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Independent component analysis combined with various strategies for cross-validation, uncertainty estimates by jack-knifing and critical 

Hotelling’s T2 limits estimation, proposed in this paper, is used for classification purposes in hyperspectral images. To the best of our knowledge, 

the combined approach of methods used in this paper has not been previously applied to hyperspectral imaging analysis for interpretation and 

classification in the literature. The data analysis performed here aims to distinguish between four different types of plastics, some of them contain-

ing brominated flame retardants, from their near infrared hyperspectral images. The results showed that the method approach used here can be 

successfully used for unsupervised classification. A comparison of validation approaches, especially leave-one-out cross-validation and regions of 

interest scheme validation is also evaluated.

Keywords: hyperspectral imaging, ROI selection, spectroscopy, independent component analysis, ICA, cross-validation, uncertainty test, 
jack-knifing, Hotelling’s T2, classification

Introduction
Hyperspectral images are useful for obtaining both quali-
tative and quantitative information, since they are high-
dimensional data sets (hypercubes) that can be visually 
interpreted. As pointed by Vidal and Amigo,1 dimension-
ality problems related to these large hypercubes of data, 
e.g. computer storage space or long transmission times, 
may make necessary the compression of the images and 
the acquisition of high performance computers. Some 
common ways of compressing hyperspectral images are 
data binning, variable selection and bytes encoding.1,2

In chemometrics, hyperspectral imaging (HSI) inte-
grates spectroscopy [e.g., near infrared (NIR)] and imaging 
to create 3-D structures of data (high-dimensional hyper-
cubes) that can be analysed using multivariate methods, 
such as principal component analysis (PCA),3,4 indepen-
dent component analysis (ICA)5 and multivariate curve 
resolution (MCR),6,7 inter alia. Prior to modelling of the 
hyperspectral data, preprocessing the images in the 
image domain, but foremost in the spectral domain, is 
usually needed (e.g., background removal, scatter correc-
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2 Classification in Hyperspectral Images

tion, de-noising, suppression of sample morphology 
effects or treatment of dead pixels).1,8

These big data, structured as hyperspectral image 
cubes, have relevance in many types of applications, for 
example agricultural and food sciences,9,10 for data collec-
tion by drones11 and in the pharmaceutical industry.12 
The  applicability of multivariate data analysis for HSI is 
relevant for process analytical control (PAC) and quality 
by design (QbD) in a wide range of industrial sectors. 
Some applications of HSI multivariate data analysis 
relate, for instance, to the study of multi-component 
systems12,13 or the understanding of the dynamics in 
time series analysis.9

As will be shown, ICA combined with various strategies 
for cross-validation and uncertainty estimates, proposed 
in this paper, is useful for an efficient and reliable multi-
variate analysis of hyperspectral images. To the best of 
our knowledge, the approach that we use in this paper for 
the combination of the abovementioned methodologies 
has not been applied to hyperspectral imaging analysis 
for interpretation and classification. More specifically, 
the data analysis performed here aims to distinguish, by 
unsupervised classification, between four different types 
of plastics from their hyperspectral images. The criterion 
followed is maximising independence of latent variables 
rather than orthogonality. Certainly, various discriminant 
methods may have been applied for a supervised clas-
sification, and other latent variable methods (such as 
MCR-ALS) could have been used; however, emphasis on 
the validation procedure and unsupervised classification 
ability inside the ICA framework has been pursued in this 
paper.

Independent component analysis (ICA)
Independent component analysis5 is an alternative to 
principal component analysis (PCA)3,4 for extracting 
pure and statistically independent pure profiles (compo-
nents), such as pure spectra or original signals, from 
non-Gaussian distributed data.14 The differences related 
to the extraction of components for ICA and PCA are 
further explained below. In ICA, the data matrix (X), which 
contains the mixture of pure profiles, is decomposed as 
shown in Equation 1, where X is the data matrix (also 
called mixing system), A is the “scores” matrix, S consists 
of statistical independent columns and E is the residuals 
matrix.

 X = AST + E (1)

The ICA “scores” can be calculated as shown in 
Equation 2. As pointed by Westad and Kermit,15 unlike 
PCA scores, ICA “scores” (columns of A) are not restricted 
to be orthogonal among themselves.

 A = XS(STS)–1 (2)

Independent component analysis decomposition is 
similar to other methodologies, e.g. multivariate curve 
resolution–alternating least squares (MCR-ALS)6 that 
can be used for analysing spectral data that, for example, 
obey Lambert–Beer’s law. These methods are able to 
provide quantitative information from hyperspectral 
images either at a global or at a pixel level.16

Validation and classification in multivariate 
models
The estimation of the optimal number of components in 
latent variable methods (e.g. PCA, MCR-ALS and ICA) is 
one of the cornerstones in model validation to avoid prob-
lems, such as, for example, a deficient profiles extraction 
or overfitting.17,18 The most conservative approach is to 
set aside a number of objects, as an independent test set; 
this is the preferred procedure for multispectral imaging 
at the pixel level. Although visualisation of groups of 
pixels to elucidate differences (e.g., between origins or 
types of materials) provides a qualitative assessment if 
the groups are separated, a totally correct classification is 
not guaranteed. In this paper, one of the main objectives 
is to show how various validation strategies will affect 
the stability of the ICA models for hyperspectral image 
analysis.

As mentioned above, the model stability towards 
known and unknown sources of variation is very impor-
tant. In all real applications, there will always be a reason 
to stratify the objects based on background information 
about their origin; such groups are a consequence of the 
experimental set-up of the study. Some typical stratifica-
tions are: (i) across treatment or origin (e.g., year or raw 
material), (ii) across instrumental replicates (repeatability), 
(iii) reproducibility (e.g., in relation to the analyst or the 
instrument), (iv) sampling (physical samples, time and 
location).19

Cross-validation (CV) performed at the various 
grouping levels will provide important information about 
the stability of the model and which are the sources 
of variation that need special attention. Thus, even if a 
test set is considered adequate for validating the model, 
the calibration set must be validated by cross-valida-



B. Galindo-Prieto and F. Westad, J. Spectral Imaging 7, a4 (2018) 3

tion at the appropriate level.19,20 Otherwise, the model 
dimensionality may not be conservative enough, leading 
to a classification/prediction of the test set where a 
sub optimal number of variables and/or components are 
used. In this paper, this concept is applied when pixels in 
various regions of interest (ROI) are selected from various 
physical objects of the same class.

Feature/variable selection for classification 
and regression
Many feature/variable selection methods have been 
presented and used in the literature.21–28 Some of these 
methods aim to find a small subset of variables that gives 
the “best” possible model, others a selection of vari-
ables that are suitable for specific purposes; however, 
even if the latter perspectives are valid and useful for 
the applied cases, in this paper we will focus on how the 
model stability will influence estimates of the significance 
of individual variables. It is also worth noting that vari-
able redundancy (i.e., when many variables contain the 
same information about the system under observation) 
provides valuable properties21 in the model in order to 
(i) detect changes in the overall pattern due to unex-
pected events or (ii) avoid the unintentional elimination 
of variables that could help to understand causal effects. 
Therefore, some flexibility is needed when doing feature/
variable selection.

Materials and methods
Materials
The codes of the algorithms were developed, tested 
and validated using MATLAB version R2016a (The 
MathWorks, Natick, MA, USA). The preprocessing of the 
hyperspectral images was performed using HYPER-Tools 
(downloaded from www.hypertools.org).

Plastics data set
The plastics NIR hyperspectral data set (downloaded 
from www.hypertools.org) consists of 142 wavelengths 
and 203 × 117 pixels.2 The wavelength range goes from 
1009 nm to 1694 nm with a spectral resolution of 4.85 nm. 
The samples represent four different plastics (PS, PA6, PP 
and ABS), see Figure 1, in the shape of small pellets (with 
a diameter of approximately 5 mm). PS and ABS plastic 
types contain brominated flame retardants (BFRs), whilst 
PA6 and PP types do not contain BFRs. After evaluation 

of the NIR spectra and hyperspectral images (which is 
a false RGB) of the four plastics, some pre-processing 
steps were required. The data were preprocessed by 
Savitzky–Golay smoothing29 using a window of seven 
points (which is enough for the low levels of noise present 
in the data) and a second polynomial degree. Standard 
normal variate (SNV) transformation30 was performed in 
order to remove scattering effects. Dead pixels detection 
was carried out by adding a standard deviation parameter 
equal to ±6 and allowing 25 % of zeros in the spectra; 
only one dead pixel was found and corrected. The 
background of the hyperspectral images was removed 
because it does not contain any information related to 
the plastics; this was achieved by visual inspection of the 
six clusters obtained by the k-means clustering31 method, 
and removal of the two clusters that were only related to 
the background. Morphological masking was also carried 
out, including erosion of some remaining pixels that did 
not contain plastics information.

Multivariate analysis of the hyperspectral 
images
The methodology followed to perform the ICA included 
ROI selection in the image, cross-validation, uncer-
tainty estimates and estimates of critical statistical limits 
(Hotelling’s T2). The results were visualised as plots and 
statistics.

The models were validated across ROIs selected for 
evaluating the robustness of the models related to 
the individual pellets and the so-called leave-one-out 
(LOO) cross-validation for comparison. Three ROIs were 
consecutively selected from each plastic type. For each 
ROI, a colour was assigned (see Figure 1). ROI 1 is repre-
sented in red, ROI 2 in green and ROI 3 in blue. The 
colour assignment of the ROIs matches the colours used 
for plotting the spectra (data) corresponding to those 
regions (see Figure 1).

The first step in the modelling was to perform PCA 
(often called whitening in the ICA literature) as the basis 
for the final ICA model; details about this procedure can 
be found in Westad.32 It is worth mentioning that cross-
validation for individual segments can sometimes give 
components that are mirrored or flipped when computing 
PCA; this flip in the order of the components can also 
occur in ICA. The difference lies in how ICA and PCA 
extract the components leading to a different ordering 
of them; whilst PCA extracts the components (PCs) 
according to the largest amount of variance, ICA does not 

http://www.hypertools.org/
http://www.hypertools.org


4 Classification in Hyperspectral Images

take into consideration the amount of variance for the 
extraction of the components (ICs). Moreover, for some 
ICA algorithms, the order in the components extraction 
is also undetermined as consequence of random initiali-
sation. Hence, the components obtained after cross-
validation could be rotated towards the model based on 
all objects before the uncertainties can be estimated, if 
needed.33 This is performed by flipping and ordering the 

loading vectors, followed by jack-knifing, as shown by 
Westad and Kermit in 2003.15

For the data analysis presented in this paper, CV was 
carried out at appropriate grouping levels in order to 
use the optimal number of components. In order to 
do this, pixels from different ROIs were selected from 
various physical objects (plastic pellets) of the same 
class. More specifically, three ROIs were selected as 

Figure 1. shows the selection of 
ROIs for each plastic in the hyper-
spectral image (on the left side of 
the figure), and the spectra of the 
selected ROIs (on the right side). 
The ROIs are marked in the images 
as equiangular quadrilaterals with 
specific colouring. The identifica-
tion of each type of plastic (PS, 
PA6, PP, ABS) is included in each 
image and in each plot. Samples 
specified as “pure” do not contain 
BFRs. In the plots of spectra, the 
wavelengths are expressed in nm 
and the signal intensity in arbitrary 
units (a.u.).
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shown in Figure 1. The ROI selection was carried out 
by hand (using the computer mouse) deliberately with 
the purpose of choosing regions located in different 
areas of the groups of plastic pellets. As can be seen in 
the PS scores plot of Figure 2 (shown as example), the 
three regions selected for the PS plastic represent the 
variation between the ROIs (since they are positioned in 
different parts of the scores plot). After the ROI selec-
tion, the ICA modelling was performed as explained in 
the Results and discussion section. The ICA algorithm 
used was the so-called joint approximate diagonalisation 
of eigenmatrices (JADE).34 The critical limits based on 
the Hotelling’s T2 statistics were applied for the clas-
sification of all pixels in the mosaic image of four types 
of plastics.10

Uncertainty estimates by jack-knifing
Resampling methods (such as bootstrap, jack-knifing and 
cross-validation) are used for assessing the importance of 
individual variables by means of their estimated uncer-
tainty values. The jack-knifing method applied in this 
paper estimates the uncertainty of model parameters 
by calculating the difference between the model with all 
objects and the individual models (i.e., without some of 
the objects). These differences are squared and summed 
for all the cross-validation segments as the basis for the 
standard deviation of each model parameter.19 Therefore, 
the uncertainty (s) of the ICA loadings (sa), can be esti-
mated from Equation 3:15,35
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where M is the number of cross-validation segments, 
s2(sa) is the estimated uncertainty variance of each vari-
able (e.g., each wavelength) in the ICA loading for compo-
nent a and sa the ICA loading for component a using all 
the N objects (e.g., all pixels). The term sa(–m) indicates 
the ICA loading for component a using all objects except 
the object(s) left out in cross-validation segment m. The 
quantities sa and s2(sa) may require a t-test to give the 
significance values (p-values) per individual variable and 
per component, and may also be used as an approximate 
confidence interval for each variable. We would like to 
emphasise that feature selection is not the goal of this 
paper, but the model stability expressed by uncertainties 
and their related p-values.

Results and discussion
The methods used for obtaining these results have been 
explained above. However, in this section we provide the 
necessary details for reproducing the results inside their 
description, as well as a discussion thereof.

Classification of four different plastics
The 142 channels (wavelengths) of the plastics hyper-
spectral data were used for the multivariate analysis 
(see above for details about the preprocessing applied). 
As basis for the ICA calculations, a number of principal 
components were selected based on the residual vali-
dation variance, which had average values of 14.4 % 
for the models of the pure plastics and 22.5 % for the 
models of the plastics that contained BFRs. Afterwards, 

Figure 2. Distribution of score values along IC 1 
and IC 2 for the PS individual ICA model. ROI 1 
is marked in red (squares), ROI 2 in green (stars), 
and ROI 3 in blue (circles).
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the ICA algorithm extracted the corresponding number 
of components (ICs). It is worth mentioning that the 
result will be the same regardless if the ICA is performed 
on the loadings from PCA or the reconstructed data by 
multiplying scores and loadings. Table 1 summarises the 
number of ICs for all the models. The final ICA model 
(which contained all types of plastics) had a residual vali-
dation variance value of 2.9 %. A rotation of the model 
components was performed as explained above. The 
data was mean-centred prior to building the ICA models. 
In addition, the LOO cross-validation was carried out for 
the PS data (the top-left plastic sample in the images of 
Figure 1) to illustrate the conceptual difference between 
the two approaches.

Figures 3a and 3b show the residual calibration 
and validation variance for the two CV strategies. As 
expected, the LOO (full leave-one-out cross-validation) 
gives a residual validation curve that follows the calibra-
tion, whereas the ROI validation gives a more conserva-

tive validation curve because it reflects the differences 
between the individual pellets (since the ROIs are located 
at different pellets even in the same plastic sample), which 
is also the “operational” use of the model.

This difference in the validation results will also be 
reflected in the uncertainty estimates in Equation 3 and 
subsequently the estimated p-values. Figure 4 shows 
the p-values for the first independent component (IC 1) 
for the two validation schemes for the PS with BFRs 
case, the p-values obtained from the ROI validation are 
represented in blue (solid line) and the p-values from 
the LOO in red (dashed line). The LOO approach gives 
significantly more variables with p-values below 0.05 
(see dashed lines in Figure 4). As the number of pixels in 
the ROI is rather small, the model is not stable towards 
the pellet-wise validation. One could have selected more 
pixels for more pellets and repeated this procedure for a 
more robust model, however, this was not the objective 
in this study.

Figure 3. Residual variance curves for the two validation approaches. (a) shows the evolution of the residual variance when 
a ROI-based validation is used. (b) shows the analogous evolution for the same model when using the LOO validation 
method. For both representations, the calibration curve is marked with a blue dashed line, whist the validation curve is 
marked with a red solid line. PC stands for principal components.

ICA model for plastic sample
Number of ICs

Validation scheme ROI LOO cross-validation
PS model 4 7
PA6 model 7 N/A
PP model 6 N/A
ABS model 4 N/A

Table 1. Summary of the number of independent components (ICs) extracted in the models.
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Hotelling’s T2 limits at the 0.005 level (almost equiva-
lent to three standard deviations) were estimated for 
each individual model (Figure 5). These limits with the 
individual pixels for each model depicted as a line plot are 
shown in the right-hand plots of Figure 5. Although some 
pixels were outside for the individual models, the models 
were not recalculated without them as it was assumed 
that this variability was inherent in the pellets themselves. 
Then all pixels in the image were subject to projection 
onto the four models and individual pixels above the T2 
limits were filtered out before mapped back to the image. 
Thus, the resulting images on the left side of Figure 5 
are based on classification of all pixels according to the 
class belonging (i.e., the plastic type used in the model). 
Pixels represented in white in Figure 5 correspond to the 
plastic type that has been modelled (i.e., they are the 
pixels that belong to that plastic class). The pixels of the 
plastic samples without BFRs (i.e., PA6 and PP) were clas-
sified almost perfectly, however, the pixels of the samples 
containing BFRs (i.e., PS and ABS) were confused when 
trying to classify them. Furthermore, pixels that belong to 
the PS class were classified much worse than pixels of the 
ABS class; the reason for this could be related to differ-
ences in the amount of BFR applied to the PS and ABS 
plastic samples (however, the detailed information about 
the amounts of BFR was not provided and the direct 

relationship between misclassification and increasing 
amount of BFR could not be verified). On the other hand, 
it is worth noting that the ICA algorithm extracted less 
independent components (ICs) in the cases of the plas-
tics containing BFR than in the pure plastics (without 
BFR). The selection of the regions of interest (ROIs) could 
be also related to this.

The data matrices and the validation segments of the 
four individual models were used as inputs for a global 
ICA model. The scores plot for the third and the fourth 
independent components (IC 3 and IC 4 in Figure 6a) 
showed four clusters corresponding to the four plastics. 
However, as expected from Figure 5, the two plastics 
with BFRs (PS and ABS) had less compact clusters than 
the two pure plastics (PA6 and PP). In Figure 6a, each 
cluster has been marked off with an ellipse for better 
visualisation, and the names of the plastics have been 
added for easier cluster identification.

Therefore, the scores plot for the ICA global model 
containing the four plastics classes (Figure 6a) allowed 
the identification of each one of the plastics. Furthermore, 
the scores in Figure 6a showed that the two pure plastics 
(without BFRs) are similar among themselves, and the 
two plastics containing BFRs are similar among them-
selves. Therefore, IC3 separates the two pairs of plastics 
according to their content of BFRs (PP and PA6, the pure 
ones, have high scores for IC3; whilst PS and ABS, the 
ones containing BFRs, have low score values for IC3). In 
order to examine the influence of the wavelengths for 
IC 3, the loadings plot is shown in Figure 6b; as it can be 
seen, a large amount of variation, likely related to the BFR 
variance, is detected close to 1200 nm.

Conclusions
The plastics data set of this paper was previously used 
for supervised classification purposes using partial least 
squares discriminant analysis (PLS-DA) by Amigo et al. in 
2015.2 In this paper, we aimed to two main objectives: (i) 
an unsupervised classification of all pixels of the hyper-
spectral image by using local ICA models with segmented 
cross-validation and uncertainty estimates (including 
Hotelling’s T2 limit estimation) and (ii) a comparison of 
two different validation methods (leave-one-out and ROI 
selection based approaches) for ICA classification models. 
We challenged the unsupervised ICA-based classifica-
tion method used in this paper in several ways, as, for 

Figure 4. Comparison of the p-values from jack-knife 
estimates for LOO and ROI validation schemes. The 
p-values obtained from the ROI approach are repre-
sented by a blue solid line, and the p-values obtained 
from LOO approach by a red dashed line. A horizontal 
black dashed line has been added at p = 0.05 for easier 
visual assessment.
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example, by either keeping some background pixels 
inside the holes of the pellets or mixing plastics with/
without flame retardant content, to see if the classifica-
tion was successful in those conditions. The data set was 
selected for these purposes.

The result of the ICA unsupervised classification showed 
the different composition of the four plastics as four clus-
ters in the scores plot for the global ICA model; including 
the separation of the two plastics that contained bromi-

nated flame retardant (Figure 6a), although with more 
spread clusters. The classification of all the pixels (when 
mapped back to the image, see Figure 5) was perfect for 
the PA6 plastic, and almost perfect for the other pure 
plastic (PP). However, the mapping back of all the image 
pixels was not so good in the models for the BFR plastics 
(PS and ABS). This effect on the classification due to the 
presence of brominated flame retardant in the plastics 
was also reported by Amigo et al. in the final remarks 

Figure 5. Pixel classification and 
Hotelling’s T2 limits for the four 
plastics (PS with BFRs, PA6, PP,and 
ABS with BFRs). Pixels represented 
in white belong to the target plastic 
type that has been classified. The 
Hotelling’s T2 limit is represented 
by a horizontal red line.
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of Reference 2, therefore the choice of supervised vs 
unsupervised classification methods does not affect the 
outcome of the multivariate analysis.

The stability of the model was studied. The rela-
tion between the calibration and the validation curves 
(residual variance) is an indicator of the stability of the 
model across the ROIs. On the other hand, Hotelling’s T2 
limits estimation helped to obtain an enhanced unsuper-
vised ICA classification of all the pixels of the NIR hyper-
spectral images. The T2 limits were based on pixels inside 
the ROIs for each class, and then applied to all pixels in 
the image.

Besides, the validation study reported some interesting 
conclusions. In any modelling similar to the one presented 
here, where different samples are used (e.g., pellets 
of plastic), the cross-validation must be done across 
samples. Otherwise, the number of components finally 
selected could be “not optimal”. When using random vali-

dation (also tested during the data analysis) the optimal 
number of components was not evident from the results. 
And for the case of the LOO, as shown in Figure 4, the 
results showed too many variables (wavelengths) with 
p-values equal to zero when using the significance level; 
whilst the ROI-based validation provided a more informa-
tive set of p-values (which are related to the uncertainty 
assessment). Moreover, the uncertainty values (obtained 
by jack-knifing) were also checked to find the optimal 
number of significant model components; an assessment 
of the most relevant variables could be also performed 
by evaluating the jack-knife uncertainties, but this is out 
of the scope of this paper. Bootstrapping was not consid-
ered here because of the risk of obtaining many false 
positives.19
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