The DBMS (in this case, DB2) performs I/O by using a direct access API
at the host server (RDMA). Some changes had to be made in the DB2
v7.1 software to enable it to perform direct access I/O. Each thread
connected to the remote I/O server. All read and write calls required that
the memory they had accessed to be registered and all file system calls
were replaced with calls to the direct access I/O client library. The direct
access 1/0 client library was also modified to support multiple threads
and processes, as well as to provide sufficient functionality to support a
DBMS. The experiment used five runs of six different TPC-H queries and
the results were plotted in histograms that were relative to the old
system. The authors expected to see a significant reduction in the
number of context switches performed on the host system, because a
transition to the kernel and back can be avoided with direct access I/0O.
The results did not show this trend, but gave an increase in the relative
number of context switches. The CPU usage (Graph 3.3) also showed the
same trend and the relative process privileged time. This was the amount

of time the kernel spent

1.8

executing work for the e
monitored process. It showed 12
that small queries use more o -
CPU time than traditional I/0O. ot |
With larger query the CPU ~ B

usage decreased. The authors

found that this was due to an B Traditional UG

extra amount of context W Direct Access O

O DirectlAccess 'O minuslavoidable contextiswitches

switching. When this was
avoided, the performance was Graph 3.3: Process Privileged Time
achieved with direct 1/O for per I/O (relative to Traditional I/O)
data - intensive queries. The [SMS02]

conclusion was that the

increased CPU usage was due to administrative costs and a poor
structure in the system. Depending on the implementation, the
modification of existing programs to do direct access I/O may not be
trivial. Given a suitable system, direct access I/O still has good potential
to reduce the amount of CPU usage by a DBMS using traditional I/O.

32 3.2 Response time

3.2 Response time

D. K. Panda wrote in 2004 an article about design of scaleable data-
centers with InfiniBand [PanO4|. Since electronic interaction and
communication have been an important point for many companies,
highly scalable, highly available and high performance web servers have
been a critical part of many companies’ infrastructure. To provide such
services the use of data-centers has been a central requirement. The goal
of this article was to take advantage in the recent improvements in
network technology, such as InfiniBand to satisfy such requirements and
solve the common problems encountered in a large scale data-center. The
test bed used in the article consists of a cluster with 16 nodes with proxy
servers using Apache or Squid, web servers using Apache 2.0,
application servers using PHP, database servers using IBM DB2 and
MySQL. The article compares the response time for SDP with native

sockets implementation over InfiniBand (IPoIB). The results show a

30

- *- IPolB
25
—=—SDP *

significantly better performance

in response time for SDP over

»
s

IPoIB using a message size over
128K. The difference can be
seen in Graph 3.4. To

understand the lack of /;/

performance benefits from

Time (ms)
= 5]
i&

small file SizeS, the response wK sk sk me | Sk ok 2048k
Requested File Size

time need to be split up. In this Graph 3.4: Response time [Pan04]

experiment the response time

consists of three parts; web e SBveE Tire

B Proxy Time
@ Client Time

server time, proxy time and

6

client time. Though the web

server time reduces]
significantly from IPolIB to SDP, "y

Time (ms)
-

the time taken at the proxy 2]

server is higher. This is because

the proxy uses a Signiﬁcant BHK-IPOIB ‘ B4K-SDP T ke 128K-SDP

Requested File Size -Protocol

Graph 3.5: Response time split up
[Pan04]

longer time to connect to the
back-end server when using
SDP. But this connection time

is fairly constant and therefore becomes a smaller part of the response

time as the message size increases.

Chapter 3 Performance of InfiniBand /RDMA 33

SDP has a 500 ps longer connection setup time than IPolB. For the
further work in this thesis, 500 pus has been chosen to be an
approximation connection setup time in the simulator. The simulator will
not run in a web server environment, but after discussion with all the
involved parts this value is found feasible for the purpose. The article
also shows that SDP and VAPI have a significant better response

time than IPoIB when uSIl’lg Datacenter: Response Time

active caches in data-centers.

The difference between the

native InfiniBand Verbs Layer
(VAPI), SDP and IPolB is
significant when the number of

Response time (ms)

O 4 N WA OO N ©®EO©O
: N
i =

compute threads exceeds 70. ce Sﬁumii,ofé’omsiﬂﬁmi° oo
While VAPI stays stabile, SDP (== NoGache —— PoB = V_AP'+SDP‘
and IPoIB increase their Graph 3.6: Response time [Pan04]

response time significantly
(Graph 3.6).

3.3 Latency

In 2003 P. Balaji et al. wrote an article called “Sockets Direct Protocol
over InfiniBand in Clusters, Is it beneficial?” [BalO3+|. This article
compares the SDP protocol with IPoIB and VAPI to find out which
protocol gives the best performance. The tests were performed on two
different software infrastructures: Multi-Tier Data Center environment
and the Parallel Virtual File System. The tests were performed on an 8
node cluster built around SuperMicro SUPER P4DL6 motherboards and
GC chipsets which include 64-bit 133 MHz PCI-X interfaces. Each node
had two Intel Xeon 2.4 GHz processors with a 512 KB L2 cache and a
400 MHz front side bus. The machines were connected by a Mellanox
InfiniHost MT23108 DualPort 4x HCA adapter through an InfiniScale
MT43132 Eight 4x Port InfiniBand Switch. The SDK version is thca-x86-
0.2.0-build-001 and Linux RedHat 7.2 operating system was used.

34 3.4 Bandwidth

One of the subjects tested was the latency. Latency is the transit time
through a digital process, from input to output. It is a minimal, and
usually undesirable, delay [EtvO4]. This was compared between all the

three protocols together with the

CPU usage . AS can be seen Latency and CPU utilization on SDP vs IPolB
70 &0
from the graph below, the VAPI o 50
s [t40 5§
. . S i;.— E=
protocol is superior to the 3 0 — AT §§ 3
= 20 4 (B S| B I it~}
others. The graph also shows a [l | |- ‘ a}ﬂ.
. . . U L A1 NEML AN R B H 0
significant deterioration of the R .
[PolIB protocol when the Message Size
. OIPalB CPU COSDP CPU - |PolB
message size exceeds 1KB. The = SDP +VAPI senditecy VAP ROMA wiite
trends showed in this graph Graph 3.7: Latency [Bal03+]

demonstrate that for messages

over 1K the IPoIB is not a viable

alternative if a good response time is an important factor in the system.
Even for small message sizes, VAPI gives a better performance with a
factor of up to 5.46 compared to the IPoIB. In network technology latency
is a very relevant subject. In this thesis the latency has been integrated
in a bandwidth of 8 Gb/s.

3.4 Bandwidth

In the article written by P. Balaji et al. bandwidth is also evaluated. The
bandwidth shows how much data each protocol can transfer from one
place to another. When comparing VAPI, SDP and IPoIB the results are
clear. The VAPI outperforms both SDP and IPolB for messages larger
than 256 B. At a message size of 64 KB, VAPI transfers 825 MB/s and
SDP 471 MB/s, compared with the IPoIB that transfers 169 MB/s. The
main reason for choosing InfiniBand is mostly that this will give a good
bandwidth, but as can be seen in Graph 3.8, this bandwidth also
depends on the protocol implemented in the system.

Bandwidth and CPU utilization on SDP vs IPclB
G800 200

F 800 et
¢ 700 - 1605
2 600 ®
27 / | 1208
= 500 —— =
£ 400 Ve — 180 o
$ 300 o I
=
= 200 L4 [T 40 &°
2 1004 /E.;F" —':

o e T T T T 0

4 16 64 256 1K 4K 16K 64K

OIPclB CPU CISDP CPU -+ |PolB
= S0P = VAP| sendirecy = VAP RDMA write

Graph 3.8: Bandwidth [Bal03+]

Chapter 3 Performance of InfiniBand /RDMA 35

The VAPI gives an improved performance by a factor of up to 4.8
compared to IPolB, while SDP gives an improved performance by a factor
of up to 2.7 compared to IPolIB. In the article written by B. Callaghan et
al. the bandwidth is also evaluated (Graph 3.9). In this article Ethernet
was used for network connections. These experiments show that the use
of RDMA gives an advantage of over 60 % with 102 MB/s compared with
regular Ethernet technology.

Read Throughput: GigaSwift Read Throughput: Emulex GN9000/VI

Cads Ahead [Reads Ahead |
100 Reads Ahe?g 100 | 18 e)
-— - B —— / o
% é 80 g *EI 4 .e’);/u—u
g < 1. / /
=) < 4 X_E M
= = ° ("
2 = z/)} /l/
£ o s
= D 40 /
z 3 %;/ v
E = 20 rd
el
05 1 2 4 & 16 32 64 128 256 5121024 05 1 2 4 8 16 32 64 128 25 5121024
Read Size (KB) Read Size (KB)

Graph 3.9: Throughput GigaSwift to the left and throughput Emulex to the
right [Cal02]

3.5 Summary of RDMA performance

For this master thesis some of the parameters from these previous
chapters will be used in the development of the simulator. This chapter
gives a summary of these parameters. Chapter 3.1 shows that RDMA
needs less CPU than regular Ethernet technology when reading data.
This also applies when read ahead is turned off. Even though this seem
to show a clear trend, the chapter also show an example of an
experiment which demonstrate that CPU usage can increase when using
direct I/O compared to traditional I/O. This was probably due to the
administrative costs caused by poor implementation of the system. It is
likely that RDMA will use less CPU than regular Ethernet technology
when implemented properly.

When it comes to response time, Chapter 3.2 shows that SDP gives very
good response times for messages over 128 KB. This chapter also shows
that SDP has a 500 us longer connection time than IPoIB due to the
administrative costs associated with managing memory mapping. Since
IPoIB does not have these administrative costs, this value is believed to
be the setup connection time for RDMA.

36 3.5 Summary of RDMA performance

Chapter 3.2 also shows that Native InfiniBand Verbs Layers give good
performance when many compute threads are introduced. The research
shows that RDMA will have a long connection time for small messages.
When messages increase this connection time will almost disappear and
the technology is very scalable especially when a large amount of
compute threads are introduced. The problem concerning long

connection time is also shown in Chapter 3.3.

Chapter 3.4 compares the bandwidth when using different network
technologies. Here the VAPI shows an improved performance by a factor
of up to 4.8 compared to IPolB. And when comparing RDMA over
Ethernet with traditional Ethernet technology, RDMA shows an
advantage of 60 % with 102 MB/s. When using RDMA over InfiniBand, it
should be possible to get a very good bandwidth compared with existing
technologies. In this master thesis it is set to 8 Gb/s (1024 MB/s) and
represents an throughput which is more likely to achieve since other
factors in the system may reduce the throughput; e.g. bad
implementation and algorithms optimized for other network technology.

Chapter 4

Hypotheses

From the previous chapters it is possible to put forward some

hypotheses. These hypotheses are behaviors and trends that are

reasonable to believe will appear, based on the theoretical information

presented in Chapters 2 and 3. The hypotheses were introduces to

represent clear evaluation goals for the simulation. Oncoming tests will

either prove or disprove the hypotheses.

4.1 The hypotheses

L.

IL.

III.

If the segment size increases, then the TPS will fall. As the number
of segments decrease, the probability to perform Copy on Write will
also increase. The time and resources it takes to perform this
operation will also increase, since there is more data to copy due

to lager segments. This will result in lower performance.

If the segment size increases, then the model will show better
throughput (MB/s) for RDMA. This is because the setup
connection time for RDMA will be a smaller percentage of the total
checkpoint time as the segment size gets larger. It will therefore be

possible to transmit more data per second.

The transfer rate (bandwidth) inside the main memory will stay the
same. There is nothing in this model which should affect the main
memory performance. The load on the system will be constant
during the whole test. Therefore, the transfer rate should stay
stable at the bandwidth specified by the hardware (approximately
2 GB in this thesis).

37

38 4.2 Validation of the hypotheses

IV. If the segment size increases, then the number of Copy on Write
operations will increase. There will be fewer segments and the
probability for a client of hitting a segment locket by the
checkpoint process will increase.

V. If the segment size increases, then the CPU wusage will also
increase. Due to the increased amount of bytes to copy and
number of Copy on Write operations, more CPU resources will be

used.

VI. If the number of Copy on Writes increases, then the number of
checkpoints will also increase. The total run-time for the program
will also increase and therefore there will be more time to take

checkpoints.

VII. If the bandwidth (throughput) increases and the number of
segments decrease, then the checkpoint time will decrease. Thus,
it will take a shorter time to transmit the same amount of data.
Repair time will asymptotically draw nearer the lower limit given
by the bandwidth.

4.2 Validation of the hypotheses

The hypotheses will be tested by simulating a DBMS using InfiniBand
and RDMA for repair with checkpoints. This simulation consists of three
steps; modeling, programming and performing test cases. The model sets
the framework for the simulator and defines the behavior of InfiniBand,
RDMA and a highly available DBMS. This model is designed based on
theory presented in Chapters 2 and 3, which gives a good understanding
of how RDMA over InfiniBand works. The framework is then used to
develop a program with InfiniBand and RDMA settings based on Chapter
3. When the software is developed, tested and found valid, the simulation
begins. The simulation consists of several test cases with different
parameter settings. The test case results will be the basis for evaluating
the hypotheses. If some of the hypotheses fail, it is important to find the
solution as to why this happened, to eliminate possible errors in the
model. A summary of the results from the hypotheses can be found in
Chapter 7.9.

Chapter 5

Design of the simulator

The motivation for developing this software was to simulate
checkpointing of a relation database over InfiniBand. The database
system had to be implemented in a simple way because the limitations of
the thesis’s scope, but it were important that the simulator was created
with the same behavior as if it was a complete database system. The
system consists of a database, which is accessed by a checkpointer and
by several transactions, also called client threads. The transactions
update the database while the checkpointer transfers portions (also
known as segments) of the database over InfiniBand using RDMA. This
will simulate a repair operation of a hot-standby node in HADB. In the
implementation of the simulation there are two issues categorized as the
most important and the most difficult parts to implement. These are the
transactions and the RDMA processes. The problem with the
implementation of the transactions is that it is very hard to implement a
realistic transaction load. The difficulty of implementing RDMA arises
from the issue that this research subject uses state-of-the-art technology,
which means there has been little preliminary research on the subject.
That is why the RDMA function is assumed to be a linear scaling of the
transfer rate as function of the segment size transferred. The connection
setup time is assumed to be 500 ps. This is based on preliminary
research which shows that SDP over InfiniBand has a connection time
which is 500 us longer than IP over InfiniBand (Chapter 3.2). The system
simulates one node in a database cluster and the database refers to a

fragment of the whole database.

During development of the simulator an iterative development process
was used. The process consisted of several activities. The activities can
be divided into three parts; design, implementation and test. In parallel
with these activities, a continual update of the thesis report has been

done.

39

40 5.1 The simulator

These three parts were performed in an iterative way. Iterative work
means that the different phases are processed with a different accuracy.
In new terminology this kind of development is also called agile software
development. When developing software using agile development
methodology it is possible to make changes to the design even late in the
project. This makes the whole project much less vulnerable to changes
and the chances of success increase considerably. The disadvantage is
that the solution may become too general and contain unnecessary
flexibility. For more detailed information about the development process,
see Appendix I.

5.1 The simulator

The program consists of three main parts; the database which has all the
data, transactions that do operations on the data and the checkpoint,
which sends the data over the network. In Figure 5.1 the relation
between these three parts can be seen. Every part is initialized by the

DataBaseControl class.

Checkpointer ' Transactions

Database

Figure 5.1: The three main parts in the program

The DataBaseControl creates the BufferManager object which contains
the database, executes the TransactionController thread to control the
transactions and Checkpoint thread to frequently perform checkpoints.
The monitor processes uses accept() and addResults() in DataBaseControl
to save results from monitoring. The accept() method records CPU usage
and the addResults() records time spent by the different ClientThread
objects. The classes are shown in Figure 5.2 and the complete source

code can be found in Appendix II.

Chapter 5 Design of the simulator

41

HiFesTimer

Wiz High Res Timerduaiable))
Wctart Timing()
*end'ﬁming()
HcreateTimer))

% start Timen)

%endTimen)

ClientThread

Transaction Controller

iliert Thread()
Bruni)

Chedippoint

BCheckpaint()

[rataBaseControl

Wyrite Segment(]

Hrun)
Sterminater)

10 Chntmiler

Buuriter)

S

SROME)
Brun()
Buriter)

DatabazeControll()

Smain()

accept()

WaddRezutts))

SaddResuttzTo Excel()
Waloulate Confidence Interyal)

WTranzaction Controller)
Brun()
Woreate Threads()

AdmF o
BedmFowl)
Rgetcow)
Ssatoou)
Syt segment Pointen))
$setsegment Pointen))
Bat Busyi)
Bot Busyi)
Buffertanager
Segment
BButfertinagen)
Byrite ToSegment() ®Segment()
Bock Segment() Sget Byte Buifen)
B Lock Segment() Bt Byta()
reform Copy OniiteC) Bt Byte Butfen))
ﬂmcnwcﬂumero Ry St Number()
Byet Time))

Figure 5.2: Class diagram

42 5.1 The simulator

BufferManager creates the database, segment table and administrative
table (Figure 5.3). The database|] contains the data and the admRow|]
contains information about the database. One object in the

admRow|] corresponds to one
BufferManager segment in the database. The
Segment|] table contains Segment

Database

objects which are separately
allocated spaces in memory and
contains methods for writing and
reading bytes from this space. The

AdmRow class collects information
Figure 5.3: Database structure about concurrency control,

pointers and changes on one
segment. This system uses Copy on Write for low-level concurrency
control. AdmRow has getSegmentPointer() and setSegmentPointer()
methods to record and read information in an AdmRow object. The
transactions use the writeToSegment() method in BufferManager to write
information to the database. This method will be explained in Chapter
5.1.2. The checkpoint uses readSegment(), lockSegment() and
unlockSegment() during an execution. The transactions are controlled by

the TransactionController class, Figure 5.4.

TransactionController

A N
| PE2JY 1IU31]D,
v
Nn N
Z pEaiy1yual|D
AV
n N
£ PEIJYLIU31|D,
vV
N N
U peay U119
v

,V\v
"V
A'A"
A'A"

Figure 5.4: Transaction controller

This class is executed by the DataBaseControl class and creates multiple
threads of the ClientThread class. One ClientThread can perform many
transactions sequentially on the database. Checkpoints are performed
frequently and send the data over the network by RDMA.

Chapter 5 Design of the simulator 43

The Checkpoint class is executed by the DataBaseControl class and
operates on one segment at a time (Figure 5.5). When a segment is sent
over the network, the checkpoint locks it by setting a Copy on Write flag
in the BufferManager, sends the segment address information to RDMA
object and unsets the Copy on Write flag in the BufferManager again. The
RDMA class simulates the transfer over the network, by calculating and
waiting the time spent by a real network.

Set Copy on Write flag

BufferManager Checkpoint

egment address

Unset Copy on Write flag information

Figure 5.5: Checkpointer

5.1.1 DataBaseControl

The DataBaseControl class is the main class. This is where everything is
started and controlled. When starting the DataBaseControl the command
java -XX:MaxDirectMemorySize=1G DataBaseControl segmentSize is used
to allocate such amount of the memory needed to run this program. The
class defines all the different objects and sends references to these
objects as a parameter when creating other objects. This ensures that
there is just one instance of each object. In the start of this class all the
parameters from the properties file are loaded into the system. The
parameters that are loaded are:

e Logging. This parameter turns on and off debug logging.

e MaximumFractionDigits. This parameter controls the resolution
on the CPU usage parameter.

e DBSizeKB. This parameter sets the size of the database

e numberOfTransactionThreads. This parameter controls the
number of ClientThreads. E.g. how many threads that will work in
parallel.

e numberOfOperationsPerTransactionThread. This parameter
controls how many operations each thread is supposed to perform.
This determines how long each thread will run.

e Load. This integer turns on and off the distorted transaction load.
0 means that uniform load is used, 1 means that distorted load is
used. Distorted load is explained in Chapter 5.1.3

44 5.1 The simulator

After all the different objects are created the DataBaseControl starts the
different threads by wusing the command Thread.start(). Both the
TransactionController and the Checkpoint object are defined as threads
and are run completely independently from the rest of the system. To
store information about every run a result file is created (Figure 5.6). The
name of this file is of the form "hh-mm-ss-dd-MM-yyyy.res" (hour-minute-
second-day-month-year). This file contains different information about the
data collected during performance and looks like this.

DATABASE INFORMATION

KA KA Ak hk kA Ak A A A A A A A A A A A A A A A A A A Ak hk ko kkk kK
Database size: 1000000 Kilobyte

Segment size: 14600 Kilobyte

Simultaneous threads: 10

Operations per thread: 15000

RESULTS

R EEEEEEEEEEE R SRR kR R R I
The program used: 29361.183527545196 milliseconds
TPS: 5114.479137880418

Number of checkpoints: 15

Number of CopyOnWrite: 2457

Average COW time: 5.6324013101003321

Average checkpoint time: 14.725449776011947 milliseconds
Average CPU usage: 0.5370756482224004 %

Figure 5.6: Result file

The information under “Database Information” is collected straight from
startup parameters. This information is stored because this makes it
easier to look at old files when all the active parameters during this
particular run are known. The results are calculated before they are
written to file. For every thread and interesting function in the system
there is a timer. Timing data together with a set of different counters
makes it possible to calculate different results. The results from the
timers are made available for the DataBaseControl object when the
different threads call the function addResult() or addResultToExcel() in
DataBaseControl and the values are added to different variables.

Chapter 5 Design of the simulator 45

At the end the following results are calculated:

1000 * NumberOfClientThreads
AverageClientThreadRuntime * RoundsPerClientThread

TPS =

TotalTimeOfAllITheCheckpoints
NumberOfCheckpoints

Averagecheckpointtime =

AllTheCPUUsageSamplesAddedTogether

AverageCPUUsage =
NumberOfCPUSamples

Z COWTimes

AverageCOWTime =
numberOfCOW Operations

In addition to this file there is also defined a result file, which contains all
these results in a formatted way to make it possible for import to MS
Excel (Appendix III). This result file just adds new information for each
run. This makes it possible to run the program several times and collect
a lot of results before importing to MS Excel. The DataBaseControl also
contains the method accept() (Code 5.1) which is called from the
CPUUsage native code. The parameter to this function is the sample

result from the CPUUsage class.

public void accept(final SystemInformation.CPUUsageSnapshot event)

{
if (m_prevSnapshot != null && !stopPrint)

{
CPUResult+=((100.0

*SystemInformation.getProcessCPUUsage (m prevSnapshot,event)));

CPUCounter++;
}

m_prevSnapshot = event;

}
Code 5.1: CPU usage method

The DataBaseControl creates a lot of objects, one of these being the
Logger object. This object refers to the logger class which is used to
create a debug log. This log is used to follow the dataflow in the system.

This kind of testing is also called white box testing.

46 5.1 The simulator

The debug logging can be turned on and off by the logging parameter in
the properties file. To log special events in the system the
LoggerObject.logMessage(message) is used.

The method addResultsToExcel() (Code 5.2) is employed to add results
which are used to calculate different confidence intervals. ClientThread,
Checkpoint and BufferManager add their timing results in this method.
The parameter number is used to detect which object is trying to update
its result. To avoid any bad results, this method is made synchronized.
Use of synchronized methods does not affect the collected data, since the

method is used after all the timers and counters are stopped.

public synchronized void addResultToExcel (int number, double result)
{

if (number ==0)

{
tpsRes+=result;

}

else if (number==1)

{
checkpointRes+=result;
checkpointRes2+=result*result;

}

else if (number ==2)

{
cowRes+=result;
cowRes2+=result*result;

}

else if (number ==3)

{
tpsRes2+=result;

}

Code 5.2: addResultsToExcel()

Figure 5.7 shows how the DataBaseControl starts three separate threads

and how they live their own lives.

Chapter 5 Design of the simulator 47

DataBaseControl

Checkpoint

Transaction CPUUsage
Controller

2]
5
3
=
=
=
=
]
o
=%
=

Figure 5.7: DataBaseControl as thread manager

DataBaseControl waits until TransactionController is done.
TransactionController waits until all ClientThreads are done. Then
DataBaseControl stops the checkpoint thread and kills the sampling of
the CPU usage. To wait for a thread the Thread.join() command is used.
This makes the current thread wait until the selected thread has
finished. The sequence diagram below (Figure 5.8) shows how
DataBaseControl communicates with the other classes. DataBaseControl
creates and starts most of the threads. In this way, the managing of the

threads becomes a lot easier.

. DataBaseCaontrol . TransactionCaontroller . Buffertanager . Checkpoint - DEMSLogger

TransactionControIIe'r(int, int, int, int, ElufferManageri DataBaseCantroll, DEIM'SLogger)

[l

Buffertdanager(int, int, DEMSLogger)

I

Checkpoint(BuﬁerM:anager, Timer, Properties, D:EIMSLogger)

DBEMSLogger()

Figure 5.8: Sequence diagram DataBaseControl

48 5.1 The simulator

The collected results are used to calculate the different confidence
intervals. This is done in the method calculateConfidencelnterval(). The

definition of confidence interval is [Wo004]:

Confidence interval (CI): The range of numerical values in which we can be
confident (to a computed probability, such as 90 or 95 %) that the
population value being estimated will be found. Confidence intervals
indicate the strength of evidence; where confidence intervals are wide,

they indicate less precise estimates of effect.
The confidence interval is calculated in two operations. The first thing

that is calculated is the standard deviation; this is done by using the

formula [Ras91]:

X
= (5.1)

SD = Standard deviation
x = checkpointtime / CopyonWritetime / Transactiontime,

n = Number of samples taken during the run

When the standard deviation is calculated, the confidence interval is
calculated based on this value. The confidence interval is calculated by
the following formula:

C]zc*&

Jn (52)

CI = Confidence interval

n = Number of samples taken during the run
SD = Standard deviation

¢ = Cumulative standard Gaussian distribution

The confidence interval is calculated for checkpoint time, Copy on Write
time and the TPS. These values are added to a string which is printed in
the end of the resultFormatedForExcel.txt file.

Chapter 5 Design of the simulator 49

To calculate the c-value, the cumulative standard Gaussian distribution
is used (Equation 5.3).

¢ = GaussianT ableEntry(— ﬂj
2 (5.3)

pl = Percentage level of confidence interval

Applying this data to one of the results gives a graph similar to the one
below. Here the confidence interval can be seen as grey lines on both
sides of the black line (Graph 5.1).

24450
24300 -
24150
24000 - \,\
23850
23700 -

23550 -
23400 T T T T T

0 200 400 600 800 1000 1200

Graph 5.1: Example of confidence interval

5.1.2 BufferManager, Segment and AdmRow

This is the control class for the database. This class is responsible for
maintaining all the necessary information about the database. When a
ClientThread or Checkpoint wants read or write to the database they use
methods in this class. In other words, BufferManager creates an interface
between the database and the user. Behind the BufferManager there is
architecture similar to the one shown in Figure 5.9.

SRR

AdmRow

P Cow Index
Segment - 1 ﬁ [0 | ﬁ EH
Segment - 2 t3jojoj2]
Segment - 3 Fsjojoj 3]
Segment - 4 fajlojfoja4aj
Segment - 5 j2jojojs]
Segment - 6 i6fl1]1]6]
Segment - 7 17jojo|
Segment - 8 h4jojojs|
Segment - .. 19jojojo9|

Figure 5.9: System architecture

50 5.1 The simulator

Here the structure of the database is shown. At the highest level is the
AdmRow table. This table contains information about segment pointers,
Copy on Write flag and busy flag. The segment pointer is a number which
tells the BufferManager which segment in the memory the index is
pointing to. The reason this pointer is introduced, is because Copy on
Write is used. When the system starts the BufferManager allocates
several Segment objects, which are put in the segmentBuffer table. These
objects create several direct buffers in the memory, one buffer for each
segment. The total buffer size for this is the database size specified in the
properties file, plus one extra segment which is used in Copy on Write.
Code 5.3 shows the code for the creation of the segmentBuffer and the
AdmRow table.

segmentBuffer=new Segment [numberOfSegmentes+1];

admRow=new AdmRow[numberOfSegmentes];

//Allocates the databasememory

while (i<numberOfSegmentes)

{
segmentBuffer[i] = new Segment (this.segmentSize, loggerObij,i);
admRow [1]=new AdmRow (i) ;
i++;

}

//Allocate the free Segment memory

segmentBuffer[i] = new Segment (this.segmentSize, loggerObj,i);

freeSegment=i;

Code 5.3: Creation of segmentBuffer and AdmRow

In this system the checkpointer only locks one segment at a time. Since
RDMA is used for transferring data, it is not possible to use several
checkpointing threads. When wusing RDMA, memory space in the
destination node is mapped from the source node. This technique does
not allow for the possibility of using parallel RDMA threads. During a
checkpoint the Checkpoint thread sets the “Cow” flag for the processed
segment. If a transaction tries to access this segment at this time, it has
to perform Copy on Write before it continues. Copy on Write copies the
content of the flagged segment over to the separate free space allocated at
the startup of the system. If the system has multiple threads that run

transactions, only one can perform Copy on Write.

Chapter 5 Design of the simulator 51

All the other threads have to wait until the segment is copied and this is
done by using the “busy” flag. When a transaction is going to perform
Copy on Write it marks the segment by setting the “busy” flag to true. If
other transactions are going to access the same segment, they first check
the “busy” flag and wait until the flag is set to false. To determine how
long they must wait before they check the flag again, they use the
Equation 5.4. A Copy on Write operation is done with approximately 2
GB/s. SegmentSize is given in bytes and TimeToWait in milliseconds.

SegmentSize

TimeToWait = >
1024°*2

(5.4)

To validate that this formula is true, the actual Copy on Write time has
been compared to values from this formula. This validation has shown
that this value is very well adjusted to the actual Copy on Write time.
This is due to the transfer rate being very stable in the main memory
(Graph 5.2).

2500

2000 1

1500

MB/S

1000

500
—— MBS in RAM

0 5000 10000 15000 20000 25000 30000 35000

Segment size (kB)

Graph 5.2: Throughput measure of Copy on Write

After Copy on Write, the segment pointer in AdmRow is updated to point
to the new segment. Next time Copy on Write is activated this segment is
used as destination for the Copy on Write operation. When client
applications are operating on the database they only communicate with
the BufferManager class. For example if an application wants to update
the database it only uses the command:
buffermanagerObj.writeToSegment(Segment,position,byte, Thread);

then the BufferManager takes care of the rest (Code 5.4).

52 5.1 The simulator

public void writeToSegment (int segment,int position, byte value, ClientThread
CThread)
{
while (admRow|[segment].getBusy())
{
try
{
loggerObj.logMessage (CThread.getName () + " is sleeping");
CThread.sleep (((segmentSize) / (1024 * 1024)) / 2);
}
catch (InterruptedException e)
{
loggerObj.logMessage (e.getMessage ()) ;

}
if (admRow [segment] .getcow ())
{
preformCopyOnWrite (segment) ;

}

Code 5.4: writeToSegment()

The Checkpoint also uses the BufferManager when checkpointing the
database. This thread uses the methods lock() and unlock() to manipulate
the Copy on Write flag. These methods manipulate the COW parameter in
the AdmRow class. To ensure consistent data in the database the
setCow() method in the AdmRow class is synchronized. If use of another
transfer technology, supporting multiple checkpointing threads, is
introduced in the model, it is important to ensure that every thread gets
the right information. This can be done because every segment has an
AdmRow object containing information concerning the segment (Code
5.5). One of the most important parts of the system is implemented in
the BufferManager. This is the Copy on Write algorithm. This algorithm

will have great influence on the overall system performance.

Chapter 5 Design of the simulator 53

private synchronized void preformCopyOnWrite (int admRowValue)
{

admRow [admRowValue] .setBuzzy (true) ;

int avSegment=freeSegment;
int lockedSegment=admRow[admRowValue] .getsegmentPointer () ;
admRow [admRowValue] .setsegmentPointer (avSegment) ;

admRow [admRowValue] .setcow (false) ;

segmentBuffer[avSegment] .setByteBuffer (
segmentBuffer[lockedSegment] .getByteBuffer());

freeSegment=lockedSegment;

COWcounter++;

admRow [admRowValue] .setBuzzy (false) ;
}

Code 5.5: Copy on Write algorithm

The preformCopyOnWrite() method is automatically called when needed
by the BufferManager. The algorithm itself is quite simple. First a lot of
parameters are defined. In this system parallel checkpointers are not
used and that is why the freeSegment can be set in the Copy on Write
algorithm. The freeSegment is set to the segment locked by the
checkpointer. But since there are no other checkpoints in the system this
segment will not be needed until the checkpointer has unlocked it and
locked another segment. By setting the freeSegment in this algorithm
there is absolute control over the crucial update of this important
variable. When this is done, the copying starts by using the segment
commands setByteBuffer() and getByteBuffer() in the Segment object.
Since this algorithm copies one byte at a time the prediction is that the
system load will increase when the segment size increases. This will
implicate more bytes to copy each time. With a constant database size
the probability of hitting a flagged segment will also increase, together
with the size of the segments.

5.1.3 ClientThread and TransactionController

ClientThread is the class that simulates the transaction load on the
database. To be able to simulate different kinds of loads on the system,
each client is simulated by a thread. The number of clients connected to
the system is decided in the properties file on start up. The
DataBaseControl reads the properties file and then creates the
TransactionController object. This is the class which controls the client
threads. The method head for the constructor in this object can be seen
in the Code 5.6.

54 5.1 The simulator

public TransactionController (int DBSizeKB,
int SegSizeKB,
int numberOfThreads,
int numberOfOperationsPerThread,
BufferManager bufferManager,
DataBaseControl dbControl,
DBMSLogger loggerObj,
int load)
throws java.lang.Exception

Code 5.6: TransactionController constructor

Here the number of parallel threads (clients) and how many operations
each client is supposed to perform and other variables are defined. The
variable load comes from the properties file and is read by the
DataBaseControl when the TransactionController object is created. This
parameter tells whether uniform or distorted transaction load is going to
be used. The load parameter is forwarded to all client threads. In this
version of the software the client threads will not perform any read
operations. This is because such operations have no impact on the
performance. Therefore all the operations are updating the database.
When the TransactionController thread is started it creates ClientThread
objects. The constructor of each client thread consists of a reference to
the DataBaseControl object, the BufferManager object and the
DBMSLogger object (Code 5.7). In addition, there are some other

parameters used for administration of the threads.

public ClientThread (DataBaseControl databaseControl,
BufferManager buffermanager,
DBMSLogger logger,
int threadNumber,
int numberOfThreads,
int segSizeKB,
int numberSegments,

int load,

int rounds)

Code 5.7: ClientThread constructor

Each of the clients lives their own lives. When they are started they run
until all of the defined operations are performed. The
TransactionController waits for all the threads to finish before it finishes.
This is done by using the command Thread.join(); this command waits
until the thread has finished (Code 5.8).

Chapter 5 Design of the simulator 55

To manage all the ClientThreads the TransactionController has an array
which consists of all the thread objects.

while (cont)
{
try
{
//wait until the thread is finished
threadArray[counter].join();
if (counter == 0)
cont = false;
else
counter--;
}
catch(java.lang.InterruptedException e)
{
System.out.println(e.toString());
}
}

Code 5.8: TransactionController waiting for clients to finish

When the first thread is finished it goes on and checks if thread number
two is done working. This loop continues until all the threads are
finished. The waiting itself is activated by using the predefined Java
command Thread.sleep(). Since each ClientThread has its own timer
which is stopped when the thread finishes, it has no impact on the final
timing results. The only job for the client is to update a random byte in a
random segment. To make it a more real transaction load, each client is
set to update the database 500 times for each write operation. The only
possible problem of updating a segment is if the chosen segment is
locked by the checkpointer. If this is the case, a Copy on Write operation
will be performed to avoid blocking of the client. If this happens the client

will have to wait until the segment is copied before it continues.

56 5.1 The simulator

: TransactionController

‘ : ClientThread

‘ : Buffertdanager

‘ - AdmBow H : Segment ‘ ‘ : DataBaseControl

run H H
0 wiiteToSegmentiint,int, byte)

getBusy()

If getBusy() = true;
T sleep(segSize / (102471024))/2

M getcowl)

If COWW loack is true T
ke prefarm Copydnritegint

setElyte(by:le, int)

[=—1 Sleep(!) if ounds% (127 0inumberOfThreads[j—0

addResults(Strn

— : ; i

addResullsThExcel()

Figure 5.10: Sequence diagram showing ClientThread

As can be seen from the sequence diagram (Figure 5.10); if the segment
is not locked by the checkpointer then the client will update the segment
and then sleep according to Equation 5.5. The sleep function is to
simulate some of the overhead found in a real network. This loop (see red
ring) is performed as many times as specified in the properties file. This
is the way every ClientThread works. All the different clients will perform
in parallel, giving the situation illustrated in Figure 5.11.

_/

Database

Figure 5.11: ClientThreads
working on the database

Chapter 5 Design of the simulator 57

To find random bytes and segments the Java Math.random() function is
used. Since all of the values have different limits the function has to be
run three times, one for each random value. Two of these operations can
be seen below in Code 5.9.

wichByte=(int) (Math.random () *10) ;

wichSegmentByte=(int) (Math.random() *segmentSize) ;

Code 5.9: WichByte and wichSegmentByte function

In some cases it can be useful to simulate distorted load on the system.
This is done by changing the loadType parameter which determines
which of these two functions to run.

if (loadType==0)//Uniform load
whichSegment=(int) (Math.random () * (numberOfSegments)) ;

else //Disorted load
whichSegment=(int) (Math.random () * (numberOfSegments) *
((threadNumber+1) /numberOfThreads)) ;

Code 5.10: WhichSegment functions

To give a better understanding an example will be given. In the example
there is a system with 10 segments and 5 threads which is set to have a
distorted load.

Thread Number of segments to choose from

Thread O 10*(1/5) =2
Thread 1 10*(2/5) =4
Thread 2 10*(3/5) =6
Thread 3 10*(4/5) =8
Thread 4 10 *(5/5) =10

Table 5.1: Distorted load

As can be seen in the table above the data will be divided distortedly.
This helps to give a better simulation of a real database system. Which
byte to put into the database is decided by choosing a number between 1
and 10. This number corresponds to the index in an array which consists
of 10 different bytes. When this is done the thread writes to the segment.
This is done by calling the method writeToSegment() in the
BufferManager. The BufferManager checks if the segment is locked by the
checkpointer. If so, Copy on Write is performed. Then the method
setByte() method in segment is called and the database is updated.

58 5.1 The simulator

To navigate through all of the segments the BufferManager looks in the
AdmRow class. This class manages the table which refers to pointer to
the corresponding segments. The reason this table is needed is because

these pointers change when Copy on Write is performed.

Start of program End of program
P\dmRowlndex SegmentPointer
1 1 1 9
2 2 2 8
3 3 3 10
4 4 4
5 5 5 5
6 6 6 11
7 7 7 7
8 8 8 2
9 9 9 1
10 10 10 6

Table 5.2: The effect of Copy on Write

As can be seen from Table 5.2, these pointers can be moved around in a
very strange order by the time the program has finished. If the
ClientThreads are performed in back to back mode, running without any
“sleep” to slow them down, the CPU usage will lie somewhere between 97
% and 100 %. This is not acceptable since such stress of the system
causes other uncontrolled factors to play a role on the database
performance. To change this situation a sleep() function is induced.

DecideSleep = r% z (5.5)
numberOfThreads

r = TotalNumberOfRoundToRun — finishedRounds

Z is a constant defined to be 270. It determines how often the
ClientThread will sleep. Lower values of Z will give a higher occurrence of
sleep. If the DecideSleep value equals zero the ClientThread sleeps for one
millisecond. This formula was developed by several runs and
adjustments. The goal was to create a scalable function concerning the
number of threads. It is difficult to decide what the desirable number of
threads should be. Due to the scalability of this function, the CPU usage

will be approximately the same, despite the number of threads.

Chapter 5 Design of the simulator 59

Results show that this function gives stable results in different
situations. The CPU usage is lowered to around 60 — 70 % which is found
to be acceptable. This is done to avoid the JVM to be an important factor

in the measurements.

The ClientThread is timed on each operation it performs and these
results are used to calculate the TPS. The TPS is one of the parameters
that have their confidence interval calculated. To make the calculation

job easier the TPS for each operation is calculated continuously.

1
- timeToPerformOneOperation (5.6)

The timeToPerformOneOperation parameter is calculated in seconds. This
TPS value is added up continuously as the systems runs, as is the TPS2
value. These sum values are used to calculate the standard deviation
(done by Equation 5.1). When the client has finished it stores the results
in the result parameter in DataBaseControl. This result contains the time
the client has spent on performing all its operations. ClientThread
communicates with four classes, DataBaseControl, BufferManager,
HiResTimer and Logger. ClientThread objects are created and started by
the TransactionController class. A graphical summary of the life of a

ClientThread can be found in Figure 5.12.

60

5.1 The simulator

TransactionController
defines and starts thread

Thread is
active

Defines
variables

Loop wihich runns
numberDfOperationsP erThread times

o

!

Find random
byte to write

Find random
segment to update

Find random segment
byte to update

Tryto update segment
through Bufferanager

if busy = true

i Check if %
segment is busy

if busy = false

Wait for ({{(segmentSize) / (1024 * 10243/ 2)
milliseconds

Check if segment is
locked by checkpainter

ifCoOW=1
< ————————>|
ifCOW=0

Perfarm Copy
on Wiite

Update segmentpointer
in admRow

(Update Y
segment i

False

Store resultin =
paramster

Sleep(1)

Update results in
DataBaseCaontrol

if (rounds % (|270 / numberOfThreads|) ==0)

Figure 5.12: Activity diagram ClientThread

Chapter 5 Design of the simulator 61

5.1.4 Checkpoint

The Checkpoint class frequently performs a checkpoint. After a
checkpoint is performed, the Checkpoint class sleeps for a time, given by
the properties file, before it performs a new checkpoint. This class is
initialized by the DataBaseControl class and run as a separate thread.
The constructor for the Checkpoint object can be seen in the code below.

public Checkpoint (BufferManager bufferManagerObj,
Properties properties,
DBMSLogger loggerObj,
int segSize,
int DBSize,
DataBaseControl dbObj)

Code 5.11: Checkpoint constructor

When an object of the Checkpoint class is made, the constructor saves a
reference to the BufferManager object. This object contains the database
that the checkpoint is performed on. The Properties object contains
configuration information. The DataBaseControl executes the Checkpoint
thread by running the run() method. This method runs an infinite loop
and sequentially sends the segments to the IOController. The system
concerning the checkpointer is made very flexible, meaning that the data
transfer part of the checkpointer is very easy to replace by something
more feasible than RDMA, e.g. disk.

62 5.1 The simulator

DataBaseContral defines and
starts Checkpoint thread

Checkpoaint
thread started
Funning
infinite loo
Create list of
segments to write
:: Lock segment

:: Write segment ::
UnLock
segment

Mare sedments to write?‘< Yes

Mo
@Ei
Mo

:>I5 the infinite loop killed by DataBaseControl?
i

BS

Checkpaint
done

Figure 5.13 Activity diagram for checkpointer

Before it sends the segment to the IOController, it sets a Copy on Write
flag for the segment in the BufferManager (Figure 5.13). This flag notifies
the BufferManager when transactions try to write to the segment during
an IOController process. When the IOController is done with the segment,
it unsets the Copy on Write flag again. After a lot of testing, it has been
decided to run the checkpointer back-to-back.

Chapter 5 Design of the simulator 63

This means that when a checkpoint has finished it just starts directly on
another one. This is done because tests show that this is what gives the
best results. When the checkpoint sends the segment to the IOController,
it waits for the IOController to finish, before it proceeds. In Figure 5.14
the sequence diagram for the checkpoint can be seen.

. Checkpaint . Buffertanager CAdmBow CQController . ROMLA

writeSegment(ing
1

lockSegment(int] © catcomibonlean)

I

write(double) write(double)

unLackSegment(int:) sstoow(baalean)

@

Figure 5.14: Sequence diagram for checkpointer

When the checkpointer finishes it stores the timing results in

DataBaseControl.

5.1.5 IOController and RDMA

IOController is a common interface for RDMA and other I0 methods that
the model should support. This model can be extended to support writing
to disk and other media, by adding new sub classes. In this
implementation the model only supports RDMA. The IO methods run as
a separate thread. There are two common methods for all IO controllers.
First is the write() method that saves information about the data that will
be processed. This can be pointers or values, depending on the
implemented subclass. This program has implemented a simulation of
the RDMA protocol.

The RDMA class simulates the time spent by a real RDMA protocol. This
is done in two steps. First it saves how large the transferred segment is
and calculates the transfer time. Then it is executed by the Checkpoint

class and waits the calculated time, before the thread ends.

64 5.1 The simulator

RDMA uses 500 us to set up the connection and have a bandwidth at 1
GB/s. To calculate how long it takes to transfer a segment it uses this

equation:

' %
time:0.5+w (5.7)
1024

“size” is the size of the segment in kilo byte. The first constant in the
equation is the time for establishing the connection. 0.5 means 0.5
milliseconds or 500 us. The real RDMA accesses the memory directly and
reduces the CPU load related to protocol processing. For this reason it is
good enough to use the Thread.sleep(time) method to simulate transfer.
This method does not use the CPU and waits the given time before it

continues.

5.1.6 CPUusage

To calculate the CPU usage the program uses Java code by Vladimir
Roubtsov. This code uses C code to get CPU clock information and Java
Native Interface to connect to the C program from a Java program
[Rou02]. The SystemliInformation class declares a native method, which
returns the number of milliseconds of CPU time used by the current

process so far (Code 5.12).

public static native long getProcessCPUTime ()

Code 5.12: getProcessCPUTime()

This native method uses the GetProcessTimes() and adds CPU time spent
executing kernel and user code on behalf of the current process,
normalizes it by the number of processors, and converts the result to
milliseconds. The equation for this calculation is:

ProcessCPUTime — KernelTime + UserTimer (5.8)

NumberOf Processors *1000

Note that the ProcessCPUTime is the CPU time used since the creation of
the JVM process. By itself this data is not particularly useful for
profiling.

Chapter 5 Design of the simulator 65

To get the CPU usage the program uses Java methods to take snapshots
at various times and report CPU usage between any two time points. The
system time since last snapshot divided on the CPU usage time since last
snapshot, shows how much of the system time that is spent on the
current thread.

ProcessCPUUsage = _ACPUTime_ (5.9)

ASystemTime

When JVM loads the native code, it initializes the global variables
s_currentProcess and s_numberOfProcessors. This is done in a method

referred to as JNI_OnLoad() and is shown in the code below.

static HANDLE s currentProcess;

static int s_numberOfProcessors;

JNIEXPORT jint JNICALL
JNI OnLoad (JavaVM * vm, void * reserved)

{
SYSTEM INFO systemInfo;

s_currentProcess = GetCurrentProcess ();

GetSystemInfo (& systemInfo);

s_numberOfProcessors = systemInfo.dwNumberOfProcessors;

return JNI_VERSION 1 2;

}
Code 5.13: JNI_OnLoad()

The C program is packed into a native library (silib.dll) and the

SystemInformation class connects to it by Code 5.14.

private static final String SILIB = "silib";

static
{
try
{
System.loadLibrary (SILIB);
}
catch (UnsatisfiedLinkError e)
{
System.out.println ("native lib '" + SILIB + "' not found in
java.library.path': "+ System.getProperty ("java.library.path")):;

throw e; // re-throw

Code 5.14: loadLibrary()

66 5.1 The simulator

The CPU usage information is saved in the accept() Java method. This
method is implemented by the user. In this case, the CPU monitor is
executed by DataBaseControl and the accept() method in this class
records the CPU usage and calculates the mean value of all the samples.

5.1.7 HiResTimer

To perform high resolution timing the program uses Java code by Kevin
T. Manley. One of the critical aspects with the DBMS is the timing. In
order to get good results it is important to have the ability to time each
operation with a high resolution timer [ManO1l]. This system runs on
Windows XP. Java has a timer function called currentTimeMillis(), but this
function uses the operating system function GetTickCount(). The
resolution on this timer will therefore change according to different
operating systems. To determine the resolution when using Windows XP

a test program was used (Code 5.15).

import java.io.*;

public class TimerTest
{
public static void main(String[] args)
{
long time = System.currentTimeMillis();

long time2 = 0;

while (time2 == 0)
{
time2 = System.currentTimeMillis () -time;
}
System.out.println("granularity of system timer is " + time2

+ " milliseconds");

}

Code 5.15: TimerTest class

This program records the time by using the function currentTimeMillis()
then it runs a while loop until the difference between this value and the
next timer value exceeds zero. Running this program under Windows XP
gives a time slice of 15 - 16 milliseconds. In most cases this will be an
applicable timer, but in this system it will be too coarse. In the
simulation of the RDMA an establishing time that is 500 microseconds,
or 0.5 milliseconds will be used. It will therefore be desirable to have a

higher resolution timer.

Chapter 5 Design of the simulator 67

To be able to create a high resolution timer Java Native Interface
(JNI) need to be used. JNI makes it possible for Java code to call
functions in C++ programs. The high resolution timer was implemented
in C++ and then the JNI was used to access these functions. There are
two functions needed to implement this timer,
QueryPerformanceFrequency and
QueryPerformanceCounter. QueryPerformanceFrequency returns the
frequency of the high resolution counter in cycles per second.
QueryPerformanceCounter retrieves the current counter value. The high
resolution timer is written in C++ built into a WIN32 DLL that wraps the
QueryPerformanceFrequency and QueryPerformanceCounter functions.
The C++ code consists of three important parts. One function is to
determine whether the high resolution timer exists or not. If it does not
exists the system will go back to use the GetTickCount() and function in
the same way as the currentTimeMillis(). There is one function to start the
timer and one function to stop the timer. These native method heads are
then implemented in the HiResTimer Java file (Code 5.16).

C++ code
JNIEXPORT jboolean JNICALL Java HiResTimer isHighResTimerAvailable
(JNIEnv *, jobject)

JNIEXPORT jdouble JNICALL Java HiResTimer startTiming (INIEnv *,
jobject)

JNIEXPORT jdouble JNICALL Java_ HiResTimer_ endTiming (JNIEnv *,
jobject, jdouble dStart)

Java code
public native boolean isHighResTimerAvailable();

public native double startTiming () ;

public native double endTiming(double dStart);

Code 5.16: C++ code and corresponding java code

When this is done the native methods are called in the same way any
other Java method is called. In the implementation of the HiResTimer two
additional methods are added, startTimer() and endTimer(). These
functions use the native methods and make the use of the timer more
perspicuous. The program first calls the startTimer() function then the
endTimer() function. When calling the endTimer() function the difference
in time between startTimer() and endTimer() is returned as a double value.

68 5.1 The simulator

In the DBMS several timers are created, because each object has it own
timer. The implementation of the C++ code is quite simple (Code 5.17 and
Code 5.18).

JNIEXPORT jdouble JNICALL Java HiResTimer startTiming
(JNIEnv *, jobject)
{
LARGE INTEGER 1i;
if (HiResCounter.Exists ())
{
QueryPerformanceCounter (&li);
return (double) (1i.QuadPart);

return (double)GetTickCount () ;

Code 5.17: Java_HiResTimer_startTiming

JNIEXPORT jdouble JNICALL Java HiResTimer endTiming
(JNIEnv *, jobject, jdouble dStart)

LARGE INTEGER 1i;
if (HiResCounter.Exists ())
{
QueryPerformanceCounter (&1i);
return ((li.QuadPart - dStart) * 1000.0 /

HiResCounter.Freq());
else

return (GetTickCount () - (DWORD) dStart);

Code 5.18: Java_HiResTimer_endTiming

The startTiming() returns a jdouble which is the current counter value.
This return value is later used as a parameter in the endTiming() function
(called dStart). The endTiming() function then returns the difference in
time between the dStart value and the QueryPerformanceCounter() value
formatted to the system. From the Java code the method will return the

time in milliseconds with a high resolution.

Chapter 5 Design of the simulator 69

5.2 Result management and graphs

After the program has completed a run, it saves a file prepared for import
in Microsoft Excel. This file is imported into a sheet in Ms Excel on a
different computer over the network. This import is performed
periodically to get the newest data. By using another computer on the
network to present and process the result, the computer running the
simulation uses a minimum of CPU time on tasks related to
presentation. The data file itself is contains nothing else then numbers
collected from the simulation. A sample of one this type of file can be
found in Appendix III. This sample show the total output after a run with
five threads and uniform load and justify the need to represent the
results in graphs in stead of raw data.

The Ms Excel sheet contains graphs to plot the data after is has been
imported. These graphs are the same for all the runs and show collected
information about CPU usage, TPS and checkpoints. To update these
graphs the user can run a macro after each import. This macro updates
columns containing calculations and graphs.

Some data is calculated from the imported ones. For example, MB/s that
is transferred during a checkpoint is calculated by dividing the database
size (1 GB) by the checkpoint time (imported). Other columns that are
calculated are:

MB/s in RDMA DBsize
CheckpointTime
MB/s in RAM SegmentSize
COWTime
Theoretical COW time SegmentSize/1024
2
Checkpoint time upper Checkpointtime + Confidencelnterval

confidence interval

Checkpoint time lower CheckpointTime — Confidencelnterval
confidence interval

70 5.2 Result management and graphs

COW time lower CowTime — Confidencelnterval
confidence interval

COW time upper CowTime + Confidencelnterval
confidence interval

The cells containing these formulas are updated by the macro. When new
data has been imported, the macro runs through every row for these
columns and inserts the correct formula. Code 5.19 shows the pseudo

code for how the cells are updated with the right formula.

From FirstRow To NumberofImportedRows Step 1
If (“Imported Row has a value”) Then
Insert the formulas for every column.
End If
Next

Code 5.19: Pseudo code for updating cells in the sheet

After updating all the cells, the graphs are updated. The graphs can vary
in number of data series and name of the graph. For each graph the data
range is redefined for each data series to cover all the current data
values. The pseudo code for updating a graph is in Code 5.20.

SelectChartObject (“Name of chart”)
UpdateXandYValueForSerie (1)

UpdateXandYValueForSerie (2)
UpdateXandYValueForSerie(..)
UpdateXandYValueForSerie (n)

Code 5.20: Pseudo code for updating charts, where n is number of series in
the chart

The charts that are used are TPS, COW time and checkpoint time with
confidences interval, CPU usage, number of COW and checkpoints and
MB/s in RAM and RDMA. Some of these charts are used to validate the

model, while others are used to conclude this report.

Chapter 5 Design of the simulator 71

5.3 Validation

When developing software the most important phase is test. The test
phase is explained in detail in Appendix I. When developing a simulator
the test phase plays an even more important role. To be able to
intemperate the results from the simulation it is important to be 100 %
sure that the results are accurate. This thesis has tried to minimize every

source of error in several different ways.

5.3.1 Detection of possible pitfalls

During the design phase all possible pitfalls (Appendix I) were searched
for and detected. Those detected were analyzed. When the analyzing
phase was complete, suggestions to solutions were presented. Then, all of
these possible problems were prototyped to verify the solution suggested.
This resulted in a solution to all of the detected possible pitfalls. By doing
this the quality of the system was improved and the chance of being
delayed because of pitfalls was minimized (HiResTimer and CPUUsage are

examples of modules tested before implementation).

5.3.2 Manual inspection of code

Static testing was also performed in this thesis. This static testing was
performed by inspections of the source code. The inspections were
performed by both developers to ensure a common understanding, to

detect errors and find possible solutions to optimize the code.

5.3.3 Oral explanation of the code

A good way to ensure that all the developers have a common
understanding of how the code works is to give each other an oral
explanation of what happens. Simultaneous with this oral presentation it
is possible to check if the documentation of the code contains enough
information. In this way both the quality of the product and the
documentation is ensured.

72 5.3 Validation

5.3.4 Inspection of the debug log (white box
testing)

The most comprehensive testing in this thesis was done using white box
testing. This is a kind of dynamic testing. In this test the debug log is
activated. This function logs every action in the system. After one run
there are several MB of log to inspect. The debug log gives the developers
the possibility to follow every action inside the program and in this way
ensure that everything is happening in the correct order and in a correct
way. The admRow|] and the Copy on Write algorithm was validated by
inspecting the debug log. The debug log was used to ensure that all the
pointers were in the right place after a Copy on Write operation. An
extract of a debug log for a test with five threads can be found in
Appendix IV. This extraction shows the start of the program and a
beginning of a checkpoint (first seven segments). It shows the complexity
and extent of the log after only seven of 100 segments have been

processed during the first checkpoint.

5.3.5 Black box testing

The opposite of white box testing is black box testing. In this test only the
output and input data are studied. One way of doing this is to run
several tests with the same parameters. In that way the input and the
expected output are known. By doing so, the stability of the system will
be tested. Another possibility is to know the input and have an idea
about what the output should be. This is done by running boarder cases,
e.g. one thread, and ensures that the system works satisfactorily.

5.3.6 Regression testing

During the whole thesis, regression testing was performed to ensure that
new components in the system did not come in conflict with existing

components.

5.3.7 Graphical validation

When developing the Copy on Write mechanism it was detected early on
that a blocking had to be made for other transactions when the segment
was copied internally in the memory. To ensure that client threads do not
wait longer than necessary, a function for calculating this waiting time
was developed.

Chapter 5 Design of the simulator 73

This function is further explained in Chapter 5.1.2, Equation 5.4. This
formula is based on a transfer rate of 2 GB/s internally in memory. To
validate this formula, this value was plotted together with the actual
Copy on Write time on a graph. An example of such a graph can be seen
underneath in Graph 5.3.

ms

‘ COW time
Theoretical COW time ——

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 5.3: Theoretical COW and measured COW

From this graph the actual Copy on Write time can be seen as the grey
line while the theoretical time can be seen as the black line. It is not
difficult to see that the formula gives a very good estimation of the

waiting time.

An important part of this thesis is the simulation of RDMA over
InfiniBand. For this simulation a transfer rate of 1 GB/s is chosen. This
means that a checkpoint time of around 1000 ms will be the ideal result,
since all tests will be run with a database of 1 GB. To validate this
parameter the actual checkpoint time is plotted in a graph like Graph
5.4.

CKP time

35000

30000 -+

25000 |

20000
g 15000

10000

5000 + \\\
0 —Y T T T T T
0 5000 10000 15000 20000 25000 30000
Segment size (kB)

Graph 5.4: Checkpoint time

74 5.3 Validation

As can be seen from this graph, the checkpoint time is very high in the
beginning but stabilizes at around 1000 ms. This graph shows that the

RDMA function is working and gives the results that were expected.

Another way the RDMA function has been validated is the total transfer
time per segment. This is a calculated value that should give a continuity
rising graph. The value is calculated from Equation 5.7 and was plotted

in Graph 5.5. It shows a continuously rising graph as predicted.

10 — RDMA Trans time (ms) [—|

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 5.5: RDMA

From this graph it was possible for the developers to conclude that they
had made a satisfying RDMA function. Another difficult part of this
system has been to simulate a realistic transaction load. One of the
problems was to find a reasonable time to wait between every update
operation for the client threads. If the system ran back-to-back it
resulted in a CPU usage of 100 %. Such a high CPU usage makes the
system loose control over the scheduling. The OS will automatically make
some decisions the DBMS cannot control. To reduce the CPU usage
Equation 5.5 was introduced. This formula is explained in more detail in
Chapter 5.1.3. To validate this formula the results from each run were
printed into a graph, such as Graph 5.6. With this graph it was possible
to conclude that the formula gave a stable effect of reducing the CPU

usage.

Chapter 5 Design of the simulator 75

100,00 %
80,00 % 1

60,00 % - WMWWMWWW
40,00 %
——CPU

20,00 %
0,00 %

% CPU usage

T
0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 5.6: CPU usage

During the development of the formula Windows Task Manager was used
to give a fast indication as to whether the function gave better results or
not. In the task manager it is possible to see the total CPU usage on the

system or to see the CPU usage for a chosen process (Figure 5.15).

~Iix]

File Options WYiew Help

App\icatiunslprucessss Petfarmance | Networking

[CPUUsage — | | CPUUsage History

PF Usage [PageFileUsage History ——————————|

rTotals———————— [Physical Memary (K}
Handles 15223 Tatal 2096426

Threads 544 Available 411068
Processes 45 System Cache 544532
iCommit Charge (K) Kernel Memaory (K}
Tokal 1573496 Tokal 79240
Limit 4038304 Paged 63304
Peak 2399308 Monpaged 15936
‘Processes: 45 |CPU Usage: 63%. ‘Commlt Charge: 1536M | 3943M 2

Figure 5.15: Task manager

Chapter 6

Results

The model represented in this master thesis has been run several times
during the development. When the implementation was finished, several

test cases were run with different parameters, to give a final result.

When analysing results from a simulation it is very important to get the
hardware specification running the test cases. The specification helps
analysing the results and to get a better understanding for the
environment where the simulation has taken place. For this thesis the

following hardware specifications were used during test.

Operating System Windows XP Service Pack 2 (Build
2600)

Machine Type AT/AT COMPATIBLE

System BIOS Version AMI-9000414

System BIOS Date 09/14/04

Processor Type x86 Family 15 Model 3 Stepping 4
Intel Pentium 4, hyper threaded

Processor frequency 3.00 GHz

Processor Vendor Genuine Intel

Number of Processors 1

Physical Memory 2048 MB

Java version 1.4.2_04

Number of threads and segment size are the parameters that have the
biggest effect on the model. Therefore the following chapters give an
analysis of the results from test cases with 1, 5 and 25 threads in
parallel. To show the insignificant difference with distorted load, one test
case has been run with five threads and distorted load. All the test cases

are written with the same layout.

77

78

This is done because it gives an orderly way to compare all the results
later in the discussion (Chapter 7).

There is one result that is common for all these test cases. The time it
takes to perform Copy on Write in main memory has the same shape and
value interval no matter how many client threads that run in parallel and
what type of load they use. This result is represented in Graph 6.1 and
shows that the time varies more the larger the segments are. The
confidence interval (grey line) does not vary much, but the difference
between neighbor values increases. The grey line is almost invisible
because of the small confidence interval.

16 I
|
14 =
; AWM'“
10 i
»
s MW
6 M‘v Upper c.i. boundary [
4 Low er c.i. boundary ||
2 /:/’Mr — COW Time
0

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.1: Time it takes to perform Copy on Write

The model can also use a different load on the database. To see if it
makes any difference to the result, the last test case has been run with
five threads and distorted load.

Before each run, the buffer is warmed up with one extra run with the
first segment size. During black box testing, the difference in the first run
showed that the model used very different time compared to neighbor
values. The reason for this might be that the operating system took time
to load the JVM.

In clientThread the sleep function simulates administrative costs and
makes the CPU usage always stay well under 100 %. Because of the
sleep function in clientThread, the CPU usage will stay stable at around
60 — 70 %. This is the case for the majority of the test cases because the
sleep function is made scalable with the number of threads. The more

threads that run in parallel, the more each one sleeps.

Chapter 6 Results 79

6.1 Uniform load with one thread

TPS per thread will have a higher value compared to runs with more
threads. This is because with one thread there will be no competition for
resources in the system. This means no waiting for other threads to
finish or waiting for CPU time. A one threaded system is less stressed
than a system with several threads. The common denominator for this

test case is much variance with segments size lower than 5 MB.

6.1.1 Analysis of graphs

This test shows the results from the boundary case where there is only
one thread. It has the shortest run-time and therefore the smallest

attribute domain on checkpoints and Copy on Write operations.

Copy on Write

2500

——cow
2000 iy

1500 -

1000 -

Number of COW

500 -

0 5000 10000 15000 20000 25000 30000 35000

Segment size (kB)

Graph 6.2: Number of Copy on Write operations

The total number of Copy on Write reaches a peak when the segment size
is around 6 MB. At this time 2241 Copy on Write operations is
performed. From this peak the graph falls continuously towards 600
Copy on Write operations. The graph shows a slight tendency to flatten
out. The number of Copy on Write operations is between 95 and 2241
operations.

80 6.1 Uniform load with one thread

TPS and CPU usage

90000
80000 J“\\\L
70000

60000 ‘\A‘\

50000 1 ‘“M‘AnM*\AMMM"M‘rM’““”4“ﬂ”**kv“““M~WJ”“~VWMWWWﬁww%~*#WWWJ«wwN

40000
30000

TPS

Upper c.i. boundary ||

20000 Low er c.i. boundary [
10000 —TPS B
0

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.3: Transactions per Second

The TPS in Graph 6.3 has a peak at a segment size of 500 KB with 84677
TPS. From this point the graph decreases towards 50000 TPS which is
reached when the segment size is around 10 MB. From this point and
forward the graph flattens out. The TPS vary between 84677 and 47305,
but have a small variation with an average confidence interval of 250.
The CPU usage has some variation in the beginning. It increases from a
low value towards 64 % and has a drop at 1100 KB with 41 %. This can
also be seen as a local peak. From 5 MB it keeps stable at around 64 %

usage (Graph 6.4).

100,00 %

80,00 % -

60,00 % +
40,00 %
20,00 %

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

% CPU usage

0,00 %

Graph 6.4: CPU usage

Chapter 6 Results 81

Checkpoint time and number of checkpoints

The number of checkpoints increases towards 20 at segment size of 23
MB. The graph shows a small amount of variance as regards its neighbor
values (Graph 6.5).

25
2 W
15 A

ol MY

5 I/V-A}J7 —CKP|__|
p —a

0 5000 10000 15000 20000 25000 30000 35000

Number of checkpoints

0

Segment size (kB)

Graph 6.5: Number of checkpoints

At about 10 MB, the checkpoint time flattens out at around 1000 ms or 1
second (Graph 6.6). The graph shows little variance in values with a

mean confidence interval of 57.

30000

Upper c.i. boundary
25000 —
Low er c.i. boundary
20000 —— CKPtime —
g 15000
10000 -
5000 -
0] T T T T T T
0 5000 10000 15000 20000 25000 30000 35000

Segment size (kB)

Graph 6.6: Measured time to perform a checkpoint

82 6.2 Uniform load with five threads

6.2 Uniform load with five threads

The total number of transactions will increase together with the number
of threads. This implies that the number of checkpoints also will increase
due to the increased run-time of the system. With an increasing number
of threads it is likely to that there will be a bigger chance of triggering the
Copy on Write mechanism. The results from this test case show stable
results. A clear trend of where the system has stabilized is shown.

6.2.1 Analysis of graphs

The graphs have a tendency to show stable values after 10 MB. The most
interesting trends and shapes lie between 100 KB and 10 MB.

Copy on Write

8000
7000 A — cow|—
6000 o

5000 1 / ‘"\‘LI,L

4000

oo / M
2000

/ =

Number of COW

1000 -

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.7: Number of Copy on Write operations

The total number of Copy on Write reaches a peak when the segment size
is around 3 MB (Graph 6.7). At this segment size, up to 7100 Copy on
Write operations are performed for each run. From this peak the graph
falls continuously towards 2200 Copy on Write operations. The graph
shows a slight tendency to flatten out after a segment size of 23 MB. The
number of Copy on Write operations is between 1800 and 7100
operations.

Chapter 6 Results 83

TPS and CPU usage

25000

o %
15000 AAAM L, - M“V‘V

Upper c.i. boundary

TPS

10000

5000 Low er c.i. boundary |-
——TPS

0 5000 10000 15000 20000 25000 30000 35000

Segment size (kB)

Graph 6.8: Transactions per Second

The TPS has little variation and decreases from 22500 towards 14000 at
a segment size of 28 MB (Graph 6.8) and has a small variance with an
average confidence interval at 114. The CPU usage has no tendency of

significant variation with a mean value of 66 % (Graph 6.9).

100,00 %

80,00 % -
@
g
§ 60,00% *WWMWW
2
G 40,00 % -
N

20,00 % cPul

0,00 % T T T T T T
0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.9: CPU usage

84 6.2 Uniform load with five threads

Checkpoint time and number of checkpoints

The number of checkpoints increases from 2 towards 66 checkpoints.
This maximum value is reached at a segment size of 27 MB. From this
point the graph sinks towards 52 operations, which are reached at a
segment size of 31 MB (Graph 6.10).

70
2 60 JIA,'\M‘VIA Mt
£ Ll hat
S 50 A adly
§ AT
@ 40 \-
E=
5 P

30
o
5 20 4 s
-

—— CKP

E 10 //v

0 T T T T T T

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.10: Number of checkpoints

The checkpoint time behaves in a stable, normal way. The variance is
very little with an average confidence interval at 87. The form is the same
as in the previous test cases but the graph stabilizes with values between
1000 and 1200 ms after 5 MB (Graph 6.11).

45000
40000 Upper c.i. boundary |—
35000 Lower c.i. boundary |—
30000 ——CKP time —
25000
g 20000 -
15000
10000
5000 k
0 — T T T T T
0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.11: Measured time to perform a checkpoint

Chapter 6 Results 85

6.3 Uniform load with 25 threads

Graphs in this test case are very similar to runs with fewer threads. The
biggest difference is CPU usage which decreases and TPS which is lower.
Still, this run shows the same trends in the graphs compared to the

earlier runs and has a small confidence interval.

6.3.1 Analysis of graphs

This test case had 25 threads in parallel and all the graphs appear to be
normal and represent controlled behaviors. It can be seen as a boundary

case, where the system is tested to its limits.

Copy on Write

40000

35000 ——COW |—
Ay

30000

25000 //” Vﬂ\—l"lww_“

20000

15000 —/ Lu\vﬂw“~1,1NM_MV‘L~1WN‘A~*
10000

5000 -

Number of COW

NS,

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.12: Number of Copy on Write operations

COW time is similar to other runs with different numbers of threads. The
load does not show any interesting changes from the other tests. The
total number of Copy on Write has a peak on 33444 at 3.1 MB (Graph
6.12). After this peak the graph is asymptotically towards 10000. After 20
MB it flattens out, but has another fall at 30 MB. Here the values
decrease towards 7000.

86 6.3 Uniform load with 25 threads

TPS and CPU usage

5000
4500 4

4000 N

3500 4 MMWWWM AN
3000 WA A ,«..."

o 2500 4
2000 -
1500 Upper c.i. boundary |-

1000 Low er c.i. boundary |-

500 —TPS
0

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.13: Transactions per Second

In Graph 6.13 the TPS has a peak at 4412 at 300 kB. From this peak the
TPS decreases asymptotically towards 3400. At 22 MB the TPS decreases
again towards 3000 before it climbs up again. The TPS has a small
confidence interval with an average value at 48 and the variations
between neighbor-values are fairly small. CPU usage decreases from 85
% at the beginning, towards 55 % at 15 MB (Graph 6.14). From this point
the CPU usage drops to 45 % and stays there to 22 MB, where it

increases again.

100,00 %

80,00 % -
&
E 60,00 % -
2
S 40,00 % -
*

20,00 % A

0,00 % : ;
0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.14: CPU usage

Chapter 6 Results 87

Checkpoint time and number of checkpoints

The number of checkpoints goes asymptotically from 7 to 200. After 15
MB the graph increases towards a peak at 27.8 MB with 292 performed
checkpoints (Graph 6.15). After 27.8 MB the graph decreases. The
number of checkpoints is very similar to neighbor segment sizes,

meaning the graph only has small peaks that overall gives a fairly smooth

line.
350
o 300
=
S 250 WWMM
£ M:ww‘\r'“" o
3 200 %/ﬂfﬂﬁxv
5 /V./WW
. 150 /Jv
°
g 100 ——CKP
E 501
4
0 ;
0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.15: Number of checkpoints

Checkpoint time in Graph 6.16 has a smooth graph that goes
asymptotically towards one second and is stable at this value from 5 MB
to 32 MB. It also has a very small variance with an average confidence

interval at 39.

40000

35000 Upper c.i. boundary |—
Low er c.i. boundary
—— CKP time

30000

25000

20000 -

ms

15000 +

10000

5000 \\\

0

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.16: Measured time to perform a checkpoint

88 6.4 Distorted load with five threads

6.4 Distorted load with five threads

Distorted load gives a high access rate for the first segments. In a normal
DBMS, some segments are accessed more often than others. This system
normally use uniform load, which gives smooth graphs. To see if there is
any big difference with distorted load, this test case uses five client
threads to access the database distorted.

6.4.1 Analysis of graphs

During this test case with distorted load, the system does not show any
radical changes from test cases with uniform load. The biggest change is

the Copy on Write peak, which is reached at a different segment size.

Copy on Write

5000

4500 —
P I [——cow]
2 3500 M T,
8 3000 i T
s 2500 J e,
2 2000 / W
E 1500
4
1000 |
500 -
0

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.17: Number of Copy on Write operations

The number of Copy on Write increases from 78 towards a peak at 8300
KB with 4288 Copy on Write operations trigged. From this point it
decreases; with a slight asymptotically form, towards 1500. The lowest
value after the peak is 1850 at 32 MB. (Graph 6.17)

Chapter 6 Results 89

TPS and CPU usage

30000

25000 1 \
20000 M
“ “

& 15000 - v W Wi WA iy

10000 Upper c.i. boundary ||

Low er c.i. boundary | |
—TPS

5000

0

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.18: TPS

The TPS decreases from 25075 at the beginning, towards 15000 at the
end (Graph 6.18). It has a smooth form and only a small drop at 7.6 MB.
This small drop at 7.6 MB cannot be seen in any of the other test cases
and is thus believed to be a random error. It also has a small confidence
interval with an average value at 115. CPU usage is about 60 % in the
beginning, but drops to 45 % at 1.1 MB. From this point it increases
again towards 60 % with small variance except for the peak at 7.6 MB
(Graph 6.19).

100,00 %

80,00 % 1
&
E 60,00 % -
2
S 40,00 % -
N

20,00 % -

[—cry]
0,00 % T T T T T :
0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.19: CPU usage

90 6.4 Distorted load with five threads

Checkpoint time and number of checkpoints

The number of checkpoints increases from two in the beginning towards
60 in the end. The graph has an asymptotically form and tends to
straighten out after 27 MB with 60 checkpoints (Graph 6.20). As in the
other cases, the graph is jagged.

-
o

A O O
o o© o
L L L

N
=]
L

7 o

Number of checkpoints
w
o

o

o

0 5000 10000 15000 20000 25000 30000 35000
Segment size (kB)

Graph 6.20: Number of checkpoints

The checkpoint time shows a stable normal way with a smooth line and a
small confidence interval with an average value at 54. It falls from 26245
ms to about 1500 ms at 5 MB. After 5 MB it is very stable (Graph 6.21).

35000

30000 Upper c.i. boundary
Low er c.i. boundary
25000 CKP time |

20000

ms

15000

10000

. k’\

0

0 5000 10000 15000 20000 25000 30000 35000

Segment size (kB)

Graph 6.21: Checkpoint time

Chapter 7

Discussion

In this part of the thesis all the results will be discussed and the focus
will be to find relations between the different results. There will be an
explanation of trends that appear in the results and why these trends
seem to appear. The hypotheses will be discussed and validated and an
introduction to different possible weaknesses in the simulator and other
possible sources of error will be given. A part of this master thesis has
been to create a simulator for simulating use of InfiniBand and RDMA for
repair in DBMS. This chapter will give an interpretation of the results
and try to conclude trends and optimal settings for such a system. To be
able to comment on these results it is important to understand the

premises given by the simulation.

7.1 Simulation

InfiniBand and RDMA is a new kind of technology where to-date there
has been little research done and the access to necessary hardware is
limited. Since this master thesis has been completed over a limited
period of time it was decided to create a simulator instead of trying to use
InfiniBand and RDMA hardware. When creating a simulator it is very
important to be able to simulate a real system load to get the best
results. The results from this simulator give mostly predicted results. The
simulator has been validated in several ways (Chapter 5.2) to ensure that
the code has been written correctly and to perform the operation in an
intended way. But even if the simulator is working properly there are a
few other factors and design solutions which may have an impact on the
results. This section will discuss the effect of these factors and choices

and give an explanation as to why these choices have been made.

91

92 7.1 Simulation

The first and one of the most important choices was how to simulate
RDMA over InfiniBand. When using RDMA over InfiniBand an RNIC is
used. This network card contains a processor which is used to remove
overhead relating to protocol processing from the CPU. To simulate this
the Java.sleep() function was used. This function does not use CPU
power, so this will give a good indication as to how the transfer happens.
When using RDMA one memory area on the destination computer is
mapped. This takes some time and will happen for each segment the
system is transferring. After a lot of research the setup connection time
was decided to be set to 500 ps. The argument for choosing this number
was that when using IPoIB the client is not mapping a memory area at
the destination before transferring the data. Thus, 500 us must be the
time SDP uses to map the memory area. Since this master thesis is not
simulating a three layered web server there is a possibility that this
number is inaccurate. The connection time is related to the number of
segments. A possible inaccurate estimation of this time will only give the
graphs an offset compared to the one presented in this master thesis.

Number of segments

10000
9000 +
8000
7000
6000
5000
4000 1
3000 1
2000
1000

0 D 0 m = = = = =
100 2100 4100 6100 9100 11100 13100 15100 17100 19100

@ Number of segments

Segment size

Graph 7.1: Number of segments

As can be seen in Graph 7.1 there is a big drop in the number of
segments when the segment size is small. There are 10 000 segments
when the segment size is 100 KB. When the segment size is 4 MB the

number of segments has been reduced to 250.

Chapter 7 Discussion 93

When the segment size is 100 KB, 5 seconds is used just in connection

time when transferring the whole 1 GB database.

10000*0,5 = 5000ms = 5s

When the segment size has increased to 4 MB this time is reduced 40
times to 0.125 s.

250*0,5=125ms = 0,125s

When this model was made it was important to create a model which
could simulate a DBMS in the best possible way. But the system had to
be simplified many times because of the time estimated for the master
thesis. It was decided that the simulation of transaction load was one of
the critical aspects of the assignment. Many solutions were tried before
the final solution was found (log segments, back-to-back transactions,
distorted load and a run with constant 1000 TPS per thread).

When running back-to-back transactions the system had a CPU usage of
nearly 100 %. This was found to be a possible source of error, so a
function for reducing the CPU usage was introduced. But this function
reduces the throughput in the system by putting the client thread to
sleep at intervals. The simulator slows down the client threads to get a
lower CPU usage and can be seen as an unacceptable interference with
the system. The alternative was to use nearly 100 % CPU, which makes
the OS managing the CPU in a way impossible for the simulator to

control. This was found to be a much larger source of error.

When creating a mockup DBMS it is very difficult to get a correct
simulation of all the administrative costs concerning the execution of a
transaction. This can have resulted in a simple model to actually get
good enough simulation. That is why the values in the results, such as

TPS, may not be representative for actual TPS in such a system.

The purpose of this master thesis is not to get exact values but to get
graphs which vary and show trends when changing different parameters
in the system. For that purpose the simulator is working satisfactorily.
When reading the results it is important to remember that when running
a simulator with Windows XP there are some parameters that are

impossible to control.

94 7.2 CPU usage

The OS used in these simulations uses a time slice of 15 — 16 ms which
may have some interference when performing operations. To wait for the
different threads to finish Thread.join() is used. This is a predefined API
which means that the scheduling is handed over to the JVM and is
completely out of the simulators’ hands.

7.2 CPU usage

CPU usage in the model has been controlled by running a sleep function
periodically, as explained previously. Even if the CPU stays at around 60
%, the graphs show that the usage varies from the beginning, with 100
KB segments, to the end, with 32 MB segments. The analysis from the
results show a tendency to vary more, as more client threads are run in
the system. For example, in Graph 7.2 the series with one and five
threads are smoother than the series with 25 threads. The series with 25
threads has a decreasing tendency from the beginning and a drop
between 15 and 22 MB. The CPU results have no direct relation with any

of the other results.

There is also a difference before 10 MB compared to after 10 MB. For a
few number of threads, no matter the load type, the CPU usage has a
local peak. With 25 threads the CPU usage decreases from a high value
and down towards 60 %. The instability before 10 MB can be caused by
the number of segments that changes dramatically.

The checkpointer has almost no effect on the CPU usage, since it only
sleeps the time it takes to perform a checkpoint. It is therefore
reasonable to believe that the client threads, using the database, have
the biggest effect in this result. These treads use CPU to write data and
perform Copy on Write. Since these threads have reduced CPU usage by
using a sleep function, it affects the TPS. Normally TPS would be better;
the more client threads run in parallel. Since CPU usage is controlled,
the system spends more time sleeping, the more threads that run in
parallel. TPS will be discussed in Chapter 7.3, and has a strong relation
with the CPU usage.

Hypothesis V predicts that the CPU usage will increase if the segment
size increases. As can be seen from Graph 7.2, the CPU usage is stable
after 10 MB and the hypothesis fails. Number of threads is the factor that
affects the CPU usage most.

Chapter 7 Discussion 95

The hypothesis was put forward before the prototype was constructed.

Thus the CPU regulating function was not taken into consideration.

90,00 %

80,00 %

70,00 %

60,00 %

50,00 %

3
5
25
——D

~59r559¢9z?§94>"& é‘&orgpAfNVép@@((&Nfﬁfﬁ@%%Mﬁ
Graph 7.2: CPU usage

40,00 %

30,00 %

7.3 TPS

There are three main factors that affect the TPS; number of segments,
Copy on Write operation and CPU usage limit. The effect can best be
represented if all the TPS graphs from the test cases are plotted in one
new graph. This has been done in Graph 7.3.

To check if the uniform load is a good load simulation the model has
been run with distorted load as well. Graph 7.3 shows that the
performances in the uniform and distorted test cases are almost equal.
The only difference is that distorted load gives a small improvement on

segment size under 5 MB.

90000

80000 f\‘ —
70000

\\ 25
2000 WMMM«MM
50000 WAL VL LN W) - e

40000

30000

20000 ~—— e

ah
10000

o} T T T T T T T
(o] 4000 8000 12000 16000 20000 24000 28000 32000

Graph 7.3: TPS

Graph 7.3 shows that the TPS is low for test cases with many threads
compared with test cases with few threads. Normally the TPS would
increase with more threads, since it would utilize the CPU better.

96 7.3 TPS

In this case the CPU limit will affect the TPS in the opposite way than it
normally would, with respect to number of threads. The more threads
there are in the system, the more each one will sleep and cause an extra

delay on the transaction processing.

All of the TPS graphs from the test cases show a decreasing performance
while using larger segment size. The test case with one thread shows this
trend best. It drops from about 80000 in the beginning to about 50000 at
the end. This is a difference of 30000 transactions per second and the
biggest change is between 100 KB and 10000 KB. The write operation by
the client threads are not affected by how big the segments are. In our
model, the database size is static and the segment size changes. This
causes the number of segments to change. With a small segment size
there will be many segments and visa versa. Number of segments has
been described in Chapter 7.1 and shows that there are big differences
up to 10 MB. This trend can also be seen in the beginning of the TPS
graphs.

Another trend that can be seen in the graphs is that every one decreases.
This is probably caused by the Copy on Write method. During a Copy on
Write, the client threads have to wait until the copying operation is
finished. The bigger the segments size is, the longer it takes to copy it
and the longer the client threads must wait. The chance to trig the Copy
on Write mechanism is also smaller with a large amount of segments.
This effect is visual in Graph 7.3. All these graphs decrease, but with less
difference the more threads there are. The lowest TPS series, with 25
threads, has almost no changes compared to the series with 1 thread.
This is caused by the scaling on the axis and the decreasing effect is

better visualized in the analysis (Chapter 6).

Hypothesis I predicts that the TPS will fall, when the segment size
increases. From Graph 7.3 it is possible to conclude that the hypothesis
is valid. Every test case that has been run in this thesis has a decreasing
TPS value with respect to segment size.

Chapter 7 Discussion 97

7.4 Copy on Write

In this section the Copy on Write operation is evaluated. The results
collected from the runs concerning Copy on Write are based on time and
number of operations performed. From hypothesis IV it was predicted
that the number of Copy on Write operations would increase as the
segment size increased. This hypothesis was based on the fact that the
probability of hitting a locked segment would increase as the segment
size increased. Graph 7.1 shows the significant drop in the number of
segments for segments under 10 MB. The results, however, show a
different shape than expected (Graph 7.4).

COW operations
40000

35000 -

/\/,\ —— 1 Thread

30000 —— 5 Threads]
g /v V‘Lj —— 25 Threads
E 25000

20000 -
; / P\\’—\—\'\—’\——\‘
Bl p——

10000 VJ\/_\M

5000 -| ///%N\—«M
[0 o e e L s e e e e e e e e B e e L e e
100 5000 9900 14800 19700 24600 29500

Segment size

Graph 7.4: Copy on Write operations

The results show that the number of Copy on Write operations reaches a
peak at around 3 - 6 MB. From this point the graph falls towards a
stable condition at 20 MB. This shows that hypothesis IV fails. To base
the conclusion in the hypothesis on the change in probability of hitting a
locked segment alone is not enough. What hypothesis IV does not
discuss is the time each segment is held by the checkpointer. As the
segment size increases, the time taken to transmit the segment also
increases. For each segment only one Copy on Write is performed. The
next transaction which wants to update this segment is redirected to
update the copied segment. This means that at one time the segments
will be held for such a long time that the number of Copy on Write
operations will fall. But until this point is reached the number of Copy on
Write operations will increase, as predicted in hypothesis IV. This means
that hypothesis IV is valid for segments smaller that 3 MB.

98 7.5 Checkpointing

From the peak and down to a stable situation the graph is decreasing in
a stair pattern. This pattern is best shown for 25 threads in Graph 7.4.
This effect was investigated to find out what could cause this. The
research did not give any good answers to that question. The value falls
from one segment size to the next. After a lot of research, it has been
concluded that this pattern may be due to some OS or JVM-dependent
behavior. This possible error was investigated by reading the debug log in
detail and running tests with much higher resolution around the
breakpoints in the stair pattern. This definite behavior was found and it

was not possible to give a 100 % define conclusion as to this behavior.

When looking at the number of Copy on Write operations, it is possible to
conclude a trend. From 3 — 6 MB (depending on the number of threads in
the system) the number of Copy on Write operations will fall towards a
stable value around 20 MB. A test with distorted load was also
performed. This test shows the same trend as the other runs (Graph
6.17). In the run with distorted load the peak is relocated to 8 — 9 MB
and is due to the limited access area of the database. The probability of
hitting a locked segment increases dramatically for parts of the database
and decreases dramatically for other parts of the database. The other
result from the run concerning Copy on Write is the time each operation
takes. This value increases linearly in a stable way (Chapter 6).

Hypothesis III predicts that the transfer rate inside the main memory will
stay the same. Graph 5.2, page 51, plots the measured throughput for
Copy on Write, and shows that the throughput stays stable around 2
GB/s after 2 MB. This means that hypothesis III is valid.

7.5 Checkpointing

There are two different results to analyze concerning checkpointing;
number of checkpoints performed and time for performing each
checkpoint. First, the number of checkpoints will be discussed. As can be
seen in Graph 7.5, all the series show the same shape. The reason they
do not look exactly the same is because of the scaling of the graph.
Chapter 6 contains more detailed graphs.

Chapter 7 Discussion

99

Number of checkpoints

25 Threads ||

—— 5 Threads

—— 1 Thread ||

Nurrber of chedipoints
N
o
o

BEEE

L

gment size

EEERE

THEHREERH

Graph 7.5: Number of checkpoints

Hypothesis VI predicts that the number of checkpoints will increase if the

number of Copy on Write operations increases. As can be seen from

Graph 7.5 the number of checkpoints increases despite the fact that the

number of Copy on Write operations decreases from 5 MB towards 32

MB. The number of checkpoint operations reaches a peak, but this is at

29 MB and from this point on it decreases towards 32 MB. This peak is

believed to be due to some variance expected in empirical testing. There

are only two parameters that have an influence on the number of

checkpoints, namely the total run-time and the checkpoint time. To show

that it is the total number of run-time of the system that has the biggest

influence, these values are plotted in Graph 5.6.

Total run time

400000

350000

300000

el A

250000

— 25 Threads | |

£ 200000

150000

——— 5 Threads

100000

—— 1 Thread |7

50000

(o]

"ERUEEBERERREH
egment size

[

21100
22600
24100
25500
27100
28600
30100
31600

Graph 7.6: Total run-time

These two graphs show a close

connection between the number of

checkpoints and the total run-time for the system. The reason is obvious;

the longer the system runs,

checkpointer to take checkpoints.

the more time

is available for the

100 7.6 Repair time and throughput

One of the most interesting results derived from this master thesis is the
checkpoint time. As can be seen in Graph 7.7 the checkpoint time is
unaffected by the number of client threads introduced to the system. All

three runs show a clear trend.

Checkpoint time

40000

35000 — 1 Thread ||
— 5 Threads
30000 25 Threads [

25000 -

£ 20000 -
15000 -

10000 +

f

5000 -

i
1600
3100
4800
6100
7800
9100
0800
2100
13600
15100
6300
8100
19500

21100
22600
24100
258500
27100
28600
30100
31600 1

rrrrrrr

egments size

]

Graph 7.7: Checkpoint time

When the segment size gets bigger than 10 MB, there is little effect in
increasing the segment size even further. This observation was the whole
motivation for the thesis; to find out the max size of segments that would
be beneficial to use. When using this graph and comparing it with the
TPS graph it is possible to find a solution that will give a short
checkpoint time and a high TPS. This will be done more carefully in the
conclusion (Chapter 8). It is likely that when the segment size reaches
around 10 MB the connection setup time (500 ps) will be such a small
part of the total checkpoint time that increasing the segment size even
more will have a very little effect. These results show that hypothesis VII
is valid, because the checkpoint time decreases when the segment size
increases. Compared to Graph 7.1 is it also possible to see the

similarities between number of segments and checkpoint time.

7.6 Repair time and throughput

The throughput on checkpoint plays an important role in the repair time.
This is calculated by dividing the amount of data to be transferred on
checkpoint time. With better throughput, repair time will decrease and
availability will be better. One of the factors that affect the repair time
most is segment size. The only question is how large this segment size
should be. A good TPS is important to give a good service to the client
user. With a large segment size the TPS will be low and the system will

have a poor performance.

Chapter 7 Discussion 101

With a clustered DBMS the throughput during a repair of a node reduces
the chance of losing a complete fragment. After one node has failed, the
system repairs itself in two steps. First, it sets the hot-standby node as
the primary node. Then, it creates a new hot-standby node from a spare
node and updates the new hot-standby node by copying data from the
new primary node. When copying the data during a repair, the system
uses the checkpoint technique. Using a large segment size, the
throughput on RDMA will increase since the connection time will be
insignificant. The total number of segments will decrease and together
these two factors will reduce the checkpoint time and increase the
throughput.

In Graph 7.8 the throughput and TPS for a test case with five threads
has been plotted in the same graph. The form on the graphs is equal in
every test case. This was also used to validate hypothesis II which said
that there would be better throughput (MB/s) for RDMA if the segment
size increased. Graph 7.8 shows that hypothesis II is valid.

25000 1000

1 900

20000 1 1 800

1 700

15000 v 600

//‘/ 1 500
,

10000 y TPs 400
—— MB/s in RDMA T 300
5000 200

+ 100
T T T T T T 0
0 5000 10000 15000 20000 25000 30000 35000

TPS
MB/S

Segment size (kB)

Graph 7.8: TPS vs. MB/s

The left axis in this graph is the TPS and the right one is the throughput
in MB/s for during one checkpoint. The throughput is dominated by
checkpoint time and number of segments, so the lower checkpoint time
and the fewer segment, the better throughput. Hence the throughput rate
increases with the segment size. The TPS is dominated by trigged Copy
on Write operations and segment size. With an increasing segment size,
the TPS will decrease and give a lower performance. It is possible to
increase the TPS and availability by introducing more nodes in the DBMS
cluster. Graph 7.8 shows the result from this model and shows a large
difference in the beginning, but both graphs have an asymptotic form
that reaches a limit after 10 MB. After this point the series have no large
increases or decreases. This point gives a very good throughput, but a
low TPS.

102 7.7 Availability

7.7 Availability

So how does this throughput affect the availability? Equation 1.4 at page
10 shows the unavailability dependent on the repair intensity p, If the
repair time is small, the unavailability will be small. This can be shown
by using Equation 1.4 to calculate the availability depending on the
segment size (Graph 7.9).

The repair and recovery intensity in the equation is one divided on repair
and recovery time. By replacing the intensity with the time and looking at

the case where one node fails, the equation becomes:

UNN,on—line = /IIZGNF F (71)

rr—ra

The checkpoint time represents the repair time and the other parameters
are set to reasonable values. A, for one node is set to four failures a year
and the chance for getting a double fault (G) is two. The time to repair a
node after double fault is set to one hour and the cluster consists of two
nodes. Availability is calculated by subtracting one from unavailability

and now the equation looks like this:

2
A=1-U,y e =1 ((8;%) WAV L Ckaime} (7.2)

CkpTime = Checkpoint time in hours.

In Graph 7.9 the availability is plotted and it shows a good resemblance
to the checkpoint time. It rapidly increases and has no significant
changes after 10 MB.

Availability
100,0000000 %
99,9999999 %
o 99,9999998 % /
ﬁ 99,9999997 % -
g 99,9999996 % -
§ 99,9999995 % |
g 99,9999994 % —
99,9999993 % Availability
99,9999992 % ‘ ‘ ‘ ‘ ‘ ‘
0 5000 10000 15000 20000 25000 30000
Segment size (KB)

Graph 7.9: Availability for a two node system

Chapter 7 Discussion 103

At 10 MB the availability is 99.9999999677943 % and with Equation 1.2
at page 6, it shows that this is class 9 availability. Tang, Kumar, Duvur
and Torbjernsens article on availability on Sun’s Java System Application

Server system shows the availability in HADB today.

This system uses HADB as Database Redundancy Units and has a repair
time on 12 minutes in 2004 [TKDO4]. 12 minutes is used to transfer 1
GB from one node to another which is the same case simulated in this
master thesis. With Equation 7.2 and 1.2 the availability of this system is
99.9999833197807% which is class 6. Class 6 is a very high availability
but three classes below class 9. This shows the significant improvement
that can be achieved with use of InfiniBand and RDMA. With this
technology the data transfer during repair will no longer be the
bottleneck of DBMS repair. In practice class 9 may not be achievable
since there may be other factors affecting the repair time negatively, but
it shows the important role of InfiniBand and RDMA in DBMS clusters in
the future.

7.8 Source of errors

When these results have been discussed and analyzed it is important to
try and define possible sources of error. This chapter tries to define and

explain the significance of such sources of error.

When presenting such data as produced in this master thesis, it is
important to scale the graphs in a suitable way, and not just scale the
graphs in such a way that they give something more like the predicted
results. For this thesis the detailed graphs can be found in the result
chapter (Chapter 6). The discussion chapter has the runs with different
amount of threads being plotted together in one graph. This is to give an
impression of the difference or likeness between all the runs. Such a plot
also gives a good verification on the stability of the system when the

graphs are showing the same trends.

During simulation in this assignment there have been a lot of other
active processes beside the DBMS. Before executing each test case, all
the unnecessary processes have been killed. The remaining processes
may have affected the simulation in some way. Real-world runs will also
have other processes in parallel affecting the results. Therefore this

source of error will be considered insignificant.

104 7.9 Summary of hypotheses

All the tests have been performed several times to check for random
errors and the conclusion has been that the simulation has given the

same results each time.

7.9 Summary of hypotheses

During the last chapter there has been a discussion over the result
produced by this master thesis. Chapter 4 presents the hypotheses
validated by these results. This chapter aims to give a short summary of
the results concerning the hypotheses. Because the arguments which
validate the different hypotheses are spread around in the report a table
is created to give a better overview of the results. Table 7.1 shows the
results for the different hypotheses and states which chapter contains
the argument for the result of the hypotheses.

Hypotheses | Result Chapter containing argument
L. Valid 7.3
II. Valid 7.6
II1. Valid 7.4
IV. Partially valid | 7.4
V. Invalid 7.2
VI. Partially valid | 7.5
VIL. Valid 7.5

Table 7.1: Hypotheses results

Chapter 8

Conclusion

This thesis has given a description of the behavior in a highly available
DBMS using RDMA and InfiniBand. A mockup DBMS and a simulation
of RDMA and InfiniBand has been used to collect data to perform
analysis on. The main focus has been on TPS, CPU load, checkpoints,
Copy on Write operations and repair time.

The work done in this thesis explored a novelty value for the use of
InfiniBand and RDMA in DBMS clusters. The results showed potentials
for a huge improvement concerning availability for such systems. When
simulating a system with such state-of-the-art technology there are
several possible pitfalls, this thesis have tried to discover these and given
possible solutions. If this thesis was taken further with a complete
implementation together with HADB, it would increase the availability.
This may change the way of thinking concerning DBMS cluster design by
reducing the number of error handling operations. This show the utility
value discovered in this thesis.

The methodic reliability in this thesis can be discussed in many ways.
Since a simplified DBMS is used and the actual behavior of RDMA is
unclear, there are some uncertainties concerning the results. These
uncertainties have been discussed to give a better understanding of the
premises for this thesis. To assure that the simulator worked according
to plan the source code was tested and validated in several ways. With
the premises given by professor Bratsberg and Sun Microsystems AS,
this thesis gives an answer to the question: Will large segments in DBMS
clusters give an improved performance when using InfiniBand and RDMA?
This was the origin for making this thesis.

105

106

For TPS, checkpoints and repair time there are no big changes in the
results after 10 MB. This can be related to number of segments, which
has the same form. 10 MB, or 1 % of the database size, has 100
segments. The difference in number of segments from the smallest
segments size point (100 KB) is 9900 and from the largest point (32 MB)
is 21. After 10 MB, the simulation shows no radical changes in the

results.

The Copy on Write operations has a different graph form than all the
other results. It has a peak which is dependent on the load. If there are
some segments that are used very often, for instance log segments, the
load will be distorted. In this implementation distorted load shows a peak
at 8 — 9 MB and with uniform load the peak will be at 3 — 6 MB.

Since the simulator is implemented with a CPU load limit, the results are
affected. If the system did not have this function the load would always
be 100 % and not interesting at all. The control of which sequence things
are performed in would also be almost none. The cost of implementing
this function has been lower performance with an increased number of
threads. They still show the trends and forms that would be normal, but
the values are lower. The CPU load limit was successful for its cause.

Doing a mockup DBMS and simulation of RDMA and InfiniBand has
given satisfying results. It shows trends and behaviors that were not
foreseen before implementation. The value range of the data may not be
representative for a real DBMS, but the graph form shows the trends.
This was the goal for this thesis and this result can give an indication of
what type of segment size is beneficial to achieve a high availability.

Availability in Sun’s HADB is the background for this thesis. With state-
of-the-art technology and optimal configuration the availability will be
improved. This thesis has given an indication that the configuration of
segment size should not be more than 1 % of the database size. With use
of InfiniBand and RDMA using this configuration and physical repair, the

availability increased from class 6 to class 9.

Due to time limitations and lack of available hardware and software, this
thesis has not been tried out on a real DBMS, RDMA and InfiniBand
technology. There are some changes that may give a more realistic result,

as described in the next chapter.

Chapter 9

Further work

Further work will be to implement the system with physical use of
InfiniBand and RDMA. A solution that implements InfiniBand physically
will give a better approach to the problem concerning connection setup
time. When implementing InfiniBand it is necessary to evaluate all the
needed hardware. This can both be expensive and time consuming. As
there has not been much previous research on this subject, it would be
very difficult to choose feasible hardware. A part of the further work
would be to collect and test different kinds of InfiniBand hardware to
determine which would be most feasible for the use of checkpointing in a
DBMS.

After the hardware is chosen the most efficient way to implement RDMA
must be found. Tests need to be conducted to find the optimal
implementation for RDMA over InfiniBand. As can be read in Chapter 3.1
others have failed when trying to implement RDMA over InfiniBand
because of the degree of difficulty.

When these two subjects have been investigated there would be a steady
basis to start the integration of both hardware and implementation of
RDMA. There are a lot of challenges concerning this integration. It will
demand a lot of time to research to find optimal solutions since it is a
state-of-the-art technology. The projects will need sturdy financial frames
because of the hardware. When implementing such a system there is also
a big risk that the project never will be completed within the planed time

scope because of all the unforeseen factors that will appear.

107

108

After the integration, it is possible to improve the research even further
by implementing HADB as the DBMS. This will give a realistic
transaction load and CPU usage. Both NTNU and Sun Microsystems have
a lot of resources on HADB which should make it possible to implement
InfiniBand as a transfer mechanism for checkpoints during repair

without any large complications.

Implementing the complete system makes it possible to get real results.
These results would not have been affected by CPU limitations or
inaccurate connection setup time for RDMA. It will also be possible to
measure the improved performance in the system by measuring the
performance according to some benchmark standard. Hopefully, this
complete implementation will show the same trends as the simulation

performed in this master thesis.

Chapter 10

Glossary

The words and phrases presented in this glossary that are not explained
in the thesis is collected from http://en.wikipedia.org

A window in TCP In transmit flow control, sliding window is a
Sliding Windows variable-duration window that allows a
protocol sender to transmit a specified number of

data units before an acknowledgement is

received or before a specified event occurs.

Back end server A back-end server is a server with a
standard configuration. The term "back-end
server" refers to all servers in an
organization that are not front-end servers
after a front-end server is introduced into

the organization.

Back-to-back Transactions are preformed in serially and
transactions not parallel order. With no wait time.
Bcopy An internal copy is made before sending

data over the network.

Benchmarks A benchmark is a point of reference for a
measurement. The term presumably
originates from the practice of making
dimensional height measurements of an
object on a workbench using a graduated
scale or similar tool, and using the surface
of the workbench as the origin for the

measurements.

109

110

Clustra

Context switches

COW

CPU

DBMS

DDR

DMA

HADB

Clustra is a telecom database prototype
developed to run on standard workstations

interconnected by a switch.

A context switch is the computing process
of storing and restoring the state of a CPU
(the context) such that multiple processes
can share a single CPU resource. The
context switch is an essential feature of a
multitasking operating system. Context
switches are wusually computationally
intensive and much of the design of
operating systems is to optimize the use of

context switches.

Copy on Write. The principles that you can
efficiently share as many read-only copies
of an object as you want until you need to

modify it. Then you need to have your own

copy.

Stands for Central Processing Unit, a
programmable logic device that performs all
the instruction, logic, and mathematical

processing in a computer.

A database management system (DBMS) is
a computer program (or more typically, a
suite of them) designed to manage a
database, a large set of structured data,
and run operations on the data requested

by numerous users

Double Data Rate (memory)

Direct memory access (DMA) allows certain
hardware subsystems within a computer to
access system memory for reading and/or
writing independently of the CPU.

High Availability Data Base, A product from

Sun Microsystems

Chapter 10 Glossary

111

HCA

I/O operations

InfiniBand

Latency

MTTF

MTTR

NFS

NIC

Host Channel Adapter

Services that provide access to shared
input/output devices and to the global data
structures that describe their status. I/O
operations open and close files and devices,
read data from and write data to devices,
set the state of devices, and read and write
system data structures.

InfiniBand is a high-speed serial computer
bus, intended for both internal and

external connections

Latency is the transit time through a digital
process, from input to output. It is a

minimal, and usually undesirable, delay.

The mean time expected to the first failure
of a piece of equipment. It is a statistical
value and is meant to be the mean over a
long period of time and large number of

units.

Mean Time To Repair. The average time
required to repair a failure. Automated fault
isolation techniques, including automatic
fault bypassing, have reduced this

measurement of system recovery time.

Network File System (NFS) is a protocol
originally developed by Sun Microsystems
in 1984 and defined in RFCs 1094, 1813,
(3010) and 3530, as a file system which
allows a computer to access files over a
network as easily as if they were on its local
disks.

Network Interface Car

112

OSI model

PCI

PCI-X

QDR

RAID

RDMA

Response time

RNIC

The Open Systems Interconnection
Reference Model (OSI Model or OSI
Reference Model for short) is a layered
abstract description for communications
and computer network protocol design,
developed as part of the Open Systems
Interconnect initiative. It is also called the

OSI seven layer model.

The Peripheral Component Interconnect
standard (in practice almost always
shortened to PCI) specifies a computer bus
for attaching peripheral devices to a

computer motherboard.

Peripheral Component Interconnect
Express. New PCI standard with much
higher transfer speed than PCI.

Quad Data Rate

In computing, a redundant array of
independent disks (more commonly known
as a RAID) is a system of using multiple
hard drives for sharing or replicating data
among the drives.

Remote Direct Memory Access (RDMA) is a
concept whereby two or more computers
communicate via Direct Memory Access
directly from the main memory of one
system to the main memory of another.

In telecommunication, response time is the
time a system or functional unit takes to

react to a given input.

RDMA enabled NIC

Chapter 10 Glossary

113

RPC

SDP

State-of-the-art
technology.

TCA

TPS

UDP

ULP

Zcopy

A Remote Procedure Call is a protocol that
allows a computer program running on one
host to cause code to be executed on
another host without the programmer
needing to explicitly code for this.

Sockets Direct Protocol

The newest technology.

Target Channel Adapters

Transactions Per Second

User Datagram Protocol

Upper Layer Protocol

No (Zero) copy is made internally before
transferring data over the network.

Chapter 11

Bibliography

All preliminary research used as background for this thesis is referred to
in this chapter. Reference to web pages is dated with the year presented
in the web page. If the web page does not present any date or year, the
time when the page was visited is presented.

[AliO1] Anasstasia Ailamaki, Recover with ARIES, http:/ /www-
2.cs.cmu.edu/afs/cs/academic/class/15721-

f01/www /lectures/recovery_with_aries.pdf , 2001

[BalO3+] Pavan Balaji, et al. Sockets Direct Protocol over InfiniBand in
Clusters: Is it Beneficial?, http:/ /nowlab.cis.ohio-
state.edu/publications/conf-papers/2004 /balaji-
ispass04.pdf, 2003

[BalO4+] Pavan Balaji, et al. Sockets Direct Protocol over InfiniBand in
Clusters: Is it Beneficial? http:/ /nowlab.cis.ohio-
state.edu/publications/tech-reports /2004 /balaji-ispass04-
tr.pdf, October 2004

[Cal03+] Brent Callaghan, et al. NF'S over RDMA,
http://delivery.acm.org/10.1145/950000/944753 /p196-
callaghan.pdf , August 2003

[Cha02] Wai Tik Chan. Take the new I/O in JDK 1.4 for a test drive,
http:/ /builder.com.com/5100-6370-1049567.html,
December 2002

[Etv04] Etvcookbook. Latency, http:/ /etvcookbook.org/glossary/,
May 2004

115

116

[GR93]

[GreO2]

[GS91]

[HalO2]

[HKO4]

[ITAO4]

[JMO3]

[KimO4a]

[Kim04b]

Jim Gray, Andreas Reuter. Transaction Processing, IMorgan
Kaufman Publishers, 1993

Paul Grenyer. A short article written for the ACCU on the
principle of Copy On Write,

http:/ /www.paulgrenyer.co.uk/articles/copy_on_write.htm,
January 2002

Jim Gray, Daniel P. Siewiorek. High-availability computer
systems.

http:/ /ieeexplore.ieee.org/iell /2/2779/00084898.pdf?tp=&
arnumber=84898&isnumber=2779, September 1991

Tom. R. Halfhill. What you should know about InfiniBand,
http:/ /storagemagazine.techtarget.com/magltem/1,291266
,s1d35_gci821124 idx2,00.html (Required registration!),
May 2002

Steffen Holthe, Jan Steinar Kvilesjo. Transactions in
databasesystems, http://www.kvilesjo.net/a2004ntnu.pdf,
December 2004

InfiniBand Trade Association, InfiniBand SM Trade
Association Announces Completion of 1.2 Specification,
http:/ /www.infinibandta.org/newsroom/Spec_announcmen
t_Sep_8_04.pdf, September 2004

Lars E. Jonsson. William R. Margo. Comparative
Performance of InfiniBand Architecture and Gigabit Ethernet
Interconnects on Intel Itanium 2 Microarchitecture-based
Clusters,

http: / /www.dynamore.de/download /eu03/papers/K-1I/LS-
DYNA_ULM_K-II-13.pdf, 2003

Ted H. Kim. Brief History of InfiniBand: Hype to Pragmatism,
http:/ /blogs.sun.com/roller/comments/RandomDude/Web
log/history_hype_to_pragmatism, July 2004

Ted H. Kim. So what is InfiniBand?
http:/ /blogs.sun.com/roller/comments/RandomDude/Web
log/so_what is_infiniband, June 2004

Chapter 11 Bibliography 117

[Lon03]

[ManO1]

[Pan04]

[Pen02]

[Pet02]

[Pic03]

[Pin02a]

[Pin02b]

[Pin03]

Byran Longmire. The InfiniBand Architecture for 2003 and
2004,

http:/ /www.techonline.com/community/ed_resource/featu
re_article/24364, 2003

Kevin T. Manley High Resolution Timer,
http:/ /www.fawcette.com/archives/premier/mgznarch/jav
apro/2001/08aug01/km0108/km0108-2.asp, August 2001

D. K. Panda. Design of Scalable Data — Center with
InfiniBand, http://nowlab.cis.ohio-state.edu/projects/data-
centers/, October 2004

Odysseas Pentakalos. An Introduction to the InfiniBand
Architecture,

http:/ /www.oreillynet.com/pub/a/network/2002/02 /04 /w
indows.html, April 2002

Zachary Nathaniel Joseph Peterson. Data placement for
Copy on Write using virtual contiguity,

http:/ /www.znjp.com/papers/peterson-UCSC-MS02.pdf,
September 2002

Picture.
http:/ /www.trireme.com/whitepapers/process/adoption/r
up.gif, 2003

Jim Pinkerton. The Case for RDMA,
http:/ /www.rdmaconsortium.org/home/The_Case_for_ RDM
A020531.pdf, May 2002

Jim Pinkerton. Sockets Direct Protocol v1.0,
http:/ /www.infinibandta.org/events/past/spring2002/2_S
ockets_Direct_Protocol.pdf, 2002

Jim Pinkerton. Socket Direct Protocol v1.0 RDMA

Consortium,

http:/ /www.rdmaconsortium.org/home/SDP_tutorial v1.0d
.pdf, October 2003

118

[Ras91]

[RicO1]

[Rou02]

[Sla05]

[SMIO4]

[SMSO02]

[Str03]

[TKDO4]

[Tor95]

Shelly Rasmussen. An Introduction to statistics with data
analysis, Thompson information/publishing group, 1991

Robert Richmond. InfiniBand: Next Generation I/ O,
http:/ /sysopt.earthweb.com/articles/infiniband /index.html
, January 2001

Vladimir Roubtsov. Profiling CPU usage from within a Java
application,

http:/ /www.javaworld.com/javaworld /javaga/2002-11/01-
ga-1108-cpu.html, November 2002

Slashdot. Linux Kernel 2.6.11 Released.
http:/ /linux.slashdot.org/article.pl?sid=05/03/02/133124
S&from=rss, March 2005

Sun Microsystems Inc. Java NIO APL,
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/ByteB
uffer.html, 2004

Heidi Scott, Patric Martin, Bernie Shiefer. A Study of the
Impact of Direct Access I/ O on Relational Database
Management Systems,

http:/ /portal.acm.org/ft_gateway.cfm?id=782125&type=pdf
, 2002

Are Joachim Strande. Testspesifikasjon,
http:/ /www.kongstud.hibu.no/d09-2003/ (Username and
password required), May 2003

Dong Tang, Dileep Kumar, Sreeram Duvur, Qystein
Torbjernsen. Availability Measurement and Modeling for An
Application Server.
http://csdl.computer.org/comp/proceedings/dsn/2004 /20
52/00/20520669abs.htm, August 2004

Oystein Torbjernsen. Multi-Site Declustering Strategies for
Very High Database Service Availability. Trondheim:
University of Trondheim, 1995

Chapter 11 Bibliography 119

[Tra0O3] Greg Travis. Getting started with NIO, http:/ /www-
106.ibm.com/developerworks/edu/j-dw-java-nio-i.html,
July 2003

[WebO1] John Webster. Fibre Channel vs. IP vs. InfiniBand,

http:/ /is.pennnet.com/Articles/Article_Display.cfm?Section
=Articles&Subsection=Display&ARTICLE_ID=107327
(Required registration!), July 2001

[Wo004] Gordon Wood. Guides to the Medical Literature.
http:/ /www.fammed.ouhsc.edu/RobHamm /UsersGuide/de
fine.htm, 2004

Chapter 12

Appendix

Appendix I Work flow

Appendix II Source code
Appendix III Sample of result data

Appendix IV Sample of debug log

121

Appendix I

Work flow

Chapter 1

Work flow

The main goal for the software system is to be able to simulate a real
database system in a satisfying way. The simulator will be used to find
out more about the benefits and disadvantages of using InfiniBand in
database clusters. Based on the theoretical information from preliminary
research there is likely to believe that InfiniBand will give a huge
advantage when transferring large amounts of data. The disadvantage
will be that when transferring a large amount of data, the same amount
of data will have to be copied internally inside the memory because of
Copy on Write. The challenge will be to find which segment size that will
give the best overall performance. The optimal solution will give a high
transfer rate over InfiniBand and high TPS with a stable CPU usage. To
be able to get these results a short checkpoint time and an efficient Copy
on Write algorithm is needed.

1.1 The software development process

The development process was planed in detail from the beginning of the
project. In this plan a schedule for every activity in the project period was
defined. This resulted in a large plan with a lot of small activities (Figure
1.1).

‘3 ‘Task Name: Duration | Start Finish |08 [170an'05 |31 Jan'05 |14 Feb 05 [25Feh'05 |14Mar'5 |28Mar'05 |114pr'05 [25Apr05 [09May DS |23 May'05 |06 W05 [204n0s |o:
T STWISTTIM[FITISWIS[T|M[F[T[STWI[STT[M[FIT[SW[STT[MIFIT[STWIS[T[WM[F[T]STWISTT[M[F[T]S]
= Programvareutikling 107 days Mon 17.01.05 Tue 14.06.05 v
] Moclellering 10cays Mon 070205 Fri18.0205
] Implemertasjon 30days Mon O7.0208 Fri18.03.05
=] Testing av program Sdays Mon 280305 FriD1.0405 Jesting av progra
] Innsaming av data 10cays Mon 040405 Fri150405 ! ling ap data
=] Uviceise av programmet 10days Mon 020505 Fri13.05.05 i’ Uwidelse av programmet
= Dokumentasjon 107 days Mon 17.01.05 Tue 14.06.05]
] Definere oppgave Sdays Mon17.0105 7 Friz1.01.05 Definere oppgave
=] Forarbeid / Teari Soays Mon 310105 FriO4.0208 Forasbeid | Teori
=] Sette opp hypoteser Sdays Mon 140205 Fri180205 Sette opp hypoteser
] Dokumertasion av programn S days Mon 280305 Fri01.04.08
] Dokumertssion av resultater| 10 days| Mon 040405 Fri 150405
=] Dokumentere analysen 10cays Mon 180405 Fri29.0405 Dokumentere analysen
=] Avslutts rapporen Sdays Mon0G.0505 Fri13.0505 Auslutte rapporte
=] Korrektur Boays Wed 180505 Fri27.0505 Korrektur
ez Planiact [vering Tday Mon 300505 Mon 30.05.08 Planlagt levering ‘¢ 30.
] Sikkerhetssone 12cays Mon 300505 Tus 14.06.05
=] Farmel levering 7 day T Tue 14.0605 Tue 14.06.05 Formell leering ¢ 14.06

Figure 1.1: Project plan

Appendix I

Before each meeting an evaluation of the plan was made to see if there
had to be made any adjustments. This work cycle resulted in a
continuously updated project plan at all times which made it able to
make any corrections in the work needed to finish the project safely in
the end of May.

The activities can be divided into three parts, design, implementation and
test. In parallel with these activities a continually update of the project
report has taken place. These tree parts were performed in an iterative
way. Iterative work means that the different phases are processed with a
different accuracy. Figure 1.2 shows the amount of work estimated in the
different part of the project. Each of the dotted lines represents a new
phase. In new terminology this kind of development is also called agile

software development.

Phases
January March June
Design m - !
Implementation e W
Test O UG S SN s S N

Figure 1.2: Development process [PicO3]

When developing software using agile development methodology it is
possible to make changes to the design even late in the project. This
makes the whole project much less vulnerable to changes and the chance
of success increase considerably.

1.2 Design

In this phase demands concerning the software had to be detected. This
was done during meetings with the employer, Sun Microsystems and
together with the teaching supervisor at NTNU. In the beginning there
were some problems defining the exact goal of the project. This was easily
solved when a clear definition of the purpose for the project came from
Sun Microsystems. To give the collaborating partners the best insight in
the working process a graphical representation of the design phase was
used. Rational Rose was used to make these graphical representations.
This was done by developing class diagrams, sequence diagrams and

activity diagrams to mention a few.

Appendix I

This work also gave a better chance to detect possible problems and
difficulties in an early stage. As a part of the preparation to the project
some issues considered to be possible pitfalls where detected. To remove
these pitfalls from the project they where implemented as prototypes to
prove that the implementation was possible. This resulted in a solution
to all of the possible pitfalls detected in the start of the project. Some of
the possible pitfalls were:

e High resolution timer

e Measurement for CPU usage

e Managing multiple threads (starting, stopping, naming)

e Make the program wait until all the threads have finished.

For a description on how they where solved see Chapter 5.3.1. Figure 1.3
shows a class diagram and shows the relations between all the different
classes in the system. Each class is represented by a box containing
attributes and operations. This diagram is very useful when trying to
explain the system to other people. It gives a complete overview over the
system with functionality and was used to make all the parts involved in

the project agree on the solution.

Class 1
Esatirinutes
Soperationso
Clasg 2 Class 3
EpAttributes pattributes
®0perations(Y0perations(

Figure 1.3: Class diagram

When all parts agree on the class diagram the work continues with
developing the functionality even further. This was done by using
sequence diagram (Figure 1.4). This kind of diagram shows how a single
object works crosswise the different classes. This is a good way to detect
which operations are needed in each class. Sequence diagrams make the

explanation of thread functionality a lot easier.

Appendix I

‘ c Class 1 c Clags 2 cClags 3
i Operations() |
H LJ Operations(]
; Operations() |‘|
PR :

Figure 1.4: Sequence diagram
When the sequence diagram is approved by all the partners and the
developers, an activity diagram can then come in handy (Figure 1.5). This
diagram explains the functionality to an algorithm in detail. This diagram
helps the developers to detect failures in the algorithms before they

implement them. This diagram also functions as a recipe when the

programmer is implementing the algorithm.

. StartState

State
Activity 3
Mo
State
/@

State

|

A

Yes

@ EndState

Figure 1.5: Activity diagram

Appendix I

1.3 Implementation

The essence of the implementation process is to transform the design
diagrams into actual java code (Figure 1.6). Based on the class diagram
Rational Rose can create classes with operations and attributes. This
makes it very easy to start the implementation process.

- e
* This method is called from checkpoint and sets the COT lock on the sequent
+ This lock is located in the aduRow table
-
+ @paran seguent int The segment that should be locked
s
public void lockSeguent(int seguent)
- {

Boteelioll nt logyerObi. lagMessage ("Sequent” +segnent+" is locked');
gnumberOiSegmentes - int= 0 lockedSequentFointer=adnRou] seguent] . getsegmentPointer () ;

%:a:agaﬁeﬁ\zbawmt: a aduRow[seqment]. sercowitrue) ;
guatabase] : byle

gsegmentsize : int=0 }
&ireeSegment : int - S
& int=-1

® This method is called from checkpoint and remowes the COU lock on the
&coweounter :int=0 + sequent
SBufferManager() =

yriteToSegment() * @param segment int The seqment to be unlocked
®allocatememoryg %y

Sreadsegment() N N N
Slookgeamens public void unLockSemmentiint segment)
SunLoskSegment) ¥ ot
Sprintaegments i loggerObi. logMessage (" Sequent” +seqnent+” is unlocked”) ;
preform Copyoniwrite i =
e t({aduRow[seguent]. getsementPointer|) lockedSequentFointer)
loggerOhi. loglessage {"Setting freesequent: “+fr
i’ freefequent=lockedfeqmentPointer;
}
aduRow[sequent]. seccon(false) ;
}

* to "+lockedSeguentPointer)

Figure 1.6: Essence of the implementation phase

The first part of the implementation process was used to implement all
the classes, operations and attributes from the design phase. Then all
the different algorithms where implemented. Since almost every difficult
algorithm was documented in detail in the design phase this was pretty a
straight forward job. The rest of the implementation job was to
implement log function and to check that every part of the system
worked as planed. There was made many tests to see how the RDMA and
the transactions load worked. In Figure 1.7 a part of the debug log is
shown. This log was used to log every operation in the system. In this
way we where able to control whether the system performed the right
operations at the right time or not.

18.mal.20058 15:01:52 DBEMSLogger logMeasags
INFO: satBusy(trusa)

18.mal.z005 15:01:52 DEMSLogger logMessagse
INFO: Thread4 is sleseping

18.mal.z005 15:01:52 DEMSLogger logMessagse
INFO: Threadz is slesping

18.mal.z005 15:01:52 DEMSLogger logMessagse
INFO: CopyonWrite is activated for theith timg

18.mal.z005 15:01:52 DEMSLogger logMessagse
INFO: Threado is slesping

18.mal.z005 15:01:52 DEMSLogger logMessagse
INFO: Threadl is slesping

Figure 1.7: Debug log

7

Appendix I

When running the system with the debug log turned on it is important to
remember that this will give a significant impact on the results since all
the information has to be written to file. That is why none of the final
results were collected from runs with the debug log activated. For each
run it was taken a lot of different measures, these measures where
printed into separate result files and added to a common shared result
file. This file contained a number of measurements made during the run.
The common shared result file contained the same information but in a
different way. Results were added to this file. This function made it
possible to make 100 runs with different segment sizes, and then all
these 100 results were added into this file. These results can then be
imported to MS Excel for a graphical representation of the results (Figure
1.8).

24500 5020.69980081 76515 194 ThE9 1034.0293129147642 0. 9827991 974885351 11.287971166694655
25000 S072.144877385012 185 F205 1070, 7208440658815 0.3870595840540046 11.727230475400848
25500 4891.49521 7926507 192 7452 1069. 4862834410499 0.99291597 75179643 12.516568952275422
26000 S081.785113300787 190 Flsl 1042.1538995502376 0.3901944 588307402 11.963333710166323
26500 5064, 783691021553 196 7209 1014.6629701707698 0.9894372775319222 12.000623713028055
27000 5151.384605848632 187 BELSL 1043.1323168791694 0.9939820260435533 12.090233374787424
27500 5024.1946569295615 194 6963 1030.2339231364328 0.3931869505419297 12.659761672521663
28000 4932.3145730234255 194 B7as7 1048.985359081494 2 0.9929761023632696 13.665655717851964
28500 4860, 2702371958073 196 6340 1053.72364920859388 0.3893287605560347 13.785325940531234
29000 5053, 860904014198 193 6527 1027.284205187758 0.9929700764 206285 13.32261 7093768502
29500 5090. 203062992185 200 5588 986, 838650614299 0. 9879331 808296266 12.910231111 79607

30000 S5122.320986308000 1ol 6249 1030.1400481834967 0.3907233876983060 13.530178964959508
30500 5003, 54216469684 7 199 6244 1004.4216100819552 0. 9895906807660341 14.431056548842824
31000 4828.472838546543 196 6264 1060.4583500336538 0.3924677819667334 15.32433962555413

31500 4900, 7A6G35354 763 202 B251 1015.2831274446967 0.9919778010859792 15.007005913245123
32000 5131.455193798015 193 5894 1018, 5835558018507 0. 9909784 553029661 14.397858735194603

Figure 1.8: Extract of the common shared result file

These graphs were an important part of the analysis and conclusion

made in this thesis.

1.4 Test

The test phase has been performed continuously throughout the whole
project. All parts have been individually tested before activated in the
whole system. When the system was up and running the debug log was
used to detect possible errors. During simulation all results are stored
and used to go back and find possible beneficial changes. Since no one
has done this before is a large part of the project to find parameters
which

continuously tested. To make sure the project is on the right track, it is

which will give believable results, is why the system is
important to start the testing early in the project. To assure that the
system have the highest possible quality and standards it has to be
validated and verified for every step in the development process.
Validation means to make sure that the right kind of system is build, in
order to what the customer wants [StrO3]. Verification means to make

sure that the system work according to the plans.

Appendix I

1.4.1 Testing

Testing can be divided into two different phases, static testing and
dynamic testing. Static testing is inspection and verification of
documents and code. This will detect typing errors and deviation from
guidelines given for the project.

Dynamic testing is testing of the whole system or parts of it. There are
two types of dynamic testing, white box and black box testing. White box
testing (Figure 1.9) require insight to the internal structure that is about
to be tested. During this type of

dynamic testing the values are

followed thought the whole Input P | output

system. In this project, debug e e

h 4

logging is used for this purpose.

Black box testing (Figure 1.10) Figure 1.9: White box
is when only input and output

are shown. What is happening

inside the system is irrelevant

Input Output

to the tester. Every time

something is sent in to the

system the results are
compared with expected Figure 1.10: Black box

results.

It is important to perform regression testing for each new iteration.
This means going back and tests something from earlier iterations
(Figure 1.11). This is to assure that things still work with the new code
integrated, and that there are no new errors introduced. To test this,

some selected tests are chosen to be performed once more.

Figure 1.11: Regression testing

Appendix 11

Source code

Appendix II

Class DataBaseControl

java.lang.Object
DataBaseControl
All Implemented Interfaces:
CPUUsageThread.IUsageEventListener

public class DataBaseControl
extends java.lang.Object
implements CPUUsageThread.[UsageEventListener

Constructor Summary

DataBaseControl ()
This is the constructor for this class.

Method Summary

void|accept (SystemInformation.CPUUsageSnapshot
event)
Function required by
CPUUsageThread.IUsageEventListener

void|addResults (java.lang.String s,
double res)

This method makes it posible for the diferent
threads to add their result to one commom string

void|addResultToExcel (int number,
double result)

This method collects results from concerning
TPs, checkpoints and COW operations

static java.lang.String|calculateConfidenceInterval ()
This method calculates the confidence
interval

static void|main(java.lang.String[] args)
This is the main method.

‘wes1353N0 WesI152ndINEETTA
109(qo 3ndino STTI © 2IBTO9pP //

{([0]sbxe)juresied-1ebaqus "burT "eARL = gyozTsjuswbas
}
Kx3
{07 0=PWILUMTEI0T STqnop
)
([1sbxe Hbutzlg)urew PTOA DT3els OTTqnd
/x
[1buTa3s sbae wexedy x
pe3IeIS SIB SPESIY] JUSISITP oYl [[® SISH 'POYISW UTBW U3 ST STUL «
xx/
{
£((((,pe0T,)£115d0o1g186 " soT3T0doad) qurested - zeba7ur *bueT “earl) ‘[q0I5660T ‘STY3 ‘TobPUBNISIING
‘ ((,pESIYLUOTIORSURILIBdSUOTIRIDdOIOIDqUNU,,)
£K318doxgaeb-seryredord) juresied-1aboqur bueT *BARL
((.SPeSIyLUOTIORSURILIOIaquNy,) A3Tedo1geb saTg1adord) Jurasted - 1a6oquT bueT *eaRL
‘gyezrsjusuwbas
“((w@¥22T58d,) £119do1g186 soT370doad) quresied - 1ebo3us - bueT “eael
) ISTTOIIUOOUOTIOBSURI], MU = [qOISTTOIIUOIUOTIOBSULIT

£(sTY3’ ((,9¥22T54dd,) Arxadoagieb serjzadord)
Jureszed-isbejurg "bueT *ear[‘gyezrsiusubas ‘ STYI
‘[qoasbbor ‘sarjzasdoad ‘isbeuppisizng)iuTtodiosy) meu = [goiurodyosyd

! (sTy3z ‘[qorsbboT ‘gyszisiusubes
4 ((,8¥22TS9d,) AaTedoagasbh - seTazedord) Juresied 1ebo3ur -bueT *eael) 196PUBKNISIING MOU — Io6PUBNISIING

s3102[go I8TTOI3UOCD UOTIOESURI] pue JuTtodydsyd ‘zsbeurwaszjng se31e2ID//

£ (((us2THTqUOTIORI JUNuUITXEN,) A370do1geb seT710doxd)
Jureszed-1eboiur -bueT -eapl) S1THTQUOTIORIJUNUTXEKISS - JeWIOT W
!() JewIOITRWIOS] MU = FBWIOF W
{() gIrsseooigisb-uorTjeWIOFUTWAISAS = Id W
IsuelsTTIULATebES] "peaIyLebesandd Aq pesn s31oelqo JO UOTILZTTRTITUI//

! (,pPo31E3s weiboid,)obessepbort* [gorsbboT
£(((,BuTBBOT,) K319d013196 saT710d01d) qurasted 1abaqur *bueT -eaRl) HOTI9S (q0ISEHOT
! (a714b1FU0D) pROT *soT3I9doad
!()sat3zadoxg meu = sarjradoid
!(yse1332doad bTFuU0D,) wesrlgindulIaTTd MU = 27 TIHTJU0D
seT3asdoad HTFUOD peOT//
)
uoTideoxy smoayy () [oajucpssegeleq orrand
/x
uoT31deoXd SMOIYULP x
JuT ozTsjusuwbas weiedpy
5717 seraiadoxd sya woxj pesi sT srejswered SWOS
pauTIep 1@ $309(q0 JUSIITP SY3 [Te SISH "SSETO STU3I I0J I0IONIISUOD Yl ST STUL «
xx/

!{zsoymo0 STqnop oT3e3s o3eatad

!seymoo @Tqnop oT3e3s a3eatad

!zsoysdy oTqnop oT3e3s o3eatad

!soysdy oTqnop oT3e3s o3earad

{zseyjurodyoayo oTqnop oT3e3ls o3eatad

!seyjurodyoayo oTqnop OT3e3s o3eatad

‘qoysdeugasad w joysdeugebesnnd) uoTlewIOJUIWS}SAS @3eatad
fqewzoy W jeuroiTewtosq Teuty syearad

a1 sssooxad // ‘ald w 3uT Teutry o3eatad
1susysTTIUSATSbESNT ‘peaIyLebesandd Aq peatnbsx s303(q0//

() 12B60TSHEq MeuU = [qoI8660T 18H6OTSHEd OTIRIS
!e@sTez=3urIgdols uesTooq oT3e3ls OTTqnd
fWu=3TNS8YMOD ¢, ,=1 TnSSYIUTOdX08YD =3 [nSeysdl BuTilg OT3eds o3earad
!TebrurppIayIng IsbeurIiaiing OT3e3ls o3eatad

!,u=Nd0 Bbutils or3e3zs s3eatad

107 0=1TNSOYIUST[D STANOP OTIe3ls o3eatad

£0°0=3Tns2¥NdD STqnOP dT3e3s sjeatad

{0=gyezrsjuswbas 3uT oT3e3ls ojeatad

{p=7193UN0HNJD IUT OT3e3ls o3eatad

{0=193Unoo3USTT) 3IUT OT3Ie3s o3eatad

{,u=3TNsa1 HbuTils OoT3e3s °ojeatad
!{sar318dord sariiadord oT3e3ls o3eatad
fo7TgbTyU0D weaxlgindulalTd OoT3els ojeatad

{[qOI8T[0IIUCHUOTIOPSURPI] ISTTOIIUODUOTIOBSURI] DT3e3s ojeatad
‘[qojurodyosyo jutodyosy) oT3e3s o3eatad
}
zousysTTIUSATebeSAT pEaIyLebesnd) sjusweTdwr ToIriuoDesegeie] sseo oTrqnd
/%
0'T UOTSIBAD &
°TQRINGTIIIR 10U I0YINey 4

<d/>ANIN :Auedwod<d> «

<d/>500z (o) 3ubraddop :3ubTakdop<d> «

<d/> x

570007TE 07 ATOWSW IO JUNOWE WNWTXEW Y3 93TIMISAC 07 ST STUL x

Tox3juopasegeieq HI=9ZTSAIOWSWIODITAXEW: XX~ eAR[

IPUBUWOD STY3 23N03X2 pue AI0302ITP sseTO 2yl 03 ob 03 pasu noA wexbord syj uni oJ x
*s309(qo uotrjoesuerl pue jJuTodyosyo ‘gg seo3es1)d :uotidraossg<d>

<d/>SWEa :2T3TI<d> «

x

wx/

!yraxa3 eael jzodut

fyrT1Tan eael 3zodwt

fyroT eael 3z0dwt
!soT379dozg TTAn AR 3xOdWIT|
fureaxjgindureTTi o1 eael 3xodut
fytSTTIN WNTPeTA wod 3xoduTt

1l xipuaddy - ¢ jo | abed

S0°S0'vZ :9jep asea|ay
eAel'josjuopasegejeq

}

(jJusas joysdeugabesnnd)d uoTieWIOIUTWSISAS Teuty)jdeoor proa oTTqnd
/x
joysdeugabesnngd Iusad weredy x
I9u9]sTTIULAEbeST "peaIyLebesnndDd Aq paxTnbax uoTioung

wx/

{

!(()sbessspisb xa)urautad-yno walsis
}
(¥ uotr3deoxy) yojzed
{
! (4 poysTuTI wexboid,)ebessanboT " [qorabboT
#()essoro-d
{()@soTo T893 TIM
£ (BWTLUMMTRI0 + ,3\. + () [RAISUIEOUSPTIUODSIBTNOTED
+ (() 723unopMOD186 TebrUBKISIING / ()BwTi3sb-IobruBNILIING)
+ wI\u + (00T / (F23Un0ONdD / 3ITNSSMUNLD))
+ w3\u + (I23Unopjutodyoaud - LqozuTodyoayo
/ 3tnsayiutodyosud - fqoruTodyoayo)
+ w3\u + () I23UnopmoD3ILb T9bRPURHISIING
+ w3\ + I93UNnodIUTOA®OBYD [qOIUTOANOYD + I\
+ ((arnsey3usarrd) / (((.PE2IYLuoTIOesURILISdSUOTIRIad0I0IaqUNy,,
)A3zadoagasb serjaedoad) juresaed a1ebajus *buer ‘eael
» ((uspesayruotioesuerrjorsqunu,)Ajzsdorgisb serzzedord
)juresaied* 1sbajur ‘bueT *eael))
+ wI\u + g¥ezrs3uswbes)utiutad-d
Slal\a +ou%
+ (F93Unopndd / ITNSSYAdD) + o I\3I\:9besn ndo sbersay,)SITIM ISITIM
S (wt\n
4 .SPUODSSTITTW , + (I93Uncdarutodyosyd:LqoIuTodyosys
/ 3Tnsagautodyosyd - Lgojurodyosyo)
+ w 2\:2WT2 JuTodx0°yd °bPIBAY,)SITIM ISITIM
LU\
+ (()z93unopMOD3Ieb TebRUBKISIING / ()owTL3eb IebrUuBNISIING)

2WTY MOD 9beIoay,)d3TIM ISFTIM
£ (WU\u + ()I23UnopmMoD3Ieb-iebeueyIaiing

+ w 2\2\:92TIMUOAdOD JO IOQUINN,)DITIM'IDITIM
f(uUu\, + I23unopijutodyosyd-Lqojurodyosyo

+ w 3\3\:s3uTOd¥OSYD JO ISQUNN,)SITIM ISFTIM

EATEAY

+ ((arnsey3usrrd) / (((.PESIYLuUcTIOBSURILISdSUOTIRISd0I0ISqUNL,,

) A1x8doagieb serjaedoxd)juresaed xabajur bueT *ear[

» ((uspesayguoTrioesuergyoraqunu,)Aizsdordisb serizadord
)jureszed-zebequr *bueT *eael))
4w I\2\I\I\:5dL,) 9ITIN TSITIM
f(4U\, + ,SPUODSSTITTW ,
+ SWTIUNWTE203 + , 3\3\3\:posn wezboxd oUL,)oITIM I9ITIM
() TowTpUS * TOWT]
£(au\

R R R R R LR TR R R T Ty

SUTIUNYTeIO0}

wxxxxxxwxwxrxwxExwxExrxexexex oo xU\SITASTIU\U\, +

((.Pe®IyLUOTIORSURILISgSuoTIRIadoT0Iaqunu,) A31edo1d1eb saT310dord) Jurasted

z9b9quT - buet-eael
3\23\:pe2ay3z 1ad suotrieaadp,)o3TIM ID23TIM

Slut\a

+ ((uSpe@1yruoTioesueiljoraqunu,)Ajzadorgisb serizedord)juresied

*19bojurl *buet eael
4 u 3\3\:SpesIY] SNOSURITNUTS,)SFTIM" IDITIM

EAA

+ wSIAQOTTH o + E¥SZTSIUBWHSS + , I\I\I\:92Ts Juswbss,)S3TIm" I93TIM
EEA
+ w23AQOTTH ., + ((.8¥92T5€d,)A3x9doadash serizedod

)2ureszed-zoba7ur - bueT *eaBl
+ w 3\2\13\:92Ts aseqeieq,
FoaUN\svsvrerererrevrvrrererererrxrrxrrrrrryrexrryx H\NOTLVWHOANT FSYEYLIVAU\w
)®3TIM" T2 TIM
STTJ 2TNSaI 03 UOTIRWIOIUT SSITIM//

f(uSTP 03 but3Tam burirelg,)ebessewbot-LqorebbOT
‘enay = jurzgdols
£ ()utol-Lgojurodyosyo
¢()e3eutwaal - [qojuTodyoeyd
f()utol-[qoroTT0I3UOQUOTIORSURIY
{()3xeas - Lfgojurodyosyo
{()33e3s* [QOISTTOIIUODQUOTIOPSUPIY
! ()3xe3s-103TUOW
! (Tox3uopesegeleq) IsusisTTiusaAgabesnppe * 103 TUOW

¢ ()peoryrebesnpesiyrndo1sb
-pesIyrebesnndd — IolTuow pesryrebesnndd TeUTIF
sebesn ndD 8yl SIOITUOW YOTUMm PESIY] MBU © 2INISXF//

() IBWTLIIRIS " TWTY
{() ToWTIE3ROID " TOWTT

£() TDWTLSOUTH Mou
pesIyl ISWT3 B S83881D//

IBWTY ISWTLSSUTH

{()butils MU = nO HUTIIS
£((STTAITNSDI) T9ITAMSTTA MOU) I93TAMPOISIING MOU = I93TIM I9]TIMPSISIIng

{ (wes1153N0) WesII§IUTId MOU = d

{(enx3 ‘,1X] [2OXEIOIPSIBUIOISITNSSY/BOT/ ",) Wes1353ndINOST T MOU = WesI1§INo
f(ys87°

+ (®31BgsSTUl)jPWIOT JewIOISICP + ,/DOT/",)STTA MOU = BTTIITNSST BTTI

f()e3eQ MOU = 23BQSTU} e3eq

¢ (WAKAK-FH-PP-SS-uu-Uy,,) 32ur03532qoTdUTS MOU = JPWI0ISILD JEUIOISIEA
¢ (gyezTsIUsUWbES) bUTI3503 *T0b03uT ~bueT “earl = swendwsy BUTIIS

{() Toz3UODSSEgRIRQ MBU = TOIJUODSSEgRlE] [0I1U0DSSEdRIERd
s3108[go TozjuoDesegeleq oyl 9zTTeTITUI//

:d wes13gauTIg

1l xtpuaddy - ¢ jo z abed

S0°S0'vZ :9jep asea|ay
eAel'josjuopasegejeq

{qndano uanzsx
! (TRATIDQUISOUSPTIUOD+SdAL) 442\ u+ (TRATDIUISOUSDTIUOD-SAL) +, 3\ w=+210d3N0

¢ ((spesaygunu) 27bS *YEH /UOTIBTABAPIS) xG9 * [=TPATSIUISOUSPTIUOD

£ (U0T3eTASAPIS) 33bS " YIB=UOTIRTABAPIS

f((T-speaayunu) yx spearyrunu) / ((seysdl «soysdy) - (zsoysd]l ,SpeaIyLunu)) =uoT3eTAS(IPIS
{0*0=TRAISIUISOUSPTIUOD

10 0=UOT3IRTABQP3IS

sdL//

{TeAISJUISOUSPTIUOD +,3\ ,=+3nd3ino
£ ((()a23unopMoDI8h " TebPURKISTING) 3IDS *YIBN /UOTIRTASOPIS) xG9 " [=TRAISIUISOUSPTIUOD

£(((T-() 222Un0OMODI®6 TebPUBKISIING) » () ISIUNOOMODIS " TebrURHISTING)
/ ((S24M0OD (S8YMOD) - (7S8YMOD y () TSIUNODMODISH * TebruryIaIIng))) 32bs *Y1BH=UOTIBTASIPIS
£0°0=TBAIS1UISDUSPTIUOD
{0 (0=U0T3BTABQPIS
Mod//

{TPAIS3UTSOUSPTIUOD +,3\,=+3nd3ino
¢ ((x23unopjuTodyoeud * Lq03uTod}¥00yD) 3IbS *YIBH /UOTIRTASAPAS) ¥G9 ' T=TRATSIUISOUSPTIUOD

£ (((T-793unod3jutod}oayd £qoIUTodyoayD) £
I93unopjutodyoayd - LqoauTodyoayo) / ((sey3urodyoayo xsayjurodyoayo)
- (zsay3urodyoeyd xI93unod3uTod®0ayD * [qoIUuTOod¥08yD))) 32bSs " YIBN=UOTIRTASIPIS
jutodyosyd//

10" 0=SdLTePPTU STQnOP
£0°0=TBAI21UISOUSPTIUOD STQNOP
40 Q=UOTIETAS(OPIS STYNOP
£ ((37nsey3uaTTo) / (((LPESIUIUOTIORSURILISgSUoTIRISd0TOTSqUNY,,
) Rax8doagasb-serazedord) quresied - 1eba3us -bueT “eael,
((nSPEBOIYTUOTIORSURILIOISqUNU,,) A3xadoxdlsh ser3radoad) Juresaed - 1ebe3ur "bueT *vARL)) =5d] ®TqNOP
£ ((((.pReIyLUOTIORSURILIBgSuOTIRIad00IaquUNy,) A11ado1d186 " saT3Tadord
)3ureszed-10693uT *bueT *BABL 4
((uSPESIYLUOTIOBSURILI0ToquUNY,) A1 10d014106 *saT310d0ad) Jurested - 1eboqur -buel *eael)) =speaIyiunu BuoT

.=3nd3no Butias

}

() TPAZS3UTEOUSPTIUODSIETNOTED HuTIlS OT3e3s orTand
/x

TeAIS]UT 20USPTIUOD dY] S2IBTNOTED PouladUW STUJL
wx/

{

f3Tnsea=+zsaysdy
}
(g== Isqunu) FT SST®
{
{3TNSBI,1TNSBI=+Z58YMOD
{3 TNS8I=+594MOD
}
(z== Isqunu) T °ST®
{
f1Tnsexy31TnsaI=+zsayauTodyoayo
{1Tnsax=+soyjuTtodyooyo
}
(T==T9qunu) 3T osT®
{
f3Tnsaa=+s9ysd3
}
(0== 3qunu) T
)
(3TNS21 STQNOP ‘ISQUNU JUT) TS0XHOLITNSIYPPe pToa pezTuorydouls orTqnd
/%
oTqnop 1Tnsax wexedp i
JuT Isqunu weiedp
M
suoTaezado MOD pue SjuTOd¥0oUD ‘S3L HUTUISOUOD WOIJ SITNSSI SIOSTTOD POYILU STUL
wx/
{
{44193UN0HIUSTTD
1$9I=43[NSOYIUSTTD
{s=+3[ns91
}
(sa1 oTqnop’s buTils)si[nsayppe PToA peztuoayouks oriqnd
/%
oTgnop sa1 weaedy
butazs s weaedy
x
HUTIIS WOUWOD SUOC 03 JTNSSI ITOYJ PPe 07 SPESIy] JUSISITP oyl 107 oTqrsod 1T Soyew poylsw STUL
xx/
{
‘quens = joysdeusasid u
{
{++T93UN0DNID
£ (((qusns‘qoysdeugasad w)obesNNdISSO00IJI96 " UOTIPUIOIUTWSISAS yx 0 00T)) =+3 [NSSUNID
}
(3urzgdo3si 33 TTnu =; jousdeugasxd w) 3IT

1l xtpuaddy - ¢ jo ¢ abed

S0°S0'vZ :9jep asea|ay
eAel'josjuopasegejeq

Appendix II

Class BufferManager

java.lang.Object
L-BufferManager

public class BufferManager
extends java.lang.Object

Constructor Summary

BufferManager (int databaseSize, int segmentSize,

DBMSLogger loggerObj, DataBaseControl dbOb7j)
This is the constructor for BufferManager.

Method Summary

int

getCOWCounter ()

double

getTime ()

void

lockSegment (int segment)
This method is called from checkpoint and sets the COW lock on
the segment This lock is located in the admRow table

private
void

preformCopyOnWrite (int admRowValue)
This is the CopyOnWrite method Data is copied from the locked
segment to the segment in the freelist

void

unLockSegment (int segment)
This method is called from checkpoint and removes the COW
lock on the segment

void

writeToSegment (int segment, int position, byte value,
ClientThread CThread)

This method is called from the transaction threads.

/x
poxooTUN g 07 JusWBSS oYL UT Juswbes weredy
x
Juawbas
2yl UO XOOT MOD @Yl S92A0WSI pue JuTOd}O2Ud WoIJ PaTTed ST poylaw STYL x
xx/
{
 (enx3) MOD3SS * [JusWbaS] MOYUPE
¢ () ae3uTogiuswbasiab [Juswbes] MOYUPR=123UTOd3uaWbagpay 00T
£ (,P9Y00T ST ,+3uswbas+,uswbssg,,)sbessspbot* [goasbboT
)
(quswbas 3ut) juswbesyooT Proa OTTqnd
/x
peyo0T oq PNOYs eyl jJuswbes oyl uT Juswbes weredy
M
2Tqe] MOYWPE 82Ul UT P®IBOOT ST 00T STUL «
Juswbas BY3 UO OOT MOD SU3 S39S pue 3uTodyDeyUdo WOIJ PaTTeO ST Poylau STUL 4
wx/
{
f(uoTaTsod‘antean)93hgias- [() 793uTodluswbasyab [Juswbas] moyupe] 183 Ingijusubas
quswbss @yl uT uoTiTtsod usAaTH 03 SnTeA SPPY//

¢ (quswbas) a3 Tamuohdosurozead
)
(()moo3sb* [quswbas] moqupe) FT

£ (()obessanyab-a) sbesseRboT * [qOIaBBOT
)
(2 uortadeoxgpeidnizejul) yozed
{
f(z / (($20T x bZOT) / (°zTs3juswbas)))deaTs ‘peaIyrd
! (,butdeaTs sT , + ()oweN31sb-peaiyld)abessapbot- [gorebboT
)
K13
}
(()Asngiab- [quswbas]MOJupe) STTYM
() 931amMuoAdon swrozIad//
}
(peaayld pearyriust(d ‘enfea @3&q ‘uoritsod 3ur‘juswbas 3ut) juswbsgorslTim proa oTTqnd
/x
snTea syl 93Aq snTea weiedp
Juswbss syl uT uoriTtsod syl uT uoTiTsod wexedy x

pejepdn aq 03 juswbes syl JuT jusubes weredy i

Juswbss Ut poylsw () °3AEISS SUF BUTTTED ST POYISU SUL
psuzozaed sT 9371aMu0Adop Butwrozzad ST 3uTOdNOSUD SUI IT «

*SpesIyl UOTIDLSURI] 9Yl WOIJ POTTED ST Poylaw STUL »

{(JuswbogesI+, :IUSWHSSSDII 'POILSIO SIUSWHIS ,+S93UsWBISIOISqUNU) 9HRSSIRHOT * [qOIBBHOT
fT-qusubagesIy

! (1/CqorebboT ‘@zTgiuswbes sTYl) Juswbas Meu = [T]re3Ingiusubes

Azowsw juswbag 9913 9yl 93L00TTV//

44T

£(T) MONUDY MBU=[T]MOqupe

4(1/0qoasbboT ‘ezTSIusubasS STY3) Juswbas meu = [T]ra3Ingiusubes
}

(sejuswbasIOISqUNUST) STTYM

() TPWTLITRIS TWTT
Kzowsweseqeiep syl S83IE00TTY//

{[S93UBWHBSIOISAUNU] MOYUPY MSU=MOYUPE

[T+so3uBWbESI0TOqUNU] JUSWBSS MOU=T5IJngIUsUBSS

!{9zTgluswbes "STY3 / 92TS9seqelep’ sTY3l=sajuswbagioIaqunu

g 03 gy woig// 15Z70T«92ZTSURWDbS=0ZTSJuUsWDaS " STY3

g 03 € WolIF// !pz0T«9ZTSOSeqelep=22zTgoseqeiep STy

! (4 (19BBOTSHEA * w+22TSIUBWDSS +,, 1, +9ZTSOSRqRIEP+,) I8bRURKISTING * I0brURIaTINg,,) 9bessanboT * [qoIabboT
![goasbboT=LqoasbboT ' sTY

£() ToWTL2302I0 TBUTT

{Laogp=CLaoToa3ucpasegeleq

! () T2WTLSSYTH MOU=I3WTY

f0=T 3uT

)
(Cqogp Toxjuopesegeieq’(qorsbboT 12BH0TSHAd ‘ezTsiuswbes jur ‘szTseseqelep 3uT) zsbeueyrsiing orTTqnd
/x

19660TSHEd [qoIebboT weiedy

Juswbas yoes Jo azTs oya sjusseider rejeweired STYL JuUT szTgjuswbes weredy
sseqeqep aya JO 8zTS 8yl sjusseider rejewered STYL JuT ozTgeseqeiep weiedy
sxequtod juswbes HuTpuodseiroo Y3t poiepdn ST STQR] MOWUPE

5U3 pue pe3EoOTTE ST AZowsw SU3 9IoH -IoBBUBHISFINE I0F I03ONIISUOD SUF ST STUL «
wx/
!{[gozebbo1 19bbHOTSNAQ o3eaTad
f79WT] ILWTLSOMTH o3eatad

fmoyupe []moyuwpy e3eatad

‘1e33ngiuswbes []jusubes e3zeatad

{fqoToajuopesegeieq [orjuopssegeleq o3eatad

fouty eorqnop o3jeatad

fp=133UnoomO) IuT o3eatad

{7-—13juTOg UBWHSSPEYO0T uT e3eaTad

{juswbsgasiy jur o3eatad

{p=szTg3jusuwbas jutr °3eatad

!{p=9zTg@seqelep jut o3eatrad

‘p=sejuswbasIoraqunu 3JIUT o3eAaTId

f[]asTT®211 3uT °3eatad

}
I9beurIaIIng sserd oTTqnd|

1l xtpuaddy - g jo | abed

S0°S0'vZ :9jep asea|ay
eAel1obeuepayng

{BUT3 STY3 UIN3ax

}
()eutr3eh erqnop or1qnd
{

£I93UNoOMOD " STY3 uInlax
}
() 723unoomMod3Ieh Jut oTTand
{

! (Juswbagea1T+, 19914,) sbessapbo1 [qoasbboTt

! (() xs3uTOogluswbas1ab [y] Moyupe+, - ,+3%)sbessspbot [qoasbboT

}
(++43 {s@3UBWHRSTOIBQUNU " STYJF>Y ! 0=¥ 3JIUT) I0F
£ (,2Tqe] moyupY,) sbesseRboT - [qoiabboT

! (esTeF) ASNg19s " [SNTRAMONWPE] MOYWPE

£(, (esTe]) Asngies,) abessaRboT - [q0IabHOT

£44123UN0OMOD

z93uTod juswbasg obueyn//

foutrdwsd=+outy

! (swTdwel ‘z) TeoxgoL3Tnsayppe ' [qoToIjuc)asegeieq

£ () TBWTIpUS * IBWT 3=2wT dusy

{quaubagpayooT=3uswbagasiy

£ (()a233ngelAgysb- [qJuawbagpayooT]aayingiuswbas) 1a3ngajlgias - [Jusubagar] 1a3ingjuswbas
£(() aoqunNaeb - [quswbagpayooT] I93Inglusubas+, Pay00T-, +

() asqunN3sb* [Juswbagae] 193Fngjuswbas+, 92914,)bessspboT* [qoasbbot

! (quswbagae+, Juswbss 03 ,+3uswbsgpsydooT+, :3uswbss Ado),)sbessspboT* [qoasbboT

! (9ST®JF) MOD19S * [SNTEAMONWDE] MOYUDE

(quswbagA®) T97UTOJIUBWHSSISS * [SNTEAMOYWPE | MOYWPE

{() 797UTOgIUBWHSS 156 " [SNTRAMONUPE | MONUPE=1USUBSSPa%00T JUT

£() T2wT3TRS TAUWTT
uotaexado 21TIMUOAdOD @Yl wroIIad//
£(,9WT] U3, +I93UNOOMOD+,2Y]d I0T pPaleaTioe sT 93Tamupidod,)sbessepbot - [(qoasbboT
10 p=puridusy STqROP
fjuswbagesr=juswbasae JuUT
! (. (9n13) Asngiyes,,) ebessspboT1 - [qoasbboT
! (onx3) ASNgI9S * [ONTLAMONUPE | MOYUWPE
}
(snreamoyupe 3ut) 931 TaimupAidopurogaid proa pezTuoayouks ojeatad
/x
Jut enteamoyupe wexedp y
M
1sTTe21J 2yl uT Juswbss a8yl 03 Juswbas pPsy0OoT Y3l woxy paTdod ST eIed «
poyrew 23TIMuoAdo) oyl ST STUL «
v/
{
: (esTeF) MODFES " [JUBWHSS | MOYWPE
f(,poxyo0oTuUN ST ,+3uswbas+,juswbag,) sbessorbot [qorebboT
}
(2uswbas 3uT) JuswbasyooTUR PTOA OTTAnd

1l xtpuaddy - g jo Z abed

S0°S0'vZ :9jep asea|ay
eAel1obeuepayng

Appendix II

Class Segment

java.lang.Object
L—Segment

public class Segment
extends java.lang.Object

Constructor Summary

Segment (int segSize, DBMSLogger loggerObj, int number)
Constructor for Segment class

Method Summary

java.nio.ByteBuffer getByteBuffer ()
This method returns a segment (ByteBuffer)

int |getNumber ()

void|setByte (byte value, int position)
This methos sets a byte into the database

void|setByteBuffer (java.nio.ByteBuffer buffer)
This methos sets a value to a segment
(ByteBuffer)

!{Iaqunyiuswbss uan3zex
}
() zequny3eb 3ut oTTand
{

!(T+u :3® paddois -'sajepdn gpg @32T7dwod jou prp ‘()@3hkgles-juswbag,)sbessspboT [qoIsbbot
}
(667>T) T
{
!(enTea ‘uotitsod)ind-juswbageseqelep
}
(++T¢ ((uoT3TS0d+00G) >T) 33 (g2zTSIuswbas>T) ‘UoT3Tsod=T) 203
£0=T 3UT
)
(uot3Tsod jut‘entes 93kq)s1kgies proa orrand
/x
©3&q su3 3nd o3 =sasym 3IuT uoriTsod weiedp
sseqedep 8yl 03UT 1BS °q 01 23Aq oyl 934q enTea weiedy
sseqeaEp 8y3 03IUT 934q B S38S SOUILUW STULy
xx/
{

£(()Buta3503 " %3) UTIUTIA N0 "WOISAS
)
(¥ uoT3deoxgiuswnbIyTebaTTI) yozeo
{
! (7917nq) Ind - Juswbagaseqelep
sazejutod 23Tam / peal s3@saX poylsw sTYL//¢ () IeaT0 juswbagaseqelep STyl
)
K13

f,u=butaisdwey HuTIIS
)
(x2330q x23Ingelid) 123Ings314g1es pToa oTTqnd
/x
z8271INng91Ag I971Inq wexedy i
(1937nge14g) Juswbss ® 071 enTea B $19S SOUISW STUL «
xx/
{
{juswbageseqelep STY3 uIn3ax
}
() 2933ng934g3eb 1933nge34g oTTqnd
/%
I933ngelAg uanliaiy x
x
(7933ngo1Ag) Juswbss B SUINISI POYISW STYL x
xx/
{
¢ (,po1e00TTE AIoWwsu JO @,+@9zTSIusubas)sbesssbor [qoisbboT
: (gozTsIuswbas) 1091Tqe3P00T B ToF Fngoldg=jusubaseseqeep
Azowsw uT I®IINQ 10SITP 21BDOTTY//

{Tsqunu=z5qUNNIUSWESS STYF
1(qo012660T = [q0I2660T STYR
{9z15b9s = gozTgIuUBWHIS STYR
}
(zoqunu 3ut ‘[qorebboT 196b0TSHda ‘9zTsbas 3ut) juswbas orrgnd
/%
JuT zequnu wezedy s
a9bbo1swga [goasbboT wezaedy
Jut °9z1sbos weaedp x
x
SSeTO JuswbsS I0F I0IONIISUODy
xx/
{p=1qunNluswbss JuT
1[qozsbboT z86b60oTSHAd @3eaTad
!gezTgjusuwbas jut o3eatad
fjuswbageseqelep Ia1Ingsiig ojeatad
}
IeobeueIaIIng Spusixs// Juswbag sserd OTTqnd|

‘{19711ng93Ag-otu-eael jxodut

1l xtpuaddy - | jo | abed

S0°S0'vZ :9jep asea|ay
eAeljuswbog

Appendix II

Class AdmRow

java.lang.Object
L AdmRow

public class AdmRow
extends java.lang.Object

Constructor Summary

AdmRow (int segmentPointer)
This is the constructor

Method Summary

boolean |getBusy ()

boolean |getcow ()
This methos returns the value of the COW flag

int |getsegmentPointer ()
This method returns the segmentpointer

void|setBusy (boolean 1)

void | setcow (boolean wvalue)

This methos manipulates the COW flag

void|setsegmentPointer (int value)
This method sets the segmentpointer value

!{Asng uan3zax
}
() Asngieb uesTooq otTTqnd
{
‘1

Asng-styz
)
(1 uesTooq)Asngiss proa orTqnd
{
!{snTea=193uToglusubass
)
(enTea 3uT)I91uUTOJluUswWbES]9S PTOA pozTuoIyouks oTTqnd
/x
snTea zojuTodjuswbes juT enrea weiedy
snTea zsjutodiuswbas oyl SI9S POYISW STUL «
xx/
{

{I97UTOgIUBWESS UINFOT
}
() 79quTOogjuswbasisb Jur pezTuoayouks orTqnd
/%
a93jutodiuswbes 9yl JUT UINIDIY «
x
Tejutodijuswbas Y3l suINISI PoyIsw STUL x

xx/
{
£0=moD
osT®
{T=moD
(enTes) 3T

)
(enTes uesTooq)moolss proa oTTqnd
/%
beTI MOD 2Yy3 Jo onTea a8yl uealooq anTea weiedp s
x
beT3 MOD oy3 sojerndTuBw SOYIBW STUL x
xx/
{
{esTe3 uanjex
osT®
‘enz3 uanjex
(T== M0D)FT
)
()moo1eb uesTooq pezTuoryouks orTqnd
/x
HeTI MOD 92Uyl JO SNTeA SYL UBSTOOQ UINISDIPH
BeTI MOD SY3 IO OnTea oyl SUINISI SOYILW STUL x
xx/
{
£157UT047UBWBES=157UT04]UBWESS * STYF
1p=K31Tp
f0=payo0T
£0=Mm0D
}
(193uTOgjuUsWbas JuT) moyupy oTTqnd
/%
JUT I93uTOodijusuwbes weiedp x
x
1070NISUOD BUJ ST STUL «
xx/
‘esTeg—Asng uesTooq sjeatad
!{193uTogjusubaes jut o3eatad
{A1aTp 3uT °9jeatad
{pa300T 3uT °3eatad
{mod 3ut @3eatad
}
MOYUPY SseTo oTTqnd|

1l xtpuaddy - | jo | abed

S0°S0'vZ :9jep asea|ay
eAe*moywpy

Appendix II

Class ClientThread

java.lang.Object
L—java.lang.Thread
L clientThread
All Implemented Interfaces:
java.lang.Runnable

public class ClientThread
extends java.lang.Thread

Constructor Summary

ClientThread (DataBaseControl DataBaseControl,
BufferManager buffermanager, DBMSLogger logger,
int threadNumber, int numberOfThreads,

int segSizeKB, int numberSegments, int load,
int rounds)

This is the constructor for the Client thread.

Method Summary

void |run ()

This is the main() method of each thread.

£ (UBILEWT /2 TNSSI) S3TNSaYPPR * [qOTOTIUODSSRERIR]
{
£ ((sdoswT3/T) « (sdodwTa /1)) =+zuRIrsda
fsdpswty/T=UuRILSsd]}
!sdoawT3=+URILOWTY
{—_spunox
{0001/ (3aB3S) buTWIIPUS "y=sdodUTI

{(()butaigoa-s)uTautad-Ino ‘welsiAg
)
(2 uotadsoxypsidniisjul) yo3ed

{

£ (1)deaTs ‘proIyL
}
(0==(TT®3) $SpUnoI) FT

¢ (SPESIYLIOISQUNU/(LZ) SqB YIBN=TTEI FUT

}
K1y

we3sAs 9Yy3 UO PEOT JUSTOTIINS B 9ATH JoU PTP STY3 9snedsq PsaowsI ST uoriouny desTs ouL//

! (sTy3z ‘ [93hguotym] AeaayelAqg‘ejhgiusubagyoTym ‘JuswbagyoTym) Juswbaso a3 tam [qoasbeurwiaging

¢ (g9zT53usUBRS 4 () WOPURT *YIBH) (JUT) =23AgIUsBWHISYOTYM

¢ ((spesayrIoI2aqunu/ (T+ISqUNNPESIYL)) x (SIUBWHESTOIBQUNU) () WOPURT *YIBHN) (JUT) =juswbasyoTym

PEOT P23I03sTq//®ST®

! ((s3uswbasFoIaqunu) « () WopURT *yIEK) (IUT) =3juswbasyoTym

peoT wrojtun// (0==2dALpeoT) IT

£ (0T« (Jwopuez "yaen) (IUT) =234gudTym

£()buTwraTels y=11e1S

‘0 p=sdoawt?
}
(p<Spunox) oTTyM
sp=ueILawTy
Kexryerhq
Kexryarhq
Kexryerhq
Aexayolhq
Aeaayalhq
Aexayolhq
Aeazyeikq
Aexayolhq
Aeazyeakq

223222202245

Kexzyezhq

sseqejep oy3 03uT 3nd ST P3EP TEN3OP 3eU3 SANS oq 03 Aeize S3Aq ITNEISP T SOUTISA//

10=934g3UsWBOSUDTYM FJUT
£0=1UsWHSSUDTYM JUT
1p=23AgUoTUM FUT

‘786607 19660TSHAT

{0*0=11e3s STqnop

1p-0=uerrsdy oTqnop

{0 0=gueirsdy eTqnop

£0*0=UeILAUT] STANOP

{0 0=sdosuty STqnop

£() T2WTLRIERI0 Y

LU\ u+ () SweN3Ieb sTY3+, WoaJ sjtnsey
f(w()una* + () oweN3lob sTyl) abessapboT* [qoasbboT

=3Tnsax

)

()unz proa oTTqnd

/%

@seqejeq 8yl UO S}sSe] peldeTes wopuex wrioyaad TTTM pesaIyl 2yl 2I8H «

‘pesIyl Uyoes IO poylsuw ()uTew syl ST STUL

wx/

{
{SPUNOI=SPUNOISTYI
!peoT=2dAIpEOT " STY3
{SPeSIYLIOISqUNU=SPRSIYLI0I2qUNU " STYS
{I9qUNNPESIYI=T2qUANPESIYT " STYI
179660T=(q012660T * STYT
{Tox3juopasegeied=LqoToaj3uoDasegeied sTY3
!1sbeurwiaiing=_Lgoisbeurwiaiing sTY3l
£$3UBWHSSIBqUNU=S 3 USWHSSJOISAUNU * STYS
1 (7Z0T«aM2ZzTsHOS) =gozT5IUswWbs ' STYF

(Spunox 3uT‘peol JUT’sjuswbaSISqUNU JUT
‘gyezTshes JUT/SpPESIYLIOISqUAU JUT ‘ISQUONPRSIYL JUT
‘IsbeurwraIIng IebeuRHIS®IING‘TOIIUODSSEGRIR] TOIIUODSBSEERIR(])PRaIYLIusTT) 2TTand
/x
19660TSHEq 196607 weredy
ToxjuoDasegeieq ToIjuopasegeleq weredp
M
‘pesIyl JUSTTD Y3l I0J I03ONIISUOD 2U3 ST STUL «
xx/
{{qoTozU0DesEgRlRQ TOIjuODasegeleq o3eatad
![qoarebeuewzaging Isbeuepiaring o3eatad
!{CqoasbboT 19bboTSHdd @3eatad
! u=3Tnsa1 butils s3jeatad
{()IBWTLSOMTH MU = Y ISWTLSSYTH o3eatad
{[o1)o3kq meu=Ae1iyslAq []e3kq @jeatad
{p=adArpeo] 3uTt °3eatad
‘gezTgiuswbss jur o3eatad
fsquswbesIoTequnu Jut ezearad
fp=spesayryorsqunu 3ut ojeatad
!p=IoqunyNpesiyl 3jut °3eatad
f{p=spunor 3utr °3eatad
}
PE2IY] SPUSIX® PRSIYLIUSTTD SSerd oTiqnd
/x
SdlL 000T ATTeoTdAa ‘sysej erdra{nu wiograd ueo JUSTTD oYL
xx/

1l xtpuaddy - g jo | abed

S0°S0'vZ :9jep asea|ay
eAel"peaiy3uai|)

£ (,PRUSTUTI Sey ,+()oueN1ob'sTY3) obesseRboT " [qoIebboT
¢ (zuearsdy ‘g) TeoxzoLITNSSYPPE * [GOTOIFUODSSRgRT R
¢ (uexgsdy ‘() TeOXEOLITNSSUPPE * [GOTOIFUODSSEERIR]

11 xipuaddy - g jo g abed G0°S0°'vZ :9jep asea|ay
eAel'pealyjusii

Appendix II

Class TransactionController

java.lang.Object
L—java.lang.Thread
L TransactionController
All Implemented Interfaces:
java.lang.Runnable

public class TransactionController
extends java.lang.Thread

Constructor Summary

TransactionController (int DBSizeKB, int SegSizeKB,
int numberOfThreads,

int numberOfOperationsPerThread,

BufferManager bufferManager,

DataBaseControl dbControl, DBMSLogger loggerObij,
int load)

This is the constructor.

Method Summary

void|createThreads (int number, int numberOfRoundsPerThread,
BufferManager bufferManager)

This method creates all the threads and store the referance in the
threadArray[] The method also sets name and some referances in the
thread object

void |run ()

This is the main method for the transactioncontroller thread

£()a7e3s pesIy’
pesiy3 Su3 s3eis//

¢ (sweu) sureN3es * PRIy
|Qweu peaiyl sias//

£()buTa3503 " (T)I9H23Ul MOU =+ SweU
sweu peaiyl OTwWeulkp B s23e3I0//

¢ (PeSIYLISdSPUNOY JOISqUNU
‘adALpeoT - STY3 ‘SJuswbasI0ISqUNU ‘oz TS usubas
‘zequnu ‘T ‘ [qoxebHhoT ‘I8brURKISIING ‘OE() PRSIYLIUSTTD MOU = PESIY] PRSIYLIUSTID
{,pB2IU], = SwWeu
}
(zequnu>T) STTYM
feweu HuTIlg
0= T 3uT
(. (196RUBKI®IING *, +PEOIYLISdSPUNOYIOISQUNUL, *,+I2QUNU4,) SPROIYLSIESID,) 9bessaboT - [qoIabboT
}
(z9beuenI®IINg IobRUBHILIING ‘PROIYLISISPUNOYIOISUAU JUT ‘IDUNU JUT) SPRIIYLS3edI0 PToa oTTqnd

/%

%

309(qo 1sbeurwIIINg Y3 03 SOURISISI © ST STUL aobeuepniazing weiedy x

wrojaad pTnoys peaiyl yoes (spunolr) suoTierado Auew MOy sautjaq peaIyLiadspunoyiorsaqunu weiedpy x
pe3esid 8q 03 Spesiyl Jo Iaquny asqunu wexedy

x

<d> &

10s[qo pesayl Syjl UT SSDOULISISI SWOS PUE SWEU SI8S OSTE Poylsuw oyl x
[]Aexiypesiyl oy3j UT SOUBISFSI SYJ SI03S PUR SPESIYI SYJ TTe S8ILSID POYISW STUL xx/
{

£ (,POUSTUTI SABY SPESIYLIUSTTO TTY.)obessenboT- (qoIsbboT

{

£(()BbUTIIS02 9+ ,:ISTTOTIUODUOTIORSURIL UT uoT3deoxd,)uTautid-3no ‘wa3sis

}
(@ uoTadeoxgpaidnizejul - buet-eael)yojzed
{
{--793UN0d
°sT®
‘esTey = JuU0D
(0 == 193UN0d) 3T
f()utol* [193unoo]Aezaypeaiyl
PSYSTUTI ST PesIyl 8yl TTIun 1tem//

Ka3
}
(3u00) STTYM
PeUSTUTYJ oIe spesiyl sy3 TTe TTTIUN FTBM//
{]7-SpEaIYLJOISqUNU= ISIUNOD FUT
! (10bRUBKISIING " STY3 ‘PROIYULIDISUOTIRI2d0I0ISQUNU * STY3 ‘SPRSIYLIOISqUNU) SPRSIYLSIRDID
speaiyl ayjl T S8I3e9ID poylau STYL//
{[spes1yLIoIaqunu] pesIyLiusT[d Meu=AeIIypesaiyly

spesiyl JO I9IINg B S23B2ID//
. () UNX* I8 T0I3UOQUOTIORSURIL,) 96LSSaRO0T * [qOIB60T

}

(yunz proa otTqnd

/%

x

pesay3 ISTTOIJUOOUOTIORSURIF BY3 I0J POYISW UTBW Syl ST STUL «

xx/

{

! (4 (CgoxebboT ‘TOT3UOCDqP ‘T8bRURHISTIING / , +PRBIYLISdSUOTIRI2d0IOISqUNU+

W wtSpeSIyLIoISqunu+,, +E)921Sb9aS+,, /,,+dM9ZTSHd+,) ISTTOIJUODUOTIORSqRI],) 9bessapboT * [qoasbhoT
‘peoT=2dAIpEoT * STYF
£[qp186H60T=[q012660T - STYF
{SPeSIYLIOISqUNU=SPESIYLIOISqUNU - STYF
{pEaIYLIdsuoTIeIad0I0ISqUNU=PeSIYLIodsuoTIe1d0I0IoqUNU * STYF

{18bRURKISIING=19bRURKHISIING " STYD
{7013U0DAP=D80 " STY3

 (g¥92 15695 /a)e2TSdA) =sIuswbagI0IaqUINU * STYF
‘gyezTshag=azT51uswbas " sTY3

uot3deoxyd smoayl (peOT 3IUT‘[goisbbol I126HOTSWEQ‘ToI3UCOGP TOoXjuoDasegeied
‘19beuepiaiing asbeuepiazing ‘peaaylrisdsuorieradoioidqunu JUT

‘spesiyrJorsqunNu JUT ‘g¥ezT5HSS JUT ‘EY¥SZTSEA JUT) ISTT0IIUOQUOTIOeSURI] oTTqRd

/%

x

uot3deoxd SMOIYIP

a9bboTswEa [qoasbboT weaedy

Toxjuopasegeieq ToIjuodqp wexedy

x

zebeueNIe3Ing IobeueasIzng wexedy

swrozzad prnoys pesyl yoes suotierado Auew Moy pearyLIagsuoTiezadozorequnu weiedy
1Iels TTRYUS oM peaiyl Auew MOH speaIyryoraqunu weiedy

gy uT juswbas yoes Jo SZTS oYL guezTshas weiedy

gy UT ©seqelep ayl JO 9zIs oYL gyezTsdq wexedp

M

<d> &

UOTJRWIOJUT SWOS 3INO S9ITAM 3T 2I0J9Q PIYSTUTUJ SARY SPESIUI 2Yl JO TTe TTTIUN SITeMm poulaw oyl «
‘pe@3aels ST peaiyl yoes uayil ‘Aeraypesiyl 9yl UT PaI03s T YDTM SPeaIY] [RIDADS 4

$9329I0 PoyldW SYL ° () UTBW WOIF PSTTEO ST I03ONIISUOD STYJL *IOJONIFSUOD SY3 ST STUL xx/

![]AexaypesIyl pesIyLiusTTd
‘{p=odAgpeoT 3ut °3eatad
{sjuswbasIoTBqUNU JuT o3eaTad
fszT57uswbes uT eyearad
{[qoasbbo1 zsbboTSHA @3eaTad
{0ga Toxjuopasegeleq o3eatad
!1ebrurKIaIINg IsbeurIaIIng 93eATId
!pesiyrisgsuotieiadooIsqunu 3ut o3eatad
!enx3= 1uU0D uearooq a3eatad
!{spesaryrIoIiaqunu 3jut o3eatad

}

PE2IUI SPUSIXS ISTT0IFUODUOTIOBSURI] Sseld OTTand

1l xtpuaddy - g jo | abed

S0°S0'vZ :9jep asea|ay
eAel-Jajjol3uoyuooBSURL |

!(,Pe®3Ie3S USeq °ARY SPEeIY]I TTV.)obessenborl’ [qorsbhoT
{

L44T

‘pearya=[T]Aerrypesiyl

[1Aexiypesiy3 ay3 03 peppe ST PesIyl auL//

1l xtpuaddy - g jo Z abed G0°G0'pT :9ep ases|day
eAe[-1a]joJjuopuoljoesuel |

Appendix II

Class Checkpoint

java.lang.Object
L—java.lang.Thread
L—Checkpoint
All Implemented Interfaces:
java.lang.Runnable

public class Checkpoint
extends java.lang.Thread

Constructor Summary

Checkpoint (BufferManager bufferManagerObj,
java.util.Properties properties,

DBMSLogger loggerObj, int segSize, int DBSize,
DataBaseControl dbObj)

Saves objects that will be used during a checkpoint.

Method Summary

void|run ()

This is the start() method for Checkpoint The chekcpoint "transfer"
one segment at the time until all the segments are "transfered"

void | terminate ()
Terminates the checkpoint thread.

void|writeSegment (int position)

This method is taking care of the simulation of RDMA The method
simulates the transfer of segments from this computer direct into the
memory of another computer with the help of RDMA

! (T) 3uswbagelTImM

}

(++T {s3uswbesyorsquau > T {0 = T IUT) IOF
£ () IWTLITRIS " I

}
(3uod) STTYM
! (4 ()unz-jutodyoay),) obessapboT [gorsbboT
10 0=2uTdus] °Tqnop
)
()unz proa orTTqnd
/x
wp®I9Isuerl, arxe sjuswbss syl [Te [TIUN BWTI 8yl e Juswbss auo ,I2Isuerl, 3uTodoyayo oYL
JutodyoeyDd I03 poylsuw ()3IAeIS BYI ST STUL «
xx/
{

¢ (uoT3TS0d) FUBWBESHOOTUN - [qOTSHEUBHISIFNG

£ (()obesse3ob Xo+ ,, 1NOWNH.) UTIUTIA 200 *we3sAs

}
(x2 uoT3jdeoxygpeidniiajul) yojzed
{

f()utolot

‘pus 03 pesIyl I03 ITeyM//

f()3ae3s 0T
peeIyl Bu3l 3IeIS//

! (@2zT51uswbas *STY3) 23 TIM OT
WOII 93TIM 03 SISyM SUTISd//

! (,SPUODSSTTTITW ,+b+, @Y1 TITM ¥WA¥,)obessspboT- (qorebboT

() YWaY MeuU = OT"STY3
(0 == (.,¥WQ¥.)oreiedwoo adA1oT)3IT
}
Kx3
£(0°000T«((0°%20Tx0"720T) /8¥92TSIUsWHSS * STY3 (STQNOP)) +G () =b @Tqnop
¢ (uotatsod) JuswbagyooT ' [goasbeueiszIng
,+U0T3TS0d+,) JuswbagalTam JuTodyoay),) 9bessopbo1 * [qoasbboT

)

(uotiTsod 3uT)uswbegsliTim proa oTTqnd

/x

*passadoad oq TTTM 3Byl Juswbas syl JO SsaIppy IuT uotitsod weredpy

wHad Jo drey eya yiTm reindwoo Isyjoue

Jo Azowsw suy3 03UT 309ITp 193ndWOD STYI WOIJ SIUBWHSS JO I9JSULI] YT SSIBTOWTS POYISW UL
VWA JO UOTABTNWTS 89Ul JO 9180 BUTHE] ST POYISW STUL x

xx/

£ ((udoaT53uTody 00U,) A115do14306 soT1a8doad) buoTasied - buoT -buel ‘eael= desTg3uTodyooUd STy
£ (,5d£301,) Aa319do1d106 sat10dord = odALoT STY3

{[qorsbruEKIaIIng = (qOISHEUBKISIING STYS

() TBWTL230DI0 IBUTLY

! (4 (CgoxebboT ‘sarizadoxad’(qozsuTy ‘Isbeurwraring)jutodyoayd-jurtodyoau),)obessspboT - (qoishbboT sTys
![goaebboT=LqoaebboT ' sSTY3

! (sz15bos/2215d0) =sauswbagyorsqunu - STY3

£[qogp="LqoTo13U0DasRgRIRq

!{9z15bos=gyezTSIuswWbas ‘ STY

(fqoap ToxjuODSSEdRIeq‘92TSHA IUT
‘azTghes qut’(qorshboT 19660TSHad ‘seTazedoxd ssrazedord ‘[qorsbeuenisgyng zsbeueyIsiing)utodyosyy orrTqnd
/x
BuThbboT 103 308(qo oyl 19660TsHEd [qorebbor weiedy
o711 saryzedozd sya I0J ISTpuey Syl SPTOH SeTazedoig serazedord weiedy
oseqeiep oy3 SpToH Isbeueyisring [qorsbeueisgzng weredy
-juTodyosyo B HuTInp pasn aq TTTM 10yl s109(qo Senes
xx/
/enI3=3U00 uESTOOq
fp=x93unopjutodyoay) 3ut oTTqnd
{0=93e3s 3JuT oTTqnd
20" 0=3Tnsay3uTod}02yD STqnop oTTand
fuuw=1Tnsoydy butils orrqnd
foT a87TO13U0DOI °3eatad
‘[qoasbruepaazing isbeueprsing o3eatad
LW YHAd, = 2dAroT butais ezeatad
sw Q0T 3TneIaq// ‘p=dssTsijuTodxosyo buor e3zeatad
f()IBWTLSSYTH MOU = IBWTLY JISWTLSSYTH o3eatad
{[qoToxjucpesegeleq Torjuo)ssegeleq egeatad
1(qozsbboT z86bH0TSHAd @3eaTad
!sjuswbagIorsqunu 3ut a3eatad
‘gyszTgijusubas jut @3eatad

}
peaIy], SPuS3lX® JUTOd}09y) SseTd OTTqnd|
/%

0°T UOTSI®AD «

2TqeINQTIIIR J0U I0YIney

<d/> :Auedwod<ds

<d/>500z (2) 3ubrtaAdod :3ubTaAdop<d>

<d/>eseqelep syl Jo jutodyosyo e saxel ATiusnbexg :uoTadrrossg<d> y
<d/>sWaa :973TL<d> «

M

wx/
!sat13a9dozg - TTan eael jxodut

1l xtpuaddy - g jo | abed

S0°S0'vZ :9jep asea|ay
eAe[julodyoayn

‘esTRF=3U0D
}
()®1eUTWI=Z]) pToa OTTqnd
/x
‘peaIyy JuTOd}O8UD Y3 SOIRUTWISIL
wx/
{

£ (()butazsoa- xs)urautad-3no walsds
}
(x2 uotjdeoxygpeidnizsijul) yojzed
{
! (desTs3uTOod®02yD ' STY3)deaTs ‘praIy]
{(swTrdwey +

swTL - , + ,2UuTOd¥D3YD U3,
+ (7Zs3unopiutodsyosyd) + , Sy PLaysTuUTd,)sbessspboT - [qoasbboT
‘44+193unopauTodyoeyD
fowrrdwsy =+ 3TnsayIuUTOdYO8YD
¢ (swtrdwey T) TeOXF0LI TNSSYPPR * [qOToIIUCD2sRgRIR]
¢ () zuTIPUS - TBWTy=auT 1dwad

{

1l xtpuaddy - g jo Z abed

S0°S0'vZ :9jep asea|ay
eAe[julodyoayn

Appendix II

Class 10Controller

java.lang.Object

L—java.lang.Thread
L rocontroller
All Implemented Interfaces:
java.lang.Runnable
Direct Known Subclasses:
RDMA

public abstract class IOController
extends java.lang. Thread

Constructor Summary

IOController ()

Method Summary

abstract
void

write (double size)
Common write method for all IO simulations (network, Disk,
etc)

57Ts oTqnop)931Tim PToa joerisqe orTqnd
/x

‘pesseooxd aq TTTM 1Byl 2uswbss Jo (g uT) 92zTS Buol =zTs weiedy
(032 ‘3STQ ‘3IOMIBU) SUOTIABTNWTS OI TTe I0F POYISW SITIM UOUMOD
xx/

}
PESIY]L SPUS3IXD IS[TOIJUODOI] SSeTd 3oea3zsqe oTTqnd|

1l xtpuaddy - | jo | abed

S0°S0'vZ :9jep asea|ay
eAel"Ja]|03u0d 0|

Appendix II

Class RDMA

java.lang.Object
L—java.lang.Thread
L rocontroller
L romMA
All Implemented Interfaces:
java.lang.Runnable

public class RDMA
extends IOController

Constructor Summary

RDMA ()

Method Summary

void |run ()

Executed when thread is started.

void |write (double size)
Simulates the network transfer

f(()BuTaagol xa)urjutad-ino ‘welsig
}

(xs uotadeoxmpeidnizeul) yo3eo

{(desTseiTam sTyl// ! (K (3ur) ‘x (Buot))dears "prarysg
spuodossoueu 03 butA1dr3Tnu///000000T«A=A
‘ ®103°q Iequnu =yl buTaowsi//!x (9Tqnop) - desS231TIM STY3I=A STqNOpP
!deaTS21TIM " STY3 (JUT) =X 3JUT
}
K13
}
(yunz proa otTqnd
/%
‘pe3Ie}S ST PERIY} USYM PIINODXF x
xx/
{
£(07000T+((0°7Z0T+0"7Z0T) /92TS (STqROP)) +5°0) = dooTS83TIM STYI
)
(2z1s @Tqnop)237am proa oTTqnd
/x
‘pexzsgsueil oq TTTM 3eyl juswbes syl JO (g3 UT) o2TS buoT ozTs weiedy
19ISURI] }IOMISU SUI SSIBTOWTS
xx/
1070001 = dearse3Tam oTqnop o3eatad
}
I9TTOIJUCDOT SPUSIXD VHAM SSeTD OTTqnd|

1l xtpuaddy - | jo | abed

S0°S0'vZ :9jep asea|ay

eAel'yINGY

Appendix II

com.vladium.utils

Class CPUUsageThread

java.lang.Object

L—java.lang.Thread

L-com.vladium.utils.CPUUsageThread
All Implemented Interfaces:
java.lang.Runnable

public class CPUUsageThread
extends java.lang. Thread

Constructor

Summary

protected|CPUUsageThread (long samplingInterval)

Protected constructor used by getCPUThreadUsageThread
singleton factory method.

Method Summary

void

addUsageEventListener
(CPUUsageThread.IUsageEventListener
listener)

Adds a new CPU usage event listener.

static
CPUUsageThread

getCPUThreadUsageThread ()
Factory method for obtaining the CPU usage profiling
thread singleton.

private wvoid

notifyListeners (SystemInformation.CPUUsageSnapshot

event)
Effects the listener notification.

void

removeUsageEventListener
(CPUUsageThread.IUsageEventListener
listener)

Removes a CPU usage event listener [previously added
via addUsageEventListener].

void

run()
Records and broadcasts periodic CPU usage events.

long

setSamplingInterval (long samplingInterval)

Sets the CPU usage sampling interval.

‘uanjex
f(@+, :ebesnndd ut uotideoxd,)uriutad-ino-welsAs
)
(o uoTadeoxgpaidnizajur) yojzed
{
! (swtrdeats) dears
}
K13
sswrrdears Jo snrea 2y burisnlpe Aq 3eyy //
103 °3esusdwod 03 3uem IYBTW noA ‘ssed 8yl jou ST eyl JT ‘s()adeooe atayl //
sseooxd 03 SWT) JIOYS ® S}B] SIBUSISTT TI® IBYL saunsse sTtyl ‘A3ToTTdwrs I07 //

!TenzsjurburTdues w = surrdesTs
)
(sTy3) pezTuoIyouks
‘owtrdeaTs Buol Teutry
£ (30ysdeus) sIsus3sTIAITIOU
!() joysdeugebespndpayeu-uoTirwIoIUTWEISAS = joysdeus joysdeugebesnndd uoTlRPWIOTUTWSISAS Teurs
}
(() po3dniz®quIsT) STTYM
}
() unz proa orrqnd
/%
©IOpowW UOTJIBUTWIS] PEaIyU] 4
aTqr1dnizsluT pIepuels 8yl SMOTTO4 ‘sjusas sbesn Nd) OTpoTiad SISEOPROIQ PUB SPIOISY 4
wx/
{
{(19U91STT) SAOWSI SIBUSISTT W (TTOU =] ISUSISTT) 3IT
}
(I2Us]1STT IsuslsTTiusaxgabes)I Teut3y) IsusisTTiusadsbesnasousi PToAa pezTuoayduls otrqnd
/%
- [{12us3sTTaUsATEbRSNPPR YUTTP} ©TA poppe ATsnoTasid] IoUslSTT 1U2A® oPESN NJD B SoAOWSY
xx/
{
{(I2U93STT) PPE’SILBUSISTT W (TTAU = ISUSISTT) IT
}
(12Ue3STT I2uUe3sTTIuULAHebESN] TRUTF) I2us3lsTTijusAzebes)ppe proa pezruoaysulks oT1qnd
/%
‘pawrojiad ST }09yo ssausanbtun ON *I9U93ISTT JusA® 2besn gD MIBU © SPPY
wx/
{
!PTO uaniax

!TeazejurburTdues = TeaxsjurburTdwes w
!TeazsjurhburTdues w = pTo Buol TeurF

¢ (TeAToRUTBUTTAUES :oaT3TSOd 5q 3snu,) UoTIdeOXTIUSWNEIYTEBSTTT MOU MOIYZ
(0 => Teazsjurburrdues) 3T
}
(TeazsjurburTduwes buoT Teury) Tearsiurburiduesiss buol pezTuoayouls orrgnd
/x

-oaT3TSOd jou ST ,Teazejulbutrdwes, JT uOT3deOXEIUSWNBIYTEESTTI SMOIUID «
-Teazsjut butrdwes ey3 Jo enfea snorasid UINILSIP «

- [SpPUCOBSTTTTW UT] Teaxs3ut burrdwes meu Teazsjurburidues weredp x
N

-Teazsjut butrdwes ebesn ndd eyl SIS x

wx/

{

‘uojerburs s uanzex

¢ (TYA¥AINI ONITIWYS ITNVIZQ) Ppesiurebesnndd Meu = uojeThburs s

}

(TTu == uolaTburs s) IT
}
() peparyrebesnpeeiyrnddieb pesiyrebesnndd pezrtuoayouds or1je3s orTand
/%
*{Teazsjurburrdwesiasy YUTTH} «
eTA pe3snlpe aq Ued pue {TYAWEINI ONITIWVS ITAVAHA# AUTTP} 03 3ITneIep «
TTTM Tearejur burTduwes osoym ‘pesIyl oYyl SIONIISUOD TTRO ISITI OUL «
‘uojetTbutrs pesaayz burrriyoad sbesn ndd @y3 DUTUTEIQO I0F poylzsw AI03oed x
xx/
100G = TVAYAINI ONITIWVS ITAVAHd IUT Teutr3 or3e3s orrqnd
/%
TSw 00§ ST enfeA dY3
AT3us1an) * [SPUODSSTTTTW UT] Teaxs3uT Hburridwes elep 9yl I0J onTea ITNEISA x
wx/

20BIIS3UT pe3lsau Jo pus // {

! (qusas joysdeugsbesnndd-uoTiewrouIwelsAs) 1dedoe proa
}
IouslsTTiusagabesN] @oeFI93UT OT3e3ls otrqnd
/x
*IDUSISTT JUSAD BUJ SB 4
JT®S3T ppe 01 {I9Us1STTIUSAES6OSNPPR# YUTTP} [TBO PuUB 2D0BIISIUT STUD «
JusweTdut pTnoys sjusas abesn ngd burareosa uT pejserslUT JUSTTO AUy x
xx/
}
pesiyl, spus3xe pesiyrsbesnndd ssero otrand
/%
A0S3QNOY ITWIPBRTA ‘Z00Z (D) Ioyaned x
x
-oTduexs obESn © I0J SSETD <8POD/>UOWNII<EPOD> 835 -sioysdeys
sbesn ndo oTtpotasd butiazodsi pue HUTPIOOSI I0J IJV¥ STdWES B SMOUS SSBTO STUL x
wx/

--- -- -- -- -- -- 1/

{3sTThe1ay TTan eael jzodwt

fSTTAN UNTPeTA wWOD obeyoed)

1l xtpuaddy - g jo | abed

S0°S0'vZ :9jep asea|ay
eAel-peaiylabesnndo

sseTo jo pus // |
‘uojeTburs s pesiyrsbesnndy or3e3s ojeatad
!sI9U®3STT W /4 <IoUs1ISTTIusAFebesnI> y/ 3ISTTAeIiy Teury ozearad
aaTIEbBU-UOU :uOoT}ISSSE // !TearsjurburTduwes w Buor sjeatad

{

! (3usae) 3deooe’ ((T) 3I9b-sIvUL]STT (I8UL3STTIUSAFRDESAT))
}
(T ++ !() ®2Ts*sSILU83STT > T ‘0 = T JUT) I0F
{

£() suUOTO'SIBUSISTT W (ISTTABIIAY) = SIBUSISTT

)
(sTy3) pezTuoayouks
1SI2USISTT /y <ISUSISTTIUSAESHESNI> y/ ISTTARIIY TeUuTF
}
(qusas joysdeugsbesnndo- UOTIPWIOJUTWS]SAS TRUTF) SIous1STTAITIOU PToa o3eatad
/%
‘UOT3IEOTITIOU ISUSISTT OYI SI0SFIHT «
xx/
{
£() 3STTALIIY MSU = SIDUSISTT W
! (TeazoqurburTduwes) TearsjurburTdwegies
! (enx3) uowae(lISS
J[sw , + Teazejurburrdwes + , :Teaxajur] , + () swen3ab- () sserd3eh) swenjes

}
(TeazsjurburTdues Buo Teutry) pesiylrebesnndd peolosjoad
/%
‘peaiyl uowsep B 2q TTTM PEaIYl Pa3eaId 3yl ‘poylaw AIojoey
uolaTbuts {pesayresbesnpesryrnddieb JuTTy} AQ pPesSn I03ONIJSUOD Pa30830Id x
wx/
{

{TTnuU = uojaThUTS S
)
(ssero-pearyrebesnndd) PezZTUOIYDUAS
:[@Tge1IE1SOI JOU ©IB SpeaIyl] PISTI uolaThuTs 8yl 19s891 //

{

1l xtpuaddy - g jo Z abed

S0°S0'vZ :9jep asea|ay
eAel-peaiylabesnndo

Appendix II

Class HiResTimer

java.lang.Object

HiResTimer

class HiResTimer
extends java.lang.Object

Constructor Summary

(package
private)

HiResTimer ()

Method Summary

void

createTimer ()
This method creates a new timer

double

endTimer ()
This method stops the timer

double

endTiming (double dStart)

boolean

isHighResTimerAvailable ()

void

startTimer ()
This method starts the timer

double

startTiming ()

!pUTIP uINISIT
{(31235P) BUTWTIPUS " TOWT] = PUFP
}
() rouTipus aTqnop otTqnd
/x
dojs pue 1Ie1S U99MIDQ 20USIDIITP SYJL STQNOP UINIDIP
x
2wty ay3 sdols pouylsw STYL x
wx/
(

butwTriIeIS ISWTY = 3IRISP
}
() zewT3IE3s PToa OTTand
/x
M
ISWTY Yl SIABIS PoyIsW STUL «
xx/
{
£() TOWTISOUTH MOU = IoWTI
}
uotidedoxyg smoIyl// () IswTrolesrd proa OTTqnd
/%
x
IBWTY MBU B $9322I0 POUIAUW STUL x
xx/
{
! (,IBWTISBATY,) ATRIQTITPROT "Wwa3sAs

}

oT3E3S

{IPWT1 ISWTLSSUTH

{0 0=puEp ‘Q°0=1Ie1SP STANOP
!(21Ie3SpP OTqnop)buTwirpus STqnOp ®AaTjeu dTTqnd
butwtriIels oTqnop sat3jeu o1Tqnd
() 2TETTRAYISWTSOYUDTHST ueaTooq aaTjeu oTTqnd

}

ISWTLSOYTH SSBTD

1l xtpuaddy - | jo | abed

S0°S0'vZ :9jep asea|ay
eAel1owi] sayIH

Appendix III

Sample of result data

Appendix III

7G998T0GLZ0C 9€EFGS
PSPLBTS86855°€L09S
LETBZYLB60GT €ECSS
€TSPBEOVOFL " 082SS
€9€TVPV6PB6879€8SS
8CLLOTOBYS8 F00FS
607 T85€2LP0"9€8PS
€87569656197°2962S
8TEVPF06TPOT €9L2S
PPILETP6LEET BECTS
G8ELZSTTITIS6 " CS8ES
€C698TGHVTIL 9ELES
P0T66L1790C°9162S
TI0¥6229€96°986€S
TETOVPSTZTITL CLTTS
POLLTTE6ZSBL 8B0ECS
8PT6L6G9L6E TLSTS
9867L0¥65870°1580S
920220LE808°S0F0S
99978%299650° 6LV TS
8T6GSE€9LSTL TOPTS
G69G2289L020° %5208
€GLLETZ6LTB 62205
75200ZSPC126°02h6T
280C960TLS0"T6G8Y
€5682TLSP69°VL08Y
7Z6LS68ES69C FISLY
TI700€2666€ €078
GTZTZZZ01CS8 EVILY
9GSF09FT66T0 9TGLY
906Z8756965C°6669F
LY9LTT69TCZE GLOLY
988LEIVI9EB 6F09F
T162CVSPV9C €89GT
70092FZTOLT LGTZST
LEOY0BTILIT 8V S
€CPZLOLTOEE CSTIST
Z1EZSTP68ST 667G
LOL66F0BEFT 0T6RTY
ZVGE60TZIS6 €LY
6Z8S0L0PTIS SPPCTh
9€68G66TGFFI " BELEY
7SLETI62680°L60ETY
8SPT99LPEIS BLEET
T88EELYTTI8S LLOCY
89€C6089L0E96GEY
TEEP088T66G BETST
LLPBSSES9CT VP8IV
8L66TFGLEEL 060G
TEZHLIBOTI0 LETSS

90LYP6TTLLOL E9EBT
820%Z700290G°S€€8T
LS0T66CGBLE 9EFBT
P6rSELYTLEG6"GTI8T
ELLLETIEETLY "8TS8T
€786€£8G220L0°8068T
S6CTChPSPTICZ 26981
€TCGB8BZESTE E0THT
2966E66VELZEGLTET
96G2Z800F9€L 8906 T
9LETSB0YITSS 00261
G09ZO0PTISTITIT LIC6T
8CZB0TEZOF00"ELYET
918659682€0°28261
68LL6TEGTSI 0T86T
9T0860£87L0°€E€86T
92618596066 °89T0C
9PLYTZERSECY "2SEDT
78925¥95L80°0L20C
LT06080€0T¥8"7020C
9969G5769T8E€0°LSTOT
962L8EF0E€990°0050C
ZL6ELBZTI6IEE " 2GS0T
GS80EGTLLEGE 9T80C
P¥6988GEVSYY " 2960C
800688621026 ¥ECTT
GLE96TPEOLEB EOVTT
2L0066066TFT €09TC
222758660802 8881¢C
9266710LT8BYE " BLBTZ
LOSTET8T698Z°8702C

9L689%€966°L12CT
887008£80F8°5072¢C
£€1829L689991°069¢C
8T8ETSCLTB996652¢C
8V9L8BTZ60LOL 80TET
PSETE60CELIL 6TCET
T9C2TZEVSLY6 " FEVET
78896E€GCLO0"6TLET
86769080€0G"vE6ET
£060982L25087€007C
¥S6796€6G916°9G9€T
€2G56£8758796°87ChC
P6LPLYBTITLI9"6GEVT
€9G6870T99€88 vhEVT
Z6T860ECTLLS6 9TV C
6T8GSLETB6L CESHT
GTLSSSLTSS06°70SPT
LSL6TZ90V68 ThVFC
8CTLBTITITOL 6¥CFC

78Z16€560G0°9€18T
CTLOZTB88EOLS LOTST
96¥8E€8TFS66C°8028T
9E9V6EVCSLY " LBEBT
90GFPLEGLOTS 00€EBT
992LT100€0696°6L98T
GBOETISTIIBLI POFBT
96€LSTTELLZT SL6BT
T9L82902€7F " LVO6T
ZI7090€EPBTB 0F88T
£€69786608809°€L68T
LELEBSTCS6L67°0668T
8F0LSTOCESTY " 9FZ6T
T6GGSTE06G9°G506T
9€9€90LL9220°78G6T
G1028LV7L08°9096T
ST6PETVOCTIVS Ch66T
6PTTIT0C9PT6°G2T0C
20PFELITVIEL EVO0T
YZ9CZTGESLTLS " 8BL66T
€9€86CEL6V6T 62661
LLSEST8TOVZB8 €LZOT
928271€99912°92€0¢
890L0800€L8Y7 06502
LLO9LY90SPFF " 9€L0T
€86C8ELVENZL B00TT
CTOIVPIBILB LLITC
€LTV6€22822C 9LETT
G8VSLEBLYVO T99TT
2G6€£508€76L5°2591¢
9CT9GSSTLSSG 2281
€GGLP6TG9CL8"0661C
716180829576 8L12C
PPPS08ZLLISO PChCT
98Y20661GELS TEECT
9G8568LESYT £88CT
89T196680EVTS V662
Z60TTIPTIL8BEO 0TZET

€786€LZB08 E6FET
89TZB6TEEEE 60LET

66VEBLILTL LLLET

€060688791 ZEVET
GLZ00T88ECTIT ¥2ZO¥C
¥2Z82L6€C8T SETRT
88YE£15981200° 12ThC
PE60V69LFCIC E6TIT

PGOSLLGTTIE 60€EVT
9E€TCI06€ETEL TBTVT
8819192G¥8Y1°12CHC
CLLTOTOLOGL 0E0FT

989LEELILTISTIEOBFO O
LTEYTSELETTBILLYO O
90ZG0ETTTL66LYE970°0
€€50967LLOZLLBYYO O
TTESZ0P6CSCE00LPOT0
¥G80T6TCZL6CTVERO O
PSLPT06E8EE606570°0
G8819009680028170°0
912L96€27906112270°0
86€€£090628912T6€0°0
GZS0T9SPTZESSP8ED O
9%75T919690088€8€0°0
¥ELZ0LBI96TEEEIEN" 0
T€09L7825582FP8E0°0
T69EVTEREGESOOGED™O
86TSTCTI6LCZBELOSED O
G9TLOL6ESSTZISBEED 0
9GEZEOVPBETELTZLZEDO
TETILPTBOTYISCZED O
L9L6LYEEO0F6900€0°0
97STE0TBT68LLIN0ED O
€L68780LELSOSSEBCO 0
9PFT9L6G8BLEOTFBZO 0
Zv0TZS59666LL865920°0
GL6ZTZ00CTTIZP68520°0
7122588T1€52€€21520°0
755659€929976L5PC0°0
91€525120L20078€20°0
LLVOZ0EBEIVSEL6TZO 0
20€06€5L257029€20°0
9T9L69EILLEEEFTOZO 0
PE0LY8LT688BEFIV6TO 0
€1285689629LLZ7610°0
ZL6BVPTITLEOSBTIBIO O
€2Z9T6TIEFEYSOTLTIO O
£€8897CLP0VT8EBYITO 0
GPTGBLOLZEBYZOTITO O
7609€6900L20666710°0
€0PZLTIILYGC0687FTO0
8CET9C698TOILELETO 0
SLZTPILTLPLO9899CTI0 0
SYPILOFPEPTLLEEISTTIO O
TZL60FLLI9LTZHTTIO"O
L0ZLZETPSFOT6000T0"0
LT6280ELTTOZHS0600°0
LO8EVVPOLEOPLELOOO

8LEBILTYF6989900°0
8CE€9681896L69€20T0°0
GL8YELS0S6E86CFZ00°0
7-H2028E8S6TE6CLSL L

Z9T120G9LF9GT0E 9SG
LTZ66T08267L9S LS
TPOTIGLZLYZEOL 09
9¥866968£68680€ " 8F
70GZ06€E€CITETIT 09
LEO6TEBI9G90EVL ES
7PTLS89062€ECTL LY
€8CEPBTICLE6BT 6F
P1022€2V91S0V LT 7S
62L582698VFSTIV 0S
TLS670788TZ806 LY
G6TETOSSPSENT6 CS
7L80L0ZETOE06CL CY
8806T9G€ZLYF00°GS
€G89TCLLELLTY6 6E
L9GETLI0BGSEIL ES
S06700720€L960° TG
6GSPITSETZLLE6B 0G
9CT8LEVIOTETLLE EY
T112287%€966L0°09
SVLS6G8TLYEILTIS 8S

LZTPLOOLY66C8 LY
GTLT8Z9EB8TLISO ES
6299G9TT00L8SL 9F
90LZ67086CF0EY " CF
GISGLZSP6LBEET €Y
6L5LT56L0G5F29 " 8E
7228166LT0S9TL SGL
€780€6LL8T685G L
2¢6TL0L6YS60966°69
9L0V89ESBETLES 69
8782%8026CL9C6° 9L
L7L8SYCV6F6SELSL
TG900LCLYCTILEE ES
6L6090¥86LEIT TOT
TS9TL055805678°CTT
TO9PECSTLEOET68 TCT
TIGETLBITISP6S 0CT
ELTG6GTOL6LYS OLT
9€98E070€EFZ616 88T
906FZLFS89566587 05
2€9TS5TL8S66LS790T
6£€T9022589V7 92T
886TLO9GILISLI EET
LLO6S6E09TB6E9 06
PICVSOLYLEEDE "E6C
96€£€£028TEB09Z"T09
£€57876G8FPT950° 96T
TLTLTTOT88LO"TZCT
GL68PZCTT98Z 1199

G6TGCTIEITHFBOS9€E T
9800998€0S6L0ELE T
902Z8ZLOEBLIEE T
TST8LPILTTLIGET T
8CTTITTIETESESTE T
G00ELTOLZOB9TFTI C
286829LCVLTZY6SC T
99T0ETOBELEODOTISO"C
2998109L£6200870°C
GT9CTHTISEILOOVPLIG T
6ECLSLYTZL6T6826 T
6T96CZLSEECTOBTI6 T
¥8ET60TF6GS8TETI8 T
CIEP96€£2565€28T6° T
L099L8LIBEIPEEL T
¥6CLLZSESBTIS66CL T
G9GTETPBLLTZ600G9 T
GZ6T9G6T86L8TT6G T
LEYIEBITITE6659G T
ZZh0860TFZSEGEDNS™T
6LIEL6IE6IEEITS T
ELV9EBSTST8ISGLOY T
T6LSLYZPPSBTOY " T
92L960€2TCZP00TTE T
¥EZ6076E9F6L089C T
969¥62EE€LTZE6BTTC T
LSLTOPLB8IGCLLIT T
9r9€£9€868F6L29€T T
Z6SP80EVBLZ09L90" T
Gy0T1Z€928200€L80° 1T
LSPET86T€892856°0
2858988860892526°0
T60TLZELIYOVELLE O
CPEBETSTCEBSICER O
9TT6GTISENCHETBLL O
9LLO9TBETTIGPEBZL O
620FPSLOTBTIO9F0L 0
79€06L55€96GTTVI°0
€2SZLE9TLT8TIBES O
€2207€ECY0SETZIPS 0
TPSCYLESEPZPTO0S 0
¥28LZSZL60EE09EST O
P0CT6L6G6E6TITILIV O
CLBETZPSEBLOLBIE™O
LOTGZI9VEEBZHZEEE™ 0
P€ZLB80CTBLOSE6T O
¥9TG8E9€81899G52°0
76289LETBOGLYSBTIC O
¥52829819¢282096%1°0
STZ6GEZS65EETLEBO O

9155880580098L59°0
8TLTEESLOSELLS99°0
6TEPIOLOSLLYLLYO O
8£0G89€97978LEIS 0
LEDDOBO6G00EBESHPO ™0
TI8G9TFBEGSSEVSI ™0
222ZLTOETEISITLSY 0
LLZYTZE6TVPLCZS90
6E€9LEITYLYOTZZ69 0
PZEELEBSSLOTILLIOO
TOGEZEBTESOEBTLI O
G0ST6088597C1V89°0
6ELZLEOBEYTOV68970
7S6€2588€8VP8TLI "0
GG200%762626870L9°0
GTZES69T909T89L9 "0
70L907002T888TS9°0
GOEBOT6TLBTIOTCLY O
GLS6€997690556L9°0
PLT69€09€EVEC06G9°0
969£92V8YS8TLLSY "0
8E0ZTECYP6CCICHO0
TTEGZETLB6L9TBY9 0
7S876997€89€L6G9°0
8ZZ9LG08YLSFEZSI0
TOTLZLLESFEGIBGI 0
G8VPTEVILPSIGELES O
690€TTLIB6TSE6VES 0
876596TELTT60LZ9°0
LGZ96TFS9TI90TS9°0
72078007 TS92TTIS9°0
€L6LTBEEOVBBOLLS O
L6ZEFSILI0¥69L29°0
€6G56CT1C0T6150865°0
70978LT1ZS866%59°0
T87L08ZLEO060TTIO"0
€€9TLG98CTOLZTITO O
€ZLTO0BTTEBSTELS O
LOT6SELBLBBELIBS O
78609205T€9659LS°0
9€08S6LCLIVELIOL O
9GL666T1GEGSTOLSS 0
67098TF7LIL69GFI 0
6820C10652909819°0
LSLB6ZLSEZSLTIV690
69€£959¢822820€59°0
6LS66CLE66TTTFBSO
ECTETLIETRIC06S9°0
TPL0989LEGSTESTIO 0
SLTISSTHP006€S5S5°0

E€LLEI6BINESO 0EDT
Z16€5T1687908 89T
¥2926CE9Z8BTT ELOT
G88G8STOVZ00L FLOT
98989LC0TVIEY "PPLT
Z0GP9VESTHLOG TPLT
€918P697€09C°LZ8T
LS6PPCG0TSGZ87GZ8T
7¥82£8699€L89°€88T
800678870556Z 6FLT
7686 TESB096EE " V6LT
760CTP8ZYIPE " CSBT
66L67929LSLT0O"GLBT
TLVPCL6E8Z8P0G LT6T
98E9T996GF8E " TLET
L0G06779L1682° 1102
€909L8ETETEY6 " TI0C
P0T68EV0LZYSO"8TTITZ
9LTVEEIBBTOCE " 061C
SPLT6EZ9660LE 6LET

96210L0006€ 5502
80LPLEBTZEGBTIT €60C
SZYESYLBY V6T €8T
7052528€£05885°G72C
TETELTI0LLLE CTIET
S50810CT650E66°C0FC
T6676GLT8065°C0SC
LTSOL6IVFEBL OFST
£9€921528580°979¢
ZL60T66ETE080°V6LT
60T90€E€G9L0S"LETT
9890L%86T88ST " 1FCC
9992v6¥2ELOVO ECHT
CSSP06TTIOVZIV " LEST
SPGZTILYOCLLI6L2Z8BT
€VE€1298900589°6£8C
€9¥8ZETFETHS 600E
882999589¢20€°9bcE
766GTTISCE096 " ESHE
CETTLO9SP8IL SOLE
€72S196C899LC F9CE
CGGG0FBOLLBL EFIE
€0006908€90TT"LT6E
C6LE0BBLIILB 96ET
88T9TLLZZ60G°85CS

6ST9T0L696L°9CC9
8EZETHS0TERY " TCSL
67L6897SZ6LT 6GP0T
ZZEESSBOLTIYB FTOST
869CVIcECBT 995LT

G899
STLY
90L9
T9L9
LT99
TTLY
2099
SS9
6979
0eoL
8£69
2069
L7699
9689
67L9
20L9
L7S9
[4:14
1559
6£69
1569
2769
€TL9
SL99
¥L99
424
LOEYS
819
0v09
7885
S5z€9
L929
8709
6VLS
665G
LSZS
GE0S
6Ly
(44
14144
1607
968€
98€€
680€
1992
0o0ez
G88T
09%T

906

90§

e
143
€€
€€
[43
1€
0€
62
8¢
€
0€
62
8¢
8¢C
9z
9z
14
e
(x4
92
14
ve
(x4
144
154
0z
6T
61
8T
LT
1%4
154
61
8T
91
91
ST
i
€T
[
€T
[
11

€LLBT6CEE6LB 6FCZBT
LETLTY6TBES TCC8T
E€ISPLBSEN6EE CZEBT
LZ60VE6LYLTB TOSST
PITP679066S5 PIVBT
GPS8TZ6LZ96T0 F6L8T
61L962€0002°8LS8T
79LV000E€STLZ 68061
L8LETTBLZGBE T9T6T
LSEETLSTVLLL FS68T
7€08T7522080°LBO6T
LTEGVOEESTO VOT6T
8E9ZEITLI60L 6GE6T
9EELLOVI6SP8 8IT6T
€9L0CSVOELEE L696T
7ST00P6ETTP6 "6 TLE6T
LBOLL6YB099L"5500C
LTTE9990T69T°6€20C
290€9666116°9G10C
2809T26€90L7°1600C
G99LLETLSITT €F00T
9EV0TETITSV6 "98€E0T

780088LILC 6EF0C
968999€SEVP " €0L0T
TST8TITL6VFF " 6780C
G665€98€£2028° 1211
L6LLSVEVVF8B 06CTC
€LT269907289°68F1C
9€SF08TVPICI " PLLTIT
F6TOTY08BEIY "SILTC
£8€9789€02CZF"SE6TT
9LSZTYe6PVEY " F0TCT
96€EV0EETEBE " C62CT
€TPBZTEC60T LESTT
[AXATAYAALTRANE 44444
POTELSSETITH°5662C
9LEI6FTBOFT LOTET
GBTTELOZEGY "TCEET
LS9L6E9LLOV 909€ET
€£€852002816 " 128€C
€0CG09G5LPTIL"068ET
929L0STVLOPS FFGET

66970298£5°9€17C
LTS8LBLSLYLY " LPCVT
GZ018LETZ6CY6 " CECHT
€956T000TOTT S0€ERCT
G6LTESLGBYSO TZhPC
8€G8806568T18 €6EVT
8890%LGZTCG TEEVT
7ZvLS9806GPC 0PI C

000G
0067
008%
00LY
009%
00S¥
007
00€l
00z
00TF
000¥%
006€
008€
0oLe
009€
00s¢€
007e
00€€
00ze
00TE
000€
0062
0082
0oLz
0092
0052
00vZ
00ez
002z
00t12Z
0002
006T
0081
00LT
0091
00ST
007 T
00€T
00zt
00TT
000T
006
008
00L
009
00S
00%
00€
00z
00T

SwT3-unI Te3or

Xzepunoq "1 o xeddn

Xiepunoq ‘I D ISMOT

MOD "I "D

& T o

SwT3 MOD

sBesn nao

suty B

MoD X

sdL

sz1sbes

Appendix III

8CZ6LY6ET6T 62529
988¥PF8S991C PSTTI9

¥7L0SGELI6 GEBOY
9P0PEIIETTE " T8LES
CLSSTS0LTEV 66719
9LTILLY69T66 CLLES
96966908890°502T9

TPPI8F09T0 18619
PPGES09YLZY " 9LG6S
6L558ESPIVT 06€ETY
9TE99GTBEYIE"S058S

SZL8FTISS0°6T909
L¥002T6668L° 55685
6LVS9CL68TV 60165
7EBZO6TLSSHT €8BS6S
€ELEDOSOBTC LT8G
€EVECTB6678 €656S
¥9L9%T86%8LI CTTILS
PP6TE0T069€€E°2E029
G9GES90L8B0T 62565
GS9€L68T9€8° 07009
60ETIPSLETE 6698S

6ZTTEETVSC 7L66S
9850G7TS06L0°GLZ09
€ETLLBILITE BGBLS
TEP9T6990F T 0VL6S
8LVPESBTTIT T669S
8VG0ZL6ECSB V198G
TL6T0ETV660°CL66S
97SS68€852L"Ch88S
€9L8890TLLL L668S
€28GZ8GILGT €9€8S
9€ZLEBILIBY "9056S
LSLB6CB6EGE VTTLS
792950569L96°2Z16S
€667L88970T° 22795
888FFE85991°090LS
9962G6T1€TZ8Y "8209S
GETTZLBZLTYO 996G
92820022896°9728S
ST68P8CEESTL LVLIS
€166299769G°81€8S

2TSTILTSPY 10695
¥9970GLEOBLT BVELS
TE6FS0SVEBE 685G

20€L850G08° 91196
6C8TTZEOVOT 99196
L8TPTITC8Y88 TCSHS
LS9LE6BT6FT GZ09S
8VGEL60298L 19795
9VEBTLYLSTVT LFEBS

¥62rE68T098° TFGOT
ZLTETYTSOV6L T669T
€EEG99TZLF00"FOLIT
86E£6£655€8V0°9C2LT
6ET0SSEBSOE 68LIT
VLEG66L0E6EIZSTLT
9€6180L8028T"0CTLT
YZEVOPPPETB 0P99T
90TTISPTIOTERL CPTLT
GT980TZC96G°8799T
9LL0BSLIV6S8 GSGLT
CSLPLYPZO008°LTI8IT
8TLPPEZIBGGG " TIELT
CTL9700908T " TLCZLT
L8OTBEGVFTOT " 8VOLT
LOLZEBTISHSG0 LOVLT
96LLOETYLO9 ZETLT
8E0BLOTTI68LE ET6LT
FSPSTISE60868° FIVOT
G6TETBICBEE " ERTLT
GZL86760ET6 VEEIT
PLBLTITSLOGES 0GELT
98806€S6GEL Z6TLT
806€£52822L6G 680LT
PE0PZ990080L°L99LT
FBLILE6ISFESG BOTLT
LTG0CLZTIB6EG"LP6LT
TPEELVETZST 8THLT
L60079EV6L6 6PTLT
€0G6LS0EYZOY "LVELT
B8ETC0S6CVBZ ZBCLT
ZhZZhy06L66T F6GLT
78T90TFBEIBO " BLELT
E€GLPTISLLSLOT 9C6LT
LZETL6069CT SRELT

TEVPBPSCPIL TIT8T
9ZETTVOCYBT PC8LT
LL69E6TTIS0G €8T8T
28909896CCLG"CZEEST
GGGLLTP9CSP8 LEVLT
€VTL969C670°6CT8T
TTTZEESSLEY "FEILT
LTETSTP8TZES " TLOBT
PPIZET600T9 " F68LT
€60€67108567 96281
7¥9Cv0bCh8TE F0EBT
B8L8GS6FLGEZ 02CZ8T
7SL8S5682SVLO"GTLST
909L0ESTZTIVE "BSTZBT
€LLLITOTSLLT LET8T
L6L990L88F6L CTILLT

CL9669€L0089 FTEST
L0890T99T90°¥9L9T
BTIBEVL60ZEIL GLYIT
LLLYOZLBT68 L669T
GCCTL9€SBSTL 0969T
LLTE96ETTI86 E€C69T
TOL66LEBTZS T689T
220G8T€96509°CTP9T
9%90L8SPVLES FT6OT
TEPTIGEGSTO 02T
GZ¥L86089€99°8CELT
LOTTTITISLESSO06G9T
€ET08SZT6EVY " €80LT
€EGTELSBT6VC EVOLT
GEGTZE69GTLED"6TBIT
GL6967018568°8ECLT
9GTL0O0G86ST G069T
€GL608ZEEEET"989LT
STTEGPZ0G28T 98191
9LTF8Z06ZTG8 FTOLT
89968TLYP0S 90L9T
ZV6GTC6CTLYIG CTILT
78LET6EILBTB €969T
7LGTSZ0P8866°0989T
€6TLI9ES6E00°0FPLT
LZ096LEESET 0889T
96GZVELBTIEEB 6TLLT
2hZST1621E0E€C 06TLT
€L1988656€V9 " TZ0LT
PTLY069€7SZ8 6TTILT
79G2207Z€0CL " ESOLT
€809767660€G"G9€ELT
€LLSPSE0ZI0 0GTLT
98L9BTLTTZBES 669LT
G68LL68G6T06 9TTILT
LPP9€809€86°¥88LT
7088Z9G59T0L 96GLT
9GPFBITIC6L 9G6LT
T6LVL69T658°G0T8T
8€007CT689G5°69CLT
9581856¢8TC0°C06LT
ZLZZSBOEYBOY " LOVLT
80LSZS9TTOL8 EPBLT
8FTO0FPSESIT 999LT
866L9LLVZ8LT 69081
9LTL6LLYGTS0 9L08T
6VLETLEBIEL E66LT
L9ZEL06679979878T
€¥PZTEG2S8G670€08T
Z9TL96062TLT 6008T
7Zh95098S8L F8VLT

998FETOTISHI6F6CT 0
€LIELTT66LE6066ZT 0
CTP09TPIT6ZSITOET O
SP6£G9T1599G686F 1T 0
169L052526765CTCT 0
2S€G999CF¥L88Z9TT 0
SLYPZIZ9LEGBSSITT 0
TSG08L0L0CLZOSKTIT O
9TLOZSSZYTI6LF9G0T 0
6£95E€C0PTOLBLEITT O
EVLTT6698FL6TLEOT O
8CSSVOLLTZYETSECTT O
GOTTL98FZTIGTF920T 0
8ETTIGHTCLTIIZI0T 0
€PGSBTTISETGEOTEONT O
68096TT126L0€TZ660°0
9L97P9TSEOILESOT O
28096€ECZFSLBEIEVH0°0
898SVL6L06V6VLLE0 0
69TEBEVTERLILBO0
€GPEETSS6VESSBT60°0
€LLI0S6TZFT0S5060°0
6V0vS8ECE0PCT6980°0
8L6607L80597£8680°0
F16G8G69€EVTIFHT80°0
SL8VZTSETSS68IT60°0
TOSPIBPLSEEETTO80 0
8L2€285L2298£2980°0
79528L682087659L0°0
8¥8S5¥8018T0€628L0° 0
782220Zv97€C8YLLO"O
LL9VLESOB6TZECZLOO
7SLF96807968TS8L0°0
T8CTLTITBS6ESECOLOO
L229807GGT80LSGLO0
88LZBLTIIBEEETS690°0
G8E68FZ00C9E9TTLOO
€9GE0€ESPLEEOLTOLO" O
800FP709LG9FESFLI0°0
GZG8G9£€L0Z85G990°0
¥LL96702C885569650°0
620GL6€0089956590°0
TTE0LOLPI0TFIG8S0°0
GE0EBSTCZLOOETTOZI00
€TL6TE0CICTT69€E850°0
£00T802CZ8870CLS0°0
¥982009GT80L6FEBSO0
TOCPELSTHTTIISSPSO™0
€¥207059906705850°0
LLELBTLTOLYSZTI6R0"0
P9TE0900LTCHSPESO O

9ELLV6LEVCTERI S
T0V6666L06700L° S
¥GS¥86892G0GTH 19
82C2€087LTIF0969 6%
6570055562966 61
CTVL0LZS967ESE " GF
PLEISLYCTLYOI8IVY "8F
9CZLY9¥69L8GL0F 8BS
9260€709L560G0° LY
GT1506955L99079°09
968675.59800288° 05
6ETLBZ0EHCEEDG "6
9888E8E66L68C68°9F
60T78SLPSET699°SS
129282C159600€°9F
GTI8GTIELEOFIZEST EY
96LS6LLSTLLELTY LS
GB88LTLBEVSECOT LY

LSZTLS8YPEIBSE "I
€0LGPT9€99966C €S
16G2L8997066G5L° 19
7S9L689T8LEOSTI 6G
P9VL6LTESBLBIG ES
SVEGELBEGITEEIT 09
9TLEOVZVLEGBCOY "6F
GGT9TISHEETEIESL 09
9TLZ66TLEIFTIBOS SS
F09TTEEE9TIZ80°09
€GLS8LYBBETEBE TS
£€2997662761679°8S
LEVEVITTLIVOES LS
9LYPEGBETFOLEDG " BF
CLST66E8LGTIBYO €9
G6T06E£C06TT6TIC 1S
9E¥620260TEI0L LS

86T0SPFPELIBO ES
LLBELEGEND999G GF
860T8705689252°8S
T6SPPTOGTLLEOT 96
80600T0ST60GTL"S9
G186850€8560L0C°SS
Z8GEVOLTFTIG86 0L
GSTZI9P6ETTBO6TIY €S
L99TCGPEI68STL 6G
€L580%F9892FPT €S
G8LG9E9TSESBSS LS
SFPZT0E0E0SGS9€9 7S
§59255760896628°2S
GP89T1Z6T6€669C°8S
88LVCLILYIBYEY " FS

6998GTVLZ05097€8

GE9GBSFTIEVERBBT S
6G99L6L9T99€ELTL ¥
GTEG669C9G8LYLOT S
GGGEBEBILTOVOGS ¥
TLL9BEOTO9VPC8E ¥
€20G2TESH068079 7
7GS02SPLSTP8POL T
L6LF80Z00FSEBSL ¥
8LGLEEIBBYCYLIE ¥
6TVLGOL6EBBOSSL ¥
6CTV6L9FTVLZYBT ¥
GTESLGTE6SSOTLY ¥
80FFOVELBYSOCST ¥
78060TS0GF99LTE ¥
£€89€£C6686059€€ 7
GZ2207LZyBECSTLO ¥
G908L8GLEYOBEVGE T
9020982GTGZESCER €
LZBSLETITEGZO0E ¥
9808T19€9665050T8° €
€9LLE6LETPELOETO ¥
SP6PLSTSGELTSG8 €
P6EGBLTIETIELTSES €
79SLEIIL6I0ELYO6 €
¥ZST68PCEBZ6CLYS €
8658296907699€86° €
8G0GLTTZITBEYESEY "€
€ZC6ELLTTOZLOBZL €
€GLEELITI09LISTS €
L669CVLLOSY6TB6Y "€
8880508950998687 "¢
GTE0L06TLIETB68T €
LTT89T9670£CV667 "€
€29LTE9TPOCVETCT €
GLBZZI6ETBIEIEY "€
€G7L60600FTTES80 €
P00P06CZ9ELYIELT €
€22972v861288580°€
L6GZ0GILT6605ELE T
€00TTLLLLLETLOFT E
LOL68IESVESLETBL T
12090€£189988180° €
CEE60VLYCOTILLYVL T
186726F6599€€06°C
1250€86789L9869°C
2ZEOTLLITPOTESY T
G8ZB8S6VVP68V662L°C
9966P8LBPIE60STS T
G6GLEET669TOVTIZL T
LZTBTITO0GET868CY " C
9TELZHTOE609809°C

TELBYOTETEIBY970
T9L68€£0202507LG59°0
LSL6EGLITBI6FELI O
€6CTEIVE6TESEESI 0
C0PZT9CESISTLSGLO ™0
T200€Z6€£9€182999°0
CZIS0ETLZETESPSSG9 0
TZ1667F0080TL08B9 0
CSTTZETTIILLE96LI" O
7687C152¢8996889°0
8CLZBYVZPBISELLY O
7Z9G559SVELLESIBI O

926810268686889°0
89GVT9686L8E9LI 0
L8TFOSLPEO9CTILY O
TLEGBTIECHOLLELY™O
LS6GETBSTTSP6LI"0
9G8EG60GELGG9699°0
7L609LTECOVISTLI O
961€869667061599°0
96€2986985987LLI 0
67C5CS8ZV0SECOLY 0
8G€6LL2920¥70559°0
86L98LTBTICETLSSY 0
LYZOEEV6EEEEFERI O
S§10960895868099°0
T90T099€¥8F90LPO°0
2LB9L8B96669T90L9°0
T98E9EEVELYOFOLI O

G6529€6978TELY "0
728868067 TZEEV8I "0
8GEG6ELEEITSICBI 0
2880EYEVLO0P8TLI O
28998FPSBECSTILY O
8G6LY8TTFEBE6SLBI O
676862TE0E8LEOLI "0
68086TFLLZEEPSBI 0
6G880G59FET6LT89 0
LZ6TBTOET680LEIS O
7918266GTCTISTI8LY 0
TET68FBTICLIVCFI9°0
9291Z62T0LZTEILY 0
€PP08S6ELTPEETED "0
LT676GB9GESHESSI O
E€THIT8EV6BET6LTI 0
G2C9S80L96T612F9°0
VLEZLZTBZZTIL86Y9 0
PTIETSZBIVLIGERPO O
ZEG8688BEV6LITVSI ™0
792€8T662SVTSLSGI 0
TEPPTLOSBLPCFSSO 0

GZZ69T0C0ETPY " 0CHT
€97L0699T9LET T6ET
Z8T99LTE60TLB LPFT
FLGYB6VZEEBTE " CTHT
€06EELOPEGOOL 6CHT
€VEBZSERGCGIG TR
88LT6G0TEVLES ISHT
GZGL6986EESTO"80FT
8T08ET69G18G8 F8ET
TLOTLLTILOEO6 09FT
FEEIF0698SEE 92T
9S9P6VEVCITES "LLYT
CGPT12GZ80CLT LERT
LT6EOVTOBILCT LLYT
CZT6LFS0L669 CSPT
2€21961588258°65HT
8T08£0606C9GF"LZST
729855667 168E°Z0ST
6€TCOLTOP6ST CHIT
GTEQ0ELOLSLLE EBET
FPCLPB08BLSCT 62T
STZIVELTTZVBTL 99FT
€%9G929L8L8SY " LZHT
986L6T6LBELES 69T
8LVLBZL6LTTO 9FFT
82092T169T08BEE " TEST
LT8EOV6PBOTHZ 66FT
99G5508€8L0ES CHST
60V9LF6VOLEE LTPT
78609GT8Y6EGS 0LV T
G8Z8GTZ8LO68E PLYT
89E€LLBIECETLZY"8GHT
SpZSPrEC0662°G2ST
LLTE6VLB6SVB86 " GPST
GG6YEVTEEC08T GGGT
69€6T€90L6T165°99ST
TTIZLT90TS06F " ¥8ST
¢r95026TS0EE LYOT
GOPETSZE666GG 9€E9T
8LLYEFTIESSI "ELST
668VEBVESETCT"EEST
L6TVEBYPECE9C 69T
7685L8709260T°08ST
LLLTZEZSLOTSL LEST
8G0SBESICLELT FEIT
6C9LSVPPP0C88 67T
LEETYBG90C9€ER " TOLT
£€68L67F990F0C €0LT
€560GFT60LLEC OGLT
P087L616270C6 LIGT
P9€0GE9TZ0CEE 999T

14144
LOEY
(444
Teey
TLED
0€EY
14034
L9SY
GLST
LobY
607
TGS
89G¥
06vF
TLOY
€19%
LEST
6LYT
[44%)
Te18
091§
LL6Y
2815
0STS
GI1S
6L0S
5006
5805
085S
6LYS
€965
06SS
€875
SLES
186S
S8€S
687G
2825
TEES
2265
0265
168S
856G
vZ6s
2165
7E6S
G886
9686
626G
8899
G099

144
142
[44
[44
1374
[44
(44
144
€7
(44
184
184
184
0%
184
0%
6€
8¢
134
€%
(44
0¥
[44
184
(04
6€
8€
8¢
(44
(04
0p
(04
6€
LE
8¢
9€
9€
143
e
LE
LE
9¢€
9€
GE
143
e
€€
[43
(43
9€
S€E

GOETZSTIETOLZ " BZHIT
L9GVLIST8TY "8L8IT
9LSP0LS96€E88768G9T
78GE66€ET90L6 " TTTLT
80€98GP¥8SP0"GLO9T
E€LSETBEZZOTE " BEOLT
E€LV6ESTIGTISE 900LT
€TP90¥0L60L792G59T
9L8099€L2079°820LT
£20S€8L090€"PESOT

TP8ZVLSTOC ChPLT
£€676L666LC6°E0LIT
GZhZovL8866F L6TLT
928660€68V T LSTLT
T89GTE0E698 EE69T
P8F9TT99LLE6 "CSELT
9LPLS9€9€88°8TOLT
G68E6ECZTI06 66LLT
782786L620%S 00€9T
29080Z6LLY60°6CTLT

LL69068ZEL"0Z89T
806TLTC066PS 9€ECLT
€2€9T68GELLT BLOLT
¥LZSZTPE086C SL69T
?T1902T086GS8 EGSLT
LZ0999€5679€ 76691
9GSTE000G988 EEBLT
LZEVTBEZTTIVZ " FOELT
LSEVTIB69TIB SETLT
TIZHLEEBETI " EECLT
LyZT560€200°89TLT
Z9TP69C6€G98 6LYLT
LS6T8L60CYLO FICLT
LLOSEC06CL8 CTI8LT
€8SGPEVEFFTO TECLT
G8LEGITEGBPE " 866LT
€0TL86Z6CHY OTLLT
G9TL090L88FT 0LOBT
96CF0EEELSTZ 6TCZ8T
96L80LLLOTOL E€8ELT
Zh992967SGES GTO8T
69980266256 02GLT
€IS8EE0GTIS8 LG6LT
9FT99CCZLLBE 08LLT
GPS0€9720L88°28181
966165670617 0618T
FETB6EECEIBE6°90T8T
TLSP86GL69870098T
2091ZVECEIY " FFIBT
89FLITSOVFCC €CT8T
CSGT8ELED6L B6SLT

00TO0T
0000T
0066
0086
00L6
0096
0056
0076
00€6
0026
0016
0006
0068
0088
00L8
0098
0058
00%8
00€s
00z8
0018
0008
006L
008L
00LL
009L
00SL
007L
0oeL
oozL
00TL
000L
0069
0089
00L9
0099
0059
0079
00€9
0029
0019
0009
0065
008G
00LS
009S
00S8S
007S
00€s
00zs
00TS

Appendix III

GEGLTIZTLOVB8 FOPFO
€0L6LS08E0L"T6E09
YEZPIG0CFFIE 09729
6TZLETLLTITE ETSEY
G6ELEBBOHLIV BLEGS
GOTTLLITHLE L6GEY
TLLOV08PZCT TEDTY
880TTTLIVOT 96LEY
T11968L69028° TZET9
£€57866825C6°€0529
LY668VETEGL " LBTTY
SLP6VELBIVS CTS09
€0LT9089%78°6L229
PESPESLLYZOL LBT6S
996F7SEV6S66F E€0929
TZE98YTETLL TG66S
STOPTICZIOTh "T8ERY
9¥6T1T0920T9 195€9
LTL89BELT LEVEY
GLSBGLILLSEG EETEY
L9E0ZTEYLT0 8LBTY
87SGLY80C6°9CTFY
GZ19TLZLOKZ8 TZLOY
TTL60LLI09T THSEY
9€8G9GG9LECT00TTY
Z8T08G9VL6L TEITY
G9P12STTLTS ESPLY
7606876L0LT 85L29
LESPEPT09GE"608E9
996VEVPP89TC G5V 09
SZG8TLLTZSI8E0TIV9
L8698689E€8C 26565
PZILS6E08SL6 91529
L0T966C2CET9°60729
TELEVO0BTEY " €5809
CEEVLTTELTY 95ST9
980LEIFS088 CLI6S
76G99€TSCIV " 686€9
L8G98FT00F9 L9609
GS0PSP9ELZLL TOCZEY
PTISSP996€GZ6°LEETY
96¥FZLSTPTITT 02719
2762L9288672°9%L09
70T06F0T807C L9709
FYZELITSCHI " Ch629
906€Z8TS0CLE 0CERS
68T0G6E8TLO CLYTY
69LTFB8996LC €BV6S
GP8G0VO0F9EZS FLBTO
€16121680L0° 06819
9697SP6FEBETLTIOTY

T0E6CESE00CT LYO9T
70020€9T199°09891
PPLI7GZSE00"9LKIT
798012T8E87 709291
Z88F6C0TOV0 LEOLT

661889€FF899 " FT1I9T

GE€Z959591€SZ 78591

LELTZBYT6ECLT LB6ST

F070ST8E6CET GEIOT

CEET6LLBO80OL S0E9T

LZ9%88STG62G° 02591

9TE0€9L088VL " 88LIT

GZ6ECCTTI60LT ZEEIT

€00C0707P2S0°9C2LT

286879F88€80°88291
2E8V0OEE6IFT LSTLT

PECSPTLEOLLY "9T6ST

L9EGEYG9C8BZ " 8ETIT

8TE9VIVEPBSS GPTIOT

€9PE68EETLGGESTIT

GOETTS6TIS90€°0299T

G0LTZ6SV8LEY "866GT

ZITS6EEBEELB GG8IT

2099980£02LE"SOTIT

79820CVLELTL ZTLIT

LSSPSPZr9768°0959T

L96PSPBTO0PY " TESOT
6LT0GTESO8T 22ZF9T

LSLTI8TOLTEE FSO9T

€6€89L069659 11691
9Z9VELOVLE6T 9G8ST

€ZGG7906T800°0L0LT

FEEEELTTIBLLG " 9THIT

CLILVEBTELEE LBYIT

P¥GZS1627028°69L9T

LEGS66SL0EIT ZEI9T

8EGTFPI09T6T GLZLT

9659¥8221590°L009T
99LT8F68E£69 €S69T

G99€G686LLLE THEIT

76€S00F906F70°6L99T
L¥%Z€090996 06991

LECTOEIVELIPT "TCLIT

89972L85608T°69891

ZEGLYPTGESB0G 9TEIT

7G8YPPOEVFTL ZBELT
10886128TFZ"99L9T
9889LS€0ZVF 08CLT

€GLZ789GT0ECS " TPSOT
9C0TELLTIBTICB LCSIT

PL66GEL00CPE EBLIT

6LL1L8E66V800°8T8ST
9TE0T9T68LLT TEIIT
62GT09L96T0G LFZOT
69869L1556C T€09T
€CE68LLO09EGL LOBIT
F6ETELBBOEES GBBGT
9G85L9LP8T6T 9GE9T
98ZES6CBILL BILST
61€0879TH26°G0F9T
GELILOTHPIP 9L09T
£7126898%C 16291
Z9€8S6ECTIETV"6G6G9T
86CT0€6G5220°€0T9T
LIEVPSB60EE6 96691
9Z9Z6LTEOV6L 8S09T
L1L819502092¢C" 82691
T6T96TFZEED " 869ST
125891662815°606GT
7099LTLI0TES " 9T6ST
Z¥888Z1¥8898 FZ6GT
BELEIVEOETBE T6E9T
GZGBLSZT0C9C 69LST
9G9GLL8GCHIL 9299T
Z8T808T8TFZ 9LBST
9GZTPS0LEOGL €679
G968ZTLSG88YL TEEIT
LTEEL6TIVOTY " C0EST
€GT8ZV8YTEI6 E6TIT
L6PTSLTEILE GTBST
60L6871762€°€8991
6€6TPL0B6E0E"LTIST
C09EELVP6EBT CFBIT
GTGB80L8TSSTS 881I9T
2€088E8EBT66°85C9T

P96TLBTLIY " THGSOT
T8G€CPT9228°€0P9T
9G9L€8998%67 " LFOLT
680€7C669F TV 6LLST
TOPSBLEVCEL PTLOT
162288€9T18E"E€TI9T
LBEGGLIIBEC 0GPIT
70068Z6€LYLO Z9F9T
€G7T19560€00C°€679T
98TLSZPSPBGC 0F99T
9TTIPEIFSETZL LBOIT
LEOOSTYCTIPPT GSTILT
€8TESTGHGTLT LESIT

LTPELLIBE TSOLT
TT68TTLOFSTE ETEDT
8E08ZTLIE068°86C9T
Z6CTSSPIPI9L PSSOT

8L9L8GBCVETLIGZZ O
SLYLZ6LIEL60BBSTZ 0
8S56T97EG9608ES9TC 0
80T68€£T0885L25522°0
LTELBSELVLES6LSOC O
8605L806€£657E£7022°0

TI677805LE620L8T 0
€890TEG6EFIB690TC 0
2G9%L090807FE6T6T 0
72058910691628L6T 0
9GETBYZB8YIFLZI6T 0

L6979880LEE0B06T O

€61¥29578G862002°0
S60TT9T98050L6F8T 0
G9€99800T662ZT86T°0

99069LZ69TLEYBT 0

9C699TELI6G0TFET 0
9€8FPIC6ECTSELYLT O
PIC6TPICTIETISI6LTI O
9ZL898T6VLGEBETBT O
80T0LSZ0GZTEBSBIT 0

6L706LVGBLOECEBT O
LZS60SE0ECTLSSEZIT O
TTEV0089LSLOTZLILT O
€€GL88ZITLOTLO99T O
Zvy88671ZEB6TB0LT 0
9065988L7L059969T°0
996FTES092EEB6LST O
71568002198282891°0
LT60PFLPTS9GZ60GT 0
€260L09LTSPP8899T 0
£€898768F9T8TFIVST 0

G086E7S6T0TI86ST 0
7921681528652 795T 0
90¢L80TZ0TIESZHST 0
LOETLOS9ZIGTTIZ8ST 0
896CTIV8VSELEECIVT O
70S2LSL6L0269025T°0

26C78CG9GCTOCELET O

9000L5879059%67T1°0
98€PP098ZS0SZELET O
867BELLIGSTILEOVT O
762L5166889665271°0
BEOSPPSLSLYBOLIET O
8218185909756 1F¥ 1 0
785065€£0C€Z9STLCT O
CT96CL0OGLBT6ZETYT O
€9LPLTEEVSEBOVEZT O
GPEIPITEOBTOETEZT O
6€0€6€STILLTIEBEZT O
T09Z9€PT90€E6CFICT O

GEBILSHP0OSILBEE 9SG
LSEIVTIVLLOSBET C9
TITEPFO0SHO28T 96

79T926€9LYTSZEY "8G
T098LZ96C6SPTE 9GS
FGPES8BESB908E GG
LLYSTLT89C9C06 " LE
C9P8VO9LVERTLT GG
€8TGLLSLO6GTZES 9

S6GPLTCLBIEBIST 9F

SG8T066086827STh 6F
78L88GCEVCHZO0 LY

9LGT90¥99887FST 1S
TESLTLLETZLBBO"0S
€0GE96TLIOLBYBL 6
LYZEVZ6LTC09LE TS

SLYTSSVOPSPOPLY " 7T

PEETLTHBCZOGLYOE 6E
T2660L78L6TOVC 97

92092LETZBESBBTIS 9F

SGEPST899666GSTY " T1F
G9ETSS9GT6766E 8
CYL6LILELEBSIT BE
Z75L0659080L0F7 " Ch
2898660LL6E90E 0F
T6€7SE6878500€ €Y

G6LPPO0ECVELBCT PY
GZ0ZGSE6575690° €Y
6€9ECTBZLITILL 9T
98ZETTIBLYIBYED " TF

590866269€0LT86 ST

PZGEBCBEEIGTHST LY
690GPST8LIFCS6 "G

S6LTEEGESTESOTI 9OF

70GG697LLS69T80°9F

99€0GPESESO06EL LY
GLBGPLIBISBTILE EY
C9LE6ZTOZTENLE TS
VE6ZIGYBEVZOCZL 6T
9ETETPFTIZHI079 GG
€000C6CE0BLBEY "G

GEFE908LZ8LBOOL BY
L8T0S6CSZEEI86 61
2L690685505666°0F
6TEEPPSZTO6L0L TS

9988ZLTISE6SCO0T PF
CTTE€L0CZ8ZLYOG TS

9VCT6€E89V09TTILE LY
T6L6TZEYSOLCOT PG

9668E£€8Z6TVTIE6T T

76TP897C6C0Ch68 €Y

8V9TECBI98CLYOL L
90LTOLOTYLBZOFO L
7ST006960092€9C L
816€0C2LE6TTSTY "L
€0GEVEIPSSBTICEL 9

L6GITEEBZEYTOY "L
€VE6ETIGTTIIESTY "9
GE09GT8TLLBTTICOE L
612€6CLEBYSEBOL Y
T6GTI8T6EELTP006°9

CLTTZLSZZ16L08°9
66560TS0T6EVSPS 9
L8ZLS067E0LTIZ6°9
TOLOEOSTPLETYIC 9
€609LETCVLI9F 0679
6CT186€92CZLLBTE S
L9LLYSTEBBZOTIL 9
G9G8%88ZLZLS09Y 9

626L7LYIT6EE0S 9
GFEZIG9GGCTSHES 9
TV0L066SP8E909T 9

L96889LL6TLETL O
G92528vS067610€6°S
9GEZLTESBBTBTIZS "9
TEBIGETPFEGLLZO O
TVT60€005868S61°9
LEGTSETBILETOET O
G6STL6E9IEI98GTI6 S
81262992L98252€°9
78ZT09T9EGGT6LS S
609PGEB69EEEPTE 9
6G8L00%960T6765°G
8G6TLEGTTESETO0 9
GTETSPSGS67L608L"S
FLTIEZYBTLIE0EYD S
G0GS9L886€655L8°S
TTIPLTIBIBLLIECSE"S
GTLTS6E0PEEILTE S
T8TEB66TSBELTOT S
GGS0EECTP620FT008 S
850C7€8890765C€"S

CPESTZB6EGSSTY "G
LTLO0069G9ESYIP S
GP98EGTEY658969T1° G
¥6GL69G66L0FTO0V9°G
GLZTS060€9ZELS8 T
969€8E88ET6G66E°S
9G88TLELESETEYG T
T9766F¥¥820T00C° S
€0TPZ8T08ET6S00°S
6T189982G19CPS8° ¥

7EZ08LEBSETBE0TO 0
E€LEECBLYESENITH6CI 0
GZBELTIBICOTSGCI 0
9L07T8586TLS02E9 0
TE98BITVEIN6ESTZI O
LGGL9ZBS8LIGTZIO 0
ST080FEPSZSILIFI "0
€6L906E0LEETHFOL O
€E6EBLTSLGTOLSES O
9697FL9708T8Z6E9°0
2S68T16L0€02FF79°0
89880€CS0EKEEIE90
867S67CT6G5G8€99°0
LLL8OLOBBLLEOZES O
GOT8T9CETSLEZCSY 0
8CGTLY8YLFB67629°0
8€80CETS8B8652CV9°0
6006Z0LSTFEBOLY O
CSSSY0FLIFT6L99°0
806£6907¥6€886G59°0
£G60T8£955918099°0
965700T0CSE6PCFI 0
208ESELLI0000SLY O
ZE€0686S8EFET6E99°0
8TG9€60G9CEENLY 0
£2VZ6TI6787E0PLI "0
98EIPV68EOLLOYLI O
PT1679€FILTEOSTLI O
CIBEELLLY6TESBLI O
6€96TTTLTI6EILISO O
780T88L0O9TIV6LY "0
L88296V60CVLFEI90
6G1225262£905599°0
LPLOLTLIEETESD99°0
EEE06TBYESTE0659°0
9TPIPETI6INSTISI "0
LLBOVFLSY60020G59°0
€15T126655688L169°0
9888LCLZT98TCTIS9°0
8G299165L206L5L9°0
£€60€5826V0FTESI 0
96VELZHFZBLLEOFS9 70
PEEESOELGLLTES99"0
P6L6€9G15506299°0
L9OTITTESETILZLY"O
86LVTG8BT6CLI76C9°0
2ZL9108018598659°0
7TL96909€9665579°0
LL6VEIEBTIBYCZELI O
6CEB68EELYLLYPLI"O
6€961869LLELTT9970

9CT8ZS0TC TIFET
TEETLB6ETSLTO " TLET
8SLPTEB6G906C LGET
690029LPS06T°08€ET
L9TETTEST66S"CTIET
76766659698L6° T8ET
8CP6V8ESEVOGE " LSTT
SPPSTLBIVCECS " 8CET
916£6090186T F0ET
8T8S760P99TC9 " T0ET
L908EG99T6969 FZET
LVE9BTBH6SG8TIT SIET
TZLST6TOT8GEE"EGET
79GS8TTPPSB8S PHET
LTZOBETSLSZOE " 09€ET
€18L006795826°T9€T
€T80EELPSTO0T LBTT
€L9T60T€56809°0LCT
9L20L80TILIET G6CT
80€LS0062F98 VIET
LS6TEITLIBEIS 88CT
CTITIVP686GTPS GEET
9829G09€T200% " 162T
TETSGTEBTO8ZTT E€CET
€T1G68VG66C6EL LZET
Z6€SB80TSSTEBT 6EET
29T6LEBVTEITC LSET
80TLS0002816 " 90€T
Z8Y9ZPE00T6GL " 8TET
21€6ZT0T0EGCYETET
98666G09202TS GVET
€T18F05996F 6L EGET
9S6F PP ZT8E9G " 8GET
CLEEESTLYBTB6"GBET
L68BLBETZLBTIY"ZBET
2S8T0SSLI00Y "86€ET
8690GTVPZ9CET LBET
LY62TV9€L99G CEET
€CLE609EGCEBL FCET
TPTITOGLZSTISE ELET
808T8L98BLLEB6 "CEET
PLGLOTF6060TE " FIET
6EGLL6LTLTIZI0"08ET
€6S6TSOPTIV8T EVET
S6CHBTITOPFETC 86€ET
GSLESCLS6TITI 6LET
€T1€BE680LTF0OB 8CHT
909€8VCE606EL STPT
€2ZGCEVCTIOTIY "VLET
82706880TLBLE " PFET
96GL6CLILIL BIET

8G0€
8682
886C
020¢€
S26C
660€
vzee
Lvze
teze
Leze
Spee
61CE
652€
801¢€
86C€
G1tE
709¢€
£69¢€
965€
08G€
443
009¢€
8vG¢E
659¢€
298¢
L9G€E
298¢
ELLE
96LE
S69€
9p8E
009¢€
99LE
TcLe
0L9€
ToLE
9€9¢€
780%
TZ6€
796€
5507
900%
LS6€E
080%
90Th
Svee
696€
LT6E
vOEY
(43474
14434

8%
142
9%
97
142
9%
67
8%
Ly
8%
Ly
9%
9%
44
9%
144
0S
0s
67
8%
8
8%
Ly
8
9%
97
9%
8%
8
97
8
144
97
Sp
144
44
1374
8%
9%
97
9%
34
44
34
34
1374
€%
(44
34
97
Sh

PS8GELICHTI " CEBST
LLTSTELTS696°SVLIT
G8FPEGOFLZSL TIE9T
G99£06799688°GFT191

L069€00T88F "2C69T
96.60299L00T°0009T
L$0999905222°0LYIT
66LL050T9%20 €88GT
L6LI9LFTGS82570259T
TPE6LTTSCI80 T6T9T
820€07C61L88 SOPIT

PEP6LS96080°VLIOT
CT929LGELIVI"LTCIT
G8TELY6ILTOY " TTILT
70802Z8S68EV"ELTIIT

15089L%989°2F0LT
CLSESS6ETGST CI8ST
¥P6T0ECBCED6"EZ09T
T9PTT605LF60°TE09T
EGTT6GLEOETZ 6E09T
250671TPPP8°S0S9T
GIT0GZ6C66L87€88GT
78EGB0TZBBTE THLIT
TICVLPPZ6908°066GT
90ZLECLBEET B099T
9LT6L6TLIZE 9FPPIT
EPTPTILOPCSCE 9TVIT

L67966EBTLO 80E9T
€98E6TSTSVS8 6€6GT

FLZEBTESZOY T L6LIT

TPP0P690SL TVLST
£€95689L90960°9569T
72602L5999%L 20€9T
CGBLIEEBSPIT ELEIT

L¥7LT808EF9 GG99T
7LIGTISPBZ66 " LISOT
LBS6EIIECEVE TITLT
2Z87F0TTI66EC°€68GT
9ET9EE99TETZ 6€89T
L8TZ8BBBTLELE LTTIT
289666598EP9 V9691
LELI08B66E0ZS ILSIT
SP856022SE£CEL099T
LZ606F90L6TL FSLIT
72806877 PSTT 20291
SPVLVELLTVEG "BITLT
9650LG80L9GL7TG99T

€626SV0PPTI6 G9TLT
2€800FTVC6TY " LZHIT
€€S6CFLI09GEETHIT
9PP9S60TLIS0 6999T

00ZST
00TST
000ST
0067 T
0087 T
00L?T
0097 T
00S7T
0077 T
00EVT
002%T
00TPT
000%7T
006€T
008€T
00LET
009€T
00GET
007€T
00€ET
002€T
00TET
000€T
006ZT
00821
00L2T
00921
00621
00%ZT
00€2T
0ozzT
00T2T
0002T
006TT
0081T
00LTT
009TT
00GTT
00FTT
00€TT
00ZTT
00TTT
000TT
0060T
0080T
00LOT
0090T
00S0T
0070T
00€0T
00Z0T

Appendix III

GSVOPPT66LF9 CZTED
€568712807Z°52€99
PTITTLGT6C6E6 TECTY
ZEELEO008BI9°0TFI9
TCLTEC08C98 FF6EY
GOTTTL9T?080 FLIGYO
9CL6TILTEY9 " TRINY
GESBPZTLOVTIY " TETES
96909698%7"€2€99
9PSG9GLYTEBT EE0ED
LL6LZYOSBEE €9E99
8TLTI6C0ES6T LZECY
G1022229%987°€9299
925059208L8€°299¢€9
9788807€8098 " FFVED
Tv0P2C67ShY " LE6ERO
G89TOPBIZTIE 18629
G90Z6LEZS697€88G9
2Z578£070668°98129
90T6TLITSTI0 62559
G985€5256688° TTHEY
86C699GL0EE 69079
€TESBEOSTLS 98GE9
Z909€8€L08S " TLTZEY
60G60LTLOTZ G6CFY
9¥9L2918FFPE" 09129
TL6LYSSZLEE TT6GY
LOTOLEYBTITZ 921€9
S68SPF6ET6CZL"899€E9
PIG6LTPETVES GGELY
S9EVBTEVOVED"LI6TY
288L02LZL9E00CS9
Z9LS96TV9GC T6€T9
19698610061 FF9P9
T9P9SET69L 07609
€EPSTIB6ETT LSTHI
85627569091 FSERS
€18G0S€0LS 6L5G59
LETZE660LY "8LOGY
89092CT9LGL TS0€9
£E€9G8E69LCY 0T6EY
80F8BVELIVEG LL60OY
6180G12260L" L2829
9€VGLS0TZ6 E00TY
702yL9858F "€50€9
80T6CChSV6E 08STY
GL8TBBYTZLZY 9€CZEY
GEGI9VLLEVT 9LBEY
LS6VSGS696€EL796CT9
GT18896ST9°976€9
G0GELLI6P09G G9€ERS

8L0PZTS9%Z08° 89191
€EVLI6ESBTTIV"6CSST
VLL66996TFF9 66991
SPTE00GSTOGE"9096T
T16568Z€£T8CF"9€09T
GEVPSTLIBIL B99GT
G0G8ETLYIFSI"EP8ST
9GFEIGTHC969 €80T
6C69€TITEETI 6FFST
CLTOVEEYZBY "CTEQT
2C6T1C6LLTOLO"OTSST
9ZLSTSTVEOOT " ZLPIT
GGLPLZOZYLSY "69GST
2T2TESLBLO0S FLIOT
€8Z607LT0ET9"L909T
G605229650€9°088GT
€LTLSTTZS6ELT ETCOT
£€9G6968€08S€ EE9GT
TOLTPS6SSLT SPPIT
€68L6LLYOFTE 089GT
GL8LBLZYZ8TZY CPTIT
8TCZPOGSV6LLL EBGST
29L2SCELLLYTTO0CIT
8C7098287€0Z 98191
9CTLZICZKBTIBZ " BFO9T
7029%L208E9€ PESOT
€G6T6€CL99979096T
ZILPTSL067G0"0€EE9T
75986€92786G°7S09T
G9696T09TETT FTIEYT
68007580T920°97€9T
P6ET8YCZY8Z6L " 8Z8ST
970697L0LLTZ ¥6G9T
9679PV8TISLT ELBST
€221895€2697 80891
€SZEBLLTIOFOL E€009T
G06869€090L5°656GT
€8GTSTOZTISST €896T
LEOGSESTELO CLLST
GBGLITBILE6L EITIT
PCOTLTPBYPTIBT 186GT
BL66GZOTSHL 9€89T
7SGTSLOTSLSG 68191
8LLOEOLTIOFTIZ ETLIT
960502€05L8°09T9T
Z6SF0EEYB0879TGOT
PTPGZTTI890€T 60291
LT6TB98G5GE CS6ST
€786LLEBSIGT GTILIT
997062887619 70651
8G0TZLSETIESETILT

8L8Z06909097°6€6GT
CST0G9LPTZ00 TOEST
9€66L6TGLITZ 0LPIT
222826897€06°9LEST
E6TEOSEGLY67908GT
6G8G9G5€026 0FFGT
TS092€0TZLE PT9GT
6V TE9EZE86LT FSBST
9LYS6GETLOVE 022ST
8E09L00EETO0 €809T
£€88909806%66°082S1
61228772008 ChC9T
BELOGY09L96C THEST
ST90LTLTLSIE SP6ST
€90F6129C2CLT 6E8ST
1689GLYVL686T 1G9GT
8L9GS6GCTILIY "¥86GT

GTIGEZLYPLE " E0FST
8VPVECSE8Y60°9TCIT
G96EGE0EGTIE " CGPST
LEEVIGBLELVO ETOIT
GTLIL6TESEOE PSLST
TE€08VELEZTST TLOST
8L562960L026° 95651
Zy0EV6L8YF08 8T8ST
€L88EBLITL68 POEIT
998F8SFT699T LLEST
28261876SFE T0OT9T
L9CCTL8TTOSVE ST8ST
Lb¥G9898EPF0°G809T
LBEEBYPP6SG9 " 9TTIIT
7L669T¥90€ZE 009GT
8G0GT9TELS98 PI€E9T
TEETB6FENCI0 PPIST
GZ90TS9G6G5097"6LG9T
9F8LYIE0CS6T " PLLST
62S8CECOLTC 0ELST
B8ZELZILTTI6TO HGPST
6L0189886061 FFGST
8V69129€58Y " FE6GT
97296€£868C56 " TSLST
208ZT099%LELO99T
CTCT1PcZ81IvES 096GT
7G6TLE6680TO PBFIT
G8TG6CG0TH8Y " TE6ST
E€0EZ0PPIELS LBTIT
G6G0G9€T00L0086GT
70076969T0LT €CLST
TEGBLEEG606°G8F9T
CIPSBYEEESLY "GLIST
GO9EPS960CTY " ¥B8IT

€TP97588GE086TFIE 0
L990928E€788950LEE "0
LEYEEYEGI909LEYDE O
T89LEVS6LOBEIBEE™O
LVLZI8LITTIVOLO96C 0

2Z69G1G8BYTIOERTE O
9y2Z98TPSS8ISPENE 0
GTTLZBPCZISPOTIFTIOE O

ZE9VELEBLZY99TZE O
T6687965LLL6STBC O
76980€€97SCPFITE 0
7790020698085F82°0
GZEZIT96CLISTFOE O
908L9€LG582108682°0
96200L8TSCTEBCOT 0
€GP TE6SPSIGCHESET 0
2E€9ZC0ETIEVO0LLT O
€E€E00¥98T898BSEZ0E0
€0559780L867L9592°0
GPGIZHIESTOTOETHC O
LLYLOVLETO08TI0LEZ™O
1969100215627 28C 0
69198999268118LZ 0
GES0G89LL9LT889T 0
¥LE6FFZ099G€29982°0
€LL69008T0OEZ0EST O
8TG6L287SETBC08C 0
7SP9EEBEVCE6ETTISC O
9G8Z0€T78L6882LT 0
¥9PSLYBLIOTS8Y6SC 0
LOE6PBTIFBSGE69092°0
¥€2Z0€09TZ0¥6L0T9Z70
9209G€EV9ITVESTINT O
8LEOSPSTOTLSYB9C 0
9T956€66ET0EBLTYC 0
7008627T1568€2292°0
£88986CG58L8IVCEET O
GELIETLLETEOGEBET O
CTZTILZTYS88LSSPC O
LSLT9€GG98VSLOEC O
PO0E0PESETVO6ETTIST O
6879€0¥699926€22°0
€9LEPTOZYBOT60SZ 0
8GG0TZTE€€E8CTILZT O
7185069670TELIEC 0
9P9TOVTECS88CTIET O
2€220L80%0€00FZC70
TTCB8ZEPPLLI09TTIEC O
TT10€615T28G5280TC 0
9GET86V0VSCEIVET 0
TCLEGVTTLELSETTIZ O

PCPELTLSY89L0C8 EY
TLSZLTBZOLY86V 6
VETESTHTCELTOY "GF

7£658668£680078° 1S

9290T€L566802T8°CF

G8EGOETLGILY686 9F
TEBZBO66E6LEEE"E

6826GL555790C"9F
9TZEVLE6STLZIY "8
C6T68CLOTTIEO0V " TF
GBGE0880F6VLLGE €T
CETE00GSS9P0T 9%
90€06CT9TEEC0G8T GF

G986G€868EV8YZC 9T
L7LZLGBIEGORTO €Y

G9758596L6992° ¢S
606507G6€LPB6S 9F

9€98LLYIVTIL6C6 €S

86898520819095"€¥
9LZ9ZLLBTO0EGY "9

G906T8TILILIFOFO ¥
GLT98160666C0T LY

¥ZEEC0CH08Y65829°9F
6C6TPFOLLOEVOE TF
€2668L8GBTSL6L 0G

G0GLLBISTIEONSHT 8F

9TLESTZTI9G99€G69 ¢S

SP6EL69VCHZ8ZBL 9T

GLOE9TZCIV6FOCT 8S
TP ILYCTOVZERT 1S
258860TEPZES86 €S
9G69LVO0LECEVLO LY
C¢TLZSG5€09€668° 8%
6E£8ZSCS0LLLTOT 1S

GG8LL990T668GSY " 8F
SPS9LEOTTIBI0LL TS

9GGLEGEIEEGESHT " CF

F9ELEIBESITHEE
GI6PPFP009L7888°CS
£76E£T69756G8EG €Y
CLBSEITEELTEOL LS

9€ETTCIBYFTISOTE " 1S

957285680€L85PF 29

G6CZLETLT09CZ0LBY " ES
€G6T06LG788TLC 0G

P6LP0CTS60€90CS €S
6966F9FFETLITC 96

TLZ960G280ELT LS
GOEZ69¥BLGO9LL TS
S70¥6615207928° 95
8GE90CZEEVCTVLES 8BS

9EEEGIELOTTTBLY "6
77988266€£05S€GLZ 0T
8EZ6L6GLBF00L00 6
T180TLZ8EZTEBIEE 0T
PTL06TZ8B9€88EBT 6
8T1ZET08ZSZ98ZEL 6
650602629GTT199€°6
PLTSZTIVZS200k2C 6
TS0708ECZETISS8 6
LETBOEOP9CBPVEL 8
66T19€05599265L°6
£€56P2€9689G5599L°8
EVE0SES6TI2C997°6
L86967500689710°6
TLBILGS96LLLSO 6
9692262260LT0VC 6
6509TPZTLZC9099°8
80GP8ZTEBELSFIV "6
€2297SSE0TROV6E "8
TGEBGSTGC8LG98C 6
97¥ 166080907885 "8
£8EEEBES909C6C6°8
LTO9TLIVEISOBTIL 8
S6L0TS670066£25°8
28989.088908S€6°8
70p68EEV09LPCS0° 8
LY9PSETPF09T680°6
€T9GLETIVHPECT 8
9ETPTEII6ZLTTILY 8
8E€0L0OT6L6GCSCTIC 8
ZST9780£859812€°8
6EBEGBTISTLIERBS ™8
9992625682259€6° L
86CZPSTTT0006TISL 8
9L699GSTLETZLLIO L
T9ZPOTLEBPPTIS 8
91597 10TZZ80G98 L
7026156582EGETT 8
6PL86E9CG98GELT 8
GGEBGBTEBOGLYIGO "L
B80SPECO9LECERC 8
L9860EVTS9G8F0E L
5280778826601 8
GCLBETBOTCTHTIE L
€LEOTTBZERSLIZB L
LBVEBTILLLEGBES L
PLEESETHETBLBEY "L
TOLTVE9PELLYOLL L
9T18ZF0TS99€EC90° L
€L0TLS8VYSTEEOLE L
GG9L08L696ETSCER O

676L6TLFBFTIBBES 0
£6667909990678£9°0
£€6588£688L097L29°0
T209688LEETILE6TI" 0
LTILETOVSGTLEZES O
¥80GLTOLYTIF62S9°0
667T162L6€L699259°0
TIEEBPPIVOTICCLYO O
2¢SE7068600L67059°0
6VSTLIOTLLEVC6CI 0

TGTEEPIT66TLIGO 0
78L9STEBOLLYEFES O
2069186%98¥22EV9°0
999505%69856£829°0
GBETHEEOCELTTIIES O

TS99TS9EZILYEFI "0

6€T606L8E9TI7C9°0
268ZFT0L696826E9°0
£820€TSEBTI86079°0
TP1¥ZGSL6EBLZOVI 0
68TSPL60TFLB0SES "0
7692¥7298856F1E9°0
ZhZ9166€£€08LF629°0
Z8LTB9EZS09T9029°0
8G1L29GGL59808629°0

S§6G82TT97159529°0
L8E9BGPTIIZHISHSO 0
CLITHEGETLILS0ZI™ 0
8£G887LZ0L89IT079°0
907090¥9S6LFLEES O
T1666256T19CVL9€29°0
9E€0LLEEYECZO0GCHI O
GPL69ZEBSECTISPES "0
€89C9€ES6TILYSTIVI 0
LY65L6025€L60829°0
855€950169267279°0
9GE0TIETO678EIET 0
20GL98668STVETSI 0
€8F0SPET095652F9°0

L00T88T00816079°0
LTZOTLLTSTZOTLES O
ZZELBBTIBLZSBFITI O

6098LETLTL6TIED 0
€L8FCT06E€6T05909°0
£220565€L0098229°0
SpLEBB8FBB8LEITI 0
€660TSE6L8699LT9°0
LSTZVP6L8VEECCZO0
€0S6C9CGEVLELFES O
781082€8E£8997€29°0
G98GFZ6069LG528T9°0

P18S67E0L096L7T9CT
ST089€0LOTELL 66CT

LSETOLOPVE6 " FLTT
6L0G89FG9FTZL LZET
G8LETTOPSTITTI 6CCT
PECYPOGPOTY6L CSCT
€269L81566268°¢€CT
9C8SVLGTS8066°19CT
€96G08LTLELS PLTT
£€966€£8CVTCSE"GECT
712680082822L"162T
988L8V696LCPY " TLCT
P9GGT06E6EVTL ELCT
2059808297€€9°2LTT
8PEILVEVFETY "89CT
GT8TZ0T6SFTIBE LBCT
E€TTEY99TETREG "8STT
LS06TEZBLOEYC T6CT
206T0VLT929G°89CT
786GL699€8F8C " ¥8CT
€E€8T6EVEILTLI"LITT
€9EPBTEPSTTIHRB 08CT

€V0SGGELBE0 L6CT
9650£CVL0ES89°06CT
G9LTE0ZBLOESS TIET
20L0L6LL6TZYO0"89CT
799979€695TP8B 16CT
¥829912€95250°292T
8V0EZIETTELT6 " GTET
689756951 ZY " 862CT
ZIP85905S00T9T TIET

L898TTZ960G €0ET
LZL2T022568G S0ET
6876999CZ6€ELL BTET
2992007 2TLLO ¥ZET
PLBSSTLETBLE LEET
GZ9ZLY60TEZO0 LECT
215608LT661€9°09CT
€56C09F6TTVP6 " 00€T
9TLLG8LIITBES 09CT
889G528G0LTS86 0EET
LSZ9G96TGEGEB 96CT
£€50650609L2°G9¢€T
£08866GT8BTEBY "GCZET
250267607SLBT ETET
TPGC6TIBZISEC " 8EET
¥86C06LEGBEC6 9TET
€CPIVPTLI008CZ 0EET
8EBE9CG0GSCZBS"E0ET
789067E6E66ELTECT
G9ZTS0T6ECTIO"8FET

0vbvZ
8¥%C
0vET
85
SLST
€852
865C
166C
1292
695C
2992
625C
8692
§65¢C
685C
9292
0€92
6592
LEIT
veLe
5692
TL9C
vS9¢
0892
¥v92
STLZ
G28C
67LZ
€TLT
veLe
8892
54:14
seLe
vz8e
G892
98LZ
820¢€
zLoe
0962
L86T
9062
¥782
8v82
0¥82
2962
S68C
G86C
850¢€
9862
L90€
658C

0s
15
8%
0S
[4
[4
Zs
0s
4}
15
€5
(34
(4
0S
0S
0S
0S
18
67
18
0S
0S
67
67
(34
67
15
05
8
8%
8%
0S
Ly
(34
97
8
[4
4
0s
0S
8%
Ly
97
9%
8%
9%
8%
8%
LYy
8
144

8LPETO9ESTET FS09T
26L80800GL0Z STPST
GGB6EEVLOLTE FBGIT
£€89596118929°T6%ST
C6E96€£E8L89 TC6ST
LYTO9€ETSHF8 FGGST
LOG66TSLEETO 6CLST
C0EE9PC608E6°896GT
£€029986T0LLE"PEEST
6L88ELTBBIVL L6TIT
20P79ZEVSTES G6EST
LS6ELIE6COSY " LSEIT
9P LZIE060LLE GSHST
617T0FZITEEE 65091
€L9T08B6EICHT "EG6ST
£€6606758LYT6°G9LST
9Zh90T6£5028°8609T
6968695629997 8TGGT
€LGTESTTS89°0€€9T
€6GL068G8EET99GGT
90T9L90T8LEL LTTIIT
L9POVLBELOPO 698GT
9Z8LE6VBEY96°98091
€00572960295°TLO9T
780GE0G9TEPSG EE6GT
752625870€9° 61791
T7887E6LIT8 T6VST
99LESG8LZYO0LSTZIT
9VGEIGTLILE "6E6ST
LTZTEGELLBLS 66191
8ELTTIG9CZ0TPE " TECIT
789GZEEGHLGG FTILGT
€S0ZPS6TLIPS 6LFIT
GP9€TL609899 8SLST
726560968796 €6991
GGGTLOT9660°688ST
L60Z6FETBERB FPBGT
GG¥6888TTL88°89GGT
GZLSTTITIZIZET 8BS9ST
2E€G8TESIGCHT 6709T
GE9EBZTIHTLIG 998GT

6€9€T1886G0°C2L9T
£€8€967978570°GL09T
99€70Z8GLTZT6 " 8B6GIT
€LOELIBISELT 9F09T
SLYPESBEOTET COVIT
G0088BELFED09 #609T
LEIOSTBLBTIL LEBST
L9GZ8L8BS0ESS 00991
6£6L880TVLP0"06LST
EGECETO9TVLE "8669T

00€0T
00z0Z
00T0Z
00002
0066T
00861
00L6T
00961
0056 T
00F6T
00€6T
00Z6T
00T6T
0006T
0068T
00881
00L8T
00981
00S8T
00781
00€8T
00Z8T
00T8T
0008T
006LT
008LT
00LLT
009LT
00SLT
007LT
00€LT
00ZLT
00TLT
000LT
00691
00891
00L9T
00991
00691
00791
00€9T
00291
00T9T
00091
006ST
008ST
00LST
009ST
00GST
007ST
00€EST

Appendix III

£€5692969€99°0T099
G£908088VEY " 2S80L
8LPSLLE0OLTZ T9189
TT06£5€6868° 91889
899986FL8SV E€L06Y
LETOEVZZTIY "62ELY
G22062€EPT6°25069
96TVEBBSEVS"C6FI9
806897060€T"LZL6Y
€L605C69TC6°VCILY
29¥9€€9T181°€1889
LETTBI9E0T60°9CLLY
8TLOVOVLBZL 9TGLY
1€289902295°€0L69
690LSVCZVLTI EE6ED
62709616767 " €2969
8988ZLEEBBY"TVLED
8€9Z5088E£€8°8L069
6T2GG9VTLLE 9E8GY
GZ0T8LOB6ST SFGGY
FELEBOTSSTB €L889
66T8GLEBTZBY 16829
9LEBYELI60E 66689
798120060LEG " TPCZY
TGET99FZZE0°€8099
L9ZYLYZECTY 88799
G908LCTIIT6C LFPSY
LYZ6TTIVIST6 16299
STP80CLILIT PLLSY
9EVELOBYLT 89FLY
€T1T98£58805°29819
GZ819¢28ZC9C 26€S9
7E€565L8528%6°T€0€9
2C6T1968E£E99°TFCSY9
GZBZESHETEL 8E6S9
7LSLB6TED E€8ESY
GLBEVB6E0 68CLY
€L9529€VT09°982F9
€6C6GCBETST LT999
8679595180F " CTTF9
TEZBYI0L6ST 87099
6FPTECOTV6E 6L8Y9
90699G0LE6E6°68TS9
Z¥9122h60L07CELSY
GZ9€6hPCE0E" 99629
9S566E€8SLELT TZ80L
76EV60G09287°2€L99
CELBTO0ETCY " TLERY
9¥0T68L9TS0 68299
€€G8672ST8Y " 9L289
6L82Z09F6ET 0E8F9

26L0Z68ETTOV "F6FST
Z9T8VPLECHTIS CILYT
908F6T1S9F98F " L66FT
6T097LTEB6S0EC6TT
9P689E€9LGTC6 LO6GTT
9G08998€6LT9°861GT
6C9FPPTLGBLI"OFLYT
€0GL688G8L6T ZEIST
STPSP8TOVPSPS 88971
LZTLO9P90LETT 6CTIST
€€2L9988660€ 76671
960977019696 LO0ST
LET9LOEBLOYB 66CST
€ZV00LEVESVE EILYT
T99TFZB800LCT LS6ST
L¥8009L78G6E"GGIFT

€089298G96°L96ST
G9ZPILOTTEBI"8LEFT
L6€889986099 €6FST
6LLOGTZSLOET FSOST
T6L£9962865T 98871
L6L1L88LS09C9 ETEIT
7198V615286L 80671
€665568EPTLT F9S9T
ZL7Z86000€L8799€EGT
8295L908T09L 6T9GT
CTE0S0EESLTT TE9ST
€0TZ87S9€989 0EFST
852S8GE90TVY " ¥69ST
LLETPEIPERE 08LZST
TLBVTIG98ESSS GLYIT
¥ZL6TZ6780E€"Z8GST
859767616882 76191
707868T86F0E"9TLST
€T1GPLILBLIVY "ZCSHST
6CSPLIOVEPTITI ETLST
Z9EPES0698GF " 082ST
Z89CTILSET86T F909T
7Z€99GG9€8LG78THST
72922LVLET00°E€C09T
CLTSEEV06G09 ETHST
GL9099G786€C"888GT
PPCE6CISPBET "8GLST
L9TT80TTIL8BY "FTI9GT
LTLES068FFSL " GO€E9T
G9GE9GTECTT6 "929PT
€9TBEBZEVEVZ FPGST
€678T90L89€ES V68T
SPVZZTLOLLE "G6FST
212725908656 °€02ST
GZZE€T0LT66L876L8ST

7G069L06996% L9CGT
B6V6LTIECEGLT E€8FPT
CTESVCSLLYLE 8ILPT
690ZTF0TSTZ6 €69FT
CT9GLCTI6TVY"8LIPT
CZELYL8GL6GT 896FT
LT99661CTC6C LISHT
€LSTVEZSYTILB COPST
€GZLYTIVOLBT 6SFHT
€699L0€LT9V8 668V T
8Z16EV667LG6 PILYT
SLPB8Z08B09TL 8LLYT
2Z6LYSETB009°TLOST
LG68TVOLLLEC PESTT
EVETTTILTESTY " LTLST
LSYLOVEZTTIBO9CPT
B8TIG66LTBSY6 " BELST
TZLOSVLSSGEZT 6FLYT
L6G9€6689CE6°G92ST
LEYGETEBBBZL FTZYST
26T00268FELL 9G9PT
2SCL88F00E0E"F809T
Yrr6SECLYCYS T 6LIVT
9E€670TIBEOLE " IEEIT
92L6860T80L LETST
Z6GTLGS08299°06€ST
LBBETYBEV6CC E0PST
6220281621 102ST
LLOT6VI6TLZY "SIPST
GGTEP000E9TT TG0GT
LLTIZPO¥6026°SPTIT
POEELSOEFBTIT EGEST
CLELP6TTITZBY 796GT
GGTELBGTLEB 9BFST
906962750095 €22ST
SL68T006076 €8FST
66986 TEIEVEE CSOST
LY6ZTICLBYESGT GEBST
€9T0692C68EG681IGT
LTEVET6EB0BE P6LST
1966€£C689099 " F8IST
66€T98F0TLTIE 6G9GT
LOGE6PP0Z6E9"82SST
£5L969286€60°G8EST
G886€80€90C"9€T9T
8F09TLICOEEG " LOEVT
6GZ6GELYZET GTEGT
£€G66CSTTI0ECC G997 T
B80LIPLTITLY0G 992GT
STZVSGS0L69L6°GLEYT
70L0ZL6TLO6L 0G9GT

8€9209C18€9008ZF 0
750222L82869L8CF 0
8T1600ZFPS9LGEITY O
G7650€V060€9€ELTY 0
TL6680C08TSLTI6ZY 0
9ZEPPEECTBBG08966€°0
S99V PPZITLLSTEGED 0
7866LGT59765986€°0
2529%60£592L0FZY 0
LEVGEGCOEBETHSERE O
LS6SETBYF0S6L90% "0
9T8LITTICLLIVFCLOT O
GELIGZYTZSTZLBITHE O
7S0TZZLI68TSESITY 0
CO0SLVLEGCTTZTITIBLBEO
9858L2€25€88760F "0
9€CT98G8LTIV9ZOFBE"O
87268690502L966€°0
€EVLBZBISB00906€E°0
¥L20L82991VL67EBE 0
G£86628086€£0L886€°0
LOVT6LETTLSGBLEGLE ™D
GE6E0067ELLZI60F 0
77S9L09TEBILBTIBE O
GTZG80GTTIT600268E°0
992788LY66887S7E9E°0
EGEEVEEBLELYPELE O
2SZhZyT06SE02HLE"O
L96V0FZILSOPFOFSE "0
GG008STZ6V9LYS8E 0
LOT8LILZTLEIPISE O
88968LCLT60G€98E°0
891.60865267L995€°0
CSIVELETBOTELIIEO
L8LLLZ6920680FSE"0
896L27152502157€°0
L8TS6LSG29G9¢2CZLEO
7GTS9808576L9L2€E70
C9CTVVZLTLTILLBEIEO
92716805056902€€°0
7878E0L9GEILEOGTE O
GELTOLEVBSEBYTEEE 0
LSTZIEELOGTETIBEE 0
2e0Zv8007068887E°0
9GG9L6EETHOSBBESE O
C9LVPEIITTHSLETVE D
G6LZ09ETZB8BIEFFOE 0
G68E€06GET695E8CZEE0
8FT6LGE6TEILIETE D
LEZB0Z06ESPEITZE O
TLBY9GLIBESZH0EE™ O

766T0967CVECS 6E
9TIVI9586127556 82
LEGLEGGITZZBIOTT TE
ESPLPLOELEBSYT 8E
GL9CZO06SLLTIGTIE BE
7090LEGTBLILETL LE
CETETSSLLOVCLS Ch
9C€LTT8S8YIVBOY " 9OF
Z8TLLSBY0C8Y I " FE
£E€89VSGSBYERSTV "6C
902SPP0TEESTIEG " bE
SL8TSVLBOCISHIS TIE
29LLY0GCHCZLYSY T 0E
£0285692151807 " S¥
98G0TEOPS989€ESS 0F
98LEOBZEVSELBYS OF

6VLEVPSTESSLY " T
GTG06%ZS80T690T €Y
68L86EILTLYVLT BE
GOEPVEGHTEYSCHO BE
6G61989T€09285 " TF
TLLBLELIEESOVO €Y
7670079 TLITITEY LY
SG0VZTEETLTYST €S
GOET9ETEZTEBBT G
8V6C9LE6VSELTY " 6E
GZEOBLLTTTIOOEC OF
F1Z02EELSITHBY "6€
PT6L0PBTSLBLLBO"LE
GLGOVLYOIEC6LTI8Y "GF
S90L8LTZ0ZZ86L 6T
EIVETEOBPCLILE LY
CT0LESBZISIBEE FT
E€TTO0POSTEO0FO6 T
PEGT6TIEZLIT8T 0OF
£€G7065L08659€€°0F
TIP06818SZEOT8 9F
99T€6027L509€VC" 1T
TLZT68T1E€996C0€ T
G€090€0629L696°0F
T0CZ0F12C010CL " 8E
T1G61890806G€9T 0%
G95Z09L09TSSPT TP
LPIETLZI0FITIC CF
GI8E076EFIC6V9 " 8Y
G9LS0VPPBEOLEBS T
72G08LO0TEYZBI8Z 6€E
€L08T89T0L99€E0 S
8LZETTGEITETTIZ CF
8£80T902LIETS0 FF
€1605€£0288708% " 0G

9E€LBTZLYPS066CL TT
9902LE6YTITLISY CT
GES0BETG9CSPIC0 2T
980%60922v€5060° 21
CE6E6F9I98LBIL0OE"CT
18866EPE90LEZOG TT
L8G98LI68LYBZ6G CT
89CC¥7L6986FF0E"TT
29800LEVSELEECY 2T
98976€0965T66TG TT
6298T72ES60TT96° 1T
6590589L2€07628 1T
GLLBB6CLZSTZYIY " TT
66€L569L6GLEVCT CT
GL6GTTIL9768668° 0T
7065682€S0L8TT 2T
66906809.T89L88°0T
Z8T6G9€GBZGPES TT
9EELPFI69TG620€"TT
L6T6LLLTB00FGET TT
8VL66EGLSETSTIBL TT
80€Z07S69.86899°0T
L6208229LCVS9€0°2T
CLL6EIOLTBBTYES 0T
GETLTZEBELTH0C9ETT
97S96187879LT68° 01
GZ6TSESI0ECTIEG 0T
689105269929960° 11
60€7999076L69T5°0T
LYGTZS9ERELEBY " TT
86TTTIZ8LILTIEN0Z 0T
chS8LZ06VCVEZCT TT
61€E£P82085872LZ 0T
98€607FOLESLPTIB 0T
TE00GGT6L6L6709°0T
LSZOVZISTLI00LE OT
CHELSPEBEPSERIT TT

997 TZEIESTETEL "6
CLTTSESPTSEEEL 0T
60£26T90L02ET68°6
6966E£SE£980SGTPS 0T
GZ8GZ68GB0LTLE60 0T
SOVLLBEGTEBLINZ 0T
TLSE6LILBLTITIBIS 0T
LLO68BTOESSSOEVL 6
€0G€TZ8E0CSSS8L9°0T
PSEBZTITEVSIZ0SY "6
CSPESESSTPB069E°0T
L66EE0CBTI6LF89 6
TSLEESSLOTVOS66°6

TI978ZLT6CPS96°6

LETISLTO6FTESSO 0
6699€LLT67802089°0
919798LC6LL669970
£€798072126555889°0
TTL99T6SPIPFCS99°0
Z6CLS9T6STILEYLI™O
£EETOL6GS65PEG89 0
966CZS9€EGPPTIZER9970
62€715206862L899°0
9CLSSTTILO69LLLYI O
976ZE0EEE0TOLTLI "0
GE€E9L26560082659°0
88F9TEELSBYT6LGI 0
T15€2968166619599°0
TGP7CZ0E€0CTEECPO "0
9EF6TEEIS09FZTLI "0
LOTSLPBLYIS06259°0
LL969ET6TLOELTZI90
GEST69CVEZ6TOEES 0
Z9TLLITLEIZS86G9°0
6GELY8Z997809L9°0
TG9T18EC60FPOLZPOO
FELZBIVLTZZLOOLY"O
SGLS6TPIE90TO0TO 0
608L88Y6ET80T6LY 0
LEGLLTLOELE6TOES O
€€660LL0868F6LF9°0
8TLLT9LGT99L02S9°0
62LZLF9562022909°0
GPZ9V8LIBLESLTIY970
82658787202EVZ8S"0
660990TT0CSLZLS9 0
FEE9E68VSSBETLES O
TPBI88CZVTTIB0CZO 0
¢1S0€255L9925819°0
L6TTEILLEIBETSTZI O
6LTT959FZF90€E970
2¢6120TL906221609°0
L00G9ZT1S082TFZ9°0
8660€L2092926665°0

ECLBSEEVEECEES O
¥60E€¥8EEB08BEZOTI 0

92608280LFE8Z9 0
8EP0O9TLEOY0CFITO O
TLLTOLL6T090T66S°0
LBPESPIS6FLI9CTO70
GBY6T6EE0EFIF609°0
L9TEL680CCCIETI 0
LEITOZLYTLS6ZT09°0
7LZ8SSCEV6LYEE0970
9E€S6LELERTBSTTIES O

8979656799128 12CT
CTLTBOELOYPLY 08TT
6L9LC22C6T0OLY " FLIT
€LZLY80BEEYSB GBTT
8Z8LLLIBOGEZ TTICT
18L860755689°10CT
CGG8T8LEVSLLY "CETT
PLPBI9TG996€0870ECT
8¥7EZSC0LSSES TOCT

T0LS0908SPP G9TT
86T8ZL0BELITE G8TT
868T0LESOS89L"80CT
8¥66£25966720°G0CT
TPP0SCI9€E6PEE " CTTT
GTLTV6LLTISESL S0CT
C698TGVLLLTZB 66TT
€6208608056€Z°G2CT
907ZPETS96G007€ECT
L6TLZO0FLOESY " 8TICT
80LVZOEEEEEE ETCT
768£85798962€°62CT
£€6082E9PVPTSCS CECT
6LGGTTIG0E9CTT LLCT
2E€606578L9T00°96CT
G8186060V6CZEE"ECZCT
€2G6LLT069206°98TT
GCP68LITLBLOE " TTICT
Gy60€62V69€0°L22T
€2Z8E9TPGESOS LITT
FEV6VC8SCHZIL 8FCT
GLZETTILBLEY96 T9CT
CLEESTLLITHB 9GCT
€pT1¥2ETLTIBS0°09CT
9TLPSPP96CL60"PSCT
G6T0EGSZLIBLZY " 022T
607L20GCTLSET 0TCT
LVLIGTESHTO9F "GPCT
ZChPP9EGLSETL GETT
£€59G0%L856F62°96CT
¢SL802€0690€°2ECT
G6EB6LEBYCETS CCCT
966F8EE99C6LG7€CZCT
TL60T6E0E86TT ESTT
Z8869TEOTLLZY " €9CT
€2SGE98TELEY "P8CT
G02SZ81ESCV06 " 1PCT
LLGL988GIVBEC GECT
9LGL6EGHTIERL 09CT
ZELTOSY6B8EYPC 0GCT
L907Z9%CZ7968°€9CT
8005809596L98°G6CT

1602
£0€2
8¥zc
S} %44
vee
(X444
8£22
621C
00€e
€0€T
v8ze
344
1922
janx4
6912
89€2
8LIT
S1ET
9622
(4244
Lzee
EE€TT
6822
Lzoz
€zee
99¢€2
[40x4
96€2C
8£€T
veee
€612
6LCC
Leze
T1€C
Teve
96€2C
Z6ET
0s€e
SIvC
434
08vZ
Tove
Tive
1ive
€922
0v92
€6SC
c19C
[43%4
0552
€eve

¥s
09
8G
85
LS
9
9s
¥s
85
8§
85
9
9
LS
€S
85
zs
9
149
¥s
e
15
¥S
8
¥s
9s
¥s
¥S
7S
¥S
67
[4
05
[4
¥S
14
¥s
4
€S
4}
¥S
€5
Zs
{4
67
LS
¥s
SS
€5
149
0S

€267F8Y 16876 08EST
€BETE08LIPB LO6GTT
7900220290€6 " Z88F 1T
7¥06L0TL9067 " 808FT
8CTTEVVLIBT E6LYT
69.0L87888€ €80GT
£€2902L97€586°T€97T
BEGH6TIGGOPESG LIGST
2L68S9TZ29T6 E€LSHT
TL89L686VES VTIOST
B8TESOVFLEET " 6L8FT
98CLECOVBCZVE E€68FT
€02T€86L02L G8TIST
69790L50€28 8797 T
Z00Z89L9TTLE CPBST
ZSTVEGG8YBEL OVSHT
60LLEEOVBSSY "EGBST
E6VLOTFEEESE €987 T
L6PZTEBEBIGL 6LEST
80CZS69LTEVEY "6EGGT
C66TEV6G999F " TLLYT
PZSLBETESP96 86191
€07STCIE0LT ¥6LTT
S9V0ESTT60LT 0GFIT
9986E€¥5GG06C72STZST
T9€TTE6VTTIZ S0SST
GTLELSTSELT LISST
661ZF8TVOVT6 "GTEST
8968€00ETFEG"6LSST
€978ZLT1886CL GITST
7ZS0LPI9T8EL 09€9T
CLTSBETIPETL LIPST
GTOTZLSTSS8Y " 6L09T
9LPSTEOPTILS TO9GT
TLG860ZVE00 8EEST
PIZEVLITITS 865G T
£599892G596€7991GT
718297198GL9°676GT
€PZ80TFPF98S0 FOEST
Ly826909T69 8065 T
LTILBLIGCEET 66CST
LEOTOZSLYBLL ELLST
9LEEC6EBTBBBE"EFIST
968889FET6L 66FGT
78292L86€086 06291
9086E€T6CTCCY " CISPT
LLES9ZESHLBI"6CHST
€207LOTP66L8 6LLYT
6L5G8YT68TFZ T8EST
€126€588£896°680GT
P96TLEECEGEE " GILGT

00ksec
00€s2
00zse
00TS2C
000Se
006¥%2
008¥%2
00LbT
009%2
00Sve
007¥C
00eEveT
00zve
00tPe
000¥%c
006€2C
008€T
00LET
009¢€2
00G€Z
o0ovee
00€€T
0ozee
0oteET
000€Z
00622
0082z
0oLze
00922
0062¢
0ovze
00€ze
00zze
o0tze
0002¢
00612
00812
00LTZ
00912
00S1Z
00rIC
00€TZ
0ozte
00TTC
00012
00602
00802
00LoT
00902
00502
00Fv0T

Appendix III

€G9992GLBTT TLZ99
€82SV6007SS " LTILLY
€60906FS58°LLS6Y
260€£202v6€T°2L099
E€TTLPI9TOTT €5889
G2Z0628S0LE TTOLY
86£05008968°CIETL
9%¥88E€9TZ0OT ESHOL
96S0TETO8YE " ETHBY
L6ELOETIBY "66STL
G222828SY88°LZEIY
TCP0T9V087 Y " 9CEOL
BEZIESGHTIC 65269
GBELEOVLIES TEGTL
25G68%96€8Z1°G500L
€VETI09SPFE " 6T180L
86600€909GL"Z9¢€CL
96LGZE€99CEL FSGT8Y
7S6TVEBEETI " €88TL
T1ZE6CZ0STL PFILY
906800€€8PC"LELTL
615082072207 66€ELY
LT18TH60786T T970L
786L0€05868°69€TL
TTI9T8LF6G9E€ GEV6Y
LOGEETOELBL FISEL
G76SE€09L086°87E99
8LBYZSEEOLT POV TIL
TLB8TB8YIVEE TSTLY
60€L96ZTTI8T TETTL
GETTOLESBTT 97 P69
9TTELOGZTIY LBTIEY
88E9TLZ697T 2060L
G0G0E€08L90T LTT8BY
LT808TZZYY "0EFCTL
€99€188982F 68069
76L0T9ZL9T6 ¥880L
ZB66EESLETI 00769
PSL6TIOV0S9Y " L690L
1627756991V " 8GLOL
90GTSCPESTO F60LY
20678S502LT°2690L
96786182056°50T99
96800C80TE€C 60CTL
FPZhI62E22h " €£889
9SC88T0LFIV " C6C69
G8LZ6C0TSFZ 16169
£€58L%L209957 10989
P6LLGEYI9LTLGG6Y
GGET6EE68875° 92559
B898GL66ET0 96F70L

LLESEVPZES OTSST
9CZB8ILELSEY9GTOST
6PPVECTLYOTY "9PLYT
208929122762 20¥ST
9PVCLI99CC88 PC8PT
6G289802VGL8 LTZST
€6EVL099GSVL 0EERT
L0LL92895686 GOV T
L8680066TT0E GLEYT
Z69G7T9L90G8 8CZEVT
90€LLSB6EGCO LEFST
708LE6068965 6ESTT
G6TZ8996T0E0 6TLYT
7T1G812850650°LEOPT
8CLEYSOETFIT LOGHT
ETPEVTIE9GC6 " GERTT
PP90E8LEVLLL 8VTIPT
L2092690T69C° €667 1T
7L086L26980T 886€T

CSLBYTI8BEBE " FTCZST
CT69TG08LTITS ¥CIPT
GTGSL98SOF0T " TCIST

20587FSP¥89 687 T
LLETTLZO6G00 6LEDT
LTTG6L08Z6LT TIBFT
8L71220290L8 97071
S¥962926CT0Z 60€EST
L09€59205909 " ¥v2hT
6T0CLIBIGZO08 ECIST

¥ZT0SPI¥889°98FF 1T

8LBLLLTETH CSLYT
210627969856 TE6FT
LT1992€698€98 TEVHT
9LSSSESTCZELO LBOST
96L¥6L86CL0C 6LTTT
860C680TE6C0"L68YT
90Z8E€88GTIBL 6GFPT
GZZ09LPEYGSG CS8YT
PEPBTIVLO0EGY "COGTT
G6LLOTL6LI60 FISHT
LES6TH09CTOE " FOCST

€8180620€€9 " T96F T
108690966507 "6095T
9CSPP0OCIESLE LOFPT
SPPB0ECYLBSO " FEGTT
96€966T5C86E V697 T
70068T1ZF888 TILFT
6LTISVLYPBTI6 "EVEPT
POEPZLGOLTIZY "FTI9FT
88G66287CTVE 909GT
86CG9G699€L0°GESTHT

GET6T66ECCGE " T8CST
606€E€8TLLI00"98LYT
¥€255899G68%0°LISHT
C9GTSTICEY86°CLIST
€GCEEVOLYOTP " G6GPT
62229161067 1°886FT
269¢0C8PvZE TO0TVT
T9PP2Z980T9°9€CHT
¥80LS09VTVZL SVLYT
PEIPEE0BTEIE 660V T
LYEL6V6LBTOE LTZST
7G8C0E68GEEIT0TERT
T1969GZGTLZ08 68FFT
8TGOVTISLETY LOBET
L8SLLSTTYLYS LLTRT
8LCT7200€22€"902HT
PPLVLOLTE60LE 6T6ET
GTO0BEVETT66C PILYT
8G0£069G6€V8°6GLET
88GPPLFFIV96 " F86FT
LEE6ETEBETT G68ET
L6G6LTLEOLIS T68FT
TTLOOTSTB66° 092 T
6887PFIELOS 6VTIT
980Z9€680FEL " T8SHT
€ZLBLTLSTTIE LTBET
T99TSTZ8EE0T 080ST
¥E€09TFPB9TZT STORT
TET8ZLSP88IE P68YT
9E€CTPTIGGE9E"LGTHT
890TZ9¥9TCSC €TSPHT
EGTTIEE00LLT EOLYT
9656L6169085°202hT
G8FPIZOLSOL LS8YT
FTZTE99T0LG9 " 6F6ET
9ZESPBLLE6LS LIOVT
GGTLSE0BZ66G0ECHT
€1€98991658C €29V T
9GLOLSEETIGO E€LLZRT
GOOTLSTLSZL ¥8ZHT
€L5956065CV6 " VL6PT
£€6G99908€9€ " 2EERT
66£9619G28T16°6LEST
9%¥8TLBOELCGB BECHT
96268990829 v0LYT
€9P8L90SP80°GOPPT
YELZEGISTIZS CESHT
88TTI8OVCIVLY "PILPT
GT6EBEBGLZEGB FBETT
7G886€6T9TTIY"8LEST
C09ELEFITCZO 90€ERT

87080EC09LLYLIBS O
866€£V6LZLOTEI6TS O
LG9TT8EV9892C8LS 0
8V9LBEBETEBESIETS O
96792010252¢07695°0
PGEB6GIVLELOLEZS O
88G9€L0E06LZ8VTIS 0
€29G2€E69VL92C9TS 0
TIZ6LSL6ETSSTIS O
TST686FLLFO0V0ES O
T€9€080T989€8T05°0
99CGLEEVLTEEBOVS O
LGTL0ZBTIS9PC688F 0
GTOTTIECTTI996F 0
SLYLLLYZTL09088F 0
9L66GT¥8612F07187 0
LBTITYPESLIITLEY O
£€09956€60092999LF "0
G997295559€26015°0
GEZOEOTOBSGTIZSLY "0
TLZ08Z69TLICI66T 0
8600068E€E08TLLBY 0
2S00%8YT9C6LSLLY 0
€8L8G9ETCBIVO6LY "0
€0EEZEESOLGELLBSY O
T86€L06T122EES005°0
CLTTIS90LYLEZOTZIV O
€L2897668¥592006% "0
PPPL6EGIG0ES6STIV 0
PE0ZZETYBYTESLY "0
9VTTELYL686C6PEID 0
€CTSTEGPT680T97 0
G996998GSLLZTILLY O
G8BLLOGTIETIBESEY 0
98E9BEVZIEZELLILY O
SE0EL6SLEBTOSLLED O
G66GLLSFPILSERIT O
769106001998617%°0
€21T00589065708FFF "0
€LLY900C8LIFCLIST O
9€Z8617028C0T89€EV "0
LEYBSOF9E6008L89F "0
7SE0TSOSVOPELTSED "0
C0968ELL606LFZSY O
9GTPOVLZLEOTHTIZT O
8V TOECSVELT608EY "0
9960912006ZT9TCZEY "0
LLBESOTIVGOVELIV O
66€L1828L0C86EVY 0
£09200590%¥5065TF 0
YZE0EBBVYZLLYETLYT O

1679065507 1900 TF
SGE8LBG8V0CTYT68G 9T

€07966ECT89CT 6E
LBBBEEZZO86TEED 0€E
GLBSEY0699TVLO 9E
987FZ6F10T69CT9 1€
9697LCE90TBETTIS 9T
BEOE6FB0EBHE6T LT
78G8EVTTIFTIVC88 LT
T6TP1956082L00°TC
269VEVEBEC06V9C " 8L
£€9CS0€L6ESTBITY 8T
€60L8BVEEL600TB CC
9VETIBSE6CZOLI0 ST
8G6ELOVEETLEOY LT
8166789697 FG976 "¢ T

960STSP9265V6°9T
£€1099208€708626°0C
9065582T125T50°8T
268T15509€50€908°€C
1802T€628ELET0 1T
PCLE6VGSYITP6897GT
GZGBTIGEIBELGLSY 0T
960L060SETZE666 6T
L2L00902L8759G570C
CLBSEEVIE60LIEY " CT
Ly66€£60L606GCTS LT
L¥699220€6L29GG5°6T
29L08G60TLITSS P
705512029606058° 12
Z9VET6655EV68Y " CT
LBBLTZLGIVEIELVE ET
9VEVEGZIEFSLLSGE 0T
206S69FCTLSS6TT PT
E€TLLLZBBLLTLLS 9T
1586€£890£82285°92
856€20088STI86G°9C
200CTVLYBEEILGL €T
B80FE9EERELLO96E TT
€68201585600€18°2¢
L6TLOVEBISTOBT LT
£869€86LTS1Z8887° 82
PI6€9E€C0EVIL60°LE
CLLZLLYPTTIPTZO0T 0€
LZh6%602GES06L" LT
9669S5V0LVTC065V " 8C
LLEV6ETT0S86966 LT
€9LT0C995LTT90L 9T

ZLYSLOLYZVTLL 62
8€L86LCT6PICZEC 8E

8TTZLYB099LTIO 1E

ELVTGGLGGTLETI8 T
SG6EPSELICTBOET T
ChLZ9GE0TBBCZCY"GT
S70870¥L099T889° €T
78LT600LC6IE6ET ST
9€L66L0902082T6 €T
€EV058685T61685 71T
LZG6E6FS08EBBE T
GG6158918629656° €T
LBYOTLOGIGLBEYB VT
8009288%890065€"€T
8ZTOSE99LBELLYB T
1098082S50CVLLY €T
LSL69L6ETTSITS 7T
TGBEZOT6C990F8BL ET
PIPGS8LG8TTITIZLB ET
TZSETOSLO0P6TE FT
Ch6VTLSSOEETREE ET
9r¥607£60950£69° 71
€0802260CL68BLOTET
86€£CGEE089€EV6E " FT
8LLEY00COBILECE ET
T8V06ZTEETTOLBL ET
8L9988£022£6208 €T
78FBEETBZOEY690°€ET
€2€97059252LLSE"PT
960Z978F0G5C6LS CT
20280L020069750 %1
€682Z8TT6VEOT6L CT
€909GGTL86G680L €T
€67S9ELBLLGETIE ET
6E€T19L798298FFB0 ET
661708£280G970L €T
E€IVLTSEOCTVEOTR " CT
189T89PESTBY0EB ET
88TS008VTLIEYS CT
CS9EPSTPIGTIRG €T
87295TES695€€€9°CT
COEVELT6ETLBECE CT
GB9TE6SSEBE08T €T
960€S2CSLBLBYLE CT
POPTLIPG6PZEEBE ET

8LLYB90ZEED CT
PZPBEBPVETOLERT ET
CTLO8Y6ELTTIS68Z 2T
CL8V68ETTIBIVEGI "CT
CIBTILPSTTICZPOGPS 2T
c09€8FCSE08VOVT CT
6E€6788CEIF98ER8 CT
CZET6E0966ETP6G TT
T9L2CTPSC8PVOPT ET

6087€8685560L979°0
78TLYFS000€65690L°0
2G0L9ZVL66628F0L"0
90€8656515758€69°0
LBZBVLIVTI687F89 0
€E€62668L18T128889°0
7850£G5680L5600TL"0
€€88880FLTITTECOL O
290TvP¥8LFL6969°0
G669678TS9TTI800L 0
7y0610226%8TE0L 0
700TSLIBEGPESHHEO ™0
TGGLOZEY6G0FFBLI O
LS8TLBIEN9ESEET "0
6ETOVPEEGETFETO89 0
7819551506292289°0
8G628205069601569°0
88TV0ETT8ZH6FSGLI ™0
879811552807 €6L9°0
60066L5506289259°0
G2€890L86£200799°0
GGTOL9GEEGOESTFI O
C6L6EV6VETECFCI970
SLOE09TIOLIGLESI O
TP90890€08LECESY O
6G€06L298L257L99°0
GESEPBSPSEI8TETI 0
LGG0Z8L08GL6FLLIO
6LT86892CF97¥SF9°0
TLBSBT06SGTZ09€99°0
8E0VL68BPTI9ELI 0
¥Z9TPG88LIF0EFSI ™0
€0T6CFIPTEETS089°0
G0LZ960787065879°0
Z0VL8FTLSBLZFTLI O
9LEBTS69EL906879°0
2EVBSC098FZT999°0
12679G57566971059°0
GEBSPSTIVPITO6FFO 0
FEOVS8EBLYICYBI "0
ZvL089997€620089°0
1906€£8E8YZ6768L9°0
90T6TL688Y0LZZLI O
6VFZOVEELLOTEDES O
8L0OTBESSBYPZZ699°0
989TP6£EEB900589°0
89EVS9EEETTIS0989°0
86TETOTLOGEDCE99°0
T667SE0¥STPZ8T89°0
LTLOOTLLYCPTEEPI O
L9PL9L6CS0LIGLLY™O

GTZOLYEEVLYZE FOCT
9GTPETTP866ES 60TT
€E€096LTZ97L8786TT
TEL6EVOE6TIGH "8GTT
6CV9E€9LERTSS 98TT
T90ZLTITP09GZ6 FSTT
7SEB9GTTIILOVL 960T
Z6TT1699T108EPZ 00TT
ZLTIPTE60TF66S 6ETT
L96960ETLCYLT 8TTIT

76001651286 CV1T
€L8SLLO9TBCZPS TLIT
992285597 F2G9TTT
8T9SELLEBBLOT B80T
P8GPOVLEVBTCT V60T
8Y6FLEVSBSYT0 680T
8Z6VEOVTI8Y6°G60T
9GZZ0606GCTLL OTTT
8C€9L99098218°€0TT
GLEEVL9BITO06°9CTT
€SLVP08TSSCT09€TT
GCZB866F8596ES T9TT
€9ZL06E0TTBES LTTT
8089291865965 PTTT
¥S80€6FPLCZEIS TOTT
9CTISPI8967€86 €TTT
G89L90T9C09C EFTT
€252502180720°9TTT
LVSLBTT6G9998°8STT
GL0980T92569°9F 1T
6T80TLZEOOTT6 "LETT
G6GOVETSLEY TR ZSTT
€LTEESLOBSI80 EFTT
PSCPS8TLOTLPT 9TIT
LpZ1209€868TE TETT
L60T89SEEO0PPO " TSTT
907 T68609LTES T9TT
GZLTBTISLEIET LETT
99LLZV8GBTOL 6ETT
PEBPSTLETLLLB OFTT
8CSPEIVTIZSVEE " 9GTT
€ELEIBTVESERC 8GTT
PT800C6L9GTT9 €CCT
LT8968T068GE€6°99TT
P09V LYFE69E0L OFTT
98987 V0LOEVTIV "PSTIT
G006L692LE8ZB ZSTT
92080CT6E8CTI6 " CPIT
L8Z605Z668CLL 8GTT
L68206865668L°CTCT
ZS8LS6GESSEST V6TT

SPLT
2561
1681
LLBT
06T
LO6T
6E£1C
S0tC
0961
680C
9681
vcoz
0o0te
vLee
SLTC
Loze
veee
SLOZ
veee
G10C
Tice
€20c
9022
S1Ze
G81Z
LLee
T€0C
seze
9802
L6TT
0612
9z1e
€122
6LTC
vLze
681C
€5ce
(X444
oLze
5922
9€TT
teee
0202
€622
8v2e
cLee
L9ze
65¢CC
LLze
1602
veze

SS
19
8G
LS
8§
86
59
9
09
79
85
09
29
L9
9
59
99
19
99
09
79
8S
€9
79
€9
99
8§
79
8S
29
9
09
29
19
79
09
19
19
29
29
8§
19
7S
19
09
09
09
09
09
7S
65

8TPBZLIVEZH0 96EGT
L909LLTLISER 0067 T
TP8Y606TSCEL TEIFT
Z8T68ETLT6EY LBTST
G8Z0E£8980GT OTLYT
¥72ST0022ZT0°€0TST
€PS8ETSZ0SE0°912HT
8GT9GZSTC00E " TGEFT
9€0£E€GTLICZTS 09871
€9T0PZ8C660T VICVT
9ZELEOBESDTZ CEEST
6C€0CTOPCSTT SChPT
8LG696GSFITY " F09FT
LP8TI8YOVIEE " CT6ET
LS90LO9LLSSE CTHETT
GPEZ6TBI6ECT TZEYT
769CSVLLIVLO FEOPT
TZ0Z8TOTTIVBL BLBFT
9950687 2€9L6 " ELBET
7G09TTEICYLI"660GT
TPISSP908LTI8 6007 T
9GSLT6LYBSEET900GT
G909VLZOETHE GLETT
€€9085€€9962° 79271
T098L0G899GF " 96971

TOSLBEOYTT CE6ET
€G906€ELEETCSI FOTIST
7L6907€E60798°62TH1T
GL0056T189580°600GT
LETTZESBBSCO CLEYT
PEVP0ZTIZLLBO 8E9PT
TLTZ8986F8LI9 LIBFT
90T£59082222"LIERT
€120006G768€°CL6PT
GOOETLLSTZEY "#907T
CILBIEYBSFOE CBLYT
80969EVEVO6T GPETT
69CETLSLLOTE LELYT
G6SP6V0L0CLL LBERT
£€226079GCT1V " 66€7T
GS0EP65C6TCI 680GT
T89€LBLTIVB66 9FFFT

TEETOCTIT99 P6FST
9818SVOVOVTIT ESERT
LBZO9VOVEFE 6187 T
€TIS06E6LETVL 6LSPT
698090682902 LFOPT
78989098¢96T1 62871
TT7G020GLS9 667 T
TT6VBEEVILE TO6PST
SP6969T6LFS 0CVPT

0050€
00r0E
00€0€
00z0€
00ToE
0000€
00662
0086C
00L62
0096¢C
00562
oore6cT
00€6C
00262
00T6C
00062
00682
00882
00L82
00982
00582
00¥8c
00€8¢
00z8¢
00182
00082
006LT
008LZ
ooLLe
009LZ
00sLZ
00bLeT
ooeLe
oozLe
00TLZ
0ooLe
00692
0089¢
00L9T
00992
00592
00%92
00€9¢2
0029t
00192
00092
00652
008sT
00LST
00952
00SST

Appendix III

TVP9ECEChOVLT 6E8G9
6LE£90¥G5279°0680L
¥81rZGTCF960 16579
80€5L629629°0L90L
§22520206€9°2€059

G8LOBLLELS LZELY
608LLOT6TLE6 " 8LO9Y
CLPBEIEG98T E€8TLY
LB66VLLEGOT 8LZI9
C8TEOVEISLY "VTThO
ZEGTTSTOLLT ¥LSBY
L006CTTEBED €8GO
€206280805CL9T1G9
71208602161 76959
L09698690€6 " FLEIY

€07L66G90F6T"88FST
729088299816 LYEVT
GGP6C0CSVTIC6 EE6ST
€T55859€658°96€EF T
8698718L0C0E"FS8ST
TZ9TPG9E9€EL " LITST
8TCTZCIEBLLL LERST
€CLP90T2Z99F79 8CEST
TEEOPSPEBTBL ELYST
PGTTIS8T8CZHZE " 7T6ST
8LE9660LEEFS 09TST
LPSLLTISESIT T609T
€GG6LG686EVE"8G9GT
SPLTIP0OLZSP8 GLSST
TGLEBTEE66CS 96PST

89928029269 °852ST
€7659988LE9C BTIHT
G66E9TESYLGT FOLST
9LSTLBIZETISE LOTHT
8S0PE0LITOCL PTIST
€6C9GE6L9LTO 8EGRYT
18£65€869770°8025T
2Z066S6FTTEY " 660GT
GEOPZSESS68C PFEST
TLOLETZPSOST G69GT
66€97Z0G0FTT TEGYT
L9E0ETTLISPS T98ST
¥660€ZSSE00L " 8BZHST
9009ZVZLT66C 9PEST
LVEEBELVVLYO L9ZST

TLET60F8C9060€8S°0
LEYOTZTEIITLILITI O
T9966EFTIOTLSFZLS O
LZ68T06782VESL09°0
LVOLSLLOPSGTOTEBS O
6G6L68960£202L09°0
220G68ELEGEGTLBS O
6808TLEEFZS00CLS O
8666£2685L165229°0
€L0€6£95069G65L95°0
¥09LETF0CL088GZ9 0
T9686€6LL667V0LISG 0
¥2Z0€5002€€09609°0
ZL6GLTEITSSSTRIS 0
68E€90L0TTESBYCLS O

9Z70ZSPSLSELERS 6E
G9T9TLIG9L6098 LE
G90ZPP100%0826°0F
9T067S6FT16TCTS GE
99680LG66L68EIL EY
8TF0Z6¥9L9708E €Y
GSEBOPTSLEOLEZO PP
P0G0SETTICHCZLIL LE
8GCV6GC9VLOVIL LS
G65L658005CE0C 6F
TLYELVLESTZZZT LS
80L086CZLTOCVCT ES
Shy6vF8IGFEROLE TS
9G7LG95€2527V06 " 8€E
¥6€96CLCSECTCT TV

908LEGB6T699C9L FT
¢SP0TEC61098566°GT
P6TIVP168897LZ0E T
908E9LTZHOPVL68 ST
290667676 CETILS T
LB6ECZTITLETSO9€EGT
2E€6582967L85998 71
GGEPTIELBTIBGCOL T
566972560269597°G1T
869€CZ90TLBVOLO T
L6L098ZLLLTS68 ST
8TTLETLO9ETO9ET T
Z98L8TEBZEBIBG0"GT
€675296L2768925° 71
€6VZP6F00TFETLI"PT

GZEV0LCZ00TZH98570
8089267L€8062229°0
LTZ66L2€90L62075°0
TL6T220TPS826509°0
6E£ET0Z0LCBYCIVPS O
Zv2697¥8022526€9°0
G8TE0SSV6VCEBLES O
7E6L0G0S6ETLFEZY O
860009TTT6086LL9°0
CLSTT6S8EBIVIERS O
¥GLGZ8TIVPTI6ETFE9 0
TP9PCPPSSG9E916S°0
9866€922CLELYCS9 0
7OTG96S6TGLTITLSY 0
€80ELBEBOELEED9970

LOLOTVPZLZO8LT GLIT
9L026618656€°08TT
7966LSTS0STIG GHTT
CYLBYTI9EE00PC LLTIT
PETLOBTLITLTZL €0CT
28986966€7ZZL"10CT
6LTI8VLZTLCSTE 6LTT
CEOTETHH6G8GOL LSTT
GZ8V6FEBTIFSLB ELCT
€9C7CV6CL0S6SY"VECT
8GPETGPZLELT 69CT
98€6060ST658E"TPCT
8€020¥960FTH " 2GCT
TGPLO8YPTIBLIOB E6TT
8TL6E0LBTI86T 90CT

8CZLT
1981
9%9T
8581
9%9T
LZLT
6CLT
CTLLT
9v9T
1691
L69T
€€9T
9691
PSLT
6VLT

9s
09
¥s
09
¥S
9
el
8G
4}
{4
¥S
{4
4
e
5SS

ChOZTIVEVEEZY "ELEST
€82€LLSZTT607€€CHT
GZL96GCGP680°6T8GT
£GEE98EVESOT 28CHT
BLET6GCCIVIS 6ELST
2GZ798€C220LLB ZS0ST

€06CL9CTT6 CCEST
E€LBTEESBBBEO FTCZST
€8TSE0F69G€0°6GEST
CTITV66TIVLEL 608GT
88E€TZ90TLBZB GVOGT
LS6E0LEICTSOV "9L6ST
¥LZS0PCLTZZS EPSST
9LEFPPTIZCZLO TIPST
GGEEE06988L TBEST

oooze
0061€
008T€
00LTE
0091€
00GTE
00v71E
00€TE
0ozte
00TIE
000TE
0060€
0080€
00L0E
0090¢€

Appendix IV

Sample of debug log

Appendix IV

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: Program started

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: BufferManager.BufferManager
(1000000,10000, DBMSLogger)

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:50 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

Appendix IV

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 10240000B of memory allocated

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: 100 segments created. Freesegment: 100

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: Checkpoint.checkpoint

(buffermanager, timerobj,properties, loggerobj)

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO:

TrabsactionController (1000000,10000,5,1000000,bu

fferManager,dbControll, loggerObj)

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: TransactionControll.run ()

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: Checkpoint.run()

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: Checkpoint.WriteSegment (0)

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: Segment0 is locked

18.mai.2005 15:01:51 DBMSLogger logMessage
INFO: RDMA will take 10.0367431640625
milliseconds

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: createThreads(5,1000000,bufferManager)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segment0 is unlocked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: All threads have been started

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Checkpoint.WriteSegment (1)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread0.run()

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl.run/()

Appendix IV

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2.run()

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3.run()

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4.run()

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segmentl is locked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: RDMA will take
10.0367431640625 milliseconds

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy (true)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage

INFO: CopyOnWrite is activated for theOth time

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Copy segment: 1 to segment 100

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segmentl is unlocked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Free 100-Locked 1

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Checkpoint.WriteSegment (2)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy (false)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segment2 is locked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: RDMA will take 10.0367431640625

milliseconds

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy(true)

18.mai.2005 15:01:52 DBMSLogger logMessage

INFO: CopyOnWrite is activated for thelth time

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Copy segment: 2 to segment 1

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Free 1l-Locked 2

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy (false)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segment2 is unlocked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Checkpoint.WriteSegment (3)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segment3 is locked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: RDMA will take
10.0367431640625 milliseconds

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy (true)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage

INFO: CopyOnWrite is activated for the2th time

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Copy segment: 3 to segment 2

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Free 2-Locked 3

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segment3 is unlocked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy(false)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Checkpoint.WriteSegment (4)

Appendix IV

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segment4 is locked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: RDMA will take
10.0367431640625 milliseconds

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy (true)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage

INFO: CopyOnWrite is activated for the3th time

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread0 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Copy segment: 4 to segment 3

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Free 3-Locked 4

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread0 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy (false)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segment4 is unlocked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Checkpoint.WriteSegment (5)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segment5 is locked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: RDMA will take
10.0367431640625 milliseconds

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy (true)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread0 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage

INFO: CopyOnWrite is activated for the4th time

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Copy segment: 5 to segment 4

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segment5 is unlocked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Free 4-Locked 5

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread0 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Checkpoint.WriteSegment (6)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread2 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy(false)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segmenté is locked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread0 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: RDMA will take
10.0367431640625 milliseconds

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy (true)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: CopyOnWrite is activated for the5th time

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread0 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Copy segment: 6 to segment 5

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Free 5-Locked 6

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread4 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Threadl is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: setBusy (false)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread0 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Thread3 is sleeping

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segmenté6 is unlocked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Checkpoint.WriteSegment (7)

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: Segment7 is locked

18.mai.2005 15:01:52 DBMSLogger logMessage
INFO: RDMA will take
10.0367431640625 milliseconds

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

