
June 2010
Ketil Bø, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Edge and line detection of complicated
and blurred objects

Kari Haugsdal

Problem Description
Edge and line detection is a central process in many image-processing projects. This process can
be quite problematic when the relevant object is complicated and or blurred.

The aim of this project is to develop and implement a sturdy algorithm for edge and line detection
of images with complicated or blurred objects. Examples are pictures with lots of texture or
blurriness.

It should also be possible for the program to detect and identify simple objects.

Implementation should be done using C++

Assignment given: 15. January 2010
Supervisor: Ketil Bø, IDI

 1

Acknowledgments

I would like to acknowledge the support and help from my supervisor Ketil Bø.
He was a most important help and drive force in guiding me in this project. I
would also take the time to thank Bakkelandet choco bocco café for excellent
Internet connection and a delicious lunch menu.

Summary

This report deals with edge and line detection in pictures with complicated
and/or blurred objects. It explores the alternatives available, in edge detection,
edge linking and object recognition. Choice of methods are the Canny edge
detection and Local edge search processing combined with regional edge
search processing in the form of polygon approximation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3

Table of Contents  
Acknowledgments.. p. 1 
Table of Contents.. p. 3  
1 Background……………………..…... p. 5 
2 Possible solutions ......................…………….. p. 17 
3 Solution ......................…………….. p. 27 
4 Implementation ......................…………….. p. 31 
5 Testing Evaluation and Conclusion ……………………………………....... p. 35 
   References……………………………………………………………………….......... p. 39 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 4

 5

Chapter 1

Background

This chapter will explain line and edge detection in general. A presentation of
the foundation for this master assignment, namely the pre-project and its
results will be given. In the end we will look at the stat of art today, and also
some examples of real life applications.

1.1 Line and edge detection

Line and edge detection is basically the process of finding all lines and edges
of interest in an image.

To clarify, it’s in its place to explain the difference between a line and an edge.
The difference between lines and edges are simple. Edges are the border of
an object in the picture, while lines are lines, which are something very thin in
the picture, like for example a clear-cut horizon or a thin string I will now and
then refer to lines and edges, only as lines, or only as edges, to avoid having
to write the whole “lines and edges” sentence in every mentioning of them.

Here follows an example of line and edge detection:

Figure 1 t.l figure 2 t.r [2]

The image being processed is a simple image consisting of clearly defined
shapes. Its output edges and lines are all coloured a random colour and
drawn with a pixel width of two. Even if it is a simple picture you can see that
some irrelevant and incomplete lines and edges has made its way into the
output.

As humans we have no problem recognising the spoon as an object and
tracing its edge around. But a computer has difficulty understanding that the
bright spot in the spoon is not an object, but part of the spoon. Also the spoon

 6

blends into the background to such a degree that the computer has difficulty
tracing the whole edge.

Many different methods for edge and line detection can be used and some
programs might have better success than others. Even so, when a simple
picture like the one above is tough to perform perfect edge and line detection
on, then consider the difficulties encountered in more complex real life (not
computer generated) pictures.

If you have some knowledge about the images being processed, or the
objects you want to find in them, that is if you have some knowledge about
your problem space at all, it is possible to tailor the algorithm towards your
target. For example you know that all input images are gone be separate
objects, lying on a table, or all input images are gone be portraits of peoples
faces and you want to find their eyes. Then it is possible to achieve pretty
good edge and line detection, followed by shape recognition. Even if the only
thing you know is that all input images are gone be manmade scenes and
objects, like city landscapes and furniture, and not nature images, you still
have an advantage. The reason is that man made objects have more straight
lines and perfect circles than pictures of nature.

The problem space of this project is defined in the problem description as
“developing a sturdy algorithm for complicated and/or blurred objects”. This
means in practice all kinds of pictures, difficult pictures as well as normal
difficulty pictures. To make an algorithm like this, that works equally well on all
kinds of pictures, without tailoring towards any kind of pre-knowledge about
the images, is very difficult, and perfection is impossible. Computers are still
fare from humans when it comes to vision.

1.1.1 Shape recognition

Shape recognition was mentioned and will be explained right away here in this
section, as it is an important part, or partner to edge and line detection. The
normal proceedings in edge and line detection, is first highlighting the lines
and edges of the image using some sort of edge detecting algorithm. The
resulting image is usually imperfect, with gaps in the lines and noise in the
form of small edges, even wrong edges. Some image analysis is needed to
correct and perfect the image.

You can go over and link similar edge points that is in close proximity, get rid
of noise edges, analyse the shapes in the output and complete the edges
based on this, or some combination these methods and so one.

Analysing the image gives you information about the shapes and lines found
in the image. Is the edge a line, a straight line? Maybe the edge is part of the
closed boarder of an object, and thus classifies as an actual edge? Is the
object in the shape of a square or a circle or is it a more complex arbitrary
shape (shapes having no simple analytical form)? Shape recognition should
be able to find and classify all the lines in an image like this.

 7

Showing you an example of simple shape recognition, here is the Hough
transform in its simplest form. The “shape” recognised is prominent straight
edges, and they are highlighted red and superimposed on the raw edge
detection output of the original picture.

Figure 3 t.l figure 4 t.r [3]
I will refer to shape recognition as object detection/recognition as well. Even
though objects are something more complex than shape. An object can have
a certain shape, but a shape can’t have an object. The problem definition
states that the resulting program should be able to detect and identify simple
objects.

Also it is natural to think that shape detection is a form of feature detection. A
line being straight or curved is a feature, and an edge being connected to
itself in a closed border is also a feature. But the concept future detection is
already used to refer to a class of methods that aim at computing abstractions
of image information, and then make local decisions at every image point
whether there is an image feature of an given type at that point or not [4].
Edge detection methods are feature detectors. To avoid confusion I will be
consistent in my use of the word shape/object detection/recognition.

1.2 Experiences from the pre-project

The first part of edge and line detection, namely the feature detection part,
was dealt with in the pre-project. Referring to the pre-project report this
section will present the algorithm selected for the feature detection part. Basic
image-processing methods and techniques that are important for both the pre-
project and this report will also briefly be presented.

1.2.1 Basic image-processing methods and techniques

Edge and line detection is a form of image segmentation, something that can
be done using either similarity or discontinuity. Thresholding, region growing,
region spitting and merging are all examples of similarity methods and are
called region-based segmentation. With discontinuity you separate the picture
based on sudden changes in intensity, this is called edge-based

 8

segmentation. You don’t necessarily need to base yourself on only on of the
two, and better results are often reached using a combination of the two.

In edge based segmentation you use derivative to detect sudden changes in
intensity in a picture.

Figure 5 [5]

Through spatial filtering you can determine first and second derivative in a
picture. One simple example is point detection. If we want to detect small
points that stand out in a picture, convolve a Laplace mask with the picture.

 9

Figure 6, Laplace

Pass the filter over every pixel in the picture, computing the sum of products
between filter and corresponding pixels at every point. This will give a strong
response when the filter is centered on a point.

This method can be used for line detection as well, with for example horizontal
and vertical lines as well as diagonal lines.

Figure 7

Edge detection is done in a similar way to point and line detection. You start
with computing the gradient of every point in the picture to attain the strength
and direction of that point. The gradient, which is a vector points in the
direction of greatest rate of change and can be computed using simple 1x1 or
2x2 spatial masks

Figure 8, Roberts Cross

Example, if a point is along the edge of a dark are, then the gradient of this
point will point in a 90-degree angle away from the edge towards the light

 10

neighboring area. The magnitude, or length of the gradient vector gives us the
value of this greatest rate of change and it can be computed using this
equation.

Equation 1

The gradient angle is computed like this:

Equation 2

Mask that are symmetric about the center point, the smallest being of size
3x3, take into account the nature of the data on the opposite sides, and thus
carry more information about the direction of the edge.

Figure 9, Prewitt

Figure 10, Sobel

1.2.2 Canny edge detector

There are several methods for edge detection which all has the aim of
identifying points in an image of which the image brightness changes sharply.

 11

The Canny edge detector, or Canny operator was designed to be an optimal
edge detector (according to particular criteria – there are other detectors
around that also claim to be optimal with respect to slightly different criteria)
[6]. To make an optimal edge detection algorithm is in principle impossible,
and a highly subjective task. Canny Edge detection was developed by John F.
Canny in an attempt to create an optimal edge detection algorithm. Although
his work was done in the early days of computer vision, the Canny edge
detector is still a state-of the-art edge detector, and it is hard to find an edge
detector that performs significantly better than the Canny edge detector [7] [8].

With this in mind the canny operator was the choice of feature detector for my
algorithm, and thus the base for this report.

The canny edge detector is a multi-stage process, and each step will be
briefly explained here.

1. First step is like many other edge detection methods, noise reduction. You
smooth the input image with a Gaussian filter.

2. Second step is computing the gradient magnitude and angle images, using
Roberts, Prewitt or Sobel for example.

3. Third step is to apply nonmaxima suppression on the gradient magnitude
picture, this because the gradient magnitude picture still contains many thick
edges that we whish to make thinner. Nonmaxima suppression is done by
using the gradient angle in every point to find the direction (horizontal, vertical
and two diagonal directions) that describes the point best. If the value in this
point is less than minimum two of its neighbors along its direction, then
suppress the point (make it part of the background instead of the edge).

4. Step four is to use double thresholding and connectivity analysis to detect
and link edges. Double thresholding or hysteresis thresholding make use of
two thresholds, one low and one high. All points from above the highest
threshold are adopted, but points between the higher and lower threshold is
included, only if they connect to the strong points calculated from the high
threshold. Deciding if points are connected can be done using for example 8-
connectivity, or you can trace all points using the directional data of the
gradient picture.

As you can see some choices are given as to how to implement the details of
the algorithm, where the main adjustable parameters that affect the
effectiveness and computation time the most, are the size of the Gaussian
filter and choice of Thresholds [9]. Besides this the recipe is pretty rigid, and
results between different implementations are often similar.

My implementation from the pre-project of the Canny edge detector comes
attached to this report, and is the base for my project, and part of the finished
product. Some bug fixing has been done since the completion of the pre-
project and the detector performs its task quite well. Here is an example use
of the finished program, in all its stages:

 12

Figure 11 t.l, the NTNU main building, figure 12 t.r, greyscaled and
smoothened, figure 13 bottom, gradient Image.

 13

Figure 14 top, Nonmaxima suppression, figure 15 bottom, Hysteresis
Thresholding.

 14

Figure 16, Angles colored

The first step as explained is gray scaling and smoothing of the picture.
Second up comes computing the gradient, then its time to thin the edges
down, and get rid of noise using nonmaxima suppression and hysteresis
thresholding. The uneven surface of the building gives us a lot of noise, but as
you can see most of this is taken care of with the hysteresis thresholding. This
combats one of the problems mentioned in the problem description, namely
images with lots of texture.

The last image is added to show the angles saved in the underlying data
structure. Every pixel has a red, blue and green value, as well as an angle
value. Coloring vertical pixels red, horizontal pixels green, 45-degree pixels
yellow and 135-degree pixels blue, it is possible to visualize these angles.

1.3 State of the art

Today, edge detection is used in many real life applications of image
processing and computer vision. Major application areas are medical image
processing, shape and object recognition like for example industrial image
processing, and so one. Real time video processing for edge detection are
also in use, in the form of video surveillance, traffic management and so one.
These operations typically require very high computation power.

 15

Figure 17 t.l, Traffic Surveillance, Figure 18 t.r Motion Stereo Parking
Assistant [10]

Figure 19 t.l, Ultrasound, figure 20 t.r, processed enhanced image showing
lines more clearly.

Very good results can be achieved when we have knowledge about the
problem space, as is the case in most of the real life applications in use today.
Perfect edge detection is a subjective task, and we are fare from that goal.
Also, the most popular methods in use today, like the Canny operator and
Hough transform, were developed the early days of computer vision, and are
still popular today. So despite good results in current methods, it is easy to
see that the room for improvement is huge.

 
 
 
 
 
 
 
 
 

 16

 17

Chapter 2

Possible solutions

This chapter is all about reviewing all the different alternatives available when
it comes to choice of method for this project. Only the big scale methods are
examined, and choices available after choosing the main approach will be
researched further in the next chapter along with the reasoning behind
choosing it. We will start of lightly and examine different edge thinning
algorithms before we move on to looking at probably the main point of this
report, namely edge linking.

2.1 Edge-thinning algorithms

An alternative “fifth” step in the Canny edge detection algorithm is to apply an
edge-thinning algorithm to the result. Despite applying nonmaxima
suppression in the Canny edge detectors third step, there are still edges
thicker than 1 pixel left, and for achieving effective edge linking, which is the
next step after edge detection, it is advised to use 1-pixel thick edges as a
foundation.

When it comes to the choice of an edge-thinning algorithm we have some
alternatives. Here the two most common methods is thinning and
skeletonizing. These are both methods for thinning, or eroding binary pictures
into 1-pixel thick edges, but give significantly different output that is worth
taking a look at.

Thinning and skeletonizing are both morphological operations. Morphology in
biology deals with form and structure of animals. In the context of
mathematical morphology, morphological operations are tools for extracting
image components that are useful for describing region shape, such as
boundaries and skeletons.

2.1.1 Skeletonization

The intuitive definition of a skeleton is based on something called “the prairie
fire concept”. Visualize the image region to be skeletonized as a prairie of dry
grass. Suppose a fire is lit along its border, all fire fronts will advance into the
region at the same speed. The skeleton of the region is then the set of points
reached by more than one fire front at the same time.

The skeleton of a region R with border B is thus defined as follows:

- For each point p in R, we find its closest neighbor in B.

 18

- If p has more than one such neighbor, it I said to belong to the skeleton of R.

There are many types of skeletonization algorithms, all of which produce
slightly different results. Some simple examples of skeletons follow here.

Figure 21 t.l, shapes, figure 22 t.r, the skeleton of the shapes:
[11]

2.1.2 Erosion

As a small footnote I would like to mention erosion, as it is a method easily
confused with thinning. Also an morphological operation erosion erodes a
picture by a variable sized structure element with the goal being eroding away
noise like lines or salt and pepper noise, while still keeping the rest of the
picture bigger than 1-pixel thick edges. This makes erosion unsuitable for our
purpose, and we can disregard it as an option.

2.1.3 Thinning

Thinning is essentially a morphological operation that is used to remove
selected foreground pixels from binary images, somewhat like erosion.
Thinning can be used for several applications but is said to be particularly
useful for skeletonization [13] which tells us that thinning, produces a sort of
skeleton, and that these two different methods are also closely related.

The morphological operation thinning in itself is most commonly employed to
tidy up the output of edge detectors [12], which describes exactly the use we
are planning for something that bids well! Now, lets look at the method and it
output, before reaching any conclusions.

The thinning algorithm work like all other morphological operations, by using a
structuring element “the thinning operation is calculated by translating the

 19

origin of the structuring element to each possible pixel position in the image,
and at each such position comparing it with the underlying image pixels. If the
foreground and background pixels in the structuring element exactly match
foreground and background pixels in the image, then the image pixel
underneath the origin of the structuring element is set to background (zero).
Otherwise it is left unchanged. The operator is normally applied repeatedly
until it causes no further changes to the image” [14].

Figure 23 [15]

The structuring element can vary in appearance, and the choice of structuring
element decides the application for the thinning operation. Also, some pruning
or conversion to m-connectivity is also usually applied at the end to get rid off
unwanted irregularities or spurts, and in the m-connectivity case to eliminate
multiple paths.

2.2 Edge-linking algorithms

Edge detection should ideally yield sets of pixels lying only on edges. In
practice however, these pixels seldom characterize edges completely
because of noise and breaks. An example of this is simply the canny edge

 20

output picture, presented earlier in this report. A linking algorithm therefore
typically follows edge detection, and there exists three fundamental
approaches to this, namely local, regional and global processing [16].

2.2.1 Local processing

Local processing is one of the most simple and intuitive approach to edge
linking. You analyze the characteristics of pixels in a small neighbourhood
about every point that has been declared an edge point by the presiding edge
detection method.

In analyzing you look at the two principal properties used for establishing
similarity of edge pixels, namely gradient magnitude and angle. Two pixels are
similar if the difference in gradient magnitude and angle doesn't exceed a set
magnitude and a set angle threshold.

Local edge linking methods usually start at some random edge point and
consider points in the local neighbourhood of that point for similarity.
If the points satisfy the similarity constraint then the points are added to the
current edge set. The neighbourhood based around the recently added edge
points are then considered in turn and so on.

Figure 24 [17]

If no more points satisfying the constraint are found, we conclude that we are
at the end of the edge and stop the process. Continuing, the method moves
over to a new starting point, and the process is repeated until all edge points
have been linked or at least considered for linking once. [18]
This is the main idea of local processing, but versions taking use of many
different strategies have been adopted to control the search and selection
process. Graph three search, dynamic programming and relaxation labeling
techniques are some possibilities [20]

Gonzales chooses to describe a simple version in more detail, suitable for real
time applications because of its computationally cheap implementation. It
goes like this:

1. Compute the magnitude and angle arrays

 21

2. Form a binary image whose value at any point is set to 1 if the point
satisfies the magnitude and angle threshold.

3. Scan the rows of the binary image and fill all gaps in each row that do
not exceed a specified length.

4. To detect gaps in any other direction, rotate the image by this angle
and apply the scanning procedure again.

It is worth to notice that this application is best soothed for simple images,
where our interest lies in horizontal land vertical lines. This is also the
application found most frequently in practice. When our interest lies in
numerous angle directions, it is more practical to combine step 3 and 4 into a
single scanning procedure since image rotation is expensive.

2.2.2 regional processing

Often, the location of regions of interest in an image is known or can be
determined. For example you know the end points of an edge and the points
belonging to the edge, and you want to find the best way of fitting a straight
line between the points to get a polygonal approximation.

A polygon is a closed figure made by joining line segments, where each line
segment intersects exactly two others [21] The following are examples of
polygons:

Figure 25 [19]

And these are examples of figures that are not polygons:

Figure 26 [22]

 22

A real life example is an x-ray image of a human tooth [23]. You know the
start and the end of the edge of the tooth in every case, and you also know
that the edge should be complete and border the tooth. Using this information
along with polygon approximation, a regional processing method, it should be
relatively easy to construct the edge of the tooth.

At a first glance regional processing sounds like this might not be an
alternative solution. The project problem space consists of all imaginable
pictures and we don't have the luxury of that level of specific pre knowledge.
Second thoughts give another picture. Even if we don't have any pre-
knowledge, it doesn’t mean we can’t acquire the knowledge.

2.2.2.1 Polygon Approximation

Polygon approximation is attractive because they can capture the essential
shape features of a region. This can come in handy if you are trying to
achieve object recognition. One way of doing this is illustrated in Gonzales like
this:

Figure 27 [24]

The points belong to an open curve, and we whish to approximate it. To do
this you start by computing the parameters of a straight line passing through A
and B. Then you compute the vertical distance from all other points in that
curve to this line, and select the point that gives the maximum distance. If the
distance exceeds a specified threshold, then the corresponding point is
declared a vertex.

Here another version of polygon approximation, illustrated on a closed edge.
The approximation is done while searching the edge, and knowing where the
end pixel of the edge is not necessary.

 23

Figure 28 [25]

2.2.3 Global processing

The methods discussed so fare are applicable in situations where knowledge
about pixels belonging to individual applications are at least partially available.
For local processing this means that we have some idea of how big a
neighbourhood we want for our implementation, for gap linking to be effective.

If gaps between pixels in an object are very large, local processing methods
are not that effective. If all we have is an edge image and no knowledge about
where objects of interest might be, then all pixels are candidates for linking
and we need some way to consider all the edge points in the image at the
same time.

Global edge linker does this, all the edge point of an image is considered at
the same time and sets of edge points are sought according to some similarity
constraints, or global property.

2.2.3.1 Hough transform

The most common and famous global processing method is the Hough
transform. It is a technique that can be used to isolate features of a particular
shape within an image. The classical Hough transform requires the desired
feature to be specified in some parametric form, and is therefore most
commonly used to detect regular curves, such as lines circles and ellipses.

A modification of the classical Hough transform enables the Hough transform
to detect arbitrary objects as well, given a description of the shape true a
model. This is called generalized Hough transform and is computationally
more complex than the classical version, which is complex enough. Also,
since we are considering all kinds of input pictures, and we have no
knowledge of what kind of arbitrary shapes we are looking for I will leave off
discussing generalized Hough transform any further.

The motivating idea behind the Hough transform for line detection is that each
input coordinate point, indicates its contribution to the physical line, which
gave rise to that image point [26] A simple example is fitting a set of discrete
image points to a set of line segments, here illustrated with some possible
solutions.

 24

Figure 29 [26]

Further on, we know how to describe a line segment conveniently as the
equation:

Equation 3

Figure 30 [27]

This makes r and theta the unknown variables we seek. If we plot the possible
(r,theta) values defined by each (x,y) edge coordinate point, then we get a
point-to-curve transformation. Viewing this Hough parameter space, the
transform is implemented by quantizing the space into finite intervals of
accumulator cells. Resulting peaks in the accumulator array represents strong
evidence that a corresponding straight line exists in the image.

We can use the same procedure to detect other features with analytical
description, like for example circles where the parametric description goes like
this.

Equation 4

a and b are the coordinates of the center, and r is the radius.

 25

To show you an case of practical use I will present a simple example.

Figure 31 t.l Input 32, t.r picture after applying Canny edge detector [28]

The Hough transform gives us this accumulator array intensity image as
output:

Figure 33

The eight separate straight lines segments are clearly visible as high intensity
peaks.

Mapping back the Hough transform space into Cartesian space yields a set of
line descriptions of the image. By overlapping these lines on the original
image we can confirm the result.

 26

Figure 34

Note that the lines generated by the Hough transform are infinite in length, but
that further image analysis, where you only include the portions of the lines
that have some of the original edge pixels in them, will give us the actual lines
of the image.

Looking at the good and bad aspects of this technique the most apparent
arguments are the Hough transforms resistance to noise and large gaps, plus
its ability to distinguish different shapes within a picture. The bad aspect is its
computational complexity.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 27

Chapter 3

Solution

In this chapter the choice of solution is described and the reason for choosing
it is also given. We look upon the solution in more detail, and discuss new
choices encountered concerning the implementation of the solution.

3.1 Edge-thinning algorithm

The first choice encountered one the path of making a sturdy edge and line
detection algorithm based on canny edge detection is seemingly a small and
simple one, namely the choice of edge-thinning algorithm.

As discussed in the alternative solutions chapter, after some literature study
on the subject the candidates were thinning and skeletonization. Both
skeletonization and thinning strives for a result consisting of 1-pixel thick
edges, and looking at their output, they are ratter similar.

Figure 35 [29]

 28

However skeletonization does seem to have a tiny bit more complex output
than thinning, with a tendency to produce unwanted spurts and irregularities.
Also, if you look at the aim of the two methods, you will find them to differ
greatly.

Skeletonizing aims is to produce a skeletal remnant that preserves the shape
and connectivity of the original region [30] It is consequently easy to see that
the method is supposed to be used on objects and regions bigger than the
output of an edge detection method.

This realisation, combined with observations from comparing the two
methods, in addition to claims that thinning is the most common used
morphological method for tidying up edge detector output [31], leads to the
conclusion that thinning is the superior method.

3.1.1 m-connectivity

m-connectivity is the last step of the thinning algorithm, and is used to avoid multiple
paths in the thinned edges. The last figure in the image thinning figure shows the
result of such a conversion to m-connectivity. To achieve this you simply convolve
the picture with another hit-or-miss transform.

Figure 36 [1]

It is easy to see that no edges will be broken using this.

3.2 Edge-linking algorithm

Choosing between the different edge linking algorithms was not as easy as
choosing an edge-thinning algorithm. Immediately Hough transform looks like
the best candidate, for a number of reasons.

Looking at the problem definition the task is to develop a sturdy algorithm for
edge and line detection for images with complicated and/or blurred objects. At
the same time, it should be possible for the program to detect and identify
simple objects.
As discussed in chapter 3, the Hough transform is both resilient to noise, and
therefore sturdy. More so than local processing that relies on some knowledge
of the picture to avoid big gaps. Or actually, you can make a relatively good

 29

local processing method that doesn't relies on any information about the input
picture, but you will get different performance depending on the form of the
input, for example factors like distance between objects in a picture, overlap
and so on.

While global edge linking methods are more complicated, they avoid merging
of different contours into one object (which is a big problem with local search
based processing) to a much larger degree than other processing will [32]

Taking into account the third demand for the program to be able to detect and
identify simple objects, something Hough excels at, or ratter is tailored for,
Hough seems the clear-cut best choice. While Hough transform is not perfect,
it is still fare superior to the other alternatives, considering the problem
definition.

Hough biggest weakness is its sophisticated calculation, something that has
prevented effective real-time application of the Hough transform for a long
time. (Recently a Kernel based Hough transform has been proposed to
improve this). This suggests that a need for low computation cost applications
of edge and line detection, plus object recognition might exist.

Also even though Hough is good at identifying clear features that can be
specified in parametric form it is not good for identifying arbitrary objects. The
problem definition states that the program should be able to identify simple
shapes, but it also says that the input images should consist of complicated
objects. This is slightly contradicting and can be interpreted as simple object
recognition is expected possible, but that identifying complex objects, like for
example a human, as well should be tried implemented.

To achieve this, maybe the best solution is a combination of the above
methods? Global processing to identify the clear-cut shapes and lines of a
picture combined with edge tracing and polygon approximation for the
arbitrary objects, or blobs, as I will referee to them from now one.

Hough is not a good method for blob recognition, as the generalized Hough
transform that deals with them require a model of the blob before it can
identify it. Maybe implementing local processing first, as this is the most
intuitive, and not as difficult method, is the best way to go?

In addition to all this local processing seemed intriguing to implement. In the
pre-project I went for the clear-cut choice method, the canny edge detector,
and implemented it step by step, with not much room for adaptation and
experimenting. Going for the Hough transform would be pretty much the same
thing. The simpler local processing combined with regional processing
approach just seemed more appealing, with many choices for implementing
the search and the preceding image analysis. It looked like, its minimal
definition made room for experimentation and improvement.

The best choice would be to implement them all, starting with the simplest and
building upon it within the reach of once ability and time limit. This along with

 30

the blob argument, and my early interpretation of the problem definition
resulted in me going with local processing as choice of solution. Despite
Hough transform being the “correct” solution.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 31

Chapter 4

Implementation

This chapter will clarify shortly the tools used in the implementation. It will also
give an overview of the structure, main methods and principle behind the
finished program. Actual experiments and results will be discussed in the next
chapter.

4.1 Programming tools

The programming was done in C++, an excellent tool for image processing, as
computation cost can become pretty high. The program was written on a Mac
in the programming environment Xcode, version 3.0.

Tools used for the image loading and handling was SDL, Simple Directmedia
Layer. This is a cross-platform multimedia library with OpenGL.

The drawing of the edges, after getting all the vertices in place was done
using platform independent OpenGL methods.

The two are included like this

#include "SDL.h"
#include "SDL_opengl.h"

Some problem was encountered with the two using different definitions of
RBG color.

For the SDL part of the program this definition had to be used

typedef struct {
unsigned char a, r, g, b;
} pixel;

While the openGL part only worked with this definition.

typedef struct {
 unsigned char b, g, r, a;
} pixel;

This made it easier to separate the two parts into two programs, and is the
reason for doing so.

 32

4.2 Program structure and main methods

Starting with the first part, namely the edge detection part, the canny edge
detector is implemented using five self-explaining methods:

void ModifyImage(SDL_Surface *surface, SDL_Surface *copy, SDL_Surface *copy2){

GreyScaleHighestRGB(surface, copy);
GaussianSmoothing(surface, copy);
Gradient(surface, copy);
NonmaximaSuppression(surface, copy);
HysteresisThresholding(surface, copy, copy2);

//pre-project (some bug fixing done)
//---

Afterword comes the new additions.

//---
//master

Thinning(surface, copy);
MConnectivity(surface, copy);
MakeFrame(surface);
Linking(surface, copy);
GetRidOfSmallEdges(surface, copy, 20);
LinkGaps(surface, copy, 10);

//ColorEdges(surface, copy); //tool for viewing results easily

Thinning and m-connectivity has been discussed throughout, one small
addition being a bug discovered in the choice of m-connectivity chosen. If you
look at the original hit-or-miss filters contains 0 and X “don't care” values.
Actually all of these should be “don't care” values, or it is easy to get multiple
paths in the instances that the edge has contacts with other edges.

Make Frame is to get rid of noise in the frame when the algorithm interprets
the frame as an edge in itself.

Linking, is the main part, and contains the local processing edge search. It
works simply as explained earlier in this report by searching the picture for
edge points that it uses for start points of an edge. It traces the edge as long
as there are neighbors available, and end in an end point if not. The edge
traced is deleted form the picture and next start point is searched out.

A record must be kept of the linked points, and a simple bookkeeping
procedure for this is used by assign different intensity values to each set of
linked edge pixels. Also each edge point has a value defining if it is an start,
middle or end point. If the edge forms a closed formation, the start point is sett
to be the SaE value,that is Start and End point.

 33

After linking the picture is gone true and edges shorter than 20 pixels are
deleted.

Then, the edge liking continues with gap linking. Every end and start point are
searched in a 10 x 10 neighborhood, and candidates for linking are found
here. The candidates are chosen based on four cases. First case is if the pixel
is in the 3x3 neighborhood, then it is preferred over other pixels. Case 2 is if
the pixels share the same angle value, hen this is prefer over other
candidates. Case 3 is similar (but not the same) angels, and Case 4 is the
closest one, if non of the above cases where achieved.

Moving over to the shape detection and edge drawing part of the program we
have the method

void DrawEdges(SDL_Surface *image, SDL_Surface *copy, int pictureWidth, int
pictureHight);

This extracts one and one edge, calls

Int info = ShapeRecognition(copy, x, y, questionErrorLimitPolygonAdaption, c1, c2,
c3, cornerLimit, strictCornerLimit, smalestDegreeTriangel, squareSideLimit);

And asks what shape the edge has. It then draws the edge with a color
according to its shape.

The different instances are:
0 purple - straight line
1 and 2 green – semi straight lines
3 yellow – triangle
4 red – square
5 blue – blob (closed shape, not a triangle or square)
6 green – everything else

The number here represents number of vertices encountered in the edge
when it is drawn with a pretty “angular” polygon approximation.

After getting this information DrawEdges() starts drawing the actual edges
using a much less “angular” polygon approximation.

This is the main structure of my implementation.

 
 
 
 
 
 

 34

 35

Chapter 5

Testing, Evaluation and Conclusion

This chapter evaluates and tests the resulting program.

5.1 Output Edges and its classification

Looking at different input images an it’s output I will now evaluate the
performance of the edge detection implementation.

Taking a lock at the NTNU main building example again, you will see the
progress made.

The different coolers are due to classification of the shape of the edge
outputs. Most of them are unclassified, and green, while a few blue blobs has
made its way into the output, along with straight, or semi straight lines collard
purple.

A better example to use is this simple picture.

 36

Here shanging the distance for gap linking to a higher number gives better
results.

And example of a problem encountered with my implementation, is false or
wrong counting of edge vertices.

 37

A you can see are half of the windows classified as blobs or triangles. I have
been unable to identify the bug causing this problem.

At last one more example, of good performance from my implementation, in in
its place.

 38

As for the evaluation of my results I think they could have been much better if
I had gone with Hough transform instead. Even so working with local and
regional processing has been fun, and I have learned a lot about image
processing in the process.

My conclusion would be that local processing is good for tracing all edges, not
just geometrical once, but it is probably not the best approach for object
detection.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 39

References

[1](http://www.cis.hut.fi/Opinnot/T-61.5100/laskarit/dkkexer6_ans.pdf)
[2](http://www.csse.uwa.edu.au/~pk/research/matlabfns/LineSegments/examp
le/)
[3](http://moscoso.org/pub/video/opencv/svn/opencvlibrary/trunk/opencv/doc/r
ef/opencvref_cv.htm)
[4](http://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
[5] (Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing,
Third Edition, 2008, page 694)
[6](http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm)
[7](Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing,
Third Edition, 2008, page 719)
[8](http://en.wikipedia.org/wiki/Edge_detection#Approaches_to_edge_detectio
n).
[9](http://en.wikipedia.org/wiki/Canny_edge_detector, Parameters)
[10] (http://www.mathworks.de/company/newsletters/digest/2008/nov/motion-
stereo.html)
[11] (http://homepages.inf.ed.ac.uk/rbf/HIPR2/skeleton.htm)
[12](http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm)
[13](http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm)
[14](http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm)
[15] (Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Third
Edition, 2008, Chapter 9.5.5)
[16] (Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Third
Edition, 2008, Chapter 10.2.7)
[17](http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARSHALL
/node31.html)
[18](http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARSHALL
/node31.html)
[19] (http://www.mathleague.com/help/geometry/polygons.htm#polygon)
[20](http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARSHALL
/node31.html)
[21] (http://www.mathleague.com/help/geometry/polygons.htm#polygon)
[22] (http://www.mathleague.com/help/geometry/polygons.htm#polygon)
[23](Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Third
Edition, 2008, Chapter 10.2.7)
[24] (Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Third
Edition, 2008, Chapter 10.2.7)
[25] (http://folk.ntnu.no/stormark/nambafa/depot/bildetek.pdf)
[26] (http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm)
[27] (http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm)
[28] (http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm)
[29] (http://www-scf.usc.edu/~zhangxia/my_projects.html)
[30](http://homepages.inf.ed.ac.uk/rbf/HIPR2/skeleton.htm)
[31] (http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm)
[32] (http://www.lana.lt/journal/19/Atkociunas.pdf)

	Title Page
	Problem Description
	Microsoft Word - Fiksa.doc

