
June 2009
Morten Hartmann, IDI
Håvard Skinnemoen, Atmel

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Linux Support for AVR32 UC3A
Adaption of the Linux kernel and toolchain

Pål Driveklepp
Olav Morken
Gunnar Rangøy

Problem Description
The goal of this project is to adapt the Linux kernel and a toolchain to support the Atmel AVR32
UC3A0512 microcontroller. This involves adaption of the GNU Compiler Collection (GCC) and
associated tools, and the Linux kernel and drivers specific to the Atmel AVR32 UC3 CPU
architecture. In addition, a set of useful applications should be selected, compiled and tested.

Assignment given: 15. January 2009
Supervisor: Morten Hartmann, IDI

i

Abstract
The use of Linux in embedded systems is steadily growing in popularity. The UC3A is a
series of high performance, low power 32-bit microcontrollers aimed at several industrial
and commercial applications including Programmable Logic Controllers (PLCs), instru-
mentation, phones, vending machines and more. The main goal of this project was to
complete the adaptation of the Linux kernel, compiler and loader software, in order to
enable the Linux kernel to load and run applications on this device. In addition, a set
of useful applications should be picked, compiled and tested on the target platform to
indicate a complete software solution.

This master’s thesis is a continuation, by the same three students, of the work of
a student project during the fall of 2008. In this report we present in detail the find-
ings, challenges, choices and and solutions involved in the working process. During the
course of this project, we have successfully adapted the Linux kernel, and a toolchain
for generating binaries loadable by Linux. A set of test applications have been compiled
and tested on the resulting platform. This project has resulted in the submission of
a revised patch series for the U-Boot boot loader, one patch series for Linux, and one
for the toolchain. Requirements have been created, and tests for the requirements have
been carried out.

ii

iii

Preface
This master’s thesis documents the work done by a group of three students working on
their thesis assignment during the spring of 2009 at the Department of Computer and
Information Science at the Norwegian University of Science and Technology.

We would like to thank Håvard Skinnemoen at Atmel Norway for his help and guid-
ance, and Atmel for providing the required hardware. We would also like to thank our
supervisor Morten Hartmann. A special thanks goes to Øyvind Rangøy, who took the
time to read and comment errors in this report.

iv

CONTENTS v

Contents

Abstract i

Preface iii

Contents v

1 Introduction 1
1.1 Assignment . 1
1.2 Project continuation . 2
1.3 Interpretation . 3

1.3.1 Requirements . 4
1.4 Structure of this report . 5

2 Background 7
2.1 Virtual memory . 7

2.1.1 Copy-on-write . 8
2.2 Memory Protection Unit (MPU) . 9
2.3 Unaligned memory copy . 9
2.4 Static Random Access Memory (SRAM) 9
2.5 AVR32 Architecture . 11

2.5.1 Registers . 11
2.5.2 Instructions . 14
2.5.3 Sub-architectures . 14
2.5.4 Revisions . 15
2.5.5 Execution modes . 15
2.5.6 Exception and interrupt handling 16

2.6 The AP7000 microcontroller . 16
2.7 The UC3A0512 microcontroller . 17

2.7.1 Logical layout . 17
2.7.2 Features . 19
2.7.3 Chip revisions . 25
2.7.4 AP7000 versus UC3A0512 . 25

2.8 EVK1100 . 26

vi CONTENTS

2.9 JTAG . 28
2.10 Binary formats . 28

2.10.1 Terminology . 29
2.10.2 ELF . 30
2.10.3 FDPIC ELF . 33
2.10.4 Flat . 36
2.10.5 Comparison of binary formats . 36

2.11 Linux . 36
2.11.1 Configuration . 37
2.11.2 Tasks . 38
2.11.3 uClinux . 39

2.12 U-Boot . 40
2.12.1 Contributions . 40

2.13 Toolchain . 40
2.13.1 Terminology . 40
2.13.2 Linux toolchain . 41
2.13.3 GCC . 42
2.13.4 GNU Binutils . 43
2.13.5 elf2flt . 43
2.13.6 Libraries . 43
2.13.7 GDB . 44

2.14 BusyBox . 44
2.15 Server protocols . 45

2.15.1 DHCP . 46
2.15.2 TFTP . 46
2.15.3 NFS . 46

2.16 Open-source collaboration . 46
2.16.1 Git . 46
2.16.2 Merging with current versions . 46
2.16.3 Splitting up patches . 47
2.16.4 Patch submission format . 47
2.16.5 Signing your work . 47
2.16.6 Upstream . 48

2.17 Previous work . 48
2.17.1 AP7 series . 48
2.17.2 Linux support for MMU-less systems 48
2.17.3 Implementations for other architectures 48
2.17.4 SRAM expansion board . 49

3 Implementation 51
3.1 Methodology . 51

3.1.1 Setting goals and preliminary milestones 53
3.1.2 Milestone identification and implementation 53

CONTENTS vii

3.1.3 Review . 54
3.2 Expected changes . 54

3.2.1 U-Boot . 54
3.2.2 Select binary format . 54
3.2.3 Linux . 54
3.2.4 Toolchain . 55
3.2.5 User space . 55

3.3 Development setup . 55
3.3.1 JTAG . 56
3.3.2 Serial cable . 57
3.3.3 Networking setup . 57

3.4 U-Boot . 57
3.4.1 Network speed limiting . 58
3.4.2 Adding the EVK1100 board to lists 58
3.4.3 Precedence safety fix . 58
3.4.4 Esthetical and other minor changes 59
3.4.5 Auto detection of PHY address . 59
3.4.6 Removal of bug workaround . 59

3.5 Binary format selection . 59
3.6 Linux kernel . 60

3.6.1 Rebasing . 60
3.6.2 Configuration files and make files 61
3.6.3 UC3A support . 61
3.6.4 Cache . 62
3.6.5 Clocks . 62
3.6.6 Limiting network device speed . 63
3.6.7 GPIO . 63
3.6.8 LED device driver . 63
3.6.9 Serial Peripheral Interface (SPI) with DMA support 63
3.6.10 Interrupt bug workaround . 64
3.6.11 Memory to memory copying . 64
3.6.12 Memory copying with checksumming 64
3.6.13 User space memory access . 65
3.6.14 Address space layout . 67
3.6.15 Event handling entry points . 68
3.6.16 FDPIC ELF . 72
3.6.17 Splitting of paging_init . 73
3.6.18 Use of existing macro . 74
3.6.19 Patch summary . 74

3.7 Toolchain adaptation . 76
3.7.1 GCC . 76
3.7.2 Binutils . 78
3.7.3 uClibc . 82

viii CONTENTS

3.7.4 elf2flt . 83
3.7.5 PIE support . 84

3.8 SRAM optimization . 84
3.8.1 Routing of signals . 85
3.8.2 Joystick pull-up conflict . 85
3.8.3 LED resistor conflict . 86

3.9 SPI chip enable . 86
3.10 BusyBox . 88
3.11 Obtaining and distributing source code . 89

3.11.1 Buildroot . 89
3.11.2 GCC . 89
3.11.3 GNU Binutils . 90
3.11.4 uClibc . 90
3.11.5 elf2flt . 90
3.11.6 U-Boot . 90
3.11.7 Linux . 91
3.11.8 BusyBox . 91

4 Testing and results 93
4.1 U-Boot . 93

4.1.1 SPI support, requirement 1 . 93
4.1.2 Loading from DataFlash or SD card, requirement 2 93
4.1.3 Patch cleanup, requirement 3 . 93

4.2 Linux . 94
4.2.1 Booting Linux kernel, requirement 4 94
4.2.2 Running user space binaries, requirement 5 95
4.2.3 Hardware support, requirement 6 95
4.2.4 Exceptions, requirement 7 . 96
4.2.5 Code submission, requirement 8 . 98

4.3 Toolchain . 98
4.3.1 Select binary format, requirement 9 98
4.3.2 Produce binaries, requirement 10 98
4.3.3 Produce libraries, requirement 11 99
4.3.4 Code submission, requirement 12 99

4.4 Linux user space . 99
4.4.1 BusyBox, requirement 13 . 99

4.5 Patch submission feedback . 99
4.5.1 U-Boot . 99
4.5.2 Linux . 104
4.5.3 Toolchain . 111

5 Conclusion 113

CONTENTS ix

6 Future work 115
6.1 U-Boot . 115
6.2 Linux . 115

6.2.1 PDCA support . 115
6.2.2 SPI support . 116
6.2.3 MPU support . 116
6.2.4 Support for on-chip devices . 116
6.2.5 Memory copy optimization . 116
6.2.6 Debug support . 116
6.2.7 FDPIC ELF support for systems with an MMU 117

6.3 Toolchain . 118
6.3.1 Dynamic linking . 118
6.3.2 Error handling . 118

6.4 AVR32B series compatibility . 118

7 Bibliography 121

A Acronyms 123

B U-Boot patch cleanup 127
B.1 Network limiting reorganization . 127
B.2 Add board to lists . 128
B.3 Precedence safety fix . 128
B.4 Board configuration . 128
B.5 Keeping lists sorted . 129
B.6 Removal of TODOs . 129
B.7 Coding style fixes . 131

C Unsubmitted U-Boot changes 135

D Linux kernel patches 137
D.0 Cover letter . 137
D.1 Network speed limiting . 141
D.2 Avoid register reset . 141
D.3 Split paging function . 142
D.4 Use task_pt_regs macro . 143
D.5 FDPIC ELF support . 144
D.6 Introduce cache and aligned flags . 145
D.7 Disable mm-tlb.c . 146
D.8 fault.c for !CONFIG_MMU . 146
D.9 ioremap and iounmap for !CONFIG_MMU 147
D.10 MMU dummy functions . 148
D.11 mm_context_t for !CONFIG_MMU . 149
D.12 Add cache function stubs . 149

x CONTENTS

D.13 copy_user.S for !CONFIG_NOUNALIGNED 150
D.14 csum_partial: support for chips that cannot do unaligned accesses 152
D.15 Avoid unaligned access in uaccess.h . 154
D.16 memcpy for !CONFIG_NOUNALIGNED 155
D.17 Mark AVR32B code with subarch flag . 156
D.18 mm-dma-coherent.c: ifdef AVR32B code 157
D.19 Disable ret_if_privileged macro . 157
D.20 AVR32A-support in Kconfig . 158
D.21 AVR32A address space support . 158
D.22 Change maximum task size for AVR32A 160
D.23 Fix __range_ok for AVR32A in uaccess.h 160
D.24 Support for AVR32A entry-avr32a.S . 161
D.25 Change HIMEM_START for AVR32A . 170
D.26 New pt_regs layout for AVR32A . 170
D.27 UC3A0512ES interrupt bug workaround 171
D.28 UC3A0xxx support . 172
D.29 Board support for ATEVK1100 . 204

E PDCA, SPI and DataFlash support 207

F Toolchain patches 217
F.1 Coverletter . 217
F.2 GCC changes . 217
F.3 GNU binutils changes . 219
F.4 uClibc changes . 227
F.5 Unsubmitted GCC change . 232

G Patch for elf2flt 233

H EVK1100 SRAM expansion board 237

I Test source code 239
I.1 Linux exception tests . 239

I.1.1 Unaligned read . 239
I.1.2 Unaligned write . 239
I.1.3 Invalid read . 240
I.1.4 Invalid write . 240
I.1.5 Invalid opcode (aligned) . 241
I.1.6 Invalid opcode (unaligned) . 241

I.2 Toolchain tests . 241
I.2.1 Simple program . 241
I.2.2 More complex program . 242

CONTENTS xi

J Digital appendices 243
J.1 Linux patches . 243
J.2 U-Boot patches . 243
J.3 U-Boot unsubmitted changes . 243
J.4 Toolchain patches . 243
J.5 elf2flt changes . 243
J.6 SPI DMA changes . 243
J.7 Tests . 243

xii CONTENTS

1

Chapter 1

Introduction

Figure 1.1: U-Boot loading Linux on the UC3A

1.1 Assignment

This master’s thesis is the continuation of an earlier project with unfinished goals. The
project description was formulated by Atmel, and the requirements and goals were de-
rived from it. In this master’s thesis, we resume the work by continuing where the
previous work was suspended.

Atmel’s problem formulation, given as a an assignment proposition to us via our
supervisor is quoted below. Figure 1.1 sums up the project concept in an informal
illustration.

Linux kernel support for Atmel AVR32 UC3 processors

The project’s goal is to boot a Linux kernel on an Atmel AVR32 UC3A0512
microcontroller. In order to boot a Linux system, the following software
requires specific adaption / porting:

2 CHAPTER 1. INTRODUCTION

• A boot loader. Das U-Boot is currently the only boot loader capable of
loading AVR32 Linux.

• The Linux kernel. Obviously.
• A toolchain capable of generating "flat" binaries. On AP7, ELF binaries

are used, but the Linux ELF loader does not support systems without an
Memory Management Unit (MMU). The AP7 core includes an MMU,
the UC3 core does not.

• Linux applications. This is the easy part, once all the other pieces are
in place. But picking out a set of applications that is useful on specific
UC3-based development boards is still a task that needs to be done.

The work will thus include adaption of the GNU Compiler Collection (GCC)
and associated tools, boot loader, Linux kernel and driver-implementation
specific to the Atmel AVR32 UC3 Central Processor Unit (CPU) architecture.
All work will be completed using Atmel’s development boards and debugging
tools, including ATEVK1100, JTAGICE mkII or AVRONE! All work will
be covered by the GNU General Public License (GPL), as defined by the
individual LICENSE and COPYRIGHTs of the projects and will be pub-
lished in an open source context, through the AVR32 Community Website at
http://www.avr32linux.org

A list of URLs to detailed descriptions of relevant projects were also given:

• Linux on UC3:
http://avr32linux.org/twiki/bin/view/Main/LinuxOnUC3

• U-Boot bootloader:
http://avr32linux.org/twiki/bin/view/Main/UBootOnUC3

• Linux kernel on UC3:
http://avr32linux.org/twiki/bin/view/Main/LinuxKernelOnUC3

Håvard Skinnemoen was our contact at Atmel. He provided us with further specifi-
cations and guidance, and the necessary tools for the project.

1.2 Project continuation

This master’s thesis picks up the threads from the project done by the same three
students during the fall of 2008. At the beginning of the work with this thesis, the
status could be summed up as follows:

• U-Boot was able to successfully load the kernel via Ethernet or serial port.

• Patches for U-Boot had been submitted, but never revised.

• The hardware setup in the boot sequence of the Linux kernel was partly adapted.

http://avr32linux.org/twiki/bin/view/Main/LinuxOnUC3
http://avr32linux.org/twiki/bin/view/Main/UBootOnUC3
http://avr32linux.org/twiki/bin/view/Main/LinuxKernelOnUC3

1.3. INTERPRETATION 3

• Linux booted and gave output to the serial console, but halted when trying to load
the first user space program (init).

• No patches for the Linux kernel had beenassembled or submitted.

• No changes had been done to the toolchain.

Because we had the same main objectives in the project during the fall of 2008,
much of the background material from that report is still relevant. Applicable parts of
the background chapter have been reused, and new sections have been added. Sections
written for the previous project that is still used in this report, is listed in table 1.1.

Section Re-use
Section 2.4 SRAM, Unchanged
Section 2.3 Unaligned memory copying, Unchanged
Section 2.4 SRAM, Unchanged
Section 2.5 AVR32 Architecture Revised
Section 2.5.3 Sub-architectures Expanded
Section 2.6 AP7000 Unchanged
Section 2.7 The UC3A0512 microcontroller Unchanged
Section 2.7.1 UC3a0512 logical layout Revised
Section 2.7.2 Internal flash Expanded
Section 2.7.2 EBI Expanded
Section 2.7.2 SPI Expanded
Section 2.7.4 AP7000 versus UC3A0512 Expanded
Section 2.9 JTAG Unchanged
Section 2.11 Linux Unchanged
Section 2.11.1 Configuration New
Section 2.11.2 Tasks New
Section 2.11.3 uClinux Revised
Section 2.12 U-Boot Reduced
Section 2.13 Toolchain Heavily reworked

Table 1.1: Sections reused

1.3 Interpretation

The initial goals and guidelines were defined by Atmel for the preceding student project of
fall 2008, but as an independent university group we were free to modify the assignment
in any way we wanted as long as our supervisor would approve that the educational
goals were satisfied. However, there were no conflicts between our desired goals and the
goals suggested by Atmel.

4 CHAPTER 1. INTRODUCTION

1.3.1 Requirements

This subsection groups and lists the requirements defined for this thesis. The require-
ments are based on the assignment previously formulated by Atmel, the unmet require-
ments and suggested future work from the previous project. All of the requirements
assume the use of the EVK1100 evaluation kit with the UC3A0512 microcontroller.
Requirements marked with 1 are unsolved by this project, and requirements marked
with 2 are only partly fulfilled.

Software and hardware components involved are introduced in chapter 2.

U-Boot

1. SPI support (needed if the kernel is loaded from DataFlash or SD card, and for
using the LCD display)1

2. Load Linux from DataFlash or SD memory card1

3. Clean up patches and commit a new version

The Linux kernel

The Linux kernel should have the following features:

4. The Linux kernel must be able to boot.

(a) Output to serial console
(b) Initialize networking
(c) Receive network configuration using DHCP.
(d) Mount necessary file systems:

i. NFS root file system.
ii. proc file system
iii. sysfs file system
iv. devpts file system
v. devshm file system

(e) Load and execute an init application.

5. The Linux kernel must be able to run user space binaries.
6. The Linux kernel must support the most central hardware located on the EVK1100.

The following hardware were identified as central and important:

(a) Light Emitting Diodes (LEDs) to give status information (optional)
(b) DataFlash (optional)1

(c) LCD display (optional)1

(d) SD Card (optional)1

1.4. STRUCTURE OF THIS REPORT 5

(e) SPI (optional, needed for requirement 6b, 6c and 6d)1

(f) DMA (optional, suggested by requirement 6e)1

(g) Network adapter

7. Exceptions must be handled.2

8. Resulting source code must be submitted to the appropriate source code maintain-
ers.2

Toolchain

The toolchain should be adapted to be capable of generating executables for the UC3A
running Linux. This involves the following:

9. A suitable binary format must be selected, this could be either:

(a) FDPIC ELF
(b) Flat

10. GCC must be able to generate statically linked executables.

11. GCC must be able to generate dynamically linked executables and libraries.1

12. Resulting source code must be submitted to the appropriate source code maintain-
ers.2

Linux applications

13. A shell and tools for basic file manipulation, user management and networking
should be able to compile, load and run. This includes tools like ls, cp, cat, grep,
find, mkdir, rm, rmdir, df, du, vi, diff, adduser, passwd, mount, less, ifconfig, telnet
server, free, ps and a shell (ash/hush/msh)

1.4 Structure of this report
This chapter has introduced the assignment, continuation of the previous project, our
interpretation, the scope of the project, and a formal requirements specification formu-
lated from the assignment. Chapter 2 introduces the concepts, software and hardware
components involved in the development process. The last section of chapter 2 also
explores previous work relevant to this project.

Chapter 3 describes in detail the work carried out, the decisions made and the argu-
ments for these. The requirements have been tested, and the tests and results are listed
in chapter 4. This chapter also presents some of the feedback from our code submissions.
In chapter 5 we conclude the project as a whole. Chapter 6 discusses further work that
should be carried out in the future, either by us or others. The final chapter, chapter 7,
lists our references.

6 CHAPTER 1. INTRODUCTION

Note that a list of acronyms is included as the first appendix, appendix A. Most of
our patches are included in the appendices. The schematics for the expansion board,
and the source code for some of the tests are also included in as appendices. A digital
appendix with all submitted and unsubmitted patches for U-Boot, Linux, uClibc, GNU
Compiler Collection (GCC) and GNU Binutils also accompanies this report.

7

Chapter 2

Background

This chapter gives an introduction to the devices, tools, hardware and software relevant
to this project. It also describes the fundamental concepts necessary to understand the
problems addressed.

The first four sections of this chapter introduce memory management concepts, align-
ment issues for memory access, and describes SRAM, the memory type of main focus in
this report.

Section 2.5 to 2.9 introduces the AVR32 architecture and relevant Atmel products,
including the JTAG, the UC3A0512 microcontroller and its sibling, the AP7000.

Section 2.10 introduce file formats for executables and shared libraries we have looked
at. An introduction to Linux is given in section 2.11.

The generic introduction to Linux and uClinux is from the earlier project, but the
technical details are written for this project. This section is followed by an introduction
to the boot loader, Das U-Boot, in section 2.12.

The toolchain that is used for developing Linux for the chip is presented in sec-
tion 2.13.

The next section, section 2.14 introduces BusyBox, which was used during this
project.

The next section, section 2.15 give a short introduction to the networking servers
used to support the board during boot and runtime.

A short introduction to open-source collaboration software and principles is given
in 2.16. Git, the software system used for revision control of the source code is briefly
introduced in section 2.16.1.

Finally, previous related work is presented in section 2.17

2.1 Virtual memory

The contents of this section is based on [19]. Virtual memory is a method for abstracting
memory addresses used in programs from their physical addresses. This allows each
separate application to have its own private address space, which in turn can be used to
enforce memory protection. This is typically implemented with a Memory Management

8 CHAPTER 2. BACKGROUND

Unit (MMU). With a virtual memory system, two separate address spaces needs to be
considered – the virtual address space, and the physical address space. The physical
address space refers to the physical memory, while the virtual address space is per-
application.

The MMU’s task is to translate virtual addresses to physical addresses. It works by
splitting the memory area into separate pages, where each page is a fixed size. A quick
survey of the Linux source code shows that typical page sizes for various architectures
are 4096 and 8192 bytes.

Figure 2.1: Simplified operation of an MMU

Figure 2.1 shows the operation the MMU does when translating a virtual address.
It splits the virtual address into two parts – the page number, and the offset into the
page. The page number will be looked up in a page directory. The page directory
contains the mapping from virtual addresses to physical addresses. The physical address
retrieved from the page directory will be combined with the offset into the page to form
the physical address.

The page directory contains information about each page, such as whether it is
present, and what types of access is allowed to this page. For example, an application
can be allowed to read from a page, but not write to it. Invalid accesses to the page will
trigger an exception that the operating system can handle.

2.1.1 Copy-on-write

Copy-on-write is a method for saving memory by sharing equal pages between different
applications. When two applications load the same part of a file into memory, they can
be shared until one of the applications tries to modify it. This is implemented by the
operating system by marking the page as read-only when the sharing begins. When one
of the applications writes to a read-only page, it will be copied, and the data will be

2.2. Memory Protection Unit (MPU) 9

written to the new copy of the page. Since much of the memory contains code that is
never written to, copy-on-write can save a significant amount of memory.

2.2 Memory Protection Unit (MPU)

Without an MMU, all applications must share the same physical address space. If one
application is flawed or malicious, the application may read from or write to any memory
location. By doing this, the application could potentially sabotage or access any infor-
mation about the kernel or any process. An MPU[5] provides a way of protecting the
processes from each other by having dedicated hardware checking the address of every
memory access. The MPU is usually configured by setting up a number of allowed mem-
ory areas, and an exception is generated if the application attempts to access memory
outside these areas.

Usually, because MPUs are implemented in hardware, only a limited set of al-
lowed/disallowed memory areas can be configured simultaneously. To work around this,
it is possible trap the exception, and replace an old memory area with a new new mem-
ory area if a memory area not listed in the MPU is accessed. This allows an operating
system to support a more or less unlimited set of memory areas.

2.3 Unaligned memory copy

The way processors copy blocks of data from one position in memory to another is
vital for performance, and is handled differently depending on the architecture. Some
processors can only read and write whole words (32 bits) if they are aligned on word
boundaries. Others have optimized hardware instructions for unaligned accesses. Figure
2.2 shows an example of how 10 bytes can be copied between unaligned addresses.
Processors that can not perform unaligned accesses must copy these 10 bytes one at a
time. If a processor supports halfword copying, the data can be copied one halfword at
the time, if both the source and destination address are even or odd. When a processor
has support for unaligned accesses, the usual approach for the software is to copy single
bytes or halfwords until either the source or the destination are aligned.

2.4 Static Random Access Memory (SRAM)

SRAM, often just called static memory, has a relatively simple memory interface. It
consists of na address lines, nd data lines and three control signals. The control lines are
a chip enable signal, a read signal and a write signal.

The number of data lines is usually either 8, 16 or 32. It is possible to connect two
SRAM chips in parallel to double the number of data bits. For example, by connecting
two 8-bit SRAM chips so that they share all lines except the data lines, they will behave
like a single 16-bit SRAM chip. See appendix H for an example of this setup.

10 CHAPTER 2. BACKGROUND

Figure 2.2: Copying of unaligned memory blocks

When the chip enable signal is asserted, a read can be done by placing the address
on the address bus, and then setting the read signal. The SRAM chip will then place
the requested data on the data lines. Similarly a write can be done by placing the data
on the data lines, and the address on the address lines, and then setting the write signal.
A read operation is shown in figure 2.3.

Address

CE

RD

Data

Figure 2.3: Example SRAM read cycle

Reads and writes with SRAM chips are not instantaneous, but require some time to
complete. Each SRAM chip has its own specific timing requirements. The requirements
define the relationship between the different signals to the SRAM chip. These require-
ments can for example say that the read signal must be set for at least 7 ns before data
will be valid.

2.5. AVR32 ARCHITECTURE 11

2.5 AVR32 Architecture

The contents of this section regarding AVR32 is based on [5], unless otherwise stated.

The AVR32 architecture is a 32 bit load/store RISC architecture by Atmel, designed
with emphasis on low power consumption. AVR32 is not binary compatible with 8/16
bit AVR microcontrollers. It was first launched in 2006 with the AVR32 AP core.

The AVR32 architecture defines an optional Java extension module. This module is
not available on the microcontroller used during this project, and will therefore not be
discussed any further.

2.5.1 Registers

The AVR32 architecture has 16 registers, shown in figure 2.4, with 13 of these being
purely general purpose. The remaining three are the program counter, the stack pointer
and the link register. The link register is used to hold the return address of the current
function. This reduces the amount of stack accesses required for function calls, since
simple function calls do not need to access the stack at all. Both the stack pointer and
the link register can also be used as general purpose registers.

An interesting feature of the architecture is that all instructions that accept register
operands can take any register. This includes the program counter, the link register or
the stack pointer. This means that a jump can be implemented in the following way:

1 lsl r10 , 2
2 add pc , pc , r10

What this code does is: pc = pc + r10 * 4

12 CHAPTER 2. BACKGROUND

R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
LR
SP
PC

SR

General purpose

Registers used implicitly,
but can also be used as
general purpose registers

Not a part of the
normal register file

Program Counter

R0

Stack Pointer
Link Register

Status register

Figure 2.4: Registers in the AVR32 architecture

System registers

In addition to the normal registers there are a large number of system registers. Most
of these are used for accessing the configuration and status of various features on the
processor. Exception vectors, MMU and MPU are examples of features that can be
configured with these registers.

One of the system registers is the status register. This register is shown in figure
2.5. It is split into two parts – the upper and lower halfword. User applications can only
access the lower halfword.

The lower halfword contains several flags set by results of arithmetic and logical
operations, such as a zero flag, an overflow flag, and several others. These flags are
used by conditional branches and operations. The lock-bit is used to implement atomic
operations, the scratch bit can be used for any purpose by applications, and the register
remap flag is used by the Java extension module.

The upper halfword contains the status of the processor. Among other things this
includes the current execution mode and whether interrupts and exceptions are enabled.

2.5. AVR32 ARCHITECTURE 13

Global Interrupt Mask
Interrupt Level 0 Mask
Interrupt Level 1 Mask
Interrupt Level 2 Mask
Interrupt Level 3 Mask
Exception Mask
Mode Bit 0
Mode Bit 1
Mode Bit 2
(Reserved)
Debug State
Debug State Mask
Java State
Java Handle
(Reserved)
(Reserved)

System mode & status

Bit 16

Bit 31

Execution
mode

Interrupt & exception
masks

Carry Flag
Zero Flag
Overflow Flag
Saturation Flag
Lock
(Reserved)
(Reserved)
(Reserved)
(Reserved)
(Reserved)
(Reserved)
(Reserved)
(Reserved)
(Reserved)
Scratch bit
Register Remap Enable

Application state

Bit 0

Bit 15

ALU result
state

Lock bit
for atomic
operations

Bit for app-
lication use

Debugging

Java related

Java related

Figure 2.5: The AVR32 status register

Register shadowing

Another feature of the AVR32 architecture is register shadowing. When the processor
changes to an interrupt execution mode (see 2.5.5), it may replace some part of the
register file with one reserved for that mode. Also, whenever the CPU changes from
application mode, the user-mode stack-pointer is replaced with a system stack pointer.

There are three levels of shadowing: small, half and full. In mode small, no
general purpose registers are shadowed. In mode half, registers r8 to r12 and the link
register are shadowed. With full, registers r0 to r12 and the link register are shadowed.
This is illustrated in figure 2.6.

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
LR

SP_SYS
PC

R0
Small

R1
R2
R3
R4
R5
R6
R7

R8_INTx
R9_INTx
R10_INTx
R11_INTx
R12_INTx
LR_INTx
SP_SYS
PC

R0
Half

R1_INTx
R2_INTx
R3_INTx
R4_INTx
R5_INTx
R6_INTx
R7_INTx
R8_INTx
R9_INTx
R10_INTx
R11_INTx
R12_INTx
LR_INTx
SP_SYS
PC

R0_INTx
Full

Figure 2.6: Register shadowing in the AVR32 architecture

14 CHAPTER 2. BACKGROUND

This feature makes it possible to handle some interrupts without having to access
memory. If the registers are not shadowed, they must be saved to the stack before being
used. If this is not done, the interrupt handler may overwrite or change registers in use
by a running application. This may then lead to incorrect execution of the application.

2.5.2 Instructions

The AVR32 architecture specification defines 214 instructions. Each instruction in the
AVR32 architecture is either two or four bytes wide. Many instructions have multiple
different encodings. For example, some instructions has a two-byte encoding for small
immediate values, and a four-byte encoding for larger immediate values. Also, some
instructions may take one or two operands. For example, the ADD instruction has a
two-byte variant with Rd = Rd + Rs, and a four-byte variant with Rd = Ra + (Rb <<
shift).

2.5.3 Sub-architectures

There are two different sub-architectures of the AVR32 architecture; AVR32A and
AVR32B. Figure 2.7 shows the structure of the AVR32 sub-architecture hierarchy, and
the UC3A0512 and AP7000 microcontrollers are shown as examples of implementations.
AVR32A targets cost sensitive, lower-end applications and AVR32B targets applications
where low interrupt latency is important. Since the AVR32A architecture is simpler
than the AVR32B architecture, the hardware implementation of it is simpler, and lower
power consumption is achievable.

AVR32

AVR32A AVR32B

AP

UC3

UC3A UC3B

UC3A0512 AP7000

Figure 2.7: Relationships between the AVR32 architectures and implementations

The main difference between AVR32A and AVR32B is the method of interrupt and
exception handling. The difference is in the way the state is saved and restored when
control is transferred to and from the exception and interrupt handlers. This topic
will be discussed in more detail in section 2.5.6. Because the AVR32B architecture is

2.5. AVR32 ARCHITECTURE 15

Figure 2.8: AVR32 feature variations [8][7]

focused on interrupt latency, dedicated registers are implemented for holding the status
register and return address for interrupts, exceptions and supervisor calls. The AVR32A
architecture also does not implement register shadowing of any registers except for the
stack pointer.

Three properties that are not defined by the sub-architecture, are the presence of
cache and MMU, and the ability to perform unaligned memory access. These properties
are defined by the implementation of the CPU core. Figure 2.8 shows how these three
properties can vary and potentially be implemented in eight different combinations. As
depicted in the figure, AP7 implements all of these features, and the UC3 none. This
difference may be significant in the adaptation of the Linux kernel. For a comparison of
the AP7 and UC3 implementations AP7000 and UC3A0512, see section 2.7.4.

2.5.4 Revisions

There are two revisions of the AVR32 instruction set, revision 1 and revision 2. Revision
2 introduces 15 new instructions. One of these instructions load an immediate value
into the upper halfword of a register. The others are for conditional operations, such as
conditional loads and stores and conditional add, sub, and such instructions.

2.5.5 Execution modes

The AVR32 architecture defines eight different execution modes. These are:

• Application mode
• Supervisor mode

16 CHAPTER 2. BACKGROUND

• Four interrupt levels
• Exception mode
• Non-maskable interrupt
The mode can be changed by executing certain instructions, or as a result of signals

from events occurring outside the CPU core (interrupts, exceptions etc). Each mode has
a designated priority that determines whether execution can be interrupted to switch
to another mode. In other words, execution in a mode with a certain priority will be
interrupted if an event occurs that is handled in a mode with higher priority.

When running in application mode, the processor restricts access to various system
registers, and the top half of the status register. This makes it possible to prevent
applications from tampering with the CPU state and the execution of the kernel.

2.5.6 Exception and interrupt handling

There are two sources of “breaks” in the instruction flow. These are interrupts and
exceptions. Interrupts are typically external events, while exceptions are internal events.

The AVR32 architecture implements exception handling by jumping to specific ad-
dresses when an exception occurs. The base address of the exceptions is configurable
through a system register. There are four bytes between most exceptions, which is big
enough for a jump instruction. Some of the more performance critical exceptions have
more space between them. These are those that deal with updating the Translation
Lookaside Buffer (TLB) on systems with MMU.

Interrupts in the AVR32 architecture are handled mostly in the same way as excep-
tions. However, the jump offset is configurable. The jump offset for each interrupt group
can be set to an offset based on the exception vector.

The process for handling interrupts or exceptions varies between the AVR32A and
AVR32B architecture. The AVR32B architecture has extra system registers for saving
the return address and status register for each execution mode. The AVR32A architec-
ture on the other hand does not have those extra registers. Instead, they are pushed
onto the stack.

2.6 The AP7000 microcontroller
The AP7000, released in 2006, was the first microcontroller that implemented the AVR32
architecture. It was based on a new CPU core, named AP7. “AP” stands for Application
Processor, and the microcontroller was meant for network and multimedia applications.

The AP7000 microcontroller runs at up to 150 MHz, and can execute 210 Dhrystone
MIPS at that speed. The AP7 core implements a 7-stage pipeline with three subpipes
– the multiply, the execute and the data pipe. Instructions are issued in-order, but can
be completed out-of-order.

The AP7 core implements the more complex of the two AVR32 sub-architectures –
the AVR32B architecture. It has separate instruction and data caches, each of them 16
KB. It also has support for a MMU, with a 32-entry TLB.

2.7. THE UC3A0512 MICROCONTROLLER 17

In addition to the CPU core, this microcontroller has a number of on-chip peripherals,
including serial ports, Ethernet Media Access Controller (MAC)s, USB, and several
others. U-Boot and Linux has been ported to this microcontroller previously, more
about this in section 2.17.

2.7 The UC3A0512 microcontroller

Figure 2.9: The UC3A0512 chip

This section is based on [8]. The AT32UC3A0512 (figure 2.9) microcontroller is part of
a new product line released by Atmel in 2007. These microcontrollers were based on a
new core – the UC3 core. The UC3 core is the first CPU core based on the AVR32A
architecture. It is used in two series of microcontrollers – the UC3A series and the UC3B
series. The main differences between the two series of microcontrollers are what on-chip
peripherals are available. The UC3A series is the most feature-rich of the two series[6],
described as “Communication Family”. The UC3B series lacks three features that are
found in the UC3A series. This is the external memory interface, the Ethernet interface,
and the Audio Bitstream DAC.

The UC3A series focus on high performance, low power 32-bit microcontrollers and
is aimed at several industrial and commercial applications including PLCs, instrumen-
tation, phones, vending machines and more.[6]

2.7.1 Logical layout

Figure 2.10 shows the logical layout of the UC3A0512 microcontroller. There are four
internal buses in the microcontroller, including the CPU local bus. Because of a bug in
the chip, the CPU local bus was never used during this project, and it has been excluded
from the figure.

The High Speed Bus Matrix (HSB) is the main bus of the chip. It is implemented as
a many-to-many connector with a number of bus masters and slaves. Each bus master
can read or write data to any of the slaves. Each slave is responsible for a subset of

18 CHAPTER 2. BACKGROUND

Memory Protection Unit

UC3 Core

UC3 CPU
Internal SRAM

High Speed Bus Matrix (HSB)

E
x
te

rn
al

 B
u
s

In
te

rf
ac

e

SDRAM
Controller

Static
Memory

Controller
Data memory

controller

Instruction
memory
controller

On-Chip
Debug

Internal SRAM
Controller

Peripheral Bus B (PBB)

USB
Interface

HSB<->PBB
Bridge

JTAG

DMA

HSB<->PBA
Bridge

Peripheral
DMA Controller

P
er

ip
h
er

al
 B

u
s

A
 (

P
B

A
)

USART[0-3]

PDC

SPI[0-1]

PDC

[...]

PDC

External
Interrupt
Controller

Interrupt
Controller

Power
Manager

[...]

Embedded
Flash

Ethernet
MAC

DMA

Flash
Controller

Figure 2.10: UC3A0512 microcontroller (based on several figures in [8])

2.7. THE UC3A0512 MICROCONTROLLER 19

the address space. With one exception, all memory access has to go through the HSB.
The exception is that there is a shortcut for the CPU core to the internal SRAM, which
permits single-cycle access to the internal SRAM.

The following devices are connected to the HSB:

• Ethernet MAC (master): Reads and writes packets to memory.

• USB (master): Reads and writes packets to memory.

• USB (slave): Allows access to the packet buffers in the USB interface.

• EBI (slave): Allows access memory connected connected to the EBI bus.

• Flash (slave): Allows access to the internal flash memory.

• Peripheral DMA controller (master): Reads and writes data from/to peripheral
devices.

• OCD (master): Allows debugger reads and writes to different peripherals and
memory banks.

• CPU instruction (master): Reads CPU instructions.

• CPU data (master): Reads and writes data to different memory banks.

• Internal SRAM (slave): Allows access to the internal SRAM on the chip.

There are two peripheral buses: Peripheral Bus A (PBA) and Peripheral Bus B
(PBB). The different peripherals are connected to the peripheral buses, which in turn
are connected to the High Speed Bus (HSB) through bridges.

Note that the bridges act as slave devices on the HSB. The bridge itself is the sole
master device on the peripheral bus. This means that it is impossible for devices only
connected to the peripheral buses to access main memory.

The different devices expose data and configuration registers on the peripheral bus.
These can be read and written by the CPU, or any other device able to act as a master
on the HSB bus.

The Peripheral DMA Controller (PDC) is a device which can copy between data
registers of different devices and main memory. This allows the CPU to offload the work
required to receive and send data via the data registers of the devices. The different
devices signal the PDC when they are able to receive or send more data. The PDC will
then either copy data from main memory to the data register, or copy data from the
data register to main memory. The PDC is connected to the HSB, and is able to access
both main memory and the devices data registers through this bus.

2.7.2 Features

There are a number of features on the UC3A0512 microcontroller which may be of
interest to us. In this section we will introduce them, and discuss why they may be of
interest, and how we can use them.

20 CHAPTER 2. BACKGROUND

Internal flash

The UC3A0512 microcontroller has 512 KB of internal flash (hence the “512” in its
name). The microcontroller starts execution at address 0x80000000, which is the starting
address of the internal flash. Therefore, the internal flash has to be programmed to be
able to use this microcontroller. Different memories are mapped to separate areas in the
physical address space available. Figure 2.11 shows the layout of the physical address
space in the UC3A0512. Note that the memory areas may be missing or have different
sizes in other UC3A microcontrollers (UC3Axxxx).

Figure 2.11: UC3A0512 physical memory map

Since the internal flash is a non-volatile internal memory of convenient size, it is a
good option for an area to store the boot loader in. It could also potentially be used to
store the Linux kernel, if we could get the kernel small enough to fit in the available space.
The U-Boot boot loader (see section 2.12), uses the internal flash to save configuration
options and user settings.

Flash is written in whole pages, and a page must be erased before a new can be
written. On the UC3A0512, each flash page is 512 bytes. To write a flash page, data is
added to a page buffer, and a write command is issued.

Internal SRAM

There are 64 KB of internal SRAM available on the UC3A0512. This is the only Random
Access Memory (RAM) guaranteed to be available at start-up. Accesses to the internal
SRAM take a single cycle to complete, and each access is word-sized (32 bits).

2.7. THE UC3A0512 MICROCONTROLLER 21

Since it is the only RAM guaranteed to be available at start-up, using it for the boot
loader is a natural choice. The datasheet recommends to use it for the system stack,
since it is the fastest memory available on the chip. Due to the multi-threaded nature
of the Linux kernel, this may be difficult – if not impossible – to accomplish. Therefore
we consider this to have a low priority.

External Bus Interface (EBI)

The EBI is a coordinator for a collection of Input/Output (IO) lines, and ensures suc-
cessful data transfer between external devices and the microcontroller. The EBI has one
Synchronous Dynamic Random Access Memory (SDRAM) controller and one SRAM
controller muxed on a common output. These are together capable of handling several
types of of external memory and devices, such as SRAM, Programmable Read-Only
Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), Electrically
Erasable Programmable Read-Only Memory (EEPROM), Flash, and SDRAM. The
EBI is capable of simultaneously handling transfers with up to four external devices
with Static Memory Controller (SMC) interface1. One of these four “channels” can be
set to SDRAM mode. Each device is memory mapped in its own address space.

Technical data:

• 16 bit data bus

• 24 bit address bus

• Four chip select lines

• Several control pins

The data and address lines are shared between the different memory controllers, and
some of the control lines are also shared.

External SDRAM

The SDRAM controller in the EBI supports 2 or 4 banks, with up 8192 rows and up to
2048 columns per bank. Each access can be for either 16 or 32 bits. The total amount
of SDRAM is limited to 128 MB by the size of the memory segment reserved in the
physical memory map of the microcontroller.

There is a bug in the SDRAM controller in all current revisions of the UC3A0512
(see 2.7.3). This bug makes running code from SDRAM unreliable. There is currently
no workaround for this problem, and leaves SRAM and internal or external flash as
the only memories from which these chips can execute code from. The properties and
capabilities of SDRAM will therefore not be described in detail.

1According to the datasheet it should be five. Based on the address memory map, we believe this is
wrong.

22 CHAPTER 2. BACKGROUND

External SRAM

External SRAM is interesting to us because of the SDRAM bug mentioned in sec-
tion 2.7.2. Because the SDRAM controller is faulty, the only way to get enough memory
to run U-Boot and Linux is to use RAM compatible with the SMC in the EBI. For this
reason, Atmel provided us with a memory expansion card with SRAM and flash during
previous work. This is why SRAM is used as the main memory throughout this project.
The expansion card is described in section 2.17.4.

External SRAM can be connected to the UC3A0512 by using the SMC interface in
the EBI. In the SRAM interface on the UC3A0512, the control lines are active low. See
section 2.4 for a general introduction to SRAM. There are four chip-selects available,
each of which allows for up to 16 MB of SRAM to be connected. The total possible
amount of SRAM is therefore 64 MB.

On the UC3A0512, the SRAM timings are configured by specifying the waveforms
for the different control signals. Read and write cycles have separate configurations,
and can have entirely different timings, including the total length of the read or write
cycle. For each read or write cycle there are five configuration values, and together they
describe the total cycle. These are shown in figure 2.12.

Address

CE

RD/WR

Clock

CS_RD/WR_SETUP

RD/WR_SETUP

CS_RD/WR_PULSE

RD/WR_PULSE

RD/WR_CYCLE

Figure 2.12: UC3A0512 SRAM timing configuration

Network Media Access Controller (MAC)

Both the AP7000 and the UC3A0512 microcontrollers have on-chip Ethernet controllers
called MACs. The specific MAC implementation in the UC3A0512 is by Atmel given
the name MACB. In this report we will use the abbreviation MACB when referring to
Atmel’s implementation. The MACB can be used in conjunction with an external chip

2.7. THE UC3A0512 MICROCONTROLLER 23

to provide Ethernet connectivity. The external chip that handles the physical layer of
the Ethernet connection is called a PHY. Different PHY chips provides different physical
layers, for example Ethernet over copper wires and Ethernet over fiber.

The PHY is connected to the Ethernet controller through either a Media Independent
Interface (MII) or Reduced Media Independent Interface (RMII) bus. The MII bus
requires 17 wires, while the RMII bus requires 10 wires. 4 wires are used in each direction
for data transfers with a MII bus, while 2 wires are used with a RMII bus. To transmit
100 Mbit per second, a MII bus requires a clock rate of 25 MHz, while a RMII bus
requires a 50 MHz clock.

In both the MII bus and the RMII bus, two lines are used for a management of
the PHY. These two lines can be shared between multiple PHYs, though this feature
is not used by the AP7000 or UC3A0512 microcontrollers. To allow for sharing of the
management bus, each PHY has its own address. There are 32 different addresses,
allowing for up to 32 PHYs to share once management bus. Figure 2.13 show the
communication lines between the microcontroller and the PHY respectively.

Figure 2.13: RMII and MII connection

Serial Peripheral Interface (SPI)

The microcontroller has several SPI interfaces. SPI is a full duplex synchronous serial
data link for communicating with external peripherals or devices. SPI is a de facto
standard that typically uses four wires[8]: one for each direction of data, one clock line
and one chip selection line for every slave. Figure 2.14 shows how multiple devices on the
EVK1100 are connected to the microcontroller. The EVK1100 will be introduced further
in section 2.8. If all the slaves support “daisy chaining”, the slaves can be connected in
a loop and share the chip selection line. Daisy chaining is not relevant for this project
and will not be discussed any further.

SPI support and utilization is listed as a requirement 1 and 6e in section 1.3.1.

24 CHAPTER 2. BACKGROUND

Figure 2.14: SPI connections on the EVK1100

General Purpose Input/Output (GPIO) controller

There is a GPIO controller on the UC3A0512 that controls the output of most of the
pins on the chip. Different functions can be selected for each physical pin. In addition
to the GPIO function of the pins, up to three other functions for different peripherals
can be selected. The GPIO function of a pin is set by enabling the pin as a GPIO pin.
The peripheral function can be set by disabling the GPIO function of the pin, and then
selecting a peripheral function.

We are mainly interested in the peripheral function of the pins, and selecting which
peripheral function each pin should employ. Typical peripheral functions we are inter-
ested in are the EBI bus and the serial port. There are also some LEDs, buttons and
a joystick connected to the chip, which can be used through the GPIO controller. The
LEDs may be useful, for example as indicators of the system state, or status lights during
boot.

Universal Serial Bus (USB)

The UC3A0512 has a built in USB interface that is able act both as a device and a
host (not simultaneously). It has a built-in PHY that takes care of the transmission
on the physical medium, so the only external components required for USB to work
are a few resistors, and optionally a connector. The USB unit on the chip has been
extended with USB On-The-Go support since the AP7000 was made. USB On-The-Go
is a relatively new standard that combines lower power requirements and a small form
factor for connectors and cables with host capability and dynamic switching between

2.7. THE UC3A0512 MICROCONTROLLER 25

host and peripheral mode[24].
Support for USB under Linux would definitively be a useful feature. Linux already

supports the internal USB interface in the AP7000[1], but the driver needs to be tested on
the UC3A0512 microcontroller, and adapted if necessary. Because the UC3A series also
have the On-The-Go capability, the driver may need significant extensions and changes
in order to work.

2.7.3 Chip revisions

The microcontroller that will be used during this project is an engineering sample. The
part number printed on the package of engineering samples of UC3 microcontrollers
are suffixed ES, which makes the part number UC3A0512ES. There are several highly
significant design errors in this particular revision of the chip. Design errors that may
be relevant to this project are listed here. These can be found in the errata list in [8].
Note that the errata numbering is based on the numbers found in revision F (08/08) of
the datasheet. The numbers may change between revisions of the datasheet, as more
errata are added.

• SPI interface bugs (erratum 41.4.1)
• Two NOPs needed after instructions masking interrupts (erratum 41.4.5.5)
• Processor reports wrong processor ID (erratum 41.4.5.1)
• Bus error during debug mode causes processor to stop responding to debug com-

mands (erratum 41.4.5.2)
• CPU cannot operate on a divided slow clock (erratum 41.4.5.12)
• Code execution from external SDRAM does not work (erratum 41.4.6.1)
• Memory Protection Unit is not functional (erratum 41.4.5.7)
• Peripheral Bus A maximum frequency is 33MHz instead of 66MHz (erratum 41.4.8.4)
• On some rare parts, the maximum HSB and CPU is 50MHz instead of 66MHz

(erratum 41.4.8.6)
• Corrupted read in flash after FLASHC WP, EP, EA, WUP, EUP commands may

happen (erratum 41.4.12.4)
• Stalled memory access instruction write-back fails if followed by a HW breakpoint

(erratum 41.4.14.1)

2.7.4 AP7000 versus UC3A0512

Table 2.1 shows a rough comparison between the AP7000 and the UC3A0512. One very
important difference is that the UC3A0512 does not have an MMU. It also has a shorter
pipeline and does not have any cache.

A significant difference between the AP7000 and the UC3A0512 is that the UC3A0512
does not support unaligned memory reading or writing. In the example in figure 2.2,

26 CHAPTER 2. BACKGROUND

Feature AP7000 UC3A0512
Cache YES NO
Frequency 150MHz 66MHz
Pipeline 7-stage 3-stage
Dhrystone MIPS 210@150MHz 91@66MHz
Internal SRAM 32kB 64kB
Internal Flash 0kB 512kB
Unaligned memory access YES NO
Memory Management Unit YES NO
Memory Protection Unit NO YES
Ethernet MAC 10/100 YES YES
Java Hardware Acceleration YES NO
Read-Modify-Write instructions NO YES

Table 2.1: AP7000 vs UC3A0512 comparison table[7, 8, 9]

the UC3A0512 is capable of per-halfword copying everything except for the first and the
last byte. The UC3A0512 is capable of doing halfword copying like this whenever both
input addresses are odd or even.

There are also several other similarities and differences in the available peripherals.
Without going into much detail, we can mention the following:

• The power manager, which is responsible for clock generation to various peripher-
als, is mostly the same.

• The interrupt controller is the same.
• The Ethernet MAC controller is the same.
• The Parallel Input/Output controller on the AP7000 has been replaced with a

General Purpose Input/Output controller
• Several peripherals are not included on the UC3A0512, such as the MultiMediaC-

ard interface, the LCD controller, the PS/2 module.

2.8 EVK1100
The EVK1100 is an evaluation kit for the UC3A microcontroller series, and can be seen
in figure 2.16. Like most Atmel products, the name is often prefixed with “AT” (AT-
EVK1100), but the name EVK1100 will be used throughout this report. The EVK1100
and other development/evaluation kits mentioned in this report will often simply be
referred to as “boards”. The EVK1100 has a UC3A0512 microcontroller and several de-
vices, peripherals and connectors. The features of the EVK1100 that are most important
in regards to this project are the clocks, the serial port and the Ethernet peripherals
and connectors. Figure 2.15 shows a simplified block diagram of the organization of the

2.8. EVK1100 27

Figure 2.15: The main components of the EVK1100

most central components of the EVK1100. The figure also illustrates how some devices
and peripherals share the same bus lines.

The three buses labeled in this figure are introduced in section 2.7.2. The network
controller is a DP83848I from National Semiconductor and is connected to the micro-
controller via an RMII bus. This is the same PHY as on Atmel’s NGW100 network
gateway kit, which is already supported by U-Boot and Linux. The RMII connection
bus and the impacts of using it is explained in detail in section 2.7.2.

The JTAG connector is essential for programming and debugging. Power connectors
and regulators are obviously also a necessity.

Located on the underside of the EVK1100 is a 32MB SDRAM chip. This memory
was never used during this project due to a bug in the microcontroller (described in
section 2.7.3). In newer revisions of the microcontroller, when this bug is corrected, the
SDRAM will be very useful. The evaluation kit also has many other interesting and
useful features including a Liquid Crystal Display (LCD) display, a Secure Digital (SD)
card slot, LEDs, microswitches, a potentiometer, a joystick and a light sensor.

28 CHAPTER 2. BACKGROUND

Figure 2.16: The EVK1100 evaluation kit with expansion board (right), connected to
the JTAGICE MKII (left)

2.9 JTAG

JTAG is a hardware interface that provides a “back door” into a system for testing,
analyzing behavior and debugging. Atmel’s own JTAG device, called JTAGICE MKII,
was at our disposal. The JTAGICE MKII supports On-chip debugging of all AVR and
AVR32 microcontrollers with IEEE 1149.1 compliant JTAG interface. It is connected
to a computer using either a serial or USB cable and is supported by both Windows
and Linux. Under Linux, a command line application named avr32program is used
to program microcontrollers via the JTAGICE MKII, and avr32gdbproxy enables a
proxy for debugging with GNU Debugger. For more about GNU Debugger (GDB), see
section 2.13.7.

2.10 Binary formats

This section will introduce the file formats for executables and shared libraries we have
looked at. The Linux kernel has support for the following binary formats:

• Executable and Linkable Format (ELF)

• Function Descriptor Position Independent Code (FDPIC) ELF

• Flat

• A.out

• SOM

2.10. BINARY FORMATS 29

We focused on the ELF format already supported by the AVR32B architecture, and
its derivative, the FDPIC ELF format. The FDPIC ELF format is a variant of the ELF
format, and is designed to run on MMU-less systems.

We also looked into the Flat format, which is a simple binary format for MMU-less
systems.

2.10.1 Terminology

In this section we will introduce the terminology we use to describe binary formats. An
overview of the terminology is shown in figure 2.17.

Figure 2.17: Terminology for binary formats

Process

A running instance of an executable. This is typically an application which is loaded
into memory together with all shared libraries used by it.

Executable

An executable refers to a program file, which can be loaded into memory and executed.

Shared library

A shared library is a file with code and data which can be shared between several
processes. A typical example of a shared library is the C library, which provides programs
with the standard C functions, such as printf, exit and sleep. A program can link to
several shared libraries, and each shared library can link to other shared libraries.

Module

A module refers to a single loadable file with code and data. It can either be a shared
library or an executable.

30 CHAPTER 2. BACKGROUND

Segment

This is a loadable part of a module. It refers to a block of code and/or data. This block
is loaded at a specific address, and will have specific access rights. Typical examples
are code-segments, which are readable and executable, and data segments, which are
readable and writable.

On some architectures there are advantages to a more fine-grained separation, with
separation into three segments: code, read-only data and read-write data. If the pro-
cessor supports it, these segments can be given different permissions, so that data can
never be executed. However, on systems without MMU or MPU, such separation does
not increase security, since there is no memory protection.

2.10.2 ELF

The ELF[16] format was developed by UNIX System Laboratories, and in 1999 it became
the standard format for Unix-like systems, possibly due to the 86open project group’s
effort. The 86open project group was formed in 1997 to discuss the need for a standard
binary executable for x86 based unix systems. This project group were dissolved when
the vendors orginally forming the group had chosen the Linux ELF format.

The ELF format is described in the System V ABI specification[21]. ELF files are
usually created by the assembler and linker during the build process. ELF files can
provide either a link view (2.19(a)), an executable view (2.19(b)) or both. The link view
is used when the linker combines several ELF files into one ELF file, while the executable
view is used when loading an ELF file for execution. The executable view is used in
both shared libraries (called shared objects in ELF), and executables.

There are three main types of ELF object files:

• Executable file. These are the program files that are loaded by the operating
system.

• Shared object file, which are the ELF shared libraries. These files are usually
loaded by the dynamic linker when a program is executed, but can also be linked
into an executable file while compiling the executable.

• Relocatable file. These files are intermediary files used when compiling pro-
grams. It is typically the compiler which generates these files, and then the linker
will combine several of them into the final executable.

Figure 2.19 is an example of an ELF file. This example is based on an statically
linked version of BusyBox. It shows the relationship between sections and segments. In
this example there is an additional segment defined in the program header which is not
shown, namely the stack. The stack is given with a filesize set to zero, but a memsize
set to the wanted stack size. This is used to tell the loader to allocate memory for the
stack when the program is loaded.

2.10. BINARY FORMATS 31

Figure 2.18: ELF Views
ELF Header
Program header table
optional
Section 1
...
Section header table

(a) Link

ELF Header
Program header table

Segment 1
...
Section header table
optional

(b) Executable view

Figure 2.19: Object example (BusyBox)

32 CHAPTER 2. BACKGROUND

Sections and segments

The sections are generated by the compilers, and form the individual parts of the relo-
catable file. Code, read-write data, read-only data, relocation info, debugging info and
various other information is stored in individual sections. The linker will take equal
sections from the all of its input files, and combine into one larger section. For example,
it will combine all the sections with code into one big section. Later, the sections with
equal access permissions (i.e. read-only, executable, read-write) will be combined into
segments for the executable view.

Program header

The program header is a list of the segments in the file. For each segment, it contains
a description of the segment, which will be used to load the segment into memory. The
elements in this description is listed below:

• type tells what kind of segment it is.

• offset is the start address within the file for the segment

• vaddr is the virtual address where the segment should be located within memory

• paddr is reserved for the segments physical address for systems where it is needed.

• filesz is the size used by the segment in the file (may be zero).

• memsz is the size used by the segment in memory (may be zero)

• flags contains permission (read, write, execute) for the segment

• align contains the alignment necessary for this segment.

The memory size of a section may be larger than its file size. The remaining bytes
in the section will then be padded with zero-bytes. This is used by data segments where
variables are initialized to zero, and thus provides a simple way of saving disk space.

Loading and execution

The Linux kernel will identify an ELF file based on the first four bytes of the file. These
bytes are {0x7f, ’E’, ’L’, ’F’}. Once the file is identified as an ELF file, the kernel
will find the program header, and iterate over the segments listed there. Each segment
will be loaded according to the descriptions in the headers. When all the segments are
loaded, the kernel will transfer control to the new program.

2.10. BINARY FORMATS 33

Dynamic linking

An ELF binary using dynamic linking has a special program header that indicates which
dynamic linker should be used. The dynamic linker is a program that knows how to
load shared libraries, and link the executable with them at runtime. The Linux kernel
will load both the original program, and the dynamic linker. Instead of passing control
to the original program, the dynamic linker will be executed first. The dynamic linker
will then do the actual loading and linking of the shared libraries.

Shared libraries and programs which use dynamic linking contains a segment with
information for the dynamic linker. This is known as the DYNAMIC section. The DYNAMIC
section contains relocation information, information about shared functions, and infor-
mation about libraries used.

The dynamic linker will use this information to locate the libraries the program
should use. It will then load those libraries. Sometimes the dynamic linker is unable to
load the libraries at exactly the address they have requested in the program headers. In
those cases it will use the relocation information stored in the DYNAMIC section of those
libraries to relocate the library to a different address.

The program needs to be able to access functions and data in the shared libraries.
Information about what functions and data is used is stored in the DYNAMIC section. The
dynamic linker will find the parts of the program that needs to be updated to access the
functions and data, and insert the correct reference.

2.10.3 FDPIC ELF

The FDPIC ELF format is an adaption of the ELF format. Its purpose is to be able to
execute ELF files on platforms without MMU support. Our main source of information
about the FDPIC ELF format was [13].

Memory layout

FDPIC ELF files can be loaded into memory in two different ways. If the file has
a constant-displacement flag set, all the segments in the file will be loaded into one
contiguous block of memory. If the constant-displacement flag is unset, each segment
will be loaded separately.

34 CHAPTER 2. BACKGROUND

Figure 2.20: Memory layout of three programs without MMU

Figure 2.20 shows an example where three processes are running, and the constant-
displacement flag is unset. Two of the processes are instances of Program A, and one
process is an instance of Program B. All processes share a common library.

As shown in the figure, we have only one address space which is shared by all the
processes. Only read-only segments can be shared between different processes. The code
segments, which are read-only, are shared between the processes, while each process has
its own copy of the data segments.

The challenge is that processes cannot make any assumptions about where each
segment will be loaded. The typical situation is that each module has two segments –
one segment for code and read-only data, and one segment for read-write data. The
code which is running from the code segment needs to be able to locate its variables
stored in the data segment. It also needs to be able to locate the address of functions
in shared libraries.

The solution to this is to have a table in each module known as the “Global Offset
Table”, or Global Offset Table (GOT) for short. This is a table with offsets to various
functions and variables. The table is stored in the data segment, and will be updated
with current addresses of functions and variables during the startup of the program. The
offset of this table is stored in a dedicated register. Whenever the application needs to
access its data segment, it will look up the address of the variable in the GOT.

Calls between different modules need special handling. Because each module has its
own GOT, the register which contains the current address of the GOT needs to updated
with the address of the GOT from the new module. To accomplish this, the GOT address
for the module containing the function is loaded into the register before the function is
called. The old value is restored when the function returns.

In addition to the addresses in the GOT, there may be other addresses in the data
segment which needs to be updated. Example:

2.10. BINARY FORMATS 35

const char * messages [] = {"OK", "Msg1", "Msg2"};

This will create an array with addresses to three strings. The addresses will be invalid
when the program is loaded, and will therefore need to be updated. To update these
addresses, there is a rofixup list in the program file. This list contains the location of
all addresses that needs to be updated. The rofixup list is stored in the code segment
of the file, and can therefore be reached by using a relative reference once the program
has been started.

Stack

In addition to the memory layout differences, there is another difference between normal
ELF files and FDPIC ELF files. If the processor running the application has an MMU,
the operating system can grow the stack dynamically as the program uses it. This is
infeasible without an MMU, so the stack has to be allocated before the program is
started, and it has to be big enough to fit the requirements of the program.

In a FDPIC ELF file, there must be a program header which indicates how big the
stack must be. The operating system will then allocate a stack with the required size
for the program. The program header with the stack has the type PT_GNU_STACKSIZE.

Loading and execution

When the Linux kernel detects a FDPIC ELF file, it will start by loading the program
header. It will check whether the file has the constant-displacement flag set. If the flag
is set, it will iterate over all the segments in the file, and determine how big a memory
area is needed for all the segments. The memory area will be allocated, and then all
segments will be loaded with the offset and size which is specified in the segment list.

If the constant-displacement flag is unset, each segment will be loaded independently
of all others. Some of the segments may then be shared with other processes.

After the program is loaded, the kernel will transfer control to the program. To allow
the program to relocate itself, a loadmap is included as a parameter to the program.
The loadmap describes where the various segments are located in the memory.
/* segment mappings for ELF FDPIC libraries / executables / interpreters */
struct elf32_fdpic_loadseg {

Elf32_Addr addr; /* core address to which mapped */
Elf32_Addr p_vaddr ; /* VMA recorded in file */
Elf32_Word p_memsz ; /* allocation size recorded in file */

};

struct elf32_fdpic_loadmap {
Elf32_Half version ; /* version of these structures , just in case ...

*/
Elf32_Half nsegs ; /* number of segments */
struct elf32_fdpic_loadseg segs [];

};

The program will first locate the rofixup list. This can be done by using relative
addressing – the rofixup list is stored in the code segment, and will have a constant

36 CHAPTER 2. BACKGROUND

displacement from the initialization code. The program will iterate over the rofixup
list, and update all the locations listed in that list with new addresses. Once this is
done, the program is ready to begin execution.

Dynamic linking

The dynamic linking of FDPIC ELF binaries is done in mostly the same way as the
dynamic linking of normal ELF binaries. The Linux kernel will load the dynamic linker
in addition to the normal program, and pass control to the dynamic linker. The dynamic
linker will receive a reference to both its own loadmap and the loadmap for the program
which is executed.

It will load shared libraries, relocate them as needed, do run-time linking, and pass
control to the executed program.

2.10.4 Flat

The bFLT format is a simple flat binary format based on the a.out format, and is the
de facto format for uClinux. This section is based on [15] and [20].

It was designed to simplify the application load and execute process, create a small
and memory efficient file format, support MMU-less systems and storage of GOT. bFLT
is either a fully relocatable binary or a PIC. With Position Independent Code (PIC), it is
possible to use execute-in-place, and share the text segment between multiple instances.
PIC need support for relative addressing in the architecture (this is present in AVR32).

Figure 2.21 shows a conceptual view of the organization of the file. The header
contains information about the file format version, where each section of the file is
located, and how big the stack should be. A flat binary has one (and only one) text
section (code), data section and bss section (relocations).

Usually, Flat binaries are generated by adding an additional tool to the toolchain,
by employing a special linker script. elf2flt is such an utility, and is used during the
linking process. coff2flt is an other example of such a utility.

2.10.5 Comparison of binary formats

Feature ELF ELF FDPIC FLAT
Support for MMU-less systems No Yes Yes
Support for shared libraries Yes Yes Yes
Support for arbitrary number of segments Yes Yes No
ELF Compatible Yes Yes No
Need extra step during linking No No Yes

2.11 Linux

Linux is an open source operating system initially written by Linus Torvalds with help
from programmers around the world. It is a clone of the operating system Unix, and

2.11. LINUX 37

Header

.text

.data

Relocations

Figure 2.21: Overview of the flat format

aims towards POSIX and SUS compliance.
According to Kernel.org, Linux is easily portable to most general-purpose 32- or 64-

bit architectures as long as they have a paged MMU and a port of the GNU C compiler
(gcc). Linux has also been ported to a number of architectures without a paged MMU,
although functionality is then obviously somewhat limited[14].

In a white paper on Linux in the embedded market, researchers from the VDC
Research Group state the following reasons for Linux’ growing popularity[25]:

• Licensing cost advantages
• Flexibility of source code access
• General familiarity
• Maturing ecosystem of applications and tools
• Growing developer experience with Linux as an embedded OS

Kernel.org claims that Linux has all the features you would expect in a modern
fully-fledged Unix, including true multitasking, virtual memory, shared libraries, demand
loading, shared copy-on-write executables, proper memory management, and multi-stack
networking including IPv4 and IPv6.

Linux was originally made for 32-bit x86, but has later been ported to a wide range
of architectures, including:

Alpha AXP, Sun SPARC, Motorola 68000, PowerPC, ARM, Hitachi SuperH, IBM
S/390, MIPS, HP PA-RISC, Intel IA-64, AMD x86-64, AXIS CRIS, Renesas M32R,
H8/300, NEC V850, Tensilica Xtensa, Analog Devices Blackfin architectures, Atmel
AVR32 (AVR32b)

2.11.1 Configuration

The build process for Linux kernel can be configured through a framework named
kbuild. This system consist of a top level makefile, one makefile for each architec-

38 CHAPTER 2. BACKGROUND

ture, a set of kbuild Makefiles and a set of common rules for all kbuild makefiles
(scripts/Makefile.*). Some documentation of this infrastructure can be found in
the kernel documentation [17, kbuild/modules.txt and kbuild/kconfig-language.txt]

The configuration defines which subdirectories should be visited during the build
process. Each of these subdirectories has a makefile for kbuild, and these use information
from the (top level) file .config during the build process.

When started, the configuration utility uses information from the Kconfig file in the
subdirectory for the currently selected architecture. The Kconfig file may also include
other Kconfig files. The configuration utility presents to the user with available compile
time options defined in the Kconfig files. Invoking ’make menuconfig’ (or equivalent)
will read these files and construct a file named .config, located in the root folder of
the kernel source tree. The .config file is read when the kernel is built. There are
also targets defined in the makefiles that sets all, none, random or certain groups of
compilation options (allyesconfig, allnoconfig, etc).

2.11.2 Tasks

Internally to the Linux kernel, all threads of execution are known as “tasks”, and infor-
mation about them are stored in a structure named task_struct. Each task contains
references to the current virtual memory area of the task, the open files, the user the
task is running as, and several other pieces of information. Much of that information
can be shared with other tasks. For example, the virtual memory area of a task can be
shared with other tasks.

By varying what information is shared between tasks, it is possible to accomplish
different degrees of separation. Two threads in the same process will share almost ev-
erything in the task structure. Two separate processes will share much less, but they
will still share some information. The information is still shared includes the current file
system name-space and some other name-spaces.

It is also possible to create two tasks with no shared name-spaces. This can be used
to create virtual servers, and is a field under active development in Linux.

Kernel stack

On Linux, each task has a kernel stack. The kernel stack is used as long as the task is
executed in kernel mode. If the task also executes in user mode, it will have a separate
stack for that part. As soon as the task enters the kernel, for example on a system call
or on an interrupt, it will switch to using the kernel stack.

The first that is done upon entering kernel mode is always to save the user space reg-
isters. This means that the bottom of stack will always contain the user space registers,
which makes it easy to retrieve the user space registers of a running thread.

The kernel stack is 8192 bytes large on the AVR32 architecture. Most of the stack is
occupied by the stack itself, which grows from the top and downwards. The lowest part
of the stack contains a structure named thread_info. This structure contains references

2.11. LINUX 39

to the task this stack belongs to, and also some low-level information about the task. A
simple overview of the kernel stack is shown in figure 2.22.

Storing the thread_info structure in the lowest part of the kernel stack makes it
easy for the kernel to locate the currently executing task. It only needs to retrieve the
current stack pointer and round it down to a 8192 byte boundary. This makes retrieving
the current task a very low-cost operation.

There are two methods for accessing the information on the kernel stack. To retrieve
the user space registers of a task, we have the task_pt_regs function. Given a task
pointer, that function will locate the bottom of the kernel stack of that task, and retrieve
the registers stored there. There is also the current_thread_info function, which
retrieves the thread_info structure of the current task.

Figure 2.22: Kernel stack

2.11.3 uClinux

Originally, uClinux was a fork of the Linux 2.0 kernel, intended for microcontrollers with-
out MMU support. However, the uClinux project has grown both in brand recognition
and coverage of processor architectures, and the uClinux code has been integrated into
the main line of Linux development since 2.5.46[22][18]. This is why no special uClinux
kernel or patches are considered in this report, since uClinux is already integrated in the
official releases from kernel.org. Note that the uClinux name is still used several places
in the Linux kernel and the toolchain.

40 CHAPTER 2. BACKGROUND

2.12 U-Boot
U-Boot is a boot loader for embedded systems. It is developed and maintained by
Wolfgang Denk at DENX Software in Germany, and is mainly used to boot Linux.
It also has support for several other operating systems, such as NetBSD and QNX.
Several architectures are supported, including PPC, ARM, AVR32B, MIPS, x86, 68k,
Nios, MicroBlaze. For each architecture, multiple boards with different CPUs can be
supported. U-Boot is open source free software released under the GNU GPL.

U-Boot already supports the AVR32B architecture on Atmel’s STK1000 and NGW100
development/evaluation boards. Support for the UC3A was implemented during our
previous project during the fall of 2008.

2.12.1 Contributions

To contribute to the development of U-Boot, the code changes should be divided into
logical chunks called patches. Patches are submitted to the official mailing list and
should conform with its rules. The rules and conventions for the mailing list and U-Boot
patches can be found on the DENX Software website2.

2.13 Toolchain
In this context, a toolchain is a set of software tools capable of creating and debugging
executables for a specific platform. It normally includes tools for working with binaries
for the target machine, compilers and the C library.

2.13.1 Terminology

In this section, we will introduce some terms used when describing the toolchain:

• Assembler: A program for turning a textual representation of machine code into
binary code.

• Object file: A file with binary code meant to be combined with other files with
binary code into a program or library.

• Linker: A program for combining several object files (including libraries) into a
program or library.

• Compiler: A program for turning a high-level language, such as C, C++ or Java
into lower level code, such as assembler input, or directly into binary code. The
output of the compiler can be a finished program, or an object file that must be
linked with other files to form the program or library.

• Library: A collection of binary code that can be reused by other programs.
2http://www.denx.de/wiki/U-Boot/Patches

http://www.denx.de/wiki/U-Boot/Patches

2.13. TOOLCHAIN 41

• Shared library: A library where the linking is done when the program is executed.

• Static library: A library that is linked into the program when the program is
compiled.

• C library: A library implementing all the standard C-functions, such as printf,
malloc and atoi.

2.13.2 Linux toolchain

A toolchain on Linux typically contains at least:

• GNU Binutils – handles linking of executables, and transformation of assembler
files into machine code.

• glibc – the C library.

• GCC – the C compiler.

Figure 2.23: Elements of a toolchain

Figure 2.23 shows how various pieces of a toolchain interacts. The figure shows
how a program is created from three source files and a statically linked library. Two
of the source files are C-files (file1.c and file2.c), and one of the source files is an
assembler-file (file3.s). A statically linked library (e.g. the C library) is also included.

The compiler transforms the C-code into assembler files, which in turn are trans-
formed into machine-code by the assembler. This step is usually invisible to the user, as
GCC automatically invokes the assembler. The linker takes the object-files with machine
code and the static library, and combines them into a single program.

42 CHAPTER 2. BACKGROUND

2.13.3 GCC

The GCC project is a collection of compilers for various languages, such as C, C++ and
Fortran. It supports several target architectures, including x86, ARM, MIPS and many
more.

The GCC mission states: “GCC development is a part of the GNU Project, aim-
ing to improve the compiler used in the GNU system including the GNU/Linux variant.
The GCC development effort uses an open development environment and supports many
other platforms in order to foster a world-class optimizing compiler, to attract a larger
team of developers, to ensure that GCC and the GNU system work on multiple archi-
tectures and diverse environments, and to more thoroughly test and extend the features
of GCC.” The first official beta of GCC was released 1987 and new versions has since
then been released on a regular basis.[11]

The official version of GCC from the Free Software Foundation (FSF) does not
currently support the AVR32 architecture. However, Atmel is providing support through
patches that can be applied to the official version. Both the patches and pre-compiled
binaries can be downloaded from Atmel’s website. The patched version of GCC support
the AVR32 architecture, including the UC3 series, but is unable to produce relocatable
programs for Linux.[4]

Extending GCC

GCC consists of language-dependent frontends for handling various languages, optimiz-
ers, and machine-dependent backends. The machine-dependent backends handles the
various architecture-dependent parts of the compilation process.

gcc/config.gcc contains a definition of all the targets GCC can be configured for.
When building for AVR32 and uClinux, the following target definition will be used:
avr32 *-*- uclinux *)

tm_file =" dbxelf .h elfos .h linux .h avr32 /linux -elf.h avr32 /uclinux -elf.h
avr32 / avr32 .h"

tmake_file ="t- linux avr32 /t- avr32 avr32 /t-elf"
extra_modes = avr32 /avr32 - modes .def
gnu_ld =yes
;;

This tells us what files GCC will use. The tm_file-line lists files that define
the target machine. The files will be evaluated in left-to-right order, so files later
in the line can override earlier files. Three AVR32-specific files are on that line –
linux-elf.h, uclinux-elf.h and avr32.h. All of these are located in the directory
gcc/config/avr32/. These files configure most of the information about the target –
everything from how the linker and assembler should be invoked to how many bits the
registers are on that target.

There are also some other files of interest in the gcc/config/avr32/-directory:

• avr32.opt: The file defining the command line arguments that can be passed to
GCC.

2.13. TOOLCHAIN 43

• crti.asm and crtn.asm: Start and end of _init and _fini sections. The linker
combines the sections in these files with sections inn all other files to build two
functions which should be called at program startup and program exit.

2.13.4 GNU Binutils

GNU Binutils is a collection of tools for working with binary files. We worked with
version 2.18 of GNU Binutils since that version was the one Atmel’s patches were created
for. Amongst the operations which can be done with GNU Binutils are:

• Building binary files from assembler files, with the as tool.

• Linking files with binary code together to form executable programs, with the ld
tool.

• Examining binary files, with the readelf and objdump tools.

• Trimming unnecessary parts from a program, with the strip tool.

GNU Binutils contains an abstraction layer for working with various types of binary
formats[12]. This abstraction layer is known as the Binary Format Descriptor (BFD)
library. Since many different platforms and architectures use the ELF binary format,
with some variations, a base library of ELF functions has been defined. This library
defines a basic implementation of the ELF format, and exposes a set of hooks where the
target architecture can insert its own code for architecture-specific code.

2.13.5 elf2flt

elf2flt is a utility used during the link process to transform a ELF file into the flat bi-
nary format. The Flat binary format is described in section 2.10.4. elf2flt is developed
as a part of the uClinux project.

2.13.6 Libraries

A C library, often called libc or similar, is a collection of header files and library routines
that implement common operations. GNU is providing a library named GNU C Library
(abbreviated glibc), which is used in the GNU system and most GNU/Linux desktop
distributions. uClibc is a C library for embedded Linux systems. Compared to glibc,
uClibc is much smaller and support MMU-less CPUs. Nearly all applications supported
by glibc also work perfectly with uClibc[23].

uClibc currently supports the AP7 family of microcontrollers, but may need some
significant modifications to work on the UC3A family. Dynamic linking of uClibc on
MMU-less systems is currently not supported.

44 CHAPTER 2. BACKGROUND

2.13.7 GDB

GDB is a feature-rich open source debugger that supports a wide range of platforms and
hardware. Atmel maintains its own version of GDB and as features from this branch
are matured they are merged into the official version of GDB. Currently, the AVR32
version of GDB (avr32gdb) is currently not in the official releases of GDB, but can
easily be obtained from Atmel’s official web page3 by downloading the AVR32 GNU
Toolchain. GDB enables the user to control and analyze in detail the program execution
and states of hardware registers and memory. Instruction data can be disassembled, and
breakpoints can be added at specific instructions or at specific line numbers.

2.14 BusyBox

BusyBox is an open-source software application that provides light-weight versions of
many common UNIX utilities, and is called “The Swiss Army Knife of Embedded Linux”
by its maintainers. It is written with size-optimization and limited resources in mind,
and compiles to a single small executable.[2] Because it is open-source and extremely
modular, it is very customizable and suitable for embedded systems. BusyBox also aims
to achieve fast execution, and minimize run-time memory usage. This makes BusyBox
a suitable set of tools for Linux running on the platform concerned in this thesis.

BusyBox is equipped with a a simple menu configuration system, based on the con-
figuration system in the Linux kernel. A screenshot of the main menu of can be seen in
Figure 2.24. By altering the configuration options, the BusyBox can be customized to
fit the needs of a wide range of projects. It can be adjusted to find a balance between
functionality, file size and memory usage requirements.

BusyBox contains a wide range of utilities, categorized by the build configuration
system as depicted in figure 2.24. Each “application” of BusyBox is called an applet and
most of these aims to be a replacement for the utilities normally found in an GNU system.
The applets contain the most important features of the applications they imitate, but
generally have fewer options.

3http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118

2.15. SERVER PROTOCOLS 45

Figure 2.24: Screenshot from menuconfig for BusyBox

The list of applets is fairly long and is not listed here. They can be explored by using
menuconfig. Here is short a short list of some of the applets contained in BusyBox: ls,
cp, cat, grep, find, mkdir, rm, rmdir, df, du, vi, diff, adduser, passwd, fsck, mount,
less, ifconfig, free, ps, ash/hush/msh (shells), tar, gunzip. BusyBox can be used as
init, and thereby start necessary services and applications, e.g. a shell for the terminal
and/or telnet server.

According to the official web page, BusyBox will build on any architecture supported
by GCC, and is tested with both uClibc and glibc.

2.15 Server protocols

An embedded system can either contain all necessary software and configuration in the
firmware, or it can rely on downloading parts from another system or server during
start-up. This section introduces concepts and software often used to serve the software
and configuration to such a system.

46 CHAPTER 2. BACKGROUND

2.15.1 DHCP

A Dynamic Host Configuration Protocol (DHCP) server can be used to distribute con-
figuration options to network devices. The DHCP server usually assign an IP address
to the device, and can also provide information about where the root file system and
kernel can be located.

2.15.2 TFTP

Trivial File Transfer Protocol (TFTP) is a simple protocol for transmission of files over a
Internet Protocol (IP) network. It uses the User Datagram Protocol (UDP) for IP, and
this enables it to be very lightweight compared to protocols that use the Transmission
Control Protocol (TCP) for IP.

U-Boot can use the response from the DHCP server to locate the TFTP server and
download the kernel image from this TFTP server.

2.15.3 NFS

The Network File System (NFS) protocol is, as the name suggests, a protocol for access-
ing files over a network in the same manner as files are accessed locally. The file system
that is mounted in the topmost directory of the file system hierarchy is commonly called
the root file system, and in Unix-like systems like Linux it is denoted “/”. NFS can be
used to set up a root file system for a disk-less system, e.g. an embedded system.

2.16 Open-source collaboration
This section gives an introduction to the typical tools and norms for collaboration in
open-source projects. A text file named SubmittingPatches is included in the Linux
kernel documentation[17]. This file describes the general guidelines and rules to follow
when submitting patches for Linux.

2.16.1 Git

Git is a revision control system, and was used for maintaining the source code for all
the software units changed during this project. Git was initially developed by Linus
Torvalds for use with the Linux kernel. Git is a de-centralized version control system with
strong focus on performance and many advantageous features for very large distributed
development projects.

2.16.2 Merging with current versions

To make sure that any changes done to the source are compatible with the maintainer’s
current version, development branches should regularly be merged with the branch they
are based on. Another reason for merging is to avoid development based on obsolete
structures or frameworks. Rebasing can also be used as a way to extract the current

2.16. OPEN-SOURCE COLLABORATION 47

changes and apply them to a newer version. This should ideally give the same result as
merging, but with a different revision history structure.

2.16.3 Splitting up patches

The rules for submitting patches for the Linux kernel, and many other projects, states
that the patches must before submission be split into logical units of change. For ex-
ample, if you are going to submit both a bug fix and performance enhancements for a
single driver, these should be separated in to two separate patches.

2.16.4 Patch submission format

The patches should usually be sent as an email to the appropriate subsystem maintainer
for review. This maintainer will, if the patch is approved, ask the main maintainer to
pull this patch into the main branch.

It is important that other developers are able to comment and quote patches, and
therefore all patches should be submitted inline in the mail. For submitting patches
to the Linux kernel maintainers, the formatting rules listed below apply. Many other
software project maintainers have adopted these same rules.

• No MIME

• No links

• No compression

• No attachments

• Max 40kB mails to the mailing list (for larger patches, an URL should be provided
instead)

Git provides functionality for formatting and sending patches based on the Git re-
vision history. By specifying the format-patch command (git format-patch), Git can
be instructed to generate patch files from a given revision interval. Usually, a series of
patches should be accompanied by a descriptive cover letter. The patches can be sent by
invoking git send-email with the cover letter and patch files specified as parameters.
Many other parameters can be specified (like sender, receiver, SMTP-server etc), but
Git will ask if any obligatory parameters are missing.

2.16.5 Signing your work

Especially Linux, but also other open source projects use the sign-off procedure on
patches that are being emailed around. The sign-off line is added at the end of the patch
description, and is used to certify that you either wrote it or otherwise have the right to
pass it on as a open-source patch. This tag indicates that the signer was involved in the
development, or that he/she was in the patch’s delivery path.

48 CHAPTER 2. BACKGROUND

There is also a less formal tag used, namely “Acked-by”, which is used by developers
who have reviewed the patch and indicated acceptance.

2.16.6 Upstream

To send a patch upstream is a term used when they are sent in direction of the original
author or maintainer of the project. These could then be included in the next version if
they are approved.

2.17 Previous work
In this section we will briefly present previous relevant work done by ourselves and
others.

2.17.1 AP7 series

The AP7 series microcontrollers from Atmel are already supported by U-Boot, Linux,
GCC, uClibc and GNU Binutils. Because the AP7 and UC3A microcontrollers are
implementations of the same architecture, they have many similarities. This is of great
significance, since much of the existing code can be reused on the UC3A with few or no
changes.

2.17.2 Linux support for MMU-less systems

The uClinux project was started with the aim to run Linux on processors without MMU
support, and most of this is now included in the main Linux kernel tree. This means that
the main Linux kernel tree already contains the basic code for MMU-less systems, and
we can base futher development on this code. We have examined the Linux source code,
and have found several architectures that support devices both with and without MMU.
The ARM architecture and the MIPS architecture are examples of such architectures.
The implementations for these architectures can be used as examples on how this can
be implemented for the AVR32 architecture.

2.17.3 Implementations for other architectures

Linux and necessary toolchain components is ported to some architectures without
MMU. Some are ported in the uClinux project and most of these use the flat binary for-
mat, but there are also some implementations which uses the FDPIC, which can seem
to be a more modern format. This section mentions implementations done for other
systems without MMU, first for the kernel and thereafter the toolchain.

Linux kernel

All work descibed in this thesis is based on the latest stable Linux kernel version obtained
at the beginning of this project (2.6.28.1). This kernel version support the FDPIC format

2.17. PREVIOUS WORK 49

in three architectures, namely FR-V, Blackfin and SuperH. Each of these architectures
have at least one MMU-less variant, and the existing code for these may be useful as
inspiration when implementing support for a new architecture. Other implementations
for MMU-less processors use the Flat binary format.

Binutils

The GNU Binutils version we based our work on is capable of producing FDPIC bina-
ries for FR-V and Blackfin. Some code for dealing with FDPIC is almost architecture
independent, and can in some cases be copied to a new architecture with minor changes.

elf2flt

Architectures supported by the current versions of elf2flt includes m68k/ColdFire,
ARM, Sparc, NEC v850, MicroBlaze, h8300 and SuperH. If the Flat format is going to
be used, the existing implementation for these architectures may be used as examples.

2.17.4 SRAM expansion board

On the EVK1100, a 32 MB SDRAM chip is connected to the microcontroller’s EBI.
Due to the SDRAM bug (see 2.7.2), this memory cannot be used to run code. The end
result is that Linux can not be run on current versions of the EVK1100 evaluation kit
without hardware modifications. Using the internal SRAM for Linux is infeasible, since
only 64 KB of internal SRAM is available, and a running Linux kernel requires far more
memory. To work around the SDRAM bug, an expansion board for the EVK1100 with
SRAM and flash memory was developed by Atmel for our previous project in 2008.

The expansion board connected to the EVK1100 can be seen in figure 2.16. The
board is just a circuit board with a connector for the EVK1100, footprints for two 2 MB
SRAM chips and one 8 MB flash chip, and some resistors and de-coupling capacitors.
See appendix H for the expansion board schematics.

Note that several pull-ups and capacitors have been removed from the EVK1100 to
avoid conflicts with the expansion board.

50 CHAPTER 2. BACKGROUND

51

Chapter 3

Implementation

In this chapter, we will present our approach to porting Linux to the UC3A0512 micro-
controller and EVK1100 evaluation kit. We will also show what changes we did to GCC
and GNU Binutils to support Linux on this platform.

In the first section we present the organization of our work flow, by explaining the
approach we used to implement our requirements. The next section list what we excepted
to be nessecary in order to achieve our goals. Our development setup is presented in
section 3.3. The next section, section 3.4, present the changes (mostly cleanups) done
to U-Boot in this project.

Section 3.5 presents the decision made as to which binary format is going to be used.
The Linux kernel modifications and toolchain adaption is presented in the next sections,
section 3.6 and 3.7 respectively.

Some adaptations and workaround had to be done to the development board and
initializing code. These are presented in the sections SRAM optimization (3.8) and SPI
chip select (3.9).

Our assignment text indicates that a list of applicable Linux programs should be
compiled. In section 3.10 our use of BusyBox, the swiss army knife of embedded Linux,
is presented.

The last section, section 3.11 present how we acquired the necessary code, and how
we distributed our changes.

3.1 Methodology
An iteration based approach was used during this project. This approach is inspired by
the “Incremental Process model”[10].

Each of the iterations in the process consists of the steps listed below. The Figure 3.1
shows the steps involved in the process flow.

1. Identifying the next goal needed to fulfill our requirements.
In this context we use the word goal when we refer to the coarse grained steps
required to reach the requirements we defined in section 1.3.1. A goal can be e.g.

52 CHAPTER 3. IMPLEMENTATION

making the kernel boot, getting GCC to build a proper binary, etc.

2. Sketching preliminary milestones for what we think is the most reasonable way to
reach the goal.

In this context we use the word milestone for the more fine grained steps required
to reach a goal. A milestone can be e.g. adding the new linker target in GCC,
updating the BFD, etc.

3. Run short iterations consisting of the steps listed below. If we during these iter-
ations found that our milestone still were too coarse, we would refine them into
smaller steps.

(a) Define or refine the milestone. We usually had a general idea of what the
milestone should be, and we jumped directly to the next step.

(b) Identify the necessary steps to reach the milestone. More on this in sec-
tion 3.1.2.

(c) Implement what we identified as necessary.

(d) Test whether we reached the milestone or not.

• If the goal is reached we go to step 1, and enter a new iteration with the
next goal.

• If the milestone is reached, we clean up our code by removing debug
output and try to format it to conform with coding guidelines. We then
enter a new iteration for the next milestone.

• If the milestone is not reached, we begin a new iteration for the same
milestone.

We kept these iterations short by keeping our milestones fine grained.

Figure 3.1: Development process

3.1. METHODOLOGY 53

3.1.1 Setting goals and preliminary milestones

At the beginning of this project, we mostly had a superficial idea about what had to be
done to the code. To identify the necessary changes in complete detail, we would have
to analyze all the relevant code. With the time frame set for this project, this would be
infeasible, due to the size and complexity of the kernel and toolchain. Instead, the parts
of the code necessary to understand were gradually uncovered during implementation.
Some figures to support this decision (these figures as counted with a simple script and
used the 2.6.28.1 kernel as source):

• The core kernel code (counting the kernel, mm/, init/ and fs/ subdirectories),
contains almost one million lines of code.

• The AVR32 architecture implementation of the kernel contained about 23000 lines
of code when we started our development.

• The FR-V architecture often used as reference, had about 19000 lines of code.

3.1.2 Milestone identification and implementation

When a milestone was identified, attempts were made to identify the necessary changes.
Techniques varied a lot between the milestones, but typically consisted of one or more
of the following steps:

• Reading documentation.

• Analyzing code, including code for other architectures.

• Tracepoints in the code (ie. printf/kprintf).
This enabled us to get a overview of the execution flow and study the internal state
during execution.

• Single stepping with GDB was used when we did not get the whole picture from
the tracepoints we used. This technique was vital when an error caused a stack
corruption. Stack corruption makes it difficult to locate the problem, becuase the
stack is useful for backtracking the execution.

• Analyzing binaries with readelf/objdump (this is relevant only to the toolchain
adaption).

During this survey phase, we found that we had to add other goals and milestones.
Often we saw that changes had to be done in an other part of the system. E.g. when
we worked our way through the compilation process, we often realized that work had to
be done in the Linux kernel’s executable file loader and vice versa.

Some of the milestone identification and implementation attempts revealed that the
milestone we set was not the right way to go, and we jumped right to the refining the
milestone or even defining a completely different goal without completing the iteration.

54 CHAPTER 3. IMPLEMENTATION

3.1.3 Review

One important element of open-source development collaboration is the public review
process, where other developers can read, test and comment the submitted code. All
patches should be reviewed thoroughly and approved before they are applied to the
maintainer’s development branch. There were two main reasons for us to submit our
work to the appropriate mailing lists. First of all, the lists can provide valuable feedback
to our work. Secondly, we wanted to make the code available to anyone that could make
use of it. Publishing our work was also indicated in both the original assignment and in
our communication with Atmel. The received feedback is presented in section 4.5.

3.2 Expected changes

In this section we list the changes we identified early on as necessary to reach our goals.

3.2.1 U-Boot

U-Boot was already working when the development started this spring. We wanted to
incorporate the feedback we received on the patches we had sent out during our previous
project into a new version of U-Boot. Some changes could be valuable both for us during
development and for other who can benefit from our work.

We also wanted to make another effort to improve the speed the SRAM worked on,
since the memory speed severely limited our execution speed.

To implement support for SPI and SD card reader we would investige the possibility
of employing existing drivers.

3.2.2 Select binary format

A binary format has to be selected in order to be able to fullfill the other requirements.
This should be done by investigating both FDPIC ELF and Flat, and selecting the most
fit.

3.2.3 Linux

The Linux port was at the start time of this project incomplete, and several things had
to be done here.

The configuration files have to be updated to support both the new CPU and the
new board.

Some hardware drivers have to verified and updated. In U-Boot the networking
speed had to be limited to 10Mbps when the clock is to slow. This change has to be
done to the Linux kernel as well. The GPIO subsystem is quite different from the PIO
system found in AP7, and this requires some changes. Some similarities exists, so parts
of the code can be reused.

3.3. DEVELOPMENT SETUP 55

The executable loader has to be adapted to support the FDPIC ELF format. This
include adding the platform independent loader to the configuration, and implement
platform dependent helper functions for this loader.

Exception and interrupt handling needs to be updated. Most of these changes here
is to revise the entry-avr32a.s, so that it suits this processor.

Some differences in the memory system have to be taken account for. The address
space layout has several differences, and this has to be fixed. The memory copying
routine for this processor that cannot do unaligned access could be optimized. We found
that it could be faster to do halfword copying or similar, when that was possible, instead
of going to byte copying in all other cases than the trivial aligned copying.

3.2.4 Toolchain

We must create a toolchain that is capable to produce binaries which can be executed
on our platform. Since this platform doesn’t have an MMU, the executables must be
relocatable. We have two choices when it comes to executable formats – FDPIC ELF or
Flat, and must decide on one of these.

If we decide to add Flat support, we must modify the elf2flt tool. It might also
be necessary to change some of the toolchain, so that it can generate relocatable ELF
executables. These executables should then be processed by the elf2flt tool to produce
Flat binaries.

If we decide to add FDPIC ELF support, we will have to change the linker. The linker
must be able to generate valid FDPIC ELF executables, which requires the executables
to contain relocation information. We must also change GCC to support the -mfdpic
flag, and pass it to the linker.

3.2.5 User space

Some sort of user space programs are necessary for this project to be of any use. We
must therefore compile some useful programs for the platform and verify that they work.

3.3 Development setup

In this section we will introduce the setup of hardware and software used for development
during this project. The setup consists of a computer running Ubuntu Linux 8.04, the
EVK1100 development board, and a JTAG debugger. These components are connected
as shown in figure 3.2.

56 CHAPTER 3. IMPLEMENTATION

Figure 3.2: Development setup

3.3.1 JTAG

A JTAG connection is used for uploading the U-Boot boot loader to the board, and for
debugging. The JTAG connection enables us to single step in both the running kernel,
and in programs started by the kernel. By adding breakpoint instructions, we are also
able to halt the execution at specific places, and inspect the data currently in memory,
and the state of the CPU.

A programming and control utility called avr32program was used to program the
microcontroller. The following command was used to upload U-Boot to the internal flash:
avr32program -pjtagicemkii –part UC3A0512ES program -finternal@0x80000000
-cint -F bin -O 2147483648 -e -R -r u-boot.bin

The parameters and arguments specifies the following:
• -pjtagicemkii: What programmer is connected to development board.

• –part UC3A0512ES: The device to be programmed.

• program: The action avr32program should perform. In this case it is “program
memory”.

• -finternal@0x80000000: Tells avr32program that the programming should be
done to the internal flash memory located at offset 0x80000000.

• -cint: Which clock source the CPU should use during programming. int selects
the internal RC oscillator.

• -F bin: The input format. bin means a binary file.

• -O 2147483648: The offset that should be programmed. 214748364810 is the same
as 8000000016, which is the start of the internal flash memory.

• -e: Erase the flash before programming.

• -R: Reset the chip after the programming is complete.

• -r: Start execution after the reset.

• u-boot.bin: Filename of the binary file to write to the flash.

3.4. U-BOOT 57

3.3.2 Serial cable

A serial converter was used to access the console of U-Boot and Linux. It was a generic
USB-to-serial converter, and a baud rate of 115200 baud/sec was used.

3.3.3 Networking setup

A DHCP server was used to distribute configuration options to the development board.
The DHCP server assigns an IP address to the board, and also provides information
about where the root file system and kernel can be located (line 8 and 9 in listing 3.1).

The TFTP server is installed on the development computer, and configured to re-
spond to requests for files located in a designated folder. It was used to serve the boot
image for the Linux kernel.

Listing 3.1 shows the configuration file used by our DHCP server. We used udhcpd1

as DHCP server.
start 192.168.0.20 # default : 192.168.0.20
end 192.168.0.254 # default : 192.168.0.254
interface eth0 # default : eth0
max_leases 234 # default : 254
opt dns 192.168.0.1
option lease 864000 # 10 days of seconds
siaddr 192.168.0.2 # default : 0.0.0.0
boot_file /srv/tftp/ uImage # default : (none)
opt rootpath / tftpboot / evk1100

Listing 3.1: DHCP configuration

The three last options gives information to clients about the TFTP server and NFS
server.

• siaddr is the ip address of the server which hosts the TFTP server and NFS server.

• boot_file is the location of the kernel image file.

• opt rootpath sets the NFS root directory.

In our setup, U-Boot uses the response from the DHCP server to locate the TFTP
server. It downloads the kernel image from this TFTP server, and executes it. The
Linux kernel also receives a DHCP response, and uses it to locate the NFS server. This
server is then used for the root file system.

3.4 U-Boot
At the end of our previous project, an updated set of patches for U-Boot was submitted
to both the official U-Boot mailing list and the avr32linux.org’s U-Boot mailing list.
Some constructive criticism about these patches was posted on the mailing list, and we
decided to clean up some of the things remarked. This section describes every change

1http://packages.ubuntu.com/hardy/udhcpd

http://packages.ubuntu.com/hardy/udhcpd

58 CHAPTER 3. IMPLEMENTATION

done to U-boot during this project, grouped in logical subsections. The actual changes
can be seen in appendix B. Note that appendix B only lists the changes to the patches,
not the complete revised patch series. For the complete patch series, see the official
U-Boot mailing list2 or the digital appendix of this report.

Also note that some changes to the U-Boot source code were done after the submis-
sion of the revised patch series. These changes are described in section 3.4.5 and 3.4.6,
and listed in appendix C.

3.4.1 Network speed limiting

During our previous project, a modification was done in the MACB driver in U-Boot to
limit the operating speed of the PHY. This patch was replaced to reduce the changes in
the MACB driver, and only limits the network speed if it is explicitly defined by setting a
board configuration flag named CONFIG_MACB_FORCE10M. The original version the patch
can be found on the U-Boot mailing list archive3, and the modifications of it are listed
in B.1. This new version of the patch received some criticism, and triggered some debate
with suggested solutions on the mailing U-Boot mailing list, but no follow-up solution
was implemented by us.

3.4.2 Adding the EVK1100 board to lists

We added the EVK1100 board to the files MAKEALL and MAINTAINERS. The MAKEALL file
lists all boards for the AVR32 architecture supported by U-Boot, and the MAINTAINERS
file lists the people that maintain different parts of U-Boot.

3.4.3 Precedence safety fix

When preprocessor macros are used to define simple mathematical expressions, the re-
sulting expression substituted by the preprocessor may become a part of a larger ex-
pression. In some cases, if the macro is used without care, the resulting expression
may produce the wrong result. To make sure that this never happens, we introduced
some parentheses around the mathematical expressions. This change is shown in ap-
pendix B.3. Listing 3.2 shows an example of how careless use of the previous version of
the macro can be used to produce the wrong result.

Old macro version : Evaluates to: Result :
SMC_CYCLE (42) *2 0 x0008 +(42) *0 x10 *2 1352

New macro version : Evaluates to: Result :
SMC_CYCLE (42) *2 (0 x0008 +(42) *0 x10)*2 1360

Listing 3.2: Macro precedence error example

2http://lists.denx.de/pipermail/u-boot/
3http://lists.denx.de/pipermail/u-boot/2008-October/041568.html

http://lists.denx.de/pipermail/u-boot/
http://lists.denx.de/pipermail/u-boot/2008-October/041568.html

3.5. BINARY FORMAT SELECTION 59

3.4.4 Esthetical and other minor changes

The previously submitted U-Boot patches was updated to make the code conform with
the coding style specified by the maintainer. The changes listed in appendix B.4 to B.7
are merely esthetical changes, removal of unused variables, and correction of comments.
The only exceptions are the introduction of the network speed limiting flag, and the
baud rate adjustment in the board configuration.

3.4.5 Auto detection of PHY address

The last patches submitted in the fall of 2008 included a routine for auto detecting the
address of the external PHY. This routine would be invoked if and only if U-Boot was
compiled with the PHY address set to 0xff. This was changed so that a flag in the
board configuration file determines whether or not the routine will be compiled and
user. The board configuration file is a more appropriate place for this option, since the
PHY address is determined by the board. A flag also enables the possibility to make the
preprocessor remove the auto detect routine. This in turn, results in a slightly smaller
binary output file. As can be seen in appendix C, the files changed to achieve this were
atevk1100.c, atevk1100.h and macb.c.

3.4.6 Removal of bug workaround

In an early stage of development, a structure describing the layout of the GPIO registers
were shared between the implementations for UC3 and AP7 families. The layout of the
GPIO registers are not the same on these two architectures, and the structure defined in
software was incompatible with the UC3A. When writing to the GPIO registers defined
by the incompatible structure, the wrong memory locations were accessed. This error
surfaced by causing an interrupt to occur when initializing the USART, and before the
bug was found, a workaround was implemented. The bug was eventually removed, but
the workaround remained. The removal of this obsolete workaround can be seen in line
65 in appendix C.

3.5 Binary format selection

The current Linux support for the AP7000 microcontroller is based on the ELF binary
format for programs and shared libraries. This format requires that the architecture
has an MMU, and is therefore unsuitable for the UC3A0512 microcontroller. We had
to select another binary format suitable for MMU-less architectures, and implement
support for this format in the toolchain. The Linux kernel currently has support for two
such formats, and we found it most practical to choose one of them.

The original assignment text ask for Flat binary support in the toolchain, but on the
web page given with the assignment FDPIC ELF is proposed. In discussions with our
supervisor at Atmel, FDPIC ELF was suggested as an equal, if not better alternative.

60 CHAPTER 3. IMPLEMENTATION

In section 2.10 both FDPIC ELF and the Flat binary format is presented. During
development we tried both formats, and ended up using the FDPIC ELF format. Even
though the Flat file format is simpler and more widespread the FDPIC ELF was chosen
due to several advantages with this format:

• Simpler toolchain usage (does not need additional programs).

• More compatible with existing toolchain (objdump, readelf, gdb, etc).

• ELF support for AVR32 is already implemented.

• Closer to the standard format used in Linux.

• Flat is limited to four shared libraries in total in a program.

3.6 Linux kernel
This section describes the changes we did to the Linux kernel during this project.
Processor-specific folders, files and code in the Linux source tree had already been added
and modified during our previous project. The changes done to the Linux source tree
during both projects have now been cleaned up and grouped into logical patches. These
patches are listed in appendix D, and also summarized in section 3.11.7.

The first section is about the rebasing done in the start of this project and the
second section regards the added and modified configuration files. Section 3.6.3 describes
changes done to support the UC3 core, and section 3.6.4 is about changes done because
the microcontroller used does not have a cache. In section 3.6.5, we describe some
changes we had to do to the clock setup. Section 3.6.6 discusses the changes done to the
driver for the network adapter. The next section, section 3.6.7, describes changes done
to get the GPIO system to work. Section 3.6.8 mentions the configuration of the LED
driver. The attempt to support SPI with Direct Memory Access (DMA) is discussed in
section 3.6.9. A workaround for a bug in the CPU is described in section 3.6.10.

The next four sections presents changes that had to be done regarding memory access,
both due to the lack of support of unaligned memory access and the lack of MMU.

Section 3.6.15 regard changes nessecary for the differences in exception and inter-
rupt handling in the processors. Section 3.6.16 discusses modifications done to support
FDPIC ELF binaries. Section 3.6.17 and section 3.6.18 regard refactoring done to make
other changes easier. The last section gives an overview of all the patches we created.

3.6.1 Rebasing

The 2.6.27-rc6 version we had started out with during the fall of 2008, was getting quite
old. We therefore started development with rebasing our changes on version 2.6.28.1 of
kernel. When rebasing, we take all of our changes, and apply them to a newer version.
This was done for the same reasons as given for merging in section 2.16.2. We selected
version 2.6.28.1 because it was the most recent stable version of the kernel, and a kernel

3.6. LINUX KERNEL 61

with few defects were desirable. A release candidate for version 2.6.29 were available,
but this kernel was more likely to contain defects.

3.6.2 Configuration files and make files

During our previous project, some changes were made to the Kconfig and Makefiles to
include the EVK1100 development board and the UC3A0512 microcontroller. To enable
the compilation the UC3A0512 via the configuration system, the EVK1100 was added
as a selectable board in Kconfig and Makefile in the avr32-folder (see patch 29 in
appendix D.29).

Board support

During our project in 2008, we had copied the atngw100 folder in arch/avr32/boards
to a new folder named atevk1100. The file setup.c in this folder had to be rewritten to
match the hardware on the EVK1100. These changes include setting up the oscillators,
SPI configuration, LED configuration, and running initialization functions for applicable
hardware. The clock configuration is discussed in section 3.6.5.

The patch adding board support is listed in appendix D.29. A part of this patch
adding a file with a generated default configuration (defconfig) for the board, is omitted
due to its length, but is included in the digital appendix. This file contains the kernel
configuration used when the kernel was compiled, and can be generated by invoking
make menuconfig and configuring for this system.

3.6.3 UC3A support

In our project, during the fall of 2008, we began the process of taking the code for the
AP7 microcontroller family and adapting it for the UC3A family. The
arch/avr32/mach-at32ap folder was copied to arch/avr32/mach-at32uc3a, and changes
were made to the code. These changes were sufficient to almost complete the boot pro-
cess, but still some nessecary changes remained.

The patch that adds support for UC3A devices can be seen in appendix D.28.
The file at32uc3a0xxx.c defines on-chip devices in the microcontroller, and the

memory locations and layouts of these. Most of these addresses had to be updated,
since the memory layout of AP7 microcontrollers greatly differ from the UC3A series.
Many features in the AP7 are not present in the UC3A series. Support for the following
features had been removed from at32uc3a0xxx.c (copied from at32ap700x.c) during
the previous project:

• MultiMedia Card Interface (MCI)

• IDE/CompactFlash interface

• NAND Flash/SmartMedia

• AC97 Controller

62 CHAPTER 3. IMPLEMENTATION

• Audio Bitstream Digital to Analog Converter (DAC)

3.6.4 Cache

Since the processor used in this project does not have the same caching facilities as
AP7000, some function calls used in the that implementation had to be removed. A
flag was added to make this conditional on whether the chip has cache or not. This
was done by adding these functions as empty stubs in an architecture specific file. Mov-
ing these functions to a header an setting them to be inline would be more efficient,
because then the compiler would be able to optimize them away. This was not done
because optimization was not highly prioritized in this phase. Our changes can be seen
in appendix D.12.

3.6.5 Clocks

There were two tasks that needed to be done for the clock setup. The first one was
relatively simple, and was to configure what clocks were available on the EVK1100
board. This was done in arch/avr32/boards/atevk1100/setup.c, where we updated
an array named at32_board_osc_rates. Up to three external clocks can be connected
to the UC3A, so this array has three elements. One for the 32 kHz slow clock, one for
osc0, and one for osc1. On the EVK1100, a 12MHz clock is connected to osc0, and
osc1 is not used.

The array thus became:

unsigned long at32_board_osc_rates [3] = {
[0] = 32768 , /* 32.768 kHz on RTC osc */
[1] = 12000000 , /* 12 MHz on osc0 */
[2] = 0,

};

The second task that needed to be done for clocks, was to update all the clock
connections for the microcontroller. The AP7000 and the UC3A0512 share many of the
same internal devices, but they are connected to different clock outputs. We therefore
had to revise all the device definitions, and update the clock connections. For example,
on the AP7000, the SDRAM controller is connected to clock output 14 (i.e. clock mask
bit 14) on the peripheral bus B. On the UC3A0512, it is connected to output 5 on the
same bus.

At runtime, the Linux kernel uses a list to keep track of which clocks are in use, and
this list is used to assemble clock masks. The clock masks are used to disable clocks for
inactive devices.

We also had to add clocks for devices that are present in the UC3A, but not in the
AP7000. The clock for on-chip debug system is an example of such a clock that we had
to add. Before the clock was added to the list, the debug system was turned off during
startup. This prevented us from accessing the device over JTAG.

3.6. LINUX KERNEL 63

3.6.6 Limiting network device speed

The MACB driver in both U-Boot and Linux was compatible with the MACB in the
UC3A0512 microcontroller. However, because of the combination of low clock speed and
RMII-mode we had to force the driver initialize the macb to 10Mbit/s mode. This had
been done to the MACB driver in U-Boot in previous work, and we had to make an
equivalent and proper solution for the driver in Linux. The final solution can be seen in
appendix D.1. This patch adds a few lines of code that checks whether the mode is set
to RMII, and disables support for 100Mbit/s if the CPU speed is not high enough for
this mode.

3.6.7 GPIO

The GPIO controller on the UC3A0512 microcontroller is different from the PIO con-
troller found on the AP7000. Therefore, the PIO controller code had to be modified
to work on the UC3A0512. We started by copying the file PIO controller files, and
renaming all functions and variables from pio to gpio. We then updated the header
file (mach/at32uc3a/gpio.h). This header file contains the register definitions for the
GPIO controller.

We then went through the code in this file, and updated it to access the correct
registers. Mostly the registers were present, but with a different name. For example, to
enable pull ups, we had to set the PUERS register instead of setting the PUER register.

Some decisions were more difficult. For example, the AP7000 has support for some-
thing called multi-drive capability. When examining the schematics for a output pin in
the data sheets for the AP7000 and UC3A, it was not immediately apparent that this
did the same as the UC3A’s open drain mode. In the end we concluded that it did the
same.

3.6.8 LED device driver

The EVK1100 has 8 LEDs that can be controlled independently (four single and two
double). The NGW100 board has 3 LEDs, and we could simply re-use and mod-
ify the definition of these in the code. Linux uses a generic driver to control the
LEDs, and this driver utilizes the generic GPIO interface. Note that in the final
code, LED3 is not enabled because it is connected to the EBI bus (see 3.8.3). Lines
104-117 in patch 29 (appendix D.29) adds the necessary setup configuration for the
LEDs in setup.c. The LEDs can be controlled in Linux by writing to trigger files in
folders that appear in /sys/class/leds/, e.g. the command echo ‘‘heartbeat’’ >
/sys/class/leds/led1/trigger enables a heartbeat on LED1.

3.6.9 SPI with DMA support

In Linux, the most suitable and proper way to communicate with the SPI on AVR32
devices is to set up and use a DMA controller. Both the AP7 and UC3A series have
PDC controllers that provide hardware support for DMA functionality. Peripheral DMA

64 CHAPTER 3. IMPLEMENTATION

Controller (PDC) is abbreviated as PDC in the AP7000 datasheet, and PDCA in the
UC3A datasheet. We will use the same convention here to distinguish between the two.

In an attempt to enable the SPI bus to communicate with the LCD display and
DataFlash, the Linux source was searched for existing compatible or similar code for this.
Support for the Peripheral DMA Controller (PDC) in the AP7000 series microcontroller
was found in the Linux source code, but it was incompatible with the PDCA implemented
in the UC3A series. While the PDC configuration registers are located in a reserved
memory area of each IO device, the Peripheral DMA Controller (PDCA) has one central
memory area for its configuration registers.

Because of these structural differences, we decided to write a generic interface to
abstract the difference. The development of this interface was aborted when we were
informed by Atmel that the existing PDC code had been restructured. The patch that
changes the SPI driver and introduces the abstraction layer can be seen in appendix E.

3.6.10 Interrupt bug workaround

Because of a bug in the CPU, any instruction masking interrupts through the system
register must be followed by two No-Operation (NOP) instructions to avoid abnormal
behavior (see [8] section 41.4.5.5). This workaround had already been implemented in U-
Boot, but also needed to be introduced in the Linux kernel. A separate patch was made
for this specific workaround, and can be seen in appendix D.27. As can be seen in the
patch, two NOP instructions are also added in the mask_exceptions macro. This may
be superfluous since the bug should only affect masking of interrupts, not exceptions.
The performance penalty of two NOP instructions is very low, so we chose to include
them just in case.

3.6.11 Memory to memory copying

The Linux kernel includes architecture specific implementation of memory-to-memory
copying routines. The existing implementation for the AP7000 had to be modified
because the UC3 is not capable of doing unaligned memory accesses. These routines are
as usually optimized in assembly because they are used very often.

The patch in appendix D.16 add a memory copy routing which is based on a the
version found in the AP7000 implementation. The changes were simple changes, with
no attempts at optimization.

3.6.12 Memory copying with checksumming

In conjunction with TCP networking, when copying data from one place in memory
to another, it is desirable to also checksum the data. It is most efficient to implement
routines that perform these two operations at the same time. That way, one does not
have to read the same data several times.

The csum_partial_copy_generic function implements this for the AP7000. Unfor-
tunately, this function assumes that the architecture can do unaligned accesses, which

3.6. LINUX KERNEL 65

makes the code incompatible with the UC3A. The patch that fixes this incompatibility
is listed in appendix D.14. It changes the code that calls csum_partial_copy_generic
to check that the buffers are aligned first If the buffers are unaligned, it will first copy
the data, and then checksum them.

The patch also updates a function named csum_partial. This function does the
same checksumming, but without copying the data. We updated this function to handle
unaligned accesses.

3.6.13 User space memory access

The Linux kernel will often need to read or write memory belonging to a user space
program, usually in response to a system call. There are a number of functions for
performing these operations:

• access_ok: Check whether a range of memory is valid user space memory.

• clear_user: Fill a block of memory with zeros.

• copy_from_user: Copy a block of data from user space to kernel space.

• copy_to_user: Copy a block of data from kernel space to user space.

• strncpy_from_user: Copy a string from user space.

• strnlen_user: Get length of a user space string.

• get_user: Read an integer from user space.

• put_user: Write an integer to user space.

These functions provide a generic interface to the architecture-specific methods for
accessing memory. They are also responsible for preventing user space processes from
reading or writing data they shouldn’t have access to. This is done by making sure that
the memory areas passed to the functions belong in the user space part of the memory.

Some of the functions also have versions with less checking. Those functions are
named with a __ prefix, e.g. __get_user. access_ok must be used to validate the
block of memory before using the functions with less checking. Failure to do so may
result in security vulnerabilities, where a program may access memory it isn’t allowed
to access.

The existing functions for accessing user space memory utilizes the built-in MMU
in AP7 processors to handle access violations to memory. This is, for example, used to
handle the case where a read-only segment of memory is passed as the destination of
copy_to_user. To implement this, the function marks every address where an exception
may occur with an operation which be done if an exception occurs at that point.

66 CHAPTER 3. IMPLEMENTATION

Support for unaligned accesses

The existing copy_to_user and copy_from_user in the kernel were originally written
for the AP7000 microcontroller, and assumes that unaligned accesses can be performed.
We needed to change these functions so that they would work without performing any
unaligned memory accesses. Without a functional MPU, memory protection is a lost
cause, so we could simply use the normal memory copy functions for the implementations.
There are however some advantages of implementing these functions with error checking.
Error checking enables us to catch errors when user-space programs pass invalid pointers
to the kernel. Also, if Atmel creates an microcontroller that features an MMU, but
doesn’t allow unaligned access, our implementation should be reusable. It might also be
possible to use this code with later revisions of the microcontroller where the MPU is
functional.

The final implementation can be seen in appendix D.13 (patch 13). This patch
introduces a new file, copy_user-nounaligned.S, to the arch/avr32/lib folder. This
new file is a copy of the existing copy_user.S, modified so that the alignment of the
input addresses are checked. If both addresses are aligned, the CPU can perform per-
word copying. If not, simple per-byte copying is performed.

This could be optimized further, but we have not prioritized optimization. How this
could be improved is discussed in section 6.2.5.

User space address ranges

On the AP7 implementation, all user space memory is located in the lower half of the
virtual memory address space, while all kernel memory is located in the upper half.
Functions which access user space memory validate that the memory they are accessing
are located in the lower half of the address space.

On the the UC3A implementation, there is no separation between address spaces
because it lacks MMU, and the kernel memory may be mixed with the user space memory.
There is no fast way to determine whether a block belongs to user space or to the kernel.
Without any memory protection, doing the check does not bring any extra security
either. We therefore decided to disable these checks for in our implementation.

There were three places we decided that we needed to update:

ret_if_privileged is an assembler macro that is called by several other assembler
functions, such as copy_from_user. It checks the memory area defined by the input
parameters, and determines whether it overlaps with the kernel’s memory. This check
does not work without the layout of the virtual address space employed by an MMU, and
we chose to simply disable this check at compile-time. Patch 19 listed in appendix D.19
shows how this was done.

access_ok does the same check as ret_if_privileged by invoking the __range_ok,
but is accessible from C code instead of assembler. We decided to replace the __range_ok

3.6. LINUX KERNEL 67

macro at compile-time by a dummy macro. This change is shown in Linux patch number
23 in appendix D.23.

strnlen_user checks the length of a string residing in user space. It contained some
checks for the string length, to make sure it did not extend into kernel memory. The
check in this function and its helper function adjust_length was removed for systems
without an MMU. This change is listed in appendix D.17.

3.6.14 Address space layout

There are some major differences in the address space layout of the AP7000 and the
UC3A microcontrollers. Most of the differences are due to the AP7000 having an MMU
while the UC3A has an MPU. There are also some differences in the physical layout of
the memory.

Physical layout

One of the differences is the physical layout of different memory blocks. There are
several separate blocks of memory addresses designated for accessing different devices,
and embedded or external memories. The base addresses of these memory blocks differ
between UC3A and AP7 microcontroller. Some blocks of memory are only available on
either the AP7 or the UC3A. For example, the embedded flash memory in the UC3A is
not present in the AP7 microcontroller.

Virtual memory layout

On the AVR32 processors with an MMU the virtual memory area is split into five
segments:

• P0/U0: 2GB of memory with caching and paging.

• P1: 512 MB of memory with caching but without paging.

• P2: 512 MB of memory without caching and paging.

• P3: 512 MB of memory with caching and paging.

• P4: 512 MB of memory mapped to device registers and memory. No paging or
caching.

Only the P0/U0 segment is accessible in unprivileged mode. The various Px segments
are used for various low-level code. Both the P1 and P2 segments map the same physical
memory.

The Linux kernel was loaded into the P1 segment. To change the caching property
when accessing memory, various places in the kernel convert an address from the P1
segment to the P2 segment. The P3 segment is used when the kernel needs to use page

68 CHAPTER 3. IMPLEMENTATION

translated memory for some purpose, for example when it needs to map device memory
with specific caching properties.

When we updated the Linux source code, we had to update all the code which
assumed that the microcontroller used this segmented memory model.

Null pointer debugging

Because the internal SRAM is located on address 0, this is a perfectly valid address. In
processors with an MMU, reading or writing to address 0 is usually caused by an error,
and causes an exception. In our case, the CPU can read and write to all the SRAM
memory and even execute code from it. Whenever a software error caused data to be
read from address 0, whatever data residing on this address in SRAM would be fetched.
When software errors cause a jump to an addresses in the SRAM, the CPU will interpret
whatever data on that location as instructions and attempt to execute them. This may
further instruct the CPU to perform any operations. In our case, the contents of the
SRAM would be any data left behind by the execution of U-Boot.

To ensure that the CPU halts when it tries to execute instructions from the SRAM, a
short routine was temporarily introduced in the sram_init function in arch/avr32/mach-
at32uc3a/at32uc3a0xxx.c. This routine writes the breakpoint instruction to every ad-
dress in the SRAM, enabling us to detect the error earlier, with any potential backtrace
information guaranteed intact. The routine is shown in listing 3.3.

1 unsigned long i;
2 unsigned short *p;
3 p = 0;
4 for(i = 0; i < 64*1024; i+=2 , p++) {
5 *p = 0 xd673 ;
6 }

Listing 3.3: SRAM debug routine

3.6.15 Event handling entry points

This section describes the changes made to the code that handles interrupts, excep-
tions and system calls. A file for AVR32B (arch/avr32/kernel/entry-avr32b.S) was
included in the Linux kernel, and we used this file as the basis for our code.

A significant part of the work was to get a clear understanding of all that happened
in the assembler file. The file had a large number of labels without descriptive names,
and many parts of the code needed commenting. We examined the file, analyzed the
code flow, added a few comments, and changed many labels to more descriptive names.

Most of the actual code changes were due to the difference in the way events are
handled on the AVR32 sub-architectures. The AVR32B sub-architecture will store return
addresses and the status register in dedicated system registers, while the AVR32A sub-
architecture saves them to the stack. We tried to optimize the stack layout based on
this.

3.6. LINUX KERNEL 69

Figure 3.3: Example of entry point changes

Figure 3.3 shows the typical set of changes for an event handler. We can see that most
of the mfsr (move from system register) and mtsr (move to system register) commands
are gone. These were used to retrieve and set the return address and status register,
which is unnecessary on the AVR32A architecture since they are already located on the
stack. The stack layout changes can also be seen in the figure. The order of saves and
restores from the stack is changed, and we no longer save the program counter and status
register at all.

Stack layout changes

The kernel expects to be able to access the register data from when the exception,
interrupt or system call occurred.

These registers should be saved in a structure named pt_regs. Therefore, the first
that is done in the entry points is to save all registers to the stack in an order that
matches the pt_regs structure.

When handling an exception or an interrupt, the AVR32B sub-architecture uses
dedicated system registers to save the program counter and status register. These are
automatically restored on exit. The AVR32B code will assemble the pt_regs structure
from the current registers, and the program counter and status register from the system
registers.

70 CHAPTER 3. IMPLEMENTATION

The AVR32A architecture pushes the program counter and the status register onto
the stack. In addition, when handling interrupts, several extra registers are pushed onto
the stack. The register layout is shown in figure 3.4.

Figure 3.4: Kernel stack on interrupts/exceptions

We decided to reuse the program counter and status register which is already on
the stack. Using the other registers that are automatically pushed during interrupts
were also considered, but never implemented. The reason for this was that it would
require pushing the program counter and status register on the stack when executing
exceptions and system calls. This would add to the execution cost for all system calls
and exceptions.

The entry-points will save r0-r12, the stack pointer and the link register to the stack.
This, together with the program counter and status register already saved to the stack,
forms most of the pt_regs structure. There is an additional element in the pt_regs
structure, named r12_orig, used for system calls. This element is used to hold the
original value of r12 during system calls, but is unused in all other entry points. The
final stack layout is shown in figure 3.5.

This change also meant that we had to change the pt_regs structure, so that it would
match the order the registers were saved in the entry points. The pt_regs structure
is part of the ptrace infrastructure in the kernel. The ptrace infrastructure is used
for debugging applications, and the pt_regs structure is used for accessing registers of
debugged programs from user space.

3.6. LINUX KERNEL 71

Figure 3.5: Kernel stack with pt_regs

The pt_regs structure is therefore part of the Application Binary Interface (ABI)
interface exported to user space, and is located in arch/avr32/include/asm/ptrace.h.
This file is installed by the kernel build infrastructure when make headers_install is
executed.

This was a problem, because the kernel build infrastructure did not allow us to
depend on configuration settings when installing header files. E.g., we could not in-
stall one set of header files for CONFIG_SUBARCH_AVR32A and one set of headers for
CONFIG_SUBARCH_AVR32B.

Our original plan was to have the following layout of the ptrace.h file:
1 # ifdef CONFIG_SUBARCH_AVR32A
2 /* Our definition of pt_regs */
3 # else
4 /* Original definition of pt_regs */
5 # endif

Unfortunately, this did not work, since the CONFIG_SUBARCH_AVR32A option is not
available outside the kernel build. Next, we tried to split the header file (ptrace.h) into
two files, one of which was architecture dependent. The plan was to install ptrace.h and
an additional architecture specific file – ptrace-subarch.h. Which file to be installed
should depend on the kernel configuration options. This did not work either, because
the configuration options are unavailable during make headers_install.

The final solution can be seen in appendix D.26. In this implementation, we rely
on options set by the C compiler during compilation to select the correct version of
pt_regs:

72 CHAPTER 3. IMPLEMENTATION

1 # ifdef __AVR32_AVR32A__
2 /* Our definition of pt_regs */
3 # else
4 /* Original definition of pt_regs */
5 # endif

This means that users of this code must select the correct architecture when compiling
programs. This is something that must be done in any case, since various chips have
support for different instructions. To compile a program for the UC3A0512ES, one can
run: avr32-uclinux-uclibc-gcc -march=ucr1 -mfdpic program.c -o program

Debug entry point

The debug entry point is different from the others in that it has its return address and
status register saved to a dedicated system register. As opposed to all other events
on the AVR32A sub-architecture, nothing is saved to the stack automatically. This is
similar to how all events are handled in the AVR32B sub-architecture.

We still need to have a complete pt_regs structure, and therefore need to save the
return address and status register to the stack. Thus, the entry point for this event
became slightly different. We leave a gap on the stack for the return address and status
register, push all other registers. We then retrieve the status register and return address,
and insert them on the correct location.

3.6.16 FDPIC ELF

There were several steps we did to add FDPIC ELF support to the Linux kernel. Since
FDPIC ELF depends on architecture support, the configuration option contains a list
of supported architectures. We added the AVR32 architecture to this list by appending
|| (AVR32 && !MMU) to the end of this list. This change is shown on lines 55-56 of
appendix D.5.

Next, we needed to add some extra fields to a data structure named mm_context_t.
This structure contains information about each process’ memory area. We added two
variables to this structure – exec_fdpic_loadmap and interp_fdpic_loadmap. These
are used to hold references to the load map for the executable and its interpreter. This
change is contained outside of the FDPIC ELF patch because of the way we divided our
patches, and can be seen on lines 39-40 of appendix D.11.

The FDPIC ELF loader code uses several functions and macros which the architec-
ture is supposed to implement. We added these to /arch/avr32/include/asm/elf.h,
and the changes can be seen on lines 15-46 of appendix D.5. The following was added
to this file:

• EF_AVR32_FDPIC: A flag which we set in FDPIC ELF files to indicate that they
are a FDPIC ELF file.

• elf_check_fdpic: A macro which checks that the EF_AVR32_FDPIC is set in a
ELF file.

3.6. LINUX KERNEL 73

• elf_check_const_displacement: A macro which returns whether the file needs
to be loaded contiguously in memory. We always return 0, since none of the files
we generate has that requirement.

• ELF_FDPIC_PLAT_INIT: A macro which does architecture specific initialization
when loading a FDPIC ELF file. We use this to load register r0 with the pointer
to the load map for the file. This enables the program to relocate itself.

We originally planned to depend only on the AVR32 architecture and add support
for FDPIC ELF for AVR32 systems both with and without MMU. Unfortunately, the
mm_context_t in the original code for AVR32 was an unsigned long. Changing this
to a structure, so that the exec_fdpic_loadmap and interp_fdpic_loadmap elements
could be added to the structure is possible. However, this would require many changes
in various parts of the memory management code for the AVR32 systems with an MMU.
We decided not to do this since we did not have the necessary time and hardware.

Register resetting

When the FDPIC ELF loader in Linux starts a new process, a reference to the load map
is passed to the process via register r0. This reference passing was introduced with the
patch for FDPIC ELF support listed in appendix D.5, inspired by the implementations
for many other architectures. The existing code for AVR32 was not compatible with
this convention, and set the value of every register to 0, overwriting the load map refer-
ence. The program then used this incorrect reference and tried relocate itself based on
information found there. Because the relocation routine used invalid data, it ended up
reading or writing to invalid addresses, which in turn caused an exception. The cause
of the problem was discovered by inserting breakpoints and analyzing the processor reg-
isters during loading of the FDPIC file. We located, and removed the memset function
call that cleared the registers, and made a separate patch for this. The patch is shown in
appendix D.2. We were not sure about whether this was a good solution, but it was not
denounced by anyone on the mailing list. A quick survey of implementations for other
architectures suggested that it was common not to clear the registers. The mailing list
discussion about this patch is shown in section 4.5.2.

3.6.17 Splitting of paging_init

During boot, the architecture specific initialization routine setup_arch, which is located
in arch/avr32/kernel/setup.c, is called. This routine invokes a memory initialization
function in arch/avr32/mm/init.c named paging_init. This function basically does
three things: initialization of the MMU, pages and exceptions. Splitting this function
would be a simple way to isolate the MMU initialization form the other two. Initialization
of exceptions has no direct relation to memory management, so the code performing
this was moved to a new function in the previously mentioned setup.c. Our final
solution was to extract code from paging_init and create two new functions named
exceptions_init and mmu_init. The mmu_init function and the call to it could then

74 CHAPTER 3. IMPLEMENTATION

be excluded whenever the CONFIG_MMU flag was unset. The patch for this modification
can be seen in appendix D.3.

3.6.18 Use of existing macro

The patch listed in appendix D.4 changes code to utilize an existing macro. This macro
returns a pointer to the register file for a procces. Using the same macro many places
improves the structure, makes modification simpler, and ensures that the casting and
calculation is done in the same way every place it is used. Of all the Linux patches
submitted, this is the only one that is solely a structural change.

3.6.19 Patch summary

This section lists all the patches and describes those that perform small or uncomplicated
changes not explicitly described in the previous sections.

0. Cover letter: This is not really a patch. It describes the purpose and scope the
patches in the series.

1. Network speed limiting: Limits the network speed to 10 Mbit/s when the CPU
is to slow for 100 Mbit/s. Described in section 3.6.6.

2. Avoid register reset: Disables zeroing of all register in start_thread. Described
in section 3.6.16, “Register resetting”.

3. Split paging function: Split paging_init into separate functions. Described in
section 3.6.17.

4. Use task_pt_regs macro: Simplifies some code by using an existing macro.
Described in section 3.6.18.

5. FDPIC ELF support: Enables FDPIC ELF for AVR32. Described in sec-
tion 3.6.16.

6. Introduce cache and aligned flags: This patch simply adds flags to Kconfig
and Makefile that informs the compiler about the architecture and its features.

7. Disable mm-tlb.c: This patch disables the compilation of a file containing code
not applicable for the UC3A.

8. fault.c for !CONFIG_MMU: This patch adds a new file is used instead of the
file fault.c when compiling for MMU-less systems. The patch also adds the file
to the appropriate make file.

9. ioremap and iounmap for !CONFIG_MMU: This patch adds a new file with
dummy functions that replaces routines for mapping between physical and virtual
memory.

3.6. LINUX KERNEL 75

10. MMU dummy functions: This patch introduces dummy functions to be used
when an MMU is not available.

11. mm_context_t for !CONFIG_MMU: Described in section 3.6.16.

12. Add cache function stubs: This patch introduces dummy functions for CPUs
without cache.

13. copy_user.S for !CONFIG_NOUNALIGNED: Descibed in section 3.6.13,
in “Support for unaligned accesses”.

14. csum_partial: support for chips that cannot do unaligned accesses: De-
scribed in section 3.6.12.

15. Avoid unaligned access in uaccess.h: This patch avoids an error occuring when
an opcode-error is caused by an unaligned instructions. This patch was necessary
because of a bug in the existing code, but became unnecessary after applying a
patch from the mailing list posted by Håvard Skinnemoen. For the full discusson
about this patch, see section 4.5.2.

16. memcpy for !CONFIG_NOUNALIGNED: Descibed in section 3.6.11.

17. Mark AVR32B code with subarch flag: Described in section 3.6.13, in “User
space address ranges”.

18. mm-dma-coherent.c: ifdef AVR32B code: This patch introduces a flag check
that removes code only appropriate for CPUs with cache.

19. Disable ret_if_privileged macro: Described in section 3.6.13, in “User space
address ranges”.

20. AVR32A-support in Kconfig: This patch adds support for the AVR32A sub-
architecture in the compilation configuration system.

21. AVR32A address space support: This patch introduces alternative version of
macros that were not compatible with the address space layout of the UC3A.

22. Change maximum task size for AVR32A: Defining a upper boundary for a
user space application does not serve any purpose without an MMU. This patch
disables the boundary when compiling for UC3A, by setting the defined task size
to 0xffffffff.

23. Fix __range_ok for AVR32A in uaccess.h: Described in section 3.6.13, in
“User space address ranges”.

24. Support for AVR32A entry-avr32a.S: Described in section 3.6.15.

76 CHAPTER 3. IMPLEMENTATION

25. Change HIMEM_START for AVR32A: The HIMEM_START address is used in
relation with memory mapping. Without an MMU, mapping of physical memory
is not possible. This patch therefore “disables” HIMEM_START in the same manner
as described above for patch 22.

26. New pt_regs layout for AVR32A: Described in section 3.6.15, “Stack layout
changes”.

27. UC3A0512ES interrupt bug workaround: Described in section 3.6.10.

28. UC3A0xxx support: Described in section 3.6.3.

29. Board support for ATEVK1100: Described in section 3.6.2.

3.7 Toolchain adaptation

Initially, the toolchain did not support generating any type of relocatable executables
for the AVR32 architecture. Since our system did not have an MMU, we needed the
executables to be relocatable.

When we started on this task we had not yet chosen which binary format we should
use. In an effort to understand the formats better, we did some initial testing with both
formats. The testing we did with the Flat format is described in 3.7.4.

We followed another path which turned out to be a dead end. We tried to add a
section with relocation information to normal executables. This is described in 3.7.5.

The rest of the section describes changes we made to add FDPIC ELF support to
the toolchain – GNU GCC, GNU Binutils and uClibc.

When considering how to proceed, we quickly decided that it would be simplest to
focus on static binaries. Shared libraries would introduce additional complexity, and we
wanted to start simple.

3.7.1 GCC

The AVR32 specific GCC code is located under gcc/config/avr32, and all our changes
are to files in that directory. We used the Blackfin and FR-V architectures as the base
for our changes. These were located under gcc/config/bfin and gcc/config/frv.

-mfdpic flag

The first change we did to GCC was to add the -mfdpic flag. GCC has many target
specific flags, and the convention is that the -mfdpic flag enables the FDPIC ELF target.
For GCC to understand the -mfdpic flag, we had to add it to the avr32.opt file. This
file combines option names, flags for options and the help text for options into a single
file. Our changes to this file can be seen in the lines 31-33 of appendix F.2.

3.7. TOOLCHAIN ADAPTATION 77

Options to linker and assembler

The whole point of adding the -mfdpic-flag is to be able to pass a different set of options
to the assembler and linker when compiling FDPIC ELF files. The options passed to
the linker and assembler are controlled by specifications in linux-elf.h. There were
two options we changed – ASM_SPEC and LINK_SPEC.

For the assembler we only added the -mfdpic option when calling the assembler.
This was done by adding %{mfdpic} to ASM_SPEC. The changes can be seen on lines
82-88 of F.2. For clarity, we also split the line into multiple lines.

We needed to use a different linker target when compiling FDPIC ELF files. To
accomplish this, we added a single line to LINK_SPEC: %{mfdpic:-mavr32linuxfdpic}.
This line will make GCC pass -mavr32linuxfdpic to the linker if -mfdpic is specified.
The change can be seen on line 92 of F.2.

Options to self

Since FDPIC ELF files need to be relocatable, they should use position independent
code. Normally, GCC creates code which isn’t position independent for executables. To
enable position independent code, one can pass one of -fpic, -fPIC, -fpie or -fPIE to
GCC. So that the user should not have to specify this option, we can make GCC add the
option to itself when -mfdpic is specified. This is done by adding DRIVER_SELF_SPECS.
We set it to a line which basically says “If no other options enables or disables position
independent code, set the -fpie option”. This is done on lines 76-80 of F.2.

Later on we changed it so that the user would not have to specify the -mno-init-got
option either. Normally GCC will create code which initializes the pointer to the GOT
for each function call. Unfortunately, the code which initializes the pointer depends on
the data segment being loaded at a constant offset from the code segment. This does
not work when the FDPIC ELF file is fully relocatable, and it was therefore necessary
to use this option. We added a line to DRIVER_SELF_SPECS which automatically sets
the -mno-init-got option when -mfdpic is specified. This change can be seen in F.5,
which is an unsubmitted patch for GCC.

__AVR32_FDPIC__ define

To allow conditional compilation depending on whether a normal executable or a FDPIC
ELF executable is created, we needed to add a preprocessor define. To be consistent
with the Blackfin and FR-V architectures, we named it __AVR32_FDPIC__. This makes
it possible to write code like:
ifdef __AVR32_FDPIC__
/* Do something when creating FDPIC ELF files . */
endif

ifndef __AVR32_FDPIC__
/* Do something when not creating FDPIC ELF files . */
endif

78 CHAPTER 3. IMPLEMENTATION

crti.asm GOT pointer

crti.asm is compiled during compilation of GCC, and the generated code is included in
all compiled executables. This file initializes the GOT pointer unconditionally, including
when the -mno-init-got option is specified. This overwrites the valid GOT pointer
stored in the register. The code initializing the GOT pointer is the same as GCC uses
elsewhere, and it will therefore fail in the same way when the program is not loaded
contiguously into memory. Therefore we had to remove this code. This was done by
adding an #ifdef __AVR32_FDPIC__ around the code. The changes can be seen on line
34-67 in F.2.

For this #ifdef to work, we had to make GCC specify the -mfdpic flag when compil-
ing crti.asm. This was done by adding CFLAGS_FOR_TARGET=-mfdpic when compiling
GCC.

3.7.2 Binutils

Most of the changes necessary to produce FDPIC ELF files were to the GNU Binutils
package. The patch we created for GNU Binutils can be found in appendix F.3. The
changes done in GNU Binutils are inspired by the implementation done for the Blackfin
and FR-V architectures, which can be found in bfd/elf32-bfin.c and bfd/elf32-frv.c.
When looking at those two files, it was clear that they had a lot of the implementation
in common, with a lot of code copied between those two files. We copied some code from
those files into bfd/elf32-avr32.c, and used some of the code for inspiration. Since
we implemented FDPIC ELF support without shared library support, a lot of the code
we created became simpler.

New binary format

We needed to add a new binary format to the binary format library, located under the bfd
directory. This was done by adding the following code at the end of bfd/elf32-avr32.c:

1 /* FDPIC target */
2 # undef TARGET_BIG_SYM
3 # define TARGET_BIG_SYM bfd_elf32_avr32fdpic_vec
4 # undef TARGET_BIG_NAME
5 # define TARGET_BIG_NAME "elf32 - avr32fdpic "
6 # undef elf32_bed
7 # define elf32_bed elf32_avr32fdpic_bed
8
9 # include "elf32 - target .h"

Later on we extended this code with some hooks to make it behave differently from
the normal AVR32 target.

We also had to add this new target to the build files. To do this, we updated
bfd/config.bfd, bfd/configure, bfd/configure.in and targets.c. These changes
can be seen on lines 34-69 and 505-524 in appendix F.3.

3.7. TOOLCHAIN ADAPTATION 79

New linker target

We needed to add a new linker target for generating FDPIC ELF binaries. The linker
knows this as the “linker emulation”, and the various targets are configured by shell
scripts located in ld/emulparams/. We added a target named avr32linuxfdpic by
creating a shell script named avr32linuxfdpic.sh in that directory.

Listing 3.4 is the script we ended up with. The script is heavily based on the
elf32bfinfd.sh script and the elf32frvfd.sh script. Because the avr32linuxfdpic
target is based on the avr32linux target, we begin the script by including the origi-
nal avr32linux.sh script. We start by removing STACK_ADDR option since the stack
is not mapped at a fixed address. Then we specify the output format by setting the
OUTPUT_FORMAT option. The value is the internal name of the FDPIC ELF target, which
is specified in the source code.

The OTHER_READONLY_SECTIONS extends the linker to understand the rofixup sec-
tion. It specifies that the rofixup section should be included with the other read-
only sections. It also creates two symbols which can be used in the program code:
__ROFIXUP_LIST__ and __ROFIXUP_END__. These are used in the assembler which han-
dles the relocation.

1 . ${ srcdir }/ emulparams / avr32linux .sh
2
3 unset STACK _ ADDR
4 OUTPUT _ FORMAT ="elf32 - avr32fdpic "
5
6 OTHER _ READONLY _ SECTIONS ="
7 . rofixup : {
8 ${ RELOCATING +__ ROFIXUP _ LIST __ = .;}
9 *(. rofixup

10 ${ RELOCATING +__ ROFIXUP _END__ = .;}
11 }
12 "

Listing 3.4: Linking configuration

We also had to add this new linker script to the various build files for the linker. These
changes are located on line 584-644 of appendix F.3. They add the new avr32linuxfdpic
target to the various files.

Stack size

The Linux kernel requires FDPIC ELF binaries to include its required stack size in one of
the program headers, and will refuse to load a binary without that stack size. To support
the new stack size, we needed to add a three new hooks for the elf32-avr32fdpic target.
These were the following hooks:

• elf_backend_always_size_sections, which is called after all input files have
been read, but before the linker has decided on the final size of the sections. This
hook is handled by the avr32_fdpic_always_size_sections function.

80 CHAPTER 3. IMPLEMENTATION

• elf_backend_modify_program_headers, which is called just before the program
headers are written to the output file. The avr32_fdpic_modify_program_headers
function handles this hook.

• bfd_elf32_bfd_copy_private_bfd_data, which is used by tools which create
copies on binary files. The avr32_fdpic_copy_private_bfd_data function han-
dles this hook.

The program flow becomes:

1. The input files are read.

2. avr32_fdpic_always_size_sections is executed. If none of the input files has
set the __stacksize symbol, this function will initialize it to 65536 bytes, which
is default we have chosen. This function will also ensure that the PT_GNU_STACK
segment is created and added to the program header.

3. avr32_fdpic_modify_program_headers is executed. This function will update
the program header with the correct stack size from __stacksize.

The avr32_fdpic_copy_private_bfd_data function is only used by special tools,
such as the objcopy command.

objcopy bug We had some problems setting the stack size to the right size when we
compiled projects like BusyBox. When we compiled simple programs the stack size was
correct, but when we compiled BusyBox the stack size became zero.

Our first theory was that error came during stripping of the binary, which is probably
partly correct. As part of the debugging we tried to run objcopy standalone, and found
that it did not retain the header correctly. After one pass through objcopy the stack
size (MemSiz) was changed from 64KB to 44 byte, and after a second pass the stack size
was zero.

1 Program Headers :
2 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
3 - GNU_ STACK 0 x000000 0 x00000000 0 x00000000 0 x00000 0 x10000 RWE 0x8
4 + GNU_ STACK 0 x000d44 0 x00000000 0 x00000000 0 x00000 0 x0002c RWE 0x8

Listing 3.5: Stack size after one pass through objcopy

1 Program Headers :
2 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
3 - GNU_ STACK 0 x000d44 0 x00000000 0 x00000000 0 x00000 0 x0002c RWE 0x8
4 + GNU_ STACK 0 x000000 0 x00000000 0 x00000000 0 x00000 0 x00000 RWE 0x4

Listing 3.6: Stack size after two passes through objcopy

The listings 3.5 and 3.6 show the difference between the output from readelf after
the first and after the second run, formatted like an unified diff.

We assume that something goes wrong while reading the headers from the original
file. After some debugging we found that if we specify the input format (listing 3.7) to
objcopy, the PT_GNU_STACK header is retained correctly.

3.7. TOOLCHAIN ADAPTATION 81

1 #avr32 -uclinux -uclibc - objcopy -I elf32 - avr32fdpic test.out

Listing 3.7: Command which correctly copies an object

To recreate the stack if it was removed during the build process a custom build
script was used. This script inserted the stack size at pre-calculated offsets in the file.
See section 3.10 for more information about this.

rofixup section

The FDPIC ELF binary format requires that statically linked executables are able to
perform their own relocation. To accomplish this, they use a special section, named
rofixup. This section is stored in the code segment, and contains a list of addresses
that need to be updated. When the program is executed, it will look at the entries in
that section to find addresses in the program which need to be updated.

The rofixup section is created by the function avr32_rofixup_create (line 87-
119 in the patch in appendix F.3). This creates an empty section where relocation
information is stored. The section is aligned on a word boundary by a call to the
bfd_set_section_alignment function.

The function avr32_check_relocs iterates over all relocations and count any po-
tential GOT and Procedure Linkage Table (PLT) reference. We extended this function
to also count the number of potential addresses that should be in the rofixup section.

In the function avr32_elf_size_dynamic_sections we added code for calculating
the size of the rofixup section. The size is the number of addresses we found during
avr32_check_relocs, the number of GOT entries, and plus one for the terminator.

avr32_rofixup_add_entry is a helper function for adding entries to the rofixup
section. avr32_rofixup_add_relocation uses the helper function to add relocations,
and avr32_rofixup_add_got uses the helper function to add GOT entries to the section.

The code flow is as follows:

1. avr32_check_relocs calls avr32_rofixup_create to creates the rofixup section.

2. avr32_check_relocs iterates over all relocations. It counts the numer of reloca-
tions which should be included in the rofixup section, and saves the result in a
counter.

3. avr32_elf_size_dynamic_sections calculates the final size of the rofixup sec-
tion, and initializes it to that size.

4. avr32_elf_relocate_section iterates over all relocations, and adds relocations
to the rofixup section by calling avr32_rofixup_add_relocation.

5. avr32_elf_finish_dynamic_sections adds all GOT entries to the rofixup sec-
tion by calling avr32_rofixup_add_got. It then terminates the rofixup section
by calling avr32_rofixup_terminate.

82 CHAPTER 3. IMPLEMENTATION

Assembler

The assembler is a part of the GNU Binutils package. There was only a minor change
to the assembler – it had to handle the -mfdpic option correctly. When the assembler
receives the -mfdpic option, it needs to set a flag in the output file, which indicates that
the file is a FDPIC ELF file.

We added a new architecture specific ELF flag for AVR32 – the EF_AVR32_FDPIC
flag. If this flag is set in an ELF file, the file is a FDPIC ELF file. The assembler was
changed to set this flag when the -mfdpic option is set.

3.7.3 uClibc

The uClibc library needed several adaptions – some to support the UC3 family of mi-
crocontrollers, and some to support FDPIC ELF on the AVR32 architecture.

UC3 support

The first we did was to add an UC3 option to the build configuration, so that it was
possible to select the UC3 family of processors in the configuration system. This option
allows us to do conditional compilation of code depending on which processor is selected.
It is also used to select the correct compiler flags – in our case -march=ucr1 should be
specified to generate code which is compatible with the UC3A0512ES. The -ES version
of the UC3A0512 microcontroller only implements revision 1 of the AVR32 architecture,
so we need to specify -march=ucr1. The changes can be seen on lines 34 and 54-56 of
appendix F.4.

Unaligned memory accesses

The libc/string/avr32 directory contains optimized variants of several standard C
functions dealing with strings and blocks of memory: bcopy, bzero, memcmp, memcpy,
memmove, memset, strcmp, strlen

We looked over these implementations, and identified three functions which perform
unaligned accesses in some situations: memcmp, memcpy and memmove.

We added code to these functions to handle the unaligned case. This code is only
activated when compiling for the UC3 family of microcontrollers.

FDPIC support

When adding FDPIC ELF support, we used the code from the Blackfin and FR-V
architectures as inspiration. The first we added was support for doing relocation during
program startup.

This code was added to crt1.S in the libc/sysdeps/linux/avr32 directory. That
file contains the entry point of the program, where the execution first starts when Linux
passes control to the program. There were already two code paths in that file, depending
on whether uClibc was compiled as a static or shared library.

3.7. TOOLCHAIN ADAPTATION 83

We added a third code path to that file, which is enabled when the file built with
FDPIC ELF support. This code path can be seen on line 176-226 of appendix F.4, and
does the following:

1. Call the __self_reloc function with the following arguments:

• The load map of the program – created by the Linux kernel.
• The original (unrelocated) offset of the rofixup section, where relocation

information is stored.
• The original offset of the GOT.

2. The __self_reloc function uses the information in the rofixup section to update
all pointers in the program.

3. The __self_reloc returns the relocated pointer to the global offset table. This
offset is loaded into register r6, which is the register designated to hold a pointer
to the GOT.

4. Control is passed to the __uClibc_main function, which is the main entry point
for uClibc.

We also added a new C-file – crtreloc.c. This file can be seen on lines 258-348 of
appendix F.4. It is this file that contains the __self_reloc function. It also contains a
function named __reloc_pointer, which is used by the __self_reloc function. This
function takes in a pointer, and returns the relocated pointer. The __reloc_pointer
function is copied from the FR-V file libc/sysdeps/linux/frv/bits/elf-fdpic.h.
An identical function can also be found in libc/sysdeps/linux/bfin/bits/elf-fdpic.h.

GOT pointer

Like GCC, uClibc also includes crti.S, which does the same thing as crti.asm in
GCC (see section 3.7.1). We did the same change to this file as we did to the GCC
file, and deactivated the initialization of the GOT pointer when FDPIC ELF is enabled.
The same change also had to be done in two other assembler files – syscalls.S and
vfork.S. The changes can be seen on lines 227-257 and 349-405 of appendix F.4.

3.7.4 elf2flt

During development we investigated the possibility of using the Flat binary format.
elf2flt is the usual approach used generate Flat binaries. An attempt was made to
identify the necessary changes to this tool in order to be able to produce Flat binaries.
Our resulting code, with which we were able to produce some unstable results, is listed
in appendix G. This evaluation was done at a time when the development of FDPIC
ELF was stuck in some problem that we did not figure out right away.

In development of this patch the first milestone set was to add the AVR32 target
skeleton. This would let elf2flt accept AVR32 as a target. When this was done it

84 CHAPTER 3. IMPLEMENTATION

was possible to add tracing information and add necessary code at places where it was
necessary. A few relocation definitions were added to code which iterated the symbols.
A few printfs used to trace the iteration still remains. If this code should be used,
these would have to be removed.

Some changes were done to the Linux kernel as well, mostly in copying code from
other architectures into the AVR32 architecture. These changes were reverted when we
continued developing FDPIC ELF.

Even though we did not use the code developed in this exploration, the process gave
us better knowledge about how the toolchain work and helped us to get further with
FDPIC ELF.

3.7.5 PIE support

Another dead end that we investigated, was to create position independent executa-
bles via the -fpie flag to GCC. This was in an attempt to add the DYNAMIC section
to normal executables, which we had assumed was required for FDPIC ELF support.
What we discovered early on was that GNU Binutils for the AVR32 architecture did not
include the linker script required for position independent executables. Our supervisor
at Atmel, Håvard Skinnemoen, suggested that we added GENERATE_PIE_SCRIPT=yes to
the ld/emulparams/avr32linux.sh script in GNU Binutils. This would make GNU
Binutils generate the correct linker script.

With the correct linker script, we were able to generate position independent executa-
bles, which contained the DYNAMIC section. This section contained relocation information
for the executable, so it could in theory be relocated by a loader. Unfortunately, the
generated executable was basically a shared library, which was dependent on an exter-
nal program for loading. This is unfortunate, as we could not generate static binaries
with this method. We also discovered that FDPIC ELF executables did not require a
DYNAMIC section when statically linked, and that they instead depended soley on the
rofixup section for relocation.

3.8 SRAM optimization
The external SRAM severely limits the execution speed. We currently use three CPU
clock cycles for each 16-bit read or write. According to the SRAM datasheet, it should
be possible to accomplish this in a single clock cycle. The UC3A doesn’t have any cache,
so the processor has to use three cycles for every memory access. When code is executed
from external SRAM, the throughput of the microcontroller will be reduced to at least
three cycles per instruction. When executing code from internal SRAM, the throughput
should be closer to one cycle per instruction.

We did a survey of the various SRAM signal lines, and identified three potential
problems:

• Some of the signal lines are routed out of the UC3A0512 microcontroller in two
locations.

3.8. SRAM OPTIMIZATION 85

• The joystick on the EVK1100 was connected to three of the address lines.

• One of the LEDs on the EVK1100 was connected to the chip-select line of the
SRAM chips.

3.8.1 Routing of signals

All of the SRAM control signals and some of address lines can be routed out of the
UC3A0512 microcontroller on several of the pins. When we originally added support
for external SRAM to U-Boot, we routed the signals out on all available locations. This
was done for simplicity as a temporary implementation.

We wanted to check whether routing the signals to multiple pins in this way, would
degrade the output signals. To test this we made a simple change to U-Boot that disabled
the control signals not in use. The change, shown in listing 3.8, comments out a part of
one of the bitmasks that selects pin functionality. After this change, SRAM would still
not work with increased speed settings.

1 diff --git a/cpu/ at32uc / at32uc3a0xxx / portmux .c b/cpu/ at32uc / at32uc3a0xxx / portmux .c
2 index a796f22 ..5 b65ee0 100644
3 --- a/cpu/ at32uc / at32uc3a0xxx / portmux .c
4 +++ b/cpu/ at32uc / at32uc3a0xxx / portmux .c
5 @@ -48,7 +48 ,7 @@ void portmux _ enable _ebi(unsigned int bus_width , unsigned int addr_

width ,
6 */
7
8 portmux _ select _ peripheral (PORTMUX _PORT (0) ,
9 - 0 x0003C000 |

10 + /* 0 x0003C000 | */
11 0x1E000000 , PORTMUX _FUNC_C, 0);
12 portmux _ select _ peripheral (PORTMUX _PORT (1) ,
13 0 x00000010 |

Listing 3.8: Disable SRAM signals

3.8.2 Joystick pull-up conflict

Figure 3.6: Joystick pull-up conflict

On the EVK1100, there are five signal lines between the joystick and the microcontroller.
Three of these lines are also routed to the expansion header, and is used for EBI by the

86 CHAPTER 3. IMPLEMENTATION

memory expansion card. The joystick is accompanied by pull-up resistors connected to
these lines, and could therefore potentially interfere with the memory bus. In an attempt
to test this hypothesis, those three resistors were removed. Unfortunately, we were still
unable to increase the speed of the memory.

3.8.3 LED resistor conflict

Of all of the 8 individually controllable LEDs, one (LED34) shared a signal line with
the memory expansion board. LEDs draw a significant amount of current (typically
20mA[3]), and a LED could considerably affect the rise and fall times of the memory
bus.

Figure 3.7: LED conflicting with the EBI bus

Figure 3.7 shows how the microcontroller, LED3 and the memory are interconnected.
We tried to remove the LED, but this did not improve the performance of the memory.

3.9 SPI chip enable

While attempting to adapt and activate the SPI driver, unexpected crashes started
to occur. Linux did not print a proper stack trace, and when single stepping, it was
discovered that the processor jumped to the exception handler for illegal opcodes. After
jumping to that handler, we could see that the executed code in the handler was not the
same as the code that should be stored there.

We suspected that the memory had been corrupted by some software error. We tried
to set memory breakpoints on the exception handler code, to check when it was written
to. The breakpoint never triggered.

We then looked closer at the instructions which were executed right before the crash.
These instructions dealt with activating a pin connected to a SPI chip enable line.
Further inspection of the line showed that it was also connected to the chip enable pin
for the flash chip on the memory expansion card.

4This LED is numbered LED2 in the schematics

3.9. SPI CHIP ENABLE 87

Figure 3.8: Chip enable pin conflict

Figure 3.9: Wire soldered from chip enable pin to nearby VCC

The flash chip on the memory expansion card designed by Atmel (see 2.15) has one
pin, chip enable, that is used for activating the chip. According to the schematics, this
pin is routed to both pin 18 and 27 on the header. On the EVK1100, pin 18 and 27
on the header is routed to the pins PA14 and PA25, which are two possible physical
pins that a chip enable signal can be routed to. Since the DataFlash on the EVK1100
already occupies pin PA14, activating SPI for this device also enables the flash chip on
the expansion board. This ultimately leads to the flash chip interfering with the memory
bus. This problem was solved by physically removing a pin from the expansion board
header so that the chip enable signal could not reach the flash (illustrated in figure 3.8).
It should then be possible to use the other pin on the expansion board to control the
chip enable line, but after visual inspection and testing with a multimeter, it was found
that the chip enable pin from the flash chip is only connected to pin 18, and not pin 27.

88 CHAPTER 3. IMPLEMENTATION

This missing connection is illustrated with a red line in figure 3.8. Since the path to pin
18 was cut, and pin 27 was unconnected, a short wire was soldered from VCC to pin 27
on the expansion board to avoid a floating chip enable input on the flash. This is shown
schematically in figure 3.8, and figure 3.9 shows a picture of the soldered wire. The end
result is that the flash chip is always deactivated.

3.10 BusyBox
One of the tasks (requirement 13) was to find a set of suitable applications for this
platform. With a working toolchain it was possible to build BusyBox for this processor.
BusyBox contained a lot of useful tools which could be used. More about BusyBox in
section 2.14.

1 #!/bin/bash
2 INSTALLPATH =/ tftpboot / evk1100
3 make V=1 CFLAGS ="-mno -init -got -mfdpic " LDFLAGS ="-static -mfdpic " install
4 echo -ne ’\x00\x01\x00\x00 ’ | dd of=$ INSTALLPATH /bin/ busybox seek =136 bs=1 conv =

notrunc

Listing 3.9: Custom shell script for building BusyBox

Line 3-4 is a workaround for a bug which surfaced when an object was stripped for
debug information. More about this bug in section 3.7.2. The magic number in the
script, 136, is the location of the stack size (MemSiz of GNU_STACK). The formula for
finding the offset to the stack size definition is simple. The necessary information can
be found in listing 3.10, which is the output from the program readelf when given the
compiled version of BusyBox as input. Start of program headers (52 byte) + Number
of section headers before GNU_STACK (2) * Size of program headers (32) + Word size (4
byte) * Number of elements in the program header before MemSiz (5). The numbers
used here is marked with a blue color, and the changed number is colored red. The stack
size was 0x00000 before the provisional fix was applied and 0x10000 (64KB) afterwards.

1
2 # avr32 -uclinux -uclibc - readelf --file - header --program - headers busybox
3
4 ELF Header :
5 Magic : 7f 45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00
6 Class : ELF32
7 Data : 2’s complement , big endian
8 Version : 1 (current)
9 OS/ABI: UNIX - System V

10 ABI Version : 0
11 Type : EXEC (Executable file)
12 Machine : Atmel AVR32
13 Version : 0x1
14 Entry point address : 0 x109c
15 Start of p rogram headers : 52 (bytes into file)
16 Start of section headers : 218888 (bytes into file)
17 Flags : 0x6
18 Size of this header : 52 (bytes)
19 Size of p rogram headers : 32 (bytes)
20 Number of program headers : 3
21 Size of section headers : 40 (bytes)

3.11. OBTAINING AND DISTRIBUTING SOURCE CODE 89

22 Number of section headers : 12
23 Section header string table index : 11
24
25 Program Headers :
26 Type Offset VirtAddr PhysAddr FileSiz MemS iz Flg Align
27 LOAD 0 x000000 0 x00001000 0 x00001000 0 x3424c 0 x3424c R E 0 x1000
28 LOAD 0 x03424c 0 x0003624c 0 x0003624c 0 x01464 0 x163b0 RW 0 x1000
29 GNU_ STACK 0 x000000 0 x00000000 0 x00000000 0 x00000 0xxx xxx RWE 0x4
30
31 Section to Segment mapping :
32 Segment Sections ...
33 00 . init . text . fini . rodata . rofixup
34 01 . data .rel.ro .got . data .bss
35 02

Listing 3.10: Output from readelf

3.11 Obtaining and distributing source code
The five software units modified during this project were Linux, U-Boot, uClibc, GCC
and GNU Binutils. We tracked all our modifications by using the Git revision control
system. This section describes how the source code was obtained and distributed. Note
that our current version of all the patches can be found in the digital appendices in this
report.

3.11.1 Buildroot

Buildroot5 is a tool for generating a cross-compilation toolchain and root file system for
embedded systems. Some of the patches we used were extracted from Atmel’s Buildroot
release6. The most current version at the time of download was version 2.3.0.

3.11.2 GCC

When GCC was downloaded, version 4.2.2 was the most current version for which Atmel
provided patches. The most current patch from Atmel at the time was version 1.1.3.
Atmel’s Buildroot package included their patch and several other patches that could be
useful for us. We applied all patches from the Buildroot package to GCC 4.2.2, and used
this as the base for our development.

Since there is no dedicated mailing list for the AVR32 toolchain, the patches against
GCC were submitted to the AVR32 Buildroot list7.

5http://buildroot.uclibc.org/
6http://www.atmel.no/buildroot/
7http://avr32linux.org/archives/buildroot/

http://buildroot.uclibc.org/
http://www.atmel.no/buildroot/
http://avr32linux.org/archives/buildroot/

90 CHAPTER 3. IMPLEMENTATION

3.11.3 GNU Binutils

When GNU Binutils was downloaded, version 2.18 was the newest version for which
Atmel provided patches. The most current patch from Atmel were at the time version
1.0.1. Atmel’s Buildroot package included their patch, which we applied to the official
GNU Binutils source8.

Since there is no dedicated mailing list for the AVR32 toolchain, the patches against
Binutils were submitted to the AVR32 Buildroot list7.

3.11.4 uClibc

When uClibc was downloaded 0.9.30, was the most current version. uClibc was down-
loaded from uClibc’s download page9.

Since there is no dedicated mailing list for the AVR32 toolchain, the patches against
uClibc were submitted to the AVR32 Buildroot list7.

3.11.5 elf2flt

elf2flt was downloaded from uClinux.org’s official CVS repository10 at the 6th of
March 2009. We experimented with elf2flt, but no useful results were achieved, so no
patches for elf2flt were submitted to the maintainers.

3.11.6 U-Boot

We had created a modified version of U-Boot during our project the fall of 2008, so
the U-Boot source code was already in our possession. Håvard Skinnemoen at Atmel
Norway maintains a repository of U-Boot for development and testing of AVR32-specific
code. Skinnemoen can decide whether to add patches to his repository, and whether they
eventually should be merged into the official U-Boot Git repository.

During this project, one revised patch series for U-Boot was prepared and submitted
to the official U-Boot mailing list on the 23rd of January. This patch series is based on
the earlier submitted patches, and addresses the feedback and criticism received on the
mailing list. Only the modifications of U-Boot described in section 3.4.6 and 3.4.5 were
done after the submission this patch series. These were therefore never organized into
patches or submitted to any mailing list, but are listed in appendix C.

Some of the patches have already found their way into the current release of U-Boot11,
and some of them is pulled into the next12 repository.

8http://ftp.gnu.org/gnu/binutils/
9http://www.uclibc.org/downloads/

10http://cvs.uclinux.org/cgi-bin/cvsweb.cgi/elf2flt/
11http://www.denx.de/wiki/U-Boot/UbootStat_2009_03
12next refers to the branch currently under development that is going to lead to the next release

http://ftp.gnu.org/gnu/binutils/
http://www.uclibc.org/downloads/
http://cvs.uclinux.org/cgi-bin/cvsweb.cgi/elf2flt/
http://www.denx.de/wiki/U-Boot/UbootStat_2009_03

3.11. OBTAINING AND DISTRIBUTING SOURCE CODE 91

3.11.7 Linux

The Linux kernel source code was obtained from Linus Torvalds’ kernel tree on kernel.org
during our project the fall of 2008, so the source code was already in our possession.
The specific version that was originally downloaded was v2.6.27-rc6-99-g45e9c0d. In
our case, merging was not highly prioritized and therefore only done once. We merged
so that we used the most current stable at time (early January) as a basis, which was
version 2.6.28.113.

We separated our changes into logical units, and ended with up 29 patches. These
could be categorized into the following four categories:

• 19 patches to prepare for AVR32A support.

• 7 patches which add AVR32A support.

• 2 patches which add UC3A support.

• A patch to add support for the board we used (EVK1100).

These patches were submitted to the AVR32 kernel list14 with a short description of
the patch series. The patch series is listed as a whole with the cover letter in appendix D.

3.11.8 BusyBox

At the start of the work with this thesis, the BusyBox source code was downloaded from
the official BusyBox website15. The latest version at the time was version 1.13.2. Since
no changes were made to the BusyBox source code, there was no need to submit patches
to the maintainers.

13http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.28.1.tar.bz2
14http://avr32linux.org/archives/kernel/
15http://www.busybox.net

http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.28.1.tar.bz2
http://avr32linux.org/archives/kernel/
http://www.busybox.net

92 CHAPTER 3. IMPLEMENTATION

93

Chapter 4

Testing and results

In this chapter, we present the tests used to determine which of the requirements defined
in section 1.3.1 were met. The result of each test will also be given, and any abnormal
results will be discussed. This chapter follows the structure of the requirements list. For
each individual requirement, a corresponding test and result is listed.

All the tests assume that the hardware is connected as shown in figure 3.2. The
U-Boot boot image is programmed to the internal flash of the microcontroller, and the
computer is serving the Linux kernel image and the root file system to the board via the
services shown in the figure.

Included in this chapter is also the feedback we received when submitting patches.
This is organized as a list of each patch we received feedback on, and the feedback we
received. Our responses to the feedback is also included.

4.1 U-Boot

4.1.1 SPI support, requirement 1

Result: Not implemented.

4.1.2 Loading from DataFlash or SD card, requirement 2

Result: Not implemented.

4.1.3 Patch cleanup, requirement 3

Result: Submitted.
A series of patches were submitted. Section 3.4 describes the changes done to U-Boot,

and section 3.11.6 describes what has been submitted.

94 CHAPTER 4. TESTING AND RESULTS

4.2 Linux

The Linux test project1 could be used to test the robustness of the system, but this
requires that the toolchain has reached sufficient maturity. Since that is not yet the
case here, we were not able to locate any automatic testing software which could be
used within our time frame. Only small parts of the system is tested here, and more
comprehensive testing should be performed before putting the code into a production
environment.

4.2.1 Booting Linux kernel, requirement 4

Testing of this requirement is done by letting U-Boot load and start the kernel. A init
program must be placed on the appropriate place on the network file system. The kernel
should then:

a. Give reasonable output to serial console.
Verified by starting a terminal program and watching the output.

b. Bring up networking.
Verified by running ifconfig when the system has booted and reading the output.
If necessary ifconfig is used to set a static IP. If that gives reasonable output a
ping to the server should be executed.

c. Receive network configuration using DHCP.
Verified by running ifconfig after a reboot. The interface should now have re-
ceived an IP-address from the DHCP server.

d. Mount necessary file systems:

(i) NFS root file system.
(ii) proc file system.
(iii) sysfs file system.
(iv) devpts file system.
(v) devshm file system.

This is checked by executing the command mount. The output should be a list
containing the file systems listed above. On each file system it should be verified
that files could be accessed.

e. Load and execute init application.

Result: Passed. All tests were successfully executed.
1http://ltp.sourceforge.net/

http://ltp.sourceforge.net/

4.2. LINUX 95

4.2.2 Running user space binaries, requirement 5

This can only be tested if test 4.2.1 passed.
A simple program should be compiled, copied to the root file system and executed.

It should be verified that the program give the correct output.

Result: Passed. The binaries execute and give correct output.

4.2.3 Hardware support, requirement 6

LEDs, requirement 6a

The LEDs can be tested by writing to their trigger files. This can be tested by enabling
the heartbeat function. First it must be checked that the LED is not already blinking a
heartbeat, so that the test result is proper.

The heartbeat of LED1 is then enabled by writing:
1 echo ’heartbeat ’ > /sys/ class /leds/led1/ trigger

Listing 4.1: Enabling LED1

After executing that command LED1 should give a blinking heartbeat.

Result: Passed.

DataFlash, requirement 6b

This requirement was not implemented, and therefore no test was written.

Result: Not implemented.

LCD, requirement 6c

This requirement was not implemented, and therefore no test was written.

Result: Not implemented.

SD Card, requirement 6d

This requirement was not implemented, and therefore no test was written.

Result: Not implemented.

SPI, requirement 6e

This requirement was not implemented, and therefore no test was written.

96 CHAPTER 4. TESTING AND RESULTS

Result: Not implemented.

DMA, requirement 6f

This requirement was not implemented, and therefore no test was written.

Result: Not implemented.

Network adapter, requirement 6g

Tested by assigning an IP address to the network adapter, and using ping to test con-
nectivity to another computer connected to the same network.

Result: Passed.

4.2.4 Exceptions, requirement 7

We identified four exception entry points that should be possible to trigger from an user
space application. These were:

• handle_address_fault, triggered by unaligned reads/writes.

• do_bus_error_write, triggered by writing to invalid addresses.

• do_bus_error_read, triggered by reading invalid addresses.

• do_illegal_opcode_ll, triggered by various invalid or illegal instructions.

Unaligned accesses

We created two tests for handle_address_fault. The first test, appendix I.1.1, tests
unaligned read, while the second test, appendix I.1.2, tests unaligned writes. Both
tests install an handler for the SIGBUS exception, and attempts to access an unaligned
pointer.

Result: Both tests for unaligned accesses passed. The application received a SIGBUS
exception from the kernel when attempting an unaligned access.

Invalid addresses

Two tests were created, one for testing of do_bus_error_write and one for testing of
do_bus_error_read. Both tests attempt to access a memory area that does not exist on
the UC3A0512 microcontroller. The first test, appendix I.1.3, tests invalid reads, while
the second test, appendix I.1.4, tests invalid writes.

4.2. LINUX 97

Result: The tests for reads and writes triggered an “oops” from the kernel when
attempted. This is because the handlers used were the same as for the implementations
with MMU support. The only way to receive this error with a processor with an MMU
would be if the kernel made an error, and assigned invalid memory to the application.
One could argue that we should pass the error to the application, instead of handling
it in the kernel, but we decided not to do this. If MPU support was added, the error
should be handled similarly as with an MMU, and until then the program is terminated.

Another problem we discovered was that the do_bus_error_read entry point was
mislabeled in the original source code we based our work on. It turned out that
do_bus_error_read was triggered by instruction reads, not data reads. The two ex-
ception handlers call the same function, with a parameter to show whether the access
was a read or write. This is used to print a log line: Bus error at physical address
0x00100000 (write access). The mislabeling caused both of our tests to be logged as
a write access.

Invalid opcode

This handler is used by many exceptions. It is used when the opcode is unknown to the
microcontroller, when the opcode is known but unsupported and when the application
has insufficient privileges to execute the instruction. The logic when handling the dif-
ferent types is the same, so we decided to test only when the opcode was unknown to
the microcontroller.

To test this, we attempt to use the rsubeq instruction. This instruction requires
revision 2 or higher of the AVR32 architecture, while the UC3A0512ES only supports
revision 1 of the AVR32 architecture. When an illegal opcode is found, the Linux kernel
should deliver a SIGILL exception to the program.

We created two tests, to test two different cases of invalid operations. Appendix I.1.5
tests the case when the instruction is aligned on a four byte boundary. The other test,
appendix I.1.5 tests the case when the instruction is aligned on a two byte boundary,
but not on a four byte boundary. Both alignments are valid for all instructions, but the
handler for invalid opcodes makes an assumption which did not hold for the UC3A0512
microcontroller. The handler code, which is shared between AVR32A and AVR32B
assumes that it can read unaligned 4 byte words.

We had a patch which enabled reading of unaligned words (appendix D.15), but
Håvard Skinnemoen commented that this patch should not be necessary. If that patch is
dropped, then this code needs to be fixed. See the comments for patch 15 in section 4.5.2.

Result: Both tests pass with our patch applied, but if we remove our patch, the second
test fails. When passing the test, the application receives a SIGILL exception from the
kernel.

98 CHAPTER 4. TESTING AND RESULTS

4.2.5 Code submission, requirement 8

Result: Almost everything was submitted. We did not submit the SPI changes, since
these were incomplete, and largely irrelevant with the restructuring of the peripheral
DMA code done by Atmel (see 3.6.9).

Section 4.5.2 summarizes the received feedback.

4.3 Toolchain

4.3.1 Select binary format, requirement 9

Result: FDPIC ELF was selected (see 3.5).

4.3.2 Produce binaries, requirement 10

Two simple example programs written in C (listing 4.2 and listing 4.3) were compiled
with GCC.

The first program is a simple program which does not use large parts of the C library.
It only invokes the write system call, to put “Hello!” on standard output.

1 # include <unistd .h>
2
3 int main(int argc , char *argv [])
4 {
5 write (1, " Hello !\n", 7);
6 return 0;
7 }

Listing 4.2: hello.c

The second program uses larger parts of the C library. It invokes printf, which uses
the standard input/output part of the C library. This part will not work without correct
relocations, because there are several data pointers used. For example, printf uses the
FILE *stdout pointer, which only works with correct data relocation.

The 42 parameter to printf is mainly included to prevent optimization. If no
arguments are given, the compiler will optimize the printf call to a puts call.

1 # include <stdio .h>
2
3 int main(int argc , char *argv [])
4 {
5 printf (" Hello world ! %d\n", 42);
6 return 0;
7 }

Listing 4.3: helloworld.c

avr32 -uclinux -uclibc -gcc -mfdpic hello .c -o hello

Listing 4.4: Compiling hello.c

The output should be copied to the root file system and executed. The output should
be “Hello!” for the first program and “Hello world!” for the second.

4.4. LINUX USER SPACE 99

Result: Passed.

4.3.3 Produce libraries, requirement 11

This is not implemented and therefore not tested.

Result: Not implemented.

4.3.4 Code submission, requirement 12

Result: Code submitted to the avr32linux.org’s mailing list as discussed in section 3.11.2,
3.11.3 and 3.11.4.

4.4 Linux user space

4.4.1 BusyBox, requirement 13

BusyBox was compiled with the applets listed in requirement 13. Each applet was then
in turn invoked from the Hush shell.

Result: Passed. Hush and all the other applets listed in the requirement executed,
produced the expected output and terminated successfully. However, the applets oc-
casionally caused the system to run out of free memory. Because the tasks that these
applets perform are well known, we choose not to list the output of every applet and
how they were invoked. When an application causes the system to run out of memory,
the kernel fails to recover, and will crash if the system runs out of memory again.

We have looked at the error which occurs when out of memory, but have been unable
to determine the cause. Due to our limited time frame, we have been unable to spend
very much time on this bug.

4.5 Patch submission feedback

In this section we list the feedback to the patches we submitted, with one section for
each patch series. For brevity, some of the feedback may be omitted, slightly shortened,
rephrased or summarized.

4.5.1 U-Boot

The most relevant feedback to the submitted U-Boot patch series is presented in this
section. All the e-mails discussing these patches can be found in the official U-Boot
mailing list archive2.

2http://lists.denx.de/pipermail/u-boot/2009-January/thread.html#45925

http://lists.denx.de/pipermail/u-boot/2009-January/thread.html#45925

100 CHAPTER 4. TESTING AND RESULTS

[PATCH v2 1/9] Fix IP alignement problem

The IP alignment patch was applied to the network branch by Ben Warren.

[PATCH v2 2/9] AVR32: Make cacheflush CPU-dependent

Applied to evk1100−prep and merged in to next . I ’ l l send i t upstream
as

soon as i t ’ s f i n e with Wolfgang .

Btw , I had to r ebu i l d my next branch s i n c e i t ’ s become a b i t s t a l e .
S ince a l l the non−merge commit IDs are the same , I hope i t won ’ t

cause
any problems −− p l e a s e l e t me know i f you see any weird merge i s s u e s .

Reply from Håvard Skinnemoen

[PATCH v2 3/9] AVR32: Move addrspace.h to arch-directory, and move
some functions from io.h to addrspace.h

Applied to evk1100−prep , thanks .

Reply from Håvard Skinnemoen

[PATCH v2 4/9] AVR32: Make GPIO implementation cpu dependent

Applied to evk1100−prep , thanks .

Reply from Håvard Skinnemoen

[PATCH v2 5/9] AVR32: macb - Disable 100mbps if clock is slow:

A white space unfortunately found it’s way into our patch.

− adv = ADVERTISE_CSMA | ADVERTISE_ALL;
+ adv = ADVERTISE_CSMA | ADVERTISE_ALL ;
??

Reply from Ben Warren

This patch sparked a debate on the mailing list. The most relevant replies are listed
below. The rest of the e-mails in this discussion can be found on the web page listed at
the beginning of this section.

> +#i f d e f CONFIG_MACB_FORCE10M
> + p r i n t f ("% s : 100Mbps i s not supported on t h i s board − f o r c i n g

10Mbps . n " ,

4.5. PATCH SUBMISSION FEEDBACK 101

> + netdev−>name) ;
> +
> + adv &= ~ADVERTISE_100FULL;
> + adv &= ~ADVERTISE_100HALF;
> + adv &= ~ADVERTISE_100BASE4 ;
> +#end i f

not a fan
could you be more s p e c i f i c about the problem?

Reply from Ben Warren

On the EVK1100 board , the CPU (UC3A0512) i s connected to the PHY via
an RMII bus . This r e qu i r e s the CPU c lock to be at l e a s t 50 MHz.
Unfortunate ly , the chip on cur rent EVK1100 boards may be unable to

run
at more than 50 MHz, and with the o s c i l l a t o r on the board , the

c l o s e s t
f requency we can generate i s 48 MHz.

This patch makes i t p o s s i b l e to l im i t the macb to 10 MBit f o r t h i s
case . We are open f o r sugge s t i on s f o r other s o l u t i o n s .

Our reply

How about us ing a PHY capab i l i t y ove r r i d e CONFIG.
Something l i k e t h i s :

#i f de f i n ed (CONFIG_MACB_PHY_CAPAB) <−− i n s e r t b e t t e r name here
adv = ADVERTISE_CSMA | CONFIG_MACB_PHY_CAPAB;
#e l s e

adv = ADVERTISE_CSMA | ADVERTISE_ALL
#end i f

Just an idea . . .

Reply from Ben Warren

[PATCH v2 6/9] AVR32: macb - Search for PHY id

This patch was added to the network branch of U-Boot by Ben Warren. We asked Ben
if this code should be omitted in any newer versions of this patch series. Ben’s answer
is quoted below.
Correct . You ’ ve done a good job o f making them orthogona l to the

r e s t o f your code , so the net repo i s where they belong . I ’ l l
i s s u e a pu l l r eque s t a f t e r doing a b i t o f t e s t i n g .

Reply from Ben Warren

102 CHAPTER 4. TESTING AND RESULTS

[PATCH v2 7/9] AVR32: Must add NOPs after disabling interrupts for
AT32UC3A0512ES

Applied to evk1100−prep , thanks .

Reply from Håvard Skinnemoen

[PATCH v2 8/9] AVR32: CPU support for AT32UC3A0xxx CPUs

Regarding the reset procedure in the patch:

I read t h i s as i f you j u s t r e s e t the CPU " i n t e r n a l " s t u f f . Sorry f o r
ask ing s tup id quest ions , I don ’ t know th i s a r c h i t e c t u r e at a l l , but :
Wil l e x t e rna l ch ips be r e s e t t h i s way , too ? Or how do you make sure
that ex t e rna l p e r i ph e r a l s get proper ly r e s e t ?

Reply from Wolfgang Denk

As most o f the needed f u n c t i o n a l i t y i s embedded in the
m i c r o con t r o l l e r , the re are very few ex t e rna l p e r i ph e r a l s
used by U−Boot . Apart from ex t e rna l memory , and o s c i l l a t o r ,
and l e v e l−s h i f t e r s f o r the s e r i a l −port , the re i s only the
Ethernet PHY, and that one shouldn ’ t need a r e s e t .

Our reply

Famous l a s t words . What i f exac t l y the PHY i s stuck and needs a r e s e t
?

Hmmm. . . " apart from ex t e rna l memory" . . . does ex t e rna l memory a l s o
in c lude NORflash? Eventual ly the NOR f l a s h you are boot ing from?
Assume the NOR f l a s h i s in query mode when you r e s e t the board − how
does i t get r e s e t , then ?

Reply from Wolfgang Denk

The only r e s e t we can do on the PHY i s a so f tware r e s e t , by sending a
r e s e t command over the (R)MII bus , and I don ’ t b e l i e v e that the

g ene r i c
chip code i s the p lace to do that . I f i t should be done , I b e l i e v e i t
should be done by the macb−d r i v e r a f t e r the r e s e t . This would a l low

i t
to r e cove r even i f the m i c r o c on t r o l l e r wasn ’ t r e s e t by the
r e s e t−command , but f o r example by a watchdog t imer .

External memory in t h i s case would be SRAM or SDRAM.

Our reply

4.5. PATCH SUBMISSION FEEDBACK 103

On other chips , i t a l s o cover s the NOR f l a s h you ’ re boot ing from . So
I

suppose we should look in to t h i s . . . maybe we need some so r t o f "
n o t i f i e r

chain " th ing to g ive other d r i v e r s a chance to r e s e t t h e i r
p e r i ph e r a l s . . .

Reply from Håvard Skinnemoen

Comment regarding use of “magic hardcoded constants”:

I t would be n i c e i f you used readab le names in s t ead o f a l l the se
magic hardcoded cons tant s .

Comment from Wolfgang Denk

Denk also pointed out that we should use of structs instead of offsets. We used lists
with offsets instead of C-structs because that is how it was done in the existing code
we used as a basis for our work, and rewriting this code was not prioritized. The above
comment about unreadable constants triggered a discussion about how this code should
be written. Several e-mails are omitted here. For the full story, see the mailing list
archive available at the URL listed at the beginning of this section. The discussion
ended with the following comments from us and Skinnemoen.

But in t h i s case , t h i s i s code which should never be changed without
l ook ing at the datasheet , and probably schemat ics f o r the board in
ques t i on .

Our comment

Exactly . At some point , you need code which encapsu l a t e s the
d e f i n i t i o n s in the data sheet , and that ’ s the whole purpose o f the se
f unc t i on s .

Comment from Håvard Skinnemoen

[PATCH v2 9/9] AVR32: Board support for ATEVK1100

Wolfgang Denk commented on the presence of some code that was commented out in
this patch. He found the code useless and wanted us to remove it. The code in question
was the optimized memory timings that we never managed to fully optimize (described
in section 3.8), but left in the code.

He also commented that we had set a configuration option that deactivates certain
scripting functionality in U-Boot when it is compiled for the EVK1100 board. That
option came from the code for the NGW100 board that we had used as a basis for
our own configuration. On Denk’s request, we chose to remove both the pieces of code
mentioned above.

104 CHAPTER 4. TESTING AND RESULTS

4.5.2 Linux

As mentioned in section 3.11.7, we submitted patches to the avr32linux.org’s kernel mail-
ing list. We received some feedback on these patches, mostly from Håvard Skinnemoen.
In this section, we summarize the feedback we got on the submitted patches. Comments
are included where appropriate.

The patches can be found in appendix D.

General approval

Håvard Skinnemoen gave comments like “Looks reasonable’ to the following patches:

• [PATCH 01/29] macb: limit to 10 Mbit/s if the clock is too slow to handle 100
Mbit/s

• [PATCH 04/29] AVR32: use task_pt_regs in copy_thread.

• [PATCH 05/29] AVR32: FDPIC ELF support.

• [PATCH 06/29] AVR32: Introduce AVR32_CACHE and AVR32_UNALIGNED
Kconfig options

• [PATCH 07/29] AVR32: mm/tlb.c should only be enabled with CONFIG_MMU.

• [PATCH 08/29] AVR32: mm/fault for !CONFIG_MMU.

• [PATCH 10/29] AVR32: MMU dummy functions for chips without MMU.

• [PATCH 11/29] AVR32: mm_context_t for !CONFIG_MMU

• [PATCH 13/29] AVR32: copy_user for chips that cannot do unaligned memory
access.

• [PATCH 14/29] AVR32: csum_partial: Support chips that cannot do unaligned
memory accesses.

• [PATCH 16/29] AVR32: memcpy implementation for chips that cannot do un-
aligned memory accesses.

Håvard wanted signoffs for patches that can be sent upstream.

[PATCH 02/29] AVR32: Don’t clear registers when starting a new thread

From the our patch description:

Not c e r t a i n about t h i s patch , but we can ’ t c l e a r the r e g i s t e r s here ,
s i n c e the FDPIC ELF loade r s t o r e s a po in t e r to the process ’ load map
in a r e g i s t e r be f o r e t h i s func t i on i s c a l l e d .

Our patch description

4.5. PATCH SUBMISSION FEEDBACK 105

Right .

Do you know how other a r c h i t e c t u r e s do t h i s ?
I ’m a b i t concerned about l e ak ing in fo rmat ion from one proce s s to

another
i f we don ’ t ze ro out the r e g i s t e r s . . .

Håvard’s comment

As f a r as we understand does n e i t h e r x86 , f rv , SuperH 32 , b l a c k f i n
and

s e v e r a l other a r c h i t e c t u r e s do i t in s t a r t_thread . A quick survey
shows

that ARM and PowerPC are the only a r c h i t e c t u r e s who c l e a r the
r e g i s t e r s

in s t a r t_thread

X86 and s e v e r a l other a r c h i t e c t u r e s c l e a r s the r e g i s t e r s from an an
a r c h i t e c t u r e dependent hook in the e l f loader , ELF_PLAT_INIT , which
i s c a l l e d r i gh t be f o r e s t a r t_thread .

Our reply

Patch [PATCH 03/29] AVR32: split paging_init into mmu init, free memory
init and exceptions init

You s t i l l export the zero page when !CONFIG_MMU, but you only
i n i t i a l i z e i t when CONFIG_MMU i s s e t .
I s that a good idea ?

Håvard’s comment

When look ing at t h i s again , i t turns out that the zero−page wasn ’ t
used

s t r i c t l y f o r MMU−systems . We had assumed that i t was only used when
the

ke rne l needed to map a page f u l l o f z e r o s somewhere .

I t turns out that i t i s a l s o used by f s / d i r e c t−i o . c : 760 . Therefore ,
the zero page s t i l l needs to e x i s t f o r MMU− l e s s systems .

Our comment

But then i t r e a l l y should be i n i t i a l i z e d , no?

Håvard’s reply

106 CHAPTER 4. TESTING AND RESULTS

Yes , that was what we meant .

Our reply

[PATCH 09/29] AVR32: ioremap and iounmap for !CONFIG_MMU

Would probably be more e f f i c i e n t to do t h i s i n l i n e .
But I can ’ t s ee any s e r i o u s problems with t h i s code ,
so i t ’ s f i n e with me .

Comment from Håvard

[PATCH 12/29] AVR32: Add cache-function stubs for chips without cache

Would be be t t e r to do t h i s i n l i n e , I th ink .
But l e t ’ s worry about opt imiza t i on l a t e r .

Comment from Håvard

Regarding a copy_to_user_page stub:
Hmm. . . don ’ t you need to do any copying at a l l here ?

Comment from Håvard

Oops , seems we became a l i t t l e c a r r i e d away here , and missed the
memcpy .

Regarding making these i n l i n e − most o f them could be changed , and we
would agree that t h i s would make the code s imp le r .

Btw . : There are a l o t o f s t a t i c i n l i n e f unc t i on s in
in c lude /asm/ cache f l u sh . h that are only c a l l e d from mm/cache . c

Our comment

[PATCH 15/29] AVR32: avoid unaligned access in uaccess.h

The patch f i x e s __get_user_check by c a l l i n g copy_from_user i f the
po in t e r i s una l igned . Note that the re are three more macros that

needs
to be changed : get_user_nocheck , put_user_check and put_user_nocheck .

This patch r e a l l y needs a be t t e r s o l u t i o n that doesn ’ t i nvo lv e
c a l l i n g

copy_from_user or copy_to_user .

Patch description

4.5. PATCH SUBMISSION FEEDBACK 107

I ’m so r t o f wondering i f t h i s i s r e a l l y needed . AP7000 doesn ’ t
support

unal igned 16−b i t access , and we don ’ t do anything to avoid that . And
the worst th ing that can happen i s that some system c a l l s may return
−EFAULT i f user space pas s e s a badly a l i gned po in t e r .

Håvard’s comment

This patch was added because we h i t an except ion during the i l l e g a l
opcode handler . That func t i on execute s the f o l l ow i n g code :

pc = (void __user ∗) i n s t r u c t i o n_po in t e r (r eg s) ;
i f (get_user (insn , (u32 __user ∗) pc))

goto i n v a l i d_area ;

I f get_user i sn ’ t changed then t h i s func t i on should be changed .

Also : unal igned a c c e s s e s in ke rne l mode doesn ’ t cause an −EFAULT, but
in s t ead an Oops . I f the ke rne l i s going to cause unal igned except ions

,
I assume that t h i s should be changed .

Our comment

Right . . . I guess that func t i on should be changed . But i t _should_ be
ab le to handle i t g r a c e f u l l y in any case . . .

Håvard’s reply - about the illegal opcode handler

Ah. . . that doesn ’ t sound good . Looks l i k e do_address_except ion () doesn
’ t

walk the f i xup t ab l e s be f o r e c ra sh ing . . . that should probably be f i x ed
.

Could you g ive the (untested) patch below a try ?

d i f f −−g i t a/ arch /avr32/ ke rne l / t raps . c b/ arch /avr32/ ke rne l / t raps . c
index d547c8d . . 69 e9218 100644
−−− a/ arch /avr32/ ke rne l / t raps . c
+++ b/arch /avr32/ ke rne l / t raps . c
@@ −75,8 +75 ,15 @@ void _except ion (long s ignr , s t r u c t pt_reg s ∗ regs ,

i n t code ,
{

s i g i n f o_t i n f o ;

− i f (! user_mode(r eg s))
+ i f (! user_mode(r eg s)) {
+ /∗ Are we prepared to handle t h i s k e rne l f a u l t ? ∗/
+ f ixup = search_except ion_tab l e s (r eg s−>pc) ;

108 CHAPTER 4. TESTING AND RESULTS

+ i f (f i xup) {
+ reg s−>pc = f ixup−>f ixup ;
+ return ;
+ }

d i e (" Unhandled except ion in ke rne l mode " , regs , s i g n r
) ;

+ }

memset (&in fo , 0 , s i z e o f (i n f o)) ;
i n f o . s i_s igno = s i gn r ;

Håvard’s reply - about unaligned access not causing -EFAULT

Yes , i t s o l v e s the problem .
Btw ; we had to de c l a r e the f i xup va r i ab l e a l s o .

Our reply

Ah yes . . . I did a c t ua l l y f i x that , but I f o r g o t to r egene ra t e the d i f f
.

The r e s u l t should look something l i k e the below .

Håvard’s reply

[PATCH 17/29] AVR32: Mark AVR32B specific assumptions with CON-
FIG_ SUBARCH_AVR32B in strnlen

Please in c lude a shor t d e s c r i p t i o n about which assumptions you ’ re
t a l k i n g about and why they ’ re s p e c i f i c to AVR32B.

Comment from Håvard

The problem i s that t h i s code assumes that the address space i s s p l i t
i n to two 2GB parts , with the lower h a l f be long ing to user space . This
assumption does not hold f o r AVR32A, where almost a l l memory i s

l o ca t ed
in the upper h a l f o f the address space , and there i s no c l e a r
s epa ra t i on between ke rne l space and user space memory areas .

Our comment

[PATCH 18/29] AVR32: mm/dma-coherent.c - ifdef AVR32B specific code

Actual ly , the whole th ing should be a no−op on dev i c e s with no cache ,
s i n c e there ’ s no need to synchron ize anything .

Comment from Håvard

4.5. PATCH SUBMISSION FEEDBACK 109

That i s true , but in t h i s case we focused on the code that was AVR32B
s p e c i f i c . One could conce ivab ly have an AVR32A mi c r o c on t r o l l e r with
caches ?

I assume that i f the cache changes above were moved to i n l i n e
f unc t i on s

in a header f i l e , t h i s f unc t i on would compi le down to a no−op .

Our comment

Several patches got comments like:

I th ink t h i s should depend on CONFIG_MMU, not AVR32B.

Comment from Håvard Skinnemoen

This applies for the patches listed below.

• [PATCH 18/29] AVR32: mm/dma-coherent.c - ifdef AVR32B specific code.
• [PATCH 19/29] AVR32: Disable ret_if_privileged macro for

!CONFIG_SUBARCH_AVR32B.
• [PATCH 21/29] AVR32: AVR32A address space support.
• [PATCH 22/29] AVR32: Change maximum task size for AVR32A
• [PATCH 23/29] AVR32: Fix uaccess __range_ok macro for AVR32A.

The main c r i t e r i a we did f o r dec id ing whether something should depend
on AVR32B or i f i t should depend on MMU, was whether i t depends on
AVR32B memory layout , or whether i t depends on an MMU being pre sent .

Our comment

But the v i r t u a l memory layout does not depend on the sub−a r c h i t e c t u r e
(apart from the entry point , which makes the two somewhat r e l a t e d) ,

i t
depends on whether or not the chip has an MMU.

I f the chip does not have an MMU, a l l v i r t u a l addre s s e s are mapped 1 :
1

to phy s i c a l addre s s e s . I f the mapping isn ’ t 1 : 1 , the re must be
something in the chip doing the mapping , i . e . an MMU. This i s

conf irmed
by the f a c t that the segmented memory model i s de f in ed in the MMU
chapter in the a r c h i t e c t u r e manual .

So there ’ s r e a l l y no such th ing as an AVR32B memory layout −− the

110 CHAPTER 4. TESTING AND RESULTS

memory layout depends e n t i r e l y on whether or not an MMU i s pre sent .

As f o r caches , I th ink adding caches without a l s o adding an MMU would
be problemat ic s i n c e the caching p r op e r t i e s o f a g iven address i s
determined by the MMU. So i f you don ’ t have an MMU, you won ’ t be ab le
to bypass the cache f o r c e r t a i n par t s o f the memory , which makes i t
d i f f i c u l t to do DMA.

Sure , i t might be p o s s i b l e to in t roduce some other mechanism f o r
s p e c i f y i n g caching p rope r t i e s , but the cur rent a r c h i t e c t u r e document
does not s p e c i f y any such mechanism apart from the MMU.

Håvard’s reply

After Håvards comment, we realized that some of our decisions on which configuration
flags we used was based on a misunderstanding. Earlier we had the misconception that
AVR32A implied that an MMU was not present, and AVR32B meant that an MMU was
present.

The changes we did were still correct, but the build criteria were wrong in many
places. As mentioned in Håvard’s comments, some code segments should be updated to
depend on the CONFIG_MMU option and not the sub-architecture as our patches do.

[PATCH 20/29] AVR32: AVR32A support in Kconfig

Ok. I was th ink ing t h i s could have been merged with some o f the other
AVR32A patches , but then again , t h i s makes i t e a s i e r to r eo rde r the
patches , so i t ’ s f i n e .

Comment from Håvard Skinnemoen

When the implementation were split into patches, we tried to keep this in mind and
rather split into too many rather than too few. By doing this, it should hopefully be
easier for other developers to pick up our work and continue development.

[PATCH 21/29] AVR32: AVR32A address space support

Haven ’ t had a chance to have a good look over but :
On Fri , 2009−05−15 at 14 : 39 +0200 , Gunnar Rangoy wrote :
> +#e l i f CONFIG_SUBARCH_AVR32B
#e l i f de f i ned (CONFIG_SUBARCH_AVR32B)
??

Comment from Ben Nizette

Oops , i t should indeed use de f ined (. . .) . I t w i l l s t i l l work as long
as

the only sub−a r c h i t e c t u r e s are AVR32A and AVR32B, which i s why we
missed i t .

4.5. PATCH SUBMISSION FEEDBACK 111

Our comment

[PATCH 24/29] AVR32: Support for AVR32A (entry-avr32a.c)

Ok, t h i s part r e a l l y does depend on AVR32A, so that part i s f i n e .
Unfortunate ly , I haven ’ t got the time to review t h i s or the remaining
patches today , so I ’ l l have to cont inue some other day (probably next
week) .

Håvard Skinnemoen

4.5.3 Toolchain

Binutils support for FDPIC ELF on AVR32 UC3

This patch adds support f o r s t a t i c a l l y l i nked FDPIC ELF ta r g e t s on
AVR32. I t mostly works , but the re i s a l ack o f e r r o r check ing on

input
f i l e types , which means that i f the l i n k e r i s invoked i n c o r r e c t l y ,
i t w i l l f a i l in s t range ways .

For example , i f one f a i l s to s p e c i f y −I e l f 3 2−avr32 fdp i c to
s t r i p /objcopy , i t w i l l pretend that the f i l e i s a normal
e l f 3 2−avr32 f i l e , and " ru in " the PT_GNU_STACK program header .

Some func t i on s are (almost) d i r e c t c op i e s from e l f 32−b f i n . c and
e l f 32−f r v . c , which are two a r c h i t e c t u r e s with FDPIC support . The code
f o r c r e a t i n g the . ro f ixup−s e c t i o n i s however mostly new .

Patch description

Without t h i s e r r o r checking , i t w i l l be d i f f i c u l t to accept the patch
as− i s . We can ’ t in good f a i t h expect our u s e r s accept that the l i n k e r
w i l l f a i l " in s t range ways " because o f an i n c o r r e c t invoca t i on .
I t needs to f a i l g r a c e f u l l y and in a known way .

Comment from Eric Weddington (Atmel)

uClibc: Some support for FDPIC ELF for AVR32

This patch enab l e s uCl ibc to be l i nked s t a t i c a l l y i n to a FDPIC ELF
binary on AVR32. I t doesn ’ t update the par t s nece s sa ry f o r dynamic
l i n k i n g .

There are a l s o a few s imple changes to memcmp, memcpy and memmove,

112 CHAPTER 4. TESTING AND RESULTS

which makes them work on the UC3 (which cannot a c c e s s unal igned
memory .)

Patch description

I f the change to the mem∗ func t i on s have nothing to do with support
f o r FDPIC, then i t i s p r e f e r r a b l e i f the patches are separated .
The idea i s that a patch f i l e should have a s i n g l e purpose only and
not to mix toge the r changes with d i f f e r e n t purposes .

Comment from Eric Weddington (Atmel)

I w i l l commit the uCl ibc s t u f f , and i t w i l l be broken down in to
separa te changes . Patches w i l l go through review on the uCl ibc
l i s t + Paul be f o r e committing .

Hans-Christian Egtvedt (Atmel)

113

Chapter 5

Conclusion

During this project we have created a modified version of Linux, capable of running on a
microcontroller of the UC3A family. A toolchain has been extended with the capability
of generating executables suitable for this platform. Our version of Linux is capable of
loading and running these executables. Previously submitted patches for the U-Boot
loader have been improved, significanly revised, and re-submitted.

Because custom hardware had to be used, the usefulness of the product of our work
is currently somewhat limited. However, with newer chips without the SDRAM bug, it
should be possible to run Linux on the EVK1100 without hardware modifications. With
some software modifications, it should also be possible to use our work with other closely
related microcontrollers in the AVR32 family.

Patches for the majority of all software modifications done in this project have been
submitted to the appropriate maintainers. By publishing our work, we have significantly
contributed to increase the useful assortment of software for the UC3A microcontroller
family. If Atmel wants to, they can adopt the patches and finalize them to make sure
that they ultimately become part of their respective official software distributions.

By undertaking this project, we have gained valuable knowledge about embedded
development, the Linux kernel, the GNU Toolchain, and open source development in
general. It has also been a valuable experience to communicate with other people in the
open source communities.

114 CHAPTER 5. CONCLUSION

115

Chapter 6

Future work

This chapter describes the tasks that currently remain undone. The three first sections
in this chapter describes remaining work in U-Boot, Linux and the toolchain. The
last section discusses the possibility of running programs created for the AVR32A on
AVR32B chips and vice versa.

6.1 U-Boot
In many setups it would be more suitable to load the kernel from SD card or flash,
because then it would not need to depend on external systems when booting.

There are a few changes that still is not submitted to the U-Boot mailing list. This
mostly regards the MACB driver but it also includes some cleanup of unnecessary code.
These could be included in an updated patch series, but this was not highly prioritized.

6.2 Linux
Ideally, Linux should support all the hardware in the UC3A controller and on the
EVK1100. In this section we outline the most essential features that we would have
tried to implement if we had the time and hardware available.

6.2.1 PDCA support

As described in section 3.6.9, support for the PDCA was never completed. Support
for the PDCA would be very useful since it is a great feature for communicating with
peripherals. The restructured code for the PDC should be obtained from Atmel and
adapted for the UC3A0512.

116 CHAPTER 6. FUTURE WORK

6.2.2 SPI support

The proper way to use the SPI is in combination with the PDCA. Since the PDCA
support never was completed, neither was the SPI support. On the EVK1100, the
microcontroller is connected to several SPI devices. Therefore, Linux support for the
SPI controller would be very useful.

6.2.3 MPU support

Linux does not currently support any use of the MPU, and no attempt has been made
to implement this. Without the MPU enabled, any process can read and write to any
memory location, and potentially obtain all information about, sabotage or modify the
kernel or any processes. The MPU is dysfunctional in our chip, and it would be very
hard to implement and test the software for it.

6.2.4 Support for on-chip devices

Linux support would also be desirable for the following on-chip features of the UC3A:

• USB interface

• Audio Bitstream DAC

• Synchronous Serial Controller

• Analog-to-Digital Converter

None of these features have been considered in the implementation phase of this project.

6.2.5 Memory copy optimization

The implementation of memory copying routines in Linux is not optimized for any
unaligned or halfword copying. A good way to achieve this functionality would be
to extract the already existing and optimized copying routines in newlib. Newlib is
a standard C library implementation for embedded systems and does not require any
operating system like uClibc does. For more information about newlib, see the newlib
website1.

6.2.6 Debug support

Support for debugging applications with a software debugger under Linux is not com-
pleted. We have made changes to the entry point, so debugging events should be handled.
However, there are some code in arch/avr32/kernel/ptrace.c that is not changed for
the AVR32A architecture.

The relevant piece of code is:
1http://sourceware.org/newlib/

http://sourceware.org/newlib/

6.2. LINUX 117

1 ti ->rar_ saved = sysreg _ read(RAR_EX);
2 ti ->rsr_ saved = sysreg _ read(RSR_EX);
3 sysreg _ write (RAR_EX , trampoline _ addr);
4 sysreg _ write (RSR_EX , (MODE _ EXCEPTION | SR_EM | SR_GM));

This code sets up something called a “debug trampoline”, to handle the case where
a user space program single steps into an exception. In such cases, the exception should
be executed at full speed and single stepping should resume after the exception. The
code above changes the return address of the exception, so that that returns to a debug
“trampoline” instead of the real return address. This trampoline will then reconfigure
the debug system, so that single stepping can be resumed.

The problem with the code is that it changes two system registers that are unavailable
on the AVR32A architecture. Instead of saving the return address and status register
in dedicated system registers, the AVR32A architecture saves them on the stack. The
equivalent of changing the two system registers would be to change the two registers as
they are saved on the stack.

We made a design decision to try to reuse the registers saved automatically by the
processor for the pt_regs structure. Thus, if we change the return address and status
register on the stack, we will also change the return address and status register the
exception handler would see. This would be troublesome, since the status register and
return address is used to determine how the exception is handled.

A possible work around would be to insert a new stack frame when single stepping
into an exception. The first stack frame would contain the correct pt_regs structure,
while the next stack frame would contain what is needed to return to the debug “tram-
poline”.

6.2.7 FDPIC ELF support for systems with an MMU

As mentioned in 3.6.16, we only added support for FDPIC ELF for systems with an
MMU. It would be useful to also support the FDPIC ELF format in systems with MMU
support. This would allow development of FDPIC ELF applications and the FDPIC
ELF toolchain on platforms with an MMU.

To do this, one needs to create a structure of the mm_context_t used by MMU
systems, and add the fields required by the FDPIC ELF loader to this structure.

118 CHAPTER 6. FUTURE WORK

6.3 Toolchain

The toolchain is not yet completed – it lacks support for dynamic linking, and it needs
some error checking. In this section we will outline the remaining tasks for the toolchain.

6.3.1 Dynamic linking

The toolchain is currently only able to produce statically linked binaries. It should be
able to support creating shared libraries and dynamically linked executables. At the very
least, this requires changes to the linker, but it might be advantageous to also change
the assembler and GCC.

The linker needs to be changed to handle a new relocation type for function calls. As
mentioned in section 2.10.3, function calls across two different modules need to change
the current GOT pointer to the new modules GOT pointer. The previous GOT pointer
needs to be restored when the function call returns. The linker must therefore support
this type of function call.

When saving the previous GOT pointer, it can also be advantageous to save it to
one of the registers which is preserved across function calls. That would require changes
to GCC and to the assembler. The assembler would need a new pseudo-instruction for
function calls. It currently has a pseudo-instruction for function calls, which the linker
replaces with the correct method for calling the function. The new pseudo-instruction
should take in both the destination of the function call and a register which can be used
to hold the previous GOT pointer.

After the new pseudo-instruction is added to the assembler, GCC would need to be
changed to use it. GCC would need to select a suitable register and insert the new call
instruction with that register as a parameter.

6.3.2 Error handling

The current changes to the linker doesn’t properly check that all input files are FDPIC
ELF files when being executed with the -mavr32linuxfdpic flag. It is this flag that tells
the linker that it is processing FDPIC ELF files. This leads to errors, since it will not
initialize everything correctly in those cases. What needs to be done is to check that every
input file is FDPIC ELF files when the linker is executed with the -mavr32linuxfdpic
flag. If it isn’t executed with the -mavr32linuxfdpic flag, it should check that none of
the input files are FDPIC ELF files.

6.4 AVR32B series compatibility

Since AVR32A and AVR32B are both implementations of the AVR32 architecture, it
should, in theory, be possible to run the same binary Linux applications on both sub-
architectures. A couple of requirements have to be fulfilled, though. The binary must
only use instructions available in both sub-architectures, and can not use unaligned
memory accesses. Note that different revisions of the AVR32 architecture exist, and the

6.4. AVR32B SERIES COMPATIBILITY 119

instruction sets differ slightly. In the future, if support for dynamically linked libraries
is implemented for both sub-architectures, unaligned access could be outsourced to the
C library, thus eliminating the alignment issue in user space applications. To be able to
work on all AVR32 variations, the binary must be compiled as a FDPIC ELF file, and
FDPIC ELF files must be supported also on AVR32 systems with an MMU. See also
section 6.2.7.

120 CHAPTER 6. FUTURE WORK

121

Chapter 7

Bibliography

[1] Avr32 linux kernel wiki. http://avr32linux.org/twiki/bin/view/Main/
LinuxKernel, 2008.

[2] Erik Andersen. The official busybox website. http://www.busybox.net, 2009.

[3] Rob Arnold. Why do i need a resistor with an led? http://led.linear1.org/
why-do-i-need-a-resistor-with-an-led/ , 2006.

[4] Atmel. avr32 gcc. http://www.atmel.com/dyn/Products/tools_card.asp?
tool_id=4118 .

[5] Atmel. AVR32 Architecture Manual. http://www.atmel.com/dyn/resources/
prod_documents/doc32000.pdf, 2007.

[6] Atmel. AVR32 UC3 32-bit Flash Microcontrollers. http://www.atmel.com/dyn/
resources/prod_documents/doc7919.pdf, 2007.

[7] Atmel. AT32AP7000 Datasheet. http://www.atmel.com/dyn/resources/prod_
documents/doc32003.pdf, 2008.

[8] Atmel. AT32UC3A Series Datasheet, Revision F. http://www.atmel.com/dyn/
resources/prod_documents/doc32058.pdf, 2008.

[9] Atmel. AVR32 UC3A Product Card. http://www.atmel.com/dyn/products/
product_card.asp?part_id=4117 , 2008.

[10] Eric J. Braude. Software Engineering - An Object-Oriented Perspective. JohnWilsey
& Sons, INC, 2000.

[11] Free Software Foundation. Gcc development mission statement. http://gcc.gnu.
org/gccmission.html, 1999.

[12] Free Software Foundation. Gnu binutils. http://www.gnu.org/software/
binutils/ , 2007.

http://avr32linux.org/twiki/bin/view/Main/LinuxKernel
http://avr32linux.org/twiki/bin/view/Main/LinuxKernel
http://www.busybox.net
http://led.linear1.org/why-do-i-need-a-resistor-with-an-led/
http://led.linear1.org/why-do-i-need-a-resistor-with-an-led/
http://www.atmel.com/dyn/Products/tools_card.asp?tool_id=4118
http://www.atmel.com/dyn/Products/tools_card.asp?tool_id=4118
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc7919.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc7919.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc32058.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc32058.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=4117
http://www.atmel.com/dyn/products/product_card.asp?part_id=4117
http://gcc.gnu.org/gccmission.html
http://gcc.gnu.org/gccmission.html
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/

122 CHAPTER 7. BIBLIOGRAPHY

[13] CodeSourcery Inc. Joseph Myers. Draft sh uclinux fdpic abi. http://gcc.gnu.
org/ml/gcc/2008-02/msg00619.html, 2008.

[14] Kernel.org. Linux Kernel Archives. http://kernel.org/ , 2008.

[15] Amol Lad, Sriram Neelakandan, and Pichai Raghavan. Embedded Linux system
design and development. CRC Press, 2005.

[16] Evan Leibovitch. The 86open project. http://www.telly.org/86open/ , 1999.

[17] Kernel maintainers. Linux Kernel Documentation. http://git.kernel.org/?p=
linux/kernel/git/torvalds/linux-2.6.git;a=tree;f=Documentation.

[18] Arcturus Networks. What is uClinux? http://uclinux.org/description/ , 2008.

[19] David A. Patterson and John L. Hennessy. Computer Orgainzation and Design.
Morgan Kaufmann, 3 edition, 2007.

[20] Craig Peacock. uclinux - bflt binary flat format.
http://www.beyondlogic.org/uClinux/bflt.htm, 2005.

[21] Inc The Santa Cruz Operation. System v, application binary interface. http:
//www.caldera.com/developers/devspecs/gabi41.pdf, 1997.

[22] uCdot.org. uclinux merged into main line linux kernel sources. http://www.ucdot.
org/article.pl?sid=02/11/05/0324207 .

[23] uClibc.org. About uclibc. http://www.uclibc.org/ , 2008.

[24] usb.org. Introduction to usb on-the-go. http://www.usb.org/developers/
onthego/USB_OTG_Intro.pdf, 2003.

[25] Inc VDC Research Group. THE EMBEDDED SOFTWARE MARKETING
INTELLIGENCE PROGRAM: 2008 Service YearTrack 1: Operating Systems
Used in Embedded Systems, Volume 1: Linux. http://www.vdcresearch.com/
PurchasedDownloadFile.asp?type=executivebrief&id=2283 , 2008.

http://gcc.gnu.org/ml/gcc/2008-02/msg00619.html
http://gcc.gnu.org/ml/gcc/2008-02/msg00619.html
http://kernel.org/
http://www.telly.org/86open/
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=tree;f=Documentation
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=tree;f=Documentation
http://uclinux.org/description/
http://www.caldera.com/developers/devspecs/gabi41.pdf
http://www.caldera.com/developers/devspecs/gabi41.pdf
http://www.ucdot.org/article.pl?sid=02/11/05/0324207
http://www.ucdot.org/article.pl?sid=02/11/05/0324207
http://www.uclibc.org/
http://www.usb.org/developers/onthego/USB_OTG_Intro.pdf
http://www.usb.org/developers/onthego/USB_OTG_Intro.pdf
http://www.vdcresearch.com/PurchasedDownloadFile.asp?type=executivebrief&id=2283
http://www.vdcresearch.com/PurchasedDownloadFile.asp?type=executivebrief&id=2283

123

Appendix A

Acronyms

ABI Application Binary Interface

BFD Binary Format Descriptor

CPU Central Processor Unit

CVS Concurrent Versions System

DAC Digital to Analog Converter

DHCP Dynamic Host Configuration Protocol

DMA Direct Memory Access

EBI External Bus Interface

EEPROM Electrically Erasable Programmable Read-Only Memory

ELF Executable and Linkable Format

EPROM Erasable Programmable Read-Only Memory

EEPROM Electrically Erasable Programmable Read-Only Memory

EPROM Erasable Programmable Read-Only Memory

FDPIC Function Descriptor Position Independent Code

FSF Free Software Foundation

GCC GNU Compiler Collection

GDB GNU Debugger

GNU GNU’s Not Unix

GPIO General Purpose Input/Output

124 APPENDIX A. ACRONYMS

GPL General Public License

GOT Global Offset Table

HSB High Speed Bus

IO Input/Output

IP Internet Protocol

IDE Integrated Drive Electronics

JTAG Joint Test Action Group

LCD Liquid Crystal Display

LED Light Emitting Diode

MAC Media Access Controller

MCI MultiMedia Card Interface

MII Media Independent Interface

MMU Memory Management Unit

MPU Memory Protection Unit

NFS Network File System

NOP No-Operation

PDC Peripheral DMA Controller

PDCA Peripheral DMA Controller

PIC Position Independent Code

PIO Parallel Input/Output

PLC Programmable Logic Controller

PLT Procedure Linkage Table

POSIX Portable Operating System Interface for Unix

PROM Programmable Read-Only Memory

RAM Random Access Memory

RMII Reduced Media Independent Interface

SD Secure Digital

125

SDRAM Synchronous Dynamic Random Access Memory

SMC Static Memory Controller

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SUS Single UNIX Specification

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

TLB Translation Lookaside Buffer

UDP User Datagram Protocol

URL Uniform Resource Locator

USB Universal Serial Bus

126 APPENDIX A. ACRONYMS

127

Appendix B

U-Boot patch cleanup

B.1 Network limiting reorganization

1 diff --git a/ drivers /net/macb.c b/ drivers /net/macb.c
2 index 561669 b..31 a4fbe 100644
3 --- a/ drivers /net/macb.c
4 +++ b/ drivers /net/macb.c
5 @@ -296 ,28 +296 ,17 @@ static void macb_phy_ reset (struct macb_ device *macb)
6 struct eth_ device * netdev = &macb ->netdev ;
7 int i;
8 u16 status , adv;
9 - int rmii_mode;

10 - unsigned min_hz;
11 -
12 -# ifdef CONFIG _RMII
13 - rmii_mode = 1;
14 - min_hz = 50000000 ;
15 -#else
16 - rmii_mode = 0;
17 - min_hz = 25000000 ;
18 -# endif
19
20 adv = ADVERTISE _CSMA | ADVERTISE _ALL ;
21
22 - if (get_hsb_clk_rate () < min_hz) {
23 - printf ("%s: HSB clock < %u MHz in %s mode - "
24 - " disabling 100 mbit.\n", netdev ->name , min_hz / 1000000 ,
25 - (rmii_mode ? "RMII" : "MII "));
26 +# ifdef CONFIG _MACB_ FORCE10M
27 + printf ("%s: 100 Mbps is not supported on this board - forcing 10 Mbps.\n",
28 + netdev ->name);
29
30 - adv &= ~ ADVERTISE _100 FULL;
31 - adv &= ~ ADVERTISE _100 HALF;
32 - adv &= ~ ADVERTISE _100 BASE4 ;
33 - }
34 + adv &= ~ ADVERTISE _100 FULL;
35 + adv &= ~ ADVERTISE _100 HALF;
36 + adv &= ~ ADVERTISE _100 BASE4 ;
37 +# endif
38
39 macb_mdio_ write (macb , MII_ADVERTISE , adv);
40 printf ("%s: Starting autonegotiation ...\n", netdev ->name);
41 @@ -345 ,7 +334 ,7 @@ static int macb_phy_find(struct macb_ device *macb)
42
43 /* Search for PHY... */
44 for (i = 0; i < 32; i++) {
45 - macb ->phy_addr=i;
46 + macb ->phy_addr = i;
47 phy_id = macb_mdio_read(macb , MII_ PHYSID1);
48 if (phy_id != 0 xffff) {
49 printf ("%s: PHY present at %d\n", macb ->netdev .name , i);

128 APPENDIX B. U-BOOT PATCH CLEANUP

B.2 Add board to lists

1 diff --git a/ MAINTAINERS b/ MAINTAINERS
2 index 9 c0d6bf .. d83b580 100644
3 --- a/ MAINTAINERS
4 +++ b/ MAINTAINERS
5 @@ -747 ,6 +747 ,7 @@ Haavard Skinnemoen <haavard . skinnemoen@atmel .com >
6 ATSTK1004 AT32AP7002
7 ATSTK1006 AT32AP7000
8 ATNGW100 AT32AP7000
9 + ATEVK1100 AT32UC3A0512

10
11 ###
12 # SuperH Systems : #
13 diff --git a/ MAKEALL b/ MAKEALL
14 index 9 ccb9ac .. cd33214 100755
15 --- a/ MAKEALL
16 +++ b/ MAKEALL
17 @@ -720 ,6 +720 ,7 @@ LIST_ coldfire =" \
18 ###
19
20 LIST_ avr32 =" \
21 + atevk1100 \
22 atstk1002 \
23 atstk1003 \
24 atstk1004 \

B.3 Precedence safety fix

1 diff --git a/cpu/ at32uc /smc.h b/cpu/ at32uc /smc.h
2 index ea4d399 .. ae765ec 100644
3 --- a/cpu/ at32uc /smc.h
4 +++ b/cpu/ at32uc /smc.h
5 @@ -8,10 +8 ,10 @@
6 # include <asm/io.h>
7
8 /* SMC register offsets */
9 -# define SMC_ SETUP (x) 0 x0000 +(x)*0 x10

10 -# define SMC_ PULSE (x) 0 x0004 +(x)*0 x10
11 -# define SMC_ CYCLE (x) 0 x0008 +(x)*0 x10
12 -# define SMC_MODE(x) 0 x000c +(x)*0 x10
13 +# define SMC_ SETUP (x) (0 x0000 +(x)*0 x10)
14 +# define SMC_ PULSE (x) (0 x0004 +(x)*0 x10)
15 +# define SMC_ CYCLE (x) (0 x0008 +(x)*0 x10)
16 +# define SMC_MODE(x) (0 x000c +(x)*0 x10)
17
18 /* Bitfields in SETUP0 ..3 */
19 # define SMC_NWE_ SETUP _ OFFSET 0

B.4 Board configuration

1 diff --git a/ include / configs / atevk1100 .h b/ include / configs / atevk1100 .h
2 index 2 a9d91b .. ad134f8 100644
3 --- a/ include / configs / atevk1100 .h
4 +++ b/ include / configs / atevk1100 .h
5 @@ -72,7 +72 ,8 @@
6 * Select the operating range for the PLL.
7 * PLLOPT [0]: Select the VCO frequency range .
8 * PLLOPT [1]: Enable the extra output divider .
9 - * PLLOPT [2]: Disable the Wide - Bandwidth mode (Wide - Bandwidth mode allows a faster startup time and out

-of -lock time).
10 + * PLLOPT [2]: Disable the Wide - Bandwidth mode (Wide - Bandwidth mode allows a
11 + * faster startup time and out -of -lock time).
12 *
13 * We want to run the cpu at 66 MHz , and the fVCO of the PLL at 132 MHz.
14 */
15 @@ -93,7 +94 ,7 @@
16
17 # define CONFIG _ STACKSIZE (2048)
18
19 -# define CONFIG _ BAUDRATE 9600
20 +# define CONFIG _ BAUDRATE 115200
21 # define CONFIG _ BOOTARGS \

B.5. KEEPING LISTS SORTED 129

22 " console = ttyS0 ip=dhcp root=/dev/nfs rootwait =1"
23
24 @@ -143 ,6 +144 ,11 @@
25 /* Ethernet - RMII mode */
26 # define CONFIG _MACB 1
27 # define CONFIG _RMII 1
28 +/*
29 + * 100 Mbps requires a CPU clock of at least 50 MHz for RMII mode , and 25 MHz for
30 + * MII mode. Set CONFIG _MACB_ FORCE10M flag if clock is too slow for 100 Mbit.
31 + */
32 +# define CONFIG _MACB_ FORCE10M 1
33
34 # define CONFIG _ ATMEL _ USART 1
35 # define CONFIG _ ATMEL _SPI 1
36 @@ -156 ,7 +162 ,7 @@
37
38 # define CONFIG _NR_DRAM_ BANKS 1
39
40 -/* Internal flash on the microcontroller (TODO ?) (512 kB)*/
41 +/* Internal flash on the microcontroller (512 kB)*/
42 # define CFG_ FLASH _BASE 0 x80000000
43 # define CFG_ FLASH _SIZE 0 x80000
44 # define CFG_MAX_ FLASH _ BANKS 1
45 @@ -171 ,14 +177 ,15 @@
46
47 # define CONFIG _ENV_IS_IN_ FLASH 1
48 # define CONFIG _ENV_SIZE 65536
49 -# define CONFIG _ENV_ADDR (CFG_ FLASH _BASE + CFG_ FLASH _SIZE - CONFIG _ENV_SIZE)
50 +# define CONFIG _ENV_ADDR (CFG_ FLASH _BASE + CFG_ FLASH _SIZE - \
51 + CONFIG _ENV_SIZE)
52
53 # define CFG_INIT_SP_ADDR (CFG_ INTRAM _BASE + CFG_ INTRAM _SIZE)
54
55 # define CFG_ MALLOC _LEN (256*1024)
56 # define CFG_DMA_ ALLOC _LEN (16384)
57
58 -/* Allow 3MB(TODO: update) for the kernel run -time image */
59 +/* Allow 2.5MB for the kernel run -time image */
60 # define CFG_LOAD_ADDR (CFG_ SDRAM _BASE + 0 x00270000)
61 # define CFG_ BOOTPARAMS _LEN (16 * 1024)

B.5 Keeping lists sorted

1 diff --git a/ Makefile b/ Makefile
2 index bfaa625 .. d9fbc6e 100644
3 --- a/ Makefile
4 +++ b/ Makefile
5 @@ -3047 ,6 +3047 ,9 @@ $(BFIN_ BOARDS):
6 # AVR32
7 #==
8
9 + atevk1100 _ config : unconfig

10 + @$(MKCONFIG) $(@:_ config =) avr32 at32uc atevk1100 atmel at32uc3a0xxx
11 +
12 atngw100 _ config : unconfig
13 @$(MKCONFIG) $(@:_ config =) avr32 at32ap atngw100 atmel at32ap700x
14
15 @@ -3071 ,9 +3074 ,6 @@ hammerhead _ config : unconfig
16 mimc200 _ config : unconfig
17 @$(MKCONFIG) $(@:_ config =) avr32 at32ap mimc200 mimc at32ap700x
18
19 -atevk1100 _ config : unconfig
20 - @$(MKCONFIG) $(@:_ config =) avr32 at32uc atevk1100 atmel at32uc3a0xxx
21 -
22 #==
23 # SH3 (SuperH)
24 #==

B.6 Removal of TODOs

1 diff --git a/cpu/ at32uc / at32uc3a0xxx /sm.h b/cpu/ at32uc / at32uc3a0xxx /sm.h
2 index d232f91 ..17 bff39 100644
3 --- a/cpu/ at32uc / at32uc3a0xxx /sm.h
4 +++ b/cpu/ at32uc / at32uc3a0xxx /sm.h

130 APPENDIX B. U-BOOT PATCH CLEANUP

5 @@ -30,7 +30 ,6 @@
6 # define SM_PM_ VREGCR (SM_PM_REGS_ OFFSET + 0 x00c8)
7 # define SM_PM_BOD (SM_PM_REGS_ OFFSET + 0 x00d0)
8 # define SM_PM_ RCAUSE (SM_PM_REGS_ OFFSET + 0 x0140)
9 -# define SM_RC_ RCAUSE SM_PM_ RCAUSE /* TODO: remove */

10 /* RTC starts at 0 xFFFF0D00 */
11 # define SM_RTC_REGS_ OFFSET 0 x0d00
12 # define SM_RTC_CTRL (SM_RTC_REGS_ OFFSET + 0 x0000)
13 @@ -45 ,25 +44 ,24 @@
14 # define SM_WDT_REGS_ OFFSET 0 x0d30
15 # define SM_WDT_CTRL (SM_WDT_REGS_ OFFSET + 0 x0000)
16 # define SM_WDT_CLR (SM_WDT_REGS_ OFFSET + 0 x0004)
17 -# define SM_WDT_EXT (SM_WDT_REGS_ OFFSET + 0 x0008) /* TODO: does not exist ?

*/
18 /* EIC starts at offset 0 xFFFF0D80 */
19 /* TODO: change EIM to EIC */
20 # define SM_EIC_REGS_ OFFSET 0 x0d80
21 -# define SM_EIM_IER (SM_EIC_REGS_ OFFSET + 0 x0000)
22 -# define SM_EIM_IDR (SM_EIC_REGS_ OFFSET + 0 x0004)
23 -# define SM_EIM_IMR (SM_EIC_REGS_ OFFSET + 0 x0008)
24 -# define SM_EIM_ISR (SM_EIC_REGS_ OFFSET + 0 x000c)
25 -# define SM_EIM_ICR (SM_EIC_REGS_ OFFSET + 0 x0010)
26 -# define SM_EIM_MODE (SM_EIC_REGS_ OFFSET + 0 x0014)
27 -# define SM_EIM_EDGE (SM_EIC_REGS_ OFFSET + 0 x0018)
28 -# define SM_EIM_ LEVEL (SM_EIC_REGS_ OFFSET + 0 x001c)
29 -# define SM_EIM_ FILTER (SM_EIC_REGS_ OFFSET + 0 x0020)
30 -# define SM_EIM_TEST (SM_EIC_REGS_ OFFSET + 0 x0024)
31 -# define SM_EIM_ ASYNC (SM_EIC_REGS_ OFFSET + 0 x0028)
32 -# define SM_EIM_SCAN (SM_EIC_REGS_ OFFSET + 0 x002c)
33 -# define SM_EIM_EN (SM_EIC_REGS_ OFFSET + 0 x0030)
34 -# define SM_EIM_DIS (SM_EIC_REGS_ OFFSET + 0 x0034)
35 -# define SM_EIM_CTRL (SM_EIC_REGS_ OFFSET + 0 x0038)
36 +# define SM_EIC_IER (SM_EIC_REGS_ OFFSET + 0 x0000)
37 +# define SM_EIC_IDR (SM_EIC_REGS_ OFFSET + 0 x0004)
38 +# define SM_EIC_IMR (SM_EIC_REGS_ OFFSET + 0 x0008)
39 +# define SM_EIC_ISR (SM_EIC_REGS_ OFFSET + 0 x000c)
40 +# define SM_EIC_ICR (SM_EIC_REGS_ OFFSET + 0 x0010)
41 +# define SM_EIC_MODE (SM_EIC_REGS_ OFFSET + 0 x0014)
42 +# define SM_EIC_EDGE (SM_EIC_REGS_ OFFSET + 0 x0018)
43 +# define SM_EIC_ LEVEL (SM_EIC_REGS_ OFFSET + 0 x001c)
44 +# define SM_EIC_ FILTER (SM_EIC_REGS_ OFFSET + 0 x0020)
45 +# define SM_EIC_TEST (SM_EIC_REGS_ OFFSET + 0 x0024)
46 +# define SM_EIC_ ASYNC (SM_EIC_REGS_ OFFSET + 0 x0028)
47 +# define SM_EIC_SCAN (SM_EIC_REGS_ OFFSET + 0 x002c)
48 +# define SM_EIC_EN (SM_EIC_REGS_ OFFSET + 0 x0030)
49 +# define SM_EIC_DIS (SM_EIC_REGS_ OFFSET + 0 x0034)
50 +# define SM_EIC_CTRL (SM_EIC_REGS_ OFFSET + 0 x0038)
51
52 /* Bitfields used in many registers */
53 # define SM_EN_ OFFSET 0
54 @@ -110 ,8 +108 ,6 @@
55 # define SM_ PLLMUL _SIZE 4
56 # define SM_ PLLCOUNT _ OFFSET 24
57 # define SM_ PLLCOUNT _SIZE 6
58 -# define SM_ PLLTEST _ OFFSET 31 /* TODO: remove */
59 -# define SM_ PLLTEST _SIZE 1 /* TODO: remove */
60
61 /* Bitfields in PM_OSCCTRL0 ,1 */
62 # define SM_MODE_ OFFSET 0
63 @@ -119 ,31 +115 ,12 @@
64 # define SM_ STARTUP _ OFFSET 8
65 # define SM_ STARTUP _SIZE 3
66
67 -/* Bitfields in PM_ VCTRL */
68 -# define SM_ VAUTO _ OFFSET 0 /* TODO: remove */
69 -# define SM_ VAUTO _SIZE 1 /* TODO: remove */
70 -# define SM_PM_ VCTRL _VAL_ OFFSET 8 /* TODO: remove */
71 -# define SM_PM_ VCTRL _VAL_SIZE 7 /* TODO: remove */
72 -
73 -/* Bitfields in PM_ VMREF */
74 -# define SM_ REFSEL _ OFFSET 0 /* TODO: remove */
75 -# define SM_ REFSEL _SIZE 4 /* TODO: remove */
76 -
77 -/* Bitfields in PM_VMV */
78 -# define SM_PM_VMV_VAL_ OFFSET 0 /* TODO: remove */
79 -# define SM_PM_VMV_VAL_SIZE 8 /* TODO: remove */
80
81 /* Bitfields in PM_IER/IDR/IMR/ISR/ICR , POSCSR */
82 # define SM_ LOCK0 _ OFFSET 0
83 # define SM_ LOCK0 _SIZE 1
84 # define SM_ LOCK1 _ OFFSET 1
85 # define SM_ LOCK1 _SIZE 1
86 -# define SM_WAKE_ OFFSET 2 /* TODO: remove */
87 -# define SM_WAKE_SIZE 1 /* TODO: remove */

B.7. CODING STYLE FIXES 131

88 -# define SM_VOK_ OFFSET 3 /* TODO: remove */
89 -# define SM_VOK_SIZE 1 /* TODO: remove */
90 -# define SM_ VMRDY _ OFFSET 4 /* TODO: remove */
91 -# define SM_ VMRDY _SIZE 1 /* TODO: remove */
92 # define SM_ CKRDY _ OFFSET 5
93 # define SM_ CKRDY _SIZE 1
94 # define SM_ MSKRDY _ OFFSET 6
95 @@ -180 ,8 +157 ,6 @@
96 # define SM_WDT_SIZE 1
97 # define SM_JTAG_ OFFSET 4
98 # define SM_JTAG_SIZE 1
99 -# define SM_SERP_ OFFSET 5 /* TODO: remove */

100 -# define SM_SERP_SIZE 1 /* TODO: remove */
101 # define SM_ CPUERR _ OFFSET 7
102 # define SM_ CPUERR _SIZE 1
103 # define SM_ OCDRST _ OFFSET 8

B.7 Coding style fixes

1 diff --git a/cpu/ at32uc / at32uc3a0xxx /clk.c b/cpu/ at32uc / at32uc3a0xxx /clk.c
2 index 7 c66b94 ..7 d4f813 100644
3 --- a/cpu/ at32uc / at32uc3a0xxx /clk.c
4 +++ b/cpu/ at32uc / at32uc3a0xxx /clk.c
5 @@ -43,7 +43 ,8 @@ void clk_init(void)
6 sm_ writel (PM_MCCTRL , SM_BIT(OSC0EN));
7
8 /* wait for osc0 */
9 - while (!(sm_ readl (PM_ POSCSR) & SM_BIT(OSC0RDY))) ;

10 + while (!(sm_ readl (PM_ POSCSR) & SM_BIT(OSC0RDY)))
11 + ;
12
13 /* run from osc0 */
14 sm_ writel (PM_MCCTRL , SM_BF(MCSEL , 1) | SM_BIT(OSC0EN));
15 @@ -59 ,11 +60 ,13 @@ void clk_init(void)
16 | SM_BIT(ERRATA)));
17
18 /* Wait for lock */
19 - while (!(sm_ readl (PM_ POSCSR) & SM_BIT(LOCK0))) ;
20 + while (!(sm_ readl (PM_ POSCSR) & SM_BIT(LOCK0)))
21 + ;
22 # endif
23
24 /* We cannot write the CKSEL register before the ready - signal is set. */
25 - while (!(sm_ readl (PM_ POSCSR) & SM_BIT(CKRDY))) ;
26 + while (!(sm_ readl (PM_ POSCSR) & SM_BIT(CKRDY)))
27 + ;
28
29 /* Set up clocks for the CPU and all peripheral buses */
30 cksel = 0;
31 diff --git a/cpu/ at32uc /cpu.c b/cpu/ at32uc /cpu.c
32 index 4 a95427 .. d145e1d 100644
33 --- a/cpu/ at32uc /cpu.c
34 +++ b/cpu/ at32uc /cpu.c
35 @@ -55,7 +55 ,7 @@ int cpu_init(void)
36 sysreg _ write (EVBA , (unsigned long)&_evba);
37 asm volatile ("csrf %0" : : "i"(SYSREG _EM_ OFFSET));
38
39 - if(gclk_init)
40 + if (gclk_init)
41 gclk_init ();
42
43 return 0;
44 diff --git a/cpu/ at32uc / flashc .c b/cpu/ at32uc / flashc .c
45 index e626e1f ..2244 b2e 100644
46 --- a/cpu/ at32uc / flashc .c
47 +++ b/cpu/ at32uc / flashc .c
48 @@ -56,7 +56 ,7 @@ unsigned long flash _init(void)
49 /* Currently , all interflash have pages which are 128 words . */
50 flash _info[0]. sector _ count = size / (128*4) ;
51
52 - for(i=0; i< flash _info[0]. sector _ count ; i++){
53 + for (i = 0; i < flash _info[0]. sector _ count ; i++) {
54 flash _info[0]. start [i] = i *128*4 + CFG_ FLASH _BASE;
55 }
56
57 @@ -73 ,19 +73 ,20 @@ void flash _ print _info(flash _info_t *info)
58
59 static void flash _wait_ ready (void)
60 {

132 APPENDIX B. U-BOOT PATCH CLEANUP

61 - while (! flashc _ readl (FSR) & FLASHC _BIT(FRDY));
62 + while (! flashc _ readl (FSR) & FLASHC _BIT(FRDY))
63 + ;
64 }
65
66 int flash _ erase (flash _info_t *info , int s_first , int s_last)
67 {
68 int page;
69
70 - for(page=s_ first ;page <s_last; page ++){
71 + for (page = s_ first ; page < s_last; page ++) {
72 flash _wait_ ready ();
73 - flashc _ writel (
74 - FCMD , FLASHC _BF(CMD , FLASHC _EP)
75 - | FLASHC _BF(PAGEN , page)
76 - | FLASHC _BF(KEY , 0xa5));
77 + flashc _ writel (FCMD ,
78 + FLASHC _BF(CMD , FLASHC _EP) |
79 + FLASHC _BF(PAGEN , page) |
80 + FLASHC _BF(KEY , 0xa5));
81 }
82 return ERR_OK;
83 }
84 @@ -105 ,15 +106 ,15 @@ static void write _ flash _page(unsigned int pagen , const u32 *data)
85
86 /* fill page buffer */
87 flash _wait_ ready ();
88 - for(i=0; i <128; i++){
89 - dst[i]=data[i];
90 + for (i = 0; i < 128; i++) {
91 + dst[i] = data[i];
92 }
93
94 /* issue write command */
95 flashc _ writel (FCMD ,
96 - FLASHC _BF(CMD , FLASHC _WP)|
97 - FLASHC _BF(PAGEN , pagen)|
98 - FLASHC _BF(KEY , 0xa5));
99 + FLASHC _BF(CMD , FLASHC _WP) |

100 + FLASHC _BF(PAGEN , pagen) |
101 + FLASHC _BF(KEY , 0xa5));
102 }
103
104 int write _buff(flash _info_t *info , uchar *src , ulong addr , ulong count)
105 @@ -134 ,7 +135 ,7 @@ int write _buff(flash _info_t *info , uchar *src , ulong addr , ulong count)
106 for (i = 0; i < count ; i += 128*4) {
107 unsigned int pagen ;
108 pagen = (addr -CFG_ FLASH _BASE+i) / (128*4) ;
109 - write _ flash _page(pagen , (u32 *) (src+i));
110 + write _ flash _page(pagen , (u32 *) (src+i));
111 }
112
113
114 diff --git a/cpu/ at32uc /smc.c b/cpu/ at32uc /smc.c
115 index f4bb9fb ..74 c2947 100644
116 --- a/cpu/ at32uc /smc.c
117 +++ b/cpu/ at32uc /smc.c
118 @@ -26 ,13 +26 ,13 @@ unsigned long sram_init(const struct sram_ config * config)
119
120 switch (config ->data_bits) {
121 case 8:
122 - dbw=0;
123 + dbw = 0;
124 break ;
125 case 16:
126 - dbw=1;
127 + dbw = 1;
128 break ;
129 case 32:
130 - dbw=2;
131 + dbw = 2;
132 break ;
133 default :
134 panic (" Invalid number of databits for SRAM");
135 @@ -52,7 +52 ,7 @@ unsigned long sram_init(const struct sram_ config * config)
136
137
138 smc_ writel (config ->chip_select , MODE , cfgreg);
139 - sram_size= (1<< config ->address _bits) * (config ->data_bits /8);
140 + sram_size = (1<< config ->address _bits) * (config ->data_bits /8);
141
142
143 return sram_size;

B.7. CODING STYLE FIXES 133

144 diff --git a/ include /asm - avr32 /arch - at32uc3a0xxx / portmux .h b/ include /asm - avr32 /arch - at32uc3a0xxx / portmux
.h

145 index 2877206 .. c9b17a8 100644
146 --- a/ include /asm - avr32 /arch - at32uc3a0xxx / portmux .h
147 +++ b/ include /asm - avr32 /arch - at32uc3a0xxx / portmux .h
148 @@ -25,7 +25 ,7 @@
149 # include <asm/arch - common /portmux -gpio.h>
150 # include <asm/arch/memory -map.h>
151
152 -# define PORTMUX _PORT(x) ((void *) (GPIO_BASE + (x) * 0 x0100))
153 +# define PORTMUX _PORT(x) ((void *) (GPIO_BASE + (x) * 0 x0100))
154 # define PORTMUX _PORT_A PORTMUX _PORT (0)
155 # define PORTMUX _PORT_B PORTMUX _PORT (1)
156 # define PORTMUX _PORT_C PORTMUX _PORT (2)
157 diff --git a/ include /asm - avr32 /arch - at32uc3a0xxx /clk.h b/ include /asm - avr32 /arch - at32uc3a0xxx /clk.h
158 index 1 bfb721 .. eb94eaa 100644
159 --- a/ include /asm - avr32 /arch - at32uc3a0xxx /clk.h
160 +++ b/ include /asm - avr32 /arch - at32uc3a0xxx /clk.h
161 @@ -37,7 +37 ,6 @@ static inline unsigned long get_cpu_clk_rate(void)
162 }
163 static inline unsigned long get_hsb_clk_rate(void)
164 {
165 - // TODO HSB is always the same as cpu -rate
166 return MAIN_CLK_RATE >> CFG_ CLKDIV _CPU;
167 }
168 static inline unsigned long get_pba_clk_rate(void)
169 diff --git a/ include /asm - avr32 /arch - at32uc3a0xxx /memory -map.h b/ include /asm - avr32 /arch - at32uc3a0xxx /

memory -map.h
170 index cef3807 ..3 beaad9 100644
171 --- a/ include /asm - avr32 /arch - at32uc3a0xxx /memory -map.h
172 +++ b/ include /asm - avr32 /arch - at32uc3a0xxx /memory -map.h
173 @@ -70,6 +70 ,6 @@
174 # define TC_BASE 0 xFFFF3800
175 # define ADC_BASE 0 xFFFF3C00
176
177 -# define GPIO_PORT(x) ((void *) (GPIO_BASE + (x) * 0 x0100))
178 +# define GPIO_PORT(x) ((void *) (GPIO_BASE + (x) * 0 x0100))
179
180 # endif /* __ AT32UC3A0512 _ MEMORY _MAP_H__ */
181 diff --git a/ include /asm - avr32 /arch - at32uc3a0xxx / addrspace .h b/ include /asm - avr32 /arch - at32uc3a0xxx /

addrspace .h
182 index 90 feed7 ..0 b8b3df 100644
183 --- a/ include /asm - avr32 /arch - at32uc3a0xxx / addrspace .h
184 +++ b/ include /asm - avr32 /arch - at32uc3a0xxx / addrspace .h
185 @@ -33,7 +33 ,7 @@ static __ inline __ unsigned long virt_to_phys(volatile void * address)
186 return PHYSADDR (address);
187 }
188
189 -static __ inline __ void * phys_to_virt(unsigned long address)
190 + static __ inline __ void *phys_to_virt(unsigned long address)
191 {
192 return (void *) address ;
193 }
194 diff --git a/cpu/ at32uc / cache .c b/cpu/ at32uc / cache .c
195 index 06 fa12c .. d624e6f 100644
196 --- a/cpu/ at32uc / cache .c
197 +++ b/cpu/ at32uc / cache .c
198 @@ -28,7 +28 ,7 @@
199 * RAM , and that the icache will look for it. Cleaning the dcache and
200 * invalidating the icache will do the trick .
201 */
202 -void flush _ cache (unsigned long start _addr , unsigned long size)
203 +void flush _ cache (unsigned long start _addr , unsigned long size)
204 {
205 /* No cache to clean in the at32uc3 . */
206 }
207 diff --git a/ board / atmel / atevk1100 / atevk1100 .c b/ board / atmel / atevk1100 / atevk1100 .c
208 index a85337e .. e9c5452 100644
209 --- a/ board / atmel / atevk1100 / atevk1100 .c
210 +++ b/ board / atmel / atevk1100 / atevk1100 .c
211 @@ -88,7 +88 ,8 @@ phys_size_t initdram (int board _type)
212 unsigned long actual _size;
213 void *sram_base;
214
215 - sram_base = map_ physmem (EBI_SRAM_CS2_BASE , EBI_SRAM_CS2_SIZE , MAP_ NOCACHE);
216 + sram_base = map_ physmem (EBI_SRAM_CS2_BASE , EBI_SRAM_CS2_SIZE ,
217 + MAP_ NOCACHE);
218
219 expected _size = sram_init(&sram_ config);
220 actual _size = get_ram_size(sram_base , expected _size);

134 APPENDIX B. U-BOOT PATCH CLEANUP

135

Appendix C

Unsubmitted U-Boot changes

1 diff --git a/ board / atmel / atevk1100 / atevk1100 .c b/ board / atmel / atevk1100 / atevk1100 .c
2 index e9c5452 .. d2d7893 100644
3 --- a/ board / atmel / atevk1100 / atevk1100 .c
4 +++ b/ board / atmel / atevk1100 / atevk1100 .c
5 @@ -105 ,7 +105 ,10 @@ phys_size_t initdram (int board _type)
6
7 int board _ early _init_r(void)
8 {
9 - /* Physical address of phy (0 xff = auto - detect) */

10 + /*
11 + * Physical address of phy. This is not used when the address is
12 + * autodetected . See CONFIG _MACB_ SEARCH _PHY.
13 + */
14 gd ->bd ->bi_phy_id[0] = 0xff;
15 return 0;
16 }
17 diff --git a/ drivers /net/macb.c b/ drivers /net/macb.c
18 index 31 a4fbe .. c8beb82 100644
19 --- a/ drivers /net/macb.c
20 +++ b/ drivers /net/macb.c
21 @@ -327 ,6 +327 ,7 @@ static void macb_phy_ reset (struct macb_ device *macb)
22 netdev ->name , status);
23 }
24
25 +# ifdef CONFIG _MACB_ SEARCH _PHY
26 static int macb_phy_find(struct macb_ device *macb)
27 {
28 int i;
29 @@ -347 ,6 +348 ,8 @@ static int macb_phy_find(struct macb_ device *macb)
30
31 return 0;
32 }
33 +# endif /* CONFIG _MACB_ SEARCH _PHY */
34 +
35
36 static int macb_phy_init(struct macb_ device *macb)
37 {
38 @@ -356 ,12 +359 ,12 @@ static int macb_phy_init(struct macb_ device *macb)
39 int media , speed , duplex ;
40 int i;
41
42 - if (macb ->phy_addr == 0xff) {
43 - /* Auto - detect phy_addr */
44 - if (!macb_phy_find(macb)) {
45 - return 0;
46 - }
47 +# ifdef CONFIG _MACB_ SEARCH _PHY
48 + /* Auto - detect phy_addr */
49 + if (!macb_phy_find(macb)) {
50 + return 0;
51 }
52 +# endif /* CONFIG _MACB_ SEARCH _PHY */
53
54 /* Check if the PHY is up to snuff ... */
55 phy_id = macb_mdio_read(macb , MII_ PHYSID1);
56 diff --git a/ drivers / serial / atmel _ usart .c b/ drivers / serial / atmel _ usart .c
57 index a358871 .. f3b146c 100644
58 --- a/ drivers / serial / atmel _ usart .c
59 +++ b/ drivers / serial / atmel _ usart .c
60 @@ -58,9 +58 ,6 @@ int serial _init(void)

136 APPENDIX C. UNSUBMITTED U-BOOT CHANGES

61 {
62 usart3 _ writel (CR , USART3 _BIT(RSTRX) | USART3 _BIT(RSTTX));
63
64 - /* Make sure that all interrupts are disabled during startup . */
65 - usart3 _ writel (IDR , 0 xffffffff);
66 -
67 serial _ setbrg ();
68
69 usart3 _ writel (CR , USART3 _BIT(RXEN) | USART3 _BIT(TXEN));
70 diff --git a/ include / configs / atevk1100 .h b/ include / configs / atevk1100 .h
71 index ad134f8 .. e6e4746 100644
72 --- a/ include / configs / atevk1100 .h
73 +++ b/ include / configs / atevk1100 .h
74 @@ -149 ,6 +149 ,10 @@
75 * MII mode. Set CONFIG _MACB_ FORCE10M flag if clock is too slow for 100 Mbit.
76 */
77 # define CONFIG _MACB_ FORCE10M 1
78 +/*
79 + * On this board , the PHY can be found at different addresses (eiter 1 or 7).
80 + */
81 +# define CONFIG _MACB_ SEARCH _PHY 1
82
83 # define CONFIG _ ATMEL _ USART 1
84 # define CONFIG _ ATMEL _SPI 1

137

Appendix D

Linux kernel patches

D.0 Cover letter

From 6677 f489f529d76a17c5ab6900f81dbcfbc8b5d1 Mon Sep 17 00 : 00 : 00 2001
Content−Type : t ex t / p l a i n ; cha r s e t=UTF−8
Message−Id : <cover . 1242388773 . g i t . rangoy@mnops . (none)>
From : =? utf−8?q?Gunnar=20Rang=C3=B8y?= <rangoy@mnops . (none)>
Date : Fri , 15 May 2009 13 : 59 : 33 +0200
Subject : [PATCH 00/29] AVR32: Support f o r EVK1100

These patches are the changes we made to Linux to make i t p o s s i b l e to
run on the ATEVK1100 eva lua t i on k i t (with the UC3A0512ES
m i c r o c on t r o l l e r) .

We run Linux from 4 MB of SRAM added to the EVK1100 . SDRAM hasn ’ t been
t e s t ed .

What works :
− Booting l i nux
− S e r i a l c on so l e
− Networking
− Root f i l e s y s t em on NFS
− Loading FDPIC ELF f i l e s (only s t a t i c a l l y l i nked f i l e s) .
− LEDs
− Booting busybox , running t e l n e t se rver , +++

What i s known not to work :
− Debuging app l i c a t i o n s (pt race)
− Shared l i b r a r i e s
− SPI , USB
− Has a tendency to crash when out o f memory (which happens qu i t e

f r e quen t l y with only 4 MB of RAM)

Patches in t h i s s e r i e s are in a somewhat random order , but the o v e r a l l
pattern i s :
1−19 Some changes making i t e a s i e r to add AVR32A support .
20−26 AVR32A support

138 APPENDIX D. LINUX KERNEL PATCHES

27−28 UC3A support
29 EVK1100 support

The l i n e between the patches which add AVR32A support and the patches
which prepare f o r AVR32A support i s somewhat fuzzy .

Note that the se patches s t i l l needs a l o t o f work to be su i t ed f o r
i n c l u s i o n in the Linux ke rne l .

The changes we made to GCC and b i n u t i l s w i l l be posted l a t e r .

This patch s e r i e s i s coauthored by :
− Olav Morken <olavmrk@gmail . com>
− Gunnar Rangoy <gunnar@rangoy . com>
− Paul Driveklepp <pauldr iveklepp@gmai l . com>

Gunnar Rangoy (29) :
macb : l im i t to 10 Mbit/ s i f the c l o ck i s too slow to handle 100

Mbit/ s
AVR32: Don ’ t c l e a r r e g i s t e r s when s t a r t i n g a new thread .
AVR32: s p l i t paging_i n i t i n to mmu in i t , f r e e memory i n i t and

except i on s i n i t .
AVR32: use task_pt_reg s in copy_thread .
AVR32: FDPIC ELF support .
AVR32: Introduce AVR32_CACHE and AVR32_UNALIGNED Kconfig opt ions
AVR32: mm/ t l b . c should only be enabled with CONFIG_MMU.
AVR32: mm/ f a u l t f o r !CONFIG_MMU.
AVR32: ioremap and iounmap f o r !CONFIG_MMU.
AVR32: MMU dummy func t i on s f o r ch ips without MMU.
AVR32: mm_context_t f o r !CONFIG_MMU
AVR32: Add cache−f unc t i on stubs f o r ch ips without cache .
AVR32: copy_user f o r ch ips that cannot do unal igned memory ac c e s s .
AVR32: csum_pa r t i a l : Support ch ips that cannot do unal igned memory

a c c e s s e s .
AVR32: avoid unal igned ac c e s s in uacce s s . h
AVR32: memcpy implementation f o r ch ips that cannot do unal igned

memory a c c e s s e s .
AVR32: Mark AVR32B s p e c i f i c assumptions with CONFIG_SUBARCH_AVR32B in

s t r n l e n .
AVR32: mm/dma−coherent . c − i f d e f AVR32B s p e c i f i c code .
AVR32: Disab le r e t_ i f_p r i v i l e g e d macro f o r !CONFIG_SUBARCH_AVR32B.
AVR32: AVR32A support in Kconf ig
AVR32: AVR32A address space support .
AVR32: Change maximum task s i z e f o r AVR32A
AVR32: Fix uacce s s __range_ok macro f o r AVR32A.
AVR32: Support f o r AVR32A (entry−avr32a . c)
AVR32: Change HIGHMEM_START fo r AVR32A.
AVR32: New pt_reg s layout f o r AVR32A.
AVR32: UC3A0512ES In t e r rup t bug workaround
AVR32: UC3A0xxx−support
AVR32: Board support f o r ATEVK1100

arch /avr32/Kconf ig | 40 +−

D.0. COVER LETTER 139

arch /avr32/Make f i l e | 17 +
arch /avr32/boards / atevk1100 /Make f i l e | 1 +
arch /avr32/boards / atevk1100 / setup . c | 121 ++
arch /avr32/ c on f i g s / atevk1100_de f c on f i g | 778 +++++++++++
arch/avr32/ inc lude /asm/addrspace . h | 12 +−
arch /avr32/ inc lude /asm/asm . h | 28 +−
arch /avr32/ inc lude /asm/checksum . h | 28 +
arch /avr32/ inc lude /asm/ e l f . h | 10 +
arch /avr32/ inc lude /asm/ i o . h | 29 +
arch /avr32/ inc lude /asm/ i r q f l a g s . h | 8 +
arch /avr32/ inc lude /asm/mmu. h | 16 +
arch /avr32/ inc lude /asm/mmu_context . h | 40 +
arch /avr32/ inc lude /asm/page . h | 13 +
arch /avr32/ inc lude /asm/ proc e s s o r . h | 5 +−
arch /avr32/ inc lude /asm/ ptrace . h | 79 ++
arch /avr32/ inc lude /asm/ uacce s s . h | 31 +−
arch /avr32/ ke rne l /Make f i l e | 1 +
arch /avr32/ ke rne l /cpu . c | 1 +
arch /avr32/ ke rne l / entry−avr32a . S | 705 ++++++++++
arch/avr32/ ke rne l / p roce s s . c | 2 +−
arch /avr32/ ke rne l / setup . c | 22 +
arch /avr32/ l i b /Make f i l e | 7 +−
arch /avr32/ l i b /copy_user−nounal igned . S | 124 ++
arch /avr32/ l i b /csum_pa r t i a l . S | 31 +
arch /avr32/ l i b /memcpy−nounal igned . S | 86 ++
arch /avr32/ l i b / s t r n l e n_user . S | 4 +
arch /avr32/mach−at32uc3a /Kconf ig | 28 +
arch /avr32/mach−at32uc3a /Make f i l e | 9 +
arch /avr32/mach−at32uc3a /at32uc3a0xxx . c | 1453 ++++++++++++++++++++
arch/avr32/mach−at32uc3a / c l o ck . c | 270 ++++
arch/avr32/mach−at32uc3a / c l o ck . h | 30 +
arch /avr32/mach−at32uc3a / cpuf req . c | 111 ++
arch /avr32/mach−at32uc3a / ex t i n t . c | 279 ++++
arch/avr32/mach−at32uc3a / gpio . c | 453 ++++++
arch/avr32/mach−at32uc3a / gpio . h | 77 +
arch /avr32/mach−at32uc3a /hmatrix . c | 88 ++
arch /avr32/mach−at32uc3a /hsmc . c | 281 ++++
arch/avr32/mach−at32uc3a /hsmc . h | 127 ++
. . . /mach−at32uc3a / inc lude /mach/at32uc3a0xxx . h | 78 ++
arch /avr32/mach−at32uc3a / inc lude /mach/board . h | 121 ++
arch /avr32/mach−at32uc3a / inc lude /mach/ chip . h | 21 +
arch /avr32/mach−at32uc3a / inc lude /mach/cpu . h | 35 +
arch /avr32/mach−at32uc3a / inc lude /mach/ gpio . h | 45 +
arch /avr32/mach−at32uc3a / inc lude /mach/hmatrix . h | 55 +
arch /avr32/mach−at32uc3a / inc lude /mach/ i n i t . h | 18 +
arch /avr32/mach−at32uc3a / inc lude /mach/ i o . h | 38 +
arch /avr32/mach−at32uc3a / inc lude /mach/ i r q . h | 14 +
arch /avr32/mach−at32uc3a / inc lude /mach/pm. h | 51 +
arch /avr32/mach−at32uc3a / inc lude /mach/portmux . h | 29 +
arch /avr32/mach−at32uc3a / inc lude /mach/smc . h | 113 ++
arch /avr32/mach−at32uc3a / inc lude /mach/sram . h | 30 +
arch /avr32/mach−at32uc3a / i n t c . c | 217 +++
arch/avr32/mach−at32uc3a / i n t c . h | 329 +++++

140 APPENDIX D. LINUX KERNEL PATCHES

arch /avr32/mach−at32uc3a /pdca . c | 48 +
arch /avr32/mach−at32uc3a /pm−at32uc3a0xxx . S | 174 +++
arch/avr32/mach−at32uc3a /pm. c | 243 ++++
arch/avr32/mach−at32uc3a /pm. h | 112 ++
arch /avr32/mach−at32uc3a /sdramc . h | 76 +
arch /avr32/mm/Make f i l e | 3 +−
arch /avr32/mm/cache−nocache . c | 36 +
arch /avr32/mm/dma−coherent . c | 2 +
arch /avr32/mm/ fau l t−nommu. c | 19 +
arch /avr32/mm/ i n i t . c | 48 +−
arch /avr32/mm/ioremap−nommu. c | 31 +
d r i v e r s / net /macb . c | 7 +
f s /Kconf ig . binfmt | 2 +−
67 f i l e s changed , 7400 i n s e r t i o n s (+) , 40 d e l e t i o n s (−)
c r e a t e mode 100644 arch /avr32/boards / atevk1100 /Make f i l e
c r e a t e mode 100644 arch /avr32/boards / atevk1100 / setup . c
c r e a t e mode 100644 arch /avr32/ c on f i g s / atevk1100_de f c on f i g
c r e a t e mode 100644 arch /avr32/ ke rne l / entry−avr32a . S
c r ea t e mode 100644 arch /avr32/ l i b /copy_user−nounal igned . S
c r ea t e mode 100644 arch /avr32/ l i b /memcpy−nounal igned . S
c r ea t e mode 100644 arch /avr32/mach−at32uc3a /Kconf ig
c r e a t e mode 100644 arch /avr32/mach−at32uc3a /Make f i l e
c r e a t e mode 100644 arch /avr32/mach−at32uc3a /at32uc3a0xxx . c
c r e a t e mode 100644 arch /avr32/mach−at32uc3a / c l o ck . c
c r e a t e mode 100644 arch /avr32/mach−at32uc3a / c l o ck . h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a / cpuf req . c
c r e a t e mode 100644 arch /avr32/mach−at32uc3a / ex t i n t . c
c r e a t e mode 100644 arch /avr32/mach−at32uc3a / gpio . c
c r e a t e mode 100644 arch /avr32/mach−at32uc3a / gpio . h
c r e a t e mode 100644 arch /avr32/mach−at32uc3a /hmatrix . c
c r e a t e mode 100644 arch /avr32/mach−at32uc3a /hsmc . c
c r e a t e mode 100644 arch /avr32/mach−at32uc3a /hsmc . h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/at32uc3a0xxx . h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/board . h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/ chip . h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/cpu . h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/ gpio . h
c r e a t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/hmatrix . h
c r e a t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/ i n i t . h
c r e a t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/ i o . h
c r e a t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/ i r q . h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/pm. h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/portmux . h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/smc . h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a / inc lude /mach/sram . h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a / i n t c . c
c r e a t e mode 100644 arch /avr32/mach−at32uc3a / i n t c . h
c r e a t e mode 100644 arch /avr32/mach−at32uc3a /pdca . c
c r e a t e mode 100644 arch /avr32/mach−at32uc3a /pm−at32uc3a0xxx . S
c r ea t e mode 100644 arch /avr32/mach−at32uc3a /pm. c
c r ea t e mode 100644 arch /avr32/mach−at32uc3a /pm. h
c r ea t e mode 100644 arch /avr32/mach−at32uc3a /sdramc . h
c r ea t e mode 100644 arch /avr32/mm/cache−nocache . c

D.1. NETWORK SPEED LIMITING 141

c r e a t e mode 100644 arch /avr32/mm/ fau l t−nommu. c
c r e a t e mode 100644 arch /avr32/mm/ioremap−nommu. c

D.1 Network speed limiting

1 From 7 e770576ff6338cdc7bf78c091229db93791aa54 Mon Sep 17 00:00:00 2001
2 Message -Id: <7 e770576ff6338cdc7bf78c091229db93791aa54 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Mon , 27 Apr 2009 13:03:30 +0200
7 Subject : [PATCH 01/29] macb: limit to 10 Mbit/s if the clock is too slow to handle 100 Mbit/s
8
9 The macb requires a 50 MHz clock to handle 100 Mbit/s in RMII mode , and

10 a 25 MHz clock to handle 100 Mbit/s in MII mode. This patch checks the
11 clock speed , and limits the PHY to 10 Mbit/s if the clock is too slow.
12 ---
13 drivers /net/macb.c | 7 +++++++
14 1 files changed , 7 insertions (+) , 0 deletions (-)
15
16 diff --git a/ drivers /net/macb.c b/ drivers /net/macb.c
17 index 01 f7a31 ..9900 dea 100644
18 --- a/ drivers /net/macb.c
19 +++ b/ drivers /net/macb.c
20 @@ -192 ,6 +192 ,7 @@ static int macb_mii_ probe (struct net_ device *dev)
21 struct phy_ device * phydev = NULL;
22 struct eth_ platform _data * pdata ;
23 int phy_addr;
24 + unsigned long pclk_hz;
25
26 /* find the first phy */
27 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr ++) {
28 @@ -226 ,6 +227 ,12 @@ static int macb_mii_ probe (struct net_ device *dev)
29 /* mask with MAC supported features */
30 phydev ->supported &= PHY_ BASIC _ FEATURES ;
31
32 + /* disable 100 Mbit if clock is too slow */
33 + pclk_hz = clk_get_rate(bp ->pclk);
34 + if (pclk_hz < 25000000 ||
35 + (pclk_hz < 50000000 && pdata && pdata ->is_rmii))
36 + phydev ->supported &= ~ SUPPORTED _100 baseT _Half & ~ SUPPORTED _100 baseT _Full;
37 +
38 phydev ->advertising = phydev ->supported ;
39
40 bp ->link = 0;
41 --
42 1.6.2.2

D.2 Avoid register reset

1 From e38e8cf17d680df5b8c88be6fb5bdfdb90fd205c Mon Sep 17 00:00:00 2001
2 Message -Id: <e38e8cf17d680df5b8c88be6fb5bdfdb90fd205c . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 15:02:21 +0200
7 Subject : [PATCH 02/29] AVR32 : Don ’t clear registers when starting a new thread .
8
9 Not certain about this patch , but we can ’t clear the registers here ,

10 since the FDPIC ELF loader stores a pointer to the process ’ load map
11 in a register before this function is called .
12 ---
13 arch/ avr32 / include /asm/ processor .h | 1 -
14 1 files changed , 0 insertions (+) , 1 deletions (-)
15
16 diff --git a/arch/ avr32 / include /asm/ processor .h b/arch/ avr32 / include /asm/ processor .h
17 index 49 a88f5 ..3 fb964d 100644
18 --- a/arch/ avr32 / include /asm/ processor .h
19 +++ b/arch/ avr32 / include /asm/ processor .h
20 @@ -132 ,7 +132 ,6 @@ struct thread _ struct {
21 # define start _ thread (regs , new_pc , new_sp) \
22 do { \
23 set_fs(USER_DS); \

142 APPENDIX D. LINUX KERNEL PATCHES

24 - memset (regs , 0, sizeof (* regs)); \
25 regs ->sr = MODE_USER; \
26 regs ->pc = new_pc & ~1; \
27 regs ->sp = new_sp; \
28 --
29 1.6.2.2

D.3 Split paging function

1 From a55ab1e0c9cd149ae4e55f05ffc368aa1807a80f Mon Sep 17 00:00:00 2001
2 Message -Id: <a55ab1e0c9cd149ae4e55f05ffc368aa1807a80f . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Mon , 27 Apr 2009 12:55:23 +0200
7 Subject : [PATCH 03/29] AVR32 : split paging _init into mmu init , free memory init and exceptions init.
8
9 This change is necessary to allow AVR32A to initialize free memory

10 and exceptions without having an MMU.
11 ---
12 arch/ avr32 / kernel / setup .c | 22 ++++++++++++++++++++
13 arch/ avr32 /mm/init.c | 48 +++++++++++++++++++++-----------------------
14 2 files changed , 45 insertions (+) , 25 deletions (-)
15
16 diff --git a/arch/ avr32 / kernel / setup .c b/arch/ avr32 / kernel / setup .c
17 index 5 c70839 .. f7e734a 100644
18 --- a/arch/ avr32 / kernel / setup .c
19 +++ b/arch/ avr32 / kernel / setup .c
20 @@ -536 ,6 +536 ,26 @@ static void __init setup _ bootmem (void)
21 }
22 }
23
24 +/*
25 + * exceptions _init () initializes exception handling .
26 + *
27 + * This function sets the exception handler vector and enables
28 + * exceptions .
29 + */
30 +void __init exceptions _init(void)
31 +{
32 + extern unsigned long _evba;
33 +
34 + printk (" Exception vectors start at %p\n", &_evba);
35 + sysreg _ write (EVBA , (unsigned long)&_evba);
36 +
37 + /*
38 + * Since we are ready to handle exceptions now , we should let
39 + * the CPU generate them...
40 + */
41 + __asm__ __ volatile __ (" csrf %0" : : "i"(SR_EM_BIT));
42 +}
43 +
44 void __init setup _arch (char ** cmdline _p)
45 {
46 struct clk *cpu_clk;
47 @@ -589 ,6 +609 ,8 @@ void __init setup _arch (char ** cmdline _p)
48 conswitchp = & dummy _con;
49 # endif
50
51 + exceptions _init ();
52 +
53 paging _init ();
54 resource _init ();
55 }
56 diff --git a/arch/ avr32 /mm/init.c b/arch/ avr32 /mm/init.c
57 index fa92ff6 ..646 f935 100644
58 --- a/arch/ avr32 /mm/init.c
59 +++ b/arch/ avr32 /mm/init.c
60 @@ -33 ,36 +33 ,21 @@ pgd_t swapper _pg_dir[PTRS_PER_PGD] __page_ aligned ;
61 struct page * empty _zero_page;
62 EXPORT _ SYMBOL (empty _zero_page);
63
64 +# ifdef CONFIG _MMU
65 /*
66 * Cache of MMU context last used.
67 */
68 unsigned long mmu_ context _ cache = NO_ CONTEXT ;
69
70 -/*

D.4. USE TASK_PT_REGS MACRO 143

71 - * paging _init () sets up the page tables
72 +/**
73 + * Initialize the MMU.
74 *
75 - * This routine also unmaps the page at virtual kernel address 0, so
76 - * that we can trap those pesky NULL - reference errors in the kernel .
77 + * This function also reserves the zero -page , so that we can trap
78 + * NULL - references
79 */
80 -void __init paging _init(void)
81 + static void mmu_init(void)
82 {
83 - extern unsigned long _evba;
84 void *zero_page;
85 - int nid;
86 -
87 - /*
88 - * Make sure we can handle exceptions before enabling
89 - * paging . Not that we should ever _get_ any exceptions this
90 - * early , but you never know...
91 - */
92 - printk (" Exception vectors start at %p\n", &_evba);
93 - sysreg _ write (EVBA , (unsigned long)&_evba);
94 -
95 - /*
96 - * Since we are ready to handle exceptions now , we should let
97 - * the CPU generate them...
98 - */
99 - __asm__ __ volatile __ (" csrf %0" : : "i"(SR_EM_BIT));

100
101 /*
102 * Allocate the zero page. The allocator will panic if it
103 @@ -75,6 +60 ,23 @@ void __init paging _init(void)
104 enable _mmu ();
105 printk ("CPU: Paging enabled \n");
106
107 + memset (zero_page , 0, PAGE_SIZE);
108 + empty _zero_page = virt_to_page(zero_page);
109 + flush _ dcache _page(empty _zero_page);
110 +}
111 +# endif /* CONFIG _MMU */
112 +
113 +/**
114 + * Initializes the MMU , and configures available memory .
115 + */
116 +void __init paging _init(void)
117 +{
118 + int nid;
119 +
120 +# ifdef CONFIG _MMU
121 + mmu_init ();
122 +# endif /* CONFIG _MMU */
123 +
124 for_each_ online _node(nid) {
125 pg_data_t * pgdat = NODE_DATA(nid);
126 unsigned long zones _size[MAX_NR_ ZONES];
127 @@ -96 ,10 +98 ,6 @@ void __init paging _init(void)
128 }
129
130 mem_map = NODE_DATA (0) ->node_mem_map;
131 -
132 - memset (zero_page , 0, PAGE_SIZE);
133 - empty _zero_page = virt_to_page(zero_page);
134 - flush _ dcache _page(empty _zero_page);
135 }
136
137 void __init mem_init(void)
138 --
139 1.6.2.2

D.4 Use task_pt_regs macro

1 From 12 a2a1a6382f327843b4d637d12266366dd858ff Mon Sep 17 00:00:00 2001
2 Message -Id: <12 a2a1a6382f327843b4d637d12266366dd858ff . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 15:13:37 +0200
7 Subject : [PATCH 04/29] AVR32 : use task_pt_regs in copy_ thread .

144 APPENDIX D. LINUX KERNEL PATCHES

8
9 We already have the task_pt_regs macro , so we might as well use it.

10 ---
11 arch/ avr32 / kernel / process .c | 2 +-
12 1 files changed , 1 insertions (+) , 1 deletions (-)
13
14 diff --git a/arch/ avr32 / kernel / process .c b/arch/ avr32 / kernel / process .c
15 index 134 d530.. fd37fcf 100644
16 --- a/arch/ avr32 / kernel / process .c
17 +++ b/arch/ avr32 / kernel / process .c
18 @@ -337 ,7 +337 ,7 @@ int copy_ thread (int nr , unsigned long clone _flags , unsigned long usp ,
19 {
20 struct pt_regs * childregs ;
21
22 - childregs = ((struct pt_regs *)(THREAD _SIZE + (unsigned long)task_ stack _page(p))) - 1;
23 + childregs = task_pt_regs(p);
24 * childregs = *regs;
25
26 if (user_mode(regs))
27 --
28 1.6.2.2

D.5 FDPIC ELF support

1 From 81 a39fa959dffb95fec1634018f4137840e4c2a2 Mon Sep 17 00:00:00 2001
2 Message -Id: <81 a39fa959dffb95fec1634018f4137840e4c2a2 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 15:19:09 +0200
7 Subject : [PATCH 05/29] AVR32 : FDPIC ELF support .
8
9 This patch introduces code necessary to load FDPIC files on AVR32 .

10 ---
11 arch/ avr32 / include /asm/elf.h | 10 ++++++++++
12 fs/ Kconfig . binfmt | 2 +-
13 2 files changed , 11 insertions (+) , 1 deletions (-)
14
15 diff --git a/arch/ avr32 / include /asm/elf.h b/arch/ avr32 / include /asm/elf.h
16 index d5d1d41 ..93 ead6f 100644
17 --- a/arch/ avr32 / include /asm/elf.h
18 +++ b/arch/ avr32 / include /asm/elf.h
19 @@ -61 ,10 +61 ,15 @@ typedef elf_greg_t elf_ gregset _t[ELF_ NGREG];
20
21 typedef struct user_fpu_ struct elf_ fpregset _t;
22
23 +/* CPU specific flag for FDPIC . */
24 +# define EF_ AVR32 _ FDPIC 0x04
25 +
26 /*
27 * This is used to ensure we don ’t load something for the wrong architecture .
28 */
29 # define elf_ check _arch(x) ((x)->e_ machine == EM_ AVR32)
30 +# define elf_ check _ fdpic (x) ((x)->e_ flags & EF_ AVR32 _ FDPIC)
31 +# define elf_ check _ const _ displacement (x) 0
32
33 /*
34 * These are used to set parameters in the core dumps .
35 @@ -77,6 +82 ,11 @@ typedef struct user_fpu_ struct elf_ fpregset _t;
36 # endif
37 # define ELF_ARCH EM_ AVR32
38
39 +# define ELF_ FDPIC _PLAT_INIT(_regs , _exec_map_addr , _ interp _map_addr , _ dynamic _addr) \
40 +do { \
41 + _regs ->r0 = _exec_map_addr; \
42 +} while (0)
43 +
44 # define USE_ELF_CORE_DUMP
45 # define ELF_EXEC_ PAGESIZE 4096
46
47 diff --git a/fs/ Kconfig . binfmt b/fs/ Kconfig . binfmt
48 index ce9fb3f ..9 dabb33 100644
49 --- a/fs/ Kconfig . binfmt
50 +++ b/fs/ Kconfig . binfmt
51 @@ -30,7 +30 ,7 @@ config COMPAT _ BINFMT _ELF
52 config BINFMT _ELF_ FDPIC
53 bool " Kernel support for FDPIC ELF binaries "
54 default y
55 - depends on (FRV || BLACKFIN || (SUPERH32 && !MMU))

D.6. INTRODUCE CACHE AND ALIGNED FLAGS 145

56 + depends on (FRV || BLACKFIN || (SUPERH32 && !MMU) || (AVR32 && !MMU))
57 help
58 ELF FDPIC binaries are based on ELF , but allow the individual load
59 segments of a binary to be located in memory independently of each
60 --
61 1.6.2.2

D.6 Introduce cache and aligned flags

1 From f761e27a785a2dcd94ebee6b6f1f60f09ba6d703 Mon Sep 17 00:00:00 2001
2 Message -Id: <f761e27a785a2dcd94ebee6b6f1f60f09ba6d703 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Mon , 27 Apr 2009 13:25:41 +0200
7 Subject : [PATCH 06/29] AVR32 : Introduce AVR32 _ CACHE and AVR32 _ UNALIGNED Kconfig options
8
9 Reorganizes Kconfig a bit , and adds AVR32 _ CACHE (for CPUs with cache),

10 and AVR32 _ UNALIGNED (for CPUs that can do unaligned accesses). Also adds
11 three Makefile - variables : $(MMUEXT), $(CACHEEXT) and $(ALIGNEXT). These
12 are set to ’-nommu ’ for !MMU , ’-nocache ’ for ! AVR32 _ CACHE and
13 ’-nounaligned ’ for ! AVR32 _ UNALIGNED .
14 ---
15 arch/ avr32 / Kconfig | 17 ++++++++++++++ - - -
16 arch/ avr32 / Makefile | 14 ++++++++++++++
17 2 files changed , 28 insertions (+) , 3 deletions (-)
18
19 diff --git a/arch/ avr32 / Kconfig b/arch/ avr32 / Kconfig
20 index 26 eca87 ..9 e984b0 100644
21 --- a/arch/ avr32 / Kconfig
22 +++ b/arch/ avr32 / Kconfig
23 @@ -78 ,20 +78 ,31 @@ menu " System Type and features "
24
25 source " kernel /time/ Kconfig "
26
27 -config SUBARCH _ AVR32B
28 - bool
29 config MMU
30 bool
31 +
32 + config SUBARCH _ AVR32B
33 + bool
34 + select MMU
35 +
36 config PERFORMANCE _ COUNTERS
37 bool
38
39 + config AVR32 _ CACHE
40 + bool
41 +
42 + config AVR32 _ UNALIGNED
43 + bool
44 +
45 +
46 config PLATFORM _ AT32AP
47 bool
48 select SUBARCH _ AVR32B
49 - select MMU
50 select PERFORMANCE _ COUNTERS
51 select ARCH_ REQUIRE _ GPIOLIB
52 select GENERIC _ ALLOCATOR
53 + select AVR32 _ CACHE
54 + select AVR32 _ UNALIGNED
55
56 #
57 # CPU types
58 diff --git a/arch/ avr32 / Makefile b/arch/ avr32 / Makefile
59 index b088e10 ..4864 cb1 100644
60 --- a/arch/ avr32 / Makefile
61 +++ b/arch/ avr32 / Makefile
62 @@ -9,6 +9 ,20 @@
63 . PHONY : all
64 all: uImage vmlinux .elf
65
66 +ifeq ($(CONFIG _MMU) ,)
67 + MMUEXT =-nommu
68 + endif
69 +
70 +ifeq ($(CONFIG _ AVR32 _ CACHE) ,)

146 APPENDIX D. LINUX KERNEL PATCHES

71 + CACHEEXT =-nocache
72 + endif
73 +
74 +ifeq ($(CONFIG _ AVR32 _ UNALIGNED) ,)
75 + ALIGNEXT =-nounaligned
76 + endif
77 +
78 + export MMUEXT CACHEEXT ALIGNEXT
79 +
80 KBUILD _ DEFCONFIG := atstk1002 _ defconfig
81
82 KBUILD _ CFLAGS += -pipe -fno - builtin -mno -pic
83 --
84 1.6.2.2

D.7 Disable mm-tlb.c

1 From 53 cafff9ec5f54beb17130137ad46bd3d70dc781 Mon Sep 17 00:00:00 2001
2 Message -Id: <53 cafff9ec5f54beb17130137ad46bd3d70dc781 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Mon , 27 Apr 2009 12:58:23 +0200
7 Subject : [PATCH 07/29] AVR32 : mm/tlb.c should only be enabled with CONFIG _MMU.
8
9 ---

10 arch/ avr32 /mm/ Makefile | 3 ++-
11 1 files changed , 2 insertions (+) , 1 deletions (-)
12
13 diff --git a/arch/ avr32 /mm/ Makefile b/arch/ avr32 /mm/ Makefile
14 index 0066491 ..7 d61b2c 100644
15 --- a/arch/ avr32 /mm/ Makefile
16 +++ b/arch/ avr32 /mm/ Makefile
17 @@ -3,4 +3 ,5 @@
18 #
19
20 obj -y += init.o clear _page.o copy_page.o dma - coherent .o
21 -obj -y += ioremap .o cache .o fault .o tlb.o
22 +obj -y += ioremap .o cache .o fault .o
23 +obj -$(CONFIG _MMU) += tlb.o
24 --
25 1.6.2.2

D.8 fault.c for !CONFIG_MMU

1 From c3d37edc9dea393d59ca2186e41e8ec136cea69d Mon Sep 17 00:00:00 2001
2 Message -Id: <c3d37edc9dea393d59ca2186e41e8ec136cea69d . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Mon , 27 Apr 2009 13:01:42 +0200
7 Subject : [PATCH 08/29] AVR32 : mm/ fault for ! CONFIG _MMU.
8
9 This patch adds do_page_ fault and do_bus_ error for chips without MMU.

10 ---
11 arch/ avr32 /mm/ Makefile | 2 +-
12 arch/ avr32 /mm/fault - nommu .c | 19 +++++++++++++++++++
13 2 files changed , 20 insertions (+) , 1 deletions (-)
14 create mode 100644 arch/ avr32 /mm/fault - nommu .c
15
16 diff --git a/arch/ avr32 /mm/ Makefile b/arch/ avr32 /mm/ Makefile
17 index 7 d61b2c ..7 dbd5a6 100644
18 --- a/arch/ avr32 /mm/ Makefile
19 +++ b/arch/ avr32 /mm/ Makefile
20 @@ -3,5 +3 ,5 @@
21 #
22
23 obj -y += init.o clear _page.o copy_page.o dma - coherent .o
24 -obj -y += ioremap .o cache .o fault .o
25 +obj -y += ioremap .o cache .o fault$ (MMUEXT).o
26 obj -$(CONFIG _MMU) += tlb.o
27 diff --git a/arch/ avr32 /mm/fault - nommu .c b/arch/ avr32 /mm/fault - nommu .c
28 new file mode 100644
29 index 0000000 .. a3ebd4f

D.9. IOREMAP AND IOUNMAP FOR !CONFIG_MMU 147

30 --- /dev/null
31 +++ b/arch/ avr32 /mm/fault - nommu .c
32 @@ -0,0 +1 ,19 @@
33 +# include <linux /mm.h>
34 +# include <linux / kdebug .h>
35 +
36 +# include <asm/ sysreg .h>
37 +
38 + asmlinkage void do_page_ fault (unsigned long ecr , struct pt_regs *regs)
39 +{
40 + /* As we don ’t enable the MPU , a page fault should never occur . */
41 + panic (" Impossible page fault ");
42 +}
43 +
44 + asmlinkage void do_bus_ error (unsigned long addr , int write _access ,
45 + struct pt_regs *regs)
46 +{
47 + printk (KERN_ ALERT
48 + "Bus error at physical address 0x%08 lx (%s access)\n",
49 + addr , write _ access ? " write " : "read ");
50 + die (" Bus Error ", regs , SIGKILL);
51 +}
52 --
53 1.6.2.2

D.9 ioremap and iounmap for !CONFIG_MMU

1 From 3 b734d9d1e08ebc1776de70dd47e7e6fc480f29b Mon Sep 17 00:00:00 2001
2 Message -Id: <3 b734d9d1e08ebc1776de70dd47e7e6fc480f29b . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Mon , 27 Apr 2009 13:02:18 +0200
7 Subject : [PATCH 09/29] AVR32 : ioremap and iounmap for ! CONFIG _MMU.
8
9 ---

10 arch/ avr32 /mm/ Makefile | 2 +-
11 arch/ avr32 /mm/ioremap - nommu .c | 31 +++++++++++++++++++++++++++++++
12 2 files changed , 32 insertions (+) , 1 deletions (-)
13 create mode 100644 arch/ avr32 /mm/ioremap - nommu .c
14
15 diff --git a/arch/ avr32 /mm/ Makefile b/arch/ avr32 /mm/ Makefile
16 index 7 dbd5a6 .. be29aee 100644
17 --- a/arch/ avr32 /mm/ Makefile
18 +++ b/arch/ avr32 /mm/ Makefile
19 @@ -3,5 +3 ,5 @@
20 #
21
22 obj -y += init.o clear _page.o copy_page.o dma - coherent .o
23 -obj -y += ioremap .o cache .o fault$ (MMUEXT).o
24 +obj -y += ioremap$ (MMUEXT).o cache .o fault$ (MMUEXT).o
25 obj -$(CONFIG _MMU) += tlb.o
26 diff --git a/arch/ avr32 /mm/ioremap - nommu .c b/arch/ avr32 /mm/ioremap - nommu .c
27 new file mode 100644
28 index 0000000 ..52 e6fe2
29 --- /dev/null
30 +++ b/arch/ avr32 /mm/ioremap - nommu .c
31 @@ -0,0 +1 ,31 @@
32 +/*
33 + * Copyright (C) 2004 -2006 Atmel Corporation
34 + *
35 + * This program is free software ; you can redistribute it and/or modify
36 + * it under the terms of the GNU General Public License version 2 as
37 + * published by the Free Software Foundation .
38 + */
39 +# include <linux / vmalloc .h>
40 +# include <linux /mm.h>
41 +# include <linux / module .h>
42 +# include <linux /io.h>
43 +
44 +# include <asm/ pgtable .h>
45 +# include <asm/ addrspace .h>
46 +
47 +/*
48 + * Re -map an arbitrary physical address space into the kernel virtual
49 + * address space . Needed when the kernel wants to access physical
50 + * memory directly .
51 + */
52 +void __ iomem *__ ioremap (unsigned long phys_addr , size_t size ,

148 APPENDIX D. LINUX KERNEL PATCHES

53 + unsigned long flags)
54 +{
55 + return (void __ iomem *)(phys_addr);
56 +}
57 + EXPORT _ SYMBOL (__ ioremap);
58 +
59 +void __ iounmap (void __ iomem *addr)
60 +{
61 +}
62 + EXPORT _ SYMBOL (__ iounmap);
63 --
64 1.6.2.2

D.10 MMU dummy functions

1 From c7e41c4af45d365ad83ec58f67c64226244531cc Mon Sep 17 00:00:00 2001
2 Message -Id: <c7e41c4af45d365ad83ec58f67c64226244531cc . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 14:37:03 +0200
7 Subject : [PATCH 10/29] AVR32 : MMU dummy functions for chips without MMU.
8
9 ---

10 arch/ avr32 / include /asm/mmu_ context .h | 40 ++++++++++++++++++++++++++++++++++
11 1 files changed , 40 insertions (+) , 0 deletions (-)
12
13 diff --git a/arch/ avr32 / include /asm/mmu_ context .h b/arch/ avr32 / include /asm/mmu_ context .h
14 index 27 ff234 .. edf97bf 100644
15 --- a/arch/ avr32 / include /asm/mmu_ context .h
16 +++ b/arch/ avr32 / include /asm/mmu_ context .h
17 @@ -12,6 +12 ,8 @@
18 # ifndef __ASM_ AVR32 _MMU_ CONTEXT _H
19 # define __ASM_ AVR32 _MMU_ CONTEXT _H
20
21 +# ifdef CONFIG _MMU
22 +
23 # include <asm/ tlbflush .h>
24 # include <asm/ sysreg .h>
25 # include <asm - generic /mm_ hooks .h>
26 @@ -145 ,4 +147 ,42 @@ static inline void disable _mmu(void)
27 sysreg _ write (MMUCR , SYSREG _BIT(MMUCR _S));
28 }
29
30 +#else /* CONFIG _MMU */
31 +
32 + static inline void enter _lazy_tlb(struct mm_ struct *mm , struct task_ struct *tsk)
33 +{
34 +}
35 +
36 + static inline void switch _mm(struct mm_ struct *prev ,
37 + struct mm_ struct *next ,
38 + struct task_ struct *tsk)
39 +{
40 + /* Nothing to do when we don ’t have an MMU. */
41 +}
42 +
43 +/*
44 + * Initialize the context related info for a new mm_ struct
45 + * instance .
46 + */
47 + static inline int init_new_ context (struct task_ struct *tsk ,
48 + struct mm_ struct *mm)
49 +{
50 + return 0;
51 +}
52 +
53 +/*
54 + * Destroy context related info for an mm_ struct that is about
55 + * to be put to rest.
56 + */
57 + static inline void destroy _ context (struct mm_ struct *mm)
58 +{
59 + /* Do nothing */
60 +}
61 +
62 +# define deactivate _mm(tsk ,mm) do { } while (0)
63 +
64 +# define activate _mm(prev , next) switch _mm ((prev), (next), NULL)

D.11. MM_CONTEXT_T FOR !CONFIG_MMU 149

65 +
66 +# endif /* CONFIG _MMU */
67 +
68 # endif /* __ASM_ AVR32 _MMU_ CONTEXT _H */
69 --
70 1.6.2.2

D.11 mm_context_t for !CONFIG_MMU

1 From 939407126 d16c2476ac32d114e4ccd5fee26dec6 Mon Sep 17 00:00:00 2001
2 Message -Id: <939407126 d16c2476ac32d114e4ccd5fee26dec6 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 15:19:51 +0200
7 Subject : [PATCH 11/29] AVR32 : mm_ context _t for ! CONFIG _MMU
8
9 This patch adds a struct for the mm_ context _t for architectures without

10 an MMU. This needs to be a struct because it needs to contain some
11 specific " variables ".
12 ---
13 arch/ avr32 / include /asm/mmu.h | 16 ++++++++++++++++
14 1 files changed , 16 insertions (+) , 0 deletions (-)
15
16 diff --git a/arch/ avr32 / include /asm/mmu.h b/arch/ avr32 / include /asm/mmu.h
17 index 60 c2d26 .. f02a409 100644
18 --- a/arch/ avr32 / include /asm/mmu.h
19 +++ b/arch/ avr32 / include /asm/mmu.h
20 @@ -1,10 +1 ,26 @@
21 # ifndef __ASM_ AVR32 _MMU_H
22 # define __ASM_ AVR32 _MMU_H
23
24 +# ifdef CONFIG _MMU
25 +
26 /* Default " unsigned long" context */
27 typedef unsigned long mm_ context _t;
28
29 # define MMU_ITLB_ ENTRIES 64
30 # define MMU_DTLB_ ENTRIES 64
31
32 +#else /* CONFIG _MMU */
33 +
34 + typedef struct {
35 + struct vm_list_ struct * vmlist ;
36 + unsigned long end_brk;
37 +
38 +# ifdef CONFIG _ BINFMT _ELF_ FDPIC
39 + unsigned long exec_ fdpic _ loadmap ;
40 + unsigned long interp _ fdpic _ loadmap ;
41 +# endif
42 +} mm_ context _t;
43 +
44 +# endif /* CONFIG _MMU */
45 +
46 # endif /* __ASM_ AVR32 _MMU_H */
47 --
48 1.6.2.2

D.12 Add cache function stubs

1 From 7 f8c979a06b515f65499763692cfc6444ca6c8d2 Mon Sep 17 00:00:00 2001
2 Message -Id: <7 f8c979a06b515f65499763692cfc6444ca6c8d2 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Mon , 27 Apr 2009 12:59:23 +0200
7 Subject : [PATCH 12/29] AVR32 : Add cache - function stubs for chips without cache .
8
9 ---

10 arch/ avr32 /mm/ Makefile | 2 +-
11 arch/ avr32 /mm/cache - nocache .c | 36 ++++++++++++++++++++++++++++++++++++
12 2 files changed , 37 insertions (+) , 1 deletions (-)
13 create mode 100644 arch/ avr32 /mm/cache - nocache .c
14

150 APPENDIX D. LINUX KERNEL PATCHES

15 diff --git a/arch/ avr32 /mm/ Makefile b/arch/ avr32 /mm/ Makefile
16 index be29aee ..52 c751c 100644
17 --- a/arch/ avr32 /mm/ Makefile
18 +++ b/arch/ avr32 /mm/ Makefile
19 @@ -3,5 +3 ,5 @@
20 #
21
22 obj -y += init.o clear _page.o copy_page.o dma - coherent .o
23 -obj -y += ioremap$ (MMUEXT).o cache .o fault$ (MMUEXT).o
24 +obj -y += ioremap$ (MMUEXT).o cache$ (CACHEEXT).o fault$ (MMUEXT).o
25 obj -$(CONFIG _MMU) += tlb.o
26 diff --git a/arch/ avr32 /mm/cache - nocache .c b/arch/ avr32 /mm/cache - nocache .c
27 new file mode 100644
28 index 0000000 .. ec6198d
29 --- /dev/null
30 +++ b/arch/ avr32 /mm/cache - nocache .c
31 @@ -0,0 +1 ,36 @@
32 +# include <asm/ cacheflush .h>
33 +
34 +void invalidate _ dcache _ region (void *start , size_t size)
35 +{
36 +}
37 +
38 +void clean _ dcache _ region (void *start , size_t size)
39 +{
40 +}
41 +
42 +void flush _ dcache _ region (void *start , size_t size)
43 +{
44 +}
45 +
46 +void invalidate _ icache _ region (void *start , size_t size)
47 +{
48 +}
49 +
50 +void flush _ icache _ range (unsigned long start , unsigned long end)
51 +{
52 +}
53 +
54 +void flush _ icache _page(struct vm_area_ struct *vma , struct page *page)
55 +{
56 +}
57 +
58 + asmlinkage int sys_ cacheflush (int operation , void __user *addr , size_t len)
59 +{
60 + return 0;
61 +}
62 +
63 +void copy_to_user_page(struct vm_area_ struct *vma , struct page *page ,
64 + unsigned long vaddr , void *dst , const void *src ,
65 + unsigned long len)
66 +{
67 +}
68 --
69 1.6.2.2

D.13 copy_user.S for !CONFIG_NOUNALIGNED

1 From 3222 aad2fd0652f62e5d7fdfe61a7740e38a7b51 Mon Sep 17 00:00:00 2001
2 Message -Id: <3222 aad2fd0652f62e5d7fdfe61a7740e38a7b51 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Thu , 30 Apr 2009 14:51:12 +0200
7 Subject : [PATCH 13/29] AVR32 : copy_user for chips that cannot do unaligned memory access .
8
9 ---

10 arch/ avr32 /lib/ Makefile | 4 +-
11 arch/ avr32 /lib/copy_user - nounaligned .S | 124 ++++++++++++++++++++++++++++++++
12 2 files changed , 127 insertions (+) , 1 deletions (-)
13 create mode 100644 arch/ avr32 /lib/copy_user - nounaligned .S
14
15 diff --git a/arch/ avr32 /lib/ Makefile b/arch/ avr32 /lib/ Makefile
16 index 084 d95b.. be35b6a 100644
17 --- a/arch/ avr32 /lib/ Makefile
18 +++ b/arch/ avr32 /lib/ Makefile
19 @@ -2,10 +2 ,12 @@
20 # Makefile for AVR32 - specific library files
21 #

D.13. COPY_USER.S FOR !CONFIG_NOUNALIGNED 151

22
23 -lib -y := copy_user.o clear _user.o
24 +lib -y := clear _user.o
25 lib -y += strncpy _from_user.o strnlen _user.o
26 lib -y += delay .o memset .o memcpy .o findbit .o
27 lib -y += csum_ partial .o csum_ partial _copy_ generic .o
28 lib -y += io - readsw .o io - readsl .o io - writesw .o io - writesl .o
29 lib -y += io - readsb .o io - writesb .o
30 lib -y += __ avr32 _ lsl64 .o __ avr32 _ lsr64 .o __ avr32 _ asr64 .o
31 +lib -y += copy_ user$ (ALIGNEXT).o
32 +
33 diff --git a/arch/ avr32 /lib/copy_user - nounaligned .S b/arch/ avr32 /lib/copy_user - nounaligned .S
34 new file mode 100644
35 index 0000000 ..1 bf9d8d
36 --- /dev/null
37 +++ b/arch/ avr32 /lib/copy_user - nounaligned .S
38 @@ -0,0 +1 ,124 @@
39 +/*
40 + * Copy to/from userspace with optional address space checking .
41 + *
42 + * Copyright 2004 -2006 Atmel Corporation
43 + *
44 + * This program is free software ; you can redistribute it and/or modify
45 + * it under the terms of the GNU General Public License version 2 as
46 + * published by the Free Software Foundation .
47 + */
48 +# include <asm/page.h>
49 +# include <asm/ thread _info.h>
50 +# include <asm/asm.h>
51 +
52 + /*
53 + * __ kernel _size_t
54 + * __copy_user(void *to , const void *from , __ kernel _size_t n)
55 + *
56 + * Returns the number of bytes not copied . Might be off by
57 + * max 3 bytes if we get a fault in the main loop.
58 + *
59 + * The address - space checking functions simply fall through to
60 + * the non - checking version .
61 + */
62 + .text
63 + . align 1
64 + . global copy_from_user
65 + .type copy_from_user , @function
66 +copy_from_user:
67 + branch _if_ kernel r8 , __copy_user
68 + ret_if_ privileged r8 , r11 , r10 , r10
69 + rjmp __copy_user
70 + .size copy_from_user , . - copy_from_user
71 +
72 + . global copy_to_user
73 + .type copy_to_user , @function
74 +copy_to_user:
75 + branch _if_ kernel r8 , __copy_user
76 + ret_if_ privileged r8 , r12 , r10 , r10
77 + .size copy_to_user , . - copy_to_user
78 +
79 + . global __copy_user
80 + .type __copy_user , @function
81 +__copy_user:
82 +
83 + /* First we check whether from or to are unaligned */
84 + mov r9 , r11
85 + andl r9 , 3, COH
86 + mov r8 , r12
87 + andl r8 , 3, COH
88 +
89 + /* Is it impossible to align both? Branch to single -byte copies
90 + * if we can ’t align both.
91 + */
92 + cp.w r8 , r9
93 + brne 4f
94 +
95 + /* Do they need alignment ? */
96 + cp.w r9 , 0
97 + brne 6f
98 +
99 + /* At this point , both from and to are word - aligned */

100 +1: sub r10 , 4
101 + brlt 3f
102 +
103 +2:
104 +10: ld.w r8 , r11 ++
105 +11: st.w r12 ++, r8

152 APPENDIX D. LINUX KERNEL PATCHES

106 + sub r10 , 4
107 + brge 2b
108 +
109 +3: sub r10 , -4
110 + reteq 0
111 +
112 + /*
113 + * Do byte copies . This takes care of unaligned count and those cases
114 + * where we are unable to align both from and to on word - boundaries .
115 + * Need to be careful with r10 here so that we return the correct
116 + * value even if we get a fault
117 + */
118 +4: sub r10 , 1
119 + retlt 0
120 +20: ld.ub r8 , r11 ++
121 +21: st.b r12 ++, r8
122 + rjmp 4b
123 +
124 + /* Handle unaligned from/to - pointer */
125 +6:
126 + cp.w r10 , 4
127 + brlt 4b
128 + rsub r9 , r9 , 4
129 +
130 +30: ld.ub r8 , r11 ++
131 +31: st.b r12 ++, r8
132 + sub r10 , 1
133 + sub r9 , 1
134 + breq 1b
135 +32: ld.ub r8 , r11 ++
136 +33: st.b r12 ++, r8
137 + sub r10 , 1
138 + sub r9 , 1
139 + breq 1b
140 +34: ld.ub r8 , r11 ++
141 +35: st.b r12 ++, r8
142 + sub r10 , 1
143 + rjmp 1b
144 + .size __copy_user , . - __copy_user
145 +
146 + . section .fixup ," ax"
147 + . align 1
148 +19: sub r10 , -4
149 +29: retal r10
150 +
151 + . section __ex_table ,"a"
152 + . align 2
153 + .long 10b, 19b
154 + .long 11b, 19b
155 + .long 20b, 29b
156 + .long 21b, 29b
157 + .long 30b, 29b
158 + .long 31b, 29b
159 + .long 32b, 29b
160 + .long 33b, 29b
161 + .long 34b, 29b
162 + .long 35b, 29b
163 --
164 1.6.2.2

D.14 csum_partial: support for chips that cannot do un-
aligned accesses

1 From aa418bb9eeb14bf5c225b94bd0e3c3a2e5aeb18b Mon Sep 17 00:00:00 2001
2 Message -Id: <aa418bb9eeb14bf5c225b94bd0e3c3a2e5aeb18b . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Thu , 23 Apr 2009 15:50:11 +0200
7 Subject : [PATCH 14/29] AVR32 : csum_ partial : Support chips that cannot do unaligned memory accesses .
8
9 ---

10 arch/ avr32 / include /asm/ checksum .h | 28 ++++++++++++++++++++++++++++
11 arch/ avr32 /lib/csum_ partial .S | 31 +++++++++++++++++++++++++++++++
12 2 files changed , 59 insertions (+) , 0 deletions (-)
13
14 diff --git a/arch/ avr32 / include /asm/ checksum .h b/arch/ avr32 / include /asm/ checksum .h
15 index 4 ddbfd2 .. 865147 f 100644

D.14. CSUM_PARTIAL: SUPPORT FOR CHIPS THAT CANNOT DO UNALIGNED ACCESSES153

16 --- a/arch/ avr32 / include /asm/ checksum .h
17 +++ b/arch/ avr32 / include /asm/ checksum .h
18 @@ -44 ,15 +44 ,43 @@ static inline
19 __wsum csum_ partial _copy_ nocheck (const void *src , void *dst ,
20 int len , __wsum sum)
21 {
22 +# ifdef CONFIG _ AVR32 _ UNALIGNED
23 return csum_ partial _copy_ generic (src , dst , len , sum , NULL , NULL);
24 +#else
25 + if (((unsigned long)src & 3) == 0 && ((unsigned long)dst & 3) == 0) {
26 + /* Both src & dst are aligned . Do it the fast way. */
27 + return csum_ partial _copy_ generic (src , dst , len , sum , NULL , NULL);
28 + }
29 +
30 + /* Unaligned . Do it the slow way. */
31 + memcpy (dst , src , len);
32 + return csum_ partial (dst , len , sum);
33 +# endif
34 }
35
36 static inline
37 __wsum csum_ partial _copy_from_user(const void __user *src , void *dst ,
38 int len , __wsum sum , int *err_ptr)
39 {
40 +# ifdef CONFIG _ AVR32 _ UNALIGNED
41 return csum_ partial _copy_ generic ((const void __ force *)src , dst , len ,
42 sum , err_ptr , NULL);
43 +#else
44 + int missing ;
45 +
46 + if (((unsigned long)src & 3) == 0 && ((unsigned long)dst & 3) == 0) {
47 + /* Both src & dst are aligned . Do it the fast way. */
48 + return csum_ partial _copy_ generic (src , dst , len , sum , NULL , NULL);
49 + }
50 +
51 + missing = copy_from_user(dst , src , len);
52 + if (missing) {
53 + memset (dst + len - missing , 0, missing);
54 + *err_ptr = -EFAULT ;
55 + }
56 +
57 + return csum_ partial (dst , len , sum);
58 +# endif
59 }
60
61 /*
62 diff --git a/arch/ avr32 /lib/csum_ partial .S b/arch/ avr32 /lib/csum_ partial .S
63 index 6 a262b5 .. d1906bb 100644
64 --- a/arch/ avr32 /lib/csum_ partial .S
65 +++ b/arch/ avr32 /lib/csum_ partial .S
66 @@ -18,6 +18 ,14 @@ csum_ partial :
67 /* checksum complete words , aligned or not */
68 3: sub r11 , 4
69 brlt 5f
70 +
71 +# ifndef CONFIG _ AVR32 _ UNALIGNED
72 + /* check whether the buffer is aligned */
73 + mov r8 , r12
74 + andl r8 , 3, COH
75 + brne 8f
76 +# endif
77 +
78 4: ld.w r9 , r12 ++
79 add r10 , r9
80 acr r10
81 @@ -33,7 +41 ,13 @@ csum_ partial :
82 mov r8 , 0
83 cp r11 , 2
84 brlt 6f
85 +# ifndef CONFIG _ AVR32 _ UNALIGNED
86 + ld.ub r9 , r12[1]
87 + ldins .b r9:l, r12[0]
88 + sub r12 , -2
89 +#else
90 ld.uh r9 , r12 ++
91 +# endif
92 sub r11 , 2
93 breq 7f
94 lsl r9 , 16
95 @@ -44,4 +58 ,21 @@ csum_ partial :
96 acr r10
97
98 retal r10
99 +

154 APPENDIX D. LINUX KERNEL PATCHES

100 +# ifndef CONFIG _ AVR32 _ UNALIGNED
101 + /* do unaligned loads */
102 +8: ld.ub r9 , r12[3]
103 + ldins .b r9:l, r12[2]
104 + ldins .b r9:u, r12[1]
105 + ldins .b r9:t, r12[0]
106 + sub r12 , -4
107 +
108 + add r10 , r9
109 + acr r10
110 + sub r11 , 4
111 + brge 8b
112 +
113 + rjmp 5b
114 +# endif /* CONFIG _ AVR32 _ UNALIGNED */
115 +
116 .size csum_partial , . - csum_ partial
117 --
118 1.6.2.2

D.15 Avoid unaligned access in uaccess.h

1 From 42 b25ac9dfc8fd06f193f5d7858518d2f1f5f4b9 Mon Sep 17 00:00:00 2001
2 Message -Id: <42 b25ac9dfc8fd06f193f5d7858518d2f1f5f4b9 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 15:17:24 +0200
7 Subject : [PATCH 15/29] AVR32 : avoid unaligned access in uaccess .h
8
9 The patch fixes __get_user_ check by calling copy_from_user if the

10 pointer is unaligned . Note that there are three more macros that needs
11 to be changed : get_user_nocheck , put_user_ check and put_user_ nocheck .
12
13 This patch really needs a better solution that doesn ’t involve calling
14 copy_from_user or copy_to_user.
15 ---
16 arch/ avr32 / include /asm/ uaccess .h | 17 ++++++++++++++++ -
17 1 files changed , 16 insertions (+) , 1 deletions (-)
18
19 diff --git a/arch/ avr32 / include /asm/ uaccess .h b/arch/ avr32 / include /asm/ uaccess .h
20 index ed09239 .. 99652 f2 100644
21 --- a/arch/ avr32 / include /asm/ uaccess .h
22 +++ b/arch/ avr32 / include /asm/ uaccess .h
23 @@ -179 ,6 +179 ,13 @@ static inline __ kernel _size_t __copy_from_user(void *to ,
24 extern int __get_user_bad(void);
25 extern int __put_user_bad(void);
26
27 +/* We need a simple way to test this flag in the following macros . */
28 +# ifdef CONFIG _ AVR32 _ UNALIGNED
29 +# define AVR32 _ UNALIGNED 1
30 +#else
31 +# define AVR32 _ UNALIGNED 0
32 +# endif
33 +
34 # define __get_user_ nocheck (x, ptr , size) \
35 ({ \
36 unsigned long __gu_val = 0; \
37 @@ -201 ,7 +208 ,15 @@ extern int __put_user_bad(void);
38 const typeof (*(ptr)) __user * __gu_addr = (ptr); \
39 int __gu_err = 0; \
40 \
41 - if (access _ok(VERIFY _READ , __gu_addr , size)) { \
42 + if (! AVR32 _ UNALIGNED && (unsigned long)__gu_addr % (size)) { \
43 + unsigned long count ; \
44 + count = copy_from_user(&__gu_val , __gu_addr , size); \
45 + if (count == size) { \
46 + __gu_val >>= 8 * (4 - (size)); \
47 + } else { \
48 + __gu_err = -EFAULT ; \
49 + } \
50 + } else if (access _ok(VERIFY _READ , __gu_addr , size)) { \
51 switch (size) { \
52 case 1: \
53 __get_user_asm("ub", __gu_val , __gu_addr , \
54 --
55 1.6.2.2

D.16. MEMCPY FOR !CONFIG_NOUNALIGNED 155

D.16 memcpy for !CONFIG_NOUNALIGNED

1 From 280937 f4f84e0f11e0e50a759211503824730b05 Mon Sep 17 00:00:00 2001
2 Message -Id: <280937 f4f84e0f11e0e50a759211503824730b05 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 15:28:14 +0200
7 Subject : [PATCH 16/29] AVR32 : memcpy implementation for chips that cannot do unaligned memory accesses .
8
9 ---

10 arch/ avr32 /lib/ Makefile | 3 +-
11 arch/ avr32 /lib/memcpy - nounaligned .S | 86 +++++++++++++++++++++++++++++++++++
12 2 files changed , 88 insertions (+) , 1 deletions (-)
13 create mode 100644 arch/ avr32 /lib/memcpy - nounaligned .S
14
15 diff --git a/arch/ avr32 /lib/ Makefile b/arch/ avr32 /lib/ Makefile
16 index be35b6a .. faa63ea 100644
17 --- a/arch/ avr32 /lib/ Makefile
18 +++ b/arch/ avr32 /lib/ Makefile
19 @@ -4,10 +4 ,11 @@
20
21 lib -y := clear _user.o
22 lib -y += strncpy _from_user.o strnlen _user.o
23 -lib -y += delay .o memset .o memcpy .o findbit .o
24 +lib -y += delay .o memset .o findbit .o
25 lib -y += csum_ partial .o csum_ partial _copy_ generic .o
26 lib -y += io - readsw .o io - readsl .o io - writesw .o io - writesl .o
27 lib -y += io - readsb .o io - writesb .o
28 lib -y += __ avr32 _ lsl64 .o __ avr32 _ lsr64 .o __ avr32 _ asr64 .o
29 lib -y += copy_ user$ (ALIGNEXT).o
30 +lib -y += memcpy$ (ALIGNEXT).o
31
32 diff --git a/arch/ avr32 /lib/memcpy - nounaligned .S b/arch/ avr32 /lib/memcpy - nounaligned .S
33 new file mode 100644
34 index 0000000 .. c10fcde
35 --- /dev/null
36 +++ b/arch/ avr32 /lib/memcpy - nounaligned .S
37 @@ -0,0 +1 ,86 @@
38 +/*
39 + * Copyright (C) 2004 -2006 Atmel Corporation
40 + *
41 + * This program is free software ; you can redistribute it and/or modify
42 + * it under the terms of the GNU General Public License version 2 as
43 + * published by the Free Software Foundation .
44 + */
45 +
46 + /*
47 + * void * memcpy (void *to , const void *from , unsigned long n)
48 + *
49 + * This implementation does word - aligned loads and stores if possible ,
50 + * and falls back to byte -copy if not.
51 + *
52 + * Hopefully , in most cases , both "to" and "from" will be
53 + * word - aligned to begin with.
54 + */
55 + .text
56 + . global memcpy
57 + .type memcpy , @function
58 + memcpy :
59 + /*
60 + * Check alignedness of "from" and "to". Three possibilities :
61 + * - Both are aligned on a word boundary .
62 + * - Both can be aligned on a word boundary .
63 + * - Not possible to align both on a word boundary .
64 + */
65 + mov r8 , r12
66 + andl r8 , 3, COH
67 + mov r9 , r11
68 + andl r9 , 3, COH
69 +
70 + /* Is it impossible to align both? */
71 + cp.w r8 , r9
72 + brne 6f
73 +
74 + /* Do they need alignment ? */
75 + cp.w r8 , 0
76 + brne 1f
77 +
78 + /* At this point , "from" and "to" are word - aligned */
79 +2: sub r10 , 4
80 + mov r9 , r12
81 + brlt 4f

156 APPENDIX D. LINUX KERNEL PATCHES

82 +
83 +3: ld.w r8 , r11 ++
84 + sub r10 , 4
85 + st.w r12 ++, r8
86 + brge 3b
87 +
88 +4: neg r10
89 + reteq r9
90 +
91 + /* Handle unaligned count */
92 + lsl r10 , 2
93 + add pc , pc , r10
94 + ld.ub r8 , r11 ++
95 + st.b r12 ++, r8
96 + ld.ub r8 , r11 ++
97 + st.b r12 ++, r8
98 + ld.ub r8 , r11 ++
99 + st.b r12 ++, r8

100 + retal r9
101 +
102 + /* Handle unaligned "from" and "to" pointer */
103 +1: sub r10 , 4
104 + brlt 4b
105 + add r10 , r9
106 + lsl r9 , 2
107 + add pc , pc , r9
108 + ld.ub r8 , r11 ++
109 + st.b r12 ++, r8
110 + ld.ub r8 , r11 ++
111 + st.b r12 ++, r8
112 + ld.ub r8 , r11 ++
113 + st.b r12 ++, r8
114 + rjmp 2b
115 +
116 +6: /* Impossible to align both "from" and "to" on a word boundary */
117 + mov r9 , r12
118 + cp.w r10 , 0
119 +7: reteq r9
120 + ld.ub r8 , r11 ++
121 + st.b r12 ++, r8
122 + sub r10 , 1
123 + rjmp 7b
124 --
125 1.6.2.2

D.17 Mark AVR32B code with subarch flag

1 From 7985 d3c97d2a55d4457b5ebcee832d68d05bada7 Mon Sep 17 00:00:00 2001
2 Message -Id: <7985 d3c97d2a55d4457b5ebcee832d68d05bada7 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 15:42:09 +0200
7 Subject : [PATCH 17/29] AVR32 : Mark AVR32B specific assumptions with CONFIG _ SUBARCH _ AVR32B in strnlen .
8
9 ---

10 arch/ avr32 /lib/ strnlen _user.S | 4 ++++
11 1 files changed , 4 insertions (+) , 0 deletions (-)
12
13 diff --git a/arch/ avr32 /lib/ strnlen _user.S b/arch/ avr32 /lib/ strnlen _user.S
14 index 65 ce11a ..482 f967 100644
15 --- a/arch/ avr32 /lib/ strnlen _user.S
16 +++ b/arch/ avr32 /lib/ strnlen _user.S
17 @@ -18 ,10 +18 ,12 @@
18 .type strnlen _user , " function "
19 strnlen _user:
20 branch _if_ kernel r8 , __ strnlen _user
21 +# ifdef CONFIG _ SUBARCH _ AVR32B
22 sub r8 , r11 , 1
23 add r8 , r12
24 retcs 0
25 brmi adjust _ length /* do a closer inspection */
26 +# endif /* CONFIG _ SUBARCH _ AVR32B */
27
28 . global __ strnlen _user
29 .type __ strnlen _user , " function "
30 @@ -39,6 +41 ,7 @@ __ strnlen _user:
31 retal r12
32

D.18. MM-DMA-COHERENT.C: IFDEF AVR32B CODE 157

33
34 +# ifdef CONFIG _ SUBARCH _ AVR32B
35 .type adjust _length , " function "
36 adjust _ length :
37 cp.w r12 , 0 /* addr must always be < TASK_SIZE */
38 @@ -57,6 +60 ,7 @@ adjust _ length :
39 . align 2
40 _task_size:
41 .long TASK_SIZE
42 +# endif /* CONFIG _ SUBARCH _ AVR32B */
43
44 . section .fixup , "ax"
45 . align 1
46 --
47 1.6.2.2

D.18 mm-dma-coherent.c: ifdef AVR32B code

1 From 8 e753b2595e893fa0eec74756ef4458adeaa3caa Mon Sep 17 00:00:00 2001
2 Message -Id: <8 e753b2595e893fa0eec74756ef4458adeaa3caa . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Mon , 27 Apr 2009 13:00:33 +0200
7 Subject : [PATCH 18/29] AVR32 : mm/dma - coherent .c - ifdef AVR32B specific code.
8
9 ---

10 arch/ avr32 /mm/dma - coherent .c | 2 ++
11 1 files changed , 2 insertions (+) , 0 deletions (-)
12
13 diff --git a/arch/ avr32 /mm/dma - coherent .c b/arch/ avr32 /mm/dma - coherent .c
14 index 6 d8c794 ..99 e0b95 100644
15 --- a/arch/ avr32 /mm/dma - coherent .c
16 +++ b/arch/ avr32 /mm/dma - coherent .c
17 @@ -13 ,11 +13 ,13 @@
18
19 void dma_ cache _sync(struct device *dev , void *vaddr , size_t size , int direction)
20 {
21 +# ifdef CONFIG _ SUBARCH _ AVR32B
22 /*
23 * No need to sync an uncached area
24 */
25 if (PXSEG (vaddr) == P2SEG)
26 return ;
27 +# endif /* CONFIG _ SUBARCH _ AVR32B */
28
29 switch (direction) {
30 case DMA_FROM_ DEVICE : /* invalidate only */
31 --
32 1.6.2.2

D.19 Disable ret_if_privileged macro

1 From 6 b69cb847f4fa8a7fd8a381d13cbada309823701 Mon Sep 17 00:00:00 2001
2 Message -Id: <6 b69cb847f4fa8a7fd8a381d13cbada309823701 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Thu , 23 Apr 2009 15:25:02 +0200
7 Subject : [PATCH 19/29] AVR32 : Disable ret_if_ privileged macro for ! CONFIG _ SUBARCH _ AVR32B .
8
9 ---

10 arch/ avr32 / include /asm/asm.h | 2 ++
11 1 files changed , 2 insertions (+) , 0 deletions (-)
12
13 diff --git a/arch/ avr32 / include /asm/asm.h b/arch/ avr32 / include /asm/asm.h
14 index a2c64f4 ..1 bad0c5 100644
15 --- a/arch/ avr32 / include /asm/asm.h
16 +++ b/arch/ avr32 / include /asm/asm.h
17 @@ -93 ,10 +93 ,12 @@
18 .endm
19
20 . macro ret_if_ privileged scratch , addr , size , ret
21 +# ifdef CONFIG _ SUBARCH _ AVR32B

158 APPENDIX D. LINUX KERNEL PATCHES

22 sub \scratch , \size , 1
23 add \scratch , \addr
24 retcs \ret
25 retmi \ret
26 +# endif /* CONFIG _ SUBARCH _ AVR32B */
27 .endm
28
29 # endif /* __ASM_ AVR32 _ASM_H__ */
30 --
31 1.6.2.2

D.20 AVR32A-support in Kconfig

1 From 585 c7e18290ffa6f4ca7d436b41e12f5ba100cd6 Mon Sep 17 00:00:00 2001
2 Message -Id: <585 c7e18290ffa6f4ca7d436b41e12f5ba100cd6 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 14:37:19 +0200
7 Subject : [PATCH 20/29] AVR32 : AVR32A support in Kconfig
8
9 ---

10 arch/ avr32 / Kconfig | 3 +++
11 1 files changed , 3 insertions (+) , 0 deletions (-)
12
13 diff --git a/arch/ avr32 / Kconfig b/arch/ avr32 / Kconfig
14 index 9 e984b0 .. e3f6653 100644
15 --- a/arch/ avr32 / Kconfig
16 +++ b/arch/ avr32 / Kconfig
17 @@ -81,6 +81 ,9 @@ source " kernel /time/ Kconfig "
18 config MMU
19 bool
20
21 + config SUBARCH _ AVR32A
22 + bool
23 +
24 config SUBARCH _ AVR32B
25 bool
26 select MMU
27 --
28 1.6.2.2

D.21 AVR32A address space support

1 From f355d930aad8d21463b119fcfe6e1d6a3717d8de Mon Sep 17 00:00:00 2001
2 Message -Id: <f355d930aad8d21463b119fcfe6e1d6a3717d8de . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Thu , 23 Apr 2009 15:14:40 +0200
7 Subject : [PATCH 21/29] AVR32 : AVR32A address space support .
8
9 ---

10 arch/ avr32 / include /asm/ addrspace .h | 12 ++++++++++ - -
11 arch/ avr32 / include /asm/io.h | 29 +++++++++++++++++++++++++++++
12 arch/ avr32 / include /asm/page.h | 7 +++++++
13 3 files changed , 46 insertions (+) , 2 deletions (-)
14
15 diff --git a/arch/ avr32 / include /asm/ addrspace .h b/arch/ avr32 / include /asm/ addrspace .h
16 index 3667948 ..45 e1083 100644
17 --- a/arch/ avr32 / include /asm/ addrspace .h
18 +++ b/arch/ avr32 / include /asm/ addrspace .h
19 @@ -11,7 +11 ,11 @@
20 # ifndef __ASM_ AVR32 _ ADDRSPACE _H
21 # define __ASM_ AVR32 _ ADDRSPACE _H
22
23 -# ifdef CONFIG _MMU
24 +# ifdef CONFIG _ SUBARCH _ AVR32A
25 +
26 +# define PHYSADDR (a) ((unsigned long)(a))
27 +
28 +#elif CONFIG _ SUBARCH _ AVR32B
29
30 /* Memory segments when segmentation is enabled */

D.21. AVR32A ADDRESS SPACE SUPPORT 159

31 # define P0SEG 0 x00000000
32 @@ -38,6 +42 ,10 @@
33 # define P4SEGADDR (a) ((__ typeof __(a))(((unsigned long)(a) & 0 x1fffffff) \
34 | P4SEG))
35
36 -# endif /* CONFIG _MMU */
37 +#else
38 +
39 +# error Unknown AVR32 subarch .
40 +
41 +# endif /* CONFIG _ SUBARCH _* */
42
43 # endif /* __ASM_ AVR32 _ ADDRSPACE _H */
44 diff --git a/arch/ avr32 / include /asm/io.h b/arch/ avr32 / include /asm/io.h
45 index 22 c97ef ..96 a81b1 100644
46 --- a/arch/ avr32 / include /asm/io.h
47 +++ b/arch/ avr32 / include /asm/io.h
48 @@ -10,6 +10 ,27 @@
49
50 # include <mach/io.h>
51
52 +
53 +# ifdef CONFIG _ SUBARCH _ AVR32A
54 +
55 + static __ inline __ unsigned long virt_to_phys(volatile void * address)
56 +{
57 + return (unsigned long) address ;
58 +}
59 +
60 + static __ inline __ void * phys_to_virt(unsigned long address)
61 +{
62 + return (void *) address ;
63 +}
64 +
65 +# define cached _to_phys(addr) ((unsigned long)(addr))
66 +# define uncached _to_phys(addr) ((unsigned long)(addr))
67 +# define phys_to_ cached (addr) ((void *)(addr))
68 +# define phys_to_ uncached (addr) ((void *)(addr))
69 +
70 +
71 +#elif CONFIG _ SUBARCH _ AVR32B
72 +
73 /* virt_to_phys will only work when address is in P1 or P2 */
74 static __ inline __ unsigned long virt_to_phys(volatile void * address)
75 {
76 @@ -26,6 +47 ,14 @@ static __ inline __ void * phys_to_virt(unsigned long address)
77 # define phys_to_ cached (addr) ((void *) P1SEGADDR (addr))
78 # define phys_to_ uncached (addr) ((void *) P2SEGADDR (addr))
79
80 +
81 +#else /* CONFIG _ SUBARCH _* */
82 +
83 +# error Unknown AVR32 subarch .
84 +
85 +# endif /* CONFIG _ SUBARCH _* */
86 +
87 +
88 /*
89 * Generic IO read/ write . These perform native - endian accesses . Note
90 * that some architectures will want to re - define __raw_{read , write }w.
91 diff --git a/arch/ avr32 / include /asm/page.h b/arch/ avr32 / include /asm/page.h
92 index f805d1c .. ca36368 100644
93 --- a/arch/ avr32 / include /asm/page.h
94 +++ b/arch/ avr32 / include /asm/page.h
95 @@ -74,7 +74 ,14 @@ static inline int get_ order (unsigned long size)
96 * What ’s the difference between __pa () and virt_to_phys () anyway ?
97 */
98 # define __pa(x) PHYSADDR (x)
99 +

100 +# ifdef CONFIG _ SUBARCH _ AVR32A
101 +# define __va(x) ((void *)(x))
102 +#elif CONFIG _ SUBARCH _ AVR32B
103 # define __va(x) ((void *)(P1SEGADDR (x)))
104 +#else /* CONFIG _ SUBARCH _* */
105 +# error Unknown AVR32 subarch .
106 +# endif /* CONFIG _ SUBARCH _* */
107
108 # define MAP_NR(addr) (((unsigned long)(addr) - PAGE_ OFFSET) >> PAGE_ SHIFT)
109
110 --
111 1.6.2.2

160 APPENDIX D. LINUX KERNEL PATCHES

D.22 Change maximum task size for AVR32A

1 From cfe6bfd67af7f4caf10f73fc176a160b87da8bb8 Mon Sep 17 00:00:00 2001
2 Message -Id: <cfe6bfd67af7f4caf10f73fc176a160b87da8bb8 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 14:14:44 +0200
7 Subject : [PATCH 22/29] AVR32 : Change maximum task size for AVR32A
8
9 ---

10 arch/ avr32 / include /asm/ processor .h | 4 ++++
11 1 files changed , 4 insertions (+) , 0 deletions (-)
12
13 diff --git a/arch/ avr32 / include /asm/ processor .h b/arch/ avr32 / include /asm/ processor .h
14 index 3 fb964d ..843 d7a3 100644
15 --- a/arch/ avr32 / include /asm/ processor .h
16 +++ b/arch/ avr32 / include /asm/ processor .h
17 @@ -11,7 +11 ,11 @@
18 # include <asm/page.h>
19 # include <asm/ cache .h>
20
21 +# ifdef CONFIG _ SUBARCH _ AVR32A
22 +# define TASK_SIZE 0 xffffffff
23 +#else
24 # define TASK_SIZE 0 x80000000
25 +# endif
26
27 # ifdef __ KERNEL __
28 # define STACK _TOP TASK_SIZE
29 --
30 1.6.2.2

D.23 Fix __range_ok for AVR32A in uaccess.h

1 From 1894 ee64853872a75c0f5f52029ad31f7208db3d Mon Sep 17 00:00:00 2001
2 Message -Id: <1894 ee64853872a75c0f5f52029ad31f7208db3d . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 14:52:15 +0200
7 Subject : [PATCH 23/29] AVR32 : Fix uaccess __ range _ok macro for AVR32A .
8
9 ---

10 arch/ avr32 / include /asm/ uaccess .h | 14 +++++++++++++ -
11 1 files changed , 13 insertions (+) , 1 deletions (-)
12
13 diff --git a/arch/ avr32 / include /asm/ uaccess .h b/arch/ avr32 / include /asm/ uaccess .h
14 index 99652 f2.. 6156289 100644
15 --- a/arch/ avr32 / include /asm/ uaccess .h
16 +++ b/arch/ avr32 / include /asm/ uaccess .h
17 @@ -51,7 +51 ,16 @@ static inline void set_fs(mm_ segment _t s)
18 /*
19 * Test whether a block of memory is a valid user space address .
20 * Returns 0 if the range is valid , nonzero otherwise .
21 - *
22 + */
23 +# ifdef CONFIG _ SUBARCH _ AVR32A
24 +/*
25 + * No easy check for user space address possible , but we don ’t have
26 + * very much protection in any case since we don ’t have an MMU.
27 + */
28 +# define __ range _ok(addr , size) 0
29 +
30 +#elif CONFIG _ SUBARCH _ AVR32B
31 +/*
32 * We do the following checks :
33 * 1. Is the access from kernel space ?
34 * 2. Does (addr + size) set the carry bit?
35 @@ -65,6 +74 ,9 @@ static inline void set_fs(mm_ segment _t s)
36 && (((unsigned long)(addr) >= 0 x80000000) \
37 || ((unsigned long)(size) > 0 x80000000) \
38 || (((unsigned long)(addr) + (unsigned long)(size)) > 0 x80000000)))
39 +#else
40 +# error Unknown AVR32 subarch .
41 +# endif /* CONFIG _ SUBARCH _* */
42
43 # define access _ok(type , addr , size) (likely (__ range _ok(addr , size) == 0))

D.24. SUPPORT FOR AVR32A ENTRY-AVR32A.S 161

44
45 --
46 1.6.2.2

D.24 Support for AVR32A entry-avr32a.S

1 From 1 f99f4536db8830ab1817ad460627d14d4de5d2d Mon Sep 17 00:00:00 2001
2 Message -Id: <1 f99f4536db8830ab1817ad460627d14d4de5d2d . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 15:03:39 +0200
7 Subject : [PATCH 24/29] AVR32 : Support for AVR32A (entry - avr32a .c)
8
9 ---

10 arch/ avr32 / kernel / Makefile | 1 +
11 arch/ avr32 / kernel /entry - avr32a .S | 705 ++++++++++++++++++++++++++++++++++++++
12 2 files changed , 706 insertions (+) , 0 deletions (-)
13 create mode 100644 arch/ avr32 / kernel /entry - avr32a .S
14
15 diff --git a/arch/ avr32 / kernel / Makefile b/arch/ avr32 / kernel / Makefile
16 index 18229 d0..76 adcd2 100644
17 --- a/arch/ avr32 / kernel / Makefile
18 +++ b/arch/ avr32 / kernel / Makefile
19 @@ -4,6 +4 ,7 @@
20
21 extra -y := head.o vmlinux .lds
22
23 +obj -$(CONFIG _ SUBARCH _ AVR32A) += entry - avr32a .o
24 obj -$(CONFIG _ SUBARCH _ AVR32B) += entry - avr32b .o
25 obj -y += syscall _ table .o syscall - stubs .o irq.o
26 obj -y += setup .o traps .o ocd.o ptrace .o
27 diff --git a/arch/ avr32 / kernel /entry - avr32a .S b/arch/ avr32 / kernel /entry - avr32a .S
28 new file mode 100644
29 index 0000000 ..2 b97739
30 --- /dev/null
31 +++ b/arch/ avr32 / kernel /entry - avr32a .S
32 @@ -0,0 +1 ,705 @@
33 +/*
34 + * Copyright (C) 2004 -2006 Atmel Corporation
35 + *
36 + * This program is free software ; you can redistribute it and/or modify
37 + * it under the terms of the GNU General Public License version 2 as
38 + * published by the Free Software Foundation .
39 + */
40 +
41 +/*
42 + * This file contains the low - level entry - points into the kernel , that is ,
43 + * exception handlers , debug trap handlers , interrupt handlers and the
44 + * system call handler .
45 + */
46 +# include <linux / errno .h>
47 +
48 +# include <asm/asm.h>
49 +# include <asm/ hardirq .h>
50 +# include <asm/irq.h>
51 +# include <asm/ocd.h>
52 +# include <asm/page.h>
53 +# include <asm/ pgtable .h>
54 +# include <asm/ ptrace .h>
55 +# include <asm/ sysreg .h>
56 +# include <asm/ thread _info.h>
57 +# include <asm/ unistd .h>
58 +
59 + . section .ex.text ," ax", @progbits
60 + . align 2
61 + exception _ vectors : /* (EVBA) Name , Event source */
62 + bral handle _ critical /* (0 x00) Unrecoverable exception , Internal */
63 + . align 2
64 + bral handle _ critical /* (0 x04) TLB Multiple hit , Internal Signal */
65 + . align 2
66 + bral do_bus_ error _ write /* (0 x08) Bus error data fetch , Data bus */
67 + . align 2
68 + bral do_bus_ error _read /* (0 x0c) Bus error instruction fetch , Data bus */
69 + . align 2
70 + bral do_nmi_ll /* (0 x10) NMI (Non Maskable Interrupt), External input */
71 + . align 2
72 + bral handle _ address _ fault /* (0 x14) Instruction address , ITLB */
73 + . align 2

162 APPENDIX D. LINUX KERNEL PATCHES

74 + bral handle _ protection _ fault /* (0 x18) ITLB Protection , ITLB */
75 + . align 2
76 + bral handle _ debug /* (0 x1c) Breakpoint , OCD system */
77 + . align 2
78 + bral do_ illegal _ opcode _ll /* (0 x20) Illegal opcode , Instruction */
79 + . align 2
80 + bral do_ illegal _ opcode _ll /* (0 x24) Unimplmented instruction , Instruction */
81 + . align 2
82 + bral do_ illegal _ opcode _ll /* (0 x28) Privilege violation , Instruction */
83 + . align 2
84 + bral do_fpe_ll /* (0 x2c) Floating -point , FP Hardware */
85 + . align 2
86 + bral do_ illegal _ opcode _ll /* (0 x30) Coprocessor absent , Insctruction */
87 + . align 2
88 + bral handle _ address _ fault /* (0 x34) Data address (Read), DTLB */
89 + . align 2
90 + bral handle _ address _ fault /* (0 x38) Data address (Write), DTLB */
91 + . align 2
92 + bral handle _ protection _ fault /* (0 x3c) DTLB Protection (Read), DTLB */
93 + . align 2
94 + bral handle _ protection _ fault /* (0 x40) DTLB Protection (Write), DTLB */
95 + . align 2
96 + bral do_dtlb_ modified /* (0 x44) DTLB Modified , DTLB */
97 +
98 +
99 + .org 0x50 /* (0 x50) ITLB Miss , ITLB */

100 + . global itlb_miss
101 +itlb_miss:
102 + rjmp tlb_miss_ common
103 +
104 + .org 0x60 /* (0 x60) DTLB Miss (Read), DTLB */
105 +dtlb_miss_read:
106 + rjmp tlb_miss_ common
107 +
108 + .org 0x70 /* (0 x70) DTLB Miss (write), DTLB */
109 +dtlb_miss_ write :
110 +
111 + . global tlb_miss_ common
112 + . align 2
113 +tlb_miss_ common :
114 + /* this should never be called ... */
115 + sub r12 , pc , (. - 1f)
116 + bral panic
117 + . align 2
118 +1: . asciz "tlb_miss_ common ..."
119 +
120 + /* --- System Call --- */
121 +
122 + .org 0x100 /* (0 x100) Superviser call , Instruction */
123 + system _call:
124 + stmts --sp , r0 -lr
125 + pushm r12 /* r12_orig */
126 +
127 + zero_fp /* [remove comment (RC)] sets frame pointer [R7] to zero to ensure that the frame

pointer ,
128 + so that the backtrace does not follow a context switch */
129 +
130 + /* check for syscall tracing */
131 + get_ thread _info r0
132 + ld.w r1 , r0[TI_ flags] /* RC: load TI_ flags to r1 */
133 + bld r1 , TIF_ SYSCALL _ TRACE /* RC: Set carry flag if TIF_ SYSCALL _ TRACE is set in thread _info

*/
134 + brcs syscall _ trace _ enter /* RC: branch if ^ */
135 +
136 + syscall _ trace _cont:
137 + cp.w r8 , NR_ syscalls
138 + brhs syscall _ badsys /* RC: branch if system call is out of range */
139 +
140 + lddpc lr , syscall _ table _addr /* set lr to syscall base address */
141 + ld.w lr , lr[r8 << 2] /* RC: fetch the syscall address from syscall address based on the

syscall number (R8) to lr */
142 + mov r8 , r5 /* 5th argument (6 th is pushed by stub) */
143 + icall lr /* call syscall handeling */
144 +
145 + . global syscall _ return
146 + syscall _ return :
147 + get_ thread _info r0
148 + mask_ interrupts /* make sure we don ’t miss an interrupt
149 + setting need_ resched or sigpending
150 + between sampling and the rets */
151 +
152 + /* Store the return value so that the correct value is loaded below */
153 + stdsp sp[REG_R12], r12
154 +

D.24. SUPPORT FOR AVR32A ENTRY-AVR32A.S 163

155 + ld.w r1 , r0[TI_ flags]
156 + andl r1 , _TIF_ ALLWORK _MASK , COH
157 + brne syscall _exit_work /* RC: branch if work has to be done */
158 +
159 + syscall _exit_cont:
160 + sub sp , -4 /* r12_orig */
161 + ldmts sp++, r0 -lr /* restoring registers */
162 + rets
163 +
164 + . align 2
165 + syscall _ table _addr:
166 + .long sys_call_ table
167 +
168 + syscall _ badsys : /* RC: comefrom : syscall _ trace _cont */
169 + mov r12 , -ENOSYS
170 + rjmp syscall _ return /* RC: return -ENOSYS */
171 +
172 + syscall _ trace _ enter :
173 + pushm r8 -r12
174 + rcall syscall _ trace
175 + popm r8 -r12
176 + rjmp syscall _ trace _cont
177 +
178 + . global ret_from_fork
179 +ret_from_fork: /* RC: a newborn child starts it ’s exciting new thread here */
180 + rcall schedule _tail
181 +
182 + /* check for syscall tracing */
183 + get_ thread _info r0
184 + ld.w r1 , r0[TI_ flags]
185 + andl r1 , _TIF_ ALLWORK _MASK , COH
186 + breq syscall _exit_cont
187 + /*
188 + * Fall through to syscall _exit_work since one or more of the
189 + * bits in TIF_ ALLWORK _MASK was set.
190 + */
191 +
192 + syscall _exit_work:
193 + bld r1 , TIF_ SYSCALL _ TRACE
194 + brcc syscall _exit_work_loop
195 + unmask _ interrupts
196 + rcall syscall _ trace
197 + mask_ interrupts
198 + ld.w r1 , r0[TI_ flags]
199 +
200 + /*
201 + * This loop will run until no work - flags are set in the
202 + * thread info.
203 + */
204 + syscall _exit_work_loop:
205 + bld r1 , TIF_NEED_ RESCHED
206 + brcc syscall _exit_work_ nosched
207 + unmask _ interrupts
208 + rcall schedule
209 + mask_ interrupts
210 + ld.w r1 , r0[TI_ flags]
211 + rjmp syscall _exit_work_loop
212 +
213 + syscall _exit_work_ nosched :
214 + mov r2 , _TIF_ SIGPENDING | _TIF_ RESTORE _ SIGMASK
215 + tst r1 , r2
216 + breq syscall _exit_work_ nosigs
217 + unmask _ interrupts
218 + mov r12 , sp
219 + mov r11 , r0
220 + rcall do_ notify _ resume
221 + mask_ interrupts
222 + ld.w r1 , r0[TI_ flags]
223 + rjmp syscall _exit_work_loop
224 +
225 + syscall _exit_work_ nosigs :
226 + bld r1 , TIF_ BREAKPOINT
227 + brcc syscall _exit_cont
228 + rjmp enter _ monitor _mode
229 +
230 +
231 + .type save_full_ context _ex , @function
232 + . align 2
233 +save_full_ context _ex:
234 + /*
235 + * Check whether the return address of the exception is the
236 + * debug _ trampoline , since that would need special handling .
237 + */
238 + lddsp r11 , sp[REG_PC]

164 APPENDIX D. LINUX KERNEL PATCHES

239 + sub r9 , pc , . - debug _ trampoline
240 + cp.w r9 , r11
241 + breq save_full_ context _dbg_ tramp
242 +
243 + /* Check for kernel -mode. */
244 + lddsp r8 , sp[REG_SR]
245 + mov r12 , r8
246 + andh r8 , (MODE_MASK >> 16) , COH
247 + brne save_full_ context _ kernel _mode
248 +
249 +save_full_ context _done:
250 + unmask _ exceptions
251 + ret r12
252 +
253 +save_full_ context _ kernel _mode:
254 + sub r10 , sp , -FRAME _SIZE_FULL
255 + stdsp sp[REG_SP], r10 /* replace saved SP with kernel -mode SP */
256 + rjmp save_full_ context _done
257 +
258 + /*
259 + * The debug handler set up a trampoline to make us
260 + * automatically enter monitor mode upon return , but since
261 + * we ’re saving the full context , we must assume that the
262 + * exception handler might want to alter the return address
263 + * and/or status register . So we need to restore the original
264 + * context and enter monitor mode manually after the exception
265 + * has been handled .
266 + */
267 +save_full_ context _dbg_ tramp :
268 + get_ thread _info r8
269 + ld.w r11 , r8[TI_rar_ saved]
270 + ld.w r12 , r8[TI_rsr_ saved]
271 + stdsp sp[REG_PC], r11
272 + stdsp sp[REG_SR], r12
273 +
274 + rjmp save_full_ context _done
275 + .size save_full_ context _ex , . - save_full_ context _ex
276 +
277 + /* Low - level exception handlers */
278 + handle _ critical :
279 + pushm r0 -r12
280 + sub sp , 12 /* lr , sp , r12_orig */
281 +
282 + mfsr r12 , SYSREG _ECR
283 + mov r11 , sp
284 + rcall do_ critical _ exception
285 +
286 + /* We should never get here... */
287 + sub r12 , pc , (. - 1f)
288 + bral panic
289 + . align 2
290 +1: . asciz " Return from critical exception !"
291 +
292 + . align 1
293 +do_bus_ error _ write :
294 + stmts --sp , r0 -lr
295 + sub sp , 4 /* skip r12_orig */
296 + rcall save_full_ context _ex
297 + mov r11 , 1
298 + rjmp do_bus_ error _ common
299 +
300 +do_bus_ error _read:
301 + stmts --sp , r0 -lr
302 + sub sp , 4 /* skip r12_orig */
303 + rcall save_full_ context _ex
304 + mov r11 , 0
305 +
306 +do_bus_ error _ common :
307 + mfsr r12 , SYSREG _BEAR
308 + mov r10 , sp
309 + rcall do_bus_ error
310 + rjmp ret_from_ exception
311 +
312 + . align 1
313 +do_nmi_ll:
314 + stmts --sp , r0 -lr
315 + sub sp , 4 /* skip r12_orig */
316 +
317 + /* Check for kernel -mode. */
318 + lddsp r9 , sp[REG_SR]
319 + bfextu r0 , r9 , MODE_SHIFT , 3
320 + brne do_nmi_ll_ kernel _ fixup
321 +
322 +do_nmi_ll_cont:

D.24. SUPPORT FOR AVR32A ENTRY-AVR32A.S 165

323 + mfsr r12 , SYSREG _ECR
324 + mov r11 , sp
325 + rcall do_nmi
326 + tst r0 , r0
327 + brne do_nmi_ll_ kernel _exit
328 +
329 + sub sp , -4 /* skip r12_orig */
330 + ldmts sp++, r0 -lr
331 + rete
332 +
333 + /* Kernel mode save */
334 +do_nmi_ll_ kernel _ fixup :
335 + sub r10 , sp , -FRAME _SIZE_FULL
336 + stdsp sp[REG_SP], r10 /* replace saved SP */
337 + rjmp do_nmi_ll_cont
338 +
339 + /* Kernel mode restore */
340 +do_nmi_ll_ kernel _exit:
341 + sub sp , -4 /* skip r12_orig */
342 + popm lr
343 + sub sp , -4 /* skip sp */
344 + popm r0 -r12
345 + rete
346 +
347 +
348 + handle _ address _ fault :
349 + stmts --sp , r0 -lr
350 + sub sp , 4 /* skip r12_orig */
351 + rcall save_full_ context _ex
352 + mfsr r12 , SYSREG _ECR
353 + mov r11 , sp
354 + rcall do_ address _ exception
355 + rjmp ret_from_ exception
356 +
357 +
358 + handle _ protection _ fault :
359 + stmts --sp , r0 -lr
360 + sub sp , 4 /* skip r12_orig */
361 + rcall save_full_ context _ex
362 + mfsr r12 , SYSREG _ECR
363 + mov r11 , sp
364 + rcall do_page_ fault
365 + rjmp ret_from_ exception
366 +
367 +
368 + . align 1
369 +do_ illegal _ opcode _ll:
370 + stmts --sp , r0 -lr
371 + sub sp , 4 /* skip r12_orig */
372 + rcall save_full_ context _ex
373 + mfsr r12 , SYSREG _ECR
374 + mov r11 , sp
375 + rcall do_ illegal _ opcode
376 + rjmp ret_from_ exception
377 +
378 +
379 +do_dtlb_ modified :
380 + sub r12 , pc , (. - 1f)
381 + bral panic
382 + . align 2
383 +1: . asciz "do_dtlb_ modified "
384 +
385 +
386 + . align 1
387 +do_fpe_ll:
388 + stmts --sp , r0 -lr
389 + sub sp , 4 /* skip r12_orig */
390 + rcall save_full_ context _ex
391 + unmask _ interrupts
392 + mov r12 , 26 /* TODO: this should probably be 11 (0 x2C /4) */
393 + mov r11 , sp
394 + rcall do_fpe
395 + rjmp ret_from_ exception
396 +
397 +
398 + /* Common code for returning from an exception handler . */
399 +ret_from_ exception :
400 + mask_ interrupts
401 + lddsp r4 , sp[REG_SR]
402 + andh r4 , (MODE_MASK >> 16) , COH
403 + brne fault _ resume _ kernel
404 +
405 + get_ thread _info r0
406 + ld.w r1 , r0[TI_ flags]

166 APPENDIX D. LINUX KERNEL PATCHES

407 + andl r1 , _TIF_WORK_MASK , COH
408 + brne fault _exit_work
409 +
410 + fault _ resume _user:
411 + mask_ exceptions
412 + sub sp , -4 /* skip r12_orig */
413 + ldmts sp++, r0 -lr
414 + rete
415 +
416 + fault _ resume _ kernel :
417 +# ifdef CONFIG _ PREEMPT
418 + /* Check whether we should preempt this kernel thread . */
419 + get_ thread _info r0
420 + ld.w r2 , r0[TI_ preempt _ count]
421 + cp.w r2 , 0
422 + brne fault _ resume _ kernel _no_ schedule
423 + ld.w r1 , r0[TI_ flags]
424 + bld r1 , TIF_NEED_ RESCHED
425 + brcc fault _ resume _ kernel _no_ schedule
426 + lddsp r4 , sp[REG_SR]
427 + bld r4 , SYSREG _GM_ OFFSET
428 + brcs fault _ resume _ kernel _no_ schedule
429 + rcall preempt _ schedule _irq
430 + fault _ resume _ kernel _no_ schedule :
431 +# endif
432 +
433 + mask_ exceptions
434 + sub sp , -4 /* ignore r12_orig */
435 + popm lr
436 + sub sp , -4 /* ignore SP */
437 + popm r0 -r12
438 + rete
439 +
440 + /*
441 + * Common code for IRQ and exception handlers .
442 + * Expects r0 to contain a reference to the thread _info struct ,
443 + * and r1 to contain TI_ flags from the thread _info struct .
444 + */
445 + fault _exit_work:
446 + bld r1 , TIF_NEED_ RESCHED
447 + brcc fault _exit_work_no_ resched
448 + unmask _ interrupts
449 + rcall schedule
450 + mask_ interrupts
451 + ld.w r1 , r0[TI_ flags]
452 + rjmp fault _exit_work
453 +
454 + fault _exit_work_no_ resched :
455 + mov r2 , _TIF_ SIGPENDING | _TIF_ RESTORE _ SIGMASK
456 + tst r1 , r2
457 + breq fault _exit_work_no_ sigwork
458 + unmask _ interrupts
459 + mov r12 , sp
460 + mov r11 , r0
461 + rcall do_ notify _ resume
462 + mask_ interrupts
463 + ld.w r1 , r0[TI_ flags]
464 + rjmp fault _exit_work
465 +
466 + fault _exit_work_no_ sigwork :
467 + bld r1 , TIF_ BREAKPOINT
468 + brcc fault _ resume _user
469 + rjmp enter _ monitor _mode
470 +
471 +
472 + . section . kprobes .text , "ax", @progbits
473 + .type handle _debug , @function
474 + handle _ debug :
475 + sub sp , 8 /* Make room for REG_PC and REG_SR */
476 + stmts --sp , r0 -lr
477 + sub sp , 4 /* skip r12_orig */
478 + mfsr r8 , SYSREG _RAR_DBG
479 + stdsp sp[REG_PC], r8
480 + mfsr r9 , SYSREG _RSR_DBG
481 + stdsp sp[REG_SR], r9
482 + unmask _ exceptions
483 + bfextu r9 , r9 , SYSREG _MODE_OFFSET , SYSREG _MODE_SIZE
484 + brne debug _ fixup _regs
485 +
486 +. Ldebug _ fixup _cont:
487 +# ifdef CONFIG _ TRACE _ IRQFLAGS
488 + rcall trace _ hardirqs _off
489 +# endif
490 + mov r12 , sp

D.24. SUPPORT FOR AVR32A ENTRY-AVR32A.S 167

491 + rcall do_ debug
492 + mov sp , r12
493 +
494 + lddsp r2 , sp[REG_SR]
495 + bfextu r3 , r2 , SYSREG _MODE_OFFSET , SYSREG _MODE_SIZE
496 + brne debug _ resume _ kernel
497 +
498 + get_ thread _info r0
499 + ld.w r1 , r0[TI_ flags]
500 + mov r2 , _TIF_ DBGWORK _MASK
501 + tst r1 , r2
502 + brne debug _exit_work
503 +
504 + bld r1 , TIF_ SINGLE _STEP
505 + brcc 1f
506 + mfdr r4 , OCD_DC
507 + sbr r4 , OCD_DC_SS_BIT
508 + mtdr OCD_DC , r4
509 +
510 +1: mask_ exceptions
511 +
512 +# ifdef CONFIG _ TRACE _ IRQFLAGS
513 + rcall trace _ hardirqs _on
514 +1:
515 +# endif
516 + sub sp , -4
517 + ldmts sp++, r0 -lr
518 + retd
519 + .size handle _debug , . - handle _ debug
520 +
521 + /* Mode of the trapped context is in r9 */
522 + .type debug _ fixup _regs , @function
523 + debug _ fixup _regs:
524 + sub r8 , sp , -FRAME _SIZE_FULL
525 + stdsp sp[REG_SP], r8
526 + rjmp . Ldebug _ fixup _cont
527 + .size debug _ fixup _regs , . - debug _ fixup _regs
528 +
529 + .type debug _ resume _kernel , @function
530 + debug _ resume _ kernel :
531 + mask_ exceptions
532 +# ifdef CONFIG _ TRACE _ IRQFLAGS
533 + bld r11 , SYSREG _GM_ OFFSET
534 + brcc 1f
535 + rcall trace _ hardirqs _on
536 +1:
537 +# endif
538 + mfsr r2 , SYSREG _SR
539 + mov r1 , r2
540 + bfins r2 , r3 , SYSREG _MODE_OFFSET , SYSREG _MODE_SIZE
541 + mtsr SYSREG _SR , r2
542 + sub pc , -2
543 + mtsr SYSREG _SR , r1
544 + sub pc , -2 /* flush pipeline */
545 + sub sp , -4 /* Skip r12_orig */
546 + popm lr
547 + sub sp , -4 /* skip SP */
548 + popm r0 -r12
549 + retd
550 + .size debug _ resume _kernel , . - debug _ resume _ kernel
551 +
552 + .type debug _exit_work , @function
553 +
554 +/* end of fixups after reg change */
555 + debug _exit_work:
556 + /*
557 + * We must return from Monitor Mode using a retd , and we must
558 + * not schedule since that involves the D bit in SR getting
559 + * cleared by something other than the debug hardware . This
560 + * may cause undefined behaviour according to the Architecture
561 + * manual .
562 + *
563 + * So we fix up the return address and status and return to a
564 + * stub below in Exception mode. From there , we can follow the
565 + * normal exception return path.
566 + *
567 + * The real return address and status registers are stored on
568 + * the stack in the way the exception return path understands ,
569 + * so no need to fix anything up there .
570 + */
571 + sub r8 , pc , . - fault _exit_work
572 + st.w sp[REG_PC], r8
573 + mov r9 , 0
574 + orh r9 , hi(SR_EM | SR_GM | MODE_ EXCEPTION)

168 APPENDIX D. LINUX KERNEL PATCHES

575 + st.w sp[REG_SR], r9
576 + sub pc , -2
577 + retd
578 + .size debug _exit_work , . - debug _exit_work
579 +
580 +
581 + . macro IRQ_ LEVEL level
582 + .type irq_ level \level , @function
583 +irq_ level \ level :
584 + /* Stack :
585 + * sp +0 SR
586 + * sp +4 PC
587 + * sp +8 LR
588 + * sp +12 R12
589 + * sp +16 R11
590 + * sp +20 R10
591 + * sp +24 R9
592 + * sp +28 R8
593 + */
594 + stmts --sp ,r0 -lr
595 + sub sp , 4 /* skip r12_orig */
596 + lddsp r8 , sp[REG_PC]
597 + lddsp r9 , sp[REG_SR]
598 +
599 + mov r11 , sp
600 + mov r12 , \ level
601 +
602 + rcall do_IRQ
603 +
604 + lddsp r4 , sp[REG_SR]
605 + bfextu r4 , r4 , SYSREG _M0_OFFSET , 3
606 + cp.w r4 , MODE_ SUPERVISOR >> SYSREG _M0_ OFFSET
607 + breq 2f
608 + cp.w r4 , MODE_USER >> SYSREG _M0_ OFFSET
609 +# ifdef CONFIG _ PREEMPT
610 + brne 3f
611 +#else
612 + brne 1f
613 +# endif
614 +
615 + /* Interrupt was entered from user -mode. */
616 + get_ thread _info r0
617 + ld.w r1 , r0[TI_ flags]
618 + mov r2 , r1
619 + andl r2 , _TIF_WORK_MASK , COH
620 + brne fault _exit_work
621 +
622 + /* Exit interrupt handling . */
623 +1:
624 +# ifdef CONFIG _ TRACE _ IRQFLAGS
625 + rcall trace _ hardirqs _on
626 +# endif
627 + sub sp , -4 /* ignore r12_orig */
628 + ldmts sp++,r0 -lr
629 + rete
630 +
631 +
632 + /*
633 + * Interrupt was entered from supervisor mode. We need to check
634 + * that this didn ’t happen while the processor was going to
635 + * sleep . The power - manager will set the CPU_ GOING _TO_ SLEEP flag
636 + * when entering sleep mode. We test that flag , and if it is
637 + * set , we change the return address of the interrupt to the
638 + * instruction following the sleep - instruction .
639 + */
640 +2: get_ thread _info r0
641 + ld.w r1 , r0[TI_ flags]
642 + bld r1 , TIF_CPU_ GOING _TO_ SLEEP
643 +# ifdef CONFIG _ PREEMPT
644 + brcc 3f
645 +#else
646 + brcc 1b
647 +# endif
648 +
649 + /*
650 + * Update the return address so that the sleep - instruction
651 + * isn ’t executed .
652 + */
653 + sub r1 , pc , . - cpu_idle_skip_ sleep
654 + stdsp sp[REG_PC], r1
655 +
656 +# ifdef CONFIG _ PREEMPT
657 + /*
658 + * When interrupts are entered from kernel mode , and preemption

D.24. SUPPORT FOR AVR32A ENTRY-AVR32A.S 169

659 + * is enabled , we need to check whether we should schedule after
660 + * executing the interrupt . This is done in this block of code.
661 + */
662 +3: get_ thread _info r0
663 + ld.w r2 , r0[TI_ preempt _ count]
664 + cp.w r2 , 0
665 + brne 1b
666 + ld.w r1 , r0[TI_ flags]
667 + bld r1 , TIF_NEED_ RESCHED
668 + brcc 1b
669 + lddsp r4 , sp[REG_SR]
670 + bld r4 , SYSREG _GM_ OFFSET
671 + brcs 1b
672 + rcall preempt _ schedule _irq
673 +# endif
674 + rjmp 1b
675 + .endm
676 +
677 + . section .irq.text ," ax", @progbits
678 +
679 + . global irq_ level0
680 + . global irq_ level1
681 + . global irq_ level2
682 + . global irq_ level3
683 + IRQ_ LEVEL 0
684 + IRQ_ LEVEL 1
685 + IRQ_ LEVEL 2
686 + IRQ_ LEVEL 3
687 +
688 + . section . kprobes .text , "ax", @progbits
689 + .type enter _ monitor _mode , @function
690 + enter _ monitor _mode:
691 + /*
692 + * We need to enter monitor mode to do a single step. The
693 + * monitor code will alter the return address so that we
694 + * return directly to the user instead of returning here.
695 + */
696 + breakpoint
697 + rjmp breakpoint _ failed
698 +
699 + .size enter _ monitor _mode , . - enter _ monitor _mode
700 +
701 + .type debug _ trampoline , @function
702 + . global debug _ trampoline
703 + debug _ trampoline :
704 + /*
705 + * Save the registers on the stack so that the monitor code
706 + * can find them easily .
707 + */
708 + stmts --sp , r0 -lr
709 + sub sp , 4 /* skip r12_orig */
710 + get_ thread _info r0
711 + ld.w r8 , r0[TI_rar_ saved]
712 + ld.w r9 , r0[TI_rsr_ saved]
713 + stdsp sp[REG_PC], r8
714 + stdsp sp[REG_SR], r9
715 +
716 + /*
717 + * The monitor code will alter the return address so we don ’t
718 + * return here.
719 + */
720 + breakpoint
721 + rjmp breakpoint _ failed
722 + .size debug _ trampoline , . - debug _ trampoline
723 +
724 + .type breakpoint _failed , @function
725 + breakpoint _ failed :
726 + /*
727 + * Something went wrong . Perhaps the debug hardware isn ’t
728 + * enabled ?
729 + */
730 + lda.w r12 , msg_ breakpoint _ failed
731 + mov r11 , sp
732 + mov r10 , 9 /* SIGKILL */
733 + call die
734 +1: rjmp 1b
735 +
736 +msg_ breakpoint _ failed :
737 + . asciz " Failed to enter Debug Mode"
738 --
739 1.6.2.2

170 APPENDIX D. LINUX KERNEL PATCHES

D.25 Change HIMEM_START for AVR32A

1 From 881604261316 b978975207e22d919a07924e0927 Mon Sep 17 00:00:00 2001
2 Message -Id: <881604261316 b978975207e22d919a07924e0927 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Fri , 24 Apr 2009 15:21:38 +0200
7 Subject : [PATCH 25/29] AVR32 : Change HIGHMEM _ START for AVR32A .
8
9 ---

10 arch/ avr32 / include /asm/page.h | 6 ++++++
11 1 files changed , 6 insertions (+) , 0 deletions (-)
12
13 diff --git a/arch/ avr32 / include /asm/page.h b/arch/ avr32 / include /asm/page.h
14 index ca36368 .. b69e6c1 100644
15 --- a/arch/ avr32 / include /asm/page.h
16 +++ b/arch/ avr32 / include /asm/page.h
17 @@ -106 ,6 +106 ,12 @@ static inline int get_ order (unsigned long size)
18 /*
19 * Memory above this physical address will be considered highmem .
20 */
21 +# ifdef CONFIG _ SUBARCH _ AVR32A
22 +# define HIGHMEM _ START 0 xffffffffUL
23 +#elif CONFIG _ SUBARCH _ AVR32B
24 # define HIGHMEM _ START 0 x20000000UL
25 +#else /* CONFIG _ SUBARCH _* */
26 +# error Unknown AVR32 subarch .
27 +# endif /* CONFIG _ SUBARCH _* */
28
29 # endif /* __ASM_ AVR32 _PAGE_H */
30 --
31 1.6.2.2

D.26 New pt_regs layout for AVR32A

1 From 814 e2ae4fa15281d76b1ee21e1f565e1880a9698 Mon Sep 17 00:00:00 2001
2 Message -Id: <814 e2ae4fa15281d76b1ee21e1f565e1880a9698 . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Mon , 27 Apr 2009 14:49:13 +0200
7 Subject : [PATCH 26/29] AVR32 : New pt_regs layout for AVR32A .
8
9 ---

10 arch/ avr32 / include /asm/ ptrace .h | 79 +++++++++++++++++++++++++++++++++++++++
11 1 files changed , 79 insertions (+) , 0 deletions (-)
12
13 diff --git a/arch/ avr32 / include /asm/ ptrace .h b/arch/ avr32 / include /asm/ ptrace .h
14 index 9 e2d44f ..043 b873 100644
15 --- a/arch/ avr32 / include /asm/ ptrace .h
16 +++ b/arch/ avr32 / include /asm/ ptrace .h
17 @@ -61,6 +61 ,41 @@
18 # define SR_Z_BIT 1
19 # define SR_C_BIT 0
20
21 +
22 +# ifdef __ AVR32 _ AVR32A __
23 +
24 +/*
25 + * The SR and PC registers are always saved on interrupts and exceptions
26 + * on AVR32A , so we give those the hightest addresses . The order of the
27 + * others is defined by the stmts instruction . r0 is stored first , so it
28 + * gets the highest address .
29 + */
30 +# define REG_R12_ORIG 0
31 +
32 +# define REG_LR 4
33 +# define REG_SP 8
34 +# define REG_R12 12
35 +# define REG_R11 16
36 +# define REG_R10 20
37 +# define REG_R9 24
38 +# define REG_R8 28
39 +# define REG_R7 32
40 +# define REG_R6 36
41 +# define REG_R5 40
42 +# define REG_R4 44

D.27. UC3A0512ES INTERRUPT BUG WORKAROUND 171

43 +# define REG_R3 48
44 +# define REG_R2 52
45 +# define REG_R1 56
46 +# define REG_R0 60
47 +
48 +# define REG_SR 64
49 +# define REG_PC 68
50 +
51 +# define FRAME _SIZE_MIN 8
52 +# define FRAME _SIZE_FULL 72
53 +
54 +#elif __ AVR32 _ AVR32B __
55 +
56 /*
57 * The order is defined by the stmts instruction . r0 is stored first ,
58 * so it gets the highest address .
59 @@ -93,7 +128 ,45 @@
60 # define REG_PC 4
61 # define REG_SR 0
62
63 +#else /* __ AVR32 _ AVR32 *__ */
64 +
65 +# error Unknown AVR32 subarch .
66 +
67 +# endif /* __ AVR32 _ AVR32 *__ */
68 +
69 # ifndef __ ASSEMBLY __
70 +
71 +# ifdef __ AVR32 _ AVR32A __
72 +
73 + struct pt_regs {
74 +
75 + /* Only saved on system call , and is used to restart system calls . */
76 + unsigned long r12_orig;
77 +
78 + /* Always saved , but some might be optimized away? */
79 + unsigned long lr;
80 + unsigned long sp;
81 + unsigned long r12;
82 + unsigned long r11;
83 + unsigned long r10;
84 + unsigned long r9;
85 + unsigned long r8;
86 + unsigned long r7;
87 + unsigned long r6;
88 + unsigned long r5;
89 + unsigned long r4;
90 + unsigned long r3;
91 + unsigned long r2;
92 + unsigned long r1;
93 + unsigned long r0;
94 +
95 + /* These are automatically saved when an interrupt or exception occurs */
96 + unsigned long sr;
97 + unsigned long pc;
98 +};
99 +

100 +#elif __ AVR32 _ AVR32B __
101 +
102 struct pt_regs {
103 /* These are always saved */
104 unsigned long sr;
105 @@ -120 ,6 +193 ,12 @@ struct pt_regs {
106 unsigned long r12_orig;
107 };
108
109 +#else /* __ AVR32 _ AVR32 *__ */
110 +
111 +# error Unknown AVR32 subarch .
112 +
113 +# endif /* __ AVR32 _ AVR32 *__ */
114 +
115 # ifdef __ KERNEL __
116
117 # include <asm/ocd.h>
118 --
119 1.6.2.2

D.27 UC3A0512ES interrupt bug workaround

172 APPENDIX D. LINUX KERNEL PATCHES

1 From e836ea71931e9bb5a4caf6066d59785823bae32b Mon Sep 17 00:00:00 2001
2 Message -Id: <e836ea71931e9bb5a4caf6066d59785823bae32b . 1242388774 .git. rangoy@mnops .(none)>
3 In -Reply -To: <cover . 1242388773 .git. rangoy@mnops .(none)>
4 References : <cover . 1242388773 .git. rangoy@mnops .(none)>
5 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <gunnar@rangoy .com >
6 Date: Thu , 23 Apr 2009 15:04:08 +0200
7 Subject : [PATCH 27/29] AVR32 : UC3A0512ES Interrupt bug workaround
8
9 ---

10 arch/ avr32 / include /asm/asm.h | 26 ++++++++++++++++++++++++ - -
11 arch/ avr32 / include /asm/ irqflags .h | 8 ++++++++
12 2 files changed , 32 insertions (+) , 2 deletions (-)
13
14 diff --git a/arch/ avr32 / include /asm/asm.h b/arch/ avr32 / include /asm/asm.h
15 index 1 bad0c5 ..20 f737b 100644
16 --- a/arch/ avr32 / include /asm/asm.h
17 +++ b/arch/ avr32 / include /asm/asm.h
18 @@ -12,8 +12 ,30 @@
19 # include <asm/asm - offsets .h>
20 # include <asm/ thread _info.h>
21
22 -# define mask_ interrupts ssrf SYSREG _GM_ OFFSET
23 -# define mask_ exceptions ssrf SYSREG _EM_ OFFSET
24 + . macro mask_ interrupts
25 + ssrf SYSREG _GM_ OFFSET
26 +# ifdef CONFIG _CPU_ AT32UC3A0XXX
27 + /*
28 + * Workaround for errata 41.4.5.5:
29 + * "Need two NOPs instruction after instructions masking interrupts "
30 + */
31 + nop
32 + nop
33 +# endif
34 + .endm
35 +
36 + . macro mask_ exceptions
37 + ssrf SYSREG _EM_ OFFSET
38 +# ifdef CONFIG _CPU_ AT32UC3A0XXX
39 + /*
40 + * Workaround for errata 41.4.5.5:
41 + * "Need two NOPs instruction after instructions masking interrupts "
42 + */
43 + nop
44 + nop
45 +# endif
46 + .endm
47 +
48 # define unmask _ interrupts csrf SYSREG _GM_ OFFSET
49 # define unmask _ exceptions csrf SYSREG _EM_ OFFSET
50
51 diff --git a/arch/ avr32 / include /asm/ irqflags .h b/arch/ avr32 / include /asm/ irqflags .h
52 index 93570 da.. e25fc64 100644
53 --- a/arch/ avr32 / include /asm/ irqflags .h
54 +++ b/arch/ avr32 / include /asm/ irqflags .h
55 @@ -33,7 +33 ,15 @@ static inline void raw_ local _irq_ restore (unsigned long flags)
56
57 static inline void raw_ local _irq_ disable (void)
58 {
59 +# ifdef CONFIG _CPU_ AT32UC3A0XXX
60 + /*
61 + * Workaround for errata 41.4.5.5:
62 + * "Need two NOPs instruction after instructions masking interrupts "
63 + */
64 + asm volatile (" ssrf %0; nop; nop" : : "n"(SYSREG _GM_ OFFSET) : " memory ");
65 +#else
66 asm volatile ("ssrf %0" : : "n"(SYSREG _GM_ OFFSET) : " memory ");
67 +# endif
68 }
69
70 static inline void raw_ local _irq_ enable (void)
71 --
72 1.6.2.2

D.28 UC3A0xxx support

1 commit 45 ef6ebbbc75acd8e5aa69ed61023482bfa1b61b
2 Author : Gunnar Rangoy <gunnar@rangoy .com >
3 Date: Thu May 7 13:24:24 2009 +0200
4

D.28. UC3A0XXX SUPPORT 173

5 AVR32 : UC3A0xxx - support
6
7 diff --git a/arch/ avr32 / Kconfig b/arch/ avr32 / Kconfig
8 index e3f6653 ..631 d388 100644
9 --- a/arch/ avr32 / Kconfig

10 +++ b/arch/ avr32 / Kconfig
11 @@ -107 ,6 +107 ,13 @@ config PLATFORM _ AT32AP
12 select AVR32 _ CACHE
13 select AVR32 _ UNALIGNED
14
15 + config PLATFORM _ AT32UC3A
16 + bool
17 + select SUBARCH _ AVR32A
18 + select PERFORMANCE _ COUNTERS
19 + select ARCH_ REQUIRE _ GPIOLIB
20 + select GENERIC _ ALLOCATOR
21 +
22 #
23 # CPU types
24 #
25 @@ -125 ,6 +132 ,11 @@ config CPU_ AT32AP7002
26 bool
27 select CPU_ AT32AP700X
28
29 +# UC3A0
30 + config CPU_ AT32UC3A0XXX
31 + bool
32 + select PLATFORM _ AT32UC3A
33 +
34 choice
35 prompt " AVR32 board type"
36 default BOARD _ ATSTK1000
37 @@ -158 ,18 +170 ,22 @@ config LOADER _U_BOOT
38 endchoice
39
40 source "arch/ avr32 /mach - at32ap / Kconfig "
41 + source "arch/ avr32 /mach - at32uc3a / Kconfig "
42
43 config LOAD_ ADDRESS
44 hex
45 default 0 x10000000 if LOADER _U_BOOT=y && CPU_ AT32AP700X =y
46 + default 0 xc8000000 if LOADER _U_BOOT=y && CPU_ AT32UC3A0XXX =y
47
48 config ENTRY _ ADDRESS
49 hex
50 default 0 x90000000 if LOADER _U_BOOT=y && CPU_ AT32AP700X =y
51 + default 0 xc8000000 if LOADER _U_BOOT=y && CPU_ AT32UC3A0XXX =y
52
53 config PHYS_ OFFSET
54 hex
55 default 0 x10000000 if CPU_ AT32AP700X =y
56 + default 0 xc8000000 if CPU_ AT32UC3A0XXX =y
57
58 source " kernel / Kconfig . preempt "
59
60 diff --git a/arch/ avr32 / Makefile b/arch/ avr32 / Makefile
61 index 4864 cb1.. ad1dd87 100644
62 --- a/arch/ avr32 / Makefile
63 +++ b/arch/ avr32 / Makefile
64 @@ -31,6 +31 ,7 @@ CFLAGS _ MODULE += -mno - relax
65 LDFLAGS _ vmlinux += --relax
66
67 cpuflags -$(CONFIG _ PLATFORM _ AT32AP) += -march =ap
68 +cpuflags -$(CONFIG _ PLATFORM _ AT32UC3A) += -march =ucr1
69
70 KBUILD _ CFLAGS += $(cpuflags -y)
71 KBUILD _ AFLAGS += $(cpuflags -y)
72 @@ -38,6 +39 ,7 @@ KBUILD _ AFLAGS += $(cpuflags -y)
73 CHECKFLAGS += -D__ avr32 __ -D__BIG_ ENDIAN
74
75 machine -$(CONFIG _ PLATFORM _ AT32AP) := at32ap
76 +machine -$(CONFIG _ PLATFORM _ AT32UC3A) := at32uc3a
77 machdirs := $(patsubst %,arch/ avr32 /mach -%/ , $(machine -y))
78
79 KBUILD _ CPPFLAGS += $(patsubst %,-I$(srctree)/% include ,$(machdirs))
80 diff --git a/arch/ avr32 / kernel /cpu.c b/arch/ avr32 / kernel /cpu.c
81 index e84faff ..905 a920 100644
82 --- a/arch/ avr32 / kernel /cpu.c
83 +++ b/arch/ avr32 / kernel /cpu.c
84 @@ -208 ,6 +208 ,7 @@ struct chip_id_map {
85
86 static const struct chip_id_map chip_ names [] = {
87 { .mid = 0x1f , .pn = 0x1e82 , .name = " AT32AP700x " },
88 + { .mid = 0x1f , .pn = 0x1edc , .name = " AT32UC3A0xxx " },

174 APPENDIX D. LINUX KERNEL PATCHES

89 };
90 # define NR_CHIP_ NAMES ARRAY _SIZE(chip_ names)
91
92 diff --git a/arch/ avr32 /mach - at32ap / Kconfig b/arch/ avr32 /mach - at32uc3a / Kconfig
93 similarity index 52%
94 copy from arch/ avr32 /mach - at32ap / Kconfig
95 copy to arch/ avr32 /mach - at32uc3a / Kconfig
96 index a7bbcc8 .. dea8d93 100644
97 --- a/arch/ avr32 /mach - at32ap / Kconfig
98 +++ b/arch/ avr32 /mach - at32uc3a / Kconfig
99 @@ -1,13 +1 ,13 @@

100 -if PLATFORM _ AT32AP
101 +if PLATFORM _ AT32UC3A
102
103 -menu " Atmel AVR32 AP options "
104 +menu " Atmel AVR32 UC3A options "
105
106 choice
107 - prompt " AT32AP700x static memory bus width "
108 - depends on CPU_ AT32AP700X
109 - default AP700X _16_BIT_SMC
110 + prompt " AT32UC3A0XXX static memory bus width "
111 + depends on CPU_ AT32UC3A0XXX
112 + default UC3A0XXX _16_BIT_SMC
113 help
114 - Define the width of the AP7000 external static memory interface .
115 + Define the width of the UC3A external static memory interface .
116 This is used to determine how to mangle the address and/or data
117 when doing little - endian port access .
118
119 @@ -15 ,17 +15 ,14 @@ choice
120 width for all chip selects , excluding the flash (which is using
121 raw access and is thus not affected by any of this.)
122
123 -config AP700X _32_BIT_SMC
124 - bool "32 bit"
125 -
126 -config AP700X _16_BIT_SMC
127 + config UC3A0XXX _16_BIT_SMC
128 bool "16 bit"
129
130 -config AP700X _8_BIT_SMC
131 + config UC3A0XXX _8_BIT_SMC
132 bool "8 bit"
133
134 endchoice
135
136 endmenu
137
138 -endif # PLATFORM _ AT32AP
139 + endif # PLATFORM _ AT32UC3A
140 diff --git a/arch/ avr32 /mach - at32uc3a / Makefile b/arch/ avr32 /mach - at32uc3a / Makefile
141 new file mode 100644
142 index 0000000 ..0 bf3edc
143 --- /dev/null
144 +++ b/arch/ avr32 /mach - at32uc3a / Makefile
145 @@ -0,0 +1 ,9 @@
146 +obj -y += pdca.o clock .o intc.o extint .o gpio.o hsmc.o
147 +obj -y += hmatrix .o
148 +obj -$(CONFIG _CPU_ AT32UC3A0XXX) += at32uc3a0xxx .o pm - at32uc3a0xxx .o
149 +obj -$(CONFIG _CPU_FREQ_ AT32UC3A0) += cpufreq .o
150 +obj -$(CONFIG _PM) += pm.o
151 +
152 +ifeq ($(CONFIG _PM_ DEBUG),y)
153 + CFLAGS _pm.o += -DDEBUG
154 + endif
155 diff --git a/arch/ avr32 /mach - at32uc3a / at32uc3a0xxx .c b/arch/ avr32 /mach - at32uc3a / at32uc3a0xxx .c
156 new file mode 100644
157 index 0000000 .. f7610f1
158 --- /dev/null
159 +++ b/arch/ avr32 /mach - at32uc3a / at32uc3a0xxx .c
160 @@ -0,0 +1 ,1453 @@
161 +/*
162 + * Copyright (C) 2005 -2006 Atmel Corporation
163 + *
164 + * This program is free software ; you can redistribute it and/or modify
165 + * it under the terms of the GNU General Public License version 2 as
166 + * published by the Free Software Foundation .
167 + */
168 +# include <linux /clk.h>
169 +# include <linux / delay .h>
170 +# include <linux /dw_dmac.h>
171 +# include <linux /fb.h>
172 +# include <linux /init.h>

D.28. UC3A0XXX SUPPORT 175

173 +# include <linux / platform _ device .h>
174 +# include <linux /dma - mapping .h>
175 +# include <linux /gpio.h>
176 +# include <linux /spi/spi.h>
177 +# include <linux /usb/ atmel _usba_udc.h>
178 +
179 +# include <asm/atmel -mci.h>
180 +# include <asm/io.h>
181 +# include <asm/irq.h>
182 +
183 +# include <mach/ at32uc3a0xxx .h>
184 +# include <mach/ board .h>
185 +# include <mach/ hmatrix .h>
186 +# include <mach/ portmux .h>
187 +# include <mach/sram.h>
188 +
189 +# include " clock .h"
190 +# include "gpio.h"
191 +# include "pm.h"
192 +
193 +# define MEMRANGE (base ,size) \
194 + { \
195 + . start = base , \
196 + .end = base + size - 1, \
197 + . flags = IORESOURCE _MEM , \
198 + }
199 +# define PBMEM (base) \
200 + { \
201 + . start = base , \
202 + .end = base + 0x3ff , \
203 + . flags = IORESOURCE _MEM , \
204 + }
205 +# define IRQ(num) \
206 + { \
207 + . start = num , \
208 + .end = num , \
209 + . flags = IORESOURCE _IRQ , \
210 + }
211 +# define NAMED _IRQ(num , _name) \
212 + { \
213 + . start = num , \
214 + .end = num , \
215 + .name = _name , \
216 + . flags = IORESOURCE _IRQ , \
217 + }
218 +
219 +/* REVISIT these assume * every * device supports DMA , but several
220 + * don ’t ... tc , smc , pio , rtc , watchdog , pwm , ps2 , and more.
221 + */
222 +# define DEFINE _DEV(_name , _id) \
223 + static u64 _name##_id##_dma_mask = DMA_32 BIT_MASK; \
224 + static struct platform _ device _name##_id##_ device = { \
225 + .name = #_name , \
226 + .id = _id , \
227 + .dev = { \
228 + .dma_mask = &_name##_id##_dma_mask , \
229 + . coherent _dma_mask = DMA_32 BIT_MASK , \
230 + }, \
231 + . resource = _name##_id##_resource , \
232 + .num_ resources = ARRAY _SIZE(_name##_id##_ resource), \
233 +}
234 +# define DEFINE _DEV_DATA(_name , _id) \
235 + static u64 _name##_id##_dma_mask = DMA_32 BIT_MASK; \
236 + static struct platform _ device _name##_id##_ device = { \
237 + .name = #_name , \
238 + .id = _id , \
239 + .dev = { \
240 + .dma_mask = &_name##_id##_dma_mask , \
241 + . platform _data = &_name##_id##_data , \
242 + . coherent _dma_mask = DMA_32 BIT_MASK , \
243 + }, \
244 + . resource = _name##_id##_resource , \
245 + .num_ resources = ARRAY _SIZE(_name##_id##_ resource), \
246 +}
247 +
248 +# define select _ peripheral (pin , periph , flags) \
249 + at32_ select _ periph (GPIO_PIN_##pin , GPIO_##periph , flags)
250 +
251 +# define DEV_CLK(_name , devname , bus , _ index) \
252 + static struct clk devname ##_##_name = { \
253 + .name = #_name , \
254 + .dev = & devname ##_ device .dev , \
255 + . parent = &bus##_clk , \
256 + .mode = bus##_clk_mode , \

176 APPENDIX D. LINUX KERNEL PATCHES

257 + .get_rate = bus##_clk_get_rate , \
258 + . index = _index , \
259 +}
260 +
261 + static DEFINE _ SPINLOCK (pm_lock);
262 +
263 + static struct clk osc0;
264 + static struct clk osc1;
265 +
266 + static unsigned long osc_get_rate(struct clk *clk)
267 +{
268 + return at32_ board _osc_ rates [clk ->index];
269 +}
270 +
271 + static unsigned long pll_get_rate(struct clk *clk , unsigned long control)
272 +{
273 + unsigned long div , mul , rate;
274 +
275 + div = PM_ BFEXT (PLLDIV , control) + 1;
276 + mul = PM_ BFEXT (PLLMUL , control) + 1;
277 +
278 + rate = clk ->parent ->get_rate(clk ->parent);
279 + rate = (rate + div / 2) / div;
280 + rate *= mul;
281 +
282 + return rate;
283 +}
284 +
285 + static long pll_set_rate(struct clk *clk , unsigned long rate ,
286 + u32 *pll_ctrl)
287 +{
288 + unsigned long mul;
289 + unsigned long mul_best_fit = 0;
290 + unsigned long div;
291 + unsigned long div_min;
292 + unsigned long div_max;
293 + unsigned long div_best_fit = 0;
294 + unsigned long base;
295 + unsigned long pll_in;
296 + unsigned long actual = 0;
297 + unsigned long rate_ error ;
298 + unsigned long rate_ error _prev = ~0 UL;
299 + u32 ctrl;
300 +
301 + /* Rate must be between 80 MHz and 200 Mhz. */
302 + if (rate < 80000000 UL || rate > 200000000 UL)
303 + return -EINVAL ;
304 +
305 + ctrl = PM_BF(PLLOPT , 4);
306 + base = clk ->parent ->get_rate(clk ->parent);
307 +
308 + /* PLL input frequency must be between 6 MHz and 32 MHz. */
309 + div_min = DIV_ ROUND _UP(base , 32000000 UL);
310 + div_max = base / 6000000 UL;
311 +
312 + if (div_max < div_min)
313 + return -EINVAL ;
314 +
315 + for (div = div_min; div <= div_max; div ++) {
316 + pll_in = (base + div / 2) / div;
317 + mul = (rate + pll_in / 2) / pll_in;
318 +
319 + if (mul == 0)
320 + continue ;
321 +
322 + actual = pll_in * mul;
323 + rate_ error = abs(actual - rate);
324 +
325 + if (rate_ error < rate_ error _prev) {
326 + mul_best_fit = mul;
327 + div_best_fit = div;
328 + rate_ error _prev = rate_ error ;
329 + }
330 +
331 + if (rate_ error == 0)
332 + break ;
333 + }
334 +
335 + if (div_best_fit == 0)
336 + return -EINVAL ;
337 +
338 + ctrl |= PM_BF(PLLMUL , mul_best_fit - 1);
339 + ctrl |= PM_BF(PLLDIV , div_best_fit - 1);
340 + ctrl |= PM_BF(PLLCOUNT , 16);

D.28. UC3A0XXX SUPPORT 177

341 +
342 + if (clk ->parent == &osc1)
343 + ctrl |= PM_BIT(PLLOSC);
344 +
345 + *pll_ctrl = ctrl;
346 +
347 + return actual ;
348 +}
349 +
350 + static unsigned long pll0_get_rate(struct clk *clk)
351 +{
352 + u32 control ;
353 +
354 + control = pm_ readl (PLL0);
355 +
356 + return pll_get_rate(clk , control);
357 +}
358 +
359 + static void pll1_mode(struct clk *clk , int enabled)
360 +{
361 + unsigned long timeout ;
362 + u32 status ;
363 + u32 ctrl;
364 +
365 + ctrl = pm_ readl (PLL1);
366 +
367 + if (enabled) {
368 + if (!PM_ BFEXT (PLLMUL , ctrl) && !PM_ BFEXT (PLLDIV , ctrl)) {
369 + pr_ debug (" clk %s: failed to enable , rate not set\n",
370 + clk ->name);
371 + return ;
372 + }
373 +
374 + ctrl |= PM_BIT(PLLEN);
375 + pm_ writel (PLL1 , ctrl);
376 +
377 + /* Wait for PLL lock. */
378 + for (timeout = 10000 ; timeout ; timeout --) {
379 + status = pm_ readl (ISR);
380 + if (status & PM_BIT(LOCK1))
381 + break ;
382 + udelay (10);
383 + }
384 +
385 + if (!(status & PM_BIT(LOCK1)))
386 + printk (KERN_ERR "clk %s: timeout waiting for lock\n",
387 + clk ->name);
388 + } else {
389 + ctrl &= ~PM_BIT(PLLEN);
390 + pm_ writel (PLL1 , ctrl);
391 + }
392 +}
393 +
394 + static unsigned long pll1_get_rate(struct clk *clk)
395 +{
396 + u32 control ;
397 +
398 + control = pm_ readl (PLL1);
399 +
400 + return pll_get_rate(clk , control);
401 +}
402 +
403 + static long pll1_set_rate(struct clk *clk , unsigned long rate , int apply)
404 +{
405 + u32 ctrl = 0;
406 + unsigned long actual _rate;
407 +
408 + actual _rate = pll_set_rate(clk , rate , &ctrl);
409 +
410 + if (apply) {
411 + if (actual _rate != rate)
412 + return -EINVAL ;
413 + if (clk ->users > 0)
414 + return -EBUSY ;
415 + pr_ debug (KERN_INFO "clk %s: new rate %lu (actual rate %lu)\n",
416 + clk ->name , rate , actual _rate);
417 + pm_ writel (PLL1 , ctrl);
418 + }
419 +
420 + return actual _rate;
421 +}
422 +
423 + static int pll1_set_ parent (struct clk *clk , struct clk * parent)
424 +{

178 APPENDIX D. LINUX KERNEL PATCHES

425 + u32 ctrl;
426 +
427 + if (clk ->users > 0)
428 + return -EBUSY ;
429 +
430 + ctrl = pm_ readl (PLL1);
431 + WARN_ON(ctrl & PM_BIT(PLLEN));
432 +
433 + if (parent == &osc0)
434 + ctrl &= ~PM_BIT(PLLOSC);
435 + else if (parent == &osc1)
436 + ctrl |= PM_BIT(PLLOSC);
437 + else
438 + return -EINVAL ;
439 +
440 + pm_ writel (PLL1 , ctrl);
441 + clk ->parent = parent ;
442 +
443 + return 0;
444 +}
445 +
446 +/*
447 + * The AT32UC3A0512 has six primary clock sources : One 32 kHz oscillator ,
448 + * one , external slow -clock , two crystal oscillators and two PLLs.
449 + */
450 + static struct clk osc32k = {
451 + .name = " osc32k ",
452 + .get_rate = osc_get_rate ,
453 + . users = 1,
454 + . index = 0,
455 +};
456 + static struct clk osc0 = {
457 + .name = "osc0",
458 + .get_rate = osc_get_rate ,
459 + . users = 1,
460 + . index = 1,
461 +};
462 + static struct clk osc1 = {
463 + .name = "osc1",
464 + .get_rate = osc_get_rate ,
465 + . index = 2,
466 +};
467 + static struct clk pll0 = {
468 + .name = "pll0",
469 + .get_rate = pll0_get_rate ,
470 + . parent = &osc0 ,
471 +};
472 + static struct clk pll1 = {
473 + .name = "pll1",
474 + .mode = pll1_mode ,
475 + .get_rate = pll1_get_rate ,
476 + .set_rate = pll1_set_rate ,
477 + .set_ parent = pll1_set_parent ,
478 + . parent = &osc0 ,
479 +};
480 +
481 +/*
482 + * The main clock can be either osc0 or pll0. The boot loader may
483 + * have chosen one for us , so we don ’t really know which one until we
484 + * have a look at the SM.
485 + */
486 + static struct clk *main_ clock ;
487 +
488 +/*
489 + * Synchronous clocks are generated from the main clock . The clocks
490 + * must satisfy the constraint
491 + * fCPU >= fHSB >= fPB
492 + * i.e. each clock must not be faster than its parent .
493 + */
494 + static unsigned long bus_clk_get_rate(struct clk *clk , unsigned int shift)
495 +{
496 + return main_ clock ->get_rate(main_ clock) >> shift ;
497 +};
498 +
499 + static void cpu_clk_mode(struct clk *clk , int enabled)
500 +{
501 + unsigned long flags ;
502 + u32 mask;
503 +
504 + spin_lock_ irqsave (&pm_lock , flags);
505 + mask = pm_ readl (CPU_MASK);
506 + if (enabled)
507 + mask |= 1 << clk ->index ;
508 + else

D.28. UC3A0XXX SUPPORT 179

509 + mask &= ~(1 << clk ->index);
510 + pm_ writel (CPU_MASK , mask);
511 + spin_ unlock _ irqrestore (&pm_lock , flags);
512 +}
513 +
514 + static unsigned long cpu_clk_get_rate(struct clk *clk)
515 +{
516 + unsigned long cksel , shift = 0;
517 +
518 + cksel = pm_ readl (CKSEL);
519 + if (cksel & PM_BIT(CPUDIV))
520 + shift = PM_ BFEXT (CPUSEL , cksel) + 1;
521 +
522 + return bus_clk_get_rate(clk , shift);
523 +}
524 +
525 + static long cpu_clk_set_rate(struct clk *clk , unsigned long rate , int apply)
526 +{
527 + u32 control ;
528 + unsigned long parent _rate , child _div , actual _rate , div;
529 +
530 + parent _rate = clk ->parent ->get_rate(clk ->parent);
531 + control = pm_ readl (CKSEL);
532 +
533 + if (control & PM_BIT(HSBDIV))
534 + child _div = 1 << (PM_ BFEXT (HSBSEL , control) + 1);
535 + else
536 + child _div = 1;
537 +
538 + if (rate > 3 * (parent _rate / 4) || child _div == 1) {
539 + actual _rate = parent _rate;
540 + control &= ~PM_BIT(CPUDIV);
541 + } else {
542 + unsigned int cpusel ;
543 + div = (parent _rate + rate / 2) / rate;
544 + if (div > child _div)
545 + div = child _div;
546 + cpusel = (div > 1) ? (fls(div) - 2) : 0;
547 + control = PM_BIT(CPUDIV) | PM_ BFINS (CPUSEL , cpusel , control);
548 + actual _rate = parent _rate / (1 << (cpusel + 1));
549 + }
550 +
551 + pr_ debug (" clk %s: new rate %lu (actual rate %lu)\n",
552 + clk ->name , rate , actual _rate);
553 +
554 + if (apply)
555 + pm_ writel (CKSEL , control);
556 +
557 + return actual _rate;
558 +}
559 +
560 + static void hsb_clk_mode(struct clk *clk , int enabled)
561 +{
562 + unsigned long flags ;
563 + u32 mask;
564 +
565 + spin_lock_ irqsave (&pm_lock , flags);
566 + mask = pm_ readl (HSB_MASK);
567 + if (enabled)
568 + mask |= 1 << clk ->index ;
569 + else
570 + mask &= ~(1 << clk ->index);
571 + pm_ writel (HSB_MASK , mask);
572 + spin_ unlock _ irqrestore (&pm_lock , flags);
573 +}
574 +
575 + static unsigned long hsb_clk_get_rate(struct clk *clk)
576 +{
577 + unsigned long cksel , shift = 0;
578 +
579 + cksel = pm_ readl (CKSEL);
580 + if (cksel & PM_BIT(HSBDIV))
581 + shift = PM_ BFEXT (HSBSEL , cksel) + 1;
582 +
583 + return bus_clk_get_rate(clk , shift);
584 +}
585 +
586 + static void pba_clk_mode(struct clk *clk , int enabled)
587 +{
588 + unsigned long flags ;
589 + u32 mask;
590 +
591 + spin_lock_ irqsave (&pm_lock , flags);
592 + mask = pm_ readl (PBA_MASK);

180 APPENDIX D. LINUX KERNEL PATCHES

593 + if (enabled)
594 + mask |= 1 << clk ->index ;
595 + else
596 + mask &= ~(1 << clk ->index);
597 + pm_ writel (PBA_MASK , mask);
598 + spin_ unlock _ irqrestore (&pm_lock , flags);
599 +}
600 +
601 + static unsigned long pba_clk_get_rate(struct clk *clk)
602 +{
603 + unsigned long cksel , shift = 0;
604 +
605 + cksel = pm_ readl (CKSEL);
606 + if (cksel & PM_BIT(PBADIV))
607 + shift = PM_ BFEXT (PBASEL , cksel) + 1;
608 +
609 + return bus_clk_get_rate(clk , shift);
610 +}
611 +
612 + static void pbb_clk_mode(struct clk *clk , int enabled)
613 +{
614 + unsigned long flags ;
615 + u32 mask;
616 +
617 + spin_lock_ irqsave (&pm_lock , flags);
618 + mask = pm_ readl (PBB_MASK);
619 + if (enabled)
620 + mask |= 1 << clk ->index ;
621 + else
622 + mask &= ~(1 << clk ->index);
623 + pm_ writel (PBB_MASK , mask);
624 + spin_ unlock _ irqrestore (&pm_lock , flags);
625 +}
626 +
627 + static unsigned long pbb_clk_get_rate(struct clk *clk)
628 +{
629 + unsigned long cksel , shift = 0;
630 +
631 + cksel = pm_ readl (CKSEL);
632 + if (cksel & PM_BIT(PBBDIV))
633 + shift = PM_ BFEXT (PBBSEL , cksel) + 1;
634 +
635 + return bus_clk_get_rate(clk , shift);
636 +}
637 +
638 + static struct clk cpu_clk = {
639 + .name = "cpu",
640 + .get_rate = cpu_clk_get_rate ,
641 + .set_rate = cpu_clk_set_rate ,
642 + . users = 1,
643 +};
644 + static struct clk hsb_clk = {
645 + .name = "hsb",
646 + . parent = &cpu_clk ,
647 + .get_rate = hsb_clk_get_rate ,
648 +};
649 + static struct clk pba_clk = {
650 + .name = "pba",
651 + . parent = &hsb_clk ,
652 + .mode = hsb_clk_mode ,
653 + .get_rate = pba_clk_get_rate ,
654 + . users = 1,
655 + . index = 1,
656 +};
657 + static struct clk pbb_clk = {
658 + .name = "pbb",
659 + . parent = &hsb_clk ,
660 + .mode = hsb_clk_mode ,
661 + .get_rate = pbb_clk_get_rate ,
662 + . users = 1,
663 + . index = 2,
664 +};
665 +
666 +/* --
667 + * Generic Clock operations
668 + * -- */
669 +
670 + static void genclk _mode(struct clk *clk , int enabled)
671 +{
672 + u32 control ;
673 +
674 + control = pm_ readl (GCCTRL (clk ->index));
675 + if (enabled)
676 + control |= PM_BIT(CEN);

D.28. UC3A0XXX SUPPORT 181

677 + else
678 + control &= ~PM_BIT(CEN);
679 + pm_ writel (GCCTRL (clk ->index), control);
680 +}
681 +
682 + static unsigned long genclk _get_rate(struct clk *clk)
683 +{
684 + u32 control ;
685 + unsigned long div = 1;
686 +
687 + control = pm_ readl (GCCTRL (clk ->index));
688 + if (control & PM_BIT(DIVEN))
689 + div = 2 * (PM_ BFEXT (DIV , control) + 1);
690 +
691 + return clk ->parent ->get_rate(clk ->parent) / div;
692 +}
693 +
694 + static long genclk _set_rate(struct clk *clk , unsigned long rate , int apply)
695 +{
696 + u32 control ;
697 + unsigned long parent _rate , actual _rate , div;
698 +
699 + parent _rate = clk ->parent ->get_rate(clk ->parent);
700 + control = pm_ readl (GCCTRL (clk ->index));
701 +
702 + if (rate > 3 * parent _rate / 4) {
703 + actual _rate = parent _rate;
704 + control &= ~PM_BIT(DIVEN);
705 + } else {
706 + div = (parent _rate + rate) / (2 * rate) - 1;
707 + control = PM_ BFINS (DIV , div , control) | PM_BIT(DIVEN);
708 + actual _rate = parent _rate / (2 * (div + 1));
709 + }
710 +
711 + dev_dbg(clk ->dev , "clk %s: new rate %lu (actual rate %lu)\n",
712 + clk ->name , rate , actual _rate);
713 +
714 + if (apply)
715 + pm_ writel (GCCTRL (clk ->index), control);
716 +
717 + return actual _rate;
718 +}
719 +
720 +int genclk _set_ parent (struct clk *clk , struct clk * parent)
721 +{
722 + u32 control ;
723 +
724 + dev_dbg(clk ->dev , "clk %s: new parent %s (was %s)\n",
725 + clk ->name , parent ->name , clk ->parent ->name);
726 +
727 + control = pm_ readl (GCCTRL (clk ->index));
728 +
729 + if (parent == &osc1 || parent == &pll1)
730 + control |= PM_BIT(OSCSEL);
731 + else if (parent == &osc0 || parent == &pll0)
732 + control &= ~PM_BIT(OSCSEL);
733 + else
734 + return -EINVAL ;
735 +
736 + if (parent == &pll0 || parent == &pll1)
737 + control |= PM_BIT(PLLSEL);
738 + else
739 + control &= ~PM_BIT(PLLSEL);
740 +
741 + pm_ writel (GCCTRL (clk ->index), control);
742 + clk ->parent = parent ;
743 +
744 + return 0;
745 +}
746 +
747 + static void __init genclk _init_ parent (struct clk *clk)
748 +{
749 + u32 control ;
750 + struct clk * parent ;
751 +
752 + BUG_ON(clk ->index > 7);
753 +
754 + control = pm_ readl (GCCTRL (clk ->index));
755 + if (control & PM_BIT(OSCSEL))
756 + parent = (control & PM_BIT(PLLSEL)) ? &pll1 : &osc1;
757 + else
758 + parent = (control & PM_BIT(PLLSEL)) ? &pll0 : &osc0;
759 +
760 + clk ->parent = parent ;

182 APPENDIX D. LINUX KERNEL PATCHES

761 +}
762 +
763 +/* --
764 + * System peripherals
765 + * -- */
766 + static struct resource at32_pm0_ resource [] = {
767 + /* Note that the PM has a size of at least 0x208. However , the
768 + * RTC , WDT and EIC are embedded in this structure , so we set
769 + * the size to 0x100 to avoid overlap .
770 + */
771 + MEMRANGE (0 xffff0c00 , 0x100),
772 + IRQ (1) ,
773 +};
774 +
775 + static struct resource at32uc3a0xxx _rtc0_ resource [] = {
776 + MEMRANGE (0 xffff0d00 , 0x24),
777 + IRQ (1) ,
778 +};
779 +
780 + static struct resource at32_wdt0_ resource [] = {
781 + MEMRANGE (0 xffff0d30 , 0x8),
782 +};
783 +
784 + static struct resource at32_eic0_ resource [] = {
785 + MEMRANGE (0 xffff0d80 , 0x3c),
786 + IRQ (1) ,
787 +};
788 +
789 + DEFINE _DEV(at32_pm , 0);
790 + DEFINE _DEV(at32uc3a0xxx _rtc , 0);
791 + DEFINE _DEV(at32_wdt , 0);
792 + DEFINE _DEV(at32_eic , 0);
793 +
794 +/*
795 + * Peripheral clock for PM , RTC and EIC. PM will ensure that this
796 + * is always running .
797 + */
798 + static struct clk at32_pm_pclk = {
799 + .name = "pclk",
800 + .dev = &at32_pm0_ device .dev ,
801 + . parent = &pba_clk ,
802 + .mode = pba_clk_mode ,
803 + .get_rate = pba_clk_get_rate ,
804 + . users = 1,
805 + . index = 3,
806 +};
807 +
808 + static struct resource intc0 _ resource [] = {
809 + PBMEM (0 xffff0800),
810 +};
811 + struct platform _ device at32_ intc0 _ device = {
812 + .name = "intc",
813 + .id = 0,
814 + . resource = intc0 _resource ,
815 + .num_ resources = ARRAY _SIZE(intc0 _ resource),
816 +};
817 +DEV_CLK(pclk , at32_intc0 , pba , 0);
818 +
819 + static struct clk ebi_clk = {
820 + .name = "ebi",
821 + . parent = &hsb_clk ,
822 + .mode = hsb_clk_mode ,
823 + .get_rate = hsb_clk_get_rate ,
824 + . users = 6,
825 +};
826 + static struct clk sdramc _clk = {
827 + .name = " sdramc _clk",
828 + . parent = &pbb_clk ,
829 + .mode = pbb_clk_mode ,
830 + .get_rate = pbb_clk_get_rate ,
831 + . users = 1,
832 + . index = 5,
833 +};
834 +
835 + static struct resource smc0_ resource [] = {
836 + PBMEM (0 xfffe1c00),
837 +};
838 + DEFINE _DEV(smc , 0);
839 + static struct clk smc0_pclk = {
840 + .name = "pclk",
841 + .dev = &smc0_ device .dev ,
842 + . parent = &pbb_clk ,
843 + .mode = pbb_clk_mode ,
844 + .get_rate = pbb_clk_get_rate ,

D.28. UC3A0XXX SUPPORT 183

845 + . users = 1,
846 + . index = 4,
847 +};
848 + static struct clk smc0_mck = {
849 + .name = "mck",
850 + .dev = &smc0_ device .dev ,
851 + . parent = &hsb_clk ,
852 + .mode = hsb_clk_mode ,
853 + .get_rate = hsb_clk_get_rate ,
854 + . users = 1,
855 + . index = 6,
856 +};
857 +
858 + static struct platform _ device pdca_ device = {
859 + .name = "pdca",
860 + .id = 0,
861 +};
862 +DEV_CLK(pclk , pdca , pba , 2);
863 +
864 +/* --
865 + * HMATRIX
866 + * -- */
867 +
868 + struct clk at32_ hmatrix _clk = {
869 + .name = " hmatrix _clk",
870 + . parent = &pbb_clk ,
871 + .mode = pbb_clk_mode ,
872 + .get_rate = pbb_clk_get_rate ,
873 + . index = 0,
874 + . users = 1,
875 +};
876 +
877 +/*
878 + * Set bits in the HMATRIX Special Function Register (SFR) used by the
879 + * External Bus Interface (EBI). This can be used to enable special
880 + * features like CompactFlash support , NAND Flash support , etc. on
881 + * certain chipselects .
882 + */
883 + static inline void set_ebi_sfr_bits(u32 mask)
884 +{
885 + hmatrix _sfr_set_bits(HMATRIX _ SLAVE _EBI , mask);
886 +}
887 +
888 +/* --
889 + * Timer / Counter (TC)
890 + * -- */
891 +
892 + static struct resource at32_tc0_ resource [] = {
893 + PBMEM (0 xffff3800),
894 + IRQ (14) ,
895 +};
896 + static struct platform _ device at32_tc0_ device = {
897 + .name = " atmel _tc",
898 + .id = 0,
899 + . resource = at32_tc0_resource ,
900 + .num_ resources = ARRAY _SIZE(at32_tc0_ resource),
901 +};
902 +DEV_CLK(t0_clk , at32_tc0 , pbb , 3);
903 +
904 +/* --
905 + * On -Chip Debug
906 + * -- */
907 +
908 + static struct resource at32_ocd0_ resource [] = {
909 +};
910 + static struct platform _ device at32_ocd0_ device = {
911 + .name = " atmel _ocd",
912 + .id = 0,
913 + . resource = at32_ocd0_resource ,
914 + .num_ resources = ARRAY _SIZE(at32_ocd0_ resource),
915 +};
916 + struct clk at32_ocd0_clk = {
917 + .name = "at32_ocd0_clk",
918 + . parent = &cpu_clk ,
919 + .mode = cpu_clk_mode ,
920 + .get_rate = cpu_clk_get_rate ,
921 + . index = 1,
922 + . users = 1,
923 +};
924 +
925 +
926 +/* --
927 + * GPIO
928 + * -- */

184 APPENDIX D. LINUX KERNEL PATCHES

929 + static struct resource gpio0 _ resource [] = {
930 + MEMRANGE (0 xffff1000 , 0x100),
931 + IRQ (2) ,
932 +};
933 + DEFINE _DEV(gpio , 0);
934 +DEV_CLK(mck , gpio0 , pba , 1);
935 +
936 + static struct resource gpio1 _ resource [] = {
937 + MEMRANGE (0 xffff1100 , 0x100),
938 + IRQ (2) ,
939 +};
940 + DEFINE _DEV(gpio , 1);
941 +DEV_CLK(mck , gpio1 , pba , 1);
942 +
943 + static struct resource gpio2 _ resource [] = {
944 + MEMRANGE (0 xffff1200 , 0x100),
945 + IRQ (2) ,
946 +};
947 + DEFINE _DEV(gpio , 2);
948 +DEV_CLK(mck , gpio2 , pba , 1);
949 +
950 + static struct resource gpio3 _ resource [] = {
951 + MEMRANGE (0 xffff1300 , 0x100),
952 + IRQ (2) ,
953 +};
954 + DEFINE _DEV(gpio , 3);
955 +DEV_CLK(mck , gpio3 , pba , 1);
956 +
957 +void __init at32_add_ system _ devices (void)
958 +{
959 + platform _ device _ register (&at32_pm0_ device);
960 + platform _ device _ register (&at32_ intc0 _ device);
961 + platform _ device _ register (& at32uc3a0xxx _rtc0_ device);
962 + platform _ device _ register (&at32_wdt0_ device);
963 + platform _ device _ register (&at32_eic0_ device);
964 + platform _ device _ register (&smc0_ device);
965 + platform _ device _ register (&pdca_ device);
966 + platform _ device _ register (&at32_ocd0_ device);
967 +
968 + platform _ device _ register (&at32_tc0_ device);
969 +
970 + platform _ device _ register (& gpio0 _ device);
971 + platform _ device _ register (& gpio1 _ device);
972 + platform _ device _ register (& gpio2 _ device);
973 + platform _ device _ register (& gpio3 _ device);
974 +}
975 +
976 +
977 +/* --
978 + * USART
979 + * -- */
980 +
981 + static struct atmel _uart_data atmel _ usart0 _data = {
982 + .use_dma_tx = 1,
983 + .use_dma_rx = 1,
984 +};
985 + static struct resource atmel _ usart0 _ resource [] = {
986 + PBMEM (0 xffff1400),
987 + IRQ (5) ,
988 +};
989 + DEFINE _DEV_DATA(atmel _usart , 0);
990 +DEV_CLK(usart , atmel _usart0 , pba , 8);
991 +
992 + static struct atmel _uart_data atmel _ usart1 _data = {
993 + .use_dma_tx = 1,
994 + .use_dma_rx = 1,
995 +};
996 + static struct resource atmel _ usart1 _ resource [] = {
997 + PBMEM (0 xffff1800),
998 + IRQ (6) ,
999 +};

1000 + DEFINE _DEV_DATA(atmel _usart , 1);
1001 +DEV_CLK(usart , atmel _usart1 , pba , 9);
1002 +
1003 + static struct atmel _uart_data atmel _ usart2 _data = {
1004 + .use_dma_tx = 1,
1005 + .use_dma_rx = 1,
1006 +};
1007 + static struct resource atmel _ usart2 _ resource [] = {
1008 + PBMEM (0 xffff1c00),
1009 + IRQ (7) ,
1010 +};
1011 + DEFINE _DEV_DATA(atmel _usart , 2);
1012 +DEV_CLK(usart , atmel _usart2 , pba , 10);

D.28. UC3A0XXX SUPPORT 185

1013 +
1014 + static struct atmel _uart_data atmel _ usart3 _data = {
1015 + .use_dma_tx = 1,
1016 + .use_dma_rx = 1,
1017 +};
1018 + static struct resource atmel _ usart3 _ resource [] = {
1019 + PBMEM (0 xffff2000),
1020 + IRQ (8) ,
1021 +};
1022 + DEFINE _DEV_DATA(atmel _usart , 3);
1023 +DEV_CLK(usart , atmel _usart3 , pba , 11);
1024 +
1025 + static inline void configure _ usart0 _pins(void)
1026 +{
1027 + select _ peripheral (PA (0) , PERIPH _A, 0); /* RXD */
1028 + select _ peripheral (PA (1) , PERIPH _A, 0); /* TXD */
1029 +}
1030 +
1031 + static inline void configure _ usart1 _pins(void)
1032 +{
1033 + select _ peripheral (PA (5) , PERIPH _A, 0); /* RXD */
1034 + select _ peripheral (PA (6) , PERIPH _A, 0); /* TXD */
1035 +}
1036 +
1037 + static inline void configure _ usart2 _pins(void)
1038 +{
1039 + select _ peripheral (PB (29) , PERIPH _A, 0); /* RXD */
1040 + select _ peripheral (PB (30) , PERIPH _A, 0); /* TXD */
1041 +}
1042 +
1043 + static inline void configure _ usart3 _pins(void)
1044 +{
1045 + select _ peripheral (PB (10) , PERIPH _B, 0); /* RXD */
1046 + select _ peripheral (PB (11) , PERIPH _B, 0); /* TXD */
1047 +}
1048 +
1049 + static struct platform _ device *__ initdata at32_ usarts [4];
1050 +
1051 +void __init at32_map_ usart (unsigned int hw_id , unsigned int line)
1052 +{
1053 + struct platform _ device *pdev;
1054 + struct atmel _uart_data *data;
1055 +
1056 + switch (hw_id) {
1057 + case 0:
1058 + pdev = & atmel _ usart0 _ device ;
1059 + configure _ usart0 _pins ();
1060 + break ;
1061 + case 1:
1062 + pdev = & atmel _ usart1 _ device ;
1063 + configure _ usart1 _pins ();
1064 + break ;
1065 + case 2:
1066 + pdev = & atmel _ usart2 _ device ;
1067 + configure _ usart2 _pins ();
1068 + break ;
1069 + case 3:
1070 + pdev = & atmel _ usart3 _ device ;
1071 + configure _ usart3 _pins ();
1072 + break ;
1073 + default :
1074 + return ;
1075 + }
1076 +
1077 + data = pdev ->dev. platform _data;
1078 + data ->regs = (void __ iomem *) pdev ->resource [0]. start ;
1079 +
1080 + pdev ->id = line;
1081 + at32_ usarts [line] = pdev;
1082 +}
1083 +
1084 + struct platform _ device *__init at32_add_ device _ usart (unsigned int id)
1085 +{
1086 + platform _ device _ register (at32_ usarts [id]);
1087 + return at32_ usarts [id];
1088 +}
1089 +
1090 + struct platform _ device * atmel _ default _ console _ device ;
1091 +
1092 +void __init at32_ setup _ serial _ console (unsigned int usart _id)
1093 +{
1094 + atmel _ default _ console _ device = at32_ usarts [usart _id];
1095 +}
1096 +

186 APPENDIX D. LINUX KERNEL PATCHES

1097 +/* --
1098 + * Ethernet
1099 + * -- */
1100 +
1101 + static struct eth_ platform _data macb0 _data;
1102 + static struct resource macb0 _ resource [] = {
1103 + PBMEM (0 xfffe1800),
1104 + IRQ (16) ,
1105 +};
1106 + DEFINE _DEV_DATA(macb , 0);
1107 +DEV_CLK(hclk , macb0 , hsb , 4);
1108 +DEV_CLK(pclk , macb0 , pbb , 3);
1109 +
1110 +
1111 + struct platform _ device *__init
1112 +at32_add_ device _eth(unsigned int id , struct eth_ platform _data *data)
1113 +{
1114 + struct platform _ device *pdev;
1115 +
1116 + switch (id) {
1117 + case 0:
1118 + pdev = & macb0 _ device ;
1119 +
1120 + at32_ select _ periph (34 , GPIO_ PERIPH _A, 0); /* TXD0 */
1121 + at32_ select _ periph (35 , GPIO_ PERIPH _A, 0); /* TXD1 */
1122 + at32_ select _ periph (33 , GPIO_ PERIPH _A, 0); /* TXEN */
1123 + at32_ select _ periph (32 , GPIO_ PERIPH _A, 0); /* TXCK */
1124 + at32_ select _ periph (37 , GPIO_ PERIPH _A, 0); /* RXD0 */
1125 + at32_ select _ periph (38 , GPIO_ PERIPH _A, 0); /* RXD1 */
1126 + at32_ select _ periph (39 , GPIO_ PERIPH _A, 0); /* RXER */
1127 + at32_ select _ periph (47 , GPIO_ PERIPH _A, 0); /* RXDV */
1128 + at32_ select _ periph (40 , GPIO_ PERIPH _A, 0); /* MDC */
1129 + at32_ select _ periph (41 , GPIO_ PERIPH _A, 0); /* MDIO */
1130 +
1131 + if (!data ->is_rmii) {
1132 + select _ peripheral (PC (0) , PERIPH _A, 0); /* COL */
1133 + select _ peripheral (PC (1) , PERIPH _A, 0); /* CRS */
1134 + select _ peripheral (PC (2) , PERIPH _A, 0); /* TXER */
1135 + select _ peripheral (PC (5) , PERIPH _A, 0); /* TXD2 */
1136 + select _ peripheral (PC (6) , PERIPH _A, 0); /* TXD3 */
1137 + select _ peripheral (PC (11) , PERIPH _A, 0); /* RXD2 */
1138 + select _ peripheral (PC (12) , PERIPH _A, 0); /* RXD3 */
1139 + select _ peripheral (PC (14) , PERIPH _A, 0); /* RXCK */
1140 + select _ peripheral (PC (18) , PERIPH _A, 0); /* SPD */
1141 + }
1142 + break ;
1143 +
1144 + default :
1145 + return NULL;
1146 + }
1147 +
1148 + memcpy (pdev ->dev. platform _data , data , sizeof (struct eth_ platform _data));
1149 + platform _ device _ register (pdev);
1150 +
1151 + return pdev;
1152 +}
1153 +
1154 +/* --
1155 + * SPI
1156 + * -- */
1157 + static struct resource atmel _spi0_ resource [] = {
1158 + PBMEM (0 xffff2400),
1159 + IRQ (9) ,
1160 +};
1161 + DEFINE _DEV(atmel _spi , 0);
1162 +DEV_CLK(spi_clk , atmel _spi0 , pba , 5);
1163 +
1164 + static struct resource atmel _spi1_ resource [] = {
1165 + PBMEM (0 xffff2800),
1166 + IRQ (10) ,
1167 +};
1168 + DEFINE _DEV(atmel _spi , 1);
1169 +DEV_CLK(spi_clk , atmel _spi1 , pba , 6);
1170 +
1171 + static void __init
1172 +at32_spi_ setup _ slaves (unsigned int bus_num , struct spi_ board _info *b,
1173 + unsigned int n, const u8 *pins)
1174 +{
1175 + unsigned int pin , mode;
1176 +
1177 + for (; n; n--, b++) {
1178 + b->bus_num = bus_num;
1179 + if (b->chip_ select >= 4)
1180 + continue ;

D.28. UC3A0XXX SUPPORT 187

1181 + pin = (unsigned)b->controller _data;
1182 + if (!pin) {
1183 + pin = pins[b->chip_ select];
1184 + b->controller _data = (void *) pin;
1185 + }
1186 + mode = AT32_ GPIOF _ OUTPUT ;
1187 + if (!(b->mode & SPI_CS_HIGH))
1188 + mode |= AT32_ GPIOF _HIGH;
1189 + at32_ select _gpio(pin , mode);
1190 + }
1191 +}
1192 +
1193 + struct platform _ device *__init
1194 +at32_add_ device _spi(unsigned int id , struct spi_ board _info *b, unsigned int n)
1195 +{
1196 + /*
1197 + * Manage the chipselects as GPIOs , normally using the same pins
1198 + * the SPI controller expects ; but boards can use other pins.
1199 + */
1200 + static u8 __ initdata spi0_pins[] =
1201 + { GPIO_PIN_PA (10) , GPIO_PIN_PA (8) ,
1202 + GPIO_PIN_PA (9) , GPIO_PIN_PA (7) , };
1203 + static u8 __ initdata spi1_pins[] =
1204 + { GPIO_PIN_PA (14) , GPIO_PIN_PA (18) ,
1205 + GPIO_PIN_PA (19) , GPIO_PIN_PA (20) , };
1206 + struct platform _ device *pdev;
1207 +
1208 + switch (id) {
1209 + case 0:
1210 + pdev = & atmel _spi0_ device ;
1211 + /* pullup MISO so a level is always defined */
1212 + select _ peripheral (PA (11) , PERIPH _A, AT32_ GPIOF _ PULLUP);
1213 + select _ peripheral (PA (12) , PERIPH _A, 0); /* MOSI */
1214 + select _ peripheral (PA (13) , PERIPH _A, 0); /* SCK */
1215 + at32_spi_ setup _ slaves (0, b, n, spi0_pins);
1216 + break ;
1217 +
1218 + case 1:
1219 + pdev = & atmel _spi1_ device ;
1220 + /* pullup MISO so a level is always defined */
1221 + select _ peripheral (PA (17) , PERIPH _B, AT32_ GPIOF _ PULLUP);
1222 + select _ peripheral (PA (16) , PERIPH _B, 0); /* MOSI */
1223 + select _ peripheral (PA (15) , PERIPH _B, 0); /* SCK */
1224 + at32_spi_ setup _ slaves (1, b, n, spi1_pins);
1225 + break ;
1226 +
1227 + default :
1228 + return NULL;
1229 + }
1230 +
1231 + spi_ register _ board _info(b, n);
1232 + platform _ device _ register (pdev);
1233 + return pdev;
1234 +}
1235 +
1236 +/* --
1237 + * TWI
1238 + * -- */
1239 + static struct resource atmel _twi0_ resource [] __ initdata = {
1240 + PBMEM (0 xffff2c00),
1241 + IRQ (11) ,
1242 +};
1243 + static struct clk atmel _twi0_pclk = {
1244 + .name = "twi_pclk",
1245 + . parent = &pba_clk ,
1246 + .mode = pba_clk_mode ,
1247 + .get_rate = pba_clk_get_rate ,
1248 + . index = 7,
1249 +};
1250 +
1251 + struct platform _ device *__init at32_add_ device _twi(unsigned int id ,
1252 + struct i2c_ board _info *b,
1253 + unsigned int n)
1254 +{
1255 + struct platform _ device *pdev;
1256 +
1257 + if (id != 0)
1258 + return NULL;
1259 +
1260 + pdev = platform _ device _ alloc (" atmel _twi", id);
1261 + if (!pdev)
1262 + return NULL;
1263 +
1264 + if (platform _ device _add_ resources (pdev , atmel _twi0_resource ,

188 APPENDIX D. LINUX KERNEL PATCHES

1265 + ARRAY _SIZE(atmel _twi0_ resource)))
1266 + goto err_add_ resources ;
1267 +
1268 + select _ peripheral (PA (6) , PERIPH _A, 0); /* SDA */
1269 + select _ peripheral (PA (7) , PERIPH _A, 0); /* SDL */
1270 +
1271 + atmel _twi0_pclk.dev = &pdev ->dev;
1272 +
1273 + if (b)
1274 + i2c_ register _ board _info(id , b, n);
1275 +
1276 + platform _ device _add(pdev);
1277 + return pdev;
1278 +
1279 +err_add_ resources :
1280 + platform _ device _put(pdev);
1281 + return NULL;
1282 +}
1283 +
1284 +
1285 +/* --
1286 + * PWM
1287 + * -- */
1288 + static struct resource atmel _pwm0_ resource [] __ initdata = {
1289 + PBMEM (0 xffff3000),
1290 + IRQ (12) ,
1291 +};
1292 + static struct clk atmel _pwm0_mck = {
1293 + .name = "pwm_clk",
1294 + . parent = &pba_clk ,
1295 + .mode = pba_clk_mode ,
1296 + .get_rate = pba_clk_get_rate ,
1297 + . index = 12,
1298 +};
1299 +
1300 + struct platform _ device *__init at32_add_ device _pwm(u32 mask)
1301 +{
1302 + struct platform _ device *pdev;
1303 +
1304 + if (!mask)
1305 + return NULL;
1306 +
1307 + pdev = platform _ device _ alloc (" atmel _pwm", 0);
1308 + if (!pdev)
1309 + return NULL;
1310 +
1311 + if (platform _ device _add_ resources (pdev , atmel _pwm0_resource ,
1312 + ARRAY _SIZE(atmel _pwm0_ resource)))
1313 + goto out_free_pdev;
1314 +
1315 + if (platform _ device _add_data(pdev , &mask , sizeof (mask)))
1316 + goto out_free_pdev;
1317 +
1318 + if (mask & (1 << 0))
1319 + select _ peripheral (PA (28) , PERIPH _A, 0);
1320 + if (mask & (1 << 1))
1321 + select _ peripheral (PA (29) , PERIPH _A, 0);
1322 + if (mask & (1 << 2))
1323 + select _ peripheral (PA (21) , PERIPH _B, 0);
1324 + if (mask & (1 << 3))
1325 + select _ peripheral (PA (22) , PERIPH _B, 0);
1326 +
1327 + atmel _pwm0_mck.dev = &pdev ->dev;
1328 +
1329 + platform _ device _add(pdev);
1330 +
1331 + return pdev;
1332 +
1333 +out_free_pdev:
1334 + platform _ device _put(pdev);
1335 + return NULL;
1336 +}
1337 +
1338 +/* --
1339 + * SSC
1340 + * -- */
1341 + static struct resource ssc0_ resource [] = {
1342 + PBMEM (0 xffff3400),
1343 + IRQ (13) ,
1344 +};
1345 + DEFINE _DEV(ssc , 0);
1346 +DEV_CLK(pclk , ssc0 , pba , 13);
1347 +
1348 + struct platform _ device *__init

D.28. UC3A0XXX SUPPORT 189

1349 +at32_add_ device _ssc(unsigned int id , unsigned int flags)
1350 +{
1351 + struct platform _ device *pdev;
1352 +
1353 + switch (id) {
1354 + case 0:
1355 + pdev = &ssc0_ device ;
1356 + if (flags & ATMEL _SSC_RF)
1357 + select _ peripheral (PA (21) , PERIPH _A, 0); /* RF */
1358 + if (flags & ATMEL _SSC_RK)
1359 + select _ peripheral (PA (22) , PERIPH _A, 0); /* RK */
1360 + if (flags & ATMEL _SSC_TK)
1361 + select _ peripheral (PA (23) , PERIPH _A, 0); /* TK */
1362 + if (flags & ATMEL _SSC_TF)
1363 + select _ peripheral (PA (24) , PERIPH _A, 0); /* TF */
1364 + if (flags & ATMEL _SSC_TD)
1365 + select _ peripheral (PA (25) , PERIPH _A, 0); /* TD */
1366 + if (flags & ATMEL _SSC_RD)
1367 + select _ peripheral (PA (26) , PERIPH _A, 0); /* RD */
1368 + break ;
1369 + default :
1370 + return NULL;
1371 + }
1372 +
1373 + platform _ device _ register (pdev);
1374 + return pdev;
1375 +}
1376 +
1377 +/* --
1378 + * USB Device Controller
1379 + * -- */
1380 + static struct resource usba0 _ resource [] __ initdata = {
1381 + {
1382 + . start = 0xe0000000 ,
1383 + .end = 0xefffffff ,
1384 + . flags = IORESOURCE _MEM ,
1385 + }, {
1386 + . start = 0xfffe0000 ,
1387 + .end = 0xfffe0fff ,
1388 + . flags = IORESOURCE _MEM ,
1389 + },
1390 + IRQ (17) ,
1391 +};
1392 + static struct clk usba0 _pclk = {
1393 + .name = "pclk",
1394 + . parent = &pbb_clk ,
1395 + .mode = pbb_clk_mode ,
1396 + .get_rate = pbb_clk_get_rate ,
1397 + . index = 2,
1398 +};
1399 + static struct clk usba0 _hclk = {
1400 + .name = "hclk",
1401 + . parent = &hsb_clk ,
1402 + .mode = hsb_clk_mode ,
1403 + .get_rate = hsb_clk_get_rate ,
1404 + . index = 3,
1405 +};
1406 +
1407 +# define EP(nam , idx , maxpkt , maxbk , dma , isoc) \
1408 + [idx] = { \
1409 + .name = nam , \
1410 + . index = idx , \
1411 + .fifo_size = maxpkt , \
1412 + .nr_ banks = maxbk , \
1413 + .can_dma = dma , \
1414 + .can_isoc = isoc , \
1415 + }
1416 +
1417 + static struct usba_ep_data at32_usba_ep[] __ initdata = {
1418 + EP (" ep0", 0, 64, 1, 0, 0) ,
1419 + EP (" ep1", 1, 512 , 2, 1, 1) ,
1420 + EP (" ep2", 2, 512 , 2, 1, 1) ,
1421 + EP ("ep3 -int", 3, 64, 3, 1, 0) ,
1422 + EP ("ep4 -int", 4, 64, 3, 1, 0) ,
1423 + EP (" ep5", 5, 1024 , 3, 1, 1) ,
1424 + EP (" ep6", 6, 1024 , 3, 1, 1) ,
1425 +};
1426 +
1427 +# undef EP
1428 +
1429 + struct platform _ device *__init
1430 +at32_add_ device _usba(unsigned int id , struct usba_ platform _data *data)
1431 +{
1432 + /*

190 APPENDIX D. LINUX KERNEL PATCHES

1433 + * pdata doesn ’t have room for any endpoints , so we need to
1434 + * append room for the ones we need right after it.
1435 + */
1436 + struct {
1437 + struct usba_ platform _data pdata ;
1438 + struct usba_ep_data ep[7];
1439 + } usba_data;
1440 + struct platform _ device *pdev;
1441 +
1442 + if (id != 0)
1443 + return NULL;
1444 +
1445 + pdev = platform _ device _ alloc (" atmel _usba_udc", 0);
1446 + if (!pdev)
1447 + return NULL;
1448 +
1449 + if (platform _ device _add_ resources (pdev , usba0 _resource ,
1450 + ARRAY _SIZE(usba0 _ resource)))
1451 + goto out_free_pdev;
1452 +
1453 + if (data)
1454 + usba_data. pdata .vbus_pin = data ->vbus_pin;
1455 + else
1456 + usba_data. pdata .vbus_pin = -EINVAL ;
1457 +
1458 + data = &usba_data. pdata ;
1459 + data ->num_ep = ARRAY _SIZE(at32_usba_ep);
1460 + memcpy (data ->ep , at32_usba_ep , sizeof (at32_usba_ep));
1461 +
1462 + if (platform _ device _add_data(pdev , data , sizeof (usba_data)))
1463 + goto out_free_pdev;
1464 +
1465 + if (data ->vbus_pin >= 0)
1466 + at32_ select _gpio(data ->vbus_pin , 0);
1467 +
1468 + usba0 _pclk.dev = &pdev ->dev;
1469 + usba0 _hclk.dev = &pdev ->dev;
1470 +
1471 + platform _ device _add(pdev);
1472 +
1473 + return pdev;
1474 +
1475 +out_free_pdev:
1476 + platform _ device _put(pdev);
1477 + return NULL;
1478 +}
1479 +
1480 +
1481 +/* --
1482 + * GCLK
1483 + * -- */
1484 + static struct clk gclk0 = {
1485 + .name = " gclk0 ",
1486 + .mode = genclk _mode ,
1487 + .get_rate = genclk _get_rate ,
1488 + .set_rate = genclk _set_rate ,
1489 + .set_ parent = genclk _set_parent ,
1490 + . index = 0,
1491 +};
1492 +
1493 + struct clk *at32_ clock _list[] = {
1494 + &osc32k ,
1495 + &osc0 ,
1496 + &osc1 ,
1497 + &pll0 ,
1498 + &pll1 ,
1499 + &cpu_clk ,
1500 + &hsb_clk ,
1501 + &pba_clk ,
1502 + &pbb_clk ,
1503 + &at32_pm_pclk ,
1504 + &at32_ intc0 _pclk ,
1505 + &at32_ hmatrix _clk ,
1506 + &ebi_clk ,
1507 + & sdramc _clk ,
1508 + &smc0_pclk ,
1509 + &smc0_mck ,
1510 + &pdca_pclk ,
1511 + &at32_ocd0_clk ,
1512 + & gpio0 _mck ,
1513 + & gpio1 _mck ,
1514 + & gpio2 _mck ,
1515 + & gpio3 _mck ,
1516 + &at32_tc0_t0_clk ,

D.28. UC3A0XXX SUPPORT 191

1517 + & atmel _ usart0 _usart ,
1518 + & atmel _ usart1 _usart ,
1519 + & atmel _ usart2 _usart ,
1520 + & atmel _ usart3 _usart ,
1521 + & atmel _pwm0_mck ,
1522 + & macb0 _hclk ,
1523 + & macb0 _pclk ,
1524 + & atmel _spi0_spi_clk ,
1525 + & atmel _spi1_spi_clk ,
1526 + & atmel _twi0_pclk ,
1527 + &ssc0_pclk ,
1528 + & usba0 _hclk ,
1529 + & usba0 _pclk ,
1530 + &gclk0 ,
1531 +};
1532 + unsigned int at32_nr_ clocks = ARRAY _SIZE(at32_ clock _list);
1533 +
1534 +void __init setup _ platform (void)
1535 +{
1536 + u32 cpu_mask = 0, hsb_mask = 0, pba_mask = 0, pbb_mask = 0;
1537 + int i;
1538 +
1539 + if (pm_ readl (MCCTRL) & PM_BIT(PLLSEL)) {
1540 + main_ clock = &pll0;
1541 + cpu_clk. parent = &pll0;
1542 + } else {
1543 + main_ clock = &osc0;
1544 + cpu_clk. parent = &osc0;
1545 + }
1546 +
1547 + if (pm_ readl (PLL0) & PM_BIT(PLLOSC))
1548 + pll0. parent = &osc1;
1549 + if (pm_ readl (PLL1) & PM_BIT(PLLOSC))
1550 + pll1. parent = &osc1;
1551 +
1552 + genclk _init_ parent (& gclk0);
1553 +
1554 + /*
1555 + * Turn on all clocks that have at least one user already , and
1556 + * turn off everything else. We only do this for module
1557 + * clocks , and even though it isn ’t particularly pretty to
1558 + * check the address of the mode function , it should do the
1559 + * trick ...
1560 + */
1561 + for (i = 0; i < ARRAY _SIZE(at32_ clock _list); i++) {
1562 + struct clk *clk = at32_ clock _list[i];
1563 +
1564 + if (clk ->users == 0)
1565 + continue ;
1566 +
1567 + if (clk ->mode == &cpu_clk_mode)
1568 + cpu_mask |= 1 << clk ->index ;
1569 + else if (clk ->mode == &hsb_clk_mode)
1570 + hsb_mask |= 1 << clk ->index ;
1571 + else if (clk ->mode == &pba_clk_mode)
1572 + pba_mask |= 1 << clk ->index ;
1573 + else if (clk ->mode == &pbb_clk_mode)
1574 + pbb_mask |= 1 << clk ->index ;
1575 + }
1576 +
1577 + pm_ writel (CPU_MASK , cpu_mask);
1578 + pm_ writel (HSB_MASK , hsb_mask);
1579 + pm_ writel (PBA_MASK , pba_mask);
1580 + pm_ writel (PBB_MASK , pbb_mask);
1581 +
1582 + /* Initialize the port muxes */
1583 + at32_init_gpio(& gpio0 _ device);
1584 + at32_init_gpio(& gpio1 _ device);
1585 + at32_init_gpio(& gpio2 _ device);
1586 + at32_init_gpio(& gpio3 _ device);
1587 +}
1588 +
1589 + struct gen_pool *sram_pool;
1590 +
1591 + static int __init sram_init(void)
1592 +{
1593 + struct gen_pool *pool;
1594 +
1595 + /* 1KiB granularity */
1596 + pool = gen_pool_ create (10 , -1);
1597 + if (!pool)
1598 + goto fail;
1599 +
1600 + /* All UC3A chips currently have at least 32 KiB of internal SRAM. */

192 APPENDIX D. LINUX KERNEL PATCHES

1601 + if (gen_pool_add(pool , 0x00000000 , 32*1024 , -1))
1602 + goto err_pool_add;
1603 +
1604 + sram_pool = pool;
1605 + return 0;
1606 +
1607 +err_pool_add:
1608 + gen_pool_ destroy (pool);
1609 +fail:
1610 + pr_err (" Failed to create SRAM pool\n");
1611 + return -ENOMEM ;
1612 +}
1613 +core_ initcall (sram_init);
1614 diff --git a/arch/ avr32 /mach - at32ap / clock .c b/arch/ avr32 /mach - at32uc3a / clock .c
1615 similarity index 84%
1616 copy from arch/ avr32 /mach - at32ap / clock .c
1617 copy to arch/ avr32 /mach - at32uc3a / clock .c
1618 index 138 a00a..6 c27dda 100644
1619 --- a/arch/ avr32 /mach - at32ap / clock .c
1620 +++ b/arch/ avr32 /mach - at32uc3a / clock .c
1621 @@ -15 ,40 +15 ,24 @@
1622 # include <linux /err.h>
1623 # include <linux / device .h>
1624 # include <linux / string .h>
1625 -# include <linux /list.h>
1626
1627 # include <mach/chip.h>
1628
1629 # include " clock .h"
1630
1631 -/* at32 clock list */
1632 -static LIST_HEAD(at32_ clock _list);
1633 -
1634 static DEFINE _ SPINLOCK (clk_lock);
1635 -static DEFINE _ SPINLOCK (clk_list_lock);
1636 -
1637 -void at32_clk_ register (struct clk *clk)
1638 -{
1639 - spin_lock(&clk_list_lock);
1640 - /* add the new item to the end of the list */
1641 - list_add_tail(&clk ->list , &at32_ clock _list);
1642 - spin_ unlock (&clk_list_lock);
1643 -}
1644
1645 struct clk *clk_get(struct device *dev , const char *id)
1646 {
1647 - struct clk *clk;
1648 + int i;
1649
1650 - spin_lock(&clk_list_lock);
1651 + for (i = 0; i < at32_nr_ clocks ; i++) {
1652 + struct clk *clk = at32_ clock _list[i];
1653
1654 - list_for_each_ entry (clk , &at32_ clock _list , list) {
1655 - if (clk ->dev == dev && strcmp (id , clk ->name) == 0) {
1656 - spin_ unlock (&clk_list_lock);
1657 + if (clk ->dev == dev && strcmp (id , clk ->name) == 0)
1658 return clk;
1659 - }
1660 }
1661
1662 - spin_ unlock (&clk_list_lock);
1663 return ERR_PTR(- ENOENT);
1664 }
1665 EXPORT _ SYMBOL (clk_get);
1666 @@ -219 ,8 +203 ,8 @@ dump_ clock (struct clk *parent , struct clkinf *r)
1667
1668 /* cost of this scan is small , but not linear ... */
1669 r->nest = nest + NEST_ DELTA ;
1670 -
1671 - list_for_each_ entry (clk , &at32_ clock _list , list) {
1672 + for (i = 3; i < at32_nr_ clocks ; i++) {
1673 + clk = at32_ clock _list[i];
1674 if (clk ->parent == parent)
1675 dump_ clock (clk , r);
1676 }
1677 @@ -231 ,7 +215 ,6 @@ static int clk_show(struct seq_file *s, void * unused)
1678 {
1679 struct clkinf r;
1680 int i;
1681 - struct clk *clk;
1682
1683 /* show all the power manager registers */
1684 seq_ printf (s, " MCCTRL = %8x\n", pm_ readl (MCCTRL));

D.28. UC3A0XXX SUPPORT 193

1685 @@ -251 ,25 +234 ,14 @@ static int clk_show(struct seq_file *s, void * unused)
1686
1687 seq_ printf (s, "\n");
1688
1689 + /* show clock tree as derived from the three oscillators
1690 + * we "know" are at the head of the list
1691 + */
1692 r.s = s;
1693 r.nest = 0;
1694 - /* protected from changes on the list while dumping */
1695 - spin_lock(&clk_list_lock);
1696 -
1697 - /* show clock tree as derived from the three oscillators */
1698 - clk = clk_get(NULL , " osc32k ");
1699 - dump_ clock (clk , &r);
1700 - clk_put(clk);
1701 -
1702 - clk = clk_get(NULL , "osc0 ");
1703 - dump_ clock (clk , &r);
1704 - clk_put(clk);
1705 -
1706 - clk = clk_get(NULL , "osc1 ");
1707 - dump_ clock (clk , &r);
1708 - clk_put(clk);
1709 -
1710 - spin_ unlock (&clk_list_lock);
1711 + dump_ clock (at32_ clock _list[0], &r);
1712 + dump_ clock (at32_ clock _list[1], &r);
1713 + dump_ clock (at32_ clock _list[2], &r);
1714
1715 return 0;
1716 }
1717 diff --git a/arch/ avr32 /mach - at32ap / clock .h b/arch/ avr32 /mach - at32uc3a / clock .h
1718 similarity index 88%
1719 copy from arch/ avr32 /mach - at32ap / clock .h
1720 copy to arch/ avr32 /mach - at32uc3a / clock .h
1721 index 623 bf0e.. bb8e1f2 100644
1722 --- a/arch/ avr32 /mach - at32ap / clock .h
1723 +++ b/arch/ avr32 /mach - at32uc3a / clock .h
1724 @@ -12 ,13 +12 ,8 @@
1725 * published by the Free Software Foundation .
1726 */
1727 # include <linux /clk.h>
1728 -# include <linux /list.h>
1729 -
1730 -
1731 -void at32_clk_ register (struct clk *clk);
1732
1733 struct clk {
1734 - struct list_head list; /* linking element */
1735 const char *name; /* Clock name/ function */
1736 struct device *dev; /* Device the clock is used by */
1737 struct clk * parent ; /* Parent clock , if any */
1738 @@ -30,3 +25 ,6 @@ struct clk {
1739 u16 users ; /* Enabled if non -zero */
1740 u16 index ; /* Sibling index */
1741 };
1742 +
1743 + extern struct clk *at32_ clock _list[];
1744 + extern unsigned int at32_nr_ clocks ;
1745 diff --git a/arch/ avr32 /mach - at32ap / cpufreq .c b/arch/ avr32 /mach - at32uc3a / cpufreq .c
1746 similarity index 86%
1747 copy from arch/ avr32 /mach - at32ap / cpufreq .c
1748 copy to arch/ avr32 /mach - at32uc3a / cpufreq .c
1749 index 024 c586..5 dd8d25 100644
1750 --- a/arch/ avr32 /mach - at32ap / cpufreq .c
1751 +++ b/arch/ avr32 /mach - at32uc3a / cpufreq .c
1752 @@ -40,9 +40 ,6 @@ static unsigned int at32_get_ speed (unsigned int cpu)
1753 return (unsigned int)((clk_get_rate(cpuclk) + 500) / 1000) ;
1754 }
1755
1756 -static unsigned int ref_freq;
1757 -static unsigned long loops _per_ jiffy _ref;
1758 -
1759 static int at32_set_ target (struct cpufreq _ policy *policy ,
1760 unsigned int target _freq ,
1761 unsigned int relation)
1762 @@ -64 ,19 +61 ,8 @@ static int at32_set_ target (struct cpufreq _ policy *policy ,
1763 freqs .cpu = 0;
1764 freqs . flags = 0;
1765
1766 - if (!ref_freq) {
1767 - ref_freq = freqs .old;
1768 - loops _per_ jiffy _ref = boot_cpu_data. loops _per_ jiffy ;

194 APPENDIX D. LINUX KERNEL PATCHES

1769 - }
1770 -
1771 cpufreq _ notify _ transition (&freqs , CPUFREQ _ PRECHANGE);
1772 - if (freqs .old < freqs .new)
1773 - boot_cpu_data. loops _per_ jiffy = cpufreq _ scale (
1774 - loops _per_ jiffy _ref , ref_freq , freqs .new);
1775 clk_set_rate(cpuclk , freq);
1776 - if (freqs .new < freqs .old)
1777 - boot_cpu_data. loops _per_ jiffy = cpufreq _ scale (
1778 - loops _per_ jiffy _ref , ref_freq , freqs .new);
1779 cpufreq _ notify _ transition (&freqs , CPUFREQ _ POSTCHANGE);
1780
1781 pr_ debug (" cpufreq : set frequency %lu Hz\n", freq);
1782 @@ -101 ,6 +87 ,7 @@ static int __init at32_ cpufreq _ driver _init(struct cpufreq _ policy * policy)
1783 policy ->cur = at32_get_ speed (0);
1784 policy ->min = policy ->cpuinfo .min_freq;
1785 policy ->max = policy ->cpuinfo .max_freq;
1786 + policy ->governor = CPUFREQ _ DEFAULT _ GOVERNOR ;
1787
1788 printk (" cpufreq : AT32AP CPU frequency driver \n");
1789
1790 diff --git a/arch/ avr32 /mach - at32ap / extint .c b/arch/ avr32 /mach - at32uc3a / extint .c
1791 similarity index 98%
1792 copy from arch/ avr32 /mach - at32ap / extint .c
1793 copy to arch/ avr32 /mach - at32uc3a / extint .c
1794 index 310477 b.. c36a6d5 100644
1795 --- a/arch/ avr32 /mach - at32ap / extint .c
1796 +++ b/arch/ avr32 /mach - at32uc3a / extint .c
1797 @@ -191 ,7 +191 ,7 @@ static int __init eic_ probe (struct platform _ device *pdev)
1798 struct eic *eic;
1799 struct resource *regs;
1800 unsigned int i;
1801 - unsigned int nr_of_irqs;
1802 + unsigned int nr_irqs;
1803 unsigned int int_irq;
1804 int ret;
1805 u32 pattern ;
1806 @@ -224 ,7 +224 ,7 @@ static int __init eic_ probe (struct platform _ device *pdev)
1807 eic_ writel (eic , IDR , ~0 UL);
1808 eic_ writel (eic , MODE , ~0 UL);
1809 pattern = eic_ readl (eic , MODE);
1810 - nr_of_irqs = fls(pattern);
1811 + nr_irqs = fls(pattern);
1812
1813 /* Trigger on low level unless overridden by driver */
1814 eic_ writel (eic , EDGE , 0UL);
1815 @@ -232 ,7 +232 ,7 @@ static int __init eic_ probe (struct platform _ device *pdev)
1816
1817 eic ->chip = &eic_chip;
1818
1819 - for (i = 0; i < nr_of_irqs; i++) {
1820 + for (i = 0; i < nr_irqs; i++) {
1821 set_irq_chip_and_ handler (eic ->first _irq + i, &eic_chip ,
1822 handle _ level _irq);
1823 set_irq_chip_data(eic ->first _irq + i, eic);
1824 @@ -256 ,7 +256 ,7 @@ static int __init eic_ probe (struct platform _ device *pdev)
1825 eic ->regs , int_irq);
1826 dev_info(&pdev ->dev ,
1827 " Handling %u external IRQs , starting with IRQ %u\n",
1828 - nr_of_irqs , eic ->first _irq);
1829 + nr_irqs , eic ->first _irq);
1830
1831 return 0;
1832
1833 diff --git a/arch/ avr32 /mach - at32uc3a /gpio.c b/arch/ avr32 /mach - at32uc3a /gpio.c
1834 new file mode 100644
1835 index 0000000 ..0 d3d4e6
1836 --- /dev/null
1837 +++ b/arch/ avr32 /mach - at32uc3a /gpio.c
1838 @@ -0,0 +1 ,453 @@
1839 +/*
1840 + * Atmel GPIO Port Multiplexer support
1841 + *
1842 + * Copyright (C) 2004 -2006 Atmel Corporation
1843 + *
1844 + * This program is free software ; you can redistribute it and/or modify
1845 + * it under the terms of the GNU General Public License version 2 as
1846 + * published by the Free Software Foundation .
1847 + */
1848 +
1849 +# include <linux /clk.h>
1850 +# include <linux / debugfs .h>
1851 +# include <linux /fs.h>
1852 +# include <linux / platform _ device .h>

D.28. UC3A0XXX SUPPORT 195

1853 +# include <linux /irq.h>
1854 +
1855 +# include <asm/gpio.h>
1856 +# include <asm/io.h>
1857 +
1858 +# include <mach/ portmux .h>
1859 +
1860 +# include "gpio.h"
1861 +
1862 +# define MAX_NR_GPIO_ DEVICES 5
1863 +
1864 + struct gpio_ device {
1865 + struct gpio_chip chip;
1866 + void __ iomem *regs;
1867 + const struct platform _ device *pdev;
1868 + struct clk *clk;
1869 + u32 pinmux _mask;
1870 + char name[8];
1871 +};
1872 +
1873 + static struct gpio_ device gpio_dev[MAX_NR_GPIO_ DEVICES];
1874 +
1875 + static struct gpio_ device *gpio_pin_to_dev(unsigned int gpio_pin)
1876 +{
1877 + struct gpio_ device *gpio;
1878 + unsigned int index ;
1879 +
1880 + index = gpio_pin >> 5;
1881 + if (index >= MAX_NR_GPIO_ DEVICES)
1882 + return NULL;
1883 + gpio = &gpio_dev[index];
1884 + if (!gpio ->regs)
1885 + return NULL;
1886 +
1887 + return gpio;
1888 +}
1889 +
1890 +/* Pin multiplexing API */
1891 +
1892 +void __init at32_ select _ periph (unsigned int pin , unsigned int periph ,
1893 + unsigned long flags)
1894 +{
1895 + struct gpio_ device *gpio;
1896 + unsigned int pin_ index = pin & 0x1f;
1897 + u32 mask = 1 << pin_ index ;
1898 +
1899 + gpio = gpio_pin_to_dev(pin);
1900 + if (unlikely (!gpio)) {
1901 + printk (" gpio: invalid pin %u\n", pin);
1902 + goto fail;
1903 + }
1904 +
1905 + if (unlikely (test_and_set_bit(pin_index , &gpio ->pinmux _mask)
1906 + || gpiochip _is_ requested (&gpio ->chip , pin_ index))) {
1907 + printk ("%s: pin %u is busy\n", gpio ->name , pin_ index);
1908 + goto fail;
1909 + }
1910 +
1911 + gpio_ writel (gpio , PUERS , mask);
1912 + switch (periph) {
1913 + case 0:
1914 + gpio_ writel (gpio , PMR0C , mask);
1915 + gpio_ writel (gpio , PMR1C , mask);
1916 + break ;
1917 + case 1:
1918 + gpio_ writel (gpio , PMR0S , mask);
1919 + gpio_ writel (gpio , PMR1C , mask);
1920 + break ;
1921 + case 2:
1922 + gpio_ writel (gpio , PMR0C , mask);
1923 + gpio_ writel (gpio , PMR1S , mask);
1924 + break ;
1925 + case 3:
1926 + gpio_ writel (gpio , PMR0S , mask);
1927 + gpio_ writel (gpio , PMR1S , mask);
1928 + break ;
1929 + default :
1930 + printk ("%s: invalid periphial %u\n", gpio ->name , periph);
1931 + goto fail;
1932 + }
1933 +
1934 + gpio_ writel (gpio , GPERC , mask);
1935 + if (!(flags & AT32_ GPIOF _ PULLUP))
1936 + gpio_ writel (gpio , PUERC , mask);

196 APPENDIX D. LINUX KERNEL PATCHES

1937 +
1938 + return ;
1939 +
1940 +fail:
1941 + dump_ stack ();
1942 +}
1943 +
1944 +void __init at32_ select _gpio(unsigned int pin , unsigned long flags)
1945 +{
1946 + struct gpio_ device *gpio;
1947 + unsigned int pin_ index = pin & 0x1f;
1948 + u32 mask = 1 << pin_ index ;
1949 +
1950 + gpio = gpio_pin_to_dev(pin);
1951 + if (unlikely (!gpio)) {
1952 + printk (" gpio: invalid pin %u\n", pin);
1953 + goto fail;
1954 + }
1955 +
1956 + if (unlikely (test_and_set_bit(pin_index , &gpio ->pinmux _mask))) {
1957 + printk ("%s: pin %u is busy\n", gpio ->name , pin_ index);
1958 + goto fail;
1959 + }
1960 +
1961 + if (flags & AT32_ GPIOF _ OUTPUT) {
1962 + if (flags & AT32_ GPIOF _HIGH)
1963 + gpio_ writel (gpio , OVRS , mask);
1964 + else
1965 + gpio_ writel (gpio , OVRC , mask);
1966 +
1967 + if (flags & AT32_ GPIOF _ OPENDRAIN)
1968 + gpio_ writel (gpio , ODMERS , mask);
1969 + else
1970 + gpio_ writel (gpio , ODMERC , mask);
1971 +
1972 + gpio_ writel (gpio , PUERC , mask);
1973 + gpio_ writel (gpio , ODERS , mask);
1974 + } else {
1975 + if (flags & AT32_ GPIOF _ PULLUP)
1976 + gpio_ writel (gpio , PUERS , mask);
1977 + else
1978 + gpio_ writel (gpio , PUERC , mask);
1979 +
1980 + if (flags & AT32_ GPIOF _ DEGLITCH)
1981 + gpio_ writel (gpio , GFERS , mask);
1982 + else
1983 + gpio_ writel (gpio , GFERC , mask);
1984 + gpio_ writel (gpio , ODERC , mask);
1985 + }
1986 +
1987 + gpio_ writel (gpio , GPERS , mask);
1988 +
1989 + return ;
1990 +
1991 +fail:
1992 + dump_ stack ();
1993 +}
1994 +
1995 +/* Reserve a pin , preventing anyone else from changing its configuration . */
1996 +void __init at32_ reserve _pin(unsigned int pin)
1997 +{
1998 + struct gpio_ device *gpio;
1999 + unsigned int pin_ index = pin & 0x1f;
2000 +
2001 + gpio = gpio_pin_to_dev(pin);
2002 + if (unlikely (!gpio)) {
2003 + printk (" gpio: invalid pin %u\n", pin);
2004 + goto fail;
2005 + }
2006 +
2007 + if (unlikely (test_and_set_bit(pin_index , &gpio ->pinmux _mask))) {
2008 + printk ("%s: pin %u is busy\n", gpio ->name , pin_ index);
2009 + goto fail;
2010 + }
2011 +
2012 + return ;
2013 +
2014 +fail:
2015 + dump_ stack ();
2016 +}
2017 +
2018 +/*--*/
2019 +
2020 +/* GPIO API */

D.28. UC3A0XXX SUPPORT 197

2021 +
2022 + static int direction _ input (struct gpio_chip *chip , unsigned offset)
2023 +{
2024 + struct gpio_ device *gpio = container _of(chip , struct gpio_device , chip);
2025 + u32 mask = 1 << offset ;
2026 +
2027 + if (!(gpio_ readl (gpio , GPER) & mask))
2028 + return -EINVAL ;
2029 +
2030 + gpio_ writel (gpio , ODERC , mask);
2031 + return 0;
2032 +}
2033 +
2034 + static int gpio_get(struct gpio_chip *chip , unsigned offset)
2035 +{
2036 + struct gpio_ device *gpio = container _of(chip , struct gpio_device , chip);
2037 +
2038 + return (gpio_ readl (gpio , PVR) >> offset) & 1;
2039 +}
2040 +
2041 + static void gpio_set(struct gpio_chip *chip , unsigned offset , int value)
2042 +{
2043 + struct gpio_ device *gpio = container _of(chip , struct gpio_device , chip);
2044 + u32 mask = 1 << offset ;
2045 +
2046 + if (value)
2047 + gpio_ writel (gpio , OVRS , mask);
2048 + else
2049 + gpio_ writel (gpio , OVRC , mask);
2050 +}
2051 +
2052 + static int direction _ output (struct gpio_chip *chip , unsigned offset , int value)
2053 +{
2054 + struct gpio_ device *gpio = container _of(chip , struct gpio_device , chip);
2055 + u32 mask = 1 << offset ;
2056 +
2057 + if (!(gpio_ readl (gpio , GPER) & mask))
2058 + return -EINVAL ;
2059 +
2060 + gpio_set(chip , offset , value);
2061 + gpio_ writel (gpio , ODERS , mask);
2062 + return 0;
2063 +}
2064 +
2065 +
2066 +/*--*/
2067 +
2068 +/* GPIO IRQ support */
2069 +
2070 + static void gpio_irq_mask(unsigned irq)
2071 +{
2072 + unsigned gpio_pin = irq_to_gpio(irq);
2073 + struct gpio_ device *gpio = &gpio_dev[gpio_pin >> 5];
2074 +
2075 + gpio_ writel (gpio , IERC , 1 << (gpio_pin & 0x1f));
2076 +}
2077 +
2078 + static void gpio_irq_ unmask (unsigned irq)
2079 +{
2080 + unsigned gpio_pin = irq_to_gpio(irq);
2081 + struct gpio_ device *gpio = &gpio_dev[gpio_pin >> 5];
2082 +
2083 + gpio_ writel (gpio , IERS , 1 << (gpio_pin & 0x1f));
2084 +}
2085 +
2086 + static int gpio_irq_type(unsigned irq , unsigned type)
2087 +{
2088 + if (type != IRQ_TYPE_EDGE_BOTH && type != IRQ_TYPE_NONE)
2089 + return -EINVAL ;
2090 +
2091 + return 0;
2092 +}
2093 +
2094 + static struct irq_chip gpio_ irqchip = {
2095 + .name = "gpio",
2096 + .mask = gpio_irq_mask ,
2097 + . unmask = gpio_irq_unmask ,
2098 + .set_type = gpio_irq_type ,
2099 +};
2100 +
2101 + static void gpio_irq_ handler (unsigned irq , struct irq_desc *desc)
2102 +{
2103 + struct gpio_ device *gpio = get_irq_chip_data(irq);
2104 + unsigned gpio_irq;

198 APPENDIX D. LINUX KERNEL PATCHES

2105 +
2106 + gpio_irq = (unsigned) get_irq_data(irq);
2107 + for (;;) {
2108 + u32 isr;
2109 + struct irq_desc *d;
2110 +
2111 + /* ack pending GPIO interrupts */
2112 + isr = gpio_ readl (gpio , IFR) & gpio_ readl (gpio , IER);
2113 + if (!isr)
2114 + break ;
2115 + gpio_ writel (gpio , IFRC , isr);
2116 + do {
2117 + int i;
2118 +
2119 + i = ffs(isr) - 1;
2120 + isr &= ~(1 << i);
2121 +
2122 + i += gpio_irq;
2123 + d = &irq_desc[i];
2124 +
2125 + d->handle _irq(i, d);
2126 + } while (isr);
2127 + }
2128 +}
2129 +
2130 + static void __init
2131 +gpio_irq_ setup (struct gpio_ device *gpio , int irq , int gpio_irq)
2132 +{
2133 + unsigned i;
2134 +
2135 + set_irq_chip_data(irq , gpio);
2136 + set_irq_data(irq , (void *) gpio_irq);
2137 +
2138 + for (i = 0; i < 32; i++, gpio_irq ++) {
2139 + set_irq_chip_data(gpio_irq , gpio);
2140 + set_irq_chip_and_ handler (gpio_irq , &gpio_irqchip ,
2141 + handle _ simple _irq);
2142 + }
2143 +
2144 + set_irq_ chained _ handler (irq , gpio_irq_ handler);
2145 +}
2146 +
2147 +/*--*/
2148 +
2149 +# ifdef CONFIG _ DEBUG _FS
2150 +
2151 +# include <linux /seq_file.h>
2152 +
2153 +/*
2154 + * This shows more info than the generic gpio dump code:
2155 + * pullups , deglitching , open drain drive .
2156 + */
2157 + static void gpio_bank_show(struct seq_file *s, struct gpio_chip *chip)
2158 +{
2159 + struct gpio_ device *gpio = container _of(chip , struct gpio_device , chip);
2160 + u32 oder , ier , pvr , puer , gfer , odmer ;
2161 + unsigned i;
2162 + u32 mask;
2163 + char bank;
2164 +
2165 + oder = gpio_ readl (gpio , ODER);
2166 + ier = gpio_ readl (gpio , IER);
2167 + pvr = gpio_ readl (gpio , PVR);
2168 + puer = gpio_ readl (gpio , PUER);
2169 + gfer = gpio_ readl (gpio , GFER);
2170 + odmer = gpio_ readl (gpio , ODMER);
2171 +
2172 + bank = ’A’ + gpio ->pdev ->id;
2173 +
2174 + for (i = 0, mask = 1; i < 32; i++, mask <<= 1) {
2175 + const char * label ;
2176 +
2177 + label = gpiochip _is_ requested (chip , i);
2178 + if (! label && (imr & mask))
2179 + label = "[irq]";
2180 + if (! label)
2181 + continue ;
2182 +
2183 + seq_ printf (s, " gpio -% -3d P%c%-2d (% -12s) %s %s %s",
2184 + chip ->base + i, bank , i,
2185 + label ,
2186 + (oder & mask) ? "out" : "in ",
2187 + (pvr & mask) ? "hi" : "lo",
2188 + (puer & mask) ? " " : "up ");

D.28. UC3A0XXX SUPPORT 199

2189 + if (gfer & mask)
2190 + seq_ printf (s, " deglitch ");
2191 + if ((oder & odmer) & mask)
2192 + seq_ printf (s, " open - drain ");
2193 + if (ier & mask)
2194 + seq_ printf (s, " irq -%d edge -both",
2195 + gpio_to_irq(chip ->base + i));
2196 + seq_ printf (s, "\n");
2197 + }
2198 +}
2199 +
2200 +#else
2201 +# define gpio_bank_show NULL
2202 +# endif
2203 +
2204 +
2205 +/*--*/
2206 +
2207 + static int __init gpio_ probe (struct platform _ device *pdev)
2208 +{
2209 + struct gpio_ device *gpio = NULL;
2210 + int irq = platform _get_irq(pdev , 0);
2211 + int gpio_irq_base = GPIO_IRQ_BASE + pdev ->id * 32;
2212 +
2213 + BUG_ON(pdev ->id >= MAX_NR_GPIO_ DEVICES);
2214 + gpio = &gpio_dev[pdev ->id];
2215 + BUG_ON(!gpio ->regs);
2216 +
2217 + gpio ->chip. label = gpio ->name;
2218 + gpio ->chip.base = pdev ->id * 32;
2219 + gpio ->chip. ngpio = 32;
2220 + gpio ->chip.dev = &pdev ->dev;
2221 + gpio ->chip. owner = THIS_ MODULE ;
2222 +
2223 + gpio ->chip. direction _ input = direction _ input ;
2224 + gpio ->chip.get = gpio_get;
2225 + gpio ->chip. direction _ output = direction _ output ;
2226 + gpio ->chip.set = gpio_set;
2227 + gpio ->chip.dbg_show = gpio_bank_show;
2228 +
2229 + gpiochip _add(&gpio ->chip);
2230 +
2231 + gpio_irq_ setup (gpio , irq , gpio_irq_base);
2232 +
2233 + platform _set_ drvdata (pdev , gpio);
2234 +
2235 + printk (KERN_ DEBUG "%s: base 0x%p, irq %d chains %d..%d\n",
2236 + gpio ->name , gpio ->regs , irq , gpio_irq_base , gpio_irq_base + 31);
2237 +
2238 + return 0;
2239 +}
2240 +
2241 + static struct platform _ driver gpio_ driver = {
2242 + . probe = gpio_probe ,
2243 + . driver = {
2244 + .name = "gpio",
2245 + },
2246 +};
2247 +
2248 + static int __init gpio_init(void)
2249 +{
2250 + return platform _ driver _ register (&gpio_ driver);
2251 +}
2252 + postcore _ initcall (gpio_init);
2253 +
2254 +void __init at32_init_gpio(struct platform _ device *pdev)
2255 +{
2256 + struct resource *regs;
2257 + struct gpio_ device *gpio;
2258 +
2259 + if (pdev ->id > MAX_NR_GPIO_ DEVICES) {
2260 + dev_err(&pdev ->dev , "only %d GPIO devices supported \n",
2261 + MAX_NR_GPIO_ DEVICES);
2262 + return ;
2263 + }
2264 +
2265 + gpio = &gpio_dev[pdev ->id];
2266 + snprintf (gpio ->name , sizeof (gpio ->name), "gpio%d", pdev ->id);
2267 +
2268 + regs = platform _get_ resource (pdev , IORESOURCE _MEM , 0);
2269 + if (!regs) {
2270 + dev_err(&pdev ->dev , "no mmio resource defined \n");
2271 + return ;
2272 + }

200 APPENDIX D. LINUX KERNEL PATCHES

2273 +
2274 + gpio ->clk = clk_get(&pdev ->dev , "mck ");
2275 + if (IS_ERR(gpio ->clk))
2276 + /*
2277 + * This is a fatal error , but if we continue we might
2278 + * be so lucky that we manage to initialize the
2279 + * console and display this message ...
2280 + */
2281 + dev_err(&pdev ->dev , "no mck clock defined \n");
2282 + else
2283 + clk_ enable (gpio ->clk);
2284 +
2285 + gpio ->pdev = pdev;
2286 + gpio ->regs = ioremap (regs ->start , regs ->end - regs ->start + 1);
2287 +
2288 + /* start with irqs disabled and acked */
2289 + gpio_ writel (gpio , IERC , ~0 UL);
2290 + (void) gpio_ readl (gpio , IER);
2291 +}
2292 diff --git a/arch/ avr32 /mach - at32uc3a /gpio.h b/arch/ avr32 /mach - at32uc3a /gpio.h
2293 new file mode 100644
2294 index 0000000 ..5016 db9
2295 --- /dev/null
2296 +++ b/arch/ avr32 /mach - at32uc3a /gpio.h
2297 @@ -0,0 +1 ,77 @@
2298 +/*
2299 + * Atmel GPIO Port Multiplexer support
2300 + *
2301 + * Copyright (C) 2004 -2006 Atmel Corporation
2302 + *
2303 + * This program is free software ; you can redistribute it and/or modify
2304 + * it under the terms of the GNU General Public License version 2 as
2305 + * published by the Free Software Foundation .
2306 + */
2307 +# ifndef __ARCH_ AVR32 _ AT32UC _GPIO_H__
2308 +# define __ARCH_ AVR32 _ AT32UC _GPIO_H__
2309 +
2310 +/* PIO register offsets */
2311 +# define GPIO_GPER 0x00
2312 +# define GPIO_ GPERS 0x04
2313 +# define GPIO_ GPERC 0x08
2314 +# define GPIO_ GPERT 0x0c
2315 +# define GPIO_PMR0 0x10
2316 +# define GPIO_ PMR0S 0x14
2317 +# define GPIO_ PMR0C 0x18
2318 +# define GPIO_ PMR0T 0x1c
2319 +# define GPIO_PMR1 0x20
2320 +# define GPIO_ PMR1S 0x24
2321 +# define GPIO_ PMR1C 0x28
2322 +# define GPIO_ PMR1T 0x2c
2323 +# define GPIO_ODER 0x40
2324 +# define GPIO_ ODERS 0x44
2325 +# define GPIO_ ODERC 0x48
2326 +# define GPIO_ ODERT 0x4c
2327 +# define GPIO_OVR 0x50
2328 +# define GPIO_OVRS 0x54
2329 +# define GPIO_OVRC 0x58
2330 +# define GPIO_OVRT 0x5c
2331 +# define GPIO_PVR 0x60
2332 +# define GPIO_PUER 0x70
2333 +# define GPIO_ PUERS 0x74
2334 +# define GPIO_ PUERC 0x78
2335 +# define GPIO_ PUERT 0x7c
2336 +# define GPIO_ ODMER 0x80
2337 +# define GPIO_ ODMERS 0x84
2338 +# define GPIO_ ODMERC 0x88
2339 +# define GPIO_ ODMERT 0x8c
2340 +# define GPIO_IER 0x90
2341 +# define GPIO_IERS 0x94
2342 +# define GPIO_IERC 0x98
2343 +# define GPIO_IERT 0x9c
2344 +# define GPIO_IMR0 0xa0
2345 +# define GPIO_ IMR0S 0xa4
2346 +# define GPIO_ IMR0C 0xa8
2347 +# define GPIO_ IMR0T 0xac
2348 +# define GPIO_IMR1 0xb0
2349 +# define GPIO_ IMR1S 0xb4
2350 +# define GPIO_ IMR1C 0xb8
2351 +# define GPIO_ IMR1T 0xbc
2352 +# define GPIO_GFER 0xc0
2353 +# define GPIO_ GFERS 0xc4
2354 +# define GPIO_ GFERC 0xc8
2355 +# define GPIO_ GFERT 0xcc
2356 +# define GPIO_IFR 0xd0

D.28. UC3A0XXX SUPPORT 201

2357 +# define GPIO_IFRC 0xd8
2358 +
2359 +
2360 +/* Bit manipulation macros */
2361 +# define GPIO_BIT(name) (1 << GPIO_##name##_ OFFSET)
2362 +# define GPIO_BF(name , value) (((value) & ((1 << GPIO_##name##_SIZE) - 1)) << GPIO_##

name##_ OFFSET)
2363 +# define GPIO_ BFEXT (name , value) (((value) >> GPIO_##name##_ OFFSET) & ((1 << GPIO_##name

##_SIZE) - 1))
2364 +# define GPIO_ BFINS (name ,value ,old) (((old) & ~(((1 << GPIO_##name##_SIZE) - 1) << GPIO_##

name##_ OFFSET)) | GPIO_BF(name , value))
2365 +
2366 +/* Register access macros */
2367 +# define gpio_ readl (port ,reg) \
2368 + __raw_ readl ((port)->regs + GPIO_##reg)
2369 +# define gpio_ writel (port ,reg , value) \
2370 + __raw_ writel ((value), (port)->regs + GPIO_##reg)
2371 +
2372 +void at32_init_gpio(struct platform _ device *pdev);
2373 +
2374 +# endif /* __ARCH_ AVR32 _ AT32UC _GPIO_H__ */
2375 diff --git a/arch/ avr32 /mach - at32ap / hmatrix .c b/arch/ avr32 /mach - at32uc3a / hmatrix .c
2376 similarity index 100%
2377 copy from arch/ avr32 /mach - at32ap / hmatrix .c
2378 copy to arch/ avr32 /mach - at32uc3a / hmatrix .c
2379 diff --git a/arch/ avr32 /mach - at32ap /hsmc.c b/arch/ avr32 /mach - at32uc3a /hsmc.c
2380 similarity index 100%
2381 copy from arch/ avr32 /mach - at32ap /hsmc.c
2382 copy to arch/ avr32 /mach - at32uc3a /hsmc.c
2383 diff --git a/arch/ avr32 /mach - at32ap /hsmc.h b/arch/ avr32 /mach - at32uc3a /hsmc.h
2384 similarity index 100%
2385 copy from arch/ avr32 /mach - at32ap /hsmc.h
2386 copy to arch/ avr32 /mach - at32uc3a /hsmc.h
2387 diff --git a/arch/ avr32 /mach - at32uc3a / include /mach/ at32uc3a0xxx .h b/arch/ avr32 /mach - at32uc3a / include /

mach/ at32uc3a0xxx .h
2388 new file mode 100644
2389 index 0000000 .. 76783 d0
2390 --- /dev/null
2391 +++ b/arch/ avr32 /mach - at32uc3a / include /mach/ at32uc3a0xxx .h
2392 @@ -0,0 +1 ,78 @@
2393 +/*
2394 + * Pin definitions for AT32AP7000 .
2395 + *
2396 + * Copyright (C) 2006 Atmel Corporation
2397 + *
2398 + * This program is free software ; you can redistribute it and/or modify
2399 + * it under the terms of the GNU General Public License version 2 as
2400 + * published by the Free Software Foundation .
2401 + */
2402 +# ifndef __ASM_ARCH_ AT32UC3A0XXX _H__
2403 +# define __ASM_ARCH_ AT32UC3A0XXX _H__
2404 +
2405 +# define GPIO_ PERIPH _A 0
2406 +# define GPIO_ PERIPH _B 1
2407 +# define GPIO_ PERIPH _C 2
2408 +
2409 +/*
2410 + * Pin numbers identifying specific GPIO pins on the chip. They can
2411 + * also be converted to IRQ numbers by passing them through
2412 + * gpio_to_irq ().
2413 + */
2414 +# define GPIO_PIOA_BASE (0)
2415 +# define GPIO_PIOB_BASE (GPIO_PIOA_BASE + 32)
2416 +# define GPIO_PIOC_BASE (GPIO_PIOB_BASE + 32)
2417 +# define GPIO_PIOD_BASE (GPIO_PIOC_BASE + 32)
2418 +# define GPIO_PIOE_BASE (GPIO_PIOD_BASE + 32)
2419 +
2420 +# define GPIO_PIN_PA(N) (GPIO_PIOA_BASE + (N))
2421 +# define GPIO_PIN_PB(N) (GPIO_PIOB_BASE + (N))
2422 +# define GPIO_PIN_PC(N) (GPIO_PIOC_BASE + (N))
2423 +# define GPIO_PIN_PD(N) (GPIO_PIOD_BASE + (N))
2424 +# define GPIO_PIN_PE(N) (GPIO_PIOE_BASE + (N))
2425 +
2426 +
2427 +/*
2428 + * DMAC peripheral hardware handshaking interfaces , used with dw_dmac
2429 + */
2430 +# define DMAC_MCI_RX 0
2431 +# define DMAC_MCI_TX 1
2432 +# define DMAC_DAC_TX 2
2433 +# define DMAC_AC97_A_RX 3
2434 +# define DMAC_AC97_A_TX 4
2435 +# define DMAC_AC97_B_RX 5
2436 +# define DMAC_AC97_B_TX 6

202 APPENDIX D. LINUX KERNEL PATCHES

2437 +# define DMAC_ DMAREQ _0 7
2438 +# define DMAC_ DMAREQ _1 8
2439 +# define DMAC_ DMAREQ _2 9
2440 +# define DMAC_ DMAREQ _3 10
2441 +
2442 +/* HSB masters */
2443 +# define HMATRIX _ MASTER _CPU_DATA 0
2444 +# define HMATRIX _ MASTER _CPU_ INSTRUCTIONS 1
2445 +# define HMATRIX _ MASTER _CPU_SAB 2
2446 +# define HMATRIX _ MASTER _PDCA 3
2447 +# define HMATRIX _ MASTER _MACB_DMA 4
2448 +# define HMATRIX _ MASTER _USBB_DMA 5
2449 +
2450 +/* HSB slaves */
2451 +# define HMATRIX _ SLAVE _INT_ FLASH 0
2452 +# define HMATRIX _ SLAVE _HSB_PB_BR0 1
2453 +# define HMATRIX _ SLAVE _HSB_PB_BR1 2
2454 +# define HMATRIX _ SLAVE _INT_SRAM 3
2455 +# define HMATRIX _ SLAVE _USBB_ DPRAM 4
2456 +# define HMATRIX _ SLAVE _EBI 5
2457 +
2458 +
2459 +/* Bits in HMATRIX SFR5 (EBI) */
2460 +# define HMATRIX _EBI_ SDRAM _ ENABLE (1 << 1)
2461 +
2462 +/*
2463 + * Base addresses of controllers that may be accessed early by
2464 + * platform code.
2465 + */
2466 +# define PM_BASE 0 xffff0c00
2467 +# define HMATRIX _BASE 0 xfffe1000
2468 +# define SDRAMC _BASE 0 xfffe2000
2469 +
2470 +# endif /* __ASM_ARCH_ AT32UC3A0XXX _H__ */
2471 diff --git a/arch/ avr32 /mach - at32ap / include /mach/ board .h b/arch/ avr32 /mach - at32uc3a / include /mach/ board .h
2472 similarity index 93%
2473 copy from arch/ avr32 /mach - at32ap / include /mach/ board .h
2474 copy to arch/ avr32 /mach - at32uc3a / include /mach/ board .h
2475 index aafaf7a .. e60e907 100644
2476 --- a/arch/ avr32 /mach - at32ap / include /mach/ board .h
2477 +++ b/arch/ avr32 /mach - at32uc3a / include /mach/ board .h
2478 @@ -14 ,14 +14 ,8 @@
2479 */
2480 extern unsigned long at32_ board _osc_ rates [];
2481
2482 -/*
2483 - * This used to add essential system devices , but this is now done
2484 - * automatically . Please don ’t use it in new board code.
2485 - */
2486 -static inline void __ deprecated at32_add_ system _ devices (void)
2487 -{
2488 -
2489 -}
2490 +/* Add basic devices : system manager , interrupt controller , portmuxes , etc. */
2491 +void at32_add_ system _ devices (void);
2492
2493 # define ATMEL _MAX_UART 4
2494 extern struct platform _ device * atmel _ default _ console _ device ;
2495 @@ -49,7 +43 ,7 @@ struct atmel _ lcdfb _info;
2496 struct platform _ device *
2497 at32_add_ device _lcdc(unsigned int id , struct atmel _ lcdfb _info *data ,
2498 unsigned long fbmem _start , unsigned long fbmem _len ,
2499 - u64 pin_mask);
2500 + unsigned int pin_ config);
2501
2502 struct usba_ platform _data;
2503 struct platform _ device *
2504 diff --git a/arch/ avr32 /mach - at32ap / include /mach/chip.h b/arch/ avr32 /mach - at32uc3a / include /mach/chip.h
2505 similarity index 87%
2506 copy from arch/ avr32 /mach - at32ap / include /mach/chip.h
2507 copy to arch/ avr32 /mach - at32uc3a / include /mach/chip.h
2508 index 5 efca6d .. b29e191 100644
2509 --- a/arch/ avr32 /mach - at32ap / include /mach/chip.h
2510 +++ b/arch/ avr32 /mach - at32uc3a / include /mach/chip.h
2511 @@ -12,6 +12 ,8 @@
2512
2513 #if defined (CONFIG _CPU_ AT32AP700X)
2514 # include <mach/ at32ap700x .h>
2515 +#elif defined (CONFIG _CPU_ AT32UC3A0XXX)
2516 +# include <mach/ at32uc3a0xxx .h>
2517 #else
2518 # error Unknown chip type selected
2519 # endif
2520 diff --git a/arch/ avr32 /mach - at32ap / include /mach/cpu.h b/arch/ avr32 /mach - at32uc3a / include /mach/cpu.h

D.28. UC3A0XXX SUPPORT 203

2521 similarity index 100%
2522 copy from arch/ avr32 /mach - at32ap / include /mach/cpu.h
2523 copy to arch/ avr32 /mach - at32uc3a / include /mach/cpu.h
2524 diff --git a/arch/ avr32 /mach - at32ap / include /mach/gpio.h b/arch/ avr32 /mach - at32uc3a / include /mach/gpio.h
2525 similarity index 100%
2526 copy from arch/ avr32 /mach - at32ap / include /mach/gpio.h
2527 copy to arch/ avr32 /mach - at32uc3a / include /mach/gpio.h
2528 diff --git a/arch/ avr32 /mach - at32ap / include /mach/ hmatrix .h b/arch/ avr32 /mach - at32uc3a / include /mach/

hmatrix .h
2529 similarity index 100%
2530 copy from arch/ avr32 /mach - at32ap / include /mach/ hmatrix .h
2531 copy to arch/ avr32 /mach - at32uc3a / include /mach/ hmatrix .h
2532 diff --git a/arch/ avr32 /mach - at32ap / include /mach/init.h b/arch/ avr32 /mach - at32uc3a / include /mach/init.h
2533 similarity index 100%
2534 copy from arch/ avr32 /mach - at32ap / include /mach/init.h
2535 copy to arch/ avr32 /mach - at32uc3a / include /mach/init.h
2536 diff --git a/arch/ avr32 /mach - at32ap / include /mach/io.h b/arch/ avr32 /mach - at32uc3a / include /mach/io.h
2537 similarity index 100%
2538 copy from arch/ avr32 /mach - at32ap / include /mach/io.h
2539 copy to arch/ avr32 /mach - at32uc3a / include /mach/io.h
2540 diff --git a/arch/ avr32 /mach - at32ap / include /mach/irq.h b/arch/ avr32 /mach - at32uc3a / include /mach/irq.h
2541 similarity index 100%
2542 copy from arch/ avr32 /mach - at32ap / include /mach/irq.h
2543 copy to arch/ avr32 /mach - at32uc3a / include /mach/irq.h
2544 diff --git a/arch/ avr32 /mach - at32ap / include /mach/pm.h b/arch/ avr32 /mach - at32uc3a / include /mach/pm.h
2545 similarity index 100%
2546 copy from arch/ avr32 /mach - at32ap / include /mach/pm.h
2547 copy to arch/ avr32 /mach - at32uc3a / include /mach/pm.h
2548 diff --git a/arch/ avr32 /mach - at32ap / include /mach/ portmux .h b/arch/ avr32 /mach - at32uc3a / include /mach/

portmux .h
2549 similarity index 79%
2550 copy from arch/ avr32 /mach - at32ap / include /mach/ portmux .h
2551 copy to arch/ avr32 /mach - at32uc3a / include /mach/ portmux .h
2552 index 21 c7937 .. ae3b9df 100644
2553 --- a/arch/ avr32 /mach - at32ap / include /mach/ portmux .h
2554 +++ b/arch/ avr32 /mach - at32uc3a / include /mach/ portmux .h
2555 @@ -19 ,12 +19 ,11 @@
2556 # define AT32_ GPIOF _ OUTPUT 0 x00000002 /* (OUT) Enable output driver */
2557 # define AT32_ GPIOF _HIGH 0 x00000004 /* (OUT) Set output high */
2558 # define AT32_ GPIOF _ DEGLITCH 0 x00000008 /* (IN) Filter glitches */
2559 -# define AT32_ GPIOF _ MULTIDRV 0 x00000010 /* Enable multidriver option */
2560 +# define AT32_ GPIOF _ OPENDRAIN 0 x00000010 /* Enable open drain mode option */
2561
2562 -void at32_ select _ periph (unsigned int port , unsigned int pin ,
2563 - unsigned int periph , unsigned long flags);
2564 +void at32_ select _ periph (unsigned int pin , unsigned int periph ,
2565 + unsigned long flags);
2566 void at32_ select _gpio(unsigned int pin , unsigned long flags);
2567 -void at32_ deselect _pin(unsigned int pin);
2568 void at32_ reserve _pin(unsigned int pin);
2569
2570 # endif /* __ASM_ARCH_ PORTMUX _H__ */
2571 diff --git a/arch/ avr32 /mach - at32ap / include /mach/smc.h b/arch/ avr32 /mach - at32uc3a / include /mach/smc.h
2572 similarity index 100%
2573 copy from arch/ avr32 /mach - at32ap / include /mach/smc.h
2574 copy to arch/ avr32 /mach - at32uc3a / include /mach/smc.h
2575 diff --git a/arch/ avr32 /mach - at32ap / include /mach/sram.h b/arch/ avr32 /mach - at32uc3a / include /mach/sram.h
2576 similarity index 100%
2577 copy from arch/ avr32 /mach - at32ap / include /mach/sram.h
2578 copy to arch/ avr32 /mach - at32uc3a / include /mach/sram.h
2579 diff --git a/arch/ avr32 /mach - at32ap /intc.c b/arch/ avr32 /mach - at32uc3a /intc.c
2580 similarity index 100%
2581 copy from arch/ avr32 /mach - at32ap /intc.c
2582 copy to arch/ avr32 /mach - at32uc3a /intc.c
2583 diff --git a/arch/ avr32 /mach - at32ap /intc.h b/arch/ avr32 /mach - at32uc3a /intc.h
2584 similarity index 100%
2585 copy from arch/ avr32 /mach - at32ap /intc.h
2586 copy to arch/ avr32 /mach - at32uc3a /intc.h
2587 diff --git a/arch/ avr32 /mach - at32ap /pdc.c b/arch/ avr32 /mach - at32uc3a /pdca.c
2588 similarity index 75%
2589 copy from arch/ avr32 /mach - at32ap /pdc.c
2590 copy to arch/ avr32 /mach - at32uc3a /pdca.c
2591 index 61 ab15a ..17 a48e1 100644
2592 --- a/arch/ avr32 /mach - at32ap /pdc.c
2593 +++ b/arch/ avr32 /mach - at32uc3a /pdca.c
2594 @@ -11,7 +11 ,7 @@
2595 # include <linux /init.h>
2596 # include <linux / platform _ device .h>
2597
2598 -static int __init pdc_ probe (struct platform _ device *pdev)
2599 + static int __init pdca_ probe (struct platform _ device *pdev)
2600 {
2601 struct clk *pclk , *hclk;
2602

204 APPENDIX D. LINUX KERNEL PATCHES

2603 @@ -34 ,14 +34 ,15 @@ static int __init pdc_ probe (struct platform _ device *pdev)
2604 return 0;
2605 }
2606
2607 -static struct platform _ driver pdc_ driver = {
2608 + static struct platform _ driver pdca_ driver = {
2609 + . probe = pdca_probe ,
2610 . driver = {
2611 - .name = "pdc",
2612 + .name = "pdca",
2613 },
2614 };
2615
2616 -static int __init pdc_init(void)
2617 + static int __init pdca_init(void)
2618 {
2619 - return platform _ driver _ probe (&pdc_driver , pdc_ probe);
2620 + return platform _ driver _ register (&pdca_ driver);
2621 }
2622 -arch_ initcall (pdc_init);
2623 +arch_ initcall (pdca_init);
2624 diff --git a/arch/ avr32 /mach - at32ap /pm - at32ap700x .S b/arch/ avr32 /mach - at32uc3a /pm - at32uc3a0xxx .S
2625 similarity index 100%
2626 copy from arch/ avr32 /mach - at32ap /pm - at32ap700x .S
2627 copy to arch/ avr32 /mach - at32uc3a /pm - at32uc3a0xxx .S
2628 diff --git a/arch/ avr32 /mach - at32ap /pm.c b/arch/ avr32 /mach - at32uc3a /pm.c
2629 similarity index 100%
2630 copy from arch/ avr32 /mach - at32ap /pm.c
2631 copy to arch/ avr32 /mach - at32uc3a /pm.c
2632 diff --git a/arch/ avr32 /mach - at32ap /pm.h b/arch/ avr32 /mach - at32uc3a /pm.h
2633 similarity index 100%
2634 copy from arch/ avr32 /mach - at32ap /pm.h
2635 copy to arch/ avr32 /mach - at32uc3a /pm.h
2636 diff --git a/arch/ avr32 /mach - at32ap / sdramc .h b/arch/ avr32 /mach - at32uc3a / sdramc .h
2637 similarity index 100%
2638 copy from arch/ avr32 /mach - at32ap / sdramc .h
2639 copy to arch/ avr32 /mach - at32uc3a / sdramc .h

D.29 Board support for ATEVK1100

1 commit 6677 f489f529d76a17c5ab6900f81dbcfbc8b5d1
2 Author : Gunnar Rangoy <gunnar@rangoy .com >
3 Date: Tue May 5 14:23:43 2009 +0200
4
5 AVR32 : Board support for ATEVK1100
6
7 diff --git a/arch/ avr32 / Kconfig b/arch/ avr32 / Kconfig
8 index 631 d388.. fcec5a1 100644
9 --- a/arch/ avr32 / Kconfig

10 +++ b/arch/ avr32 / Kconfig
11 @@ -155 ,6 +155 ,10 @@ config BOARD _FAVR_32
12 config BOARD _ MIMC200
13 bool " MIMC200 CPU board "
14 select CPU_ AT32AP7000
15 +
16 + config BOARD _ ATEVK1100
17 + bool " ATEVK1100 Evaluation Kit"
18 + select CPU_ AT32UC3A0XXX
19 endchoice
20
21 source "arch/ avr32 / boards / atstk1000 / Kconfig "
22 diff --git a/arch/ avr32 / Makefile b/arch/ avr32 / Makefile
23 index ad1dd87 ..0 a8c3eb 100644
24 --- a/arch/ avr32 / Makefile
25 +++ b/arch/ avr32 / Makefile
26 @@ -51,6 +51 ,7 @@ core -$(CONFIG _ BOARD _ ATSTK1000) += arch/ avr32 / boards / atstk1000 /
27 core -$(CONFIG _ BOARD _ ATNGW100) += arch/ avr32 / boards / atngw100 /
28 core -$(CONFIG _ BOARD _FAVR_32) += arch/ avr32 / boards /favr -32/
29 core -$(CONFIG _ BOARD _ MIMC200) += arch/ avr32 / boards / mimc200 /
30 +core -$(CONFIG _ BOARD _ ATEVK1100) += arch/ avr32 / boards / atevk1100 /
31 core -$(CONFIG _ LOADER _U_BOOT) += arch/ avr32 /boot/u-boot/
32 core -y += arch/ avr32 / kernel /
33 core -y += arch/ avr32 /mm/
34 diff --git a/arch/ avr32 / boards / atevk1100 / Makefile b/arch/ avr32 / boards / atevk1100 / Makefile
35 new file mode 100644
36 index 0000000 .. beee577
37 --- /dev/null
38 +++ b/arch/ avr32 / boards / atevk1100 / Makefile
39 @@ -0,0 +1 @@

D.29. BOARD SUPPORT FOR ATEVK1100 205

40 +obj -y += setup .o
41 diff --git a/arch/ avr32 / boards / atevk1100 / setup .c b/arch/ avr32 / boards / atevk1100 / setup .c
42 new file mode 100644
43 index 0000000 ..4 eba3de
44 --- /dev/null
45 +++ b/arch/ avr32 / boards / atevk1100 / setup .c
46 @@ -0,0 +1 ,121 @@
47 +/*
48 + * Board - specific setup code for the ATEVK1100 Evaluation Kit
49 + *
50 + * Copyright (C) 2005 -2006 Atmel Corporation
51 + *
52 + * This program is free software ; you can redistribute it and/or modify
53 + * it under the terms of the GNU General Public License version 2 as
54 + * published by the Free Software Foundation .
55 + */
56 +# include <linux /clk.h>
57 +# include <linux / etherdevice .h>
58 +# include <linux /irq.h>
59 +# include <linux /i2c.h>
60 +# include <linux /i2c -gpio.h>
61 +# include <linux /init.h>
62 +# include <linux / linkage .h>
63 +# include <linux / platform _ device .h>
64 +# include <linux / types .h>
65 +# include <linux /leds.h>
66 +# include <linux /spi/spi.h>
67 +
68 +# include <asm/atmel -mci.h>
69 +# include <asm/io.h>
70 +# include <asm/ setup .h>
71 +
72 +# include <mach/ at32uc3a0xxx .h>
73 +# include <mach/ board .h>
74 +# include <mach/init.h>
75 +# include <mach/ portmux .h>
76 +
77 +/* Oscillator frequencies . These are board - specific */
78 + unsigned long at32_ board _osc_ rates [3] = {
79 + [0] = 32768 , /* 32.768 kHz on RTC osc */
80 + [1] = 12000000 , /* 12 MHz on osc0 */
81 + [2] = 0,
82 +};
83 +/* Initialized by bootloader - specific startup code. */
84 + struct tag * bootloader _tags __ initdata ;
85 +
86 + static struct eth_ platform _data __ initdata eth_data = {
87 + .is_rmii = 1,
88 +};
89 +
90 + static struct spi_ board _info spi0_ board _info[] __ initdata = {
91 + {
92 + . modalias = "mtd_ dataflash ",
93 + .max_ speed _hz = 8000000 ,
94 + .chip_ select = 0,
95 + },
96 +};
97 +
98 +void __init setup _ board (void)
99 +{

100 + at32_map_ usart (0, 0); /* USART 0: /dev/ttyS0 , DB9 */
101 + at32_ setup _ serial _ console (0);
102 +}
103 +
104 + static const struct gpio_led evk1100 _leds[] = {
105 + { .name = "led1", .gpio = GPIO_PIN_PB (27) , . active _low = 1,
106 + . default _ trigger = " heartbeat ",
107 + },
108 + { .name = "led2", .gpio = GPIO_PIN_PB (28) , . active _low = 1, },
109 + /* Disabled , as it sits on the CS2 , which is used for SRAM.
110 + { .name = "led3", .gpio = GPIO_PIN_PB (29) , . active _low = 1, },
111 + */
112 + { .name = "led4", .gpio = GPIO_PIN_PB (30) , . active _low = 1, },
113 + { .name = " led5r ", .gpio = GPIO_PIN_PB (19) , . active _low = 1, },
114 + { .name = " led5g ", .gpio = GPIO_PIN_PB (20) , . active _low = 1, },
115 + { .name = " led6r ", .gpio = GPIO_PIN_PB (21) , . active _low = 1, },
116 + { .name = " led6g ", .gpio = GPIO_PIN_PB (22) , . active _low = 1, },
117 +};
118 +
119 + static const struct gpio_led_ platform _data evk1100 _led_data = {
120 + .num_leds = ARRAY _SIZE(evk1100 _leds),
121 + .leds = (void *) evk1100 _leds ,
122 +};
123 +

206 APPENDIX D. LINUX KERNEL PATCHES

124 + static struct platform _ device evk1100 _gpio_leds = {
125 + .name = "leds -gpio",
126 + .id = -1,
127 + .dev = {
128 + . platform _data = (void *) & evk1100 _led_data ,
129 + }
130 +};
131 +
132 + static int __init atevk1100 _init(void)
133 +{
134 + unsigned i;
135 +
136 + /*
137 + * atevk1100 uses 16- bit SDRAM interface , so we don ’t need to
138 + * reserve any pins for it.
139 + */
140 +
141 + at32_add_ system _ devices ();
142 +
143 + at32_add_ device _ usart (0);
144 +
145 + at32_add_ device _eth (0, ð_data);
146 +
147 + at32_add_ device _spi (0, spi0_ board _info , ARRAY _SIZE(spi0_ board _info));
148 + at32_add_ device _usba (0, NULL);
149 +
150 + for (i = 0; i < ARRAY _SIZE(evk1100 _leds); i++) {
151 + at32_ select _gpio(evk1100 _leds[i].gpio ,
152 + AT32_ GPIOF _ OUTPUT | AT32_ GPIOF _HIGH);
153 + }
154 + platform _ device _ register (& evk1100 _gpio_leds);
155 +
156 + return 0;
157 +}
158 + postcore _ initcall (atevk1100 _init);
159 +
160 + static int __init atevk1100 _arch_init(void)
161 +{
162 + /* set_irq_type () after the arch_ initcall for EIC has run , and
163 + * before the I2C subsystem could try using this IRQ.
164 + */
165 + return set_irq_type(AT32_ EXTINT (3) , IRQ_TYPE_EDGE_ FALLING);
166 +}
167 +arch_ initcall (atevk1100 _arch_init);

207

Appendix E

PDCA, SPI and DataFlash
support

1 diff --git a/arch/ avr32 / boards / atevk1100 / setup .c b/arch/ avr32 / boards / atevk1100 / setup .c
2 index 5 d8dca0 ..8505 b45 100644
3 --- a/arch/ avr32 / boards / atevk1100 / setup .c
4 +++ b/arch/ avr32 / boards / atevk1100 / setup .c
5 @@ -46 ,11 +46 ,17 @@ static struct eth_ platform _data __ initdata eth_data = {
6 };
7
8 static struct spi_ board _info spi0_ board _info[] __ initdata = {
9 +

10 +};
11 +
12 + static struct spi_ board _info spi1_ board _info[] __ initdata = {
13 + /*
14 {
15 . modalias = "mtd_ dataflash ",
16 .max_ speed _hz = 8000000 ,
17 .chip_ select = 0,
18 },
19 + */
20 };
21
22 /*
23 @@ -162 ,6 +168 ,7 @@ static int __init atevk1100 _init(void)
24 set_hw_addr(at32_add_ device _eth (0, ð_data));
25
26 at32_add_ device _spi (0, spi0_ board _info , ARRAY _SIZE(spi0_ board _info));
27 + at32_add_ device _spi (1, spi1_ board _info , ARRAY _SIZE(spi1_ board _info));
28 at32_add_ device _usba (0, NULL);
29
30 for (i = 0; i < ARRAY _SIZE(evk1100 _leds); i++) {
31 diff --git a/arch/ avr32 /mach - at32ap / include /mach/pdma.h b/arch/ avr32 /mach - at32ap / include /mach/pdma.h
32 new file mode 100644
33 index 0000000 .. b798dc7
34 --- /dev/null
35 +++ b/arch/ avr32 /mach - at32ap / include /mach/pdma.h
36 @@ -0,0 +1 ,9 @@
37 +/*
38 + * Peripheral DMA abstraction layer for AP7000 .
39 + */
40 +# ifndef __ASM_ARCH_PDMA_H__
41 +# define __ASM_ARCH_PDMA_H__
42 +
43 +
44 +
45 +# endif /* __ASM_ARCH_PDMA_H__ */
46 diff --git a/arch/ avr32 /mach - at32uc3a / at32uc3a0xxx .c b/arch/ avr32 /mach - at32uc3a / at32uc3a0xxx .c
47 index f6af725 .. f488ef9 100644
48 --- a/arch/ avr32 /mach - at32uc3a / at32uc3a0xxx .c
49 +++ b/arch/ avr32 /mach - at32uc3a / at32uc3a0xxx .c
50 @@ -23,6 +23 ,7 @@
51 # include <mach/ at32uc3a0xxx .h>
52 # include <mach/ board .h>
53 # include <mach/ hmatrix .h>
54 +# include <mach/pdma.h>
55 # include <mach/ portmux .h>
56 # include <mach/sram.h>

208 APPENDIX E. PDCA, SPI AND DATAFLASH SUPPORT

57
58 @@ -55,6 +56 ,18 @@
59 .name = _name , \
60 . flags = IORESOURCE _IRQ , \
61 }
62 +# define PDCA_RX(num) \
63 + { \
64 + . start = num , \
65 + .end = num , \
66 + . flags = IORESOURCE _PDCA_RX , \
67 + }
68 +# define PDCA_TX(num) \
69 + { \
70 + . start = num , \
71 + .end = num , \
72 + . flags = IORESOURCE _PDCA_TX , \
73 + }
74
75 /* REVISIT these assume * every * device supports DMA , but several
76 * don ’t ... tc , smc , pio , rtc , watchdog , pwm , ps2 , and more.
77 @@ -707 ,11 +720 ,17 @@ static struct clk smc0_mck = {
78 . index = 6,
79 };
80
81 + static struct resource pdca_ resource [] = {
82 + PBMEM (0 xffff0000),
83 +};
84 static struct platform _ device pdca_ device = {
85 .name = "pdca",
86 .id = 0,
87 + . resource = pdca_resource , \
88 + .num_ resources = ARRAY _SIZE(pdca_ resource), \
89 };
90 DEV_CLK(pclk , pdca , pba , 2);
91 +DEV_CLK(hclk , pdca , hsb , 5);
92
93 /* --
94 * HMATRIX
95 @@ -1011 ,6 +1030 ,8 @@ at32_add_ device _eth(unsigned int id , struct eth_ platform _data *data)
96 static struct resource atmel _spi0_ resource [] = {
97 PBMEM (0 xffff2400),
98 IRQ (9) ,
99 + PDCA_RX (7) ,

100 + PDCA_TX (15) ,
101 };
102 DEFINE _DEV(atmel _spi , 0);
103 DEV_CLK(spi_clk , atmel _spi0 , pba , 5);
104 @@ -1018 ,6 +1039 ,8 @@ DEV_CLK(spi_clk , atmel _spi0 , pba , 5);
105 static struct resource atmel _spi1_ resource [] = {
106 PBMEM (0 xffff2800),
107 IRQ (10) ,
108 + PDCA_RX (8) ,
109 + PDCA_TX (16) ,
110 };
111 DEFINE _DEV(atmel _spi , 1);
112 DEV_CLK(spi_clk , atmel _spi1 , pba , 6);
113 @@ -1362 ,6 +1385 ,7 @@ struct clk *at32_ clock _list[] = {
114 &smc0_pclk ,
115 &smc0_mck ,
116 &pdca_pclk ,
117 + &pdca_hclk ,
118 &at32_ocd0_clk ,
119 & gpio0 _mck ,
120 & gpio1 _mck ,
121 diff --git a/arch/ avr32 /mach - at32uc3a /gpio.c b/arch/ avr32 /mach - at32uc3a /gpio.c
122 index 62600 f6.. c6c9f9f 100644
123 --- a/arch/ avr32 /mach - at32uc3a /gpio.c
124 +++ b/arch/ avr32 /mach - at32uc3a /gpio.c
125 @@ -21,7 +21 ,11 @@
126
127 # include "gpio.h"
128
129 -# define MAX_NR_GPIO_ DEVICES 5
130 +# include <mach/chip.h>
131 +# include <mach/pm.h>
132 +# include "pm.h"
133 +
134 +# define MAX_NR_GPIO_ DEVICES 4
135
136 struct gpio_ device {
137 struct gpio_chip chip;
138 @@ -138 ,7 +142 ,7 @@ void __init at32_ select _gpio(unsigned int pin , unsigned long flags)
139 gpio_ writel (gpio , PUERS , mask);
140 else

209

141 gpio_ writel (gpio , PUERC , mask);
142 -
143 +
144 if (flags & AT32_ GPIOF _ DEGLITCH)
145 gpio_ writel (gpio , GFERS , mask);
146 else
147 @@ -207 ,8 +211 ,15 @@ static void gpio_set(struct gpio_chip *chip , unsigned offset , int value)
148
149 if (value)
150 gpio_ writel (gpio , OVRS , mask);
151 - else
152 - gpio_ writel (gpio , OVRC , mask);
153 + else {
154 + void *a;
155 + u32 v;
156 +
157 + a = gpio ->regs + GPIO_OVRC;
158 + v = mask;
159 +
160 + __raw_ writel (v, a);
161 + }
162 }
163
164 static int direction _ output (struct gpio_chip *chip , unsigned offset , int value)
165 @@ -446 ,6 +457 ,9 @@ void __init at32_init_gpio(struct platform _ device *pdev)
166
167 gpio ->pdev = pdev;
168 gpio ->regs = ioremap (regs ->start , regs ->end - regs ->start + 1);
169 + if (!gpio ->regs) {
170 + dev_err(&pdev ->dev , " unable to map memory (%p, %u)\n", (void *) regs ->start , regs ->end -

regs ->start + 1);
171 + }
172
173 /* start with irqs disabled and acked */
174 gpio_ writel (gpio , IERC , ~0 UL);
175 diff --git a/arch/ avr32 /mach - at32uc3a / include /mach/pdca.h b/arch/ avr32 /mach - at32uc3a / include /mach/pdca.h
176 new file mode 100644
177 index 0000000 ..072 e119
178 --- /dev/null
179 +++ b/arch/ avr32 /mach - at32uc3a / include /mach/pdca.h
180 @@ -0,0 +1 ,35 @@
181 +/*
182 + * PDCA registers and definitions .
183 + */
184 +# ifndef __ASM_ARCH_PDCA_H__
185 +# define __ASM_ARCH_PDCA_H__
186 +
187 +# include <linux /io.h>
188 +
189 +# define PDCA_MAR 0x00
190 +# define PDCA_PSR 0x04
191 +# define PDCA_TCR 0x08
192 +# define PDCA_MARR 0x0c
193 +# define PDCA_TCRR 0x10
194 +# define PDCA_CR 0x14
195 +# define PDCA_MR 0x18
196 +# define PDCA_SR 0x1c
197 +# define PDCA_SLOT_SIZE 0x40
198 +
199 +/* Bits in CR */
200 +# define PDCA_CR_TEN 0 x00000001
201 +# define PDCA_CR_TDIS 0 x00000002
202 +# define PDCA_CR_ECLR 0 x00000100
203 +
204 +/* Bits in SR */
205 +# define PDCA_SR_TEN 0 x00000001
206 +
207 + extern void __ iomem *pdca_regs;
208 +
209 +# define pdca_ readl (slot , reg) \
210 + __raw_ readl (pdca_regs + slot * PDCA_SLOT_SIZE + PDCA_##reg)
211 +# define pdca_ writel (slot , reg , value) \
212 + __raw_ writel ((value), pdca_regs + slot * PDCA_SLOT_SIZE + PDCA_##reg)
213 +
214 +
215 +# endif /* __ASM_ARCH_PDCA_H__ */
216 diff --git a/arch/ avr32 /mach - at32uc3a / include /mach/pdma.h b/arch/ avr32 /mach - at32uc3a / include /mach/pdma.h
217 new file mode 100644
218 index 0000000 .. b74a2ce
219 --- /dev/null
220 +++ b/arch/ avr32 /mach - at32uc3a / include /mach/pdma.h
221 @@ -0,0 +1 ,43 @@
222 +/*
223 + * Peripheral DMA abstraction layer for UC3A.

210 APPENDIX E. PDCA, SPI AND DATAFLASH SUPPORT

224 + */
225 +# ifndef __ASM_ARCH_PDMA_H__
226 +# define __ASM_ARCH_PDMA_H__
227 +
228 +# include <linux / ioport .h>
229 +# include <mach/pdca.h>
230 +
231 +/* Resource types for PDCA RX peripheral ID and PDCA TX peripheral id. */
232 +# define IORESOURCE _PDCA_RX 0 x00000e00
233 +# define IORESOURCE _PDCA_TX 0 x00000f00
234 +
235 + struct pdma_ channel {
236 + /*
237 + * The PDCA slotss we have allocated for RX & TX ,
238 + * or -1 if no slot is allocated for that purpose .
239 + */
240 + int rx_slot;
241 + int tx_slot;
242 +};
243 +
244 +int pdma_init(struct pdma_ channel *channel , struct platform _ device *pdev);
245 +void pdma_ release (struct pdma_ channel * channel);
246 +
247 +void pdma_set_rx(struct pdma_ channel *channel , dma_addr_t addr , u32 counter);
248 +void pdma_set_next_rx(struct pdma_ channel *channel , dma_addr_t addr , u32 counter);
249 +void pdma_set_tx(struct pdma_ channel *channel , dma_addr_t addr , u32 counter);
250 +void pdma_set_next_tx(struct pdma_ channel *channel , dma_addr_t addr , u32 counter);
251 +
252 +void pdma_ enable _rx(struct pdma_ channel * channel);
253 +void pdma_ disable _rx(struct pdma_ channel * channel);
254 +int pdma_rx_ enabled (struct pdma_ channel * channel);
255 +
256 +void pdma_ enable _tx(struct pdma_ channel * channel);
257 +void pdma_ disable _tx(struct pdma_ channel * channel);
258 +int pdma_tx_ enabled (struct pdma_ channel * channel);
259 +
260 +u32 pdma_get_rx_ counter (struct pdma_ channel * channel);
261 +u32 pdma_get_tx_ counter (struct pdma_ channel * channel);
262 +
263 +
264 +# endif /* __ASM_ARCH_PDMA_H__ */
265 diff --git a/arch/ avr32 /mach - at32uc3a /pdca.c b/arch/ avr32 /mach - at32uc3a /pdca.c
266 index 17 a48e1 ..2 ff7cfb 100644
267 --- a/arch/ avr32 /mach - at32uc3a /pdca.c
268 +++ b/arch/ avr32 /mach - at32uc3a /pdca.c
269 @@ -6,15 +6 ,194 @@
270 * published by the Free Software Foundation .
271 */
272
273 +# include <linux / bitops .h>
274 # include <linux /clk.h>
275 # include <linux /err.h>
276 # include <linux /init.h>
277 +# include <linux / mutex .h>
278 # include <linux / platform _ device .h>
279 +# include <mach/pdma.h>
280 +
281 +void __ iomem *pdca_regs;
282 +
283 + static DEFINE _ MUTEX (pdca_lock);
284 + static unsigned long allocated _ slots ;
285 +
286 +# define PDCA_ SLOTS 15
287 +
288 + static int allocate _slot(void)
289 +{
290 + int slot;
291 +
292 + mutex _lock(&pdca_lock);
293 +
294 + slot = ffz(allocated _ slots);
295 + if (slot >= PDCA_ SLOTS) {
296 + slot = -ENOSPC ;
297 + printk (KERN_ERR "No free pdca slots .\n");
298 + } else {
299 + __set_bit(slot , & allocated _ slots);
300 + }
301 +
302 + mutex _ unlock (&pdca_lock);
303 +
304 + return slot;
305 +}
306 +
307 + static void free_slot(int slot)

211

308 +{
309 + BUG_ON(slot < 0 || slot >= PDCA_ SLOTS);
310 +
311 + mutex _lock(&pdca_lock);
312 +
313 + __ clear _bit(slot , & allocated _ slots);
314 +
315 + mutex _ unlock (&pdca_lock);
316 +}
317 +
318 +int pdma_init(struct pdma_ channel *channel , struct platform _ device *pdev)
319 +{
320 + int ret;
321 + struct resource *pdca_rx;
322 + struct resource *pdca_tx;
323 +
324 + pdca_rx = platform _get_ resource (pdev , IORESOURCE _PDCA_RX , 0);
325 + pdca_tx = platform _get_ resource (pdev , IORESOURCE _PDCA_TX , 0);
326 +
327 + if (pdca_rx) {
328 + ret = allocate _slot ();
329 + if (ret < 0)
330 + goto out_no_rx_slot;
331 + channel ->rx_slot = ret;
332 + pdca_ writel (channel ->rx_slot , PSR , pdca_rx ->start);
333 +
334 + } else {
335 + channel ->rx_slot = -1;
336 + }
337 +
338 + if (pdca_tx) {
339 + ret = allocate _slot ();
340 + if (ret < 0)
341 + goto out_no_tx_slot;
342 + channel ->tx_slot = ret;
343 + pdca_ writel (channel ->tx_slot , PSR , pdca_tx ->start);
344 +
345 + } else {
346 + channel ->tx_slot = -1;
347 + }
348 +
349 + return 0;
350 +
351 + out_no_tx_slot:
352 + if (channel ->rx_slot != -1) {
353 + free_slot(channel ->rx_slot);
354 + }
355 + out_no_rx_slot:
356 + return ret;
357 +}
358 +
359 +void pdma_ release (struct pdma_ channel * channel)
360 +{
361 + if (channel ->rx_slot != -1) {
362 + BUG_ON(pdma_rx_ enabled (channel));
363 + free_slot(channel ->rx_slot);
364 + }
365 +
366 + if (channel ->tx_slot != -1) {
367 + BUG_ON(pdma_tx_ enabled (channel));
368 + free_slot(channel ->tx_slot);
369 + }
370 +
371 +}
372 +
373 +void pdma_set_rx(struct pdma_ channel *channel , dma_addr_t addr , u32 counter)
374 +{
375 + BUG_ON(channel ->rx_slot == -1);
376 + BUG_ON(counter > 0 xffff);
377 + pdca_ writel (channel ->rx_slot , MAR , addr);
378 + pdca_ writel (channel ->rx_slot , TCR , counter);
379 +
380 +}
381 +void pdma_set_next_rx(struct pdma_ channel *channel , dma_addr_t addr , u32 counter)
382 +{
383 + BUG_ON(channel ->rx_slot == -1);
384 + BUG_ON(counter > 0 xffff);
385 + pdca_ writel (channel ->rx_slot , MARR , addr);
386 + pdca_ writel (channel ->rx_slot , TCRR , counter);
387 +
388 +}
389 +void pdma_set_tx(struct pdma_ channel *channel , dma_addr_t addr , u32 counter)
390 +{
391 + BUG_ON(channel ->tx_slot == -1);

212 APPENDIX E. PDCA, SPI AND DATAFLASH SUPPORT

392 + BUG_ON(counter > 0 xffff);
393 + pdca_ writel (channel ->tx_slot , MAR , addr);
394 + pdca_ writel (channel ->tx_slot , TCR , counter);
395 +
396 +}
397 +void pdma_set_next_tx(struct pdma_ channel *channel , dma_addr_t addr , u32 counter)
398 +{
399 + BUG_ON(channel ->tx_slot == -1);
400 + BUG_ON(counter > 0 xffff);
401 + pdca_ writel (channel ->tx_slot , MARR , addr);
402 + pdca_ writel (channel ->tx_slot , TCRR , counter);
403 +
404 +}
405 +
406 +void pdma_ enable _rx(struct pdma_ channel * channel)
407 +{
408 + BUG_ON(channel ->rx_slot == -1);
409 + pdca_ writel (channel ->rx_slot , CR , PDCA_CR_TEN);
410 +}
411 +void pdma_ disable _rx(struct pdma_ channel * channel)
412 +{
413 + BUG_ON(channel ->rx_slot == -1);
414 + pdca_ writel (channel ->rx_slot , CR , PDCA_CR_TDIS);
415 +}
416 +int pdma_rx_ enabled (struct pdma_ channel * channel)
417 +{
418 + BUG_ON(channel ->rx_slot == -1);
419 + return !!(pdca_ readl (channel ->rx_slot , SR) & PDCA_SR_TEN);
420 +}
421 +
422 +void pdma_ enable _tx(struct pdma_ channel * channel)
423 +{
424 + BUG_ON(channel ->tx_slot == -1);
425 + pdca_ writel (channel ->tx_slot , CR , PDCA_CR_TEN);
426 +}
427 +void pdma_ disable _tx(struct pdma_ channel * channel)
428 +{
429 + BUG_ON(channel ->tx_slot == -1);
430 + pdca_ writel (channel ->tx_slot , CR , PDCA_CR_TDIS);
431 +}
432 +int pdma_tx_ enabled (struct pdma_ channel * channel)
433 +{
434 + BUG_ON(channel ->tx_slot == -1);
435 + return !!(pdca_ readl (channel ->tx_slot , SR) & PDCA_SR_TEN);
436 +}
437 +
438 +u32 pdma_get_rx_ counter (struct pdma_ channel * channel)
439 +{
440 + BUG_ON(channel ->rx_slot == -1);
441 + return pdca_ readl (channel ->rx_slot , TCR);
442 +}
443 +
444 +u32 pdma_get_tx_ counter (struct pdma_ channel * channel)
445 +{
446 + BUG_ON(channel ->tx_slot == -1);
447 + return pdca_ readl (channel ->tx_slot , TCR);
448 +}
449
450 static int __init pdca_ probe (struct platform _ device *pdev)
451 {
452 + struct resource *regs;
453 struct clk *pclk , *hclk;
454
455 + regs = platform _get_ resource (pdev , IORESOURCE _MEM , 0);
456 + if (!regs) {
457 + dev_err(&pdev ->dev , "no memory defined \n");
458 + return -ENXIO ;
459 + }
460 +
461 pclk = clk_get(&pdev ->dev , "pclk");
462 if (IS_ERR(pclk)) {
463 dev_err(&pdev ->dev , "no pclk defined \n");
464 @@ -27,6 +206 ,10 @@ static int __init pdca_ probe (struct platform _ device *pdev)
465 return PTR_ERR(hclk);
466 }
467
468 + pdca_regs = ioremap (regs ->start , regs ->end - regs ->start + 1);
469 + if (!pdca_regs)
470 + return -ENOMEM ;
471 +
472 clk_ enable (pclk);
473 clk_ enable (hclk);
474
475 diff --git a/ drivers /mtd/ devices /mtd_ dataflash .c b/ drivers /mtd/ devices /mtd_ dataflash .c

213

476 index 6 dd9aff ..653 eea2 100644
477 --- a/ drivers /mtd/ devices /mtd_ dataflash .c
478 +++ b/ drivers /mtd/ devices /mtd_ dataflash .c
479 @@ -867 ,6 +867 ,7 @@ static int __ devinit dataflash _ probe (struct spi_ device *spi)
480 * capacity using bits in the status byte.
481 */
482 status = dataflash _ status (spi);
483 +
484 if (status <= 0 || status == 0xff) {
485 DEBUG (MTD_ DEBUG _LEVEL1 , "%s: status error %d\n",
486 spi ->dev.bus_id , status);
487 diff --git a/ drivers /spi/ atmel _spi.c b/ drivers /spi/ atmel _spi.c
488 index 8 abae4a .. f942f98 100644
489 --- a/ drivers /spi/ atmel _spi.c
490 +++ b/ drivers /spi/ atmel _spi.c
491 @@ -7,6 +7 ,8 @@
492 * it under the terms of the GNU General Public License version 2 as
493 * published by the Free Software Foundation .
494 */
495 +# define DEBUG
496 +# define VERBOSE
497
498 # include <linux / kernel .h>
499 # include <linux /init.h>
500 @@ -23,9 +25 ,11 @@
501 # include <mach/ board .h>
502 # include <mach/gpio.h>
503 # include <mach/cpu.h>
504 +# include <mach/pdma.h>
505
506 # include " atmel _spi.h"
507
508 +
509 /*
510 * The core SPI transfer engine just talks to a register bank to set up
511 * DMA transfers ; transfer queue progress is driven by IRQs. The clock
512 @@ -43,6 +47 ,7 @@ struct atmel _spi {
513
514 void __ iomem *regs;
515 int irq;
516 + struct pdma_ channel dma;
517 struct clk *clk;
518 struct platform _ device *pdev;
519 unsigned new_1:1;
520 @@ -107 ,6 +112 ,7 @@ static void cs_ activate (struct atmel _spi *as , struct spi_ device *spi)
521
522 if (!(cpu_is_ at91rm9200 () && spi ->chip_ select == 0))
523 gpio_set_ value (gpio , active);
524 +
525 spi_ writel (as , MR , mr);
526 }
527
528 @@ -198 ,19 +204 ,18 @@ static void atmel _spi_next_xfer(struct spi_ master *master ,
529 xfer = NULL;
530
531 if (xfer) {
532 - spi_ writel (as , PTCR , SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
533 + pdma_ disable _rx(&as ->dma);
534 + pdma_ disable _tx(&as ->dma);
535
536 len = xfer ->len;
537 atmel _spi_next_xfer_data(master , xfer , &tx_dma , &rx_dma , &len);
538 remaining = xfer ->len - len;
539
540 - spi_ writel (as , RPR , rx_dma);
541 - spi_ writel (as , TPR , tx_dma);
542 -
543 if (msg ->spi ->bits_per_word > 8)
544 len >>= 1;
545 - spi_ writel (as , RCR , len);
546 - spi_ writel (as , TCR , len);
547 +
548 + pdma_set_rx(&as ->dma , rx_dma , len);
549 + pdma_set_tx(&as ->dma , tx_dma , len);
550
551 dev_dbg(&msg ->spi ->dev ,
552 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
553 @@ -243 ,13 +248 ,11 @@ static void atmel _spi_next_xfer(struct spi_ master *master ,
554 atmel _spi_next_xfer_data(master , xfer , &tx_dma , &rx_dma , &len);
555 as ->next_ remaining _ bytes = total - len;
556
557 - spi_ writel (as , RNPR , rx_dma);
558 - spi_ writel (as , TNPR , tx_dma);
559 -

214 APPENDIX E. PDCA, SPI AND DATAFLASH SUPPORT

560 if (msg ->spi ->bits_per_word > 8)
561 len >>= 1;
562 - spi_ writel (as , RNCR , len);
563 - spi_ writel (as , TNCR , len);
564 +
565 + pdma_set_next_rx(&as ->dma , rx_dma , len);
566 + pdma_set_next_tx(&as ->dma , tx_dma , len);
567
568 dev_dbg(&msg ->spi ->dev ,
569 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
570 @@ -257 ,8 +260 ,9 @@ static void atmel _spi_next_xfer(struct spi_ master *master ,
571 xfer ->rx_buf , xfer ->rx_dma);
572 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
573 } else {
574 - spi_ writel (as , RNCR , 0);
575 - spi_ writel (as , TNCR , 0);
576 + pdma_set_next_rx(&as ->dma , NULL , 0);
577 + pdma_set_next_tx(&as ->dma , NULL , 0);
578 +
579 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
580 }
581
582 @@ -273 ,7 +277 ,8 @@ static void atmel _spi_next_xfer(struct spi_ master *master ,
583 * It should be doable , though . Just not now...
584 */
585 spi_ writel (as , IER , ieval);
586 - spi_ writel (as , PTCR , SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
587 + pdma_ enable _rx(&as ->dma);
588 + pdma_ enable _tx(&as ->dma);
589 }
590
591 static void atmel _spi_next_ message (struct spi_ master * master)
592 @@ -372 ,9 +377 ,11 @@ atmel _spi_msg_done(struct spi_ master *master , struct atmel _spi *as ,
593 as ->current _ transfer = NULL;
594 as ->next_ transfer = NULL;
595
596 - /* continue if needed */
597 - if (list_ empty (&as ->queue) || as ->stopping)
598 - spi_ writel (as , PTCR , SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
599 + /* Continue if needed */
600 + if (list_ empty (&as ->queue) || as ->stopping){
601 + pdma_ disable _rx(&as ->dma);
602 + pdma_ disable _tx(&as ->dma);
603 + }
604 else
605 atmel _spi_next_ message (master);
606 }
607 @@ -390 ,7 +397 ,6 @@ atmel _spi_ interrupt (int irq , void *dev_id)
608 int ret = IRQ_NONE;
609
610 spin_lock(&as ->lock);
611 -
612 xfer = as ->current _ transfer ;
613 msg = list_ entry (as ->queue .next , struct spi_message , queue);
614
615 @@ -400 ,7 +406 ,6 @@ atmel _spi_ interrupt (int irq , void *dev_id)
616
617 if (pending & SPI_BIT(OVRES)) {
618 int timeout ;
619 -
620 ret = IRQ_ HANDLED ;
621
622 spi_ writel (as , IDR , (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
623 @@ -417 ,7 +422 ,9 @@ atmel _spi_ interrupt (int irq , void *dev_id)
624 *
625 * First , stop the transfer and unmap the DMA buffers .
626 */
627 - spi_ writel (as , PTCR , SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
628 + pdma_ disable _rx(&as ->dma);
629 + pdma_ disable _tx(&as ->dma);
630 +
631 if (!msg ->is_dma_ mapped)
632 atmel _spi_dma_ unmap _xfer(master , xfer);
633
634 @@ -426 ,16 +433 ,17 @@ atmel _spi_ interrupt (int irq , void *dev_id)
635 udelay (xfer ->delay _ usecs);
636
637 dev_warn(master ->dev.parent , " overrun (%u/%u remaining)\n",
638 - spi_ readl (as , TCR), spi_ readl (as , RCR));
639 + pdma_get_tx_ counter (&as ->dma), pdma_get_rx_ counter (&as ->dma));
640
641 /*
642 * Clean up DMA registers and make sure the data
643 * registers are empty .

215

644 */
645 - spi_ writel (as , RNCR , 0);
646 - spi_ writel (as , TNCR , 0);
647 - spi_ writel (as , RCR , 0);
648 - spi_ writel (as , TCR , 0);
649 + pdma_set_next_rx(&as ->dma , NULL , 0);
650 + pdma_set_next_tx(&as ->dma , NULL , 0);
651 + pdma_set_rx(&as ->dma , NULL , 0);
652 + pdma_set_tx(&as ->dma , NULL , 0);
653 +
654 for (timeout = 1000; timeout ; timeout --)
655 if (spi_ readl (as , SR) & SPI_BIT(TXEMPTY))
656 break ;
657 @@ -763 ,12 +771 ,18 @@ static int __init atmel _spi_ probe (struct platform _ device *pdev)
658 if (ret)
659 goto out_ unmap _regs;
660
661 + ret = pdma_init(&as ->dma , pdev);
662 + if (ret)
663 + goto out_free_irq;
664 +
665 /* Initialize the hardware */
666 clk_ enable (clk);
667 spi_ writel (as , CR , SPI_BIT(SWRST));
668 spi_ writel (as , CR , SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
669 spi_ writel (as , MR , SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
670 - spi_ writel (as , PTCR , SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
671 + pdma_ disable _rx(&as ->dma);
672 + pdma_ disable _tx(&as ->dma);
673 +
674 spi_ writel (as , CR , SPI_BIT(SPIEN));
675
676 /* go! */
677 @@ -785 ,6 +799 ,8 @@ out_ reset _hw:
678 spi_ writel (as , CR , SPI_BIT(SWRST));
679 spi_ writel (as , CR , SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
680 clk_ disable (clk);
681 + pdma_ release (&as ->dma);
682 +out_free_irq:
683 free_irq(irq , master);
684 out_ unmap _regs:
685 iounmap (as ->regs);
686 @@ -823 ,6 +839 ,7 @@ static int __exit atmel _spi_ remove (struct platform _ device *pdev)
687 dma_free_ coherent (&pdev ->dev , BUFFER _SIZE , as ->buffer ,
688 as ->buffer _dma);
689
690 + pdma_ release (&as ->dma);
691 clk_ disable (as ->clk);
692 clk_put(as ->clk);
693 free_irq(as ->irq , master);
694 diff --git a/ drivers /spi/ atmel _spi.h b/ drivers /spi/ atmel _spi.h
695 index 6 e06b6a ..95 dbc0c 100644
696 --- a/ drivers /spi/ atmel _spi.h
697 +++ b/ drivers /spi/ atmel _spi.h
698 @@ -23 ,16 +23 ,6 @@
699 # define SPI_CSR1 0 x0034
700 # define SPI_CSR2 0 x0038
701 # define SPI_CSR3 0 x003c
702 -# define SPI_RPR 0 x0100
703 -# define SPI_RCR 0 x0104
704 -# define SPI_TPR 0 x0108
705 -# define SPI_TCR 0 x010c
706 -# define SPI_RNPR 0 x0110
707 -# define SPI_RNCR 0 x0114
708 -# define SPI_TNPR 0 x0118
709 -# define SPI_TNCR 0 x011c
710 -# define SPI_PTCR 0 x0120
711 -# define SPI_PTSR 0 x0124
712
713 /* Bitfields in CR */
714 # define SPI_ SPIEN _ OFFSET 0

216 APPENDIX E. PDCA, SPI AND DATAFLASH SUPPORT

217

Appendix F

Toolchain patches

F.1 Coverletter

1 From 4912 c9e615f5c2fee55838e4895004b3149f08f8 Mon Sep 17 00:00:00 2001
2 Date: Tue , 26 May 2009 16:21:02 +0200
3 Subject : [PATCH] Toolchain support for AVR32A UC3 Linux programs
4
5 These patches make it possible to compile Linux programs for AVR32A UC3.
6 A lot of work still remains , but they actually work.
7 We are able to use the toolchain to compile BusyBox .
8
9 What works :

10 * Compiling statically linked FDPIC ELF programs .
11
12 What should be done/What does not work:
13 * Shared library support
14 * Some cleanup
15 * Linking in some program (e.g. BusyBox) does not work entierly correct .
16 The PT_GNU_ STACKSIZE not always copied .
17 * Probably other bugs in the code
18
19
20 This patches are developed during a master thesis at NTNU. We hope that
21 someone else can use them as a starting point for getting full support
22 for FDPIC ELF into the avr32 toolchain .
23
24
25 We made changes to the following tools :
26 * GCC -4.2.2- atmel .1.1.3
27 * Binutils -2.18 with patches from buildroot -avr32 -v2.3.0
28 * uClibc -0.9.30
29
30
31 We attached the script we used to build the toolchain , to show which
32 options we used to compile the various tools . We have also attached
33 the script we used to build BusyBox .

F.2 GCC changes

1 From 70 e27ba6eacd938d86ae366b930b37dd784f364d Mon Sep 17 00:00:00 2001
2 Date: Tue , 26 May 2009 15:08:26 +0200
3 Subject : [PATCH] GCC: Add support for FDPIC ELF for AVR32 .
4
5 This patch makes a few changes to GCC , mostly to add support for the
6 -mfdpic flag. There were also a few changes to crti.asm , to prevent it
7 from replacing the got - pointer during _init and _fini.
8
9 Unfortunately , we haven ’t found a way to compile several variants of

10 crti.o from crti.asm , so that a single GCC can be used for both fdpic
11 and normal compiles .
12
13 To compile gcc for fdpic , make must be invoked like:
14 make CFLAGS _FOR_ TARGET =-mfdpic
15
16 This makes crti.asm compile with __ AVR32 _ FDPIC __ defined .

218 APPENDIX F. TOOLCHAIN PATCHES

17 ---
18 gcc/ config / avr32 / avr32 .opt | 3 +++
19 gcc/ config / avr32 /crti.asm | 4 ++++
20 gcc/ config / avr32 /linux -elf.h | 15 ++++++++++++++ -
21 3 files changed , 21 insertions (+) , 1 deletions (-)
22
23 diff --git a/gcc/ config / avr32 / avr32 .opt b/gcc/ config / avr32 / avr32 .opt
24 index a9a1d5a .. d4c62f3 100644
25 --- a/gcc/ config / avr32 / avr32 .opt
26 +++ b/gcc/ config / avr32 / avr32 .opt
27 @@ -84,3 +84 ,6 @@ Target Report Mask(RMW_ ADDRESSABLE _DATA)
28 Signal that all data is in range for the Atomic Read -Modify - Write memory instructions , and that
29 gcc can safely generate these whenever possible .
30
31 + mfdpic
32 + Target Report Mask(FDPIC)
33 + Enable Function Descriptor PIC mode
34 diff --git a/gcc/ config / avr32 /crti.asm b/gcc/ config / avr32 /crti.asm
35 index 4 c31f49 ..634 adc3 100644
36 --- a/gcc/ config / avr32 /crti.asm
37 +++ b/gcc/ config / avr32 /crti.asm
38 @@ -40,6 +40 ,7 @@
39 . global _init
40 _init:
41 stm --sp , r6 , lr
42 +# ifndef __ AVR32 _ FDPIC __
43 lddpc r6 , 1f
44 0:
45 rsub r6 , pc
46 @@ -47,6 +48 ,7 @@ _init:
47 . align 2
48 1: .long 0b - _ GLOBAL _ OFFSET _ TABLE _
49 2:
50 +# endif /* __ AVR32 _ FDPIC __ */
51
52 . section ".fini"
53 /* Just load the GOT */
54 @@ -54,6 +56 ,7 @@ _init:
55 . global _fini
56 _fini:
57 stm --sp , r6 , lr
58 +# ifndef __ AVR32 _ FDPIC __
59 lddpc r6 , 1f
60 0:
61 rsub r6 , pc
62 @@ -61,4 +64 ,5 @@ _fini:
63 . align 2
64 1: .long 0b - _ GLOBAL _ OFFSET _ TABLE _
65 2:
66 +# endif /* __ AVR32 _ FDPIC __ */
67
68 diff --git a/gcc/ config / avr32 /linux -elf.h b/gcc/ config / avr32 /linux -elf.h
69 index b3223fb .. cb206a1 100644
70 --- a/gcc/ config / avr32 /linux -elf.h
71 +++ b/gcc/ config / avr32 /linux -elf.h
72 @@ -67 ,11 +67 ,22 @@
73 # define ENDFILE _SPEC \
74 "%{! shared : crtend .o%s} %{ shared : crtendS .o%s} crtn.o%s"
75
76 +# define DRIVER _SELF_ SPECS "\
77 + %{ mfdpic :%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
78 + %{!fno -pic:%{!fno -pie:%{!fno -PIC:%{!fno -PIE:-fpie}}}}}}}}} \
79 +"
80 +
81 # undef ASM_SPEC
82 -# define ASM_SPEC "%{!mno -pic:%{!fno -pic:--pic}} %{ mrelax |O*:%{mno - relax |O0|O1: ;:--linkrelax }} %{mcpu=*

:-mcpu=%*}"
83 +# define ASM_SPEC "\
84 + %{!mno -pic:%{!fno -pic:--pic}} \
85 + %{ mrelax |O*:%{mno - relax |O0|O1: ;:--linkrelax }} \
86 + %{mcpu=*:-mcpu=%*} \
87 + %{ mfdpic } \
88 +"
89
90 # undef LINK_SPEC
91 # define LINK_SPEC "%{ version :-v} \
92 + %{ mfdpic :-mavr32linuxfdpic } \
93 %{ static :-Bstatic } \
94 %{ shared :-shared } \
95 %{ symbolic :-Bsymbolic } \
96 @@ -122 ,6 +133 ,8 @@
97 builtin _ define ("__ AVR32 _HAS_ BRANCH _PRED__"); \
98 if (TARGET _FAST_ FLOAT) \
99 builtin _ define ("__ AVR32 _FAST_ FLOAT __"); \

F.3. GNU BINUTILS CHANGES 219

100 + if (TARGET _ FDPIC) \
101 + builtin _ define ("__ AVR32 _ FDPIC __"); \
102 } \
103 while (0)
104
105 --
106 1.5.4.3

F.3 GNU binutils changes

1 From 4912 c9e615f5c2fee55838e4895004b3149f08f8 Mon Sep 17 00:00:00 2001
2 Date: Tue , 26 May 2009 16:21:02 +0200
3 Subject : [PATCH] Binutils support for FDPIC ELF on AVR32 UC3
4
5 This patch adds support for statically linked FDPIC ELF targets on
6 AVR32 . It mostly works , but there is a lack of error checking on input
7 file types , which means that if the linker is invoked incorrectly ,
8 it will fail in strange ways.
9

10 For example , if one fails to specify -I elf32 - avr32fdpic to
11 strip /objcopy , it will pretend that the file is a normal
12 elf32 - avr32 file , and "ruin" the PT_GNU_ STACK program header .
13
14 Some functions are (almost) direct copies from elf32 -bfin.c and
15 elf32 -frv.c, which are two architectures with FDPIC support . The code
16 for creating the .rofixup - section is however mostly new.
17 ---
18 bfd/ config .bfd | 2 +
19 bfd/ configure | 1 +
20 bfd/ configure .in | 1 +
21 bfd/elf32 - avr32 .c | 343 ++++++++++++++++++++++++++++++++++++++
22 bfd/ targets .c | 2 +
23 gas/ config /tc - avr32 .c | 8 +
24 include /elf/ avr32 .h | 1 +
25 ld/ Makefile .am | 5 +
26 ld/ Makefile .in | 5 +
27 ld/ configure .tgt | 4 +-
28 ld/ emulparams / avr32linux .sh | 1 +
29 ld/ emulparams / avr32linuxfdpic .sh | 10 +
30 12 files changed , 382 insertions (+) , 1 deletions (-)
31 create mode 100644 ld/ emulparams / avr32linuxfdpic .sh
32
33 diff --git a/bfd/ config .bfd b/bfd/ config .bfd
34 index 90350 d7..193 fd37 100644
35 --- a/bfd/ config .bfd
36 +++ b/bfd/ config .bfd
37 @@ -337 ,6 +337 ,8 @@ case "${targ}" in
38
39 avr32 -* -*)
40 targ_ defvec =bfd_ elf32 _ avr32 _vec
41 + targ_ selvecs =bfd_ elf32 _ avr32fdpic _vec
42 + targ_ underscore =yes
43 ;;
44
45 c30 -* -* aout* | tic30 -* -* aout *)
46 diff --git a/bfd/ configure b/bfd/ configure
47 index 92 d10b8 ..90 a32d7 100755
48 --- a/bfd/ configure
49 +++ b/bfd/ configure
50 @@ -19042 ,6 +19042 ,7 @@ do
51 bfd_ elf32 _ am33lin _vec) tb="$tb elf32 - am33lin .lo elf32 .lo $elf" ;;
52 bfd_ elf32 _avr_vec) tb="$tb elf32 -avr.lo elf32 .lo $elf" ;;
53 bfd_ elf32 _ avr32 _vec) tb="$tb elf32 - avr32 .lo elf32 .lo $elf" ;;
54 + bfd_ elf32 _ avr32fdpic _vec) tb="$tb elf32 - avr32 .lo elf32 .lo $elf" ;;
55 bfd_ elf32 _bfin_vec) tb="$tb elf32 -bfin.lo elf32 .lo $elf" ;;
56 bfd_ elf32 _ bfinfdpic _vec) tb="$tb elf32 -bfin.lo elf32 .lo $elf" ;;
57 bfd_ elf32 _big_ generic _vec) tb="$tb elf32 -gen.lo elf32 .lo $elf" ;;
58 diff --git a/bfd/ configure .in b/bfd/ configure .in
59 index 0 b0cd92 ..4 e5102b 100644
60 --- a/bfd/ configure .in
61 +++ b/bfd/ configure .in
62 @@ -620 ,6 +620 ,7 @@ do
63 bfd_ elf32 _ am33lin _vec) tb="$tb elf32 - am33lin .lo elf32 .lo $elf" ;;
64 bfd_ elf32 _avr_vec) tb="$tb elf32 -avr.lo elf32 .lo $elf" ;;
65 bfd_ elf32 _ avr32 _vec) tb="$tb elf32 - avr32 .lo elf32 .lo $elf" ;;
66 + bfd_ elf32 _ avr32fdpic _vec) tb="$tb elf32 - avr32 .lo elf32 .lo $elf" ;;
67 bfd_ elf32 _bfin_vec) tb="$tb elf32 -bfin.lo elf32 .lo $elf" ;;
68 bfd_ elf32 _ bfinfdpic _vec) tb="$tb elf32 -bfin.lo elf32 .lo $elf" ;;
69 bfd_ elf32 _big_ generic _vec) tb="$tb elf32 -gen.lo elf32 .lo $elf" ;;

220 APPENDIX F. TOOLCHAIN PATCHES

70 diff --git a/bfd/elf32 - avr32 .c b/bfd/elf32 - avr32 .c
71 index e45134c .. f882331 100644
72 --- a/bfd/elf32 - avr32 .c
73 +++ b/bfd/elf32 - avr32 .c
74 @@ -59,6 +59 ,8 @@
75 /* The name of the dynamic interpreter . This is put in the . interp section . */
76 # define ELF_ DYNAMIC _ INTERPRETER "/lib/ld.so.1"
77
78 +# define DEFAULT _ STACK _SIZE 0 x10000
79 +
80 # define AVR32 _GOT_ HEADER _SIZE 8
81 # define AVR32 _ FUNCTION _STUB_SIZE 8
82
83 @@ -68,6 +70 ,9 @@
84
85 # define NOP_ OPCODE 0 xd703
86
87 + extern const bfd_ target bfd_ elf32 _ avr32fdpic _vec;
88 +# define IS_ FDPIC (bfd) ((bfd)->xvec == &bfd_ elf32 _ avr32fdpic _vec)
89 +
90
91 /* Mapping between BFD relocations and ELF relocations */
92
93 @@ -327 ,6 +332 ,10 @@ struct elf_ avr32 _link_hash_ table
94 asection *sgot;
95 asection * srelgot ;
96 asection * sstub ;
97 + asection * rofixup ;
98 +
99 + unsigned int rofixup _ count ;

100 + unsigned int rofixup _ added ;
101
102 /* We use a variation of Pigeonhole Sort to sort the GOT. After the
103 initial refcounts have been determined , we initialize
104 @@ -547 ,6 +556 ,39 @@ avr32 _elf_ create _ dynamic _ sections (bfd *dynobj , struct bfd_link_info *info)
105 return TRUE;
106 }
107
108 + static bfd_ boolean
109 + avr32 _ rofixup _ create (bfd *abfd , struct bfd_link_info *info)
110 +{
111 + struct elf_ avr32 _link_hash_ table *htab;
112 + flagword flags ;
113 +
114 + if (!IS_ FDPIC (abfd)) {
115 + return TRUE;
116 + }
117 +
118 + htab = avr32 _elf_hash_ table (info);
119 + if (htab ->rofixup) {
120 + /* Already created . */
121 + return TRUE;
122 + }
123 +
124 + flags = (SEC_ ALLOC | SEC_LOAD | SEC_HAS_ CONTENTS | SEC_IN_ MEMORY
125 + | SEC_ LINKER _ CREATED);
126 +
127 + /* We need a .rofixup - section in FD -PIC ELF files . */
128 + htab ->rofixup = bfd_make_ section _with_ flags (abfd , ". rofixup ",
129 + (flags | SEC_ READONLY));
130 + if (htab ->rofixup == NULL ||
131 + ! bfd_set_ section _ alignment (abfd , htab ->rofixup , 2)) {
132 + return FALSE ;
133 + }
134 +
135 + htab ->rofixup ->size = 0;
136 +
137 + return TRUE;
138 +}
139 +
140 +
141 /* (2) Go through all the relocs and count any potential GOT - or
142 PLT - references to each symbol */
143
144 @@ -570 ,6 +612 ,10 @@ avr32 _ check _ relocs (bfd *abfd , struct bfd_link_info *info , asection *sec ,
145 if (info ->relocatable)
146 return TRUE;
147
148 + if (! avr32 _ rofixup _ create (abfd , info)) {
149 + return FALSE ;
150 + }
151 +
152 dynobj = elf_hash_ table (info)->dynobj ;
153 symtab _hdr = &elf_ tdata (abfd)->symtab _hdr;

F.3. GNU BINUTILS CHANGES 221

154 sym_ hashes = elf_sym_ hashes (abfd);
155 @@ -577 ,6 +623 ,11 @@ avr32 _ check _ relocs (bfd *abfd , struct bfd_link_info *info , asection *sec ,
156 local _got_ents = elf_ local _got_ents(abfd);
157 sgot = htab ->sgot;
158
159 + if (IS_ FDPIC (abfd) && dynobj == NULL) {
160 + elf_hash_ table (info)->dynobj = dynobj = abfd;
161 + }
162 +
163 +
164 rel_end = relocs + sec ->reloc _ count ;
165 for (rel = relocs ; rel < rel_end; rel ++)
166 {
167 @@ -727 ,6 +778 ,21 @@ avr32 _ check _ relocs (bfd *abfd , struct bfd_link_info *info , asection *sec ,
168 }
169 }
170
171 + if (IS_ FDPIC (abfd) && !info ->shared && (sec ->flags & SEC_ ALLOC))
172 + {
173 + htab ->rofixup _ count ++;
174 + if (h != NULL)
175 + {
176 + pr_ debug ("Non -GOT reference to symbol %s\n",
177 + h->root.root.root. string);
178 + }
179 + else
180 + {
181 + pr_ debug ("Non -GOT reference to local symbol %lu\n",
182 + r_ symndx);
183 + }
184 + }
185 +
186 break ;
187
188 /* TODO: GNU_ VTINHERIT and GNU_ VTENTRY */
189 @@ -1265 ,6 +1331 ,23 @@ avr32 _elf_size_ dynamic _ sections (bfd * output _bfd ,
190 }
191 # undef add_ dynamic _ entry
192
193 + if (IS_ FDPIC (output _bfd)) {
194 + /* Time to find the size of the .rofixup - section . */
195 +
196 + /* Terminator element . */
197 + htab ->rofixup ->size = 4;
198 +
199 + /* We need one entry for each R_ AVR32 _32 reloc . */
200 + htab ->rofixup ->size += 4 * htab ->rofixup _ count ;
201 +
202 + /* We also need one entry for each got entry . */
203 + htab ->rofixup ->size += htab ->sgot ->size;
204 +
205 + htab ->rofixup ->contents = (bfd_byte *) bfd_ zalloc (dynobj , htab ->rofixup ->size);
206 + if (htab ->rofixup ->contents == NULL)
207 + return FALSE ;
208 + }
209 +
210 return TRUE;
211 }
212
213 @@ -3234 ,6 +3317 ,110 @@ avr32 _ final _link_ relocate (reloc _ howto _type *howto ,
214 return status ;
215 }
216
217 + static void
218 + avr32 _ rofixup _add_ entry (bfd * output _bfd , struct bfd_link_info *info ,
219 + asection *section , bfd_vma section _ offset)
220 +{
221 + struct elf_ avr32 _link_hash_ table *htab;
222 + bfd_vma offset ;
223 + bfd_vma rofixup _ entry _ offset ;
224 +
225 + htab = avr32 _elf_hash_ table (info);
226 +
227 + BFD_ ASSERT (htab ->rofixup);
228 + BFD_ ASSERT (htab ->rofixup ->contents);
229 +
230 + /* Calculate the offset in the output VMA. */
231 + offset = section _ offset + section ->output _ section ->vma + section ->output _ offset ;
232 +
233 + /* Add that offset to the .rofixup - section . */
234 + rofixup _ entry _ offset = htab ->rofixup _ added * 4;
235 + BFD_ ASSERT (rofixup _ entry _ offset < htab ->rofixup ->size);
236 + bfd_put_32(output _bfd , offset , htab ->rofixup ->contents + rofixup _ entry _ offset);
237 +

222 APPENDIX F. TOOLCHAIN PATCHES

238 + pr_ debug (" Added rofixup entry %u for vma %08 lx.\n", htab ->rofixup _added , offset);
239 +
240 + htab ->rofixup _ added ++;
241 +}
242 +
243 + static void
244 + avr32 _ rofixup _add_ relocation (bfd * output _bfd , struct bfd_link_info *info ,
245 + asection * input _section ,
246 + Elf_ Internal _Rela * reloc)
247 +{
248 + struct elf_ avr32 _link_hash_ table *htab;
249 + bfd_vma offset ;
250 +
251 + htab = avr32 _elf_hash_ table (info);
252 +
253 + if (!IS_ FDPIC (output _bfd))
254 + return ;
255 + if (!(input _ section ->flags & SEC_ ALLOC))
256 + return ;
257 +
258 + /* Find the offset of the symbol in the output file. */
259 + offset = _bfd_elf_ section _ offset (output _bfd , info ,
260 + input _section ,
261 + reloc ->r_ offset);
262 +
263 + if (offset == (bfd_vma) -1)
264 + return ;
265 + if (offset == (bfd_vma) -2)
266 + return ;
267 +
268 + if (input _ section ->flags & SEC_CODE)
269 + {
270 + /* This should only occur for three symbols : _ GLOBAL _ OFFSET _ TABLE _,
271 + * __ ROFIXUP _LIST__ and __ ROFIXUP _END__. */
272 + pr_ debug (" Skipping relocation for text segment (vma %08 lx).\n", offset);
273 + return ;
274 + }
275 +
276 + avr32 _ rofixup _add_ entry (output _bfd , info , input _section , offset);
277 +}
278 +
279 + static void
280 + avr32 _ rofixup _add_got(bfd * output _bfd , struct bfd_link_info *info)
281 +{
282 + struct elf_ avr32 _link_hash_ table *htab;
283 + bfd_vma offset ;
284 +
285 + htab = avr32 _elf_hash_ table (info);
286 +
287 + if (!IS_ FDPIC (output _bfd))
288 + return ;
289 + if (!htab ->sgot)
290 + return ;
291 + if (!(htab ->sgot ->flags & SEC_ ALLOC))
292 + return ;
293 +
294 +
295 + for (offset = 0; offset < htab ->sgot ->size; offset += 4) {
296 + avr32 _ rofixup _add_ entry (output _bfd , info , htab ->sgot , offset);
297 + }
298 +}
299 +
300 +
301 + static void
302 + avr32 _ rofixup _ terminate (bfd * output _bfd , struct bfd_link_info *info)
303 +{
304 + struct elf_ avr32 _link_hash_ table *htab;
305 + bfd_vma rofixup _ entry _ offset ;
306 +
307 + htab = avr32 _elf_hash_ table (info);
308 +
309 + BFD_ ASSERT (htab ->rofixup);
310 + BFD_ ASSERT (htab ->rofixup ->contents);
311 +
312 + rofixup _ entry _ offset = htab ->rofixup _ added * 4;
313 + BFD_ ASSERT (rofixup _ entry _ offset < htab ->rofixup ->size);
314 + bfd_put_32(output _bfd , 0 xffffffff , htab ->rofixup ->contents + rofixup _ entry _ offset);
315 +
316 + pr_ debug (" Added rofixup terminator .\n");
317 +
318 + htab ->rofixup _ added ++;
319 +}
320 +
321 /* (6) Apply relocations to the normal (non - dynamic) sections */

F.3. GNU BINUTILS CHANGES 223

322
323 static bfd_ boolean
324 @@ -3435 ,6 +3622 ,9 @@ avr32 _elf_ relocate _ section (bfd * output _bfd , struct bfd_link_info *info ,
325 break ;
326
327 case R_ AVR32 _32:
328 + /* First : FDPIC handling ... */
329 + avr32 _ rofixup _add_ relocation (output _bfd , info , input _section , rel);
330 +
331 /* We need to emit a run -time relocation in the following cases :
332 - we ’re creating a shared library
333 - the symbol is not defined in any regular objects
334 @@ -3700 ,6 +3890 ,8 @@ avr32 _elf_ finish _ dynamic _ sections (bfd * output _bfd , struct bfd_link_info *info)
335 if (sgot)
336 elf_ section _data(sgot ->output _ section)->this_hdr.sh_ entsize = 4;
337
338 + avr32 _ rofixup _add_got(output _bfd , info);
339 + avr32 _ rofixup _ terminate (output _bfd , info);
340 return TRUE;
341 }
342
343 @@ -3862 ,6 +4054 ,136 @@ avr32 _elf_grok_ psinfo (bfd *abfd , Elf_ Internal _Note *note)
344 }
345
346
347 + static bfd_ boolean
348 + avr32 _ fdpic _ always _size_ sections (bfd * output _bfd ,
349 + struct bfd_link_info *info)
350 +{
351 + if (!info ->relocatable)
352 + {
353 + struct elf_link_hash_ entry *h;
354 +
355 + /* Force a PT_GNU_ STACK segment to be created . */
356 + if (! elf_ tdata (output _bfd)->stack _ flags)
357 + elf_ tdata (output _bfd)->stack _ flags = PF_R | PF_W | PF_X;
358 +
359 + /* Define __ stacksize if it ’s not defined yet. */
360 + h = elf_link_hash_ lookup (elf_hash_ table (info), "__ stacksize ",
361 + FALSE , FALSE , FALSE);
362 + if (! h || h->root.type != bfd_link_hash_ defined
363 + || h->type != STT_ OBJECT
364 + || !h->def_ regular)
365 + {
366 + struct bfd_link_hash_ entry *bh = NULL;
367 +
368 + if (!(_bfd_ generic _link_add_one_ symbol
369 + (info , output _bfd , "__ stacksize ",
370 + BSF_GLOBAL , bfd_abs_ section _ptr , DEFAULT _ STACK _SIZE ,
371 + (const char *) NULL , FALSE ,
372 + get_elf_ backend _data (output _bfd)->collect , &bh)))
373 + return FALSE ;
374 +
375 + h = (struct elf_link_hash_ entry *) bh;
376 + h->def_ regular = 1;
377 + h->type = STT_ OBJECT ;
378 + }
379 + }
380 +
381 + return TRUE;
382 +}
383 +
384 +
385 + static bfd_ boolean
386 + avr32 _ fdpic _ modify _ program _ headers (bfd * output _bfd ,
387 + struct bfd_link_info *info)
388 +{
389 + struct elf_obj_ tdata * tdata = elf_ tdata (output _bfd);
390 + struct elf_ segment _map *m;
391 + Elf_ Internal _Phdr *p;
392 +
393 + /* objcopy and strip preserve what ’s already there using
394 + elf32 _ avr32fdpic _copy_ private _bfd_data (). */
395 + if (! info)
396 + return TRUE;
397 +
398 + /* Search for the PT_GNU_ STACK program header . */
399 + for (p = tdata ->phdr , m = tdata ->segment _map; m != NULL; m = m->next , p++)
400 + if (m->p_type == PT_GNU_ STACK)
401 + break ;
402 +
403 + if (m)
404 + {
405 + struct elf_link_hash_ entry *h;

224 APPENDIX F. TOOLCHAIN PATCHES

406 +
407 + /* Obtain the pointer to the __ stacksize symbol . */
408 + h = elf_link_hash_ lookup (elf_hash_ table (info), "__ stacksize ",
409 + FALSE , FALSE , FALSE);
410 + if (h)
411 + {
412 + while (h->root.type == bfd_link_hash_ indirect
413 + || h->root.type == bfd_link_hash_ warning)
414 + h = (struct elf_link_hash_ entry *) h->root.u.i.link;
415 + BFD_ ASSERT (h->root.type == bfd_link_hash_ defined);
416 + }
417 +
418 + /* Set the header p_ memsz from the symbol value . We
419 + intentionally ignore the symbol section . */
420 + if (h && h->root.type == bfd_link_hash_ defined)
421 + p->p_ memsz = h->root.u.def. value ;
422 + else
423 + p->p_ memsz = DEFAULT _ STACK _SIZE;
424 +
425 + p->p_ align = 8;
426 + }
427 +
428 + return TRUE;
429 +}
430 +
431 +
432 + static bfd_ boolean
433 + avr32 _ fdpic _copy_ private _bfd_data (bfd *ibfd , bfd *obfd)
434 +{
435 + unsigned i;
436 +
437 + if (bfd_get_ flavour (ibfd) != bfd_ target _elf_ flavour
438 + || bfd_get_ flavour (obfd) != bfd_ target _elf_ flavour)
439 + return TRUE;
440 +
441 + if (! avr32 _elf_copy_ private _bfd_data (ibfd , obfd))
442 + return FALSE ;
443 +
444 + if (! elf_ tdata (ibfd) || ! elf_ tdata (ibfd)->phdr
445 + || ! elf_ tdata (obfd) || ! elf_ tdata (obfd)->phdr)
446 + return TRUE;
447 +
448 + /* Copy the stack size. */
449 + for (i = 0; i < elf_ elfheader (ibfd)->e_ phnum ; i++)
450 + if (elf_ tdata (ibfd)->phdr[i].p_type == PT_GNU_ STACK)
451 + {
452 + Elf_ Internal _Phdr * iphdr = &elf_ tdata (ibfd)->phdr[i];
453 +
454 + for (i = 0; i < elf_ elfheader (obfd)->e_ phnum ; i++)
455 + if (elf_ tdata (obfd)->phdr[i].p_type == PT_GNU_ STACK)
456 + {
457 + memcpy (&elf_ tdata (obfd)->phdr[i], iphdr , sizeof (* iphdr));
458 +
459 + /* Rewrite the phdrs , since we ’re only called after they
460 + were first written . */
461 + if (bfd_seek (obfd , (bfd_ signed _vma) get_elf_ backend _data (obfd)
462 + ->s->sizeof _ehdr , SEEK_SET) != 0
463 + || get_elf_ backend _data (obfd)->s
464 + ->write _out_ phdrs (obfd , elf_ tdata (obfd)->phdr ,
465 + elf_ elfheader (obfd)->e_ phnum) != 0)
466 + return FALSE ;
467 + break ;
468 + }
469 +
470 + break ;
471 + }
472 +
473 + return TRUE;
474 +}
475 +
476 +
477 # define ELF_ARCH bfd_arch_ avr32
478 # define ELF_ MACHINE _CODE EM_ AVR32
479 # define ELF_ MAXPAGESIZE 0 x1000
480 @@ -3913 ,3 +4235 ,24 @@ avr32 _elf_grok_ psinfo (bfd *abfd , Elf_ Internal _Note *note)
481 # define elf_ backend _got_ header _size AVR32 _GOT_ HEADER _SIZE
482
483 # include "elf32 - target .h"
484 +
485 +
486 +/* FDPIC target */
487 +# undef TARGET _BIG_SYM
488 +# define TARGET _BIG_SYM bfd_ elf32 _ avr32fdpic _vec
489 +# undef TARGET _BIG_NAME

F.3. GNU BINUTILS CHANGES 225

490 +# define TARGET _BIG_NAME "elf32 - avr32fdpic "
491 +# undef elf32 _bed
492 +# define elf32 _bed elf32 _ avr32fdpic _bed
493 +
494 +# undef elf_ backend _ always _size_ sections
495 +# define elf_ backend _ always _size_ sections \
496 + avr32 _ fdpic _ always _size_ sections
497 +# undef elf_ backend _ modify _ program _ headers
498 +# define elf_ backend _ modify _ program _ headers \
499 + avr32 _ fdpic _ modify _ program _ headers
500 +# undef bfd_ elf32 _bfd_copy_ private _bfd_data
501 +# define bfd_ elf32 _bfd_copy_ private _bfd_data \
502 + avr32 _ fdpic _copy_ private _bfd_data
503 +
504 +# include "elf32 - target .h"
505 diff --git a/bfd/ targets .c b/bfd/ targets .c
506 index 975 b9b4.. 70189 ff 100644
507 --- a/bfd/ targets .c
508 +++ b/bfd/ targets .c
509 @@ -565 ,6 +565 ,7 @@ extern const bfd_ target bfd_efi_app_x86_64_vec;
510 extern const bfd_ target bfd_efi_app_ia64_vec;
511 extern const bfd_ target bfd_ elf32 _avr_vec;
512 extern const bfd_ target bfd_ elf32 _ avr32 _vec;
513 + extern const bfd_ target bfd_ elf32 _ avr32fdpic _vec;
514 extern const bfd_ target bfd_ elf32 _bfin_vec;
515 extern const bfd_ target bfd_ elf32 _ bfinfdpic _vec;
516 extern const bfd_ target bfd_ elf32 _big_ generic _vec;
517 @@ -886 ,6 +887 ,7 @@ static const bfd_ target * const _bfd_ target _ vector [] =
518 # endif
519 &bfd_ elf32 _avr_vec ,
520 &bfd_ elf32 _ avr32 _vec ,
521 + &bfd_ elf32 _ avr32fdpic _vec ,
522 &bfd_ elf32 _bfin_vec ,
523 &bfd_ elf32 _ bfinfdpic _vec ,
524
525 diff --git a/gas/ config /tc - avr32 .c b/gas/ config /tc - avr32 .c
526 index 2703 ac2..4 f7f610 100644
527 --- a/gas/ config /tc - avr32 .c
528 +++ b/gas/ config /tc - avr32 .c
529 @@ -49,6 +49 ,7 @@
530 static int avr32 _pic = FALSE ;
531 int linkrelax = FALSE ;
532 int avr32 _ iarcompat = FALSE ;
533 + static int avr32 _ fdpic = FALSE ;
534
535 /* This array holds the chars that always start a comment . */
536 const char comment _ chars [] = "#";
537 @@ -266 ,6 +267 ,7 @@ struct option md_ longopts [] =
538 # define OPTION _ LINKRELAX (OPTION _ NOPIC + 1)
539 # define OPTION _ NOLINKRELAX (OPTION _ LINKRELAX + 1)
540 # define OPTION _ DIRECT _DATA_REFS (OPTION _ NOLINKRELAX + 1)
541 +# define OPTION _ FDPIC (OPTION _ DIRECT _DATA_REFS + 1)
542 {" march ", required _argument , NULL , OPTION _ARCH},
543 {" mpart ", required _argument , NULL , OPTION _PART},
544 {"iar", no_argument , NULL , OPTION _IAR},
545 @@ -275 ,6 +277 ,7 @@ struct option md_ longopts [] =
546 {"no - linkrelax ", no_argument , NULL , OPTION _ NOLINKRELAX },
547 /* deprecated alias for -mpart =xxx */
548 {"mcpu", required _argument , NULL , OPTION _PART},
549 + {" mfdpic ", no_argument , NULL , OPTION _ FDPIC },
550 {NULL , no_argument , NULL , 0}
551 };
552
553 @@ -380 ,6 +383 ,9 @@ md_ parse _ option (int c, char *arg ATTRIBUTE _ UNUSED)
554 case OPTION _ NOLINKRELAX :
555 linkrelax = 0;
556 break ;
557 + case OPTION _ FDPIC :
558 + avr32 _ fdpic = 1;
559 + break ;
560 default :
561 return 0;
562 }
563 @@ -3672 ,6 +3678 ,8 @@ md_ begin (void)
564 flags |= EF_ AVR32 _ LINKRELAX ;
565 if (avr32 _pic)
566 flags |= EF_ AVR32 _PIC;
567 + if (avr32 _ fdpic)
568 + flags |= EF_ AVR32 _ FDPIC ;
569
570 bfd_set_ private _ flags (stdoutput , flags);
571
572 diff --git a/ include /elf/ avr32 .h b/ include /elf/ avr32 .h
573 index d73943d ..00 a5f60 100644

226 APPENDIX F. TOOLCHAIN PATCHES

574 --- a/ include /elf/ avr32 .h
575 +++ b/ include /elf/ avr32 .h
576 @@ -25,6 +25 ,7 @@
577 /* CPU - specific flags for the ELF header e_ flags field */
578 # define EF_ AVR32 _ LINKRELAX 0x01
579 # define EF_ AVR32 _PIC 0x02
580 +# define EF_ AVR32 _ FDPIC 0x04
581
582 START _ RELOC _ NUMBERS (elf_ avr32 _ reloc _type)
583 RELOC _ NUMBER (R_ AVR32 _NONE , 0)
584 diff --git a/ld/ Makefile .am b/ld/ Makefile .am
585 index 58 c3f2c ..3 b064a6 100644
586 --- a/ld/ Makefile .am
587 +++ b/ld/ Makefile .am
588 @@ -165 ,6 +165 ,7 @@ ALL_ EMULATIONS = \
589 eavr32elf _ uc3b1256es .o \
590 eavr32elf _ uc3b1256 .o \
591 eavr32linux .o \
592 + eavr32linuxfdpic .o \
593 ecoff _i860.o \
594 ecoff _ sparc .o \
595 eelf32 _spu.o \
596 @@ -757 ,6 +758 ,10 @@ eavr32linux .c: $(srcdir)/ emulparams / avr32linux .sh \
597 $(srcdir)/ emultempl / elf32 .em $(srcdir)/ emultempl / avr32elf .em \
598 $(srcdir)/ scripttempl /elf.sc ${GEN_ DEPENDS }
599 ${ GENSCRIPTS } avr32linux "$(tdir_ avr32)"
600 + eavr32linuxfdpic .c: $(srcdir)/ emulparams / avr32linuxfdpic .sh \
601 + $(srcdir)/ emultempl / elf32 .em $(srcdir)/ emultempl / avr32elf .em \
602 + $(srcdir)/ scripttempl /elf.sc ${GEN_ DEPENDS }
603 + ${ GENSCRIPTS } avr32linuxfdpic "$(tdir_ avr32)"
604 ecoff _i860.c: $(srcdir)/ emulparams /coff_i860.sh \
605 $(srcdir)/ emultempl / generic .em $(srcdir)/ scripttempl / i860coff .sc ${GEN_ DEPENDS }
606 ${ GENSCRIPTS } coff_i860 "$(tdir_coff_i860)"
607 diff --git a/ld/ Makefile .in b/ld/ Makefile .in
608 index 1193 a74..5 cacda9 100644
609 --- a/ld/ Makefile .in
610 +++ b/ld/ Makefile .in
611 @@ -412 ,6 +412 ,7 @@ ALL_ EMULATIONS = \
612 eavr32elf _ uc3b1256es .o \
613 eavr32elf _ uc3b1256 .o \
614 eavr32linux .o \
615 + eavr32linuxfdpic .o \
616 ecoff _i860.o \
617 ecoff _ sparc .o \
618 eelf32 _spu.o \
619 @@ -1583 ,6 +1584 ,10 @@ eavr32linux .c: $(srcdir)/ emulparams / avr32linux .sh \
620 $(srcdir)/ emultempl / elf32 .em $(srcdir)/ emultempl / avr32elf .em \
621 $(srcdir)/ scripttempl /elf.sc ${GEN_ DEPENDS }
622 ${ GENSCRIPTS } avr32linux "$(tdir_ avr32)"
623 + eavr32linuxfdpic .c: $(srcdir)/ emulparams / avr32linuxfdpic .sh \
624 + $(srcdir)/ emultempl / elf32 .em $(srcdir)/ emultempl / avr32elf .em \
625 + $(srcdir)/ scripttempl /elf.sc ${GEN_ DEPENDS }
626 + ${ GENSCRIPTS } avr32linuxfdpic "$(tdir_ avr32)"
627 ecoff _i860.c: $(srcdir)/ emulparams /coff_i860.sh \
628 $(srcdir)/ emultempl / generic .em $(srcdir)/ scripttempl / i860coff .sc ${GEN_ DEPENDS }
629 ${ GENSCRIPTS } coff_i860 "$(tdir_coff_i860)"
630 diff --git a/ld/ configure .tgt b/ld/ configure .tgt
631 index c0c74f3 .. 2012162 100644
632 --- a/ld/ configure .tgt
633 +++ b/ld/ configure .tgt
634 @@ -111 ,7 +111 ,9 @@ avr -* -*) targ_emul=avr2
635 ;;
636 avr32 -*- none) targ_emul= avr32elf _ ap7000
637 targ_ extra _ emuls =" avr32elf _ ap7001 avr32elf _ ap7002 avr32elf _ ap7200 avr32elf _ uc3a0128

avr32elf _ uc3a0256 avr32elf _ uc3a0512 avr32elf _ uc3a0512es avr32elf _ uc3a1128 avr32elf _
uc3a1256 avr32elf _ uc3a1512es avr32elf _ uc3a1512 avr32elf _ uc3a364 avr32elf _ uc3a364s
avr32elf _ uc3a3128 avr32elf _ uc3a3128s avr32elf _ uc3a3256 avr32elf _ uc3a3256s avr32elf _
uc3b064 avr32elf _ uc3b0128 avr32elf _ uc3b0256es avr32elf _ uc3b0256 avr32elf _ uc3b164
avr32elf _ uc3b1128 avr32elf _ uc3b1256es avr32elf _ uc3b1256 " ;;

638 -avr32 -*- linux *) targ_emul= avr32linux ;;
639 +avr32 -*- linux * | avr32 -*- uclinux *) targ_emul= avr32linux
640 + targ_ extra _ emuls =" avr32linuxfdpic "
641 + ;;
642 bfin -*- elf) targ_emul= elf32bfin ;
643 targ_ extra _ emuls =" elf32bfinfd "
644 targ_ extra _ libpath = $targ _ extra _ emuls
645 diff --git a/ld/ emulparams / avr32linux .sh b/ld/ emulparams / avr32linux .sh
646 index f281f9d .. fd36e7d 100644
647 --- a/ld/ emulparams / avr32linux .sh
648 +++ b/ld/ emulparams / avr32linux .sh
649 @@ -4,6 +4 ,7 @@ TEMPLATE _NAME= elf32
650 EXTRA _EM_FILE= avr32elf
651 OUTPUT _ FORMAT ="elf32 - avr32 "
652 GENERATE _ SHLIB _ SCRIPT =yes

F.4. UCLIBC CHANGES 227

653 + GENERATE _PIE_ SCRIPT =yes
654 MAXPAGESIZE =0 x1000
655 TEXT_ START _ADDR=0 x00001000
656 NOP=0 xd703d703
657 diff --git a/ld/ emulparams / avr32linuxfdpic .sh b/ld/ emulparams / avr32linuxfdpic .sh
658 new file mode 100644
659 index 0000000 .. e5d7f96
660 --- /dev/null
661 +++ b/ld/ emulparams / avr32linuxfdpic .sh
662 @@ -0,0 +1 ,10 @@
663 +. ${ srcdir }/ emulparams / avr32linux .sh
664 + OUTPUT _ FORMAT ="elf32 - avr32fdpic "
665 +
666 + OTHER _ READONLY _ SECTIONS ="
667 + . rofixup : {
668 + ${ RELOCATING +__ ROFIXUP _LIST__ = .;}
669 + *(. rofixup)
670 + ${ RELOCATING +__ ROFIXUP _END__ = .;}
671 + }
672 +"
673 --
674 1.5.4.3

F.4 uClibc changes

1 From 4681 d0587bcd0d6d300916b80e4a30abe54aa962 Mon Sep 17 00:00:00 2001
2 Date: Tue , 26 May 2009 15:24:13 +0200
3 Subject : [PATCH] uClibc : Some support for FDPIC ELF for AVR32
4
5 This patch enables uClibc to be linked statically into a FDPIC ELF
6 binary on AVR32 . It doesn ’t update the parts necessary for dynamic
7 linking .
8
9 There are also a few simple changes to memcmp , memcpy and memmove , which

10 makes them work on the UC3 (which cannot access unaligned memory .)
11 ---
12 Rules .mak | 7 +++
13 extra / Configs / Config . avr32 | 3 +
14 libc/ string / avr32 / memcmp .S | 11 ++++
15 libc/ string / avr32 / memcpy .S | 15 ++++++
16 libc/ string / avr32 / memmove .S | 16 ++++++
17 libc/ sysdeps / linux / avr32 / Makefile .arch | 2 +-
18 libc/ sysdeps / linux / avr32 /crt1.S | 40 +++++++++++++++ -
19 libc/ sysdeps / linux / avr32 /crti.S | 4 ++
20 libc/ sysdeps / linux / avr32 / crtreloc .c | 85 ++++++++++++++++++++++++++++++++
21 libc/ sysdeps / linux / avr32 / syscall .S | 6 ++
22 libc/ sysdeps / linux / avr32 / vfork .S | 4 ++
23 11 files changed , 191 insertions (+) , 2 deletions (-)
24 create mode 100644 libc/ sysdeps / linux / avr32 / crtreloc .c
25
26 diff --git a/ Rules .mak b/ Rules .mak
27 index d3cda90 .. d3a7e15 100644
28 --- a/ Rules .mak
29 +++ b/ Rules .mak
30 @@ -399 ,8 +399 ,15 @@ endif
31
32 ifeq ($(strip $(TARGET _ARCH)),avr32)
33 CPU_CFLAGS -$(CONFIG _ AVR32 _AP7) += -march =ap
34 + CPU_CFLAGS -$(CONFIG _ AVR32 _UC3) += -march =ucr1
35 CPU_CFLAGS -$(CONFIG _ LINKRELAX) += -mrelax
36 CPU_LDFLAGS -$(CONFIG _ LINKRELAX) += --relax
37 +
38 +ifeq ($(UCLIBC _ FORMAT _ FDPIC _ELF),y)
39 + CPU_CFLAGS -y += -mfdpic -mno -init -got
40 + CPU_LDFLAGS -y += -mfdpic
41 + endif
42 +
43 endif
44
45 ifeq ($(TARGET _ARCH),i960)
46 diff --git a/ extra / Configs / Config . avr32 b/ extra / Configs / Config . avr32
47 index 8 d70e6e ..4 e109ae 100644
48 --- a/ extra / Configs / Config . avr32
49 +++ b/ extra / Configs / Config . avr32
50 @@ -24,6 +24 ,9 @@ config CONFIG _ AVR32 _AP7
51 bool " AVR32 AP7"
52 select ARCH_HAS_MMU
53
54 + config CONFIG _ AVR32 _UC3

228 APPENDIX F. TOOLCHAIN PATCHES

55 + bool " AVR32 UC3"
56 +
57 endchoice
58
59 config LINKRELAX
60 diff --git a/libc/ string / avr32 / memcmp .S b/libc/ string / avr32 / memcmp .S
61 index ae6cc91 ..59 b799e 100644
62 --- a/libc/ string / avr32 / memcmp .S
63 +++ b/libc/ string / avr32 / memcmp .S
64 @@ -20,6 +20 ,17 @@ memcmp :
65 sub len , 4
66 brlt . Lless _than_4
67
68 +# ifdef __ CONFIG _ AVR32 _UC3__
69 + /* This CPU cannot do unaligned accesses . */
70 + mov r9 , s1
71 + andl r9 , 3, COH
72 + brne . Lless _than_4 /* s1 unaligned */
73 +
74 + mov r9 , s2
75 + andl r9 , 3, COH
76 + brne . Lless _than_4 /* s2 unaligned */
77 +# endif /* __ CONFIG _ AVR32 _UC3__ */
78 +
79 1: ld.w r8 , s1 ++
80 ld.w r9 , s2 ++
81 cp.w r8 , r9
82 diff --git a/libc/ string / avr32 / memcpy .S b/libc/ string / avr32 / memcpy .S
83 index bf091ab ..803 fbdc 100644
84 --- a/libc/ string / avr32 / memcpy .S
85 +++ b/libc/ string / avr32 / memcpy .S
86 @@ -6,6 +6 ,8 @@
87 * archive for more details .
88 */
89
90 +# include <features .h>
91 +
92 /* Don ’t use r12 as dst since we must return it unmodified */
93 # define dst r9
94 # define src r11
95 @@ -91,6 +93 ,18 @@ memcpy :
96
97 . Lunaligned _dst:
98 /* src is aligned , but dst is not. Expect bad performance */
99 +# ifdef __ CONFIG _ AVR32 _UC3__

100 + /* This CPU cannot do unaligned accesses . */
101 +1:
102 + sub len , 1
103 + brlt 2f
104 + ld.ub r0 , src ++
105 + st.b dst ++, r0
106 + rjmp 1b
107 +2:
108 +
109 +#else /* __ CONFIG _ AVR32 _UC3__ */
110 +
111 sub len , 4
112 brlt 2f
113 1: ld.w r0 , src ++
114 @@ -104 ,6 +118 ,7 @@ memcpy :
115 ld.ub r0 , src ++
116 st.b dst ++, r0
117 .endr
118 +# endif /* __ CONFIG _ AVR32 _UC3__ */
119
120 popm r0 -r7 , pc
121 .size memcpy , . - memcpy
122 diff --git a/libc/ string / avr32 / memmove .S b/libc/ string / avr32 / memmove .S
123 index 535 f4a2..1 b44d84 100644
124 --- a/libc/ string / avr32 / memmove .S
125 +++ b/libc/ string / avr32 / memmove .S
126 @@ -6,6 +6 ,8 @@
127 * archive for more details .
128 */
129
130 +# include <features .h>
131 +
132 # define dst r12
133 # define src r11
134 # define len r10
135 @@ -96,6 +98 ,19 @@ memmove :
136
137 . Lunaligned _dst:
138 /* src is aligned , but dst is not. Expect bad performance */

F.4. UCLIBC CHANGES 229

139 +
140 +# ifdef __ CONFIG _ AVR32 _UC3__
141 + /* This CPU cannot do unaligned accesses . */
142 +1:
143 + sub len , 1
144 + brlt 2f
145 + ld.ub r0 , --src
146 + st.b --dst , r0
147 + rjmp 1b
148 +2:
149 +
150 +#else /* __ CONFIG _ AVR32 _UC3__ */
151 +
152 sub len , 4
153 brlt 2f
154 1: ld.w r0 , --src
155 @@ -109 ,6 +124 ,7 @@ memmove :
156 ld.ub r0 , --src
157 st.b --dst , r0
158 .endr
159 +# endif /* __ CONFIG _ AVR32 _UC3__ */
160
161 popm r0 -r7 , pc
162 .size memmove , . - memmove
163 diff --git a/libc/ sysdeps / linux / avr32 / Makefile .arch b/libc/ sysdeps / linux / avr32 / Makefile .arch
164 index 44 fc01e ..0 d905f8 100644
165 --- a/libc/ sysdeps / linux / avr32 / Makefile .arch
166 +++ b/libc/ sysdeps / linux / avr32 / Makefile .arch
167 @@ -5,7 +5 ,7 @@
168 # Licensed under the LGPL v2.1, see the file COPYING .LIB in this tarball .
169 #
170
171 -CSRC := brk.c clone .c mmap.c sigaction .c
172 +CSRC := brk.c clone .c mmap.c sigaction .c crtreloc .c
173
174 SSRC := __ longjmp .S setjmp .S bsd - setjmp .S bsd -_ setjmp .S \
175 sigrestorer .S syscall .S vfork .S
176 diff --git a/libc/ sysdeps / linux / avr32 /crt1.S b/libc/ sysdeps / linux / avr32 /crt1.S
177 index ca1fa7a .. b4ca2e8 100644
178 --- a/libc/ sysdeps / linux / avr32 /crt1.S
179 +++ b/libc/ sysdeps / linux / avr32 /crt1.S
180 @@ -48,7 +48 ,45 @@ _ start :
181 st.w --sp , r10 /* stack _end */
182 st.w --sp , r12 /* rtld_fini */
183
184 -# ifdef __PIC__
185 +# ifdef __ AVR32 _ FDPIC __
186 + /* We need to save r10 & r11 until after relocation . */
187 + mov r3 , r10
188 + mov r4 , r11
189 +
190 + /* FDPIC handing ... */
191 +
192 + mov r12 , r0
193 +
194 + /* Find the rofixup address . */
195 + lddpc r11 , .L_ original _ rofixup
196 +
197 + /* Find the got. */
198 + lddpc r10 , .L_ original _got
199 +
200 + /* Do relocations . */
201 + rcall __self_ reloc
202 +
203 + /* Relocated GOT pointer returned in r12. */
204 + mov r6 , r12
205 +
206 + /* Restore r10 & r11. */
207 + mov r10 , r3
208 + mov r11 , r4
209 +
210 + lda.w r9 , _init
211 + lda.w r8 , _fini
212 + lda.w r12 , main
213 +
214 + /* Ok , now run uClibc ’s main () -- should not return */
215 + call __ uClibc _main
216 +
217 + . align 2
218 +.L_ original _ rofixup :
219 + .long __ ROFIXUP _LIST__
220 +.L_ original _got:
221 + .long _ GLOBAL _ OFFSET _ TABLE _
222 +

230 APPENDIX F. TOOLCHAIN PATCHES

223 +#elif defined (__PIC__)
224 lddpc r6 , .L_GOT
225 .L_RGOT:
226 rsub r6 , pc
227 diff --git a/libc/ sysdeps / linux / avr32 /crti.S b/libc/ sysdeps / linux / avr32 /crti.S
228 index 660 f47c.. b39c4bf 100644
229 --- a/libc/ sysdeps / linux / avr32 /crti.S
230 +++ b/libc/ sysdeps / linux / avr32 /crti.S
231 @@ -5,12 +5 ,14 @@
232 .type _init , @function
233 _init:
234 stm --sp , r6 , lr
235 +# ifndef __ AVR32 _ FDPIC __
236 lddpc r6 , 2f
237 1: rsub r6 , pc
238 rjmp 3f
239 . align 2
240 2: .long 1b - _ GLOBAL _ OFFSET _ TABLE _
241 3:
242 +# endif /* __ AVR32 _ FDPIC __ */
243
244 . section .fini
245 . align 2
246 @@ -18,9 +20 ,11 @@ _init:
247 .type _fini , @function
248 _fini:
249 stm --sp , r6 , lr
250 +# ifndef __ AVR32 _ FDPIC __
251 lddpc r6 , 2f
252 1: rsub r6 , pc
253 rjmp 3f
254 . align 2
255 2: .long 1b - _ GLOBAL _ OFFSET _ TABLE _
256 3:
257 +# endif /* __ AVR32 _ FDPIC __ */
258 diff --git a/libc/ sysdeps / linux / avr32 / crtreloc .c b/libc/ sysdeps / linux / avr32 / crtreloc .c
259 new file mode 100644
260 index 0000000 ..633 e53a
261 --- /dev/null
262 +++ b/libc/ sysdeps / linux / avr32 / crtreloc .c
263 @@ -0,0 +1 ,85 @@
264 +# include <sys/ types .h>
265 +# include <link.h>
266 +
267 +
268 +/* This data structure represents a PT_LOAD segment . */
269 + struct elf32 _ fdpic _ loadseg
270 +{
271 + /* Core address to which the segment is mapped . */
272 + unsigned long addr;
273 + /* VMA recorded in the program header . */
274 + unsigned long p_ vaddr ;
275 + /* Size of this segment in memory . */
276 + unsigned long p_ memsz ;
277 +};
278 +
279 + struct elf32 _ fdpic _ loadmap {
280 + /* Protocol version number , must be zero. */
281 + unsigned short version ;
282 + /* Number of segments in this map. */
283 + unsigned short nsegs ;
284 + /* The actual memory map. */
285 + struct elf32 _ fdpic _ loadseg segs[/* nsegs */];
286 +};
287 +
288 + static __ always _ inline void *
289 +__ reloc _ pointer (void *p,
290 + const struct elf32 _ fdpic _ loadmap *map)
291 +{
292 + int c;
293 +
294 +#if 0
295 + if (map ->version != 0)
296 + /* Crash . */
297 + ((void (*) ())0) ();
298 +# endif
299 +
300 + /* No special provision is made for NULL. We don ’t want NULL
301 + addresses to go through relocation , so they shouldn ’t be in
302 + . rofixup sections , and , if they ’re present in dynamic
303 + relocations , they shall be mapped to the NULL address without
304 + undergoing relocations . */
305 + for (c = 0;
306 + /* Take advantage of the fact that the loadmap is ordered by

F.4. UCLIBC CHANGES 231

307 + virtual addresses . In general there will only be 2 entries ,
308 + so it ’s not profitable to do a binary search . */
309 + c < map ->nsegs && p >= (void *) map ->segs[c].p_ vaddr ;
310 + c++)
311 + {
312 + /* This should be computed as part of the pointer comparison
313 + above , but we want to use the carry in the comparison , so we
314 + can ’t convert it to an integer type beforehand . */
315 + unsigned long offset = p - (void *) map ->segs[c].p_ vaddr ;
316 + /* We only check for one -past -the -end for the last segment ,
317 + assumed to be the data segment , because other cases are
318 + ambiguous in the absence of padding between segments , and
319 + rofixup already serves as padding between text and data.
320 + Unfortunately , unless we special -case the last segment , we
321 + fail to relocate the _end symbol . */
322 + if (offset < map ->segs[c].p_ memsz
323 + || (offset == map ->segs[c].p_ memsz && c + 1 == map ->nsegs))
324 + return (char *) map ->segs[c].addr + offset ;
325 + }
326 +
327 + /* We might want to crash instead . */
328 +
329 + return (void *) -1;
330 +}
331 +
332 +void* __self_ reloc (const struct elf32 _ fdpic _ loadmap *map ,
333 + void *** reloc _list , void *got)
334 +{
335 + void ***i;
336 + void **e;
337 +
338 + reloc _list = __ reloc _ pointer (reloc _list , map);
339 +
340 + for (i = reloc _list; (unsigned long)*i != 0 xffffffff ; i++) {
341 + e = __ reloc _ pointer (*i, map);
342 + if (*e != 0) {
343 + *e = __ reloc _ pointer (*e, map);
344 + }
345 + }
346 +
347 + return __ reloc _ pointer (got , map);
348 +}
349 diff --git a/libc/ sysdeps / linux / avr32 / syscall .S b/libc/ sysdeps / linux / avr32 / syscall .S
350 index 55 c1b1f .. abea2b5 100644
351 --- a/libc/ sysdeps / linux / avr32 / syscall .S
352 +++ b/libc/ sysdeps / linux / avr32 / syscall .S
353 @@ -25,9 +25 ,13 @@ syscall :
354 brlo . Ldone
355
356 # ifdef __PIC__
357 +
358 +# ifndef __ AVR32 _ FDPIC __
359 lddpc r6 , .Lgot
360 . Lgotcalc :
361 rsub r6 , pc
362 +# endif /* ____ AVR32 _ FDPIC __ */
363 +
364 # ifdef __ UCLIBC _HAS_ THREADS __
365 rsub r3 , r12 , 0
366 mcall r6[__ errno _ location@got]
367 @@ -55,8 +59 ,10 @@ syscall :
368
369 . align 2
370 # ifdef __PIC__
371 +# ifndef __ AVR32 _ FDPIC __
372 .Lgot:
373 .long . Lgotcalc - _ GLOBAL _ OFFSET _ TABLE _
374 +# endif /* __ AVR32 _ FDPIC __ */
375 #else
376 # ifdef __ UCLIBC _HAS_ THREADS __
377 . Lerrno _ location :
378 diff --git a/libc/ sysdeps / linux / avr32 / vfork .S b/libc/ sysdeps / linux / avr32 / vfork .S
379 index 03 ca99f ..830 cba4 100644
380 --- a/libc/ sysdeps / linux / avr32 / vfork .S
381 +++ b/libc/ sysdeps / linux / avr32 / vfork .S
382 @@ -32 ,10 +32 ,12 @@ __ vfork :
383 /* vfork failed , so we may use the stack freely */
384 pushm r4 -r7 ,lr
385 # ifdef __PIC__
386 +# ifndef __ AVR32 _ FDPIC __
387 lddpc r6 , .L_GOT
388 rsub r4 , r12 , 0
389 .L_RGOT:
390 rsub r6 , pc

232 APPENDIX F. TOOLCHAIN PATCHES

391 +# endif /* __ AVR32 _ FDPIC __ */
392 mcall r6[__ errno _ location@got]
393 #else
394 rsub r4 , r12 , 0
395 @@ -46,8 +48 ,10 @@ __ vfork :
396
397 . align 2
398 # ifdef __PIC__
399 +# ifndef __ AVR32 _ FDPIC __
400 .L_GOT:
401 .long .L_RGOT - _ GLOBAL _ OFFSET _ TABLE _
402 +# endif /* __ AVR32 _ FDPIC __ */
403 #else
404 .L__ errno _ location :
405 .long __ errno _ location
406 --
407 1.5.4.3

F.5 Unsubmitted GCC change

1 From ec741a7b83a01e8f316fbf649cf98da0601f86da Mon Sep 17 00:00:00 2001
2 From: =?utf -8?q? Gunnar =20 Rang=C3=B8y?= <rangoy@mnops .(none)>
3 Date: Tue , 2 Jun 2009 10:33:17 +0200
4 Subject : [PATCH] Set -mno -init -gout if -mfdpic is specified .
5
6 This patch changes gcc so that specifying -mfdpic flag automatically adds the
7 -mno -init -got flag.
8 ---
9 gcc/ config / avr32 /linux -elf.h | 1 +

10 1 files changed , 1 insertions (+) , 0 deletions (-)
11
12 diff --git a/gcc/ config / avr32 /linux -elf.h b/gcc/ config / avr32 /linux -elf.h
13 index cb206a1 ..5 dd7dbf 100644
14 --- a/gcc/ config / avr32 /linux -elf.h
15 +++ b/gcc/ config / avr32 /linux -elf.h
16 @@ -70,6 +70 ,7 @@
17 # define DRIVER _SELF_ SPECS "\
18 %{ mfdpic :%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
19 %{!fno -pic:%{!fno -pie:%{!fno -PIC:%{!fno -PIE:-fpie}}}}}}}}} \
20 + %{ mfdpic :-mno -init -got} \
21 "
22
23 # undef ASM_SPEC
24 --
25 1.5.4.3

233

Appendix G

Patch for elf2flt

This appendix lists the patch for the modifications done to the elf2flt utility while exper-
imenting with the flat format. The patch is based on a CVS-snapshot (6. March 2009).
These changes were not submitted to the maintainers, and probably never will be, since
no useful results were achieved.

1 diff --git a/ config .sub b/ config .sub
2 index 4279 c84.. ed9cbb6 100755
3 --- a/ config .sub
4 +++ b/ config .sub
5 @@ -230 ,6 +230 ,7 @@ case $basic _ machine in
6 | alpha | alphaev [4-8] | alphaev56 | alphaev6 [78] | alphapca5 [67] \
7 | alpha64 | alpha64ev [4-8] | alpha64ev56 | alpha64ev6 [78] | alpha64pca5 [67] \
8 | am33_2.0 \
9 + | avr32 \

10 | arc | arm | arm[bl]e | arme[lb] | armv[2345] | armv[345][lb] | avr \
11 | bfin \
12 | c4x | clipper \
13 @@ -425 ,6 +426 ,10 @@ case $basic _ machine in
14 basic _ machine =m68k - apple
15 os=-aux
16 ;;
17 + avr32)
18 + basic _ machine = avr32
19 + os=-linux
20 + ;;
21 balance)
22 basic _ machine =ns32k - sequent
23 os=-dynix
24 diff --git a/ elf2flt .c b/ elf2flt .c
25 index 546305 f..9 d97c39 100644
26 --- a/ elf2flt .c
27 +++ b/ elf2flt .c
28 @@ -64,6 +64 ,8 @@
29 # include <elf/ microblaze .h> /* TARGET _* ELF support for the BFD library */
30 #elif defined (TARGET _bfin)
31 # include "elf/bfin.h"
32 +#elif defined (TARGET _ avr32)
33 +# include "elf/ avr32 .h"
34 #else
35 # include <elf.h> /* TARGET _* ELF support for the BFD library */
36 # endif
37 @@ -113 ,6 +115 ,9 @@
38 # define ARCH "nios"
39 #elif defined (TARGET _ nios2)
40 # define ARCH " nios2 "
41 +#elif defined (TARGET _ avr32)
42 +# define ARCH " avr32 "
43 +
44 #else
45 # error "Don ’t know how to support your CPU architecture ??"
46 # endif
47 @@ -140 ,7 +145 ,7 @@
48 # endif
49
50
51 -int verbose = 0; /* extra output when running */
52 +int verbose = 1; /* extra output when running */
53 int pic_with_got = 0; /* do elf/got processing with PIC code */

234 APPENDIX G. PATCH FOR ELF2FLT

54 int load_to_ram = 0; /* instruct loader to allocate everything into RAM */
55 int ktrace = 0; /* instruct loader output kernel trace on load */
56 @@ -404 ,6 +409 ,7 @@ output _ relocs (
57 int bad_ relocs = 0;
58 asymbol ** symb;
59 long nsymb ;
60 + int i;
61
62 #if 0
63 printf ("%s(%d): output _ relocs (abs_bfd=%d, synbols =0x%x, number _of_ symbols =%d"
64 @@ -427 ,6 +433 ,7 @@ dump_ symbols (symbols , number _of_ symbols);
65 * Also note that both the relocatable and absolute versions have this
66 * terminator even though the relocatable one doesn ’t have the GOT!
67 */
68 + printf (" pwg: %i %i\n", pic_with_got , use_ resolved);
69 if (pic_with_got && !use_ resolved) {
70 unsigned long *lp = (unsigned long *) data;
71 /* Should call ntohl (* lp) here but is isn ’t going to matter */
72 @@ -444 ,6 +451 ,21 @@ dump_ symbols (symbols , number _of_ symbols);
73 # endif
74 }
75
76 +# ifdef TARGET _ avr32 _ disable _
77 + flat_ relocs = realloc (flat_relocs ,
78 + (flat_ reloc _ count + got_size) * sizeof (uint32 _t));
79 +
80 + for (i = 0; i < got_size / sizeof (uint32 _t); i++) {
81 + unsigned long offset = data_vma + i * sizeof (uint32 _t);
82 + uint32 _t value = ntohl (((uint32 _t *) data)[i]);
83 +
84 + fprintf (stderr , "Add GOT reloc at 0x%08x (value : 0x%08x)\n", offset , value);
85 + flat_ relocs [flat_ reloc _ count] = pflags | offset ;
86 + flat_ reloc _ count ++;
87 + }
88 +# endif /* TARGET _ avr32 */
89 +
90 + fprintf (stderr , "casd: %lu\n", (unsigned long)flat_ reloc _ count);
91 for (a = abs_bfd ->sections ; (a != (asection *) NULL); a = a->next) {
92 section _vma = bfd_ section _vma(abs_bfd , a);
93
94 @@ -614 ,7 +636 ,8 @@ dump_ symbols (symbols , number _of_ symbols);
95 the program text. How this is handled may
96 still depend on the particular relocation
97 though . */
98 - switch (q->howto ->type) {
99 + printf (" Switching on : %d", q->howto ->type);

100 + switch (q->howto ->type) {
101 int r2_type;
102 # ifdef TARGET _v850
103 case R_V850_HI16_S:
104 @@ -708 ,6 +731 ,26 @@ dump_ symbols (symbols , number _of_ symbols);
105 break ;
106 default :
107 goto bad_ resolved _ reloc ;
108 +
109 +#elif defined (TARGET _ avr32)
110 + case R_ AVR32 _32:
111 + printf (" reloacting switch (AVR32 _32) , typenr : %d\n", q->howto ->type);
112 + relocation _ needed = 1;
113 + break ;
114 + case R_ AVR32 _ DIFF32 :
115 + printf (" reloacting switch (DIFF32), typenr : %d\n", q->howto ->type);
116 + relocation _ needed = 0;
117 + break ;
118 + case R_ AVR32 _ GOTPC :
119 + case R_ AVR32 _ GOT16S :
120 + printf (" reloacting switch (GOT), typenr : %d\n", q->howto ->type);
121 + relocation _ needed = 0;
122 + break ;
123 +
124 + default :
125 + printf (" reloacting switch (DEFAULT), typenr : %d\n", q->howto ->type);
126 + goto bad_ resolved _ reloc ;
127 +
128 #elif defined (TARGET _m68k)
129 case R_68K_32:
130 goto good_32 bit_ resolved _ reloc ;
131 @@ -818 ,7 +861 ,21 @@ dump_ symbols (symbols , number _of_ symbols);
132 sym_addr = (sym_addr -q->address) >>(*p)->howto ->rightshift ;
133 break ;
134 # endif
135 -
136 +# ifdef TARGET _ avr32
137 + case R_ AVR32 _32:

235

138 + sym_vma = bfd_ section _vma(abs_bfd , sym_ section);
139 + sym_addr += sym_vma + q->addend ;
140 + printf (" real reloacting switch (AVR32 _32) , typenr : %d\n", q->

howto ->type);
141 + relocation _ needed = 1;
142 + break ;
143 + case R_ AVR32 _ DIFF32 :
144 + printf (" real reloacting switch (AVR32 _ DIFF32), typenr : %d\n", q->

howto ->type);
145 + break ;
146 + case R_ AVR32 _ GOTPC :
147 + case R_ AVR32 _ GOT16S :
148 + printf (" real reloacting switch (GOT), typenr : %d\n", q->howto ->type);
149 + break ;
150 +# endif
151 # ifdef TARGET _v850
152 case R_V850_32:
153 relocation _ needed = 1;
154 @@ -1945 ,6 +2002 ,18 @@ int main(int argc , char *argv[])
155 bfd_size_type sec_size;
156 bfd_vma sec_vma;
157
158 + sec_size = bfd_ section _size(abs_bfd , s);
159 + sec_vma = bfd_ section _vma(abs_bfd , s);
160 +
161 + if(sec_size ==0)
162 + continue ;
163 +
164 + fprintf (stderr , "name: % -20s %#7lx %#7lx (%#7lx) flags : %s%s%s\n", s->name ,
165 + sec_vma , sec_vma + sec_size , sec_size ,
166 + (s->flags & SEC_CODE) ? "C" : "",
167 + (s->flags & SEC_DATA) ? "D" : "",
168 + (s->flags & SEC_ ALLOC) ? "A" : "");
169 +
170 if (s->flags & SEC_CODE) {
171 vma = &text_vma;
172 len = &text_len;
173 @@ -1957 ,8 +2026 ,6 @@ int main(int argc , char *argv[])
174 } else
175 continue ;
176
177 - sec_size = bfd_ section _size(abs_bfd , s);
178 - sec_vma = bfd_ section _vma(abs_bfd , s);
179
180 if (sec_vma < *vma) {
181 if (* len > 0)
182 @@ -2065 ,6 +2132 ,7 @@ int main(int argc , char *argv[])
183 | (pic_with_got ? FLAT_FLAG_ GOTPIC : 0)
184 | (docompress ? (docompress == 2 ? FLAT_FLAG_ GZDATA : FLAT_FLAG_GZIP) : 0)
185);
186 + printf (" load to: %i\n", load_to_ram);
187 hdr. build _date = htonl ((unsigned long)time(NULL));
188 memset (hdr.filler , 0x00 , sizeof (hdr. filler));

236 APPENDIX G. PATCH FOR ELF2FLT

237

238 APPENDIX H. EVK1100 SRAM EXPANSION BOARD

Appendix H

EVK1100 SRAM expansion board

239

Appendix I

Test source code

I.1 Linux exception tests

I.1.1 Unaligned read

1 # include <signal .h>
2 # include <stdio .h>
3 # include <stdlib .h>
4
5 static void sigbus _ handler (int ignored)
6 {
7 fprintf (stderr , "Got SIGBUS exception .\n");
8 exit (1);
9 }

10
11 static char buffer [16];
12
13 int main ()
14 {
15 int *p = (int *)(& buffer [1]); /* Create unaligned pointer . */
16
17 signal (SIGBUS , sigbus _ handler);
18
19 fprintf (stderr , " Triggering SIGBUS exception (unaligned read):\n");
20 printf ("*p is: %d\n", *p);
21 fprintf (stderr , " Exception didn ’t trigger .\n");
22
23 return 0;
24 }

I.1.2 Unaligned write

1 # include <signal .h>
2 # include <stdio .h>
3 # include <stdlib .h>
4
5 static void sigbus _ handler (int ignored)
6 {
7 fprintf (stderr , "Got SIGBUS exception .\n");
8 exit (1);
9 }

10
11 static char buffer [16];
12
13 int main ()

240 APPENDIX I. TEST SOURCE CODE

14 {
15 int *p = (int *)(& buffer [1]); /* Create unaligned pointer . */;
16
17 signal (SIGBUS , sigbus _ handler);
18
19 fprintf (stderr , " Triggering SIGBUS exception (unaligned write):\n");
20 *p = 42;
21 fprintf (stderr , " Exception didn ’t trigger .\n");
22
23 return 0;
24 }

I.1.3 Invalid read

1 # include <signal .h>
2 # include <stdio .h>
3 # include <stdlib .h>
4
5 static void sigbus _ handler (int ignored)
6 {
7 fprintf (stderr , "Got SIGBUS exception .\n");
8 exit (1);
9 }

10
11 int main ()
12 {
13 int *p = (int *)0 x100000 ;
14
15 signal (SIGBUS , sigbus _ handler);
16
17 fprintf (stderr , " Triggering SIGBUS exception (invalid read):\n");
18 printf ("*p is: %d\n", *p);
19 fprintf (stderr , " Exception didn ’t trigger .\n");
20
21 return 0;
22 }

I.1.4 Invalid write

1 # include <signal .h>
2 # include <stdio .h>
3 # include <stdlib .h>
4
5 static void sigbus _ handler (int ignored)
6 {
7 fprintf (stderr , "Got SIGBUS exception .\n");
8 exit (1);
9 }

10
11 int main ()
12 {
13 int *p = (int *)0 x100000 ;
14
15 signal (SIGBUS , sigbus _ handler);
16
17 fprintf (stderr , " Triggering SIGBUS exception (invalid write):\n");
18 *p = 42;
19 fprintf (stderr , " Exception didn ’t trigger .\n");
20
21 return 0;
22 }

I.2. TOOLCHAIN TESTS 241

I.1.5 Invalid opcode (aligned)

1 # include <signal .h>
2 # include <stdio .h>
3 # include <stdlib .h>
4
5 static void sigill _ handler (int ignored)
6 {
7 fprintf (stderr , "Got SIGILL exception .\n");
8 exit (1);
9 }

10
11 int main ()
12 {
13 signal (SIGILL , sigill _ handler);
14
15 fprintf (stderr , " Triggering SIGILL exception (rsubeq instruction):\n");
16 asm(". balignw 4, 0 xd703 "); /* Align on 4 bytes , pad with NOPs. */
17 asm(" rsubeq r0 , 42"); /* Illegal opcode . */
18 fprintf (stderr , " Exception didn ’t trigger .\n");
19
20 return 0;
21 }

I.1.6 Invalid opcode (unaligned)

1 # include <signal .h>
2 # include <stdio .h>
3 # include <stdlib .h>
4
5 static void sigill _ handler (int ignored)
6 {
7 fprintf (stderr , "Got SIGILL exception .\n");
8 exit (1);
9 }

10
11 static void sigsegv _ handler (int ignored)
12 {
13 fprintf (stderr , "Got SIGSEGV exception .\n");
14 exit (1);
15 }
16
17 int main ()
18 {
19 signal (SIGILL , sigill _ handler);
20 signal (SIGSEGV , sigsegv _ handler);
21
22 fprintf (stderr , " Triggering SIGILL exception (halfword aligned rsubeq instruction):\n");
23 asm(". balignw 4, 0 xd703 "); /* Align on 4 bytes , pad with NOPs. */
24 asm("nop"); /* Make sure that the illegal opcode is aligned at a half -word boundary . */
25 asm(" rsubeq r0 , 42"); /* Illegal opcode . */
26 fprintf (stderr , " Exception didn ’t trigger .\n");
27
28 return 0;
29 }

I.2 Toolchain tests

I.2.1 Simple program

242 APPENDIX I. TEST SOURCE CODE

1 # include <unistd .h>
2
3 int main(int argc , char *argv[])
4 {
5 write (1, " Hello !\n", 7);
6 return 0;
7 }

I.2.2 More complex program

1 # include <stdio .h>
2
3 int main(int argc , char *argv[])
4 {
5 printf (" Hello world ! %d\n", 42);
6 return 0;
7 }

243

Appendix J

Digital appendices

This appendix lists the digital appendices.

J.1 Linux patches
This is a directory with the patches for Linux

J.2 U-Boot patches
This is a directory with the patches we submitted for U-Boot.

J.3 U-Boot unsubmitted changes
This is a patch with the unsubmitted changes for U-Boot.

J.4 Toolchain patches
This directory contains the patches we submitted for GCC, GNU Binutils and uClibc.

J.5 elf2flt changes
This is a patch with the changes we made to elf2flt.

J.6 SPI DMA changes
This patch contains the changes we made to the SPI driver and the peripheral DMA
controller.

J.7 Tests
This directory contains the source code for the tests.

	Title Page
	Problem Description
	Abstract
	Preface
	Contents
	Introduction
	Assignment
	Project continuation
	Interpretation
	Requirements

	Structure of this report

	Background
	Virtual memory
	Copy-on-write

	Memory Protection Unit (MPU)
	Unaligned memory copy
	Static Random Access Memory (SRAM)
	AVR32 Architecture
	Registers
	Instructions
	Sub-architectures
	Revisions
	Execution modes
	Exception and interrupt handling

	The AP7000 microcontroller
	The UC3A0512 microcontroller
	Logical layout
	Features
	Chip revisions
	AP7000 versus UC3A0512

	EVK1100
	JTAG.4
	Binary formats
	Terminology
	ELF.4
	FDPIC ELF
	Flat
	Comparison of binary formats

	Linux
	Configuration
	Tasks
	uClinux

	U-Boot
	Contributions

	Toolchain
	Terminology
	Linux toolchain
	GCC.4
	GNU Binutils
	elf2flt
	Libraries
	GDB.4

	BusyBox
	Server protocols
	DHCP.4
	TFTP.4
	NFS.4

	Open-source collaboration
	Git
	Merging with current versions
	Splitting up patches
	Patch submission format
	Signing your work
	Upstream

	Previous work
	AP7 series
	Linux support for MMU-less systems
	Implementations for other architectures
	SRAM expansion board

	Implementation
	Methodology
	Setting goals and preliminary milestones
	Milestone identification and implementation
	Review

	Expected changes
	U-Boot
	Select binary format
	Linux
	Toolchain
	User space

	Development setup
	JTAG.4
	Serial cable
	Networking setup

	U-Boot
	Network speed limiting
	Adding the EVK1100 board to lists
	Precedence safety fix
	Esthetical and other minor changes
	Auto detection of PHY address
	Removal of bug workaround

	Binary format selection
	Linux kernel
	Rebasing
	Configuration files and make files
	UC3A support
	Cache
	Clocks
	Limiting network device speed
	GPIO.4
	LED device driver
	SPI with DMA support
	Interrupt bug workaround
	Memory to memory copying
	Memory copying with checksumming
	User space memory access
	Address space layout
	Event handling entry points
	FDPIC ELF
	Splitting of paging_init
	Use of existing macro
	Patch summary

	Toolchain adaptation
	GCC.4
	Binutils
	uClibc
	elf2flt
	PIE support

	SRAM optimization
	Routing of signals
	Joystick pull-up conflict
	LED resistor conflict

	SPI chip enable
	BusyBox
	Obtaining and distributing source code
	Buildroot
	GCC.4
	GNU Binutils
	uClibc
	elf2flt
	U-Boot
	Linux
	BusyBox

	Testing and results
	U-Boot
	SPI support, requirement 1
	Loading from DataFlash or SD card, requirement 2
	Patch cleanup, requirement 3

	Linux
	Booting Linux kernel, requirement 4
	Running user space binaries, requirement 5
	Hardware support, requirement 6
	Exceptions, requirement 7
	Code submission, requirement 8

	Toolchain
	Select binary format, requirement 9
	Produce binaries, requirement 10
	Produce libraries, requirement 11
	Code submission, requirement 12

	Linux user space
	BusyBox, requirement 13

	Patch submission feedback
	U-Boot
	Linux
	Toolchain

	Conclusion
	Future work
	U-Boot
	Linux
	PDCA support
	SPI support
	MPU support
	Support for on-chip devices
	Memory copy optimization
	Debug support
	FDPIC ELF support for systems with an MMU

	Toolchain
	Dynamic linking
	Error handling

	AVR32B series compatibility

	Bibliography
	Acronyms
	U-Boot patch cleanup
	Network limiting reorganization
	Add board to lists
	Precedence safety fix
	Board configuration
	Keeping lists sorted
	Removal of TODOs
	Coding style fixes

	Unsubmitted U-Boot changes
	Linux kernel patches
	Cover letter
	Network speed limiting
	Avoid register reset
	Split paging function
	Use task_pt_regs macro
	FDPIC ELF support
	Introduce cache and aligned flags
	Disable mm-tlb.c
	fault.c for !CONFIG_MMU
	ioremap and iounmap for !CONFIG_MMU
	MMU dummy functions
	mm_context_t for !CONFIG_MMU
	Add cache function stubs
	copy_user.S for !CONFIG_NOUNALIGNED
	csum_partial: support for chips that cannot do unaligned accesses
	Avoid unaligned access in uaccess.h
	memcpy for !CONFIG_NOUNALIGNED
	Mark AVR32B code with subarch flag
	mm-dma-coherent.c: ifdef AVR32B code
	Disable ret_if_privileged macro
	AVR32A-support in Kconfig
	AVR32A address space support
	Change maximum task size for AVR32A
	Fix __range_ok for AVR32A in uaccess.h
	Support for AVR32A entry-avr32a.S
	Change HIMEM_START for AVR32A
	New pt_regs layout for AVR32A
	UC3A0512ES interrupt bug workaround
	UC3A0xxx support
	Board support for ATEVK1100

	PDCA, SPI and DataFlash support
	Toolchain patches
	Coverletter
	GCC changes
	GNU binutils changes
	uClibc changes
	Unsubmitted GCC change

	Patch for elf2flt
	EVK1100 SRAM expansion board
	Test source code
	Linux exception tests
	Unaligned read
	Unaligned write
	Invalid read
	Invalid write
	Invalid opcode (aligned)
	Invalid opcode (unaligned)

	Toolchain tests
	Simple program
	More complex program

	Digital appendices
	Linux patches
	U-Boot patches
	U-Boot unsubmitted changes
	Toolchain patches
	elf2flt changes
	SPI DMA changes
	Tests

