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Abstract
In this thesis, properties of spectral methods applied to option pricing problems are investigated. The

Legendre Galerkin method with numerical integration is applied to European and American option

pricing problems under the Black-Scholes model. The method is coupled with an implicit time step-

ping technique for a full discretization. As a remedy for non-smooth payoff functions in option pricing,

the method is combined with domain decomposition, where the domain is split at slope discontinu-

ities. For the American pricing problem, an approach based on penalization is adapted. Numerical

results indicate that the method provides spectral convergence for one-dimensional European options

and fourth order convergence for two-dimensional European options and one-dimensional American

options. Stability and convergence is proved for the numerical scheme of the one-dimensional Euro-

pean pricing problem.
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Sammendrag
I denne avhandlingen undersøkes egenskapene til spektralmetoder anvendt på opsjonsprisingsproble-

mer. Legendre Galerkin-metoden med numerisk integrasjon blir anvendt på Europeiske og Amerikanske

opsjonsprisingsproblemer under Black-Scholes-modellen. Metoden er koblet med en implisitt teknikk

i tid for en fullstendig diskretisering. For å håndtere de ikke-glatte payoffunksjonene i opsjonsprising

er metoden kombinert med domenenedbrytning hvor domenet er splittet i punkter der stigningstallet

ikke er kontinuerlig. For det amerikanske opsjonsprisingsproblemet har det blitt anvendt en tilnærm-

ing basert på penalisering. Numeriske resultater indikerer at metoden gir spektral konvergens for endi-

mensjonale Europeiske opsjoner og fjerde ordens konvergens for todimensjonale Europeiske opsjoner

og endimensjonale Amerikanske opsjoner. Stabilitet og konvergens blir bevist for det diskretiserte

endimensjonale Europeiske prisproblemet.
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Chapter 1

Introduction

Option pricing is an important problem in financial mathematics, due to the extensive use of options in

financial markets. A wide variety of options are used in practice, among them European and American

options. The European option is the simplest kind of options and an analytical formula exists for

the European option price, which is the solution of the linear Black-Scholes equation. The price

of an American option is the solution of an optimal stopping problem [3, 22], involving the Black-

Scholes differential operator and a constraint on the value of the option. As opposed to European

options, there is no known explicit analytical solution formula for the value of an American option

[7]1. Consequently, one must resort to numerical schemes to determine the solution of the American

pricing problem.

The valuation of basket options is another subject of considerable significance in mathematical finance.

This problem concerns options whose payoff is a weighted sum or average of prices of two or more

underlying risky assets. Basket options are among the most popular contracts of the latest generation

of exotic options. In general, it is difficult to price basket options explicitly since the joint distribution

of the underlying basket asset price process are unknown due to multi-dimensionality [15]. Thus,

some research have been devoted to the development of fast and accurate approximation techniques

for basket option values.

Explicit pricing formulas for European options on non-dividend paying stocks were derived by Black

and Scholes in their famous paper The Pricing of Options and Corporate Liabilities [8] in 1973.

Following this, the research on the more complex valuation of American options has developed ex-

tensively. The valuation of American options began with McKean [21] in 1965, who transformed

1Solutions exist in some special cases, but they are unsuitable for application, due to complicated implementation [25].
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the initial problem into a free boundary problem. Pursuing this, van Moerbeke studied the properties

of the optimal stopping boundary [33]. This became the foundation of the work by Bensoussan [3]

and Karatzas [22, 23] who showed that the price of the American option is a solution of the optimal

stopping problem. An alternative technique of variational inequalities were developed by Bensoussan

and Lions [5] in 1982. Guided by this effort, Jaillet, Lamberton and Lapeyre [20] worked on the same

problem.

A standard approach for one-dimensional American-style options goes back to Brennan and Schwartz

[9] and is based on discretizing a partial differential variational inequality spatially via a finite differ-

ence or finite element scheme, discretizing temporally via the fully implicit Euler scheme, and solving

the resulting linear complementarity problem by a numerical algorithm, such as the Projected Succes-

sive Over-Relaxation (PSOR). Some other well known methods used for the problem consists in the

binomial method introduced by Cox et al. [14] and the front-fixing method of Nielsen et al. [26]. An

alternative to the PDE approach is to compute the option price with Monte-Carlo simulations. This

technique is widely used in the financial industry, however the method requires considerable compu-

tational resources due to its slow convergence. In this thesis, we focus on the PDE approach to option

pricing.

In 2003, Benth, Karlsen and Reikvam [7] provided a new formulation of the American option valuation

problem. They derived a semilinear Black-Scholes type partial differential equation for the value of an

American option and showed that there exists exactly one viscosity solution2 of this equation, namely

the American option value. A popular strategy for deriving this formulation is based on the penalty

method, which will be used for numerical approximations of the American option value in this thesis.

The penalty method benefits from being generalizable to multi-dimensional problems such as options

on baskets.

For spatial discretization in the PDE approach, finite differences and finite elements have been used

extensively over the last decades. These methods have achieved success in many cases due to their

effectiveness and flexibility. However, these methods require a considerable number of grid points to

obtain accurate solutions. Spectral methods is an attractive alternative, often providing a given ac-

curacy with much less grid points (nodes) in less computing time. A Chebyshev collocation spectral

method for the American pricing problem is presented by Song et al. [30] and Pindza [27] presents

a rational spectral collocation method for European and American option pricing. Another related

method is the spectral element method which combines the exponential convergence of spectral meth-

2For an appropriate definition of a viscosity solution.
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ods with the geometric flexibility of finite element methods. A spectral element method for pricing

European options is presented by Chen et al. [12].

In this thesis, we study the behaviour of a Legendre Galerkin spectral method with numerical integra-

tion for discretization of option pricing problems in the spatial direction. For smooth enough solutions,

spectral methods are exponentially convergent in the number of degrees of freedom [31, 10, 17]. How-

ever, a main drawback for their direct applications to option pricing is that the initial conditions in the

governing PDEs of the pricing problems are non-smooth with discontinuous second derivatives. Thus,

the spectral approximations are reduced to low order accuracy, eliminating their advantage over simple

finite difference methods.

Encouragingly, several ideas for overcoming this problem have been proposed in literature. One ap-

proach, proposed by Greenberg [19], is to regularize the initial condition. Another approach is to refine

the number of nodes in the spectral approximation around the nonsmooth region of the initial condi-

tion. Tangman et al. [32] presents an approach which consists in dividing the set of nodes into two in

the centre of the non-smooth region, thus clustering nodes at the singularity of the option price. In the

following work, we will implement a version of this last approach through a domain decomposition

method.

The thesis is organized as follows: An introduction to financial contracts are given in Chapter 2, fol-

lowed by an introduction to the Black-Scholes model in Chapter 3 and an introduction to spectral

methods in Chapter 4. Then the Legendre Galerkin method is applied to a single-asset European pric-

ing problem in Chapter 5. In Chapter 6 we extend this problem to two dimensions and consider the

valuation of a European option on a small basket of two underlying assets. An analysis of stability and

convergence of the numerical scheme is provided for the one-dimensional European pricing problem

in Chapter 7. After this, we study the method for valuation of American options using the penalty

approach in Chapter 8. Finally, we conclude in Chapter 9 and propose ideas for further work related

to these problems in Chapter 10. To the best of the authors knowledge, the Legendre Galerkin spec-

tral method with numerical integration and domain decomposition applied to option pricing has not

appeared in literature before.
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Chapter 2

Financial Contracts and Options

Financial contracts are commonly used in finance, and many different contracts exist. One class of

contracts is derivatives. A derivative is a contract that derives its value from the performance of

an underlying asset. This asset may for instance be a stock, a bond or a commodity. Derivatives are

widely used and offer investors the opportunity to tailor their trades to their investment needs. Some of

the more common derivatives include forwards, futures, options, swaps, and variations of these.

An option is a contract sold by the option writer to an option holder. The option gives the holder the

right to buy the underlying asset, or the option to sell it. The holder thus holds a right and not an

obligation, while on the other side the writer holds a potential obligation. There are two basic versions

of an option, the call option and the put option. A call option gives the holder the right to buy at a

specified price, and the writer is obligated to sell at this price if the holder chooses to exercise the

option. On the other hand, a put option gives the holder the option to sell at a specific price, and the

writer is then obligated to buy. Furthermore, there exist different types of call and put options. The

simplest ones being the European options.

Options are primarily used for speculation and hedging. A financial player looking to speculate may

buy a call option if he or she expects a stock price to increase. If the stock’s value increases beyond

the specified price, the speculator will benefit from exercising the option. If however the stock price

decreases, the speculator may choose to not exercise the option, and he or she has only lost the initial

cost of buying the option. Another simple example may illustrate hedging. Say an oil company expects

that the oil price will fall in the upcoming months. Then the company may buy a put option with oil

as the underlying asset. The put option gives a guaranteed value of the company’s oil. If the oil price

rises, the company can choose to not exercise the option and sell the oil for a higher price. Hence the
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option has provided the company with the security of limited risk.

Further relevant financial concepts for the remaining discussion are defined in the following:

Definition 1. Vanilla option

A normal call or put option that has no special or unusual features.

Definition 2. European option

An option that can only be exercised during a particular time period just before its expiration.

Definition 3. American option

An option that can be exercised at any time prior to and including its date of expiration.

Definition 4. Basket option

An option whose underlying is a weighted sum or average of different assets that have been grouped

together in a basket.

Definition 5. Volatility

Volatility is a measure of how much the value of a stock or another financial instrument fluctuates or

varies over a time period. Higher volatility means that the stock’s value is more likely to be spread out

over a larger range of values.

Definition 6. Risk-free interest rate

The risk-free interest rate is the theoretical rate of return on a risk-free investment. This rate represents

the interest an investor would expect from an investment with zero risk over a specified period of time.

Definition 7. Strike price

The agreed-upon price at which an option can be exercised. The strike price for a call option is the

price at which the security can be bought (up to the expiration date); the strike price for a put option

is the price at which the security can be sold (up to the expiration date). The strike price is sometimes

called the exercise price.

Definition 8. Arbitrage

The opportunity to make an instantaneous benefit without taking any risk.

In order to evaluate the market price of an option at a given time, we assume that the transactions have

no cost and are instantaneous and that the market rules out arbitrage [2].
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Chapter 3

The Black-Scholes Model

3.1 Single-Asset Black-Scholes Model

The theoretical value of an option is the estimated value of an option derived from a mathematical

model. This value represents what the option should currently be worth using known input parameters

such as the underlying asset price, the strike price and the time until expiration. There exist several

different option pricing models that are used to determine the theoretical value of an option.

The Black-Scholes equation was the first widely used formula for option pricing. It is used to calculate

the theoretical value of European-style options using current stock prices, expected dividends, the

option’s strike price, expected interest rates, time to expiration and expected volatility. Assumptions

in the Black-Scholes model are the following:

• Constant volatility.

• Efficient markets.

• No dividends.

• Interest rates are constant and known.

• Log-normally distributed returns.

The log-returns on the underlying stock are normally distributed.

• No commissions and transaction costs.

• Liquidity.
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The Black-Scholes model assumes that markets are perfectly liquid and it is possible to purchase or

sell any amount of stocks or options or their fractions at any given time.

In order to derive the Black-Scholes equation, let us first describe a simple model for the price of an

asset, (see chapter 2 of [35]). We assume the changes in the asset price to be a Markov process. Since

the absolute change in an asset price is not a useful quantity alone, we introduce the return, defined

to be the change in the asset price divided by the asset’s original value. Let S be the asset price at

time t, then dS/S is the return on the asset. The Black-Scholes model decomposes the return as a sum

of a deterministic term µdt, called the drift, and a random term, assumed to be σ dX , modelling the

price variations in response to external effects. More precisely, the risky asset is assumed to follow

the stochastic differential equation

dS = S(σdX + µdt), (3.1)

where σ is the volatility measuring the standard deviation of the returns and X is a standard Brownian

motion.

Suppose now that we have an option with value V (S, t) depending on the asset price S and time t.

Applying Itô’s formula (see A.1) gives

dV = σ S
∂V

∂S
dX +

(
µS

∂V

∂S
+
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt. (3.2)

The equation describes the random walk followed by V .

Now, we construct a portfolio consisting of one option and an arbitrary number −∆ of the option’s

underlying asset. The portfolio’s value is then

Π = V −∆S. (3.3)

When moving one step in time, the change in value of the portfolio will be

dΠ = dV −∆dS,

for a fixed ∆.

Combining (3.1), (3.2) and (3.3) we see that the portfolio value follows the random walk
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dΠ = σ S

(
∂V

∂S
−∆

)
dX +

(
µS

∂V

∂S
+
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
− µ∆S

)
dt.

By choosing

∆ =
∂V

∂S
, (3.4)

we can remove the random contribution in the random walk above and obtain the following determin-

istic increment

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt.

We know that the return on a portfolio containing risk-free assets would increase in value by rΠdt in

one timestep dt, with r being the risk-free interest rate [35]. This implies

rΠdt =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt. (3.5)

If we substitute the results from (3.3) and (3.4) into the above equation (3.5) we arrive at the Black-

Scholes equation

∂V (S, t)

∂t
+

1

2
σ2S2∂

2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
− rV (S, t) = 0, (3.6)

which is valid for

S > 0, t ∈ [0, T ),

where T is the time of expiration.

Remark 1 The argument used above is presented in [35]. A slightly different argument is also com-

monly used in literature. It relies on showing that it is possible to simulate the option by a self-financed

portfolio containing ∆ shares of the underlying asset and ∆0 shares of the risk-free asset. See for ex-

ample [6].

The Black-Scholes equation governs the price evolution of a European call or European put option

under the Black-Scholes model. Appropriate boundary conditions and the value of the option at expi-
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ration can be found by financial arguments. Due to the put-call parity, which describes the relationship

between the price of European put options and European call options with the same underlying asset,

strike price and expiration date, finding the price of a European put option determines the price of

the corresponding call option, and vice versa. Only results for put options will be discussed in this

thesis.

For a put option with strike price K, it is reasonable to exercise the option if S < K at time of

expiration T . In this case the option owner will make a benefit of (K − S) by exercising the option

and immediately buying the underlying asset. If S ≥ K the option’s value is zero. Thus, assuming

that there is no arbitrage, the value of the put option on the expiration date is

V◦ = V (S, T ) = max(K − S, 0) = [K − S]+. (3.7)

This is a final condition for the Black-Scholes equation, commonly referred to as the payoff func-

tion.

Considering now the boundary conditions for a put option on a finite domain (0, S̄). On the left hand

side of the domain, in S = 0, the equation reduces to

∂V

∂t
− rV = 0.

Hence, we can simply solve the equation in this point instead of imposing an additional boundary

condition. When S tends to infinity the option will be worthless so the option price should be zero.

Thus, a reasonable choice of boundary conditions are

∂V

∂t
(0, t) = rV

V (S̄, t) = 0.

(3.8a)

(3.8b)

The naturally imposed condition in S = 0 corresponds to the exercise price corrected for a potential

risk-free investment.

Another common choice for the boundary condition in S = S̄ is

∂V

∂S
(S̄, t) = 0, (3.9)

10



which is a milder condition than the one in (3.8b).

Analytical solutions of the Black-Scholes equation are available and a derivation can be found in

[35]. For a European put option with boundary conditions (3.8), Black-Scholes equation admits the

solution

V (S, t) = Ke−r(T−t)N(−d2)− SN(−d1),

where N(·) is the cumulative distribution function of a standard normal random variable.

Here

d1 =
log(S/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

and

d2 =
log(S/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

.

3.2 Multi-Asset Black-Scholes Model

Consider now a portfolio consisting of one option and N underlying assets. Let Si be the prices of the

assets at time t, i = 1, ..., N and each asset satisfies the usual dynamic

dSi = Si(σidXi + µidt), i = 1, ..., N. (3.10)

The N processes Xi are standard Brownian motions which are correlated according to

dXidXj = ρijdt, i, j = 1, ..., N,

where ρ is given by
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ρ =



1 ρ12 ρ13 · · · ρ1N

ρ12 1 ρ23 · · · ρ2N

ρ13 ρ23 1 · · · ρ3N

...
...

...
. . .

...

ρ1N ρ2N ρ3N · · · 1,



with −1 ≤ ρij ≤ 1.

Hence we have

dSidSj = σiσjSiSjρijdt, i, j = 1, ..., N. (3.11)

Let the value of the option be V = V (S1, ..., SN , t). Then the value Π of the portfolio is

Π = V −
N∑
i=1

∆iSi, (3.12)

where −∆i are the shares of each asset in the portfolio.

When moving one step in time, the change in value of the portfolio will be

dΠ = dV −
N∑
i=1

∆idSi,

for fixed ∆i’s.

Applying Itô’s formula (see A.1) for V gives

dΠ =

∂V
∂t
dt+

N∑
i=1

∂V

∂Si
dSi +

N∑
i,j=1

1

2

∂2V

∂Si∂Sj
dSidSj

− N∑
i=1

∆idSi. (3.13)

As stated earlier, we know that the return on a portfolio containing risk-free assets satisfies

dΠ = rΠdt [35]. Using this, together with equations (3.10), (3.11) and (3.12), the relation (3.13)

becomes

12



∂V

∂t
dt+

N∑
i=1

∂V

∂Si
(σiSidXi + µiSidt) +

N∑
i,j=1

1

2

∂2V

∂Si∂Sj
(σiσjSiSjρijdt)

−
N∑
i=1

∆i(σiSidXi + µiSidt) = r

(
V −

N∑
i=1

∆iSi

)
dt.

Collecting dt and dXi terms gives

∂V

∂t
+

N∑
i=1

∂V

∂Si
µiSi +

N∑
i,j=1

1

2

∂2V

∂Si∂Sj
(σiσjρijSiSj)−

N∑
i=1

∆iµiSi

− r

(
V −

N∑
i=1

∆iSi

)
= 0

(3.14)

and

N∑
i=1

(
∂V

∂Si
σiSi −∆iσiSi

)
dXi = 0.

From this last equation, and given the independence of the X ′is, we see that

∆i =
∂V

∂Si
, i = 1, ..., N.

Inserting this into (3.14) we arrive at the multi-asset Black-Scholes equation

∂V

∂t
+

N∑
i,j=1

1

2

∂2V

∂Si∂Sj
(σiσjρijSiSj) + r

(
N∑
i=1

∂V

∂Si
Si − V

)
= 0.

The simple case where N = 2 and ρ equals the identity matrix will be discussed at a later time in this

thesis. In this case, the multi-asset Black-Scholes equation reduces to

∂V

∂t
+

1

2
σ2

1S
2
1

∂2V

∂S2
1

+
1

2
σ2

2S
2
2

∂2V

∂S2
2

+ r

(
S1
∂V

∂S1
+ S2

∂V

∂S2
− V

)
= 0, (3.15)

valid for

S1, S2 > 0, t ∈ [0, T ).
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Some common choices for the final condition V◦ of a put option are

[K −max(S1, S2)]+

[K −min(S1, S2)]+

[K − 1

2
(S1 + S2)]+,

(3.16a)

(3.16b)

(3.16c)

where K is the strike price.

The choice of boundary conditions will be discussed at a later time when deriving a numerical scheme

for equation (3.15).
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Chapter 4

Introduction to Spectral Methods

Spectral methods are a class of spatial discretizations for differential equations. Their formulation

rely on the two key concepts of trial functions and test functions. The trial functions are used to

approximate the solution while the test functions ensure that the approximate solution satisfies the

differential equation and possible boundary conditions as closely as possible. The trial basis functions

of spectral methods are infinitely differentiable, nearly orthogonal and global, as opposed to the local

basis functions of finite-element methods.

There are three main types of spectral methods, the Galerkin, collocation and tau versions. These are

distinguished by the choice of test functions. In the spectral Galerkin method, the test functions are

chosen to be the same as the trial functions and the discretization is derived from a weak form of the

problem. In the spectral collocation method the test functions are shifted Dirac delta-functions centred

at the collocation points. Here, the differential equation is satisfied exactly at each collocation point.

The tau approach is a modification to the Galerkin method, applicable to problems with non-periodic

boundary conditions.

The spectral Galerkin method is also commonly combined with Gaussian quadrature formulas, often

referred to as Galerkin with numerical integration. As mentioned earlier, Galerkin methods with

numerical integration will be developed in this thesis.

Spectral methods are additionally distinguished by the particular choice of trial functions. The most

common choices for the trial functions are trigonometric polynomials, Legendre polynomials and

Chebyshev polynomials [13].

15
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Chapter 5

The Single-Asset European Pricing

Problem

5.1 A Legendre Galerkin Scheme with Numerical Integration

We would like to solve the Black-Scholes equation (3.6) with final condition (3.7) and the boundary

condition proposed in (3.9). In S = 0 we simply solve the equation, corresponding to the boundary

condition (3.8a). After deriving the weak formulation of the problem we will see that these conditions

will be natural boundary conditions.

Originally, the above problem is defined on the infinite domain (0,∞). In order to solve the problem

numerically, it is necessary to truncate the infinite domain into a finite domain Ω = (0, Smax). The

choice of Smax must be large enough so that the error introduced by imposing the corresponding

boundary condition is sufficiently small.

In order to define the trial and test functions for a Legendre Galerkin scheme, consider the N−th

degree orthogonal Legendre polynomial LN (x) on [−1, 1]. We choose the N − 1 extrema of LN , xj

for j = 1, ..., N − 1 belonging to (−1, 1), as our quadrature nodes along with the boundary points

x0 = −1 and xN = 1. These are the Legendre Gauss-Lobatto nodes (see [13], Section 1.2.3). Based

on these points we define the characteristic Lagrange polynomials

ψj(x) =
1

N(N + 1)

(1− x2)

(xj − x)

L′N (x)

LN (xj)
, j = 0, ..., N,
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or equivalently

ψj(x) =
N∏

i=0,i 6=j

(x− xi)
(xj − xi)

, j = 0, ..., N. (5.1)

These are N−th degree polynomials which satisfy

ψj(xk) = δjk, j, k = 0, ..., N.

We choose these as our trial and test functions and seek a solution taking the form

V N (x, t) =

N∑
i=0

Vi(t)ψi(x). (5.2)

Now we derive the weak formulation of the Black-Scholes equation (3.6). Multiplying the equation

with any of the test functions and integrating over the domain gives

∫
Ω

∂V

∂t
ψjdS +

1

2
σ2

∫
Ω
S2∂

2V

∂S2
ψjdS + r

∫
Ω
S
∂V

∂S
ψjdS − r

∫
Ω
V ψjdS = 0,

j = 0, ..., N.

(5.3)

Integration by parts of the second term yields

1

2
σ2

∫
Ω
S2∂

2V

∂S2
ψjdS =

1

2
σ2S2∂V

∂S
ψj

∣∣∣∣S=Smax

S=0

− σ2

∫
Ω
S
∂V

∂S
ψjdS

− 1

2
σ2

∫
Ω
S2∂V

∂S

dψj
dS

dS = −σ2

∫
Ω
S
∂V

∂S
ψjdS −

1

2
σ2

∫
Ω
S2∂V

∂S

dψj
dS

dS,

for our choice of boundary conditions. Inserting this in (5.3) above gives

∫
Ω

∂V

∂t
ψjdS − (σ2 − r)

∫
Ω
S
∂V

∂S
ψjdS −

1

2
σ2

∫
Ω
S2∂V

∂S

dψj
dS

dS − r
∫

Ω
V ψjdS = 0,

j = 0, ..., N.

Define

(V (t), ψ) =

∫
Ω
V (t)ψdS

a(V, ψ) = −(σ2 − r)
∫

Ω
S
∂V

∂S
ψdS − 1

2
σ2

∫
Ω
S2∂V

∂S

dψ

dS
dS − r

∫
Ω
V ψdS,

(5.4)
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then we seek a solution V (t) of the weak formulation1:



For t ∈ (0, T ) a.e., find V (t) such that

d
dt(V (t), ψj) + a(V (t), ψj) = 0, j = 0, ..., N

V |t=T = V◦.

(5.5)

Since our quadrature nodes are distributed over the interval Ω̂ = (−1, 1), we perform a transformation

to this reference domain. The mapping used for S is

S(ξ) =
Smax − Smin

2
(ξ + 1) + Smin,

∂S

∂ξ
=
Smax − Smin

2
. (5.6)

Since Smin = 0 this becomes

S(ξ) =
Smax

2
(ξ + 1),

∂S

∂ξ
=
Smax

2
, (5.7)

and in particular, the Jacobian is given by J = Smax/2.

With this choice of mapping the integral conditions can be written as

J

∫
Ω̂

∂V

∂t
ψjdξ −

1

J

σ2

2

∫
Ω̂
S2(ξ)

∂V

∂ξ

dψj
dξ

dξ − (σ2 − r)
∫

Ω̂
S(ξ)

∂V

∂ξ
ψjdξ − rJ

∫
Ω̂
V ψjdξ = 0,

j = 0, ..., N.

These are the equations we also ask the approximate solution V N to satisfy. Replacing V with V N

yields the numerical scheme

J

∫
Ω̂

∂V N

∂t
ψjdξ −

1

J

σ2

2

∫
Ω̂
S2(ξ)

∂V N

∂ξ

dψj
dξ

dξ

− (σ2 − r)
∫

Ω̂
S(ξ)

∂V N

∂ξ
ψjdξ − rJ

∫
Ω̂
V Nψjdξ = 0, j = 0, ..., N.

(5.8)

In order to evaluate the above integrals we resort to numerical integration and choose the Gauss-

Lobatto quadrature (see [13], Section 2.2.3) based on the quadrature nodes found earlier. For weights

1A rigorous weak formulation is presented in Chapter 7.
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given by

wj =
2

N(N + 1)

1

(LN (xj))2
, j = 0, ..., N,

we have the quadrature formula

∫ 1

−1
p(x)dx ≈

N∑
j=0

wjp(xj). (5.9)

This formula is exact for polynomials of degree less or equal to 2N − 1. Applying it to the integrals

in equation (5.8) lets us obtain the following scheme

J

N∑
k=0

wk

(
∂V N

∂t
ψj

)
(ξk)−

1

J

σ2

2

N∑
k=0

wk

(
S2∂V

N

∂ξ

dψj
dξ

)
(ξk)

−(σ2 − r)
N∑
k=0

wk

(
S
∂V N

∂ξ
ψj

)
(ξk)− rJ

N∑
k=0

wk
(
V Nψj

)
(ξk) = 0,

j =0, ..., N.

(5.10)

Unfortunately, we can now observe that the terms inside the sums are polynomials of degree 2N,

hence our quadrature formula is not exact. However, this will only introduce a small error and we

proceed with this approach.

5.2 The Scheme as a System of Algebraic Equations

The scheme (5.10) can be reformulated as a systemMV̇ +AV = 0 of algebraic equations by inserting

the expansion (5.2) for V N . This gives the following system

N∑
l=0

Mjl
dVl
dt

+
N∑
l=0

AjlVl = 0, j = 0, ..., N,

where Vl are the unknowns and the matrix entries are given by

Mjl = J

N∑
k=0

wkψl(ξk)ψj(ξk),

and
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Ajl =− 1

J

σ2

2

N∑
k=0

wk

(
S2dψl

dξ

dψj
dξ

)
(ξk)− (σ2 − r)

N∑
k=0

wk

(
S
dψl
dξ

ψj

)
(ξk)

− rJ
N∑
k=0

wk (ψlψj) (ξk).

Using the properties of the Lagrange polynomials ψj and ψl we can simplify the expressions for Mjl

and Ajl to

Mjl = Jwjδjl,

and

Ajl = − 1

J

σ2

2

N∑
k=0

wk

(
S2dψl

dξ

dψj
dξ

)
(ξk)− (σ2 − r)wj

(
S
dψl
dξ

)
(ξj)− rJwjδjl.

We can now find a solution numerically by implementing an appropriate solver for the linear system

MV̇ (t) + AV (t) = 0 described above. This is a system of ordinary differential equations which can

be solved using a two-level time-stepping method with a splitting parameter θ. This method consists

in a discretization of the time derivative and a replacement of the other terms by a linear combination

of the values at two consecutive timesteps, depending on the choice of θ, with θ ∈ [0, 1]. For a right

hand side equal to zero, the method reads

M
V i+1 − V i

∆t
+A[θV i+1 + (1− θ)V i] = 0, (5.11)

where i = 0, 1, ... denotes the discretization timestep, ∆t = ti+1 − ti and V i indicates that V is

evaluated at time ti. An implicit technique is obtained with θ ∈ [1/2, 1]. The two cases θ = 1

and θ = 1/2 corresponds to the first order backward Euler method and second order Crank-Nicolson

method, respectively.

To evaluate the accuracy of the method we will study the convergence of the numerical solution. This

requires measuring the difference between the exact solution and the numerical approximation and in

order to do this we define the following norm through approximation of the L2-norm:
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‖Vexact(·, t)− V N (·, t)‖ =

(∫ 1

−1
|Vexact(ξ, t)− V N (ξ, t)|2dξ

)1/2

≈

 N∑
j=0

wj |Vexact(ξj , t)− V N (ξj , t)|
2

1/2

= ‖Vexact(·, t)− V N (·, t)‖L̃2 ,

(5.12)

with t being some fixed time, and wj and ξj being the Legendre Gauss-Lobatto weights and nodes,

respectively. This norm is based on the Gauss-Lobatto quadrature and is thus a suitable choice of norm

in our case. It will be denoted by || · ||L̃2 throughout this thesis.

5.3 Introduction to Domain Decomposition

Due to the non-smooth payoff function of the option pricing problem, it is necessary to increase the

number of nodes in the vicinity of the region of rapid change in order to restore spectral convergence.

Here, domain decomposition is proposed as a remedy, based on the research by F. Youbi, E. Pindza and

E. Maré [36]. Their paper shows that domain decomposition attains the best spatial convergence rate

for the European option pricing problem compared to the methods of grid stretching and discontinuity

inclusion.

In spectral domain decomposition, the domain is divided into subdomains and the solution is approx-

imated in each subdomain. Let us split the domain D into ND intervals,

D1 = (x(0), x(1)), D2 = (x(1), x(2)), ..., DND = (x(ND−1), x(ND)),

with x(0) = 0 and x(ND) = Smax. The ND subdomains cover D as

D =

ND⋃
l=1

Dl,

where each subdomain has its own set of basis functions and expansion coefficients

u(l)(x, t) =

Nl∑
k=0

ũ
(l)
k (t)φ

(l)
k (x), x ∈ Dl, l = 1, ..., ND.

In general, the different subdomains can touch or overlap each other. Here we consider only the case

of nonoverlapping intervals. In order for each function u(l) to fit together and form a smooth solution

over the full domain, the following conditions must be satisfied:
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On the intersection surface of two touching subdomains Dl and Dv we require


u(l)(x) = u(v)(x)

∂u(l)

∂n (x) = −∂u(v)

∂n (x), x ∈ ∂Dl ∩ ∂Dv,

where n is the outer unit normal direction. This ensures a continuous solution with continuous first

derivatives across the interface.

Since the Legendre Gauss-Lobatto nodes lie closer together near the end-points of a domain, domain

decomposition will lead to a higher distribution of nodes near the interface of each subdomain. Thus,

a natural choice for our problem is to have two subdomains with the transition point at the strike

price K, where the initial condition is not differentiable. In the following we consider domain de-

composition with two subdomains. The method can easily be extended to cases with more than two

subdomains.

Let the interface be denoted by Γ = ∂D1 ∩ ∂D2 and let Ñ be the total number of nodes in D. We

write Ñ = Ñ1 + Ñ2 + ÑΓ with ÑΓ being the number of nodes on the interface Γ. Denote the vectors

of unknowns in the spectral approximation by u1,u2 and uΓ with Ñ1, Ñ2 and ÑΓ being their lengths,

respectively. Let φ(i)
j be the basis functions associated with the nodes lying inDi and φ(Γ)

r be the basis

functions associated with the nodes lying on Γ.

Furthermore, define for i = 1, 2

(Mii)lj =


(
ψ

(i)
j , ψ

(i)
l

)
Di
, l = j = 1, ..., Ñi

0, otherwise

(MΓΓ)sr =


(
ψ

(Γ)
r , ψ

(Γ)
s

)
D1

+
(
ψ

(Γ)
r , ψ

(Γ)
s

)
D2

, s = r = 1, ..., ÑΓ,

0, otherwise

(5.13)

and
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(Aii)lj = ai

(
ψ

(i)
j , ψ

(i)
l

)
, l, j = 1, ..., Ñi

(AiΓ)lr = ai

(
ψ(Γ)
r , ψ

(i)
l

)
, l = 1, ..., Ñi, r = 1, ..., ÑΓ

(AΓi)rl = ai

(
ψ

(i)
l , ψ(Γ)

r

)
, l = 1, ..., Ñi, r = 1, ..., ÑΓ

(AΓΓ)sr = a1

(
ψ(Γ)
r , ψ(Γ)

s

)
+ a2

(
ψ(Γ)
r , ψ(Γ)

s

)
, s, r = 1, ..., ÑΓ,

(5.14)

where ai(·, ·) is the restriction of the bilinear form a(·, ·) to subdomain Di. Our problem can then be

written in the algebraic form MV̇ +AV = 0 and presented in block form as


M11 0 0

0 M22 0

0 0 MΓΓ



u̇1

u̇2

u̇Γ

+


A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ



u1

u2

uΓ

 =


01

02

0Γ

 , (5.15)

where 0k is the zero vector of length Ñk for k = 1, 2,Γ.

The blocks A12 and A21 are zero under the assumption that the nodes in D1 and D2 are not directly

coupled except through nodes on the interface Γ [11].

The implementation of domain decomposition is also expected to reduce the computation time sig-

nificantly if one makes use of parallel processing. The method is suitable for parallel computing in

the case of independent problems on each subdomain, which is in fact the case for the option pricing

problems considered in this thesis. Additional material on domain decomposition methods can be

found in [29].

5.4 A Numerical Scheme with Domain Decomposition

Here, we choose to divide the domain Ω = (0, Smax) into three subdomains

Ω1 = (0,K), Ω2 = (K, 2K), Ω3 = (2K,Smax).

This choice is motivated by the properties of the solution. The solution changes the most near K and

changes slowly when S > 2K. Furthermore, it is desirable to localize a high number of nodes close

to K and with two equally large domains at each side of K we obtain a steady distribution of points
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around K. In S > 2K, less nodes are needed and with one domain covering this area it is possible to

reduce the density of nodes here.

We indicate by V (i) the restriction of the solution V of (5.5) to Ωi, i = 1, 2, 3 and define

(
V (i), ψ(i)

)
Ωi

=

∫
Ωi

V (i)(t)ψ(i)dS

ai

(
V (i), ψ(i)

)
=

1

2
σ2S2∂V

(i)

∂S
ψ(i)

∣∣∣∣S=Smax(Ωi)

S=Smin(Ωi)

− (σ2 − r)
∫

Ωi

S
∂V (i)

∂S
ψ(i)dS

− 1

2
σ2

∫
Ωi

S2∂V
(i)

∂S

dψ(i)

dS
dS − r

∫
Ωi

V (i)ψ(i)dS,

(5.16)

where ψ(i) are the test functions associated with the nodes lying in the closed subdomain Ωi.

On each subdomain we choose as test functions the Ni-th degree polynomials defined in (5.1). Then

the problem in (5.5) admits the following equivalent three-domain formulation, for t ∈ (0, T ) a.e.:


d
dt

(
u(i)(t), ψ

(i)
j

)
Ωi

+ ai

(
u(i)(t), ψ

(i)
j

)
= 0

V (i)(0) = V◦|Ωi , j = 0, ..., Ni, i = 1, 2, 3,

(5.17)

where in addition the following interface conditions has to be satisfied



V (1)(S) = V (2)(S)

∂V (1)

∂n (S) = −∂V (2)

∂n (S), S ∈ ∂Ω1 ∩ ∂Ω2

V (2)(S) = V (3)(S)

∂V (2)

∂n (S) = −∂V (3)

∂n (S), S ∈ ∂Ω2 ∩ ∂Ω3,

(5.18)

to obtain a solution in C1.

We now map each subdomain to the reference domain Ω̂ = (−1, 1) through the linear transforma-

tion
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S(ξ) =



K
2 (ξ + 1), S ∈ Ω1

K
2 (ξ + 1) +K, S ∈ Ω2

Smax−2K

2 (ξ + 1) + 2K, S ∈ Ω3,

calculated from the transformation shown in (5.7).

The Jacobian of each element, J = ∂S
∂ξ , is then given by

J =



K
2 , S ∈ Ω1

K
2 , S ∈ Ω2

Smax−2K
2 , S ∈ Ω3.

Denoting Ji = J|Ωi , this gives the new formulation of (5.16)

(
V (i), ψ(i)

)
Ω̂

= Ji

∫
Ω̂
V (i)(t)ψ(i)dξ

ai

(
V (i), ψ(i)

)
=

1

2Ji
σ2S2(ξ)

∂V (i)

∂ξ
ψ(i)

∣∣∣∣S=Smax(Ωi)

S=Smin(Ωi)

− (σ2 − r)
∫

Ω̂
S(ξ)

∂V (i)

∂ξ
ψ(i)dξ

− 1

2Ji
σ2

∫
Ω̂
S2(ξ)

∂V (i)

∂ξ

dψ(i)

dξ
dξ − rJi

∫
Ω̂
V (i)ψ(i)dξ.

Upon denoting by V N,(i) the restriction of V N to Ωi, the approximate solution V N is sought in the

form

V N,(i)(x, t) =

Ni∑
k=0

V
(i)
k (t)ψ

(i)
k (x), x ∈ Ωi, i = 1, 2, 3. (5.19)

Enforcing the conditions in (5.17) and (5.18) on the approximate solution V N lets us obtain the nu-

merical scheme
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J1

∫
Ω̂

dV N,(1)

dt
(t)ψ

(1)
j dξ +

1

2J1
σ2K2∂V

N,(1)

∂ξ
ψ

(1)
j (K)

− (σ2 − r)
∫

Ω̂
S(ξ)

∂V N,(1)

∂ξ
ψ

(1)
j dξ − 1

2J1
σ2

∫
Ω̂
S2(ξ)

∂V N,(1)

∂ξ

dψ
(1)
j

dξ
dξ

− rJ1

∫
Ω̂
V N,(1)ψ

(1)
j dξ = 0, ξ ∈ Ω̂, j = 0, ..., N1

J2

∫
Ω̂

dV N,(2)

dt
(t)ψ

(2)
j dξ +

1

2J2
σ2(2K)2∂V

N,(2)

∂ξ
ψ

(2)
j (2K)

− 1

2J2
σ2K2∂V

N,(2)

∂ξ
ψ

(2)
j (K)− (σ2 − r)

∫
Ω̂
S(ξ)

∂V N,(2)

∂ξ
ψ

(2)
j dξ

− 1

2J2
σ2

∫
Ω̂
S2(ξ)

∂V N,(2)

∂ξ

dψ
(2)
j

dξ
dξ − rJ2

∫
Ω̂
V N,(2)ψ

(2)
j dξ = 0,

ξ ∈ Ω̂, j = 0, ..., N2

J3

∫
Ω̂

dV N,(3)

dt
(t)ψ

(3)
j dξ − 1

2J3
σ2(2K)2∂V

N,(3)

∂ξ
ψ

(3)
j (2K)

− (σ2 − r)
∫

Ω̂
S(ξ)

∂V N,(3)

∂ξ
ψ

(3)
j dξ − 1

2J3
σ2

∫
Ω̂
S2(ξ)

∂V N,(3)

∂ξ

dψ
(3)
j

dξ
dξ

− rJ3

∫
Ω̂
V N,(3)ψ

(3)
j dξ = 0, ξ ∈ Ω̂, j = 0, ..., N3,

where the boundary condition (3.9) have been incorporated in a weak manner.

After applying the Gauss-Lobatto quadrature formula (5.9) we arrive at the scheme

27



J1

N∑
k=0

wk

(
dV

dt

N,(1)

(t)ψ
(1)
j

)
(ξk) +

1

2J1
σ2K2∂V

N,(1)

∂ξ
ψ

(1)
j (1)

− (σ2 − r)
N∑
k=0

wk

(
S
∂V N,(1)

∂ξ
ψ

(1)
j

)
(ξk)−

1

2J1
σ2

N∑
k=0

wk

(
S2∂V

N,(1)

∂ξ

dψ
(1)
j

dξ

)
(ξk)

− rJ1

N∑
k=0

wk

(
V N,(1)ψ

(1)
j

)
(ξk) = 0, ξ ∈ Ω̂, j = 0, ..., N1

J2

N∑
k=0

wk

(
dV

dt

N,(2)

(t)ψ
(2)
j

)
(ξk) +

1

2J2
σ2(2K)2∂V

N,(2)

∂ξ
ψ

(2)
j (1)

− 1

2J2
σ2K2∂V

N,(2)

∂ξ
ψ

(2)
j (−1)− (σ2 − r)

N∑
k=0

wk

(
S
∂V N,(2)

∂ξ
ψ

(2)
j

)
(ξk)

− 1

2J2
σ2

N∑
k=0

wk

(
S2∂V

N,(2)

∂ξ

dψ
(2)
j

dξ

)
(ξk)− rJ2

N∑
k=0

wk

(
V N,(2)ψ

(2)
j

)
(ξk) = 0,

ξ ∈ Ω̂, j = 0, ..., N2

J3

N∑
k=0

wk

(
dV

dt

N,(3)

ψ
(3)
j

)
(ξk)−

1

2J3
σ2(2K)2∂V

N,(3)

∂ξ
ψ

(3)
j (−1)

− (σ2 − r)
N∑
k=0

wk

(
S
∂V N,(3)

∂ξ
ψ

(3)
j

)
(ξk)−

1

2J3
σ2

N∑
k=0

wk

(
S2∂V

N,(3)

∂ξ

dψ
(3)
j

dξ

)
(ξk)

− rJ3

N∑
k=0

wk

(
V N,(3)ψ

(3)
j

)
(ξk) = 0, ξ ∈ Ω̂, j = 0, ..., N3,

where ξk and wk are the Legendre Gauss-Lobatto nodes and weights, respectively.

After inserting the expansions (5.19) for V N,(i), i = 1, 2, 3 and incorporating the interface conditions

in (5.18) we can rephrase this scheme as a system MV̇ + AV = 0 of algebraic equations which can

be written in the form (5.15) extended to three domains. The system can then be solved using the

two-level time-stepping method presented in (5.11).

5.5 Numerical Solutions for a Single-Asset European Put Option

Results from solving Black-Scholes equation (3.6) for a European vanilla put option with payoff func-

tion (3.7) and boundary condition (3.9) are presented in the following. For temporal discretization,

Crank-Nicolson timestepping has been used and results are shown for the final timestep.

The choice of parameters used in the numerical experiments is shown in Table 5.1.
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Parameter Value

r 0.05

σ 0.3

K 10

T 0.5

Smax 60

Table 5.1: Parameter values for the European put option.

The results presented here are mainly based on the Legendre Galerkin method with numerical inte-

gration and domain decomposition. In the convergence plot, this method is compared to the method

without domain decomposition. The domain decomposition has been implemented with three subdo-

mains, Ω1 = (0,K),Ω2 = (K, 2K),Ω3 = (2K,Smax). The distribution of the nodes for Ni = 7

on each subdomain Ωi, i = 1, 2, 3, is shown in Figure 5.1. When domain decomposition is not used,

N is the polynomial degree. In the method with domain decomposition, we let N denote the sum of

polynomial degrees on each subdomain, i.e. N =
∑

iNi, i = 1, 2, 3. With this notation, N + 1 is the

total number of nodes in both methods. In the following, we take Ni to be equal on each subdomain.

Thus N corresponds to 3Ni.

(a) Distribution of the nodes along the S-axis. (b) Distribution of option values V corresponding to the
nodes in (a).

Figure 5.1: Distribution of nodes for polynomial degree Ni = 7, i = 1, 2, 3. In (a) the distribution of nodes is
shown along the S-axis while (b) shows the location of each computed option value V based on these nodes.
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Numerical solutions obtained by the Legendre Galerkin scheme with domain decomposition for dif-

ferent values of N , are shown in Figure 5.2. Setting N = 9 gives the results in Figures 5.2a and

5.2b. The option price for the whole domain Ω = (0, Smax) is shown to the left and the right hand

side shows an enlarged image of the option price around the strike price K. The numerical solution

exhibits oscillatory behaviour and deviates significantly from the exact solution. IncreasingN slightly

to N = 12 gives the results shown in Figures 5.2c and 5.2d. For this value of N , the oscillatory

behaviour is no longer visible. Results for N = 15, found in Figures 5.2e and 5.2f, shows a solution

very similar to the exact solution.

In order to study the approximation error, we use the norm defined in (5.12) to measure the difference

between the approximate solution and the exact solution. The option price V in S = K and the errors

related to increasing values of N are shown in Table 5.2.

N V (K) ‖Vexact − V N‖L̃2

6 0.832015197804 8.536e-02

12 0.758698688394 2.340e-02

24 0.717556757862 3.485e-04

48 0.716586595173 6.179e-07

72 0.716586784937 1.583e-09

96 0.716586783133 1.909e-12

192 0.716586783128 2.131e-14

Table 5.2: The option price V in S = K and the error measured with the approximated L2-norm for different
values of N .

Convergence of the method with and without domain decomposition is shown in Figure 5.3. When

domain decomposition is used we can observe spectral convergence and the error reduces rapidly until

it becomes of magnitude 10−14. When domain decomposition is not used and the number of nodes is

not refined around K, only second order convergence is achieved. It is interesting to observe that the

implementation of domain decomposition restores spectral convergence.

The error associated with the different values ofN used in the convergence test is shown in Figure 5.4.

The plots show that the dominating error is located near the slope discontinuity of the payoff function

in K and at the boundary in S = 0.
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(a) Option price solution obtained with N = 9. (b) An enlarged image of the case in (a) around the region of
rapid change.

(c) Option price solution obtained with N = 12. (d) An enlarged image of the case in (c) around the region of
rapid change.

(e) Option price solution obtained with N = 15. (f) An enlarged image of the case in (e) around the region of
rapid change.

Figure 5.2: The solution of the European pricing problem for different values of N compared to the exact
solution.
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Figure 5.3: Log-log plot showing the convergence of the method with and without domain decomposition for
N varying from 6 to 192. SG refers to Spectral Galerkin and SGDD refers to Spectral Galerkin with domain
decomposition.

The numerical results indicate that the Legendre Galerkin method with numerical integration and do-

main decomposition yields spectral convergence for the European pricing problem. The fact that we

can obtain a very accurate solution with smallN saves memory and computational time and makes the

method very competitive to other numerical methods. These results are promising for spectral approx-

imation of more complex option problems that do not admit an available analytical solution.

Remark 2 As the polynomial order determines the convergence rate, it would be more precise to plot

the error in the domain decomposition method against the smallest Ni (simply Ni for equal Ni’s)

instead of N in the convergence plot. However, the chosen representation makes it easier to compare

the two methods for the same number of nodes on the full domain. In following sections, convergence

plots will be shown with error plotted against Ni.
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(a) Error between the numerical solution and the exact so-
lution for N = 6.

(b) Error between the numerical solution and the exact so-
lution for N = 12.

(c) Error between the numerical solution and the exact solu-
tion for N = 24.

(d) Error between the numerical solution and the exact so-
lution for N = 48.

(e) Error between the numerical solution and the exact solu-
tion for N = 96.

(f) Error between the numerical solution and the exact solu-
tion for N = 192.

Figure 5.4: Error between the numerical solution and the exact solution for different values of N ranging from
N = 6 to N = 192.
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Chapter 6

The Two-Asset European Pricing

Problem

6.1 A Legendre Galerkin Scheme with Numerical Integration

Here, we extend the previous work to two dimensions and solve the two-asset Black-Scholes equa-

tion (3.15) with payoff function (3.16c). Originally, this problem is defined on the infinite domain{
S = (S1, S2) ∈ R2

+

}
. In order to solve the problem numerically, the domain needs to be truncated.

For simplicity, we consider a quadratic domain and restrict the domain to Ω = [0, Smax]2, with Smax

sufficiently large.

As boundary conditions we take

∂V

∂S1
= 0

∣∣∣∣
S1=Smax

and
∂V

∂S2
= 0

∣∣∣∣
S2=Smax

. (6.1)

It is not necessary to impose boundary conditions on the remaining boundary since the equation itself

reduces to a natural boundary condition in {S1 = 0, S2 ∈ [0, Smax]} and {S2 = 0, S1 ∈ [0, Smax]}.

After deriving the weak formulation of the problem we will see that the above boundary conditions

will be natural boundary conditions for our problem.

Now, we would like to form a two-dimensional expansion based on the Legendre Gauss-Lobatto

quadrature formula and one-dimensional basis functions used earlier. A natural way to do this is by

tensorization [13].
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Let {xj , wj}j=0,...,N be the N + 1 nodes and weights of the Legendre Gauss-Lobatto quadrature

formula in the closed domain d = [−1, 1]. Then, by tensorization, we obtain the (N + 1)2 nodes and

weights {xk, wk}k∈K of the corresponding formula in D = [−1, 1]2, with K = {k = (k1, k2) | k1 =

0, ..., N, k2 = 0, ..., N}. This formula satisfies

∫
D
p(x)dx ≈

∑
k∈K

wkp(xk), (6.2)

and is exact for all polynomials on D of degree less or equal to 2N − 1.

Next, we expand the basis functions used in the one-dimensional case in order to define trial and test

function suitable for the two-dimensional case.

Given two families {ψ(l)
kl
}kl of one-dimensional basis functions on intervals d, with ψkl as defined in

(5.1), then the family {ψk(x)}k, defined through

ψk(x) = ψ
(1)
k1

(x1)ψ
(2)
k2

(x2), k = (k1, k2), x = (x1, x2), (6.3)

is a two-dimensional basis on the domain D. Now ψk defines a characteristic Lagrange polynomial

relative to the N -degree tensorized Legendre-Gauss-Lobatto points in D (see [13], Section 2.8). The

functions in (6.3) will be our trial and test functions. An approximate solution is then sought in the

form

V N (x, t) =
∑
n∈K

Vn(t)ψn(x). (6.4)

Now, we derive the weak formulation of the problem (3.15), on the truncated domain Ω. Multiplying

the equation with any of the test functions and integrating over the domain gives

∫
Ω

∂V

∂t
ψkdS +

1

2
σ2

1

∫
Ω
S2

1

∂2V

∂S2
1

ψkdS +
1

2
σ2

2

∫
Ω
S2

2

∂2V

∂S2
2

ψkdS + r

∫
Ω
S1
∂V

∂S1
ψkdS

+ r

∫
Ω
S2
∂V

∂S2
ψkdS− r

∫
Ω
V ψkdS = 0, k ∈ K.

Let ∂Ω = Γ1∪Γ2∪Γ3∪Γ4 where Γ1 = {S2 = 0, S1 ∈ [0, Smax]}, Γ2 = {S1 = Smax, S2 ∈ [0, Smax]},

Γ3 = {S2 = Smax, S1 ∈ [0, Smax]} and Γ4 = {S1 = 0, S2 ∈ [0, Smax]}. Using integration by parts on

the two terms with second derivatives and applying the boundary conditions (6.1) yields
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1

2
σ2

1

∫
Ω
S2

1

∂2V

∂S2
1

ψkdS +
1

2
σ2

2

∫
Ω
S2

2

∂2V

∂S2
2

ψkdS

=
1

2
σ2

1

∫
Γ4

S2
1

∂V

∂S1
ψkdS2 +

1

2
σ2

2

∫
Γ1

S2
2

∂V

∂S2
ψkdS1 +

1

2
σ2

1

∫
Γ3

S2
1

∂V

∂S1
ψkdS1

+
1

2
σ2

1

∫
Γ2

S2
2

∂V

∂S2
ψkdS2 − σ2

1

∫
Ω
S1
∂V

∂S1
ψkdS−

1

2
σ2

1

∫
Ω
S2

1

∂V

∂S1

∂ψk

∂S1
dS

− σ2
2

∫
Ω
S2
∂V

∂S2
ψkdS−

1

2
σ2

2

∫
Ω
S2

2

∂V

∂S2

∂ψk

∂S2
dS

= −σ2
1

∫
Ω
S1
∂V

∂S1
ψkdS−

1

2
σ2

1

∫
Ω
S2

1

∂V

∂S1

∂ψk

∂S1
dS− σ2

2

∫
Ω
S2
∂V

∂S2
ψkdS

− 1

2
σ2

2

∫
Ω
S2

2

∂V

∂S2

∂ψk

∂S2
dS,

after noticing that S1 = 0 on Γ4 and S2 = 0 on Γ1.

This gives the integral conditions

∫
Ω

∂V

∂t
ψkdS− (σ2

1 − r)
∫

Ω
S1
∂V

∂S1
ψkdS−

1

2
σ2

1

∫
Ω
S2

1

∂V

∂S1

∂ψk

∂S1
dS

− (σ2
2 − r)

∫
Ω
S2
∂V

∂S2
ψkdS−

1

2
σ2

2

∫
Ω
S2

2

∂V

∂S2

∂ψk

∂S2
dS− r

∫
Ω
V ψkdS = 0, k ∈ K.

(6.5)

Let us now define

(V, ψ) =

∫
Ω
V ψdS

a(V, ψ) = −(σ2
1 − r)

∫
Ω
S1
∂V

∂S1
ψkdS−

1

2
σ2

1

∫
Ω
S2

1

∂V

∂S1

∂ψk

∂S1
dS

− (σ2
2 − r)

∫
Ω
S2
∂V

∂S2
ψkdS−

1

2
σ2

2

∫
Ω
S2

2

∂V

∂S2

∂ψk

∂S2
dS− r

∫
Ω
V ψkdS,

then the weak formulation becomes



For t ∈ (0, T ) a.e., find V (t) such that

d
dt(V (t), ψk) + a(V (t), ψk) = 0, k ∈ K

V |t=T = V◦,

(6.6)
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where V◦ is the payoff function in (3.16c).

Since the chosen quadrature nodes are distributed over the closure of the interval Ω̂ = (−1, 1)2, we

perform a transformation to this reference domain. The mapping used for S1 and S2 is

S1(ξ1) =
Smax − Smin

2
(ξ1 + 1) + Smin,

∂S1

∂ξ1
=
Smax − Smin

2
,

S2(ξ2) =
Smax − Smin

2
(ξ2 + 1) + Smin,

∂S2

∂ξ2
=
Smax − Smin

2
.

(6.7)

For Smin = 0, this becomes

S1(ξ1) =
Smax

2
(ξ1 + 1),

∂S1

∂ξ1
=
Smax

2
,

S2(ξ2) =
Smax

2
(ξ2 + 1),

∂S2

∂ξ2
=
Smax

2
.

In particular, the Jacobian is given by J = S2
max/4.

With this choice of mapping the weak formulation (6.5) can be written as

J

∫
Ω̂

∂V

∂t
ψkdξ −

1

2
Smax(σ2

1 − r)
∫

Ω̂
S1(ξ1)

∂V

∂ξ1
ψkdξ −

1

2
σ2

1

∫
Ω̂
S2

1(ξ1)
∂V

∂ξ1

∂ψk

∂ξ1
dξ

− 1

2
Smax(σ2

2 − r)
∫

Ω̂
S2(ξ2)

∂V

∂ξ2
ψkdξ −

1

2
σ2

2

∫
Ω̂
S2

2(ξ2)
∂V

∂ξ2

∂ψk

∂ξ2
dξ − rJ

∫
Ω̂
V ψkdξ = 0, k ∈ K.

These are the equations we also ask the approximate solution V N to satisfy. Replacing V with V N

yields the numerical scheme

J

∫
Ω̂

∂V N

∂t
ψkdξ −

1

2
Smax(σ2

1 − r)
∫

Ω̂
S1(ξ1)

∂V N

∂ξ1
ψkdξ

− 1

2
σ2

1

∫
Ω̂
S2

1(ξ1)
∂V N

∂ξ1

∂ψk

∂ξ1
dξ − 1

2
Smax(σ2

2 − r)
∫

Ω̂
S2(ξ2)

∂V N

∂ξ2
ψkdξ

− 1

2
σ2

2

∫
Ω̂
S2

2(ξ2)
∂V N

∂ξ2

∂ψk

∂ξ2
dξ − rJ

∫
Ω̂
V Nψkdξ = 0, k ∈ K.

(6.8)

We again resort to numerical integration in order to evaluate the above integrals and choose the Gauss-

Lobatto quadrature formula (6.2). Applying it to the integrals in equation (6.8) gives the scheme
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J
∑
l∈K

wl

(
∂V N

∂t
ψk

)
(ξl)−

Smax

2
(σ2

1 − r)
∑
l∈K

wl

(
S1
∂V N

∂ξ1
ψk

)
(ξl)

− σ2
1

2

∑
l∈K

wl

(
S2

1

∂V N

∂ξ1

∂ψk

∂ξ1

)
(ξl)−

Smax

2
(σ2

2 − r)
∑
l∈K

wl

(
S2
∂V N

∂ξ2
ψk

)
(ξl)

− σ2
2

2

∑
l∈K

wl

(
S2

2

∂V N

∂ξ2

∂ψk

∂ξ2

)
(ξl)− rJ

∑
l∈K

wl

(
V Nψk

)
(ξl) = 0, k ∈ K.

(6.9)

As in the one-dimensional case we can observe that the terms inside the sums are polynomials of

degree 2N, hence our quadrature formula is not exact. However, we proceed with this approach,

despite introducing a small error.

6.2 The Scheme as a System of Algebraic Equations

The scheme (6.9) can be reformulated as a system MV̇ +AV = 0 of algebraic equations by inserting

the expansion (6.4) for V N . This gives the following system

∑
n∈K

Mkn
dVn
dt

+
∑
n∈K

AknVn = 0, k ∈ K,

where Vn are the unknowns and the matrix entries are given by

Mkn = J
∑
l∈K

wlψn(ξl)ψk(ξl)

and

Akn =− σ2
1

2

∑
l∈K

wl

(
S2

1

dψn

dξ1

dψk

dξ1

)
(ξl)−

Smax

2
(σ2

1 − r)
∑
l∈K

wl

(
S1
dψn

dξ1
ψk

)
(ξl)

− σ2
2

2

∑
l∈K

wl

(
S2

2

dψn

dξ2

dψk

dξ2

)
(ξl)−

Smax

2
(σ2

2 − r)
∑
l∈K

wl

(
S2
dψn

dξ2
ψk

)
(ξl)

− rJ
∑
l∈K

wl (ψnψk) (ξl).

Using the properties of the Lagrange polynomials ψk and ψn, the expressions for Mkn and Akn can

be simplified to
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Mkn = Jwkδkn,

and

Akn =− σ2
1

2

∑
l∈K

wl

(
S2

1

dψn

dξ1

dψk

dξ1

)
(ξl)−

Smax

2
(σ2

1 − r)wk

(
S1
dψn

dξ1

)
(ξk)

− σ2
2

2

∑
l∈K

wl

(
S2

2

dψn

dξ2

dψk

dξ2

)
(ξl)−

Smax

2
(σ2

2 − r)wk

(
S2
dψn

dξ2

)
(ξk)

− rJwkδkn.

A numerical solution can now be obtained by solving the linear system MV̇ (t) + AV (t) = 0 us-

ing an appropriate solver for ordinary differential equations, such as the time-stepping method in

(5.11).

In order to evaluate the accuracy of the numerical scheme, we generalize the approximated L2-norm

given in (5.12):

‖Vexact(·, t)− V N (·, t)‖ =

(∫
Ω̂
|Vexact(ξ, t)− V N (ξ, t)|2dξ

)1/2

≈

(∑
k∈K

wk|Vexact(ξk, t)− V N (ξk, t)|
2

)1/2

= ‖Vexact(·, t)− V N (·, t)‖L̃2 ,

(6.10)

with t being some fixed time, and wk and ξk being the tensorized Legendre Gauss-Lobatto weights

and nodes, respectively.

6.3 A Numerical Scheme with Domain Decomposition

In the following we develop a numerical scheme with domain decomposition for the two-asset problem

(6.6). We choose to divide the domain Ω into four subdomains:

Ω1 =
{
S = (S1, S2) ∈ R2

+ | S1 ≤ K,S2 ≤ K
}
,

Ω2 =
{
S = (S1, S2) ∈ R2

+ | K ≤ S1 ≤ Smax, S2 ≤ K
}
,

Ω3 =
{
S = (S1, S2) ∈ R2

+ | K ≤ S1 ≤ Smax,K ≤ S2 ≤ Smax
}
,

Ω4 =
{
S = (S1, S2) ∈ R2

+ | S1 ≤ K,K ≤ S2 ≤ Smax
}
.
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Let the interface of the subdomains be specified as follows

γ1 := {S1 = K,S2 ∈ [0,K]},

γ2 := {S1 ∈ [K,Smax], S2 = K},

γ3 := {S1 = K,S2 ∈ [K,Smax]},

γ4 := {S1 ∈ [0,K], S2 = K}.

The partition of Ω in the case where K = 100 and Smax = 200 is shown in Figure 6.1.

Figure 6.1: Distribution of subdomains, Ωi for i = 1, 2, 3, 4, in the domain decomposition method when
K = 100 and Smax = 200.

Let us indicate by V (i) the restriction of the solution V of (6.6) to Ωi, i = 1, 2, 3, 4 and define

(
V (i), ψ(i)

)
Ωi

=

∫
Ωi

V (i)ψ(i)dS

ai

(
V (i), ψ(i)

)
=

1

2
σ2

1

∫
γ(i,1)

K2∂V
(i)

∂S1
ψ(i)dS2 +

1

2
σ2

2

∫
γ(i,2)

K2∂V
(i)

∂S2
ψ(i)dS1

− (σ2
1 − r)

∫
Ωi

S1
∂V (i)

∂S1
ψ(i)dS− 1

2
σ2

1

∫
Ωi

S2
1

∂V (i)

∂S1

∂ψ(i)

∂S1
dS

− (σ2
2 − r)

∫
Ωi

S2
∂V (i)

∂S2
ψ(i)dS− 1

2
σ2

2

∫
Ωi

S2
2

∂V (i)

∂S2

∂ψ(i)

∂S2
dS

− r
∫

Ωi

V (i)ψ(i)dS,

(6.11)
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where ψ(i) are the test functions associated with the nodes lying in the closed subdomain Ωi and

γ(i,1), γ(i,2) are given by

γ(1,1) = γ1, γ(1,2) = γ4

γ(2,1) = γ1, γ(2,2) = γ2

γ(3,1) = γ3, γ(3,2) = γ2

γ(4,1) = γ3, γ(4,2) = γ4.

On each subdomain we choose again the Ni-th degree polynomials defined in (5.1) as test function.

Furthermore, let us denote by Ki the set of nodes lying in the closed subdomain Ωi, i.e. Ki =

{k = (k1, k2) | k1 = 0, ..., Ni, k2 = 0, ..., Ni}, i = 1, 2, 3, 4. Then the problem in (6.6) admits the

following equivalent four-domain formulation, for t ∈ (0, T ) a.e.:


d
dt

(
u(i)(t), ψ

(i)
k

)
Ωi

+ ai

(
u(i)(t), ψ

(i)
k

)
= 0

V (i)(0) = V◦|Ωi , k = 0, ...,Ki, i = 1, 2, 3, 4,

(6.12)

where in addition the following interface conditions are to be satisfied



V (1)(S) = V (2)(S)

∂V (1)

∂n (S) = −∂V (2)

∂n (S), S ∈ ∂Ω1 ∩ ∂Ω2

V (2)(S) = V (3)(S)

∂V (2)

∂n (S) = −∂V (3)

∂n (S), S ∈ ∂Ω2 ∩ ∂Ω3

V (3)(S) = V (4)(S)

∂V (3)

∂n (S) = −∂V (4)

∂n (S), S ∈ ∂Ω3 ∩ ∂Ω4

V (1)(S) = V (4)(S)

∂V (1)

∂n (S) = −∂V (4)

∂n (S), S ∈ ∂Ω1 ∩ ∂Ω4.

(6.13)

We now map each subdomain to the reference domain Ω̂ = (−1, 1)2 through the linear transforma-

tion
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

S1(ξ1) = K
2 (ξ1 + 1), S2(ξ2) = K

2 (ξ2 + 1), S ∈ Ω1

S1(ξ1) = Smax−K
2 (ξ1 + 1) +K, S2(ξ2) = K

2 (ξ2 + 1), S ∈ Ω2

S1(ξ1) = Smax−K
2 (ξ1 + 1) +K, S2(ξ2) = Smax−K

2 (ξ2 + 1) +K, S ∈ Ω3,

S1(ξ1) = K
2 (ξ1 + 1), S2(ξ2) = Smax−K

2 (ξ2 + 1) +K, S ∈ Ω4,

calculated from (6.7).

Based on this, we denote



J
(1)
1 := ∂S1

∂ξ1
= K

2 , J
(2)
1 := ∂S2

∂ξ2
= K

2 , S ∈ Ω1

J
(1)
2 := ∂S1

∂ξ1
= Smax−K

2 , J
(2)
2 := ∂S2

∂ξ2
= K

2 , S ∈ Ω2

J
(1)
3 := ∂S1

∂ξ1
= Smax−K

2 , J
(2)
3 := ∂S2

∂ξ2
= Smax−K

2 , S ∈ Ω3,

J
(1)
4 := ∂S1

∂ξ1
= K

2 , J
(2)
4 := ∂S2

∂ξ2
= Smax−K

2 , S ∈ Ω4,

and in particular the Jacobian of each element is given by

J =



K2

4 , S ∈ Ω1

K(Smax−K)
4 , S ∈ Ω2

(Smax−K)2

4 , S ∈ Ω3

K(Smax−K)
4 , S ∈ Ω4.

Denoting Ji = J|Ωi , this gives the new formulation of (6.11)
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(
V (i), ψ(i)

)
Ω̂

= Ji

∫
Ω̂
V (i)ψ(i)dξ

ai

(
V (i), ψ(i)

)
=

1

2

J
(2)
i

J
(1)
i

σ2
1

∫
γ̂(i,1)

K2∂V
(i)

∂ξ1
ψ(i)dξ2 +

1

2

J
(1)
i

J
(2)
i

σ2
2

∫
γ̂(i,2)

K2∂V
(i)

∂ξ2
ψ(i)dξ1

− Ji

J
(1)
i

(σ2
1 − r)

∫
Ω̂
S1(ξ1)

∂V (i)

∂ξ1
ψ(i)dξ − 1

2

Ji

(J
(1)
i )2

σ2
1

∫
Ω̂
S2

1(ξ1)
∂V (i)

∂ξ1

∂ψ(i)

∂ξ1
dξ

− (σ2
2 − r)

Ji

J
(2)
i

∫
Ω̂
S2(ξ2)

∂V (i)

∂ξ2
ψ(i)dξ − 1

2

Ji

(J
(2)
i )2

σ2
2

∫
Ω̂
S2

2(ξ2)
∂V (i)

∂ξ2

∂ψ(i)

∂ξ2
dξ

− Jir
∫

Ω̂
V (i)ψ(i)dξ,

where γ̂(i,1), γ̂(i,2) are the line segments on Ω̂ corresponding to γ(i,1), γ(i,2) on Ω.

Upon denoting by V N,(i) the restriction of the approximate solution V N to Ωi, the approximate solu-

tion is sought in the form

V N,(i)(x, t) =
∑
k∈Ki

V
(i)
k (t)ψ

(i)
k (x), x ∈ Ωi, i = 1, 2, 3, 4. (6.14)

Let us define Kγi to be the set of indices associated with the nodes lying on γi. Then, enforcing

the conditions in (6.12) and (6.13) on the approximate solution V N and applying the Gauss-Lobatto

quadrature formula (6.2) lets us obtain the numerical scheme

44



J1
∑
l∈K1

wl

(
∂V N,(1)

∂t
ψ
(1)
k

)
(ξl) +

1

2

J
(2)
1

J
(1)
1

σ2
1

∑
l∈Kγ1

K2

(
∂V (N,1)

∂ξ1
ψ
(1)
k

)
(ξl)

+
1

2

J
(1)
1

J
(2)
1

σ2
2

∑
l∈Kγ4

K2

(
∂V (N,1)

∂ξ2
ψ
(1)
k

)
(ξl)−

1

2

J1

J
(1)
1

(σ2
1 − r)

∑
l∈K1

wl

(
S1
∂V N,(1)

∂ξ1
ψ
(1)
k

)
(ξl)

− 1

2

J1

(J
(1)
1 )2

σ2
1

∑
l∈K1

wl

(
S2
1

∂V N,(1)

∂ξ1

∂ψ
(1)
k

∂ξ1

)
(ξl)−

1

2

J1

J
(2)
1

(σ2
2 − r)

∑
l∈K1

wl

(
S2
∂V N,(1)

∂ξ2
ψ
(1)
k

)
(ξl)

− 1

2

J1

(J
(2)
1 )2

σ2
2

∑
l∈K1

wl

(
S2
2

∂V N,(1)

∂ξ2

∂ψ
(1)
k

∂ξ2

)
(ξl)− rJ1

∑
l∈K1

wl

(
V N,(1)ψ

(1)
k

)
(ξl) = 0, k ∈ K1,

J2
∑
l∈K2

wl

(
∂V N,(2)

∂t
ψ
(2)
k

)
(ξl) +

1

2

J
(2)
2

J
(1)
2

σ2
1

∑
l∈Kγ1

K2

(
∂V (N,1)

∂ξ1
ψ
(2)
k

)
(ξl)

+
1

2

J
(1)
2

J
(2)
2

σ2
2

∑
l∈Kγ2

K2

(
∂V (N,i)

∂ξ2
ψ
(2)
k

)
(ξl)−

1

2

J2

J
(1)
2

(σ2
1 − r)

∑
l∈K2

wl

(
S1
∂V N,(2)

∂ξ1
ψ
(2)
k

)
(ξl)

− 1

2

J2

(J
(1)
2 )2

σ2
1

∑
l∈K2

wl

(
S2
1

∂V N,(2)

∂ξ1

∂ψ
(2)
k

∂ξ1

)
(ξl)−

1

2

J2

J
(2)
2

(σ2
2 − r)

∑
l∈K2

wl

(
S2
∂V N,(2)

∂ξ2
ψ
(2)
k

)
(ξl)

− 1

2

J2

(J
(2)
2 )2

σ2
2

∑
l∈K2

wl

(
S2
2

∂V N,(2)

∂ξ2

∂ψ
(2)
k

∂ξ2

)
(ξl)− rJ2

∑
l∈K2

wl

(
V N,(2)ψ

(2)
k

)
(ξl) = 0, k ∈ K2,

J3
∑
l∈K3

wl

(
∂V N,(3)

∂t
ψ
(3)
k

)
(ξl) +

1

2

J
(2)
3

J
(1)
3

σ2
1

∑
l∈Kγ3

K2

(
∂V (N,1)

∂ξ1
ψ
(3)
k

)
(ξl)

+
1

2

J
(1)
3

J
(2)
3

σ2
2

∑
l∈Kγ2

K2

(
∂V (N,i)

∂ξ2
ψ
(3)
k

)
(ξl)−

1

2

J3

J
(1)
3

(σ2
1 − r)

∑
l∈K3

wl

(
S1
∂V N,(3)

∂ξ1
ψ
(3)
k

)
(ξl)

− 1

2

J3

(J
(1)
3 )2

σ2
1

∑
l∈K3

wl

(
S2
1

∂V N,(3)

∂ξ1

∂ψ
(3)
k

∂ξ1

)
(ξl)−

1

2

J3

J
(2)
3

(σ2
2 − r)

∑
l∈K3

wl

(
S2
∂V N,(3)

∂ξ2
ψ
(3)
k

)
(ξl)

− 1

2

J3

(J
(2)
3 )2

σ2
2

∑
l∈K3

wl

(
S2
2

∂V N,(3)

∂ξ2

∂ψ
(3)
k

∂ξ2

)
(ξl)− rJ3

∑
l∈K3

wl

(
V N,(3)ψ

(3)
k

)
(ξl) = 0, k ∈ K3,

J4
∑
l∈K4

wl

(
∂V N,(4)

∂t
ψ
(4)
k

)
(ξl) +

1

2

J
(2)
4

J
(1)
4

σ2
1

∑
l∈Kγ3

K2

(
∂V (N,1)

∂ξ1
ψ
(4)
k

)
(ξl)

+
1

2

J
(1)
4

J
(2)
4

σ2
2

∑
l∈Kγ4

K2

(
∂V (N,i)

∂ξ2
ψ
(4)
k

)
(ξl)−

1

2

J4

J
(1)
4

(σ2
1 − r)

∑
l∈K4

wl

(
S1
∂V N,(4)

∂ξ1
ψ
(4)
k

)
(ξl)

− 1

2

J4

(J
(1)
4 )2

σ2
1

∑
l∈K4

wl

(
S2
1

∂V N,(4)

∂ξ1

∂ψ
(4)
k

∂ξ1

)
(ξl)−

1

2

J4

J
(2)
4

(σ2
2 − r)

∑
l∈K4

wl

(
S2
∂V N,(4)

∂ξ2
ψ
(4)
k

)
(ξl)

− 1

2

J4

(J
(2)
4 )2

σ2
2

∑
l∈K4

wl

(
S2
2

∂V N,(4)

∂ξ2

∂ψ
(4)
k

∂ξ2

)
(ξl)− rJ4

∑
l∈K4

wl

(
V N,(4)ψ

(4)
k

)
(ξl) = 0, k ∈ K4,

where the boundary conditions (6.1) have been incorporated in a weak manner and ξl and wl are the

tensorized Legendre Gauss-Lobatto nodes and weights, respectively.
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After inserting the expansions (6.14) for V N and incorporating the interface conditions in (6.13), we

can rephrase this scheme as a system MV̇ + AV = 0 of algebraic equations which can be written

in the form (5.15) extended to four domains. The system can then be solved using the time-stepping

method in (5.11).

6.4 Numerical Solutions for a Two-Asset European Put Option

In the following we present numerical results for the European put option with two underlying un-

correlated assets, (3.15), (3.16c), (6.1). The case of two uncorrelated assets is not likely in practice,

however, it is an interesting case for studying the properties of spectral approximation. The parameters

used in the numerical experiment are shown in Table 6.1.

Parameter Value

r 0.05

σ1 0.4

σ2 0.4

K 100

T 0.5

Smax 200

Table 6.1: Parameter values for the European put option with two underlying assets.

The Legendre Galerkin method coupled with the Crank-Nicolson method have been implemented with

domain decomposition and the choice of subdomains is shown in Figure 6.1. The square domain is

split into four along the strike price K = 100 of each dimension. The corresponding distribution

of nodes is shown in Figure 6.2 when the polynomial degree of each subdomain Ωi is Ni = 4 for

i = 1, 2, 3, 4. As in the one-dimensional case we denote by N the sum of Ni’s, i.e. N =
∑

iNi. In

addition, let us define N◦ to be the total number of nodes associated with a sum of polynomial degrees

N . In the two-dimensional problem, more degrees of freedom are required for a certain polynomial

order than in the one-dimensional case. In the following, the polynomial degree Ni is equally chosen

on each subdomain. This gives N = 4Ni and N◦ = (2Ni + 1)2.

The chosen domain partitioning reduces the computational time of the method as four of the blocks in

the matrix system (5.15) can be assembled simultaneously. However, due to the shape of the payoff
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function shown in Figure 6.3, this might not be an optimal partition of the domain. Considering the

diagonal region of rapid change in the payoff function, a promising alternative would be to cluster

more nodes along this diagonal.

Figure 6.2: Distribution of the nodes when the polynomial degree of each subdomain Ωi is Ni = 4 for i =
1, 2, 3, 4. The total number of nodes is N◦ = 81.

Figure 6.3: The payoff function for the European put
option with two underlying assets.

Figure 6.4: The reference solution for the European
put option with two underlying assets, computed with
N = 120.

As a reference solution for the multi-asset European pricing problem, the solution is computed with

N = 120. This corresponds to the polynomial degree Ni = 30 on each subdomain Ωi, i = 1, 2, 3, 4

and N◦ = 3721. The solution is shown in Figure 6.4.

The solution of the problem obtained withN = 8, N = 12 andN = 16 is shown in Figure 6.5, Figure

6.6 and Figure 6.7, respectively. The solutions have been expanded through (6.14). For N = 8, the

solution exhibits a slight oscillatory behaviour. For N = 12 and N = 16 the oscillatory behaviour is

gone and the two solutions look inseparable already for these choices of polynomial orders.
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Figure 6.5: The solution of the two-asset pricing problem with N = 8.

Figure 6.6: The solution of the two-asset pricing
problem with N = 12.

Figure 6.7: The solution of the two-asset pricing
problem with N = 16.

In order to study the approximation error we use the norm defined in (6.10) to measure the difference

between the approximate solution and the reference solution. The option price V in S = (K,K) and

the errors related to increasing polynomial orders Ni are shown in Table 6.2.

The convergence of the method is shown in Figure 6.8. We observe a convergence rate of approxi-

mately fourth order. The method clearly outperforms the second order convergence of standard finite

difference methods for option pricing. However, we do not observe the spectral convergence obtained

for the single-asset European option. As shown in Table 6.2, the polynomial order Ni = 24 (corre-

sponding to N = 3Ni = 72 in the single-asset case) yields an error of order 10−5 while an error of

order 10−9 was obtained in the single asset problem, as shown in Table 5.2.
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Ni N◦ V (K,K) ‖Vref − V N‖L̃2

2 25 7.054850 9.445e-01

4 81 6.247754 6.739e-02

6 169 6.638205 5.502e-03

8 289 6.693073 2.957e-03

12 625 6.734036 5.872e-04

16 1089 6.748220 1.640e-04

20 1681 6.754756 3.515e-05

24 2401 6.758302 2.112e-05

Table 6.2: The option price V in S = (K,K) and the error measured with the approximated L2-norm for
different values of the polynomial degree Ni and the total number of nodes N◦.

Figure 6.8: Log-log plot showing the convergence of the method with domain decomposition for Ni varying
from 2 to 24. SGDD refers to Spectral Galerkin with domain decomposition.

The error corresponding to some of the choices of Ni used in the convergence test is shown in Figure

6.9. It is clear that the dominating error is localized along the diagonal of rapid change in the payoff

function. However, the error has a faster rate of decay around the centre of the domain in S = (K,K).

Here, nodes are clustered together due to the distribution of nodes following from the particular do-

main decomposition. These results indicate that spectral convergence may be obtained with a more

clever choice of domain decomposition which increases the density of nodes along the region of rapid

change in the payoff function.
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(a) Error between the numerical solution and the reference
solution for Ni = 4.

(b) Error between the numerical solution and the reference
solution for Ni = 8.

(c) Error between the numerical solution and the reference
solution for Ni = 16.

(d) Error between the numerical solution and the reference
solution for Ni = 24.

Figure 6.9: Error between the numerical solution and the reference solution for different values of the polyno-
mial order Ni.
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Chapter 7

Analysis of the Numerical Scheme for

European Options

We consider the one-dimensional Black–Scholes equation for a European option, (3.6). In the the

following it will be convenient to substitute the time variable t with T − t. This gives a forward

parabolic equation: for S ≥ 0 and t ∈ (0, T ],

∂V (S, t)

∂t
− 1

2
σ2S2∂

2V (S, t)

∂S2
− rS ∂V (S, t)

∂S
+ rV (S, t) = 0,

V (S, 0) = V◦(S),

(7.1)

where V◦ is the payoff function.

The following analysis is based on a similar analysis in chapter two of [2]. We consider the equa-

tion (7.1) on the domain I = (0, S̄), with S̄ a positive constant S̄ > K and assume that we have

homogeneous Dirichlet boundary conditions. Let us introduce the function space

W =

{
v ∈ L2(I)

∣∣∣ xdv
dx
∈ L2(I) = 0

}
,

where the derivative must be understood in the sense of distributions on I . Furthermore, let

W0 =
{
v ∈W (I)

∣∣∣v(S̄) = 0
}
. (7.2)
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We equip the space W0 with the inner product

(v, w)W = (v, w)L2 +

(
x
dv

dx
, x
dw

dx

)
L2

,

and the norm

‖v‖W = (v, v)
1/2
W ,

and one can easily check that W0 is a Hilbert space.

If v ∈W0 the following Poincaré inequality holds, (see [2], Section 2.3.1),

‖v‖L2(I) ≤ 2

∥∥∥∥xdvdx
∥∥∥∥
L2(I)

.

Using the above inequality one can show that the seminorm |v|W (I) =
∥∥x dvdx∥∥L2(I)

is equivalent to the

full norm ‖v‖W (I).

Multiplying equation (7.1) by a test function ψ ∈ W0 and integrating over S, using integration by

parts on the term with a second derivative, we obtain

∫
I

∂V

∂t
ψ dS + (σ2 − r)

∫
I
S
∂V

∂S
ψ dS +

1

2
σ2

∫
I
S2∂V

∂S

dψ

dS
dS + r

∫
I
V ψ dS

− 1

2
σ2S̄2∂V

∂S

(
S̄
)
ψ(S̄) = 0.

Since ψ(S̄) = 0 we arrive at

∫
I

∂V

∂t
ψ dS + (σ2 − r)

∫
I
S
∂V

∂S
ψ dS +

1

2
σ2

∫
I
S2∂V

∂S

dψ

dS
dS + r

∫
I
V ψ dS = 0.

The bilinear form associated with this weak formulation is

a(V, ψ) = (σ2 − r)
∫
I
S
∂V

∂S
ψ dS +

1

2
σ2

∫
I
S2∂V

∂S

dψ

dS
dS + r

∫
I
V ψ dS.

The constants σ and r are assumed to satisfy r ≥ 0 and σ > 0.

The Galerkin scheme for problem (7.1) is defined by
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

V N ∈ C1 ([0,+∞);WN )(
∂V N

∂t (t), ψ
)

+ a(V N , ψ) = 0 for all ψ ∈WN , t > 0,

V N (0) = V N
◦ ,

(7.3)

where V N
◦ is an approximation of the payoff function and WN is a finite dimensional subspace of W0

defined by WN = PN (0, S̄) ∩W0.

In order to show stability for the Galerkin approximation, we start out by showing that the bilinear

form is continuous on W0 ×W0:

|a(u, v)| ≤ |σ2 − r|
∫
I

∣∣∣∣S ∂u∂S v
∣∣∣∣ dS +

1

2
σ2

∫
I

∣∣∣∣S2 ∂u

∂S

dv

dS

∣∣∣∣ dS + r

∫
I
|uv| dS

≤ |σ2 − r|
∥∥∥∥S ∂u∂S

∥∥∥∥
L2(I)

‖v‖L2(I) +
1

2
σ2

∥∥∥∥S ∂u∂S
∥∥∥∥
L2(I)

∥∥∥∥S ∂v∂S
∥∥∥∥
L2(I)

+ r ‖u‖L2(I) ‖v‖L2(I)

≤ 2|σ2 − r||u|W (I)|v|W (I) +
1

2
σ2|u|W (I)|v|W (I) + 4r|u|W (I)|v|W (I)

≤ µ|u|W (I)|v|W (I),

with µ = ( 2|σ2 − r|+ σ2/2 + 4r ).

Furthermore, a bilinear form is said to be weakly coercive if there exists λ ≥ 0 and α > 0 such

that

a(v, v) + λ‖v‖2L2 ≥ α‖v‖2W ,

yielding for λ = 0 the standard definition of coercivity.

Considering a(v, v) for v ∈W0, we see that
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a(v, v) = (σ2 − r)
∫
I
S
∂v

∂S
v dS +

1

2
σ2

∫
I

(
S
∂v

∂S

)2

dS + r

∫
I
v2 dS

=
(σ2 − r)

2

∫
I
S
∂v2

∂S
dS +

1

2
σ2

∫
I

(
S
∂v

∂S

)2

dS + r

∫
I
v2 dS

= −(σ2 − r)
2

∫
I
v2 dS +

1

2
σ2

∫
I

(
S
∂v

∂S

)2

dS + r

∫
I
v2 dS

= −(σ2 − 3r)

2

∫
I
v2 dS +

1

2
σ2

∫
I

(
S
∂v

∂S

)2

dS

= −(σ2 − 3r)

2
‖v‖2L2(I) +

1

2
σ2

∥∥∥∥S ∂v∂S
∥∥∥∥2

L2(I)

≥ −max
(
σ2 − 3r

2
, 0

)
‖v‖2L2(I) +

1

2
σ2|v|2W (I).

Hence the bilinear form is weakly coercive with λ = max ((σ2 − 3r)/2, 0) and α = σ2/2.

Regarding the existence of a solution to problem (7.3) we make the following remark:

Remark 3 Normally, continuity and weak coercivity of a bilinear form leads to the existence of a

unique solution, see [28], Section 11.1.1. Our case is however not quite standard due to the weighted

W -norm which makes a boundary condition in S = 0 unnecessary. Still, we expect there to exist a

unique solution to the problem (7.3).

Now, we show that the following a priori estimate holds for the solution to problem (7.3):

Theorem 7.0.1 The solution to problem (7.3) satisfies the stability estimate

e−2λt‖V N (t)‖2L2(I) + 2α

∫ t

0
e−2λs|V N (s)|2W (I)ds ≤ ‖V

N
◦ ‖2L2(I).

Proof. First, let us notice that if we introduce V N
λ (S, t) := e−λtV N (S, t), where V N (S, t) is the

solution to (7.3) the new unknown V N
λ solves

(
∂V N

λ

∂t
(t), v

)
+ aλ(V N

λ , v) = 0 for all v ∈WN , t > 0,

where aλ(u,w) = a(u,w) + λ(u,w) is coercive. We consider this problem solved by V N
λ .

A weak formulation must hold for each v ∈ WN , hence we can set the test function equal to the

solution itself, v = V N
λ (S, t) = e−λtV N (S, t), with t being given. Then the weak formulation
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becomes

0 =

∫
I

∂V N
λ

∂t
V N
λ dS + aλ(V N

λ , V N
λ ) ≥ 1

2

∫
I

∂

∂t

(
e−2λt(V N )2

)
dS + αe−2λt|V N |2W (I)

=
1

2

d

dt

(
e−2λt‖V N‖2L2(I)

)
+ αe−2λt|V N |2W (I).

By integrating in time we obtain, for all t > 0

e−2λt‖V N (t)‖2L2(I) + 2α

∫ t

0
e−2λs|V N (s)|2W (I)ds ≤ ‖V

N
◦ ‖2L2(I).

Concerning the convergence of the spectral approximation, let us introduce a projection operator, for

all N > 0,

RN :W0 −→WN , (7.4)

such that for N →∞,

‖RNu− u‖W −→ 0 for all u ∈ W0. (7.5)

Writing a(u, v) = (Lu, v), the spaceW0 is a dense subspaceW0 ⊆ DB(L) whereD(L) is the domain

ofL andDB(L) is defined asDB(L) = {w ∈ D(L) | w satisfies the given boundary conditions}.

Before stating a result on convergence, let us also define the dual norm

‖w‖W ∗ = sup
v∈W
v 6=0

(w, v)

|v|W
, (7.6)

for any function w ∈W0.

Then, we have the following result

Theorem 7.0.2 Let RN be the projection operator in (7.4) and let e(t) = RNV (t)− V N (t).
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Then, the error function e(t) satisfies for all t > 0 the error bound

e−2λt‖e(t)‖2L2(I) + α

∫ t

0
e−2λs|e(s)|2W (I)ds ≤

‖e(0)‖2L2(I) + C

(∫ t

0
e−2λs‖(Vt −RNVt)(s)‖2W ∗(I)ds+

∫ t

0
e−2λs|(V −RNV )(s)|2W (I)ds

)
.

Since V −V N = V −RNV +e and therefore ‖V −V N‖ ≤ ‖e‖+‖V −RNV ‖, Theorem 7.0.2 gives

an error bound that can be used to evaluate convergence of the approximate solution. We can conclude

from Theorem 7.0.2 that the approximation is convergent if each term on the right-hand side tends to

0 as N →∞ for V , Vt, and V◦ regular enough. This is true if (7.5) holds uniformly in t for functions

u(t) and ut(t) in a suitable class. This property is guaranteed by approximation results given in e.g

[13], chapter 5.

Proof of Theorem 7.0.2. As in the proof of Theorem 7.0.1, let us consider V N
λ (S, t) := e−λtV N (S, t),

where V N (S, t) is the solution to (7.3). Then, the unknown V N
λ (S, t) solves

(
∂V N

λ

∂t
(t), v

)
+ aλ

(
V N
λ , v

)
= 0 for all v ∈WN , t > 0, (7.7)

where aλ is continuous with continuity constant C ′ = µ + 4λ and coercive with coercivity constant

α. As the true solution Vλ satisfies (7.7), we also have

(
∂Vλ
∂t

(t), v

)
+ aλ (Vλ, v) = 0 for all v ∈WN , t > 0.

Inserting the error function e(t) = RNVλ(t)− V N
λ (t) into the left hand side of equation (7.7) gives

(
∂

∂t
e(t), e(t)

)
+ aλ (e(t), e(t)) =(

∂

∂t

(
RNVλ(t)− V N

λ (t)
)
, e(t)

)
+ aλ

(
RNVλ(t)− V N

λ (t), e(t)
)

=(
∂

∂t
(RNVλ(t)) , e(t)

)
+ aλ (RNVλ(t), e(t))−

(
∂

∂t
V N
λ (t), e(t)

)
− aλ

(
V N
λ (t), e(t)

)
=(

∂

∂t
(RNVλ(t)), e(t)

)
+ aλ (RNVλ(t), e(t))−

(
∂

∂t
Vλ(t), e(t)

)
− aλ (Vλ(t), e(t)) =(

RN
∂

∂t
Vλ(t)− ∂

∂t
Vλ(t), e(t)

)
+ aλ (RNVλ(t)− Vλ(t), e(t)) .
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Then, using the coercivity of aλ which gives

α|e(t)|2W (I) ≤ aλ(e(t), e(t)),

we see that the error function e(t) satisfies

1

2

d

dt
‖e‖2L2(I) + α|e|2W (I) ≤ |(Vλt −RNVλt, e) + aλ(Vλ −RNVλ, e)|.

Then, using definition (7.6) and the continuity of aλ, it follows that

|(Vλt−RNVλt, e)+aλ(Vλ−RNVλ, e)| ≤ ‖Vλt−RNVλt‖W ∗(I)|e|W (I)+C
′|Vλ−RNVλ|W (I)|e|W (I).

Therefore, we have

1

2

d

dt
‖e(t)‖2L2(I) + α|e(t)|2W (I) ≤ C

(
‖Vλt −RNVλt‖W ∗(I) + |Vλ −RNVλ|W (I)

)
|e|W (I),

where C = max(1, C ′) and by integrating in time we get, for all t > 0

‖e(t)‖2L2(I) + α

∫ t

0
|e(s)|2W (I)ds ≤

‖e(0)‖2L2(I) + C

(∫ t

0
‖(Vλt −RNVλt)(s)‖2W ∗(I)ds+

∫ t

0
|(Vλ −RNVλ)(s)|2W (I)ds

)
.

Inserting e−λtV N (S, t) for V N
λ (S, t) and e−λtV (S, t) for Vλ(S, t) gives the result stated in Theorem

7.0.2.

To get an optimal error estimate, RNV is usually chosen as the best approximation of V in WN

with respect to the norm |·|W , or as an element in WN that asymptotically behaves like the best

approximation in this norm, namely

|V −RNV |W ≤ C inf
v∈WN

|V − v|W ,

for a constant C not depending on N .

In the above analysis we have considered a Galerkin approximation, while the scheme (5.10) is a

Galerkin scheme with numerical integration. Under similar requirements as the ones above, a scheme

with numerical integration can be analyzed in a similar manner (see [13], sect. 6.5.1).
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The analysis of the scheme for the two-dimensional case is not included here, but would be similar to

the one-dimensional case.
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Chapter 8

The Single-Asset American Pricing

Problem

8.1 The Variational Inequality

In the following we seek to determine the value V (S, t) of an American option. For the American

option, early exercise is permitted at any time prior to expiration. Since this type of option gives more

rights to the owner than the European style option, its price should be higher. Consider, as earlier for

the European pricing problem, an asset with price S which follows the stochastic process

dSt = St(µdt+ σdXt),

where µ is the drift rate, σ is the volatility and dXt is the increment of a standard Brownian motion

process. Following the introduction in Chapter 6 of [35], there exists a probability P∗ under which the

value of the asset is a martingale. It is possible to prove that under this probability, the value of the

American option with payoff V◦ and expiration time T is

V (St, t) = sup
τ∈Tt,T

E∗
(
e−

∫ τ
t r(s)dsV◦(Sτ )

∣∣∣Ft) ,
where Tt,T denotes the set of stopping times with values in [t, T ], (see [20]). It can be proven that
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V (S, t) is also the solution to the variational form of the following set of inequalities:

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV ≤ 0 in R+ × [0, T ),

V − V◦ ≥ 0 in R+ × [0, T ),(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV

)
(V − V◦) = 0 in R+ × [0, T ),

(8.1a)

(8.1b)

(8.1c)

with final data

V |t=T = V◦.

The proof can be found in [20].

In the following we will consider the theory of a vanilla put, having the payoff function (3.7). To a

large extent, these results hold also for more general functions [2].

Two major methodologies for determining the value of an American option is the quasi-variational

inequality formulation as described in [4, 5] and a free boundary problem formulation as in [21, 33].

In the following we propose another formulation based on the penalty method. With the penalty

formulation, we avoid the difficulties associated with the side constraints that need to be fulfilled in

the quasi-variational inequality formulation and there is no free boundary that needs to be determined,

as in the free boundary formulation. This approach allows for the use of numerical algorithms that

are easier to implement than those based on the quasi-variational inequality formulation and the free

boundary problem formulation.

8.2 The Penalty Method

In order to solve the American pricing problem (8.1) numerically we propose a penalization method

which provides an approximation to the American option value. We present a nonsmooth Newton

iteration to solve the resulting penalized problem.

The idea of the penalty method is to replace problem (8.1) by the nonlinear partial differential equa-

tion
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∂Vε
∂t
−
(
σ2

2
S2∂

2Vε
∂S2

+ rS
∂Vε
∂S
− rVε

)
+

1

ε
[V◦ − Vε]+ = 0, (8.2)

where 1/ε is the penalty parameter. The nonlinear term 1/ε [V◦ − Vε]+ is used to penalize the positive

part of V◦ − Vε.

For bounded LVε, where L denotes the Black-Scholes differential operator, and 1/ε sufficiently large,

[V◦ − Vε]
+ ≈ 0, so that (8.1b) is satisfied within a tolerance depending on 1/ε [34]. It has been

shown in [4] that the rate of convergence of the piecewise linear penalty approach (8.2) is of order

O(ε1/2).

Using this approach we obtain the penalized problem


∂Vε
∂t −

(
σ2

2 S
2 ∂2Vε
∂S2 + rS ∂Vε∂S − rVε

)
+ 1

ε [V◦ − Vε]+ = 0,

Vε|t=T = V◦.

(8.3)

We augment the problem (8.3) with the boundary conditions (3.8a),(3.9). Then the weak formulation

of the problem reads



For t ∈ (0, T ) a.e., find Vε(t) ∈W such that

d
dt (Vε(t), ψ) + a(Vε(t), ψ) + 1

ε ([V◦ − Vε]
+, ψ) = 0 for all ψ ∈W,

Vε|t=T = V◦,

(8.4)

for W defined in (7.2) and with (·, ·) and a(·, ·) given in (5.4).

A proof of the existence of a unique solution in W to (8.4) can be found in [34].

One of the advantages of the penalty method is that the associated algorithm has finite termination,

i.e for an iterate sufficiently close to the solution, the algorithm terminates in one iteration. This is

particularly advantageous in American option pricing where we have an excellent initial guess from the

solution in the previous timestep. Finite termination also implies that the number of iterations required

for convergence is insensitive to the size of the penalty term, up until machine precision. Furthermore,

if the penalized problem is solved using Newton iteration, the iteration is globally convergent when

using full Newton steps [18].

Another advantage of the penalty method is that a single technique can be used for one dimensional
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or multi-dimensional problems. Hence this is a suitable method for extending the American pricing

problem to higher dimensions. This could be relevant for designing an efficient method for pricing

American options on baskets which is still an interesting open problem [2].

8.3 A Legendre Galerkin Scheme with Numerical Integration and Do-

main Decomposition

We now semi-discretize the problem (8.4), localized on (0, Smax), with the Legendre Galerkin method

used earlier for the European option.

In the case of European options we initially observed lower order convergence attributed to the non-

smooth payoff function. As a remedy for this, we apply domain decomposition also in the case of

American options, since we are dealing with the same initial data and in addition have discontinuous

second derivatives across the early exercise boundary. For simplicity, theory will be presented for the

choice of two subdomains.

Let us split the domain Ω = (0, Smax) into the two subdomains

Ω1 = (0,K), Ω2 = (K,Smax).

As trial and test functions we take again the Lagrange polynomials based on the Legendre Gauss-

Lobatto nodes defined in (5.1) and denote by Ni the polynomial order in Ωi, i = 1, 2.

Upon setting V (i)
ε = Vε|Ωi , and for (·, ·)Ωi and ai(·, ·) defined as in (5.16), the two-domain formulation

of (8.4) is



For t ∈ (0, T ) a.e., find V
(i)
ε (t) ∈W such that

d
dt

(
V

(i)
ε (t), ψ

(i)
j

)
Ωi

+ ai

(
V

(i)
ε (t), ψ

(i)
j

)
+ 1

ε

(
[V◦ − V (i)

ε (t)]+, ψ
(i)
j

)
Ωi

= 0,

V (i)(0) = V◦|Ωi , j = 0, ..., Ni, i = 1, 2,

(8.5)

accompanied by the following interface conditions
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
V

(1)
ε (S) = V

(2)
ε (S)

∂V
(1)
ε
∂n (S) = −∂V

(2)
ε
∂n (S), S ∈ ∂Ω1 ∩ ∂Ω2.

(8.6)

We set V (i)
ε = Vε|Ωi , and search for a spectral approximation V (N,i)

ε to the solution V (i)
ε of the problem

(8.5), (8.6) in the form

V N,(i)
ε =

Ni∑
k=0

V
(i)
ε,k (t)ψ

(i)
k (x), x ∈ Ωi, i = 1, 2, (8.7)

where ψ(i)
k are the trial functions associated with the nodes in Ωi.

The interpolated penalty term is given by

πN,(i)ε

(
V N,(i)
ε

)
=

Ni∑
k=0

πε

(
V N,(i)
ε

)
(xk, t)ψ

(i)
k (x)

=
1

ε

Ni∑
k=0

[
V◦,k − V

(i)
ε,k (t)

]+
ψ

(i)
k (x), x ∈ Ωi, i = 1, 2,

(8.8)

where V◦,k is the initial value in node k.

After mapping each subdomain to the reference domain Ω̂ = (−1, 1) through the linear transformation

in (5.7) and inserting the approximations V N,(i)
ε in (8.7) and πN,(i)ε

(
V
N,(i)
ε

)
in (8.8) we obtain the

numerical scheme

J1

∫
Ω̂

dV

dt

N,(1)

ψ
(1)
j dξ +

1

2J1
σ2K2∂V

N,(1)

∂ξ
ψ

(1)
j (K)

− (σ2 − r)
∫

Ω̂
S(ξ)

∂V N,(1)

∂ξ
ψ

(1)
j dξ − 1

2J1
σ2

∫
Ω̂
S2(ξ)

∂V N,(1)

∂ξ

dψ
(1)
j

dξ
dξ

− rJ1

∫
Ω̂
V N,(1)ψ

(1)
j dξ + J1

∫
Ω̂
πN,(1)
ε (V N,(1)

ε )(t)ψ
(1)
j dξ = 0, ξ ∈ Ω̂, j = 0, ..., N1

J2

∫
Ω̂

dV

dt

N,(2)

ψ
(2)
j dξ − 1

2J2
σ2K2∂V

N,(2)

∂ξ
ψ

(2)
j (K)

− (σ2 − r)
∫

Ω̂
S(ξ)

∂V N,(2)

∂ξ
ψ

(2)
j dξ − 1

2J2
σ2

∫
Ω̂
S2(ξ)

∂V N,(2)

∂ξ

dψ
(2)
j

dξ
dξ

− rJ2

∫
Ω̂
V N,(2)ψ

(2)
j dξ + J2

∫
Ω̂
πN,(2)
ε (V N,(2)

ε )(t)ψ
(2)
j dξ = 0, ξ ∈ Ω̂, j = 0, ..., N2,
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where Ji is the Jacobian of the transformation associated with Ωi, i = 1, 2.

If we now apply the Gauss-Lobatto quadrature formula (5.9) in order to evaluate the integrals, we

arrive at the scheme

J1

N∑
k=0

wk

(
dV

dt

N,(1)

ψ
(1)
j

)
(ξk) +

1

2J1
σ2K2∂V

N,(1)

∂ξ
ψ

(1)
j (1)

− (σ2 − r)
N∑
k=0

wk

(
S
∂V N,(1)

∂ξ
ψ

(1)
j

)
(ξk)−

1

2J1
σ2

N∑
k=0

wk

(
S2∂V

N,(1)

∂ξ

dψ
(1)
j

dξ

)
(ξk)

− rJ1

N∑
k=0

wk

(
V N,(1)ψ

(1)
j

)
(ξk) + J1

N∑
k=0

wk

(
πN,(1)
ε

(
V N,(1)

)
ψ

(1)
j

)
(ξk) = 0,

ξ ∈ Ω̂, j = 0, ..., N1

J2

N∑
k=0

wk

(
dV

dt

N,(2)

ψ
(2)
j

)
(ξk)−

1

2J2
σ2K2∂V

N,(2)

∂ξ
ψ

(2)
j (−1)

− (σ2 − r)
N∑
k=0

wk

(
S
∂V N,(2)

∂ξ
ψ

(2)
j

)
(ξk)−

1

2J2
σ2

N∑
k=0

wk

(
S2∂V

N,(2)

∂ξ

dψ
(2)
j

dξ

)
(ξk)

− rJ2

N∑
k=0

wk

(
V N,(2)ψ

(2)
j

)
(ξk) + J2

N∑
k=0

wk

(
πN,(2)
ε

(
V N,(2)

)
ψ

(2)
j

)
(ξk) = 0,

ξ ∈ Ω̂, j = 0, ..., N2,

where ξk and wk are the Legendre Gauss-Lobatto nodes and weights, respectively.

After incorporating the interface conditions (8.6) into these equations we can write the system in the

form

MV̇ +AV + MΠε(V − V◦) = 0, (8.9)

with M and A set up as in (5.13) and (5.14), respectively, and Πε is the diagonal matrix with en-

tries

[Πε]ii =


1
ε , Vi < V◦,i

0, otherwise.
(8.10)

In total, we have a system of N + 1 algebraic equations, when setting N = N1 +N2.

We can now find a numerical solution by implementing an appropriate solver for the nonlinear system
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(8.9). One possibility is to discretize the system in time using a two-level implicit time-stepping

method and then use Newton iteration to solve the resulting nonlinear discrete equations.

If we define, based on (8.10)

[Πε(V
n+1)]ii =


1
ε , V n+1

i < V◦,i

0, otherwise,

and denote Πε,n+1 ≡ Πε(V
n+1), then applying the time-stepping method (5.11) with splitting param-

eter θ ∈ [1/2, 1] to (8.9) gives the fully discrete system

M(V n+1 − V n) + ∆tA[θV n+1 + (1− θ)V n] + ∆tθMΠε,n+1(V n+1 − V◦)

+ ∆t(1− θ)MΠε,n(V n − V◦) = 0,
(8.11)

where ∆t = tn+1 − tn.

8.4 Penalty Iteration

Let us define

(
Π̄ε,n+1

)
i

=


1
ε , V n+1

i < V◦,i

0, otherwise,

and let the derivative of the penalty term, required in the Newton iteration, be given by

∂
(
Π̄ε,n+1

)
i

(
V◦,i − V n+1

i

)
∂V n+1

i

=


−1
ε , V n+1

i < V◦,i

0, otherwise.

This is one particular choice of a member of the generalized Jacobian of the system (8.11). Based on

this we can present the following algorithm constructed from a generalized Newton iteration applied

to (8.11) [18].

Let
(
V n+1

)k be the kth estimate for V n+1. For notational convenience, we set Πk
ε,n+1 ≡ Πε

((
V n+1

)k)
and V k ≡

(
V n+1

)k. If we take as initial guess V 0 = V n, then
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For k = 0, ... until convergence

[
M + ∆t

(
Aθ + θMΠk

ε,n+1

)]
V k+1 =

[
M −∆t

(
A(1− θ)− (1− θ)MΠk

ε,n

)]
V n

+ ∆t
[
θMΠk

ε,n+1 + (1− θ)MΠk
ε,n

]
V◦

if

max
i

∣∣∣(V n+1
i

)k+1 −
(
V n+1
i

)k∣∣∣
max

(
1,
∣∣∣(V n+1

i

)k+1
∣∣∣) < tol

 or
[
Πk+1
ε = Πk

ε

]
quit

End For,

where tol is some specified tolerance.

An alternative for solving the nonlinear system (8.9) is to use MATLAB’s ODE solver ode15s [1],

which provides an efficient solver for stiff differential equations. This method have been used in the

numerical experiments presented in the following section.

8.5 Numerical Solutions for a Single-Asset American Put Option

Here we present results from solving the American vanilla pricing problem (8.1), (3.7), (3.9) using

the penalty Legendre Galerkin method with numerical integration and domain decomposition. The

penalty term is set to 1/ε = 108. After the spatial discretization, the resulting ODE has been solved

using MATLAB’s ODE solver ode15s, for which documentation can be found in B.1. The results

are shown for the final timestep.

The choice of parameters are shown in Table 8.1.

Parameter Value

r 0.05

σ 0.2

K 10

T 0.25

Smax 60

Table 8.1: Parameter values for the American put option.
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The domain decomposition has been implemented with four subdomains, Ω1 = (0, A), Ω2 = (A,K),

Ω3 = (K,B), Ω4 = (B,Smax), whereA andB have been chosen in order to optimize the convergence

rate. The values A = 8.68 and B = 22 have been used in all experiments in this section. The value

of A corresponds to the point of early exercise at the final timestep. As earlier we let N denote the

sum of polynomial degrees on each subdomain, i.e. N =
∑

iNi, i = 1, 2, 3, 4. The distribution of the

nodes for Ni = 7 on each subdomain Ωi is shown in Figure 8.1. All the following results have been

obtained with equal Ni’s on each subdomain.

(a) Distribution of the nodes along the S-axis. (b) Distribution of option values V corresponding to the
nodes in (a).

Figure 8.1: Distribution of nodes in the case Ni = 7 for i = 1, 2, 3, 4. In (a) the distribution of the nodes is
shown along the S-axis while (b) shows the location of each calculated option value V based on these nodes.

The optimal exercise boundary for the American pricing problem with the given parameters is shown

in Figure 8.2.

Figure 8.2: The optimal exercise boundary for an American put with parameters as in Table 8.1.
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Since the American pricing problem (8.1), (3.7), (3.9) does not admit a viable exact solution we

compare numerical results to a reference solution of fine resolution computed with N = 560, corre-

sponding to the polynomial degree Ni = 140 on each subdomain Ωi, i = 1, 2, 3, 4. The reference

solution is shown in Figure 8.3.

(a) Option price solution with N = 560. (b) An enlarged image of the case in (a) around the region of
rapid change.

Figure 8.3: Option price solution used as a reference solution in the numerical experiments.

Numerical solutions for different values of N are shown in Figure 8.4. Setting N = 16 gives the

results in Figures 8.4a and 8.4b. The option price for the whole domain Ω = (0, Smax) is shown to the

left and the right hand side shows an enlarged image of the option price around the strike priceK. The

numerical solution exhibits oscillatory behaviour and deviates significantly from the exact solution.

Increasing N slightly to N = 20 gives the results shown in Figures 8.4c and 8.4d. For this value of

N , the oscillatory behaviour is less prominent. Results for N = 28, found in Figures 8.4e and 8.4f,

shows a solution very similar to the reference solution.

Ni V (K) ‖Vref − V N‖L̃2

2 0.28458938 5.504e-02

4 0.39164045 1.403e-02

8 0.34883499 8.778e-04

16 0.34801996 1.744e-05

32 0.34798737 8.549e-07

64 0.34798545 1.238e-07

128 0.34798567 7.786e-09

Table 8.2: The option price V in S = K and the error measured with the approximated L2-norm for different
values of Ni, i = 1, 2, 3, 4.
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(a) Option price solution obtained with N = 16. (b) An enlarged image of the case in (a) around the region of
rapid change.

(c) Option price solution obtained with N = 20. (d) An enlarged image of the case in (c) around the region of
rapid change.

(e) Option price solution obtained with N = 28. (f) An enlarged image of the case in (e) around the region of
rapid change.

Figure 8.4: The solution of the American pricing problem for different values of N compared to a reference
solution with N = 560.
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In order to study the approximation error, the norm defined in (5.12) is used to measure the difference

between the approximate solution and the reference solution. The option price V in S = K and the

errors related to increasing values of the polynomial order Ni are shown in Table 8.2.

Convergence of the method is shown in Figure 8.5. We observe a convergence rate of approximately

fourth order. Spectral accuracy is not obtained, and it is clear that the error decays slower than in the

case of single-asset European options. However, in terms of convergence rates, the method is superior

to second order methods like standard finite differences.

The error for some of the values of Ni used in the convergence test is shown in Figure 8.6. The

dominating error is located near the slope discontinuity of the payoff function in S = K and at the

point of early exercise. This is not surprising due to the non-smoothness of the payoff function in

S = K and the discontinuous second derivatives across the early exercise boundary of the American

option value. An error is also associated with the subdomain interface in B. Based on the error

plots, it seems possible to find a more optimal partitioning of the domain Ω that could further increase

the rate of convergence. One possibility is to track the early exercise boundary through time and let

this point be the interface of the first two subdomains. However, this would result in more complex

computations. Another idea for improvement is to adapt the polynomial order in each subdomain such

that the density of nodes on each side of the interface is more similar. It may also be advantageous

to investigate a more sophisticated penalty formulation, since large values of the penalty parameter is

known to cause computational problems in practice [16].
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Figure 8.5: Log-log plot showing the convergence of the method with domain decomposition for Ni varying
from 2 to 128. SGDD refers to Spectral Galerkin with domain decomposition.
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(a) Error between the numerical solution and the reference
solution for Ni = 4.

(b) Error between the numerical solution and the reference
solution for Ni = 8.

(c) Error between the numerical solution and the reference
solution for Ni = 16.

(d) Error between the numerical solution and the reference
solution for Ni = 32.

(e) Error between the numerical solution and the reference
solution for Ni = 64.

(f) Error between the numerical solution and the reference
solution for Ni = 128.

Figure 8.6: Error between the numerical solution and the reference solution for different values of the polyno-
mial order Ni.
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Chapter 9

Conclusion

The aim of this thesis has been to develop spectral methods for option pricing in one and two dimen-

sions under the Black-Scholes model. The work is motivated by interesting challenges existing in

several option pricing problems. Legendre Galerkin schemes with numerical integration and domain

decomposition has been derived for pricing European and American options. In the case of European

vanilla options spectral convergence is obtained, providing evidence that the method is promising

for option pricing problems. The implementation of domain decomposition proves to be an efficient

remedy for eliminating low-order convergence due to non-smooth payoff functions.

For the two-asset European pricing problem, a convergence rate of fourth order is observed. The

geometry of the problem combined with numerical results indicate that spectral convergence might

be obtained with a more clever domain decomposition. For American vanilla options, the method has

been implemented based on a penalty formulation. Also for this problem, fourth order convergence

is observed. The error decays at a slower rate than in the case of single-asset European options.

The slower convergence compared to single-asset European options may be due to the less smooth

solution of American options and the more challenging geometry attributed to the optimal exercise

boundary. Numerical results indicate that the convergence rate may be improved with a more optimal

choice of subdomains in the domain decomposition method. In total, quite satisfactory results have

been found for some basic standard and non-standard options. The conclusion is thus that the Legendre

Galerkin method with numerical integration and domain decomposition is a very promising alternative

for option pricing problems.
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Chapter 10

Suggestions for Further Work

Numerical experiments for the two-asset European pricing problem shown in Section 6.4 and the

American pricing problem shown in Section 8.5 both lack to provide fully satisfactory convergence

results. Further work on the choice of subdomains in the domain decomposition method may be

sufficient to restore spectral convergence for these option pricing problems. For the two-dimensional

European problem, it is tempting to investigate a coordinate transformation that rotates the grid 45◦,

in order to cluster nodes on the diagonal of rapid change of the payoff function.

As mentioned in Section 8.2, the given piecewise linear penalty approach used for the American

pricing problem has been shown to be of order O(ε1/2). This convergence rate requires the penalty

parameter 1/ε to be sufficiently large in order to achieve a given accuracy of an approximate solution.

However, large values of 1/ε are known to cause computational issues in practice [16]. As an alterna-

tive, one may consider the power penalty method presented for option pricing by Wang et al. [34],

which is shown to be of order O(εk/2). This allows for obtaining an accurate solution with a small

penalty parameter.

It would further be interesting to extend the work beyond two dimensions in space. Derivative se-

curities in financial markets often depend on a variety of underlying financial variables combined

with early exercise features. Examples are American basket options with multiple underlying assets,

American options on foreign currencies and convertible bonds. If spectral convergence is obtained, the

method might outperform current methods for multi-asset option problems, like Monte Carlo meth-

ods.

In relation to the topic above, it would also be interesting to further investigate appropriate time differ-

encing methods. High order convergence in time is necessary to make multidimensional applications
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practical. The difficulty is again associated with the non-smooth payoff function and the discontinuous

second derivatives across the early exercise boundary of the American option. Attempts to solve the

PDE with standard high-order time discretization methods with a fixed time step generally encounters

difficulties, as high-order fixed time step discretization schemes require the existence of higher order

derivatives to realize high order convergence [24].

Further work could also be put into a thorough comparison study, comparing the method presented

here to several other existing methods seen in the literature. If the Legendre-Galerkin spectral method

can compete with other methods in terms of both accuracy and computational complexity, it could po-

tentially be interesting in financial applications. In addition to comparing the method to fundamentally

different methods, one could also compare it to other types of spectral methods such as the rational

spectral collocation method discussed for options by Pindza [27].

Finally, another interesting task is to extend the analysis to establish the stability of the discretized

American pricing problem and derive an error bound for the approximate solution.
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Appendix

A Mathematics

A.1 Itô’s Formula

Theorem A.1 The general Itô formula

Let

dX(t) = udt+ vdB(t)

be an n-dimensional Itô process. Let g(t, x) = (g1(t, x), ..., gp(t, x)) be a C2 map from [0,∞)× Rn

into Rp. Then the process

Y (t, ω) = g(t,X(t))

is again an Itô process, whose component number k, Yk is given by

dYk =
∂gk
∂t

(t,X)dt+
∑
i

∂gk
∂xi

(t,X)dXi +
1

2

∑
i,j

∂2gk
∂xi∂xj

(t,X)dXidXj

where dBidBj = δijdt, dBidt = dtdBi = 0.

This formula can be found in [37], Section 4.2.
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B Software and Implementation

B.1 MATLAB ODE Solver ode15s

The MATLAB solver ode15s is an ODE solver that solves stiff differential equations. It is a variable-

step, variable-order solver based on the numerical differentiation formulas of orders one to five.

Description:

[t, y] = ode15s(odefun, tspan, y0), where tspan = [t0 tf ], integrates the system of differential equations

y′ = f(t, y) from t0 to tf with initial conditions y0.

For the full MATLAB documentation, see [1].
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