@NTNU

Norwegian University of
Science and Technology

|ldentifying Lagrangian Coherent
Structures Using Clustering

Andreas Bjerke Skagestad

Master of Science in Physics and Mathematics
Submission date: June 2018
Supervisor: Tor Nordam, IFY

Norwegian University of Science and Technology
Department of Physics

Abstract

In these times of rapid environmental changes, our understanding of na-
ture becomes ever more crucial. For example, the spread of oil spills and
microplastics can have far reaching consequences for the ecology. Previ-
ous attempts at explaining the dynamics of ocean currents have been com-
prised of e.g. studying complicated and tangled plots of trajectories. Recent
developments linking non-linear dynamics with fluid mechanics have led to
the emergence of Lagrangian Coherent Structures (LCSs). LCSs focus on
the existence of repelling and attracting material lines which govern the
dynamics of flow fields. Farazmand and Haller (2012) proposed a compu-
tational approach to identify LCSs from their variational theory. An im-
portant part of this method was the development of material lines, and the
identification of LCSs among these lines. In order to identify the LCSs, the
concept of locally most repelling and attracting must be defined. The work
in this thesis builds on that of Farazmand and Haller (2012) and aims at
developing an alternative, more objective method for selecting the locally
most repelling and attracting lines based on clustering.

Clustering is a class of unsupervised machine-learning algorithms which
uncovers underlying patterns in the data. Applying clustering to the set of
material lines would result in groups of similar lines. Then the most repelling
or attracting material line from each of the clusters would be classified as
the LCSs of the system.

This approach was tested on an analytically defined test case known as the
double gyre, and a set of modelled ocean data'. Three different clustering
algorithms were tested; DBSCAN, Agglomerative-clustering, and Affinity
propagation. Additionally, different methods for dimensional reduction were
also tested to see if the set of lines could be represented in a more compact
way. The LCSs classified in the double gyre field matched the results from
Farazmand and Haller (2012). The resulting set of LCSs calculated for the
modelled data is also presented. In order to test the validity of the uncov-
ered LCSs, they were advected by the flow to study their effect on nearby
trajectories. The approach which gave the most promising results was to
first calculate the pairwise similarities between lines, and then to use Affinity
propagation to cluster the matrix comprised of these distances. The Fréchet
distance was used to measure the pairwise similarity. This approach seemed
to consistently group the lines such that a set of LCSs which explained the
underlying dynamics of the field, were found.

!The code used in this project can be found on GitHub, https://github.com/andreasskag/
LCS-identification

Acknowledgements

I would like to thank my supervisor, Tor Nordam, for his exceptional guid-
ance. [would also like to thank Milla M. T. Fjellestad for proofreading my
work and for all of her support during these trying times. Finally, I want to
thank my parents, Eva Bjerke & Geir Skagestad, for teaching me the value
of hard work.

A.B.S.

Contents
1 Introduction

2 Theory
2.1 Numerical Integration of ODE’s . .

2.2 The Finite-Time Lyapunov Exponent (FTLE)

2.3 Lagrangian Coherent Structures . .
2.4 Computing LCSs
2.4.1 Calculating Strainlines . . .
2.4.2 LCS Extraction
2.5 LCS Advection
2.6 Dimensional Reduction

2.6.1 Principal Component Analysis

2.6.2 Kernel-PCA

2.6.3 t-Distributed Stochastic Neighbor Embedding

2.7 Clustering
2.7.1 Agglomerative-Clustering .
2.72 DBSCAN
2.7.3 Affinity Propagation

2.8 Measure of Similarity
2.8.1 The Rossby Radius

3 Method
3.1 Double Gyre
3.1.1 Strainlines
3.1.2 Identifying the LCSs
3.2 Dimensional Reduction & Clustering
3.2.1 Clustering Strainlines

3.2.2 Clustering the Similarity Matrix

3.3 Advecting the LCSs
3.4 FEvaluating the Clustering

4 LCSs in Modelled Ocean Data
4.1 Identifying LCSs in Modelled Ocean
4.2 Clustering the Strainlines.
4.3 Clustering the Similarity Matrix . .
4.4 Advecting the LCSs
4.5 Evaluating the Clustering Methods

5 Conclusion

References

Data

1 Introduction

The study of flow fields is important for forecasting many phenomena that occur
around the world, both natural and man-made. Having accurate models to describe
the world around us enables us to make predictions about the future. However, this
can be rather difficult, as the dynamics of flow fields can be incredibly complex]|1].
One example where it is possible to use a model to portray a real life scenario
is the study of ocean currents. Through an understanding of the dynamics of
ocean currents one may be able to contain environmental catastrophes. A clas-
sic example of this is the Deepwater Horizon oil spill of 2010 wherein the lack
of accurate tools for predicting the spread of the plume hindered effective coun-
termeasures and also led to major economical damages to the tourism industry
along the Southwest Florida coastline.[2]. This was the largest marine oil spill in
history and a major environmental disaster. The oil wound up along the American
coastline, reaching as far as Florida. Three years after the accident, contaminants
could still be detected on the beaches of Louisiana and Alabamal|3, 4].

The standard procedure for studying ocean velocity fields and making predictions
have been to study the trajectories of tracer particles advected by the flow. This
is an arduous task which results in having to analyze intricate plots of tangled tra-
jectories from a large ensemble of particles. Additionally, the path a particle will
travel is also sensitive to its initial conditions|5]. Again, the Deepwater Horizon
oil leakage can be used as an example. A simplified view of the oil leakage can be
to view the oil as particles emerging from a point-source. Modelling this scenario
using tracer particles would then require seeding the field at discrete time-steps.
The timing of when to release the particles will affect the trajectory they travel
and the same goes for the choice of initial position. To improve on this model, an
approach linking non-linear dynamics with fluid mechanics have led to the emer-
gence of Lagrangian Coherent Structures (LCSs)[1].

The theory of LLCSs focuses on the existence of repelling and attracting mate-
rial lines that govern the dynamics of the flow[5]. The locally most repelling and
attracting lines are classified as LCSs. Several advances have been made in recent
years to uncover this hidden skeleton of material lines. Haller (2011) developed a
variational theory that clarified the relationship between LCSs and the Cauchy-
Green (CG) strain tensor|6]. The CG strain tensor quantifies the ideal deformation
caused by the flow. Farazmand and Haller (2012) later proved the necessary con-
ditions for classifying LCSs and developed an algorithm for calculating the LCSs
of various flow fields|7]. An important part of this method is the development of
material lines and the process of identifying the LCSs among these lines.

There are different methods for identifying the LLCSs of a system. Omne of the
key points is to define the concept of locally most repelling and attracting. The
work in this project builds on that of Farazmand and Haller (2012) and aims at
developing an alternative, more objective method for selecting the locally most
attracting and repelling lines based on clustering.

Introduction

Clustering is a group of machine-learning algorithms used for identifying groups
of objects in a dataset|8]. It is a form of unsupervised learning, which means
that it does not require any labelling of the data|9]. Recognizing patterns in data
and grouping it accordingly is a usually a trivial task for a human, but can be
exceedingly hard to do for a computer. At least this is true for cases limited
to a maximum of three dimensions[10]. A good example of where humans excel
are recognizing handwritten digits. Even if the numbers are barely legible or the
background is cluttered, most people would be able to read it. Trying to create a
program to discern the different digits used to be a very difficult task. With the
new awakening of machine-learning comes new tools for dealing with such prob-
lems. Reading handwritten digits can be viewed as a classification problem. For
example, if the numbers ranged from 0 to 9, then there would be ten classes in
the data|ll]. The program should therefore be able to take a new digit, and put
it into one of the existing clusters, thereby identifying which number it is. There
are several clustering algorithms, each with different strengths and weaknesses. In
this project, multiple algorithms were tested in order to find those best suited for
the nature of the data.

In the task of identifying LCSs, the uncovered material lines can consist of thou-
sands of points. When doing clustering, each line is considered a point in a high
dimensional space, where each dimension is considered a feature of the line. The
dimensionality increases the complexity of the problem and can result in important
features of the data being drowned. Therefore different schemes for dimensional
reduction and feature extraction were also tested.

This paper consists of three parts. The first section introduces the theory of
Lagrangian Coherent Structures and the previous approaches for identifying the
LCSs. Then the groundwork regarding the new proposed method for identifying
LCSs is presented. This includes some theoretical background on the subject of
dimensional reduction, using both linear and nonlinear combinations of features.
Some examples of clustering problems and algorithms are also presented, includ-
ing the algorithms used in this project. The second section applies the theory
on the double gyre velocity field, explaining the procedure. This is a standard
velocity field for testing LCS theories|1]. The final part of the paper tests the dif-
ferent approaches for LCS identification by means of clustering on modelled ocean
data. This is compared with the results from the double gyre field. Additionally,
the effectiveness of these approaches are discussed with testing on an ensemble of
particles, before presenting the concluding remarks.

2 Theory

Lagrangian Coherent Structures (LCSs) govern the dynamics of a flow field[5]. The
understanding of these dynamics are important for accurate forecasting of many
phenomena, for example the ramification of oil spills or the spread of radioactive
fallout. In figure 1 we see a grid of particles at four different times being advected
by a velocity field. Through inspection we can see intricate patterns forming, dic-
tating the dynamics of the flow. However, trying to explain the hidden skeleton of

Particles being transported through the double gyre flow field

t=0 t=10
1.0 10

0.8 0.8

0.6

Figure 1: A rectangle of particles are being advected by the double gyre velocity
field. First the blocks are only stretched out before mixing starts. As time goes on any
resemblance to the original pattern is removed and only chaos remains.

the flow by studying the individual trajectories is not recommended|1]. The tracer
particles follow chaotic paths and are highly sensitive to their starting positions.
There is also the added complexity of the plots when considering multiple particles
at the same time as paths intertwine with each other. This is shown in figure 2.
In figure 2 (c) one of the particles from (a) is shown in the reference frame of the
other. This changes the relative trajectory. A theory explaining the dynamics of
the flow-field should be objective as the dynamics do not depend on the reference
frame in which it is studied.

In this paper only two dimensional fields are considered. The first step to finding
the material lines is to advect tracer particles through the field by solving the
ordinary differential equation (ODE)

x = v(x,1), (1)

where x = (21, x3) is the position of a particle at time ¢ and v(x,t) is the velocity
given by the field. This equation can be solved numerically by using one of the
standard integration schemes for ODEs.

Theory

One particles trajectory from the
2 particles from t=0 to t=30 reference frame of the other, t=0 to t=30 25 particles from t=0 to t=30

1.0

0.4

0.8 0.8
0.2

0.6 0.6
0.0

0.4 0.4

0.2
0.2 -0.4

0.0

0.0

0.4 0.6 000 025 050 075 1.00 125 1.50 175 2.00

(b))

0.0 0.2 0.4 0.8 1.0 12 -0.2 0.0

(@
Figure 2: The first plot presents the trajectories of two particles initialized with a tiny
separation. As they are advected by the field, the trajectories become more complicated.
(b) shows how the reference frame affects the trajectory. Finally (c) illustrates how the
plot quickly becomes less manageable as more particles are included.

2.1 Numerical Integration of ODE’s

Solving an ODE such as eq. (1) means to find x(¢). The first step in solving this
equation numerically is to discretize time,

At is a small timestep. We introduce the notation x, which is the numerical
approximation to the true solution at time t,, x(¢,). Note that x(¢,) is generally
not known. The global error is then given by F = |x, — x(t,)|. An important
class of methods for solving ODEs with given initial values is the Runge-Kutta
methods, which are given on the general form [12]

Xpt1 = X, + At Z bk, (3)

i=1

where b; are called the weights and k; are the velocity evaluated at different posi-
tions and times. s is the number of stages used in the method. For a fourth-order
method s = 4, but for a fifth-order method six stages are needed|[12]. The case
were s = 1 and b; = 1 is the standard Eulers method. This method is 1st-order in
time. While it requires less functional evaluations for each step, the global error
scales as I o< O(At). Therefore a much smaller At is required for the same level
of accuracy as the higher-order methods. In this project, the second-order method
called Heun’s method and the fourth-order Runge-Kutta (RK4) method are used.
Heun’s method is given by

At
Xn+1 = Xp + 7(1{1 + kg),

k, = V(Xn; tn)a (4)
k2 = V(Xn -+ Atkl, tn+1).

The Finite-Time Lyapunov Exponent (FTLE)

The global error, F for Heun’s scheme scales as O(At?). The RK4 utilizes more
terms than Heun’s and will therefore require more function calls to be evaluated.
The RK4 is given by

At
Xn+1 = Xn + _(kl + 2k2 + 2k3 + k4)7

6
kl = V<Xn; tn)a
At At
ky = v(x, + 71(1, tn + 7)7 (5)
At At
k3 = V(Xn -+ 71{2, tn + 7),

ky = v(x, + Atks, t, + At).

For the RK4 method, the error scales as O(At?), hence a longer timestep At can
be used, resulting in fewer steps overall.

2.2 The Finite-Time Lyapunov Exponent (FTLE)

For many common transport problems, the trajectory of a particle through the
velocity field is sensitively dependent on initial position. Consider two particles
starting at xo and xg + &g, where dq is a small separation. This separation may
grow in time and is assumed proportional to 13|

[6()] ~ |dole”, (6)

where o is the largest Lyapunov exponent. If ¢ > 0 the flow is said to be chaotic.
For o0 < 0 the particles will either travel with a constant separation, or they will
converge until the separation is essentially zero.

An approach to analyzing a flow field is to cover the field by a grid of tracer
particles, and let these be transported by the flow. The Lyapunov exponents are
calculated for all particles over a finite time-interval to reveal the FTLE-field,

7 = 21020 = Liog(v/),)

where T is the period, the separation fraction, |0(t)|/|do| is equal to the root of
the largest eigenvalue of the Cauchy-Green strain tensor, A. ¢ is known as the
Finite-Time Lyapunov exponent. This field can be used to identify regions with
strong shear stress. Early attempts at LCS detection linked LLCSs to the ridges of
the FTLE field|[14|. The FTLE field can however produce false positives and false
negatives when detecting LCSs, and should therefore be used with caution[5|. The
reason for the ambiguity of the FTLE field is that it ignores the direction ¢, of
the largest stretching at x;. Some attempts have been made to work around this
problem, for example by defining the LCS as second derivatives of the FTLE field.
Second derivative ridges of the FTLE field seldom exist in generic fluid flow which
makes the approach a dead end|5].

5

Theory

2.3 Lagrangian Coherent Structures

Lagrangian Coherent Structures (LCSs) act as organizers of flow fields. As the
fields evolve, so do the LCSs, which due to their Lagrangian nature are transported
with the flow. Identifying these structures can be used to understand phenomena
such as the Great Red Spot on Jupiter or complex patterns present in the oceans
here on Earth[1].

The variational theory of hyperbolic LCSs developed by Haller (2011) defines
LCSs in terms of the Cauchy-Green (CG) strain tensor, which quantifies deforma-
tion from the flow[6]. The first step of identifying LCSs in flow fields is therefore
to study the deformation caused by the flow over the time interval of interest.

The position of a tracer particle in the field at time ¢ is x; = x(¢; %9, Xo), where X
is the position at the initial time ty3. Next we define the flow-map as the function
that sends xg to xq,

F,(%0) = Xe. (8)

For any smooth velocity field, the flow-map Ft’f0 will also be smooth, and the
gradient VF}, will be a positive definite, invertible matrix[5]. This allows us to
define the Cauchy-Green (CG) strain tensor field as

[VE, (x0)]'VE, (x0) = Cy, (x0)- (9)

C},(xp) is the CG strain tensor and is symmetric and positive definite. This means
that the eigenvalues are real and positive and that the eigenvectors are orthogonal.
For d dimensions we have the following relations

CEOCZ —)\ZC'H O <)\1 S S)\d7

Gl =1, (10)
i=1,..d

Here); is the ¢-th eigenvalue corresponding to the i-th eigenvector, (.

Consider a material line M(%j) calculated for some time ¢y, then a time-dependent
material line, M(t) is attained by letting the flow-map act on it, M(t) = F{ (M(to))|6].
To measure the rate of normal repulsion or attraction, we look at the dot product
of the flow-gradient, VFY (xo), and the unit normal ng to each point xo € M(ty).
Figure 3 illustrates how a material line is advected by the flow. The point x; is
mapped to x; by the flow map x; = F{ (x¢). The unit vector orthogonal to the
line M(t) in point x; is denoted n;. To see how the rate of repulsion changes with
M(t) it has to be projected onto n;. This projection is denoted Vfo for simplicity,

utto = (ny, VFttO(XO)no) (11)

If v{ > 1 over the interval [tg,t] then M(t) has been overall repelling over the

interval. If f < 1 over the interval, then M(t) has been overall attracting. v},

6

Lagrangian Coherent Structures

ny

X0

Figure 3: The material line is advected by the flow map. The rate of repulsion is the
projection of VFY (xo)ng onto n;. ny is a unit vector normal to M(¢) at x,. This rate of
repulsion is denoted Vfo (x0,1ng) for simplicity. If the rate of repulsion Vtto is larger than 1
averaged over the material line, then the material line is said to be a repelling material
line. If Vfo < 1 over the interval, the material line is said to be an attracting material
line. The locally most repelling or attracting material lines are classified as LCSs.

can be computed using the CG strain tensor by using that

:<eo, n0>, [VFfU]T[VFttO]T = [VFttUVEtO]T =1

12
(VF} eq, [VF{*]'ng). (12)

0
0

The vector e is the unit tangent vector to M(t), and T denotes matrix transpo-
sition. Using the previous result coupled with the fact that VF{ e, is also tangent
to M(t) we can express n; as

[VFttO]Tno

VER)mo 13)

n; =

Plugging this into the expression for v leads to a simplified expression for v}
using the CG strain tensor and ngy. This is useful when computing the rate of
repulsion as it does not depend on the geometry of M(t).

<n0, VFttO (Xt)VFttO (Xo)n0>

vl = (n, VF ny) =
o e e WIS g

1 (14

v (o, [(%0)]~ng)
Using this result allows us to define a repelling LCS as the locally most repelling

material line M(t) over the interval [to, T| where the normal repulsion rate satisfies
the conditions

V;(Xo, no) > 1,

(15)
Vg; (Xo, 1’10) > |VE?(:(X0)80|.

These conditions must hold for all xo € M(ty). The latter condition states that
the normal repulsion must be greater than the tangential repulsion for it to be
considered a normally repelling material line. A normally attracting material line
is defined as a repelling line over the backward time interval [T, to]. Because LCSs
are calculated over finite intervals, there is no guarantee that one LCS should
persist over several intervals unless the new intervals are small perturbations to

7

Theory

the original interval.

Farazmand and Haller proved that the following four conditions must be met
in order to have a line be classified as an LCS[7],

(A))\1 #)\2 > 17

(B) (Calx0). V2a(x0)C (o)) < 0,

(©) ¢ o) M(t0) (16)
(D) Ay, the average of Ay over a curve v, is maximal on M(t,) among

all nearby curves v satisfying ~||¢;(Xo)-

The first condition is the same as in eq. (15) while conditions B, C and D ensure
that the material line is the locally most repelling line. Farazmand and Haller
developed a numerical approach to identifying LCSs as material lines satisfying
conditions A-D, however, their algorithm for condition D is not fully described
and depends to some degree of personal judgment. It is an alternative method for
enforcing this last condition, D, that is the objective of this paper. Note that the
V2 in condition B denotes the Hessian, not the Laplacian.

2.4 Computing LCSs

As conditions A-D are defined in terms of the eigenvalues and eigenvectors of the
CG strain tensor, these must be calculated. We begin by calculating the gradient
of the flow map, VF{ (x¢). The gradient of the flow map can not be calculated
analytically so an approximation has to be made. The standard approach for
this is to use a uniform grid of tracers and advect them from ¢y to t. Then the
deformation can be calculated from the uniform grid to obtain an approximation
for VF{ (x0)[5]. The number of tracer particles can be increased to get a better
estimate, but this could in turn introduce noise into the calculations. Features
with small spatial size can become more dominating with a higher resolution|7].
However, to obtain an accurate estimate for the eigenvectors, a large ensemble of
particles would have to be used. In order to increase the accuracy of the calculation
of the flow-map gradient VFttO(x) without having to resort to an enormous grid, an
auxiliary grid is added around the uniform grid[7]. This is illustrated in figure 4.
The estimate obtained for VF}, can be greatly improved by using an auxiliary grid
with spacing dx << Az and dy << Ay. Because of this small spacing the gradient
of the flow map can be accurately approximated by the centered differences,

Fy, (x}) — Fy () Fy (x}) —) (x])
20x 20y

VE, (xi) ~ (); (17)

where x; = [x;, y;] denotes the position of particle ¢ and the auxiliary grid is given
by

i (18)

Xi: (xi_(sx?yi)a X, = <$7+5ﬁ(}7y1)

Computing LCSs

Figure 4: The uniform grid has spacing Az and Ay. By introducing an auxiliary grid
one achieves improved accuracy and a reduction in noise when computing the gradient
of the flow-map. The auxiliary grid spacing is dz and dy.

The reason for using an auxiliary grid instead of simply using 5 times more grid
points is that it gives a much better estimate for VF} (x¢) using nearly the same
computational cost as using a larger uniform grid. However, because of the small
distances between the grid points, the auxiliary-grid experiences less deformation
than the main grid. This makes it unsuited for calculating the eigenvalues|7].
Therefore the uniform grid is used for calculating the eigenvalues \; and the aux-
iliary grid is used for calculating the cigenvectors (.

2.4.1 Calculating Strainlines

Following the notation of Farazmand and Haller (2012), the lines tangent to ¢, are
referred to as strainlines. Computation of the strainlines is done by first determin-
ing the points that satisfy conditions A and B in eq. (16). This is justified because
only strainlines conforming to these conditions can be LCSs. Then trajectories
are devloped from these points by solving the ordinary differential equation

r'=¢(r), [G(r)]=1 (19)

Any trajectory of eq. (19) is by definition everywhere tangent to ¢, and thus
these lines satisfy condition C. Here we computed ¢, and {; using the numpy
eigensolver on the CG strain tensors for both grids, which returns the unit eigen-
vectors and the eigenvalues|15].

The eigenvectors ¢, and ¢, are calculated from the CG strain tensor. The orienta-
tion of these vectors is not uniquely defined. This results in possible orientational

discontinuities along strainlines during the integration|7|. Discontinuities like these

9

Theory

(a) (b) (c)

Figure 5: The field of eigenvectors ¢ may inhibit orientational discontinuities. It is
therefore important to check the direction and possibly rotate the vector during the
strainline integration. Discontinuities like these can seldom be removed globally and
trying to remove them locally will simply shift the discontinuity elsewhere. In (a) one
of the surrounding vectors has to be flipped 180°before {(r) can be found through in-
terpolation. For the plot in (b), all the vectors point in the same direction, so no extra
action is needed. The last plot illustrates the case where all the local eigenvectors point
in the same direction, but the resulting ¢(r) points in the opposite direction of the earlier
integration steps. In this case the resulting vector needs to be rotated 180°.

can not usually be removed globally and it is therefore necessary to check the ori-
entation and correct for discontinuities locally as one goes along the integration.
This can be done by selecting a reference among the nearby grid points, flipping
the vectors if needed. When the orientation of the nearby points has been fixed,
they can be used to interpolate the value for ¢;(r). This new value is then com-
pared to the previous orientation in the integration, correcting it if necessary. The
orientational discontinuity is illustrated in figure 5. As we can see from the figure,
the orientation of the vector at the grid point located in the middle needs to be
rotated 180 degrees. In addition to orientattional discontinuities, another issue
with the integration which needs to be accounted for is the appearance of fixed
points. At certain points A\; = Ay, which makes the eigenvectors ¢, undefined.
This is solved by introducing the scaling factor suggested by Tchon et al [16],

A1(x) = Aa(X) 1o

Equation (19) is then altered to give a globally smooth set of strainlines

r'(s) = sign(C1,v'(s — A))a(r(s))¢i (r(s)), (21)

where sign(¢,,r'(s — A)) returns the sign of the inner product of ¢, and r'(s — A).
This ensures that r'(s) has the same orientation as at the previous step, s — A.

The integration of eq.(21) is computationally intensive which means that one

should avoid unnecessary work if possible. In figure 6 (a) we can see the field
satisfying condition A and B for an example flow system (see section 3.1). The

10

Computing LCSs

¥

i

!
|—} '
% 3

—a—

1

1

'

i

i

i

100 125 150 175 200 0o 05 10

Figure 6: (a) The set of points satisfying conditions A and B given by eq.(16). To
reduce the number of redundant computations a grid is used to extract a set of points.
This effectively reduces the number of points to integrate over by two magnitudes, as
shown in (b).

figure was made advecting a grid G of 1000x500 points, calculating the CG strain
tensor, and checking if the \y’s and (,’s satisfied the two first conditions in eq.
(16). The number of points G, € G that satisfied these conditions was more than
105. Tt can be expected that a number of these points belong to the same strainline
which means that running the integration over all points is going to result in a
lot of redundant work. By introducing a number of horizontal and vertical lines,
and extracting the points that coincide with these lines, the number of points can
be reduced by several orders of magnitude|7]. This is illustrated in figure 6 (b).
In this plot only about 2 - 10® points coincide with the lines, reduced from the
much larger set of 10° points satisfying conditions A and B. From the reduced set
of initial conditions, strainlines were developed as trajectories of eq. (21). From
each initial condition, a trajectory was started both in the direction of {; and
—(;, whereafter the orientation was corrected dynamically as described. The tra-
jectories were stopped if they left the domain U, or if conditions A and B failed
repeatedly over a length l; [7].

2.4.2 LCS Extraction

Condition D in eq. (16) states that the average Ay over a curve «y has to be maximal
among all nearby curves ||y for it to be classified as an LCS. This introduces the
concepts of locality and likeness in order to extract the most dominating strain-
lines. Farazmand and Haller suggests adding a set of horizontal and vertical lines,
L, forming a coarse grid|7]. The coarseness depends on the size of the eddies
present in the flow. The strainlines crossing a line in [, within some distance e
to each other are compared, and the one with the maximum average eigenvalue
Ay is classified as an LCS. This is illustrated in figure 7. The figure plots three
curves, ;. The curves are compared to their neighbors at each intersection with
the gridlines, L. A red ellipse represents the lines which are within a distance, e,
of each other. The dashed ellipses illustrate that the lines are too far away from
cach other to be compared.

11

Theory

5\(2)

V25, A2

Figure 7: The approach for comparing strainlines as suggested by Farazmand and
Haller (2012). Strainlines, denoted ~y, which intersects the horizontal or vertical lines are
compared if they are within some distance, ¢, of each other. The strainline which has
the largest mean eigenvalue, \o is classified as a LCS. The red ellipses illustrate curves
which are compared, while the curves enclosed by the dashed ellipses are too far away
from each other.

The number of horizontal and vertical grid-lines are not specified in Farazmand
and Haller (2012), and neither is the location of these lines. Both of these param-
eters might affect which strainlines are identified as LCSs. Looking at figure 7, if
the vertical line to the left of the figure was shifted a couple of centimeters more
to the left, the curve, v, would not be intersecting with it anymore, resulting in
not being compared with the other curves at that location. Other tools could be
used in order to obtain some intuition on how to create the grid of lines. An ex-
ample is the FTLE field. The ridges of the FTLE field has previously been linked
to LCSs, and can therefore be used to get an indication of where to expect LCSs
to appear[14|. However, caution is adviced as the FTLE field is known to exhibit
both false positives and false negatives when used to identify LCSs[5]. Ultimately,
this method of using a grid of horizontal and vertical lines introduces some degree
of personal preference into the process of identifying LCSs.

This project aims at finding a more robust way of identifying the LCSs present
in flow fields using a form of unsupervised machine-learning called clustering|9].
Clustering finds correlation in data and groups data objects, or patterns, into clus-
ters. The idea is that it should be possible to group similar strainlines, and then
select the most dominating strainline in each cluster as the LCSs of the system.
The use of clustering algorithms could make the process of extracting the LCSs
more objective, i.e. removing the need to inspect the field or tuning the grid lines.

2.5 LCS Advection

By following the procedures explained in section 2.3 and 2.4.2 the LCSs at time %
can be identified. To obtain the LCSs at a later time ¢ the LCSs can be advected
by the flow map|7].

M(t) = F; (M(to))- (22)

12

Dimensional Reduction

M(1p) is here a LCS. Note that there is no guarantee that the material line M(t) =
F} (M(ty)) is still considered a LCS of the system. The LCS was calculated over
some interval [to,7]. At a later time t > ¢, this line might not satisty all of
the conditions in eq. (16) anymore. Another issue is that the advection of a
locally most repelling line is intrinsically unstable. This instability is caused by
the tendency of small displacements to grow exponentially|[13]. This can result in
a small initial error which grows exponentially with time. For attracting material
lines the distance decreases proportionally to an inverse exponential function. The
attracting lines are therefore much more stable than their repelling counterparts.

2.6 Dimensional Reduction

The material line integration gives a set of IV lines with varying number of points
[,,. Before any clustering can be performed, all lines have to be described by vectors
of equal dimensions. This is because in clustering, the dimension of the vector is
considered the features describing the data. This number needs to be high enough
so that the longest lines in the set can be represented with good resolution. For
this project, the number of points used was set to M = 2000. This gave sufficient
resolution for all of the lines. The lines were resampled to the desired number of
points using cubic spline interpolation. This lead to each line being described by
two thousand features. When clustering the data, each line, or pattern, is repre-
sented as an M dimensional point in feature-space[8]. These are the features that
the lines are grouped by. The clusters are commonly formed by using some metric
to measure the similarity of the features, for example the Euclidean distance in
feature-space. The problem with high dimensional data is that the clustering is
more computationally intensive and that the dimensionality may degrade the re-
liability of the results. This is known as the curse of dimensionality[17|. The term
was coined by R. Bellman in 1957. This is because for a fixed number of samples,
as the number of features increases, so too does the number of parameters that
have to be estimated. These estimates will then be less reliable as there is less
data to use relative to the number of parameters|8|.

Feature selection and Feature extraction are two methods of doing dimen-
sional reduction. The former tries to pick the features which best describes the
data, while the latter seeks to reduce the number of features through linear- and
nonlinear-transformations. Because the data being analyzed are lines where each
feature is a point in two dimensions, it is reasonable to assume that we will not
be able to use feature selection to pick a small number of points which describe
each line. While it is possible to use a coarser subset of points and still have a
line with some resemblance to the original, some information is lost due to the
poor resolution. Feature extraction on the other hand, aims at retaining as much
of the information stored in the data as possible, resulting in a more compact
representation|18|. The main focus here will therefore be feature extraction. The
two most used techniques for feature extraction are Principal Component Analysis
(PCA) and Kernel Principal Component Analysis (K-PCA)[19]. In this paper a
more recent method called t-Distributed Stochastic Neighbor Embedding (t-SNE)

13

Theory

has also been tested along with PCA and K-PCA[11].

2.6.1 Principal Component Analysis

A common method of feature extraction is the linear transformation, Principal
Component Analysis (PCA)[18]. The goal of PCA is to reduce the high di-
mensional data to a lower dimensionality where each new feature is described by a
linear combination of the original features. The PCA is optimalized such that the
new representation retains as much information from the high dimensional repre-
sentation as possible, resulting in the new representation being a more compact
form of the original data. For N lines each consisting of M points, the dimension
of the feature space is equal to the number of points, d = M. A line is therefore
given on the form
z,
x2
;=] .. (23)
M

The complete set of lines may be represented by a N x M matrix,

1 1 1
xl l’z PR xN
2 2 2
T T . X
X = 1 2 N (24)
M M
‘%'1 o o o o« e e xN

The task at hand is therefore to find the linear map W which finds the optimal
linear combination of features so that

WTXi:yia
vi=1[v w2 -], (25)
Wz[w1 w2 ... wm},

where m < M is the new dimension of the data. There are multiple algorithms
for computing the PCA. In this report Singular Value Decomposition (SVD)
was used.

The SVD is an efficient method for computing PCA. The algorithm consists of rel-
atively few steps. The first is to gather the data in a matrix on the same form as in
eq. (24). Then SVD is applied to the matrix X, which computes a decomposition

VID 0JU, f M <N

X = 2
V[](?]U, if M > N. (26)

Where V and U are M x M and N x N unitary matrices respectively. The
matrix D is a diagonal matrix consisting of the non-singular values of X and is of

14

Dimensional Reduction

dimension N X N or M x M depending on which one is smallest. The notation
D 0] and {]3] represents M x N and N x M matrices. The two matrices are

comprised of the non-singular values of X along the diagonal, with an additional
|N — M| columns or rows of zeros. The reduced representation y is then formed
by the first m principal components of a test vector x,

y=Vix. (27)

V,, is the m x N matrix formed by the first m rows of V.

Two examples of optimality criteria for PCA is the Mean-square-error cri-
terion and the Maximum-entropy criterion. The first is based on the re-
construction error. This is the difference between the x obtained from using the
reduced representation y and the original data X;. The latter criteria is based on
how much relevant information is retained by the reduced representation, y|[18].
The error obtained by either of these optimality criteria is then used to update
the values in V, and then the process of calculating y and reconstructing x is
repeated until an optimum has been reached.

2.6.2 Kernel-PCA

PCA can be viewed as a special case of kernel-PCA (K-PCA) where K-PCA is
applied using a linear kernel. The point of using K-PCA instead of the regular
PCA is that linear combinations of features will not always yield good results.
The different classes of data can not always be linearly separated. This is caused
by the nonlinear relation between the features[18]. By using a kernel to map the
data to some Hilbert vector space, H, where

x — ¢(x), (28)

which is of a dimension d’ > d, the points can generally be separated. The function

¢ € H is defined by

K(z,y) = ¢ (x)9(y), (29)
where K(x,y) is the kernel. The kernel must obey the following conditions in
order to be a distance metric,

x—-y|>0
x—y|l=ly—x| (30)
x—y|<|x—z|+|z -yl

A traditional choice for measuring the distance between two points is the Euclidean
distance which is given by

Ix—yll=vx x+y y—2x-y. (31)

The only kernel functions which satisfy the distance axioms from eq.(30) are Mer-
cer kernels. These are kernel functions which satisfy the Mercer condition|18|

l/K@JM&WWMHWZO, (32)

15

Theory

for any squarely integrable function h(x). If the condition is met, a mapping exists
¢:x— p(x) €H, (33)

where the inner product of H is represented by K (x,y) = ¢’ (x)¢(y). This allows
us to define the distance metric for the Mercer kernels as

VE(xx)+ K(y,y) - 2K(x,y). (34)

A few examples of Mercer kernels are the polynomial kernel function, Radial Basis
Function (RBF) and the cosine kernel function. These are given by the following
expressions,

X-y p
Kpol(X7Y): [C+ 0_2]
Kus(xy) = exp (—llx = yII*) (35)
XTy
Kcos XY) =177 -
&%) = Tl

For v = 1/0?, where o2 is the variance, the RBF becomes the Gaussian kernel.

The C' in the expression for the polynomial kernel is an arbitrary constant. The
dimensionality of this new vector space is determined by the components of the
dot products of the input vectors. The kernels are expressed as a series-expansion
which means that if the RBF kernel is used, the new space will have an infinite
dimension. This mapping can be illustrated using the polynomial kernel in eq.
(35). If we have a two dimensional input vector x = [z, x2] and a second order
polynomial kernel where C' = 0, then the new space is described by [19]

K(x,y) = (x-y)* = ¢(x)" ¢(y)

(36)
= [37%,1’1$2,$2$17$§]T[y%:yly2,y23/17y§]7

where ¢(x) is given by
O (x) = [2], 2129, 221, T3). (37)

This new vector ¢(x) is of dimensionality four, which is larger than the dimen-
sionality of the original vector. For higher order kernels, like the RBF or a high
order polynomial, the new space can be of a very large dimensionality, sometimes
even infinite. This makes it cumbersome to work with and would require immense
computational power. Fortunately it is possible to only use a subspace of this new
Hilbert space for the Kernel-PCA.

The kernel-mapping results in a new sct of data, ® = [¢(x1), p(x2), -, d(xn)].
This makes it possible to define an empirical representation based on the number

16

Dimensional Reduction

of patterns in the data, N,

g(xlj X)
ki) = @700 = | O | (39)
K(xy,x)

This empirical representation is of dimension N. If N is lower than the dimen-
sionality of the Hilbert space, then ¢(x) can be substituted for the empirical
representation k(x). This is called the kernel-trick[19].

2.6.3 t-Distributed Stochastic Neighbor Embedding

The Stochastic Neighbor Embedding (SNE) is a technique for visualizing high-
dimensional data in two to three dimensions|20]. It starts with transforming the
high dimensional Euclidean distance into probabilitics. These probabilities rep-
resent how likely it is that a data point ¢ would choose another point, j, as its
neighbor. t-Distributed Stochastic Neighbor Embedding (t-SNE) is a variation of
the SNE and remedies some of its shortcomings. One of the faults that t-SNE
corrects is the tendency of the SNE to crowd points together|11]

SNE converts the distance between data points into conditional probabilities. For
two points x; and x;, we have the probability p;; of selecting point x; as x;’s
nearest neighbor. The probability p;;; is given by

exp (—|[xi — x,[|*/20?)
Zkyéi exp (—||x; — xx|[?/202)’

where o is variance of the Gaussian and may vary over the domain and is linked
with the perplexity of the data. It is therefore necessary to find the optimal value
of ¢ which gives the wanted perplexity. The perplexity, A is defined as

(39)

Djli =

A(P,) = 270, (40)

where H(P;) is the Shannon entropy and P; is the probability distribution cor-
responding to a Gaussian distribution with variance o;. The Shannon entropy is
given by

H= - ij\i logy pji (41)

J

and is measured in bits. A can be linked with the number of neighbors to use in the
calculation and is closely related to the topology of the resulting clusters. A low A
results in the algorithm largely focusing on the local structure. A parallel can be
made to the problem of overfitting in machine-learning|21]. When the t-SNE only
considers the local structure, it ignores the more general global structure. This
will in turn result in a large number of small clusters.

In addition to the high-dimensional mapping p;|;, a low-dimensional mapping g;; is

17

Theory

introduced, using the points y;,y; which is defined on some space with dimension
d <d. ,
(1 + ||Yz - YjH)_1

4ji = -
! oLy — yill)

The high-dimensional probability space follows a Gaussian distribution while the
low-dimensional space, g;; follows a Student t-distribution with a single degree of
freedom. It is the distribution in the low-dimensional space which gives the t-SNE
its name, and it is also where the t-SNE diverges from the SNE[11]. The broader
tail of the Student t-distribution ensures that moderate distances are transformed
into larger distances on the map. This ensures that objects that are moderately
different are placed far enough from each other. In order to have a measure of
how well) represents P we use the Kullback-Leibler divergence as a cost-function,
which is defined as

(42)

C =3 KLPIR) =303 pylog ™. (43)
i i J

where P and (@) are the joint probability distributions over all points in the high-
and low-dimensional spaces correspondingly. Because the measures p;; and g;;
measure the pairwise distances between points in their respective spaces, we can
set pi; = q;; = 0. We then set pj; = % which removes the problem of outlier
terms not contributing to the cost function. It also ensures that both p;; and g;;
are symmetric. Using the above definitions of ¢, p and C', the gradient of the cost

function is then given by

oC _
5y =4> (i —ai))yi —y,) L+ |ly, =y, (44)
¢ J
The cost function is then minimized using gradient descent until the global mini-

mum is found and a good mapping has been achieved.

2.7 Clustering

Clustering is a method utilizing unsupervised machine learning to group similar
objects into clusters. It is an unsupervised method because the data is not as-
signed labels[8|. The problem is illustrated in figure 8. We have no information
what the dots represents, but in figure 8 (a) they are clearly split into three dis-
tinct groups in this two dimensional feature space.

In clustering, data is represented as a point in some d dimensional feature space.
An example could be categorizing flowers, where color and petal size could be
two features of the data. Such a point in feature space is often referred to as a
pattern. Another good example of unsupervised clustering is the categorization
of stars. By gathering information on the spectra and luminosity of more than a
hundred thousand stars, scientists were able to perform unsupervised clustering
and categorize them into types such as "main sequence stars", "red giants" and

18

Clustering

.....

0.5

004

(a) (b)
Figure 8: The data consists of unlabeled points spread in R2. While there is no available
information of what these points represent, it is apparent that in the first figure there are

three distinct groups. In the second figure we can see that there are two rings. Clustering
aims at uncovering these structures and grouping similar data.

"white dwarfs"[9]. The spectra and luminosity in the example are two features
describing a star. For cases dealing with clustering in two dimensions, humans are
able to do it without the help of machines. However, for problems in dimensions
higher than three, it will be an arduous task to project the data onto various
axes and try to identify clusters. Furthermore, in a lot of cases, the patterns are
described by more than two features[10].

A typical approach to clustering data involves five steps, of which the three
first are discussed in detail here, as the two last are less connected to the actual
clustering|8]. The first step is pattern representation, which involves preparing
the data. Usually the data consists of patterns represented as vectors or points
in a multidimensional space. This step can involve selecting which features to use
for the clustering and scaling them. For some algorithms the number of patterns
to uncover has to be chosen prior to clustering. The different parameters that
have to be adjusted depends on the chosen algorithm. Such a parameter could
for example be the number of neighboring points needed to form a cluster. Some
clustering algorithms are designed to identify the number of different groups to
cluster each pattern into by analyzing the data. An appropriate pattern repre-
sentation can make the clustering process easy and understandable. For example,
the patterns in figure 8 (b) would be difficult to separate in Cartesian coordinates,
but switching to a polar representation could make it more manageable.

The second step is to define a measure of similarity between patterns. A
common measure for this is the Euclidean distance in feature-space. There are
many ways to define similarity and the choice of method depends on the nature of
the data to cluster. Some other metrics are the Cosine distance, Manhattan dis-

19

Theory

tance and the Minkowski distance. The latter is known as the generalized distance
metric and is defined as

D = (S8 | X — X|P)7. (45)

D is the distance between the two patterns, X;, X;, summed over each feature k.
For p = 2 this equation is reduced to the Euclidean distance. The cosine distance
uses the angle between the vectors and the radius. For problems where the points
form a ring around the origin in a two dimensional feature space, a cosine distance
could be better than the Euclidiean distance. These distance metrics do not take
the ordering or location of the points along each strainline into account. In sec-
tion 2.8 the Fréchet distance is presented. This metric can be used to measure the
similarity between lines in R?[22|. The remaining steps are clustering the data,
data abstraction, and evaluating the output. Data abstraction and evaluation can
consist of mapping the data to another representation which can be more easily
interpreted. Consider the set of strainlines after they have been reduced to some
lower dimensionality by K-PCA or t-SNE. When clustering this data, it might be
useful to study both the clusters formed in the low dimensional representation,
and how this is mapped back to the high dimensional representation.

The clustering can begin when the two first tasks are complete. There are several
algorithms for performing clustering of data. The two main groups of methods
are hierarchical and partitioning methods[8|. Han and Kamber (2001) also pro-
posed three more subgroups. These three are density-based-, model-based- and
grid-based-clustering|23|. In this report Agglomerative-clustering, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) and Affinity propagation
were tested. The two first methods are hierarchical- and density-based-methods
respectively and the latter is a partitioning method.

The sci-kit learn library was used for clustering data in python[24]. This li-
brary includes implementations of a wide range of machine-learning algorithms
and methods for dimensional reduction.

2.7.1 Agglomerative-Clustering

Agglomerative-clustering is a hierarchical method which begins with each pattern
forming its own cluster. Then each cluster is merged with the closest neighbour.
This process is repeated until some stopping criteria is reached. For the imple-
mentation in sci-kit learn this criterion is a chosen number of clusters. Most
hierarchical clustering algorithms are either Single-link or Complete-link algo-
rithms. The Single-link approach measures the similarity between two clusters as
the minimum of the pairwise distances between the patterns in each cluster. This
algorithm results in the creation of loose clusters, which have a tendency to bridge
into other clusters. The Complete-linkage approach uses the maximum pairwise
distance to measure similarity between two clusters. This tends to produce tighter
clusters than for the single-link algorithms|23]. Ward-linkage minimizes the sum
of squared differences within each cluster. This results in clusters with smaller

20

Clustering

variance in the data. The last linkage available from the sci-kit learn library is the
Average-linkage. The Average-linkage minimizes the average pairwise distance

between clusters|24].

ward-linkage ward-linkage average-linkage
'.‘-, . 0-.s,~ 28OV o,
. ¢ - ,.o~:.:4.. . . :.‘I'-‘:..’.:: .I‘ ‘oh mv‘ %% =.
. _\g R . ._"\g R F o S
. AL ¢ LAWY ‘:..{ 4 A "-\f
....',.. ") ~ - oo '.') g ° g £ " X
:."t:{:.‘:":. . :"z‘{‘;‘:. ’ . % 4 Y
CRACRNEIR LML T i Ay
g pied, 2o, . PN %4 [er
o R WYYy Y ‘. Y
s LT, il X2 Re ~.'..¢\ 4
hr 3 g 3 oS S
. * 'ug,,‘.o.‘-"
(a) (b) (c)
average-linkage ward-linkage average-linkage
8&'-'&. AR X] ces, .
ow®' . XN o .o,
W d.-aﬂ-,..‘.". f‘.;.,'.. g',:.'_,'..
s 2, %ot & Fo e,y o %e® &, Foqderee o
F ‘..‘ ." o0, .."g o LI S oo
i %Y A MU Al A
< { ‘ X . :.,.:.‘::: 2 2 . s ., . :!.:.‘:::g ”o:o " [}
H VYRR SRR
;:: i !’} -."o:’.g . :‘::, ..‘,... .--..Poo:: R .t':’ .0:0..
] s,. fr f' A 2, ".‘":G..'.: ey -:G::G“.':
% &Y . Sy, B
. 3 » ¥ oo - [} oe
‘N‘.{‘t\ “‘ j” .",! o5 : ®I’.'o ¢
Srma e cen. L)
"i .
‘“"‘&'"‘ ‘ . .
(d) (e) (f)

Figure 9: The Agglomerative-clustering algorithm requires the number of clusters to be
known prior to clustering. This is illustrated in (a) and (b), where the number of clusters
have been set to 3 and 5 respectively. The algorithm finds the wanted number of clusters
whether they are present or not. The plots in (c¢) and (d) shows how the algorithm deals
with more complex structures. In (d) a nearest neighbour graph is used, thus ensuring
that the cluster does not jump over to the other circle. The last two figures show the
difference between using the Average- and Ward-linkage approaches.

In figure 9 the performance of the Agglomerative algorithm is shown for 3 dif-
ferent clustering problems. This algorithm expects that the number of clusters
are known prior to clustering. In figure 9 (a) and (b) the number of clusters
were set to 3 and 5 respectively. It is clear that there are only 3 clusters in the
data, but the algorithm groups the patterns into 5 clusters for the second case
anyway. In the remaining subfigures the number of clusters is set to 2. Figure 9
(c¢) and (d) show how the algorithm performs for more complex geometries. A
nearest neighbour graph has to be used in order to group the patterns correctly.
The nearest neighbour graph limits the number of patterns connected to each
other. For the case with the two circles, this effectively forces the algorithm to
prioritize connecting the points on each respective ring. Figure 9 (d) and (c)

21

Theory

the Agglomerative-clustering was performed with and without a nearest neigh-
bor graph. Figure 9 (e) and (f) shows the difference between two of the linkage
methods available in the sci-kit learn library.

2.7.2 DBSCAN

The DBSCAN algorithm identifies clusters as areas of higher density surrounded
by areas of lower density[25]. This allows the clusters to take on any shape. To
run this clustering algorithm, m, the minimum number of points needed for an
ensemble to be considered a cluster, must be chosen. Additionally, the limit, r,
for what is defined as dense enough must also be set|24]. The algorithm then
searches through the patterns for a sample where there are m patterns within a
distance r. This is then done iteratively until all patterns that belong to the core
is found. When the cluster cores have been identified, the rest of the patterns can
be assigned to the nearest cluster. Note that all of the patterns are not necessarily
assigned to a cluster.

The DBSCAN algorithm do not require any prior knowledge about the number of
clusters present in the data. In figure 10 (a) the method found the correct number
of clusters and identified them. There are some outliers that were not assigned to
any clusters. For figure 10 (b) and (c), the maximum distance between neighbours
were set to 0.15 and 0.2 respectively. This shows how important it is to set a good
value for €. The final plot shows that the algorithm can handle other geometries
as well.

2.7.3 Affinity Propagation

The third clustering algorithm tested in this paper is Affinity propagation. The
method takes an initial measure of pairwise similarities as inputs and then mes-
sages are sent back and forth between the points. These messages are real num-
bers representing the affinity between points. This algorithm views each point
as a node in a network, where some nodes are exemplars, representing a group
of other points. Affinity propagation can uncover the number of clusters in the
data with minimal input from the user. The algorithm uses a set of preferences
to decide which patterns are suitable to be chosen as exemplars[26]. An exemplar
is a point which is the best representative of a group. In the sci-kit learn library,
if these are not specified by the user, the median of the input similarities is used.
The implementation in sci-kit learn can also take a damping factor as input. This
ensures that the algorithm do not exhibit oscillating solutions.

There are two types of messages being sent; The responsibility, and the avail-
ability between the points. The responsibility quantifies how suited an exemplar
k is for representing the point 7. The responsibility is given by the following
formula

r(i, k) < s(i, k) — k/g%;;k{a(i, k') + s(i, k') }, (46)

22

Clustering

05 0.0 05 10 15 15 -10 -05 00

Figure 10: DBSCAN algorithm used on a variation of clustering problems. This algo-
rithm is designed to identify the appropriate number of clusters. It is a density based
model which means that it connects areas of similar density. Figure (a), (b) and (d)
illustrates how it adapts to more complex geometries. In figure (c) the parameter gov-
erning the maximum distance between neighbours and the number of samples that were
needed in each cluster was set too high.

where 7(i, k) is the responsibility, a(i, k) is the availability, and s(7, k) is the simi-
larity of the two points. The availability is sent from the exemplar k to the point ¢
and represents the evidence for point 7 to choose k as its exemplar. The availability
is updated as

a(i,k) < min [0,7(k,k)+ > max{0,r(i', k)} | . (47)
i's.t.i'@{ik}

The availability is upper bound so that only numbers less than or equal to 0 is
allowed. r(k, k) is the self-responsibility and represents the accumulated evidence
that point k£ is an exemplar based on its input preference. The self-availability
represents the evidence of point k£ being an exemplar based on the evidence gath-
ered from the other points. The self-availability, a(k,k)) is updated differently

23

Theory

than a(i, k),i # k.
a(k, k) < > max{0,r(i',k)}. (48)

i's.Li' £k

The messages require only simple calculations and the algorithm has proved to
be efficient at a range of clustering problems. Figure 11 shows how the clustering

(a) (b) (c)

Figure 11: Affinity propagation is designed to uncover the number of clusters. It works
by passing messages between pairs containing the similarity to between them. Figure
(a) shows the algorithm correctly identify the clusters and assign the points into its
respective cluster without much problem. For more complex structures the algorithm
seems to fall short.

algorithm performs faced with different geometries. Because of the centroid nature
of the algorithm it gives poor results when the data can not be represented as
blobs. Only the clusters in figure 11 (a) are correctly identified. In (b) and (c) it
is apparent that this approach wont give the desired results. This can however be
mended by preprocessing the data, either by changing the coordinate system or
performing some transformations to it, like PCA.

2.8 Measure of Similarity

The patterns being analyzed are lines in a two dimensional space. It therefore
seems reasonable to simply parameterize the lines so that they consist of the same
number of points and take the sum of the pairwise Euclidean distance between two
lines as a measure of their similarity. This will give a fair result, but the lines can
have varying length, arbitrary endpoints and orientation, which might make some
of the distances somewhat arbitrary. A program could be made to check if lines
have overlapping segments, and then to calculate the distance between these. The
problem with this approach is that the lines may be similar over a small interval,
but can quickly diverge at a later point. There is also the added complexity of the
code and the fact that it will require longer to run. Instead we use a metric known
as the Frechét distance[22|. An analogy for this distance is the shortest leash a
person can have, walking his or her dog when the person is bound to one path,
and the dog to another. Both the person and the dog may vary their speed, but

24

Measure of Similarity

cannot go backwards. This method takes into account the location and ordering
of the respective points|27].

The mathematical definition of the Fréchet distance, dr, is given by

op(f,9) = inf max [[f(a(l)) — g(B())]] (49)

«[0,1]—[a,a’] t€[0,1]
B[0,1]—[b,b']

f and g are curves in R? each defined on some interval [a, a’| and [b, I'] respectively.
These coordinates are then mapped to the strictly increasing functions «, 5 € [0, 1].
a(0) = a, a(l) = d' B(0) = b, B(1) = . The Fréchet distance, dp, is symmetric
and satisfies the necessary conditions as a distance metric. If dp(f,g) = 0 then
the two lines f, g are equal|27].

2.8.1 The Rossby Radius

To obtain a general definition for locality, the Rossby radius of deformation (RRD)

is used. It is closely linked with the scale of eddies in ocean circulation. More

precicely, the first baroclinic Rossby radius of deformation measures the length

scale of where vortex stretching is more important than vorticity[28].The RRD,
R,, is given by .
1

= T o

where f(6) is the Coriolis parameter and is equal to
f(6) = 2Qsind. (51)

Q) is the radial velocity of the Earth and is measured to 7.29 - 10 5rad /s and 6 is
the latitude. The value of ¢; can be found by solving a Sturm-Liouville problem
for the structure of the vertical component of the velocity. The value of ¢; varies
with latitudes and ocean depth. Chelton et al (1998) presents a map of this
geographical variability. For the Norwegian coastline ¢; ~ 1 and R, ~ 8km. Note
that eq. (50) only holds at latitudes higher than 5°[28].

25

Method

3 Method

The work in this report builds on the method for identification of LCS in 2 dimen-
sions described by Farazmand and Haller (2012)[7]. The method can be separated
into two parts; First, lines satisfying conditions A, B and C (see eq. (16)) are
found by calculating the eigenvalues and eigenvectors of the CG strain tensor, and
then calculating the trajectories of eq. (21). Next a selection process is performed
to extract the lines which also satisfy condition D. These are the LCSs of the sys-
tem. It is this second part which is the focus of this paper. Farazmand and Haller
(2012) suggested using a set of horizontal and vertical lines and then compare all
of the strainlines within some distance € from each intersection. This method is
illustrated in figure 7 and works fairly well if some knowledge of the domain is
available prior to the extraction. This domain knowledge could for example come
from studying the FTLE-field, or using the Rossby radius to make an estimate
based on the scale of the system. However, a poor choice of either the number of
lines, or their position can lead to lines being ignored during the selection. In this
project an alternative method is suggested for the identification and extraction of
the LCSs. By using clustering, a form of unsupervised machine-learning, similar
lines are grouped together, then the line which exhibits the strongest Ay can be
extracted from each cluster. This could potentially be a more robust way to iden-
tify which lines are classified as LCSs.

The program was implemented using python with the libraries Numpy and Sci-kit-
learn|15, 24]. Numpy is a high performance linear algebra library and Sci-kit-learn
is a high level machine learning library. The latter includes several algorithms for
dimensional reduction and clustering. The double-gyre field was used for testing
and calibration of the program. This flow field is given by eq. (52) and is com-
monly used and well suited for testing LCS theories[1]. The rest of this section
describes the steps needed to calculate and identify the LCSs using the double gyre
field to illustrate the effect of the dimensional reduction and clustering. Then the
extracted set of LCSs is compared to the results of Farazmand and Haller (2012)
using identical parameters for the flow field|7]. The results presented here are
further discussed in section 4 and compared with the results from clustering on
modelled ocean data.

3.1 Double Gyre

The double-gyre is the canonical flow field for testing LCS theories.[1] It is a
time-periodic flow and is defined by the following stream function

$(,t) = Asin (xf(z,1))sin (). (52)
Where the function f(x,t) is given by

fla.t) = a(t)a® + b(t)z,
a(t) = esin (wt),
b(t) =1 — 2esin (wt).

26

Double Gyre

10 — e ———

0.8 - —

- . \\ | [/K
vy |
v\
v % VYo I y
‘4,‘ \
AR
A\
0.6 \
11
1
1|
|
|1
il
. |
Iy
0.4 1
{ |/
/
/]|
. I
/ |
/ !
|
|

02 ~— ———

0.0

0.00 025 050 0.75 100 125 150 175 200

Figure 12: Streamplot of the velocity field given by eq. (53). The color represents the
norm of the velocity, |v|. A deeper blue represents a larger value for |v|. The field is
plotted at ¢t = 3 for the parameters A = 0.1,w = 27/10 and € = 0.2.

The velocity components v = [u, v] are the derivatives of the stream function,

u= % _ —mAsin (7 f(x,t)) cos (my),
0 ! Of (z,t (53)
v = 8—15 = mAcos (mf(x,t))sin (ﬂ'y)%

If we restrict the domain to z € [0,2] and y € [0, 1], the velocities will always
be parallel to the boundaries. This means that no particles will leave the field.
Furthermore, from the definition of the flow field, it can easily be proved that
V.-v=0,

Vive (=2 4+ 2%y 0. (54)

This equation states that the flow is incompressible[29]. The velocity field is pre-
sented in figure 12. The color denotes the norm of the velocity, v. A stronger
blue equals a larger |v|. The two gyres oscillate back and forth as a function of
time. The size of each gyre is also changing. The parameters used for the plots in
this sectionis A = 0.1,w = 27/10 and € = 0.2. The figure was made at time t = 3.

For fields where particles might leave the domain, extra care has to be taken
regarding choice of time-interval and initial placement of particles. The extra care
is necessary for fields using datasets with limited spatial size as the velocity is
undefined and may for example be set to zero. This will in turn limit the amount
of deformation experienced by the field resulting in erroneous values for the CG
strain tensor. The figures presented in this section were made using a uniform
grid G of 1000 x 500 particles covering a domain U spanning = € [—0.01,2.01],

27

Method

y € [—0.005, 1.005], where a small buffer has been added as suggested by Faraz-
mand & Haller (2012), and an auxiliary grid around the uniform grid points, with
a spacing of dz = dy = 2-107°.

3.1.1 Strainlines

The strainlines are calculated using the eigenvalues, \;, and the corresponding
eigenvectors, ¢;, from the Cauchy-Green Strain Tensor (CG) (see section 2.3 for
details). Figure 13 (a) shows the subset Gy € G, where G is all the points in G
satisfying conditions A and B in eq. (16). This set can casily contain more than
10° points. The plot in figure 13 (a) shows a set of 131 661 points. Of all these
points, some are bound to belong to the same strainline. Running the integration
on all of them will uncover the same strainlines several times. To avoid redundant
computation, a set of horizontal and vertical lines are used to extract points. Only
the points satisfying the first two conditions of eq. (16) and which also coincide
with one of the horizontal or vertical lines in the grid are used as initial points for
the integration. This is shown in figure 13 (b). The reduced set of points is about
two orders of magnitude smaller than Gg.

The strainlines are found by integrating eq. (21) in both directions using the
points found in the reduced version of Gy as starting points for the integration.
The integration is run until either a maximum length has been reached, the line
reaches the border, or until conditions A and B has failed repeatedly. For each
step of the integration, before doing any interpolation of the grid of eigenvectors,
the orientation of the eigenvectors had to be checked and corrected. One gridpoint
was selected as a reference, then the sign of the dot product of the reference vector
with one of the other surrounding vectors would signal if the vectors had to be
flipped or not. This procedure ensured that the surrounding points were rid of
orientational discontinuities. Then the value of ¢; at the point r could be interpo-
lated from the surrounding grid. Finally, the new change in the strainline had to
be compared with the previous term in and flipped if necessary (See section 2.4 for
details). To achieve long, smooth lines it was necessary to include a small buffer
around the domain, so that the integration did not stop prematurely, which is why
an extended domain has been used, x € [-0.01,2 4 0.01], y € [—0.005, 1 + 0.005].
Another reason for the integration to stop prematurely could be numerical noise
in the calculation of the set Gy. This could result in conditions A and B fail-
ing during integration, even though they should have been satisfied. Therefore a
threshold length [should be chosen so that if the conditions fail over a length [,
the integration is stopped. In the case of the double gyre, this was chosen to be

l;=0.3.

3.1.2 Identifying the LCSs

Figure 14 shows the strainlines of the system, i.c. those trajectories of eq. (21)
that also pointwise satisfy conditions A and B (see sec. 3.1.1). Looking at the

28

Double Gyre

10 - . t
.

08 11— napa i . g i s SLW
! .
0.6 - =1 b S HET W P B S i - iy, R WER TR
i .
i
|
3 [
3 i
04 - IR WAL RN g,‘..?m i E IR § S B S S R A i
i 1
4+
5

i

02 g% PR F F AU
1
1

0.0 - i ; i

(b)

Figure 13: Plot (a) shows the set of points Gy € G satisfying conditions A and B in
eq. (16). This set consists of more than 1.3-10° points. Running the integration for
the entire set Gy is likely to take a long time and result in a large amount of redundant
calculations. In (b) only the points which coincide with a set of horizontal and vertical
lines are used, reducing the number of points to approximately 2-102, which is two orders
of magnitude less.

figure one can see that there is a large number of strainlines covering the domain.
Only some of these qualify as LLCSs. In this figure, some pruning has already been
performed as lines with length less than 1.0 have been discarded. This is because
one can assume that short strainlines will not affect the trajectories at the same
scale as the longer lines|7].

Condition D in eq. _(16) states that for a curve, v to be classified as a LCS,
the mean eigenvalue A\, of 7 is maximal among all nearby curves satisfying v||(;.
To apply condition D to the set of strainlines, a measure of similarity between the

lines were needed. The Fréchet metric was used to measure the pairwise distance

29

Method

Figure 14: Strainlines (trajectories of eq. (21)), calculated using the points shown
in figure 13 (b) as initial conditions. From each point, a trajectory was started in two
directions and terminated when it either reached the boundary of the domain or failed
to satisfy condition A and B (See eq. 16) repeatedly over some predefined distance ;.
A more detailed explanation of the procedure is given in sections 2.4 and 3.1.1.

_ S,

Figure 15: Plot of one chosen strainline in red and its similar neighbors in black and
blue. The black lines are the lines which were most similar to the red line. The blue lines
deviated a bit more from the red line, but are still a close match. The Fréchet distance
was used as a measure of similarity. This was calculated using only 30 points from each
line. The low resolution could introduce some errors.

30

Dimensional Reduction & Clustering

between the strainlines. This was calculated between every pair of strainlines and
collected in a similarity matrix, S. Figure 15 shows one selected line in red, and
the set of lines most like it. The black lines had a high degree of similarity to the
red one, while the blue lines were less similar. A range of different approaches for
identifying the LCSs using clustering were tested. Some of these approaches were
applying clustering directly to the lines, reducing the dimensionality of the lines
and the similarity matrix with different types of algorithms, and others applied
clustering directly on the similarity matrix, S.

Before going into more detail about how the dimensional reduction and clustering
was applied, the overall method for identifying LCSs can be summarized by the
following points:

e (Calculate the Cauchy-Green strain tensor.

Find the points in G which satisfy condition A and B.

Develop strainlines, which by eq. (21) satisfy condition C.

Perform the clustering.

Sclect the most repelling strainline in each cluster as the LCSs of the system.

3.2 Dimensional Reduction & Clustering

Following the steps described in section 2.7, the first task when initiating a
clustering problem was to prepare the data. The dimension of the vectors con-
taining the strainlines were reparameterized so that all lines were represented by
the same number of points. This made it possible to have the complete set of lines
represented as a 2 X N x M matrix where N was the total number of lines, and M
was the number of points describing each line. The factor 2 was needed because
each point along a line were described by an x and y component. Furthermore, the
clustering could be performed either on the lines themselves, or on a matrix con-
taining the pairwise similarities between the lines. Additionally, in each of these
two cases the clustering could be applied directly, or the dimensionality could be
reduced prior to clustering using one of the procedures described in section 2.6.
The similarity matrix was calculated using the Fréchet distance, which is given by
eq. (49).

In the following subsection, dimensional reduction and clustering is applied on the
strainlines. Some of the different algorithms are presented, such as the K-PCA
and t-SNE dimensional reduction. The K-PCA was performed using a polynomial-
and cosine-kernel. The t-SNE was tested using different values for the hyperpa-
rameter, i.e. the perplexity, A. Then the performance of three different clustering
algorithms were evaluated for the double-gyre field. The subsection after that
repeats the evaluation, but on the similarity matrix instead. A more thorough
discussion on the different clustering algorithms and plots follow in section 4.

31

Method

In order to make the clustering algorithms tackle different types of data, i.e.
strainlines made using the periodic double gyre field, and strainlines made using
a-periodic ocean data, some additional configuration was needed. For the DB-
SCAN method this consisted of adopting an iterative scheme for finding a good
value for e. This value is related to the size of the clusters. The algorithm was set
up with an initial value € = ¢;. This initial value was set quite high, leading to
only a small number of clusters being identified. If the number of clusters found
was less than some threshold, then € would be reduced. Then, if € reached some
minimum threshold, it was reinitialized to ¢ = ¢y, and then the cluster thresh-
old wa reduced instead. This process was repeated until a satisfying number of
clusters was found using a value of € which was quite large. The idea was that
a large € would result in more generalized clustering. The Affinity propagation
was initialized using a damping factor between 0.5 and 0.75. The damping factor
reduces the risk of obtaining oscillating solutions. The preferences were set to the
mean eigenvalues, after first centering and scaling them to unit variance. This
ensured that a general scale for the different data was obtained. The scaled eigen-
values were then mapped through an inverse exponential function. An inverse
exponential function was used because a strainline with preference closer to zero
was more likely to be chosen as an exemplar. This resulted in the strainlines with
large mean eigenvalues all having preferences close to zero. The last algorithm
used was the Agglomerative-clustering. Average-linkage was used together with
a k-nearest neighbor graph. The number of clusters the Agglomerative-clustering
was set to find was seven for the double gyre field.

All of the following approaches for clustering the data seemed to return more
LCSs than needed to describe the dynamics of the system. The pairwise Fréchet
distances were therefore collected in a similarity matrix, S, and used to prune the
set of LCSs. This was done by iterating through the set of LCSs, and for each
line, gather the set of similar lines in a list. Then the line with the largest mean
eigenvalue from each list was extracted. This resulted in a less cluttered set of
LCSs, which still seemed to describe the dynamics of the field well.

3.2.1 Clustering Strainlines

The strainlines are described by M points in R2. In this project M = 2000. Thus
each line consisted of 4000 numbers. The high dimensionality of the strainlines
made the clustering time-consuming and could degrade the quality of the results
(see section 2.6).

Reducing the Dimensionality Using K-PCA.

The strainlines were reduced to points in ten-dimensional space using K-PCA. A
fiftth-order polynomial kernel was used for the transformation. Figure 16 shows
four arbitrary projections of the data in a three-dimensional space. These four
projections reveal that there are some indication of clusters present in the data.
This indicates that the data can be clustered in a meaningful way. Data which

32

Dimensional Reduction & Clustering

20 7 . 20 7 k
15 1§ - 15 1 Y rd
: AN
10 | 5% 10 7 J [4
05 * = 05 ° ’ g B g
200 i ‘5 LT - I,
05" ! . wt ® —057 4 }
101 ’ ’ 1.0
-
-157 L -15° N
—20% ' <20 -20%) : >
_2 Ql 5, Ty i —1.0 -2 91 g e - 10
210 . = 05 21.0 . ~ _05
-0g = = 00 -5 = ~ 00
Ous xl 05 o 04 - = 05 «a
R At 4 o, T 10
15,0 20 130 20
- E> []
20 20
- "
15 F R 15 7T LA -
- a
10 7 4 10 7 R
05 7 A . 05 - > =
. 5 Lomn *.' E E s ':l oy
200 \ 4 200 L. i
—05° - ' 05T
-1.0° -1.07 . !
-157 X -157 4
207 I ~ 20 % -
2.0 T o o 1&52"} 2.0) - :
201210 e H“'—%-ﬂ" _2'1]1-514] - - gy)
Dgg = =00 05, - ~ 00
0, S ¥ | 05 4g LR w1)
4 g e 10 4 10 -~ 10
d 15 15 'f 15 15
20 20 20 24

Figure 16: Scatter plot of the strainlines after being reduced to points in a ten-
dimensional vector space. The dimensional reduction was performed with K-PCA using

a fifth-order polynomial kernel. The plots show four random projections of the data in
a three-dimensional space.

33

Method

do not contain any clusters should naturally not be clustered, as most of the al-
gorithms will find clusters anyway|8|.

L5
& o
ces o h]
101 I
o o
057 ® o
. 2
o,]
.
00~ \ * e
057 FP %
-1.07
157
L%
.. g ~ s g
15 - < 10 i3
-10 § ~ 05
-05 - » w o,
00
u; -~ - o3
10 - 0

Figure 17: The resulting clusters formed by the DBSCAN algorithm. This was applied
to the set of strainlines reduced to ten dimensions using K-PCA. The plot of the clustering
in feature space can be a good indicator of whether the algorithm performed well on the
data. In this plot we can see that most of the groups of points were identified. There are
some outliers and clusters consisting of only a few points. As this data is ten-dimensional
not all of the connections within clusters are visible.

The results of applying DBSCAN algorithm on the strainlines after they have
been transformed by K-PCA is shown in figure 17 and 18. Figure 17 plots the
resulting clusters in feature space, which in this case spans ten dimensions. Plots
of the feature space can be used to judge the quality of the clustering algorithm,
as it allows one to sce how the clusters are formed. However, it can be hard
to interpret how this corresponds to the strainlines, especially since one is often
limited to projections from high dimensional space. In section 2.7 five steps to
working with clustering is mentioned. The fourth and fifth step were data ab-
straction and evaluation. In order to make sense of the resulting clusters, the
points are mapped to their corresponding strainlines. Figure 18 (a) shows the
strainlines colored by group. The black lines represent noise in the clustering and
are lines that do not belong to any cluster. This only applies to the DBSCAN
algorithm, as all strainlines are assigned a cluster when using Affinity propagation
or Agglomerative-clustering. Figure 18 (b) plots the LCSs that were classified for
the system using DBSCAN. In this case, the algorithm returned 14 clusters, which
results in up to 14 LCSs. Several of these lines are nearly identical, with some
parts of the lines diverging from each other. To remove some of these, the lines can

34

Dimensional Reduction & Clustering

Figure 18: The plot in (a) shows the clustered strainlines by color. There are some
lines that look as if they have been put in the wrong group. This could either be caused
by the K-PCA not retaining enough of the original data, or some of the hyperparameters
of the DBSCAN algorithm not being properly tuned. The black lines in (a) represents
noise in the data, and are not assigned to a cluster. The plot in (b) are the LCSs of the
system superimposed over the FTLE field. Looking at the set of LCSs, one can see that
there are several lines which are identical. The similarity matrix could be used in order
to remove some of the duplicated lines.

0.00 025 050 07s 100 125 150 175 200

Figure 19: Plot of the set of LCSs identified using the DBSCAN algorithm. The
algorithm was applied on the set of strainlines after they had been reduced to points
in ten-dimensional space. In this plot, the excess LCSs have been removed using the
similarity matrix, S (see section 3.1.1). Excess LCSs are lines which resemble other lines
to a high degree, or are very close to other, stronger LCSs.

be compared using the similarity matrix, S. If two lines have a Fréchet distance
less than some threshold, the one with the highest mean eigenvalue is kept, and
the other discarded. The pruned set of LCSs is plotted in figure 19.

The resulting clusters formed by Affinity propagation is shown in figure 20 (a).
This algorithm also produced a relatively high number of clusters. The plot in
figure 20 (b) is the set of LCSs identified for the system after removing duplicate
lines using the similarity matrix, S. The LCSs classified by both the DBSCAN

35

Method

() (b)

Figure 20: The plot in (a) shows the strainlines clustered by color using the Affinity
propagation algorithm. The algorithm uses a vector containing each line’s respective
mean eigenvalue as preference for which strainlines were to be chosen as an exemplar
(See section 2.7). There are some lines that look as if they have been put in the wrong
group. This could cither be caused by the K-PCA not retaining enough of the original
data, or some of the hyperparameters of the Affinity propagation algorithm not being
properly tuned. The plot in (b) are the LCSs of the system superimposed over the FTLE
field. The LCSs have been pruned using the similarity matrix in order to remove lines
that closely resemble others.

and Affinity propagation algorithms are superimposed over the FTLE field. From
figure 19 and 20 (b) one can see that the identified LCSs match the FTLE field
quite well. There are still some lines in both plots which could probably have been
removed. As mentioned above, the black lines in figure 18 (a) represent strainlines
which are treated as noise, and are therefore not assigned to a cluster. The noise is
related to the number of neighbors the algorithm requires for forming a cluster. A
lower number of neighbors could therefore reduce the number of strainlines treated
as noise. The DBSCAN and Affinity propagation do not require the number of
clusters to be set beforehand, but discover this by analyzing the data. A lower
number of points to form a cluster would be likely to result in more clusters to be
returned by the DBSCAN algorithm. This would in turn result in a larger num-
ber of LCSs identified for the system. As both clustering algorithms already seem
to return more LCSs than needed to describe the dynamics of the field, it might
indicate that using K-PCA to reduce the dimensionality is not suited for this data.

Reducing the Dimensionality Using K-PCA and t-SNE.

The second approach for clustering was to use K-PCA to first reduce the dimen-
sionality of the lines down to d = 25 and then to apply t-SNE to reduce it further
to three. t-SNE is designed for projecting high-dimensional data down to two or
three dimensions so that it can be visualized in a meaningful way. K-PCA has to
be applied first because the runtime of the t-SNE scales badly with the number of
input dimensions. There are some caveats when using t-SNE to analyze the data.
First, the sizes and shapes of the clusters that appear after the transformation are
not necessarily related to the original structure of the data. Distances between
points get warped. However, the algorithm excels at separating different classes

36

Dimensional Reduction & Clustering

of data, that is, uncovering the clusters. The algorithm is also sensitive to its
initial hyperparameters such as perplexity and number of input dimensions. Van
der Maaten (2008) states that the t-SNE algorithm should be fairly insensitive to
perplexity values in the range A € [5,50], but looking at the plots in figure 21, it
is apparent that this is not necessarily the case. Figure 21 shows the t-SNE ap-
plied to the strainlines using four different values of A. The perplexity is related

. & ~15 P
[X
.
s 1§ t i |
0s P os
“e <
‘{. . T /" / ’ P T
>~
> ~os —os
>) %
<N o '
$io ~10 ’ L o ~10
s e
3 s o s
¥ < 20 -)
N L » < 15 5 - 15
))
- -~ 05 - - 05
20 20
15 ~ 00 15 - < 00
a2 < -0 g% 2 1)
Y a % a
o > o = a
L A s w A s
20 20 20 20
(a) A=5 (b) A =30
‘e 8
s 15
Mo
'_"h ~10 ~10
~os ~os
~ ~00 ~o0
(®
—os $ LAY —os
s / .'
: LR
, - F 4 ~10 e‘-_‘? ~10
pe % A
. - L. 6 L.
P <2 - e)
! S— < 1s . % 15
(< 10)
-~ 05 - s - 05
20 20
15 ~ 00 15 - < 00
20 & o5 20 2 &
= < 10 = a
s = e 0s = P~
10 B S 10 Ao
s, s
(c) A =60 (d) A =150

Figure 21: Scatter plot of all the data after it has been reduced to three dimensions by
t-SNE. The four plots represent different values for the chosen perplexity, A. A low value
for A results in more spread in the data, resulting in a large number of small groups.
Increasing the value gives larger clusters with some outliers. The perplexity is linked to
the degree of which the algorithm considers local or global structure in the data. A low
A will therefore result in the algorithm prioritizing local structure, and thus group only
neighboring lines together, forming a myriad of small clusters. This can be related to
the problem of overfitting, resulting in poor generalization when separating lines from
each other. A larger value for A should therefore be used in order to keep the global

structure of the data.

37

Method

to the number of neighbors the algorithm considers. A low A results in a higher
number of small clusters than for larger values. In a sense, A can be understood
as a parameter varying the level of locality the algorithm considers. A low A will
ensure that the algorithm prioritizes the local structure, while for a high A, the
global structure will be prioritized. A parallel can be made to the concept of over-
fitting in machine-learning[21|. Overfitting is a common problem when working
with machine learning and results in a low grade of generalization. In this case,
the t-SNE groups only very similar lines together instead of finding groups based
on the more general structure of the data. The parameters that seemed to give
consistently good results for both the double gyre field, and for the ocean data in
section 4 are given in table 1.

Table 1: The parameters used for the combination of K-PCA and t-SNE that worked
well with both the strainlines found for the double gyre ficld and the strainlines found
for the ocean data in section 4.

K-PCA
Kernel cosine
Target dimension 25
t-SNE
A 20
Target dimension 3

The LCSs plotted in figure 22 and 23 were identified using DBSCAN and Affinity
propagation. The LCSs found using DBSCAN on the set of lines reduced using
t-SNE were identical to those identified using the K-PCA dimensional reduction.
For the set of LCSs identified using Affinity propagation, the result was a bit bet-
ter than for the K-PCA case. The lines in figure 23 seemed to match ridges in the
FTLE-field better than the ones plotted in figure 20.

3.2.2 Clustering the Similarity Matrix

The complete set of strainlines consists of approximately N ~ 10? lines. The sim-
ilarity matrix, S, is an N X N symmetric matrix, where S;; is the Fréchet distance
between line ¢ and j. The matrix is scaled by dividing it by the Rossby radius.
For the double gyre, »r = 0.5 was used as a proxy for the Rossby radius. The
reason for scaling S is to obtain values for the distances which are on the same
range for different sets of data. Using S instead of using the strainlines directly
reduces the number of features from 4000 to approximately 1000. This is a good
improvement with regards to complexity, but it is still a high dimensional feature
space. In addition to the lower number of features, using a custom measure of sim-
ilarity can improve the performance of the algorithms. For example, the DBSCAN
algorithm can be performed using the FEuclidean- or Minkowski-metric|24|. The
pairwise distance between points are calculated from the features. This, however,
does not account for the orientation of the lines, length, and the fact that the
points are not uniformly spaced along each line. The Fréchet distance considers

38

Dimensional Reduction & Clustering

Figure 22: Plot of the resulting LCSs identified for the system using the DBSCAN
algorithm. The strainlines were first reduced to points in three dimensional space using
t-SNE prior to the clustering.

Figure 23: Plot of the resulting LCSs identified for the system using the Affinity
propagation algorithm. The strainlines were first reduced to points in 3 dimensional
space using t-SNE prior to the clustering.

both the location and ordering of the respective points (see section 2.8)[22]. For
clustering on the similarity matrix, S, two approaches were tested; Reducing the
dimensionality with K-PCA and t-SNE, and clustering S directly.

Reducing the Dimensionality Using K-PCA and t-SNE.

The K-PCA and t-SNE were applied using the parameters listed in table 1. This
procedure gave a structure which exhibited several groups of points, ecach group
representing a set of strainlines. The new representation is plotted in figure 24.

39

Method

The clusters are of various shapes and sizes. By inspection of the data, all three
algorithms should be able to find the clusters present.

9 =15
L & Y
® - c\ -5
-
..
. o« ’ -0
- t.. I.' -
] .- » ‘ I
@& .
@ . ~-10
»
Y * ’ ~-15
[4
- 10
~ 5
1; re il o
= a0 o =
L e ~ -10
5 - -15

15

Figure 24: Plot of the similarity matrix, S, after being reduced to points in a three
dimensional space using the t-SNE algorithm. It is apparent that there are clusters
in the data, or at least in the low-dimensional representation of the data. The t-SNE
algorithm excels at separating data, but the size and shapes of the clusters might be
meaningless|11].

The clusters formed by the DBSCAN algorithm is plotted in figure 25. Visual
inspection of the resulting clusters indicates that the DBSCAN algorithm did a
good job with finding the clusters. The points colored black are not assigned to
any of the clusters. The figure shows the clusters from two different angles, so
that it is easier to see which points are assigned to each group. This represen-
tation indicates that the algorithm found, and clustered the points according to
the underlying structures seen in figure 24. There are several outliers which have
been assigned clusters. The clustering is then mapped back to the strainline rep-
resentation. Figure 26 (a) plots the lines colored by group. Note that the colors of
the clusters from figure 25 are not directly linked to the clusters in figure 26 (a).
The plot in 26 (b) shows the LCSs of the system identified from the clusters in
26 (a). There are more strainlines identified as LCSs when clustering the reduced
representation of S, than what was found when performing the clustering on the
strainlines. The reason for more lines being identified as LLCSs could be a too low
value for A resulting in the t-SNE algorithm to focus on the local structure. This
would result in a larger number of small clusters, which leads to more strainlines
being chosen as LCSs. Figure 24 shows some outlier points as well as several clus-
ters which look as if they only contain a small number of points. Figure 27 (a)

40

Dimensional Reduction & Clustering

® = ®
S 10—
\ % (%y P
o 05— P ! &
10 . @ ” 4 @ &%O L3S /‘
o @ "O; % .’ %% @w !. @
. -05- \‘é; > @
» & é 5 A | . L))
& ° F o é@f% = . °
3 ° «, o
-0s” o = M T i » Qg&
:‘%‘ﬁ & Tos os 8 S ~
g | = o . ® g
(a) (b)

Figure 25: Plot of the clustering performed by the DBSCAN algorithm. It groups dense
regions, resulting in clusters of varying shapes and sizes. It looks as if the algorithm
correctly identified all the groups present in the data. In order to evaluate whether the
clustering is meaningful, it has to be mapped back to the strainline representation in R2.

(a) (b)

Figure 26: In (a) the strainlines are colored by group. The black lines in (a) are treated
as noise. By reducing the number of neighbors the DBSCAN algorithm considers, less
strainlines will be treated as noise. The resulting LCSs of the system is presented in (b).

and (b) plots the set of LCSs extracted for (a) Agglomerative-clustering and (b)
Affinity propagation. The Agglomerative clustering was set to find seven clusters
in the data. Both clustering algorithms identified more lines as LCS than for the
method based on clustering of the strainlines. This tendency of finding too many
clusters in the data can be contributed to the t-SNE dimensional reduction. As
mentioned above, a too low perplexity value might have resulted in the algorithm
considering only local structures present in the data.

Clustering Directly on the Similarity Matrix.

The final approach was to apply the clustering algorithms directly on the simi-
larity matrix, S. The dimensionality of the feature space makes it impractical to

41

Method

(a) (b)

Figure 27: The figure shows the LCSs of the system located using the Agglomerative-
clustering and Affinity propagation respectively. The Agglomerative-clustering was set to
group the strainlines into seven clusters. The clustering was performed on the similarity
matrix, S. S had first been reduced to three dimensions using the t-SNE dimensional
reduction algorithm.

plot a projection down to two or three dimensions, and the resulting projections
would be difficult to extract information from. It is likely that the plot will show a
dense line with randomly clustered points. It is therefore more useful to study the
plot of strainlines colored by their respective cluster. Figure 28 (a) to (c) shows
the clusters obtained by the DBSCAN, Affinity propagation, and Agglomerative-
clustering methods. The method which gave the most promising LCSs was the
Affinity propagation algorithm and the resulting lines are plotted in figure 29.

Comparing these results with a naive approach, for example, simply extracting
the seven strainlines which have the largest mean eigenvalues and classifying them
as the LCSs of the system, results in seven nearly identical LCSs. The resulting
lines are plotted in figure 30 As mentioned in section 2.4, several of the points
in Gy are bound to belong to the same strainline. It would seem that even if a
grid of horizontal and vertical lines were used to extract a small set of points, a
large number of these would still be part of similar lines. The classification using
clustering and a similarity matrix results in a set of LCSs which seems to describe
the dynamics of the field better.

3.3 Advecting the LCSs

By utilizing eq. (22) to advect the LCSs found at time ¢,, we can find the corre-
sponding material lines at later times ¢. As stated in section 2.5, there is no guar-
antee that the material line remains an LCS when advected by the flow map|7|.
The procedure is also prone to numerical errors when used on a repelling LCS.
In figure 31 (a) the identified LCSs are plotted at to = 0. The blue lines are
attracting LCSs and the red are repelling LCSs. Figure 31 (b) and (c) shows the
lines advected to ¢ = 3 and ¢t = 6. It becomes apparent from looking at the plots
in figure 31 that the repelling lines shrink as time goes on. Some numerical insta-
bilities are visible along the red lines around (1.1,0.1) in plot (b), and (1.0,0.8)

42

Advecting the LCSs

(c)

Figure 28: The strainlines are colored by group. The three plots were created using the
DBCAN, Affinity propagation, and Agglomerative-clustering respectively. The group-
ing performed by the Affinity propagation algorithm resulted in the set of LCSs which
matched the FTLE field best. The clustering presented here was performed directly on
the similarity matrix, S, containing the pairwise Fréchet distances between strainlines.

43

Method

Figure 29: Plot of the set of LCSs extracted from the ensemble of strainlines. The
clustering was performed on the similarity matrix, S, using the Affinity propagation
algorithm. This was the method which achieved the results which seemed to match
the FTLE field best, both for the double gyre data, and for the modelled occan data
presented in section 4.

0o D.éS O.!'I:D DJ"S 100 léE ILEO l';‘S Z,bD

Figure 30: A naive approach to extracting LCSs from the set of strainlines. Here
the seven strainlines with the largest values for Ao were chosen as LCSs. This resulted
in seven nearly identical LCSs. When comparing this with the LCSs extracted using
clustering, i.e. the set of LCSs in figure 29, one can see that the clustering obtained a
set which seemed to match the FTLE field better.

44

Advecting the LCSs

08 -

06~

04k

02+

00~

08 -

06~

04 -

02+

00~

08 -

06 -

04 -

02

00 -

000 025 050 075 100 125 150 175 200

Figure 31: The set of attracting (blue) and repelling (red) LCSs are advected from
t =0 tot =6 in the double gyre field. The LCSs are superimposed over the FTLE field
which is calculated using the forward time interval. This results in the field matching
the repelling LCSs. In plot (b) the field has been advected to ¢ = 3. The repelling lines
seem to match the FTLE field well, but there are some additional ridges in the field
which indicate that other LLCSs might also be present. As the lines are advected by the
field, the repelling lines shrink, and the attracting lines stretches. In plot (c) at t = 6
one of the strongest ridges in the FTLE field is still covered by a repelling LCS, but it is
apparent that there is more dynamics to the right side of the plot, not being explained
by the LCSs. Looking at plot (¢) one can also note that the attracting lines have become
longer.

45

Method

\\\\\ M(to)

Nl

SN

Figure 32: The direction of the flow of particles around an attracting material line
(blue) and around a repelling material line (red). The flow stretches and shrinks the
respective material lines. This means that as the field is advected, the repelling lines
will gradually disappear.

in plot (c¢). The attracting lines however are stable and stretch with time. This
behaviour is expected and can be understood by looking at how the flow acts on
attracting and repelling lines, which is shown in figure 32. This results in the blue
lines dominating the field as time goes by. The lines are superimposed over the
FTLE field calculated for the forward time intervals. While the advected lines de-
scribe the dynamics fairly well for a period of time, the appearance of new ridges
in the FTLE field indicates that new LCSs might have appeared.

3.4 Evaluating the Clustering

An easy way to test the validity of the results is to compare the resulting set of
LCSs to the results presented in the paper by Farazmand and Haller (2012)[7]. By
using the grid to extract the LCSs from the field, they managed to find a single
LCS which covered the whole domain. The corresponding LCSs found using the
approach presented in this section is plotted in figure 33. The selection was made
using Affinity propagation directly on the similarity matrix, S, as this approach
showed the most consistent results on the various types of data. It is apparent
that this approach identifies a few more strainlines as LCSs. There can be several
reasons for this. First, limitations in the resolution used for calculating the Fréchet
distance between the lines could contribute to inaccuracies in the pairwise similar-
ities in S. Another point to consider is that there were no strainlines that matched
the single line identified in Farazmand and Hallers article. This could be because
of differences in the implementation of the strainline calculations, or some tweak-
ing of the algorithm that was left out of the article. Finally, it is not certain that
the single LCS discovered there was the only LCS of the system. This project
aims at finding a more objective way for extracting the LCSs from the strain-
lines. Farazmand and Hallers technique of searching for lines close to intersections
of a seemingly arbitrary grid introduces the possibility that some LCS are left out.

The LCSs presented in figure 33 matches previous results in Farazmand and Haller
(2012) well. The overlap of LCSs to the left of the figure is troubling. The reason
for the overlapping lines is most likely caused by the different lengths of the lines
making the values in S between them blow up. This causes similar lines to not

46

FEvaluating the Clustering

Figure 33: The LCSs extracted for the same system studied by Farazmand and Haller
(2012)[7]. The LCSs found using Affinity propagation to cluster the similarity matrix
gives a neat set of lines. While there are some differences to the L.CS identified in Faraz-
mand and Hallers paper, the overall structure is the same. There are some overlapping
lines, especially at the left side of the figure. These lines probably deviate too much from
each other at other areas of the flow so that the pruning applied after clustering does
not remove them.

be removed after the clustering. This could likely be contributed to the lacking
resolution used for calculating S. However, the LCSs still match the FTLE-field,
capturing the dynamics of the flow.

47

LCSs in Modelled Ocean Data

4 LCSs in Modelled Ocean Data

A set of ocean velocimetric data was retrieved from the Meteorological Institute
of Norway[30]. The data is available with a temporal resolution of 1 h and a
spatial resolution of either 4 km or 800 m. Figure 34 shows the set of points
satisfying condition A and B (see eq. (16)) and the resulting strainlines for two
different arcas of the Norwegian coastline using the 800 m and 4 km data sets. The
integration was performed for up to 10* steps, with a stepsize of 36 m. The set
of strainlines uncovered using the 800 m data consist mostly of smaller lines, not
revealing much of the overall dynamics of the field, while the 4 km data captures
the more general skeleton of the flow. Therefore, the remaining plots presented in
section 4 were made using the Nordic 4 km data between 10 a.m., 23.03-2018 to
10 a.m., 29.03-2018, spanning latitudes 63°to 76°, and longitudes +15°to 20°. In
this project, only two dimensional LCSs were considered so that only the surface
layer of the data was used. All of the figures in section 4.1 to 4.3 were made
using the backwards time interval [+72 h, 0 h]. The clustering was also applied to
the forward interval, but the plots were not included due to the large number of
figures. The location and time for the set of data was selected by studying the
evolution of the FTLE field, looking for areas that exhibited ridges in the FTLE
field. Note that the scale of the eddies in the field is relatively small compared to
the size of the domain, e.g. the domain spans about 100 R, compared with the 4R,
spanned in the double gyre case. Using a set of only four horizontal and vertical
lines to reduce the set Gy is therefore likely to miss a lot of the eddies present in
the flow. Instead eight lines were used along each axis. If too few lines were to
be used for the flow being studied, the structure of the grid would reveal itself in
the formation of the strainlines, which would mean that LCSs that dominate the
regions between the lines would remain hidden. The strainlines calculated using
the modelled data with 800 m resolution illustrates this problem in figure 34 (b).

4.1 Identifying LCSs in Modelled Ocean Data

Unlike the double gyre field, modelled ocean velocity data is a-periodic and a lot
more chaotic. Figure 34 (c) and (d) shows the set Gy of points satisfying condition
A and B, and the corresponding strainlines, for a patch of ocean outside the Nor-
wegian coastline. The field was computed using an interval of 72 h. In figure 35
(b), a total of eight horizontal and eight vertical lines were used for the reduction
of Gy. The points which coincided with the set of lines were used as initial values
for the integration of strainlines. This meant that the lines were spaced approxi-
mately 50 km apart, or about 5R,. The larger set of horizontal and vertical lines
results in a larger number of points which coincide with the lines. Therefore the
development of the strainlines is more computationally intensive than it was for
the double gyre field. If the grid pattern is visible when plotting the material lines,
it means that not enough horizontal and vertical lines were used in the process and
the calculation can miss the LCSs located in between the grid lines. The domain
of points that satisfy condition A and B of eq. (16) is plotted in figure 35 (a). This
plot consists of nearly 3.4 -10° points. Black represents points were the conditions

48

Identifying LCSs in Modelled Ocean Data

Figure 34: The plot in (a) and (c) presents the set of points Gy which satisfies conditions
A and B in eq. (16). The plot in (a) was made using modelled ocean data with a spatial
resolution of 800 m, while the plot in (c) was made using data with a spatial resolution
of 4 km. The resulting strainlines are presented in (b) and (d). The strainlines obtained
from the 800 m dataset are much shorter and seem to describe more local features. The
set of horizontal and vertical lines is clearly visible through the pattern of strainlines
(see section 2.3). The strainlines computed from the 4 km data are much longer and
presumably more representative of the global dynamics of the field.

49

LCSs in Modelled Ocean Data

are satisfied. The reduced set of points which coincide with the horizontal and
vertical lines consists of about 5.5 - 10 and is plotted in figure 35 (b). This is a
reduction of nearly two orders of magnitude.

An important feature which requires extra attention is the size of the domain.
When the particles are advected through the field, there is a risk of some leaving
the domain. For the double gyre, the domain was restricted so that no particles
could leave, but for modelled ocean data this is not the case. Particles leaving the
modelled field also poses a larger problem than if particles left the analytic field.
Outside of the domain in the case of modelled data, no information regarding the
velocity field is known. Extrapolating the values is likely to give poor results.
Therefore it is important to add a large enough frame around the field of interest,
so that not too many particles will leave the domain before the advection has
finished. If a large number of particles leave the domain during the advection, the
resulting deformation will depend on the domain size. This will give erroneous
results for the CG strain tensor.

The distance between lines consisting of points satisfying the two conditions ranges
from 5 km to 15 km. Small numerical errors might result in the strainlines being
integrated up slightly outside regions in Gy where conditions A and B are met.
Therefore the integration was allowed to fail consecutively over a length of up to
[= 5 km. The set of strainlines calculated for the ocean data is presented in
figure 36 for both the forward- and backwards-time integration. A clear difference
between the task of clustering the strainlines found for the double gyre and the
strainlines presented in figure 36 is the number of clusters. The relative size of
the eddies compared to the size of the domain implies that a higher number of
LCSs are needed to cover the field. The number of clusters to group the strain-
lines into must be provided for the Agglomerative-clustering, while the DBSCAN
and Affinity propagation should be able to discern the number of clusters from
the data. The Rossby radius is used as a scale of the system. For the Norwegian
coastline, the Rossby radius is approximately R, ~ 10 km. This distance was used
for scaling the distance matrix and for pruning the set of LCSs identified by each
algorithm. This should ensure that the resulting sets of LCSs were consistent with
the type of domain.

The following subsections match those of section 3.2. The results from applying
dimensional reduction and clustering on the ocean data is presented. The next
section clusters using the strainlines, preprocessed by either K-PCA, or K-PCA
and t-SNE to reduce the dimensionality. Afterwards follows the clustering applied
on the similarity matrix, S, of the system. The Fréchet distance is used as a mea-
sure of similarity. The values of S are then given by the pairwise Fréchet distances
between all of the strainlines. The clustering is performed cither on S directly, or
on a more compact representation of S, where the dimensionality has been reduced
using t-SNE first. The results are compared against their counterparts in section
3.2.

20

Identifying LCSs in Modelled Ocean Data

900000

000000

100000

200000

300000 [Legii

~1300000 -1800000 ~1700000

' . : +
¥ ; 1 l
900000 - # " 1
H : X i
N i l
M & o e [f 4, i DS {4 & F |
| i 2
1 : 1
A ' ™ + 1
3 \ ¥ ' ¥ |
000000 | /: o~ y Oy e e do s
L l T > '
2 ' $ \
| : ! :
£ ie ‘ B S =
i . . 3 3
. 1 , : | |
1 . v 1 g
100000 - - . ! >
& Ve vy R T Gk, e
i . 2 *
. N) '
{ : ! : ! ¢ :
i . 7 '
> i ! Y 1 ’
LMY ‘il W R /o L - Vi/ ol e
200000 - \ g ' i - . |
. 3)
! ! ; ! : 2
i : / : .
RN IN N N\ Z 4
) 5 p g
| ! ; :
'
i t ‘
! . : ! | : k 7
300000 - . i - ! . ;
U N —~ i e e : v SRR e
i : \ 4 !
* ' ' . '
. i ' 0 \
J [} 1
1 1
i . 1
AN\, P Yt NS PN N/
i i
400000 - - " \ J
X \ | |
i 0 i
*ZCIU‘DOC]O *IQO‘DUCD *15[:‘0000 *l7D‘DUED *IGD‘OOOD *lSD‘DOUO *145‘0000

Figure 35: The set of points satisfying conditions A and B of eq. (16) for the selected
area in the 4 km dataset. The plot in (a) presents the entire set, Gy, where black
represents the points where the conditions are satisfied. Performing the integration (see
section 2.4) on this set will calculate the same strainlines multiple times. Therefore a
subset is extracted by only using the points which coincide with a set of lines. This is
illustrated in (b). The number of points coinciding with these lines is about two orders
of magnitude less than the total number of points in Gg.

o1

LCSs in Modelled Ocean Data

<)
lfﬁg&)) d@‘;’\
(@) (b)

Figure 36: The two plots presents the set of strainlines calculated for the forward and
backward time intervals respectively. The maximum distance the integration was allowed
to fail satisfying conditions A and B (See eq. (16)) was set to [y = 5 km. A total of 16
lines were used to extract the initial points for the integration.

4.2 Clustering the Strainlines

All strainlines were resampled to vectors comprised of 2000 points in R% The
high dimensionality could be problematic as it would increase the complexity of
the clustering task, and it might degrade the results. Therefore, finding a method
to reduce the dimensionality, without losing much of the information hidden in
the data, could prove worthwhile.

Reducing the Dimensionality Using K-PCA

The K-PCA dimensional reduction gave promising results when applied to the
strainlines in the double gyre field. The strainlines calculated for the ocean data
were reduced to points in ten-dimensional space by K-PCA, using the same pa-
rameters as for the double gyre case. The kernel used was a fifth-order polynomial
kernel. Figure 37 shows the ten-dimensional data projected onto four different
three-dimensional spaces. The type of structures in the data that were visible for
the double gyre field are missing for the modelled ocean data. The distribution of
points in figure 37 reveals no obvious clusters, but rather resembles random noise.
It might therefore look like the K-PCA method works better for certain types of
data. The strainlines found in the double gyre case were all somewhat resembling
each other. The length of the lines were more uniform, and they were smoother.
The lines uncovered in the modelled ocean data were more erratic. They were of
a lower relative size compared with the domain, the orientations of the lines were
more random, and there was a much larger number of clusters present.

52

Clustering the Strainlines

B I o
20 ° coy 20 ° P -
) . .x‘ ol ") o te .\b‘m !"‘
15 1 e, oo’ 15 7 e NI ?
) Wy e ¢t TV ST ! EL .q-.‘.‘.;r‘ e
10 N T R n 10 aPradel -‘{:'\
+ } - L 98l 1Y - o e il 0 .
05 » L O g1 05 A R R
% 00 ' Y C RO o0 ¢ 4N e
b SR £ ST #00 L AN R
/ % € g) 2 ..
10° ¢ -"'.‘.';-N‘Q:“- 107 o “ias s ’
- s Ay Bl e Sl Y .
151 P 3 -151 e S N <Y . -
20% . . . ~ 207~ . watr ¢ -
iy % T o \ i
20 =5 > iy 20 5)
L : -1.0 £ . <~ 0
130 . ~ -0 150 . ~ Gy
05 o <~ 00 05 ol ¥ ~ 00
0 S % 05 <» .0 - ~ 05
F 0,510 o~ 10 ; € 0.5]—0 -~ 10
4 5., 2ots . 15 15

Figure 37: K-PCA was applied to the data, reducing the high dimensionality of the
strainlines to points in ten dimensional space. The plot presents four random projections
of this ten dimensional data. Comparing with the corresponding plot in figure 16 it can
be seen that there is less structure for the ocean data. The plots mostly resemble noise in
this case, while there was some structure visible for the double gyre. This could indicate

that the dimensional reduction removes too much of the information hidden in the data
for it to be useful on the modelled ocean data.

From the plots in figure 37, the clustering is expected to give poor results, as
data resembles random noise. Therefore no informative grouping of points is ex-
pected. The clustering achieved using DBSCAN is presented in figure 38 (a).
Only a few clusters were identified and most of the lines were put into a single
cluster, while the other clusters only consist of two or three lines. The Affinity
propagation algorithm fared better than the DBSCAN. A total of 47 clusters were
identified. The set of LCSs discovered using the clustering presented in figure 38
(b) consisted of approximately 30 lines.

93

LCSs in Modelled Ocean Data

Figure 38: The strainlines have been assigned a group, represented by a color. The
clustering was performed using the DBSCAN and Affinity propagation algorithms respec-
tively. It was performed on the reduced representation of the strainlines using K-PCA.
The data is plotted in figure 37 and shows no apparent clusters. It was therefore expected
that the performance of the clustering algorithms would be poor. The DBSCAN grouped
most of the strainlines into a single cluster, while the Affinity propagation grouped the
lines seemingly at random. Neither managed to find a good set of LCSs.

Reducing the Dimensionality Using K-PCA and t-SNE

The K-PCA procedure may remove some of the information that the structure
of the data holds. To retain as much of the information as possible, the K-PCA
was combined with t-SNE to reduce the dimensionality. The same procedure was
tested for the double gyre field and is presented in section 3.2.1. The parameters
are given in table 1. First, the dimensionality was reduced to 25 using K-PCA,
then t-SNE was applied to further reduce it to three dimensions. The new projec-
tion of the strainlines as points in three dimensional space is presented in figure 39.
This figure was made with a perplexity, A = 50. Comparing this with figure 21
(c), the points are clearly much less densly packed than for the double gyre data.
As mentioned in the K-PCA case, this is likely caused by the more random struc-
ture of the set of strainlines. However, where the K-PCA procedure returned data
which seems to be mostly noise, the t-SNE approach returned a representation
where there are some regions of varying density. Seeing that there are some visi-
ble grouping in the data, this representation should therefore be a better basis for
applying clustering.

Affinity propagation and DBSCAN both gave good results when applied to this
data. Figure 40 (a) and (b) plots the LCSs of the system superimposed over the
FTLE field for the two algorithms. There are several ridges in the FTLE field
where no LCSs have been detected. This could be explained by the fact that
up till the clustering, no extra information is given to the program regarding the
scale of the system. For the clustering on the strainlines, the Rossby Radius is
only used in relation to the pruning that is applied afterwards. The resulting lines

54

Clustering the Strainlines

¢ »
, . '

- .
"f ot 5y ~0s
& - . -

. o o X
2 ..
. . ~10

.
. a —15

Figure 39: Plot of the strainlines having first been processed by K-PCA | reducing them
to points in 25 dimensional space. Then the dimensionality was further reduced using
t-SNE. The new representation of the strainlines as points in three dimensional space
shows arcas of varying density. While the groups are loosely tied together, there are
a lot more interesting features in this data than for using only K-PCA to reduce the
dimension.

extracted using Affinity propagation could most likely be improved by tuning the
input preferences for this exact problem. As for the DBSCAN results, inspecting
the clusters that were formed, plotted in figure 40 (c), shows that a majority of
strainlines were not assigned to any clusters. The number of lines belonging to
clusters are closely related to the number of lines required to form a cluster core,
i.e. the number of points in feature space required within a dense area to form a
cluster. For the plot in figure 40, the number of points was set to ten. By reducing
it to only require five strainlines in an arca for a cluster to form, ncarly all of the
strainlines are assigned to clusters. It thus seems the value for this parameter
should be set low in the case of clustering strainlines in ocean data. Consider the
case of a strainline with a large A\, which finds itself far removed from the rest
of the strainlines. If the number of lines needed is set too high, such lines will
simply be ignored. Even if there are no groups of lines in an area, there may still
be strainlines there qualifying as LCSs. Therefore a low value for this parameter
is justified.

Figure 41 plots the clustering and set of LCSs identified setting the minimum
number of neighbors to five. There are still ridges in the FTLE field where no
LCSs were extracted, but the DBSCAN algorithm seems to capture the LCSs
which describe the dynamics of the field. The validity of the uncovered lines are

95

LCSs in Modelled Ocean Data

Figure 40: The extracted LCSs using (a) Affinity propagation and (b) DBSCAN to
cluster the strainlines. The strainlines were first reduced to points in three dimensional
space using K-PCA and t-SNE. The plot in (c¢) shows the strainlines assigned to various
clusters using the DBSCAN algorithm, represented by color. The black lines are not
assigned to any cluster. This is caused by a high value for how many neighbors the
DBSCAN algorithm considers. In this figure, the parameter was set to ten. Looking at
figure 39, the clusters are quite spread out. Therefore, a lower value for the number of
neighbors seem warranted.

later tested by advecting an ensemble of particles together with the LCSs to see
if the lines govern the motion. The remaining ridges present in the field might
simply not contain strainlines with high A\, values.

4.3 Clustering the Similarity Matrix

Applying clustering algorithms to the similarity matrix, S, gave good results for
the double gyre field. Following the procedure presented in section 3, the shortest
strainlines found for the modelled ocean data have been removed from the set,

26

Clustering the Similarity Matriz

(a) (b)

Figure 41: The DBSCAN algorithm was applied to the strainlines after they had
been reduced to points in three dimensional space. The dimensional reduction was
performed using K-PCA and t-SNE. The plot in (a) shows the strainlines assigned to
various clusters. Each cluster is represented by a color. In this figure, the number of
neighbors for the DBSCAN algorithm to consider was set to five. Comparing with the
case considering a minimum of ten neighbors in figure 40 (c), it is apparent that a lower
parameter for the minimum number of neighbors is needed to correctly group most of
the strainlines.

reducing it to approximately N =~ 10? strainlines. This was done to make the
computation less demanding, and should not affect the resulting LCSs by a large
degree, as short lines will only have a negligible effect on the overall dynamics|7].
The matrix, S, is scaled by the inverse of the Rossby radius, R,. As before, S
consists of all the pairwise Fréchet distances between the strainlines. The scaling
is performed in order to have values in S which are approximately of the same
order independent of the domain.

Dimensional Reduction Using K-PCA and t-SNE.

The plots in figure 42 show the data after being processed by K-PCA and t-SNE.
The structure resembles a cloud, with orbs of denser regions loosely tied together.
The same configuration for the K-PCA and t-SNE as for the strainlines was used
for dimensional reduction on S as well. The geometry of S in feature space is not
the same as for the strainlines. Each feature describes how closely one line resem-
bles another, while for the strainlines, the features represents coordinates in R2.
There is therefore no other good reason for using the same set of parameters here
except for the sake of simplicity. The parameters that were chosen for the K-PCA
and t-SNE dimensional reduction were found through testing on S. The tests were
performed on both the forward- and backward-time intervals for the modelled data
and the double gyre. For each of these sets, the Cosine, Polynomial, and RBF
kernels were tested with a varying number of dimensions to first reduce by using
K-PCA and different values of perplexity for the t-SNE. The resulting plots of the
data reduced to three dimensions were then studied. The values in table 1 were

o7

LCSs in Modelled Ocean Data

-4
P T -3
8 Fag o
;:‘.’ s .l .Il"."f:.
RIS Y U -
- o W e
- .l ' ~'.‘_‘ e @ l.‘
2. AR - AN
s ein® “re VL’ ".'.‘.‘.l'
R (R R\ I "
¢ .{... .-.?...!‘\f‘. o o & € o
e . ot o o il S, % %
v egtee o '-‘.'b &:. .‘:q.c-, ':, %o :_.-.%__- - -0
I Al T A LA i T
ol s B L L S ey T ~10
'“‘9; "" e l.".f:i‘\ ‘-!' b :'. %
EESE Y A0 '-":."".'- ot
s '.'-M}'ﬁ.'. .-f .Q' 2 :. o ®e 20
o’.. Y o8 r‘! o % o8
soe g% :":-.. a P A -~
o - - G o
P '-':"":-\:q-% & .o\gp": St ‘r‘.‘ e T
.
’-: {'.'{ ..'s'.-".,"_ o f.c h O S
PR TR s i Y S TR, T N .
0 £ 5 1O
L]
~ .. .‘ &
20
20
, 4
-40 - 0
-20 - 4
.) -20
20 ” -40

Figure 42: Plot of the similarity matrix, S, after it had been reduced to three dimensions
using K-PCA and t-SNE. The resulting structure resembles an ensemble of clouds with

slightly different sizes and variance.

28

Clustering the Similarity Matriz

chosen because they gave visible clusters for both the double gyre and the ocean
velocity fields. These parameters could probably be tuned further and a separate
set of parameters which fit the strainlines better could also be found. This could
therefore be a subject for further work.

The results of the Affinity propagation, Agglomerative-clustering and DBSCAN
clustering algorithms applied to the data presented in figure 42 are shown in fig-
ure 43 (a) to (f) respectively. Of these plots, the Agglomerative-clustering and
DBSCAN gave the best results. The Affinity propagation gave good results for
the double gyre data, but it did not deliver for the more chaotic, modelled data.
In figure 43 (a) one can see that the algorithm found too few clusters and judged
that many of the strainlines colored in orange, located towards the middle of the
plot belong to the same cluster. It was harder to separate the performance of
the two remaining algorithms. The Agglomerative-clustering was told to find 60
clusters. The number was chosen by inspecting the domain. It was assumed that
the number of LCSs should be around the same as the number of intersections
found in the grid comprised of horizontal and vertical lines. This assumption
seemed reasonable as the lines were spaced at a distance of about 5R, along both
axes. This gave a grid which captured most of the details from the set of points
satisfying conditions A and B (see figure 35). The set of LCSs plotted in figure 43
(d) covers the ridges in the FTLE field well. In figure 43 (e) and (f) the resulting
clusters and LCSs using the DBSCAN algorithm are presented. The algorithm
was forced to find at least two strainlines within some length, €, in order to form
a cluster. This is why there are some strainlines that are not assigned a cluster,
represented by the black lines in figure 43 (e). However, most of the lines have
been assigned a cluster, and judging from the figure, it looks as if the algorithm
managed to group them fairly well. There are not as many LCSs extracted as
for the Agglomerative-clustering. The set of LCSs uncovered with the DBSCAN
algorithm forms a neater picture and might have found a smaller set where less
important lines have been discarded. One thing to note is that only a few of the
approaches locates any LLCSs in the bottom left and the top right regions. This
is most likely because there are no strongly repelling or attracting LCSs in those
regions. The lack of ridges in the FTLE-field also supports this assumption.

Comparing the performance with the case using the double gyre field, the DB-
SCAN might be the method which gave the most consistent results. The Agglomerative-
clustering algorithm was set to cluster the lines into seven groups for the analytic
field, while it was 60 groups for the modelled data. The Affinity propagation did

a good job on the double gyre, but gave poor results here. More testing to find
better parameters for the dimensional reduction could probably improve the per-
formance.

Clustering the Similarity Matrix Directly.

The clustering performed directly on S is shown in figure 44. The order in which
the algorithms are presented are Affinity propagation, Agglomerative-clustering

29

LCSs in Modelled Ocean Data

and then DBSCAN. All three algorithms fared well with the double gyre data,
but Affinity-propagation was a slightly better match with the FTLE-field as seen
in figure 29. For the modelled ocean data, the resulting clustering by the Affinity
propagation algorithm also gave the best results. From figure 44 (a) one can see
that it did well with grouping similar lines together, and that the resulting LCSs
match the ridges in the FTLE-field. The Agglomerative-clustering also did a good
job at clustering S. The Agglomerative algorithm was set to locate 60 clusters,
same as for the approach using dimensional reduction on S. The resulting LCSs
identified are presented in figure 44 (d). Comparing these to the LCSs identified
in (b), it is apparent that both of these approaches returned a set of LCSs which
matched the FTLE field well. The FTLE field is as mentioned not completely
accurate, i.e. a ridge in the FTLE field might not mean that there should be an
LCS there[5]. However, the Affinity propagation gave a better set of LCSs for
the double gyre field. The set of LCSs uncovered by the Affinity propagation was
also slightly smaller, but still covering most of the same ridges. It might there-
fore seem like Affinity propagation gives more informative clusters resulting in a
better picture of the dynamics of the field. The DBSCAN algorithm found the
least number of clusters. This could be caused by a poor choice of parameters
for the algorithm. The resulting clustering is presented in figure 44 (e) and shows
that two of the clusters are very large, with one of them spanning across a huge
area. Because of this, a low number of LCSs were identified, which are presented
in figure 44 (f).

4.4 Advecting the LCSs

The plots in figure 45 show the set of LCSs uncovered by using Affinity propaga-
tion on the similarity matrix, S. The red lines represent repelling LCSs, and the
blue lines are attracting LLCSs. The plots show the LCSs at four different times
to, to + 24h,ty + 40h, ty + 70h, spanning an interval of 70 hours. An ensemble of
particles is plotted together with the lines. By advecting the particles together
with the LLCSs, one can see that the lines govern the flow of particles. As the lines
are advected over a longer interval, they become less reliable. There are some areas
where the particles seem to be affected by LCSs which are not included in the plot.
This could either be caused by a line not being identified as an LCS or because
a new LCS has appeared at a later time ¢ > ¢;. The latter is expected as the
different LCSs discovered may not be present for other intervals|7|. In the double
gyre case the period of the system was given by w (see eq. (52)). The modelled
ocean data however, is a-periodic, and the more chaotic nature can make some
LCSs short lived, while other can be more enduring.

The agreement between the particle movement and the evolution of the LCSs
indicates that the set of LLCSs extracted helps explain the dynamics of the system
well. As expected, the repelling lines are intrinsically unstable and shrinks with
the flow. However, the long-term movement of the particles can be predicted us-
ing mostly the attracting lines. As the flow evolves, the particles stick to the blue
lines. These are also more numerically stable and are stretched by the flow. By

60

FEvaluating the Clustering Methods

the fourth plot, the field has been advected for 70 hours. The red lines have nearly
disappeared, and the particles cling to the blue lines.

4.5 Evaluating the Clustering Methods

Several of the methods used for clustering gave satisfactory results both on the
double gyre, and for the modelled data. Many of the plots show LCSs covering
the ridges of the FTLE field, but there are slight differences in which lines get
identified as LCSs. The reason for this is that both the number of clusters, and
which lines gets sorted into certain clusters vary. Because of the large number of
figures, not all of the test-cases have been presented in this thesis.

To use the DBSCAN method, the number of strainlines needed to form a clus-
ter, and the distance, €, between the lines in feature space, had to be set prior
to clustering|25]. As mentioned earlier, the algorithm was set up to find a large
number of clusters, using a relatively large initial value for €5. Then € and the min-
imum number of clusters was reduced for each iteration until enough clusters were
found using the largest value for € as possible. The thought behind this was that
a larger ¢ would force the algorithm to make more general clusters. This method
worked reasonably well, and gave satisfactory results for the varying structures
of data. The drawback was that the iterative process could be quite slow if the
initial value for € was too large. One area where this method could be improved
is by using the sample weight input parameter. By feeding the function with
the mean eigenvalues, the lines with a large A, will be prioritized as cluster cores.
Another point where this could be improved is by using the scale of the input data
and the Rossby radius as a basis for setting €. In the paper by Ester et al (1996)
another approach for finding an appropriate value for € is presented|25]. The pro-
cedure is comprised of calculating a k-nearest-neighbor graph and estimating the
percentage of noise in the data. The threshold value for ¢ will then be given by the
highest k-distance in the thinnest cluster in the data. Finding a value for ¢ which
gives the wanted number of clusters is important in order to achieve an objective
identification of LCSs.

There are a vast number of different configurations for the Agglomerative-clustering
which is implemented in sci-kit learn. There are three different linkage methods,
different distance metrics, and multiple connectivity graphs, each with its own set
of configurations. The ones presented in this project used the Average-linkage with
a k-nearest-neighbors graph. This graph was a list of size N, where N is the num-
ber of strainlines, with either a boolean denoting which of the strainlines are the k
nearest neighbors, or the distances to the k nearest neighbors. The rest of the list
is set to zero. Because the Agglomerative-clustering needed the number of clusters
as input, the other clustering algorithms seemed more promising for handling var-
ious flow fields. However, with more optimization, the Agglomerative-clustering
could give good results. A starting point for improving the use of this algorithm
could be to link the number of clusters to the Rossby radius of the system. The
algorithm shows a lot of potential given the results presented in section 3 and 4.

61

LCSs in Modelled Ocean Data

The method which performed best was the Affinity propagation applied to the
similarity matrix S. This approach gave an ensemble of LCSs that matched the
FTLE-field well. The Affinity propagation was initialized with a damping factor
between 0.5 and 0.75, and the preferences were set to an array consisting of the
mean eigenvalues. The damping factor reduces the tendency for solutions to os-
cillate when performing the propagation|26]. The eigenvalues were centered and
scaled to unit variance using the function StandardScaler from the sci-kit learn
library[24|. The scaled eigenvalues were then mapped through an inverse exponen-
tial function so that the the largest eigenvalues would result in a low preference.
The points which have preferences close to zero would have the highest probability
to be chosen as an exemplar. Other functions could probably have been used, but
the exponential function produced good results.

Clustering on the strainlines having only used K-PCA to reduce the dimensionality
gave poor results. It is likely that the algorithm did not manage to retain enough
of the information in the data. Different parameters were tested, but none seemed
to generalize well for both sets of data. The structures that were captured in the
reduction of the double gyre data were absent in the ocean data. The addition
of the t-SNE as a final step in the dimensional reduction helped to some degree,
but the methods gave inferior results compared with clustering directly on the
high dimensional similarity matrix using Affinity propagation. Other algorithms
for dimensional reduction might retain more of the information hidden within the
data, but for the methods tested in this paper, too much of the original structure
was lost. The t-SNE is still an excellent tool for visualizing the data and checking
if there are clusters present, but the clustering algorithms should be applied to
the high dimensional representation.

The t-SNE method has a non-convex cost function which is given by eq. (44).
This non-convexity can result in the gradient descent not finding the global min-
imum. There are several parameters than can be used to optimize the solution
found by the gradient descent. Hinton and van der Maaten (2008) argues that
the quality of the optima does not vary much with different parameters[11]. By
taking a look at figure 21 one can sce that this is not necessarily the case. Van
der Maaten (2008) also state that the algorithm may exhibit varying performance
when applied to data with a high intrinsic dimension. This is caused by the as-
sumption of local linear relation between neighboring pairs.

In section 4.4 the effect the LCSs has on surrounding particles is illustrated. The

red lines are repelling LCSs, and the blue lines are attracting LCSs. The movement
of the particles agrees with the extracted lines.

62

FEvaluating the Clustering Methods

() (b)

(c) (d)

()

Figure 43: The plots in (a) to (f) presents the clusters and the resulting LCSs for the
Affinity propagation, Agglomerative-clustering, and the DBSCAN algorithms respec-
tively. The clustering was performed on the similarity matrix, S. Prior to clustering, S
had been reduced to three dimensions using K-PCA and t-SNE. The resulting data is
presented in figure 42.

63

LCSs in Modelled Ocean Data

(a) (b)

(c) (d)

(e) ()

Figure 44: Plots of the clusters and corresponding sets of LCSs identified when per-
forming the clustering directly on the similarity matrix, S. Plot (a) and (b) are the results
using Affinity propagation, (c¢) and (d) are from the Agglomerative clustering, (e) and
(f) are from the DBSCAN algorithm. Both the Agglomerative-clustering and Affinity
propagation gave satisfactory results. There are some slight variations in the set of LCSs.
However, the Affinity propagation performed better than the Agglomerative-clustering
when it was used on the double gyre field.

64

FEvaluating the Clustering Methods

Figure 45: The LCSs of the system identified using Affinity propagation directly on the
similarity matrix, S. The blue lines represents attracting LCSs, and the red lines repelling
LCSs. The LCSs in (a) are advected to ¢t =ty +24 h, t =tg+40 hand t =, + 70 h
in (b), (c) and (d) respectively. The initial black square in plot (a) represents the initial
position of the ensemble of particles at ¢t = tg. As time goes on, the square gets deformed
by the LCSs. Because the repelling lines shrink and the attracting lines stretch, the blue
lines eventually take over the plot if advected long enough. From the figure one can see
that the trajectories are governed by the nearby LCSs.

Conclusion

5 Conclusion

Using clustering and dimensional reduction as an alternative method for extract-
ing LCSs out of sets of strainlines shows promising results. Out of the DBSCAN,
Agglomerative-clustering and Affinity-propagation, it was the latter which man-
aged to identify the most general set of LCSs. The aim of this project was to
find a method for identifying LCSs which could be a more robust alternative to
the procedure described in Farazmand and Haller (2012), which was largely based
on using a seemingly arbitrary grid|7]. The clustering presented in this thesis
eliminates the need for using such a grid, but the algorithms introduced a whole
new set of parameters. Many of these parameters had to be tuned in order to
achieve satisfactory results. However, most of these parameters could either be
found by iteration (see section 3.2) or by for example using the mean eigenvalues
as weights in the clustering, as noted in section 3.2 and 4.5. The dimensional
reduction procedure also showed potential, but there was some loss of information
in the reduced representation, which caused important strainlines to be left out
of the final set of LCSs. This could possibly be caused by the t-SNE approach
converging to sub-optimal solutions[11]. A solution to this, which has not been
tested here, could be to perform the reduction many times, using different input
parameters, and then to use the solution which has the lowest minimum for the
cost function (see section 2.6.3).

The set of LCSs identified for the double gyre flow field using clustering, were
a good match with the LCS identified in Farazmand and Haller (2012). However,
the implementation used for this thesis did not produce the single strainline pre-
sented there, but rather several disconnected pieces which formed approximately
the same line. This is most likely caused by numerical errors in the integration or
some differences in the implementation.

To check if the LCSs uncovered in the modelled ocean data would describe the
dynamics of the flow, the LCSs were advected together with an ensemble of par-
ticles. Then the LCSs effect on the nearby trajectories were studied. The particle
trajectories were shown to be in good accordance with the identified set of L.CSs.
Especially for shorter intervals the dynamics of the field seem well explained by
the LCSs. After an interval of 70 hours, the repelling lines were reduced to a neg-
ligible length and most of the particles were found hugging nearby attracting lines.

Even though the results were promising, there is still work remaining with regards
to tuning the clustering and testing other approaches to dimensional reduction.
An example is the input parameters for the DBSCAN algorithm which could be
calculated using the procedure suggested by Ester et al (1996)[25]. Further testing
of the usability of this approach on other sets of data is also needed in order to
decide if clustering can replace the previous methods for extracting LCSs. A good
way to test the validity of the LCSs uncovered by this method would be to apply
it to the Deepwater Horizon case to test its reliability in predicting the spread of
the oil spill.

66

References

References

[1] Thomas Peacock and George Haller. Lagrangian coherent structures: The
hidden skeleton of fluid flows. Physics Today, 66(2):41-47, February 2013.

[2] Maria J. Olascoaga and George Haller. Forecasting sudden changes in environ-
mental pollution patterns. Proceedings of the National Academy of Sciences,
109(13), March 2012.

[3] National Public Radio for bp cleanup, 2013 meant 4.6 million
pounds of oily gunk. https://www.npr.org/2013/12/21/255843362/
for-bp-cleanup-2013-meant-4-6-million-pounds-of-gulf-coast-oil.
Accessed: 2018-06-11.

[4] Tampa Bay Times oil from bp spill pushed onto shelf off tampa bay by un-
derwater currents. http://www.tampabay.com/news/environment/water/
0il-from-bp-spill-was-pushed-onto-shelf-off-tampa-bay-by-underwater/
2137406. Accessed: 2018-06-11.

[5] George Haller. Lagrangian coherent structures. Annual Review of Fluid Me-
chanics, 47(1):137-162, 13 2015.

[6] George Haller. A variational theory of hyperbolic lagrangian coherent struc-
tures. Physica D: Nonlinear Phenomena, 240(7):574 — 598, 2011.

[7] Mohammad Farazmand and George Haller. Computing lagrangian coherent
structures from their variational theory. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 22(1):013128, 2012.

[8] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM
Comput. Surv., 31(3):264-323, September 1999.

[9] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall series in artificial intelligence. Pearson Education,
Boston, 3rd edition. edition, 2016.

[10] A. K. Jain, R. P. W. Duin, and Jianchang Mao. Statistical pattern recogni-
tion: a review. IEEFE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(1):4-37, Jan 2000.

[11] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9:2579-2605, 2008.

[12] Ernst Hairer, Syvert P Nogrsett, and Gerhard Wanner. Solving ordinary dif-
ferential equations I - Nonstiff problems. Springer, 1993.

|13] Steven H Strogatz. Nonlinear dynamics and chaos : with applications to
physics, biology, chemistry, and engineering. Studies in nonlinearity. Addison-
Wesley, Reading, Mass, 1994.

67

References

[14]

[15]

[16]

[17]

[18]

[19]

20]

[21]

22]

23]

[24]

[25]

Shawn C. Shadden, Francois Lekien, and Jerrold E. Marsden. Definition and
properties of lagrangian coherent structures from finite-time lyapunov expo-
nents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena,

212(3):271-304, 2005.

Travis E. Oliphant. Guide to NumPy. CreateSpace Independent Publishing
Platform, USA, 2nd edition, 2015.

Ko-Foa Tchon, Julien Dompierre, Marie-Gabrielle Vallet, Francois Guibault,
and Ricardo Camarero. Two-dimensional metric tensor visualization using
pseudo-meshes. Engineering with Computers, 22(2):121-131, September 2006.

Charles Bouveyron and Camille Brunet-Saumard. Model-based clustering of
high-dimensional data: A review. Computational Statistics € Data Analysis,
71:52 — 78, 2014.

S. Y. (Sun Yuan) Kung. Kernel methods and machine learning. Cambridge
University Press, 2014.

B. Scholkopf, A. Smola, and K.-R. Miiller. Kernel principal component anal-
ysis. Lecture Notes in Compuler Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 1327:583-588,
1997.

Geoffrey E Hinton and Sam T. Roweis. Stochastic neighbor embedding. In
S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Infor-
mation Processing Systems 15, pages 857-864. MIT Press, 2003.

DM Hawkins. The problem of overfitting. Journal Of Chemical Information
And Computer Sciences, 44(1):1-12, 2004.

Helmut Alt and Michael Godau. Computing the fréchet distance between
two polygonal curves. International Journal of Computational Geometry &
Applications, 05(01n02):75-91, 1995.

Oded Maimon. Data Mining and Knowledge Discovery Handbook. Springer
series in solid-state sciences Magnetic bubble technology. Springer, 2nd ed.
edition, 2010.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825—

2830, 2011.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters a density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining,
KDD’96, pages 226-231. AAAI Press, 1996.

68

References

26]

27]

28]

[29]

130]

69

Brendan J Frey and Delbert Dueck. Clustering by passing messages between
data points. Science (New York, N.Y.), 315(5814), February 2007.

Thomas Eiter and Heikki Mannila. Computing discrete fréchet distance.
Technical report, 1994.

D Chelton, R Deszoeke, M Schlax, K El Naggar, and N Siwertz. Geographical
variability of the first baroclinic rossby radius of deformation. Journal of
Physical Oceanography, 28(3):433-460, March 1998.

Frank M White. Fluid mechanics. McGraw-Hill series in mechanical engi-
neering. McGraw-Hill, New York, 7th ed. edition, 2011.

MET Norway. Data from The Meteorological Institute of Norway. https:
//thredds.met.no/thredds/catalog.html. [Online; accessed 2018-06-11].

