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Abstract: The aim of the paper is to study and determine the effect of voltage increasing from 500
up to 650 VDC on chemical and electrochemical properties of the obtained porous coatings with
plasma electrolytic oxidation (PEO) processes, known also as micro arc oxidation (MAO). In the
present paper, the chemical and electrochemical characterization of porous phosphate coatings
enriched with magnesium or zinc on commercially pure (CP) Titanium Grade 2 under DC-PEO
obtained in electrolytes based on concentrated 85% analytically pure H3PO4 (98 g/mole) acid with
additions of 500 g·L−1 of zinc nitrate Zn(NO3)2·6H2O or magnesium nitrate Mg(NO3)2·6H2O, are
described. These materials were characterized using scanning electron microscope (SEM) with
energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and glow
discharge optical emission spectroscopy (GDOES). It was found that the voltage of PEO process has
influence on the chemical composition and thickness of the obtained porous coatings as well as on
their electrochemical behavior. The higher the potential of PEO treatment, the higher the amount of
zinc-to-phosphorus ratio for zinc enriched coatings was obtained, whereas in magnesium enriched
coatings, the average amount of magnesium detected in PEO coating is approximately independent
of the PEO voltages. Based on XPS studies, it was found out that most likely the top 10 nm of porous
coatings is constructed of titanium (Ti4+), magnesium (Mg2+), zinc (Zn2+), and phosphates PO4

3−

and/or HPO4
2− and/or H2PO4

− and/or P2O7
4−. On the basis of GDOES studies, a four-sub-layer

model of PEO coatings is proposed. Analysis of the potentiodynamic corrosion curves allowed to
conclude that the best electrochemical repeatability was noted for magnesium and zinc enriched
coatings obtained at 575 VDC.
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1. Introduction

Electrochemical treatments, such as electropolishing [1–3] and plasma electrolytic oxidation
(micro arc oxidation) [4–6] may be used for preparing nano- and micro-layers, respectively. In case
of standard electropolishing (EP) [7–10], magnetoelectropolishing (MEP) [9–16] and high-current
density electropolishing (HDEP) [17–20] it is possible to obtain passive layers with different chemical
compositions [20–26] as well as hydrogenation [27–29], which affect the corrosion behavior [30,31]
and mechanical [32,33] properties of the treated workpieces. To obtain the porous micro-coatings on
titanium [34–37] and its alloys [38–44], plasma electrolytic oxidation (PEO) should be used. It is worth
noting that the obtained porous coatings may contain elements originating from the electrolytes, which
lead to a bone-like structure (phosphorus and calcium) [45–47] and show antibacterial properties
(copper and zinc) [48–54] with simultaneous high corrosion resistance. It should be also pointed
out that the addition of magnesium accelerates wound healing, what in case of biomaterials is very
important. Additionally, it may be noted that the chemical composition [36,37,41,51] of PEO coatings
as well as their porosity [42,52] which simply undergo the description by roughness parameters [55,56],
may be expected.

The aim of the paper is to determine the effect of DC voltage and PEO processing time on the
creation of porous coatings enriched with magnesium or zinc on CP Titanium Grade 2. Electrolytes
based on concentrated 85% analytically pure H3PO4 (98 g/mole) acid, containing zinc nitrate
Zn(NO3)2·6H2O or magnesium nitrate Mg(NO3)2·6H2O, were used in the study.

2. Method

Plasma electrolytic oxidation (micro arc oxidation) process was used to treat CP Titanium Grade
2 samples with dimensions 10 mm × 10 mm × 2 mm. The plasma electrolytic oxidation (PEO) was
performed at the voltages of 500, 575 and 650 VDC by using the commercial DC power supply PWR
1600H (KIKUSUI Electronics Corporation International, Yokohama, Kanagawa, Japan), 0-650V/0-8A.
The electrolyte consisted of a concentrated 85% analytically pure H3PO4 (98 g/mole) acid, with
500 g·L−1 of zinc nitrate Zn(NO3)2·6H2O or magnesium nitrate Mg(NO3)2·6H2O.

A scanning electron microscope Quanta 250 FEI with Low Vacuum and ESEM mode
(Field Electron and Iron Company, Hillsboro, OR, USA) and a field emission cathode as well as
an energy dispersive EDS system in a Noran System Six with nitrogen-free silicon drift detector (EDS,
Silicon Drift Detectors: Keith Thompson, Thermo Fisher Scientific, Madison, WI, USA), were used.

X-ray photoelectron spectroscopy (XPS) measurements on studied sample surfaces were
performed by means of SCIENCE SES 2002 instrument (SCIENTA AB, ScientaOmicron, Uppsala,
Sweden) using a monochromatic (Gammadata-Scienta) Al K(alpha) (hν = 1486.6 eV) X-ray source
(18.7 mA, 13.02 kV). Scan analyses were carried out with an analysis area of 1 mm × 3 mm and a
pass energy of 500 eV with the energy step 0.2 eV and step time 200 ms. The binding energy of the
spectrometer was calibrated by the position of the Fermi level on a clean metallic sample. The power
supplies were stable and of high accuracy. The experiments were carried out in an ultra-high vacuum
system (SCIENTA AB, ScientaOmicron, Uppsala, Sweden) with a base pressure of about 6 × 10−8 Pa.
The XPS spectra were recorded in normal emission. For the XPS analyses, the CasaXPS 2.3.14 software
(Casa Software Ltd., Teignmouth, Devon, UK) (Shirley background type, D. A. Shirley, Lawrence
Berkeley National Laboratory, University of California, Berkeley, CA, USA) [57], with the help of XPS
tables [58], was used. All the binding energy values presented in this paper were charge corrected to
C 1s at 284.8 eV.

Glow discharge optical emission spectroscopy (GDOES) measurements on PEO oxidized titanium
samples were performed using a Horiba Scientific GD Profiler 2 instrument (HORIBA Scientific,
Palaiseau, France). A radio frequency (RF) pulsed source was used to generate plasma under
the following conditions: pressure: 700 Pa, power: 40 W, frequency: 3000 Hz, duty cycle: 0.25,
anode diameter: 4 mm. The signals of magnesium (285 nm), zinc (481 nm), phosphorus (178 nm),
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oxygen (130 nm), nitrogen (149 nm), hydrogen (122 nm), and titanium (365 nm) were simultaneously
measured [59–61].

Linear polarization measurements were carried out in Ringer’s solution, which contains sodium
chloride (8.69 g/L), potassium chloride (0.3 g/L), calcium chloride (0.48 g/L), through a Gamry
Femtostat potentiostat using a 3-electrode configuration with a saturated calomel electrode (SCE) as
reference electrode and platinum wire as counter electrode. Before polarization, the samples were
immersed for 1 h in the electrolyte (OCP). Linear polarization was performed with 1 mV/s scan rate
and the starting potential was set up for every sample as 100 mV lower than the OCP potential, while
the ending potential was set up for 2000 mV (vs. SCE). One has to add that minimum 15 repeats were
performed for each EDS experiment; one depth profile was performed for GDOES, and three corrosion
measurements were done for each statistical plan.

3. Results and Discussion

In Figure 1, current vs. voltage curves of CP Titanium Grade 2 after PEO treatment in 500 g
Mg(NO3)2 or 500 g Zn (NO3)2 in 1000 mL H3PO4 electrolyte, are shown. The current density peaks
in the voltage range from 0 till 200 V should be interpreted as plasma inflammation in solution.
Above a voltage of about 200 V the stabilization of current densities at about 50 A/dm2 is observed.
This means that all the PEO treatments were carried out under the same current density conditions.
The limiting values of voltage for the different PEO tests were defined: the lower voltage limit (500 VDC)
corresponds to the minimum current density for which it is possible to obtain a porous coating in the
two solutions, whereas the upper voltage limit (650 VDC) is due to the hardware limitation, i.e., the
stabilized power supply.
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Figure 1. Current vs. voltage curves of CP (commercially pure) Titanium Grade 2 after
plasma electrolytic oxidation (PEO) treatment in 500 g Mg(NO3)2 or 500 g Zn(NO3)2 in 1000 mL
H3PO4 electrolyte.

In Figures 2 and 3, the SEM micrographs of porous coatings formed on CP Titanium Grade 2 after
PEO treatment at voltages of 500, 575, 650 VDC in electrolytes containing 500 g·L−1 of magnesium
nitrate hexahydrate Mg(NO3)2·6H2O or 500 g·L−1 of zinc nitrate hexahydrate Zn (NO3)2·6H2O in
concentrated phosphoric acid H3PO4, are presented. Based on EDS data recorded at a magnification of
500 times, the Zn/P ratios were found for the samples treated in the Zn-rich electrolyte. They were
equal to 0.12 ± 0.01 (median: 0.12, range: 0.02), 0.16 ± 0.02 (median: 0.16, range: 0.06), 0.20 ± 0.01
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(median: 0.20, range: 0.03) for 500, 575 and 650 VDC, respectively. For the coatings obtained in the
electrolyte containing magnesium nitrate hexahydrate, the Mg/P ratios were equal to 0.16 ± 0.01
(median: 0.16, range: 0.02), 0.16 ± 0.01 (median: 0.16, range: 0.02), 0.17 ± 0.01 (median: 0.17,
range: 0.04) for 500, 575, and 650 VDC, respectively.

In Figure 4, the Zn/P and Mg/P ratios based on EDS results for coatings formed on titanium after
PEO treatment at voltages 500, 575, and 650 VDC in electrolytes containing 500 g·L−1 of zinc nitrate
hexahydrate Zn(NO3)2·6H2O and 500 g·L−1 of magnesium nitrate hexahydrate Mg(NO3)2·6H2O in
concentrated H3PO4, are shown, lying in the ranges of 0.12–0.20 and 0.16–0.17, respectively.

Based on these results, one can conclude that the Zn/P ratio increases linearly as a function of the
amount of zinc nitrate, which on the other hand is not observed for the solution containing magnesium
nitrate, where the average value of Mg/P ratio is approximately constant. In addition, it should be
noted that the standard deviation of Mg/P ratio is approximately two times as high as that of the Zn/P
ratio, which may indicate that in the case of phosphate coatings enriched with zinc, the repeatability of
the PEO coating composition is greater than that for coatings enriched with magnesium.
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Figure 2. SEM (scanning electron microscope) micrographs of the coatings formed on CP Titanium
Grade 2 after PEO treatment at voltages of 500 V, 575 V, 650 V in H3PO4 electrolyte with addition of
500 g·L−1 Mg(NO3)2·6H2O or 500 g·L−1 Zn(NO3)2·6H2O. Magnification: 500 times.
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Figure 4. Zn/P and Mg/P ratios of EDS results of coatings formed on CP Titanium Grade 2 after PEO
treatment at voltages 500, 575 and 650 VDC in electrolytes containing 500 g·L−1 of Zn(NO3)2·6H2O and
500 g·L−1 of Mg(NO3)2·6H2O in concentrated H3PO4.
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In Figure 5a, the XPS spectrum of a coating formed on CP Titanium Grade 2 after PEO treatment
for 3 min in the zinc-rich phosphoric acid electrolyte at a voltage of 575 VDC, is presented. The obtained
XPS results of PEO coatings clearly show that the 10 nm top layer is enriched in zinc consisting of
Zn2+, as well as titanium—as Ti4+, phosphorus as PO4

3−, or HPO4
2−, or H2PO4

−, or P2O7
4−, which

was confirmed by the binding energies of 1022.4 eV (Zn 2p3/2), 499.8 eV (Zn LMM), 460.8 eV (Ti 2p3/2),
531.8 eV (O 1s), and 134.2 eV (P2p), respectively.

In Figure 5b, the XPS spectrum of a coating formed on CP Titanium Grade 2 after PEO treatment for
3 min in the magnesium-rich phosphoric acid electrolyte at a voltage of 575 VDC, is shown. The binding
energies of magnesium Mg 2s (89.4 eV), Mg KLL (306.8 eV), and titanium Ti2p3/2 (460.2 eV) most
likely may be interpreted as Mg2+ and Ti4+, respectively. In addition, it should be noted that in PEO
coatings enriched in magnesium, the binding energies of phosphorus P2p (134.1 eV), and oxygen O 1s
(531.6 eV) may suggest the presence of PO4

3−, HPO4
2−, H2PO4

−, and P2O7
4− ions in the obtained

porous coatings, which is very similar to the case of coatings enriched in zinc.
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Figure 5. XPS spectra of coatings formed on CP Titanium Grade 2 after PEO treatment at
voltage 575 VDC in concentrated H3PO4 electrolytes containing (a) 500 g·L−1 Zn(NO3)2·6H2O; and
(b) 500 g·L−1 Mg(NO3)2·6H2O.

In Figures 6 and 7, the GDOES signals, with their derivatives, of zinc or magnesium, phosphorus,
oxygen, hydrogen, carbon, nitrogen, titanium of porous coating formed on CP Titanium Grade
2 after PEO treatment at voltages of 500, 575, and 650 VDC in both electrolytes, are presented.
Four sub-layers may be distinguished in each obtained coating, i.e., the first one very porous and
organically contaminated, the second one and third one, semi-porous, which have different thicknesses,
dependent on magnesium or zinc nitrate tetrahydrate amount in the electrolyte, and the fourth
sub-layer is a transition one. To understand the influence of voltage on each sub-layer, authors propose
describing them by mathematical equations. The regions were designated on the basis of GDOES
signals and their first and second derivatives. The derivatives allowed us to determine mainly the
beginning and the end of sub-layer intervals, where the rate of change of individual signals underwent
significant changes. The thicknesses of the first top porous sub-layers of all the obtained PEO coatings
enriched in magnesium or zinc are linear functions of PEO voltage U and may be described by
the following mathematical models: I = 2.67·U − 1143 (R2 = 0.992) and I = U − 141.6 (R2 = 0.964),
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respectively. In both cases, they are growing functions, i.e., the minimum top and porous sub-layer
thickness was obtained at 500 VDC, and the maximum one, at 650 VDC. It should be also noted that the
magnesium enriched coating in the first top sub-layer is depleted in magnesium, whereas the other
one is enriched in zinc. The thicknesses of the second sub-layers for two examined coatings also have
growing trends due to the PEO voltages. However, the biggest thickness of that second sub-layer was
found for coatings created at 500 VDC, i.e., about 450 s of sputtering time, while for other voltages,
i.e., 575 and 650 VDC the differences did not exceed 80 s of sputtering time. Most important is the
fact that the magnesium enriched coating reaches its global maximum in that layer, while in case of
zinc enriched coating, the maximum was found in the top first sub-layer. In the third sub-layers, the
signals of magnesium and zinc revealed a decrease. For the magnesium spectrum, the lowest thickness
(at 200 s of sputtering time) was recorded for coating formed at 500 VDC, while for the other voltages,
i.e., 575 and 650 VDC, the thinnest ones were equal to about 800 s of sputtering time, which may be
described by a power function 0.006·U1.83 (R2 = 0.781) or a linear one of 2·U − 450 (R2 = 0.75). In case
of zinc enriched coating, the trend of coating thickness versus voltage U may be also considered as
a power function, i.e., 3 × 10−11·U4.73 (R2 = 0.944) or a linear trend, i.e., 3.33·U − 1516 (R2 = 0.892).
The last transition sub-layer, which contains the limit of porosity which is visible as a peak on the
hydrogen spectrum, that is halfway of the slope of titanium, for two tested coatings may be described
by one 2.33·U − 641.6 (R2 = 0.875).
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Figure 6. Glow discharge optical emission spectroscopy (GDOES) signals of zinc (Zn), phosphorus
(P), oxygen (O), hydrogen (H), carbon (C), nitrogen (N), and titanium (Ti) of the porous coating
formed on CP Titanium Grade 2 after PEO treatment at voltages of 500 VDC, 575 VDC, and 650 VDC in
500 g·L−1 Mg(NO3)2·6H2O in H3PO4 electrolyte; blue continuous line—GDOES signal, red continuous
line—first derivative, red dotted line—second derivative.
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Figure 7. Glow discharge optical emission spectroscopy (GDOES) signals of magnesium (Mg),
phosphorus (P), oxygen (O), hydrogen (H), carbon (C), nitrogen (N), and titanium (Ti) of the porous
coating formed on CP Titanium Grade 2 after PEO treatment at voltages of 500 VDC, 575 VDC, and
650 VDC in 500 g·L−1 Mg(NO3)2·6H2O in H3PO4 electrolyte; blue continuous line—GDOES signal, red
continuous line—first derivative, red dotted line—second derivative.

In Figure 8, the potentiodynamic corrosion curves of the porous coating formed on CP Titanium
Grade 2 after PEO treatment at voltages of 500 (red lines), 575 (blue lines), and 650 VDC (green lines),
in (a) magnesium-rich, or (b) zinc-rich electrolytes, are presented. The electrochemical properties of
coatings containing magnesium and/or zinc and/or titanium phosphates may be characterized by the
passive current densities measured at 1400 mV. The minimum passive current density was recorded
for coatings enriched with magnesium obtained at 500 VDC (mean: 2.3 × 10−7; median: 1.6 × 10−7;
range: 4.4 × 10−7), while the maximum one (mean: 9.2 × 10−7; median: 1.1 × 10−6; range: 8.0 × 10−7),
was at 650 VDC. That linear trend of mean of passive current densities i vs. PEO voltages U may be
described by the following function: i = 5 × 10−9·U – 2 × 10−6 (R2 = 0.98). It should be also noted that
the smallest passive current density range (max–min) was found for magnesium enriched coatings
obtained at 575 VDC, what may be interpreted as the best electrochemical repeatability.
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The minimum passive current density was recorded for zinc-enriched coatings obtained at
575 VDC (mean: 2.9 × 10−7; median: 2.5 × 10−7; range: 5.6 × 10−7), while the maximum one
(mean: 9.3 × 10−7; median: 3.8 × 10−6; range: 2.1 × 10−6), at 650 VDC. That linear trend of the
mean of passive current densities i vs. PEO voltages U may be described by the following function:
i = 4 × 10−9·U − 2 × 10−6 (R2 = 0.66). It should be also noted that the smallest passive current density
range was found for magnesium enriched coatings obtained at 575 VDC, which may be interpreted
as the best electrochemical repeatability. However, it has to be pointed out that the values of passive
current density averages and medians of zinc enriched PEO coatings are very similar. It may be
concluded that the values of passive current densities may be correlated both with corrosion resistance
as well as with charging of PEO coatings. In addition, an important fact is that the statistics were
performed based only on three repetitions.

4. Conclusions

The studies of the effect of DC voltages increasing from 500 up to 650 VDC on creation of porous
coatings enriched with magnesium or zinc on the CP Titanium Grade 2 allowed to formulating the
following conclusions:

(1) It is possible to form porous coatings by using of DC PEO oxidation in electrolytes containing
concentrated phosphoric acid and magnesium or zinc nitrate.

(2) The voltage of PEO process has an influence on the chemical composition and thickness of the
obtained porous coatings as well as on their electrochemical behavior.

(3) The higher the voltage of PEO treatment, the higher is zinc-to-phosphorus ratio for zinc enriched
coatings; there is a trend for growing as a function of PEO voltage.

(4) The higher the voltage of PEO treatment, the higher the range (max–min) of
magnesium-to-phosphorus ratio with very similar averages for magnesium enriched coatings;
the trend may be described as a constant function of PEO voltage.

(5) The four-sub-layer model may be assumed to describe the obtained PEO coatings:

(a) The first and top sub-layers having a thickness corresponding with the sputtering
time equaling to 200–600 s and 350–450 s for magnesium and zinc enriched PEO
coatings, respectively;
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(b) The top sub-layer enriched with magnesium is depleted in magnesium compounds, while
the other one, containing zinc in the top, is clearly enriched with zinc;

(c) The thickness of semi-porous sub-layers depends on the PEO treatment voltage; the
thickest second and third sub-layers appear to set up at high voltages and they decrease
with PEO voltage decreasing;

(d) The transition sub-layers have thickness corresponding to a sputtering time of about
500–900 s.

(6) Most likely the top 10 nm of porous coatings is constituted of titanium (Ti4+), magnesium (Mg2+),
zinc (Zn2+), and phosphates PO4

3−, and/or HPO4
2−, and/or H2PO4

−, and/or P2O7
4−.

(7) Based on the potentiodynamic corrosion measurements one may conclude that the best
electrochemical repeatability was noted for magnesium and zinc enriched coatings obtained at
575 VDC.
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27. Hryniewicz, T.; Konarski, P.; Rokicki, R.; Valiček, J. SIMS studies of titanium biomaterial hydrogenation after
magnetoelectropolishing. Surf. Coat. Technol. 2012, 206, 4027–4031. [CrossRef]

28. Hryniewicz, T.; Konarski, P.; Rokicki, R. Hydrogen reduction in MEP niobium studied by secondary ion
mass spectrometry (SIMS). Metals 2017, 7, 442. [CrossRef]

29. Rokicki, R.; Hryniewicz, T.; Konarski, P.; Rokosz, K. The alternative, novel technology for improvement of
surface finish of SRF niobium cavities. World Sci. News 2017, 74, 152–163.

30. Rokosz, K.; Hryniewicz, T. Effect of magnetic field on the pitting corrosion of austenitic steel type AISI 304.
Ochr. Przed Koroz. 2011, 54, 487–491.

31. Hryniewicz, T.; Rokosz, K. Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial.
Anti-Corros. Methods Mater. 2014, 61, 57–64. [CrossRef]

32. Hryniewicz, T.; Rokosz, K.; Rokicki, R.; Prima, F. Nanoindentation and XPS studies of titanium TNZ alloy
after electrochemical polishing in a magnetic field. Materials 2015, 8, 205–215. [CrossRef] [PubMed]
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surface layer formed on titanium after plasma electrolytic oxidation in H3PO4 with the addition of Cu(NO3)2.
J. Nanosci. Nanotechnol. 2016, 16, 7814–7817. [CrossRef]

37. Rokosz, K.; Hryniewicz, T.; Dalibor, M.; Raaen, S.; Valiček, J.; Dudek, Ł.; Harničarova, M. SEM, EDS and XPS
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