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Summary

Text categorization is the task of discovering the category or class text documents
belongs to, or in other words spotting the correct topic for text documents.
While there today exists many machine learning schemes for building automatic
classifiers, these are typically resource demanding and do not always achieve
the best results when given the whole contents of the documents. A popular
solution to these problems is called feature selection. The features (e.g. terms)
in a document collection are given weights based on a simple scheme, and then
ranked by these weights. Next, each document is represented using only the top
ranked features, typically only a few percent of the features. The classifier is
then built in considerably less time, and might even improve accuracy.

In situations where the documents can belong to one of a series of categories,
one can either build a multi-class classifier and use one feature set for all
categories, or one can split the problem into a series of binary categorization
tasks (deciding if documents belong to a category or not) and create one ranked
feature subset for each category/classifier.

Many feature selection metrics have been suggested over the last decades,
including supervised methods that make use of a manually pre-categorized
set of training documents, and unsupervised methods that need only training
documents of the same type or collection that is to be categorized. While many of
these look promising, there has been a lack of large-scale comparison experiments.
Also, several methods have been proposed the last two years. Moreover, most
evaluations are conducted on a set of binary tasks instead of a multi-class task
as this often gives better results, although multi-class categorization with a joint
feature set often is used in operational environments.

In this report, we present results from the comparison of 16 feature selection
methods (in addition to random selection) using various feature set sizes. Of
these, 5 were unsupervised , and 11 were supervised. All methods are tested
on both a Näıve Bayes (NB) classifier and a Support Vector Machine (SVM)
classifier. We conducted multi-class experiments using a collection with 20
non-overlapping categories, and each feature selection method produced feature
sets common for all the categories. We also combined feature selection methods
and evaluated their joint efforts.

We found that the classical supervised methods had the best performance,
including Chi Square, Information Gain and Mutual Information. The Chi Square
variant GSS coefficient was also among the top performers. Odds Ratio showed
excellent performance for NB, but not for SVM. The three unsupervised methods
Collection Frequency, Collection Frequency Inverse Document Frequency and
Term Frequency Document Frequency all showed performances close to the best
group. The Bi-Normal Separation metric produced excellent results for the
smallest feature subsets. The weirdness factor performed several times better
than random selection, but was not among the top performing group. Some
combination experiments achieved better results than each method alone, but the
majority did not. The top performers Chi square and GSS coefficient classified
more documents when used together than alone. Four of the five combinations
that showed increase in performance included the BNS metric.
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B.10 Näıve Bayes percentage correct chart - CHI and EOR . . . . . . 107
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Chapter 1

Introduction

This chapter provides a short introduction to the topics of the project. We first
present the motivation behind the assignment and define the problem and goals.
Next, we define the scope of the work, and finally we list the outline of the
report.

1.1 Motivation

Categorizing text documents means to discover their category or topic from a
set of predefined categories, e.g. ‘sports’ or ‘economics’. Text categorization
is an important field within natural language processing. Its application areas
are many and the need for them is increasingly important as the amounts of
information continue to grow. Junk mail filtering has been an important area
for text categorization the last decade, as have portals with hierarchies of web
sites, digital libraries and more. But the general task of filing a text document in
the correct location – or spotting its correct topic – will exist as long as digital
written texts are being produced. Other examples include publishing newspaper
articles in the correct category or storing a digital document correctly in an
archive or library.

Automatic text categorization was first done as early as the sixties, though
the lack of computer power made it infeasible for a long time. During the
last decade or so however, we have seen a lot of efforts in the area. While
computers today are capable of learning and performing text categorization
within reasonable time limits, growing amounts of data makes TC challenging
today as well.

When classifying text documents one considers the features of a document,
typically these correspond to terms. Not all features are equally helpful for
deciding which category a documents belongs to. One can say that they convey
less information, while some features may even be regarded as noise. Selecting
a (good) subset of these features has emerged as a research field itself, named
feature selection. Selecting a subset of features can give both huge savings in
computation time and increase in accuracy.

Many methods for ranking and selecting features have been presented, and
the main task of this assignment is to compare promising methods in the same
system. Feature selection methods have been compared before, but the number
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of methods compared in each paper is often sparse. Also, several methods have
been presented as late as 2008, and there is a so far unfulfilled need to compare
these against each other and the classic methods.

The following sentences about feature selection methods from Sebatiani’s
much appreciated paper [Seb02] provides good motivation:

[...] it should be noted that these results are just indicative, and that
more general statements on the relative merits of these functions
could be made only as a result of comparative experiments performed
in thoroughly controlled conditions and on a variety of different
situations (e.g., different classifiers, different initial corpora, ...).

Such comparative experiments are exactly what this thesis will include.

1.1.1 Problem definition and goals

The short version of the assignment text reads:

Information retrieval and text mining methods operate on the terms
found in text documents. As such, every term found in a collection
is analyzed and used for further processing. The process of feature
selection is performed in order to reduce the number of terms to
be used in further analysis (i.e. to identify the most important
terms beforehand). The task of this project is to compare a range of
feature selection techniques with the goal of a thorough performance
evaluation.

The main goal of the assignment is evidently to compare several feature
selection techniques. Moreover, the performance evaluation should be thorough –
e.g. include several performance metrics suitable for different situations.

We can extend the goals to include the following:

1. Comparing various feature selection methods on more than one classifier,
e.g. a Naive Bayes classifier and a Support Vector Machine.

2. Comparing both supervised (using the category information in a pre-
classified training set) and unsupervised selection methods.

3. Comparing several recently porposed methods that have not yet been parts
of large-scale testing.

4. As there are so many variable parameters, performance results from one
researcher cannot be compared to results from another, even if the same
collection and classifier is used. Hence, comparing as many feature selection
methods as possible in one system is a subgoal.

1.1.2 Project Scope

This thesis will include a preliminary study of the many aspects of text catego-
rization in general and feature selection in particular. It will cover many feature
selection methods, but a complete comparison would be infeasible in the time
slot given.
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A prototype for distributed text categorization based on Apache Lucene1 is
in development. This project work will include importing and indexing well-
known text benchmark collections, implementing feature selection techniques
and computing feature rankings in the prototype. The selected features will be
exported to machine learning suites with the documents represented using those
features, and classification models will be generated on powerful computers.

We have decided to make use of the well-known data mining suite Weka2 for
building the classifiers. Within Weka, we have decided to focus on the classic
Naive Bayes learner, and a Support Vector Machine learner which has seen
increasing popularity for text categorization the last decade.

Both Chapters 2 and 3 will narrow down the scope of the project, as there
are many details to decide on even though the assignment may sound rather
straight forward.

1.1.3 Report outline

The rest of the report will be structured as follows:

Chapter 2 – Text Categorization will introduce text categorization, as well
as explain which choices we have made in our work.

Chapter 3 – Feature Selection will explain the details of feature selection.
A range of state-of-the-art methods will be presented, using a junk mail
filtering example.

Chapter 4 – Experiments and Results will present our experiments includ-
ing the text collections used. Also, the performance results will be presented
and discussed.

Chapter 5 – Conclusion and Outlook will provide some concluding remarks
of the results, and suggestions for future work.

1http://lucene.apache.org/java/docs/
2http://www.cs.waikato.ac.nz/ml/weka/

http://lucene.apache.org/java/docs/
http://www.cs.waikato.ac.nz/ml/weka/
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Chapter 2

Text Categorization

This chapter will introduce the concept of text categorization, also known as
text classification or topic spotting. We will present different types of text
categorization, popular applications, and components of a text categorization
system.

We will also touch upon feature selection, an important concept within text
categorization which is the main topic of Chapter 3 and this report in general.

Introduction

Text categorization is the task of discovering the category or categories that a
text document belongs to, from a fixed set of predefined categories. In other
words to assign category labels to documents. As mentioned, it is also called
topic spotting, as it can be seen as the problem of spotting the topic of text
documents. Text categorization can of course be done manually, but in this
report we look at automated text categorization systems.

Other meanings of text categorization/classification As explained in
the excellent paper [Seb02], somewhat different activities are referred to as
automated text classification. In this report, we mean the automatic assignment
of category labels to documents, where the categories available are known in
advance. Others mean the dicovery of the categories, or the discovery process
and the assignment of category labels – more often known as clustering. An
even wider definition of the word includes any process of grouping documents by
categories, that is, both the above mentioned variations.

2.1 Types of Text Categorization

Text categorization can be divided into sub-types in various ways. In this section,
we list some of them, and discuss what they are good for.

2.1.1 One or more Categories for a Document

Text categorization (TC) systems can either have several categories to choose
from, or just two (e.g. interesting or uninteresting). Also, they can label each
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document with either exactly one, or several (0-k) category labels. We can break
down the various types as follows:

Multiple Label TC Some systems and applications can assign from none to
multiple category labels (zero, one, several, or even all) to each document. Articles
in an online news paper could for instance belong to both the ‘international’
category and the ‘sports’ category. This type of text categorization systems are
also called overlapping categories, as mentioned in [Seb02, Page 3].

Single Label TC Single label systems assign exactly one category label to
each document. There can be many categories to choose from, however. Our
main example, presented in Section 3.5 is a single label text categorization
problem, with three possible categories. Likewise, the experiments presented in
Chapter 4 are single label.

Binary TC Binary text categorization is a special case of single label text
categorization, but here only two categories are available. Moreover, each
document has to be labeled with one of these categories. Posts in a news feed
could for instance be labeled interesting or uninteresting for a user. A junk mail
filter is another example where a binary text categorization system could be
applied.

Note that binary classification also is important because it is often used as
a subroutine in many multi-class (i.e. multiple label and single label) tasks,
see [For07].

2.1.2 Knowledge Engineering vs. Machine Learning

Up until the nineties, text categorization was often done the knowledge en-
gineering way [Seb02]. Expert systems were created by knowledge engineers
and domain experts. These systems consisted of rules, that contained enough
knowledge to classify the documents.

In the nineties, the machine learning approach gained popularity. In this
approach, artificial intelligence is used to create classifiers that can assign category
labels to documents automatically. The classifiers are trained on manually pre-
classified documents called training documents. This approach is preferable
because of faster re-training when the categories or other aspects change. Because
of limited computing power however, it was not feasible before the late eighties.

This report concerns the machine learning approach to text categorization,
using a Näıve Bayes classifier and a Support Vector Machine classifier.

2.1.3 Hard Categorization vs. Ranking TC

As explained in Section 2.1.2, text categorization can be done by expert sys-
tems concisting of rules created by knowledge engineers. An automated text
categorization system using machine learning can function as an aid for the
knowledge engineers when creating rules, or for anyone performing manual text
categorization, as they only need to consider the top ranked categories for each
document (or the top ranked documents for each category). This is called ranking
text categorization [Seb02].
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On the other hand, systems using the machine learning approach only, are
called hard text categorization systems. Hence, this report concerns hard text
categorization.

2.1.4 Document Pivoted vs. Category Pivoted TC

Text categorization can be performed from different ‘perspectives’: Either one
can find all categories that a document belongs to (called document pivoted text
categorization), or one can find all documents belonging to each category in turn
(called category pivoted text categorization). The documents should be labeled
with the same category label(s) independent of which method is used, but they
have different application nevertheless:

Document pivoted text categorization is suitable in situations where new
documents arrive sequentially and the categories are stable, for instance in a
junk mail system. Category pivoted text categorization is suitable when there is
a given set of documents that should be categorized, and when new categories
are added to an existing system.

The feature selection methods used in this report all allow the construction
of classifiers (see Section 2.4.3) capable of working both in a category pivoted
and a document pivoted manner.

2.1.5 Supervised vs. Unsupervised Text categorization

Automatic text categorization can either be supervised or unsupervised. The
unsupervised type (e.g. text clustering) both creates and assigns category labels
solely by observing the documents that are to be clustered/categorized.

In this report however, we look at supervised learning. Here, a set of
(sometimes pre-classified) documents must be available (see Section 2.4.4). Also,
a predefined set of categories must be given. The learning process is ‘supervised’
or guided by the known categories and the training documents. Notice however,
that we compare both supervised and unsupervised feature selection methods,
where the former uses the category information in the training data and the
latter does not.

2.1.6 Exogenous and Endogenous Knowledge

Text categorizing can utilize exogenous knowledge, i.e. data from an external
source, to aid the decision process. Meta-data like author, keywords, date of
publication etc. could for instance be exploited. The document content itself by
comparison, contains endogenous knowledge [Seb02, Section 2.1].

We are in this report concerned with feature selection and text categorization
methods that use endogenous knowledge only.

2.2 Applications

Text categorization is a basic building block in many information systems. It
has probably been carried out for almost as long as written languages have
existed, although automatic text categorization only has been around the last
half decade.



8 Text Categorization

In this section, we will look at some of the areas where text categorization is
used (manually or automatic).

Automatic Indexing for Controlled Vocabulary IR System A classic
text categorization application is called text indexing. Here, documents in a
boolean IR system are labeled with one or more keywords (or categories). The IR
system can then return documents matching a user’s keyword-based query [FS07,
Chapter IV].

Notice that the keywords are defined in a controlled vocabulary, e.g. a
thesaurus like the MESH thesaurus for medicine.

Document Organizing The organization or sorting of documents into ‘bins’
or categories is a common application. For instance, newspapers may want to
automate the sorting of classified ads into e.g. ‘personal’, ‘real estate’ etc., or file
their articles into ‘national’, ‘international’, ‘sports’ and other categories. For
large newspapers, doing this manually could be time-consuming. Whether to
use single or multiple category labeling1 depends on the specific organizing job.

Text Filtering Text filtering here refers to the task of categorizing documents
that arrive to the classifier one by one [For07]. Examples include junk mail
filters, where the binary type of text categorizing typically is used (e.g. a message
is either marked as spam or not spam). As discussed in [FS07, Chapter IV],
an important question in such systems is the weighting of either recall errors
(a document missing from a category, e.g. ‘not spam’) or precision errors (a
document filed under a category where it does not belong). For the mentioned
spam filter, recall errors are typically seen as more important to avoid than
precision errors (e.g. one would rather receive a few spam messages than miss
one important message).

Also, any service where a user can create a profile specifying her interests in
order to filter some sort of message or document stream (e-mail, advertisements,
news articles, event notifications, scientific papers, etc.) could make use of
automatic text categorization. Indeed, the example used in this report (see
Section 3.5) is of this type. In such systems, single or multiple label text
categorization is appropriate.

Computational Linguistics Computational linguistics is the use of comput-
ers for processing natural language grammars and linguistics. Several subareas
of computational linguistics can be tackled by automatic text categorization,
including word sense disambiguation, context-sensitive spelling correction, prepo-
sitional phrase attachment, part-of-speech (POS) tagging, and word choice
selection [Seb02, Section 3.4].

Word sense disambiguation (the task of deciding which of a word’s several
meanings/senses is meant in a sentence or context) for instance, can be seen as
a text categorizing task if we let the word senses act as categories, and the word
occurrence contexts act as documents.

1See section 2.1
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Hierarchical Categorization of Web Pages The World Wide Web consists
of millions of web sites, and for many years already, Internet portals (such as the
Yahoo! Directory2 [FS07, Chapter IV]) have been popular starting points for
navigating to relevant web sites. These portals allow a user to browse through
a hierarchical structure of categories, narrowing the scope of possibly relevant
sites for each click. Furthermore, the user may often either make direct use of
hyperlinks to a desired web site directly, or he or she may choose to submit a
query within the selected category.

The number of web sites continues to grow, and manual web site categoriza-
tion of a noticeable size has for a long time been infeasible. The text categorizing
system could be built up assigning one classifier at each node in the hierar-
chy [Seb02, Section 3.5], and it should allow new categories to be added and
obsolete ones to be removed. A minimum and maximum number of documents
for each category could for instance be applied.

2.3 Document Representation

In this section, we present some information retrieval basics needed to grasp the
technical details of text categorization and the feature selection methods.

2.3.1 The Vector Space Model

The vector space model is one of the most popular models used in Information
Retrieval [MRS08, BYRN99] and Text Categorization. It is a basic building block
in many operations, including document ranking in search engines, document
clustering and categorization. Since it is a fundamental part of the systems used
in this report, a short introduction to the model follows.

In the vector model, each document can be seen as a vector of terms, where
each term is assigned a weight based on some weighting scheme. The most
basic weighting scheme uses binary weights (w = 1 if the term is present in the
document, and w = 0 if not). A better and much referenced weighting scheme is
the tf-idf scheme. Here, a term’s frequency (how often it appears in a document)
is multiplied by its inverse document frequency (the total number of documents
divided by the number of documents containing the term). See Section 2.3.2 for
more on this.

In a search engine, each query is typically represented by the same kind
of vector in the same vector space as the documents, enabling fast similarity
comparisons. In text categorization, all documents in the training-, test- and
validation sets (see Section 2.4.4) and the documents to be classified are indexed
and represented by the same model, typically the vector space model.

2.3.2 Weighting Schemes

In Information Retrieval applications, each term or feature in a document is
typically given a feature weight based on a weighthing scheme. This section
briefly lists some basic ideas, including the tf-idf weighting scheme that we use
in our experiments.

2http://dir.yahoo.com/

http://dir.yahoo.com/
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Term Frequency How often a term i appears (called the term frequency (tf))
in a document j (tfi,j) and corpus (tfi) is important, as it carries knowledge
of its relevance. However, some calculations are typically done to make
it more useful. It can be normalized [BYRN99] by incorporating the
maximum frequency over all terms in the document (maxlfreql,j):

ntfi,j =
tfi,j

maxlfreql,j

Another way of refining the term frequency is to make it relative [Cim06] to
the sum of all other term frequencies (tfk), either for the whole collection:

rtfi =
tfi∑
k tfk

or per document j:

rtfi,j =
tfi,j∑
k tfk,j

Document Frequency Further on, the notion of document frequency can
defined as the number of documents j in a corpus D where the term i
occurs:

dfi = |{d ∈ D | d contains i}|

Inverse Document Frequency One can also consider the inverse document
frequency (or idf-factor). This measure will favor terms that appear in few
documents, and penalize those that appear in many documents:

idfi = log
|D|
dfi

Tf-idf Weighting When combined, the term frequency and the inverse docu-
ment frequency can be used as a weight of a term, typically done in the
vector-model in IR:

tf -idfi,j = tfi,j · idfi

The tf-idf can be computed in various ways [BYRN99, Cim06], and the
above shown is the most basic. We employ tf-idf weights in our experiments
presented in chapter 4.

2.4 Components of a Text Categorization Sys-
tem

In this section, we briefly explain the common components of a text categorization
system, that is, the operations necessary or usually executed when performing
text categorization.

2.4.1 Preprocessing

Before the documents can be categorized, they are often preprocessed, including
sentence and term splitting, word stemming, etc. What is done in this phase
depends on the system and application. In this section, we present some possible
preprocessing tasks.
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Tokenization Tokenization takes a text (i.e. a string) and discovers sentences
and ‘tokens’ [FS07, Chapter III]. This may seem like a ‘no-brainer’ (just split
the string at every space), but this is not the case. Abbreviations like ‘etc.’,
‘i.e.’ and ‘e.g.’ are typically written with punctuations, so punctuations do not
always end sentences. Also, hyphens, digits, cases and more need to be handled.
Combinations of rules and predefined lists can be used to decide what to do with
ambiguities.

How tokens are represented is different from system to system. Some include
characters only, while others include position in the text, token type etc. We
used Lucene’s StandardTokenizer in our experiments.

Stemming Stemming reduces a word to its stem [BYRN99]. For instance
the word connection can be reduced to its word stem connect. The same goes
for the following variations of the same word stem: connected, connecting, and
connections. A famous algorithm for stemming is the Porter stemmer [Por80]
that is based on removing suffixes from words (e.g. removing s from plural
words). We employ Lucene’s Snowball Analyzer, which includes a stemmer based
on the Porter algorithm.

Note that stemming usually reduces the number of features in the corpus,
since several words typically are reduced to the same word stem. Reducing the
number of words/features is discussed in the next section.

2.4.2 Term Space Reduction

Before the machine learning starts, the term space is often reduced (that is, a
subset of the available features are selected), to save computing time or even
increase accuracy. Term Space reduction is explained in detail in section 3.1,
including Feature Selection, Extraction or Construction.

Removal of Stop Words Stop words, also called function words or common
words, are words that are so common in a text collection that they do not add
any information to the categorization process. For instance, the words ‘the’, ‘it’,
‘and’ etc., are probably found in most English text documents. For the classifier
however, such words are just as computationally demanding as any other words,
so it is very common to remove them. Note that stop words are a subjective
matter, there is no official definition of which words are stop words or not.

We performed individual stop word removal in addition to Lucene’s standard
list of English stop words.

2.4.3 Machine Learning/Induction

The machine learning component is the most important part of an automatic
text categorizing system. The classifier is where the actual decisions are made
for which topic(s) a document should be labeled with. A classifier is created
in an inductive step called a learner, where the contents (the features) of a
set of pre-classified training documents are used to ‘teach’ the classifier which
features new, unseen documents should contain to be labeled as belonging to
that category.

Several machine learning techniques can be used for text categorizing, in-
cluding probabilistic classifiers (e.g. Näıve Bayes), decision tree classifiers (e.g.
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the ID3 algorithm [Qui86]), neural networks, and more [FS07, Chapter IV]. We
build and evaluate Näıve Bayes and Support Vector Machine classifiers in our
experiments.

2.4.4 Training, Test, and Validation Sets

When using supervised feature selection methods (as those presented in Sec-
tion 3.7), the handling of the pre-classified documents (the traing data) is
critical.

A common practice is to split the training data into two sets; a training
set Tr and a test set Te [Seb02, Section 4.1]. The training set Tr is used to
train the classifier (for instance using machine learning with features selected by
the methods from Section 3.7). The test set Te is then used to test/evaluate
how effective the classifier turned out to be. This test will thus evaluate the
joint quality of the training data, the feature selection method, and the machine
learning algorithm used in the classifier. This way of using the training data is
called the train-and-test approach.

The classifier may some times be tuned with internal parameters, and to be
able to validate which settings produce the best result, a validation set V a is
introduced. One performs several tests of the qualifier, and uses the validation
set to land on the best settings. These sets must be kept completely separate
from each other, to avoid misleadingly good results.

Another way to evaluate the classifier is called the k-fold cross-validation
approach [Seb02] or hold-out testing [Mla98]. Here, the pre-classified documents
are first randomly split into k disjoint test sets Tek (with the rest of the documents
as training and validation sets). Then, the train-and-test approach is applied,
creating k classifiers. In the end, the average result of the k classifiers should
be more reliable than the results from one single train-and-test run. While
cross-validation is recommended by many (e.g. [For07]), it demands more from
the text categorizing software and computers, and seems not to have been used
in the majority of experiments we have studied. It is employed in [YH08], [ZH07]
and [Mla98]. We used 10-fold cross-validation using Weka in the experiments
presented in Chapter 4.

If the classifier is to be used for actual operational categorizing purposes
(and not just evaluating and comparing it to other classifiers as we do), one
should consider using all pre-classified documents for training if the classifier,
after evaluation is done. Training the classifier on the whole set of pre-classified
documents should result in higher effectiveness than partial training, and the
results from the train-and-test or the k-fold cross-validation evaluation approaches
should be treated as minimum effectiveness estimates.

Splitting the training data in time periods Some [BMGMF08, RS99,
LR94] split the pre-classified documents in time periods, that is, the oldest
documents in the training data are used for training, the newer ones are used
for testing. This can be an advantage, as it imitates a real life situation. If we
were to create an operational text categorization classifier, the only training
data available would be that which has been produced up until now. Likewise,
we would typically use the classifier to categorize documents being produced
in the future. Not all categorizing tasks are for future data, however. Also,
this method requires a date label on the pre-classified documents. We do not



2.5 Evaluation 13

employ such a split in the experiments presented in this report, as we use 10-fold
cross-validation.

2.5 Evaluation

Automatic text categorization systems are evaluated based on how well they
perform compared to the true category information of documents. Using docu-
ments with known category information as described in Section 2.4.4, we can
evaluate a classifiers performance in various metrics:

The percentage of correctly categorized documents is a natural starting
point for measuring the performance of a classifier. However, as some important
information may be hidden behind this metric, a few other measures are com-
monly used as well. Before presenting these, we show some important document
counts used in the computations.

Document actually
belongs to category

Document actually
does not belong to
category

Classifier says document be-
longs to category

True positives (TP) False Positives (FP)

Classifier says document
does not belong to category

False negatives (FN) True negatives (TN)

Table 2.1: Notation: Contingency table for evaluation measures

Here, a true positive (TP) is a correctly assigned positive class label, while a
false positive (FP) is an incorrectly assigned positive class label. A false negative
(FN) is a document that actually belongs to the category, but was not recognized
as such by the classifier. A true negative (TN) is a document not belonging to
the class, and the classifier correctly did not place in the class.

Hence, the sum of true and false positives means the actual number of
documents that the classifier placed in that class, while the sum of true positives
and false negatives means the number of documents that actually belong to a
category, no matter what the classifier says.

The precision of a classifier is defined as the the number of true positives
divided by the number of true and false positives. The recall of a classifier
is defined as the the number of true positives divided by the number of true
positives and false negatives [BYRN99].

Precision =
TP

TP + FP

Recall =
TP

TP + FN

The precision level is sometimes referred to as a level of exactness, while the
recall level measures completeness. Some applications are more concerned with
one than the other. For instance, when filtering junk e-mail from important
e-mail, we would typically rather accept occasional spam messages in the inbox
than important messages in the junk mail folder. Hence, when classifying spam
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we would like a high degree of exactness or precision, while when classifying
relevant messages, we would like a high degree of completeness or recall.

The precision ad recall levels are often combined into a single metric called
the F1-measure (or sometimes just F-measure). The number one says that
precision and recall are equally weighted.

F1 =
2(precision · recall)
precision+ recall

The F1-measure is in fact a special case of the Fβ-measure:

Fβ =
(1 + β2)(precision · recall)
β2 · precision+ recall

where β specifies how many times more recall should be weighted over pre-
cision [vR79]. For instance, the F2-measure weights recall twice as much as
precision, while the F0.5-measure weights precision twice as much as recall. In
our experiments, we report the percentage of correctly categorized documents,
precision, recall, and F1-measure of the classifiers performances.

Moreover, when categorizing documents into multiple classes, the precision,
recall and F-measures can be reported in both a macroaverage and microaverage
metric. Macroaverage means the arithmetic mean over all classes, while
microaverage means the average weighted by the class distribution. The
macroaverage weights each problem equally, while the microaverage weights
each document classification equally. Hence, for highly skewed class sizes, these
figures may show quite different values. In our experiments however, we have
used a corpus with rather similar document counts for each class, so micro- and
macroaverage values are rather similar. Thus we present only the macroaveraged
precision, recall and F1-measure.

2.6 Text Categorization Summary

Here we sum up the choices we have made, before looking at feature selection in
the next chapter:

This report focuses on automated, single label text categorization systems,
where categorization means the automatic assignment of category labels to
documents, where the categories available are known in advance. It concerns
the machine learning approach to text categorization, and not the knowledge
engineering approach. We consider hard text categorization, and we make use
of supervised machine learning methods for text categorization. Notice however,
that we compare both supervised and unsupervised feature selection methods.
We are concerned with feature selection and text categorization methods that
use endogenous knowledge only. This report concerns systems based on the
vector model. We use binary weights in the examples, but tfidf weights in the
experiments presented in Chapter 4. These experiments includes tokenization by
Lucene’s StandardTokenizer and stemming by Lucene’s SnowballStemmer. Our
experiments make use of 10-fold cross-validation instead of pre-defined training
and test sets.



Chapter 3

Feature Selection

In this chapter we will introduce the concept of ‘features’, why we select some
features over others, and how it’s done. Then we will present a practical notation,
and a feature selection example. This example will be used throughout the
chapter, when we go through some of the important feature selection techniques
that exist.

Introduction

Feature Selection is the step of selecting1 some features (e.g. words or terms) to
be used when building an automatic classifier for text categorization. Instead of
representing a document with all its features, we can represent it using only the
selected ones. This way, the classifier has to handle less data.

As pointed out in [For07] there are two main reasons for selecting some
features over others:

Accuracy Firstly, studies have shown that machine learning algorithms can
produce better results when not considering all the features. It would be
reasonable to think that the more features considered, the more accurate
the classifier would become. However, some features do not add more
information (they are merely noise), and removing these can make the
classifier perform more accurately.

Scalability Secondly, as machine learning algorithms are resource demanding
(computation power, memory need, network bandwith, storage, etc.),
running them on a subset of the features typically yields significant time
savings. The ability to work with a small subset of the features also ensures
scalability. [Mla98] reported good accuracy even with subsets of just 2%
of the available features.

Combining these reasons, we can say that feature selection is the task of selecting
the subset of features with the best signal-to-noise ratio.

In this report, we select features by ranking them according to some measure,
and then use the i best features for creating the classifier. This kind of feature
selection is sometimes called ‘feature selection by feature ranking’, e.g. in [MK07].

1Note that there are other ways of creating a feature set than selection, as explained in
Section 3.1
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Aggressiveness Feature Selection can be modest or aggressive. The fewer
features selected, the more aggressive the feature selection can be said to be.
Feature selection can be said to have a high reduction factor, i.e. the number of
available features are highly reduced. A high reduction factor is the same as an
aggressive feature selection process.

So what is a feature? A feature is some characteristic, detail or aspect of
something. In a text document, the words or terms make up the most obvious
features, but as we shall see in the next section, other ways of finding features
exist as well.

For the task of classifying documents, we need good quality features. Good
quality features contain much information that the classifier can use to decide
which category a document belongs to. Hence, a word that occurs in all docu-
ments in one category in the training set and in none of the other categories,
would probably be a good quality feature for that category. Poor quality features
contain less information about the class membership. For instance, stop words
(like ‘the’, ‘it’, ‘and’ etc.) will probably occur in all categories, and would not
help the classifier much in the decision process.

Poor quality features are also called irrelevant features [LM07b], and the
performance of the classifier is maintained (or even raised) if they are removed.
A special kind of irrelevant features are the redundant features. They are useful
for the classifier themselves, but can be removed since there are other features
contributing the same information. Note that by removing redundant features,
the classifier performance remains the same, while the computation time falls.

Some features can seem like good features in the training data, but then turn
out not to work well in real life. Such features are called noise features, and
when such features are selected by the feature selection technique, it is called
overfitting, i.e. the classifier trained with the selected features (including the
noise features) will be very good at categorizing the training documents, but
not so good for other documents.

We employ Lucene’s StandardTokenizer in our experiments. From the Lucene
API we can see that StandardTokenizer:

• Splits words at punctuation characters, removing punctuation.
However, a dot that’s not followed by whitespace is considered
part of a token.

• Splits words at hyphens, unless there’s a number in the token, in
which case the whole token is interpreted as a product number
and is not split.

• Recognizes email addresses and Internet hostnames as one token.

In practice, this means that StandardTokenizer recognizes e-mail addresses, time
and dates, and these becomes our features along with other words and terms.

To give the reader an idea of what features are, we list some features from
the 20 Newsgroups collection, and the feature weights given to them by the
feature selection method called Information Gain:

• 18-year 7.420006103018295E-4

• brash 7.420006103018295E-4

• skirmish 7.420006103018295E-4
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• 99.9 7.419250950011502E-4

• typist 7.415805449717539E-4

• bard 7.414468753861314E-4

• mccartney 7.414468753861314E-4

• 51-day 7.410826647324953E-4

• turmoil@halcyon.com 7.410826647324953E-4

• whacko 7.410826647324953E-4

3.1 Feature Selection vs. Construction and Ex-
traction

As explained in the introduction to this chapter, feature selection can be a
crucial step in a text categorizing system. It is often infeasible to use the whole
document content in the machine learning induction process as it will take too
long to finish.

The methods used to reduce the size of a document’s vector representation
are sometimes called dimensionality reduction methods [CHTQ09], [YH08],
[Seb02, Page 13], [LJ98] and [YP97]. There are several ways of reducing this
dimensionality:

In feature selection, we choose a set of features to keep, and discard the rest.
This reduces the number of single features, and is thus sometimes called feature
space reduction or term space reduction (TSR) [Seb02, Page 14]. The document
vectors explained in the vector space model in Section 2.3.1 is reduced, and the
machine learning algorithms receive less data to handle. This is the kind of
dimensionality reduction we evaluate in this report.

Feature Construction and Feature Extraction are methods that transform the
set of features available into a new (typically smaller) set of features. They are
collectively referred to as Feature Transformation methods. Feature Construction
methods transform the features by finding relationships between existing features,
for instance using the sum of two features as a new feature (a phrase). Feature
Extraction methods create new features that typically do not resemble the
original features at all. One example here is Latent Semantic Indexing (LSI).
We will not be concerned with feature transformation methods in this report.

This report concerns feature selection only. While we most often refer to a
feature selection method, other common terms are metric, function, technique,
equation, and algorithm. Feature selection methods are sometimes referred to as
TSR functions, feature evaluation functions (FEF), feature ranking, scoring or
filtering methods etc.

3.2 Local vs. Global Feature Selection

Feature selection methods typically create a ranked list of features that are
(hopefully) good features to train a classifier for one specific category. That is,
feature selection methods are usually category specific, and the classifier that
uses the selected features is usually trained to decide if documents belong to
that specific category.
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To handle one set of features for each category can be impractical however,
so one sometimes wishes to merge the ranked lists (or the selected features)
into one common feature list for use with all the categories/classifiers. Such a
common list is called a ‘global’ or ‘category-independent’ feature list [Seb02]. It
should be noted however, that the performance of text categorizing typically is
somewhat lower with global feature selection, as the features are less specialized
for the categories.

This report concerns global feature selection, i.e. we employ one common
(joint) ranked feature list for all classifiers.

3.3 Filter vs. Wrapper approach

Feature Selection methods are often grouped into filters and wrappers. Filter
methods measure feature relevance by applying statistical tests to the feature
counts and/or the class labels of the training set. Wrapper methods measure
feature subset usefulness by using AI search methods like greedy hill-climbing or
simulated-annealing to search the space of all feature subsets via cross-validation
with the same induction algorithm that is later used for building the classi-
fier [For07, Seb02]. Where filter methods evaluate each feature independently,
wrappers evaluate feature sets as a whole, which in theory would avoid redundant
features and lead to better results. However, wrapper methods are computation-
ally infeasible for large datasets, and are also more prone to overfitting, so filter
methods are more commonly used.

This report concerns the filter approach to feature selection only.

3.4 Notation

When presenting the different methods for feature selection, we use a compact
notation listed below and depicted in Table 3.1. All the Nvariables below are
document counts from the training set of the document corpus at hand.

The F is for Feature, and the features are defined in the introduction to this
chapter. Categories Ck are labels or topics of documents, as defined in Chapter 2.

N is the total number of documents in the training set.
NCk

is the number of documents in category Ck.
NCk

is the number of documents not in category Ck.
NF is the number of documents containing feature F .
NF is the number of documents not containing feature F .
NF,Ck

is the number of documents containing feature F in category Ck.
NF,Ck

is the number of documents not containing feature F in category Ck.
NF,Ck

is the number of documents containing feature F not in category Ck.
NF,Ck

is the number of documents not containing feature F not in category Ck.

The document counts are used for estimating probabilities by most supervised
feature selection algorithms. Thus a coherent representation should make it
intuitive for the reader to follow the algorithms and compare them.
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vcategory = 1 vcategory = 0
vfeature = 1 NF,Ck

= 351 NF,Ck
= 102 NF = 453

vfeature = 0 NF,Ck
= 0 NF,Ck

= 210 NF = 210
NCk

= 351 NCk
= 312 N = 663

Table 3.1: The table shows a feature-category contingency table example, where
the values are document counts. vfeature = 1 means that the feature in question
is present in a document, while vfeature = 0 means it is not present. Similarly,
vcategory = 1 means that a document belongs to the category, and vcategory = 0
means it does not belong to the category. The four permutations of vfeature
and vcategory make up the four counts NF,Ck

, NF,Ck
, NF,Ck

, and NF,Ck
. The

values shown here are fictive. Notice that the values (vfeature and vcategory) in
each row and column are summed up in the far right column and the lower row,
respectively, creating NF , NF , NCk

, NCk
and the overall total N .

3.5 Example

Throughout the report, we will use an e-mail filtering example, as shown in
Table 3.2. The example is a single label text categorization problem with multiple
categories, as explained in Section 2.1.

The messages (documents) in this example are very simplified compared to
real life documents, even if one imagines that they have had their stop words
removed. Our messages consist of a very small set of words, indeed, message
#9 consists of just the word ‘ski’. The example is created this way to show the
differences of the feature selection methods, rather than to resemble real life
documents.

We will in this example use binary weights for clarity. The e-mail example
can also be presented using contingency tables, as in Tables 3.3, 3.4 and 3.5.
These tables show document counts for (feature, category) pairs for the spam,
business, and private categories, respectively.

Number of occurrences for the available features
Message ‘viagra’ ‘save’ ‘erection’ ‘cell’ ‘ski’ class Ck

#1 1 0 1 0 0 Spam
#2 1 1 1 0 0 Spam
#3 2 0 1 0 0 Spam
#4 1 0 0 0 0 Spam
#5 0 1 0 0 1 Business
#6 0 1 0 1 0 Business
#7 0 0 0 3 0 Business
#8 1 0 0 0 1 Private
#9 0 0 0 0 1 Private

Table 3.2: E-mail filtering example. The table shows the number of times a
feature occurs in a document.
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vc = vspam = 1 vc = vspam = 0
vf = vviagra = 1 NF,Ck

= 4 NF,Ck
= 1 NF = 5

vf = vviagra = 0 NF,Ck
= 0 NF,Ck

= 4 NF = 4
NCk

= 4 NCk
= 5 N = 9

(a) feature ‘viagra’ and category ‘spam’

vc = vspam = 1 vc = vspam = 0
vf = vsave = 1 NF,Ck

= 1 NF,Ck
= 2 NF = 3

vf = vsave = 0 NF,Ck
= 3 NF,Ck

= 3 NF = 6
NCk

= 4 NCk
= 5 N = 9

(b) feature ‘save’ and category ‘spam’

vc = vspam = 1 vc = vspam = 0
vf = verection = 1 NF,Ck

= 3 NF,Ck
= 0 NF = 3

vf = verection = 0 NF,Ck
= 1 NF,Ck

= 5 NF = 6
NCk

= 4 NCk
= 5 N = 9

(c) feature ‘erection’ and category ‘spam’

vc = vspam = 1 vc = vspam = 0
vf = vcell = 1 NF,Ck

= 0 NF,Ck
= 2 NF = 2

vf = vcell = 0 NF,Ck
= 4 NF,Ck

= 3 NF = 7
NCk

= 4 NCk
= 5 N = 9

(d) feature ‘cell’ and category ‘spam’

vc = vspam = 1 vc = vspam = 0
vf = vski = 1 NF,Ck

= 0 NF,Ck
= 3 NF = 3

vf = vski = 0 NF,Ck
= 4 NF,Ck

= 2 NF = 6
NCk

= 4 NCk
= 5 N = 9

(e) feature ‘ski’ and category ‘spam’

Table 3.3: Contingency tables for the e-mail example (the spam category). The
tables contain document counts, see Table 3.1 for explanation.
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vc = vbusiness = 1 vc = vbusiness = 0
vf = vviagra = 1 NF,Ck

= 0 NF,Ck
= 5 NF = 5

vf = vviagra = 0 NF,Ck
= 3 NF,Ck

= 1 NF = 4
NCk

= 3 NCk
= 6 N = 9

(a) feature ‘viagra’ and category ‘business’

vc = vbusiness = 1 vc = vbusiness = 0
vf = vsave = 1 NF,Ck

= 2 NF,Ck
= 1 NF = 3

vf = vsave = 0 NF,Ck
= 1 NF,Ck

= 5 NF = 6
NCk

= 3 NCk
= 6 N = 9

(b) feature ‘save’ and category ‘business’

vc = vbusiness = 1 vc = vbusiness = 0
vf = verection = 1 NF,Ck

= 0 NF,Ck
= 3 NF = 3

vf = verection = 0 NF,Ck
= 3 NF,Ck

= 3 NF = 6
NCk

= 3 NCk
= 6 N = 9

(c) feature ‘erection’ and category ‘business’

vc = vbusiness = 1 vc = vbusiness = 0
vf = vcell = 1 NF,Ck

= 2 NF,Ck
= 0 NF = 2

vf = vcell = 0 NF,Ck
= 1 NF,Ck

= 6 NF = 7
NCk

= 3 NCk
= 6 N = 9

(d) feature ‘cell’ and category ‘business’

vc = vbusiness = 1 vc = vbusiness = 0
vf = vski = 1 NF,Ck

= 1 NF,Ck
= 2 NF = 3

vf = vski = 0 NF,Ck
= 2 NF,Ck

= 4 NF = 6
NCk

= 3 NCk
= 6 N = 9

(e) feature ‘ski’ and category ‘business’

Table 3.4: Contingency tables for the e-mail example (the business category).
The tables contain document counts, see Table 3.1 for explanation.
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vc = vprivate = 1 vc = vprivate = 0
vf = vviagra = 1 NF,Ck

= 1 NF,Ck
= 4 NF = 5

vf = vviagra = 0 NF,Ck
= 1 NF,Ck

= 3 NF = 4
NCk

= 2 NCk
= 7 N = 9

(a) feature ‘viagra’ and category ‘private’

vc = vprivate = 1 vc = vprivate = 0
vf = vsave = 1 NF,Ck

= 0 NF,Ck
= 3 NF = 3

vf = vsave = 0 NF,Ck
= 2 NF,Ck

= 4 NF = 6
NCk

= 2 NCk
= 7 N = 9

(b) feature ‘save’ and category ‘private’

vc = vprivate = 1 vc = vprivate = 0
vf = verection = 1 NF,Ck

= 0 NF,Ck
= 3 NF = 3

vf = verection = 0 NF,Ck
= 2 NF,Ck

= 4 NF = 6
NCk

= 2 NCk
= 7 N = 9

(c) feature ‘erection’ and category ‘private’

vc = vprivate = 1 vc = vprivate = 0
vf = vcell = 1 NF,Ck

= 0 NF,Ck
= 2 NF = 2

vf = vcell = 0 NF,Ck
= 2 NF,Ck

= 5 NF = 7
NCk

= 2 NCk
= 7 N = 9

(d) feature ‘cell’ and category ‘private’

vc = vprivate = 1 vc = vprivate = 0
vf = vski = 1 NF,Ck

= 2 NF,Ck
= 1 NF = 3

vf = vski = 0 NF,Ck
= 0 NF,Ck

= 6 NF = 6
NCk

= 2 NCk
= 7 N = 9

(e) feature ‘ski’ and category ‘private’

Table 3.5: Contingency tables for the e-mail example (the private category).
The tables contain document counts, see Table 3.1 for explanation.
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3.6 Unsupervised Feature Selection

Unsupervised feature selection methods are methods that do not use the class
information in the training data when selecting features for the classifier. This
does not mean that a training set is not necessary, but it means that the training
data does not need to be manually pre-classified. All that is needed is to index a
fixed set of documents from the collection the classifier is to be used on. Hence,
these methods are handy if there is no pre-classified training data available, and
if there is no time to create such data. Pre-classified documents are of course
needed for evaluation of the classifier’s performance, however.

This chapter will present earlier, related work in unsupervised feature selection
methods, as well as a few methods not used for feature selection before. We will
run them through our e-mail sorting example where applicable.

We will not use any denomination on the feature values created by the feature
selection metrics. This is because we are only interested in the order the features
are ranked. The actual values are not used after the ranking is done.

3.6.1 Random Feature Selection

The simplest way of reducing the number of features, is to randomly select as
many features as needed. Since random selection naturally does no attempt
of finding good features, its performance is not expected to be good either.
We employ it as a reference figure, as is common practice in feature selection
comparison papers.

Note that since the features are selected randomly, the performance should
not be expected to follow an evenly rising curve as the number of features selected
increase. The extra features added can easily be more noisy than the previously
selected ones. Also, each generation of a randomly ranked feature list will be
different, and hence it would be impossible to recreate our results.

3.6.2 Collection Frequency (CF)

The collection frequency of a feature is the total number of instances of the
feature in the collection. It does not look at which documents or categories the
feature occurs in, it is simply a count. If a feature occurs twice in a document,
it gets counted twice, and so on.

As most feature selection methods are concerned with document counts, so
is our notation presented in Section 3.4. Hence, we cannot use that notation to
present this method. However, our example presented in Table 3.2 has some
documents with a feature repeated up to three times. Table 3.6 ranks the features
in our example by their collection frequency value.

3.6.3 Collection Frequency Inverse Document Frequency
(CFIDF)

The CFIDF is computed by weighting the collection frequency values by the
inverse document frequency for a feature:

CFIDF (F ) = CF (F ) log2

N

DF (F )
(3.1)
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Feature Collection Frequency value
viagra 6.0
cell 4.0
save 3.0
erection 3.0
ski 3.0

Table 3.6: Features ranked by Collection Frequency value.

where the collection frequency is counted as explained in Section 3.6.2, and N
is the total number of documents in the training data. The inverse document
frequency is discussed briefly in Section 2.3.2.

The motivation behind this metric is that the combination of the local
document frequency and total number of occurrences for a feature could provide
a better ranking than the collection frequency alone.

This method makes use of a logarithm statement. Which logarithm base to
use (e.g. log2 or ln) is not important, as the ranking stays the same. We use log2

here, as this is common in tf-idf computation (tf-idf is discussed in Section 2.3.2),
and we reused tf-idf code in this method.

Example

We compute the CFIDF feature values for the e-mail example:

CFIDF (viagra) = 6× log2

9
5

= 5.0880

CFIDF (save) = 3× log2

9
3

= 4.7549

CFIDF (erection) = 3× log2

9
3

= 4.7549

CFIDF (cell) = 4× log2

9
2

= 8.6797

CFIDF (ski) = 3× log2

9
3

= 4.7549

Table 3.7 ranks the e-mail example features according to their CFIDF value.
Note that CFIDF values are naturally global, so there is no need to aggregate
them in any way.

Feature CFIDF value
cell 8.6797
viagra 5.0880
save 4.7549
erection 4.7549
ski 4.7549

Table 3.7: Features ranked by CFIDF value.
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3.6.4 Document Frequency (DF) Thresholding

One of the simplest methods of vocabulary reduction, and hence vector di-
mensionality reduction, is the Document Frequency Thresholding, presented in
Equation (3.2).

DF (F ) = NF (3.2)

The number of documents containing a feature in the training set is counted.
This is done for every feature in the training set, before removing all features
with a document frequency less than some specified threshold and features with
a frequency higher than some other threshold. Alternatively, the document
frequency can be used as any other feature selection method where it creates a
ranked list, and returns the i highest ranked features.

Example Setup

The document frequency values for our e-mail example can be read directly from
Tables 3.3, 3.4 and 3.5 (or counted from Table 3.2).

Table 3.8 ranks the e-mail example features according to their document
frequency value. Note that document frequency values are naturally global, so
there is no need to aggregate them in any way.

Feature Document Frequency value
viagra 5.0
save 3.0
erection 3.0
ski 3.0
cell 2.0

Table 3.8: Features ranked by Document Frequency value.

3.6.5 Term Frequency Document Frequency (TFDF)

In [XWLJ08], a method based on the term frequency combined with the document
frequency threshold (Section 3.6.4) is presented. They call it Term Frequency
Document Frequency, and prove it better than DF thresholding.

Equations

TFDF (F ) = (n1 × n2 + c(n1 × n3 + n2 × n3)) (3.3)

where c is a constant c ≥ 1, n1 is the number of documents without the feature,
n2 is the number of documents where the feature occurs exactly once, n3 is the
number of documents where the feature occurs twice or more.

The authors of [XWLJ08] use c = 10 in their experiments, and we follow this
decision in our experiments. It should be noted however, that the constant can
highly affect the results. Hence, in an operational setting, performance should
be measured for several levels of the constant, with the actual text collection and
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classification learner at hand, as to achieve the most from this feature selection
method.

Example Setup

The n-values can be extracted from Table 3.2. We list them here for clarity:

viagra: n1 = 4, n2 = 4, n3 = 1
save: n1 = 6, n2 = 3, n3 = 0

erection: n1 = 6, n2 = 3, n3 = 0
cell: n1 = 7, n2 = 1, n3 = 1
ski: n1 = 6, n2 = 3, n3 = 0

We set c = 1 and calculate the TFDF values for the example:

TFDF (viagra) = (4× 4 + 1(4× 1 + 4× 1))
= 16 + 8 = 24

TFDF (save) = (6× 3 + 1(6× 0 + 3× 0))
= 18 + 0 = 18

TFDF (erection) = (6× 3 + 1(6× 0 + 3× 0))
= 18 + 0 = 18

TFDF (cell) = (7× 1 + 1(7× 1 + 1× 1))
= 7 + 8 = 15

TFDF (ski) = (6× 3 + 1(6× 0 + 3× 0))
= 18 + 0 = 18

We then set c = 10 and calculate the TFDF values for the example:

TFDF (viagra) = (4× 4 + 10(4× 1 + 4× 1))
= 16 + 80 = 96

TFDF (save) = (6× 3 + 10(6× 0 + 3× 0))
= 18 + 0 = 18

TFDF (erection) = (6× 3 + 10(6× 0 + 3× 0))
= 18 + 0 = 18

TFDF (cell) = (7× 1 + 10(7× 1 + 1× 1))
= 7 + 80 = 87

TFDF (ski) = (6× 3 + 10(6× 0 + 3× 0))
= 18 + 0 = 18

We can see clearly with the example that the features that occur more than
once are favored with this feature selection scheme, and more so as the value of
c increases.

Table 3.9 ranks the e-mail example features according to their global word
frequency value when the constant c = 1:

Table 3.10 ranks the e-mail example features according to their global word
frequency value when the constant c = 10:
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Feature (global) TFDF value (c = 1)
viagra 24.0
erection 18.0
save 18.0
ski 18.0
cell 15.0

Table 3.9: Features ranked by Word Frequency Document Frequency (TFDF)
value when the constant c = 1.

Feature (global) TFDF value (c = 10)
viagra 96.0
cell 87.0
erection 18.0
save 18.0
ski 18.0

Table 3.10: Features ranked by Word Frequency Document Frequency (TFDF)
value when the constant c = 10.

Notice how the feature ‘cell’ now has been boosted up from last to second
place in the ranking, because of its triple occurrence in document #7 in the
e-mail example.

3.6.6 Weirdness Factor

The weirdness factor was presented in [AGT99] for use in TREC8. It calculates
the relative document frequency for the features, and compares them to their
relative document frequencies in a reference corpus (with no special domain or
topic). This way, features that are used frequently in normal texts receive low
weirdness, while more specialized terms receive higher rating.

As far as we know, the weirdness factor has not been used for feature selection
for text categorization before, and we are want to see if it can compete with the
well-known methods.

Equation

The Weirdness factor of a feature is computed by Equation (3.7).

Weirdness(F ) =
ws

ts
wg

tg

(3.4)

where ws is is the frequency of the feature in the corpus to be classified, wg is
the frequency of the feature in the general reference corpus, ts is the total count
of the feature in the corpus to be classified, and tg is the total count of that
feature in the general reference corpus.

We have used the number of documents a feature occurs in (DF) instead of
the total number of feature occurrences (CF) for the ts and tg values.
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We give features that do not occur at all in the reference corpus an aver-
age frequency value from that corpus. This makes miss-spelled words, e-mail
addresses etc. not stand out with very high weirdness factors, but rather puts
them in the middle of the list, based on how often they occur. As such, they
will not be selected when using aggressive feature selection, but will be ranked
above commonly used words.

Example Setup

Since we use the BNC reference corpus in our experiments, we will use it in the
e-mail filter example as well. Note that the weirdness factor is global by nature,
i.e. it produces one list per corpus, and not one per category.

Weirdness(viagra) =
5.0
9.0

25.5692
4049.0

= 87.9749

Weirdness(ski) =
3.0
9.0
397

4049.0

= 3.3997

Weirdness(save) =
3.0
9.0

2699.0
4049.0

= 0.5001

Weirdness(erection) =
3.0
9.0

25.5692
4049.0

= 52.7849

Weirdness(cell) =
2.0
9.0

962.0
4049.0

= 0.9353

Table 3.11 ranks the e-mail example features according to their weirdness
factor compared to the BNC reference corpus:

Feature Weirdness factor
viagra 87.9749
erection 52.7849
ski 3.3997
cell 0.9353
save 0.5001

Table 3.11: Features ranked by weirdness factor compared to the BNC reference
corpus.

3.7 Supervised Feature Selection

Supervised feature selection methods make use of the category information in the
training data. Hence, for supervised methods to be usable, a pre-classified set of
documents must be available. Thus it is natural to expect better performance
from these methods than from the unsupervised methods presented in Section 3.6.

This chapter will present earlier, related work in supervised feature selection
methods. We will run them through our e-mail sorting example where applicable.
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Some of the methods presented here use logarithm statements in their equa-
tions. We may have used other logarithm bases than other researchers. This is
not important however, as we only are concerned about the ranking and not the
actual feature values computed. Although the feature values change when the
logarithm base changes, the ranking stays the same. For the same reason, we
will not use any denomination on the feature values computed by the feature
selection metrics. Some methods are sometimes denominated in the literature,
for instance the IG metric may be denominated bits if log2 is used. We choose
to skip all denomination, as it can be more confusing than clarifying.

3.7.1 Word Frequency (WF)

The simple Word Frequency for a (feature, category) pair is defined by [EM07]
as the number of documents in category Ck containing feature F , as shown in
Equation (3.5). Hence it looks only for positive evidence of category membership.

WF (F,Ck) = NF,Ck
(3.5)

As done in [EM07], we aggregate these values to find the global Word
Frequency value for each feature F by weighting the value of each (feature,
category) pair by the category dominance and then summarize the weighted
values:

WF (F ) =
|C|∑
k=1

NCk

N
NF,Ck

(3.6)

Example Setup

The category-local values used in Equation (3.5) can be read directly from
Tables 3.3, 3.4 and 3.5. Using Equation (3.6), we calculate the global word
frequencies for each feature:
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WF (viagra) =
C∑
k=1

NCk

N
NF,Ck

=
NCk=sp.

N
NF,Ck=sp.

+
NCk=bus.

N
NF,Ck=bus.

+
NCk=priv.

N
NF,Ck=priv.

=
4
9
× 4 +

3
9
× 0 +

2
9
× 1 = 2.0

WF (save) =
4
9
× 1 +

3
9
× 2 +

2
9
× 0 =

10
9

= 1.1111

WF (erection) =
4
9
× 3 +

3
9
× 0 +

2
9
× 0 =

4
3

= 1.3333

WF (cell) =
4
9
× 0 +

3
9
× 2 +

2
9
× 0 =

2
3

= 0.6667

WF (ski) =
4
9
× 0 +

3
9
× 1 +

2
9
× 2 =

7
9

= 0.7778

Table 3.12 ranks the e-mail example features according to their global word
frequency (WF) value.

Feature Global Word Frequency value
viagra 2.0000
erection 1.3333
save 1.1111
ski 0.7778
cell 0.6667

Table 3.12: Features ranked by Word Frequency value.

3.7.2 Information Gain (IG)

The basic idea behind IG is to find out how well each single feature separates
the given data set. Information entropy is used to measure the uncertainty of
the feature (e.g. term) and the dataset (e.g. a corpus of documents).



3.7 Supervised Feature Selection 31

Equation

The Information Gain of a feature is computed by Equation (3.7).

IG(Feature) =−
C∑
k=1

NCk

N
ln
NCk

N

+
NF
N

C∑
k=1

NF,Ck

NF
ln
NF,Ck

NF

+
NF
N

C∑
k=1

NF,Ck

NF
ln
NF,Ck

NF

(3.7)

Equation (3.7) takes the overall entropy for the training set (the first line
of the equation) minus the entropy for the feature (the last two lines of the
equation). In Equation (3.7), we calculate the expected reduction in entropy if
we categorize the corpus according to that feature. After computing IG values
for all features, we can use the features with the highest IG score as features in
any text categorization classifier.

Notice that the overall entropy for the training set naturally is the same
for all features. Hence Equation (3.7) could easily have been split up into
the calculation of the overall entropy H(Set) and the feature entropy values
H(Feature), and then for each feature the calculation of the Information Gain
value IG(Feature) = H(Set)−H(Feature).

Background

Information Gain was originally developed by J. Ross Quinlan [Qui86] for
inducing decision trees (the ID3 algorithm – Iterative Dichotomizer2 3). For
our task of feature selection, we do not need the decision trees, but rather the
Information Gain values from equation (3.7) for each feature3.

The entropy values are normally denominated ‘bits’ if logarithm base 2 is
used, as for how many bits are necessary for encoding the information piece
on average. We will skip the denomination here, however, as we only use the
computed values for ranking a list of terms.

Example Setup

We estimate the probabilities by counting the manually categorized documents
from the training set. The Nfc notation is explained in Section 3.4, and their
values are collected from Tables 3.3, 3.4 and 3.5.

Using equation (3.7), we can now calculate the Information Gain value for
the feature ‘viagra’.

2Dichotomy is a division into exactly two mutually exclusive categories.
3In fact, we do not even need the information gain value. A reversed list of information

entropy values would work just as well for our feature ranking purpose. However, since most
literature on feature selection uses the full IG value computed, so will we.
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IG(V iagra) =−
C∑
k=1

NCk

N
ln
NCk

N

+
NF
N

C∑
k=1

NF,Ck

NF
ln
NF,Ck

NF

+
NF
N

C∑
k=1

NF,Ck

NF
ln
NF,Ck

NF

=−
(4

9
× ln

4
9

)
−
(3

9
× ln

3
9

)
−
(2

9
× ln

2
9

)
+

5
9
×
(4

5
ln

4
5

+
0
5

ln
0
5

+
1
5

ln
1
5

)
+

4
9
×
(0

4
ln

0
4

+
3
4

ln
3
4

+
1
4

ln
1
4

)
=− (−0.3604)− (−0.3662)− (−0.3342)

+
5
9
× (−0.1785 + 0− 0.3219)

+
4
9
× (0− 0.2158− 0.3466)

=1.0609− 0.2780− 0.2499 = 0.5330

where the N -values are collected from Tables 3.3, 3.4 and 3.5.
The Information Gain for save now calculates as follows, using equation (3.7):

IG(save) = 1.0609+
3
9

(1
3

ln
1
3

+
2
3

ln
2
3

+
0
3

ln
0
3

)
+

6
9

(3
6

ln
3
6

+
1
6

ln
1
6

+
2
6

ln
2
6

)
= 1.0609−0.2122− 0.6742 = 0.1744

Notice that we used the value for the overall entropy directly from the calculation
of IG(viagra) above.

Similarly, the Information Gain value for the erection feature now calculates
as follows, again using equation (3.7).

IG(erection) = 1.0609+
3
9

(3
3

ln
3
3

+
0
3

ln
0
3

+
0
3

ln
0
3

)
+

6
9

(1
6

ln
1
6

+
3
6

ln
3
6

+
2
6

ln
2
6

)
= 1.0609+0− 0.6743 = 0.3866

and we can see that we have gained all the information available with this feature
alone. That is, the ‘erection’ feature is alone enough to completely separate the
corpus.

We skip the computation details for the cell and ski features. The features
are rated according to their IG value in Table 3.13. Note that Information Gain
is global by nature, so there is no need to aggregate these values.
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Feature Information Gain value
viagra 0.5330
ski 0.4244
erection 0.3866
cell 0.3176
save 0.1744

Table 3.13: Features ranked by information gain (IG) value.

3.7.3 Mutual Information (MI)

Mutual Information can be proven equal to Information Gain for binary problems.
For mutli-class problems (with global feature lists) like we present in this report
however, the two are not equal (although rather similar). Thus we present Mutual
Information with it’s own equation as a separate feature selection algorithm
here.

Equations

We compute the Mutual Information of a term and category pair as shown in
Equation (3.8):

MI(F,Ck) =
∑

vf ε{1,0}

∑
vCk

ε{1,0}

P (F = vf , Ck = vCk
) ln

P (F = vf , Ck = vCk
)

P (F = vf )P (Ck = vCk
)

(3.8)
where F is the discrete random variable ‘feature’ that takes the value vF = {1, 0}
(feature F occurs in document or not), Ck is the discrete random variable
‘category’ that takes the values vCk

= {1, 0} (document belongs to category Ck
or not).

The probabilities can be estimated by using the various document counts
from the training set. Using our own notation from Section 3.4 we rewrite
Equation (3.8) into Equation (3.9):

MI(F,Ck) =
NF,Ck

N
ln
NNF,Ck

NFNCk

+
NF,Ck

N
ln
NNF,Ck

NFNCk

+
NF,Ck

N
ln
NNF,Ck

NFNCk

+
NF,Ck

N
ln
NNF,Ck

NFNCk

(3.9)

Then the values can be weighted and summarized to create a global ranked list
of features:

MI(F ) =
|C|∑
k=1

NCk

N
MI(F,Ck) (3.10)

Naming Confusion

As the IG and MI equations are equal for binary problems, there exists some
naming confusion in the literature. Equation (3.8) is used with the name Mutual
Information (like we do) or expected Mutual Information in [MRS08, MK07,
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DC00] and [vR79, Chapter 3]. It is used with the name Information Gain
in [BMGMF08, FS07, DDH+07, Seb02].

Also, Equation (3.7) as we presented under the Information Gain name in
Section 3.7.2, is named Mutual Information in [Joa97]. It is used with the
Information Gain name in [SH08, MRS08, EM07, MK07, YP97].

Moreover, Equation (3.11) as we present as Pointwise Mutual Information in
Section 3.7.4, is used with the name Mutual Information in [SH08, Seb02, YP97],
while we follow [MRS08].

Example

We calculate the mutual information values for the e-mail example in Table 3.2
using equation (3.9). We show here the calculations for the ‘spam’ category,
using the values from Table 3.3. Natural log (ln) is used here, i.e. the base is e.
However, we note that any logarithm can be used, as we are only interested in
the ranking order, and not the actual feature values.

MI(viagra; spam) =
4
9

ln
9× 4
5× 4

+
1
9

ln
9× 1
5× 5

+
0
9

ln
9× 0
4× 4

+
4
9

ln
9× 4
4× 5

= 0.4090

MI(save; spam) =
1
9

ln
9× 1
3× 4

+
2
9

ln
9× 2
3× 5

+
3
9

ln
9× 3
6× 4

+
3
9

ln
9× 3
6× 5

= 0.0127

MI(erection; spam) =
3
9

ln
9× 3
3× 4

+
0
9

ln
9× 0
3× 5

+
1
9

ln
9× 1
6× 4

+
5
9

ln
9× 5
6× 5

= 0.3866

MI(cell; spam) =
0
9

ln
9× 0
2× 4

+
2
9

ln
9× 2
2× 5

+
4
9

ln
9× 4
7× 4

+
3
9

ln
9× 3
7× 5

= 0.1558

MI(ski; spam) =
0
9

ln
9× 0
3× 4

+
3
9

ln
9× 3
3× 5

+
4
9

ln
9× 4
6× 4

+
2
9

ln
9× 2
6× 5

= 0.2626

Similarly, we calculated the mutual information values for each feature
combined with the ‘business’ and ‘private’ categories, using equation (3.9) and
values from Tables 3.4 and 3.5, respectively. The results are presented in
Table 3.14.

3.7.4 Pointwise Mutual Information (PMI)

Pointwise Mutual Information has been proven as a weak feature selection
method because of its bias to favoring rare features [YP97].
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Term Spam Business Private Sum wAvg
viagra 0.4090 0.3866 0.0018 0.7974 0.3110
erection 0.3866 0.1744 0.1054 0.6664 0.2533
cell 0.1558 0.3175 0.0644 0.5377 0.1894
ski 0.2626 0.0000 0.3175 0.5801 0.1873
save 0.0127 0.1240 0.1054 0.2421 0.0704

Table 3.14: E-mail example: Features ranked by Mutual Information (MI) value.

Equations

Yang and Pedersen [YP97] present the equation as in Equation (3.11):

I(t, c) = log
Pr(t ∧ c)

Pr(t)× Pr(c) (3.11)

where Pr are probabilities, t is for term (feature), and c is for category. If we
write this with our own syntax, we get equation (3.12).

PMI(F,Ck) = log
NF,Ck

×N
NF ×NCk

(3.12)

In [YP97] this method was called Mutual Information. We follow [MRS08,
footnote on page 272] and name it Pointwise Mutual Information. The name
Mutual Information is later also used on this method in [SH08] and [Seb02]. We
have not tested this metric, as it is known for its bad results. We merely present
it for clarity regarding the Mutual Information naming.

3.7.5 Odds Ratio (OR)

Odds Ratio [Sha95, Mla98, CHTQ09] compares the odds of a feature occurring
in one category with the odds for it occurring in another category. It gives a
positive score to features that occur more often in one category than in the other,
and a negative score if it occurs more in the other. A score of zero means the
the odds for a feature to occur in one category is exactly the same as the odds
for it to occur in the other, since ln (1) = 0.

Equation

The original Odds Ratio algorithm for binary categorization:

OR(F,Ck) = ln
P (F |Ck)(1− P (F |Ck))
P (F |Ck)(1− P (F |Ck))

= ln

(
NF,Ck

NCk

)(
1−

NF,Ck

NCk

)
(
NF,Ck

NCk

)(
1− NF,Ck

NCk

) (3.13)

where F is a feature, Ck is the category of concern, P (F |Ck) is the probability
for the feature F to occur in category Ck, and P (F |Ck) is the probability for
the feature F to occur in category Ck.
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To estimate the probabilities, we use the number of training documents in
category Ck containing the feature F divided by the total number of training
documents in category Ck, and similarly for category Ck.

P (F |Ck) =
NF,Ck

NCk

An alert reader will notice that there might occur divide-by-zero and ln(0)
problems when using this estimation technique with equation (3.13). We fol-
low [Sha95] and treat singularities as special cases: When P (F |Ck) = 0 because
none of the training documents in category Ck contain the feature F , we sub-
stitute P (F |Ck) with 1

N2 . Also, when P (F |Ck) = 1 because all the training
documents in category Ck contains the feature F , we substitute P (F |Ck) with
1− 1

N2 , where N is the number of documents in the whole corpus/collection.
Thus the equation for estimating the probabilities including the special cases

becomes this:

P (F |Ck) =


NF,Ck

NCk
1
N2 if NF,Ck

= 0
1− 1

N2 if NF,Ck
= NCk

Taking the square of the corpus size into consideration ensures that low
probabilities are well estimated in small corpora.

Background and Explanation

The odds of a feature occurring in exactly one of two categories Odds(F |Ck)
are the quantity P (F |Ck)

(1−P (F |Ck)) , where P (F |Ck) is the probability for the feature
F to occur in category Ck. Hence the odds are the relative probability, which
is important since we are to find the features that carry much information. A
feature that occurs often in one category is not a good feature if it occurs just
as frequently in the other.

The odds ratio is the odds for one event divided by the odds for the opposite
event(s). In our case, the odds ratio is the odds for a feature occurring in one
category divided by the odds for it to occur in the other category, since we are
now talking about binary classification (e.g. spam or not spam).

The odds ratio equations we use are surrounded by a natural logarithm
statement. This is not necessary to calculate the odds ratio itself, but it has
several desired properties. First, it separates good odds ratios from poor odds
ratios with positive and negative values (while the basic odds ratio equation
without logarithm would only calculate positive values). Second, the logarithm
reduces positive skew by compressing the tail (high values) and expanding the
head (low values).

Thus we find the Odds Ratio formula the following way. Note that the
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notation is explained in Section 3.4.

OR(f, Ck) = ln
Odds(F |Ck)
Odds(F |Ck)

= ln

(
P (F |Ck)

(1−P (F |Ck))

)
(

P (F |Ck)

(1−P (F |Ck))

) = ln

( NF,Ck
NCk

1−
NF,Ck

NCk

)
( N

F,Ck
N

Ck

1−
N

F,Ck
N

Ck

)

= ln
P (F |Ck)(1− P (F |Ck))
P (F |Ck)(1− P (F |Ck))

= ln

(
NF,Ck

NCk

)(
1−

NF,Ck

NCk

)
(
NF,Ck

NCk

)(
1− NF,Ck

NCk

)
The higher values, the better the term should be for deciding if documents

belong in the considered category. Hence for feature selection for text catego-
rization, we rank the terms by log Odds Ratio values, and use the k top ranked
terms in some machine learning algorithm.

Example

We run the Odds Ratio algorithm on the e-mail example from Section 3.5. We
start by calculating the Odds Ratio for the feature ‘viagra’ using Equation (3.13)
and values from Table 3.3:

OR(viagra, spam) = ln
P (viagra|spam)(1− P (viagra|spam))
P (viagra|spam)(1− P (viagra|spam))

= ln

(
NF,Ck

NCk

)(
1−

NF,Ck

NCk

)
(
NF,Ck

NCk

)(
1− NF,Ck

NCk

) = ln
( 4

4 )(1− 1
5 )

( 1
5 )(1− 4

4 )

but when considering singularities:

= ln
(1− 1

N2 )(1− 1
5 )

( 1
5 )(1− (1− 1

N2 ))
= ln

(1− 1
81 )(1− 1

5 )
( 1

5 )(1− (1− 1
81 ))

= ln
( 80

81 )( 4
5 )

( 1
5 )( 1

81 )
= ln

( 64
81 )

( 1
405 )

= ln (320) = 5.7683

We calculate the Odds Ratio for the other features in the ‘spam’ category in the
same way, using equation (3.13) and values from Table 3.3:

OR(save, spam) = ln
( 1

4 )(1− 2
5 )

( 2
5 )(1− 1

4 )
= ln

(1
2

)
= −0.6931

OR(erection, spam) = ln
( 3

4 )(1− 1
81 )

( 1
81 )(1− 3

4 )
= ln (240) = 5.4806

OR(cell, spam) = ln
( 1

81 )( 3
5 )

( 2
5 )(1− 1

81 )
= ln

( 3
160

)
= −3.9766

OR(ski, spam) = ln
( 1

81 )(1− 3
5 )

( 3
5 )(1− 1

81 )
= ln

( 1
120

)
= −4.7875
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Similarly, we calculate the Odds Ratio values for all features in the ‘business’
category. This time we use values from Table 3.4:

OR(viagra, business) = ln
P (viagra|business)(1− P (viagra|business))
P (viagra|business)(1− P (viagra|business))

= ln

(
NF,Ck

NCk

)(
1−

NF,Ck

NCk

)
(
NF,Ck

NCk

)(
1− NF,Ck

NCk

) = ln
( 0

3 )(1− 5
6 )

( 5
6 )(1− 0

3 )

but when considering singularities:

= ln
( 1
N2 )(1− 1

5 )
( 5

5 )(1− 1
N2 )

= ln
( 1

81 )( 1
6 )

( 5
6 )( 80

81 )

= ln
( 1

486 )
( 400

486 )
= ln

( 1
400

)
= −5.9915

OR(save, business) = ln
( 2

3 )(1− 1
6 )

( 1
6 )(1− 2

3 )
= ln (10) = 2.3026

OR(erection, business) = ln
( 1

81 )( 1
2 )

( 1
2 )( 80

81 )
= ln

( 1
80

)
= −4.3820

OR(cell, business) = ln
( 2

3 )( 80
81 )

( 1
81 )( 1

3 )
= ln (160) = 5.0752

OR(ski, business) = ln
( 1

3 )(1− 2
6 )

( 2
6 )(1− 1

3 )
= ln (1) = 0.0

Finally, we calculate the Odds Ratio values for all features in the ‘private’
category. This time we use values from Table 3.5:

OR(viagra, private) = ln
P (viagra|private)(1− P (viagra|private))
P (viagra|private)(1− P (viagra|private))

= ln

(
NF,Ck

NCk

)(
1−

NF,Ck

NCk

)
(
NF,Ck

NCk

)(
1− NF,Ck

NCk

) = ln
( 1

2 )(1− 4
7 )

( 4
7 )(1− 1

2 )

= ln
( 1

2 )( 3
7 )

( 4
7 )( 1

2 )
= ln

( 3
7 )

( 4
7 )

= ln
(3

4

)
= −0.2877

OR(save, private) = ln
( 1

81 )( 4
7 )

( 3
7 )( 80

81 )
= ln

( 1
60

)
= −4.0943

OR(erection, private) = ln
( 1

81 )( 4
7 )

( 3
7 )( 80

81 )
= ln

( 1
60

)
= −4.0943

OR(cell, private) = ln
( 1

81 )( 5
7 )

( 2
7 )( 80

81 )
= ln

( 5
160

)
= −3.4657

OR(ski, private) = ln
( 80

81 )( 6
7 )

( 1
7 )( 1

81 )
= ln (480) = 7.1738

Globalizing the Odds Ratio values Table 3.15 lists the Odds Ratio values
(without logarithm) for all three categories in our example, and an aggregated
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value (sum). This last column is one way of globalizing the Odds Ratio, that
is, to create one ranked list of features for all categories. Odds ratio without
the use of logarithm is not common for feature selection, but we show it for
comparison reasons.

Term Spam Business Private Sum
ski 0.0083 1.0000 480.0000 481.0083
viagra 320.0000 0.0025 0.7500 320.7525
erection 240.0000 0.0125 0.0167 240.0292
cell 0.0188 160.0000 0.0313 160.0501
save 0.5000 10.0000 0.0167 10.5167

Table 3.15: E-mail example: Features ranked by summarized Odds Ratio values.
Note that values in this table are without logarithm.

Table 3.16 shows the (log) Odds Ratio values from our e-mail example, and
the sum of these values. This sum is called Extended Odds Ratio in [CHTQ09],
and is computed as in Equation (3.14). Notice that this method of globalizing
produced a differently ranked list than the one in Table 3.15.

EOR(F ) =
|C|∑
k=1

OR(F,Ck) (3.14)

Another way to globalize the Odds Ratio (or any other local feature selection

Term ln(Spam) ln(Business) ln(Private) Extended OR
ski -4.7875 0.0000 6.1738 1.3863
viagra 5.7683 -5.9915 -0.2877 -0.5109
cell -3.9766 5.0752 -3.4657 -2.3671
save -0.6931 2.3026 -4.0943 -2.4848
erection 5.4806 -4.3820 -4.0943 -2.9957

Table 3.16: E-mail example: Features ranked by Extended Odds Ratio (EOR)
values.

method) is suggested in [EM07, Chapter 14.2.7]4. Here, the Odds Ratio value
for a (feature, category) pair is multiplied by the probability for a document
to receive that category label, before summarizing the values, as shown in
Equation (3.15).

WOR(F ) =
|C|∑
k=1

NCk

N
×OR(F,Ck) (3.15)

This method is called Weighted Odds Ratio in [CHTQ09]. Notice that this
method of globalizing produce a differently ranked list than both the one in
Table 3.15 and the one in Table 3.16.

Note that these Odds Ratio method prefer positive features, that is, evidence
that a document belongs to a category. The MOR and CDM metrics proposed

4Note that no log statement is used in the Odds Ratio equation in [EM07, Chapter 14.2.7]
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Term ln(Spam) ln(Business) ln(Private) Weighted OR
viagra 5.7683 -5.9915 -0.2877 0.5026
erection 5.4806 -4.3820 -4.0943 0.0653
save -0.6931 2.3026 -4.0943 -0.4504
ski -4.7875 0.0000 6.1738 -0.7558
cell -3.9766 5.0752 -3.4657 -0.8458

Table 3.17: E-mail example: Features ranked by Weighted Odds Ratio (WOR)
values.

in [CHTQ09], variants of Odds Ratio, considers the absolute values of the log
values when summarizing, and hence weights positive and negative evidence
equally. The CDM metric is presented in Section 3.7.6.

We compared Weighted OR and Extended OR (in addition to OR without
the logartihm statement) (Figure B.1). The Extended OR showed the best
performance in our experiments, and hence this is used in the main comparison
of feature selection methods in Chapter 4.

3.7.6 Class Discrimination Measure (CDM)

The Class Discrimination Measure (CDM) was presented in [CHTQ09] as a
means for improving text categorization performance on multi-class data sets
with Näıve Bayes. It was developed on the basis of Odds Ratio, and was shown
to perform better than several other ways of extending Odds Ratio for multi-class
situations. Also, it was shown to perform better than the well-known Information
Gain metric.

The rather simple CMD feature selection method is shown in Equation (3.16).
We handle singularities the same way as for Odds Ratio.

CDM(F ) =
|C|∑
k=1

∣∣∣∣∣ log
P (F |Ck)
P (F |Ck)

∣∣∣∣∣ =
|C|∑
k=1

∣∣∣∣∣ log

(
NF,Ck

NCk

)
(
NF,Ck

NCk

)∣∣∣∣∣ (3.16)

Example

We demonstrate the CDM metric by calculating the value for the feature ‘viagra’
in the ‘spam’ category. We use log2 for this calculation, but the choice of
logarithm base does not affect the ranging of the features, and is hence not
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important.

CDM(viagra) =
|C|∑
k=1

∣∣∣∣∣ log

(
NF,Ck

NCk

)
(
NF,Ck

NCk

)∣∣∣∣∣
=

∣∣∣∣∣ log

(
4
4

)
(

1
5

)∣∣∣∣∣+

∣∣∣∣∣ log

(
0
3

)
(

5
6

)∣∣∣∣∣+

∣∣∣∣∣ log

(
1
2

)
(

4
7

)∣∣∣∣∣
but when considering singularities:

=

∣∣∣∣∣ log

(
1− 1

N2

)
(

1
5

) ∣∣∣∣∣+

∣∣∣∣∣ log

(
1
N2

)
(

5
6

) ∣∣∣∣∣+

∣∣∣∣∣ log

(
1
2

)
(

4
7

)∣∣∣∣∣
=

∣∣∣∣∣ log

(
80
81

)
(

1
5

) ∣∣∣∣∣+

∣∣∣∣∣ log

(
1
81

)
(

5
6

) ∣∣∣∣∣+

∣∣∣∣∣ log

(
1
2

)
(

4
7

)∣∣∣∣∣
=

∣∣∣∣∣ log
(400

81

)∣∣∣∣∣+

∣∣∣∣∣ log
( 2

135

)∣∣∣∣∣+

∣∣∣∣∣ log
(7

8

)∣∣∣∣∣
=

∣∣∣∣∣ log
(

4.9383
)∣∣∣∣∣+

∣∣∣∣∣ log
(

0.0148
)∣∣∣∣∣+

∣∣∣∣∣ log
(

0.8750
)∣∣∣∣∣

=

∣∣∣∣∣2.3040

∣∣∣∣∣+

∣∣∣∣∣6.0768

∣∣∣∣∣+

∣∣∣∣∣0.1926

∣∣∣∣∣
= 2.3040 + 6.0768 + 0.1926
= 8.5735

The rest of the CDM values are calculated in the same way. We list them in
Table 3.18, ranked by the total CDM value for each feature.

Term Spam Business Private Sum
erection 5.9248 5.3399 5.1175 16.3821
cell 5.0179 5.7549 4.5325 15.3053
viagra 2.3040 6.0768 0.1926 8.5735
ski 5.6028 0.0000 2.7894 8.3923
save 0.6781 2.0000 5.1175 7.7955

Table 3.18: E-mail example: Features ranked by Class Discrimination Measure.

3.7.7 Chi Square (CHI)

Feature Selection by χ2 testing [YP97, MRS08] is based on Pearson’s χ2 (chi
square) test. The χ2 test is often used to test the independence of two variables.
The null-hypothesis is that the two variables are completely independent of each
other. The higher value of the χ2 test, the closer relationship the variables have.

In feature selection, the χ2 test measures the independence of a feature and a
category. The null-hypothesis here is that the feature and category are completely
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independent, i.e. that the feature is useless for categorizing documents. The
higher χ2 value for a (feature, category) pair, the less independent they are.
Hence, the features with the highest χ2 values for a category should perform
best for categorizing documents.

Equation

χ2(F,Ck) =
N ×

(
(NF,Ck

×NF,Ck
)− (NF,Ck

×NF,Ck
)
)2

NF ×NF ×NCk
×NCk

(3.17)

Example

First, we calculate the χ2 values for the spam category, using Equation (3.17)
and N -values from Table 3.3:

χ2(viagra, spam) =
N ×

(
(NF,Ck

×NF,Ck
)− (NF,Ck

×NF,Ck
)
)2

NF ×NF ×NCk
×NCk

=
9×

(
(4× 4)− (1× 0)

)2
5× 4× 4× 5

=
9× (16− 0)2

400

=
2304
400

=
144
25

= 5.76

χ2(save, spam) =
9×

(
(1× 3)− (2× 3)

)2
3× 6× 4× 5

=
81
360

=
9
40

= 0.225

χ2(erection, spam) =
9×

(
(3× 5)− (0× 1)

)2
3× 6× 4× 5

=
2025
360

=
45
8

= 5.625

χ2(cell, spam) =
9×

(
(0× 3)− (2× 4)

)2
2× 7× 4× 5

=
576
280

=
72
35

= 2.0571

χ2(ski, spam) =
9×

(
(0× 2)− (3× 4)

)2
3× 6× 4× 5

=
1296
360

=
18
5

= 3.6

Then the business-category values are calculated, using equation (3.17) and
N -values from Table 3.4:

χ2(viagra, business) =
9×

(
(0× 1)− (5× 3)

)2
5× 4× 3× 6

=
2025
360

=
45
8

= 5.625

χ2(save, business) =
9×

(
(2× 5)− (1× 1)

)2
3× 6× 3× 6

=
729
324

=
9
4

= 2.25

χ2(erection, business) =
9×

(
(0× 3)− (3× 3)

)2
3× 6× 3× 6

=
729
324

=
9
4

= 2.25

χ2(cell, business) =
9×

(
(2× 6)− (0× 1)

)2
2× 7× 3× 6

=
1296
252

=
36
7

= 5.1428

χ2(ski, business) =
9×

(
(1× 4)− (2× 2)

)2
3× 6× 3× 6

=
0

324
= 0.0

Finally the private-category values are calculated, using equation (3.17) and
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N -values from Table 3.5:

χ2(viagra, private) =
9×

(
(1× 3)− (4× 1)

)2
5× 4× 2× 7

=
9

280
= 0.0321

χ2(save, private) =
9×

(
(0× 4)− (3× 2)

)2
3× 6× 2× 7

=
324
252

=
9
7

= 1.2857

χ2(erection, private) =
9×

(
(0× 4)− (3× 2)

)2
3× 6× 2× 7

=
324
252

=
9
7

= 1.2857

χ2(cell, private) =
9×

(
(0× 5)− (2× 2)

)2
2× 7× 2× 7

=
144
196

=
36
49

= 0.7346

χ2(ski, private) =
9×

(
(2× 6)− (1× 0)

)2
3× 6× 2× 7

=
1296
252

=
36
7

= 5.1429

Then we aggregate these values to create one global ranked list of selected
features. We do this like we did with Word Frequencies in Section 3.7.1 and
Mutual Information in Section 3.7.3 by assigning weights to each category’s
value based on the number of documents that are labeled with that category in
the training set. Hence we can call it a weighted average:

χ2(viagra) =
|C|∑
k=1

NCk

N
χ2(viagra, Ck)

=
4
9
×+5.76

3
9
× 5.625 +

2
9
× 2.6036

= 5.0136

Term Spam Business Private Sum wAvg.
viagra 5.7600 5.6250 0.0321 11.4171 4.4421
erection 5.6250 2.2500 1.2857 9.1607 3.5357
cell 2.0571 5.1428 0.7346 7.9345 2.7917
ski 3.6000 0.0000 5.1429 7.6429 2.7428
save 0.2250 2.2500 1.2857 3.7607 1.1357

Table 3.19: E-mail example: Features ranked by global χ2 value.

3.7.8 NGL Coefficient

The NGL coefficient presented in [NGL97] is a variant of the Chi square metric. It
was originally named a ‘correlation coefficient’, but we follow Sebastiani [Seb02]
and name it ‘NGL coefficient’ after the last names of the inventors Ng, Goh, and
Low.

The NGL coefficient looks only for evidence of positive class membership,
while the chi square metric also selects evidence of negative class membership.
Hence, it is called a ‘one-sided’ chi square metric in [NGL97]. In their experiments,
it performed better than chi square. In [RS99] it was better than Odds Ratio
and Mutual Information on some feature set sizes, and worse on other.
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Equation

The NGL Coefficient is computed by Equation (3.18)

NGL(F,Ck) =

√
N(NF,Ck

NF,Ck
−NF,Ck

NF,Ck
)√

NFNFNCk
NCk

(3.18)

Example

The NGL feature values for the spam category are calculated as follows, using
Equation (3.18) and values from Table 3.3.

NGL(viagra, spam) =

√
N(NF,Ck

NF,Ck
−NF,Ck

NF,Ck
)√

NFNFNCk
NCk

=
√

9(4× 4− 1× 0)√
5× 4× 4× 5

=
3× (16− 0)√

400
=

48
20

=
12
5

= 2.4

NGL(save, spam) =
√

9(1× 3− 2× 3)√
3× 6× 4× 5

=
−9√
360

= −0.4743

NGL(erection, spam) =
√

9(3× 5− 0× 1)√
3× 6× 4× 5

=
45√
360

= 2.3717

NGL(cell, spam) =
√

9(0× 3− 2× 4)√
2× 7× 4× 5

=
−24√
280

= −1.4343

NGL(ski, spam) =
√

9(0× 2− 3× 4)√
3× 6× 4× 5

=
−36√
360

= −1.8973

We skip the computation details for the other categories, and present the
feature values in Table 3.20. We aggregated the feature values by computing a
weighted average as we also did for Word Frequency, Mutual Information and
Chi Square.

Term Spam Business Private Sum wAvg.
erection 2.3717 -1.5000 -1.1339 -0.2622 0.3021
viagra 2.4000 -2.3717 -0.1793 -0.1510 0.2362
save -0.4743 1.5000 -1.1339 -0.1082 0.0372
cell -1.4343 2.2678 -0.8571 -0.0236 -0.0720
ski -1.8973 0.0000 2.2678 0.3705 -0.3393

Table 3.20: E-mail example: Features ranked by global NGL coefficient.

3.7.9 GSS Coefficient

The GSS coefficient was originally presented in [GSS00] as a ‘simplified chi square
function’. We follow [Seb02] and name it GSS after the names on the inventors
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Galavotti, Sebastiani, and Simi.

GSS(F,Ck) = NF,Ck
NF,Ck

−NF,Ck
NF,Ck

(3.19)

The experiments in [GSS00] showed far better results when using max as a
globalizing strategy rather than average, hence we follow them on that:

GSS(F ) =
|C|

max
k=1

GSS(F,Ck) (3.20)

Example

We show the calculation of the GSS coefficient with the feature ‘viagra’ in the
‘spam’ category, using Equation (3.19) and values from Table 3.3.

GSS(viagra, spam) = NF,Ck
NF,Ck

−NF,Ck
NF,Ck

= (4.0× 4.0)− (1.0× 0.0)
= 16.0− 0.0 = 16.0

GSS(viagra, business) = (0.0× 1.0)− (5.0× 3.0)
= 0.0− 15.0 = −15.0

GSS(viagra, private) = (1.0× 3.0)− (4.0× 1.0)
= 3.0− 4.0 = 1.0

We then use the maximum as a global value for the ‘viagra’ feature in all
categories:

GSS(viagra) =
|C|

max
k=1

GSS(viagra, Ck)

= maxGSS(viagra, {spam, business, private})
= max{16.0,−15.0, 1.0} = 16.0

The rest of the example values are computed similarly, and we present them
in Table 3.21.

Term Spam Business Private Max
viagra 16.0 -15.0 1.0 16.0
erection 15.0 -9.0 -6.0 15.0
cell -8.0 12.0 -4.0 12.0
ski -12.0 0.0 12.0 12.0
save -3.0 9.0 -6.0 9.0

Table 3.21: E-mail example: Features ranked by GSS coefficient.
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3.7.10 Bi-Normal Separation (BNS)

Bi-Normal Separation [For03, For02] is defined by Equation (3.21). If we model
the occurrence of some feature in each document by the event of a random
Normal variable exceeding a hypothetical threshold, the prevalence rate of that
feature corresponds to the area under the curve beyond the threshold. If the
feature is more prevalent in one category than the others, then its threshold is
further from the tail of the curve than that of the other categories, and vice
versa. The BNS method measures the distance or separation between these
thresholds. Using absolute values, it captures the

The BNS equation as presented in [For03]:

|F−1(tpr)− F−1(fpr)|

where F−1 is the standard Normal distribution’s inverse cumulative probability
function. Translating to our own notation, the BNS equation looks like this:

BNS(F,Ck) =

∣∣∣∣∣F−1

(
NF,Ck

NCk

)
− F−1

(
NF,Ck

NCk

)∣∣∣∣∣ (3.21)

where again F−1 is the standard Normal distribution’s inverse cumulative proba-
bility function. Since this function explodes if NF,Ck

/NCk
= 0 or NF,Ck

/NCk
= 0,

we follow Forman and set a minimum rate to 5/10000. Likewise, we set the
maximum rate to 1− 5/10000.

When aggregating these values we find the global BNS value for each feature
F. A pilot study we ran using 25, 50, 75 and 100 features showed best results by
using a weighted average (as we did for WF, MI, Chi Square and NGL), so we
do that in the experiments presented in Chapter 4.

BNS(F ) =
|C|∑
k=1

NCk

N
BNS(F,Ck) (3.22)

Example

The e-mail example is ranked by weighted average BNS values in Table 3.22.
We show here the calculation of BNS value for the ‘viagra’ feature in the ‘spam’
category, using equations (3.21) and values from Table 3.3.

BNS(viagra, spam) =

∣∣∣∣∣F−1

(
4
4

)
− F−1

(
4
4

)∣∣∣∣∣
= |F−1(1.0)− F−1(1.0)|

Since reaching the upper limit, we substitute 1.0 with the minimum value 0.0005:

BNS(viagra, spam) = |F−1(0.0005)− F−1(0.0005)|
= |3.2905−−0.8416|
= |4.1322| = 4.1322

The rest of the values are calculated in the same way, and are presented in
Table 3.22.
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Term Spam Business Private wAvg
erection 3.9650 3.2905 3.1105 3.5503
viagra 4.1321 4.2579 0.1800 3.2958
cell 3.0372 3.7213 2.7246 3.1957
ski 3.5439 0.0000 4.3581 2.5435
save 0.4211 1.3981 3.1105 1.3444

Table 3.22: E-mail example: Features ranked by weighted average Bi-Normal
Separation value.

3.7.11 Categorical Proportional Difference (CPD)

One of the latest additions to the feature selection family is the Categorical
Proportional Difference or CPD [SH08]. It considers only positive examples from
the training data.

Equations

Equation (3.23) shows how to compute the feature value for a feature, category
pair, while Equation (3.24) shows how to use the highest value as the global
feature value, as recommended in [SH08].

CPD(F,Ck) =
NF,Ck

−NF,Ck

NF
(3.23)

CPD(F ) = maxk{CPD(F,Ck)} (3.24)

Background

Categorical Proportional Difference is in [SH08] reported to have excellent
performance both for Näıve Bayes and Support Vector Machines, but at the
cost of low aggressivity levels. Their study used an exhaustive search to find the
percentage of features each feature selection method performed best at. When
keeping 61.2 to 76.5% of the features, CPD performed better than Odds Ratio,
Information Gain, and several others. However, except for Mutual Information,
all other methods had their best performance at a much higher aggressivity level.

Example

We show the computation of the feature values for the e-mail example, using
equations (3.23) and (3.24).
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CPD(viagra, spam) =
NF,Ck

−NF,Ck

NF
=

4− 1
5

= 0.6

CPD(viagra, business) =
NF,Ck

−NF,Ck

NF
=

0− 5
5

= −1.0

CPD(viagra, private) =
NF,Ck

−NF,Ck

NF
=

1− 4
5

= −0.6

CPD(viagra) = max{0.6,−1.0,−0.6} = 0.6

CPD(save, spam) =
1− 2

3
= −0.3333

CPD(save, business) =
2− 1

3
= 0.3333

CPD(save, private) =
0− 3

3
= −1.0

CPD(save) = max{−0.3333, 0.3333,−1.0} = 0.3333

We skip the computation details for the remaining features, and present the
feature values in Table 3.23.

Term Spam Business Private Max
erection 1.0000 -1.0000 -1.0000 1.0000
cell -1.0000 1.0000 -1.0000 1.0000
viagra 0.6000 -1,0000 -0.6000 0.6000
save -0.3333 0.3333 -1.0000 0.3333
ski -1.0000 -0.3333 0.3333 0.3333

Table 3.23: E-mail example: Features ranked by Category Proportional Differ-
ence.

3.7.12 DIA Association Factor

The Darmstadt Indexing Approach (DIA) is used in the AIR/X system – a rule-
based system for indexing with terms from a predescribed vocabulary [FHK+91].
The DIA (Darmstadt Indexing Approach) Association factor is calculated with
Equation (3.25).

z(F,Ck) = P (Ck|F ) =
P (F ∩ Ck)
P (F )

=
NF,Ck

N
NF

N

=
NF,Ck

NF
(3.25)

Notice how this equation also equals WF/DF , that is, the feature selection
method Word Frequency explained in Section 3.7.1 divided by the other method
Document Frequency explained in Section 3.6.4. As such, it can be seen as a
hybrid of two methods.

While the DIA considers a much wider set of features than us (they consider
properties of terms, documents, categories and pairwise relationships among
these), our evaluation of the DIA association factor is as any other feature
selection method. That is, while we evaluate the DIA association factor, we do
so using regular single features as in the rest of the experiments in this report.
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Example

We go through the e-mail example with this method as well. We start with the
spam category, using equation (3.25) and values from Table 3.3.

z(viagra, spam) =
NF,Ck

NF
=

4
5

= 0.8

z(save, spam) =
NF,Ck

NF
=

1
3

= 0.3333

z(erection, spam) =
NF,Ck

NF
=

3
3

= 1.0

z(cell, spam) =
NF,Ck

NF
=

0
2

= 0.0

z(ski, spam) =
NF,Ck

NF
=

0
3

= 0.0

The feature values for the other categories are computed similarly, so we
skip the details and present the results in Table 3.24. We aggregate these values
like we have done with several other methods by weighting the results for each
category by the percentage of documents that category contains in our training
set. We denote these global values weighted average, wAvg.

Term Spam Business Private Sum wAvg.
erection 1.0000 0.0000 0.0000 1.0 0.4444
viagra 0.8000 0.0000 0.2000 1.0 0.4000
save 0.3333 0.6667 0.0000 1.0 0.3702
cell 0.0000 1.0000 0.0000 1.0 0.3333
ski 0.0000 0.3333 0.6667 1.0 0.2593

Table 3.24: E-mail example: Features ranked by global DIA Association factor

3.8 Untested Methods

Although we have tried to include as many feature selection metrics as possible,
and probably have compared more metrics in one system than ever published
before, our comparison is by no means complete. The following methods are not
tested in our system, because of time issues. There are probably several other
methods in use as well.

The MOR metric presented in [CHTQ09], several variants of the Relief
algorithm can be found in [YH08], Count Difference in [CS08], the Posterior
Inclusion Probability (PIP) in [EM07], and the Pearson product-moment corre-
lation in [GLM07].

In [DDH+07], the two unsupervised methods Subspace Sampling (SS) and
Weight-based Sampling (WS) are presented, in [ZZH04] the MC-OR odds ratio
based method for multi-class problems is proposed, while [For03] evaluates (Log)
Probability Ratio, F1-measure, Odds Ratio Numerator, Accuracy, Accuracy
balanced, and Power, in addition to some of the methods we have tested.
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[Mla98] proposed ExpP, FreqOddsRatio, and FreqLogP, [KS97] used the
Expected Cross Entropy, [KYMW97] presented the Keyword Checker, while the
Gain Ratio metric was proposed in [Qui86].



Chapter 4

Experiments and Results

In this section, we first present some text collections commonly used for text
categorization, including the 20 Newsgroups that we used in our experiments. We
then describe how we conducted the text categorization experiments, including
hardware and software environment, and settings used in the generation of vector
files to represent the collection and how we used Weka.

4.1 Text Categorizing Collections

In this section we present some of the text collections available for evaluation
text categorization systems. For the ‘20-Newsgroups’ collection we used in our
experiments, we describe how we prepared it, and how our use of it differs from
earlier work.

4.1.1 Reuters-21578

Reuters-21578 is the most widely used text categorization test collection. It
contains 21,578 documents (28.0 MB) that appeared on the Reuters newswire in
1987. The Reuters-21578 collection is used in [SH08, CHTQ09, XWLJ08, For03,
CMS01, Joa98]. Earlier versions of the collection include the Reuters-22173
released in January 1993, which was used in [YP97, LR94, Lew92].

Reuters-21578 consists of five category sets – ‘EXCHANGES’, ‘ORGS’, ‘PEO-
PLE’, ‘PLACES’, and ‘TOPICS’. The ‘TOPICS’ category set is used in most
text categorization research, and we will use this set as well. It consists of 135
categories, including ‘coconut’, ‘gold’, ‘inventories’, and ‘money-supply’. The
categories are hierarchically organized, and hence the document distribution is
highly skewed. 120 of the categories were assigned to at least one document,
leaving 15 unused/empty categories. Of the 120 used categories, 57 were assigned
to 20 or more documents. Some documents concern several topics, and the text
categorization used in this collection is thus the multiple label type, as discussed
in Section 2.1.

4.1.2 Reuters Corpus Volume 1 (RCV1)

The RCV1 corpus [LYRL04] was released by Reuters Ltd. in 2000, succeeding the
popular ‘Reuters-21578’ text categorization test collection. RCV1 contains about
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810,000 Reuters, English language News stories1 (about 2.5 GB) from August 20,
1996 to August 19, 1997. One advantage with this collection over the 21578 is of
course the much larger size. RCV1 is used in [BMGMF08, CS08, DDH+07].

4.1.3 20-Newsgroups

The 20 Newsgroups collection is a collection of about 20,000 messages posted in
1993 to 20 Usenet newsgroups. They were gathered by Tom Mitchell’s graduate
student Ken Lang while he was working on [Lan95]. For text categorization, we
use the newsgroups as categories, and the messages as documents.

The newsgroups, listed in Table 4.1, each contain around 1,000 messages.
Some groups are rather similar, like the ‘comp.sys.ibm.pc.hardware’ and the
‘comp.sys.mac.hardware’ groups, while others are not, for instance ‘rec.autos’
and ‘alt.atheism’.

The original collection contains header information that reveals which group
or groups a message belongs to, for instance ‘Newsgroups: rec.sport.baseball’.
It is obviously important to remove this information, not doing so would give
unrealistic results. The original collection also contains around 4% cross-postings
(messages posted to more than one newsgroup). We make use of a version
provided by Jason Rennie2 that contains the ‘From:’ and ‘Subject:’ lines of the
headers, and where duplicates are removed. As such, it represents a single label
text categorization problem. It contains 18828 messages.

Jason Rennie also has a version with a pre-defined split based on publication
dates, which would be a natural choice if using a single training/test split.
Since we are using cross-validation however, the ‘18828’ version was a better
alternative.

comp.graphics rec.autos sci.crypt
comp.os.ms-windows.misc rec.motorcycles sci.electronics
comp.sys.ibm.pc.hardware rec.sport.baseball sci.med
comp.sys.mac.hardware rec.sport.hockey sci.space
comp.windows.x
misc.forsale talk.politics.misc talk.religion.misc

talk.politics.guns alt.atheism
talk.politics.mideast soc.religion.christian

Table 4.1: The 20 Newsgroups collection. The messages are almost evenly
distributed in the newsgroups

Dasgupta et al. [DDH+07] used five of Rennie’s ten test-train splits. They
compared three sampling-based feature selection techniques to Mutual Informa-
tion (they named it Information Gain) and Document Frequency. They found
that Mutual Information outperformed the other measures, especially with an
aggressive selection strategy.

Simeon and Hilderman [SH08] split the 20-Newsgroup collection into ten
unique sub-problems with two or three categories in each set. They performed
10-fold cross-validation in Weka within each subset and averaged their results.

1There is also a multilingual corpus called RCV2
2The ‘18828’ version, available at http://people.csail.mit.edu/jrennie/20Newsgroups/.

http://people.csail.mit.edu/jrennie/20Newsgroups/


4.1 Text Categorizing Collections 53

They performed an exhaustive search to find the maximum possible F1-measure,
where a classifier was trained and tested with every top-ranked subset (the one
best feature, the two best features, and so on up until all features were used)
from a ranked and sorted feature list – within each split of the dataset. This way,
they found the exact number of features for each selection method where that
method performed the best. They then ranked the feature selection methods
according to classifier performance, resulting in a list with very different feature
set sizes for each method. Using an SVM classifier for instance, they ranked
their own CPD method on top for the 20-Newsgroups collection with 76.5%
features kept, while Odds Ratio was rated number 4 with only 35.8% kept.

We handled the 20 Newsgroups collection in a different manner than both
[DDH+07] and [SH08]. This means that we do not expect to see the exact same
results as they did. A notable difference is at the tokenization level. While
Rennie used the Rainbow program for tokenization, we used Lucene and its
StandardTokenizer. Rennie’s tokenization removed all punctuations and all
numbers. StandardTokenizer recognizes e-mail addresses, time and dates. For
instance, we have the e-mail address ‘10326.97.uupcb@ compdyn.questor.org’
in our feature list, while Rennie’s feature list contains ‘uupcb’, ‘compdyn’ and
so on. Also, we have ‘12:00:00 AM’, they have ‘am’. Further, Rennie did not
employ stemming, which we do. And finally, Rennie did not make use of any
stop word list, while we make use of Lucene’s standard English stop word list in
addition to the removal of some individually selected features.

Our preprocessing of the 20 Newsgroups collection reduced it from 155195
to 53730 features, from which we selected feature sets of 500 to 10000 (roughly
0.93 to 18.61 percent) features. While it is obvious from this that we will see
other results than [DDH+07] with so many differences, note that we compare
the feature selection methods against each other with the same pre-processing
done for every method. Hence, our results should be just as valuable as those in
for instance [DDH+07], but the results should not be directly compared. The
results are relative to each other.

4.1.4 The OHSUMED Test Collection

The OHSUMED test collection [HBLH94] contains a subset of the MEDLINE
database. It contains 348,566 references (about 400 MB of data) covering
all references from 270 medical journals over a five year period (1987-1991).
The collection is originally an information retrieval text collection, but it has
been used for text categorization research by several, including [SH08, Wit08,
XWLJ08, LTSL07, For03, HK00, RS99, Joa98, YP97].

Not all the references in the collection contain abstracts, some contain just
headings. Only those with abstracts are relevant for us, as the abstract is the the
‘document’ or text to be categorized. An example of an OHSUMED document
can be found in Appendix A.2.

The OHSUMED collection was indexed with MeSH3 terms. The MeSH
headings are hierarchically structured. There are around 18,000 categories in
MeSH, 14,321 are present in the OHSUMED collection. The main headings

3Medical Subject Headings (MeSH) is a controlled vocabulary medical thesaurus developed
by the National Library of Medicine. See http://www.nlm.nih.gov/mesh/ for details.

http://www.nlm.nih.gov/mesh/


54 Experiments and Results

are ‘Anatomy [A]’, ‘Organisms [B]’, ‘Diseases [C]’ etc. – 16 in total4. The
‘Diseases [C]’ heading for instance, contains 23 subheadings, including ‘Bacterial
Infections and Mycoses [C01]’ and ‘Virus Diseases [C02]’, which themselves
contain subheadings and so forth. These headings can be used as category labels
when using the collection for text categorization research.

Yang and Pedersen [YP97] used the documents from 1990 as training docu-
ments, and the 1991 documents for testing. Their 1990 training set had a total
of 72,076 unique terms, and an average of 12 category labels assigned to each
document. Hence, they used the collection as a multiple label collection. They
further used the heading combined with the abstract as the document, and there
is no mention of the removal of heading-only documents.

Joachims [Joa98] used the first 10,000 of the 50,216 documents from 1991
which have abstracts as training documents and the second 10,000 as testing
documents. They further used only the 23 MeSH ‘Diseases [C]’ categories, and
flattened the hierarchical structure, so that any document indexed under a
subheading of ‘Virus Diseases [C02]’ were regarded as belonging to the C02
category. They used the collection as a multi-label problem, and treated each
(overlapping) category as an independent binary classification problem. Their
OHSUMED selection and split was later used by [SH08, LTSL07].

Han and Karypis [HK00] prepared 15 sets with 10 classes and around 1,000
documents each. Only documents with abstracts were selected. Documents with
multiple MeSH topics within each set were discarded. This way, they extracted
a collection with non-overlapping categories (aka. single label) from the original
multiple-label collection. Only four of these sets were used in [HK00]. These
four sets were later also used by [For03].

We followed Han and Karypis, and prepared the OHSUMED collection as
close to their partitioning as possible. Using their four published topic sets, we
extracted document sets with slightly fewer documents than their collection.
Unfortunately, we did not have enough computers available to include this corpus
in our comparison experiments in addition to the 20 Newsgroups corpus.

4.2 Experiment Setup

In this section we describe how we prepared for and conducted our experiments,
including the hardware and software environment in the first section, and the
use of Weka in Section 4.2.2. We also explain a simple scheme we used for
performing combination experiments in Section 4.2.3.

4.2.1 Hardware and Software

Our experiments were run on two standard (IBM PC) computers with 13-16 GB
RAM and 64-bit Intel(R) Xeon(R) CPUs (E5430) running at 2.66GHz. Both
were installed with Ubuntu 8.10.

Our own implementation used indexing, stemming, tokenization etc. from
Lucene5 version 2.4.0. We used the well-known data mining software Weka-3-6-06

4The 2009 MeSH tree structure can be browsed at http://www.nlm.nih.gov/cgi/mesh/

2009/MB_cgi
5http://lucene.apache.org/java/docs/
6http://www.cs.waikato.ac.nz/ml/weka/

http://www.nlm.nih.gov/cgi/mesh/2009/MB_cgi
http://www.nlm.nih.gov/cgi/mesh/2009/MB_cgi
http://lucene.apache.org/java/docs/
http://www.cs.waikato.ac.nz/ml/weka/
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for creating and evaluating classifiers. Two learners were used, both with the
standard Weka settings:

• Naive Bayes: weka.classifiers.bayes.NaiveBayes

• Support Vector Machine: weka.classifiers.functions.SMO

The Java7 version used was 1.6.0 10.

4.2.2 Categorization Experiments

In this section, we explain how we generated vector files with the various feature
selection methods, and conducted the categorization experiments using Weka
with these files.

First we indexed the collections using our own software based on Lucene:

$ ./run.sh no.ntnu.idi.tm.collectionmanager.CollectionIndexer \
-c 20news-18828 -s true

where we specified the corpus (-c), and used stemming (-s). A simple shell
script was used for setting java options including classpath and memory space.

Next, we ran each feature selection method for each of the six number of
features, and exported the results to arff.gz files:

$ ./run.sh no.ntnu.idi.tm.collectionmanager.CollectionExporter \
-c 20news-18828 -t 2 -m INFORMATION_GAIN -n 500

where we specified the corpus (-c), a minimum of two characters for each feature
(-c 2), the feature selection method (-m), and the number of features to be
selected (-n). Also, not shown here is the default value to remove features with
a document frequency of one.

Next, Weka was used to create and evaluate learners. We started Weka
3.6.0 in Experimenter mode [BFH+08, Chapter 5], added a classifier (e.g. Näıve
Bayes), added a set of vector files (e.g. information gain vector files, one for
each of the 6 numbers of features), and specified 10-fold cross validation. This
experiment was then saved in .xml format. We also made some edits to these
files, including changing the name and location of the output file to something
resembling the actual experiment, and correcting some path differences between
the client and the server.

Next, the .xml files were copied to one of our two servers for processing.
Here, we ran the Weka experiments with commands like the following example:

$ java weka.experiment.Experiment \
-l naive-bayes_INFORMATION_GAIN.xml -r

where -l means load experiment from file and -r means run experiment. This
step actually builds a classifier using the set of vector files (the selected features),
evaluates its performance, and stores the results in another .arff file. This file
contains one result line for each run, fold and dataset. Hence in our case, the
result files from the NB experiments contained 600 result lines: 6 feature set
sizes (from 500 to 10000 features) times 10 folds times 10 runs (each fold is run

7http://java.sun.com/

http://java.sun.com/
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10 times). The result files from the SVM experiments contained 150 result lines:
3 feature set sizes (500, 1000 and 2000 features) times 10 folds times 5 runs.

The results files from Weka were then analyzed in the Weka Experimenter
Analyzer window. Here, we ran the appropriate tests (e.g. F-measure, recall
etc.) with our preferred output format gnuplot8. These tests average the results
and normally present one value for each dataset (in our case one value for each
feature selection method). The results from the various tests can be seen in
Section 4.3.

4.2.3 Combination Experiments

We performed a range of NB classification experiments where we combined two
or three feature selection methods. This was partly motivated by the fact that
several high performing feature selection metrics selected very diverse feature
sets, as can be seen in Table 4.3. For the combination of the feature sets from
two feature selection methods, we used a rather simple algorithm:

We first specified to use n features from each m feature selection method.
Each method was then used individually to rank the features. Then, the topmost
ranked features for all methods were added to the combined set of features, if
they were not already there. Furthermore, the next best features from each list
were handled in the same way, and so on. This continued until n times m features
were added to the new set.

Now, n or more features from the new set also occurred in each of the original
m ranked lists. It might (and in most cases will) be more than n features because
more than one method might have selected the same feature.

For instance, let’s assume we specified -n 2 and -m INFORMATION_GAIN:TFDF
(two methods). Then the combined feature list would contain 4 features. If the
two methods ranked the same four features on top, these four would be in the
combined set, and the combination would be equal to each of the two. If the
two methods had none of the same features in their two top-ranked positions,
the algorithm would stop after investigating only these two times two features,
as it would have filled up all its own four feature positions.

Vector files of the 20 Newsgroups collection were generated like the following
example. Here, the two methods TFDF and CHI were combined, producing a
vector file where each document was represented using a total of 500 features,
where at least 250 of these were among the top ranked features of each method’s
ranked list.

$ ./run.sh no.ntnu.idi.tm.collectionmanager.CollectionExporter \
-c 20news-18828 -t 2 -m TFDF:CHI_SQUARE -n 250

Our combinaion scheme is different from that used in [RY02]. There, the
weights of each feature were normalized, and the maximum was chosen from the
two.

4.3 Results and Discussion

We have conducted a series of experiments, comparing 17 feature selection
methods on Näıve Bayes and Support Vector Machine classifiers. In this section,

8http://www.gnuplot.info/

http://www.gnuplot.info/
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we present and discuss the results obtained from these experiments. Eight
main graph plots are presented, namely percent correctly classified documents,
macroaverage precision, recall and F1-measure, for the NB classifier and the
SVM classifier (Figures 4.1 through 4.89).

In Section 4.3.1 we discuss some general observations from the experiments,
including variations and similarities between the two classifier types, groups of
feature selections with similar performances, and our results compared to those
of others that also used the 20 Newsgroups. We also discuss some observations of
precision and recall results, and the results of the unsupervised feature selection
methods against those of the supervised methods. Then in Section 4.3.2 we go
through each feature selection method in turn.

We also performed a series of combination experiments. Their results are
discussed in Section 4.3.3, where we also present a correlation matrix showing
the similarities of the methods we evaluated.

4.3.1 General Observations

In this section we discuss some general observations from the experiment results.

The Classifier Matters

As expected, the Support Vector Machine (SVM) classifier performed much
better than the Näıve Bayes (NB) classifier. While the best method (Chi Square)
peaks at 69,19 percent correctly classified documents on NB (with a standard
deviation10 of 0.96), the highest recorded percentage on SVM (also Chi Square)
was 84.89 (with a standard deviation of 0.73).

While SVM in general performs better than NB, it also uses considerably
longer time. Table 4.2 shows the CPU times for the experiments run using the
weirdness factor for feature selection. As an example, consider the set of 2000
features. With 10 folds averaged over 10 runs, this means 100 passes over the
dataset (100 times the values shown in the table). For NB, 12.34 seconds times
100 is 1234 seconds, or about 21 minutes. For SVM, 732.98 seconds times 100 is
73298 seconds, or more than 20 hours. That is about 60 times as long as the
NB classifier.

It is evident that the choice of classifier matters, and that performance needs
should be considered together with needs for efficiency.

Result Groups

Most of the results from the high performance methods seem to be grouped into
three partitions. For the NB classifier, both for percentage correct and F-measure,
the top performing group includes CHI, GSS, EOR, IG and MI. These are all
supervised methods. The next group includes the three unsupervised methods
TFDF, CFIDF, and CF. The third group contains WF, a supervised method,
and DF which is unsupervised.

The BNS method does not follow the performance curves of the mentioned
groups. It performs excellent at the smallest feature set sizes, but does not

9While standard deviations are not shown in Figures 4.1 through 4.8, they are listed in
Tables B.1 through B.8. Standard deviations are explained in Appendix B.1

10Standard deviations measure the variability of the results, as explained in Appendix B.1
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Figure 4.8: Macroaverage F1-measure for a SVM classifier using various feature
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collection
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Classifier: Dataset - Feature set size User CPU time
NB: WEIRDNESS-500 2.40 ± 0.28
NB: WEIRDNESS-1000 5.24 ± 0.54
NB: WEIRDNESS-2000 12.34 ± 2.07
NB: WEIRDNESS-3000 17.98 ± 0.36
NB: WEIRDNESS-5000 40.31 ± 0.80
NB: WEIRDNESS-10000 130.41 ± 4.09
SVM: WEIRDNESS-500 168.25 ± 1.07
SVM: WEIRDNESS-1000 330.48 ± 4.78
SVM: WEIRDNESS-2000 732.98 ± 16.19

Table 4.2: CPU time comparison for Näıve Bayes (NB) and Support Vector Ma-
chine (SVM) classifiers. All experiments were run using 10-fold cross-validation,
averaged over 10 runs. The values shown are average times for one pass over the
data.

continue this trend. The remaining methods show more diverse results, and are
not correlated to each other.

For the SVM charts, the situation is not far from that of the NB classifier.
While SVM performs better in general, most methods seem to have the same
impact on the SVM classifier as they have on NB. The top group of feature
selection methods includes CHI, GSS, IG and MI here as well. Only EOR is gone
from the top performing group. BNS again has a performance curve slightly
different from the other high performing methods, showing excellent performance
with the highest aggressivity level. The three unsupervised methods TFDF, CF
and CFIDF is again following the first group closely, and WF and DF again
forms a third group.

Some of the methods we have tested are ranked in [Seb02] (their rank is based
on others’ results). While experiments conducted by different researchers never
can be compared directly, we make some notes here: Firstly, our results agree
with their rank in that EOR and GSS are among the top performers. However,
their top-ranked methods include NGLsum. In our results, NGL performs poorly
in all tests. It should be noted that we used a sum weighted by the class
size, while they report the sum only. Other factors can also be different in the
experiments, including test collection and the number of classes. Furthermore,
in our experiments, CHI was always among the top performers, while this was
not the case in their rank.

Our Results Compared to Others

The 20 Newsgroups collection was also used with NB and SVM classifiers
in [SH08]. Their results show F-measure values higher than 0.91 on NB and 0.94
on SVM for all methods they tested (including CHI, IG, OR and CPD). As such,
their results are much higher than our results. One reason for the differences, is
that they divided the collections into subtasks with two or three categories in
each task. Obviously, classification is easier when selecting between two or three
categories than when selecting one of 20, like we do. Moreover, as explained in
Section 4.1.3 their results are presented with rather large and varying feature set
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sizes, while we evaluate the classifiers at fixed, more aggressive feature set sizes.
[DDH+07] also conducted experiments on the 20 Newsgroups collection.

However, they used another classifier (Regularized Least Squares Classification)
so their results cannot be compared directly to ours. Nevertheless, they find that
IG performs better than DF, and that both IG and DF performs better than
random feature selection. These results are in line with our results. The other
feature selection methods we compare are not evaluated there, and vice versa.

Precision and Recall

The precision values are slightly higher than the recall values in our tests (see
Section 2.5 for a discussion of the evaluation metrics including precision and
recall). That is, most methods have up to 0.1 point higher precision than recall
value. Some methods have significant differences however. For instance, the
CPD metric has extremely high precision values (0.77 to 1.0 for NB), while at
the same time worse recall values than random (0.02 to 0.2 points for NB). The
CDM metric in fact shows a degrading (but very high) precision curve as the
feature set size increases, while the recall curve increases.

A third interesting precision-recall difference is that of the NGL coefficient.
While the percentage correctly classified documents stays rather unchanging on
NB (around 45 to 50 %) as the feature set size increases, the precision curve
stays flat on 0.1 points, while the recall rises from 0.1 to 0.32. On SVM on the
other hand, recall falls while precision rises, as more features are used.

Unsupervised and Supervised Methods

As expected, supervised feature selection metrics are topping the charts in our
comparison. But more interesting, the three unsupervised methods TFDF, CF
and CFIDF performed better than the supervised WF method. Also, the three
are not very far behind the leading cluster of methods. While starting at about 5
to 10% lower than the best methods in the percentage correct chart (Figures 4.1
and 4.5), they are just a few percent behind at 3000 features and above.

4.3.2 Individual Results

Below we discuss the results of each of the feature selection methods. We discuss
the methods in the order they appear in the report, including the order they are
listed in the main result charts (Figures 4.1 through 4.8).

Collection Frequency (CF)

The collection frequency metric performs very good both on the NB and SVM
classifiers. Moreover, it shows equally good performance on precision and recall.
Together with CFIDF and TFDF, CF is the best unsupervised feature selection
metric among the ones we compared.

Collection Frequency Inverse Document Frequency (CFIDF)

Like CF, CFIDF seems to have very good performance allover, both for NB
and SVM. It has no surprises in the precision and recall results. Somewhat
surprisingly, the CF method overall performed as good as the CFIDF, suggesting
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that the IDF-weighting in CFDF is of little value. This is confirmed by the
correlation matrix in Table 4.3, which shows that CF and CFIDF selected 97%
of the same features at a feature set size of 5000.

Document Frequency (DF)

The document frequency does not compete among the very best methods in our
tests, at least not at the most aggressive levels. That said, it shows good results
on average, and like CF and CFIDF, there are no surprises in the precision and
recall results. In our 5000-features experiments, DF selected 86% and 88% of
the same features as CFIDF and CF, respectively.

Term Frequency Document Frequency (TFDF)

TFDF shows very good results, and along with CF and CFIDF it is in the
second best group of methods in our experiments. Looking at the correlation
matrix in Table 4.3, we see that TFDF selected 91% of the same features as
both CF and CFIDF at 5000 features, explaining the correlated performance
results. While TFDF only is compared to DF in [XWLJ08], and only precision
results are presented there, our experiments confirmed their findings: TFDF
performs better than DF in almost all our experiments. Like in their results, the
difference is most prominent in the most aggressive selection level.

Weirdness Factor

The weirdness factor does generally not show performance results among the
best methods, but shows a steep curve, meaning it could possibly be better than
the other methods for lower accuracy. Also, the best recall number we found,
was from using the weirdness factor and a feature set size of 10000. We believe
that while obviously not the best ranking function, weirdness factor might be a
good way of filtering out noisy features.

The weirdness factor has been used for IR tasks, but not for feature selection
for text categorization before. Our experimental results show that it might have
a future here as well. While not among the best methods, it performs several
times better than random feature selection. Moreover, with 10000 features on
NB, it produced the highest recall results among all metrics, while correctly
classifying a decent 62% of the documents.

Interestingly, the correlation matrix in Table 4.3 shows that the weirdness
factor was less than 20% correlated with all other methods at 5000 feature
selected, suggesting that other methods select more common features.

Word Frequency (WF)

The word frequency shows stable and good results is all our evaluations: it is
consistently in the third best group of feature selection methods. One interesting
observation, is that the supervised WF method seems to be highly correlated
with the unsupervised DF method. In fact, they selected 98% of the same
features at 5000 features. This suggests that the extra effort of considering the
category information as done in WF adds little value to the document frequencies
alone.



4.3 Results and Discussion 69

Information Gain (IG)

The well-known IG metric shows excellent performance in all our experiments,
being among the top performers for both NB and SVM. Also, it shows stable
results for both precision and recall. It is between 75% and 78% correlated with
the unsupervised metrics (except weirdness factor) at 5000 features. It is 95%
correlated with MI, showing its close relationship with this method.

Mutual Information (MI)

As mentioned, MI performs very closely to IG. They are both in the best group
of metric in all our experiments.

Extended Odds Ratio (EOR)

The EOR metric had excellent performance when used with NB. It was in the
best group of methods, and showed stable, reliable results for both precision and
recall. For the SVM classifier on the other hand, it is surprisingly not among
the top performers at all.

Class Discrimination Measure (CDM)

The CDM metric did not show impressing results in our experiments. In
percentage correctly classified documents, CDM performed closely to that or
the weirdness factor. While this is several times better than random selection,
it is far from the best performing group. An interesting observation is that
CDM shows very high precision levels - high above the best group of methods.
Furthermore, its precision is highest at the smallest feature set size. At the same
time, its recall values are much lower than the best group of methods. As such,
it can be said to sacrifice completeness for a higher level of exactness. In the
combined F-measure, CDM performs considerably better than the weirdness
factor, close to the best methods.

Chi Square (CHI)

CHI was one of the best feature selection method all over in our experiments.
For NB, it persistently classified the highest percentage of documents correctly,
and it showed the best F-measure of all methods. For SVM, it also performed
excellently, being in the topmost group at all feature set sizes. In Table 4.3,
we see that CHI never shared more than 80% of the features with any other
method at a set size of 5000. Most notably, CHI and EOR share only 36% of
the features, while their results (at least for NB) should suggest otherwise.

NGL Coefficient

The NGL coefficient did not perform well in our tests, but produced some
interesting results. In percentage correctly classified documents, it managed
between 45% and 50% on all feature set sizes on NB. That is, hardly any increase
at all when adding more features. Its precision curve stays even more stable,
with 0.1 precision points for every feature set size. This number is far lower than
we achieved using random feature selection. The recall score of NGL showed an
increase from 0.1 to 0.32 as more feature were added. As such, opposite of the
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CDM metric, it can be said to sacrifice exactness for completeness. But as both
its scores are far below most other methods, it can not be recommended. In the
combined F-measure, its performance was very poor, even worse than random
selection at 5000 and 10000 features. Our poor NGL results are surprising, as
the NGL metric was reported better than CHI in [NGL97].

Bi-Normal Separation (BNS)

The BNS metric showed very good results, but did not follow the result curves
of the three groups of good metrics. while among the very best methods at the
smallest feature sets, its performance did not increase much as much as that of
the other methods with more features added. Its precision values are excellent,
for high aggressivity levels, it had the best achieved among all the methods that
managed to classify a decent percentage of the documents correctly. The fact
that it performed so well with few features, but did not get much better with
more features, suggests that it might be ranking its features better than the
other methods. As many applications may need to prioritize a fast classification
over a more correct classification, the BNS metric might look promising. For
such cases, experiments with even smaller feature sets should be considered
conducted.

The different performance curves of BNS compared to the other methods is
confirmed by the correlation matrix in Table 4.3. At 5000 features, BNS never
selected more than 33% of the same features as any other method.

Our results do not resemble those presented in [For03], but this was not
expected either, as they used other corpora than we did. Moreover, they evaluate
binary experiments and we conducted multi-class experiments.

Categorical Proportional Difference (CPD)

The Categorical Proportional Difference method shows poor results in our
experiments. While its precision scores were extremely high (1.0 for 5000 and
10000 features), this is not valuable as it classified only from 7 to 22 percent
of the documents correctly. However, it has a rather steep rising curve on the
F-measure chart, suggesting that better results could be achieved with (much)
larger feature set sizes, as those shown in [SH08]. As such, it looks more of a
method for filtering out noisy features. It would be very interesting to see the
performance of other methods if used after CPD, that is, first running CPD and
keeping 60-80% of the features, and then more aggressively selecting features
among the remaining ones using some other method.

While [SH08] reported F-measure values of more than 0.9 for the CPD metric
with a Naive Bayes classifier on the 20 Newsgroups, we got F-measures of 0.04 to
0.31. This is partly because we used more aggressive feature selection (retaining
only from less than 1% to about 19% of the features). But also the way we use
the collection is important. Our classifier must choose between all 20 categories,
while they split the corpus into partitions containing two or three categories
each. Naturally, classifying documents into one of two or three categories is an
easier task than one of 20, hence their results are better – for all feature selection
methods.

The correlation matrix in Table 4.3 reveals that the CPD metric is very
different from the other methods we compared. While selecting 14% of the same
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features as DIA, and 7% of the same as the weirdness factor, the correlation with
the other methods was between 1% and 3%. One fact should be noted about the
correlation: In our experiments, the CPD metric assigned feature values of 1.0 to
23750 features, i.e. to 44.2% of the features. Moreover, it assigned 0.0 to 19942
features (37.1%). The remaining 10038 features received values in the range of
<0,1>. Now, the question arises of how to rank the top 23750 features that
received the same value. In our implementation, these were ranked randomly
(or in fact as they appear in the Lucene index). As such, the correlation matrix
does not provide reliable figures, it just shows the correlation in our actual
implementation and index.

Nevertheless, these numbers suggest that there is a need for another way of
ranking the top features. They also serve as a possible indication of why [SH08]
needed over 70% of the features to achieve top scores for the 20 Newsgroups
collection on NB.

DIA Association Factor

In all our experiments, the DIA association factor achieved the worst results
of all methods. Surprisingly, it even performed worse than random selection.
As explained in Section 3.7.12, this method was not proposed as a method of
feature selection for the kind of single term features we consider here. Now that
we have evaluated it, we can conclude that it is not usable in situations like
those we present here.

4.3.3 Combination Results

We performed a range of NB classification experiments where we combined two
or three feature selection methods, as explained in Section 4.2.3. This was partly
motivated by the fact that several high performing feature selection metrics
selected very diverse feature sets, as can be seen in Table 4.3.

Much of the conducted combination experiments did not lead to considerably
better classification results. We present here only the combinations that showed
good results, and place the rest of the figures in Appendix B.3. Each combination
experiment is presented by two figures: The percentage of correctly classified
documents, and the F-measure.

The two supervised, top-performing metrics CHI and GSS were combined,
producing the results shown in Figures 4.9 and 4.10. As the GSS coefficient is
based on Chi Square, one could be leaded to think of them as bad candidates for
combination. The correlation matrix in Table 4.3 however, showed a correlation
of 79% at 5000 features. When they both performed excellent, this suggested
that there might be possible to get even higher performance from them combined.
So was also the case the figures show. The combined effort achieved a higher
percentage of correctly categorized documents than both methods for 500 to 3000
features. While CHI was the best single method, the CHI+GSS combination had
the best results of all NB classifiers evaluated, measured in percentage correctly
classified documents.

The F-measure was generally not better for the combination than for the
best method, but at 3000 features it was. This was also the aggressivity level
where the highest percentage of the features were categorized correctly.
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CFIDF 97 -
DF 88 86 -
TFDF 91 91 87 -
Weird 9 10 7 9 -
WF 89 86 98 87 7 -
IG 76 76 75 78 12 75 -
MI 74 73 72 75 13 72 95 -
EOR 72 70 78 71 3 78 55 52 -
CDM 6 7 4 6 19 4 15 18 0 -
CHI 58 58 54 59 16 54 76 80 36 33 -
NGL 34 35 31 36 19 32 41 44 24 27 48 -
GSS 75 75 74 77 12 74 91 92 55 17 79 42 -
BNS 31 31 32 31 11 32 33 33 16 5 32 15 33 -
CPD 0 1 0 1 7 0 1 1 0 3 1 1 1 1 -
DIA 1 1 1 1 12 1 4 5 0 20 9 19 5 6 14

Table 4.3: Correlation of the evaluated feature selection methods when 5000
features are selected from the 20-Newsgroups collection. The percentage of the
features selected that also were selected by the other methods are shown. The
random selection method is not shown, as its selected features vary from time to
time.

We wanted to combine the ‘outsider’ BNS with some of the best unsupervised
methods. BNS and CFIDF achieved a considerably higher percentage of correctly
classified documents at all feature set sizes except 500 (Figure 4.11) when
combined than individually. The F-measure on the other hand (Figure 4.12) was
not as convincing, the most aggressive selection levels were lower than the best
method, while equal or better on the less aggressive levels.

BNS combined with TFDF achieved similar results as BNS and CFIDF. BNS
was 31% correlated to both CFIDF and TFDF at 5000 features, while CFIDF
and TFDF were 91% correlated.

Figures 4.15 and 4.16 show the results of combining the BNS and the CDM
metric. The motivation for selecting these two metrics for combination experi-
ments was that they were only 5 percent correlated at 5000 selected features,
while at the same time they both show good or ok classification results. The
two combined achieved a higher percentage of correctly classified documents,
and also a higher F-measure score than each of the two alone. However, the
combined result is still not as good as the best single metrics.

BNS also did well with IG, as depicted in Figures 4.17 and 4.18. The
percentage of correctly classified documents were increased at all levels except
500, where it was equal to the best. The F-measure was not better than the best
single metric at any aggressivity level. however.

BNS also lifted the performance of the GSS coefficient slightly. This is
interesting, as the GSS factor was among the very best performers, and the two
were only 33% correlated at 5000 features.
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Figure 4.9: Percentage of documents correctly classified by an NB classifier using
CHI, GSS, and the two combined on the 20 Newsgroups.
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Figure 4.10: F-measure for a Näıve Bayes classifier using CHI, GSS, and the two
combined at various numbers of features selected from the 20 Newsgroups.
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Figure 4.11: Percentage of documents correctly classified by an NB classifier
using CFIDF, BNS, and the two combined on the 20 Newsgroups.
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Figure 4.12: F-measure for a Näıve Bayes classifier using CFIDF, BNS, and the
two combined at various numbers of features selected from the 20 Newsgroups.
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Figure 4.13: Percentage of documents correctly classified by a Näıve Bayes
classifier using TFDF, BNS, and the two combined on the 20 Newsgroups.
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Figure 4.14: F-measure for a Näıve Bayes classifier using TFDF, BNS, and the
two combined at various numbers of features selected from the 20 Newsgroups.
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Figure 4.15: Percentage of documents correctly classified by a Näıve Bayes
classifier using CDM, BNS,and the two combined on the 20 Newsgroups.
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Figure 4.16: F-measure for a Näıve Bayes classifier using CDM, BNS, and the
two combined at various numbers of features selected from the 20 Newsgroups.
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Figure 4.17: Percentage of documents correctly classified by a Näıve Bayes
classifier using BNS, IG, and the two combined on the 20 Newsgroups.
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Figure 4.18: F-measure for a Näıve Bayes classifier using BNS, IG, and the two
combined at various numbers of features selected from the 20 Newsgroups.
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Figure 4.19: Percentage of documents correctly classified by a Näıve Bayes
classifier using BNS, GSS, and the two combined on the 20 Newsgroups.
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Figure 4.20: F-measure for a Näıve Bayes classifier using BNS, GSS, and the
two combined at various numbers of features selected from the 20 Newsgroups.



Chapter 5

Conclusions and Outlook

We have evaluated 5 unsupervised and 11 supervised feature selection methods
in addition to random selection on both a Näıve Bayes (NB) classifier and a
Support Vector Machine (SVM) classifier, with various feature set sizes. We
have also conducted a series of combination experiments where the joint effect
of two or three feature selection methods were compared to each of the methods
alone. In this section we make some concluding remarks about the results.

While most other feature selection research is presented using binary catego-
rization tasks, our results are all from multi-class experiments with one common
feature list for all classes. For this reason, our categorization results are not as
good as others’. Also, our conclusions may not hold for binary experiments.

5.1 Conclusions

We start by concluding that SVM performs considerably better than NB, which
confirms the findings of [Joa98]. The best feature selection methods (e.g. Chi
Square and Information Gain) categorized more documents correctly on SVM
with only 500 features than they did on NB on any of the feature set sizes we
compared. Nevertheless, training an SVM classifier using 500 features, took
longer time than building an NB classifier using 10000 features.

Furthermore, we conclude that feature selection is necessary, and that the
choice of method is important. In fact, we were not able with our hardware to
build a classifier with the full set of features of the 20 Newsgroups collection.
Moreover, the results in Figures 4.1 through 4.8 clearly shows how very differently
the metrics perform. While random feature selection obviously is not a good
solution, the results of the DIA association factor shows worse performance than
random indeed is possible.

The best results were achieved for both classifiers by CHI, GSS, IG, and
MI. EOR was in the top group for NB, but not for SVM. The BNS metric was
among the very best methods for the smallest feature sets, but did not produce
the best results all over.

We have evaluated three unsupervised metrics previously not used for feature
selection for text categorization: The Collection Frequency (CF), Collection
Frequency Inverse Document Frequency (CFIDF), and a weirdness factor. To-
gether with TFDF, CF and CFIDF produced almost as good results as the best
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supervised methods, and can be recommended when pre-classified training data
is not available. While the weirdness factor performed much better than random
selection, its results are generally far from the other unsupervised methods like
CF and CFIDF.

We found that the supervised method WF and the unsupervised method DF
performed almost equally good on all feature set sizes and on both classifiers,
suggesting that there is no need for the extra computations done in WF. Neither
DF nor WF is recommended anyway, since as explained above we found both
better supervised and unsupervised methods.

The worst results we found were those of DIA association factor and CPD in
addition to random selection. These methods can hence not be recommended in
the way that we used them. For the CPD metric, we discussed in Section 4.3.2
a possible way for it to be of practical use.

Our correlation matrix in Table 4.3 shows that very different methods can
produce very good results. This means either that there are much redundancy
in the information carried by a feature, or that there is still a way to go in
feature selection. Our combination results mostly suggests the former, as most
combinations did not cause much increase in performance. Some combinations
were better however, so more research should be done in combining different
methods. The BNS metric was a part of four of the five evaluated combinations
that had a positive performance gain.

5.2 Further Work

In this section, we list some of the ideas we believe should be further investigated.
Additional corpora should be tested to see if our results hold for these as

well. Text documents can contain very different features in different domains,
and feature selection techniques may perform differently in other domains. We
prepared the very different OHSUMED collection for experiments as described
in Section 4.1.4, but did not have hardware resources enough to perform the
experiments on this collection in addition to the 20 Newsgroups. The Reuters
collections described in Sections 4.1.1 and 4.1.2 are also good candidates.

Additional feature selection methods should also be tested. Section 3.8 lists
several methods we were not able to test due to time constraints.

Additional classifiers should be tested as well. The best feature selection
method for one classifier may not be the best for another. The results of the
EOR metric on NB and SVM serves as a good reason for evaluating feature
selection on various induction schemes.

Other ways of globalizing the feature lists could be tested, including max,
sum, average, round-robin (See [For04]) and other methods. It is important to
remember that the same aggregation method might not be the best for various
corpora. Moreover, a minimal test on very small feature sets might not be
sufficient, as the the results may change when the feature sizes reach practically
usable numbers. Large scale evaluation of globalization methods for every feature
selection metric for various corpora is the only way to reliably find the best
matches of globalization methods and feature selection methods. Obviously, this
is a very time consuming exercise.

The weirdness factor should be further evaluated, as it shows promising results
while selecting very different features than other methods. For instance, it should
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be tested with CF instead of DF in the computation of feature values. Moreover,
it should be tested with both upper and lower threshold. That is, instead of
selecting the weirdest features only, one could filter out the weirdest features and
select the ones following them. The motivation for this is that, as can be seen
in our results, the weirdness factor performs poorly at the highest aggressivity
levels, but shows very good results as the number of features increases. It could
be that the features ranked highest were just too weird, and that performance
might be increased without the weirdest ones.

Our experiments are all conducted without features that occur only in one
document. Such ‘rare feature cut-off’ could be further investigated. While [For03]
concludes that rare feature cutt-off might increase the recall values for the BNS
metric, we have found no large-scale evaluations of the impact of such thresholds.

5.2.1 Combination Approaches

We conducted combination experiments as explained in Section 4.2.3 and evalu-
ated in Section 4.3.3. Our results showed situations were the combined effort
worked better than each of the individual methods, but also combinations with
worse performance. Since BNS is a part of four of the five evaluated combinations
that had a positive performance gain, it should be considered in future combi-
nation experiments. More feature selection combinations should be evaluated
by the combination scheme we used. More than two or three methods should
also be combined. The list of possible permutations is hence very long, but only
large-scale testing could determine the benefits and drawbacks of this scheme.

Several other approaches to the combination of feature selection methods
should be evaluated. An interesting combination scheme is the weighted sum
of several normalized methods. For instance, if the feature values for each
method were first normalized into a [0,1] interval, then several methods could be
combined using value = 0.2× IG+ 0.5×CHI + 0.3×BNS, where 0.2 etc. are
example weights for how much an algorithm should count. This scheme share
some similarities with the scheme presented in [RY02], albeit they use the max
instead of a weighted average, and only from two feature selection metrics.

The concept of sequential feature selection should also be tested. By this we
mean to use several methods in a sequence as filters, removing the lowest ranked
features. The motivation for this, is that some methods seem to be very good at
low aggressivity levels. For instance, the weirdness factor shows the best recall
performance among all the methods we tested at a feature size of 10000, but
considerably lower at higher aggressivity levels. Also, the CPD metric presented
in [SH08] was there shown to outperform well-known methods like Information
Gain, but with a feature set size of 61.2-77.3% of the available features. As such,
it is possible that these methods are very good for determining the noisy features,
while not so good at ranking the best features highest (see our discussion of
the CPD metric in Section 4.3.2). Hence we propose to evaluate these metrics
as thresholding metrics, followed by for instance Chi Square to do the actual
ranking of the remaining features.

Sequential feature selection can be seen as an extension of the sequence of
preprocessing steps that we and most other researchers perform. We already
remove stop words, perform stemming, and remove features with low document
frequency, all these are steps that reduce the feature space dimensionality.
Sequential feature selection would in fact be a natural next step here. Removing
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the least weird features suggested by the weirdness factor (in the bottom end
of its ranked feature list) would serve as a natural extension to the stop word
removal, as these features are so common in a general reference corpus that
they may be of little categorization value. Which feature selection metrics that
make sense to combine in sequence is only determined by actual large-scale
experiments. The remaining features are probably best sorted by the same
metrics that did well in comparison tests like the ones we present here, but this
should also be tested.

Yet another possible combination scheme is the use of a voting system. Of
m feature selection metrics, one can look past the actual feature weights and
rather see the feature lists of the methods as votes. The feature occurring in
the top position in all methods (if any) can be ranked on top in the combined
ranking. Next, we include the second best ranking for all methods. If a feature
now occurs in the top two positions for all metrics (and have not been added
yet), it is added, and this continues until all features are ranked.

Alternatively, one could ease the voting system somewhat, demanding only n
of the m metrics to suggest a feature before it is added to the combined list.

5.3 Contributions

We have compared a large number of feature selection methods on the same
premises, in a scale that has not been done before. Where we compared 5
unsupervised and 11 supervised methods in addition to random selection, the
second largest comparison test we have seen is that of [For03] where a total of
12 methods including random selection were tested. All methods we tested were
evaluated on two important classifiers.

Our experiments also include metrics that have not been used for feature
selection before, including the CF, CFIDF and weirdness factor. The CF and
CFIDF results are among the best for unsupervised methods, and are close to
the best supervised methods.

While most other research in feature selection presents binary categorization
tasks using one feature list for each class, we present here multi-class result.
That is, our results are based training classifiers using one global feature list for
all classes. As we conducted our experiments on the 20-Newsgroups corpus with
20 classes, the performance reported naturally is not as high as for binary tasks
with local feature lists. However, our results are important for anyone in need of
multi-class classification using global lists, and it shows which feature selection
methods that are prone to error when globalizing the feature lists.

Our experiments were done on the entire 20-Newsgroups corpus. While there
exists several larger corpora, most researchers use small subsets of these.

We used 10-fold cross-validation averaged over 5 or 10 runs (a total of 50 to
100 passes over the dataset for each feature set size), while most other researchers
have been using one designated split. Hence, our results should be very reliable,
and reproducible.

We have conducted a range of combination experiments, and the best results
we achieved for NB was by combining the CHI and GSS metrics.
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Appendix A

Corpora

This appendix will include information related to the text collections used.

A.1 20-Newsgroups

The following text is an example of a post from the 20-Newsgroups collection.
This message was posted to the newsgroup (or category) comp.sys.mac.hardware.

From: jcav@ellis.uchicago.edu (JohnC)
Subject: how do you like the Apple Color OneScanner?

We’re all set to buy one of these for the office, to use for scanning in
color photographs and for optical character recognition. We’ve played with
the original grayscale OneScanner and were very pleased. Is the color model
comparable in quality?

Also, what brand of OCR software would you recommend? We’re leaning toward
Caere OmniPage. Any better ideas? Thanks.

--
John Cavallino | EMail: jcav@midway.uchicago.edu
University of Chicago Hospitals | John_Cavallino@uchfm.bsd.uchicago.edu
Office of Facilities Management | USMail: 5841 S. Maryland Ave, MC 0953
B0 f++ w c+ g++ k+ s++ e h- p | Chicago, IL 60637

A.2 OHSUMED

The following text is an example of a reference (MEDLINE ID 91076390) from
the OHSUMED collection. We extracted only the heading and the abstract
fields.

Ethics consultation: skills, roles, and training [see comments]

A clinical ethics consultant gathers information firsthand at the
patient’s bedside. The consultant’s special clinical skills include the
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ability to identify and analyze ethical problems; use reasonable
clinical judgment; communicate effectively; negotiate and facilitate
negotiations; and teach others how to construct their own ethical
frameworks for medical decision making. Appropriate roles for the
consultant include those of professional colleague, negotiator, patient
and physician advocate, case manager, and educator. The training
necessary for an ethics consultant includes substantial patient care
experience, instruction in health care law and moral reasoning, and
preparation in medical humanism. We favor a clinical model for ethics
consultation. When urgent care is needed, other consultants promptly see
the patient; the clinical ethics consultant can be expected to do the same.



Appendix B

Experiments

This appendix will list the detailed results of the experiments, and some graphs
from comparison experiments.

B.1 Result Tables

In this section, the detailed results from the experiments are listed. Tables B.1
through B.8 contain standard deviations, that measure the variability of the
results. Standard deviations are calculated by first calculating the difference of
each run’s result from the mean (average) of all runs. Next each difference is
squared, and these values are then averaged over all runs. Finally, we take the
square root of this average value, which gives the standard deviation.

Table B.1: Percentage correctly categorized documents using a Näıve Bayes classifier and various
feature selection methods with different feature set sizes from the 20-Newsgroups collection, with
10-fold cross-validation averaged over 10 runs.

Feature selectiom method and feature set size Percent correct
RANDOM-500 7.42 ± 0.33
RANDOM-1000 7.96 ± 0.43
RANDOM-2000 13.33 ± 0.61
RANDOM-3000 16.08 ± 0.72
RANDOM-5000 21.68 ± 0.90
RANDOM-10000 28.09 ± 0.93
COLLECTION-FREQUENCY-500 54.21 ± 1.14
COLLECTION-FREQUENCY-1000 60.64 ± 1.15
COLLECTION-FREQUENCY-2000 64.15 ± 1.04
COLLECTION-FREQUENCY-3000 64.08 ± 1.01
COLLECTION-FREQUENCY-5000 64.04 ± 1.02
COLLECTION-FREQUENCY-10000 64.05 ± 1.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-500 54.18 ± 1.11
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-1000 61.18 ± 1.07
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-2000 64.29 ± 1.07
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-3000 64.27 ± 1.02
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-5000 64.18 ± 0.93
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-10000 65.09 ± 1.08
DOCUMENT-FREQUENCY-500 49.01 ± 1.09
DOCUMENT-FREQUENCY-1000 57.82 ± 1.06
DOCUMENT-FREQUENCY-2000 62.31 ± 1.02
DOCUMENT-FREQUENCY-3000 62.97 ± 1.00
DOCUMENT-FREQUENCY-5000 63.37 ± 1.03
DOCUMENT-FREQUENCY-10000 64.29 ± 1.10
TERM-FREQUENCY-DOCUMENT-FREQUENCY-500 53.09 ± 1.10
TERM-FREQUENCY-DOCUMENT-FREQUENCY-1000 61.30 ± 1.02
TERM-FREQUENCY-DOCUMENT-FREQUENCY-2000 64.88 ± 0.96

Continued on next page
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Table B.1 – continued from previous page
Feature selectiom method and feature set size Percent correct
TERM-FREQUENCY-DOCUMENT-FREQUENCY-3000 65.54 ± 1.08
TERM-FREQUENCY-DOCUMENT-FREQUENCY-5000 65.63 ± 0.98
TERM-FREQUENCY-DOCUMENT-FREQUENCY-10000 65.37 ± 1.04
WEIRDNESS-500 30.50 ± 0.99
WEIRDNESS-1000 34.70 ± 0.93
WEIRDNESS-2000 42.35 ± 1.02
WEIRDNESS-3000 45.02 ± 1.12
WEIRDNESS-5000 49.34 ± 1.10
WEIRDNESS-10000 61.88 ± 1.10
WORD-FREQUENCY-500 48.84 ± 1.11
WORD-FREQUENCY-1000 57.98 ± 1.08
WORD-FREQUENCY-2000 62.34 ± 1.01
WORD-FREQUENCY-3000 63.12 ± 0.99
WORD-FREQUENCY-5000 63.43 ± 1.05
WORD-FREQUENCY-10000 64.33 ± 1.07
INFORMATION-GAIN-500 61.59 ± 1.01
INFORMATION-GAIN-1000 65.64 ± 1.08
INFORMATION-GAIN-2000 67.25 ± 0.98
INFORMATION-GAIN-3000 67.03 ± 1.02
INFORMATION-GAIN-5000 66.35 ± 1.01
INFORMATION-GAIN-10000 64.73 ± 1.12
MUTUAL-INFORMATION-500 61.69 ± 1.05
MUTUAL-INFORMATION-1000 66.30 ± 0.99
MUTUAL-INFORMATION-2000 67.19 ± 1.01
MUTUAL-INFORMATION-3000 67.32 ± 1.00
MUTUAL-INFORMATION-5000 66.86 ± 1.03
MUTUAL-INFORMATION-10000 65.10 ± 1.08
ODDS-RATIO-500 61.81 ± 1.03
ODDS-RATIO-1000 66.52 ± 1.07
ODDS-RATIO-2000 68.24 ± 1.03
ODDS-RATIO-3000 67.85 ± 0.98
ODDS-RATIO-5000 67.36 ± 1.05
ODDS-RATIO-10000 59.86 ± 0.96
CLASS-DISCRIMINATION-MEASURE-500 33.33 ± 0.84
CLASS-DISCRIMINATION-MEASURE-1000 37.51 ± 0.87
CLASS-DISCRIMINATION-MEASURE-2000 41.93 ± 0.98
CLASS-DISCRIMINATION-MEASURE-3000 46.00 ± 0.98
CLASS-DISCRIMINATION-MEASURE-5000 48.76 ± 1.03
CLASS-DISCRIMINATION-MEASURE-10000 52.85 ± 1.15
CHI-SQUARE-500 64.21 ± 1.01
CHI-SQUARE-1000 67.06 ± 0.95
CHI-SQUARE-2000 68.78 ± 1.02
CHI-SQUARE-3000 69.19 ± 0.96
CHI-SQUARE-5000 68.74 ± 1.09
CHI-SQUARE-10000 67.06 ± 1.04
NGL-COEFFICIENT-500 44.67 ± 1.11
NGL-COEFFICIENT-1000 46.79 ± 1.05
NGL-COEFFICIENT-2000 45.29 ± 1.16
NGL-COEFFICIENT-3000 45.39 ± 1.00
NGL-COEFFICIENT-5000 47.06 ± 1.14
NGL-COEFFICIENT-10000 48.68 ± 1.06
GSS-COEFFICIENT-500 61.98 ± 1.16
GSS-COEFFICIENT-1000 66.14 ± 0.99
GSS-COEFFICIENT-2000 68.55 ± 0.90
GSS-COEFFICIENT-3000 68.27 ± 0.96
GSS-COEFFICIENT-5000 67.53 ± 1.07
GSS-COEFFICIENT-10000 66.28 ± 1.14
BI-NORMAL-SEPARATION-500 63.11 ± 0.92
BI-NORMAL-SEPARATION-1000 63.90 ± 0.85
BI-NORMAL-SEPARATION-2000 62.98 ± 0.94
BI-NORMAL-SEPARATION-3000 63.02 ± 0.97
BI-NORMAL-SEPARATION-5000 62.98 ± 0.96
BI-NORMAL-SEPARATION-10000 63.85 ± 0.88
CATEGORICAL-PROPORTIONAL-DIFFERENCE-500 8.83 ± 0.40
CATEGORICAL-PROPORTIONAL-DIFFERENCE-1000 9.60 ± 0.50
CATEGORICAL-PROPORTIONAL-DIFFERENCE-2000 10.54 ± 0.64
CATEGORICAL-PROPORTIONAL-DIFFERENCE-3000 11.99 ± 0.61
CATEGORICAL-PROPORTIONAL-DIFFERENCE-5000 18.48 ± 0.60
CATEGORICAL-PROPORTIONAL-DIFFERENCE-10000 22.13 ± 0.89
DIA-ASSOCIATION-FACTOR-500 5.42 ± 0.08
DIA-ASSOCIATION-FACTOR-1000 6.11 ± 0.19

Continued on next page
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Table B.1 – continued from previous page
Feature selectiom method and feature set size Percent correct
DIA-ASSOCIATION-FACTOR-2000 6.75 ± 0.22
DIA-ASSOCIATION-FACTOR-3000 7.50 ± 0.23
DIA-ASSOCIATION-FACTOR-5000 7.43 ± 0.40
DIA-ASSOCIATION-FACTOR-10000 11.44 ± 0.49

Table B.2: Macroaverage precision of a Näıve Bayes classifier and various feature selection methods
with different feature set sizes from the 20-Newsgroups collection, with 10-fold cross-validation
averaged over 10 runs.

Feature selectiom method and feature set size Macroavg. precision
RANDOM-500 0.14 ± 0.06
RANDOM-1000 0.26 ± 0.20
RANDOM-2000 0.39 ± 0.12
RANDOM-3000 0.34 ± 0.10
RANDOM-5000 0.21 ± 0.05
RANDOM-10000 0.27 ± 0.06
COLLECTION-FREQUENCY-500 0.51 ± 0.04
COLLECTION-FREQUENCY-1000 0.57 ± 0.05
COLLECTION-FREQUENCY-2000 0.65 ± 0.05
COLLECTION-FREQUENCY-3000 0.68 ± 0.04
COLLECTION-FREQUENCY-5000 0.71 ± 0.05
COLLECTION-FREQUENCY-10000 0.71 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-500 0.51 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-1000 0.59 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-2000 0.64 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-3000 0.68 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-5000 0.72 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-10000 0.69 ± 0.05
DOCUMENT-FREQUENCY-500 0.41 ± 0.05
DOCUMENT-FREQUENCY-1000 0.56 ± 0.05
DOCUMENT-FREQUENCY-2000 0.65 ± 0.05
DOCUMENT-FREQUENCY-3000 0.68 ± 0.05
DOCUMENT-FREQUENCY-5000 0.72 ± 0.05
DOCUMENT-FREQUENCY-10000 0.71 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-500 0.51 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-1000 0.58 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-2000 0.64 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-3000 0.67 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-5000 0.69 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-10000 0.70 ± 0.05
WEIRDNESS-500 0.37 ± 0.06
WEIRDNESS-1000 0.39 ± 0.06
WEIRDNESS-2000 0.56 ± 0.06
WEIRDNESS-3000 0.56 ± 0.06
WEIRDNESS-5000 0.48 ± 0.07
WEIRDNESS-10000 0.55 ± 0.04
WORD-FREQUENCY-500 0.40 ± 0.05
WORD-FREQUENCY-1000 0.54 ± 0.05
WORD-FREQUENCY-2000 0.64 ± 0.05
WORD-FREQUENCY-3000 0.67 ± 0.05
WORD-FREQUENCY-5000 0.71 ± 0.05
WORD-FREQUENCY-10000 0.71 ± 0.05
INFORMATION-GAIN-500 0.58 ± 0.05
INFORMATION-GAIN-1000 0.64 ± 0.05
INFORMATION-GAIN-2000 0.72 ± 0.05
INFORMATION-GAIN-3000 0.73 ± 0.05
INFORMATION-GAIN-5000 0.74 ± 0.05
INFORMATION-GAIN-10000 0.71 ± 0.04
MUTUAL-INFORMATION-500 0.58 ± 0.05
MUTUAL-INFORMATION-1000 0.63 ± 0.05
MUTUAL-INFORMATION-2000 0.69 ± 0.05
MUTUAL-INFORMATION-3000 0.73 ± 0.04
MUTUAL-INFORMATION-5000 0.73 ± 0.05
MUTUAL-INFORMATION-10000 0.71 ± 0.04
ODDS-RATIO-500 0.57 ± 0.04
ODDS-RATIO-1000 0.63 ± 0.05
ODDS-RATIO-2000 0.70 ± 0.05
ODDS-RATIO-3000 0.72 ± 0.05
ODDS-RATIO-5000 0.72 ± 0.05

Continued on next page
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Table B.2 – continued from previous page
Feature selectiom method and feature set size Macroavg. precision
ODDS-RATIO-10000 0.67 ± 0.05
CLASS-DISCRIMINATION-MEASURE-500 0.96 ± 0.03
CLASS-DISCRIMINATION-MEASURE-1000 0.90 ± 0.04
CLASS-DISCRIMINATION-MEASURE-2000 0.89 ± 0.05
CLASS-DISCRIMINATION-MEASURE-3000 0.89 ± 0.05
CLASS-DISCRIMINATION-MEASURE-5000 0.87 ± 0.05
CLASS-DISCRIMINATION-MEASURE-10000 0.80 ± 0.05
CHI-SQUARE-500 0.66 ± 0.05
CHI-SQUARE-1000 0.68 ± 0.05
CHI-SQUARE-2000 0.69 ± 0.05
CHI-SQUARE-3000 0.71 ± 0.05
CHI-SQUARE-5000 0.75 ± 0.05
CHI-SQUARE-10000 0.72 ± 0.05
NGL-COEFFICIENT-500 0.10 ± 0.03
NGL-COEFFICIENT-1000 0.10 ± 0.03
NGL-COEFFICIENT-2000 0.10 ± 0.02
NGL-COEFFICIENT-3000 0.10 ± 0.02
NGL-COEFFICIENT-5000 0.10 ± 0.02
NGL-COEFFICIENT-10000 0.10 ± 0.02
GSS-COEFFICIENT-500 0.60 ± 0.05
GSS-COEFFICIENT-1000 0.65 ± 0.05
GSS-COEFFICIENT-2000 0.68 ± 0.04
GSS-COEFFICIENT-3000 0.70 ± 0.05
GSS-COEFFICIENT-5000 0.71 ± 0.05
GSS-COEFFICIENT-10000 0.70 ± 0.05
BI-NORMAL-SEPARATION-500 0.67 ± 0.05
BI-NORMAL-SEPARATION-1000 0.69 ± 0.05
BI-NORMAL-SEPARATION-2000 0.71 ± 0.05
BI-NORMAL-SEPARATION-3000 0.71 ± 0.04
BI-NORMAL-SEPARATION-5000 0.72 ± 0.05
BI-NORMAL-SEPARATION-10000 0.72 ± 0.05
CATEGORICAL-PROPORTIONAL-DIFFERENCE-500 0.77 ± 0.42
CATEGORICAL-PROPORTIONAL-DIFFERENCE-1000 0.77 ± 0.42
CATEGORICAL-PROPORTIONAL-DIFFERENCE-2000 0.77 ± 0.42
CATEGORICAL-PROPORTIONAL-DIFFERENCE-3000 0.87 ± 0.34
CATEGORICAL-PROPORTIONAL-DIFFERENCE-5000 1.00 ± 0.00
CATEGORICAL-PROPORTIONAL-DIFFERENCE-10000 1.00 ± 0.00
DIA-ASSOCIATION-FACTOR-500 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-1000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-2000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-3000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-5000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-10000 0.00 ± 0.00

Table B.3: Macroaverage recall of a Näıve Bayes classifier and various feature selection methods with
different feature set sizes from the 20-Newsgroups collection, with 10-fold cross-validation averaged
over 10 runs.

Feature selectiom method and feature set size Macroavg. recall
RANDOM-500 0.05 ± 0.02
RANDOM-1000 0.02 ± 0.01
RANDOM-2000 0.08 ± 0.03
RANDOM-3000 0.08 ± 0.03
RANDOM-5000 0.19 ± 0.04
RANDOM-10000 0.19 ± 0.05
COLLECTION-FREQUENCY-500 0.46 ± 0.06
COLLECTION-FREQUENCY-1000 0.53 ± 0.05
COLLECTION-FREQUENCY-2000 0.62 ± 0.05
COLLECTION-FREQUENCY-3000 0.66 ± 0.05
COLLECTION-FREQUENCY-5000 0.67 ± 0.05
COLLECTION-FREQUENCY-10000 0.70 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-500 0.48 ± 0.06
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-1000 0.54 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-2000 0.62 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-3000 0.65 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-5000 0.66 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-10000 0.70 ± 0.05
DOCUMENT-FREQUENCY-500 0.40 ± 0.06
DOCUMENT-FREQUENCY-1000 0.50 ± 0.05

Continued on next page
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Table B.3 – continued from previous page
Feature selectiom method and feature set size Macroavg. recall
DOCUMENT-FREQUENCY-2000 0.62 ± 0.06
DOCUMENT-FREQUENCY-3000 0.65 ± 0.05
DOCUMENT-FREQUENCY-5000 0.67 ± 0.05
DOCUMENT-FREQUENCY-10000 0.69 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-500 0.46 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-1000 0.54 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-2000 0.63 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-3000 0.66 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-5000 0.69 ± 0.05
TERM-FREQUENCY-DOCUMENT-FREQUENCY-10000 0.70 ± 0.05
WEIRDNESS-500 0.27 ± 0.05
WEIRDNESS-1000 0.29 ± 0.05
WEIRDNESS-2000 0.45 ± 0.06
WEIRDNESS-3000 0.44 ± 0.06
WEIRDNESS-5000 0.62 ± 0.06
WEIRDNESS-10000 0.72 ± 0.05
WORD-FREQUENCY-500 0.39 ± 0.06
WORD-FREQUENCY-1000 0.50 ± 0.05
WORD-FREQUENCY-2000 0.61 ± 0.06
WORD-FREQUENCY-3000 0.64 ± 0.06
WORD-FREQUENCY-5000 0.67 ± 0.05
WORD-FREQUENCY-10000 0.70 ± 0.05
INFORMATION-GAIN-500 0.50 ± 0.05
INFORMATION-GAIN-1000 0.60 ± 0.05
INFORMATION-GAIN-2000 0.64 ± 0.06
INFORMATION-GAIN-3000 0.66 ± 0.05
INFORMATION-GAIN-5000 0.69 ± 0.05
INFORMATION-GAIN-10000 0.70 ± 0.05
MUTUAL-INFORMATION-500 0.50 ± 0.05
MUTUAL-INFORMATION-1000 0.57 ± 0.05
MUTUAL-INFORMATION-2000 0.64 ± 0.05
MUTUAL-INFORMATION-3000 0.66 ± 0.05
MUTUAL-INFORMATION-5000 0.70 ± 0.05
MUTUAL-INFORMATION-10000 0.70 ± 0.05
ODDS-RATIO-500 0.50 ± 0.05
ODDS-RATIO-1000 0.60 ± 0.05
ODDS-RATIO-2000 0.65 ± 0.05
ODDS-RATIO-3000 0.67 ± 0.05
ODDS-RATIO-5000 0.70 ± 0.05
ODDS-RATIO-10000 0.63 ± 0.05
CLASS-DISCRIMINATION-MEASURE-500 0.35 ± 0.05
CLASS-DISCRIMINATION-MEASURE-1000 0.46 ± 0.06
CLASS-DISCRIMINATION-MEASURE-2000 0.46 ± 0.06
CLASS-DISCRIMINATION-MEASURE-3000 0.47 ± 0.06
CLASS-DISCRIMINATION-MEASURE-5000 0.50 ± 0.06
CLASS-DISCRIMINATION-MEASURE-10000 0.59 ± 0.06
CHI-SQUARE-500 0.56 ± 0.05
CHI-SQUARE-1000 0.60 ± 0.05
CHI-SQUARE-2000 0.65 ± 0.05
CHI-SQUARE-3000 0.69 ± 0.05
CHI-SQUARE-5000 0.69 ± 0.05
CHI-SQUARE-10000 0.71 ± 0.05
NGL-COEFFICIENT-500 0.11 ± 0.03
NGL-COEFFICIENT-1000 0.16 ± 0.07
NGL-COEFFICIENT-2000 0.21 ± 0.05
NGL-COEFFICIENT-3000 0.27 ± 0.09
NGL-COEFFICIENT-5000 0.29 ± 0.11
NGL-COEFFICIENT-10000 0.32 ± 0.11
GSS-COEFFICIENT-500 0.50 ± 0.05
GSS-COEFFICIENT-1000 0.58 ± 0.05
GSS-COEFFICIENT-2000 0.65 ± 0.05
GSS-COEFFICIENT-3000 0.69 ± 0.05
GSS-COEFFICIENT-5000 0.71 ± 0.05
GSS-COEFFICIENT-10000 0.70 ± 0.05
BI-NORMAL-SEPARATION-500 0.54 ± 0.05
BI-NORMAL-SEPARATION-1000 0.57 ± 0.05
BI-NORMAL-SEPARATION-2000 0.60 ± 0.05
BI-NORMAL-SEPARATION-3000 0.60 ± 0.05
BI-NORMAL-SEPARATION-5000 0.60 ± 0.05
BI-NORMAL-SEPARATION-10000 0.63 ± 0.05
CATEGORICAL-PROPORTIONAL-DIFFERENCE-500 0.02 ± 0.01

Continued on next page



96 Experiments

Table B.3 – continued from previous page
Feature selectiom method and feature set size Macroavg. recall
CATEGORICAL-PROPORTIONAL-DIFFERENCE-1000 0.02 ± 0.01
CATEGORICAL-PROPORTIONAL-DIFFERENCE-2000 0.02 ± 0.01
CATEGORICAL-PROPORTIONAL-DIFFERENCE-3000 0.03 ± 0.02
CATEGORICAL-PROPORTIONAL-DIFFERENCE-5000 0.08 ± 0.03
CATEGORICAL-PROPORTIONAL-DIFFERENCE-10000 0.19 ± 0.04
DIA-ASSOCIATION-FACTOR-500 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-1000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-2000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-3000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-5000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-10000 0.00 ± 0.00

Table B.4: Macroaverage F1-measure of a Näıve Bayes classifier and various feature selection meth-
ods with different feature set sizes from the 20-Newsgroups collection, with 10-fold cross-validation
averaged over 10 runs.

Feature selectiom method and feature set size Macroavg. F1
RANDOM-500 0.08 ± 0.03
RANDOM-1000 0.03 ± 0.02
RANDOM-2000 0.12 ± 0.04
RANDOM-3000 0.13 ± 0.04
RANDOM-5000 0.20 ± 0.04
RANDOM-10000 0.22 ± 0.05
COLLECTION-FREQUENCY-500 0.48 ± 0.05
COLLECTION-FREQUENCY-1000 0.55 ± 0.04
COLLECTION-FREQUENCY-2000 0.63 ± 0.04
COLLECTION-FREQUENCY-3000 0.67 ± 0.04
COLLECTION-FREQUENCY-5000 0.69 ± 0.04
COLLECTION-FREQUENCY-10000 0.70 ± 0.04
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-500 0.49 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-1000 0.56 ± 0.04
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-2000 0.63 ± 0.04
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-3000 0.66 ± 0.04
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-5000 0.69 ± 0.04
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-10000 0.70 ± 0.04
DOCUMENT-FREQUENCY-500 0.40 ± 0.05
DOCUMENT-FREQUENCY-1000 0.53 ± 0.04
DOCUMENT-FREQUENCY-2000 0.63 ± 0.05
DOCUMENT-FREQUENCY-3000 0.67 ± 0.04
DOCUMENT-FREQUENCY-5000 0.69 ± 0.04
DOCUMENT-FREQUENCY-10000 0.70 ± 0.04
TERM-FREQUENCY-DOCUMENT-FREQUENCY-500 0.48 ± 0.04
TERM-FREQUENCY-DOCUMENT-FREQUENCY-1000 0.56 ± 0.04
TERM-FREQUENCY-DOCUMENT-FREQUENCY-2000 0.63 ± 0.04
TERM-FREQUENCY-DOCUMENT-FREQUENCY-3000 0.67 ± 0.04
TERM-FREQUENCY-DOCUMENT-FREQUENCY-5000 0.69 ± 0.04
TERM-FREQUENCY-DOCUMENT-FREQUENCY-10000 0.70 ± 0.04
WEIRDNESS-500 0.31 ± 0.04
WEIRDNESS-1000 0.33 ± 0.04
WEIRDNESS-2000 0.49 ± 0.05
WEIRDNESS-3000 0.49 ± 0.04
WEIRDNESS-5000 0.54 ± 0.07
WEIRDNESS-10000 0.63 ± 0.03
WORD-FREQUENCY-500 0.39 ± 0.05
WORD-FREQUENCY-1000 0.51 ± 0.05
WORD-FREQUENCY-2000 0.62 ± 0.05
WORD-FREQUENCY-3000 0.65 ± 0.04
WORD-FREQUENCY-5000 0.69 ± 0.04
WORD-FREQUENCY-10000 0.70 ± 0.04
INFORMATION-GAIN-500 0.53 ± 0.04
INFORMATION-GAIN-1000 0.62 ± 0.04
INFORMATION-GAIN-2000 0.67 ± 0.05
INFORMATION-GAIN-3000 0.70 ± 0.04
INFORMATION-GAIN-5000 0.71 ± 0.04
INFORMATION-GAIN-10000 0.70 ± 0.04
MUTUAL-INFORMATION-500 0.54 ± 0.04
MUTUAL-INFORMATION-1000 0.60 ± 0.04
MUTUAL-INFORMATION-2000 0.66 ± 0.05
MUTUAL-INFORMATION-3000 0.69 ± 0.04

Continued on next page
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Table B.4 – continued from previous page
Feature selectiom method and feature set size Macroavg. F1
MUTUAL-INFORMATION-5000 0.71 ± 0.04
MUTUAL-INFORMATION-10000 0.70 ± 0.04
ODDS-RATIO-500 0.53 ± 0.04
ODDS-RATIO-1000 0.62 ± 0.04
ODDS-RATIO-2000 0.67 ± 0.05
ODDS-RATIO-3000 0.70 ± 0.04
ODDS-RATIO-5000 0.71 ± 0.04
ODDS-RATIO-10000 0.65 ± 0.04
CLASS-DISCRIMINATION-MEASURE-500 0.51 ± 0.05
CLASS-DISCRIMINATION-MEASURE-1000 0.60 ± 0.05
CLASS-DISCRIMINATION-MEASURE-2000 0.60 ± 0.05
CLASS-DISCRIMINATION-MEASURE-3000 0.61 ± 0.05
CLASS-DISCRIMINATION-MEASURE-5000 0.63 ± 0.05
CLASS-DISCRIMINATION-MEASURE-10000 0.68 ± 0.05
CHI-SQUARE-500 0.61 ± 0.04
CHI-SQUARE-1000 0.64 ± 0.04
CHI-SQUARE-2000 0.67 ± 0.04
CHI-SQUARE-3000 0.70 ± 0.04
CHI-SQUARE-5000 0.72 ± 0.04
CHI-SQUARE-10000 0.71 ± 0.04
NGL-COEFFICIENT-500 0.11 ± 0.03
NGL-COEFFICIENT-1000 0.12 ± 0.03
NGL-COEFFICIENT-2000 0.13 ± 0.03
NGL-COEFFICIENT-3000 0.14 ± 0.03
NGL-COEFFICIENT-5000 0.14 ± 0.03
NGL-COEFFICIENT-10000 0.15 ± 0.03
GSS-COEFFICIENT-500 0.54 ± 0.04
GSS-COEFFICIENT-1000 0.61 ± 0.04
GSS-COEFFICIENT-2000 0.67 ± 0.04
GSS-COEFFICIENT-3000 0.69 ± 0.04
GSS-COEFFICIENT-5000 0.71 ± 0.04
GSS-COEFFICIENT-10000 0.70 ± 0.04
BI-NORMAL-SEPARATION-500 0.60 ± 0.04
BI-NORMAL-SEPARATION-1000 0.62 ± 0.04
BI-NORMAL-SEPARATION-2000 0.65 ± 0.04
BI-NORMAL-SEPARATION-3000 0.65 ± 0.04
BI-NORMAL-SEPARATION-5000 0.65 ± 0.04
BI-NORMAL-SEPARATION-10000 0.67 ± 0.04
CATEGORICAL-PROPORTIONAL-DIFFERENCE-500 0.04 ± 0.03
CATEGORICAL-PROPORTIONAL-DIFFERENCE-1000 0.04 ± 0.03
CATEGORICAL-PROPORTIONAL-DIFFERENCE-2000 0.04 ± 0.03
CATEGORICAL-PROPORTIONAL-DIFFERENCE-3000 0.05 ± 0.04
CATEGORICAL-PROPORTIONAL-DIFFERENCE-5000 0.15 ± 0.05
CATEGORICAL-PROPORTIONAL-DIFFERENCE-10000 0.31 ± 0.06
DIA-ASSOCIATION-FACTOR-500 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-1000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-2000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-3000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-5000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-10000 0.00 ± 0.00

Table B.5: Percentage correctly categorized documents using a Support Vector Machine classifier
and various feature selection methods with different feature set sizes from the 20-Newsgroups col-
lection, with 10-fold cross-validation averaged over 5 runs.

Feature selectiom method and feature set size Percent correct
RANDOM-500 8.58 ± 0.50
RANDOM-1000 10.46 ± 0.49
RANDOM-2000 18.23 ± 0.82
COLLECTION-FREQUENCY-500 71.40 ± 0.96
COLLECTION-FREQUENCY-1000 78.43 ± 0.92
COLLECTION-FREQUENCY-2000 84.06 ± 0.81
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-500 70.68 ± 0.88
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-1000 78.56 ± 0.85
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-2000 84.13 ± 0.91
DOCUMENT-FREQUENCY-500 66.64 ± 1.14
DOCUMENT-FREQUENCY-1000 76.66 ± 0.90
DOCUMENT-FREQUENCY-2000 83.16 ± 0.76
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Table B.5 – continued from previous page
Feature selectiom method and feature set size Percent correct
TFDF-500 70.77 ± 0.91
TFDF-1000 79.12 ± 0.82
TFDF-2000 84.25 ± 0.78
WEIRDNESS-500 38.61 ± 1.25
WEIRDNESS-1000 46.30 ± 1.29
WEIRDNESS-2000 57.16 ± 1.00
WORD-FREQUENCY-500 67.12 ± 1.17
WORD-FREQUENCY-1000 76.61 ± 0.89
WORD-FREQUENCY-2000 83.22 ± 0.76
INFORMATION-GAIN-500 76.74 ± 0.84
INFORMATION-GAIN-1000 81.39 ± 0.76
INFORMATION-GAIN-2000 85.14 ± 0.72
MUTUAL-INFORMATION-500 76.68 ± 0.70
MUTUAL-INFORMATION-1000 81.77 ± 0.72
MUTUAL-INFORMATION-2000 85.61 ± 0.75
EXTENDED-ODDS-RATIO-500 40.82 ± 1.10
EXTENDED-ODDS-RATIO-1000 59.65 ± 1.13
EXTENDED-ODDS-RATIO-2000 76.62 ± 1.10
CLASS-DISCRIMINATION-MEASURE-500 37.86 ± 1.01
CLASS-DISCRIMINATION-MEASURE-1000 46.35 ± 0.98
CLASS-DISCRIMINATION-MEASURE-2000 56.53 ± 1.15
CHI-SQUARE-500 76.37 ± 0.82
CHI-SQUARE-1000 81.11 ± 0.66
CHI-SQUARE-2000 84.89 ± 0.73
NGL-COEFFICIENT-500 62.68 ± 0.74
NGL-COEFFICIENT-1000 67.97 ± 0.77
NGL-COEFFICIENT-2000 72.96 ± 0.88
GSS-COEFFICIENT-500 76.65 ± 0.89
GSS-COEFFICIENT-1000 81.58 ± 0.78
GSS-COEFFICIENT-2000 85.68 ± 0.78
BI-NORMAL-SEPARATION-500 74.35 ± 0.81
BI-NORMAL-SEPARATION-1000 79.93 ± 0.73
BI-NORMAL-SEPARATION-2000 83.21 ± 0.85
CATEGORICAL-PROPORTIONAL-DIFFERENCE-500 10.33 ± 0.53
CATEGORICAL-PROPORTIONAL-DIFFERENCE-1000 14.95 ± 0.61
CATEGORICAL-PROPORTIONAL-DIFFERENCE-2000 22.74 ± 0.83
DIA-ASSOCIATION-FACTOR-500 7.47 ± 0.28
DIA-ASSOCIATION-FACTOR-1000 8.50 ± 0.26
DIA-ASSOCIATION-FACTOR-2000 10.11 ± 0.21

Table B.6: Macroaverage precision of a Support Vector Machine classifier and various feature se-
lection methods with different feature set sizes from the 20-Newsgroups collection, with 10-fold
cross-validation averaged over 5 runs.

Feature selectiom method and feature set size Macroavg. precision
RANDOM-500 0.19 ± 0.29
RANDOM-1000 0.36 ± 0.20
RANDOM-2000 0.25 ± 0.11
COLLECTION-FREQUENCY-500 0.65 ± 0.04
COLLECTION-FREQUENCY-1000 0.70 ± 0.04
COLLECTION-FREQUENCY-2000 0.78 ± 0.05
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-500 0.65 ± 0.03
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-1000 0.70 ± 0.04
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-2000 0.77 ± 0.04
DOCUMENT-FREQUENCY-500 0.54 ± 0.04
DOCUMENT-FREQUENCY-1000 0.69 ± 0.04
DOCUMENT-FREQUENCY-2000 0.78 ± 0.04
TFDF-500 0.66 ± 0.05
TFDF-1000 0.70 ± 0.04
TFDF-2000 0.77 ± 0.04
WEIRDNESS-500 0.44 ± 0.05
WEIRDNESS-1000 0.49 ± 0.06
WEIRDNESS-2000 0.66 ± 0.05
WORD-FREQUENCY-500 0.53 ± 0.03
WORD-FREQUENCY-1000 0.68 ± 0.05
WORD-FREQUENCY-2000 0.77 ± 0.04
INFORMATION-GAIN-500 0.67 ± 0.04
INFORMATION-GAIN-1000 0.77 ± 0.04
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Table B.6 – continued from previous page
Feature selectiom method and feature set size Macroavg. precision
INFORMATION-GAIN-2000 0.81 ± 0.04
MUTUAL-INFORMATION-500 0.68 ± 0.04
MUTUAL-INFORMATION-1000 0.76 ± 0.04
MUTUAL-INFORMATION-2000 0.80 ± 0.04
EXTENDED-ODDS-RATIO-500 0.38 ± 0.04
EXTENDED-ODDS-RATIO-1000 0.52 ± 0.05
EXTENDED-ODDS-RATIO-2000 0.69 ± 0.04
CLASS-DISCRIMINATION-MEASURE-500 0.91 ± 0.05
CLASS-DISCRIMINATION-MEASURE-1000 0.89 ± 0.04
CLASS-DISCRIMINATION-MEASURE-2000 0.89 ± 0.04
CHI-SQUARE-500 0.70 ± 0.04
CHI-SQUARE-1000 0.76 ± 0.04
CHI-SQUARE-2000 0.80 ± 0.04
NGL-COEFFICIENT-500 0.20 ± 0.02
NGL-COEFFICIENT-1000 0.24 ± 0.03
NGL-COEFFICIENT-2000 0.28 ± 0.03
GSS-COEFFICIENT-500 0.68 ± 0.04
GSS-COEFFICIENT-1000 0.74 ± 0.04
GSS-COEFFICIENT-2000 0.80 ± 0.04
BI-NORMAL-SEPARATION-500 0.70 ± 0.04
BI-NORMAL-SEPARATION-1000 0.77 ± 0.04
BI-NORMAL-SEPARATION-2000 0.80 ± 0.04
CATEGORICAL-PROPORTIONAL-DIFFERENCE-500 0.68 ± 0.47
CATEGORICAL-PROPORTIONAL-DIFFERENCE-1000 1.00 ± 0.00
CATEGORICAL-PROPORTIONAL-DIFFERENCE-2000 1.00 ± 0.00
DIA-ASSOCIATION-FACTOR-500 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-1000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-2000 0.00 ± 0.00

Table B.7: Macroaverage recall of a Support Vector Machine classifier and various feature selec-
tion methods with different feature set sizes from the 20-Newsgroups collection, with 10-fold cross-
validation averaged over 5 runs.

Feature selectiom method and feature set size Macroavg. recall
RANDOM-500 0.03 ± 0.02
RANDOM-1000 0.04 ± 0.02
RANDOM-2000 0.14 ± 0.04
COLLECTION-FREQUENCY-500 0.68 ± 0.04
COLLECTION-FREQUENCY-1000 0.73 ± 0.04
COLLECTION-FREQUENCY-2000 0.80 ± 0.04
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-500 0.67 ± 0.04
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-1000 0.73 ± 0.04
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-2000 0.80 ± 0.04
DOCUMENT-FREQUENCY-500 0.60 ± 0.04
DOCUMENT-FREQUENCY-1000 0.73 ± 0.04
DOCUMENT-FREQUENCY-2000 0.80 ± 0.04
TFDF-500 0.68 ± 0.04
TFDF-1000 0.74 ± 0.05
TFDF-2000 0.80 ± 0.04
WEIRDNESS-500 0.31 ± 0.05
WEIRDNESS-1000 0.35 ± 0.05
WEIRDNESS-2000 0.60 ± 0.06
WORD-FREQUENCY-500 0.60 ± 0.04
WORD-FREQUENCY-1000 0.72 ± 0.04
WORD-FREQUENCY-2000 0.79 ± 0.04
INFORMATION-GAIN-500 0.70 ± 0.05
INFORMATION-GAIN-1000 0.77 ± 0.04
INFORMATION-GAIN-2000 0.84 ± 0.04
MUTUAL-INFORMATION-500 0.68 ± 0.05
MUTUAL-INFORMATION-1000 0.75 ± 0.05
MUTUAL-INFORMATION-2000 0.82 ± 0.04
EXTENDED-ODDS-RATIO-500 0.40 ± 0.06
EXTENDED-ODDS-RATIO-1000 0.59 ± 0.05
EXTENDED-ODDS-RATIO-2000 0.74 ± 0.05
CLASS-DISCRIMINATION-MEASURE-500 0.36 ± 0.05
CLASS-DISCRIMINATION-MEASURE-1000 0.51 ± 0.06
CLASS-DISCRIMINATION-MEASURE-2000 0.53 ± 0.06
CHI-SQUARE-500 0.67 ± 0.05
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Table B.7 – continued from previous page
Feature selectiom method and feature set size Macroavg. recall
CHI-SQUARE-1000 0.76 ± 0.05
CHI-SQUARE-2000 0.81 ± 0.04
NGL-COEFFICIENT-500 0.56 ± 0.05
NGL-COEFFICIENT-1000 0.54 ± 0.05
NGL-COEFFICIENT-2000 0.54 ± 0.06
GSS-COEFFICIENT-500 0.71 ± 0.04
GSS-COEFFICIENT-1000 0.76 ± 0.05
GSS-COEFFICIENT-2000 0.83 ± 0.04
BI-NORMAL-SEPARATION-500 0.69 ± 0.05
BI-NORMAL-SEPARATION-1000 0.75 ± 0.04
BI-NORMAL-SEPARATION-2000 0.79 ± 0.04
CATEGORICAL-PROPORTIONAL-DIFFERENCE-500 0.01 ± 0.01
CATEGORICAL-PROPORTIONAL-DIFFERENCE-1000 0.06 ± 0.03
CATEGORICAL-PROPORTIONAL-DIFFERENCE-2000 0.11 ± 0.03
DIA-ASSOCIATION-FACTOR-500 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-1000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-2000 0.00 ± 0.00

Table B.8: Macroaverage F1-measure of a Näıve Bayes classifier and various feature selection meth-
ods with different feature set sizes from the 20-Newsgroups collection, with 10-fold cross-validation
averaged over 10 runs.

Feature selectiom method and feature set size Macroavg. F1
RANDOM-500 0.04 ± 0.03
RANDOM-1000 0.07 ± 0.04
RANDOM-2000 0.17 ± 0.04
COLLECTION-FREQUENCY-500 0.66 ± 0.03
COLLECTION-FREQUENCY-1000 0.72 ± 0.03
COLLECTION-FREQUENCY-2000 0.79 ± 0.03
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-500 0.66 ± 0.03
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-1000 0.71 ± 0.03
COLLECTION-FREQUENCY-INV-DOCUMENT-FREQUENCY-2000 0.79 ± 0.03
DOCUMENT-FREQUENCY-500 0.57 ± 0.03
DOCUMENT-FREQUENCY-1000 0.71 ± 0.03
DOCUMENT-FREQUENCY-2000 0.78 ± 0.03
TFDF-500 0.67 ± 0.04
TFDF-1000 0.72 ± 0.03
TFDF-2000 0.79 ± 0.03
WEIRDNESS-500 0.36 ± 0.04
WEIRDNESS-1000 0.41 ± 0.05
WEIRDNESS-2000 0.62 ± 0.04
WORD-FREQUENCY-500 0.56 ± 0.03
WORD-FREQUENCY-1000 0.70 ± 0.04
WORD-FREQUENCY-2000 0.78 ± 0.03
INFORMATION-GAIN-500 0.68 ± 0.04
INFORMATION-GAIN-1000 0.77 ± 0.03
INFORMATION-GAIN-2000 0.82 ± 0.03
MUTUAL-INFORMATION-500 0.68 ± 0.03
MUTUAL-INFORMATION-1000 0.75 ± 0.03
MUTUAL-INFORMATION-2000 0.81 ± 0.03
EXTENDED-ODDS-RATIO-500 0.39 ± 0.04
EXTENDED-ODDS-RATIO-1000 0.55 ± 0.04
EXTENDED-ODDS-RATIO-2000 0.71 ± 0.03
CLASS-DISCRIMINATION-MEASURE-500 0.52 ± 0.06
CLASS-DISCRIMINATION-MEASURE-1000 0.64 ± 0.05
CLASS-DISCRIMINATION-MEASURE-2000 0.66 ± 0.05
CHI-SQUARE-500 0.69 ± 0.03
CHI-SQUARE-1000 0.76 ± 0.03
CHI-SQUARE-2000 0.80 ± 0.03
NGL-COEFFICIENT-500 0.30 ± 0.02
NGL-COEFFICIENT-1000 0.34 ± 0.03
NGL-COEFFICIENT-2000 0.37 ± 0.04
GSS-COEFFICIENT-500 0.69 ± 0.03
GSS-COEFFICIENT-1000 0.75 ± 0.03
GSS-COEFFICIENT-2000 0.81 ± 0.03
BI-NORMAL-SEPARATION-500 0.69 ± 0.04
BI-NORMAL-SEPARATION-1000 0.76 ± 0.03
BI-NORMAL-SEPARATION-2000 0.79 ± 0.03
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Table B.8 – continued from previous page
Feature selectiom method and feature set size Macroavg. F1
CATEGORICAL-PROPORTIONAL-DIFFERENCE-500 0.02 ± 0.02
CATEGORICAL-PROPORTIONAL-DIFFERENCE-1000 0.11 ± 0.05
CATEGORICAL-PROPORTIONAL-DIFFERENCE-2000 0.20 ± 0.05
DIA-ASSOCIATION-FACTOR-500 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-1000 0.00 ± 0.00
DIA-ASSOCIATION-FACTOR-2000 0.00 ± 0.00
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B.2 The Effect of Globalizing Schemes
Figure B.1 shows the effect of two methods of globalizing the feature values. The Extended Odds
Ratio (EOR) is globalized by summarinzing the values from each category, while the Weighted Odds
Ratio is globalized by first weighting each feature value by the class size and then summarizing these
values. Also shown in the figure is a Weighted Odds Ratio without a logarithm statement, and the
Class Discrimination Measure (CDM) which is based on Odds Ratio.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 500
 1000

 2000
 3000

 5000
 10000

F-
m

ea
su

re

Number of features selected

Extended Odds Ratio
Weighted Odds Ratio

Odds Ratio without Logarithm
Class Discrimination Measure

Figure B.1: Näıve Bayes F-measure chart with various feature set sizes from the
20 newsgroups corpus. Various variants of the Odds Ratio metric are compared

B.3 Combination Figures
The following figures shows the results of combination experiments.
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Figure B.2: Percentage of documents correctly classified by a Näıve Bayes
classifier using CHI, BNS, and the two combined on the 20 Newsgroups.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 500
 1000

 2000
 3000

 5000
 10000

F-
m

ea
su

re

Number of features selected

Chi Square
Bi-Normal Separation

Chi Square and BNS combined

Figure B.3: F-measure for a Näıve Bayes classifier using CHI, BNS, and the two
combined at various numbers of features selected from the 20 Newsgroups.
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Figure B.4: Percentage of documents correctly classified by a Näıve Bayes
classifier using CDM, EOR, and the two combined on the 20 Newsgroups.
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Figure B.5: F-measure for a Näıve Bayes classifier using CDM, EOR, and the
two combined at various numbers of features selected from the 20 Newsgroups.
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Figure B.6: Percentage of documents correctly classified by a Näıve Bayes
classifier using CDM, EOR, BNS, and the three combined on the 20 Newsgroups.
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Figure B.7: F-measure for a Näıve Bayes classifier using CDM, EOR, BNS, and
the three combined on the 20 Newsgroups.
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Figure B.8: Percentage of documents correctly classified by a Näıve Bayes
classifier using BNS, EOR, and the two combined on the 20 Newsgroups.
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Figure B.9: F-measure for a Näıve Bayes classifier using BNS, EOR, and the
two combined at various numbers of features selected from the 20 Newsgroups.
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Figure B.10: Percentage of documents correctly classified by a Näıve Bayes
classifier using CHI, EOR, and the two combined on the 20 Newsgroups.
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Figure B.11: F-measure for a Näıve Bayes classifier using CHI, EOR, and the
two combined at various numbers of features selected from the 20 Newsgroups.
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Figure B.12: Percentage of documents correctly classified by a Näıve Bayes
classifier using CHI, IG, and the two combined on the 20 Newsgroups.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 500
 1000

 2000
 3000

 5000
 10000

F-
m

ea
su

re

Number of features selected

Chi Square
Information Gain

Chi Square and IG combined

Figure B.13: F-measure for a Näıve Bayes classifier using CHI, IG, and the two
combined on the 20 Newsgroups.
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Figure B.14: Percentage of documents correctly classified by a Näıve Bayes
classifier using GSS, IG, and the two combined on the 20 Newsgroups.
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Figure B.15: F-measure for a Näıve Bayes classifier using GSS, IG, and the two
combined at various numbers of features selected from the 20 Newsgroups.
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Figure B.16: Percentage of documents correctly classified by a Näıve Bayes
classifier using CHI, GSS, IG, and the three combined on the 20 Newsgroups.
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Figure B.17: F-measure for a Näıve Bayes classifier using CHI, GSS, IG, and the
two combined at various numbers of features selected from the 20 Newsgroups.
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Figure B.18: Percentage of documents correctly classified by a Näıve Bayes
classifier using TFDF, CHI, and the two combined on the 20 Newsgroups.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 500
 1000

 2000
 3000

 5000
 10000

F-
m

ea
su

re

Number of features selected

Term Frequency Document Frequency
Chi Square

TFDF and CHI combined

Figure B.19: F-measure for a Näıve Bayes classifier using TFDF, CHI, and the
two combined at various numbers of features selected from the 20 Newsgroups.
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Figure B.20: Percentage of documents correctly classified by a Näıve Bayes
classifier using TFDF, GSS, and the two combined on the 20 Newsgroups.
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Figure B.21: F-measure for a Näıve Bayes classifier using TFDF, GSS, and the
two combined at various numbers of features selected from the 20 Newsgroups.
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Figure B.22: Percentage of documents correctly classified by a Näıve Bayes
classifier using TFDF, IG, and the two combined on the 20 Newsgroups.
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Figure B.23: F-measure for a Näıve Bayes classifier using TFDF, IG, and the
two combined at various numbers of features selected from the 20 Newsgroups.
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Figure B.24: Percentage of documents correctly classified by a Näıve Bayes
classifier using TFDF, CHI, GSS, and the three combined on the 20 Newsgroups.
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Figure B.25: F-measure for a Näıve Bayes classifier using TFDF, CHI, GSS, and
the three combined on the 20 Newsgroups.
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