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Abstract

There are several problems regarding information retrieval on biomedical in-
formation. The common methods for information retrieval tend to fall short
when searching in this domain. With the ever increasing amount of information
available, researchers have widely agreed on that means to precisely retrieve
needed information is vital to use all available knowledge. We have in an effort
to increase the precision of retrieval within biomedical information created an
approach to give all terms in a document a context weight based on the contexts
domain specific data. We have created a means of including our context weights
in document ranking, by combining the weights with existing ranking models.
Combining context weights with existing models has given us document-level
term boosting, where the context of the queried terms within a document will
positively or negatively affect the documents ranking score. We have tested out
our approach by implementing a full search engine prototype and evaluatied
it on a document collection within biomedical domain. Our work shows that
this type of score boosting has little effect on overall retrieval precision. We
conclude that the approach we have created, as implemented in our prototype,
not to necessarily be good means of increasing precision in biomedical retrieval
systems.

1



Preface

This thesis is my final work on my masters degree, and marks the end of my
study on information management at the Department of Computer and Infor-
mation Science (IDI) at the Norwegian University of Science and Technology
(NTNU).

Thanks goes to my supervisor, Heri Ramampiaro for valuable feedback, sug-
gestions and ideas. I would also like to thank my colleagues at Searchdaimon
for their feedback. Last, but not least I would like to thank my parents, as well
as the rest of my family, for their support and motivation; particulary to my
father Jóhann who has genuinely shown interest in this thesis.

2



Contents

I Introduction 8

1 Introduction 9
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . 9
1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Layout of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 10

II Concepts and definitions 11

2 Ranking models 12
2.1 tf-idf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Okapi BM25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Vector Space Model . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Evaluation 14
3.1 Recall and precision . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 R-precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 TREC mean average precision (MAP) . . . . . . . . . . . . . . . 15

4 Document indexing 16
4.1 Inverted index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

III Related work 17

5 Increasing recall and precision 18
5.1 MeSH Query expansion . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Relevance feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Boosting specific document parts . . . . . . . . . . . . . . . . . . 19

6 Retrieval systems 20
6.1 PubMed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Textpresso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 BioTracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3



CONTENTS 4

IV Approach 22

7 The idea 23
7.1 Document collection . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Document-level term boosting . . . . . . . . . . . . . . . . . . . . 24
7.3 Sentence extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.4 Weighting by biomedical relevance . . . . . . . . . . . . . . . . . 25

7.4.1 Using Name Entity Recognition for weighting . . . . . . . 25
7.4.2 Normalize weighting . . . . . . . . . . . . . . . . . . . . . 25

7.5 Using term boosting . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.6 Term boost combined with existing ranking models . . . . . . . . 26

8 Storing context weights 28
8.1 Store in an inverted index . . . . . . . . . . . . . . . . . . . . . . 28
8.2 Store in a separate index . . . . . . . . . . . . . . . . . . . . . . . 29
8.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

V Implementation 31

9 Overview 32
9.1 Technology overview . . . . . . . . . . . . . . . . . . . . . . . . . 32

9.1.1 Apache Lucene . . . . . . . . . . . . . . . . . . . . . . . . 32
9.1.2 LingPipe . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9.2 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . 33
9.2.1 Document indexing . . . . . . . . . . . . . . . . . . . . . . 33

9.2.1.1 Building lucene index . . . . . . . . . . . . . . . 33
9.2.1.2 Building sentence index . . . . . . . . . . . . . . 34

9.3 Document retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10 Implementation details 37
10.1 Preparing collection . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.1.1 Parsing citations . . . . . . . . . . . . . . . . . . . . . . . 37
10.2 Document indexing . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10.2.1 Sentence index API . . . . . . . . . . . . . . . . . . . . . 38
10.2.2 Sentence index internals . . . . . . . . . . . . . . . . . . . 39
10.2.3 Building sentence index . . . . . . . . . . . . . . . . . . . 39
10.2.4 Sentence weighter . . . . . . . . . . . . . . . . . . . . . . 39

10.2.4.1 Sentence extraction . . . . . . . . . . . . . . . . 40
10.2.4.2 NER . . . . . . . . . . . . . . . . . . . . . . . . 41

10.3 Document retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11 Modifications to Lucene 43
11.1 Changes in FieldsWriter . . . . . . . . . . . . . . . . . . . . . . . 43
11.2 Changes in DocInverterPerField . . . . . . . . . . . . . . . . . . . 43
11.3 Altered class/method/field access . . . . . . . . . . . . . . . . . . 44



CONTENTS 5

VI Experiment and results 45

12 Introduction 46
12.1 Document collection . . . . . . . . . . . . . . . . . . . . . . . . . 46
12.2 Method of evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 46
12.3 Test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.4 Experiment environment . . . . . . . . . . . . . . . . . . . . . . . 47
12.5 Topics and judgments . . . . . . . . . . . . . . . . . . . . . . . . 47
12.6 Query set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

12.6.1 Other query sets . . . . . . . . . . . . . . . . . . . . . . . 49

13 Results 51
13.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
13.2 Overall precision of the results . . . . . . . . . . . . . . . . . . . 51

13.2.1 Closer look at queries . . . . . . . . . . . . . . . . . . . . 52
13.3 Precision of top results . . . . . . . . . . . . . . . . . . . . . . . . 52
13.4 Tuning boost factor influence . . . . . . . . . . . . . . . . . . . . 55
13.5 Interpretation of results . . . . . . . . . . . . . . . . . . . . . . . 56

VII Discussion and conclusion 57

14 Discussion 58
14.1 Context weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.2 Query sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

15 Conclusion 60
15.1 Final conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
15.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A Custom queries 64



List of Figures

9.1 MEDLINE documents parsed and added to lucene index. . . . . 34
9.2 Sentences in abstracts weighted and weights stored in an index. . 35
9.3 Depending on what ranking model is used, indexes are selected,

query is parsed and rewritten for selected model. . . . . . . . . . 36

10.1 Document instance as when added to the index. . . . . . . . . . . 38
10.2 Current implementation of the sentence index. . . . . . . . . . . 39
10.3 Flow chart that shows how sentences are weighted during indexing. 40

11.1 State diagram showing simplified view of the processFields method
in the DocInverterPerField class. . . . . . . . . . . . . . . . . . . 44

12.1 Screenshot of the user interface developed to evaluate and com-
pare results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

12.2 Automated query generation using GENIA NER. . . . . . . . . . 50

13.1 Comparison of MAP measure for BM25 and BM25 extended with
GeneTag and GENIA . . . . . . . . . . . . . . . . . . . . . . . . 53

13.2 Comparison of MAP measure for VSM and VSM extended with
GeneTag and GENIA . . . . . . . . . . . . . . . . . . . . . . . . 54

13.3 Precision-at-k for all of the ranking methods. . . . . . . . . . . . 55

6



List of Tables

4.1 Term and documents as stored within an inverted index. . . . . . 16

8.1 Comparison of storing weights in inverted index vs. separate index. 30

12.1 Lists hardware environment, and Java VM environment. . . . . . 47

13.1 Evaluation measures at 100 first results. . . . . . . . . . . . . . . 51
13.2 Evaluation measures at 1000 first results. . . . . . . . . . . . . . 52
13.3 MAP measures when tuning term-boosting . . . . . . . . . . . . 55

7



Part I

Introduction

8



Chapter 1

Introduction

1.1 Background and motivation
In [7] Ramampiaro describes several problems regarding information retrieval on
biomedical information. The common methods for information retrieval tend
to fall short when searching within this domain. Searches tend to be either
too restrictive, causing low recall, or they tend to become to broad, giving low
precision. Thus they become unsatisfactory with respect to user needs.

Several methods have been used to customize retrieval technology to ex-
ploit domain-specific attributes of the document collection being searched in,
increasing recall, precision or both. These have several challenges to overcome.
In biomedical information there exists a lot of domain-specific terminology [18].
Mixing natural English and biomedical-specific terms can be challenging due
to high ambiguity. A word can have several meanings, and gain more with
time[19]. In addition there is a lack of terminology standards, thus new ones
are created as seem fit and there often exist several typographical and lexical
variants[18].

1.2 Problem definition
Given the quality of information retrieval using common retrieval methods on
biomedical information, or lack there of, we believe it’s possible to improve
information retrieval to better suit user needs. We do this by using the domain-
specific attributes of the document collection we search within. In this thesis
our main focus is on improving precision. We attempt to increase precision by
introducing an additional weighting factor when calculating term relevance, a
factor we generate by analyzing the terms context within the document.

9



CHAPTER 1. INTRODUCTION 10

1.3 Layout of the thesis
This thesis is divided into 5 parts. These are as follows

Intoduction This part, a brief introduction to the thesis explaining it’s back-
ground and problem definition.

Concepts and definitions Introduces concepts and definitions used through-
out the the thesis. These are concepts that we build and evaluate our
work upon, thus deem as important background information.

Related work Introduces other work and research done within the same field
that we relate this work to.

Approach Describes our thought out approach on how we wish to solve the
problem definition.

Implementation Contains details on how we have implemented the prototype
that we created to test our approach.

Experiment and results Presents how we evaluate our prototype, and presents
the evaluation results and interpretation of these results.

Discussion and conclusion This part discusses our work and concludes on
our approach based on our evaluation.



Part II

Concepts and definitions
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Chapter 2

Ranking models

A central topic of information retrieval is document ranking. Ranking is im-
portant, as it limits the amount of documents a human has to sift through to
find the document he is after; especially when a large amount of documents
are recalled. Ranking allows us to assign a score to a (query, document) set
for the means of attempting to give better score to the more relevant docu-
ments. Results are then sorted showing the highest scoring documents to the
user first. This section briefly introduces common ranking models, Okapi BM25
and Vector Space Model (VSM) on which we build our work upon.

2.1 tf-idf
tf-idf is a statistical measure used to evaluate how important a term is in a doc-
ument collection. This measure works by increasing the weight of a document
by how often it is found within the document (term frequency), but is offset
by how often the term is found within the entire collection (inverse document
frequency). Variations of tf-idf are widely used by search engines as a central
part of their ranking strategy. The td-idf weight for term ti in a document dj

is defined as
wi,j = tf ∗ idf

where tf is the term frequency and idf is the inverse document frequency.
Term frequency is a normalized measure of how often the term is found within
the document. The measure is normalized as so it does not favor longer docu-
ments, where the term may have a high term count regardless of its importance.

2.2 Okapi BM25
Okapi BM25 is rather than a single function ranking model, a collection of
several models. It disregards term inter-relationships and weights them as a bag-

12



CHAPTER 2. RANKING MODELS 13

of-words, meaning it does not look at term order, nor grammar. The following
combination of models called BM25 is as follows [4]

score(D,Q) =
n∑

i=1

idf(qi) ∗ tf(qi, D) ∗ (k1 + 1)

tf(qi, D) + k1 ∗ (1− b + b ∗ |D|
avdl )

Where f(qi, D)is term frequency in document D, |D| is the length of docu-
ment D and avgdl is the average length of documents in the collection. k1and b
are tuning constants. This formula ensures that the effect of the term frequency
is not to strong, and that the weight for a term occurring once in a document
of average length is just idf of that term[4].

The constant k1may be tuned to influence the effect of term frequency, in
Text REtrieval Conference (TREC)1 this constant was found to be effective at
k1 = 2. The constant b is used to modify the effect of the document length.
Setting b = 1 would mean that documents are long because they are repetitive,
while setting it to b = 0 assume they are long because they are multitopic. In
TREC, this value was deemed helpful at b = 0.75.

In Okapi BM25, idf is calculated as

idf(qi) = log
N − n(qi) + 0.5

n(qi) + 0.5

Where N is the number of documents in the collection, and n(qi) is the
number of documents containing qi.

2.3 Vector Space Model
Vector Space Model (VSM) is representation of a set of documents in a com-
mon vector space, first introduced by Salton[11]. It has, and still is widely
used in information retrieval for scoring, as well as document classification and
clustering[5].

When using VSM, each document is given a vector measure ~V (d), with a
component for each of the terms within the document. Components are usually
computed using tf-idf. When scoring a document against a query, the query
is treated as a small document containing the terms represented in the query,
giving us vector measure ~V (q).

One way of measuring ranking score is to use cosine similarity between the
vectors, defined as[5]

score(q, d) =
~V (q) ∗ ~V (d)

|~V (q)| ∗ |~V (d)|

This similarity measure may also be used to calculate the similarity between
two documents.

1TREC is a series of workshops with focus on information retrieval within different research
areas. A research area is also called track.



Chapter 3

Evaluation

In order to compare our results with existing ranking schemes, we require a
mean of evaluating the retrieval results. This section introduces well known
methods of evaluation.

Buckley and Voorhes [6] have shown that common evaluation measures are
not robust when working with incomplete judgments sets. As we’re evaluating
against a collection with incomplete relevant judgments, we will evaluate against
mean average precision (MAP) (section 3.3) which has been shown to be more
stable and robust measure for this type of sets [6].

3.1 Recall and precision
Many of the most frequently used evaluation methods are derived from recall and
precision[6]. Recall and precision is the most common way to measure retrieval
performance. The method calculates how many of the relevant documents were
retrieved, and how well the relevant documents were ranked, among the non-
relevant ones. Precision is the proportion of the documents that are relevant.
Recall is the proportion of the relevant documents that were retrieved. Given
the a cutoff point r, the precision Pr is calculated as

Pr =
number retrieved that are relevant

total number of retrieved

Here Prwill indicate the proportion of the documents that are relevant. For
example, if 5 out of 10 documents retrieved are relevant, then Prwill become
Pr = 5/10 = 0.5.

The recall Rris calculated as

Rr =
number relevant that are retrieved

total number relevant

Here Rrwill indicate the proportion of the relevant documents that were
retrieved. If 5 out of 10 documents, then Rr becomes Rr = 5/10 = 0.5.

14



CHAPTER 3. EVALUATION 15

3.2 R-precision
R-precision is the precision after R documents have been retrieved where R is
the number of relevant documents for the query.

To be able to use R-precision, one has to have a list of relevance judgments
before performing the retrieval. The judgments can be complete or not, but the
measure is not robust on incomplete judgment sets [6].

3.3 TREC mean average precision (MAP)
Mean average precision (MAP) has become the most standard measure to eval-
uate information retrieval within the TREC community [5], and has been used
in TREC Genomics Track evaluation [2]. MAP is mean of the precision scores
after each of the relevant document have been retrieved, using zero as precision
for relevant documents not retrieved. MAP uses a lot more information than
simpler measures, such as R-precision and precision at k. This makes it a more
powerful and more stable measure [6]. The drawback of this is that it is harder
to interpret. A measure of 0.3 can be caused by many factors with MAP, while
the same R-precision value on a query having 10 relevant documents would
mean 3 relevant documents were recalled. MAP is defined as[5]

MAP (Q) =
1
|Q|

|Q|∑
j=1

1
mj

mj∑
k=1

Precision(Rjk)

where the set of relevant documents for queryqj ∈ Q is {d1...dmj} and Rjkis
the set of ranked retrieved documents down to document dk.



Chapter 4

Document indexing

Document indexing is the task of processing a document collection for the pur-
pose of building data structures used during document retrieval. In this section,
we introduce one means of building a structure for retrieving documents based
on query terms; inverted index.

4.1 Inverted index
The basic idea of a inverted index is to keep a dictionary of terms, and for each
of the terms keep a list of records for which documents the term is found in[5].
Given documents d0 = ”Kent is superman”, d1 = ”superman is strong” and
d2 = ”Lane likesKent”, an index could be constructed as in table 4.1.

If a user wanted to look up documents having the term superman, the system
would look up the term in the index and return the documents listed; in this
case d0, d1 and d2. In more complete information retrieval systems, additional
values are often stored within the inverted index, such as the terms position
within the document.

Term Documents
Kent d0,d2

is d0, d1

superman d0, d1, d2

strong d1

from d1

Krypton d1

Lane d2

likes d2

Table 4.1: Term and documents as stored within an inverted index.

16
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Chapter 5

Increasing recall and precision

5.1 MeSH Query expansion
The effectiveness of using Medical Subject Headings (MeSH)1 for automatic
query expansion in PubMed is investigated in [8]. In their experiment, they
constructed queries by selecting keywords from questions on 55 topics. These
queries were then expended using Automatic Term Mapping (ATM), by making
use of MeSH field of indexed MEDLINE2 citations. ATM works by comparing
terms in the user query, to pre-indexed terms in translation tables, such as
MeSH table. When user for instance searches for tumor, the query will be
automatically mapped to the MeSH term Neoplasms. This means that query
will in addition to retrieving articles containing the term tumor, return articles
containing Neoplasms.

Their experiment suggests that query expansion on PubMed can improve
retrieval performance, generally resulting in more relevant documents. Though
this improvement may not be useful for users that do not look past the topmost
results.

5.2 Relevance feedback
The basic idea of relevance feedback (RF) is that the user submits an initial
query, and the system returns ranked results. The user then judges what doc-
uments in the results are relevant. Based on the user judgment, the system
constructs a new query based on terms in the original query, and terms found
in the documents found relevant. The system then returns results based on the
constructed query. This iteration can then be repeated if needed. Relevance

1MeSH is a comprehensive controlled vocabulary created and updated by United States
National Library of Medicine. In 2008 it contained 27,767 subject headings arranged in a
hierarchy, this makes MeSH suitable to be used as a thesaurus in information retrieval.

2MEDLINE (Medical Literature Analysis and Retrieval System Online) is a literature
database of life sciences and biomedical information.

18



CHAPTER 5. INCREASING RECALL AND PRECISION 19

feedback exploits the idea that it is difficult to express a good query when the
document collection is unknown to the user, but it’s easy for the user to deem
if documents relevant or not.

Some assumptions are needed for RF to be useful. The user has to have
sufficient knowledge to make the first query retrieve some relevant documents.
Relevant documents need to be similar to each other, as in cluster together, and
the irrelevant documents should not be similar. The user has to be willing to
provide feedback and be willing go through with prolonged search. The result set
from a restructured query may also confuse the user, as he may not understand
why the particular documents were retrieved.

Variations to explicit user judgments exist. Pseudo relevance feedback as-
sumes that topmost k documents are relevant, and uses these as basis to con-
struct a new query. Indirect relevance feedback keeps track of what documents
in the query results the user looks at. The assumption that a document is
relevant to a query, when many users view this document.

RF has been shown to be very effective at improving retrieval relevance[5].

5.3 Boosting specific document parts
Boosting specific document parts is a means of exploiting the structure of struc-
tured documents to increase precision. As an example; citations provided by
MEDLINE has been structured in a way that allows one to extract title, ab-
stract and author along with other fields separately. Research has been done on
weighting specific document parts differently, showing that for instance weight-
ing the title field of a MEDLINE citation twice as much as the abstract yields
better ranking[7].



Chapter 6

Retrieval systems

6.1 PubMed
PubMed is a search engine publicly available for searching within MEDLINE
citations. In addition to providing citations, it provides link to articles full-text
where available. PubMed provides Boolean queries, in addition to using MeSH
headings to expand queries and giving access to related articles. As of 2009,
PubMed indexed 17,764,826 citations1. PubMed does not seem to rank searches
by document relevance, [7] suggests that PubMed seems to order search results
based on publication date, author names and journals.

6.2 Textpresso
Textpresso[17] is a text-mining system allowing specialized search of scientific
literature. Textpresso implements categories of terms, these being classes of
biological concepts (genes, cell), objects relations (association, regulation) or
classes that describe biological concepts (biological process). These categories
form an ontology. Textpresso splits papers into sentences, and these into word
or phrases that are labeled to their ontology. This allows expressible searches
that exploit the categorization. Textpresso ranks their results using frequency
of queried index term, which ranks documents that contain the largest number
of queried terms at the top.

6.3 BioTracer
BioTracer is a proof-of-concept prototype that has has implemented several in-
formation retrieval techniques in means to investigate how to improve the ability
for a system to find and rank relevant documents[7]. The ranking in BioTracer

1Citation totals retrieved from http://www.nlm.nih.gov/bsd/licensee/2009_stats/2009_Totals.html

20



CHAPTER 6. RETRIEVAL SYSTEMS 21

is built up on existing similarity models, such as BM25. It extends these mod-
els factoring in the techniques boosting specific document parts, allowing users
to affect the ranking trough user relevance feedback (URF), adding a query-
document correlation factor to the model as well as supporting additional query
expressions. BM25 was originally designed for keywords-based queries, in Bio-
Tracer the model has been extended allowing Boolean operators (AND, OR,
NOT). BioTracer also supports the use of wildcards.

Based on evaluation against a subset of TREC 2004 Genomics2, the ex-
tensions implemented in BioTracer has been shown to help improve retrieval
performance.

2TREC Genomics Track data is available at http://ir.ohsu.edu/genomics/data.html
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Chapter 7

The idea

The basic idea is to use text mining techniques to give each term within a
document a weight based on their biomedical information context. When a
document is retrieved as it matches a query term, we use this weight as an
additional measurement to determine how relevant the document is to the query.

In our approach we define the context of the term to be the sentence it is
found in within a document; giving each sentence in a document a weight. The
weight is determined by pin pointing biomedical relevant information in the
sentence.

The purpose of this is to give us means to boost the term match if the
context of the query match has strong biomedical context; as well as to give it
a negative boost if it’s context is in essence just natural English. Doing this
will boosting the document itself during ranking on strong biomedical context
matches.

By doing this, we attempt to find out if this additional context factor will
increase the overall precision of an ad-hoc information retrieval query. When the
terms in a user query have a strong biomedical context within a given document,
the document might be more likely to be relevant to the query. This hypothesis is
strengthened by the fact that the domain searched within is scientific in nature,
and thus users performing the searches are likely to be researchers, scholars and
there like; generally users that are able to make educated searches.

7.1 Document collection
To evaluate our prototype, a relevance judged document collection within biomed-
ical domain is preferred. A set of relevance judgments is a list of relevant doc-
uments, so called “right answers” for a given topic or topics. This gives us a
baseline to evaluate against, and allows us to use evaluation methods such as
R-precision and mean average precision (described in chapter 3). TREC regards
a document relevant if one were to write a report on a topic, and would use some

23



CHAPTER 7. THE IDEA 24

information in the document1.

7.2 Document-level term boosting
As stated, we have defined the context of a term to be the sentence it is used in,
and this context has to be weighted. This weight is then to be used to boost,
or negatively affect the documents rank. To achieve this, the following needs to
be done

• Extract each sentence out of the document.

• Run text mining techniques on the sentence to determine biomedical in-
formation.

• Determine a weight for the sentence.

• Use this weight during ranking.

This section describes how we solve each of these individual problems.

7.3 Sentence extraction
Automatically extracting sentences out of a document is a subject of natural
language processing called sentence segmentation. We assume the contents of
the documents are in English; thus dividing the document at punctuations might
seem reasonable approximation. It is however not as trivial as that. Challenges
within sentence segmentation are; amongst others

• Abbreviations and acronyms such as “Mr.”

• Sentences within sentences, such as: He said: “I need a cup of Earl Grey”,
and went into the kitchen.

Although sentence segmentation is out of the scope for this thesis, we will briefly
describe the method used in the prototype, an approach loosely based on an
article by Mikheev[12].

Having done lexical analysis and divided the document into a set of tokens,
it uses a heuristic model with three sets of token types

• Possible stops: A set of tokens that are allowed to be the final token, such
as periods (.) and double quotes (“).

• Impossible Penultimates: A set of tokens that may not be the second-to-
last token of a sentence, such as “Mr”.

• Impossible Starts: A set of tokens that may not be the first token of a
sentence, such as punctuation characters like end quotes (”) that should
be a part of previous sentence.

1As per definition on the TREC website; http://trec.nist.gov/data/reljudge_eng.html
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This is the base heuristics used, in addition to other conditions2.

7.4 Weighting by biomedical relevance
For measuring biomedical relevance of each sentence, we use name entity recog-
nition (NER) for recognizing biologic terms and concepts. NER is a sub-task of
information extraction used to identify and classify within a document collec-
tion all instances of names for a specific type of thing, such as genes, name of
persons, locations and so forth. It has been suggested that solving the task of
proper NER will allow more complex text-mining tasks to be addressed[13].

NER has been challenging for biomedical texts[13], as

• There does not exist a complete dictionary for most types of biomedical
named entities.

• The same word or phrase can have different meanings, based on context
(ferritin can both be a biological substance, and a laboratory test).

• Biological entities can have several names (PTEN and MMAC1 are the
same gene), as well as the names can have multiple words.

The main approaches to NER is lexicon-based, rules-based and statistically
based. One of the models used in our prototype is a statistical model that
uses a hidden Markov model3. The other uses a statistical machine learning
technique that generates vectors from token shapes4.

7.4.1 Using Name Entity Recognition for weighting
Having done sentence extraction, we now have a set of sentences S for a docu-
ment Di. We then weight each of the sentences sj ∈ S using

sw(s) = |R|

sw(s) is a function to weight sentence si,j and where R is a set of NER
recognized terms and concepts in the sentence, |R| being the size of this set.

7.4.2 Normalize weighting
In order for our weight factor to merely influence the current ranking models,
rather than dominating the the ranking with our sentence weight, we need the
weights to be normalized. Also, if weights are not normalized, terms within

2We use a library in LingPipe for this task. The method
is described in more detail in LingPipes JavaDoc at http://alias-
i.com/lingpipe/docs/api/com/aliasi/sentences/HeuristicSentenceModel.html

3GeneTag in LingPipe is built upon hidden Markov model chunker, described in
http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/HmmChunker.html

4GENIA in LingPipe is built on token shaping, extended from the class TokenShapeChun-
ker http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/TokenShapeChunker.html.
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longer sentences will be favored due to more recognized entities, giving biased
weighting. For this, we have used the following normalization formula

nsw(s) =
(k1 + 1) ∗ (sw(s) + 1)
sl(s) + (sw(s) + 1)

where k1is a free constant, sw(s) is the function to weight sentence s = si,j

in document di and nsw(s) gives us the new normalized sentence weight.
When nothing of biomedical relevance has been identified within a sentence,

the weight will be sw(si,j) = 0, thus we increment all weights by 1 in our
normalization; this so the boosting factor doesn’t zero out the document score.
sl(s) is our means of including the sentence length in the boost. sl(s) is defined
as

sl(s) = k1(1− b + b(
|s|

avgsl
))

Where b is a free constant, |s| is the length of the sentence and avgsl is the
average sentence length in the collection.

This normalization is derived from Okapi BM25 (section 2.2). We set the
constants to k1 = 2 and b = 0.75 as we would with Okapi BM25 for lack of
better tuning values to use for this type of normalization. Using this formula,
our boosting factor will usually float between 1.0 and 2.0 with a few exceptions
for extreme cases.

7.5 Using term boosting
Having created means of weighting each sentence within a document, we can
use these weights to create a term boosting value. We set the boosting factor
tbd,t to be the average normalized weight for all the sentences S ∈ d the term is
found within in document d; defined as

tb(d, t) =
∑tf(d,t)

i=0 nsw(ts(d, ti))
tf(d, t)

Where tf(d, t) is the term frequency of term t in document d, ts(d, ti) (term
sentence) is the sentence the term ti is located in within d , and nsw(s) is the
normalized sentence weight for this sentence.

7.6 Term boost combined with existing ranking
models

We can now combine our term boost with existing ranking models. Given
score(d, t) is the score calculated by a ranking model, such as Okapi BM25 or
VSM (described in chapter 2), we combine the weights as follows
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bs(d, t) = score(d, t) ∗ (tb(d, t) ∗ k1)

Where bs(d, t) is our new boosted score for term t in document d and k1 is
a free constant used to tune the influence of our term boost factor. We set k1to
be k1 = 1.



Chapter 8

Storing context weights

Our methods for generating context based weights for terms require advanced
text mining techniques. In addition, the entire text of the document needs to
be loaded, most often from primary storage systems. Both are performance
expensive tasks and when combined can consume great amount of CPU- and
I/O-time. Performing context based weighting during retrieval would therefor
be to resource demanding and slow in practice.

Generating the context based weights during document however, is reason-
able. Indexing does not have the same requirements to performance, nor de-
mands on response time. In addition, the weights are static, and need only to
be done once, rather than every time the document is retrieved.

This does however require that the weights are stored for later use; stored
in a way that they can be looked up on a per-term-basis within a document.
In this section we suggest two methods of storage and compare these to each
other.

8.1 Store in an inverted index
We described in section 4.1 how an inverted index is built up. It is possible to
extend an inverted index to store the term boost value, along with the document
reference. Building up on the term superman in the example used in table 4.1;
we set the term weights for the documents d0, d1, d2 to be w0, w1, w2 respectively.
Our new inverted index would now be built up as

superman→ [d0, w0], [d1, w1], [d2, w2]

This requires that a weight is calculated for every term within a document
during indexing. It may increase the storage size of the inverted index signif-
icantly. During retrieval, finding the term boost would be the simple task of
looking up the boost in the inverted index.

28
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8.2 Store in a separate index
An alternative to storing term boost weight in the inverted index, is to have
a separate sentence index. A document needs to have a identifier that can be
looked up in the index; and it should point to a list of structures that hold the
end position and weight for sentences in that document. A single index look up
is illustrated with the following

document→ [end position,weight], [end position,weight] ...

where document is the document identifier pointing to a list of sentence
pairs; each containing an end position and the sentence weight.

Given that this set is sorted by end position, and that we have term frequency
and position available during lookup, we can calculate the weight as described
in section 7.5 by

• Iterating over the sentences, matching the term to it using it’s position.

• Summing up the sentence weights.

• Dividing the total weight with the term frequency.

The following is a pseudocode demonstrates this

I t e r a t o r <Sentence> s i t r = sentenceIndex . i t e r a t o r ( document ) ;
Sentence sentence = s i t r . next ( ) ;

f l o a t tota lWeight = 0 ;

f o r ( i n t i = 0 ; i < term . f r e q ( ) ; i++) {

// match term to i t s sentence
whi l e ( sentence . endPos i t ion ( ) < term . nextPos i t i on ( ) ) {

sentence = s i t r . next ( ) ;
}

tota lWeight += sentence . weight ( ) ;
}
re turn tota lWeight / term . f r e q ( ) ;

where sitr is used to iterate over the sentences in a single document, term
holds document term frequency and position, and sentence holds the sentence
position and weight.

8.3 Comparison
Summarized comparison is shown in table 8.1. Using inverted index, the index
may become larger than when using a separate index, as weight values have to
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Inverted index Separate index
Weights are stored on per-term basis. Weights are stored on per-sentence basis.

Per-term weighting is done during indexing. Per-term weighting is done during retrieval.
Weights can co-exist with existing architecture. New index requires additional architecture.
May require larger changes to existing system. May require lesser changes to existing system.

Table 8.1: Comparison of storing weights in inverted index vs. separate index.

be stored for all terms in each document; rather than for all sentences. This,
however, allows all weighting to be done during indexing. When using a sepa-
rate index, term weighting has to be done during retrieval, using the sentence
weights.

Inverted indexes are widely used, architecture and techniques have already
been developed for maximizing performance, redundancy, distribution and so
forth. We argue that including weights in existing inverted index architecture is
likely to be better than introducing a separate index; requiring these techniques
to be re-implemented. Introducing a separate index may however not require
altering existing indexed data structure, if document identifiers are used as
lookup values.
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Chapter 9

Overview

We have in previous chapter described our approach to creating a document-level
term boosting factor. This chapter describes implementation specific details and
decisions of a prototype made for the purpose of testing and evaluating this idea.

9.1 Technology overview
To ease, shorten development time and refrain from “reinventing the wheel”,
our implementation takes advantage of libraries previously developed for the
common task of search retrieval and text mining. We settled on using Apache
Lucene for search, and LingPipe for text analysis. Both are technologies written
in Java, thus Java has become our language of choice for the prototype.

9.1.1 Apache Lucene
Apache Lucene1 is a full-featured text search engine library. It’s not a search
engine by itself, but provides library and API to rapidly build one. We base
our prototype fully on Lucene, using it both for indexing and retrieval, as well
as modifying and expanding on it.

9.1.2 LingPipe
LingPipe2 is a suit of Java libraries for linguistic analysis of human language. We
use LingPipe for sentence segmentation (described in section 7.3), biomedical
name entity recognition (section 7.4) and for parsing and handling MEDLINE
citations.

We use LingPipes sentence segmentation rather than the native library
BreakIterator in Java, as LingPipe has an sentence model created specifically

1Apache Lucene is available at http://lucene.apache.org/java/docs/index.html
2LingPipe is available at http://alias-i.com/lingpipe/
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for handling MEDLINE citations, having 99% accuracy on detecting sentence
boundaries according to their own evaluation3.

9.2 Architecture overview
This section gives a basic overview of the architecture of our prototype. Al-
though we base our work up on Lucene, we will not include lucene internals,
merely our implementation around it. We describe the architecture of document
indexing and architecture document search by them self. Although they work
on the same data and indexes, we deem these to be two unrelated processes.

9.2.1 Document indexing
As the prototype is based on Lucene, we’ve based it on the indexing mechanism
provided by Lucene itself as much as possible. However, as noted in chapter
8, weighting sentences by text mining them for biomedical information is per-
formance intensive work and not feasible to do ad-hoc during document search.
We therefor do this during indexing.

In chapter 8 we described two methods of storing weights, one being in the
inverted index and the other in a separate index. As we wish to make as few
modifications to the Lucene library itself, we decided up on using a separate
index. This does require some modifications to Lucene, however in an lesser
extent, and less error prone.

Thus, two indexes need to be built, the regular Lucene index and our sen-
tence index. Our implementation of the sentence index differs somewhat from
the method described in section 8.2 in that we do not use document identifiers
too look up weights. The way lucene works, is that documents are divided into
fields, for example one field for topic, one for body and so on. Each of these
fields are indexed by them selves. In order to be able to use sentence weights
on several fields within the same document, we create a unique lookup value
for each field when indexing. This is done by reserving a position within our
sentence index, using this position as our lookup value and storing it within the
field along with other field data. This required some modifications to lucene
and is described in more details in section 10.2.1. More modifications done to
lucene in order to build our index are found in section 10.2.3.

9.2.1.1 Building lucene index

Our part in document indexing is implemented in two steps. The fist step
is common in Lucene-based applications, and is centered around reading the
documents and adding them to the index. The fist step is illustrated in figure
9.14. Using LingPipes MedlineParser, we traverse the TREC XML file with

3Evaluation can be viewed at http://alias-i.com/lingpipe/demos/tutorial/sentences/read-
me.html

4The internal architecture of Lucene indexing is deemed out of scope for this thesis, and
illustrated with a cloud in the figure.
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Figure 9.1: MEDLINE documents parsed and added to lucene index.

citations and pass them on to a Lucene IndexWriter using DocumentHandler,
a class extended from LingPipes MedlineHandler.

Noteworthy architecture decisions are

1. Invoking sentence index during document handling.

2. Having separate indexes for each of the main ranking models (BM25 and
VSM described in chapter 2) we evaluate against.

Sentence index is invoked when indexing the abstract, in order to reserve a
position within the index that can be used when weighting sentences in step
two; storing this position in the abstract field.

Having separate indexes for each ranking model is necessary as these models
have fundamentally different similarity models. Building a single index based
on one of the models, and using it with the other would have a negative impact
on its ranking.

9.2.1.2 Building sentence index

The second part of document indexing is done during Lucene token consump-
tion, and is shown in figure 9.2. DocInverterPerField holds all the data needed
to weight sentences and match them to internal positions of tokens as stored in
Lucene index. Thus we make a call from DocInverterPerField to our indexer to
weight the sentences in the abstract field. Implementation details are described
in section 10.2.3. As with the first step, two separate indexes are created, one
for each ranking model.
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Figure 9.2: Sentences in abstracts weighted and weights stored in an index.

9.3 Document retrieval
When searching an index in Lucene, on it’s simplest one has to

1. Create an IndexSearcher, pointing it to the location of the index.

2. Create a Query instance, by running search string through the query
parser.

3. Run search on the IndexSearch using our query instance.

As with document indexing, two noteworthy architectural changes have had to
been made during retrieval. First is the ability to select what index to use,
based on the ranking model. The second is less trivial, and has to do with how
document retrieval and scoring is done internally in Lucene. A Query instance
holds aWeighter instance, and a Scorer instance, both central in how documents
are ranked. Thus for each new model one creates, those three classes have to
be implemented as well.

This also means we have to send our custom Query implementation to Lucene
index searcher. Rather than working on Lucene’s QueryParser, a seemingly
complicated task, we implemented a query rewriter. Our rewriter initially parses
the query as we would before, but then works on the query instance returned by
QueryParser, replacing it with the selected models respective implementation.
This is illustrated in figure 9.3.

Since we use a separate index for weights, two of the ranking models imple-
mented need to access this index and calculate the term boost score as in the
manner described in section 8.2.
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Figure 9.3: Depending on what ranking model is used, indexes are selected,
query is parsed and rewritten for selected model.



Chapter 10

Implementation details

10.1 Preparing collection
The MEDLINE citations are available as 5 XML files approximately 4GB, a
total size of 20GB.

As we wanted the judged subset of these documents to work with, a mech-
anism of filtering out all unjudged documents had to be created. A tool was
written for this purpose1. It parses the judgment file, keeping track of citation
identifiers2. It then uses those identifiers to filter out unjudged documents when
traversing the 20GB of MEDLINE citations. As traversing a 20GB XML file is
time consuming, the tool is used to create a new file, containing only the judged
citations. This file is compatible with the MEDLINE files provided, thus can
be parsed in the same way with our prototype.

10.1.1 Parsing citations
As described in section 10.1, the documents we work on are citations from
MEDLINE, available in XML-files. Although Java has good support for XML-
parsing, the task of parsing the citations is made even more trivial by using Ling-
Pipes MedlinePaser implementation. This implementation provides an event-
driven API, that lets us process each citation as it is parsed. This puts no
limitation on how large the XML we’re working on can be, as opposed to DOM
handling where the entire XML is stored internally before it can be worked
on; thus limited by the amount of internal storage. The following code snippet
demonstrates how a MEDLINE XML file can be parsed using LingPipe. Here
the method handle is called on each citation stored in the file MEDLINE_XML.

1This filtering tool is located in package org.ntnu.masteroppg.tools.filter in the pro-
totype source code.

2Documents are identified in the judgment file, as well as in the XML citations using PMID
(PubMed Identifier). PMID is a unique number assigned to each PubMed citation.
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Figure 10.1: Document instance as when added to the index.

Medl ineParser par s e r = new Medl ineParser ( f a l s e ) ;
pa r s e r . setHandler (new MedlineHandler ( ) {

pub l i c void d e l e t e ( S t r ing pmid ) {
throw new UnsupportedOperationException ( ) ;

}

pub l i c void handle ( Medl ineCitat ion c i t a t i o n ) {
System . out . p r i n t l n ( c i t a t i o n . a r t i c l e ( ) . a r t i c l e T i t l e ( ) ) ;

}
} ) ;
pa r s e r . parse (MEDLINE_XML) ;

A MEDLINE citation contains richly structured data about a publication
having author, affiliations, title, abstract, grants and medical subject headings
(MeSH), amongst other data. This is available through the MedlineCitation
instance sent to the handle method. In our prototype, we make use of pmid,
abstract and title; the rest is ignored.

10.2 Document indexing

10.2.1 Sentence index API
The sentence index is used to hold the weight of every sentence indexed from
the abstract in the document collection. Data is stored and accessed by having
every abstract field hold a a reference to the internal position within the sen-
tence index. When adding a document to the index, we call on the sentence
index to initialize a position for given field. The sentence index then returns a
reference to the initialized position. This pointer is then stored in the field that
requires sentence weighting. In our experiment, we use sentence weighting for
the abstract field, and figure 10.1 shows the fields of a document instance in our
implementation.
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Figure 10.2: Current implementation of the sentence index.

10.2.2 Sentence index internals
Internal representation is as shown in figure 10.2. The position reference points
to a indexPointer; which again holds a reference to an array of structs having
the sentence weights, and the sentence positions within a document field.

We have not made any effort to distribute this index in our prototype im-
plementation. The entire index is held in internal storage. This suffices for
this experiment, as the size of the document collection indexed is of limited
size. The index is built in internal storage during indexing, and stored when
indexing is complete. During retrieval, the index is loaded into internal storage
before search proceeds. The index is stored as a Java serialized object.

10.2.3 Building sentence index
Indexing sentence weights are done in a finit state machine. In Lucenes class
DocInverterPerField each term within the field is processed in a sequential or-
der. When processing the term, the field data the term belongs to, as well as
the terms string offset are available. During term processing, the term is sent
to the sentence index, along with this additional data. This is a small modifi-
cation made to Lucene, described in detail in section 11.2. The sentence index
forwards the call to our sentence weighter, which performs the task of building
the sentence index itself.

10.2.4 Sentence weighter
The sentence weighter is our finit state machine implementation. The flow
works as follows; when being called upon with a new term in a given field
and the sentence weighter has not encountered the field before, it extracts the
sentences out of the field, weights them using NER technique and stores them
temporarily. It then works on each of the fields sentences, and attempts to match
the character offsets of the terms to the character offset of the sentence to find
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Figure 10.3: Flow chart that shows how sentences are weighted during indexing.

the last term of the sentence. When it gets a match, it uses the terms position
as the sentence position and stores it into the index. This flow is illustrated
in figure 10.3. Here we see how sentence weighter attempts to match terms to
an unmatched sentence, and store the sentence in index if there was a match;
otherwise just ignore term.

10.2.4.1 Sentence extraction

Sentences have to be extracted from the abstract during indexing. We tried two
approaches to sentence segmentation, Javas native BreakIterator and LingPipes
SentenceModel; creating a common interface to be able to switch between for
testing. The interface is as follows

pub l i c i n t e r f a c e Sen t enc e I t e r a t o r {
pub l i c void run ( ) ;
pub l i c void handleNext ( S t r ing sentence , i n t s ta r t ,

i n t end , i n t tokens ) ;
}

where handleNext should be overridden, as it’s called on every sentence
within the document. The parameter sentence has the sentence string itself,
start and end hold the character offset positions to the start and end of the string
respectively and tokens holds the number of tokens in the sentence. Having
start end end positions allows us to match sentences to internal term positions
in Lucene, while token count is used to normalize sentence weights. Basing
our work on LingPipes sentence segmentation, we can use our implementation
iterate over sentences in a document as in this example:

S en t enc e I t e r a t o r s i t r = new LangPipeSentence I te rator ( doc ) {
pub l i c void handleNext ( S t r ing sentence , i n t s ta r t ,

i n t end , i n t tokens ) {
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System . out . p r i n t l n ( sentence ) ;
}

} ;
s i t r . run ( ) ;

The example shows how we can iterate over the sentences in text string doc,
printing them out one at the time.

After some testing, we ended up using LingPipes implementation, as it gave
better results. Before sentence segmentation, the abstract needed to be tok-
enized. For this we used the IndoEuropeanTokenizerFactory which tokenizes
Indo-European languages. The sentence model we used is MedlineSentence-
Model, which is specifically implemented to operate over biomedical abstracts3.

10.2.4.2 NER

LingPipe provides two different biomedical NER models, GENIA and GeneTag,
both which we use and evaluate in our experiment. These models are used to
automatically extract useful information within scientific texts.

GENIA works on the micro-biology domain, although it’s goal is to be used
within other domains as well. It contains biologic concepts, identifying both
generic entities such as dna sequence and more classified concepts I-L2 gene.
GENIA 3.0 corpus contains 93 293 biologically meaningful terms annotated
by two domain experts[10]. GeneTag annotation is more restrictive, although
having a wide definition of gene/protein entities, a biologic term must refer to a
specific entity. This means that tat dna sequence will be identified, whilst dna
sequence will not[9].

LingPipes provides these models as downloadable serialized Java Objects
that are loaded during application run-time4. Both classes implement the same
interface, the interface Chunker ; thus both have the same API for identifying
entities, allowing proper code reuse. Although the models classify entities into
categories5, we do not weight them different. We determine the biomedical
relevance of the sentence solely by how many entities the NER models identify
within the sentence.

10.3 Document retrieval
Document ranking is done during document retrieval. In our prototype we
support the following two models

• Vector Space Model (VSM) - Lucenes default of-the-shelf similarity mea-
sure is built upon Vector Space Model6. We use this implementation in

3How MedlineSentenceModel works is described in its JavaDoc at http://alias-
i.com/lingpipe/docs/api/com/aliasi/sentences/MedlineSentenceModel.html

4Both models are available for download at http://alias-i.com/lingpipe/web/models.html
5GENIA has 47 biologically relevant nominal categories[10].
6Implementation details are described in Lucene documentation at

http://lucene.apache.org/java/2_4_1/api/org/apache/lucene/search/Similarity.html
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our prototype.

• Okapi BM25 - We’ve added a implementation of Okapi BM25 based on
the work of BioTracer7 to our prototype. Lucene does not include this
ranking method by default.

In addition we have extended both ranking models to include our term boost
implementation. Both have been added by subclassing each of these, and alter-
ing the scoring method. In order to be able to access the sentence index and
read out term positions, some amount of boilerplate code was needed when ex-
tending these model extending. It however basically boiled down to overriding
the score as shown in the following code

pub l i c f l o a t s co r e ( ) {
re turn super . s c o r e ( ) ∗ ( sentenceBoost ( ) ∗ K1) ;

}

Where super.score() calls the scoring method of the original model, sentence-
Boost() calculates the term boost (implemented as shown in section 8.2) and
K1 is our tuning constant, set to K1 = 1.0.

Implementing our extended models by overwriting the score method means
that we need not alter the behavior or code base of the original models in any
way. Our extended classes can can be used by Lucene in the same way as the
original classes.

7BioTracer is the work of Ramampiaro and described in [7].
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Modifications to Lucene

This section describes modifications done to the Lucene library itself. Some
modifications have been done to the Lucene library in cases where Lucene has
not been extendable to the extent needed to implement our prototype.

11.1 Changes in FieldsWriter
Each document stored in lucene can contain several fields. We use a field to
store title, another to store pmid, one to store the abstract and one to store
document length (number of tokens). Internally, Lucene has support for storing
several binary options as bitmasks. It it not possible to define custom options
to store through the API. In order to be able to lookup sentence weights from
the sentence index, we modified Lucene to add an additional option; option to
indicate whether the field was sentence indexed. This option has been named
FIELD_HAS_SENTENCEINDEX, as shown below in the list of options now
supported in each field. When this option is set, an additional integer referencing
the position within the sentence index is written to the index a long with the
field data. When this option is set, the additional integer is also read during
field lookup. Minor changes in several other classes within lucene had to be
made for this change to be properly propagated upwards the API. The options
now supported are as follows

static final byte FIELD_IS_TOKENIZED = 0x1;
static final byte FIELD_IS_BINARY = 0x2;
static final byte FIELD_IS_COMPRESSED = 0x4;
static final byte FIELD_HAS_SENTENCEINDEX = 0x8;

11.2 Changes in DocInverterPerField
DocInverterPerField is a class used for holding state for inverting all occurrences
of a field in a document. The class doesn’t do anything itself; rather it forwards
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Figure 11.1: State diagram showing simplified view of the processFields method
in the DocInverterPerField class.

the tokens produced by analysis to a consumer 1.
As sentence segmentation of the field is done after Lucene has tokenized

the field, we do not know what internal positions the sentences should hold. To
work around this, we have added an extra step when processing fields within this
class; match the token to a sentence. This extra step is shown in figure 11.1.
The internal positions for the sentences is done by matching token character
offsets to sentence offsets in our sentence weighter, as has been described in
section 10.2.4.

11.3 Altered class/method/field access
We have had the need to extend Lucene to more extent than the API has
been able to provide. We have needed access to several classes, methods and
variables within the lower Lucene libraries. Many of these have however been
private within classes, or private lucene packages. In order to be able to make
use of these classes, and extend up on those; still keeping our own code base out
of Lucenes packages, several Lucene classes, methods and variables have needed
to be changed to either protected or public. This is not a preferred solution,
however we argue that it’s better than mixing our codebase within Lucene’s
codebase. This way, our code stays within packages separate from Lucene.

1The class is a private class within the org.apache.lucene.index package, thus
not included in the Java API docs. However, the source code can be viewed at
http://svn.apache.org/repos/asf/lucene/java/tags/lucene_2_4_1/src/java/org/apache/lucene/index/DocInverterPerField.java
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Chapter 12

Introduction

12.1 Document collection
In our approach we described a preference of what type of document collections
would fit our evaluation (section 7.1) . We find that TREC Genomics Track
test collection for 2004, which is made available for research purposes, suits
our needs. The TREC Genomics Track was held for the purpose of evaluating
information retrieval and related technologies within genomics domain. Their
2004 collection is a test collection with 4,5 million MEDLINE citations. Out of
these 4,5 million citations 42,225 have been judged as relevant against 50 topics;
each topic consisting of title, need and context field.

We have in our evaluation, rather than using the collection in its entirety,
extracted the judged subset for indexing and retrieval purposes. Indexing the
entire collection would be overly time consuming with the current implemen-
tation, and we argue that this subset, with its diversity to be large enough for
this type of evaluation.

12.2 Method of evaluation
We use ranking measurements to evaluate the ranking models. Instead of rolling
out our own tools for this, we’ve implemented our prototype in a way that makes
its result output compatible with the tool trec_eval1. This gives us basis to
compare our results with other research within the TREC community. The tool
trec_eval is the standard tool used by the TREC community to evaluate ad
hoc retrieval runs. When providing trec_eval with a result set, along with a
standard set of judged results, the tool will give us several measures for retrieval
performance, including MAP, R-precision and bpref. We put focus on TREC
mean average precision, as it is the same approach as implemented by TREC.

1trec_eval is available for download at http://trec.nist.gov/trec_eval/index.html. Our
evaluation is based on version 8.1
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Hardware and Java environment
CPU: Intel(R) Pentium(R) D CPU 3.00GHz

Memory: 1x1GB + 1x2GB
Disk: 250GB S-ATA 7200RPM

Operating system: Kubuntu GNU/Linux Jaunty 9.04
Java version Sun Java(TM) 6 (1.6.0_13)

Java VM arguments -Xms128m -Xmx512m2

Perl version 5.10.0

Table 12.1: Lists hardware environment, and Java VM environment.

MEDLINE documents provide in addition to article abstracts; title and sev-
eral metadata attributes like Mesh headings and author names. We have only
made use of the document abstracts during indexing and retrieval.

12.3 Test environment
The specifications for the platform used in our experiment is listed in table 12.1.
We note that this is a desktop computer, running a full desktop environment
in addition to our development platform Eclipse. Non the less, this platform
has been suitable and testing and evaluation has not been limited by our test
platform.

12.4 Experiment environment
All evaluation is run within the development environment Eclipse3 (version 3.2).
The runs have been done within Eclipse as there were no constrains that required
the prototype to be run in a separate environment. Evaluating this way allowed
for quicker problem solving and rapid development.

In addition, a user interface was made to simplify the task of running
trec_eval against the result sets the prototype produced, shown in figure 12.1.
The user interface allows on-the-fly trec_eval execution of results, and displays
them side-by-side for easy comparison. This interface is developed using Perl
as the CGI-backend and HTML/Javascript for the interface itself. Perl has also
been used for minor tasks, such as converting data for graph input and working
on XML-documents.

12.5 Topics and judgments
TREC Genomics Track has defined 50 different topics to be searched for in
their document collection. A total of 48,753 document have been judged against
these topics, on average 975 per topic. A document can be judged not relevant,

3Eclipse is an integrated development environment, available at http://www.eclipse.org/
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Figure 12.1: Screenshot of the user interface developed to evaluate and compare
results.
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possibly relevant, or definitely relevant. A document that is either possible or
definitely relevant will be considered as a relevant hit.

The evaluation topics are available in an XML-file containing title, what
information is needed for this topic and a context for the search. Each topic is
presented in XML as shown below.

<TOPIC>
<ID>1</ID>
<TITLE>Ferroport in−1 in humans</TITLE>
<NEED>Find a r t i c l e s about Ferroport in −1, an i r on

t ranspor t e r , in humans.</NEED>
<CONTEXT>Ferropor t in1 ( a l s o known as SLC40A1 ; Fer ropor t in 1 ;

FPN1; HFE4; IREG1 ; Iron r egu la t ed gene 1 ; Iron−r egu l a t ed t r an spo r t e r 1 ;
MTP1; SLC11A3 ; and So lute c a r r i e r fami ly 11 ( proton−coupled d i va l en t
metal ion t r an spo r t e r s ) , member 3) may play a r o l e in i r on t ranspor t .

</CONTEXT>
</TOPIC>

User queries are not provided by TREC, it is up to whom evaluates the
system to generate queries based on the information given for each topic, or
other information he might find out about this topic. As for the example above,
one might try to search for the synonyms given in addition to Ferroportin-1.

12.6 Query set
We have in our evaluation created a custom query set by hand for all 50 topics.
We did not implement phrase query support, or support for other advanced
query methods. Thus we have been limited to use Boolean term queries in our
query set. The following is an example of one of our queries:

( ox ida t i v e OR ox idat i on ) AND DNA AND ( r epa i r OR e f f e c t )

This query is for the topic “DNA repair and oxidative stress”. Our full query
set is available in Appendix A.

12.6.1 Other query sets
We attempted two other approaches at generating query sets. First was to parse
the XML, extracting the title and using only the title as query for each topic.
The second approach was to create a tool that used GENIA NER to extract
biomedical terms from the topics and use as query. The flow of this tool is
shown in figure 12.2, showing that it looked first for terms in the need field,
and if non were found, used terms found in the context field. Both approaches
were abandoned, as the queries produced provided too low recall to give proper
measurements.
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Figure 12.2: Automated query generation using GENIA NER.
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Results

13.1 Summary
Tables 13.1 and 13.2 provide an overview of our results. The best measure for
each evaluation method has been emphasized. Table 13.1 shows measures when
looking at only the first 100 results, while table 13.2 shows measures for first
1000 results. We note that it seems that no ranking method seems to outperform
the others by any notable means.

13.2 Overall precision of the results
Our measurement is done on the first 100 results, as opposed to the default of
1000 in the trec_eval tool. We find that using 100 results is more representative
to user needs, as the user is likely to only look at the topmost results[14, 15].
We have in our evaluation focused on mean average precision (MAP), which has
become the most standard measure of evaluation within the TREC community
[5], and has as noted in section 3.3 been used before in TREC Genomics Track
evaluation.

In table 13.1 shows that precision is mostly unaffected by extending the
models with term-boosting. The table shows that extended BM25 model gives

MAP R-precision P(5) P(100)
VSM (Lucene) 0.1983 0.2524 0.5200 0.3500
Okapi BM25 0.1977 0.2518 0.5160 0.3496

Extended VSM (GeneTag) 0.1962 0.2490 0.5400 0.3566
Extended BM25 (GeneTag) 0.1983 0.2545 0.5440 0.3478
Extended VSM (GENIA) 0.1981 0.2529 0.5080 0.3496
Extended BM25 (GENIA) 0.1992 0.2564 0.5320 0.3480

Table 13.1: Evaluation measures at 100 first results.
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MAP R-precision P(5) P(100)
VSM (Lucene) 0.3057 0.3452 0.5200 0.3500
Okapi BM25 0.3055 0.3490 0.5160 0.3496

Extended VSM (GeneTag) 0.3043 0.3437 0.5400 0.3566
Extended BM25 (GeneTag) 0.3045 0.3512 0.5440 0.3478
Extended VSM (GENIA) 0.3051 0.3470 0.5080 0.3496
Extended BM25 (GENIA) 0.3045 0.3505 0.5320 0.3480

Table 13.2: Evaluation measures at 1000 first results.

slightly better MAP measure, while extended VSM gives slightly worse.
Figures 13.1 and 13.2 show MAP measure for 49 of the topics1. We first

compare Okapi BM25 and its extended versions based on GeneTag and GENIA
NER weighting in figure 13.1, and Lucenes VSM with its extended versions in
figure 13.2. Common for both are that no query is largely affected by term
boosting.

13.2.1 Closer look at queries
In BM25 we see one particular topic, topic 15, that gains a slight precision boost
when using the extended models. The measures for these results were 0.0664
with regular BM25, while it was 0.1644 and 0.1277 for GENIA and GeneTag
respectively. The query for this topic was:

(ATPase OR ATPases ) AND ( apopto s i s OR ( c e l l death ) )

ATPase being a class of enzymes likely to be recognized by both GeneTag
and GENIA, while apoptosis being the process of programmed cell death is
likely to be recognized by Genia.

In VSM one topic gained precision lost with GeneTag, topic 28. The mea-
sures for these results were 0.3428 for regular VSM, 0.3463 using Genia and
0.2267 using GeneTag. The query for this topic was:

( autophagy OR ( gene autophagic ) ) AND apopto s i s
AND ( pro t ea s e s OR morpho log ica l )

Autophagy being a cellular process and proteases being an enzyme.
Both incidents seem isolated and neither are found on both of the ranking

models BM25 and VSM.

13.3 Precision of top results
For measuring the precision of the top results, we use precision-at-k measure.
Precision at k is a measure for how relevant the first k hits are to the query. This

1One of the topics, topic 18 was left out. The topic had measure of 1.0 for all ranking
models, and was left out of the graph to get more detailed y-range.
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Figure 13.1: Comparison of MAP measure for BM25 and BM25 extended with
GeneTag and GENIA



CHAPTER 13. RESULTS 54

Figure 13.2: Comparison of MAP measure for VSM and VSM extended with
GeneTag and GENIA
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Figure 13.3: Precision-at-k for all of the ranking methods.

MAP measures Baseline k1 = 0.5 k1 = 1.0 k1 = 2.0
Lucene VSM (GENIA) 0.1983 0.1981 0.1981 0.1981
Okapi BM25 (GENIA) 0.1977 0.1991 0.1992 0.2010
Lucene VSM (GeneTag) 0.1983 0.1962 0.1962 0.1962
Okapi BM25 (GeneTag) 0.1977 0.1981 0.1983 0.1983

Table 13.3: MAP measures when tuning term-boosting

measure is useful when attempting to increase user satisfaction, as users seldom
look past the top results[14, 15]. This is a simple recall-precision measure that
shows how many of the recalled documents are relevant. When 5 out of 10 first
documents are relevant, the measure is 5/10 = 0.5.

Figure 13.3 shows precision at different recall levels for all models. As shown
on the figure, the extended models using term boosting with GeneTag have a
slightly better precision at the first 5 documents. The precision of extended
models versus original models seem mostly unaffected otherwise.

13.4 Tuning boost factor influence
Table 13.3 shows the result of tuning the term boost factor k1as defined in
section 7.6. These measures show that tuning this constant has little to no
effect on the overall result, most promising being boost factor k1 = 2.0 on
extended Okapi BM25 using GENIA NER. The same factor had otherwise no
effect on any other models compared to k1 = 1.0.
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13.5 Interpretation of results
Evaluation shows that document level term-boosting has little effect on the
results. The effect it does have can be both positive and negative, and where
it has effect seems isolated and not necessarily reproducible in the other model.
The extended BM25 models give slightly better precision than BM25 baseline,
however the extended VSM models have the opposite effect. Attempting to tune
the results using tune boost multiplication factor has little to no effect.
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Discussion

14.1 Context weighting
As noted, our context for a term is defined as the sentence which it is found
within. This definition, while correct, may be extendable to a broader perspec-
tive. A properly structured research document will in most cases have at least a
title, abstract, main content and a conclusion. Boosting specific document parts
(section 5.3) has been shown to yield better ranking. This leads us to believe
that extending our context from just the sentence the term is found within, to
also factor in which part of the document it is found within, may yield better
term boost weights.

Additionally, the sentence weighting may be improved. We weight a sentence
by the number of entities the chosen name entity recognition model finds. This
does not factor in how it classifies the entity. GENIA alone can classify entities
into 47 biologically relevant nominal categories, from as vague as “other”, to as
specific as “RNA substructure”. Having different weights based on classification
may give more presentable sentence weighting. One might also try to combine
GENIA and GeneTag.

14.2 Query sets
Our prototype implements Boolean queries, and is limited to that. A proper
retrieval system may additionally support phrase queries, as well as other ad-
vanced querying techniques such as wildcard support. Not supporting advanced
querying may limit the precision of our query set.

There has not been a notable difference in retrieval performance between
the implementation of vector space model we use and Okapi BM25. Others
have had BM25 give improved results[16, 7]. We suggest our measures differ
as a result of the queries we use, which are Boolean in nature and generally
suffer from low recall. This may also be because we do not search within doc-
uments topics, but only the abstract. Implementing additional query support
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and refactoring the queries to make use of additional query expressions is likely
to improve performance; we do have however not have basis to predict whether
the extensions made to the ranking models will positively affect the results.

14.3 Evaluation
In our evaluation we have made the assumption that our queries represent real
user queries. We have also used a subset of 42.225 which we recognize, despite its
diversity in topics, that it is a limited set for proper evaluation. In addition, the
document set is a closed test collection. Thus the evaluation may not necessarily
represent real life situations. A more proper evaluation may be one done on a
larger document collection, involving human experts.



Chapter 15

Conclusion

We have in this thesis defined an approach to give all terms in a document a
context value based on the domain specific data of this context. We have then
created a means of using this value during the ranking process of document
retrieval, by combining it with existing ranking models. We have proposed that
when the queried term is located in strong domain context within a document,
that this document is more relevant than in documents where the term is located
in a sentence composed merely of natural English. Based on this proposal, we
have attempted to increase precision of the retrieved documents by giving each
term a document-level term boosting.

We have in this thesis, in means to test our proposal, implemented a full
search retrieval system prototype that uses our defined approach. The imple-
mentation has made use two different named entity recognition models to create
context weights, and the produced weights have been combined with two widely
used ranking models that would otherwise rank terms in a document merely in
a bag-of-words manner. We have then evaluated our prototype on a document
collection that has been used for research on biomedical information retrieval,
using ranking measurements well established within the same field; giving basis
for comparison.

15.1 Final conclusion
Given the experience and data gathered in our evaluation of this prototype,
we have determined that this type of document boosting has little effect on
overall retrieval precision. The effect it has can affect precision both positively,
and negatively. We see however that when combined with the ranking model
Okapi BM25, the document boosting effect has more often than not contributed
positively to the results, as seen in tables 13.1 and 13.3. As seen in the same
tables, this is not the case when combined with Lucenes implementation of
vector space model.

The positive effects on precision, where positive, are still small. The effect
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may or may not turn out to be positive on a different document collection,
or different query set. In addition our approach requires significant additional
processing for text analysis and increases complexity of a search retrieval system.
Thus we conclude this approach, as it is now, to not necessarily be good means
of increasing precision in biomedical retrieval systems.

15.2 Further work
We find the boosting effect our work has shown, although small, may be worth
further research. One way of improving this effect may be improving con-
text weighting, by both extending the context and more intelligent weighting
schemes, as discussed in section 14.1.

Combining term boosting with the increased recall MeSH query expan-
sion gives (described in section 5.1) may be worth research. Query expan-
sion is considered a recall-favoring technique, and sometimes harmful to system
performance[8]. However combining it with term-boosting may yield both bet-
ter precision and recall. Better recall due to the query expansion itself, but
also better precision because the extended terms are likely terms that are recog-
nized by the NER models used in our context weighting. Thus giving additional
biomedical terms to boost the relevant documents with.
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Appendix A

Custom queries

The following are our custom search queries for each of the 50 topics provided
by TREC 2004 Genomics Track.

1. iron AND (Ferroportin1 OR (Ferroportin AND 1) OR SLC40A1 OR FPN1
OR HFE4 OR IREG1 OR (Iron AND regulated AND gene AND 1) OR
MTP1 OR SLC11A3)

2. (transgenic OR (copy AND gene)) AND (mice OR mouse OR murine)

3. kidney AND (mice OR mouse OR murine) AND (develop OR developing
OR development)

4. kidney AND ((gene OR genes) OR (expression AND (profile OR profile)))
AND (mice OR mouse OR murine)

5. (isolate OR isolating OR fractionation OR purify) AND cell

6. FancD2 OR (Fanconi AND anemia) OR (group D2) OR (type AND 4
AND fanconi AND pancytopenia)

7. (oxidative OR oxidation) AND DNA AND (repair OR effect)

8. ((oxidative AND (disease OR diseases OR carcinogenesis)) OR (DNA
AND repair)) AND (cancer OR cancers OR carcinoma)

9. (muty OR hmyh) AND -myoglobin

10. (NEIL1 OR (nei AND endonuclease)) AND (DNA OR repair)

11. hairless mice carcinogenesis skin OR UV

12. (gene OR genes) AND smad4

13. (TGFB OR (transforming growth factor beta)) AND (homeostasis OR
angiogenesis)
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14. (TGFB OR (transforming growth factor beta)) AND ((head and neck
squamous cell) OR HNSCC) AND (cancer OR cancers OR carcinoma)

15. (ATPase OR ATPases) AND (apoptosis OR (cell death))

16. (AAA OR (ATPases associated activities)) AND (protein OR proteins OR
lipids OR DNA)

17. (DO1 OR (p53 AND (antibody OR anti))) AND binding

18. (Gis4 OR YML006C)

19. (GAL1 OR SUC1) AND (repressors OR reprosessor OR activators OR
activator)

20. (covalent OR attachment OR covalence OR substrate) AND (ubiquitin
OR ubiquitously OR ubiquitylation OR ubiquitination)

21. (p63 OR TP63) OR (TP73 OR p73) DNA

22. p53 DNA (break OR damage)

23. Saccharomyces OR cerevisiae (protein OR proteins) (ubiquitin OR prote-
olytic OR pathway)

24. (mice OR mouse OR murine) AND (peptidoglycan OR PGRP or PGRPs)

25. scleroderma OR (autoimmune disease (genes OR gene))

26. (BUB2 OR BFA1) AND (cytokinesis OR yeast)

27. (autophagy OR (gene autophagic)) AND apoptosis

28. (autophagy OR (gene autophagic)) AND apoptosis AND (proteases OR
morphological)

29. (gyrA OR (DNA gyrase)) AND (mutation OR mutations OR alteration)

30. Nkx OR Sax

31. TOR OR (Target AND Of AND Rapamycin) OR FRAP1 OR (FK506
AND associated AND protein)

32. Xenograft AND (tumorogenesis OR cancer OR cancers OR carcinoma)

33. (Histoplasmosis OR (blood borne hogen)) AND (mice OR mouse OR
murine)

34. Cryptococcus AND (gene OR genes OR genome)

35. WD40 OR (protein AND repeats)

36. (RAB3A OR (RAS oncogene family)) AND ((synaptic plasticity) OR
synapse)
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37. PAM OR (peptide AND amidating AND enzyme) OR (peptidylglycine
AND amidating)

38. (genetic AND loci) OR Stroke OR E4

39. Hypertension ((risk OR danger) AND stroke)

40. (antigen OR antigens) AND (epithelial OR epithelium)

41. (mutation OR mutations OR altered) AND ((Cystic AND Fibrosis) OR
CF OR mucovoidosis OR muscoviscidosis)

42. (chromosome AND translocations) OR (chromosomal (rearrangement OR
rearrangements))

43. (sleeping AND beauty) OR SB

44. (nerve AND growth AND factor) OR NFG

45. (MWH1 OR (mental health wellness)) OR (mental disorder gene)

46. RSK2 OR (ribosomal protein kinase)

47. BCL OR BCL2 OR (BCL AND 2)

48. (UNC OR BGS OR homologues) AND (gene OR genes)

49. (Glyphosate OR glycine) AND (tolerance OR tolerant OR immune)

50. low temperature ((E AND coli) OR escherichia)
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