
July 2009
Lasse Natvig, IDI
Anne C. Elster, IDI
Mujahed Omar Qasim Eleyat, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Linear Programming on the Cell/BE

Åsmund Eldhuset

Problem Description
Linear programming is a form of mathematical optimisation that has many important applications,
one of them being modelling of production and trade in the petroleum industry.

The Cell Broadband Engine offers a potentially very powerful platform for high performance
computing, but the hardware imposes certain restrictions that makes development challenging.

The aim of this thesis is to investigate the opportunities for implementing a parallel solver for
sparse linear programs on the Cell Broadband Engine. We will primarily focus on the standard
and revised simplex methods and parallel algorithms derived from them. If time permits, interior
point methods may also be explored.

Assignment given: 16. January 2009
Supervisor: Lasse Natvig, IDI

Abstract

Linear programming is a form of mathematical optimisation in which one seeks
to optimise a linear function subject to linear constraints on the variables. It is
a very versatile tool that has many important applications, one of them being
modelling of production and trade in the petroleum industry.

The Cell Broadband Engine, developed by IBM, Sony and Toshiba, is an in-
novative multicore architecture that has already been proven to have a great
potential for high performance computing. However, developing applications
for the Cell/BE is challenging, particularily due to the low-level memory man-
agement that is mandated by the architecture, and because careful optimisation
by hand is often required to get the most out of the hardware.

In this thesis, we investigate the opportunities for implementing a paral-
lel solver for sparse linear programs on the Cell/BE. A parallel version of the
standard simplex method is developed, and the ASYNPLEX algorithm by Hall
and McKinnon is partially implemented on the Cell/BE. We have met substan-
tial challenges when it comes to numerical stability, and this has prevented us
from spending sufficient time on Cell/BE-specific optimisation and support for
large data sets. Our implementations can therefore only be regarded as proofs
of concept, but we provide analyses and discussions of several aspects of the
implementations, which may guide the future work on this topic.

i

Acknowledgements

This thesis was instigated as a collaboration between my advisor, Dr.Ing. Lasse
Natvig, and Miriam AS, represented by Christophe Spaggiari, and it forms part
of a larger project which also involves the Ph.D. work of Mr. Mujahed Eleyat. I
would like to thank all of them for their support and input, and Dr. Anne C. El-
ster for feedback on the report and for giving us access to the high performance
computing lab. I would also like to thank Schlumberger for funding our trip to
the Supercomputing ’09 conference last fall, from which we learned a lot.

A special gratitude goes to Henrik Andersson and Marielle Christiansen
from the Department of Industrial Economics and Technology Management at
NTNU, for their tremendously helpful response when we asked for help after
having got stuck with numerical instability problems.

Thanks to my parents and my sister for thorough proofreading and moral
support, particularily in the latter stages of the project, when I was working
around the clock — and of course for always having kindled my interest in sci-
ence throughout the years.

Thanks to my classmates at the “Ugle” computer lab for stress-relieving con-
versations, ping-pong matches, Rubik’s cube solving and the occasional round
of swing dancing. Finally, thanks to everybody in the Computer Science and
Communication Technology classes of 2009, for five great years at NTNU. We
made it — congratulations to everyone!

iii

Contents

Contents v

List of figures ix

List of tables x

List of algorithms xi

List of source code listings xii

1 Introduction 1

2 Background 3
2.1 Linear programming . 3

2.1.1 Problem formulation. Standard and slack forms 3
2.1.2 The standard simplex method 7

2.1.2.1 Degeneracy and cycling 11
2.1.2.2 Duality . 12
2.1.2.3 Initially infeasible problems 13
2.1.2.4 Formal algorithm statement 14
2.1.2.5 Complexity and numerical instability 15
2.1.2.6 Warmstarting . 17

2.1.3 The revised simplex method 17
2.1.4 ASYNPLEX . 22
2.1.5 Interior point methods . 25
2.1.6 State of the art: sequential LP solvers 25
2.1.7 State of the art: parallel LP solvers 29

2.2 Cell Broadband Engine . 30
2.2.1 Architecture . 31

2.2.1.1 Overview . 31
2.2.1.2 PPE . 32
2.2.1.3 SPE . 32

2.2.2 Programming methods . 34

v

vi CONTENTS

2.2.2.1 SIMD processing 34
2.2.2.2 Compiler directives 34
2.2.2.3 PPE-SPE communication and synchronisation . 35
2.2.2.4 Double, triple and quadruple buffering 35
2.2.2.5 Overlays . 36

2.2.3 Tools and libraries . 36
2.3 Miscellaneous topics . 37

2.3.1 Data sets . 37
2.3.2 Representation of sparse matrices 37
2.3.3 Amdahl’s law . 38

3 Development 41
3.1 Overall approach . 41
3.2 Standard simplex method . 42

3.2.1 x86 and PPE version . 43
3.2.2 SPE version . 44
3.2.3 MPS and CPLEX parsers 45

3.3 Implementation problems . 45
3.3.1 Numerical instability . 45
3.3.2 Attempts to handle roundoff errors 47
3.3.3 An exact LP solver using rational numbers 47

3.4 Revised simplex method . 49
3.4.1 Performing the matrix inversion in parallel 49
3.4.2 Decision to adapt ASYNPLEX and Vanderbei’s code . . . 49
3.4.3 ASYNPLEX prototype in C# 50
3.4.4 Restructuring Vanderbei’s code 50

3.4.4.1 Sparse vector and matrix representations 50
3.4.4.2 Overview of changed files 52
3.4.4.3 Threading . 54

3.4.5 Cell/BE implementation of ASYNPLEX 54
3.4.5.1 Communication approach 54
3.4.5.2 Overview of changed files 55

4 Evaluation 57
4.1 Performance measurements . 57

4.1.1 Testing environments . 57
4.1.2 What to measure . 57
4.1.3 Measurement methods . 58

4.2 Results . 59
4.2.1 Standard simplex method 60
4.2.2 ASYNPLEX . 63
4.2.3 Other aspects . 65

CONTENTS vii

4.3 Reflections on unimplemented features. Ideas for future work . . 66
4.3.1 Interior point methods . 66
4.3.2 Mixed precision . 66
4.3.3 Stabilisation techniques . 67
4.3.4 Parallel linear algebra operations 67
4.3.5 Loop unrolling . 67
4.3.6 Unit testing . 67
4.3.7 Overlays . 68
4.3.8 Representation of sparse matrices 68
4.3.9 Vectorisation . 69
4.3.10 Autotuning . 69
4.3.11 Triple buffering . 70

5 Conclusion 71
5.1 Future work . 72

Bibliography 73

A Code 79
A.1 Sequential standard simplex method for x86 and Cell/BE 79
A.2 Parallel standard simplex method for Cell/BE 100
A.3 ASYNPLEX for x86, based on Vanderbei 116
A.4 ASYNPLEX for Cell/BE, based on Vanderbei 198
A.5 Utilities . 211

List of figures

2.1 The Cell/BE architecture . 32
2.2 The architecture of the PPE . 33
2.3 The architecture of an SPE . 33

4.1 Speedup obtained on the PPE by using SIMD 61
4.2 Time consumption depending on the number of SPEs 62
4.3 Performance of our x86 ASYNPLEX implementation 64

ix

List of tables

3.1 Some results of our exact standard simplex implementation 48

4.1 Dimensions of selected netlib sets 59

x

List of algorithms

1 One phase of the standard simplex method using the Dantzig cri-
terion . 15

2 One phase of the revised simplex method 21
3 ASYNPLEX — iteration process number i (0 ≤ i < p) 26
4 ASYNPLEX — invert processor . 27
5 ASYNPLEX — column selection manager 27
6 ASYNPLEX — basis change manager 28

xi

List of source code listings

code/standard simplex sequential/Matrix.h 80
code/standard simplex sequential/Matrix.cpp 81
code/standard simplex sequential/mps.h 86
code/standard simplex sequential/mps.cpp 86
code/standard simplex sequential/gmpInterop.h 90
code/standard simplex sequential/gmpInterop.cpp 90
code/standard simplex sequential/timer.h 92
code/standard simplex sequential/TableauSimplex.h 94
code/standard simplex sequential/TableauSimplex.cpp 94
code/standard simplex sequential/simplex.cpp 96
code/standard simplex sequential/Makefile.txt 99
code/standard simplex parallel/spu/PartialMatrix.h 100
code/standard simplex parallel/spu/PartialMatrix.cpp 101
code/standard simplex parallel/spu/SpuTableauSimplex.h 104
code/standard simplex parallel/spu/SpuTableauSimplex.cpp 104
code/standard simplex parallel/spu/spu.cpp 107
code/standard simplex parallel/types.h 108
code/standard simplex parallel/main.cpp 110
code/standard simplex parallel/spu/Makefile.txt 115
code/standard simplex parallel/Makefile.txt 116
code/asynplex vanderbei x86/common/message.h 117
code/asynplex vanderbei x86/common/genericvector source.h 117
code/asynplex vanderbei x86/simpo/2phase.c 118
code/asynplex vanderbei x86/simpo/basischangemanager.h 133
code/asynplex vanderbei x86/simpo/basischangemanager.c 133
code/asynplex vanderbei x86/simpo/columnselectionmanager.h . . . 134
code/asynplex vanderbei x86/simpo/columnselectionmanager.c . . . 135
code/asynplex vanderbei x86/simpo/communication.h 139
code/asynplex vanderbei x86/simpo/communication.c 139
code/asynplex vanderbei x86/simpo/invertprocessor.h 142
code/asynplex vanderbei x86/simpo/invertprocessor.c 142
code/asynplex vanderbei x86/simpo/iterationprocess.h 157

xii

LIST OF SOURCE CODE LISTINGS xiii

code/asynplex vanderbei x86/simpo/iterationprocess.c 160
code/asynplex vanderbei x86/simpo/payloadtypes.h 191
code/asynplex vanderbei x86/simpo/print.h 192
code/asynplex vanderbei x86/simpo/print.c 192
code/asynplex vanderbei x86/simpo/sparse.h 193
code/asynplex vanderbei x86/simpo/sparse.c 195
code/asynplex vanderbei cell/common/message.h 198
code/asynplex vanderbei cell/common/SafeVector.h 198
code/asynplex vanderbei cell/PPU/asynplexcontrol.h 199
code/asynplex vanderbei cell/PPU/asynplexcontrol.cpp 200
code/asynplex vanderbei cell/PPU/communication.h 201
code/asynplex vanderbei cell/PPU/communication.cpp 202
code/asynplex vanderbei cell/SPU/BasisChangeManager.h 205
code/asynplex vanderbei cell/SPU/BasisChangeManager.cpp 205
code/asynplex vanderbei cell/SPU/rpc.h 206
code/asynplex vanderbei cell/SPU/rpc.cpp 207
code/asynplex vanderbei cell/SPU/main.cpp 208
code/parsers/mps.py . 211
code/parsers/cplex.py . 214

Chapter 1
Introduction

This thesis is a part of a larger project that is a cooperation between my advisor
— Dr.Ing. Lasse Natvig — and the company Miriam AS. Also involved in that
project is Mr. Mujahed Eleyat, whose Ph.D. thesis will be based on our work.
Miriam AS develops “Regina” and “Gas”, two applications for simulation of
production and delivery of oil and gas products through a pipeline network
(more information can be found at http://www.miriam.as/). Such situa-
tions can be modelled by a linear program, which is a linear function of a set of
variables along with a set of constraints on the values of other linear functions
of those variables. The field of linear programming revolves around the study
of algorithms for finding the optimal function values of such systems, and it will
be thoroughly presented in the next chapter. There are two main classes of linear
programming algorithms: the simplex method (and variations thereof) and in-
terior point methods. Although both are mentioned in the problem description,
we only had the time to focus on the former.

Miriam AS has recently invested in a cluster of Playstation 3 machines con-
taining Cell Broadband Engine processors, and is hoping to be able to utilise
these to speed up their simulations. The Cell/BE is a multicore processor with
two different core types: one general-purpose PowerPC core and eight cores
that are specialised for high computational throughput. The computation cores
do not have direct access to main memory, but they have a small cache that is
controlled manually by the program that is executed on them, and a high-speed
bus can be used to efficiently feed the computation cores with data. This sets the
Cell/BE apart from any other computing platform, and combined with deep
pipelines and vectorised instructions, it holds the promise of excellent perfor-
mance if one has a problem that is suited for that platform and one invests a
sufficient amount of time in the programming process.

Unfortunately, it turned out that the field of linear programming is wrought
with peril, in the form of numerical instability. Neither we nor our advisor were

1

http://www.miriam.as/

2 CHAPTER 1. INTRODUCTION

prepared for this (we selected this project in the belief that the primary challenge
would be to program the Cell/BE), and we were not able to fully overcome
the problems we encountered. Therefore, we have adjusted our aims to that of
producing a code base from which further development may take place, and
writing a report that is rich in background material, references and advice that
we hope will prove useful to those that are to continue the project.

Outline

In Chapter 2, we give a presentation of the field of linear programming, and
we describe the standard and revised simplex methods and a parallel revised
simplex method called ASYNPLEX. We also explain the Cell/BE architecture
and programming model.

In Chapter 3, we describe our initial plans, the progress of our work and the
decisions we had to make during the project. We also present our design of a
simple parallel standard simplex algorithm for Cell/BE, and our adaptations of
the ASYNPLEX algorithm (which we did not get the time to fully implement).
This project ended up very differently from what we had anticipated; we there-
fore also discuss the challenges we have encountered.

In Chapter 4, we provide a few timing analyses of the parallel standard sim-
plex algorithm, in order to learn how the parallelisation, number of cores, and
Cell/BE features such as vectorisation affect the performance. We thoroughly
discuss features we did not get the time to implement, and give several pieces
of advice to the researchers that will build upon our work.

Finally, in Chapter 5, we present our conclusions and summarise our sug-
gestions for future work.

Chapter 2
Background

This chapter will give the reader the necessary theoretical background for the
main subjects of this thesis: linear programming and the Cell Broadband En-
gine. We also give some notes on a data set collection called netlib, on how to
represent sparse vectors, and on a formula for the maximal speedup that can be
obtained when parallelising a program.

2.1 Linear programming

The term linear programming (LP) refers to a type of optimisation problems in
which one seeks to maximise or minimise the value of a linear function of a
set of variables1. The values of the variables are constrained by a set of linear
equations and/or inequalities. Linear programming is a fairly general problem
type, and many important problems can be cast as LP problems — for instance,
shortest path problems and maximum flow problems (see [8]). However, the
true virtue of linear programming stems from its ability to model a vast range of
optimisation problems for which specialised algorithms do not exist, including
many situations from economics and industry processes.

This entire section is primarily based on Vanderbei[47] and Cormen et al.[8].

2.1.1 Problem formulation. Standard and slack forms

The following framed text is an example of a simple linear programming prob-
lem. We will use this example throughout this section to illustrate how the linear
programming algorithms work.

1Hence, LP is not (as the name would seem to suggest) a programming technique. The name
originated in the 1940s, when “program” referred to military supply plans and schedules.

3

4 CHAPTER 2. BACKGROUND

— Example —

A company owns a factory that makes two kinds of products based on two
different raw materials. The profit the company makes per unit of product A
is $30, and the profit of product B is $20. Producing one unit of A requires 1
unit of raw material R and 1 unit of raw material S; one unit of B requires 2
units of R and 1 unit of S. The company possesses 40 units of R and 50 units
of S. We make the simplifying assumptions that all prices are constant and
cannot be affected by the company, and that the company is capable of selling
everything it produces. The company’s goal is to maximise the profit, which
can be described as 30x1 + 20x2, where x1 is the number of units of product
A and x2 is the number of units of product B. The following constraints are
in effect:

• x1 + x2 ≤ 40 (the production of A and B cannot consume more units of
raw material R than the company possesses)

• 2x1 + x2 ≤ 50 (similarly for raw material S)

• x1, x2 ≥ 0 (the company cannot produce negative amounts of its prod-
ucts)

Note that in regular LP problems, one cannot restrict the variables to be inte-
gers — in fact, adding this requirement produces a new kind of problem known
as integer linear programming (ILP), which is NP-hard2. It is also, in general, a re-
quirement that all variables are nonnegative. This is often the case in real-world
problems that deal with physical quantities, but problems involving variables
that may be negative as well as positive can still be modeled by rewriting each
original variable as a difference of two nonnegative variables.

The function to be optimised is called the objective function. In the real world
situation that gives rise to an optimisation problem, the function may contain a
constant term, but it can be removed since that will affect all possible solutions
in the same way. The objective function can then be written as ζ = c1x1 + c2x2 +
. . .+cnxn =

∑n
j=1 cjxj , where the cj are constants. The variables in the objective

function are often called decision variables, since our task is not only to find the
optimal value of the objective function, but also which variable values that yield
this function value. Throughout this report, we will consistently use n to refer
to the number of decision variables and m to refer to the number of equations

2NP-hardness is a term from complexity theory, which deals with the relative difficulties of
solving different kinds of problems. The only known algorithms for solving NP-hard problems
require an amount of time that is exponential in the size of the problem, which renders those
algorithms useless for many real life problem sizes. For further reading on complexity theory,
consult Garey and Johnson[12].

2.1. LINEAR PROGRAMMING 5

and/or inequalities. The variables will typically be labelled x1 through xn.

Standard form An LP problem is commonly called a linear program. The equa-
tions and inequalities that (together with the objective function) constitute an
linear program may be represented in different forms. We shall first consider
the standard form, in which only less-than-or-equal-to inequalities with all vari-
ables on the left hand side are allowed3. A problem containing equalities of the
form ai1x1 + . . . + ainxn = bi may be rewritten by splitting each equality into
two inequalities4: ai1x1 + . . .+ ainxn ≤ bi and −ai1x1 − . . .− ainxn ≤ −bi. Also,
the goal must be to maximise the objective function — if the original problem is
to minimize some function f , we let our objective function be ζ = −f . A linear
program in standard form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.1)

with respect to
n∑

j=1

aijxj ≤ bi, for i = 1, . . . ,m. (2.2)

x1, . . . , xn ≥ 0 (2.3)

Slack form The other common representation is slack form, which only allows
a set of equations (and a nonnegativity constraint for each variable). A slack
form program should be produced by rewriting a standard form program. An
inequality of the form ai1xi + . . . + ainxn ≤ bi is converted to an equation by
adding a slack variable wi. Together with the condition that wi ≥ 0, the equation
ai1x1 + . . . + ainxn + wi = bi is equivalent to the original inequality (whose
difference, or “slack”, between the left and right hand sides is represented by
wi). When the program is constructed in this manner, each slack variable only
appears in excactly one equation, which is an important property that will be
utilised later. A linear program in slack form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.4)

3Note that strictly-less-than and strictly-greater-than inequalities are never allowed in LP
problems, as they could easily cause situations in which it is impossible to achieve optimality
— for instance, there is no optimal value for x with respect to x < 3; given any value for x that is
less than 3, one can always find a number between x and 3.

4The drawback of doing this is that it increases the number of equations. See Hillier and
Lieberman[20] for another approach, called artificial variables — with the drawback that it in-
creases the number of variables.

6 CHAPTER 2. BACKGROUND

with respect to

wi = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.5)

x1, . . . , xn, w1, . . . , wm ≥ 0 (2.6)

— Example —

In standard form, our example is expressed as

Maximise

ζ = 30x1 + 20x2

with respect to

x1 + x2 ≤ 40

2x1 + x2 ≤ 50

x1, x2 ≥ 0

In slack form, it becomes

Maximise

ζ = 30x1 + 20x2

with respect to

w1 = 40− x1 − x2

w2 = 50− 2x1 − x2

x1, x2, w1, w2 ≥ 0

A proposed solution vector (that is, a specification of a value for each vari-
able) of a linear program is called:

Feasible if it does not violate any constraints;

Infeasible if it violates one or more constraints (however, it is still called a “so-
lution”);

Basic if it consists of setting all variables except the slack variables to zero (so
that wi = bi for all i);

2.1. LINEAR PROGRAMMING 7

Optimal if it is feasible and no other feasible solutions yield a higher value
for the objective function. An optimal solution vector is not necessarily
unique, although the optimal objective function value obviously is.

2.1.2 The standard simplex method

The standard simplex method, or simply the simplex method5, developed by George
Dantzig[9] in 1949, was the first systematic approach for solving linear pro-
grams. It requires the linear program to be in slack form. The initial coefficients
and constants are written down in a tableau that will change as the method pro-
gresses. The nonnegativity constraints are not represented anywhere; rather,
they are implicitly maintained by the method. Because the equations will un-
dergo extensive rewriting, it will be convenient not to distinguish the slack vari-
ables from the other variables, so we will relabel wi to xn+i for i = 1, . . . ,m.
Thus, the total number of variables is n + m. Furthermore, we will use over-
lines over the coefficients in the tableau to denote their current value (which will
change in each iteration of the simplex method), and the indices of the coeffi-
cients will refer to the coefficients’ position within the tableau — for instance,
−aij is located in row i, column j. We also introduce a constant term ζ (initially
zero) in the objective function, which will help us keep track of the best func-
tion value we have found so far. The topmost row and leftmost column are not
really a part of the tableau; they are simply headers — the topmost row shows
which variables correspond to which columns, and the leftmost column shows
the slack variables for each row. The first actual tableau row (below the double
line) contains the objective function coefficients [cj] and is numbered as row 0;
the first actual tableau column (to the right of the double line) contains the [bi]
constants and is numbered as column 0; the rest of the tableau contains the neg-
atives of the coefficients from the equations: [−aij]. Initially, cj = cj , bi = bi, and
aij = aij . For instance, with n = 3 and m = 3, the initial tableau will look like
this:

x1 x2 x3

ζ 0 c1 c2 c3

x4 b1 −a11 −a12 −a13

x5 b2 −a21 −a22 −a23

x6 b3 −a31 −a32 −a33

Note that this is essentially just a tabular version of the standard form — for
instance, the last row is interpreted as the equation x6 = b3−a31x1−a32x2−a33x3.

5The reason for not calling it the “simplex algorithm” is that there exist several versions of the
method, and that the general method formulation is somewhat underspecified because it does
not say how to choose the pivot elements.

8 CHAPTER 2. BACKGROUND

— Example —

In tableau form, our example becomes

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Note that w1 and w2 have been renamed to x3 and x4, respectively.

The variables are partitioned into two sets. The variables in the leftmost
column (at the left side of the equations) are referred to as the basic variables,
and the variables inside the tableau are called nonbasic variables. At any stage
of the method, the set of the indices of the basic variables is denoted B, and
the set of nonbasic indices is denoted N . Initially, N = {1, . . . , n}, and B =
{n + 1, . . . , n + m}. The sizes of the basic and nonbasic sets are constant, with
|N | = n and |B| = m. The tableau will generally look like this (if, for instance,
m = n = 3):

· · · xj∈N · · ·
ζ ζ c1 c2 c3
... b1 −a11 −a12 −a13

xi∈B b2 −a21 −a22 −a23

... b3 −a31 −a32 −a33

For now, let us assume that the solution that is obtained by setting all non-
basic variables to zero is feasible (which is the case only if all of the bi are non-
negative); we will remove this restriction later. This trivial solution will provide
a lower bound for the value of the objective function (namely, the constant term,
ζ). We will now select one nonbasic variable xj and consider what happens if
we increase its value (since all nonbasic variables are currently zero, we cannot
decrease any of them). Since our goal is to maximise the objective function, we
should select a variable whose coefficient cj in the objective function is positive.
If no such variables exist, we cannot increase the objective function value fur-
ther, and the current solution (the one obtained by setting all nonbasic variables
to zero, so that ζ = ζ) is optimal — we can be certain of this since linear functions
do not have local maxima.

It seems reasonable to select the variable with the greatest coefficient (this
is known as the Dantzig criterion; other rules are possible). Let us say that this
variable is located in column e. Note that because we will soon start swapping
variable positions, the indices of the leaving and entering variables will gener-
ally not correspond to their respective row and column numbers. For notational

2.1. LINEAR PROGRAMMING 9

convenience, we therefore let xĩ denote the basic variable that is located in row
i, and we let xĵ denote the nonbasic variable in column j. Then, our variable is
labelled xê. How far can we increase this variable? Recall that each line in the
tableau expresses one basic variable as a function of all the nonbasic variables;
hence we can increase xê until one of the basic variables becomes zero. Let us
look at row i, which is now reduced to xĩ = bi−aiexê since all nonbasic variables
except xê are zero. If aie is positive, the value of xĩ will decrease as xê increases,
so the largest allowable increase is limited by bi. Thus, by setting xê = bi

aie
, xĩ

becomes zero. However, other equations may impose stricter conditions. By
looking at all rows where aie is positive, we can determine an l such that bl

ale
is

minimal and set xê = bl
ale

. This will cause xl̃ to become zero. If all aie are non-
positive, we can increase xê indefinitely without any xĩ ever becoming negative,
and in that case, we have determined the linear program to be unbounded; the
method should report this to the user and terminate.

— Example —

Recall the tableau:

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Since 30 is the greatest objective function coefficient, we select x1 to be
increased. x3 becomes zero if x1 = b1

a11
= 40

1 , and x4 becomes zero if

x1 = b2
a12

= 50
2 . The latter is the most restrictive constraint, so x4 will become

zero when we increase x1.

The next step, called pivoting, is an operation that exchanges a nonbasic vari-
able and a basic variable. The purpose of pivoting is to produce a new situation
in which all nonbasic variables are zero (and no bi is negative), so that we can
repeat the previous steps all over again and find a new variable whose value
we can increase. The nonbasic variable that was selected to be increased, xê, is
called the entering variable, since it is about to enter the collection of basic vari-
ables. xl̃, which becomes zero when xê is increased appropriately, is called the
leaving variable, since it is to be removed from said collection. Keep in mind that
since xl̃ is a basic variable, it only occurs in one equation, namely

xl̃ = bl −
∑
j∈N

aljxĵ . (2.7)

Note that we have retained all the nonbasic variables, as we want an equation
that is valid at all times, not only when almost all nonbasic variables are zero.

10 CHAPTER 2. BACKGROUND

We can eliminate the entering variable from (and introduce the leaving variable
into) the set of nonbasic variables by rewriting (2.7):

xl̃ = bl − alexê −
∑

j∈N−{ê}

aljxĵ (2.8)

xê =
1
ale

bl − xl̃ −
∑

j∈N−{ê}

aljxĵ

 . (2.9)

Now that we have an expression for xê, we can substitute it into all of the other
equations — this will eliminate xê and introduce xl̃ into the rest of the tableau.
For all i ∈ B − {l̃}, we have:

xĩ = bi −
∑
j∈N

aijxĵ (2.10)

= bi − aiexê −
∑

j∈N−{ê}

aijxĵ (2.11)

= bi −
aie

ale

bl − xl̃ −
∑

j∈N−{ê}

aljxĵ

− ∑
j∈N−{ê}

aijxĵ (2.12)

=
(
bi −

aie

ale
bl

)
+
aie

ale
xl̃ −

∑
j∈N−{ê}

(
aij −

aie

ale
alj

)
xĵ . (2.13)

A similar result will be achieved for the expression for the objective function.
Although it might look complicated, it amounts to subtracting6 aie

ale
times the

tableau row l from all other tableau rows i (and adding ce
ale

times row l to the
objective function row), and then setting the tableau entries in column e to aie

ale

(and to − ce
ale

in the objective function row). Note that because l was selected

such that ale was positive and bl
ale

was minimal, all bi remain nonnegative; and
because e was selected such that ce was positive, ζ cannot decrease (it will either
retain its old value or increase, depending on whether or not bl was zero).

(2.9) is the new form of the tableau row that originally corresponded to the
basic variable xl̃. The new row, which corresponds to xê, can be easily obtained
from the old one by dividing the row by ale and setting the coefficient of what is
now xl̃ to − 1

ale
.

Finally, we remove l̃ from B and add it to N , and remove ê from N and
add it to B, so that the leaving and entering variables swap positions in the new
tableau. This completes the pivot operation — we again have a tableau in which
all nonbasic variables can be set to zero and all bi are nonnegative, and the entire
process may be repeated.

6Keeping track of the signs here becomes somewhat cumbersome. Keep in mind that the
tableau cell at row i, column j contains −aij (if i, j ≥ 1).

2.1. LINEAR PROGRAMMING 11

A 3 × 3 tableau will look like this after one pivot with x2 as the entering
variable and x5 as the leaving variable:

x1 x5 x3

ζ 0 + b2c2/a22 c1 − a21c2/a22 −c2/a22 c3 − a23c2/a22

x4 b1 − b2a12/a22 −a11 + a21a12/a22 a12/a22 −a13 + a23a12/a22

x2 b2/a22 −a21/a22 −1/a22 −a23/a22

x6 b3 − b2a32/a22 −a31 + a21a32/a22 a32/a22 −a33 + a23a32/a22

— Example —

After one pivot with x1 as the entering variable and x4 as the leaving variable,
we get the following tableau:

x4 x2

ζ 750 −15 5
x3 15 0.5 −0.5
x1 25 −0.5 −0.5

For the next pivot operation, only x2 can be selected as the entering variable,
which causes x3 to be selected as the leaving variable. After the pivot, the
tableau looks like this:

x4 x3

ζ 900 −10 −10
x2 30 1 −2
x1 10 −1 1

Since all objective function coefficients are now negative, we have reached
an optimal solution with the value ζ = ζ = 900. This solution value
is obtained by setting the nonbasic variables (x3 and x4) to 0, in which
case x1 = 10 and x2 = 30. We can easily verify that these variable val-
ues do not violate any constraints, and by substituting the values into the
original objective function, we can verify that the optimal value is indeed
ζ = 30x1 + 20x2 = 30 · 10 + 20 · 30 = 900.

2.1.2.1 Degeneracy and cycling

A tableau is degenerate if some of the bi are zero. Degeneracy may cause problems
because a pivot on a degenerate row will not cause the objective function value
to change, and we will not have got any closer to a solution. With severely bad
luck, the algorithm may end up cycling through a number of degenerate states.

12 CHAPTER 2. BACKGROUND

This, however, rarely happens — according to Vanderbei[47, p. 32], cycling “is
so rare that most efficient implementations do not take precautions against it”.

As mentioned in Footnote 5 on page 7, the general formulation of the sim-
plex method is underspecified because it does not tell how to break ties between
potential entering and leaving variables. There exist rules that guarantee that cy-
cling will not happen; one of them, called Bland’s rule[47, Sec. 3.4] is to break ties
by always selecting the variable with the smallest subscript. There are

(
m+n

m

)
possible dictionaries — each dictionary is uniquely determined by the set of
basic variables, and the order of the variables is unimportant (if the rows and
columns of a dictionary are permuted, it is still regarded as the same dictionary,
since the same variables will be selected for pivoting). Since each step trans-
forms one dictionary into another, the simplex method is guaranteed to termi-
nate in at most

(
m+n

m

)
steps if precautions are taken against cycling. In practice,

however, the method is usually far more efficient, and algorithms that are guar-
anteed to run in polynomial time are allegedly only superior for very large data
sets (this appears to be “common knowledge” in books about the subject, who
tend not to give further references about this).

2.1.2.2 Duality

Duality is an interesting property that is exhibited by linear programs and gives
rise to several variations of the standard simplex method.

Given a linear programming problem in standard form:

Maximise

ζ =
n∑

j=1

cjxj (2.14)

with respect to

xn+i = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.15)

x1, . . . , xn+m ≥ 0 (2.16)

its dual problem is formed by negating everything and interchanging the roles
of rows and columns: the bi become the objective function coefficients, the cj
become the right hand side, and the positions of the aij are transposed. Also,
the xs are replaced by ys (to avoid confusion with the original problem, since
the variables of the dual problems will attain different values in the course of
the method). We still want to maximise, but we define the solution of the dual
problem to be the negative of the maximal value (this is just a technicality to
avoid expressing the problem as a minimisation).

2.1. LINEAR PROGRAMMING 13

−Maximise

ξ = −
m∑

i=1

biyi (2.17)

with respect to

ym+j = −cj +
m∑

i=1

aijyi, for j = 1, . . . , n. (2.18)

y1, . . . , ym+n ≥ 0 (2.19)

This corresponds to negating and transposing the entire tableau. Note that
the original problem is referred to as the primal problem, and that the dual of the
dual problem is the primal problem. There are two highly interesting facts about
the dual problem (see [47] for proofs):

The weak duality theorem states that any feasible solution of the dual problem
will be greater than any feasible solution of the primal problem.

The strong duality theorem states that the optimal solution of the dual prob-
lem equals the optimal solution of the primal problem.

We will not utilise duality extensively, except for the Phase I method dis-
cussed below, so we do not give a thorough presentation of it. The concept is
very interesting, however, and interested readers should consult Vanderbei[47,
Chapter 5], who gives a more in-depth presentation, including an intuitive ra-
tionale for why the dual problem is formed in this way.

Duality can be exploited in many ways, one of which is the following: if
one has a linear program where the right hand side contains negative numbers,
but all objective function coefficients are nonpositive, one can form the dual
program (whose right hand side will then contain only nonnegative numbers)
and solve that one instead. This approach is called the dual simplex method, and
it is usually performed without actually transposing the tableau — it just swaps
the roles of the basic and nonbasic variables.

2.1.2.3 Initially infeasible problems

The method presented so far is capable of solving linear programs whose initial
basic solution (the one obtained by setting all nonbasic variables to 0) is feasible.
This is the case if and only if all of the bi are nonnegative, which we cannot
in general assume them to be. As mentioned in the preceding section, one can
get around this if all the cj are nonpositive, but this does not generally hold
either. If we have one or more negative bi, we get around this by introducing an
auxiliary problem which is based on the original problem. The auxiliary problem

14 CHAPTER 2. BACKGROUND

is formed such that it is guaranteed to have a basic feasible solution, and such
that its optimal solution will provide us with a starting point for solving the
original problem. It is created by subtracting a new variable x0 from the left
hand side of each equation of the original problem (which is assumed to be in
standard form), and replacing the objective function with simply ζ = −x0. The
purpose of x0 is that by initially setting it to a sufficiently large value, we can
easily satisfy all equations (even those having negative entries in the right hand
side7). Then, we can try to change variable values (through regular pivoting)
and see if it is possible to make x0 equal to zero, in which case we can remove it
from our equations and reinstate the original objective function, thereby having
arrived at a problem that is equivalent to the original one. This is the purpose
of our new objective function — since x0, like all other variables, is required to
be nonnegative, the goal of optimising −x0 means that we are trying to make x0

zero. Fortunately, we do not need a new algorithm for this optimisation process;
we can use the simplex algorithm as it has been described above. We only need
to do one pivot operation before we start that algorithm: since the idea of x0

is to initially set it to a suitably large value, and since the algorithm requires a
nonnegative right hand side, we should make x0 a basic variable by performing
one pivot operation with the row containing the most negative bi. This will make
the entire right hand side nonnegative. Solving the auxiliary problem is called
Phase I, and solving the resulting problem (with the original objective function)
is called Phase II. Thus, the full simplex method is a two-phase method (but of
course, if the right hand side of the original problem is nonnegative, we can skip
Phase I).

Another Phase I method, the one used by Vanderbei, is to first replace neg-
ative terms in the objective function by an arbitrary positive number (e.g. 1)
and then run the dual simplex method as described above. The dual method
will terminate when the original right hand side only consists of nonnegative
numbers, in which case we can reinstate the actual coefficients of the original
objective function and proceed with Phase II.

One-phase methods also exist, such as the parametric self-dual simplex method,
as described in [47, Sec. 7.3].

2.1.2.4 Formal algorithm statement

In Algorithm 1 on the next page we present the pseudocode for an individual
phase of the standard simplex method (with the first approach described in Sec-
tion 2.1.2.3, the same code can be used for both Phase I and Phase II). The tableau
is called T and is zero-indexed; keep in mind that row 0 is the objective function
and column 0 contains the constants from the right hand sides of the inequali-

7Beware that “the right hand side” refers to the bi, which are on the right hand side of the
original equations — but in the tableau, they are on the left hand side.

2.1. LINEAR PROGRAMMING 15

ties. The current value of the objective function is always in row 0, column 0.
We use row major indexing, so T [2, 3] is row 2, column 3.

Algorithm 1 One phase of the standard simplex method using the Dantzig cri-
terion

1: procedure STANDARDSIMPLEXPHASE(m, n, a[1..m, 1..n], b[1..m], c[1..n])
2: T [0, 0]← 0
3: T [i, j]← −a[i, j] for i = 1 . . .m, j = 1 . . . n
4: T [i, 0]← b[i] for i = 1 . . .m
5: T [0, j]← c[j] for j = 1 . . . n
6: N ← {1, . . . , n}
7: B ← {n+ 1, . . . , n+m}
8: loop
9: Pick the smallest column number e ≥ 1 such that T [0, e] is positive

and maximal
10: if no e is found then
11: return T [0, 0] as the optimal solution
12: end if
13: Pick the smallest row number l ≥ 1 such that T [l, e] < 0 and −T [l,0]

T [l,e] is
minimal

14: if no l is found then
15: return “The problem is infeasible” (if this is Phase I) or “The prob-

lem is unbounded” (if this is Phase II)
16: end if
17: p← −T [l, e]
18: for i← 0,m do
19: if i 6= l then
20: f ← T [i,e]

p
21: Add f times row l of T to row i of T
22: T [i, e]← −f
23: end if
24: end for
25: Divide row l of T by p
26: T [l, e]← −1

p
27: end loop
28: end procedure

2.1.2.5 Complexity and numerical instability

The complexity classes P and NP should be familiar to anyone that has taken
an algorithms course: NP is the class of decision problems (problems that are in
the form of a yes/no question) where, if the answer is “yes” and we are given a
“certificate” that demonstrates the solution, we can validate the solution in time
that is polynomial in the size of the input. P is the subset of NP that consists

16 CHAPTER 2. BACKGROUND

of those decision problems where we can also find the solution in polynomial
time. The question of whether P = NP remains one of the most important open
questions in the field of computer science, and is one of the seven Clay Mille-
nium Prize problems8. Most researchers believe that P ⊂ NP, and that the most
difficult problems in NP, the so-called NP-complete (NPC) problems, cannot be
solved in polynomial time. Cormen et al.[8] give a good introduction to com-
plexity theory.

When dealing with parallel programming, another complexity class is also
useful: NC, also known as Nick’s Class. This is the class of all problems that can
be solved in O(lgk1 n) steps (so-called polylogarithmic time) using a polynomial
(O(nk2)) number of processors. Here, k1 and k2 are constants. NC is a subset of
P, since any parallel algorithm requiring f(n) steps using p(n) processors can be
simulated in p(n)f(n) steps on a sequential computer. Thus, any NC-algorithm
will require O(nk2 lgk1 n) steps on a sequential machine, and this is polynomial
in n. However, there are problems in P which have not yet been proven to be in
NC, and the most difficult problems among these are called P-complete (PC) —
this is quite analoguous to the NP/P/NPC situation.

In some sense, NC captures the notion of what it means for a problem to
be “parallelisable”, while the P-complete problems can be said to be “hard to
parallelise”. However, it is not a perfect classification:

• A problem may be in NC without being efficiently solvable in practice
due to a prohibitive processor requirement of the algorithm (for instance
O(n10) processors) or large constants hidden by the O-notation.

• Parallel algorithms for P-complete problems may still be useful because
they might be faster than their sequential counterparts (just not “much
faster”).

Where does LP fit into this picture? The trivial upper bound of O(
(
m+n

m

)
)

given in Section 2.1.2.1 for the number of iterations in the simplex method is
absolutely horrible:

(
m+n

m

)
≥
(

m+n
m

)m =
(
1 + n

m

)m, which, if m = n, becomes
2m. Unfortunately, Klee and Minty[30] proved that it is possible to construct
arbitrary-size data sets that make the method hit that bound when a certain piv-
oting rule is used (and no one has succeeded in finding a pivoting rule that can
guarantee polynomial time). In spite of this, the method is said to often be sur-
prisingly efficient in practice (this is stated without further reference in several
books, among them [47] and [8]). In 1979, Khachiyan[29] discovered a differ-
ent kind of algorithm that is guaranteed to run in polynomial time, and thus he
proved LP to be in P.9 However, LP is also P-complete, as proved by Dobkin

8http://www.claymath.org/millennium/
9Strictly speaking, LP is a computation problem (one in which we seek a numerical answer)

rather than a decision problem and thus falls outside of the NP/P/NC discussion. However, like

http://www.claymath.org/millennium/

2.1. LINEAR PROGRAMMING 17

et al.[10]. Still, for the reasons mentioned above, this should not discourage us
from seeking parallel versions of LP algorithms.

Greenlaw et al.[16] give a thorough presentation of NC and other aspects
of parallel complexity, and a more compact survey of the field can be found in
Natvig’s Dr.Ing. thesis[40].

2.1.2.6 Warmstarting

If one has solved an LP problem and then wishes to solve a very similar problem
(one that has been obtained by slightly altering the various coefficients of the
original problem), it would seem reasonable to believe that the optimal solution
to the original problem would be a great starting point in the search for the
optimal solution to the new problem. This turns out to be the case, and the
idea is known as warmstarting. It normally leads to a great reduction in the time
required to solve the new problem, and it is also very easy to implement — the
simplex method does not need to be changed at all; the program must simply
be capable of taking a suggested starting solution as input. Note that one might
have to run both phases, in case the original solution is not feasible for the new
problem. Interested readers may consult Vanderbei[47, Chapter 7] for a more
thorough introduction to the subject (which he refers to as sensitivity analysis).

Miriam AS employs Monte Carlo methods that produce a number of random
variations of the current state of the oil pipeline network in order to predict what
will happen if anything changes. This is an important reason that they want to
focus on the simplex method rather than interior point methods (Section 2.1.5)
— warmstarting is possible for the latter class of methods, but it is much harder
to implement. Various approaches to warmstarting interior point methods are
described by e.g. Gondzio and Grothey[15] (this is actually a more general ap-
proach for quadratic programming), Yildirim and Wright[52], and Benson and
Shanno[6].

2.1.3 The revised simplex method

The revised simplex method, also due to Dantzig[9], is essentially just a linear
algebra reformulation of the mathematical operations of the standard simplex
method; however, it is much more numerically stable, for reasons that will be
explained. We begin with expressing the slack form constraint tableau in matrix
notation — note that all vectors are column vectors unless stated otherwise. An
LP problem in slack form (with renaming of the slack variables) looks like the
following:

many other computation problems, LP easily can be reformulated as a decision problem that can
be solved by the same algorithms; see [16, Problem A.4.3] for more references.

18 CHAPTER 2. BACKGROUND

Maximise

ζ =
n∑

j=1

cjxj (2.20)

with respect to

xn+i = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.21)

x1, . . . , xn+m ≥ 0 (2.22)

If we let

A =


a11 a12 · · · a1n 1
a21 a22 · · · a2n 1

...
...

. . .
...

. . .
am1 am2 · · · amn 1

 (2.23)

b = [b1 · · · bm]> (2.24)

c = [c1 · · · cn 0 · · · 0]> (m zeroes at the end) (2.25)

x = [x1 · · · xn xn+1 · · · xn+m]> (2.26)

we can express the problem in a very compact manner:

Maximise

ζ = c>x (2.27)

with respect to

Ax = b (2.28)

x ≥ 0 (2.29)

In order to be able to handle the pivot operations, we will need to split each
of our matrices and vectors into two in order to reflect which entries correspond
to basic variables and which ones do not. As before, we let N be the collection
of nonbasic variable indices (initially {1, . . . , n}), and B the collection of basic
variable indices (initially {n + 1, . . . , n + m}). All the basic variables are put
in the vector xB, and the nonbasic variables are put in xN — the order of the
variables within these vectors do not matter, as long as the entries of the other
matrices are arranged correspondingly. We split A into two matrices: an m × n
matrix N, containing all columns from A that correspond to nonbasic variables
(initially, this will be all the columns containing the aij entries), and B, which

2.1. LINEAR PROGRAMMING 19

is initially an m × m identity matrix. Similarly, we split c into one vector cN
for the objective function coefficients belonging to nonbasic variables (initially,
cN = [c1 · · · cn]>) and one vector cB for the coefficients belonging to basic
variables (initially anm element zero vector). After each pivot operation, entries
of these matrices and vectors will swap positions according to how the collections
of basic and nonbasic variables have changed, but the values themselves will
never change during the course of the algorithm. This means that numerical
stability may be significantly improved, since the matrices and vectors will not
accumulate errors (practical implementations do, however, maintain additional
vectors that will accumulate errors; see below). Note that the right hand side
vector, b, remains a single vector that will never change. Using these “split”
matrices and vectors, we can express the problem as

Maximise

ζ = c>NxN + c>BxB (2.30)

with respect to

NxN + BxB = b (2.31)

x ≥ 0 (2.32)

During execution of the (standard) simplex method, it is always the case that
each basic variable occurs in exactly one equation, and hence each basic variable
can be written as a function of the nonbasic variables. Therefore, B must be
invertible, so we can multiply (2.31) by B−1 and rearrange it to get

xB = B−1b−B−1NxN . (2.33)

Combining this with (2.30), we get

ζ = c>NxN + c>BxB (2.34)

= c>NxN + c>B (B−1b−B−1NxN) (2.35)

= c>BB
−1b + (c>N − c>BB

−1N)xN . (2.36)

This is very interesting, because we can use it to acquire explicit formulas for the
simplex tableau at any time during the method, given the current basic/nonba-
sic variable configuration: From (2.33) (which can be rewritten as B−1NxN +
xB = B−1b), we see that:

• The negative of the current body of the standard simplex tableau (the co-
efficients that in the previous subsection were known as [−aij]) can be ex-
pressed as B−1N.

20 CHAPTER 2. BACKGROUND

• The “right hand side” (the leftmost column of the tableau, known as [bi] —
these are also the current values of the basic variables) is B−1b.

• Similarly, we see from (2.36) that c>BB
−1b corresponds to the current value

of the objective function (obtained by setting xN = 0), and the current ob-
jective function coefficients (also called the reduced costs) from the tableau
(known as [cj]) are c>N − c>BB

−1N.

How can we express a pivot operation? It turns out to be exceedingly simple
— if the entering variable is xê and the leaving variable is xl̃, it is sufficient to
swap column e of N with column l of B. We do not even need to physically move
the columns; we can implicitly move them by using permutation lists (based on
B and N) to keep track of which columns are located where. Strangely, Van-
derbei[47] does not seem to contain a proof that pivots can be performed in this
manner (for the most part, the book is burgeoning with useful proofs). For the
sake of completeness, we provide here a (not entirely rigorous) demonstration
that at least the first pivot will work. B was initially an identity matrix, and N
was [aij]. We now perform a pivot where xê enters and xl̃ leaves — this will
cause column e from N to be swapped with column l from B. Let us assume
that the former column does not contain any zeroes (if it does, its inverse will
look different); then we have the following (column l of B and B−1 and column
e and row l of N have been emphasised):

B−1 =



1 a1e

. . .
...
ale
...

. . .
ame 1



−1

=



1 −a1e/ale

. . .
...

1/ale
...

. . .
−ame/ale 1


and

B−1N =



1 −a1e/ale

. . .
...

1/ale
...

. . .
−ame/ale 1





a11 · · · 0 · · · a1n

...
...

...
al1 · · · 1 · · · aln

...
...

...
am1 · · · 0 · · · amn



=



a11 − al1a1e/ale · · · −a1e/ale · · · a1n − alna1e/ale
...

...
...

al1/ale · · · 1/ale · · · aln/ale

...
...

...
am1 − al1ame/ale · · · −ame/ale · · · amn − alname/ale



2.1. LINEAR PROGRAMMING 21

Compare this to the tableau on page 11 (where m = n = 3 and e = l = 2) —
its main body is the exact negative of this matrix, as expected. Similar deriva-
tions can be carried out for the right hand side and for the objective function
coefficients.

Armed with this knowledge, we can formulate the revised simplex method,
as shown in Algorithm 2. Note that, like the standard simplex method, it may
also require two phases, and it is still necessary to specify a way of selecting the
entering variable.

Algorithm 2 One phase of the revised simplex method
1: procedure REVISEDSIMPLEXPHASE(m, n, N, cN , b)
2: Let cB be an m element zero vector
3: Let B be an m×m identity matrix
4: Let B−1 be an m×m identity matrix
5: N ← {1, . . . , n}
6: B ← {n+ 1, . . . , n+m}
7: loop
8: ĉ>N ← c>N − c>BB

−1N . Compute the reduced costs
9: Search ĉN for a negative number; let e be its index (the corresponding

nonbasic variable is then xê)
10: if no negative number found in ĉN then
11: return c>BB

−1b, B−1b . Optimal value and basic variable values
12: end if
13: Let Ne be the eth column of N (the one corresponding to xê)
14: â← B−1Ne . Compute the tableau coefficients of xê

15: b̂← B−1b . Compute the basic variable values
16: Let l be a value of i that minimises t = b̂i

âi
(only perform this calcula-

tion for those i ∈ B where âi is positive)
17: if no value is found for l then
18: return “The problem is unbounded”
19: end if
20: Exchange the eth column of N with the lth column of B
21: B ← (B − {l̃}) ∪ {ê}
22: N ← (N − {ê}) ∪ {l̃}
23: Recalculate B−1 from B
24: end loop
25: end procedure

This method looks problematic in that it seems to require B to be inverted
in every single iteration. However, it turns out that since only one column of
B changes in iteration, each B−1 can be calculated from the previous one by
changing one column; furthermore, this change can be expressed as a multipli-
cation with a sparse matrix formed in a certain way. A chain of such matrices is
called an eta file, and this approach is described in greater detail in [47, Section

22 CHAPTER 2. BACKGROUND

8.3]. Of course, the longer the eta file gets, the slower the calculation will be-
come, and inaccuracies may accumulate. Therefore, with regular intervals, B−1

should be recomputed from scratch from the current version of B. This will also
eliminate the inaccuracies (unless B is ill-conditioned, in which case one may
run into problems). Note that it is possible to update b̂ and ĉN in each itera-
tion rather than to recalculate them (this is the approach taken by [47]), but the
update calculations are also time consuming.

2.1.4 ASYNPLEX

As we will describe in Section 3.3, even getting the sequential standard sim-
plex method to work turned out to be very hard. With time becoming scarce,
we realised that we most likely would not be able to develop an algorithm of
our own for a parallel revised simplex method, and so we started looking for
existing algorithms. We did not find many, and the most promising one (in
particular because it bears a strong resemblance to the original revised simplex
method) is called ASYNPLEX, and was developed by Hall and McKinnon[19].
It is an asynchronous algorithm10 for message-passing systems, but the authors
also describe a shared-memory version of the algorithm. We will now present
ASYNPLEX, based on [19].

Before proceeding, we should mention that on the coarsest level, one can
distinguish between two ways of achieving parallelism:

Task parallelism can be achieved when two or more different operations can
be performed in parallel.

Data parallelism can be achieved when the same operation is applied to several
related data elements.

The extent to which the different parts of the computation are independent will
greatly affect the possibilities for speedup. Computations that can be split into
parts that are entirely independent are called embarrassingly parallel (see Section
2.3.3 for more information on this), and such computations will benefit greatly
from parallelisation (unless the computation is so simple that the time spent
distributing the data to the different processors exceeds the time saved on the
computation). Unfortunately, many important problems are not embarrassingly
parallel because one computation may depend on an intermediate result from
another computation (if, on the other hand, it depends on the final result, it can-
not be said to be parallelisable).

10In a synchronous algorithm, the code contains synchronisation points where two or more
processes or threads must wait for each other to reach the point before proceeding. In asyn-
chronous algorithms, the only kind of waiting that may occur is waiting for incoming messages
from other processes or threads.

2.1. LINEAR PROGRAMMING 23

ASYNPLEX can be regarded as a task parallel algorithm in which there are
four different kinds of processes:

• One invert processor;

• One basis change manager;

• One column selection manager;

• One or more iteration processes.

We will interleave their descriptions with the description of the general idea
behind the algorithm.

Matrix inversion

The invert processor is continuously performing inversions of the B matrix. When-
ever one of the iteration processes performs a pivot operation, it sends a message
to the invert processor telling which variable entered and which one left. Once
the invert processor finishes the current inverse calculation, it distributes the re-
sulting B−1 matrix to the iteration processes. Then, it receives all incoming basis
change messages and begins a new inverse calculation. Most likely, the iteration
processes will find that the inverse is somewhat out of date when it is received,
but they will just delete the appropriate number of entries from the eta file. This
approach sacrifices some numerical stability for the increase in speed that is ob-
tained by dedicating a separate processor to the inversion operation. See Section
3.4.1 for a small discussion of what happens if this approach is used on its own,
without the other elements of ASYNPLEX.

Candidate persistence

With the exception of the matrix inversion, the revised simplex method seems
to be poorly suited for task parallelism, because each pivot operation seems to
depend on the previous one — this, however, turns out to only be partially true.
The key observation upon which ASYNPLEX is based is a phenomenon called
candidate persistence. An attractive candidate is a nonbasic variable whose objective
function coefficient is negative, so that it is possible to select it as the entering
variable. According to [19], a variable that is attractive in one iteration (but re-
mains nonbasic because some other variable is eventually selected as the enter-
ing variable) will often remain attractive in subsequent iterations. Furthermore,
it can be observed that the pivot operation itself is usually very cheap (assuming
that the implementation swaps matrix columns implicitly by using permutation
lists to keep track of the current location of each column, while the columns
themselves remain in one place) — the majority of the work in each iteration
is associated with determining the entering and leaving variables and updating

24 CHAPTER 2. BACKGROUND

the solution vector. This leads to the idea of having several processes (the itera-
tion processes) speculatively computing the â (see Algorithm 2) corresponding
to several attractive candidates. When an iteration process has completed the
calculation of â, it sends to the basis change manager an offer to compute the
leaving variable and perform the pivot operation. Given any basis, only one
iteration process should be allowed to decide how to pivot away from it (other-
wise, the iteration processes would diverge in different directions), and the basis
change manager handles this. If the offer is accepted, the iteration process will
tell all other processes which variable left and which one entered, and the other
iteration processes will update their B and N accordingly. It also computes a
new set of attractive candidates. Iteration processes that have had their offers
rejected will request new variables from the column selection manager, which
keeps track of which variables are currently regarded as attractive.

The pseudocode uses some overly compact names (that probably stem from
some old naming convention; Maros[37] uses them too) for each step of the al-
gorithm; they are as follows (taken from [19], with some modifications):

BTRAN Compute π> ← cT
BB
−1 (in the process, we will use the eta file entries

in reverse order, hence the name Backwards TRANsformation[37]).

PRICE Compute the reduced costs: ĉ>N ← c>N − π>N.

CHUZC Choose entering variable (Column) by finding a negative entry in ĉN .

FTRAN Compute â ← B−1aq, where aq is the column of N that corresponds
to the entering variable (this time, the eta file will be used forwards, hence
Forwards TRANsformation).

CHUZR Choose leaving variable (Row) by looking at the componentwise ratios
of b̂/â, where b̂← B−1b. Let α be the smallest such ratio.

UPRHS Update the right-hand side by adding αâ to b̂.

UPDATE BASIS Add an entry to the eta file.

We now present the pseudocode for ASYNPLEX as it is given by Hall and
McKinnon[19] (with a few notational adaptations), in Algorithms 3, 4, 5, and 6.
It is assumed that there is a separate, sequential piece of code that handles input
reading and sets up the different processes. In Section 3.4.2, we describe how
we have adapted the algorithm.

A short explanation of Hall’s notation may be useful. Each process has a
number of points where it sends or receives data to or from the other processes.
Each such communication endpoint is given a short identifying tag, both on the
sending and receiving end, and each send or receive operation indicates where
it wishes to send to or receive from (and the process’ own tag for that operation

2.1. LINEAR PROGRAMMING 25

is indicated with a comment in the right margin — note also that each type of
process has its own letter). Iteration process tags are suffixed with a colon and
the index of the process, since there can be several iteration processes.

2.1.5 Interior point methods

It is possible to interpret the simplex method in a geometric fashion: with n

decision variables, the space of all vectors of possible decision variable values
form an n-dimensional space. Each constraint can be modelled as a plane in this
space — an equality constraint requires that feasible solutions lie on the plane,
and an inequality constraint requires that feasible solutions lie on or to one of
the sides of the plane. Together with the planes from the implicit nonnegativ-
ity constraints, this forms a geometrical shape known as a simplex — hence the
name of the simplex method. Each intermediate solution produced by the sim-
plex method represents a point that is a vertex (an intersection between n or
more planes). There exists another class of algorithms called interior point meth-
ods, whose intermediate solutions always lie in the interior of the simplex. A
distinct advantage of most interior point methods over the simplex method is
that they have polynomial worst-case bounds on their time consumption. The
first polynomial interior point method was invented by Khachiyan[29] in 1979,
and one of the most well-known methods is due to Karmarkar[27].

Interior point methods were mentioned in the problem description, but it
was soon discovered that the scope of the project was already large enough
even when only considering the simplex methods. Thus, interior point meth-
ods will not be taken into consideration, but we felt that no discussion of linear
programming would be complete without mentioning this subject.

2.1.6 State of the art: sequential LP solvers

We now present some existing sequential solvers that we have studied.

ILOG CPLEX

CPLEX, developed by the company ILOG (http://www.ilog.com/products/
cplex/), is a widely used mathematical optimisation package, and also the
one currently used by Miriam AS. Being proprietary closed-source software, we
cannot examine its inner workings (but they are probably too complex for this
project).

GLPK

The Gnu Linear Programming Kit is an open source initiative to produce a ver-
satile suite of mathematical optimisation tools. Unfortunately, the code base is

http://www.ilog.com/products/cplex/
http://www.ilog.com/products/cplex/

26 CHAPTER 2. BACKGROUND

Algorithm 3 ASYNPLEX — iteration process number i (0 ≤ i < p)
1: procedure RUNITERATIONPROCESS(i, p,N,b, c)
2: ki ← 0
3: BTRAN
4: PRICE
5: FTRAN — let q be the ith most attractive candidate column, or -1 if that

does not exist
6: repeat
7: if received← V2 an LU factorisation of the inverse then . I1
8: Install new inverse
9: end if

10: while basis changes received← I7 are not yet applied do . I2
11: Apply basis change; ki ← ki + 1
12: end while
13: Permute column aq

14: FTRAN
15: while basis changes received← I7 are not yet applied do . I3
16: Apply basis change
17: FTRAN STEP; ki ← ki + 1
18: end while
19: if q = −1 or ĉq > 0 then
20: Send→ C4 a message that the candidate is unattractive . I4
21: else
22: Send→ R1 an offer to perform CHUZR . I5
23: Wait← (R2 or R3) for a reply to offer . I6
24: if Offer accepted then
25: CHUZR
26: Send → (I2/I3/I10 on all other iteration processes) the basis

change and pivotal column . I7
27: Send→ (V1 and C1) basis change . I8
28: UPDATE BASIS; ki ← ki + 1
29: BTRAN
30: Permute π
31: PRICE
32: FTRAN — choose a set of the most attractive candidates
33: Send→ C2 the most attractive candidates . I9
34: else
35: Wait← I7 for next basis change . I10
36: goto line 15
37: end if
38: end if
39: Wait← (C3 or C5) for a new candidate column, q . I11
40: until The algorithm terminates
41: end procedure

2.1. LINEAR PROGRAMMING 27

Algorithm 4 ASYNPLEX — invert processor
1: procedure RUNINVERTPROCESSOR(p,m,N)
2: Let B be an m×m identity matrix
3: kv ← 0
4: repeat
5: while received← I8 a notification that xl has left the basis and xe has

entered do . V1
6: Swap the corresponding columns between B and N
7: kv ← kv + 1
8: end while
9: INVERT

10: Send→ I1 on all p iteration processes the new LU factorisation of the
inverse for basis kv . V2

11: until the algorithm terminates
12: end procedure

Algorithm 5 ASYNPLEX — column selection manager
1: procedure RUNCOLUMNSELECTIONMANAGER(m,n)
2: kc ← 0
3: Mark all nonbasic variables as unselected
4: repeat
5: if received← I8 basis change then . C1
6: Mark the variable which has left the basis as unselected
7: else if received ← I9:i a set of candidates corresponding to basis ki

then . C2
8: if ki > kc then
9: Filter out the candidates already selected and those already

rejected after the FTRAN at a basis ≥ ki

10: kc ← ki

11: end if
12: Send→ I11:i the most attractive candidate to enter the basis and

mark the candidate as selected . C3
13: else if received ← I4:i a message that its current candidate is now

unattractive then . C4
14: Send→ I11:i the most attractive candidate to enter the basis and

mark the candidate as selected . C5
15: end if
16: until the algorithm terminates
17: end procedure

28 CHAPTER 2. BACKGROUND

Algorithm 6 ASYNPLEX — basis change manager
1: procedure RUNBASISCHANGEMANAGER

2: kb ← 1
3: repeat
4: if received← I5:i an offer to perform CHUZR for basis ki then . R1
5: if ki = kb then
6: Send→ I6:i an acceptance of the offer . R2
7: kb ← kb + 1
8: else
9: Send→ I6:i a refusal of the offer . R3

10: end if
11: end if
12: until the algorithm terminates
13: end procedure

extremely large, comprising more than 75000 lines of C code distributed across
nearly 100 files. While only a handful of these files contain functionality that is
directly related to the simplex method, reverse engineering it still would be a
daunting task — especially given that their coding convention apparently calls
for very short variable names.

GLPK is released by its authors under version 3 of the GNU General Public
License.

retroLP

As opposed to virtually all other LP solvers, retroLP[50] implements the original
simplex method, not the revised method. The former is advantageous for dense
problems, which occur in some special applications such as “wavelet decompo-
sition, digital filter design, text categorization, image processing and relaxations
of scheduling problems.”[51] As compared to GLPK, the code is fairly short and
readable — but it still consists of around 6000 lines.

retroLP is released by its authors under version 2 of the GNU General Public
License.

Numerical Recipes

The Numerical Recipes is a well-known book containing source code for the nu-
merical solution to problems in linear algebra, differential equations and many
other fields. They also provide linear algebra solvers — in the second edi-
tion[42], they use the standard simplex method, while in the third edition[43],
they use the revised simplex method. For reasons to be discussed in Section 3.3,
we suspect that this is due to numerical stability problems, but we found no
mention of such in the book.

2.1. LINEAR PROGRAMMING 29

Vanderbei’s code

Vanderbei has published a freely available implementation of the revised sim-
plex algorithm and three other algorithms that are presented in his book[47],
at http://www.princeton.edu/˜rvdb/LPbook/. While it comprises more
than 20000 lines of source code, the core parts are fairly short and well separated
from the rest of the code (much of which deals with different input formats). The
code for the revised simplex methods alone is “only” around 7000 lines.

The code has no licence information attached to it. Anyone who wishes to
commercially utilise those parts of our code that are derived from Vanderbei’s
code are strongly advised to contact Vanderbei.

Others

Here follows a few more solvers we are aware of. We have not had the time to
study them thoroughly, but we list them here for those who might be interested
in doing so.

Xpress — a commercial product, available at http://www.dashoptimization.
com/home/products/products_optimizer.html;

OOPS — http://www.maths.ed.ac.uk/˜gondzio/parallel/solver.

html;

COIN-OR Linear Program Solver (CLP) — http://www.coin-or.org/Clp/;

SoPlex — An implementation developed as a part of Roland Wunderling’s Ph.D.
thesis[49], and available at http://soplex.zib.de/.

2.1.7 State of the art: parallel LP solvers

Parallel LP solvers also exist. ASYNPLEX[19] has already been discussed in
greater detail, and here is a short list of some of the other solvers we have found.

Parallelisation of the revised simplex method using CUDA (Spampinato)

Compute Unified Device Architecture (CUDA) is a framework from the graph-
ics processing unit (GPU) manufacturer nVidia. Mr. Daniele Spampinato, a stu-
dent at our department, implemented the revised simplex method by using the
CUBLAS linear algebra library to offload the linear algebra computations onto
the GPU[46]. He reported overall speedups of 2.0–2.4 relative to a sequential
implementation using ATLAS, but only for dense data sets. The only operation
that (by itself) yielded the vast speedups that are theoretically possible when
using GPUs (which have hundreds of cores) was the basis inversion[46, Figure

http://www.princeton.edu/~rvdb/LPbook/
http://www.dashoptimization.com/home/products/products_optimizer.html
http://www.dashoptimization.com/home/products/products_optimizer.html
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
http://www.coin-or.org/Clp/
http://soplex.zib.de/

30 CHAPTER 2. BACKGROUND

5.6 on p. 45]. Furthermore, he experienced major problems with numerical sta-
bility. Note that his implementation parallelised each linear algebra operation
individually; it was not a parallel version of the simplex method itself.

SMoPlex, DoPlex (Wunderling)

These are, respectively, shared memory and distributed memory implementa-
tions of the revised simplex method, also from Wunderling’s thesis[49]. Re-
grettably, these implementations are not available online, and since the thesis is
written in German, we have not been able to study it — but it may prove useful
to someone proficient in German. According to Hall[19], the implementation is
“parallel for only two processors”.

Parallelisation of interior point methods

Those interested in interior point methods should consult Karypis et al.[28] for
an approach that allegedly scales to hundreds of processors.

retroLP

See above for a general description of retroLP, which also implements a parallel
version of the standard simplex method.

Others

Again, here are some other papers and implementations we are aware of, but
have not studied.

• Prior to ASYNPLEX, Hall and McKinnon developed another parallel re-
vised simplex algorithm, called PARSMI[18];

• A distributed simplex algorithm by Ho and Sundarraj[21];

• A parallelisation of CPLEX’ dual simplex method by Bixby and Martin[7];

• A parallelisation of Xpress’ interior point method by Andersen and An-
dersen[3].

2.2 Cell Broadband Engine

The Cell Broadband Engine (Cell/BE) is a single chip multiprocessor architecture
jointly developed by IBM, Sony and Toshiba. The initial design goals were to
create an architecture that would be suitable for the demands of future gam-
ing and multimedia applications (meaning not only high computational power,
but also high responsiveness to user interaction and network communications),

2.2. CELL BROADBAND ENGINE 31

with a performance of 100 times that of Sony PlayStation 2[26]. Several obstacles
to such goals exist; in particular the infamous brick walls[5] (which are much of
the reasons why the popularity of parallel computing has been increasing over
the past years):

Memory wall While processor speeds have grown substantially over the past
few decades, the growth in memory access times has been much more
modest. Because of this, the relative cost of memory accesses is now pro-
hibitively large, and for efficient scientifice computation, it is necessary to
use caches and try to keep data cached for as long as possible once it has
been loaded from memory.

Power wall Heat dissipation becomes a greater and greater obstacle as clock
frequency increases.

ILP wall Instruction-level parallelism techniques such as pipelines and specula-
tive execution face diminishing returns as most programs have a limited
amount of exploitable parallelism, and the hardware and power cost of
implementing such techniques is growing.

The Cell/BE architecture tries to solve these problems in the following ways:

• Having two different kinds of cores: one optimised for control logic and
operating systems, and one optimised for computational throughput.

• Giving the programmer explicit control over data movement in the mem-
ory hierarchy, rather than having hardware-controlled caches.

• Providing an extensive instruction set for letting the programmer manu-
ally specify instruction-level parallelism.

The above lists and most of this section are based on the article by Kahle et al.[26]
and on technical documentation from IBM, primarily [24]. Those interested in
more architecture and programming details may also want to consult [25] and
[23].

2.2.1 Architecture

2.2.1.1 Overview

The Cell/BE consists of one PowerPC Processor Element (PPE) and eight Synergis-
tic Processing Elements (SPE), connected by a high-speed bus called the Element
Interconnect Bus (EIB), as shown in Figure 2.1 on the next page.

32 CHAPTER 2. BACKGROUND

Figure 2.1: The Cell/BE architecture. Taken from [24].

2.2.1.2 PPE

The PPE (see Figure 2.2 on the facing page) is a 64 bit PowerPC, which is a
general purpose RISC (reduced instruction set) architecture. Its role is that of
the “control logic” core mentioned above, and it is responsible for running the
operating system and controlling the rest of the Cell/BE. The PPE is again subdi-
vided into the PowerPC Processor Unit (PPU11) (the actual PowerPC core, which
supports two simultaneous threads), and the PowerPC Processor Storage Sub-
system (PPSS). The latter contains the level 2 cache, arbitrates the EIB, and com-
municates with I/O devices. Among the most important features of the PPE
is its support for the Vector/SIMD Multimedia Extension, an instruction set for
operating on multiple values simultaneously (see Section 2.2.2.1). Further spec-
ifications can be found in [26] and [23].

2.2.1.3 SPE

Each of the eight SPEs is an independent processor that contains a Synergis-
tic Processor Unit (SPU) (the actual core, with a RISC architecture and a deep
pipeline) and a Memory Flow Controller (MFC) (see Figure 2.3 on the next page).
The SPU contains a Local Store — 256 kB of high-speed memory. Besides the
unified register file (which contains 128 128-bit registers), this is the only mem-
ory to which the code executing on the SPU has direct access — this is probably
the most distinguishing feature of the entire Cell/BE architecture. Furthermore,
the LS must be shared between code and data, and there is no write protection
of the code area, so great care must be taken not to overwrite the code (in par-

11We have failed to see any system for when IBM’s own documentation or any other technical
documentation uses the terms PPE/SPE rather than PPU/SPU or the other way around. In this
report, we have tried to stick to PPE/SPE, but several of our code files are labelled PPU/SPU.

2.2. CELL BROADBAND ENGINE 33

Figure 2.2: The architecture of the PPE. Taken from [24].

ticular because the address space of the LS is cyclic — any address is reduced
modulo 216). Whenever the SPU needs data from system memory, that data
must be transferred using DMA (Direct Memory Access — transferring data
from memory to another unit attached to the bus, without going through the
PPU). The MFC is responsible for handling DMA requests, and it can support
several outstanding DMA requests, each with a memory area length of at most
16384 bytes. Base addresses (both in local storage and in system memory) for
all DMA transfers must be aligned on a 16-byte (quadword) boundary, and the
data to be transferred must be a multiple of 16 bytes. Performance is improved
if entire aligned cache lines (128 bytes) are transferred at a time.

Figure 2.3: The architecture of an SPE. Taken from [24].

The idea of this architecture is that it shall be easy to overlap communication

34 CHAPTER 2. BACKGROUND

with computation, since DMA requests can be asynchronous. It does, however,
greatly add to the programming complexity. We feel that Kurzak and Dongarra
expressed the spirit of the Cell/BE architecture very eloquently: “Great effort
has been invested throughout the years in optimizing code performance for
cache-based systems, in most cases leading to the programmers reverse engi-
neering the memory hierarchy. By requiring explicit data motion, the memory
design of the Cell takes the guesswork out of the equation and delivers pre-
dictable performance.”[36].

2.2.2 Programming methods

2.2.2.1 SIMD processing

Both the PPE and the SPE support Single Instruction Multiple Data (SIMD) op-
erations through a data type modifier called vector. A vector is 128 bits long,
and can hold e.g. four ints, four floats, or two doubles. vectors must start
at addresses that are divisible by 16. Declarations of automatic variables (those
located on the stack) may be suffixed with __attribute__((aligned(16))) to
indicate such alignment. Memory allocated on the heap can be aligned by using
malloc_align() — note that the second argument to this function is the base
two logarithm of the byte boundary, so to get alignment on 16 byte boundaries,
we would have to pass 4.

There is a rich instruction set for operating on vectors; see [23] for a full
overview. All SIMD instructions are available in C and C++ as compiler intrin-
sics. An example is the fused multiply-add operation: d = vec_madd(a, b, c)

(where all variables are vectors), will set each component of d to the componen-
twise sum of c and the componentwise product of a and b. Without the SIMD
instructions, this would have had to be done with arrays and a loop: for (int

i = 0; i < 4; ++i){ d[i] = a[i] * b[i] + c[i]; }.

2.2.2.2 Compiler directives

There are several compiler directives that the programmer can employ to aid the
compiler and the hardware in making good decisions. Two of the most interest-
ing ones are related to branch prediction and avoidance (given the deep pipeline
of the SPEs, branch mispredictions are very expensive):

1. __builtin_expect(expression, expected) will evaluate and return
expression while informing the compiler that the programmer expects
the result to be expected. This is typically placed in the condition of an
if/else.

2. If the condition of an if/else is not easily predictable, but the if/else
bodies are very simple, one might be better off by computing both bodies

2.2. CELL BROADBAND ENGINE 35

and using a special selection instruction to determine which result will be
kept. spu_sel(a, b, condition) will return either a or b depending on
the truth value of condition, but is translated to instructions that do not
involve branches.

2.2.2.3 PPE-SPE communication and synchronisation

It is possible for each SPE to send small (32 bit) messages to the PPE and vice
versa, through an MFC-controlled mechanism called mailboxes. Each SPE’s MFC
contains an outbound queue to which the SPE can write a message. If the queue
is full and the SPE tries to write another message, it will stall until the PPE has
read the previous one (messages from different SPEs do not interfere with each
other, however). The MFC also contains an inbound queue to which the PPE can
write up to four messages, and from which the corresponding SPE can read. If
the queue is full, the last message will be overwritten. It is possible to check the
status of a mailbox before writing to it, thus allowing mailboxes to be used as a
synchronisation mechanism.

Another method that is available for communication between the cores is
signals, but we will not cover it here since we do not use them in our code.

2.2.2.4 Double, triple and quadruple buffering

For most applications, data sets of realistic size will not fit in the small LS. One
must then employ either double, triple, or quadruple buffering. In this project,
we expect to need triple or quadruple buffering, in which the data area of the
LS is divided into three or four segments (there is no hardware support for this
division; the program must handle the three buffers manually — note that the
emphasised words are our own terms):

• The incoming buffer is in the process of being filled (by a DMA request)
with data the SPE is about to need.

• The work buffer is being manipulated by the actual computation opera-
tions. This assumes that the output of the communication can be written
back to the same area where the input was located; otherwise, a four-buffer
scheme is needed with separate input/output buffers for the computation.

• The outgoing buffer contains the results of the most recently completed
computation, and the data is in the process of being sent to main memory
by using DMA.

When all three operations (incoming DMA, computation, and outgoing DMA)
have completed, the buffer pointers are being swapped so that the computation

36 CHAPTER 2. BACKGROUND

can continue with the recently received data, the results of the recently com-
pleted computation can be sent back to main memory, and the old outgoing
buffer can be used to receive new data.

2.2.2.5 Overlays

Very large SPE programs are problematic because the small LS must be shared
between code and data. Overlays is a mechanism where the programmer di-
vides the code into regions of more or less independent code which will not
be needed simultaneously. At execution time, the code segments will be dy-
namically loaded into and unloaded from the LS, based on what code is being
executed. This allows programs of arbitrary size to be executed on the SPEs (un-
less there are extremely large functions, as each function must be fully contained
within one region), at the cost of the time and bus bandwidth that is needed for
the code segment transfer. One should strive to structure the segments such that
segment loading will occur as infrequently as possible.

2.2.3 Tools and libraries

There exist several libraries for easing the development of scientific applications
on the Cell/BE. We now provide a very quick survey of the libraries that seemed
to be the most relevant to us. Only one of them, the Cell Messaging Layer, was
eventually used; we discuss our choice in Section 3.4.5.1.

The Cell Messaging Layer

There are numerous articles about Cell/BE implementations of the popular Mes-
sage Passing Interface (MPI), e.g. Kumar et al.[34] and Krishna et al.[33]. How-
ever, the only implementation we could find the source code for was The Cell
Messaging Layer (CML); it is located at http://www.ccs3.lanl.gov/˜pakin/
software/cellmessaging/. The current version implements only a subset
of MPI: the synchronous point-to-point communication primitives and the col-
lective primitives (broadcast, scatter, etc.). In addition, it supports remote proce-
dure calls (RPC) so that the SPEs can invoke code on the PPE. This library may
facilitate the implementation of ASYNPLEX, which is an algorithm for message
passing systems.

Others

The following are libraries that we have not used, but which may be interesting
to others.

Accelerated Library Framework (ALF) is IBM’s own framework for easing the
development of Cell/BE applications. We believe that ALF could have

http://www.ccs3.lanl.gov/~pakin/software/cellmessaging/
http://www.ccs3.lanl.gov/~pakin/software/cellmessaging/

2.3. MISCELLANEOUS TOPICS 37

been useful to us (among other things, it provides automatic triple buffer-
ing), but it is a fairly large framework, and we never got the time to study
it properly.

BlockLib [1] is a collection of skeletons, which are small “building blocks” (es-
sentially functions) that are implemented in a parallel manner, and which
can be combined into larger programs.

IBM Cell/BE BLAS library is a full implementation of the BLAS interface for
linear algebra libraries (http://www.netlib.org/blas/blast-forum/
blas-report.pdf), but only some functions utilise the SPEs, according
to [25].

OpenMP has been implemented for Cell/BE[48]. It lets the programmer an-
notate the source code with #pragmas in order to indicate where there is
opportunities for parallelism. A special compiler then generates PPE and
SPE programs that cooperate on performing the desired computations.

RapidMind (http://www.rapidmind.net/) is a commercial platform for
developing software that can run without modification on several differ-
ent multicore platforms, including Cell/BE.

Cell Superscalar (CellSs) [41] is similar to OpenMP.

2.3 Miscellaneous topics

2.3.1 Data sets

netlib[13] is a collection of 98 LP problem sets, many of which stem from real
life problems. This is our primary source for data sets to test our solvers with.
They range in size from 28×32 to 16676×15695, and are mostly fairly sparse (the
set with the biggest dimensions contains 74004 nonzeroes). Some of them have
special properties, such as being extremely degenerate. All sets are represented
in the MPS format; see Section 3.2.3 for a brief description and further references.

The official netlib site is http://www.netlib.org/lp/index.html,
but it contains compressed files versions that must be decompressed with a for-
tran program. The collection is available in more convenient formats elsewhere,
e.g. ftp://ftp.numerical.rl.ac.uk/pub/cuter/netlib.tar.gz.

2.3.2 Representation of sparse matrices

There are many ways of representing a sparse matrix efficiently, of which Shah-
naz[45] provides a compact review. The one we ended up using in this project
(see Section 3.4.4.1 for the reason why) is called the Compressed Column Storage

http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.rapidmind.net/
http://www.netlib.org/lp/index.html
ftp://ftp.numerical.rl.ac.uk/pub/cuter/netlib.tar.gz

38 CHAPTER 2. BACKGROUND

format, also known as the Harwell-Boeing Sparse Matrix Storage Format[45]. A
sparse m×n-matrix containing k nonzero values is represented as two numbers
telling the number of rows and columns, and three arrays:

values contains all k nonzero values, column by column (first all nonzero val-
ues from the first column, from top to bottom, then from the second col-
umn, and so on).

rowIndices contains k integers, one for each element of the values array, telling
which row that element is located in.

columnPositions always contains n+1 elements — one for each column, and
one additional element. Each entry contains an index into the two other
arrays, which tells where the values of the corresponding column start.
The last element contains k, which in effect tells us the last valid index
into the two other arrays (namely k − 1). Thus, the indices (into values

and rowIndices) of the elements of column i are columnPositions[i]

through columnPositions[i+1]-1.

For instance, the matrix  9 0 0
0 2 7
4 3 0


would be represented as follows:

Value 9 4 2 3 7 —
Row index 0 2 1 2 1 —

Column positions 0 2 4 5
Note that we use zero-based indices. A sparse (column) vector can be rep-

resented similarly, as two arrays containing the nonzeroes and the row indices,
and two single variables telling the number of rows and the number of nonze-
roes.

2.3.3 Amdahl’s law

The following section is taken from our fall project report[11].
In 1967, Amdahl argued[2] that parallel processing was not a good way to

improve performance, based on the following observation: If we have a com-
putation that consists of a sequence of serial steps that take a total time of ts,
and a certain percentage f of these steps can be performed in parallel using p

processors12, then the total time for the sequential part of the calculation will
12These are quite optimistic calculations, since we assume that the calculation can be paral-

lelised without incurring communication penalties or extra computation steps, and that the par-
allel processors are as fast as the sequential one.

2.3. MISCELLANEOUS TOPICS 39

be fts. If we can distribute the remaining workload equally over the p proces-
sors, the parallel part will take the time (1 − f)ts/p. Since the sequential part
must presumably be completed before the parallel computations can begin (or
the other way around), these times must be added together for a total time of
tp = fts + (1− f)ts/p. We then arrive at Amdahl’s law13 for the speedup S(p):

S(p) =
ts
tp

=
ts

fts + (1− f)ts/p
=

1
f + (1− f)/p

=
p

1 + f(p− 1)
(2.37)

The most significant aspect of this formula is that it highlights the importance of
f as a severely limiting factor for the potential speedup of parallelising. Amdahl
used this to claim that parallel programming was not a good idea. However,
since parallelisation is currently regarded as the primary way of improving per-
formance in high performance computing[5], the modern interpretation is that
speedups can come arbitrarily close to p if only we can make f small enough,
and thus, one should focus on reducing f when parallelising a calculation. On
the other hand, since f in most situations cannot (even approximately) become
equal to zero14, Amdahl’s law provides an upper bound on performance gain
for a specific problem given the best nonzero f we can achieve: As p tends to
infinity, the speedup converges to 1/f . Again, it should be noted that these
bounds are optimistic, as they are based on very simplifying assumptions.

13Amdahl did not actually state this formula in his article, but it has been derived later (in
many different forms) from his article.

14Calculations in which f ≈ 0 and where the assumptions about independence between the
parallel parts hold are called embarrassingly parallel.

Chapter 3
Development

This chapter contains a more or less chronologic report of the different stages
this project has gone through, and we describe the design of the solvers we have
produced and discuss the decisions we have made. We also discuss the largest
hurdle we encountered: numerical instability.

3.1 Overall approach

The author and his advisor agreed that we should follow a step by step approach
in which we begin with solving simpler problems and gradually proceed to-
wards more challenging problems. We decided upon the following overall plan:

1. Implement the standard simplex method on a sequential machine, in order
to gain familiarity with the subject and produce a program on which we
can base our later development.

2. Parallelise the standard simplex method on Cell/BE (if the Cell/BE turns
out to be very hard to program, we could first parallelise it on a regular
multicore machine using e.g. pthreads or OpenMP (see http://openmp.
org/wp/) to make sure our parallelisation approach is correct).

3. Implement the revised simplex method on a regular (single core) x86 com-
puter.

4. Parallelise the revised simplex method on Cell/BE. This is expected to be
much harder than the parallelisation of the standard simplex method, and
we may have to resort to implementing one or more preexisting parallel
simplex methods. For each implementation, several possibilities for re-
finements could be investigated:

41

http://openmp.org/wp/
http://openmp.org/wp/

42 CHAPTER 3. DEVELOPMENT

a) Investigating various ways of handling numerical instability that may
occur when using single precision arithmetic rather than of double
precision.

b) Experimenting with how different representations of sparse matrices
and vectors affect performance.

c) Figuring out how to improve performance by utilising the Cell/BE’s
SIMD operations.

d) Using autotuning to find good values for e.g. data transfer block
sizes.

5. Investigate interior point methods and implement them if time permits.

3.2 Standard simplex method

In order to become familiar with programming the Cell/BE, we initially imple-
mented a few versions of the standard simplex method (which is best suited for
dense problems). We began with a straightforward implementation for regular
(sequential) x86 machines, then ported it to run on the Cell/BE PPE while util-
ising its SIMD instructions. Finally, we created a parallel version of the method
which uses the SPEs. However, as will be discussed in Section 3.3, it turned out
that it is extremely hard to make the standard simplex method work reliably on
even medium-sized data sets.

Choice of development language The Cell/BE SDK offers three languages:
assembly, C, and C++. Assembly language is of course out of the question (due
to development time and risk), except perhaps for a few very performance-
critical parts — but modern compilers are normally very good at optimising,
and there are C and C++ intrinsics for the extended instruction sets of the Cel-
l/BE. Although we do not need advanced object-oriented features, C++ is the
language of our choice, for the following reasons:

• The author is more familiar with C++ than with C.

• It offers more high-level data structures than C, through the Standard Tem-
plate Library — in particular, the vector class for dynamic arrays.

• The author prefers the syntactic sugar of working with classes with mem-
ber methods rather than functions that take structures as parameters.

• The template mechanism may be useful.

• The exception mechanism may be useful for debugging.

3.2. STANDARD SIMPLEX METHOD 43

3.2.1 x86 and PPE version

Our x86 solver is a more or less direct implementation of the pseudocode from
Vanderbei[47] and Cormen et al.[8]. However, there are some refinements:

• Rather than a raw array, we use a class for representing the tableau, so that
we can make functions for operations such as adding a multiple of a pivot
row to another.

• We would like the ability to switch between different data types in order
to test how much the numerical stability is affected by the use of single
precision arithmetic rather than double precision. Therefore, we use the
symbol TYPE as a data type. This symbol is expected to be defined as
float or double or any other suitable data type (see Section 3.3.3) — this
can be done through a compiler switch, e.g. -DTYPE=float.

• During development, all functions that accessed the tableau performed
bounds checking, in order to facilitate debugging. This incurs a perfor-
mance penalty, in particular in simple functions that just read or write one
entry, so we removed the code after the development was complete. In
hindsight, we should have used defines to allow for simple enabling or
disabling of that feature, but it will not be hard to add such code again.

The PPE solver is very similar. As described in Section 2.2.1.2, the PPE sup-
ports SIMD instructions (also referred to as vector instructions) capable of op-
erating on four single precision floating point values simultaneously. Since the
simplex method primarily consists of row operations on the tableau, it is an
excellent target for such vectorisation. The only problem might be the low arith-
metic intensity of the simplex method, which may reduce performance because
a lot of data needs to be loaded into the registers, and only a very simple and
fast operation is being performed on each element before it is thrown out again.
However, the Cell/BE has an advantage in this situation over other architec-
tures, since the LS is faster than regular caches. On the other hand, once the
tableau becomes too large to fit in the LS, one may start seeing reduced payoffs
from SIMD instructions because data cannot be provided fast enough.

We only need one type of SIMD instruction, namely the fused multiply-add,
as described in Section 2.2.2.1. The central part of the code is the following line:
destination_v[j] = vec_madd(source_v[j], factor_v, destination_v

[j]);, which multiplies four values from the source row by a specified factor
and adds them to the destination row.

An interesting implementation detail related to SIMD is that vector instruc-
tions can only operate on 16 byte data blocks (that is, four float or int values or
two double values) that are aligned on 16-byte boundaries. Therefore, we must
use malloc_align() for memory allocation. Furthermore, one must keep in

44 CHAPTER 3. DEVELOPMENT

mind that the width of the tableau may not be divisible by four, in which case
the last elements will not fill an entire vector. The simplest way of getting
around this (and avoiding tests for whether one has reached the end of a row)
is to round the number of columns up to the nearest multiple of four and allo-
cate the corresponding amount of memory. To the other parts of the code, the
width will still appear to be the original number of columns, whereas all inter-
nal operations will utilise the fact that each row contains an integral number of
vectors. The last elements in a row may be garbage, but that does not matter
since they are not reachable from the rest of the code (and there are no division
operations, so division by zero is not a risk). This is implemented in the Matrix
class (see Appendix A.1) by having one variable called cols, which keeps track
of the original number of tableau columns, and one called physicalCols, which
keeps track of the rounded-up width.

Code The PPE code was developed by copying and rewriting the x86 code,
but we were able to merge them back into one program (through the use of #
defines that control which parts of the code are activated), listed in Appendix
A.1. This sacrifices a little bit of readability for the sake of compactness and
avoidance of code duplication. The appendix also contains information on how
to compile it, and short descriptions of what each file contains.

3.2.2 SPE version

Our approach is fairly obvious1:

1. The PPE, which initially holds the entire tableau, distributes the tableau
rows evenly among the SPEs, giving each SPE a batch of consecutive rows.

2. The first SPE analyses the objective function to determine the leaving vari-
able and sends the column number to the PPE, which distributes this num-
ber to the other SPEs. If no leaving variable was found, the optimal solu-
tion has been found, and the SPEs are asked to send their basic variable
values to the PPE and terminate.

3. Each SPE determines the strictest bound (imposed by its subset of the
rows) on the value of the leaving variable and sends the bound and the
corresponding row number to the PPE.

4. The PPE determines which SPE that “wins” (because it has the strictest
bound) and requests this SPE to transfer the pivot row to main memory
using DMA; afterwards, all the other SPEs are asked to initiate a DMA

1After having written the application, we found that Yarmish[50] uses a very similar ap-
proach, albeit for cluster computers with MPI.

3.3. IMPLEMENTATION PROBLEMS 45

transfer to receive this row. If no SPEs found a finite bound, the problem
is unbounded, and the SPEs are asked to terminate.

5. Each SPE performs row operations on its part of the tableau, using the
pivot row, and notifies the PPE upon completion. Go to step 2.

We would have liked to employ some sort of broadcast operation for distribut-
ing the pivot row in step 4, but we could not find out how to do so.

Note that we have only implemented Phase II. The code is listed in Appendix
A.2. SIMD operations are utilised on the SPEs, in a manner similar to what was
done in the sequential PPE solver.

3.2.3 MPS and CPLEX parsers

The netlib data sets are stored in a file format called MPS (Mathematical Pro-
gramming System). The format hails from the punch card age; as such, it is fairly
arcane (it employs fixed format), but all the simpler to parse. This was fortunate;
since we could not find any available parsers, we had to write our own. We also
needed to write a parser for the ILOG CPLEX format, since Miriam AS provided
us with a few data sets in that format (these are located in the datasets folder
of the source code attachment). Our parsers do not handle all aspects of the
formats, but they are sufficient for those sets that we use. The source can be
found in Appendices A.5 and A.5. Maros[37, Chapter 6] gives a fairly compact
presentation of the MPS format.

3.3 Implementation problems

3.3.1 Numerical instability

Our initial plan was to begin with something we thought to be fairly straight-
forward and then gradually proceed towards harder problems, along the lines
described in Section 3.1. Steps 1 and 2 initially seemed to have been as sim-
ple as we had assumed them to be (step 1 was based on the descriptions and
pseudocode from [8] and [47]), and the Cell/BE parallelisation appeared to go
well. These implementations are listed in Appendices A.1 and A.2. Unfortu-
nately, once we started running the solvers on data sets of nontrivial size (the
netlib sets), we started experiencing problems. For some sets, the solver gave
answers that were correct only to a few decimal places, while for other sets, the
answer was off by several orders of magnitude and thereby entirely useless. Yet
other sets would cause the solver to go into a cycle where the same sequence
of pivots was repeated over and over. Most of the sets that needed a Phase I
would be declared infeasible because the solver never managed to make the ob-
jective function value reach zero. After much fiddling and debugging (we did

46 CHAPTER 3. DEVELOPMENT

have some minor errors in our initial implementations), and after starting to use
Bland’s rule (see Section 2.1.2.1), we seemed to get rid of the cycling problems.
However, the answers we got were still mostly wrong.

We were of course aware of the fact that floating point calculations are not
precise, and we noticed that the Phase I problems normally were caused by the
objective function reaching a value that was very close to zero, but not exactly
zero. We tried various approaches to zeroing out numbers that were “small
enough”, as detailed in Section 3.3.2 below, but nothing (except for the GMP
approach in Section 3.3.3) gave consistently good results, and we began to se-
riously doubt our own abilities to code anything properly — because we were
assuming that the standard simplex algorithm (like all other algorithms we have
encountered during our university studies) was supposed to “simply work”
when implemented as specified. Our beliefs were reinforced by the fact that
well-known works such as [8] and [47] make no mention of the standard sim-
plex method being particularily unstable (they only say that other methods are
being used in practice because they are more efficient). Also, [42] provided an
implementation of the standard simplex method — but when we got around to
try it (we had originally just consulted the book, noticed that it used the stan-
dard simplex method, and decided to implement our own solver before looking
at the “solution”), it ran into the same kinds of stability problems as our code.
Tellingly, in the third edition[43], it has been replaced by an implementation of
the revised simplex method (but we could not quite get it to work; we have
probably misunderstood the way the input data was supposed to be formatted).

Already at the beginning of the project, concerns were raised about the suit-
ability of the Cell/BE for this kind of computations, since its double precision
arithmetic is very slow compared to its single precision arithmetic. We had ini-
tially developed our code using single precision, but switching to double pre-
cision did not help much — the solver gave better answers for several sets, but
the problems persisted, in particular for larger sets.

We eventually resigned and contacted a group of mathematicians with which
Natvig is acquainted, describing our problems and asking them for help on how
to make the standard simplex method work stably. The response, from Ander-
sson and Christiansen[4], was highly useful. First, they indicated that we were
not alone about having such problems: “Implementing the standard simplex
method is unfortunately considered both highly inefficient and very numeri-
cally unstable. From your email I see that you have encountered many of the
“famous” problems with this implementation.” Second, they suggested a di-
rection in which we could continue, namely implementing the revised simplex
method and a parallel algorithm called ASYNPLEX. Third, they suggested a
splendid book that would have been perfect to us if we had been aware of it
from the start: Computational techniques of the simplex method by Maros[37]. This

3.3. IMPLEMENTATION PROBLEMS 47

is the closest we have come to a book that is detailing everything one needs
to do in order to make the (revised) simplex method stable. At this point, we
had lost enough confidence in our own abilities in numerical mathematics that
we did not dare to start implementing the revised simplex method from scratch
(in particular because more than half the project time had passed at this point,
and because an entire book apparently was necessary for the implementation of
one algorithm). Therefore, we have only briefly studied [37], but we strongly
recommend this book to anyone who intends to develop a serious LP solver.

Agreeing with the words of Donald Knuth, “premature optimization is the
root of all evil”[31], we decided not to optimise our Cell/BE standard simplex
method beyond the simple step of using SIMD instructions for the matrix ma-
nipulations. Time spent optimising an incorrect program is most likely going to
be wasted time, as the optimised parts will probably be rewritten (or the whole
program is discarded and another one is developed from scratch). Instead, we
decided to focus on implementing ASYNPLEX.

3.3.2 Attempts to handle roundoff errors

As mentioned above, we tried different approaches to handling the roundoff
errors that will necessarily occur when using floating point numbers. They in-
clude:

• Scanning the tableau in-between each iteration and setting every number
whose absolute value is below a certain threshold to zero.

• Terminating Phase I when x0 has reached a value that is “sufficiently close”
to zero.

• Whenever two numbers are added to or subtracted from each other, the
result is compared to the two original numbers. If the ratios between the
result and each of the original numbers are sufficiently small, the tresult is
set to zero. We had some success with this rule; if the ratio is e.g. 0.00001,
the right result for AFIRO is produced.

Although for some small data sets, we were able to find values that made the
program produce the right answer, none of these approaches yielded consis-
tently improved results.

See comments in the source code of Matrix.cpp in Appendix A.1 for in-
structions on how to enable some of these roundoff techniques.

3.3.3 An exact LP solver using rational numbers

In order to demonstrate that the stability problems are not caused by errors in
our implementation, we have made our code support usage of the GNU multiple

48 CHAPTER 3. DEVELOPMENT

precision arithmetic library (GMP — see http://gmplib.org/), which among
other features has a data type for representing arbitrary-size rational numbers
exactly. Since the simplex methods only apply the four basic arithmetic opera-
tions throughout their operation, all numbers in the tableau will remain ratio-
nal2. Compile the code by running the buildgmp.sh script; this will link to
GMP (which must first have been downloaded, compiled and installed on the
system) and tell our code to use the mpq_class data type for all arithmetic
operations and to output results in fraction form. When using GMP, the code
obviously slows down by a significant factor and the memory consumption in-
creases (which is why this approach is useless in practice unless it is absolutely
essential to obtain exact results). Table 3.3.3 shows the results for some of the
small-to-medium netlib sets. Note that our solver performs maximisation,
while the netlib sets are supposed to be minimised (but for some reason, the
MPS format does not specify whether to maximise or minimise) — therefore,
our MPS parser negates the objective function, so that the answers will have
correct absolute value but wrong sign. According to the README file, the “offi-
cial” netlib results have been obtained using the MINOS solver, version 5.3.
All digits of the netlib results agree with our exact results.

Data set Netlib result Our result Iterations Time
AFIRO −4.6475314286 · 102 406659

875 16 0.044 s

BRANDY 1.5185098965 · 103

−16065877392598163704545292298
35255763845946280057831648209
5777480900411096633986368891

1058002811160721713504750150
8720411569323127506371426417
345909327662918125000000000

605 491.402 s

LOTFI −2.5264706062 · 101 631617651547
25000000000 537 40.362 s

SCFXM2 3.6660261565 · 104

−487467141911986101107830583924465
3390630042031652016001773580110200
0732423011933261045459132101058706
9407177301915047835480055104995559

132968811760304712675433640078488
877195894209916975474747392970467
484815850625849844147283072046261
38144465522586000000000000000000

1299 2363.2 s

STOCFOR1 −4.1131976219 · 104

7368963026860358678147
0598121420626868798940
69612494322055836783

17915412056905368048
97461796875000000000
00000000000000000000

135 3.381 s

Table 3.1: Some results of our exact standard simplex implementation

2Assuming, of course, that they were initially rational — but all data formats for representat-
ing of LP problems are based on floating point numbers, which are inherently rational.

http://gmplib.org/

3.4. REVISED SIMPLEX METHOD 49

3.4 Revised simplex method

3.4.1 Performing the matrix inversion in parallel

The revised simplex method as described in Section 2.1.3 must occasionally
spend some time reinverting the basis matrix. A simple yet attractive idea is
to offload the matrix inversion onto a separate processor, which may then spend
all of its time performing inversions. Then, the main processor can spend all
of its time on the remaining steps of the method (while occasionally being pro-
vided with a reinverted basis matrix from the inversion processor), and one gets
the added benefit of the matrix being reinverted more often (which should be
good for numerical stability). Unfortunately, as reported by Ho and Sundar-
raj[21, Table 2], the inversion consumes less than 20% of the total time of the
revised simplex method, and as such, speedups are limited as per Amdahl’s law
(see Section 2.3.3). Furthermore, this approach does not scale to more than two
processors. Therefore, we have chosen not to pursue this direction. Note, how-
ever, that ASYNPLEX incorporates the same idea of having a separate inversion
processor.

3.4.2 Decision to adapt ASYNPLEX and Vanderbei’s code

Considering the problems discussed in Section 3.3, we realised that we had too
little experience with numerical computation in general and the simplex method
in particular. We could perhaps have been able to implement a stable sequential
solver from scratch by following Maros’ book[37], but this would most likely
consume the rest of the project time. Therefore, we decided to find an existing
sequential implementation of the revised simplex method and rewrite it as per
some existing parallel revised simplex method. Finding a suitable implemen-
tation was not easy, because one apparantly needs to make a trade-off between
small code size and ease of understanding on one hand and numerical stability
on the other hand. As noted in Section 2.1.6, all the major, well-known imple-
mentations have exceedingly large code bases. After unsuccessful attempts at
understanding GLPK and retroLP, we chose Vanderbei’s implementation. The
choice of parallelisation approach fell on the ASYNPLEX algorithm, described
in Section 2.1.4, mostly due to its strong resemblance to the sequential revised
simplex method, and because it was recommended to us by Christiansen and
Andersson[4].

Basing ourselves on an existing sequential implementation also has the ad-
vantage of allowing a direct comparison between the sequential and parallel
versions of the same code, allowing us to better gauge the speedup that is of-
fered by ASYNPLEX itself (Hall et al. compared their performance to that of
an entirely different sequential implementation), and the further speedup that
is obtained on Cell/BE.

50 CHAPTER 3. DEVELOPMENT

The disadvantage, of course, is that retrofitting an existing sequential im-
plementation may require a vast effort in case parts of the code does not lend
itself well to parallelisation (this easily happens when the code relies on global
variables or internal, static variables, because such variables will need to be du-
plicated so that each thread has its own instance of it.)

At this point in the project (early May), we had a meeting with Mr. Spaggiari
from Miriam AS where we discussed the problems we had encountered, and
it was agreed that we should proceed with first implementing a simple ASYN-
PLEX prototype and then try to rewrite Vanderbei’s code as per the ASYNPLEX
design.

3.4.3 ASYNPLEX prototype in C#

In order to make sure we actually understood the ASYNPLEX algorithm, we
first implemented a prototype in C#, using dense linear algebra (because sparse
linear algebra operations are much more complicated to implement, and we
only wanted a proof of concept implementation that could run on small datasets).
The reason for using C# is that it is a more high-level language (than C++) in
which development is quicker and thread handling is simpler than with C++
and pthreads. Furthermore, the Visual Studio integrated development envi-
ronment provides an excellent debugger, which would be highly useful for de-
bugging the many threading mistakes we suspected (rightfully) that we would
make.

We succeeded in implementing a mostly functional prototype, albeit with
some remaining threading glitches, and therefore decided to go ahead with
ASYNPLEX. The code is not particularily useful, but for the sake of complete-
ness, it is included in the source code attachment.

3.4.4 Restructuring Vanderbei’s code

Vanderbei’s code is available at http://www.princeton.edu/˜rvdb/LPbook/.
It is written in C, and we initially chose to continue the development in that lan-
guage, since we felt that gaining more practice in pure C coding would be use-
ful. While we still agree to that sentiment, we later regretted the choice, since
it forced us to use a number of constructs that are more cumbersome in C than
in C++ (such as passing struct pointers to functions rather than calling member
methods on objects), and we were also bothered by the lack of templates.

3.4.4.1 Sparse vector and matrix representations

Vanderbei’s implementation uses the Compressed Column Storage format (as
described in Section 2.3.2) for sparse matrices and a similar scheme for sparse
vectors. Unfortunately, he did not have a structure or class that contained the

http://www.princeton.edu/~rvdb/LPbook/

3.4. REVISED SIMPLEX METHOD 51

arrays and variables for each sparse matrix or vector. For instance, the matrix A
would be represented with the arrays a (values), ia (row indices), ka (column
positions) and the variable nza (number of nonzeroes) — a naming scheme that
we found to be very impractical (all variables must be passed as parameters to
functions that are to manipulate sparse vectors and matrices), and which slowed
down our process of understanding his code. Therefore, we introduced struc-
tures that combined these related arrays and variables, and we refactored the
code to use these strucures throughout. Our structure for sparse matrices looks
like this:

struct SparseMatrix {

int rows;

int cols;

int numNonzeroes;

int * rowIndices;

int * colPos;

TYPE * values;

};

Note that TYPE is a preprocessor symbol which facilitates experimentation with
different precisions — it should be defined as either float or double.

Due to the vast amounts of vector manipulation (and also in order to track
down some bugs we believed were related to reading/writing outside of the
array bounds, but turned out to be caused by wrong memory management),
we made a more elaborate sparse vector structure, which uses the vector class
from the C++ Standard Template Library. The at() function performs boundary
access checking on each access — this is inefficient, but highly helpful during
development. The compiler will most likely inline the simple accessor functions
and operators, so that the usage of high-level classes such as std::vector will
not incur any performance penalty (if the boundary checking is turned off). The
structure can be found in the file sparse.h.

Beware that in order to save time, Vanderbei preallocates the arrays for any
sparse vector with r rows to have size r, but only the first k entries are used at
any time (where k is the number of nonzeroes). Whenever the contents (and the
number of nonzeroes) of the vector changes, one can simply fill the arrays with
as many entries as necessary, since each individual vector has a constant size
throughout the program and the number of nonzeroes obviously will never ex-
ceed the full vector size. This, in combination with our lack of unit tests, caused a
rather insidious bug: our copySparseVector() function only allocated as much
space for the new vector as the current amount of nonzeroes in the source vec-
tor — and when other parts of the code proceeded to add more nonzeroes to
the new vector, data in other vectors would be corrupted. This also demon-
strates why the use of std::vector is useful (at least during development), as
it would have caught such “index out of bounds” errors.

52 CHAPTER 3. DEVELOPMENT

Also, Vanderbei did not explicitly store the sizes of the vectors and matri-
ces, as they could always be deduced from context (normally as having m or n
rows). We feel that this practice obscures the relationship between a loop header
and its body — if v is a sparse matrix with n columns and we want to write a
loop that manipulates v, we prefer e.g. for (int j = 0; j < v.cols; ++j)

to for (int j = 0; j < n; ++j). Therefore, we have included the size in-
formation into our structures and have tried to use them instead of m and n (this
also makes the linear algebra functions slightly more general, and it would fa-
cilitate unit testing). Note that such preallocation is not done for matrices, since
this would require too much space, and because the main part of the algorithm
never changes the matrices directly (it uses permutation lists to keep track of
how columns are swapped).

3.4.4.2 Overview of changed files

Here, we describe the files we have created ourselves and those of Vanderbei’s
files we have modified in a nontrivial manner.

tree.c|h contains a binary search tree structure. It only supported one active
tree at any time (through the use of static variables). Because it is used by
some of the linear algebra operations in the iteration processes, we needed
to create a struct for the internal tree information so that we could have
several tree instances.

sparse.c|h contains our structs and supporting functions for Vanderbei’s
sparse vectors and arrays.

print.c|h is a utility for making sure that outputs from different threads do
not collide with each other (often, a line that is output from one thread
gets cut in two by a line from another thread). It is implemented with
mutexes (making sure that only one thread is allowed to print at a time),
so excessive printing may hurt performance.

2phase.c was the core of Vanderbei’s original revised simplex solver, and
iterationprocess.c is strongly based on this file. We have chosen
the solver() function in this file as the “entry point” of our code, be-
cause the input parsing and processing has been completed at this point.
If the useAsynplex variable is true, we skip Vanderbei’s solver and instead
launch the ASYNPLEX threads and wait for their completion.

columnselectionmanager.c|h contains the ASYNPLEX column selection
manager. We had problems implementing it because we feel that [19] is
unclear on how the statuses of the variables are supposed to change, in
particular when new candidates arrive. Our current interpretation is that

3.4. REVISED SIMPLEX METHOD 53

a new candidate should be accepted into the pool of attractive candidates
unless its status is “selected” or “rejected” and it obtained that status at a
basis that is more recent than the basis where the candidate was formed.

basischangemanager.c|h contains the ASYNPLEX basis change manager,
whose functionality is so simple that the code probably speaks for itself.

communication.c|h is a simple communication layer strongly inspired by
MPI. A message has a sender (string), a receiver (string), tag (string) and
payload (generic memory buffer). The communication primitives are se-
cured with mutexes. When a thread requests to receive a message, it may
choose whether or not to specify a sender (passing NULL as the sender
parameter indicates “any sender”) and whether or not to specify a tag
(passing NULL as the tag parameter indicates “any tag”). If no matching
message is available, an empty message is returned. The implementation
is somewhat inefficient in that sequential search is used to locate matching
messages. Also, we should have used std::queue instead of a vector
(but as noted, the project started out in C, where STL is not available).
However, in ASYNPLEX, the message queue does not grow particularily
long, so this is not a big problem in practice. Still, a real MPI implementa-
tion, for instance mpich, might have served us better.

invertprocessor.c|h is based on lueta.c|h. This process is continu-
ously recomputing the inverse of the basis matrix, and is informed of basis
changes by the iteration processes. The LU factored representation of the
inverse is sent to the iteration processes upon completion of each inverse
calculation.

iterationprocess.c|h is the only thread which may exist in several in-
stances; therefore, we must use a struct to store all the internal data for
each iteration process, and pass pointers to instances of the struct to the
different functions. This code is based on 2phase.c and lueta.c.

genericvectors.c and the similarly-named files are our attempt at simu-
lating C++ templates in C. The approach is to write the code with lots
of macro symbols as placeholders for function and type names, and then
#includeing the code repeatedly while #defineing the symbols appro-
priately. This leads to rather unreadable code, and was one of the most
important reason that we eventually switched to C++.

timer.h is the timing utility described in Section 4.1.3.

The functions in iterationprocess.c have been named in accordance with
the pseudocode given for ASYNPLEX. Vanderbei’s original comments detail the
mathematical operation that is performed by each function.

54 CHAPTER 3. DEVELOPMENT

3.4.4.3 Threading

pthreads is the de facto threading library for Unix and Linux, and since we
have some prior experience with it, the choice was simple. There is no need
for advanced threading features; beyond the functions for starting the threads
and waiting for them to finish, we only employ the mutex (mutual exclusion)
mechanism: a pthread_mutex_t variable can be declared and then initialised
with pthread_mutex_init(). Any thread may then call pthread_mutex_lock
() on the mutex in order to request a lock on it. The lock is granted if no other
thread is holding the lock; otherwise, the thread is queued. When a thread re-
leases the mutex with pthread_mutex_unlock(), an arbitrary thread among
the queued threads (if any) is granted the mutex.

As usual with threading, the hard part is not the underlying concepts, but all
the problematic situations that can occur when the threads start interacting. We
have had many small threading bugs that were not too hard to find, but we also
had one that was a bit harder and was quite interesting. Consider the following
race condition: An iteration process, say, I0, has performed a pivot and sends
messages about this to all other iteration processes. If the I0 thread gets pre-
empted after sending only some of the messages, it could be that e.g. I1 receives
the message and goes on to perform another pivot and tells everyone else about
it. Then, I2 might receive the message from I1 before the message from I0, in
which case it will fail an internal consistency check for the sequence of pivot op-
erations. This situation can be prevented by either implementing a function that
can send multiple messages at once without the risk of other messages getting
interleaved with them, or letting the iteration processes keep a queue of prema-
ture pivot messages. We did the former, but that required internal support from
the message system, and we are not sure if such functionality can be achieved
with MPI.

3.4.5 Cell/BE implementation of ASYNPLEX

3.4.5.1 Communication approach

ASYNPLEX is an algorithm for message-passing distributed memory systems,
but its authors describe how to adapt it to shared memory systems. While the
Cell/BE architecture resembles both shared memory and distributed memory
architectures, we chose to go with the message-passing approach because this is
what we are the most familiar with. On x86, we implemented the simple mes-
sage passing system described above. On Cell/BE, we used the Cell Messaging
Layer (CML) (see Section 2.2.3) — we were in a hurry and therefore started us-
ing the first MPI implementation we could find for Cell/BE. Unfortunately, CML
turns out to have several disadvantages:

• It only supports messaging between the SPEs, not between an SPE and the

3.4. REVISED SIMPLEX METHOD 55

PPE.

• Like MPI, CML employs the Single Program Multiple Data (SPMD) model,
which means that all processors must run the same program. This means
that even if different SPEs are to perform different tasks, they must each
contain the code both for its own functionalify and the code for the func-
tionality of all other SPEs. Still, we chose to run both the column selection
manager and the basis change manager on the SPEs, because their code is
fairly short, their operations are fast and simple, and it is vital that they are
able to respond quickly to messages from the iteration processes. For the
same reasons, one should merge them into one SPE thread so that the other
seven SPEs (rather than six) would be available for iteration processes, but
we did not get the time to do this.

• CML only supports synchronous point-to-point primitives, and we did not
realise soon enough that this is not sufficient for ASYNPLEX. Therefore,
we resorted to implementing our own message passing system (again) on
the PPE and using CML’s remote procedure call (RPC) functionality to
send and receive messages to and from a message queue on the PPE. It is
cumbersome, but it works. Unfortunately, we cannot gauge the efficiency
(or lack thereof) of this approach, since we did not get the time to com-
plete the implementation. The reason we stick to CML is that we believe
that using the RPC system is safer than using DMA operations directly (at
this point in the project, we did not have time to debug obscure memory
corruption errors).

3.4.5.2 Overview of changed files

Cell/BE programs must be split into a PPE program and an SPE program (which
must reside in different Eclipse projects). Several of our source files are com-
mon to both projects, but Eclipse does not seem to support the inclusion of files
that lie outside of the project directory. Therefore, we have resorted to using
symlinks to put the same file into both projects without actually duplicating it.
However, in the zip file attachment to this thesis, the files are physically dupli-
cated.

The Cell/BE ASYNPLEX solver was made by rewriting the x86 ASYNPLEX
solver. In the process, we utilised the opportunity to switch to a more object-
oriented structure — each process now has its own class. We also needed some
wrapper code for supporting CML, but apart from this, there are fairly few
changes in the code base. The most important files (aside from the ASYNPLEX
processes, whose code has not changed much) are:

asynplexcontrol.c|h The PPE code that provides RPC functions and initi-
ates the MPI programs on the SPEs.

56 CHAPTER 3. DEVELOPMENT

communication.c|h The CML RPC-based messaging system, which resides
on the PPE. It maintains a message queue similar to the one from the x86
solver. The SPEs can send and receive messages through RPC calls that
will transfer a buffer containing the sender id, receiver id, tag, and pay-
load.

rpc.c|h SPE convenience functions for message passing, which initiate RPC
calls on the PPE.

Note that the invert processor still resides on the PPE, while the other three pro-
cesses are run on the SPEs. All eight SPEs are used; thus, there are six iteration
processes.

Chapter 4
Evaluation

Due to all the challenges we have faced, we have not been able to produce suffi-
ciently stable solvers, and our Cell/BE implementations only handle very small
data sets. Still, a number of interesting questions can be posed, and their an-
swers might serve as a guidance to those that will continue the project. Finally,
we discuss opportunities for future work.

4.1 Performance measurements

4.1.1 Testing environments

The x86 experiments were run on a machine containing an Intel Core2 Quad
Q9550 with four cores at 2.83 GHz, with 4 GB of system memory. The compiler
is gcc version 4.2.4. The system is running Ubuntu version 9.04 “jaunty” with
Linux kernel version 2.6.28-11-generic.

The Cell/BE experiments were run using the IBM Full-System Simulator,
version 3.1-8.f9, on a computer running Fedora 9. Being a simulator, the tim-
ing results obtained on it are independent of the physical hardware of the host
computer. The simulated PPE cores have a frequency of 3.2 GHz.

4.1.2 What to measure

• How well a vectorised PPE standard simplex implementation performs
relative to a non-vectorised version;

• How the time consumption of the Cell/BE parallel standard simplex im-
plementation depends on the number of SPEs used;

• How well the Cell/BE parallel standard simplex implementation performs
relative to the sequential PPE implementation;

57

58 CHAPTER 4. EVALUATION

• Time spent by the SPEs waiting for data to be moved to the local store;

• How well the x86 ASYNPLEX implementation (on a multicore) performs
relative to Vanderbei’s original solver.

4.1.3 Measurement methods

All Linux distributions incorporate the time utility, which reports the amount
of time spent by a process: real (wall time), user (time spent in the process’
own code), and sys (time spent in system calls on behalf of the process). For
multithreaded programs, the two latter values will be the sums of the time spent
by all threads and may therefore exceed the first value. The precision is at most
one millisecond, and it is limited to timing an entire program. In order to time
only parts of a program, the standard C++ function clock() is commonly used.
Unfortunately, its resolution is system-dependent and often too coarse. There-
fore, we opted for a much more high-precision timer that is available on In-
tel processors and PowerPC (and thereby on the PPE), called the Time Stamp
Counter. This counter is incremented on each clock cycle (on PowerPC, it might
be controlled by a separate clock[53]), and it may be read by using the rdtsc

instruction. Timing utilities have been implemented in timer.h, and they em-
ploy the function rdtsc(), taken from [53], that uses the aforementioned in-
struction. The drawback is that in order to get the time in seconds, we must
empirically determine the rdtsc frequency. Using the following simple code
fragment (which was run with time in order to verify that it actually slept for
that long; we also tried several different delays), it was found to be 25 MHz on
the PPE (we later discovered that this could also be found with the command
cat /proc/cpuinfo) and 2.83 GHz (as expected) on the machine described
in Section 4.1.1:

#include <unistd.h>

#include <cstdio>

#include "timer.h" // See the source listings in the appendix

int main() {

unsigned long long start = rdtsc();

usleep(1000000); // Sleep for one second

printf("%llu\n", rdtsc() - start);

return 0;

}

All x86 and PPE programs were compiled with the -O3 switch (maximal op-
timisation level). The x86 programs were run run using nice -n -20 in order
to force the operating system to ensure a favorable thread scheduling priority
for the programs (this does not seem to have any effect on the PPE, probably
because it supports two simultaneous threads (one for the operating system and

4.2. RESULTS 59

Set name Rows Columns Nonzeroes
80BAU3B 2263 9799 29063
ADLITTLE 57 97 465
AFIRO 28 32 88
BRANDY 221 249 2150
ISRAEL 175 142 2358
SC105 106 103 281
SC205 206 203 552
SC50A 51 48 131
SC50B 51 48 119
SCTAP1 301 480 2052

Table 4.1: Dimensions of selected netlib sets

one for the user program) and we do not have any multithreaded PPE programs
except the incomplete Cell/BE ASYNPLEX implementation).

Note that during timing, we disabled or commented out most of the couts
and printf() calls in order to minimise the output processing’s impact on the
run time. On the SPEs, console output is particularily expensive because the
output must be DMA’ed to the PPE.

The Cell/BE simulator can gather detailed statistics on each of the SPEs.
Before invoking the program one wishes to analyse, all SPEs must be set to
“pipeline mode”, and after the program has been run and the simulator has
been stopped, the simulator command mysim spu X stats print can be
issued for each SPE by replacing the X by a number between 0 and 7 to indicate
which SPE one wants the statistics for.

The netlib sets vary greatly in size, so it may be useful to know the dimen-
sions of the sets we have used. We list them in Table 4.1, as a reference for those
who do not want to acquire the entire collection.

4.2 Results

Note that the timings do not include the reading and parsing of the MPS input
file, as this must necessarily be done by any implementation, and is not of in-
terest when one desires to gauge the efficiency of the core algorithm. We do,
however, include the time required for starting and stopping the SPE threads,
as this is a Cell/BE specific feature, and we felt that excluding it would give the
Cell/BE an unfair apparent advantage in comparison to other architectures.

60 CHAPTER 4. EVALUATION

4.2.1 Standard simplex method

As discussed in Section 3.3, the standard simplex method is highly susceptible
to numerical instability, and our implementation is no exception to this. It is
essentially useless in practice because for most sets of realistic size, it produces
answers that are off by orders of magnitude. Still, we might be able to learn
something about the computation to communication ratio of the algorithm, and
how much time vector operations are capable of saving. Also, Miriam AS stated
that they are interested in such measurements.

It should be noted that these timings were obtained while running the sim-
ulator in “fast” mode, rather than in “cycle” mode (which is what one should
ideally use for benchmarking), because we had problems getting the latter mode
to work1. These modes control how closely the simulator mimicks the real hard-
ware, and it could be that the results will be different if the experiments are
repeated in “cycle” mode.

Again, please take note that our solvers did not produce the right answer on
most of the sets used here (and some sets may only have been solved to the end
of Phase I, because the solver never finds a feasible solution because of the nu-
merical instability). These analyses are merely for evaluating the performance
benefits of our design and implementation approaches, without regard for nu-
merical stability — in the hope that more stable implementations may benefit
from our observations.

Speedup of sequential PPE version by using SIMD

The standard simplex method has very low arithmetic intensity (number of arith-
metic instructions per load from memory) — so much time is spent moving
data from main memory into the cache and from there into the registers that
the SIMD speedup of the simple operation that is executed on the data once it
is in the registers may not have much impact. In order to find out how much
impact the SIMD operations have in this situation, we compared the run times
of the sequential standard simplex method on the PPE with and without SIMD
operations. The results are seen in Figure 4.1 on the next page. As expected,
they are far away from the fourfold speedup that should in theory be possible.
Interestingly, the speedup increases with the size of the data set. We did not test
larger sets than these because the simulator is terribly slow, but we suspect that
once the data set is too large to fit in the cache, it will start slowing down again
(but this, of course, will apply whether or not SIMD is used; it will just further
diminish the gains from SIMD).

1In general, we have struggled a lot with the Cell SDK and simulator, whose installation
procedures, user interfaces, and documentation are often somewhat obscure and lacking in detail.

4.2. RESULTS 61

Figure 4.1: Speedup obtained in the sequential PPE standard simplex solver by
using SIMD, relative to not using SIMD. Higher is better; 1.0 means no speedup.

Time consumption depending on number of SPEs

For our parallel standard simplex solver, it will be interesting to see how the
number of SPEs (which can be anything between 1 and 8) affect the run time.
Since that solver only implements Phase II, we must limit ourselves to netlib

sets whose right hand sides are nonnegative, such as the SC sets. The SPEs
do not currently track the locations of each variable, and therefore they cannot
employ Bland’s rule. Because of this, the solver cycles on SC205, so we have
omitted that set.

The results, which are averaged over five runs, are presented in Figure 4.2 on
the following page, and they are not very encouraging: going from 1 to 2 SPEs
gives a minor speedup (but only for the largest set), but increasing the number of
SPEs beyond 2 actually causes a slowdown. By looking at the detailed SPE timing
statistics (as described in Section 4.1.3), in particular the overview of what the
SPE spends its cycles on, we get the explanation (note that these are SPE cycles
and are not supposed to match the cycle counts in the graph):

Single cycle 507683 (4.9%)

Dual cycle 89774 (0.9%)

Nop cycle 62087 (0.6%)

Stall due to branch miss 183518 (1.8%)

Stall due to prefetch miss 0 (0.0%)

Stall due to dependency 733134 (7.1%)

62 CHAPTER 4. EVALUATION

Figure 4.2: Time consumption (in PPE timer cycles) of parallel SPE standard
simplex solver, depending on the number of SPE threads used. Lower is better.

Stall due to fp resource conflict 3024 (0.0%)

Stall due to waiting for hint target 1324 (0.0%)

Issue stalls due to pipe hazards 6 (0.0%)

Channel stall cycle 8812670 (84.8%)

SPU Initialization cycle 9 (0.0%)

--

Total cycle 10393229 (100.0%)

The SPE spends the majority of its time waiting for data, and only 5.8% ac-
tually performing computations! This highlights the importance of overlapping
communication and computation (which we have essentially ignored in the de-
velopment since there is not much use in optimising a program that does not
produce correct answers). Furthermore, this algorithm will most likely perform
better for sets that have much more rows than columns, since the pivot row to be
transferred will be narrower. Most netlib sets are either approximately square
or have more columns than rows, but such sets could be handled by using the
dual simplex method instead (which in effect solves the transpose of the original
problem). Also, if it is possible to perform some sort of DMA broadcasting oper-
ation so that the pivot row could be distributed to all SPEs simultaneously, per-
formance could be improved (but it could be that the MFC is advanced enough
to be able to notice that all SPEs ask for the same memory region and then per-
forms an efficient broadcast).

Given that the SPE is stalled for 94.2% of its time, we see no point in per-

4.2. RESULTS 63

forming experiments to compare single precision performance versus double
precision performance, a speedup or slowdown which affects only 5.8% of the
run time will hardly be noticeable.

Performance of parallel SPE version vs. sequential PPE version It should
not come as a surprise that the SPE version is slower than the PPE version, due
to the massive amount of stalling. Therefore, we have not bothered to perform
detailed timing experiments on this matter.

4.2.2 ASYNPLEX

Performance of x86 ASYNPLEX vs. original Vanderbei solver

Even with a quad core processor, our ASYNPLEX implementation turns out to
be much slower than the original Vanderbei code — the results are displayed
in Figure 4.3 on the next page. We suspect that this in part is due to the exten-
sive data copying that takes place; we could have done a better job of letting
the iteration processes share common data (such as the inverse basis matrix)
and reusing message buffers rather than allocating and freeing them over and
over. Also, keep in mind that Hall and McKinnon’s implementation was run on
a Cray machine, which we presume is much more optimised for high perfor-
mance message passing programs than a regular quad core x86 machine is —
and our self-written message passing system may not be particularily optimal.
The fact that using more iteration processes only helped for the largest data set
also suggests that there is a substantial message passing overhead.

On the bright side, this implementation is much more stable than our stan-
dard simplex implementations — it handles 80BAU3B, which is a fairly large
set, as seen in 4.1. It fails for many other large sets, but we believe that it might
succeed for several of them by adjusting the feasibility tolerances (the different
EPS values in iterationprocess.c). Our reasons for believing so is that for
some of the sets that are reported as infeasible, the objective function value that
is reached at that point is fairly close to the optimal value.

Note that we do have (at least) one unresolved threading bug or array bound-
ary violation problem. The more iteration processes we use, the more frequently
it crashes in the following manner: it runs normally (and produces correct in-
termediate values for the objective function) for a while, and then it starts to
gradually produce more and more extreme values for the step length, and fi-
nally, one of the linear algebra operations crashes because one of the vectors
does not contain a value at an expected index. We have tried to figure out if
this is caused by an incorrect pivot operation or not, by recording all pivot op-
erations performed by our solver and then forcing Vanderbei’s original solver
to follow the same path (this is easily done by hardcoding lists of leaving and

64 CHAPTER 4. EVALUATION

Figure 4.3: Performance of our x86 ASYNPLEX implementation relative to the
Vanderbei code on which it is based. Lower is better.

entering variables into the program, and changing the pivot variable selection
functions to simply return values from these lists), but we did not get the time
to fully investigate it. The problem appears to be triggered by the presence of
more than one iteration process; the solver works fine when only one iteration
process is used.

Some comments on our incomplete Cell/BE ASYNPLEX implementation

We are very close to having a proof of concept implementation of ASYNPLEX on
the Cell/BE. All ASYNPLEX processes are up and running (the invert processor
on the PPE; the three others on the SPEs) and are capable of communicating with
each other. The only thing we did not get the time to do was to fully rewrite the
code in all communication endpoints such that it packs the data properly (which
is a little tricky at some points where several arrays containing different kinds of
data must be sent). However, a lot of work is required to produce a solver that
can handle large data sets — for this, triple or quadruple buffering is required,
and it must be integrated with all of the linear algebra functions.

4.2. RESULTS 65

4.2.3 Other aspects

Code size

Vanderbei’s Phase I/II scheme causes the code size to be larger than necessary,
because much code must be duplicated and changed slightly in order to work
with both A and A>. It is vital that the executable (compiled and linked) SPE
program does not take up too much space in the LS, so that there is still room for
storing data (and programs that take up more than 256 kB will not be possible
to run at all). We will briefly discuss some of our experiences with trying to
minimise the program size.

The debug flags, in particular -g3, dramatically increase the program size.
Optimisation flags, in particular -O3, reduce object file size greatly (strangely,
-Os does not seem to have much effect).

As often happens in optimisation, there are tradeoffs that must be considered
— for instance, while loop unrolling gives a good speedup of tight loops, it
increases the object file size, which one cannot always afford on Cell/BE. Thus,
neither manual unrolling nor -funroll-loops should be done if (like us) one
has a large program.

When optimising for size, one would normally want to consider using -fno-inline
in order to disable function inlining (replacing calls to short functions by the ac-
tual function code). However, this flag actually increased the size of the object
files. We suspect that this is due to heavy use of std::vector and its [] op-
erator — the operator code itself can probably be translated into one instruction
(load using memory address and offset), while a function call would require
several instructions for parameter passing, stack management, etc.

The option that by far had the greatest impact on the final code size was
-s, which tells the linker not to include symbol information (a debugging and
linking aid) in the executable. Using the flag on our ASYNPLEX code reduces
the size of the executable by a factor of almost four.

Another way of reducing code size is to use as few external libraries as pos-
sible.

Memory leaks

valgrind with MemCheck (http://valgrind.org) is an invaluble tool for
detecting memory leaks (forgetting to release memory segments that are no
longer in use, such that the program will continuously consume more and more
memory) and illegal use of the memory allocation system (such as calling free()
on the same pointer twice, which may easily cause corruption of the memory
allocator’s internal data structures). It can also detect corruption caused by di-
rectly overwriting the memory allocator’s internal data, but not corruption of
user data caused by writing outside of the boundaries of an array. We have used

http://valgrind.org

66 CHAPTER 4. EVALUATION

this tool on several occasions during this project, and we believe that we have
removed all memory leaks caused by our own code. The only leaks that remain
are caused by initialisation code, so that each “leak” occurs only once (not in-
side loops) and the data that is being allocated is needed throughout the entire
program (and is automatically freed when the program terminates), so that we
chose not to spend time on removing them.

4.3 Reflections on unimplemented features. Ideas for
future work

We will now discuss features we believe will be useful, but that we did not
get the time to implement. One may also want to study a fairly recent survey
article by Hall, which discusses the current state of research on parallel simplex
methods[17].

4.3.1 Interior point methods

The most time consuming step of many interior point methods is a Cholesky
factorisation. Monien and Schulze[39] discuss approaches to parallelising this
operation for sparse matrices, and one of those methods, called the multifrontal
method, is elaborated by Schulze[44].

Andersen and Andersen[3] present a parallel shared memory version of the
interior point method that is (or was at the time) underlying the Xpress solver
(see Section 2.1.6). Yet another parallel interior point method is presented by
Karypis et al.[28].

The opportunities for implementing any of these methods on the Cell/BE
should be investigated, but, given our experiences, it will probably be necessary
to dedicate at least an entire master’s thesis to that subject.

For dense matrices, Cholesky factorisation has already been implemented on
the Cell/BE by Kurzak et al.[35], whose work should be studied by those who
wish to implement the same operation for sparse matrices.

4.3.2 Mixed precision

It may be possible to overcome the limited precision that is offered by the Cel-
l/BE without rewriting the computation to use double precision (which will in-
cur a massive slowdown). Some linear algebra problems can be solved by using
a technique called iterative refinement. Kurzak and Dongarra[36] describe a suc-
cessful implementation of a Cell/BE program for solving equations of the form
Ax = b, which meets the LINPACK benchmark’s requirements for the precision
of the solution. Similar techniques may be investigated for the linear algebra op-
erations that underlie the revised simplex methods.

4.3. REFLECTIONS ON UNIMPLEMENTED FEATURES. IDEAS FOR
FUTURE WORK 67

4.3.3 Stabilisation techniques

According to Hall and McKinnon, their own ASYNPLEX implementation uses a
technique developed by Gill et al.[14] called EXPAND, which allegedly prevents
cycling and improves numerical stability. Koberstein’s thesis [32] also includes
a survey of a number of ways to handle stability. Such techniques should be
studied.

4.3.4 Parallel linear algebra operations

It is possible to utilise parallel BLAS libraries to parallelise the linear algebra op-
erations themselves. Such an approach was tried on the CUDA architecture by
Spampinato[46] (see Section 2.1.7), but the speedups were limited. Furthermore,
as long as the number of threads is limited (such as it is on Cell/BE), it may be
difficult to combine with an algorithm that itself is parallel (and therefore re-
quires several threads of its own), such as ASYNPLEX.

4.3.5 Loop unrolling

Loop unrolling consists of duplicating the body of a loop such that several itera-
tions are performed sequentially inside the loop body. This reduces the number
of jumps and may yield good speedups in short, tight loops. Manual loop un-
rolling is usually not necessary, as compilers can be instructed to perform this
operation automatically, but they may not always succeed. Unfortunately, the
price that necessarily must be paid when loops are unrolled is an increase in
code size, which is undesirable on Cell/BE.

4.3.6 Unit testing

While one might argue that testing an LP solver by running it against a collec-
tion of large data sets provides sufficient evidence that the implementation is
correct, one will gain even more confidence in the implementation by creating
unit tests. Any decent programmer knows how to structure a program by break-
ing it down into functions, each performing a limited, well-defined part of the
overall task. Unit testing, on the other hand, is often neglected, even though it is
highly beneficial during development2 There is a lot of literature on the subject
(a good introductory book is [22], and [38] is a more thorough work), but the ba-
sic idea is simple: write code that tests other code. This is fairly straightforward
to do as long as the code is partitioned into functions in a reasonable manner.
Code should be written to test each nontrivial function for a number of different
parameter combinations.

2As with many other good practices, unit testing is easier to preach than to practice, as evi-
denced by the lack of unit testing in this project.

68 CHAPTER 4. EVALUATION

Another important aspect is that unit testing gives regression testing for free.
If one discovers a bug, one should immediately add a test that demonstrates the
bug before one fixes the code. That way, one can easily demonstrate that the bug
has been fixed, and since this test is now a part of the test suite (all of which
should be run after each change to any code) it will immediately discover the
bug if it resurfaces — in large applications, bugs in one part of the code can
often be triggered by a change in distante part of the code.

While some of these considerations are most relevant for commercial soft-
ware companies, researchers might also find that unit testing provides a useful
safety net.

4.3.7 Overlays

By using overlays (see Section 2.2.2.5) wisely, it may be possible to significantly
reduce the size of the program code that at any time resides in the local store,
thereby freeing up space for data. For instance, because of the SPMD approach
mandated by CML, the code for all four ASYNPLEX processes must reside in
the same program. With overlays, each SPE will only need to load the code for
the process type that it is responsible for. Furthermore, since the code for each
phase is slightly different, but the phase change only occurs once, it should be
beneficial to only load the code for one phase at a time. We doubt that even more
fine-grained use of overlays will help, unless the linear program is extremely
large, in which case it may also be possible to use overlays for the code of the
individual linear algebra operations that are executed in each iteration.

4.3.8 Representation of sparse matrices

Sparse matrices and vectors can be represented in numerous ways; Shahnaz et
al.[45] give a good review of different storage schemes. Several operations in a
linear solver will depend on the choice of such a representation. If one takes care
to place the code for each such operation in a separate function, only a modest
amount of work will be required to create implementations of several storage
schemes (with the added benefit that these implementations can be tested sep-
arately, and as long as they work, the entire solver will still work). Then, one
can measure how performance is impacted by the choice of storage scheme. The
first alternative representation to try might be the jagged diagonal storage, which,
according to [45], is “specially tailored for sparse matrix-vector multiplications”,
and its variation transposed jagged diagonal storage, which is “suitable for parallel
and distributed processing”.

It should be noted that some formats are intended for general matrices, while
others make assumptions about the distribution of nonzeroes — the latter cate-
gory may be risky to use internally in the solver, since one cannot tell in advance

4.3. REFLECTIONS ON UNIMPLEMENTED FEATURES. IDEAS FOR
FUTURE WORK 69

what kind of patterns might emerge in the intermediate matrices produced in
the course of the algorithm. Vanderbei’s implementation uses the Compressed
Column Storage format described in Section 2.3.2.

4.3.9 Vectorisation

As mentioned in Section 2.2.2.1, utilising vector operations is essential in order
to obtain the high computational throughput that is promised by the Cell/BE.
While vectorisation of dense matrix-vector operations is fairly trivial (as seen
in our parallel standard simplex solver), putting vectors to good use in sparse
operations is much harder. For instance, vectorisation of a simple addition of
(mathematical) vectors will require the opportunity to add four adjacent num-
bers to four other adjacent numbers simultaneously, but with sparse representa-
tions, adjacent numbers in one vector may not correspond to adjacent numbers
(or any numbers at all) in the other vector.

One approach may be the following: for each nonzero number, store all four
elements of that column that would be located in the same vector in a dense
column major representation (even if the other three are zeroes) — if the element
at row i is nonzero, we would store all elements from b i

4c · 4 through b i
4c · 4 + 3.

This would permit operations on four adjacent numbers — but only if there
is a matching vector in the other vector. Thus, the gains from this approach
may be rather limited. Furthermore, it would come at the cost of an increase in
the storage requirements, which may be detrimental since it would increase the
traffic on the Cell/BE bus. When using the compressed column storage format
as described in Section 2.3.2, the required space would increase from 2k + 1
elements to 5k+1 elements (it is sufficient to store the row index of each vector

, so only the value array would quadruple its size) — but only in the worst
case of a vector having k nonzeroes with none of them spaced closer than four
elements apart. For an m × n-matrix containing k nonzeroes it would increase
from 2k + n+ 3 elements to at most 5k + n+ 3 elements.

4.3.10 Autotuning

Autotuning is the process of experimentally finding good values for compile-
time constants such as block sizes for data transfer and matrix multiplication3.
As implied by the word “auto”, the experimentation is performed by another
program, which repeatedly recompiles the target program with new parameters
and runs benchmarks; the best parameter combination is then used for the final
compilation.

3A typical matrix multiplication is to divide each matrix into blocks and perform the multi-
plication blockwise, with the goal of having each block stay in the cache for as long as possible.

70 CHAPTER 4. EVALUATION

A well-known software product that utilises autotuning is ATLAS, which is
a BLAS library which can be automatically optimised for any architecture.

However, the benefits from autotuning may be smaller on Cell/BE than on
regular computers, since one of the points of the Cell/BE architecture is that it
should be possible to produce code that is predictably good because it utilises
the manually-controlled memory hierarchy well — but this, of course, is com-
plicated, and using autotuning may be simpler in some situations. A good
Cell/BE-specific target for autotuning may be buffer sizes for triple buffering.

4.3.11 Triple buffering

The double/triple/quadruple buffering technique is described in Section 2.2.2.4.
We believe this to be the by far most important optimisation to consider — we
might even go as far as to state that it is a necessity rather than an optimisation.
Triple buffering is necessary in order to support data sets of realistic sizes — a
solver that can only handle data sets of less than a hundred kilobytes (which is
what remains when the large solver code has taken its share of the local store) is
of little practical use.

Chapter 5
Conclusion

The purpose of this project was to explore how linear programming algorithms,
primarily variations of the simplex method, might be parallelised and imple-
mented on the Cell Broadband Engine, a multicore processor with an inno-
vative architecture. To the surprise of both the author and his advisor, the
various simplex methods turned out to be exceedingly difficult to implement,
even on a regular computer and without parallelisation — a fact which we later
learned is well-known within the mathematical optimisation community. We
are astonished that well-known books on the subject of linear programming do
not present this simple fact (“the standard simplex method is virtually useless
in practice”) more clearly; knowing this would have saved us a considerable
amount of time. However, we ourselves are to blame for not having contacted
professionals in the field much earlier than we did. One of the most important
lessons we have drawn from the project is that building an industrial-strength
LP solver is a vast amount of work and must only be undertaken by someone
who has extensive knowledge of both programming and numerics. The author
only possessed skills in the former field and selected this project in the belief
that the major challenge would be the Cell/BE devlopment alone. Most likely,
someone more skilled in numerics would have been able to produce better re-
sults, and we believe that the investigation of the Cell/BE as a platform for linear
programming should continue in spite of the poor results we have achieved.

The products of this project, besides this report, include a number of LP
solvers (for both x86, PPE only, and PPE with SPEs) employing the standard
simplex method and an algorithm by Hall and McKinnon called ASYNPLEX.
We did not get the time to finish the Cell/BE ASYNPLEX implementation, and
only the x86 ASYNPLEX implementation displays a reasonable amount of nu-
merical stability. We have performed a few experiments, from which we drew
the following conclusions:

• SIMD instructions give little speedup in the standard simplex method (at

71

72 CHAPTER 5. CONCLUSION

most 38%), most likely due to the low arithmetic intensity of the method.

• Overlapping communication and computation is absolutely necessary in
order to gain even acceptable performance on the SPEs — in our imple-
mentation, the SPEs were stalled waiting for data for around 94% of the
time.

• ASYNPLEX on x86 will require careful optimisation and possibly a better
messaging system in order to outperform the sequential solver on which
our implementation is based. Currently, it is 3–6 times slower, and adding
iteration processes only helps for large data sets.

5.1 Future work

The following is a summary of our discussion in Section 4.3. We recommend
those who are going to continue this project to investigate the following areas:

• Triple (or quadruple) buffering for supporting data sets of nontrivial size
— more of a necessity than an optimisation.

• Implementing existing techniques for anti-cycling and numerical stability.

• Unit testing.

• Parallelisation of the individual linear algebra operations.

• Mixed precision computations for obtaining double precision accuracy while
primarily using single precision computation.

• Unrolling tight loops to minimise pipeline stalls (while paying attention
not to increase code size too much).

• Using overlays to free up more space for data buffers in the SPE local
stores, and to allow for bigger and more complex solvers.

• Experimenting with different representations of sparse matrices (this will
require a lot of coding, since the linear algebra operations are dependent
on the matrix representation).

• Vectorisation of the matrix operations; the opportunities for this will de-
pend on the matrix representation.

• Autotuning, for determining good values for e.g. triple buffer sizes.

In addition, interior point methods can be investigated. However, looking at
our experiences from this project, we believe this to be enough subject matter
for at least one full Ph.D. thesis.

Bibliography

[1] M. ÅLIND, M. V. ERIKSSON, AND C. W. KESSLER, BlockLib: A Skeleton Library for
Cell Broadband Engine, in IWMSE ’08: Proceedings of the 1st international workshop
on Multicore software engineering, New York, NY, USA, 2008, ACM, pp. 7–14.
[cited at p. 37]

[2] G. AMDAHL, Validity of the Single Processor Approach to Achieving Large-Scale Com-
puting Capabilities, in Proceedings of the AFIPS spring joint computer conference,
1967, pp. 483–485. [cited at p. 38]

[3] E. D. ANDERSEN AND K. D. ANDERSEN, A parallel interior-point algorithm for
linear programming on a shared memory machine, Tech. Report 1998008, Université
catholique de Louvain, Center for Operations Research and Econometrics (CORE),
January 1998. [cited at p. 30, 66]

[4] H. ANDERSSON AND M. CHRISTIANSEN, (Private e-mail correspondence), April 2009.
[cited at p. 46, 49]

[5] K. ASANOVÍC, R. BODIK, B. CATANZARO, J. GEBIS, P. HUSBANDS, K. KEUTZER,
D. PATTERSON, W. PLISHKER, J. SHALF, S. WILLIAMS, AND K. YELICK, The Land-
scape of Parallel Computing Research: A View from Berkeley, Tech. Report UCB/EECS-
2006-183, Electrical Engineering and Computer Sciences — University of Califor-
nia at Berkeley, December 2006. [cited at p. 31, 39]

[6] H. Y. BENSON AND D. F. SHANNO, An exact primal-dual penalty method approach
to warmstarting interior-point methods for linear programming, Computational Opti-
mization and Applications, 38 (2007), pp. 371–399. [cited at p. 17]

[7] R. E. BIXBY AND A. MARTIN, Parallelizing the Dual Simplex Method, INFORMS Jour-
nal on Computing, 12 (2000), pp. 45–56. [cited at p. 30]

[8] T. H. CORMEN, C. R. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to
Algorithms, McGraw-Hill Science/Engineering/Math, 2nd ed., 2003. [cited at p. 3, 16,

43, 45, 46]

[9] G. DANTZIG, Linear Programming and Extensions, Princeton University Press,
Princeton, NJ, 1963. [cited at p. 7, 17]

73

74 BIBLIOGRAPHY

[10] D. P. DOBKIN, R. J. LIPTON, AND S. P. REISS, Linear programming is log-space hard
for P, Information Processing Letters, 8 (1979), pp. 96–97. [cited at p. 17]

[11] Å. ELDHUSET, Edge detection on GPUs using CUDA. Fall project report, Norwegian
University of Science and Technology, January 2009. [cited at p. 38]

[12] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, 1979. [cited at p. 4]

[13] D. GAY, Electronic mail distribution of linear programming test problems, COAL
Newsletter, (1985), pp. 10–12. [cited at p. 37]

[14] P. E. GILL, W. MURRAY, M. A. SAUNDERS, AND M. H. WRIGHT, A practical anti-
cycling procedure for linearly constrained optimization, Mathematical Programming,
45 (1989), pp. 437–474. [cited at p. 67]

[15] J. GONDZIO AND A. GROTHEY, A New Unblocking Technique to Warmstart Inte-
rior Point Methods based on Sensitivity Analysis, SIAM Journal on Optimization, 19
(2008), pp. 1184–1210. [cited at p. 17]

[16] R. GREENLAW, H. J. HOOVER, AND W. L. RUZZO, Limits to parallel computation:
P-completeness theory, Oxford University Press, Inc., New York, NY, USA, 1995.
[cited at p. 17]

[17] J. A. J. HALL, Towards a practical parallelisation of the simplex method, Optimization
Online, (2005). [cited at p. 66]

[18] J. A. J. HALL AND K. I. M. MCKINNON, PARSMI, a Parallel Revised Simplex Al-
gorithm Incorporating Minor Iterations and Devex Pricing, in PARA ’96: Proceedings
of the Third International Workshop on Applied Parallel Computing, Industrial
Computation and Optimization, Springer-Verlag, 1996, pp. 359–368. [cited at p. 30]

[19] J. A. J. HALL AND K. I. M. MCKINNON, ASYNPLEX, an asynchronous parallel
revised simplex algorithm, Annals of Operations Research, 81 (1998), pp. 27–50.
[cited at p. 22, 23, 24, 29, 30, 52]

[20] F. S. HILLIER AND G. J. LIEBERMAN, Introduction to Operations Research, McGraw-
Hill Science/Engineering/Math, July 2004. [cited at p. 5]

[21] J. K. HO AND R. P. SUNDARRAJ, On the efficacy of distributed simplex algorithms
for linear programming, Computational Optimization and Applications, 3 (1994),
pp. 349–363. [cited at p. 30, 49]

[22] A. HUNT AND D. THOMAS, Pragmatic Unit Testing in C# with Nunit, The Pragmatic
Programmers, 2004. [cited at p. 67]

[23] IBM, Cell Broadband Engine Programming Handbook, Version 1.1. [cited at p. 31, 32, 34]

[24] , Software Development Kit for Multicore Acceleration, Version 3.0 — Programming
Tutorial. [cited at p. 31, 32, 33]

[25] , Software Development Kit for Multicore Acceleration, Version 3.1 — Programmer’s
Guide. [cited at p. 31, 37]

BIBLIOGRAPHY 75

[26] J. A. KAHLE, M. N. DAY, H. P. HOFSTEE, C. R. JOHNS, T. R. MAEURER, AND

D. SHIPPY, Introduction to the cell multiprocessor, IBM J. Res. Dev., 49 (2005), pp. 589–
604. [cited at p. 31, 32]

[27] N. KARMARKAR, A new polynomial-time algorithm for linear programming, in STOC
’84: Proceedings of the sixteenth annual ACM symposium on Theory of comput-
ing, New York, NY, USA, 1984, ACM, pp. 302–311. [cited at p. 25]

[28] G. KARYPIS, A. GUPTA, AND V. KUMAR, A parallel formulation of interior point algo-
rithms, in Supercomputing ’94: Proceedings of the 1994 ACM/IEEE conference on
Supercomputing, New York, NY, USA, 1994, ACM, pp. 204–213. [cited at p. 30, 66]

[29] L. G. KHACHIYAN, A Polynomial Algorithm in Linear Programming, Doklady
Akademiia Nauk SSSR, 224 (1979), pp. 1093–1096. (English translation in Soviet
Mathematics Reports 20:1 (1979), pp. 191–194). [cited at p. 16, 25]

[30] V. KLEE AND G. J. MINTY, How good is the simplex algorithm?, in Inequalities,
O. Shisha, ed., vol. III, Academic Press, New York, 1972, pp. 159–175. [cited at p. 16]

[31] D. E. KNUTH, Structured Programming with go to Statements, ACM Computing Sur-
veys, 6 (1974), pp. 261–301. [cited at p. 47]

[32] A. KOBERSTEIN, The Dual Simplex Method — Techniques for a fast and stable imple-
mentation, PhD thesis, University of Paderborn, 2005. [cited at p. 67]

[33] M. KRISHNA, A. KUMAR, N. JAYAM, G. SENTHILKUMAR, P. K. BARUAH,
R. SHARMA, S. KAPOOR, AND A. SRINIVASAN, A Synchronous Mode MPI Imple-
mentation on the Cell BE Architecture, in ISPA, 2007, pp. 982–991. [cited at p. 36]

[34] A. KUMAR, G. SENTHILKUMAR, M. KRISHNA, N. JAYAM, P. K. BARUAH,
R. SHARMA, A. SRINIVASAN, AND S. KAPOOR, A Buffered-Mode MPI Implemen-
tation for the Cell BE Processor, in ICCS ’07: Proceedings of the 7th international
conference on Computational Science, Part I, Springer-Verlag, 2007, pp. 603–610.
[cited at p. 36]

[35] J. KURZAK, A. BUTTARI, AND J. DONGARRA, Solving Systems of Linear Equations on
the CELL Processor Using Cholesky Factorization, IEEE Transactions on Parallel and
Distributed Systems, 19 (2008), pp. 1175–1186. [cited at p. 66]

[36] J. KURZAK AND J. DONGARRA, Implementation of mixed precision in solving systems
of linear equations on the Cell processor: Research Articles, Concurrency and Compu-
tation: Practice & Experience, 19 (2007), pp. 1371–1385. [cited at p. 34, 66]

[37] I. MAROS, Computational Techniques of the Simplex Method, Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2002. [cited at p. 24, 45, 46, 47, 49]

[38] S. MCCONNELL, Code Complete: A Practical Handbook of Software Construction, Mi-
crosoft Press, 2nd ed., 2004. [cited at p. 67]

[39] B. MONIEN AND J. SCHULZE, Parallel Sparse Cholesky Factorization. [cited at p. 66]

[40] L. NATVIG, Evaluating Parallel Algorithms: Theoretical and Practical Aspects. Dr.Ing.
thesis, The Norwegian Institute of Technology, 1990. [cited at p. 17]

76 BIBLIOGRAPHY

[41] J. P. PEREZ, P. BELLENS, R. M. BADIA, AND J. LABARTA, CellSs: making it easier to
program the cell broadband engine processor, IBM Journal of Research and Develop-
ment, 51 (2007). [cited at p. 37]

[42] W. PRESS, S. TEUKOLSKY, W. VETTERLING, AND B. FLANNERY, Numerical Recipes
in C, Cambridge University Press, 2nd ed., 1992. [cited at p. 28, 46]

[43] W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING, AND B. P. FLANNERY, Nu-
merical Recipes: The Art of Scientific Computing, Cambridge University Press, 3rd ed.,
August 2007. [cited at p. 28, 46]

[44] J. SCHULZE, Parallel Sparse Cholesky Factorization. [cited at p. 66]

[45] R. SHAHNAZ, A. USMAN, AND I. CHUGHTAI, Review of Storage Techniques for Sparse
Matrices, in 9th International Multitopic Conference, IEEE INMIC 2005, December
2005, pp. 1–7. [cited at p. 37, 38, 68]

[46] D. G. SPAMPINATO, Linear Optimization on Modern GPUs, in Proceedings of 23rd
IEEE International Parallel and Distributed Processing Symposium (IPDPS 2009),
2009. [cited at p. 29, 67]

[47] R. J. VANDERBEI, Linear Programming: Foundations and Extensions, Springer,
2nd ed., 2001. [cited at p. 3, 12, 13, 14, 16, 17, 20, 21, 22, 29, 43, 45, 46]

[48] H. WEI AND J. YU, Loading OpenMP to Cell: An Effective Compiler Framework for
Heterogeneous Multi-core Chip, in IWOMP ’07: Proceedings of the 3rd international
workshop on OpenMP, Berlin, Heidelberg, 2008, Springer-Verlag, pp. 129–133.
[cited at p. 37]

[49] R. WUNDERLING, Paralleler und objektorientierter Simplex-Algorithmus, PhD the-
sis, Technische Universtät Berlin, Fachbereich Mathematik (G. Ziegler) and ZIB
(M. Grötschel), December 1996. [cited at p. 29, 30]

[50] G. YARMISH, A Distributed Implementation of the Simplex Method, PhD thesis, Poly-
technic University, March 2001. [cited at p. 28, 44]

[51] G. YARMISH AND R. V. SLYKE, retroLP, An Implementation of the Standard Sim-
plex Method, Tech. Report TR-CIS-2001-05, Polytechnic University, August 2001.
[cited at p. 28]

[52] E. A. YILDIRIM AND S. J. WRIGHT, Warm-Start Strategies in Interior-Point Meth-
ods for Linear Programming, SIAM Journal on Optimization, 12 (2002), pp. 782–810.
[cited at p. 17]

[53] K. YOSHII, Time-stamp counter. http://www.mcs.anl.gov/˜kazutomo/

rdtsc.html. [cited at p. 58, 92]

http://www.mcs.anl.gov/~kazutomo/rdtsc.html
http://www.mcs.anl.gov/~kazutomo/rdtsc.html

Appendices

77

Appendix A
Code

We now list the most interesting parts of our code. The full source code for all of our solvers
(including Makefiles and, for some solvers, project files for Eclipse and Visual Studio) is located
in the source code attachment uploaded to the thesis submission system of the Department of
Computer and Information Science.

A.1 Sequential standard simplex method for x86 and Cell/BE

This is the full source code. It can be compiled in several versions:

• For x86, using float: run g++ -O3 -Wall *.cpp

-o standard simplex x86 float -DTYPE=float

• For x86, using double: run g++ -O3 -Wall *.cpp

-o standard simplex x86 float -DTYPE=double

• For x86, using GMP: run g++ -O3 -Wall *.cpp

-o standard simplex x86 gmp -DTYPE=mpq class -lgmpxx -lgmp -DUSE GMP

• For Cell/BE (but uses only the PPE), using float and SIMD instructions: run make

• For Cell/BE, using float and no SIMD instructions: edit the Makefile and remove -DUSE_SIMD,
and run make

Note that the code highlighting package we use (listings) erroneously highglights the
vector class from the Standard Template Library, thinking that it is the vector keyword for
SIMD data types.

The solver expects MPS files with no BOUNDS or RANGES sections as the first command line
parameter when it is executed.

Matrix.h and Matrix.cpp

A class for representing dense matrices where the size of the physical memory buffer for each row
is a multiple of 16 bytes, so that it supports SIMD operations internally. The actual matrix with

79

80 APPENDIX A. CODE

can be anything.

#ifndef MATRIX_H

#define MATRIX_H

#include <iostream>

#include <vector>

#include "gmpInterop.h"

class Matrix {

friend std::ostream & operator << (std::ostream &, const Matrix &);

public:
Matrix(int, int);
Matrix(int rows, int cols, TYPE * data);

Matrix(int, int, bool);
Matrix(const Matrix &);

˜Matrix();

int getRows() { return rows; }

int getCols() { return cols; }

int getPhysicalCols() { return physicalCols; }

#ifdef VOLATILE_DATA

// When this class is being used in the parallel standard simplex method for

Cell, the data buffer must be marked as volatile because it will be the

target of DMA transfers

volatile
#endif
TYPE * getData() { return data; }

inline
#ifdef VOLATILE_DATA

volatile
#endif
TYPE & operator () (int r, int c) { return data[r * physicalCols + c]; }

inline TYPE operator () (int r, int c) const { return data[r * physicalCols

+ c]; }

void swapRows(int firstRow, int secondRow);

void multiplyRow(int row, TYPE factor);

void addRows(int sourceRow, int destinationRow, TYPE factor);

void print(const std::vector<int> & basic, const std::vector<int> & nonbasic

);

private:
int rows;

int cols;

int physicalCols;

#ifdef VOLATILE_DATA

volatile

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 AND
CELL/BE 81

#endif
TYPE * data;

};

std::ostream & operator << (std::ostream &, const Matrix &);

// Used by addRows to increment one number by another, with support for two

different "zeroing rules", controlled by defines:

// - set to zero if result is below ZEROING_RULE_EPSILON

// - set to zero if the ratios of each of the operands to the result is

greater than ZEROING_RULE_RATIO

// - not defining either of these will simply result in a regular a += b

operation

#ifdef VOLATILE_DATA

inline void incr(volatile TYPE & a, const TYPE & b) {

#else
inline void incr(TYPE & a, const TYPE & b) {

#endif
#ifdef ZEROING_RULE_EPSILON

a += b;

if (ABS(a) <= ZEROING_RULE_EPSILON) {

a = 0;

}

#else
#ifdef ZEROING_RULE_RATIO

TYPE result = a + b;

if (result == 0 || (ABS(a / result) >= ZEROING_RULE_RATIO && ABS(b /

result) >= ZEROING_RULE_RATIO)) {

a = 0;

}

else {

a = result;

}

#else
a += b;

#endif

#endif

}

#endif

#include "Matrix.h"

#define VECTOR_WIDTH (16 / sizeof(TYPE))
#define ALIGN_LOG2 4

#define ROUND_UP_MULTIPLE(x, m) (((x) + (m) - 1) / m * m) // Returns x rounded

up to the nearest multiple of m

82 APPENDIX A. CODE

#ifdef __powerpc__

// On Cell, we need these includes

// Note: __powerpc__ should perhaps be replaced by something more Cell-

specific in case one wants to compile this on a PowerPC that is not a

Cell PPE

#include <altivec.h>

#include <libmisc.h>

#else
#include <cstdlib>

// On x86, there is no malloc_align and no need for it either

#define malloc_align(size, alignment) malloc(size)

#define free_align(buffer) free(buffer)

#endif

#ifdef USE_SIMD

#ifdef USE_GMP

#error "Cannot use GMP with SIMD operations"

#endif

#endif

using namespace std;

Matrix::Matrix(int rows, int cols) {

this->rows = rows;

this->cols = cols;

#ifdef USE_GMP

// GMP’s types are classes and require their constructors to be called, so

we need to use new.

// If necessary, it is possible to combine malloc_align and GMP through the

use of ’placement new’.

this->physicalCols = cols;

this->data = new mpq_class[rows * this->physicalCols];
#else
this->physicalCols = ROUND_UP_MULTIPLE(cols, VECTOR_WIDTH);

this->data = (TYPE*)malloc_align(rows * this->physicalCols * sizeof(TYPE),
ALIGN_LOG2);

#endif
for (int i = 0; i < rows * this->physicalCols; ++i)

this->data[i] = 0;

}

Matrix::Matrix(int rows, int cols, TYPE * data) {

this->rows = rows;

this->cols = cols;

#ifdef USE_GMP

this->physicalCols = cols;

this->data = new TYPE[rows * this->physicalCols];

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 AND
CELL/BE 83

#else
this->physicalCols = ROUND_UP_MULTIPLE(cols, VECTOR_WIDTH);

this->data = (TYPE*)malloc_align(rows * this->physicalCols * sizeof(TYPE),
ALIGN_LOG2);

#endif
for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c)

this->data[r * this->physicalCols + c] = data[r * cols + c];

for (int c = cols; c < this->physicalCols; ++c)

this->data[r * this->physicalCols + c] = 0;

}

}

Matrix::Matrix(int rows, int cols, bool identity) {

this->rows = rows;

this->cols = cols;

#ifdef USE_GMP

this->physicalCols = cols;

this->data = new TYPE[rows * this->physicalCols];
#else

this->physicalCols = ROUND_UP_MULTIPLE(cols, VECTOR_WIDTH);

this->data = (TYPE*)malloc_align(rows * this->physicalCols * sizeof(TYPE),
ALIGN_LOG2);

#endif
for (int i = 0; i < rows * this->physicalCols; ++i)

this->data[i] = 0;

if (identity && rows == cols) {

for (int i = 0; i < rows; ++i) {

(*this)(i, i) = 1;

}

}

}

Matrix::Matrix(const Matrix & source) {

this->rows = source.rows;

this->cols = source.cols;

this->physicalCols = source.physicalCols;

#ifdef USE_GMP

this->data = new TYPE[source.rows * source.physicalCols];

#else
this->data = (TYPE*)malloc_align(source.rows * source.physicalCols * sizeof(

TYPE), ALIGN_LOG2);

#endif
for (int i = 0; i < source.rows * source.physicalCols; ++i)

this->data[i] = source.data[i];

}

84 APPENDIX A. CODE

Matrix::˜Matrix() {

#ifdef USE_GMP

delete [] data;

#else
free_align((float*)data);

#endif
}

// Prints the entire matrix

ostream & operator << (ostream & out, const Matrix & matrix) {

out << "=== " << matrix.rows << " x " << matrix.cols << " @ " << matrix.data

<< " ===" << endl;

for (int r = 0; r < matrix.rows; ++r) {

out << matrix(r, 0);

for (int c = 1; c < matrix.cols; ++c)

out << ’ ’ << matrix(r, c);

out << endl;

}

out << "======" << endl;

return out;

}

// A more advanced print operation that prints only nonzero entries, along

with variable names

void Matrix::print(const vector<int> & basic, const vector<int> & nonbasic) {

cout << "=== " << rows << " x " << cols << " @ " << data << " ===" << endl;

for (int r = 0; r < rows; ++r) {

if (r == 0)

cout << "z = ";

else
cout << "x" << basic[r - 1] << " = ";

cout << (*this)(r, 0);

for (int c = 1; c < cols; ++c)

if ((*this)(r, c) != 0)

cout << " " << (*this)(r, c) << "x" << nonbasic[c - 1];

cout << endl;

}

cout << "======" << endl;

}

// No point in using SIMD here; this function is used very rarely

void Matrix::swapRows(int firstRow, int secondRow) {

if (firstRow == secondRow) return;
for (int j = 0; j < cols; ++j) {

TYPE tmp = (*this)(firstRow, j);

(*this)(firstRow, j) = (*this)(secondRow, j);

(*this)(secondRow, j) = tmp;

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 AND
CELL/BE 85

}

}

#ifdef USE_SIMD

void Matrix::multiplyRow(int row, TYPE factor) {

if (factor == 1) return;
vector TYPE zero_v = (vector TYPE){0.0f, 0.0f, 0.0f, 0.0f};

vector TYPE factor_v = (vector TYPE){factor, factor, factor, factor}; //

Wanted to use vec_splat(vec_lde(0, &factor), 0) here, but might have

misunderstood the syntax

vector TYPE * data_v = (vector TYPE *)(data + row * physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

data_v[j] = vec_madd(data_v[j], factor_v, zero_v);

}

}

void Matrix::addRows(int sourceRow, int destinationRow, TYPE factor) {

if (factor == 0) return;
vector TYPE factor_v = (vector TYPE){factor, factor, factor, factor}; //

As above

vector TYPE * source_v = (vector TYPE *)(data + sourceRow * physicalCols);

vector TYPE * destination_v = (vector TYPE *)(data + destinationRow *
physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

destination_v[j] = vec_madd(source_v[j], factor_v, destination_v[j]);

}

}

#else

void Matrix::multiplyRow(int row, TYPE factor) {

if (factor == 1) return;
for (int j = 0; j < cols; ++j) {

(*this)(row, j) *= factor;

}

}

void Matrix::addRows(int sourceRow, int destinationRow, TYPE factor) {

if (factor == 0) return;
for (int j = 0; j < cols; ++j) {

incr((*this)(destinationRow, j), (*this)(sourceRow, j) * factor);

}

}

86 APPENDIX A. CODE

#endif

mps.h and mps.cpp

An MPS parser. See notes in Appendix A.5 and Appendix A.5.

#ifndef MPS_H

#define MPS_H

#include <iostream>

#include <vector>

#include <string>

std::vector<std::vector<TYPE> > parse(std::istream & input);

std::vector<std::vector<TYPE> > parse(const std::vector<std::string> & lines);

#endif

#include <iostream>

#include <fstream>

#include <string>

#include <map>

#include <vector>

#include <stdexcept>

#include <sstream>

#include <cctype>

#include "gmpInterop.h"

using namespace std;

enum RowType {

LESS_THAN,

EQUAL_TO,

GREATER_THAN,

OBJECTIVE

};

string rowTypeLabels[] = {"L", "E", "G", "N"};

class Equation {

public:
string label;

RowType type;

map<string, TYPE> values;

int index;

TYPE rhs;

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 AND
CELL/BE 87

Equation(string label, string type, int index) {

this->label = label;

if (type == "L")

this->type = LESS_THAN;

else if (type == "E")

this->type = EQUAL_TO;

else if (type == "G")

this->type = GREATER_THAN;

else if (type == "N")

this->type = OBJECTIVE;

else
throw invalid_argument("");

this->index = index;

this->rhs = 0;

}

};

string strip(string line) {

int start = 0, end = (int)line.size() - 1;

while (start < (int)line.size() && isspace(line[start])) ++start;

while (end >= 0 && isspace(line[end])) --end;

if (end < start)

return "";

else
return line.substr(start, end - start + 1);

}

vector<string> split(string line) {

stringstream ss(line);

vector<string> items;

string item;

while (ss >> item) {

items.push_back(item);

}

return items;

}

vector<vector<TYPE> > parse(const vector<string> & lines) {

map<string, Equation *> equations;

vector<string> columnLabels;

map<string, int> columnIndices;

vector<vector<TYPE> > tableau;

unsigned int i = 0;

int objectiveIndex = -1;

while (i < lines.size()) {

string line = lines[i];

string header = strip(line);

88 APPENDIX A. CODE

i++;

if (line[0] == ’*’ || line[0] == ’ ’ || line.substr(0, 4) == "NAME") {

continue;
}

else if (strip(line) == "ENDATA") {

break;
}

else if (strip(line) == "ROWS") {

int rowIndex = 0;

while (lines[i][0] == ’ ’) {

vector<string> items = split(lines[i]);

Equation * eqn = new Equation(strip(items[1]), strip(items[0]),

rowIndex);

if (eqn->type == OBJECTIVE)

objectiveIndex = rowIndex;

equations[eqn->label] = eqn;

rowIndex++;

i++;

}

}

else if (strip(line) == "COLUMNS") {

int columnIndex = -1;

while (lines[i][0] == ’ ’) {

vector<string> items = split(lines[i]);

int lim = (items.size() == 5 ? 2 : 1);

string columnLabel = strip(items[0]);

if (columnIndices.find(columnLabel) == columnIndices.end()) {

columnIndex++;

columnLabels.push_back(columnLabel);

columnIndices[columnLabel] = columnIndex;

}

for (int j = 0; j < lim; ++j) {

string rowLabel = strip(items[1 + j * 2]);

stringstream ss(strip(items[2 + j * 2]));

TYPE value;

readNumber(ss, value);

equations[rowLabel]->values[columnLabel] = value;

}

i++;

}

}

else if (strip(line) == "RHS") {

while (lines[i][0] == ’ ’) {

vector<string> items = split(lines[i]);

int lim = (items.size() == 5 ? 2 : 1);

for (int j = 0; j < lim; ++j) {

string rowLabel = strip(items[1 + j * 2]);

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 AND
CELL/BE 89

stringstream ss(strip(items[2 + j * 2]));

TYPE value;

readNumber(ss, value);

equations[rowLabel]->rhs = value;

}

i++;

}

}

else {

throw invalid_argument("");

}

}

tableau.resize(1); // obj. func.

for (map<string, Equation *>::iterator eqnIter = equations.begin(); eqnIter

!= equations.end(); ++eqnIter) {

Equation * eqn = eqnIter->second;

vector<TYPE> row(columnLabels.size() + 1, 0);

bool any = false;
row[0] = eqn->rhs;

for (map<string, TYPE>::iterator colIter = eqn->values.begin(); colIter !=

eqn->values.end(); ++colIter) {

string colLabel = colIter->first;

row[columnIndices[colLabel] + 1] = -eqn->values[colLabel];

if (eqn->values[colLabel] != 0)

any = true;
}

if (!any)

continue;
if (eqn->type == OBJECTIVE) {

tableau[0] = row;

}

else {

if (eqn->type == LESS_THAN || eqn->type == EQUAL_TO) {

tableau.push_back(row);

}

if (eqn->type == GREATER_THAN || eqn->type == EQUAL_TO) {

for (unsigned int j = 0; j < row.size(); ++j)

row[j] = -row[j];

tableau.push_back(row);

}

}

delete eqn;

}

return tableau;

}

90 APPENDIX A. CODE

vector<vector<TYPE> > parse(istream & input) {

string line;

vector<string> lines;

while (getline(input, line)) {

lines.push_back(line);

}

return parse(lines);

}

gmpInterop.h and gmpInterop.cpp

Code for facilitating the use of GMP, whose classes must occasionally be treated differently from
primitive C++ types.

#ifndef GMPINTEROP_H

#define GMPINTEROP_H

#include <iostream>

#ifdef USE_GMP

#include <gmpxx.h>

#define ABS(x) abs(x)

#else
#include <cmath>

#define ABS(x) fabs(x)

#endif

void readNumber(std::istream & in, TYPE & number);

void printNumber(const TYPE & number);

void printNumberFull(const TYPE & number);

#endif

#ifdef USE_GMP

#include <gmpxx.h>

#endif
#include "gmpInterop.h"

using namespace std;

#ifdef USE_GMP

// Only handles floats using regular notation (no 0x, no E) and integers.

// Accepts numbers < 1 without a leading zero.

// The string cannot be empty or contain any spaces.

static void parseRational(const string & str, mpq_class & number) {

//bool negative = (str[0] == ’-’);

size_t dotIndex = str.find(’.’);

if (dotIndex == string::npos) {

number = str;

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 AND
CELL/BE 91

number.canonicalize();

return;
}

string noDot = str.substr(0, dotIndex) + str.substr(dotIndex + 1);

// size_t firstNonzeroIndex = noDot.find_first_not_of("-0");

// if (firstNonzeroIndex == string::npos) {

// number = 0;

// return;

// }

// string noLeadingZeroes = negative ? "-" : "";

// noLeadingZeroes += noDot.substr(firstNonzeroIndex);

mpq_class numerator(noDot, 10);

int power = str.size() - dotIndex - 1;

mpq_class denominator = 1;

while (power--) {

denominator *= 10;

}

number = numerator / denominator;

number.canonicalize();

}

#endif

void readNumber(istream & in, TYPE & number) {

#ifdef USE_GMP

string str;

in >> str;

parseRational(str, number);

#else
in >> number;

#endif
}

void printNumber(const TYPE & number) {

#ifdef USE_GMP

cout << number.get_d();

#else
cout << number;

#endif
}

void printNumberFull(const TYPE & number) {

#ifdef USE_GMP

cout << number.get_d() << " (approx); " << number << " (exact)";

#else
cout << number;

#endif
}

92 APPENDIX A. CODE

/*
int main() {

mpq_class a;

parseRational("0.00001", a);

cout << a << endl;

parseRational("10.00001", a);

cout << a << endl;

parseRational("12.00000", a);

cout << a << endl;

parseRational(".02001", a);

cout << a << endl;

parseRational("-.5", a);

cout << a << endl;

parseRational("-0.00001", a);

cout << a << endl;

parseRational("-120", a);

cout << a << endl;

parseRational("-0.0", a);

cout << a << endl;

parseRational("-0.0", a);

cout << a << endl;

parseRational("0", a);

cout << a << endl;

parseRational("-0", a);

cout << a << endl;

parseRational("32.1234", a);

cout << a << endl;

return 0;

}

*/

timer.h

Precise timing module, taken from [53].

#ifndef TIMER_H

#define TIMER_H

// Thanks to Kazutomo Yoshii

// http://www.mcs.anl.gov/˜kazutomo/rdtsc.html

#if defined(__i386__)

static __inline__ unsigned long long rdtsc(void)
{

unsigned long long int x;

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 AND
CELL/BE 93

__asm__ volatile (".byte 0x0f, 0x31" : "=A" (x));

return x;

}

#elif defined(__x86_64__)

static __inline__ unsigned long long rdtsc(void)
{

unsigned hi, lo;

__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));

return ((unsigned long long)lo)|(((unsigned long long)hi)<<32);

}

#elif defined(__powerpc__)

static __inline__ unsigned long long rdtsc(void)
{

unsigned long long int result=0;

unsigned long int upper, lower,tmp;

__asm__ volatile(
"0: \n"

"\tmftbu %0 \n"

"\tmftb %1 \n"

"\tmftbu %2 \n"

"\tcmpw %2,%0 \n"

"\tbne 0b \n"

: "=r"(upper),"=r"(lower),"=r"(tmp)

);

result = upper;

result = result<<32;

result = result|lower;

return(result);
}

#else

#error "No tick counter is available!"

#endif

/* $RCSfile: $ $Author: kazutomo $

* $Revision: 1.6 $ $Date: 2005/04/13 18:49:58 $

*/

#endif

94 APPENDIX A. CODE

TableauSimplex.h and TableauSimplex.cpp

Code for performing a simplex iteration (with pivoting).

#ifndef TALBEAUSIMPLEX_H

#define TALBEAUSIMPLEX_H

#include "Matrix.h"

#include <vector>

enum SimplexResult {

SUBOPTIMAL,

OPTIMAL,

INFEASIBLE_OR_UNBOUNDED

};

class TableauSimplex {

public:
static SimplexResult iteration(Matrix & tableau, std::vector<int> & basic,

std::vector<int> & nonbasic);

static void pivot(Matrix & tableau, std::vector<int> & basic, std::vector<

int> & nonbasic, int leaving, int entering);

};

#endif

#include "TableauSimplex.h"

#include "gmpInterop.h"

#include <cmath>

#include <vector>

using namespace std;

void TableauSimplex::pivot(Matrix & tableau, std::vector<int> & basic, std::

vector<int> & nonbasic, int leaving, int entering) {

cout << "Pivoting: x" << basic[leaving - 1] << " (row " << leaving << ")

leaves, x" << nonbasic[entering - 1] << " (column " << entering << ")

enters" << endl;

TYPE xFactor = tableau(leaving, entering);

int leavingLabel = basic[leaving - 1];

basic[leaving - 1] = nonbasic[entering - 1];

nonbasic[entering - 1] = leavingLabel;

// Cancel out occurrences of the entering variable

for (int i = 0; i < tableau.getRows(); ++i) {

if (i == leaving) continue;
TYPE factor = -tableau(i, entering) / xFactor;

TYPE savedColVal = tableau(i, entering);

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 AND
CELL/BE 95

tableau.addRows(leaving, i, factor);

tableau(i, entering) = savedColVal / xFactor;

}

tableau.multiplyRow(leaving, -1 / xFactor);

tableau(leaving, entering) = 1 / xFactor;

}

SimplexResult TableauSimplex::iteration(Matrix & tableau, vector<int> & basic,

vector<int> & nonbasic) {

int n = tableau.getCols() - 1, m = tableau.getRows() - 1;

// Find entering variable by searching the objective function (row 0) for a

positive coefficient (disregard the constant in column 0)

int entering = -1;

for (int j = 1; j <= n; ++j) {

if (tableau(0, j) > 0 && (entering == -1 || tableau(0, j) > tableau(0,

entering) || (tableau(0, j) == tableau(0, entering) && nonbasic[j - 1]

< nonbasic[entering - 1])))

entering = j;

}

if (entering == -1)

return OPTIMAL;

// Find leaving variable by searching the column of the entering variable

and determine the strictest bound

int leaving = -1;

TYPE smallestRatio = -1; // Keep the compiler from complaining about

uninitialised variables

for (int i = 1; i <= m; ++i) {

if (tableau(i, entering) >= 0)

continue;
TYPE ratio = -tableau(i, 0) / tableau(i, entering); // The "right hand

side", tableau(i, 0), is always nonnegative, and we only get here if

tableau(i, entering) is negative, so ’ratio’ will be nonnegative

if (leaving == -1 || ratio < smallestRatio || (ratio == smallestRatio &&

basic[i - 1] < basic[leaving - 1])) {

smallestRatio = ratio;

leaving = i;

}

}

if (leaving == -1)

return INFEASIBLE_OR_UNBOUNDED;

pivot(tableau, basic, nonbasic, leaving, entering);

96 APPENDIX A. CODE

return SUBOPTIMAL;

}

simplex.cpp

Driver code — initiates input reading, handles the two phases, and initiates iterations.

#include "Matrix.h"

#include "TableauSimplex.h"

#include "mps.h"

#include <cmath>

#include <iostream>

#include <vector>

#include <cstdlib>

#include <fstream>

#include <cstring>

#include <ctime>

#include "timer.h"

#define FEASIBILITY_THRESHOLD 1.0e-5 // abs(x0) must be below this value in

order for the program to be declared feasible (only applies if Phase I is

needed)

using namespace std;

int main(int argc, char * argv[]) {

int rows, cols;

bool initiallyFeasible = true;
bool print = argc >= 3 && strcmp(argv[2], "print") == 0;

istream * input;

ifstream infile;

if (argc == 1)

input = &cin;

else {

infile.open(argv[1]);

input = &infile;

}

vector<vector<TYPE> > parsedTableau = parse(*input);

rows = parsedTableau.size();

cols = parsedTableau[0].size();

Matrix A(rows, cols + 1);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

A(r, c) = parsedTableau[r][c];

}

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 AND
CELL/BE 97

if (r > 0 && A(r, 0) < 0) {

initiallyFeasible = false;
}

A(r, cols) = 1;

}

unsigned long long startTime = rdtsc();

std::vector<int> basic, nonbasic;

// Nonbasic variables are labeled 1 .. n

for (int i = 1; i < cols; ++i)

nonbasic.push_back(i);

nonbasic.push_back(0); // Phase I variable

// Basic variables are labeled n+1 .. n+m

for (int i = cols; i < cols + rows - 1; ++i)

basic.push_back(i);

int numIterations = 0;

SimplexResult status = SUBOPTIMAL;

Matrix obj(1, cols); // Saves the original objective function

if (!initiallyFeasible) {

cout << "Entering Phase I" << endl;

for (int c = 0; c < cols; ++c) {

obj(0, c) = A(0, c);

A(0, c) = 0;

}

A(0, cols) = -1; // The goal is to maximize -x0

int leaving = 1;

for (int i = 2; i < rows; ++i) {

if (A(i, 0) < A(leaving, 0))

leaving = i;

}

TableauSimplex::pivot(A, basic, nonbasic, leaving, cols);

if (print) A.print(basic, nonbasic);

while ((status = TableauSimplex::iteration(A, basic, nonbasic)) ==

SUBOPTIMAL) {

++numIterations;

if (print) A.print(basic, nonbasic);

cout << numIterations << ": " << A(0, 0) << endl;

}

if (status == INFEASIBLE_OR_UNBOUNDED || ABS(A(0, 0)) >

FEASIBILITY_THRESHOLD) {

cout << "INFEASIBLE" << endl;

return 0;

}

98 APPENDIX A. CODE

cout << "PHASE I COMPLETED" << endl;

if (print) A.print(basic, nonbasic);

}

// Locate x0, which is expected to be nonbasic

int x0 = -1;

for (int i = 0; i < cols; ++i) {

if (nonbasic[i] == 0) {

x0 = i + 1;

nonbasic.erase(nonbasic.begin() + i);

break;
}

}

if (x0 == -1) {

for (int j = 0; j < rows - 1; ++j) {

if (basic[j] == 0) {

x0 = j + 1;

break;
}

}

cout << "x0 is basic, and has value " << A(x0, 0) << " - terminating" <<

endl;

// If x0 is basic, but has value 0, it should be possible to continue by

pivoting it out, but we haven’t spent time on this since the program

usually does not give the right answer anyway

return 0;

}

// Even if there was no Phase I, we still copy the tableau - this should be

avoided

Matrix newTableau(rows, cols);

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

newTableau(i, j) = A(i, j < x0 ? j : j + 1);

}

}

if (!initiallyFeasible) {

if (print) newTableau.print(basic, nonbasic);

newTableau(0, 0) = obj(0, 0);

for (int j = 1; j < cols; ++j)

if (nonbasic[j - 1] < cols)

newTableau(0, j) = obj(0, nonbasic[j - 1]);

for (int i = 1; i < rows; ++i) {

if (basic[i - 1] < cols) {

newTableau.addRows(i, 0, obj(0, basic[i - 1]));

}

}

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 AND
CELL/BE 99

}

if (print) newTableau.print(basic, nonbasic);

cout << "Entering phase II" << endl;

while ((status = TableauSimplex::iteration(newTableau, basic, nonbasic)) ==

SUBOPTIMAL) {

++numIterations;

if (print) newTableau.print(basic, nonbasic);

cout << numIterations << ": " << newTableau(0, 0) << endl;

}

if (status == INFEASIBLE_OR_UNBOUNDED) {

cout << "UNBOUNDED" << endl;

return 0;

}

cout << "OPTIMAL" << endl;

cout << "Optimal value: " << newTableau(0, 0) << endl;

cout << "Elapsed time (minus input parsing): " << rdtsc() - startTime <<

endl;

return 0;

}

Makefile

Makefile for compiling the Cell/BE versions. The file must be renamed to simply Makefile

(unlike what it says under “List of code listings”); the code highlighting package does not seem to
handle files without extensions.

Use comments to select if you want SIMD or not

#PROGRAM_ppu := standard_simplex_ppe_float_serial

#CPPFLAGS_gcc = -DTYPE=float

PROGRAM_ppu := standard_simplex_ppe_float_simd

CPPFLAGS_gcc = -DTYPE=float -DUSE_SIMD

INCLUDE := -I .

INSTALL_DIR = /tmp

INSTALL_FILES = $(PROGRAM_ppu)

IMPORTS = -lmisc

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

100 APPENDIX A. CODE

include ../../../../buildutils/make.footer

endif

A.2 Parallel standard simplex method for Cell/BE

This is the full source code, except for several files that are identical to those listed in the previous
section: gmpInterop.h, gmpInterop.cpp, Matrix.h, Matrix.cpp, mps.h, mps.cpp, and
timer.h. They (or a symlink to them, to avoid unnecessary file duplication) should be placed in
the top level source code folder of this program.

The solver expects MPS files with no BOUNDS or RANGES sections and a nonnegative right
hand side as the first command line parameter when it is executed. The second command line
parameter is optional and can be used to control the number of SPE threads.

spu/PartialMatrix.h and spu/PartialMatrix.cpp

A class very similar to the Matrix class above, but with the property that it only contains a
contiguous subset of the rows of the complete matrix. The idea is to give each SPE one part of
the entire tableau. When addressing the PartialMatrix, all indices are relative to the original
matrix.

#ifndef PARTIALMATRIX_H

#define PARTIALMATRIX_H

class PartialMatrix {

public:
PartialMatrix(int, int, int, int, int);
PartialMatrix(int rows, int cols, int physicalCols, int startRow, int

containedRows, float * data);

PartialMatrix(int rows, int cols, int physicalCols, int startRow, int
containedRows, bool identity);

PartialMatrix(const PartialMatrix &);

˜PartialMatrix();

inline int getRows() const { return rows; }

inline int getCols() const { return cols; }

inline int getPhysicalCols() const { return physicalCols; }

inline int getStartRow() const { return startRow; }

inline int getContainedRows() const { return containedRows; }

inline int getRowLimit() const { return startRow + containedRows; }

inline volatile float * getData() { return data; }

inline volatile float & operator () (int r, int c) { return data[(r -

startRow) * physicalCols + c]; }

inline float operator () (int r, int c) const { return data[(r - startRow) *
physicalCols + c]; }

void multiplyRow(int row, float factor);

void addRows(float factor, int sourceRow, int destinationRow);

A.2. PARALLEL STANDARD SIMPLEX METHOD FOR CELL/BE 101

void addRows(float factor, float * sourceRow, int destinationRow);

void swapRows(int firstRow, int secondRow);

void print();

private:
void init(int rows, int cols, int physicalCols, int startRow, int

containedRows);

int rows;

int cols;

int physicalCols;

int startRow;

int containedRows;

volatile float * data;

};

#endif

#include "PartialMatrix.h"

#include <spu_intrinsics.h>

#include <libmisc.h>

#include "../types.h"

#include <stdio.h>

using namespace std;

void PartialMatrix::init(int rows, int cols, int physicalCols, int startRow,

int containedRows) {

this->rows = rows;

this->cols = cols;

this->physicalCols = ROUND_UP_MULTIPLE(cols, VECTOR_WIDTH);

this->startRow = startRow;

this->containedRows = containedRows;

this->data = (float*)malloc_align(containedRows * physicalCols * sizeof(
float), ALIGN_QUAD_LOG2);

}

PartialMatrix::PartialMatrix(int rows, int cols, int physicalCols, int
startRow, int containedRows) {

init(rows, cols, physicalCols, startRow, containedRows);

for (int i = 0; i < containedRows * physicalCols; ++i)

this->data[i] = 0;

}

PartialMatrix::PartialMatrix(int rows, int cols, int physicalCols, int
startRow, int containedRows, float * data) {

init(rows, cols, physicalCols, startRow, containedRows);

for (int r = 0; r < containedRows; ++r) {

102 APPENDIX A. CODE

for (int c = 0; c < cols; ++c)

this->data[r * physicalCols + c] = data[r * cols + c];

for (int c = cols; c < physicalCols; ++c)

this->data[r * physicalCols + c] = 0;

}

}

PartialMatrix::PartialMatrix(int rows, int cols, int physicalCols, int
startRow, int containedRows, bool identity) {

init(rows, cols, physicalCols, startRow, containedRows);

for (int i = 0; i < containedRows * physicalCols; ++i)

this->data[i] = 0;

if (identity && rows == cols) {

for (int i = 0; i < containedRows; ++i) {

data[i * physicalCols + (startRow + i)] = 1;

}

}

}

PartialMatrix::PartialMatrix(const PartialMatrix & source) {

init(source.rows, source.cols, source.physicalCols, source.startRow, source.

containedRows);

for (int i = 0; i < containedRows * physicalCols; ++i)

this->data[i] = source.data[i];

}

PartialMatrix::˜PartialMatrix() {

free_align((void *)data);

}

void PartialMatrix::print() {

printf("=== %d x %d: %d rows: [%d, %d) ===\n", rows, cols, containedRows,

startRow, getRowLimit());

for (int r = startRow; r < getRowLimit(); ++r) {

printf("%f", (*this)(r, 0));

for (int c = 1; c < cols; ++c)

printf(" %f", (*this)(r, c));

printf("\n");

}

printf("======\n");

}

void PartialMatrix::multiplyRow(int row, float factor) {

if (factor == 1) return;
vector float zero_v = (vector float){0.0f, 0.0f, 0.0f, 0.0f};

vector float factor_v = (vector float){factor, factor, factor, factor};

A.2. PARALLEL STANDARD SIMPLEX METHOD FOR CELL/BE 103

vector float * data_v = (vector float *)(data + (row - startRow) *
physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

data_v[j] = spu_madd(data_v[j], factor_v, zero_v);

}

}

void PartialMatrix::addRows(float factor, int sourceRow, int destinationRow) {

if (factor == 0) return;
vector float factor_v = (vector float){factor, factor, factor, factor};

vector float * source_v = (vector float *)(data + (sourceRow - startRow) *
physicalCols);

vector float * destination_v = (vector float *)(data + (destinationRow -

startRow) * physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

destination_v[j] = spu_madd(source_v[j], factor_v, destination_v[j]);

}

}

// Adds a multiple of a row that is not a part of this PartialMatrix to one of

the rows that are a part of it

void PartialMatrix::addRows(float factor, float * sourceRow, int
destinationRow) {

if (factor == 0) return;
vector float factor_v = (vector float){factor, factor, factor, factor};

vector float * source_v = (vector float *)sourceRow;

vector float * destination_v = (vector float *)(data + (destinationRow -

startRow) * physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

destination_v[j] = spu_madd(source_v[j], factor_v, destination_v[j]);

}

}

void PartialMatrix::swapRows(int firstRow, int secondRow) {

if (firstRow == secondRow) return;
for (int j = 0; j < cols; ++j) {

float tmp = (*this)(firstRow, j);

(*this)(firstRow, j) = (*this)(secondRow, j);

(*this)(secondRow, j) = tmp;

}

}

spu/SpuTableauSimplex.h and spu/SpuTableauSimplex.cpp

Code for performing a simplex iteration (with pivoting) within an SPE and communicating with
the PPE.

104 APPENDIX A. CODE

#ifndef SPUTABLEAUSIMPLEX_H

#define SPUTABLEAUSIMPLEX_H

#include "PartialMatrix.h"

#include "../types.h"

class SpuTableauSimplex {

public:
static SimplexResult iterate(PartialMatrix & tableau, float * ppuPivotRow,

uint tagId, int spuIndex);

static void pivot(PartialMatrix & tableau, float * pivotRow, int leaving,

int entering);

};

#endif

#include "SpuTableauSimplex.h"

#include "../types.h"

#include <spu_intrinsics.h>

#include <spu_mfcio.h>

#include <libmisc.h>

#include <cstdio>

using namespace std;

void SpuTableauSimplex::pivot(PartialMatrix & tableau, float * pivotRow, int
leaving, int entering) {

float xFactor = pivotRow[entering];

// Cancel out occurrences of the entering variable

for (int i = tableau.getStartRow(); i < tableau.getRowLimit(); ++i) {

if (i == leaving) continue;
float factor = -tableau(i, entering) / xFactor;

float savedColVal = tableau(i, entering);

tableau.addRows(factor, pivotRow, i);

tableau(i, entering) = savedColVal / xFactor;

}

if (leaving != -1) {

tableau.multiplyRow(leaving, -1 / xFactor);

tableau(leaving, entering) = 1 / xFactor;

}

}

// Communications (* means "all";[ˆx] means "all except x"):

// Each communication end point is tagged in the code as "comm0" etc.

A.2. PARALLEL STANDARD SIMPLEX METHOD FOR CELL/BE 105

// 0. SPU0 -> PPU: entering variable, or optimality

// 1. PPU -> SPU[ˆ0]: entering variable, or termination instruction

// 2. SPU* -> PPU: value and index of leaving variable, or unboundedness (both

determined locally; PPU determines global choice - let x be the spu that

’wins’)

// 3. PPU -> SPU*: whether this spu ’won’, or termination instruction

// 4. SPUx -> PPU: transfer pivot row; spu writes to (ppe reads from) mbox to

notify

// 5. PPU -> SPU[ˆx]: ppe writes to (spu reads from) mbox to sync; transfer

pivot row

SimplexResult SpuTableauSimplex::iterate(PartialMatrix & tableau, float *
ppuPivotRow, uint tagId, int spuIndex) {

int n = tableau.getCols() - 1;

int entering = -1;

volatile float * pivotRow;

static volatile float * incomingPivotRowBuffer = (float *)malloc_align(

tableau.getPhysicalCols() * sizeof(float), ALIGN_QUAD_LOG2);

if (tableau.getStartRow() == 0) {

// Find entering variable by searching the objective function (row 0) for

a positive coefficient (disregard the constant in column 0)

for (int j = 1; j <= n; ++j) {

// We are not using Bland’s rule here, since the SPEs do not maintain

the basic/nonbasic lists (they could of course be arranged to do so)

if (tableau(0, j) > 0 && (entering == -1 || tableau(0, j) > tableau(0,

entering)))

entering = j;

}

if (entering == -1) {

spu_write_out_mbox(SIMPLEX_MBOX_OPTIMAL); //comm0

return OPTIMAL;

}

else
spu_write_out_mbox((uint)entering); //comm0

}

else {

entering = (int)spu_read_in_mbox(); //comm1

if ((uint)entering == SIMPLEX_MBOX_OPTIMAL)

return OPTIMAL;

}

// Find leaving variable by searching the column of the entering variable

and determine the strictest bound

int localLeaving = -1;

Value32 largestRatio;

int i = tableau.getStartRow();

106 APPENDIX A. CODE

if (i == 0) // Skip objective function row - this also handles the case

where this partial matrix only contains the objective function, in which

case SIMPLEX_MBOX_UNBOUNDED will be returned by SPE 0

i = 1;

// We discovered a little too late that this part of the code is a little

outdated - we are testing the inverse of the ratio that is described in

the report, and therefore we must look for the largest ratio rather than

the smallest. It is more cumbersome, but entirely equivalent to what is

described in the report.

for (; i < tableau.getRowLimit(); ++i) {

float ratio;

if (tableau(i, 0) == 0) {

if (tableau(i, entering) == 0)

ratio = 0;

else if (tableau(i, entering) < 0)

ratio = INFINITY;

else
ratio = -INFINITY;

}

else
ratio = -tableau(i, entering) / tableau(i, 0);

if (ratio <= 0) continue;
if (localLeaving == -1 || ratio > largestRatio.floatValue) {

largestRatio.floatValue = ratio;

localLeaving = i;

}

}

//comm2

if (localLeaving == -1) {

spu_write_out_mbox(SIMPLEX_MBOX_UNBOUNDED);

spu_write_out_mbox((uint)-1);

}

else {

spu_write_out_mbox(largestRatio.uintValue);

spu_write_out_mbox((uint)localLeaving);

}

uint instruction = spu_read_in_mbox(); //comm3

if (instruction == SIMPLEX_MBOX_UNBOUNDED)

return UNBOUNDED;

if (instruction == SIMPLEX_MBOX_LEAVING_IS_HERE) {

//comm4 - pivot->ppu

pivotRow = &tableau(localLeaving, 0);

spu_mfcdma32((void *)pivotRow, (uint)ppuPivotRow, tableau.getPhysicalCols

() * sizeof(float), tagId, MFC_PUT_CMD);

(void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

A.2. PARALLEL STANDARD SIMPLEX METHOD FOR CELL/BE 107

spu_write_out_mbox(0U); //sync

}

else if (instruction == SIMPLEX_MBOX_LEAVING_IS_ELSEWHERE) {

//comm5 - ppu->pivot

pivotRow = incomingPivotRowBuffer;

spu_read_in_mbox(); //sync

spu_mfcdma32((void *)pivotRow, (uint)ppuPivotRow, tableau.getPhysicalCols

() * sizeof(float), tagId, MFC_GET_CMD);

(void)spu_mfcstat(MFC_TAG_UPDATE_ALL);
}

else {

printf("Illegal instruction\n");

return FAILURE;

}

pivot(tableau, (float *)pivotRow, instruction ==

SIMPLEX_MBOX_LEAVING_IS_HERE ? localLeaving : -1, entering);

return SUBOPTIMAL;

}

spu/spu.cpp

Driver code for the SPE — transfers the initial tableau to the SPE, initiates the iterations, and
transfers the final tableau back to the PPE.

#define SPE_CODE

#include <spu_intrinsics.h>

#include <spu_mfcio.h>

#include <libmisc.h>

#include <stdio.h>

include "../types.h"

#include "PartialMatrix.h"

#include "SpuTableauSimplex.h"

#define MAX_DMA_SIZE 16384

volatile ParameterContext context ALIGNED_QUAD;

void safeDMA(volatile float * localStoreAddress, unsigned int effectiveAddress

, unsigned int size, unsigned int tagId, unsigned int command) {

int remainingSize = size;

while (remainingSize > 0) {

spu_mfcdma32(localStoreAddress, effectiveAddress, (remainingSize >

MAX_DMA_SIZE ? MAX_DMA_SIZE : remainingSize), tagId, command);

remainingSize -= MAX_DMA_SIZE;

108 APPENDIX A. CODE

effectiveAddress += MAX_DMA_SIZE;

localStoreAddress += MAX_DMA_SIZE / sizeof(float);
(void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

}

}

int main(unsigned long long spuId __attribute__ ((unused)), unsigned long long
parameter) {

uint tagId;

if ((tagId = mfc_tag_reserve()) == MFC_TAG_INVALID) {

printf("ERROR (%llx): unable to reserve a tag\n", spuId);

return 1;

}

spu_writech(MFC_WrTagMask, -1);

// Fetch the context and wait

spu_mfcdma32((void *)&context, (uint)parameter, sizeof(ParameterContext),
tagId, MFC_GET_CMD);

(void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

int submatrixLength = context.numContainedRows * context.physicalCols;

PartialMatrix matrix(context.rows, context.cols, context.physicalCols,

context.startingRow, context.numContainedRows);

safeDMA(matrix.getData(), (uint)(context.dataOrigin + context.startingRow *
context.physicalCols), submatrixLength * sizeof(float), tagId,

MFC_GETB_CMD); // MFC_GETB_CMD can be used for a barrier get, which will

wait until previous puts have completed - http://publib.boulder.ibm.com

/infocenter/systems/scope/syssw/index.jsp?topic=/eiccj/tutorial/

cbet_3optimz.html

while (SpuTableauSimplex::iterate(matrix, context.ppuPivotRow, tagId,

context.spuIndex) == SUBOPTIMAL);

safeDMA(matrix.getData(), (uint)(context.dataOrigin + context.startingRow *
context.physicalCols), submatrixLength * sizeof(float), tagId,

MFC_PUT_CMD);

return 0;

}

types.h

Some structs, defines and enums that are needed by several of the other files.

#ifndef TYPES_H

#define TYPES_H

A.2. PARALLEL STANDARD SIMPLEX METHOD FOR CELL/BE 109

#define VECTOR_WIDTH 4

#define ALIGN_CACHE_WIDTH 128

#define ALIGN_CACHE_LOG2 7

#define ALIGN_QUAD_WIDTH 16

#define ALIGN_QUAD_LOG2 4

#define ALIGNED_CACHE __attribute__ ((aligned(ALIGN_CACHE_WIDTH)))

#define ALIGNED_QUAD __attribute__ ((aligned(ALIGN_QUAD_WIDTH)))

#define ROUND_UP_MULTIPLE(x, m) (((x) + (m) - 1) / (m) * (m))

#define PADDING(actualSize, alignmentWidth) char padding[ROUND_UP_MULTIPLE(

actualSize, alignmentWidth) - (actualSize)] // Adds a char array to the

end of a struct in order to make the struct take up a certain number of

bytes - the first parameter is the combined size of the other struct

memebers, and the second parameter is the byte boundary on which the

struct size should be divisible.

// Sentinel values used when an SPE wants to notify the PPE that it did not

find a good leaving or entering variable, and when the PPE wants to let

the SPEs know who should perform the pivot. All of these are IEEE 754

quiet NaNs, which means that they can’t accidentally be interpreted as (or

collide with) valid floating point numbers.

#define SIMPLEX_MBOX_OPTIMAL 0xffffffff

#define SIMPLEX_MBOX_UNBOUNDED 0xfffffffe

#define SIMPLEX_MBOX_LEAVING_IS_HERE 0xfffffffd

#define SIMPLEX_MBOX_LEAVING_IS_ELSEWHERE 0xfffffffc

//#define INFINITY (__builtin_inff())

#ifndef INFINITY

#define INFINITY 3.4E38f

#endif

typedef unsigned int uint;

struct ParameterContext {

int rows;

int cols;

int physicalCols;

int startingRow;

int numContainedRows;

int spuIndex;

float * dataOrigin;

float * ppuPivotRow;

PADDING(6 * sizeof(int) + 2 * sizeof(float*), ALIGN_QUAD_WIDTH);

};

// For interpreting a 32 bit pattern in different ways.

union Value32 {

uint uintValue;

110 APPENDIX A. CODE

int intValue;

float floatValue;

};

enum SimplexResult {

SUBOPTIMAL,

OPTIMAL,

UNBOUNDED,

CYCLING,

FAILURE

};

#endif

main.cpp

Driver code — initiates input reading, starts the SPE threads, and communicates with the threads.

#define PPE_CODE

#include "Matrix.h"

#include "types.h"

#include "timer.h"

#include "mps.h"

#include <libspe2.h>

#include <libmisc.h>

#include <pthread.h>

#include <iostream>

#include <fstream>

using namespace std;

#define MAX_SPE_THREADS 8

extern spe_program_handle_t speProgramHandle; // Must match the name given in

the SPE makefile

struct PpuThreadData {

spe_context_ptr_t speContext;

pthread_t pthread;

void * argument;

};

SimplexResult simplexIteration(vector<int> & basic, vector<int> & nonbasic,

int numSpeThreads, spe_context_ptr_t speContexts[]);

void * ppuPthreadFunction(void * argument) {

PpuThreadData * data = (PpuThreadData *)argument;

A.2. PARALLEL STANDARD SIMPLEX METHOD FOR CELL/BE 111

unsigned int entry = SPE_DEFAULT_ENTRY;

if (spe_context_run(data->speContext, &entry, 0, data->argument, NULL, NULL)

< 0) {

perror("Failed running context");

exit(1);

}

pthread_exit(NULL);

}

int main(int argc, char * argv[]) {

int numSpeThreads;

PpuThreadData data[MAX_SPE_THREADS];

ParameterContext contexts[MAX_SPE_THREADS] ALIGNED_QUAD;

spe_context_ptr_t speContexts[MAX_SPE_THREADS];

if (argc < 2) {

cout << "Must take MPS file name as parameter; the second argument is

optional and specifies the number of SPEs" << endl;

return 1;

}

ifstream infile(argv[1]);

vector<vector<float> > parsedTableau = parse(infile);

int rows = parsedTableau.size();

int cols = parsedTableau[0].size();

Matrix matrix(rows, cols);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

matrix(r, c) = parsedTableau[r][c];

}

if (r > 0 && matrix(r, 0) < 0) {

cout << "This prototype does only handle Phase II; must be run on

problems that are initially feasible (the entire right hand side

must be nonnegative)" << endl;

return 1;

}

}

volatile float * pivotRow = (volatile float *)malloc_align(matrix.

getPhysicalCols() * sizeof(float), ALIGN_QUAD_LOG2);

unsigned long long startTime = rdtsc();

int n = cols - 1;

int m = rows - 1;

vector<int> basic, nonbasic;

// Nonbasic variables are labeled 1 .. n

for (int i = 1; i <= n; ++i)

nonbasic.push_back(i);

112 APPENDIX A. CODE

// Basic variables are labeled n+1 .. n+m

for (int i = n + 1; i <= n + m; ++i)

basic.push_back(i);

// Determine how many SPE threads we want

if (argc >= 3) {

numSpeThreads = atoi(argv[2]);

}

else {

numSpeThreads = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, -1);

}

if (numSpeThreads < 1)

numSpeThreads = 1;

if (numSpeThreads > MAX_SPE_THREADS)

numSpeThreads = MAX_SPE_THREADS;

if (numSpeThreads > matrix.getRows())

numSpeThreads = matrix.getRows();

cout << "Using " << numSpeThreads << " SPEs" << endl;

// Create and start SPE threads

for (int i = 0; i < numSpeThreads; ++i) {

contexts[i].rows = matrix.getRows();

contexts[i].cols = matrix.getCols();

contexts[i].physicalCols = matrix.getPhysicalCols();

contexts[i].startingRow = matrix.getRows() / numSpeThreads * i;

if (i == numSpeThreads - 1)

contexts[i].numContainedRows = matrix.getRows() - contexts[i].

startingRow;

else
contexts[i].numContainedRows = matrix.getRows() / numSpeThreads;

contexts[i].spuIndex = i;

contexts[i].dataOrigin = (float *)matrix.getData(); // Removing ’volatile’

ness is ok here, since this pointer will just be used by the SPU to

indicate the MFC target

contexts[i].ppuPivotRow = (float *)pivotRow;

if ((data[i].speContext = spe_context_create(0, NULL)) == NULL) {

perror("Failed creating context");

exit(1);

}

if (spe_program_load(data[i].speContext, &speProgramHandle)) {

perror("Failed loading program");

exit(1);

}

speContexts[i] = data[i].speContext;

data[i].argument = &contexts[i];

if (pthread_create(&data[i].pthread, NULL, &ppuPthreadFunction, &data[i]))

A.2. PARALLEL STANDARD SIMPLEX METHOD FOR CELL/BE 113

{

perror("Failed creating thread");

return 1;

}

}

int numIterations = 0;

while (simplexIteration(basic, nonbasic, numSpeThreads, speContexts) ==

SUBOPTIMAL) {

// cout << "Done with iteration " << ++numIterations << endl;

}

// Uncomment this if you want the list of basic/nonbasic variables to be

printed

/*
cout << "Basic:";

for (uint i = 0; i < basic.size(); ++i)

cout << " " << basic[i];

cout << "\nNonbasic:";

for (uint i = 0; i < nonbasic.size(); ++i)

cout << " " << nonbasic[i];

cout << endl;

*/

// Wait for SPEs to terminate

for (int i = 0; i < numSpeThreads; ++i) {

if (pthread_join(data[i].pthread, NULL)) {

perror("Failed joining thread");

exit(1);

}

if (spe_context_destroy(data[i].speContext) != 0) {

perror("Failed destroying context");

exit(1);

}

}

cout << "The optimal solution is " << matrix(0, 0) << endl;

cout << "Elapsed time (minus input parsing): " << rdtsc() - startTime <<

endl;

return 0;

}

// For explanation of communication tags, see spu/SpuTableauSimplex.cpp

SimplexResult simplexIteration(vector<int> & basic, vector<int> & nonbasic,

int numSpeThreads, spe_context_ptr_t speContexts[]) {

114 APPENDIX A. CODE

//comm0

while (!spe_out_mbox_status(speContexts[0]));

uint entering;

spe_out_mbox_read(speContexts[0], &entering, 1);

//comm1

for (int i = 1; i < numSpeThreads; ++i) {

spe_in_mbox_write(speContexts[i], &entering, 1, SPE_MBOX_ALL_BLOCKING); //

entering may be SIMPLEX_MBOX_OPTIMAL, in which case SPE code will

terminate

}

if (entering == SIMPLEX_MBOX_OPTIMAL) {

return OPTIMAL;

}

//comm2

// The case where the first SPE only contains the objective function will

not cause problems. That SPE will report SIMPLEX_MBOX_UNBOUNDED since it

doesn’t find a leaving variable, so it will be ignored unless no other

SPEs find a leaving variable - in which case the entire problem is

unbounded.

while (!spe_out_mbox_status(speContexts[0]));

float maxLeavingValue = 0; // Initialise with arbitrary value to get rid of

warning

int maxLeavingSpu = -1;

int maxLeavingIndex = -1;

for (int i = 0; i < numSpeThreads; ++i) {

Value32 leavingValue, leavingIndex;

while (!spe_out_mbox_status(speContexts[i]));

spe_out_mbox_read(speContexts[i], &leavingValue.uintValue, 1);

while (!spe_out_mbox_status(speContexts[i]));

spe_out_mbox_read(speContexts[i], &leavingIndex.uintValue, 1);

//cout << i << " reports " << leavingValue.floatValue << endl;

if (leavingValue.uintValue != SIMPLEX_MBOX_UNBOUNDED && (maxLeavingSpu ==

-1 || leavingValue.floatValue > maxLeavingValue)) {

maxLeavingValue = leavingValue.floatValue;

maxLeavingIndex = leavingIndex.intValue;

maxLeavingSpu = i;

}

}

//comm3

for (int i = 0; i < numSpeThreads; ++i) {

uint instruction;

if (maxLeavingSpu == -1)

instruction = SIMPLEX_MBOX_UNBOUNDED;

else if (maxLeavingSpu == i)

A.2. PARALLEL STANDARD SIMPLEX METHOD FOR CELL/BE 115

instruction = SIMPLEX_MBOX_LEAVING_IS_HERE;

else
instruction = SIMPLEX_MBOX_LEAVING_IS_ELSEWHERE;

spe_in_mbox_write(speContexts[i], &instruction, 1, SPE_MBOX_ALL_BLOCKING);

}

if (maxLeavingSpu == -1) {

cout << "Unbounded" << endl;

return UNBOUNDED; //TODO: cleanup

}

// cout << "Pivoting: variable in row " << maxLeavingIndex << " (in SPU " <<

maxLeavingSpu << ") leaves, variable in column " << entering << " enters"

<< endl;

//comm4 - sync

uint dummySyncValue;

while (!spe_out_mbox_status(speContexts[maxLeavingSpu]));

spe_out_mbox_read(speContexts[maxLeavingSpu], &dummySyncValue, 1);

//comm5

for (int i = 0; i < numSpeThreads; ++i) {

if (maxLeavingSpu != i) {

spe_in_mbox_write(speContexts[i], &dummySyncValue, 1,

SPE_MBOX_ALL_BLOCKING);

}

}

// Swap basic and nonbasic variables

int tmp = basic[maxLeavingIndex - 1];

basic[maxLeavingIndex - 1] = nonbasic[entering - 1];

nonbasic[entering - 1] = tmp;

return SUBOPTIMAL;

}

Makefiles

Makefile for SPE code (located in the spe folder):

Target

PROGRAM_spu := speProgramHandle # Must match the name of the

spe_program_handle_t in main.cpp

LIBRARY_embed := matrix_spu.a

IMPORTS = -lmisc

116 APPENDIX A. CODE

buildutils/make.footer

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else
include ../../../../buildutils/make.footer

endif

Makefile for PPE code:

Subdirectories

DIRS := spu

Target

PROGRAM_ppu := standard_simplex_parallel_float_simd

Local Defines

INCLUDE := -I .

INSTALL_DIR = /tmp

INSTALL_FILES = $(PROGRAM_ppu)

IMPORTS = spu/matrix_spu.a -lspe2 -lpthread -lmisc

CPPFLAGS_gcc = -DTYPE=float -DVOLATILE_DATA

buildutils/make.footer

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else
include ../../../../buildutils/make.footer

endif

A.3 ASYNPLEX for x86, based on Vanderbei

We only list the most relevant files here — the files we have created ourselves and those of Van-
derbei’s files that we have modified heavily. The rest can be found in the attachment. The files are
described in Section 3.4.4.2.

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 117

Since the development started out in C and our source control system does not handle name
changes very gracefully, the file suffixes remain .c. The compiler is instructed to compile it as
C++ with the -x c++ flag in the Makefiles.

common/message.h

#ifndef MESSAGE_H

#define MESSAGE_H

typedef struct {

const char * sender;

const char * receiver;

const char * tag;

void * payload;

} Message;

#endif

common/genericvector source.h

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#include "../simpo/sparse.h"

void VECTOR_INIT(VECTOR_NAME * vector) {

vector->size = 0;

vector->totalSize = 16;

vector->array = (VECTOR_TYPE*)malloc(vector->totalSize * sizeof(VECTOR_TYPE)
);

}

void VECTOR_RESIZE(VECTOR_NAME * vector, int size) {

vector->size = size;

vector->totalSize = size;

vector->array = (VECTOR_TYPE*)realloc(vector->array, vector->totalSize *
sizeof(VECTOR_TYPE));

}

void VECTOR_FREE(VECTOR_NAME * vector) {

vector->size = 0;

vector->totalSize = 0;

free(vector->array);

vector->array = NULL;

}

118 APPENDIX A. CODE

void VECTOR_APPEND(VECTOR_NAME * vector, VECTOR_TYPE element) {

if (vector->size == vector->totalSize) {

vector->totalSize *= 2;

vector->array = (VECTOR_TYPE*)realloc(vector->array, vector->totalSize *
sizeof(VECTOR_TYPE));

}

vector->array[vector->size++] = element;

}

VECTOR_TYPE VECTOR_GET(VECTOR_NAME vector, int index) {

assert(index >= 0 && index < vector.size);

return vector.array[index];

}

void VECTOR_SET(VECTOR_NAME vector, int index, VECTOR_TYPE value) {

assert(index >= 0 && index < vector.size);

vector.array[index] = value;

}

void VECTOR_REMOVE_AT(VECTOR_NAME * vector, int index) {

int i;

assert(index >= 0 && index < vector->size);

--vector->size;

for (i = index; i < vector->size; ++i) {

vector->array[i] = vector->array[i + 1];

}

}

// destination is assumed not to point to anything that must be freed

void VECTOR_COPY(VECTOR_NAME source, VECTOR_NAME * destination) {

destination->size = source.size;

destination->totalSize = source.size;

allocateAndCopyArray(source.array, (void**)&destination->array, source.size,

sizeof(VECTOR_TYPE));
}

simpo/2phase.c

static int useAsynplex = 1;

/***

Implementation of the

2 phase (Dual then Primal) Simplex Method

R. Vanderbei, 3 October 1994

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 119

Solves problems in the form:

T

max c x

A x = b

x >= 0

A is an m by N matrix (it is convenient to reserve n for

the difference N-m). Artificial variables have been

added (hence N > m). One may assume that the last

m columns of A are invertible and hence can be used as

a starting basis.

*/

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <pthread.h>

#include "print.h"

#include "timer.h"

#include "communication.h"

#include "invertprocessor.h"

#include "iterationprocess.h"

#include "basischangemanager.h"

#include "columnselectionmanager.h"

#ifdef QuadPrec

#include "Quad.h"

#define TYPE Quad

#else
#define high(x) (x)

#endif

#include "../common/linalg.h"

#include "lu.h"

#include "../common/myalloc.h"

#include "../common/macros.h"

#define EPS_MATRIX 1.0e-8

#define EPS_MU_COEFFICIENTS 1.0e-12

#define EPS_MU_OPTIMAL 1.0e-12 //3.0e-4

#define MAX_ITER 1000000

#define EPS 1.0e-8

#define EPS1 1.0e-8

120 APPENDIX A. CODE

#define EPS2 1.0e-12

#define EPS3 1.0e-12

#define numIterationProcesses 2

//TODO: Can we find a drand48() implementation for windows?

#ifdef WIN32

#define drand48() (((double)rand())/((double)RAND_MAX))
#endif

TYPE recalculateObjectiveValues(TYPE *c, TYPE *x_B, int *basics, int m);

void Nt_times_y(SparseMatrix AT, int *basicflag, SparseVector y,

SparseVector * yN);

int ratio_test(TYPE *dy, int *idy, int ndy, TYPE *y);

int pick_neg(int m, TYPE *x);

int solver(SparseMatrix A, TYPE *b, /* right-hand side */

TYPE *c, /* objective coefficients */

TYPE f, /* objective function shift */

TYPE *x, /* primal solution (output) */

TYPE *y, /* dual solution (output) */

TYPE *w, /* primal slacks (output) */

TYPE *z /* dual slacks (output) */

) {

TYPE *x_B; /* primal basics */

TYPE *y_N; /* dual nonbasics */

SparseVector dyN_dualStepDir;

SparseVector dxB_primalStepDir;

SparseVector vector;

int *basics; /* list of basic variable indices */

int *nonbasics; /* list of non-basic variable indices */

int *basicflag; /* neg if nonbasic, pos if basic */

int col_in; /* entering column; index in ’nonbasics’ */

int col_out; /* leaving column; index in ’basics’ */

int iter = 0; /* number of iterations */

int i, j, k, m, n, N, v = 0;

TYPE s, t;

float primal_obj;

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 121

int from_scratch;

SparseMatrix AT;

pthread_t invertProcessor;

pthread_t basisChangeManager;

pthread_t columnSelectionManager;

IterationProcess iterationProcesses[numIterationProcesses];

unsigned long long startTime = rdtsc();

/***

* For convenience, we put...

***/

m = A.rows;

N = A.cols;

n = N - m;

/***

* Add slack variables. We assume the calling routine allocated

* enough memory.

***/

i = 0;

k = A.colPos[n];

for (j = n; j < N; j++) {

c[j] = 0.0;

A.values[k] = 1.0;

A.rowIndices[k] = i;

i++;

k++;

A.colPos[j + 1] = k;

}

A.numNonzeroes = k;

/***

* Read in the Data and initialize the common memory sites.

***/

MALLOC(x_B, m, TYPE);

MALLOC(dxB_primalStepDir.values, m, TYPE);

MALLOC(y_N, n, TYPE);

MALLOC(dyN_dualStepDir.values, n, TYPE);

MALLOC(vector.values, m, TYPE);

MALLOC(nonbasics, n, int);

MALLOC(basics, m, int);

MALLOC(basicflag, N, int);

122 APPENDIX A. CODE

MALLOC(dxB_primalStepDir.rowIndices, m, int);

MALLOC(dyN_dualStepDir.rowIndices, n, int);

MALLOC(vector.rowIndices, m, int);

MALLOC(AT.values, A.numNonzeroes, TYPE);

MALLOC(AT.rowIndices, A.numNonzeroes, int);

MALLOC(AT.colPos, m+1, int);

vector.rows = m;

dxB_primalStepDir.rows = m;

dyN_dualStepDir.rows = n;

/**

* Threading initialization. *

**/

if (useAsynplex) {

initPrintFromProcess();

initCommunication();

setupInvertProcessor(A, numIterationProcesses);

setupColumnSelectionManager(m, n);

pthread_create(&invertProcessor, NULL, runInvertProcessor, NULL);

pthread_create(&basisChangeManager, NULL, runBasisChangeManager, NULL);

pthread_create(&columnSelectionManager, NULL, runColumnSelectionManager,

NULL);

printf("Using %d iteration processes\n", numIterationProcesses);

for (i = 0; i < numIterationProcesses; ++i) {

setupIterationProcess(&iterationProcesses[i], i, numIterationProcesses,

A, b, c, f);

pthread_create(&iterationProcesses[i].thread, NULL, runIterationProcess,

&iterationProcesses[i]);

}

goto waitForAsynplex;

}

/**

* Initialization. *

**/

transposeSparseMatrix(A, &AT);

for (j = 0; j < n; j++) {

nonbasics[j] = j;

basicflag[j] = -j - 1;

y_N[j] = MAX(c[j],1.0); /* to force dual feasibility */

y_N[j] += drand48(); /* to ensure nondegeneracy */

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 123

}

for (i = 0; i < m; i++) {

basics[i] = n + i;

basicflag[n + i] = i;

x_B[i] = b[i];

}

lufac(m, A.colPos, A.rowIndices, A.values, basics, 0);

dbsolve(m, x_B); /* could be done explicitly in terms of bounds/ranges */

/**

* Begin Phase I (i.e., dual simplex method)

**/

printf("m = %d,n = %d,nz = %d\n", m, N, A.numNonzeroes);

printf(

"

---\

n"

" | Primal | |

arithmetic \n"

" Iter | Obj Value | mu | nonz(L) nonz(U)

operations \n"

"- -

- - -\n");

fflush(stdout);

/**

* Main loop *

**/

for (iter = 0; iter < MAX_ITER; iter++) {

/***

* STEP 6: Print statistics and factor/refactor *

***/

primal_obj = recalculateObjectiveValues(c, x_B, basics, m) + f;

if (iter % 100 == 0) {

printf("%8d %14.7e NA \n", iter, high(primal_obj));

fflush(stdout);

}

/***

* STEP 1: Pick most negative basic primal *

124 APPENDIX A. CODE

***/

col_out = pick_neg(m, x_B);

if (col_out == -1)

break; /* ready for Phase II */

/***

* -1 T *

* STEP 2: Compute dy = -(B N) e *

* N i *

* where i = col_out *

***/

vector.values[0] = -1.0;

vector.rowIndices[0] = col_out;

vector.numNonzeroes = 1;

solveTransposeUsingLU(&vector);

Nt_times_y(AT, basicflag, vector, &dyN_dualStepDir);

/***

* STEP 3: Ratio test to find entering column *

***/

col_in = ratio_test(dyN_dualStepDir.values, dyN_dualStepDir.rowIndices,

dyN_dualStepDir.numNonzeroes, y_N);

if (col_in == -1) {

return 2; /* INFEASIBLE */

}

/***

* -1 *

* STEP 4: Compute dx = B N e *

* B j *

* *

***/

j = nonbasics[col_in];

for (i = 0, k = A.colPos[j]; k < A.colPos[j + 1]; i++, k++) {

dxB_primalStepDir.values[i] = A.values[k];

dxB_primalStepDir.rowIndices[i] = A.rowIndices[k];

}

dxB_primalStepDir.numNonzeroes = i;

solveUsingLU(&dxB_primalStepDir);

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 125

/***

* *

* STEP 5: Put t = x /dx *

* i i *

* s = y /dy *

* j j *

***/

/* this is inefficient - it should be fixed */

for (k = 0; k < dxB_primalStepDir.numNonzeroes; k++)

if (dxB_primalStepDir.rowIndices[k] == col_out)

break;

t = x_B[col_out] / dxB_primalStepDir.values[k];

/* this is inefficient - it should be fixed */

for (k = 0; k < dyN_dualStepDir.numNonzeroes; k++)

if (dyN_dualStepDir.rowIndices[k] == col_in)

break;

s = y_N[col_in] / dyN_dualStepDir.values[k];

/***

* STEP 7: Set y = y - s dy *

* N N N *

* *

* y = s *

* i *

* *

* x = x - t dx *

* B B B *

* *

* x = t *

* j *

***/

for (k = 0; k < dyN_dualStepDir.numNonzeroes; k++) {

j = dyN_dualStepDir.rowIndices[k];

y_N[j] -= s * dyN_dualStepDir.values[k];

}

y_N[col_in] = s;

for (k = 0; k < dxB_primalStepDir.numNonzeroes; k++) {

i = dxB_primalStepDir.rowIndices[k];

x_B[i] -= t * dxB_primalStepDir.values[k];

}

126 APPENDIX A. CODE

x_B[col_out] = t;

/***

* STEP 8: Update basis *

***/

i = basics[col_out];

j = nonbasics[col_in];

basics[col_out] = j;

nonbasics[col_in] = i;

basicflag[i] = -col_in - 1;

basicflag[j] = col_out;

from_scratch = refactor(m, A.colPos, A.rowIndices, A.values, basics,

col_out, v);

} /* End of Phase I */

printf("%8d %14.7e NA \n", iter, high(primal_obj));

printf("End of Phase I \n");

/**

* Restore objective function by setting *

* -1 T *

* y = (B N) c - c *

* N B N *

**/

vector.numNonzeroes = 0;

for (i = 0; i < m; i++) {

if (ABS(c[basics[i]]) > EPS) {

vector.values[vector.numNonzeroes] = c[basics[i]];

vector.rowIndices[vector.numNonzeroes] = i;

vector.numNonzeroes++;

}

}

solveTransposeUsingLU(&vector);

Nt_times_y(AT, basicflag, vector, &dyN_dualStepDir);

for (j = 0; j < n; j++)

y_N[j] = -c[nonbasics[j]];

for (k = 0; k < dyN_dualStepDir.numNonzeroes; k++) {

j = dyN_dualStepDir.rowIndices[k];

y_N[j] += dyN_dualStepDir.values[k];

}

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 127

/**

* Begin Phase II (I.e., primal simplex method) *

**/

for (; iter < MAX_ITER; iter++) {

/***

* STEP 6: Print statistics and factor/refactor *

***/

primal_obj = recalculateObjectiveValues(c, x_B, basics, m) + f;

if (iter % 100 == 0) {

printf("%8d %14.7e NA \n", iter, high(primal_obj));

fflush(stdout);

}

/***

* STEP 1: Pick most negative nonbasic dual *

***/

col_in = pick_neg(n, y_N);

if (col_in == -1)

break; /* optimal */

/***

* -1 *

* STEP 2: Compute dx = B N e *

* B j *

* where j = col_in *

***/

j = nonbasics[col_in];

for (i = 0, k = A.colPos[j]; k < A.colPos[j + 1]; i++, k++) {

dxB_primalStepDir.values[i] = A.values[k];

dxB_primalStepDir.rowIndices[i] = A.rowIndices[k];

}

dxB_primalStepDir.numNonzeroes = i;

solveUsingLU(&dxB_primalStepDir);

/***

* STEP 3: Ratio test to find leaving column *

***/

col_out = ratio_test(dxB_primalStepDir.values,

dxB_primalStepDir.rowIndices, dxB_primalStepDir.numNonzeroes,

128 APPENDIX A. CODE

x_B);

if (col_out == -1)

return 1; /* UNBOUNDED */

/***

* -1 T *

* STEP 4: Compute dy = -(B N) e *

* N i *

* where i = col_out *

***/

vector.values[0] = -1.0;

vector.rowIndices[0] = col_out;

vector.numNonzeroes = 1;

solveTransposeUsingLU(&vector);

Nt_times_y(AT, basicflag, vector, &dyN_dualStepDir);

/***

* STEP 5: Put t = x /dx *

* i i *

* s = y /dy *

* j j *

***/

/* this is inefficient - it should be fixed */

for (k = 0; k < dxB_primalStepDir.numNonzeroes; k++)

if (dxB_primalStepDir.rowIndices[k] == col_out)

break;

t = x_B[col_out] / dxB_primalStepDir.values[k];

/* this is inefficient - it should be fixed */

for (k = 0; k < dyN_dualStepDir.numNonzeroes; k++)

if (dyN_dualStepDir.rowIndices[k] == col_in)

break;

s = y_N[col_in] / dyN_dualStepDir.values[k];

/***

* STEP 7: Set y = y - s dy *

* N N N *

* *

* y = s *

* i *

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 129

* *

* x = x - t dx *

* B B B *

* *

* x = t *

* j *

***/

for (k = 0; k < dyN_dualStepDir.numNonzeroes; k++) {

j = dyN_dualStepDir.rowIndices[k];

y_N[j] -= s * dyN_dualStepDir.values[k];

}

y_N[col_in] = s;

for (k = 0; k < dxB_primalStepDir.numNonzeroes; k++) {

i = dxB_primalStepDir.rowIndices[k];

x_B[i] -= t * dxB_primalStepDir.values[k];

}

x_B[col_out] = t;

/***

* STEP 8: Update basis *

***/

i = basics[col_out];

j = nonbasics[col_in];

basics[col_out] = j;

nonbasics[col_in] = i;

basicflag[i] = -col_in - 1;

basicflag[j] = col_out;

from_scratch = refactor(m, A.colPos, A.rowIndices, A.values, basics,

col_out, v);

} /* End of Phase II */

primal_obj = recalculateObjectiveValues(c, x_B, basics, m) + f;

printf("%8d %14.7e NA \n", iter, high(primal_obj));

printf("End of Phase II \n");

/**

* Transcribe solution to x vector and dual solution to y *

**/

for (j = 0; j < N; j++)

130 APPENDIX A. CODE

x[j] = 0.0;

for (i = 0; i < m; i++)

x[basics[i]] = x_B[i];

//printTypeArray(x, N);

for (j = 0; j < N; j++)

y[j] = 0.0;

for (i = 0; i < n; i++)

y[nonbasics[i]] = y_N[i];

/**

* Split out slack variables and shift dual variables.

**/

for (j = 0; j < n; j++)

z[j] = y[j];

for (i = 0; i < m; i++) {

y[i] = y[n + i];

w[i] = x[n + i];

}

/**

* Free work space *

**/

FREE(vector.values);

FREE(vector.rowIndices);

FREE(x_B);

FREE(y_N);

FREE(dxB_primalStepDir.values);

FREE(dxB_primalStepDir.rowIndices);

FREE(dyN_dualStepDir.values);

FREE(dyN_dualStepDir.rowIndices);

FREE(nonbasics);

FREE(basics);

if (useAsynplex) {

waitForAsynplex:

for (i = numIterationProcesses - 1; i >= 0; --i) {

pthread_join(iterationProcesses[i].thread, NULL);

}

pthread_join(invertProcessor, NULL);

pthread_join(columnSelectionManager, NULL);

pthread_join(basisChangeManager, NULL);

}

printf("Time spent (minus input handling): %llu\n", rdtsc() - startTime);

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 131

return 0;

} /* End of solver */

void Display_Solution(int m, int *basics, TYPE *X) {

int i;

printf("SOLUTION:\n\n");

for (i = 0; i < m; i++)

printf(" X[%d] = %lf\n", basics[i], high(X[i]));

}

void Nt_times_y(SparseMatrix AT, int *basicflag, SparseVector y,

SparseVector * yN) {

int i, j, jj, k, kk;

static TYPE *a = NULL;

static int *tag = NULL;

static int *link = NULL;

static int currtag = 1;

if (a == NULL)

MALLOC(a, AT.rows, TYPE);

if (tag == NULL)

CALLOC(tag, AT.rows, int);
if (link == NULL) {

CALLOC(link, AT.rows+2, int);
link++;

}

jj = -1;

for (k = 0; k < y.numNonzeroes; k++) {

i = y.rowIndices[k];

for (kk = AT.colPos[i]; kk < AT.colPos[i + 1]; kk++) {

j = AT.rowIndices[kk];

if (basicflag[j] < 0) {

if (tag[j] != currtag) {

a[j] = 0.0;

tag[j] = currtag;

link[jj] = j;

jj = j;

}

a[j] += y.values[k] * AT.values[kk];

}

}

}

link[jj] = AT.rows;

132 APPENDIX A. CODE

currtag++;

k = 0;

for (jj = link[-1]; jj < AT.rows; jj = link[jj]) {

if (ABS(a[jj]) > EPS_MATRIX) {

yN->values[k] = a[jj];

yN->rowIndices[k] = -basicflag[jj] - 1;

k++;

}

}

yN->numNonzeroes = k;

}

int ratio_test(TYPE *dy, int *idy, int ndy, TYPE *y) {

int j, jj = -1, k;

TYPE min = HUGE_VAL;

for (k = 0; k < ndy; k++) {

if (dy[k] > EPS1) {

j = idy[k];

if (y[j] / dy[k] < min) {

min = y[j] / dy[k];

jj = j;

}

}

}

return jj;

}

TYPE recalculateObjectiveValues(TYPE *c, TYPE *x_B, int *basics, int m) {

int i;

TYPE prod = 0.0;

for (i = 0; i < m; i++) {

prod += c[basics[i]] * x_B[i];

}

return prod;

}

int pick_neg(int m, TYPE *x) {

int i;

int col = -1;

TYPE min = -EPS2;

for (i = 0; i < m; i++) {

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 133

if (x[i] < min) {

min = x[i];

col = i;

}

}

return col;

}

simpo/basischangemanager.h and simpo/basischangemanager.c

#ifndef BASISCHANGEMANAGER_H

#define BASISCHANGEMANAGER_H

void * runBasisChangeManager(void * parameters);

#endif

#include "communication.h"

#include "invertprocessor.h"

#include "print.h"

#include <stdlib.h>

#include <assert.h>

#include <pthread.h>

#define NAME "R"

static int currentBasis = 0;

static void send(const char * receiver, const char * tag, void * payload) {

Message msg = {NAME, receiver, tag, payload};

sendMessage(msg);

}

static Message receiveFromAnyone() {

return receiveMessageFromAnyone(NAME);

}

extern int enablePrint; // Defined in iterationprocess.c

#define print(formatString, ...) if (enablePrint) { printFromProcess(NAME,

formatString , ## __VA_ARGS__); }

void * runBasisChangeManager(void * parameters) {

Message message;

const char * result;

int * payload;

134 APPENDIX A. CODE

int incomingBasis;

print("Basis change manager starting");

while (!isProgramFinished()) {

while (!(message = receiveFromAnyone()).sender) {

if (isProgramFinished()) {

print("Basis change manager exiting");

pthread_exit(NULL);

return NULL; // To prevent a compiler warning

}

sched_yield();

}

assert(!strcmp(message.tag, "I5->R1"));

incomingBasis = *(int*)message.payload;
free(message.payload);

payload = (int*)malloc(sizeof(int));
if (incomingBasis == currentBasis) {

*payload = 1;

send(message.sender, "R2->I6", payload);

++currentBasis;

result = "accepted";

}

else {

*payload = 0;

send(message.sender, "R3->I6", payload);

result = "refused";

}

print("%s offers chuzr on basis %d... %s", message.sender, incomingBasis,

result);

}

print("Basis change manager exiting");

pthread_exit(NULL);

return NULL; // To prevent a compiler warning

}

simpo/columnselectionmanager.h and simpo/columnselectionmanager.c

#ifndef COLUMNSELECTIONMANAGER_H

#define COLUMNSELECTIONMANAGER_H

typedef enum {

OTHER_SIDE,

UNSELECTED,

SELECTED,

REJECTED,

UNDEFINED

} VariableStatus;

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 135

typedef struct {

VariableStatus status;

int basisWhereStatusChanged;

} VariableInfo;

typedef struct {

int unattractiveVariable;

int basis;

const char * processName;

const char * tagToSend;

} QueuedVariableRequest;

void setupColumnSelectionManager(int m, int n);

void * runColumnSelectionManager(void * parameters);

#endif

#include "communication.h"

#include "print.h"

#include "../common/genericvectors.h"

#include "payloadtypes.h"

#include "invertprocessor.h"

#include <assert.h>

#include <pthread.h>

#include <stdlib.h>

#include <string.h>

#include <vector>

using namespace std;

#define NAME "C"

static char * VARIABLE_STATUS_NAMES[] = {"OTHER_SIDE", "UNSELECTED", "SELECTED

", "REJECTED", "UNDEFINED"};

static VariableInfo * variables;

static vector<int> attractive;

static QueuedVariableRequestVector queuedVariableRequests;

static int m;

static int n;

static int kc;

static void send(const char * receiver, const char * tag, void * payload) {

Message msg = {NAME, receiver, tag, payload};

sendMessage(msg);

}

136 APPENDIX A. CODE

static Message receiveFromAnyone() {

return receiveMessageFromAnyone(NAME);

}

extern int enablePrint; // Defined in iterationprocess.c

#define print(formatString, ...) if (enablePrint) { printFromProcess(NAME,

formatString , ## __VA_ARGS__); }

void setupColumnSelectionManager(int _m, int _n) {

int i;

m = _m;

n = _n;

kc = 0;

initQVRV(&queuedVariableRequests);

variables = (VariableInfo*)malloc(sizeof(VariableInfo) * (m + n));

//TODO: This must be switched between the phases

for (i = 0; i < n; ++i) { // nonbasic

variables[i].status = OTHER_SIDE;

variables[i].basisWhereStatusChanged = -1;

}

for (i = 0; i < m; ++i) { // basic

variables[n + i].status = UNSELECTED;

variables[n + i].basisWhereStatusChanged = -1;

}

}

bool installAttractiveCandidates(Message message) {

int i;

AttractiveCandidatesMessage msg = *(AttractiveCandidatesMessage*)message.

payload;

delete (AttractiveCandidatesMessage*)message.payload;

assert(msg.attractiveVariables.size() >= 1);

print("received %d candidates from %s, which is at basis %d; currently at

basis %d", msg.attractiveVariables.size(), message.sender, msg.

basisNumber, kc);

if (msg.basisNumber > kc) {

int installCount = 0;

attractive.clear();

for (i = 0; i < msg.attractiveVariables.size(); ++i) {

int cand = msg.attractiveVariables.at(i);

if (!((variables[cand].status == SELECTED || variables[cand].status ==

REJECTED) && variables[cand].basisWhereStatusChanged >= msg.

basisNumber)) {

++installCount;

attractive.push_back(cand);

variables[cand].status = UNSELECTED;

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 137

variables[cand].basisWhereStatusChanged = msg.basisNumber;

}

else {

print("rejected x%d because it got %s at basis %d", cand,

VARIABLE_STATUS_NAMES[variables[cand].status], variables[cand].

basisWhereStatusChanged);

}

}

print("Installed %d candidates", installCount);

kc = msg.basisNumber;

return true;
}

else {

print("Rejected the candidates");

return false;
}

}

void * runColumnSelectionManager(void * parameters) {

Message message;

int var;

int * varPayload;

QueuedVariableRequest req;

print("Column selection manager starting");

while (!isProgramFinished()) {

while (queuedVariableRequests.size > 0 && attractive.size() > 0) {

if (isProgramFinished()) {

print("Column selection manager exiting");

pthread_exit(NULL);

return NULL; // To prevent a compiler warning

}

do {

var = attractive.at(0);

attractive.erase(attractive.begin());

} while (variables[var].status != UNSELECTED && attractive.size() > 0);

if (variables[var].status != UNSELECTED && attractive.size() == 0)

break;
variables[var].status = SELECTED;

variables[var].basisWhereStatusChanged = kc;

req = getQVRV(queuedVariableRequests, 0);

removeAtQVRV(&queuedVariableRequests, 0);

print("x%d gets SELECTED (C5) at basis %d", var, kc);

varPayload = (int*)malloc(sizeof(int));

*varPayload = var;

send(req.processName, req.tagToSend, varPayload);

}

138 APPENDIX A. CODE

while (!(message = receiveFromAnyone()).sender) {

if (isProgramFinished()) {

print("Column selection manager exiting");

pthread_exit(NULL);

return NULL; // To prevent a compiler warning

}

sched_yield();

}

assert(message.sender[0] == ’I’);

if (!strcmp(message.tag, "I8->C1")) {

ColSelPivotPayload * payload = (ColSelPivotPayload*)message.payload;

variables[payload->enteringVar].status = OTHER_SIDE;

variables[payload->enteringVar].basisWhereStatusChanged = payload->

basisNumber;

variables[payload->leavingVar].status = UNSELECTED;

variables[payload->leavingVar].basisWhereStatusChanged = payload->

basisNumber;

//print("x%d left basis %d (by %s) and got unselected", payload->

leavingVar, payload->basisNumber, message.sender);

free(payload);

}

else if (!strcmp(message.tag, "I9->C2")) {

if (installAttractiveCandidates(message)) {

//queuedVariableRequests.Enqueue(new QueuedVariableRequest() {

processName = message.sender, tagToSend = "C3->I11" });

var = attractive.at(0);

attractive.erase(attractive.begin());

assert(variables[var].status == UNSELECTED);

variables[var].status = SELECTED;

variables[var].basisWhereStatusChanged = kc;

print("x%d gets SELECTED (C3) at basis %d", var, kc);

varPayload = (int*)malloc(sizeof(int));

*varPayload = var;

send(message.sender, "C3->I11", varPayload);

}

else {

req.processName = message.sender;

req.tagToSend = "C3->I11";

appendQVRV(&queuedVariableRequests, req);

}

}

else if (!strcmp(message.tag, "I4->C4")) {

QueuedVariableRequest req;

CandidateIsUnattractivePayload * payload = (

CandidateIsUnattractivePayload*)message.payload;

if (payload->var != -1) {

variables[payload->var].status = REJECTED;

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 139

variables[payload->var].basisWhereStatusChanged = payload->basisNumber

;

print("x%d gets REJECTED (C5) at basis %d", payload->var, payload->

basisNumber);

}

free(payload);

req.processName = message.sender;

req.tagToSend = "C5->I11";

appendQVRV(&queuedVariableRequests, req);

}

else {

print("Unexpected tag ’%s’", message.tag);

assert(0);

}

}

print("Column selection manager exiting");

pthread_exit(NULL);

return NULL; // To prevent a compiler warning

}

simpo/communication.h and simpo/communication.c

#ifndef COMMUNICATION_H

#define COMMUNICATION_H

#include "../common/message.h"

void initCommunication();

void sendMessage(Message message);

void sendAll(Message * messagesToBeSent, int numMessages);

Message receiveMessageFromAnyone(const char * receiver);

Message receiveMessage(const char * receiver, const char * sender);

Message receiveMessageWithTag(const char * receiver, const char * sender,

const char * tag);

void printMessages();

#endif

#include "../common/message.h"

#include "../common/genericvectors.h"

#include "communication.h"

#include <string.h>

#include <stdio.h>

#include <pthread.h>

#include "print.h"

140 APPENDIX A. CODE

Message createMessage(const char * sender, const char * receiver, const char *
tag, void * payload) {

Message message;

message.sender = sender;

message.receiver = receiver;

message.tag = tag;

message.payload = payload;

return message;

}

static MessageVector messages;

static pthread_mutex_t queueLock;

static int printSends = 1;

static int printReceives = 1;

void initCommunication() {

pthread_mutex_init(&queueLock, NULL);

initMV(&messages);

}

void sendMessage(Message message) {

pthread_mutex_lock(&queueLock);

appendMV(&messages, message);

pthread_mutex_unlock(&queueLock);

if (printSends) {

printFromProcess("COMM", "%s sends to %s (tag: ’%s’, payload %p) (queue: %

d)", message.sender, message.receiver, message.tag, message.payload,

messages.size);

}

}

void sendAll(Message * messagesToBeSent, int numMessages) {

int i;

pthread_mutex_lock(&queueLock);

for (i = 0; i < numMessages; ++i) {

appendMV(&messages, messagesToBeSent[i]);

if (printSends) {

printFromProcess("COMM", "%s sends to %s (tag: ’%s’, payload %p) (queue:

%d)", messagesToBeSent[i].sender, messagesToBeSent[i].receiver,

messagesToBeSent[i].tag, messagesToBeSent[i].payload, messages.size)

;

}

}

pthread_mutex_unlock(&queueLock);

}

// Returns a message with sender == null if no message is available

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 141

Message receiveMessageFromAnyone(const char * receiver) {

return receiveMessageWithTag(receiver, NULL, NULL);

}

// Returns a message with sender == null if no message is available

Message receiveMessage(const char * receiver, const char * sender) {

return receiveMessageWithTag(receiver, sender, NULL);

}

Message receiveMessageWithTag(const char * receiver, const char * sender,

const char * tag) {

Message msg;

int i;

pthread_mutex_lock(&queueLock);

for (i = 0; i < messages.size; ++i) {

msg = getMV(messages, i);

if (!strcmp(msg.receiver, receiver) && (!sender || !strcmp(msg.sender,

sender) || (!strcmp(sender, "I*") && msg.sender[0] == ’I’)) && (!tag

|| !strcmp(msg.tag, tag))) {

removeAtMV(&messages, i);

if (printReceives) {

printFromProcess("COMM", "%s receives from %s (tag: ’%s’, payload: %p)

(queue: %d)", msg.receiver, msg.sender, msg.tag, msg.payload,

messages.size);

}

pthread_mutex_unlock(&queueLock);

return msg;

}

}

pthread_mutex_unlock(&queueLock);

msg.sender = NULL;

return msg;

}

void printMessages() {

int i;

pthread_mutex_lock(&queueLock);

printFromProcess("COMM", "Remaining messages:");

for (i = 0; i < messages.size; ++i) {

printFromProcess("COMM", "%s %s %s", getMV(messages, i).sender, getMV(

messages, i).receiver, getMV(messages, i).tag);

}

fflush(stdout);

pthread_mutex_unlock(&queueLock);

}

142 APPENDIX A. CODE

simpo/invertprocessor.h and simpo/invertprocessor.c

#ifndef INVERTPROCESSOR_H

#define INVERTPROCESSOR_H

#include "sparse.h"

void setupInvertProcessor(SparseMatrix _A, int _numIterationProcesses);

void * runInvertProcessor(void * parameters);

int isProgramFinished();

int announceProgramFinished();

#endif

#include "communication.h"

#include "invertprocessor.h"

#include "iterationprocess.h" // For the FactoredInverse structure

#include "sparse.h"

#include "../common/genericvectors.h"

#include "util.h"

#include "payloadtypes.h"

#include "../common/myalloc.h"

#include "../common/macros.h"

#include "../common/heap.h"

#include "../common/linalg.h"

#include "print.h"

#include <stdio.h>

#include <pthread.h>

#include <assert.h>

#include <vector>

using namespace std;

static const char * NAME = "V";

static SparseMatrix A;

static int * basicVariables;

static int * nonbasicVariables;

static int m, n, N;

static int verbose = 0;

static SparseMatrix L = {0, 0, 0, NULL, NULL, NULL};

static SparseMatrix LT = {0, 0, 0, NULL, NULL, NULL};

static SparseMatrix U = {0, 0, 0, NULL, NULL, NULL};

static SparseMatrix UT = {0, 0, 0, NULL, NULL, NULL};

typedef struct { /* nonzero entry */

TYPE value; /* value */

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 143

int rowIndex; /* row index */

} ValueAndRowIndex;

static SafeVector<int> colPerm, invColPerm, rowPerm, invRowPerm;

static SafeVector<TYPE> diagU;

static double cumtime = 0.0; //TODO: This one was used both by the functions

that were moved to invertprocessor.c and to interationprocess.c

static int numIterationProcesses;

static char ** iterationProcessNames;

#define E_N 200

#define E_NZ 20000

#define MD 1

#define EPSNUM 1.0e-9

static int rank;

static int receivedBasisNumber = 0;

static int lastReinversionBasis = 0;

static pthread_mutex_t finishLock;

static int _isProgramFinished = 0;

static void invertProcessor_lufac();

static void invertProcessor_broadcastInverse();

static void send(const char * receiver, const char * tag, void * payload) {

Message msg = {NAME, receiver, tag, payload};

sendMessage(msg);

}

static Message receiveFromAnyone() {

return receiveMessageFromAnyone(NAME);

}

extern int enablePrint; // Defined in iterationprocess.c

//http://ou800doc.sco.com/cgi-bin/info2html?(gcc.info)Macro%2520Varargs&lang=

en

#define print(formatString, ...) if (enablePrint) { printFromProcess(NAME,

formatString , ## __VA_ARGS__); }

int isProgramFinished() {

int result;

pthread_mutex_lock(&finishLock);

144 APPENDIX A. CODE

result = _isProgramFinished;

pthread_mutex_unlock(&finishLock);

return result;

}

int announceProgramFinished() {

int oldValue;

pthread_mutex_lock(&finishLock);

oldValue = _isProgramFinished;

_isProgramFinished = 1;

pthread_mutex_unlock(&finishLock);

return oldValue;

}

void setupInvertProcessor(SparseMatrix _A, int _numIterationProcesses) {

int i;

numIterationProcesses = _numIterationProcesses;

iterationProcessNames = (char**)malloc(numIterationProcesses * sizeof(char

*));

for (i = 0; i < numIterationProcesses; ++i) {

iterationProcessNames[i] = (char*)malloc(16);
sprintf(iterationProcessNames[i], "I%d", i);

}

copySparseMatrix(_A, &A);

m = A.rows;

N = A.cols;

n = N - m;

basicVariables = (int*)malloc(m * sizeof(int));
for (i = 0; i < m; ++i) {

basicVariables[i] = n + i;

}

nonbasicVariables = (int*)malloc(n * sizeof(int));
for (i = 0; i < n; ++i) {

nonbasicVariables[i] = i;

}

pthread_mutex_init(&finishLock, NULL);

}

void * runInvertProcessor(void * parameters) {

Message message;

InvProcPivotPayload * pivot;

int temp;

print("Starting");

seedRandomGeneratorForThisThread();

while (!isProgramFinished()) {

while ((message = receiveFromAnyone()).sender || receivedBasisNumber ==

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 145

lastReinversionBasis) {

if (isProgramFinished()) {

print("Terminating");

pthread_exit(NULL);

return NULL;

}

if (!message.sender)

continue;
assert(!strcmp(message.tag, "I8->V1"));

pivot = (InvProcPivotPayload*)message.payload;

//print("Received pivot: l/e: %d/%d", pivot->leavingRow, pivot->

enteringCol);

temp = basicVariables[pivot->leavingRow];

basicVariables[pivot->leavingRow] = nonbasicVariables[pivot->enteringCol

];

nonbasicVariables[pivot->enteringCol] = temp;

++receivedBasisNumber;

free(pivot);

}

if (isProgramFinished()) {

print("Terminating");

pthread_exit(NULL);

return NULL;

}

print("Starting inverse calculation for basis %d", receivedBasisNumber);

invertProcessor_lufac();

lastReinversionBasis = receivedBasisNumber;

print("Inverse for basis %d done; broadcasting", lastReinversionBasis);

invertProcessor_broadcastInverse();

/*
printRawSparseMatrix(L);

printRawSparseMatrix(U);

for (i = 0; i < m; ++i)

printf("%f ", diagU[i]);

printf("\n");

*/

}

print("Terminating");

pthread_exit(NULL);

return NULL; // To prevent a compiler warning

}

static void invertProcessor_broadcastInverse() {

int i;

FactoredInverse * factoredInverse;

146 APPENDIX A. CODE

Message * messages = new Message[numIterationProcesses];

for (i = 0; i < numIterationProcesses; ++i) {

//TODO: Do we want each process to get its own copy? If not, how do we

delete the common copy after all processes are done with it?

//TODO: Each ItProc must free BOTH the matrices/vectors AND the

FactoredInverse object

factoredInverse = new FactoredInverse;

copySparseMatrix(L, &factoredInverse->L);

copySparseMatrix(LT, &factoredInverse->LT);

copySparseMatrix(U, &factoredInverse->U);

copySparseMatrix(UT, &factoredInverse->UT);

factoredInverse->colPerm = colPerm;

factoredInverse->invColPerm = invColPerm;

factoredInverse->rowPerm = rowPerm;

factoredInverse->invRowPerm = invRowPerm;

factoredInverse->diagU = diagU;

factoredInverse->rank = rank;

factoredInverse->basisNumber = lastReinversionBasis;

messages[i].sender = NAME;

messages[i].receiver = iterationProcessNames[i];

messages[i].tag = "V2->I1";

messages[i].payload = factoredInverse;

}

sendAll(messages, numIterationProcesses);

delete [] messages;

}

static void invertProcessor_lufac() {

int kk, kkk, tag, rowdeg, coldeg, row, col, row2, col2;

int i, j, k, cnt, lnz, unz, lnzbnd, unzbnd, okey, deg, heapnum, cur,

method = MD;

int *degB = NULL, *degBt = NULL, *hkey = NULL, *heap = NULL, *iheap = NULL,

*iwork = NULL, *iwork2 = NULL;

ValueAndRowIndex tempB, **B = NULL, **Bt = NULL;

TYPE narth;

double starttime, endtime;

starttime = (double) clock();

/*---+

| allocate space for perm and iperm. */

colPerm.resize(m);

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 147

invColPerm.resize(m);

rowPerm.resize(m);

invRowPerm.resize(m);

/*---+

| allocate space for work arrays. */

MALLOC(degB, m, int);

MALLOC(degBt, m, int);

MALLOC(hkey, m, int);

MALLOC(heap, m, int);

MALLOC(iheap, m, int);

MALLOC(iwork, m, int);

MALLOC(iwork2, m, int);

heap--; /* so that indexing starts from 1 */

/*---+

| calculate degrees in B and Bt */

for (i = 0; i < m; i++) {

degBt[i] = 0;

}

for (i = 0; i < m; i++) {

degB[i] = A.colPos[basicVariables[i] + 1] - A.colPos[basicVariables[i]];

for (k = A.colPos[basicVariables[i]]; k < A.colPos[basicVariables[i] + 1];

k++) {

degBt[A.rowIndices[k]]++;

}

}

/*---+

| calculate initial estimate of number of nonzeros in |

| L and UT.values */

lnzbnd = 0;

for (i = 0; i < m; i++)

lnzbnd += degB[i];

lnzbnd = lnzbnd / 2;

unzbnd = lnzbnd;

/*---+

| allocate enough space to store L and UT.values |

| (without any fillin) */

if (L.colPos == NULL) {

MALLOC(L.colPos, m+1, int);

} else {

148 APPENDIX A. CODE

REALLOC(L.colPos, m+1, int);

}

if (L.rowIndices == NULL) {

MALLOC(L.rowIndices, lnzbnd, int);

} else {

REALLOC(L.rowIndices, lnzbnd, int);

}

if (L.values == NULL) {

MALLOC(L.values, lnzbnd, TYPE);

} else {

REALLOC(L.values, lnzbnd, TYPE);

}

if (UT.colPos == NULL) {

MALLOC(UT.colPos, m+1, int);

} else {

REALLOC(UT.colPos, m+1, int);

}

if (UT.rowIndices == NULL) {

MALLOC(UT.rowIndices, unzbnd, int);

} else {

REALLOC(UT.rowIndices, unzbnd, int);

}

if (UT.values == NULL) {

MALLOC(UT.values, unzbnd, TYPE);

} else {

REALLOC(UT.values, unzbnd, TYPE);

}

diagU.resize(m);

MALLOC(B, m, ValueAndRowIndex *);

MALLOC(Bt, m, ValueAndRowIndex *);

for (i = 0; i < m; i++) {

B[i] = NULL;

Bt[i] = NULL;

MALLOC(B[i], degB[i], ValueAndRowIndex);

MALLOC(Bt[i], degBt[i], ValueAndRowIndex);

}

/*---+

| initialize B and Bt */

for (i = 0; i < m; i++) {

iwork[i] = 0;

}

for (j = 0; j < m; j++) {

kkk = 0;

for (k = A.colPos[basicVariables[j]]; k < A.colPos[basicVariables[j] + 1];

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 149

k++) {

row = A.rowIndices[k];

kk = iwork[row];

B[j][kkk].rowIndex = row;

B[j][kkk].value = A.values[k];

Bt[row][kk].rowIndex = j;

Bt[row][kk].value = A.values[k];

iwork[row]++;

kkk++;

}

}

/*---+

| miscellaneous initializations. */

for (i = 0; i < m; i++) {

invColPerm.at(i) = -1;

invRowPerm.at(i) = -1;

iwork[i] = 0;

iwork2[i] = -1;

}

rank = m;

tag = 0;

lnz = 0;

unz = 0;

L.colPos[0] = 0;

UT.colPos[0] = 0;

/*---+

| hkey encodes the tie-breaking rule - currently the rule |

| is somewhat random. to make it first occuring minimum, |

| change the formula to: |

| hkey[node] = degree[node]*m + node; |

| warning: with this definition of hkey, there is the |

| possibility of integer overflow on moderately large |

| problems. |

| */

for (j = 0; j < m; j++) {

if (method == MD)

hkey[j] = degB[j];

else
hkey[j] = j;

if (hkey[j] == 0)

hkey[j] = m + 1;

150 APPENDIX A. CODE

}

/*---+

| set up heap structure for quickly accessing minimum. */

heapnum = m;

for (j = m - 1; j >= 0; j--) {

cur = j + 1;

iheap[j] = cur;

heap[cur] = j;

hfall(heapnum, hkey, iheap, heap, cur);

}

/*---+

| the min degree ordering loop */

for (i = 0; i < m; i++) {

/*--+

| select column with min column degree */

again: col = heap[1];

coldeg = degB[col];

if (coldeg == 0) {

printf("singular matrix. rank deficiency = %d\n", m - i);

rank = i;

goto end;

}

/*--+

| select pivot element from this column by |

| choosing nonzero whose row is of minimal |

| degree */

rowdeg = m + 1;

for (k = 0; k < coldeg; k++) {

if (degBt[B[col][k].rowIndex] < rowdeg && ABS(B[col][k].value) >

EPSNUM) {

row = B[col][k].rowIndex;

rowdeg = degBt[row];

}

}

if (rowdeg == m + 1) {

hkey[col] = m + 2;

hfall(heapnum, hkey, iheap, heap, iheap[col]);

if (hkey[heap[1]] == m + 2) {

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 151

printf("singular matrix. rank deficiency = %d\n", m - i);

rank = i;

goto end;

} else {

goto again;

}

}

/*--+

| update permutation information */

colPerm.at(i) = col;

invColPerm.at(col) = i;

rowPerm.at(i) = row;

invRowPerm.at(row) = i;

/*--+

| reallocate space for L, L.rowIndices, UT.values, and UT.rowIndices as

|

| necessary. |

| |

| lnz stores the number of nonzeros in L so far |

| lnzbnd is an estimate of how many will be in L |

| unz stores the number of nonzeros in U so far |

| unzbnd is an estimate of how many will be in U*/

cnt = lnz + coldeg - 1 + coldeg * rowdeg / 2;

if (cnt > lnzbnd) {

lnzbnd = cnt;

REALLOC(L.values, lnzbnd, TYPE);

REALLOC(L.rowIndices, lnzbnd, int);

}

cnt = unz + rowdeg - 1 + coldeg * rowdeg / 2;

if (cnt > unzbnd) {

unzbnd = cnt;

REALLOC(UT.values, unzbnd, TYPE);

REALLOC(UT.rowIndices, unzbnd, int);

}

/*--+

| copy pivot column into L and pivot row into |

| Ut. */

L.colPos[i + 1] = L.colPos[i] + coldeg - 1;

152 APPENDIX A. CODE

for (k = 0; k < coldeg; k++) {

if (B[col][k].rowIndex != row) {

L.rowIndices[lnz] = B[col][k].rowIndex;

L.values[lnz] = B[col][k].value;

lnz++;

}

}

UT.colPos[i + 1] = UT.colPos[i] + rowdeg - 1;

for (k = 0; k < rowdeg; k++) {

if (Bt[row][k].rowIndex != col) {

UT.rowIndices[unz] = Bt[row][k].rowIndex;

UT.values[unz] = Bt[row][k].value;

unz++;

} else {

diagU[i] = Bt[row][k].value;

}

}

/*--+

| remove eliminated elements from B and Bt */

for (k = 0; k < coldeg; k++) {

row2 = B[col][k].rowIndex;

degBt[row2]--;

for (kk = 0; Bt[row2][kk].rowIndex != col; kk++)

;

tempB = Bt[row2][degBt[row2]];

Bt[row2][degBt[row2]] = Bt[row2][kk];

Bt[row2][kk] = tempB;

}

for (k = 0; k < rowdeg; k++) {

col2 = Bt[row][k].rowIndex;

degB[col2]--;

for (kk = 0; B[col2][kk].rowIndex != row; kk++)

;

tempB = B[col2][degB[col2]];

B[col2][degB[col2]] = B[col2][kk];

B[col2][kk] = tempB;

}

degB[col] = 0;

degBt[row] = 0;

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 153

/*--+

| update heap */

okey = hkey[col];

heap[1] = heap[heapnum];

iheap[heap[1]] = 1;

heapnum--;

if (okey < hkey[heap[1]])

hfall(heapnum, hkey, iheap, heap, 1);

/*--+

| generate fillin and update elements */

for (k = L.colPos[i]; k < L.colPos[i + 1]; k++) {

row2 = L.rowIndices[k];

tag++;

for (kk = 0; kk < degBt[row2]; kk++) {

iwork[Bt[row2][kk].rowIndex] = tag; /* tag these columns */

iwork2[Bt[row2][kk].rowIndex] = kk; /* say where they are */

}

for (kk = UT.colPos[i]; kk < UT.colPos[i + 1]; kk++) {

col2 = UT.rowIndices[kk];

if (iwork[col2] == tag) {

Bt[row2][iwork2[col2]].value -= L.values[k] * UT.values[kk]

/ diagU[i];

} else {

deg = degBt[row2];

REALLOC(Bt[row2], deg+1, ValueAndRowIndex);

Bt[row2][deg].rowIndex = col2;

Bt[row2][deg].value = -L.values[k] * UT.values[kk] / diagU[i];

degBt[row2]++;

}

}

}

for (k = UT.colPos[i]; k < UT.colPos[i + 1]; k++) {

col2 = UT.rowIndices[k];

tag++;

for (kk = 0; kk < degB[col2]; kk++) {

iwork[B[col2][kk].rowIndex] = tag; /* tag these rows */

iwork2[B[col2][kk].rowIndex] = kk; /* say where they are */

}

for (kk = L.colPos[i]; kk < L.colPos[i + 1]; kk++) {

row2 = L.rowIndices[kk];

if (iwork[row2] == tag) {

B[col2][iwork2[row2]].value -= L.values[kk] * UT.values[k]

/ diagU[i];

154 APPENDIX A. CODE

} else {

deg = degB[col2];

REALLOC(B[col2], deg+1, ValueAndRowIndex);

B[col2][deg].rowIndex = row2;

B[col2][deg].value = -L.values[kk] * UT.values[k] / diagU[i];

degB[col2]++;

}

}

}

/*--+

| adjust heap */

for (k = UT.colPos[i]; k < UT.colPos[i + 1]; k++) {

col2 = UT.rowIndices[k];

if (method == MD) {

hkey[col2] = degB[col2];

} else {

hkey[col2] = col2;

}

if (hkey[col2] == 0)

hkey[col2] = m + 1;

hrise(hkey, iheap, heap, iheap[col2]);

hfall(heapnum, hkey, iheap, heap, iheap[col2]);

}

/*--+

| free space no longer needed */

/*
FREE(B[col]); FREE(Bt[row]);

*/

}

end:

/*--+

| process dependent rows/cols */

i = rank;

for (col = 0; col < m; col++) {

if (invColPerm.at(col) == -1) {

colPerm.at(i) = col;

invColPerm.at(col) = i;

i++;

}

}

i = rank;

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 155

for (row = 0; row < m; row++) {

if (invRowPerm.at(row) == -1) {

rowPerm.at(i) = row;

invRowPerm.at(row) = i;

i++;

}

}

for (i = rank; i < m; i++) {

L.colPos[i + 1] = L.colPos[i];

UT.colPos[i + 1] = UT.colPos[i];

diagU[i] = 0.0;

}

/*--+

| free up space */

heap++;

for (i = 0; i < m; i++) {

FREE(B[i]);

FREE(Bt[i]);

}

FREE(degB);

FREE(degBt);

FREE(hkey);

FREE(heap);

FREE(iheap);

FREE(iwork);

FREE(iwork2);

FREE(B);

FREE(Bt);

/*--+

| update "i" arrays to new indices */

for (k = 0; k < L.colPos[m]; k++)

L.rowIndices[k] = invRowPerm.at(L.rowIndices[k]);

for (k = 0; k < UT.colPos[m]; k++)

UT.rowIndices[k] = invColPerm.at(UT.rowIndices[k]);

/*--+

| divide each column of L by diagonal */

for (i = 0; i < m; i++) {

for (k = L.colPos[i]; k < L.colPos[i + 1]; k++) {

L.values[k] /= diagU[i];

}

156 APPENDIX A. CODE

}

/*---+

| calculate and print statistics. */

narth = 0.0e0;

for (i = 0; i < m; i++) {

k = L.colPos[i + 1] - L.colPos[i];

narth += (TYPE) k * k;

k = UT.colPos[i + 1] - UT.colPos[i];

narth += (TYPE) k * k;

}

narth = narth + 3* L .colPos[m] + 3* UT .colPos[m] + 2* m ;

lnz = L.colPos[m];

unz = UT.colPos[m];

if (verbose) {

printf("%9d %9d %15.0f ", lnz, unz, narth);

fflush(stdout);

}

if (LT.values == NULL) {

MALLOC(LT.values, lnz, TYPE);

} else {

REALLOC(LT.values, lnz, TYPE);

}

if (LT.rowIndices == NULL) {

MALLOC(LT.rowIndices, lnz, int);
} else {

REALLOC(LT.rowIndices, lnz, int);
}

if (LT.colPos == NULL) {

MALLOC(LT.colPos, m+1, int);
} else {

REALLOC(LT.colPos, m+1, int);
}

if (U.values == NULL) {

MALLOC(U.values, unz, TYPE);

} else {

REALLOC(U.values, unz, TYPE);

}

if (U.rowIndices == NULL) {

MALLOC(U.rowIndices, unz, int);
} else {

REALLOC(U.rowIndices, unz, int);
}

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 157

if (U.colPos == NULL) {

MALLOC(U.colPos, m+1, int);
} else {

REALLOC(U.colPos, m+1, int);
}

L.rows = LT.rows = U.rows = UT.rows = L.cols = LT.cols = U.cols = UT.cols =

m;

L.numNonzeroes = lnz;

LT.numNonzeroes = lnz;

U.numNonzeroes = unz;

UT.numNonzeroes = unz;

transposeMatrix(m, m, L.colPos, L.rowIndices, L.values, LT.colPos, LT.

rowIndices, LT.values);

transposeMatrix(m, m, UT.colPos, UT.rowIndices, UT.values, U.colPos, U.

rowIndices, U.values);

endtime = (double) clock();

cumtime += endtime - starttime;

}

simpo/iterationprocess.h and simpo/iterationprocess.c

#ifndef ITERATIONPROCESS_H

#define ITERATIONPROCESS_H

#include <pthread.h>

#include "sparse.h"

#include "../common/genericvectors.h"

typedef struct {

SparseMatrix L;

SparseMatrix LT;

SparseMatrix U;

SparseMatrix UT;

SafeVector<TYPE> diagU;

SafeVector<int> colPerm;

SafeVector<int> invColPerm;

SafeVector<int> rowPerm;

SafeVector<int> invRowPerm;

int rank;

int basisNumber;

} FactoredInverse;

158 APPENDIX A. CODE

/* The eta file seems to be stored as one sparse matrix,

* where each column represents one eta matrix. */

typedef struct {

int iter; /* Number of eta matrices */

int size; /* Number of entries in ’values’ */

SafeVector<TYPE> values; /* Nonzero values */

SafeVector<int> rowIndices; /* Row indices - seem to be based on ’colPerm’

*/

SafeVector<int> colPos; /* Indices into ’values’ and ’rowIndices’

telling where each eta matrix column begins */

SafeVector<int> newColLocations; /* Column location for each eta matrix (

leaving column for corresponding pivot) */

} EtaFile;

typedef struct {

TYPE * yInternal;

int * tagInternal;

int currtagInternal;

} InternalData_SolveUsingLU;

typedef struct {

TYPE * yInternal;

int * tagInternal;

int currtagInternal;

} InternalData_SolveTransposeUsingLU;

typedef struct {

TYPE * a;

int * tag;

int * link;

int currtag;

} InternalData_Gauss_Eta;

typedef struct {

TYPE * a;

int * tag;

int currtag;

} InternalData_Gauss_Eta_T;

typedef struct {

TYPE * a;

int * tag;

int * link;

int currtag;

} InternalData_Nt_times_y;

typedef struct {

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 159

int index;

int numIterationProcesses;

const char * name;

char ** iterationProcessNames;

pthread_t thread; // It’s safe to copy pthread_t objects: http://newsgroups.

derkeiler.com/Archive/Comp/comp.programming.threads/2007-07/msg00283.

html

SparseMatrix A;

SparseMatrix AT;

SafeVector<TYPE> b; /* right-hand side */

SafeVector<TYPE> c; /* objective coefficients */

TYPE f; /* objective function shift */

SafeVector<TYPE> x_B; /* primal basics */

SafeVector<TYPE> y_N; /* dual nonbasics */

int currentBasis;

FactoredInverse factoredInverse;

int e_iter; /* number of iterations since last refactorization */

EtaFile etaFile;

SafeSparseVector dyN_dualStepDir;

SafeSparseVector dxB_primalStepDir;

SafeSparseVector tempVector;

SafeVector<int> basics; /* list of basic variable indices */

SafeVector<int> nonbasics; /* list of non-basic variable indices */

SafeVector<int> basicflag; /* negative if nonbasic, nonnegative if basic */

InternalData_SolveUsingLU internalData_SolveUsingLU;

InternalData_SolveTransposeUsingLU internalData_SolveTransposeUsingLU;

InternalData_Gauss_Eta internalData_Gauss_Eta;

InternalData_Gauss_Eta_T internalData_Gauss_Eta_T;

InternalData_Nt_times_y internalData_Nt_times_y;

double cumtime; //TODO: This one was used both by the functions that were

moved to invertprocessor.c and to interationprocess.c

double ocumtime;

} IterationProcess;

typedef struct {

int var;

TYPE value;

} AttractiveCandidate;

160 APPENDIX A. CODE

void setupIterationProcess(IterationProcess * process, int index, int
numIterationProcesses, SparseMatrix A, TYPE * b, TYPE * c, TYPE f);

void * runIterationProcess(void * parameters);

#endif

#include "payloadtypes.h"

#include "iterationprocess.h"

#include "invertprocessor.h"

#include "sparse.h"

#include "communication.h"

#include "print.h"

#include "util.h"

#include "sparse.h"

#include "../common/macros.h"

#include "../common/myalloc.h"

#include "../common/tree.h"

#include "../common/linalg.h"

#include "../common/message.h"

#include <stdio.h>

#include <math.h>

#include <assert.h>

using namespace std;

#define EPS_MATRIX 1.0e-8

#define EPSSOL 1.0e-5 /* Zero tolerance for consistent eqns w/dep rows */

#define E_N 200

#define E_NZ 20000

#define SOLVE_USING_LU_EPS 1.0e-14 /* EPS from lueta.c */

#define ITERATION_EPS 1.0e-8 /* EPS from 2phase.c */

#define PICK_NEG_EPS 1.0e-10 /* EPS2 from 2phase.c */

#define GAUSS_ETA_EPS 1.0e-14 /* EPS1 from lueta.c */

#define RATIO_TEST_ETA 1.0e-10 /* EPS1 from 2phase.c */

#define MAX_ITER 1000000

//TODO: Can we find a drand48() implementation for windows?

#ifdef WIN32

#define drand48() (((double)rand())/((double)RAND_MAX))
#endif

#ifdef QuadPrec

#include "Quad.h"

#define TYPE Quad

#else
#define high(x) (x)

#endif

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 161

// Ugly to have this here, but putting it in genericvectors caused heavy

circular dependency problems. Should me moved.

#define VECTOR_NAME AttractiveCandidateVector

#define VECTOR_TYPE AttractiveCandidate

#define VECTOR_INIT initACV

#define VECTOR_RESIZE resizeACV

#define VECTOR_FREE freeACV

#define VECTOR_APPEND appendACV

#define VECTOR_GET getACV

#define VECTOR_SET setACV

#define VECTOR_REMOVE_AT removeAtACV

#define VECTOR_COPY copyACV

#include "../common/genericvector_headers.h"

#include "../common/genericvector_source.h"

#undef VECTOR_COPY

#undef VECTOR_REMOVE_AT

#undef VECTOR_SET

#undef VECTOR_GET

#undef VECTOR_APPEND

#undef VECTOR_FREE

#undef VECTOR_RESIZE

#undef VECTOR_INIT

#undef VECTOR_TYPE

#undef VECTOR_SHORT_NAME

#undef VECTOR_NAME

static int iterationProcess_dbsolve(IterationProcess * proc, SafeVector<TYPE>

& y);

static int iterationProcess_solveUsingLU(IterationProcess * proc,

SafeSparseVector * y);

static int iterationProcess_solveTransposeUsingLU(IterationProcess * proc,

SafeSparseVector * y);

static void iterationProcess_Gauss_Eta(IterationProcess * proc,

SafeSparseVector & dx_B);

static void iterationProcess_Gauss_Eta_T(IterationProcess * proc,

SafeSparseVector & vec);

//static void iterationProcess_lu_clo(IterationProcess * proc);

static void iterationProcess_Nt_times_y(IterationProcess * proc, SparseMatrix

AT, const SafeVector<int> & basicflag, const SafeSparseVector & y,

SafeSparseVector & yN);

static int CHUZR1_findLeaving_ratioTest(IterationProcess * proc, const
SafeSparseVector & dy, const SafeVector<TYPE> & y);

162 APPENDIX A. CODE

static TYPE iterationProcess_recalculateObjectiveValues(const SafeVector<TYPE>

& c, const SafeVector<TYPE> & x_B, const SafeVector<int> & basics);

static void CHUZC_findAttractiveCandidates(const SafeVector<int> &

columnToVariableMapping, const SafeVector<TYPE> & x,

AttractiveCandidateVector * attractive);

static void send(IterationProcess * proc, const char * receiver, const char *
tag, void * payload) {

Message msg = {proc->name, receiver, tag, payload};

sendMessage(msg);

}

#define receiveFromAnyone() receiveMessageFromAnyone(proc.name)

#define receive(sender) receiveMessage(proc.name, sender)

#define receiveWithTag(sender, tag) receiveMessageWithTag(proc.name, sender,

tag)

int enablePrint = 1;

//http://ou800doc.sco.com/cgi-bin/info2html?(gcc.info)Macro%2520Varargs&lang=

en

#define print(formatString, ...) if (enablePrint) { printFromProcess(proc.name

, formatString , ## __VA_ARGS__); }

#define printp(formatString, ...) if (enablePrint) { printFromProcess(proc->

name, formatString , ## __VA_ARGS__); }

#define streq(a, b) (!strcmp(a, b))

#define isBasic(var) (proc.basicflag[(var)] >= 0)

#define isNonbasic(var) (proc.basicflag[(var)] < 0)

#define columnForVariable(var) (proc.basicflag[(var)] >= 0 ? proc.basicflag[(

var)] : -proc.basicflag[(var)] - 1)

#define columnForVariableP(var) (proc->basicflag[(var)] >= 0 ? proc->basicflag

[(var)] : -proc->basicflag[(var)] - 1)

void makeIdentityMatrix(FactoredInverse * inv, int size) {

int i;

makeZeroSparseMatrix(&inv->L, size, size);

makeZeroSparseMatrix(&inv->LT, size, size);

makeZeroSparseMatrix(&inv->U, size, size);

makeZeroSparseMatrix(&inv->UT, size, size);

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 163

// All permutation vectors are filled with 0, size-1, ..., 1

inv->colPerm.resize(size);

inv->colPerm.at(0) = 0;

for (i = 1; i < size; ++i) {

inv->colPerm.at(i) = size - i;

}

inv->invColPerm = inv->colPerm;

inv->rowPerm = inv->colPerm;

inv->invRowPerm = inv->colPerm;

// Diagonal is only 1s

inv->diagU.resize(size);

for (i = 0; i < size; ++i) {

inv->diagU[i] = 1;

}

inv->rank = size;

inv->basisNumber = 0;

}

void setupIterationProcess(IterationProcess * process, int index, int
numIterationProcesses, SparseMatrix A, TYPE * b, TYPE * c, TYPE f) {

int i;

int m = A.rows;

int N = A.cols;

// int n = N - m;

char * name = (char*)malloc(16); // Long enough for any conceivable index

number

sprintf(name, "I%d", index);

process->name = name;

process->index = index;

process->numIterationProcesses = numIterationProcesses;

copySparseMatrix(A, &process->A);

for (i = 0; i < m; ++i)

process->b.push_back(b[i]);

for (i = 0; i < N; ++i)

process->c.push_back(c[i]);

process->f = f;

process->currentBasis = 0;

makeIdentityMatrix(&process->factoredInverse, m);

// Reset eta file

//TODO: Make eta file expandable

//TODO: Do partial reset only

process->etaFile.iter = 0; // Updated in refactor

process->etaFile.size = 0; // Updated at the end of solveUsingLU

process->etaFile.colPos.push_back(0);

164 APPENDIX A. CODE

process->tempVector.setRows(m);

process->internalData_SolveUsingLU.currtagInternal = 1;

CALLOC(process->internalData_SolveUsingLU.yInternal, m, TYPE);

CALLOC(process->internalData_SolveUsingLU.tagInternal, m, int);

process->internalData_SolveTransposeUsingLU.currtagInternal = 1;

CALLOC(process->internalData_SolveTransposeUsingLU.yInternal, m, TYPE);

CALLOC(process->internalData_SolveTransposeUsingLU.tagInternal, m, int);

process->internalData_Gauss_Eta.currtag = 1;

CALLOC(process->internalData_Gauss_Eta.a, m, TYPE);

CALLOC(process->internalData_Gauss_Eta.tag, m, int);
CALLOC(process->internalData_Gauss_Eta.link, m + 2, int);
process->internalData_Gauss_Eta.link++; //TODO: Call free() on link-1 !

process->internalData_Gauss_Eta_T.currtag = 1;

CALLOC(process->internalData_Gauss_Eta_T.a, m, TYPE);

CALLOC(process->internalData_Gauss_Eta_T.tag, m, int);

process->internalData_Nt_times_y.currtag = 1;

MALLOC(process->internalData_Nt_times_y.a, N, TYPE);

CALLOC(process->internalData_Nt_times_y.tag, N, int);
CALLOC(process->internalData_Nt_times_y.link, N + 2, int);
process->internalData_Nt_times_y.link++; //TODO: Call free() on link-1 !

process->cumtime = 0;

process->ocumtime = 0;

process->iterationProcessNames = (char**)malloc(numIterationProcesses *
sizeof(char *));

for (i = 0; i < numIterationProcesses; ++i) {

process->iterationProcessNames[i] = (char*)malloc(16);
sprintf(process->iterationProcessNames[i], "I%d", i);

}

}

static void expandEtaFile(IterationProcess * proc, int col_out) {

proc->etaFile.newColLocations.push_back(col_out);

proc->etaFile.iter++;

}

//TODO: Make ’peek’ functionality so that we can ignore all but the newest

inverse

// Repeatedly checks for messages from V with the tag "V2->I1".

// Such a message will contain a more up-to-date LU factorisation of the basis

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 165

matrix than what this iteration process already has.

// As long as a message is found, the new inverse will be installed (proc->

factoredInverse will be replaced by the payload of the message)

// and a suitable amount of entries from the front of the eta file will be

removed.

void installNewInverse(IterationProcess * proc) {

Message message;

FactoredInverse * inversePayload;

int i;

while ((message = receiveMessage(proc->name, "V")).sender) {

assert(!strcmp(message.tag, "V2->I1"));

inversePayload = (FactoredInverse*)message.payload;

//TODO: Restructure loops

if (inversePayload->basisNumber <= proc->factoredInverse.basisNumber) {

printp("Got outdated BˆI for basis %d; currently at basis %d",

inversePayload->basisNumber, proc->factoredInverse.basisNumber);

}

else if (inversePayload->basisNumber > proc->currentBasis) {

printp("Got too new BˆI for basis %d; process is at basis %d; inverse is

at basis %d", inversePayload->basisNumber, proc->currentBasis, proc

->factoredInverse.basisNumber);

}

else {

int numEtaEntriesToRemove;

int newPos;

printp("Got acceptable BˆI for basis %d; process is at basis %d; inverse

is at basis %d", inversePayload->basisNumber, proc->currentBasis,

proc->factoredInverse.basisNumber);

printp("installNewInverse is modifying eta file");

numEtaEntriesToRemove = inversePayload->basisNumber - proc->

factoredInverse.basisNumber;

newPos = proc->etaFile.colPos.at(numEtaEntriesToRemove);

printp("%d %d", numEtaEntriesToRemove, newPos);

proc->etaFile.size -= newPos;

proc->etaFile.iter -= numEtaEntriesToRemove;

// TODO: Can we use some sort of queue structure to make this more

efficient?

for (i = 0; i < proc->etaFile.size; ++i) {

proc->etaFile.rowIndices.at(i) = proc->etaFile.rowIndices.at(i +

newPos);

proc->etaFile.values.at(i) = proc->etaFile.values.at(i + newPos);

}

proc->etaFile.rowIndices.resize(proc->etaFile.size);

proc->etaFile.values.resize(proc->etaFile.size);

for (i = 0; i < proc->etaFile.iter + 1; ++i) {

proc->etaFile.colPos.at(i) = proc->etaFile.colPos.at(i +

166 APPENDIX A. CODE

numEtaEntriesToRemove) - newPos;

}

proc->etaFile.colPos.resize(proc->etaFile.iter + 1);

assert(proc->etaFile.colPos.at(0) == 0);

for (i = 0; i < proc->etaFile.iter; ++i) {

proc->etaFile.newColLocations.at(i) = proc->etaFile.newColLocations.at

(i + numEtaEntriesToRemove);

}

proc->etaFile.newColLocations.resize(proc->etaFile.iter);

// Free the space occupied by the previous matrix, copy the message

payload and free the original payload

freeSparseMatrix(&proc->factoredInverse.L);

freeSparseMatrix(&proc->factoredInverse.LT);

freeSparseMatrix(&proc->factoredInverse.U);

freeSparseMatrix(&proc->factoredInverse.UT);

proc->factoredInverse = *inversePayload;

printp("basis: %d", proc->factoredInverse.basisNumber);

}

delete inversePayload;

}

}

/***

* -1 T *

* STEP 2/4: Compute dy = -(B N) e *

* N i *

* where i = col_out *

***/

// proc->dyN_dualStepDir will be updated.

// The objective function coefficients will change by dyN_dualStepDir *
s_dualStepLength (which will be calculated later).

void FTRAN_calculateDualStepDirection(IterationProcess * proc, int col_out) {

proc->tempVector.resize(1);

proc->tempVector.value(0) = -1.0;

proc->tempVector.rowIndex(0) = col_out;

iterationProcess_solveTransposeUsingLU(proc, &proc->tempVector);

iterationProcess_Nt_times_y(proc, proc->AT, proc->basicflag, proc->

tempVector, proc->dyN_dualStepDir);

}

/***

* -1 *

* STEP 4/2: Compute dx = B N e *

* B j *

* where j = col_in *

***/

// proc->dxB_primalStepDir will be updated.

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 167

// The right hand side will change by dxB_primalStepDir * t_primalStepLength (

which will be calculated later).

// This function calls iterationProcess_solveUsingLU(), which as a side effect

will partially update the eta file - but etaFile.iter won’t be touched,

so the change won’t be visible until expandEtaFile() is called.

void FTRAN_calculatePrimalStepDirection(IterationProcess * proc, int col_in) {

int i, j, k;

j = proc->nonbasics[col_in];

proc->dxB_primalStepDir.clear();

for (i = 0, k = proc->A.colPos[j]; k < proc->A.colPos[j + 1]; i++, k++) {

proc->dxB_primalStepDir.append(proc->A.values[k], proc->A.rowIndices[k]);

}

iterationProcess_solveUsingLU(proc, &proc->dxB_primalStepDir);

}

/***

* *

* STEP 5: Put t = x /dx *

* i i *

* s = y /dy *

* j j *

***/

// Given the leaving and entering columns, computes the factors that

dxB_primalStepDir and dyN_dualStepDir must be multiplied by.

void CHUZR2_calculateStepLengths(IterationProcess * proc, int col_in, int
col_out, TYPE * t_primalStepLength, TYPE * s_dualStepLength) {

int k;

/* this is inefficient - it should be fixed */

for (k = 0; k < proc->dxB_primalStepDir.numNonzeroes(); k++)

if (proc->dxB_primalStepDir.rowIndex(k) == col_out)

break;

*t_primalStepLength = proc->x_B[col_out] / proc->dxB_primalStepDir.value(k);

/* this is inefficient - it should be fixed */

for (k = 0; k < proc->dyN_dualStepDir.numNonzeroes(); k++)

if (proc->dyN_dualStepDir.rowIndex(k) == col_in)

break;

*s_dualStepLength = proc->y_N[col_in] / proc->dyN_dualStepDir.value(k);

}

/***

* STEP 7: Set y = y - s dy *

* N N N *

* *

168 APPENDIX A. CODE

* y = s *

* i *

* *

* x = x - t dx *

* B B B *

* *

* x = t *

* j *

***/

void UPRHS_updatePrimalDualSolutions(IterationProcess * proc, int col_in, int
col_out, TYPE primalStepLength, TYPE dualStepLength) {

int i, j, k;

for (k = 0; k < proc->dyN_dualStepDir.numNonzeroes(); k++) {

j = proc->dyN_dualStepDir.rowIndex(k);

proc->y_N[j] -= dualStepLength * proc->dyN_dualStepDir.value(k);

}

proc->y_N[col_in] = dualStepLength;

for (k = 0; k < proc->dxB_primalStepDir.numNonzeroes(); k++) {

i = proc->dxB_primalStepDir.rowIndex(k);

proc->x_B[i] -= primalStepLength * proc->dxB_primalStepDir.value(k);

}

proc->x_B[col_out] = primalStepLength;

}

/***

* STEP 8: Update basis *

***/

void UPDATE_BASIS(IterationProcess * proc, int col_in, int col_out, int
callRefactor) {

int i, j;

i = proc->basics[col_out];

j = proc->nonbasics[col_in];

proc->basics[col_out] = j;

proc->nonbasics[col_in] = i;

proc->basicflag[i] = -col_in - 1;

proc->basicflag[j] = col_out;

//if (callRefactor)

//iterationProcess_refactor(proc, proc->basics, col_out);

}

void applyIncomingBasisChange(IterationProcess * proc, Message message) {

BasisChangePayload * payload = (BasisChangePayload*)message.payload;

int i;

printp("Applying incoming basis change: to %d", payload->fromBasis + 1);

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 169

assert(payload->fromBasis == proc->currentBasis);

proc->dxB_primalStepDir = payload->primalStepDirection;

proc->dyN_dualStepDir = payload->dualStepDirection;

for (i = 0; i < payload->etaFileSizeDiff; ++i) {

proc->etaFile.values.push_back(payload->newEtaFileValues.at(i));

proc->etaFile.rowIndices.push_back(payload->newEtaFileRowIndices.at(i));

}

proc->etaFile.size += payload->etaFileSizeDiff;

proc->etaFile.colPos.push_back(proc->etaFile.colPos.at(proc->etaFile.iter) +

payload->etaFileSizeDiff);

proc->etaFile.newColLocations.push_back(payload->leavingRow);

proc->etaFile.iter++;

UPDATE_BASIS(proc, payload->enteringCol, payload->leavingRow, 0);

UPRHS_updatePrimalDualSolutions(proc, payload->enteringCol, payload->

leavingRow, payload->primalStepLength, payload->dualStepLength);

++proc->currentBasis;

delete payload;

}

void applyIncomingBasisChanges(IterationProcess * proc) {

Message message;

while ((message = receiveMessageWithTag(proc->name, "I*", "I7->I2I3I10")).

sender) {

assert(!strcmp(message.tag, "I7->I2I3I10"));

applyIncomingBasisChange(proc, message);

}

}

// The eta file must be fully updated, including etaFile.iter, before this

function is called.

void broadcastBasisChange(IterationProcess * proc, int fromBasis, int col_in,

int col_out, int var_in, int var_out, TYPE primalStepLength, TYPE

dualStepLength) {

InvProcPivotPayload * invProcPayload = (InvProcPivotPayload*)malloc(sizeof(
InvProcPivotPayload)); // Will be free’d by InvProc

ColSelPivotPayload * colSelPayload = (ColSelPivotPayload*)malloc(sizeof(
ColSelPivotPayload)); // Will be free’d by ColSelProc

int i, j, k;

BasisChangePayload * basisChangePayload;

Message * messages = new Message[proc->numIterationProcesses - 1];

Message * message = messages;

for (i = 0; i < proc->numIterationProcesses; ++i) {

if (i == proc->index) continue;
basisChangePayload = new BasisChangePayload;

basisChangePayload->enteringCol = col_in;

basisChangePayload->leavingRow = col_out;

170 APPENDIX A. CODE

basisChangePayload->fromBasis = fromBasis;

basisChangePayload->primalStepLength = primalStepLength;

basisChangePayload->dualStepLength = dualStepLength;

basisChangePayload->primalStepDirection = proc->dxB_primalStepDir;

basisChangePayload->dualStepDirection = proc->dyN_dualStepDir;

basisChangePayload->etaFileSizeDiff = proc->etaFile.colPos.at(proc->

etaFile.iter) - proc->etaFile.colPos.at(proc->etaFile.iter - 1);

for (j = 0, k = proc->etaFile.colPos.at(proc->etaFile.iter - 1); j <

basisChangePayload->etaFileSizeDiff; ++j, ++k) {

basisChangePayload->newEtaFileValues.push_back(proc->etaFile.values.at(k

));

basisChangePayload->newEtaFileRowIndices.push_back(proc->etaFile.

rowIndices.at(k));

}

printp("Sending basis change message to I%d (fromBasis == %d)", i,

fromBasis);

message->sender = proc->name;

message->receiver = proc->iterationProcessNames[i];

message->tag = "I7->I2I3I10";

message->payload = basisChangePayload;

++message;

}

sendAll(messages, proc->numIterationProcesses - 1);

delete [] messages;

invProcPayload->enteringCol = col_in;

invProcPayload->leavingRow = col_out;

send(proc, "V", "I8->V1", invProcPayload);

colSelPayload->enteringVar = var_in;

colSelPayload->leavingVar = var_out;

colSelPayload->basisNumber = proc->currentBasis;

send(proc, "C", "I8->C1", colSelPayload);

}

void sendAttractiveCandidates(IterationProcess * proc, int basisNumber,

AttractiveCandidateVector * attractive) {

int i;

AttractiveCandidatesMessage * payload = new AttractiveCandidatesMessage;

payload->basisNumber = basisNumber;

for (i = 0; i < attractive->size; ++i) {

payload->attractiveVariables.push_back(getACV(*attractive, i).var);

//printp("%d is attractive", getACV(*attractive, i).col);

}

send(proc, "C", "I9->C2", payload);

}

void * runIterationProcess(void * parameters) {

IterationProcess proc = *(IterationProcess*)parameters;

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 171

SafeSparseVector tempVector;

int col_in; /* entering column; index in ’nonbasics’ */

int col_out; /* leaving column; index in ’basics’ */

int var_out;

int var_in;

int iter = 0; /* number of iterations */

int i, j, k, m, n, N;

TYPE s_dualStepLength, t_primalStepLength;

float primal_obj;

TYPE *x; /* primal solution (output) */

TYPE *y; /* dual solution (output) */

TYPE *w; /* primal slacks (output) */

TYPE *z; /* dual slacks (output) */

Message message;

InvProcPivotPayload * pivotPayload;

ChuzrOfferPayload * chuzrOfferPayload;

ChuzrAcceptancePayload * chuzrAcceptancePayload;

CandidateIsUnattractivePayload * unattractivePayload;

AttractiveCandidateVector attractive;

int keepGoing;

int finished;

int accepted;

seedRandomGeneratorForThisThread();

/***

* For convenience, we put...

***/

m = proc.A.rows;

N = proc.A.cols;

n = N - m;

print("m = %d, n = %d, N = %d, nz = %d", m, n, N, proc.A.numNonzeroes);

/***

* Read in the Data and initialize the common memory sites.

***/

proc.x_B.resize(m);

proc.dxB_primalStepDir.setRows(m);

172 APPENDIX A. CODE

proc.y_N.resize(n);

proc.dyN_dualStepDir.setRows(n);

tempVector.setRows(m);

proc.nonbasics.resize(n);

proc.basics.resize(m);

proc.basicflag.resize(N);

MALLOC(proc.AT.values, proc.A.numNonzeroes, TYPE);

MALLOC(proc.AT.rowIndices, proc.A.numNonzeroes, int);

MALLOC(proc.AT.colPos, m+1, int);

nullifySparseMatrix(&proc.AT);

initACV(&attractive);

/**

* Initialization. *

**/

transposeSparseMatrix(proc.A, &proc.AT);

for (j = 0; j < n; j++) {

proc.nonbasics[j] = j;

proc.basicflag[j] = -j - 1;

proc.y_N[j] = MAX(proc.c[j],1.0); /* to force dual feasibility */

proc.y_N[j] += drand48(); /* to ensure nondegeneracy */

}

for (i = 0; i < m; i++) {

proc.basics[i] = n + i;

proc.basicflag[n + i] = i;

proc.x_B[i] = proc.b[i];

}

//TODO: lufac was called here

iterationProcess_dbsolve(&proc, proc.x_B); /* could be done explicitly in

terms of bounds/ranges */

/**

* Begin Phase I (i.e., dual simplex method)

**/

CHUZC_findAttractiveCandidates(proc.basics, proc.x_B, &attractive);

if (proc.index < attractive.size) {

var_out = getACV(attractive, proc.index).var;

}

else {

var_out = -1;

}

/**

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 173

* Main loop *

**/

for (iter = 0; iter < MAX_ITER && !isProgramFinished(); iter++) {

print("iteration %d", iter);

// assert(iter == proc.currentBasis);

installNewInverse(&proc);

do {

keepGoing = 0;

finished = 0;

// Not sure we need to do basis change and FTRAN inside the loop; it

might suffice to do them outside

applyIncomingBasisChanges(&proc);

col_out = -1;

if (var_out != -1 && isBasic(var_out)) {//TODO: isNonbasic in phase II

col_out = columnForVariable(var_out);

print("var_out: %d, col_out: %d", var_out, col_out);

FTRAN_calculateDualStepDirection(&proc, col_out);

}

if (var_out == -1 || isNonbasic(var_out) /*TODO: isBasic in phase II*/

|| proc.x_B[col_out] > 0 /*TODO: y_N in phase II*/) { //TODO: > EPS

or <= -EPS ?

print("x%d is unattractive: col %d, basicflag %d, stepLength %f",

var_out, col_out, (var_out == -1 ? -1 : proc.basicflag[var_out]),

(col_out == -1 ? 0 : proc.x_B[col_out]));

unattractivePayload = (CandidateIsUnattractivePayload*)malloc(sizeof(
CandidateIsUnattractivePayload));

unattractivePayload->var = var_out;

unattractivePayload->basisNumber = proc.currentBasis;

send(&proc, "C", "I4->C4", unattractivePayload);

break; // After the loop, we wait for a new candidate

}

else {

print("x%d is attractive: col %d, basicflag %d, stepLength %f",

var_out, col_out, proc.basicflag[var_out], proc.x_B[col_out]);

}

chuzrOfferPayload = (ChuzrOfferPayload*)malloc(sizeof(ChuzrOfferPayload)
);

chuzrOfferPayload->basisNumber = proc.currentBasis;

send(&proc, "R", "I5->R1", chuzrOfferPayload);

while (!(message = receive("R")).sender) {

if (isProgramFinished()) {

pthread_exit(NULL);

return NULL;

}

sched_yield();

}

174 APPENDIX A. CODE

assert(streq(message.tag, "R2->I6") || streq(message.tag, "R3->I6"));

chuzrAcceptancePayload = (ChuzrAcceptancePayload*)message.payload;

accepted = chuzrAcceptancePayload->accepted;

free(chuzrAcceptancePayload);

if (accepted) {

col_in = CHUZR1_findLeaving_ratioTest(&proc, proc.dyN_dualStepDir,

proc.y_N);

if (col_in == -1) {

announceProgramFinished();

print("INFEASIBLE");

pthread_exit(NULL);

return NULL;/*TODO: return 2; INFEASIBLE */

}

var_in = proc.nonbasics[col_in]; //TODO: basics in PII

FTRAN_calculatePrimalStepDirection(&proc, col_in);

CHUZR2_calculateStepLengths(&proc, col_in, col_out, &

t_primalStepLength, &s_dualStepLength);

expandEtaFile(&proc, col_out);

broadcastBasisChange(&proc, proc.currentBasis, col_in, col_out, var_in

, var_out, t_primalStepLength, s_dualStepLength); //TODO: Be

careful - this is different in the two phases!

UPRHS_updatePrimalDualSolutions(&proc, col_in, col_out,

t_primalStepLength, s_dualStepLength);

UPDATE_BASIS(&proc, col_in, col_out, 1);

++proc.currentBasis;

primal_obj = iterationProcess_recalculateObjectiveValues(proc.c, proc.

x_B, proc.basics) + proc.f;

print("Basis %d:\t%14.7e", iter, high(primal_obj));

if (proc.currentBasis % 100 == 0) {

printf("Basis %d:\t%14.7e\n", proc.currentBasis, high(primal_obj));

fflush(stdout);

}

CHUZC_findAttractiveCandidates(proc.basics, proc.x_B, &attractive);

if (attractive.size == 0) {

finished = 1;

break; /* ready for Phase II */ //TODO: How to notify the others?

}

//col_out = getACV(attractive, 0).col;

sendAttractiveCandidates(&proc, proc.currentBasis, &attractive);

}

else { //Not accepted

while (!(message = receiveWithTag("I*", "I7->I2I3I10")).sender) {

if (isProgramFinished()) {

pthread_exit(NULL);

return NULL;

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 175

}

sched_yield();

}

assert(streq(message.tag, "I7->I2I3I10"));

applyIncomingBasisChange(&proc, message);

keepGoing = 1;

}

} while (keepGoing);

if (finished)

break;

while (!(message = receive("C")).sender) {

if (isProgramFinished()) {

pthread_exit(NULL);

return NULL;

}

sched_yield();

}

assert(streq(message.tag, "C3->I11") || streq(message.tag, "C5->I11"));

applyIncomingBasisChanges(&proc);

var_out = *(int*)message.payload;
free(message.payload);

print("got suggested entering variable: x%d", var_out);

} /* Phase I loop */

print("End of Phase I");

if (announceProgramFinished()) {

pthread_exit(NULL);

return NULL;

}

printf("Phase I solution at basis %d: %14.7e\n", proc.currentBasis, high(

primal_obj));

// At the current stage of development, we are at the point where Phase I ’

almost’ works (except for a few threading glitches).

// Therefore, we have been experimenting with continuing with Phaase II, but

we are unsure of how all threads should get there properly, not just

the thread that discovers that Phase I is over.

// The above construct will make sure that only one of the threads reaches

this point.

// We have added these two lines in order to shut the program down after

Phase I so that we can perform some timing measurements.

pthread_exit(NULL);

return NULL;

/**

* Restore objective function by setting *

* -1 T *

176 APPENDIX A. CODE

* y = (B N) c - c *

* N B N *

**/

tempVector.clear();

for (i = 0; i < m; i++) {

if (ABS(proc.c[proc.basics[i]]) > ITERATION_EPS) {

tempVector.append(proc.c[proc.basics[i]], i);

}

}

iterationProcess_solveTransposeUsingLU(&proc, &tempVector);

iterationProcess_Nt_times_y(&proc, proc.AT, proc.basicflag, tempVector, proc

.dyN_dualStepDir); // Use dyN_dualStepDir temporarily (this is not the

way it is normally used)

for (j = 0; j < n; j++)

proc.y_N[j] = -proc.c[proc.nonbasics[j]];

for (k = 0; k < proc.dyN_dualStepDir.numNonzeroes(); k++) {

j = proc.dyN_dualStepDir.rowIndex(k);

proc.y_N[j] += proc.dyN_dualStepDir.value(k);

}

/**

* Begin Phase II (I.e., primal simplex method) *

**/

for (; iter < MAX_ITER; iter++) {

primal_obj = iterationProcess_recalculateObjectiveValues(proc.c, proc.x_B,

proc.basics) + proc.f;

print("Iteration %d:\t%14.7e", iter, high(primal_obj));

CHUZC_findAttractiveCandidates(proc.nonbasics, proc.y_N, &attractive);

if (attractive.size == 0)

break; /* optimal */

var_in = getACV(attractive, 0).var;

col_in = columnForVariable(var_in);

installNewInverse(&proc);

FTRAN_calculatePrimalStepDirection(&proc, col_in);

col_out = CHUZR1_findLeaving_ratioTest(&proc, proc.dxB_primalStepDir, proc

.x_B);

if (col_out == -1) {

announceProgramFinished();

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 177

print("UNBOUNDED");

pthread_exit(NULL);

return NULL; /* return 1; UNBOUNDED */

}

var_out = proc.basics[col_out];

//TODO: Just for testing messaging w/ InvProc

pivotPayload = (InvProcPivotPayload*)malloc(sizeof(InvProcPivotPayload));
// Will be free’d by InvProc

pivotPayload->enteringCol = col_in;

pivotPayload->leavingRow = col_out;

send(&proc, "V", "I8->V1", pivotPayload);

FTRAN_calculateDualStepDirection(&proc, col_out);

CHUZR2_calculateStepLengths(&proc, col_in, col_out, &t_primalStepLength, &

s_dualStepLength);

expandEtaFile(&proc, col_out);

UPRHS_updatePrimalDualSolutions(&proc, col_in, col_out, t_primalStepLength

, s_dualStepLength);

UPDATE_BASIS(&proc, col_in, col_out, 1);

} /* End of Phase II */

primal_obj = iterationProcess_recalculateObjectiveValues(proc.c, proc.x_B,

proc.basics) + proc.f;

print("%8d %14.7e NA ", iter, high(primal_obj));

print("End of Phase II \n");

printf("Iterations: %d\nOptimal solution: %14.7e\n", iter, high(primal_obj))

;

/**

* Transcribe solution to x vector and dual solution to y *

**/

x = (TYPE*)malloc(N * sizeof(TYPE));
for (j = 0; j < N; j++)

x[j] = 0.0;

for (i = 0; i < m; i++)

x[proc.basics[i]] = proc.x_B[i];

//printTypeArray(x, N);

y = (TYPE*)malloc(N * sizeof(TYPE));
for (j = 0; j < N; j++)

178 APPENDIX A. CODE

y[j] = 0.0;

for (i = 0; i < n; i++)

y[proc.nonbasics[i]] = proc.y_N[i];

/**

* Split out slack variables and shift dual variables.

**/

z = (TYPE*)malloc(n * sizeof(TYPE));
for (j = 0; j < n; j++)

z[j] = y[j];

w = (TYPE*)malloc(m * sizeof(TYPE));
for (i = 0; i < m; i++) {

y[i] = y[n + i];

w[i] = x[n + i];

}

announceProgramFinished();

print("OPTIMAL");

pthread_exit(NULL);

return NULL;

}

/*---+

| Forward/backward solve using LU factorization |

| Input: |

| m dimension of array y |

| y array containing right-hand side |

| |

| static global variables (assumed setup by lufac()): |

| |

| rank rank of B |

| L.colPos, L.rowIndices, L, three array sparse representation of L

|

| UT.colPos,UT.rowIndices,UT.values three array sparse representation of U

transpose |

| without its diagonal |

| diagU diagonal entries of U |

| colPerm, invColPerm, rowPerm, invRowPerm |

| column and row permutations and their inverses |

| Output: |

| -1 |

| y array containing solution B y |

| |

| integer flag indicating whether system is consistent |

+---*/

// Will update the eta file based on col_out.

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 179

static int iterationProcess_solveUsingLU(IterationProcess * proc,

SafeSparseVector * y) {

int i;

int k, row, consistent = TRUE;

TYPE beta;

TYPE eps;

double starttime, endtime;

Tree tree = {NULL, NULL};

starttime = (double) clock();

for (k = 0; k < y->numNonzeroes(); k++) {

i = proc->factoredInverse.invRowPerm.at(y->rowIndex(k));

proc->internalData_SolveUsingLU.yInternal[i] = y->value(k);

proc->internalData_SolveUsingLU.tagInternal[i] = proc->

internalData_SolveUsingLU.currtagInternal;

addtree(&tree, i);

}

if (proc->factoredInverse.rank < y->numRows())

eps = EPSSOL * y->maxValue();

/*--+

| -1 |

| y <- L y */

for (i = getfirst(&tree); i < proc->factoredInverse.rank && i != -1; i =

getnext(&tree)) {

beta = proc->internalData_SolveUsingLU.yInternal[i];

for (k = proc->factoredInverse.L.colPos[i]; k < proc->factoredInverse.L.

colPos[i + 1]; k++) {

row = proc->factoredInverse.L.rowIndices[k];

if (proc->internalData_SolveUsingLU.tagInternal[row] != proc->

internalData_SolveUsingLU.currtagInternal) {

proc->internalData_SolveUsingLU.yInternal[row] = 0.0;

proc->internalData_SolveUsingLU.tagInternal[row] = proc->

internalData_SolveUsingLU.currtagInternal;

addtree(&tree, row);

}

proc->internalData_SolveUsingLU.yInternal[row] -= proc->factoredInverse.

L.values[k] * beta;

}

}

/*--+

180 APPENDIX A. CODE

| -1 |

| y <- U y */

for (i = getlast(&tree); i >= proc->factoredInverse.rank && i != -1; i =

getprev(&tree)) {

if (ABS(proc->internalData_SolveUsingLU.yInternal[i]) > eps)

consistent = FALSE;

proc->internalData_SolveUsingLU.yInternal[i] = 0.0;

}

for (; i >= 0; i = getprev(&tree)) {

beta = proc->internalData_SolveUsingLU.yInternal[i] / proc->

factoredInverse.diagU[i];

for (k = proc->factoredInverse.U.colPos[i]; k < proc->factoredInverse.U.

colPos[i + 1]; k++) {

row = proc->factoredInverse.U.rowIndices[k];

if (proc->internalData_SolveUsingLU.tagInternal[row] != proc->

internalData_SolveUsingLU.currtagInternal) {

proc->internalData_SolveUsingLU.yInternal[row] = 0.0;

proc->internalData_SolveUsingLU.tagInternal[row] = proc->

internalData_SolveUsingLU.currtagInternal;

addtree(&tree, row);

}

proc->internalData_SolveUsingLU.yInternal[row] -= proc->factoredInverse.

U.values[k] * beta;

}

proc->internalData_SolveUsingLU.yInternal[i] = beta;

}

y->clear();

for (i = getfirst(&tree); i != -1; i = getnext(&tree)) {

if (ABS(proc->internalData_SolveUsingLU.yInternal[i]) > SOLVE_USING_LU_EPS

) {

y->append(proc->internalData_SolveUsingLU.yInternal[i], proc->

factoredInverse.colPerm.at(i));

}

}

proc->internalData_SolveUsingLU.currtagInternal++;

killtree(&tree);

iterationProcess_Gauss_Eta(proc, *y);

/***

* Update etaFile.values and save col_out in etaFile.newColLocations[etaFile

.iter] *

***/

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 181

printp("solveUsingLU is modifying eta file");

for (i = 0, k = proc->etaFile.colPos.at(proc->etaFile.iter); i < y->

numNonzeroes(); i++, k++) {

proc->etaFile.values.push_back(y->value(i));

proc->etaFile.rowIndices.push_back(y->rowIndex(i));

}

proc->etaFile.size = k;

proc->etaFile.colPos.push_back(k);

endtime = (double) clock();

proc->cumtime += endtime - starttime;

return consistent;

}

/*---+

| Forward/backward solve using LU factorization |

| Input: |

| y->rows dimension of array y |

| y array containing right-hand side |

| |

| static global variables (assumed setup by lufac()): |

| |

| rank rank of B |

| L.colPos, L.rowIndices, L, three array sparse representation of L

|

| UT.colPos,UT.rowIndices,UT.values three array sparse representation of U

transpose |

| without its diagonal |

| diagU diagonal entries of U |

| colPerm, invColPerm, rowPerm, invRowPerm |

| column and row permutations and their inverses |

| Output: |

| -T |

| y array containing solution B y |

| |

| integer flag indicating whether system is consistent */

static int iterationProcess_solveTransposeUsingLU(IterationProcess * proc,

SafeSparseVector * y) {

int i;

int k, row, consistent = TRUE;

TYPE beta;

TYPE eps;

182 APPENDIX A. CODE

double starttime, endtime;

Tree tree = {NULL, NULL};

starttime = (double) clock();

iterationProcess_Gauss_Eta_T(proc, *y);

for (k = 0; k < y->numNonzeroes(); k++) {

i = proc->factoredInverse.invColPerm.at(y->rowIndex(k));

proc->internalData_SolveTransposeUsingLU.yInternal[i] = y->value(k);

proc->internalData_SolveTransposeUsingLU.tagInternal[i] = proc->

internalData_SolveTransposeUsingLU.currtagInternal;

addtree(&tree, i);

}

if (proc->factoredInverse.rank < y->numRows())

eps = EPSSOL * y->maxValue();

/*--+

| -T |

| y <- U y */

for (i = getfirst(&tree); i < proc->factoredInverse.rank && i != -1; i =

getnext(&tree)) {

beta = proc->internalData_SolveTransposeUsingLU.yInternal[i] / proc->

factoredInverse.diagU[i];

for (k = proc->factoredInverse.UT.colPos[i]; k < proc->factoredInverse.UT.

colPos[i + 1]; k++) {

row = proc->factoredInverse.UT.rowIndices[k];

if (proc->internalData_SolveTransposeUsingLU.tagInternal[row] != proc->

internalData_SolveTransposeUsingLU.currtagInternal) {

proc->internalData_SolveTransposeUsingLU.yInternal[row] = 0.0;

proc->internalData_SolveTransposeUsingLU.tagInternal[row] = proc->

internalData_SolveTransposeUsingLU.currtagInternal;

addtree(&tree, row);

}

proc->internalData_SolveTransposeUsingLU.yInternal[row] -= proc->

factoredInverse.UT.values[k] * beta;

}

proc->internalData_SolveTransposeUsingLU.yInternal[i] = beta;

}

for (i = getlast(&tree); i >= proc->factoredInverse.rank && i != -1; i =

getprev(&tree)) {

if (ABS(proc->internalData_SolveTransposeUsingLU.yInternal[i]) > eps)

consistent = FALSE;

proc->internalData_SolveTransposeUsingLU.yInternal[i] = 0.0;

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 183

}

/*--+

| -T |

| y <- L y */

for (; i >= 0; i = getprev(&tree)) {

beta = proc->internalData_SolveTransposeUsingLU.yInternal[i];

for (k = proc->factoredInverse.LT.colPos[i]; k < proc->factoredInverse.LT.

colPos[i + 1]; k++) {

row = proc->factoredInverse.LT.rowIndices[k];

if (proc->internalData_SolveTransposeUsingLU.tagInternal[row] != proc->

internalData_SolveTransposeUsingLU.currtagInternal) {

proc->internalData_SolveTransposeUsingLU.yInternal[row] = 0.0;

proc->internalData_SolveTransposeUsingLU.tagInternal[row] = proc->

internalData_SolveTransposeUsingLU.currtagInternal;

addtree(&tree, row);

}

proc->internalData_SolveTransposeUsingLU.yInternal[row] -= proc->

factoredInverse.LT.values[k] * beta;

}

}

y->clear();

for (i = getfirst(&tree); i != -1; i = getnext(&tree)) {

if (ABS(proc->internalData_SolveTransposeUsingLU.yInternal[i]) >

SOLVE_USING_LU_EPS) {

y->append(proc->internalData_SolveTransposeUsingLU.yInternal[i], proc->

factoredInverse.rowPerm.at(i));

}

}

proc->internalData_SolveTransposeUsingLU.currtagInternal++;

killtree(&tree);

endtime = (double) clock();

proc->cumtime += endtime - starttime;

return consistent;

}

/*
static void iterationProcess_lu_clo(IterationProcess * proc) {

freeIV(&proc->factoredInverse.rowPerm);

freeIV(&proc->factoredInverse.invRowPerm);

freeIV(&proc->factoredInverse.colPerm);

freeIV(&proc->factoredInverse.invColPerm);

184 APPENDIX A. CODE

FREE(proc->factoredInverse.L.values);

FREE(proc->factoredInverse.L.rowIndices);

FREE(proc->factoredInverse.L.colPos);

FREE(proc->factoredInverse.UT.values);

FREE(proc->factoredInverse.UT.rowIndices);

FREE(proc->factoredInverse.UT.colPos);

FREE(proc->factoredInverse.diagU);

freeIV(&proc->etaFile.newColLocations);

freeTV(&proc->etaFile.values);

freeIV(&proc->etaFile.rowIndices);

freeIV(&proc->etaFile.colPos);

}

*/

/*---+

| Forward/backward solve using LU factorization |

| Input: |

| m dimension of array y |

| y array containing right-hand side |

| |

| static global variables (assumed setup by lufac()): |

| |

| rank rank of B |

| L.colPos, L.rowIndices, L.values, three array sparse representation of L

.values |

| UT.colPos,UT.rowIndices,UT.values three array sparse representation of U

transpose |

| without its diagonal |

| diagU diagonal entries of U |

| colPerm, invColPerm, rowPerm, invRowPerm |

| column and row permutations and their inverses |

| Output: |

| -1 |

| y array containing solution B y |

| |

| integer flag indicating whether system is consistent */

static int iterationProcess_dbsolve(IterationProcess * proc, SafeVector<TYPE>

& y) {

int i;

int k, row, consistent = TRUE;

TYPE beta, *dwork;

TYPE eps;

int m = y.size();

double starttime, endtime;

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 185

starttime = (double) clock();

MALLOC (dwork,m,TYPE);

if (proc->factoredInverse.rank < m)

eps = EPSSOL * maxv(y);

for (i = 0; i < m; i++)

dwork[i] = y[i];

for (i = 0; i < m; i++)

y[proc->factoredInverse.invRowPerm.at(i)] = dwork[i];

/*--+

| -1 |

| y <- L y */

for (i = 0; i < proc->factoredInverse.rank; i++) {

beta = y[i];

for (k = proc->factoredInverse.L.colPos[i]; k < proc->factoredInverse.L.

colPos[i + 1]; k++) {

row = proc->factoredInverse.L.rowIndices[k];

y[row] -= proc->factoredInverse.L.values[k] * beta;

}

}

/*--+

| -1 |

| y <- U y */

for (i = m - 1; i >= proc->factoredInverse.rank; i--) {

if (ABS(y[i]) > eps)

consistent = FALSE;

y[i] = 0.0;

}

for (i = proc->factoredInverse.rank - 1; i >= 0; i--) {

beta = y[i];

for (k = proc->factoredInverse.UT.colPos[i]; k < proc->factoredInverse.UT.

colPos[i + 1]; k++) {

beta -= proc->factoredInverse.UT.values[k] * y[proc->factoredInverse.UT.

rowIndices[k]];

}

y[i] = beta / proc->factoredInverse.diagU[i];

}

for (i = 0; i < m; i++)

dwork[i] = y[i];

for (i = 0; i < m; i++)

y[proc->factoredInverse.colPerm.at(i)] = dwork[i];

186 APPENDIX A. CODE

FREE(dwork);

endtime = (double) clock();

proc->cumtime += endtime - starttime;

return consistent;

}

static void iterationProcess_Gauss_Eta(IterationProcess * proc,

SafeSparseVector & dx_B) {

int i, j, k, col, kcol, ii;

TYPE temp;

if (proc->etaFile.iter <= 0) {

printp("Gauss_Eta is returning due to empty eta file");

return;
}

ii = -1;

for (k = 0; k < dx_B.numNonzeroes(); k++) {

i = dx_B.rowIndex(k);

proc->internalData_Gauss_Eta.a[i] = dx_B.value(k);

proc->internalData_Gauss_Eta.tag[i] = proc->internalData_Gauss_Eta.currtag

;

proc->internalData_Gauss_Eta.link[ii] = i;

ii = i;

}

printp("Gauss_Eta is reading eta file");

for (j = 0; j < proc->etaFile.iter; j++) {

assert(proc->etaFile.colPos.at(j) < proc->etaFile.colPos.at(j + 1));

col = proc->etaFile.newColLocations.at(j);

for (k = proc->etaFile.colPos.at(j); k < proc->etaFile.colPos.at(j + 1); k

++) {

i = proc->etaFile.rowIndices.at(k);

if (proc->internalData_Gauss_Eta.tag[i] != proc->internalData_Gauss_Eta.

currtag) {

proc->internalData_Gauss_Eta.a[i] = 0.0;

proc->internalData_Gauss_Eta.tag[i] = proc->internalData_Gauss_Eta.

currtag;

proc->internalData_Gauss_Eta.link[ii] = i;

ii = i;

}

if (i == col)

kcol = k;

}

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 187

temp = proc->internalData_Gauss_Eta.a[col] / proc->etaFile.values.at(kcol)

;

if (temp != 0.0) {

for (k = proc->etaFile.colPos.at(j); k < kcol; k++) {

i = proc->etaFile.rowIndices.at(k);

proc->internalData_Gauss_Eta.a[i] -= proc->etaFile.values.at(k) * temp

;

}

proc->internalData_Gauss_Eta.a[col] = temp;

for (k = kcol + 1; k < proc->etaFile.colPos.at(j + 1); k++) {

i = proc->etaFile.rowIndices.at(k);

proc->internalData_Gauss_Eta.a[i] -= proc->etaFile.values.at(k) * temp

;

}

}

}

proc->internalData_Gauss_Eta.link[ii] = dx_B.numRows();

proc->internalData_Gauss_Eta.currtag++;

dx_B.clear();

for (i = proc->internalData_Gauss_Eta.link[-1]; i < dx_B.numRows(); i = proc

->internalData_Gauss_Eta.link[i]) {

if (ABS(proc->internalData_Gauss_Eta.a[i]) > GAUSS_ETA_EPS) {

dx_B.append(proc->internalData_Gauss_Eta.a[i], i);

}

}

}

/***

* Gaussian elimination for Eta transformations which will solve *

* each system B y = c for y *

***/

static void iterationProcess_Gauss_Eta_T(IterationProcess * proc,

SafeSparseVector & vec) {

int i = -1, j, k, kk = -1, kkk = -1, col;

TYPE temp;

//printp("Gauss_Eta_T is reading eta file");

for (j = proc->etaFile.iter - 1; j >= 0; j--) {

col = proc->etaFile.newColLocations.at(j);

for (k = 0; k < vec.numNonzeroes(); k++) {

i = vec.rowIndex(k);

if (i == col)

kk = k;

188 APPENDIX A. CODE

proc->internalData_Gauss_Eta_T.a[i] = vec.value(k);

proc->internalData_Gauss_Eta_T.tag[i] = proc->internalData_Gauss_Eta_T.

currtag;

}

if (proc->internalData_Gauss_Eta_T.tag[col] != proc->

internalData_Gauss_Eta_T.currtag) {

kk = vec.numNonzeroes();

vec.append(0.0, col);

proc->internalData_Gauss_Eta_T.a[col] = 0.0;

proc->internalData_Gauss_Eta_T.tag[col] = proc->internalData_Gauss_Eta_T

.currtag;

}

temp = vec.value(kk);

for (k = proc->etaFile.colPos.at(j); k < proc->etaFile.colPos.at(j + 1); k

++) {

i = proc->etaFile.rowIndices.at(k);

if (i == col)

kkk = k;

if (proc->internalData_Gauss_Eta_T.tag[i] == proc->

internalData_Gauss_Eta_T.currtag) {

if (i != col) {

temp -= proc->etaFile.values.at(k) * proc->internalData_Gauss_Eta_T.

a[i];

}

}

}

proc->internalData_Gauss_Eta_T.currtag++;

vec.value(kk) = temp / proc->etaFile.values.at(kkk);

}

}

static void iterationProcess_Nt_times_y(IterationProcess * proc, SparseMatrix

AT, const SafeVector<int> & basicflag, const SafeSparseVector & y,

SafeSparseVector & yN) {

int i, j, jj, k, kk;

jj = -1;

for (k = 0; k < y.numNonzeroes(); k++) {

i = y.rowIndex(k);

for (kk = AT.colPos[i]; kk < AT.colPos[i + 1]; kk++) {

j = AT.rowIndices[kk];

if (basicflag.at(j) < 0) {

if (proc->internalData_Nt_times_y.tag[j] != proc->

internalData_Nt_times_y.currtag) {

proc->internalData_Nt_times_y.a[j] = 0.0;

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 189

proc->internalData_Nt_times_y.tag[j] = proc->internalData_Nt_times_y

.currtag;

proc->internalData_Nt_times_y.link[jj] = j;

jj = j;

}

proc->internalData_Nt_times_y.a[j] += y.value(k) * AT.values[kk];

}

}

}

proc->internalData_Nt_times_y.link[jj] = AT.rows;

proc->internalData_Nt_times_y.currtag++;

yN.clear();

for (jj = proc->internalData_Nt_times_y.link[-1]; jj < AT.rows; jj = proc->

internalData_Nt_times_y.link[jj]) {

if (ABS(proc->internalData_Nt_times_y.a[jj]) > EPS_MATRIX) {

yN.append(proc->internalData_Nt_times_y.a[jj], columnForVariableP(jj));

}

}

}

/***

* STEP 3: Ratio test to find leaving column *

***/

static int CHUZR1_findLeaving_ratioTest(IterationProcess * proc, const
SafeSparseVector & dy, const SafeVector<TYPE> & y) {

int j, jj = -1, k;

TYPE min = HUGE_VAL;

//printp("ratio test");

//printRawSparseVector(dy);

for (k = 0; k < dy.numNonzeroes(); k++) {

if (dy.value(k) > RATIO_TEST_ETA) {

j = dy.rowIndex(k);

if (y[j] / dy.value(k) < min) {

min = y[j] / dy.value(k);

jj = j;

}

}

}

return jj;

}

static TYPE iterationProcess_recalculateObjectiveValues(const SafeVector<TYPE>

& c, const SafeVector<TYPE> & x_B, const SafeVector<int> & basics) {

int i;

TYPE prod = 0.0;

190 APPENDIX A. CODE

for (i = 0; i < x_B.size(); i++) {

prod += c[basics[i]] * x_B[i];

}

return prod;

}

static int compareAttractiveCandidates(const void * a, const void * b) {

const AttractiveCandidate * candA = (const AttractiveCandidate *)a;

const AttractiveCandidate * candB = (const AttractiveCandidate *)b;

if (candA->value < candB->value)

return -1;

else if (candA->value > candB->value)

return 1;

else
return 0;

}

/*

* STEP 1: Pick most negative nonbasic (primal or dual, depending on the

parameters) *

* ’attractive’ is assumed to be initialised.

*/

static void CHUZC_findAttractiveCandidates(const SafeVector<int> &

columnToVariableMapping, const SafeVector<TYPE> & x,

AttractiveCandidateVector * attractive) {

int i;

TYPE best = x[0];

attractive->size = 0;

for (i = 0; i < x.size(); i++) {

if (x[i] < best) {

best = x[i];

}

if (x[i] < -PICK_NEG_EPS) {

AttractiveCandidate cand;

cand.var = columnToVariableMapping[i];

cand.value = x[i];

appendACV(attractive, cand);

}

}

//printf("best candidate: %e\n", best);fflush(stdout);

qsort(attractive->array, attractive->size, sizeof(AttractiveCandidate),
compareAttractiveCandidates);

}

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 191

simpo/payloadtypes.h

#ifndef PAYLOADTYPES_H

#define PAYLOADTYPES_H

#include "../common/genericvectors.h"

#include "sparse.h"

#include <vector>

typedef struct {

int leavingRow;

int enteringCol;

} InvProcPivotPayload;

typedef struct {

int leavingVar;

int enteringVar;

int basisNumber;

} ColSelPivotPayload;

typedef struct {

int basisNumber;

std::vector<int> attractiveVariables;

} AttractiveCandidatesMessage;

typedef struct {

int var;

int basisNumber;

} CandidateIsUnattractivePayload;

typedef struct {

int basisNumber;

} ChuzrOfferPayload;

typedef struct {

int accepted;

} ChuzrAcceptancePayload;

typedef struct {

int leavingRow;

int enteringCol;

int fromBasis;

SafeSparseVector primalStepDirection;

SafeSparseVector dualStepDirection;

TYPE primalStepLength;

TYPE dualStepLength;

std::vector<TYPE> newEtaFileValues;

192 APPENDIX A. CODE

std::vector<int> newEtaFileRowIndices;

int etaFileSizeDiff;

} BasisChangePayload;

#endif

simpo/print.h and simpo/print.c

#ifndef PRINT_H

#define PRINT_H

#include <stdio.h>

#include <stdarg.h>

void initPrintFromProcess();

void printFromProcess(const char * processName, const char * formatString,

...);

#endif

#include "print.h"

#include <pthread.h>

#include <stdarg.h>

static pthread_mutex_t printLock;

void initPrintFromProcess() {

pthread_mutex_init(&printLock, NULL);

}

// If processName is NULL, no prefix will be printed

void printFromProcess(const char * processName, const char * formatString,

...) {

va_list args;

pthread_mutex_lock(&printLock);

if (processName)

printf("%s: ", processName);

va_start(args, formatString);

vprintf(formatString, args);

va_end(args);

printf("\n");

fflush(stdout);

pthread_mutex_unlock(&printLock);

}

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 193

simpo/sparse.h and simpo/sparse.c

#ifndef SPARSE_H

#define SPARSE_H

#include <string.h>

#include <vector>

typedef struct {

int rows;

int cols;

int numNonzeroes;

int * rowIndices;

int * colPos;

TYPE * values;

} SparseMatrix;

typedef struct {

int rows;

int numNonzeroes;

int * rowIndices;

TYPE * values;

} SparseVector;

class SafeSparseVector {

private:
int rows;

std::vector<int> rowIndices;

std::vector<TYPE> values;

public:
int numNonzeroes() const {

return values.size();

}

int numRows() const {

return rows;

}

void resize(int size) {

rowIndices.resize(size);

values.resize(size);

}

void setRows(int rows) {

this->rows = rows;

}

void clear() {

rowIndices.clear();

values.clear();

}

194 APPENDIX A. CODE

void append(TYPE value, int rowIndex) {

values.push_back(value);

rowIndices.push_back(rowIndex);

}

TYPE & value(int i) {

return values.at(i);

}

TYPE value(int i) const {

return values.at(i);

}

int & rowIndex(int i) {

return rowIndices.at(i);

}

int rowIndex(int i) const {

return rowIndices.at(i);

}

TYPE maxValue() const;
};

void nullifySparseMatrix(SparseMatrix * matrix);

void makeZeroSparseMatrix(SparseMatrix * matrix, int rows, int cols);

void allocateAndCopyArray(const void * source, void ** destination, int
numElements, size_t elementSize);

void copySparseMatrix(SparseMatrix source, SparseMatrix * destination);

void copySparseVector(SparseVector source, SparseVector * destination);

void nullifySparseVector(SparseVector * vector);

void printRawSparseMatrix(SparseMatrix matrix);

void printRawSparseVector(SparseVector vector);

void printTypeArray(TYPE * array, int size);

void printIntArray(int * array, int size);

//void initSparseMatrix(SparseMatrix * matrix, int rows, int cols);

void initSparseVector(SparseVector * vector, int rows);

void freeSparseMatrix(SparseMatrix * matrix);

void freeSparseVector(SparseVector * vector);

template<typename T>

class SafeVector : public std::vector<T> {

public:
T & operator [] (int index) {

return this->at(index);
}

T operator [] (int index) const {

return this->at(index);
}

};

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 195

#endif

#include "sparse.h"

#include "../common/linalg.h"

#include <stdlib.h>

#include <stdio.h>

void nullifySparseMatrix(SparseMatrix * matrix) {

matrix->rows = 0;

matrix->cols = 0;

matrix->numNonzeroes = 0;

matrix->rowIndices = NULL;

matrix->colPos = NULL;

matrix->values = NULL;

}

void makeZeroSparseMatrix(SparseMatrix * matrix, int rows, int cols) {

matrix->rows = rows;

matrix->cols = cols;

matrix->numNonzeroes = 0;

matrix->rowIndices = (int*)malloc(0);
matrix->values = (TYPE*)malloc(0);

matrix->colPos = (int*)malloc((cols + 1) * sizeof(int));
memset(matrix->colPos, 0, (cols + 1) * sizeof(int));

}

void nullifySparseVector(SparseVector * vector) {

vector->rows = 0;

vector->numNonzeroes = 0;

vector->rowIndices = NULL;

vector->values = NULL;

}

// does not free destination

void allocateAndCopyArray(const void * source, void ** destination, int
numElements, size_t elementSize) {

*destination = malloc(numElements * elementSize);

memcpy(*destination, source, numElements * elementSize);

}

void copySparseMatrix(SparseMatrix source, SparseMatrix * destination) {

destination->rows = source.rows;

destination->cols = source.cols;

destination->numNonzeroes = source.numNonzeroes;

allocateAndCopyArray(source.rowIndices, (void**)&destination->rowIndices,
source.numNonzeroes, sizeof(int)); //TODO: Are we guaranteed this size?

allocateAndCopyArray(source.colPos, (void**)&destination->colPos, (source.

196 APPENDIX A. CODE

cols + 1), sizeof(int));
allocateAndCopyArray(source.values, (void**)&destination->values, source.

numNonzeroes, sizeof(TYPE));
}

void copySparseVector(SparseVector source, SparseVector * destination) {

destination->rows = source.rows;

destination->numNonzeroes = source.numNonzeroes;

//TODO: Allocate ’rows’, but only copy ’numNonzeroes’

allocateAndCopyArray(source.rowIndices, (void**)&destination->rowIndices,
source.rows, sizeof(int)); //TODO: Are we guaranteed this size?

allocateAndCopyArray(source.values, (void**)&destination->values, source.

rows, sizeof(TYPE));
}

void printRawSparseMatrix(SparseMatrix matrix) {

int i;

fflush(stdout);

printf("%d x %d (%d):\n", matrix.rows, matrix.cols, matrix.numNonzeroes);

for (i = 0; i < matrix.cols + 1; ++i)

printf("%d ", matrix.colPos[i]);

printf("\n");

for (i = 0; i < matrix.numNonzeroes; ++i)

printf("%d:%e ", matrix.rowIndices[i], matrix.values[i]);

printf("\n");

fflush(stdout);

}

void printRawSparseVector(SparseVector vector) {

int i;

fflush(stdout);

printf("%d (%d):", vector.rows, vector.numNonzeroes);

for (i = 0; i < vector.numNonzeroes; ++i)

printf(" %d:%e", vector.rowIndices[i], vector.values[i]);

printf("\n");

fflush(stdout);

}

void printTypeArray(TYPE * array, int size) {

int i;

fflush(stdout);

printf("%d:", size);

for (i = 0; i < size; ++i) {

printf(" %e", array[i]);

}

printf("\n");

fflush(stdout);

A.3. ASYNPLEX FOR X86, BASED ON VANDERBEI 197

}

void printIntArray(int * array, int size) {

int i;

fflush(stdout);

printf("%d:", size);

for (i = 0; i < size; ++i) {

printf(" %d", array[i]);

}

printf("\n");

fflush(stdout);

}

/*
void initSparseMatrix(SparseMatrix * matrix, int rows, int cols) {

matrix->rows = rows;

matrix->cols = cols;

matrix->numNonzeroes = 0;

matrix->rowIndices = NULL;

matrix->colPos = NULL;

matrix->values = NULL;

}

*/

void initSparseVector(SparseVector * vector, int rows) {

vector->numNonzeroes = 0;

vector->rowIndices = (int*)malloc(sizeof(int) * rows);

vector->rows = rows;

vector->values = (TYPE*)malloc(sizeof(TYPE) * rows);

}

void freeSparseMatrix(SparseMatrix * matrix) {

free(matrix->colPos);

free(matrix->rowIndices);

free(matrix->values);

nullifySparseMatrix(matrix);

}

void freeSparseVector(SparseVector * vector) {

free(vector->rowIndices);

free(vector->values);

nullifySparseVector(vector);

}

TYPE SafeSparseVector::maxValue() const {

return maxv(values);

198 APPENDIX A. CODE

}

A.4 ASYNPLEX for Cell/BE, based on Vanderbei

We only list a few files that highlight the inner workings of our CML RPC-based communication
systems. Most of the other files are very similar to the x86 version. The complete source code can
be found in the attachment.

common/message.h

Message structure for RPC messages (contrasted to the old x86 message structure).

#ifndef MESSAGE_H

#define MESSAGE_H

typedef struct {

const char * sender;

const char * receiver;

const char * tag;

void * payload;

} Message;

typedef struct {

int sender; // Rank / SPE index (0-7) of sender

int receiver; // Rank / SPE index (0-7) of receiver

int tag; // Arbitrary nonnegative integer (not limited like CML’s tags)

int payloadSize; // Size (in bytes) of ’payload’ buffer

void * payload; // The entire RPC buffer - expected to contain FIRST

sender+receiver+tag+payloadSize, and THEN the actual message payload

} RpcMessage;

#endif

common/SafeVector.h

For debugging purposes, we override the [] operator of the std::vector to perform bounds
checking. This can be removed when development is finished.

#ifndef SAFEVECTOR_H

#define SAFEVECTOR_H

#include <vector>

template<typename T>

class SafeVector : public std::vector<T> {

public:

A.4. ASYNPLEX FOR CELL/BE, BASED ON VANDERBEI 199

T & operator [] (int index) {

return this->at(index);
}

T operator [] (int index) const {

return this->at(index);
}

};

#endif

PPU/asynplexcontrol.h and PPU/asynplexcontrol.cpp

Provides RPC functions to the SPEs, and initiates the MPI programs on the SPEs.

#ifndef ASYNPLEXCONTROL_H

#define ASYNPLEXCONTROL_H

#include "common/sparse.h"

#include "invertprocessor.h"

#include <vector>

#include <pthread.h>

extern "C" {

#include <cellmsg.h>

}

class AsynplexControl {

public:
void runAsynplex(int numIterationProcesses, int m, int n, SparseMatrix & A,

TYPE * b, TYPE * c, TYPE f);

void waitForCompletion();

private:
static void getDimensions(cellmsg_rpc_data * rpc);

static void getIntArrays(cellmsg_rpc_data * rpc);

static void getTypeArrays(cellmsg_rpc_data * rpc);

int m;

int n;

int numNonzeroes; // in A

int intBytes;

int typeBytes;

int * intArrays;

TYPE * typeArrays;

pthread_t invertProcessor;

int numIterationProcesses;

};

#endif

200 APPENDIX A. CODE

#include "asynplexcontrol.h"

#include "print.h"

#include "communication.h"

#include <malloc_align.h>

#include <free_align.h>

#include "common/types.h"

extern spe_program_handle_t speProgramHandle;

static AsynplexControl * instance; // Hack to give the static RPC functions

access to the AsynplexControl object (of which there is only one)

// Input: none

// Output: A two element int array, containing m and n (will not be freed, but

we can tolerate an eight byte leak; this function is only called once)

void AsynplexControl::getDimensions(cellmsg_rpc_data * rpc) {

rpc->buffer = _malloc_align(4 * sizeof(int), ALIGN_BUS_LOG2);

((int*)rpc->buffer)[0] = instance->m;

((int*)rpc->buffer)[1] = instance->n;

((int*)rpc->buffer)[2] = instance->numNonzeroes;

rpc->numbytes = 4 * sizeof(int);
}

void AsynplexControl::getIntArrays(cellmsg_rpc_data * rpc) {

rpc->buffer = instance->intArrays;

rpc->numbytes = instance->intBytes;

}

void AsynplexControl::getTypeArrays(cellmsg_rpc_data * rpc) {

rpc->buffer = instance->typeArrays;

rpc->numbytes = instance->typeBytes;

}

void AsynplexControl::runAsynplex(int numIterationProcesses, int m, int n,

SparseMatrix & A, TYPE * b, TYPE * c, TYPE f) {

instance = this;
this->m = m;

this->n = n;

int N = m + n;

this->numNonzeroes = A.numNonzeroes;

this->numIterationProcesses = numIterationProcesses;

int intCount = numNonzeroes + (N + 1); // A.rowIndices, A.colPos

int typeCount = 1 + m + N + numNonzeroes; // f, b, c, A.values

this->intBytes = ROUND_UP_MULTIPLE(intCount * sizeof(int), ALIGN_BUS_WIDTH);

this->typeBytes = ROUND_UP_MULTIPLE(typeCount * sizeof(TYPE),
ALIGN_BUS_WIDTH);

A.4. ASYNPLEX FOR CELL/BE, BASED ON VANDERBEI 201

this->intArrays = (int*)_malloc_align(intBytes, ALIGN_BUS_LOG2);

this->typeArrays = (TYPE*)_malloc_align(typeBytes, ALIGN_BUS_LOG2);

memcpy(this->intArrays, A.rowIndices, numNonzeroes * sizeof(int));
memcpy(this->intArrays + numNonzeroes, A.colPos, (N + 1) * sizeof(int));
this->typeArrays[0] = f;

memcpy(this->typeArrays + 1, b, m * sizeof(TYPE));
memcpy(this->typeArrays + 1 + m, c, N * sizeof(TYPE));
memcpy(this->typeArrays + 1 + m + N, A.values, numNonzeroes * sizeof(TYPE));
initPrintFromProcess();

initCommunication();

setupInvertProcessor(A, numIterationProcesses);

pthread_create(&invertProcessor, NULL, runInvertProcessor, NULL);

printf("m: %d, n: %d, nz: %d\n", m, n, A.numNonzeroes);fflush(stdout);

cellmsg_provide_rpc(sendRpcMessage);

cellmsg_provide_rpc(sendRpcMessageBatch);

cellmsg_provide_rpc(receiveRpcMessage);

cellmsg_provide_rpc(getDimensions);

cellmsg_provide_rpc(getIntArrays);

cellmsg_provide_rpc(getTypeArrays);

cellmsg_init(0, NULL);

cellmsg_run(&speProgramHandle, 0, NULL); // Start the SPE program running on

all SPEs and wait until all SPEs invoke MPI_Finalize()

cellmsg_finalize();

}

void AsynplexControl::waitForCompletion() {

pthread_join(invertProcessor, NULL);

}

PPU/communication.h and PPU/communication.cpp

Our CML RPC-based messaging system, which we needed to develop because CML does not
support asynchronous MPI message primitives. These functions will be invoked by the SPEs
through the RPC functionality of CML.

#ifndef COMMUNICATION_H

#define COMMUNICATION_H

#include "../common/message.h"

extern "C" {

#include <cellmsg.h>

}

void initCommunication();

void sendRpcMessage(cellmsg_rpc_data * rpc);

void sendRpcMessageBatch(cellmsg_rpc_data * rpc);

202 APPENDIX A. CODE

void receiveRpcMessage(cellmsg_rpc_data * rpc);

void printMessages();

#endif

#include "../common/message.h"

#include "../common/sparse.h"

#include "communication.h"

#include <string.h>

#include <stdio.h>

#include <pthread.h>

#include <assert.h>

#include <malloc_align.h>

#include <free_align.h>

#include "print.h"

#include "common/SafeVector.h"

#include "common/tags.h"

#include "common/types.h"

Message createMessage(const char * sender, const char * receiver, const char *
tag, void * payload) {

Message message;

message.sender = sender;

message.receiver = receiver;

message.tag = tag;

message.payload = payload;

return message;

}

static SafeVector<RpcMessage> messages;

static pthread_mutex_t queueLock;

static int printSends = 1;

static int printReceives = 1;

void initCommunication() {

pthread_mutex_init(&queueLock, NULL);

}

void sendMessage(RpcMessage message) {

pthread_mutex_lock(&queueLock);

messages.push_back(message);

pthread_mutex_unlock(&queueLock);

if (printSends) {

printFromProcess("COMM", "%d sends to %d (tag: %d, payload %p) (queue: %d)

", message.sender, message.receiver, message.tag, message.payload,

messages.size());

}

A.4. ASYNPLEX FOR CELL/BE, BASED ON VANDERBEI 203

}

/*
void sendAll(Message * messagesToBeSent, int numMessages) {

int i;

pthread_mutex_lock(&queueLock);

for (i = 0; i < numMessages; ++i) {

messages.push_back(messagesToBeSent[i]);

if (printSends) {

printFromProcess("COMM", "%s sends to %s (tag: ’%s’, payload %p) (queue:

%d)", messagesToBeSent[i].sender, messagesToBeSent[i].receiver,

messagesToBeSent[i].tag, messagesToBeSent[i].payload, messages.size

());

}

}

pthread_mutex_unlock(&queueLock);

}

*/

// sender < 0 means "receive from any iteration process"

// tag < 0 means "any tag"

RpcMessage receiveMessageWithTag(int receiver, int sender, int tag) {

RpcMessage msg;

int i;

pthread_mutex_lock(&queueLock);

for (i = 0; i < messages.size(); ++i) {

msg = messages[i];

if (msg.receiver == receiver && ((sender < 0 && msg.sender >=

RANK_OF_FIRST_ITER_PROC) || msg.sender == sender) && (tag < 0 || msg.

tag == tag)) {

messages.erase(messages.begin() + i);

if (printReceives) {

printFromProcess("COMM", "%d receives from %d (tag: %d, payload: %p) (

queue: %d)", msg.receiver, msg.sender, msg.tag, msg.payload,

messages.size());

}

pthread_mutex_unlock(&queueLock);

return msg;

}

}

pthread_mutex_unlock(&queueLock);

msg.sender = -1;

return msg;

}

void printMessages() {

int i;

pthread_mutex_lock(&queueLock);

printFromProcess("COMM", "Remaining messages:");

204 APPENDIX A. CODE

for (i = 0; i < messages.size(); ++i) {

printFromProcess("COMM", "%s %s %s", messages[i].sender, messages[i].

receiver, messages[i].tag);

}

fflush(stdout);

pthread_mutex_unlock(&queueLock);

}

void sendRpcMessage(cellmsg_rpc_data * rpc) {

RpcMessage message;

int * buffer = (int*)rpc->buffer;
message.sender = buffer[0];

message.receiver = buffer[1];

message.tag = buffer[2];

message.payloadSize = buffer[3];

assert(message.payloadSize <= rpc->numbytes);

message.payload = _malloc_align(message.payloadSize, ALIGN_BUS_LOG2);

memcpy(message.payload, buffer, message.payloadSize);

sendMessage(message);

rpc->numbytes = 0; // No RPC output

}

void sendRpcMessageBatch(cellmsg_rpc_data * rpc) { //TODO

assert(0);

}

//static void * previouslyReceivedBuffer = NULL;

void receiveRpcMessage(cellmsg_rpc_data * rpc) {

int * buffer = (int*)rpc->buffer;
int sender = buffer[0];

int receiver = buffer[1];

int tag = buffer[2];

RpcMessage message = receiveMessageWithTag(receiver, sender, tag);

if (message.sender < 0) { // No suitable message was found

rpc->numbytes = sizeof(int);
buffer[0] = -1; // Sender < 0 signifies no message

}

else {

rpc->buffer = message.payload; //TODO: Must be freed somewhere

rpc->numbytes = message.payloadSize;

}

}

A.4. ASYNPLEX FOR CELL/BE, BASED ON VANDERBEI 205

SPU/BasisChangeManager.h and SPU/BasisChangeManager.cpp

In order to conserve space, we only show the code for the simplest ASYNPLEX process here, to
demonstrate how the message system is used from the SPEs.

#ifndef BASISCHANGEMANAGER_H

#define BASISCHANGEMANAGER_H

class BasisChangeManager {

public:
void run();

private:
int currentBasis;

};

#endif

#include "BasisChangeManager.h"

//#include "invertprocessor.h"

//#include "print.h"

#include <stdlib.h>

#include <stdio.h>

#include <assert.h>

#include <pthread.h>

#include <libmisc.h>

//#define print(formatString, ...) printFromProcess(NAME, formatString , ##

__VA_ARGS__)

#include "rpc.h"

#include "common/tags.h"

#define isProgramFinished() false
#define RANK RANK_BC

void BasisChangeManager::run() {

/*int * buffer = (int*)malloc_align(8 * sizeof(int), ALIGN_BUS_LOG2);

do {

printf("trying receive\n");fflush(stdout);

buffer[0] = ANY_SENDER; // Sender

buffer[1] = RANK; // Receiver

buffer[2] = ANY_TAG; // Tag

cellmsg_rpc(receiveRpcMessage,

buffer, 4 * sizeof(int), CML_BYTE_SWAP_NOT_NEEDED,

buffer, 8 * sizeof(int), CML_BYTE_SWAP_NOT_NEEDED);

} while (buffer[0] < 0);

printf("Received %d bytes from %d: tag %d, payload %d\n", buffer[3], buffer

[0], buffer[2], buffer[4]);*/

Communication comm;

comm.setOwner(BASIS_MGR);

206 APPENDIX A. CODE

RpcMessage message;

const char * result;

int offerReply;

int incomingBasis;

message.payload = &incomingBasis;

currentBasis = 0;

printf("R: Basis change manager starting\n");fflush(stdout);

while (!isProgramFinished()) {

while (!comm.receiveCopy(ANY_ITER_PROC, I5_R1, message, sizeof(int))) {

if (isProgramFinished()) {

printf("R: Basis change manager exiting\n");fflush(stdout);

return;
}

}

if (incomingBasis == currentBasis) {

offerReply = 1;

comm.sendCopy(message.sender, R2_I6, &offerReply, sizeof(int));
++currentBasis;

result = "accepted";

}

else {

offerReply = 0;

comm.sendCopy(message.sender, R3_I6, &offerReply, sizeof(int));
result = "refused";

}

printf("R: I%d offers chuzr on basis %d... %s\n", message.sender,

incomingBasis, result);fflush(stdout);

}

printf("R: Basis change manager exiting\n");fflush(stdout);

}

SPU/rpc.h and SPU/rpc.cpp

Convenience functions for RPC message passing on the SPEs.

#ifndef RPC_H

#define RPC_H

#include <spu_intrinsics.h> // Need to include this one before mpi.h, because

otherwise extern "C" will screw up the files that mpi.h includes (might

need to include even more of those files here if we start using them)

extern "C" {

#include <mpi.h>

}

#include "common/message.h"

#define ALIGNED16 __attribute__((aligned(16)))

A.4. ASYNPLEX FOR CELL/BE, BASED ON VANDERBEI 207

#define ALIGN_BUS_LOG2 7

#define ALIGN_BUS_WIDTH 128

// Indices into the int buffer used for transmitting messages

#define SENDER_OFFSET 0

#define RECEIVER_OFFSET 1

#define TAG_OFFSET 2

#define BUFFER_SIZE_OFFSET 3

#define PAYLOAD_OFFSET 4

// Give files that include this one access to the function pointers defined in

main.cpp

extern ppe_funcptr sendRpcMessage ALIGNED16;

extern ppe_funcptr sendRpcMessageBatch ALIGNED16;

extern ppe_funcptr receiveRpcMessage ALIGNED16;

class Communication {

private:
int owner;

public:
void setOwner(int owner) { this->owner = owner; }

void sendCopy(int receiver, int tag, void * data, int dataSize);

void sendBuffer(int receiver, int tag, void * buffer, int totalSize);

bool receiveCopy(int sender, int tag, RpcMessage & message, int payloadSize)

;

};

#endif

#include "rpc.h"

#include <libmisc.h>

#include "common/types.h"

#include <assert.h>

#include <string.h>

void Communication::sendCopy(int receiver, int tag, void * payload, int
payloadSize) {

int bufferSize = payloadSize + 4 * sizeof(int);
int roundedBufferSize = ROUND_UP_MULTIPLE(bufferSize, ALIGN_BUS_WIDTH);

int * buffer = (int*)malloc_align(roundedBufferSize, ALIGN_BUS_LOG2);

buffer[SENDER_OFFSET] = this->owner;
buffer[RECEIVER_OFFSET] = receiver;

buffer[TAG_OFFSET] = tag;

buffer[BUFFER_SIZE_OFFSET] = bufferSize;

memcpy(buffer + PAYLOAD_OFFSET, payload, payloadSize);

printf("sendCopy: %d %d %d, %d %d %d %p\n", buffer[0], buffer[1], buffer[2],

payloadSize, bufferSize, roundedBufferSize, buffer);

208 APPENDIX A. CODE

cellmsg_rpc(sendRpcMessage,

buffer, roundedBufferSize, CML_BYTE_SWAP_NOT_NEEDED,

NULL, 0, CML_BYTE_SWAP_NOT_NEEDED);

free_align(buffer);

}

bool Communication::receiveCopy(int sender, int tag, RpcMessage & message, int
payloadSize) {

int bufferSize = payloadSize + 4 * sizeof(int);
int roundedBufferSize = ROUND_UP_MULTIPLE(bufferSize, ALIGN_BUS_WIDTH);

int * buffer = (int*)malloc_align(roundedBufferSize, ALIGN_BUS_LOG2);

buffer[SENDER_OFFSET] = sender;

buffer[RECEIVER_OFFSET] = this->owner;
buffer[TAG_OFFSET] = tag;

cellmsg_rpc(receiveRpcMessage,

buffer, 4 * sizeof(int), CML_BYTE_SWAP_NOT_NEEDED,

buffer, roundedBufferSize, CML_BYTE_SWAP_NOT_NEEDED);

bool success = buffer[SENDER_OFFSET] >= 0; // receiveRpcMessage will put -1

at element 0 if there is no matching message

if (success) {

message.sender = buffer[SENDER_OFFSET];

message.receiver = buffer[RECEIVER_OFFSET];

message.tag = buffer[TAG_OFFSET];

assert(buffer[BUFFER_SIZE_OFFSET] >= payloadSize);

memcpy(message.payload, buffer + PAYLOAD_OFFSET, payloadSize);

}

free_align(buffer);

return success;

}

void Communication::sendBuffer(int receiver, int tag, void * buffer, int
totalSize) {

assert(0);

}

SPU/main.cpp

The main() function for the MPI program on the SPEs. Decides which ASYNPLEX process to
initiate.

#define SPE_CODE

#include "BasisChangeManager.h"

#include "ColumnSelectionManager.h"

#include "IterationProcess.h"

#include <spu_intrinsics.h>

#include <spu_mfcio.h>

A.4. ASYNPLEX FOR CELL/BE, BASED ON VANDERBEI 209

#include <libmisc.h>

#include <stdio.h>

#include "../common/types.h"

#include "rpc.h"

#include "common/sparse.h"

volatile ParameterContext context ALIGNED_QUAD;

ppe_funcptr sendRpcMessage ALIGNED16;

ppe_funcptr sendRpcMessageBatch ALIGNED16;

ppe_funcptr receiveRpcMessage ALIGNED16;

ppe_funcptr getDimensions ALIGNED16;

ppe_funcptr getIntArrays ALIGNED16;

ppe_funcptr getTypeArrays ALIGNED16;

//int main(unsigned long long spuId __attribute__ ((unused)), unsigned long

long parameter) {

extern "C" int main (int argc, char * argv[]) { // Using extern "C" because of

CML

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("MPI: %d/%d\n", rank, size);fflush(stdout);

sendRpcMessage = cellmsg_accept_rpc();

sendRpcMessageBatch = cellmsg_accept_rpc();

receiveRpcMessage = cellmsg_accept_rpc();

getDimensions = cellmsg_accept_rpc();

getIntArrays = cellmsg_accept_rpc();

getTypeArrays = cellmsg_accept_rpc();

int dimensions[4] ALIGNED16;

cellmsg_rpc(getDimensions, // Function to call

NULL, 0, CML_BYTE_SWAP_NOT_NEEDED, // No input

dimensions, 4 * sizeof(int), CML_BYTE_SWAP_NOT_NEEDED); // Output

int m = dimensions[0];

int n = dimensions[1];

int numNonzeroes = dimensions[2];

int N = m + n;

//TODO: Merge BasisChange and ColSel

if (rank == 0) {

BasisChangeManager basisChangeManager;

basisChangeManager.run();

}

else if (rank == 1) {

210 APPENDIX A. CODE

ColumnSelectionManager columnSelectionManager;

columnSelectionManager.setup(m, n);

columnSelectionManager.run();

}

else {

if (rank != 2) {

MPI_Finalize();

return 0;

}

int intCount = numNonzeroes + (N + 1); // A.rowIndices, A.colPos

int typeCount = 1 + m + N + numNonzeroes; // f, b, c, A.values

int intBytes = ROUND_UP_MULTIPLE(intCount * sizeof(int), ALIGN_BUS_WIDTH);

int typeBytes = ROUND_UP_MULTIPLE(typeCount * sizeof(TYPE),
ALIGN_BUS_WIDTH);

int * intArrays = (int*)malloc_align(intBytes, ALIGN_BUS_LOG2);

TYPE * typeArrays = (TYPE*)malloc_align(typeBytes, ALIGN_BUS_LOG2);

printf("Getting %d ints and %d types (numNonzeroes: %d)\n", intCount,

typeCount, numNonzeroes);fflush(stdout);

cellmsg_rpc(getIntArrays,

NULL, 0, CML_BYTE_SWAP_NOT_NEEDED,

intArrays, intBytes, CML_BYTE_SWAP_NOT_NEEDED);

cellmsg_rpc(getTypeArrays,

NULL, 0, CML_BYTE_SWAP_NOT_NEEDED,

typeArrays, typeBytes, CML_BYTE_SWAP_NOT_NEEDED);

TYPE f = typeArrays[0];

TYPE * b = typeArrays + 1;

TYPE * c = typeArrays + 1 + m;

SparseMatrix A;

A.rows = m;

A.cols = N;

A.numNonzeroes = numNonzeroes;

A.rowIndices = intArrays;

A.colPos = intArrays + numNonzeroes;

A.values = typeArrays + 1 + m + N;

IterationProcess iterationProcess;

iterationProcess.setup(rank - 2, size - 2, A, b, c, f);

free_align(intArrays);

free_align(typeArrays);

iterationProcess.run();

}

MPI_Finalize();

return 0;

}

A.5. UTILITIES 211

A.5 Utilities

We could not find any available parsers for the MPS or CPLEX file formats, so we had to write our
own. Other people may find them useful, so we include them here. Common languages of choice
for writing small text manipulation programs are Python and Perl; we selected the former since
we are more familiar with it.

Important note: These parsers are not fully compliant with the MPS and CPLEX file format
specifications. They seem to work with the data sets we have used, but have not been thoroughly
tested beyond that.

mps.py — MPS file format parser

This parser was written in the early stages of the project, when our standard simplex solver would
simply expect a full tableau as input. The parser first outputs a line containing m (the number of
rows) and n (the number of columns), followed by m lines containing n numbers each. The first
row contains the objective function coefficients, and the leftmost column contains the right hand
sides from the constraints. The tableau body contains the negatives of the original coefficients, as
per our discussion in Section 2.1.2. Equality constraints are split into two less-than constraints.

We later rewrote the parser to C++ (mps.cpp as listed above), so that it could be an integrated
part of our solver.

Note that both this parser and the C++ port are fairly simplistic, and they do not handle the
BOUNDS or RANGES sections. As such, the number of netlib sets on which they (and thereby our
entire standard simplex solver) can be used is reduced to 54 (from a total of 98); see the netlib
README file for information on which sets contain which sections. Also, note that since the
MPS format does not specify the direction of optimisation, and the netlib default seems to be
minimisation, the CPLEX parser will negate the objective function for all maximisation data sets.

#!/usr/bin/python

from sys import stdin

class Row:

label = None

type = None

values = None

index = None

def __init__(self, label, type, index):

self.label = label

self.type = type

self.index = index

self.values = {}

def __str__(self):

return self.label + " (" + self.type + "): " + str(self.values)

lines = []

for line in stdin:

212 APPENDIX A. CODE

lines.append(line)

rows = {}

columnLabels = []

columnIndices = {}

i = 0

while i < len(lines):

line = lines[i]

i += 1

if line[0] == ’ ’:

pass
else:

header = line.strip()

if header == "ROWS":

rowIndex = 0

while lines[i][0] == ’ ’:

items = lines[i].split()

row = Row(items[1].strip(), items[0].strip(), rowIndex)

if row.type == "N":

objectiveIndex = rowIndex

rows[row.label] = row

rowIndex += 1

i += 1

tableau = [None] * len(rows)

elif header == "COLUMNS":

columnIndex = -1

while lines[i][0] == ’ ’:

items = lines[i].split()

lim = 2 if len(items) == 5 else 1

columnLabel = items[0].strip()

if not columnIndices.has_key(columnLabel):

columnIndex += 1

columnLabels.append(columnLabel)

columnIndices[columnLabel] = columnIndex

for j in xrange(lim):

rowLabel = items[1 + j * 2].strip()

value = float(items[2 + j * 2].strip())

rows[rowLabel].values[columnLabel] = value

i += 1

for j in xrange(len(tableau)):

tableau[j] = [0] * (len(columnLabels) + 1)

for row in rows.values():

for colLabel in row.values:

tableau[row.index][columnIndices[colLabel]] = row.values[colLabel]

elif header == "RHS":

while lines[i][0] == ’ ’:

items = lines[i].split()

A.5. UTILITIES 213

lim = 2 if len(items) == 5 else 1

for j in xrange(lim):

rowLabel = items[1 + j * 2].strip()

value = float(items[2 + j * 2].strip())

rowIndex = rows[rowLabel].index

tableau[rowIndex][-1] = value

i += 1

for row in rows.values():

tab = tableau[row.index]

if row.type == "G":

for i in xrange(len(tab)):

tab[i] = -tab[i]

elif row.type == "E":

tableau.append([-x for x in tab])

tmp = tableau[objectiveIndex]

tableau[objectiveIndex] = tableau[0]

tableau[0] = tmp

ti = 0

while ti < len(tableau):

nonzero = 0

for x in tableau[ti]:

if x != 0:

nonzero = 1

break
if not nonzero:

tableau.pop(ti)

ti -= 1

ti += 1

print len(tableau), len(tableau[0])

for tab in tableau:

for cell in tab:

print cell,

print

cplex.py — ILOG CPLEX file format parser

This parser was written in order to convert some sample data sets we received from Miriam AS to
the MPS format. A restriction of the MPS format is that the row and column names are limited in
length. Therefore, our parser will convert any name that is longer than eight characters to a string
that is formed by appending a sequence number (starting at zero) to the string v (a very arbitrary
choice). For instance, the fourth name that is found to be too long will be converted to v3. Further
occurrences of the same name will of course be replaced by the same string. The parser does not,

214 APPENDIX A. CODE

however, check for name collisions with variables who actually have that name.
Note that while the CPLEX format allows constraints to be split over multiple lines, this parser

not handle that, so files containing split constraints must be modified by joining such constraints
into one line.

#!/usr/bin/python

from sys import stdin, stderr

class Equation:

comparator = ""

constant = 0

values = {}

name = ""

def __init__(self, comparator, constant, name):

self.comparator = comparator

self.constant = constant

self.values = {}

self.name = name

class Bound:

variable = ""

lower = 0

upper = None

free = False

fixed = False

def __init__(self, variable):

self.variable = variable

variableCodeNames = {}

def truncate(name):

global variableCodeNames

if len(name) <= 8:

return name

else:
if variableCodeNames.has_key(name):

return variableCodeNames[name]

else:
codeName = "v" + str(len(variableCodeNames))

variableCodeNames[name] = codeName

return codeName

def printCodeNames():

A.5. UTILITIES 215

global variableCodeNames

if len(variableCodeNames) > 0:

stderr.write("Some variable names have been changed:\n")

stderr.write("New\tOriginal\n")

for name in variableCodeNames:

stderr.write(variableCodeNames[name] + "\t" + name + "\n")

def expand(string, length):

if len(string) > length:

raise ValueError("string too long")

return string + " " * (length - len(string))

class LP:

pos = 0

lines = []

variables = {}

equations = []

variableList = []

bounds = []

direction = "max"

def __init__(self):

lines = []

variables = {}

equations = []

variableList = []

def printMPS(self):

print "NAME UNKNOWN"

print "ROWS"

for eq in self.equations:

if eq.comparator == "=":

print " E ",

elif eq.comparator[0] == "<":

print " L ",

elif eq.comparator[0] == ">":

print " G ",

elif eq.comparator == "obj":

print " N ",

else:
raise NameError("Illegal comparator: " + eq.comparator)

print expand(truncate(eq.name), 8)

print "COLUMNS"

for var in self.variableList:

for eq in self.equations:

if eq.values.has_key(var):

line = expand(" " + truncate(var), 14) + truncate(eq.name)

216 APPENDIX A. CODE

print expand(line, 24) + str(eq.values[var])

print "RHS"

for eq in self.equations:

if eq.constant != 0:

print expand(" B " + truncate(eq.name), 24) + str(eq.

constant)

print "BOUNDS"

for bound in self.bounds:

if bound.free:

print " FR BOUND " + truncate(bound.variable)

elif bound.fixed:

print expand(" FX BOUND " + truncate(bound.variable), 24) + str(

bound.upper)

else:
if bound.lower != 0:

print expand(" LO BOUND " + truncate(bound.variable), 24) + str(

bound.lower)

if bound.upper != None:

print expand(" UP BOUND " + truncate(bound.variable), 24) + str(

bound.upper)

print "ENDATA"

def parseObjective(self):

tokens = self.lines[self.pos]

self.pos += 1

self.parseEquation(tokens, 1)

def parseEquation(self, tokens, isObjective):

if tokens[1] != ’+’ and tokens[1] != ’-’:

tokens.insert(1, ’+’)

if isObjective:

eq = Equation("obj", 0, "OBJ")

else:
eq = Equation(tokens[-2], float(tokens[-1]), tokens[0][:-1])

self.equations.append(eq)

i = 1

limit = len(tokens) - 1 if isObjective else len(tokens) - 3

while i < limit:

if tokens[i] == ’-’:

sign = -1

elif tokens[i] == ’+’:

sign = 1

else:
print "Illegal sign on line", self.pos, ":", tokens

if isObjective and self.direction == "max":

sign *= -1

try:

A.5. UTILITIES 217

value = float(tokens[i + 1])

i += 2

except ValueError:

value = 1

i += 1

name = tokens[i]

self.addVariable(name)

eq.values[name] = sign * value

i += 1

def parseEquations(self):

while 1:

tokens = self.lines[self.pos]

if tokens[0][-1] != ’:’: break
self.pos += 1

self.parseEquation(tokens, 0)

def addVariable(self, name):

if not self.variables.has_key(name):

self.variables[name] = len(self.variables)

self.variableList.append(name)

def parseBounds(self):

while 1:

tokens = self.lines[self.pos]

if len(tokens) == 1: break
self.pos += 1

if len(tokens) == 2 and tokens[1] == "Free":

bound = Bound(tokens[0])

bound.free = True

self.bounds.append(bound)

elif len(tokens) == 3:

bound = Bound(tokens[0])

if tokens[1][0] == "<":

bound.upper = float(tokens[2])

elif tokens[1][0] == ">":

bound.lower = float(tokens[2])

elif tokens[1][0] == "=":

bound.fixed = True

bound.upper = float(tokens[2])

else:
raise NameError("Illegal bound type")

self.bounds.append(bound)

elif len(tokens) == 5:

bound = Bound(tokens[2])

bound.lower = float(tokens[0])

bound.upper = float(tokens[4])

218 APPENDIX A. CODE

self.bounds.append(bound)

else:
print "Unrecognised bounds line:", self.pos, ":", tokens

def parse(self):

for line in stdin:

tokens = line.split()

if len(tokens) == 0 or tokens[0] == ’\\’: continue
self.lines.append(tokens)

self.pos = 0

while self.pos < len(self.lines):

if self.lines[self.pos][0] == "Maximize":

self.direction = "max"

self.pos += 1

self.parseObjective()

elif self.lines[self.pos][0] == "Minimize":

self.direction = "min"

self.pos += 1

self.parseObjective()

elif self.lines[self.pos][0] == "Subject":

self.pos += 1

self.parseEquations()

elif self.lines[self.pos][0] == "Bounds":

self.pos += 1

self.parseBounds()

else:
self.pos += 1

lp = LP()

lp.parse()

lp.printMPS()

printCodeNames()

