
June 2009
Svein Erik Bratsberg, IDI
Øystein Torbjørnsen, FAST, A Microsoft® Subsidiary

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Storing and Querying RDF in Mars

Ole Petter Bang
Tormod Fjeldskår

Problem Description
RDF is a popular data format for metadata, and SPARQL is a standardized language for querying
RDF data. Mars is the next generation search engine being developed by Fast Search & Transfer.

The task is to find or develop a method for representing schemaless RDF data within Mars, as well
as creating a prototype Mars component for evaluating queries against the RDF data using the
SPARQL query language.

Assignment given: 14. January 2009
Supervisor: Svein Erik Bratsberg, IDI

Abstract

As part of the Semantic Web initiative, the Resource Description Framework
(RDF) is gaining momentum as a format for storing data, particularly meta-
data. The SPARQL Protocol and RDF Query Language is a SQL-like query
language, recommended by W3C for querying RDF data.

Fast is exploring the possibilities of supporting storage and querying of
RDF data in their Mars search engine. As part of this, a SPARQL parser has
been created for the Microsoft .NET Framework.

This thesis proposes a solution for efficiently storing and retrieving RDF
data in Mars, based on decomposition and B+ Tree indexing. Further, a
method for transforming SPARQL queries into Mars algebra is described.
Finally, the implementation of a prototype is discussed.

The prototype has been developed in collaboration with Fast and has re-
quired customized indexing in Mars. Some deviations from the proposed
solution were made in order to create a working prototype within the avail-
able time frame. The focus has been on exploring possibilities, and perfor-
mance has thus not been a priority, neither in indexing nor in evaluation.

The prototype is able to evaluate a wide range of typical SPARQL
queries. Such queries include SELECT queries against a single, default
data set, specifying multiple triple patterns in the WHERE clause. All so-
lution modifiers are supported, including ordering, variable projection and
requiring distinct solutions, with only minor nonconformities. No query
optimizations are employed, however.

i

ii

Preface

This thesis was written at the Department of Computer and Information
Science (IDI) at the Norwegian University of Science and Technology
(NTNU) during the spring semester of 2009. The assignment was given
by and written for Fast and the iAD Research Centre.

We would like to thank our supervisors, professor Svein Erik Bratsberg
at NTNU and Øystein Torbjørnsen at Fast, for feedback and guidance dur-
ing the course of this project.

Trondheim, June 2009

Ole Petter Bang Tormod Fjeldskår

iii

iv

Contents

1 Introduction 1

2 Background 3
2.1 RDF . 3

2.1.1 Data Model . 3
2.1.2 Schema . 5

2.2 SPARQL . 6
2.2.1 Graph Pattern Matching 8
2.2.2 Matching and Constraints 8
2.2.3 Query Results . 9
2.2.4 Alternative Query Forms 10
2.2.5 Lack of Schema Support 11
2.2.6 Base and Prefixes . 11
2.2.7 Syntactic Sugar . 13

2.3 The Mars Search Engine . 15
2.3.1 Query Evaluation . 15
2.3.2 Important Mars Operators 16
2.3.3 Indices in Mars . 18

3 Parsing and Syntax Trees 21
3.1 Theory . 21

3.1.1 Context-Free Grammars 21
3.1.2 Common Parsing Techniques 23
3.1.3 Parser Generators . 24
3.1.4 Abstract Syntax Trees 24
3.1.5 Tree Traversal using the Visitor Pattern 25

3.2 Parsing SPARQL . 26
3.2.1 The Scanner Specification 27
3.2.2 The Parser Specification 28
3.2.3 The Abstract Syntax Tree 30

3.3 The Parser Facade Class . 31

v

4 Storage Models 35
4.1 Alternative Models . 35

4.1.1 General Triple Store 35
4.1.2 Graph Store . 36
4.1.3 Property Tables . 37
4.1.4 Vertical Partitioning 38
4.1.5 MAP Indexed Triple Store 39
4.1.6 TripleT . 40
4.1.7 Similarities Among Alternatives 41

4.2 Existing Implementations . 42
4.2.1 Sesame . 42
4.2.2 Jena . 43
4.2.3 YARS . 43
4.2.4 Redland RDF Libraries 43
4.2.5 3store . 44

4.3 Choosing the Storage Model 44
4.3.1 Reasonable Alternatives 44
4.3.2 Proposed Solution . 45

5 Method 47
5.1 Preparing the AST . 48
5.2 From AST to Algebra . 49

5.2.1 Graph Patterns . 49
5.2.2 The Transformation to Algebra 52

5.3 Evaluation Approaches . 52
5.3.1 Existing Solutions . 52
5.3.2 Approaching Mars . 54

5.4 From Algebra to Mars Operators 55
5.4.1 Graph Patterns . 55
5.4.2 Solution Modifiers . 57

5.5 Example: Finding Album Titles 58

6 Implementation 63
6.1 Priorities for the Prototype . 63
6.2 Overall System Description 64
6.3 SharQL Parser Project Modifications 65

6.3.1 Visitor Pattern Processing Order Option 65
6.3.2 Visitor Pattern Reflection-Based Type Identification . 65
6.3.3 INode Interface Inheriting from ICloneable 65

6.4 Syntactic Sugar . 67
6.4.1 Implicitly Data-Typed Literals 67
6.4.2 Shared Subject Triple Lists 67
6.4.3 Blank Node Property Lists 68
6.4.4 Lists . 68

vi

6.4.5 Prefix Expansion . 69
6.4.6 Identification of Unlabeled Blank Nodes 69
6.4.7 Example: The Literal Explicator Visitor 71

6.5 Intermediate Query Representation 73
6.5.1 Transforming the Abstract Syntax Tree 76
6.5.2 Example: Transforming a part of the AST 78

6.6 Operator Trees . 80
6.6.1 Transforming Algebra Graph Patterns 80
6.6.2 Example: Constructing an Operator Tree 81

6.7 Component Architecture . 82
6.8 Testing the Component . 86

6.8.1 Parser Testing . 86
6.8.2 Transformation Testing 87
6.8.3 Evaluation Testing . 88

7 Results and Discussion 89
7.1 Prototype Storage Model . 89
7.2 Triple Format . 90
7.3 Supported SPARQL Features 90

7.3.1 Query Forms . 91
7.3.2 Solution Modifiers . 91
7.3.3 Graph Patterns . 92
7.3.4 Data Types . 92

7.4 Test Results . 93

8 Conclusion and Further Work 95
8.1 Further Work . 95

References 97

Glossary 101

A NodeBase Class 103

B WhereClauseTransformer Class 107

C Enclosed ZIP Archive 115

vii

viii

List of Tables

4.1 Possible Access Patterns for an RDF Triple 40
4.2 Necessary Indices to Support All Access Patterns 40

5.1 Implicitly Data-Typed Literals in SPARQL. 49

7.1 Failing, Relevant Tests From the W3C SPARQL Test Suite . . 94

ix

x

List of Figures

2.1 RDF Sample Graph . 5
2.2 RDF Schema Sample . 7
2.3 RDF Sample Data . 9
2.4 SPARQL Sample Query . 9
2.5 Specifying a Base to Decrease Verbosity 12
2.6 Specifying Named Prefixes to Decrease Verbosity 12
2.7 Combining Base URI With Named Prefixes 12
2.8 SPARQL Syntactic Sugar for Lists 13
2.9 SPARQL Syntactic Sugar for Triples Sharing the Same Subject. 14
2.10 SPARQL Syntactic Sugar for Blank Node Property Lists . . . 14
2.11 SPARQL Combined Syntactic Sugar 15
2.12 A Mars Operator Graph for the Search Term “ntnu trondheim” 16
2.13 Context of Terms in a Structured Document 19

3.1 Parser Data Flow . 22
3.2 EBNF Sample Rules and Corresponding BNF Representation 23
3.3 Parser Generation . 25
3.4 AST for the Calculus Expression 1× 2× 3 + 6÷ 2 25
3.5 Visitor Pattern . 26
3.6 Visitor Pattern Delegate Dispatch 27
3.7 SPARQL Grammar Conditional Symbol Sample 28
3.8 SPARQL Grammar List Symbol Sample 29
3.9 SPARQL Grammar Reduce/Reduce Sample 30
3.10 The INode Interface . 31
3.11 The NodeBase Abstract Class 31
3.12 The Parser Facade Class . 32
3.13 UML Sequence Diagram Showing Parser Facade Class Op-

eration . 33
3.14 Using the SharQL Parser . 34

4.1 Triple Store Example . 36
4.2 Property Table Example . 37
4.3 Vertical Partitioning Example 38
4.4 The Payload of a TripleT Index 41

xi

4.5 Inserting a Triple in the Chosen Storage Model 46

5.1 The Intermediate Representations Taken by a Query During
Evaluation . 47

5.2 Applying Base and Prefix Declarations 48
5.3 Pseudo Code for the Algebra Transformation 53
5.4 Sample Transformation of a WHERE Clause 54
5.5 BGP Transformation . 56
5.6 Join Transformation . 57
5.7 Union Transformation . 57
5.8 SPARQL Specification Solution Modifier Ordering 57
5.9 Composite SPARQL Query 58
5.10 Intermediary Query Representation 59
5.11 Complete Operator Tree . 60

6.1 Overview of System Components 64
6.2 Visitor Pattern Delegate . 66
6.3 Visitor Pattern Delegate Dispatch Using Reflection 66
6.4 SPARQL Shared Subject Triple List Syntactic Sugar Sample . 68
6.5 Shared Subject Triple List Syntactic Sugar AST Extract 69
6.6 Shared Subject Triple List AST Extract 70
6.7 Lists Syntactic Sugar AST Extract 71
6.8 Lists AST Extract . 72
6.9 SPARQL Blank Node Property List Syntactic Sugar Sample . 73
6.10 Indexer of LiteralExplicatorVisitor 73
6.11 The explicateNode Method of LiteralExplicatorVisitor 74
6.12 The explicateBooleanLiteralNode Method of LiteralExplicatorVis-

itor . 74
6.13 Overview of the Query Class 75
6.14 Classes Used to Build SPARQL Algebra Expressions 76
6.15 Overview of the BasicGraphPattern Class 77
6.16 Overview of the SelectQueryDescription Class 77
6.17 Conducting the Transformation Process. 78
6.18 The transformGroupOrUnionGraphPattern of WhereClauseTrans-

former . 79
6.19 The Union Class . 79
6.20 Operator Tree Construction Sample 83
6.21 Architecture of the Mars Component 84
6.22 SPARQL Query Service Configuration 86
6.23 Interface of Configuration Object 86
6.24 Fully Automated AST Preparation Test 87
6.25 Fully Automated SPARQL Algebra Transformation Test . . . 88

7.1 XML Format for RDF Triples 90

xii

7.2 SPARQL Grammar Extract . 91

xiii

xiv

List of Definitions

2.1 RDF Triple . 4
5.1 Solution Mapping . 50
5.2 Compatible Mappings . 50
5.3 Instance Mapping . 50
5.4 Basic Graph Pattern Matching 50
5.5 Filter Pattern . 51
5.6 Join Pattern . 51
5.7 Diff Pattern . 51
5.8 LeftJoin Pattern . 51
5.9 Union Pattern . 51

xv

xvi

Chapter 1

Introduction

The Resource Description Framework (RDF) [1], originating from the Seman-
tic Web initiative, has grown popular for representing various kinds of data,
particularly metadata. The SPARQL Protocol and RDF Query Language
(SPARQL) [2] is the query language proposed by the RDF Data Access Work-
ing Group for querying RDF data sets.

Information Access Disruptions (iAD) is a constellation between Fast
Search & Transfer (Fast), two Norwegian enterprises, the Norwegian Uni-
versity of Science and Technology (NTNU) and several other universities.
iAD “[...] targets core research for next generation precision, analytics and
scale in the information access domain.” [3] As part of this research, it is
desirable to be able to query several different types of information from
various data sources, including RDF using SPARQL.

Mars is the next generation search engine by Fast, combining database
and search engine technology, targeting enterprises. Mars is a key com-
ponent in the iAD search technology, focusing on creating “[...] schema
agnostic indexing services fusing structured, unstructured and multime-
dia content in precision, analytics and scale optimized information access
services.” [3]

In an academic project [4] preceding this master thesis, a parser for the
SPARQL query language was created, written in C# targeting Microsoft’s
.NET Framework. This parser was the first step towards being able to query
RDF data sources in Mars using SPARQL.

The focus of this thesis is to explore the possibilities of extending the
capabilities of Mars, in order to support storage and retrieval of RDF data
using the SPARQL query language. This being the focus, analytical in-
depth comparisons with similar systems is considered out of the scope.
The tight integration between storage model and query engine achieved in
this approach differs notably from the majority of similar solutions. Thus,
establishing a common scale of measure allowing for useful, in-depth com-
parisons with other solutions is a challenge.

1

The goals of this work are to:

• Explore possible storage alternatives for RDF data.

• Compile SPARQL queries into Mars query algebra.

• Implement a prototype Mars component.

Besides this thesis, part of the delivery is a prototype Mars compo-
nent for evaluating simple queries, utilizing the SPARQL parser originating
from the aforementioned academic project.

Chapter 2 presents background information on RDF, SPARQL and the
Mars search engine. This is not a complete presentation, but focuses on in-
troducing essential concepts in order to establish the context of the thesis.
Chapter 3 is an extract of the aforementioned parser project, introducing
the concepts of parsing and abstract syntax trees as well as presenting the
SPARQL parser used by the prototype. Chapter 4 discusses various ap-
proaches to storing RDF data and is concluded with a justified proposal
for a storage model for Mars. In Chapter 5, the method of transforming
SPARQL queries into operator graphs evaluable by Mars is explained while
Chapter 6 discusses a selection of interesting topics with regards to imple-
mentation details. Finally, the thesis is concluded by Chapter 7 discussing
the results and Chapter 8 which states the conclusion and outlines further
work based on the prototype.

Throughout this thesis, a fictitious music metadatabase is used as the
basis for most examples and figures. This metadatabase is loosely based
on the MusicBrainz1 project which contains a comprehensive collection of
metadata about artists/bands and their releases.

Appendix A contains the NodeBase class, from which all classes used to
represent the abstract syntax trees (ASTs) descend. This abstract class im-
plements the INode interface and thus the Accept methods that realize the
Visitor pattern used for traversing the ASTs. In addition, the class imple-
ments functionality for cloning nodes, used when resolving syntactic sugar.

Appendix B contains the WhereClauseTransformer class, which is respon-
sible for transforming WHERE clause constructs from the abstract syntax
trees into their corresponding SPARQL algebra representations.

Appendix C contains information about the enclosed ZIP archive which
is also part of the delivery. This archive contains the produced source code
as well as a digital copy of this thesis. A digital copy of the unpublished
document “Developing a SPARQL parser for .NET” [4], cited in this thesis,
is also included.

1Freely available from http://musicbrainz.org/

2

http://musicbrainz.org/

Chapter 2

Background

RDF has quite a versatile data model, suitable for representing data in a
number of applications. Using schemas, application-specific vocabularies
may be defined. SPARQL is a comprehensive query language designed
specifically for querying RDF data. SPARQL includes several common
query language features as well as introducing new ones specific to the
RDF data model.

The Mars search engine combines database and search engine technol-
ogy. While the engine does not follow the RDBMS paradigm, relational
structures may still be emulated.

2.1 RDF

The Resource Description Framework (RDF) [1] is a specification for de-
scribing resources on the Web, usually in context of the Semantic Web [5].
Few restrictions apply to the data describing the resources, making RDF
suitable for a number of applications.

RDF data constitutes a directed, labeled graph, usually materialized as
triples, consisting of a subject, a predicate and an object. Triple elements
may all be identified using URIs1. Whether or not a URI actually resolves
to a retrievable Web resource, however, is of little or no interest as the sole
purpose of the URI is to serve as a unique identifier.

2.1.1 Data Model

The RDF data model is based on triple entities, consisting of a subject, a
predicate and an object. The subject and object each correspond to a node,

1Strictly speaking, in the context of RDF and SPARQL, the term URI always refers to In-
ternationalized Resource Identifiers (IRIs), a generalization of the Uniform Resource Iden-
tifier (URI), which may contain characters form the Universal Character Set (Unicode/ISO
10646).

3

and the predicate corresponds to the directed arc from a subject to an object
node, in the directed, labeled RDF graph formed by the data.

A subject node is identified by a URI, an object node either by a URI or
by a literal, and a predicate arc by a URI as well. A subject or object node
may, however, be used without any identification at all, in which case it
is referred to as a blank node. Blank nodes serve as anonymous resources
that are not uniquely identifiable. In order to distinguish blank nodes from
one another, they are assigned labels which are only required to be unique
within the context where the triples reside.

Using blank nodes, an RDF graph may express properties of a resource
typically not identifiable by a URI. Blank nodes are consequently ideal for
representing structured property values, that is, properties like dates and
addresses that can be decomposed into smaller parts.

When representing structured property values, one could make each
property component properties of the subject. A better solution, however,
would be to introduce an intermediary node representing the structured
property value and make each property component a property of that node.
Such an intermediary node having its value represented by its properties
typically has no need for any identification and could very well be a blank
node.

Figure 2.1 shows a sample RDF graph illustrating the concepts of the
RDF data model. Arrows represent predicates and point from a subject to
an object. Note that a single resource can appear as subject of some predi-
cates and object of other predicates. The figure depicts some properties of
the rock band “U2”. A blank node labeled collection is used to represent the
list of albums created by the band, which is a structured property value.
Further, this blank node has edges to every album, which consequently has
their own properties.

Formally, an RDF triple may be defined as follows:

Definition 2.1 (RDF Triple). Given a set of URI references R, a set of blank
nodes B, and a set of literals L, a triple (s, p, o) ∈ (R∪B)×R× (R∪B ∪ L) is
called an RDF triple.

RDF has no built-in set of data types2, making literals untyped unless
otherwise specified. Literal data types may be specified using data type
URIs. As with resource URIs, the data type URI only serves as a unique
identifier for the data type. It is still entirely up to the application interpret-
ing the RDF data to decide which semantics to employ.

2According to [1] RDF has indeed a built-in data type http://www.w3.org/1999/02/22-rdf-
syntax-ns#XMLLiteral for representing XML literals. It is still up to the application in ques-
tion, however, to determine how to interpret the RDF data.

4

http://music.org/artist/a3cb23fc

"Irish rock band"

http://purl.org/dc/elements/1.1/comment

"U2"

http://purl.org/dc/elements/1.1/title

_:collection

http://music.org/#albumList

http://music.org/album/19fb4543

http://music.org/album/3cef327d

http://www.w3.org/1999/02/22-rdf-syntax-ns#_1

http://www.w3.org/1999/02/22-rdf-syntax-ns#_2
”Boy”

http://purl.org/dc/elements/1.1/title

"The Joshua Tree”

http://purl.org/dc/elements/1.1/title

[more albums in list]

Figure 2.1: RDF Sample Graph

2.1.2 Schema

RDF is suitable for describing resources in a number of applications. Basi-
cally, every single resource that can be described by a set of properties and
their corresponding property values may be represented using RDF.

Some resources have properties with several property values, like a
book having several authors. Also, some properties may have a range of
possible, predefined values. RDF defines a number of vocabularies for rep-
resenting such properties.

In general, application-specific vocabularies may be defined using RDF
Schema [6]. RDF Schema itself defines no vocabularies; it simply provides
a way of defining them. The vocabularies are defined using RDF models,
analogous to how XML Schema vocabularies are defined using XML.

Using RDF Schema, application-specific classes of resources and prop-
erties defining the resources may be defined. A resource may be defined
as being a class, and further as being a subclass of some other class. A re-
source may also be defined as a property and its allowed values may be
constrained by a set of classes or by a typed literal. As with classes, a prop-
erty may also be a sub-property of another property. Finally, a property
may be defined as being in the domain of one or more classes, meaning it
is a property of those classes.

There are notable differences separating the class hierarchy represented

5

by an RDF Schema vocabulary and the class hierarchy of a typical object-
oriented programming model. Properties are independent of class defini-
tions and are, by default, defined in a global scope. Properties not defined
as being in the domain of any classes may be used to describe instances of
any class. The definition of such a property, however, is still independent
of the class instances it is used to describe. Changes made to the property
apply to all class instances it is used to describe rather than applying only
for a specific class instance.

Figure 2.2 shows a sample UML model and the corresponding RDF
Schema, serialized using Terse RDF Triple Language (Turtle) [7]. In the
sample, each line represents an RDF triple. The sample utilizes four pre-
fixes for reducing the triple element identifiers; an example prefix, ex, the
RDF and RDF Schema prefixes, rdf and rdfs, and the XML Schema prefix,
xsd.

The URI prefixes used in the sample schema and throughout this thesis
are defined as follows:

• rdf : http://www.w3.org/1999/02/22-rdf-syntax-ns#

• rdfs: http://www.w3.org/2000/01/rdf-schema#

• xsd: http://www.w3.org/2001/XMLSchema#

The schema starts off by defining three resources as being of the type
rdfs:Class, which is the RDF Schema class type. Next, the Artist class is de-
fined as being a subclass of the Person class, as depicted in the UML model.
Further, the XML Schema data type String is defined as an RDF data type.
All resources used as class properties are then defined as such, followed
by data type definitions for each property using the rdf:range predicate. Fi-
nally, a domain is defined for each property, effectively attaching its usage
to the specified class.

As stated earlier regarding resource and data type URIs, it is entirely up
to the application to decide how to interpret the RDF Schema as a whole.
The schema is, however, defining the semantics for the RDF data it is used
to describe, enabling inference of relationships between entities. This is
useful when interpreting the RDF data, especially when querying the data,
using query languages like SPARQL.

2.2 SPARQL

The SPARQL Query Language for RDF [2] is designed to express queries
against RDF data, based on the use cases and requirements identified by
the RDF Data Access Working Group [8]. Queries may span several RDF

6

+ title: [xsd:String]

Album

+ name: [xsd:String]

Person

+ artistName: [xsd:String]

ArtistcreatedBy

ex:Person rdf:Type rdfs:Class .
ex:Artist rdf:Type rdfs:Class .
ex:Album rdf:Type rdfs:Class .

ex:Artist rdfs:subClassOf ex:Person .

xsd:String rdf:Type rdfs:Datatype .

ex:name rdf:Type rdf:Property .
ex:artistName rdf:Type rdf:Property .
ex:createdBy rdf:Type rdf:Property .
ex:title rdf:Type rdf:Property .

ex:name rdfs:range xsd:String .
ex:artistName rdfs:range xsd:String .
ex:createdBy rdfs:range ex:Artist .
ex:title rdfs:range xsd:String .

ex:name rdfs:domain ex:Person .
ex:artistName rdfs:domain ex:Artist .
ex:createdBy rdfs:domain ex:Album .
ex:title rdfs:domain ex:Album .

UML

RDF

Figure 2.2: RDF Schema Sample

7

graphs and match both required and optional graph patterns using con-
junctions and disjunctions as well as value testing and constraining. Syn-
tactically, SPARQL is based on the Terse RDF Triple Language [7], and
shares many of the same language elements.

2.2.1 Graph Pattern Matching

A SPARQL query specifies a graph pattern which is matched against one or
more RDF graphs, forming an RDF data set. The data set always contains
one default graph and zero or more named graphs. The FROM keyword is
used to specify the RDF graphs to be merged into the default graph, and the
FROM NAMED keyword is used to specify the named graphs. The GRAPH
keyword is used to select the currently active graph used when matching a
graph pattern. If no graph is specified, the default graph is used.

A basic graph pattern contains a set of triples forming a graph pattern,
in which each element may be a variable instead of an URI or a literal.
Determining whether a graph pattern matches some subgraph, involves
first letting all pattern variables constitute the corresponding RDF triple
elements from the subgraph. If the resultant graph is equivalent to the
subgraph then the graph pattern matches the subgraph [2].

Graph patterns may be constructed as a combination of other graph pat-
terns. Using group graph patterns, multiple graph patterns may be specified
that all have to match. Also, optional graph patterns and alternative graph pat-
terns may be used to specify optional graph patterns and a set of alternative
patterns, respectively.

Graph patterns may contain blank nodes in the same way RDF triples
do. Blank node labels are scoped within a basic graph pattern. Thus,
reusing labels across basic graph patterns is prohibited.

Graph pattern matching, according to the SPARQL specification, only
supports simple entailment. Thus, RDF Schema is not necessarily sup-
ported by implementations following the SPARQL specification, as
described in Section 2.2.5.

2.2.2 Matching and Constraints

SPARQL is aware of the data types present in the RDF data. Integers, dec-
imals, doubles and booleans may be specified in a shortened form which
is translated into its full form during interpretation. The shortened form for
integers is simply their digits, without enclosing quotation marks. The full
form representation for an integer 42, however, would be
"42"ˆˆxsd:integer. Other data-typed literals have to be specified in
their full form.

During graph pattern matching, literal values may be tested using spec-
ified filters in addition to simply comparing URIs and potentially data-

8

@prefix a: <http://music.org/artist/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

a:a3cb23fc dc:comment "Irish rock band"@en .
a:a3cb23fc dc:comment "Irsk rockegruppe"@no .
a:a3cb23fc dc:comment "Irsk flokk av rockemusikantar"@no-NN .

Figure 2.3: RDF Sample Data

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?comment
WHERE { ?s dc:comment "Irish rock band"@en .

?s dc:comment ?comment .
FILTER langMatches(lang(?comment), "no") }

Figure 2.4: SPARQL Sample Query

typed literal values. Strings may be tested using regular expressions, and
numeric values may be compared arithmetically. SPARQL offers filter us-
age for several XML Schema data types, including xsd:boolean and
xsd:dateTime. SPARQL also defines a set of filter functions for testing
whether a query variable is bound or whether triple elements are URIs,
blank nodes, literals and so on.

Figures 2.3 and 2.4 show some sample RDF data and a sample SPARQL
query. The RDF data simply consists of a set of comments for the rock
band featured in Figure 2.1, using language tags for expressing different
language versions of the comments. The SPARQL query specifies a single
group graph pattern consisting of two basic graph patterns and a filter. The
first basic graph pattern specifies that the comment of some variable node
?s should be "Irish rock band"@en, whereas the second one simply defines
the ?comment variable as a mapping to the comment property values for
the same variable node. Finally, the filter contains an expression specifying
that the comment property value matching the ?comment variable should
have an no language tag.

When the sample query is evaluated, the first two basic graph patterns
are equi-joined on the ?s variable. If no common variables existed, the re-
sult would be the Cartesian product. Next, the results from the join are fil-
tered according to the filter condition, and finally a projection is performed.
Altogether, the query finds all Norwegian comments for resources having
an English comment of “Irish rock band”.

2.2.3 Query Results

A query may have zero, one or multiple solutions, depending on whether
the query graph pattern matches the RDF graph(s). Also, the solutions may

9

not have any specific order. A single solution represents one way in which
the query variables constitute the corresponding RDF triple elements. As
all possible solutions are given, queries including several variables may
potentially result in quite large result sets.

A result set may contain blank nodes, whose labels are scoped to the
result set. Two blank nodes sharing the same label, are in fact the same
blank node. A blank node may, however, be labeled differently in different
result sets. Thus, one should not expect blank node labels in a result set to
refer to particular blank nodes in the RDF data.

SPARQL defines a set of sequence modifiers, or operators, altering the
solution sequence in some way, most of which are familiar from SQL-like
query languages. The order, projection, distinct, offset and limit modifiers
alter the order of solution elements, selects the variables to be returned, en-
sures element uniqueness, sets the offset for the solution
sequence and limits the number of elements returned, respectively. In ad-
dition, there exists a reduced modifier that simply allows for element unique-
ness without enforcing it.

Regarding the order modifier, SPARQL has a set of rules for how the
ordering should be performed. The different classes of result values are
ordered relative to each other as follows, from lowest to highest. [2]

1. No value assigned to the variable.

2. Blank nodes

3. Resource URIs

4. RDF literals

5. Data-typed RDF literals

This means that, in an ascending order, the resource URI “http://z.com/”
appears before the RDF literal “http://a.com/”.

Values within the first four classes are sorted lexicographically. Data-
typed RDF literals are sorted according to the semantics of the data type, if
such semantics exist. Otherwise, lexicographic ordering is used.

2.2.4 Alternative Query Forms

In addition to regular SELECT queries described so far, SPARQL defines
three additional query forms. In this thesis, however, the primary focus
will be directed at SELECT queries.

CONSTRUCT queries construct an RDF graph by substituting variables
in a set of triple templates forming a graph template. ASK queries simply
return a boolean indicating whether or not a query graph pattern matched.
Finally, DESCRIBE queries return an RDF graph describing the resources
found.

10

2.2.5 Lack of Schema Support

The SPARQL specification describes how basic graph patterns should be
matched using simple entailment, and simply states conditions that solu-
tions supporting more elaborate forms of entailment should satisfy. The
query language itself, however, is expressive enough as is, and the actual
level of entailment supported only really depends on the specific imple-
mentation.

The SPARQL keyword a is syntactic sugar for the predicate rdf:Type
from the RDF prefix rdf, and is used to describe the data type of a resource,
as shown in Figure 2.2. In a standard implementation supporting only sim-
ple entailment, subjects and objects related through the rdf:Type predicate
may be identified directly as they are defined in the very same RDF triple.
Inferring relations in the class hierarchy, however, like that an instance of
the Artist class is also an instance of the Person class in the schema sample,
is not possible without implementing a more elaborate form of entailment,
interpreting the RDF schema and evaluating the semantics it defines.

As iAD focuses on schema-agnostic indexing services, the matter of
schema support in SPARQL will not be discussed any further [3].

2.2.6 Base and Prefixes

URIs are essential in RDF and SPARQL. URIs tend to be very verbose. To
compensate for this, the SPARQL specification defines the BASE and PRE-
FIX keywords. A query may declare at most one base URI and an arbitrary
amount of named prefix URIs. The base URI, if specified, is used as a prefix
for all relative URIs used in the query. Prefix URIs may be referenced by
their names when specifying URIs in the query. This reduces verbosity and
redundancy when the very same prefix is used for several URIs.

As an example, a music metadatabase may identify artists by the URI
pattern http://music.org/artist/artist-id. All these identifiers share a common
prefix. By specifying this prefix as the base URI in the prologue of the
SPARQL query, any references to relative URIs will be treated as suffixes to
this URI. Figure 2.5 shows two equivalent queries, illustrating the use of a
base specification.

Similarly, the database may use http://music.org/album/album-id as the
URI pattern to identify albums. Specifying two bases would introduce a
conflict. Instead, the prefixes can be specified as named prefixes in the
query prologue using the PREFIX keyword. Figure 2.6 shows two equiva-
lent queries, illustrating the use of prefix specifications.

Base and prefix specifications may also be combined. This allows for
relative prefixes, interpreted as suffixes to the base declaration. This is il-
lustrated in the query in Figure 2.7, which is equivalent to the queries in
Figure 2.6.

11

BASE <http://music.org/artist/>
SELECT * { <a3cb23fc> ?p "U2" }

m

SELECT * { <http://music.org/artist/a3cb23fc>
?p
"U2" }

Figure 2.5: Specifying a Base to Decrease Verbosity

PREFIX artist: <http://music.org/artist/>
PREFIX album: <http://music.org/album/>
SELECT * { artist:a3cb23fc ?p album:3cef327d }

m

SELECT * { <http://music.org/artist/a3cb23fc>
?p
<http://music.org/album/3cef327d> }

Figure 2.6: Specifying Named Prefixes to Decrease Verbosity

BASE <http://music.org/>
PREFIX artist: <artist/>
PREFIX album: <album/>
SELECT * { artist:a3cb23fc ?p album:3cef327d }

Figure 2.7: Combining Base URI With Named Prefixes

12

(:a :b :c)

⇓

_:b1 rdf:first :a .
_:b1 rdf:rest _:b2 .
_:b2 rdf:first :b .
_:b2 rdf:rest _:b3 .
_:b3 rdf:first :c .
_:b3 rdf:rest rdf:nil

Figure 2.8: SPARQL Syntactic Sugar for Lists

2.2.7 Syntactic Sugar

The SPARQL grammar defines several syntactic sugar constructs, being a
special shorthand notation of expressing constructs that are typically some-
what cumbersome to express using the full notation. As mentioned,
SPARQL supports a handful of RDF data types in shortened form, often re-
ferred to as syntactic sugar. For instance, numeric data types like integers,
decimals and doubles may be expressed directly in their mathematical no-
tation, having their full data types appended during interpretation.

Lists

In addition to syntactic sugar for data types, syntactic sugar for constructs
like lists and triples sharing subjects also exists. Figure 2.8 shows a simple
list consisting of three elements expressed in SPARQL using syntactic sugar
and the corresponding core language representation. The core language
representation is a linked list of blank nodes, one per list element, _:b1, _:b2
and _:b3. Each blank node points to the corresponding list element and
to the next element’s blank node. The blank node representing the first
element also represents the entire list. Finally, the list is terminated by the
rdf:nil resource.

Shared subject triple lists

Triples sharing the same subject may be expressed using syntactic sugar.
Figure 2.9 shows six triples all sharing the same subject and some even the
same predicate, along with the corresponding core language representa-
tion. The expression always starts off with a complete triple followed by
a series of partial triples. Partial triples starting with a comma share both
the subject and predicate with the preceding triple, whereas those starting
with a semi-colon share only the subject.

13

:a :b :c , :d , :e ; :f :g ; :h :i , :j

⇓

:a :b :c .
:a :b :d .
:a :b :e .
:a :f :g .
:a :h :i .
:a :h :j

Figure 2.9: SPARQL Syntactic Sugar for Triples Sharing the Same Subject.

[:b :c , :d , :e ; :f :g ; :h :i , :j]

⇓

_:b1 :b :c .
_:b1 :b :d .
_:b1 :b :e .
_:b1 :f :g .
_:b1 :h :i .
_:b1 :h :j

Figure 2.10: SPARQL Syntactic Sugar for Blank Node Property Lists

Blank node property lists

A variant of the triples sharing the same subject is blank node property
lists. A blank node representing the property list itself becomes the shared
subject for the list items, and the explicit shared subject declaration is omit-
ted. If no item list is specified, however, only the blank node representing
the property list is produced. Since a property list ends up being repre-
sented by a blank node, the list may be used as subject or object in triples,
or as elements in lists and other constructs. Figure 2.10 shows a property
list closely resembling the shared subject list in Figure 2.9, along with the
core language representation. The shared subject is omitted from the list,
however, and an induced blank node representing the blank node property
list becomes the shared subject.

Combined Sample

Syntactic sugar constructs may of course be combined, and the different
combinations quickly become rather complicated. For instance, lists may
be used as a subject or object triple element, lists may contain other lists as
well as blank node property lists.

Figure 2.11 shows a query combining syntactic sugar constructs, along
with the core language representation. The order of the triples is insignifi-

14

:a :b :c ; :d [:e :f; :g (:h :i :j) , :k] , :l

⇓

_:b1 rdf:first :h .
_:b1 rdf:rest _:b2 .
_:b2 rdf:first :i .
_:b2 rdf:rest _:b3 .
_:b3 rdf:first :j .
_:b3 rdf:rest rdf:nil .

_:b4 :e :f .
_:b4 :g :_b1 .
_:b4 :g :k .

:a :b :c .
:a :d _:b4 .
:a :d :l

Figure 2.11: SPARQL Combined Syntactic Sugar

cant, and has been chosen to promote readability. The inner-most construct
transformations are listed first, starting off with the list containing the ele-
ments :h, :i and :j, identified by the blank node _:b1. Following is the blank
node property list, identified by the induced blank node _:b4, referencing
the inner list. Finally is the shared subject triples list, referencing the blank
node property list.

2.3 The Mars Search Engine

This section discusses the peculiarities of Mars, particularly its operators
and index types. Graphs of Mars operators are a commonly used represen-
tation of Mars algebra.

2.3.1 Query Evaluation

Query evaluations in Mars operate on directed acyclic graphs, where each
node in the graph is an operator. For example, searching for “ntnu trond-
heim” might produce the operator graph shown in Figure 2.12. The flow
between nodes consists of records containing a document identifier and
other fields, such as position within the document and the scope within the
document where a term occurs.

A number of operators exist for fetching records from different indices.
The Lookup operator examines an inverted index for records meeting a cer-
tain search criteria, while the Scan operator reads the records of an index
sequentially. Yet another index access operator exists, called Value, which
merges incoming records with records from a given index.

15

Lookup(”trondheim”)Lookup(”ntnu”)

MergeJoin(DocID)

DocID, Position, Scope

Trim(10)

Figure 2.12: A Mars Operator Graph for the Search Term “ntnu trondheim”

2.3.2 Important Mars Operators

When creating operator graphs for Mars, a large amount of operators are
available. The most important of these are described briefly below. The
input for an operator describes the operator parameters and any incoming
record sets, while the output for an operator describes the outgoing record
set.

Lookup

The Lookup operator performs a direct lookup in an inverted index. By
specifying an index, a search term and optionally a scope, records from the
index meeting the criteria will flow to the operator’s parent.

Input: Index name, search term and optionally scope parameters.
Output: Records from the index meeting the criteria of the input pa-

rameters.

Select

The Select operator investigates records flowing into it, and only relays
records meeting specified criteria. This allows for filtering of records.

Input: Filter parameter, and records from the preceding operator(s).
Output: Records from the input meeting the filter criteria.

Map

The Map operator takes records from its input flow and maps their data
to the output records based on a set of parameters. Record fields are re-
defined, with fields from the incoming records optionally retained. New

16

fields may be introduced as well, whose values are defined by expressions
that may contain other fields.

Input: Mapping parameters, and records from a single, preceding op-
erator.

Output: Records from the input, with fields reorganized according to
the input parameters.

MergeJoin

The MergeJoin operator performs multiway equi-joins on all its inputs using
the merge join algorithm. A prefix parameter specifies the number of initial
record fields to be used as the join key. Note that when the prefix is set to
0, the output is the Cartesian product of its inputs.

Input: Join prefix parameter, and records from the preceding opera-
tors.

Output: Records from the inputs, joined based on the join prefix param-
eter.

Trim

The Trim operator limits the amount of records from its input to its output.
An offset parameter specifies the amount of records to skip from the input
before producing output, while a hits parameter specifies the maximum
number of records to include in the output.

Input: Offset and hits parameters, and records from a single, preced-
ing operator.

Output: After discarding the specified amount of records according to
the offset parameter, the amount of records specified by the
hits parameter are passed directly from input to output.

Sort

The Sort operator produces a sorted output from its input. The fields to
sort on are specified explicitly. It is also possible to specify trim and offset
parameters directly on the Sort operator, rather than relying on the Trim
operator.

Input: A list of sort definitions, and records from a single, preceding
operator.

Output: Records from the input ordered according to the sort defini-
tions.

17

ProjectDistinct

The ProjectDistinct operator will, given a sorted input, produce only distinct
records in its output. A prefix parameter specifies the number of initial
record fields that have to be equal in order for a record to be considered a
duplicate.

Input: A prefix parameter, and records sorted on the prefix from a
single, preceding operator.

Output: Records from the input, with duplicates removed based on the
prefix.

Union

The Union operator will produce the union of the records from its inputs,
optionally eliminating any duplicates.

Input: A union type parameter, and records from the preceding oper-
ators.

Output: The union of the records from the inputs.

2.3.3 Indices in Mars

The Lookup and Scan operators operate on inverted indices. Each word of
the lexicon translates into a list of records identifying the document and
location within the document where the word appears. For structured doc-
uments, structure elements may also be part of the lexicon. Four general
types of index records exist:

• DocID, Position, Scope

• DocID, Position

• DocID, Value, Scope

• DocID, Value

DocID uniquely identifies the document containing the word. Position is
the location of the word within the document, counting whole words. Scope
is used in structured documents to denote where in the structure the word
appears, as shown in Figure 2.13. Value is used when the Lookup operator
is used to search for structure elements rather than words. In this case, the
Value part of the record denotes the content of the structure element.

Assuming a [DocID, Position, Scope] based index on the example XML
document from Figure 2.13, some example entries in the inverted index,
assuming DocID 1, are:

18

<a>

 ntnu

 <c>
 trondheim
 </c>

context: /a[1]/b[1]

context: /a[1]/b[2]/c[1]

Figure 2.13: Context of Terms in a Structured Document

• ntnu→ 1, 1, /a[1]/b[1]

• trondheim→ 1, 2, /a[1]/b[2]/c[1]

• $a→ 1, 1, /a[1]

• $b→ 1, 1, /a[1]/b[1] , 1, 1, /a[1]/b[2]

$x denotes the structural element named x. Similarly, a [DocID, Value]
based index on the same document would include these entries:

• $b→ 1, “ntnu” , 1, “<c>trondheim</c>”

• $c→ 1, “trondheim”

While Mars does not follow the RDBMS paradigm, relational structures
can still be emulated. A table with n fields can be represented by a set of
XML documents containing one row each, where each non-NULL field is
represented by an XML element. Restoring the table is a matter of perform-
ing n lookup operations, fetching the elements corresponding to the fields,
and joining the results from each lookup-operation on the DocID field. The
result of this join operation is a set of [DocID, Field1, . . . , FieldN] records,
one for each row.

19

20

Chapter 3

Parsing and Syntax Trees

The process of parsing involves analyzing tokens from some source lexi-
cally, syntactically and semantically based on a formally specified gram-
mar. The result of parsing is typically a grammatical structure called an
abstract syntax tree (AST). The AST may be translated into executable code,
relational algebra and so on. Figure 3.1 shows the data flow of a typical
parser.

3.1 Theory

The SharQL Parser was developed as a part of an academic project at the
Department of Computer and Information Science (IDI) at the Norwegian
University of Science and Technology (NTNU) in the autumn of 2008 [4].
In the parser project, the MPLex and MPPG scanner and parser generators
that are part of the Microsoft Managed Babel package [9], were used to cre-
ate a bottom-up, LALR parser based on the W3C SPARQL specification [2].

The output of the parser is an abstract syntax tree representing the struc-
ture of the parsed SPARQL query. This AST can then be interpreted or
transformed into other representations. The nodes and structure of the AST
closely resemble the structure of the SPARQL grammar as described in [2].

3.1.1 Context-Free Grammars

Grammars are used to specify the syntax of languages, like the SPARQL
grammar specifies the syntax of the SPARQL query language. The gram-
mar used to specify the SPARQL query language is called a context-free
grammar, reflecting the characteristics of the language.

A context-free grammar consists of a set of terminal symbols, a set of
nonterminals, a set of productions and a designation of one nonterminal as
the start symbol. Terminal symbols are literal strings defining elementary
symbols of the language, often referred to as tokens. Nonterminals each

21

Lexical Analysis

Syntax Analysis

Semantic Analysis

Source

Compile/Interpret/
Translate

Character Stream

Token Stream

Abstract Syntax Tree

Abstract Syntax Tree

Output
(machine code / rel. alg. / …)

Parser

Figure 3.1: Parser Data Flow

22

list1 ::= list_item*
list2 ::= list_item+
list_item ::= OPTIONAL_PART? REQUIRED_PART

⇓

list1 ::= list_tail
list2 ::= list_item list_tail
list_tail ::= list_item list_tail | ε
list_item ::= REQUIRED_PART | OPTIONAL_PART REQUIRED_PART

alternatively :
list_item ::= optional_part REQUIRED_PART
optional_part ::= OPTIONAL_PART | ε

Figure 3.2: EBNF Sample Rules and Corresponding BNF Representation

represent a set of strings of terminals. A production is on the form V→ w,
where V is a nonterminal and w is a sequence of terminals and/or nonter-
minals. [10]

Backus-Naur Form (BNF) is a syntactic metalanguage for formally defin-
ing the syntax of formal definitions like programming language defini-
tions. BNF is limited, however, to defining context-free grammars. Ex-
tended Backus-Naur Form (EBNF) is an extended version of BNF, introducing
a set of extensions that ease writing and improve readability. [11]

The extensions introduced by EBNF most relevant to the SPARQL gram-
mar are the modifiers ? (zero-or-one), * (zero-or-more) and + (one-or-more).
Consider the productions in Figure 3.2. Two types of lists are specified, one
that can be empty, and one that can not be empty. Further, list items have
an optional part and a required part. The ::= operator corresponds to
the → operator used to denote productions in context-free grammar defi-
nitions.

BNF lacks the aforementioned modifiers. Thus, to describe the same
grammar using BNF, some translation is needed. The * and + modifiers
from EBNF are achieved recursively in BNF, shown in the list_tail rule. The
? modifier is achieved either by enumerating all legal combinations of re-
quired and optional elements, or by introducing a new non-terminal which
may produce the optional part or the empty string (denoted by ε).

3.1.2 Common Parsing Techniques

There are two common types of parsing techniques; top-down and bottom-
up parsing [10]. Top-down parsing consists of constructing a parse tree
starting from the root and creating the subordinate nodes in a depth-first
manner. Top-down parsing involves finding the left-most derivation of the
input string, and the class of grammars represented by such parsers is of-
ten called LL(k), where k is the number of lookahead symbols used. Two

23

common top-down parsing techniques are recursive-descent parsing and non-
recursive predictive parsing.

Bottom-up parsing involves creating the parse tree by beginning at the
leaves and working up towards the root. Bottom-up parsing finds the right-
most derivation of the input string, and the class of grammars represented
by such parsers is often called LR(k), with some variants available, such
as lookahead-LR (LALR). Shift-reduce parsing is a common bottom-up parsing
technique, involving pushing input symbols onto a stack until the top-most
sequence of symbols can be identified as a non-terminal production rule
that may be reduced.

Further information on common parsing techniques may be found in
[10].

3.1.3 Parser Generators

Crafting a parser by hand may turn out to be quite an extensive task for
grammars defining an entire query language, like SPARQL. A number of
parser generators exist, however, that, provided some specification, generate
the source code for an entire parser.

The lexical analysis part of the parser work flow is often taken care of by
a separate scanner that serves well-defined tokens to the other parser pro-
cesses. A separate specification for the scanner usually has to be provided
for a scanner generator. Token definitions are typically shared between the
two specifications. Figure 3.3 shows the relationship between the scanner
and parser specifications and generators.

Scanner and parser specifications are typically defined in a BNF-like
representation. The generated scanner and parser code may be modified
directly, but ideally the specification is tailored to produce the desired
source code without having to modify the code itself.

A number of parser generators exist, covering multiple programming
languages and parsing techniques. The parser generators are further dis-
cussed in [4].

3.1.4 Abstract Syntax Trees

An abstract syntax tree (AST) is a hierarchical representation of an input
source. ASTs are constructed by parsers and often used as intermediate
representations in the process of compiling or evaluating source code. [10]

ASTs can represent more than queries and computer source code. Con-
sider the calculus expression 1×2×3 + 6÷2. Basic calculus rules state that
the × and ÷ operators have precedence over the + operator. Also, all these
operators are left-associative. Factors like operator precedence and asso-
ciativity affect the syntactic structure of the expression. While these factors

24

Scanner Specification Parser Specification

Scanner Generator Parser Generator

Parser
(source code)

Scanner
(source code)

Token List

Figure 3.3: Parser Generation
 +

 ×

 ÷

1 2

6 2

 ×

3

Figure 3.4: AST for the Calculus Expression 1× 2× 3 + 6÷ 2

are impossible to deduce from the textual representation of the expression,
they are easily identified in an AST.

A calculus expression parser in conformance with these basic rules
would produce an AST similar to that in Figure 3.4 for this particular ex-
pression. This AST is equivalent to the explicit representation (((1 × 2) ×
3) + (6÷ 2)).

For computer source code or complex SPARQL queries, ASTs tend to
grow very large, easily beyond the point of comprehensibility when visu-
alized. Thus, AST examples in this thesis will often show only the relevant
parts of the tree, just enough to illustrate a point.

3.1.5 Tree Traversal using the Visitor Pattern

Tree traversal is an essential operation when it comes to handling ASTs.
Most operations on the AST involve tree traversal, like translating the tree
to another representation. Depending on how trees are represented in vari-
ous programming languages, different techniques may be used to traverse

25

+ Accept(visitor:IVisitor)

«interface»

INode

+ this[nodeType: string]: Action<INode>

«interface»

IVisitor

+ Accept(visitor:IVisitor)

Node

+ this[nodeType: string]: Action<INode>

Visitor

Figure 3.5: Visitor Pattern

them. Several methods exist, however, that are independent of how the
trees are represented.

A common method for achieving reasonable tree traversal is the Visi-
tor pattern, which separates the traversal algorithm from the data structure
used to represent the tree. The pattern allows for defining new operations
on the elements of an object structure without changing the classes of the
elements on which it operates [12].

Figure 3.5 shows how the Visitor pattern is typically realized, repre-
sented by a C# class diagram. The this[...] statement represents a
read-only indexer. An indexer basically corresponds to a single-parameter
getter method in terms of conventional object oriented programming.

The INode interface offers an Accept method taking one argument, being
a visitor implementing the IVisitor interface. The IVisitor interface defines
an indexer property returning an Action delegate1 given the type of the
node supplied. The Node class implementation calls the Accept method on
all child nodes, before finally calling the Action delegate returned by the
supplied visitor with itself as the argument. Depending on the specific vis-
itor implementation, a delegate performing some operation on the node is
returned. If the visitor is only looking for some special node type, however,
a delegate performing no operation may be returned. Figure 3.6 shows the
initial part of the dispatch sequence.

3.2 Parsing SPARQL

W3C specifies the SPARQL grammar using an EBNF based notation [13].
Since the MPLex and MPPG scanner and parser generators are two sepa-
rate entities, the grammar must be split into a scanner part and a parser

1A delegate is a reference to a method. For further information, see http://msdn.
microsoft.com/en-us/library/900fyy8e.aspx.

26

http://msdn.microsoft.com/en-us/library/900fyy8e.aspx
http://msdn.microsoft.com/en-us/library/900fyy8e.aspx

aNodeaClient

aVisitor
new

Accept(aVisitor)

aVisitor[type:string]

anAction: Action<INode>

IVisitor

INode

anAction(aNode)

Figure 3.6: Visitor Pattern Delegate Dispatch

part. Further, the generators do not support specifying grammars directly
using EBNF. Instead the grammar must be specified using specification lan-
guages closely resembling the BNF-based Lex and Yacc [14] specification
languages.

These specification languages lack many of the extensions of EBNF, re-
quiring several measures to be taken in the translation of the grammar, as
described in Section 3.1.1.

3.2.1 The Scanner Specification

The grammar tokens are defined in the scanner specification using regular
expressions. Each token that should be returned to the parser also defines a
belonging snippet of code for returning the corresponding token enumer-
ation item recognized by the parser. Additionally, helper tokens used to
build other tokens may be defined, to avoid repeating regular expressions.

Order of declaration

Token declaration order is of significance and must be taken into account.
During token matching, the scanner will attempt to match the longest token
possible. If there is a tie between two or more tokens, the one defined first
is returned to the parser.

For the SPARQL grammar, however, the declaration order is not an is-
sue. All tokens sharing a common prefix differ in length, thus a tie will
never occur.

27

WhereClause ::= 'WHERE'? GroupGraphPattern

⇓

WhereClause
: WHERE GroupGraphPattern
{
...

}
| GroupGraphPattern
{
...

}
;

Figure 3.7: SPARQL Grammar Conditional Symbol Sample

3.2.2 The Parser Specification

The grammar rules are declared in the parser specification. A rule defines
one or more belonging productions. A non-empty production defines a
belonging snippet of code returning either a token value or an AST node to
its superior production. Any empty production makes the rule optional.

Grammar Constructs

The modifiers *, + and ? are absent in the BNF-based parser specification
language, and must be realized as discussed in Section 3.1.1. Figure 3.7
shows a production from the SPARQL grammar specification containing a
conditional grammar symbol, namely the WHERE keyword. In this spe-
cific case an additional production not specifying the WHERE keyword is
specified.

Declaration of lists of grammar symbols (one-or-more and zero-or-more
instances) requires the introduction of a replacement rule, allowing for a
recursive list of grammar symbols to be constructed during parsing. Figure
3.8 shows the realization of the DataSetClause* zero-or-more instances list
using the recursive list rule DataSetClauseList. The rule may result in an
empty production (zero instances) or a production consisting of the non-
terminals DataSetClause and DataSetClauseList (more instances).

Conflicts

MPPG generates shift-reduce parsers, consisting of a stack holding gram-
mar symbols and an input buffer holding the rest of the input string to be
parsed. The parser shifts input symbols onto the stack until it is ready to
reduce a string of grammar symbols on the top of the stack into a superior
grammar production. This process is repeated until an error is detected or

28

ConstructQuery ::= 'CONSTRUCT' ConstructTemplate
DatasetClause* WhereClause
SolutionModifier

⇓

ConstructQuery
: CONSTRUCT ConstructTemplate DatasetClauseList WhereClause

SolutionModifier
{

...
}
;

DatasetClauseList
: DatasetClause DatasetClauseList
{

...
}
| /* empty */
{

...
}
;

Figure 3.8: SPARQL Grammar List Symbol Sample

until the stack contains the predefined grammar start symbol and the input
is empty. [10]

Two types of conflicts may occur during shift-reduce parsing: shift/re-
duce conflicts and reduce/reduce conflicts. Shift/reduce conflicts occur
when the parser can not decide whether to shift input symbols onto the
stack or to reduce grammar symbols on top of the stack. Reduce/reduce
conflicts occur when the parser can not decide which superior production
to reduce the grammar symbols on top of the stack into. The former conflict
type typically occurs as a result of an ambiguous grammar, and is critical.
The latter type easily occurs when creating the parser specification from a
grammar specification like that of SPARQL, because of the required rewrit-
ing from an EBNF-based grammar to a BNF-based grammar.

Figure 3.9 addresses a reduce/reduce conflict encountered in translat-
ing the SPARQL grammar specification into parser grammar productions.
In this specific case, both the Prologue and PrefixDeclList rules contain an
empty production. In the context of a Prologue grammar rule, whenever
the parser encounters an empty input string, it cannot decide whether to
reduce the empty production to a PrefixDeclList rule or to a Prologue rule.

This reduce/reduce conflict may be prevented simply by removing the
empty production belonging to the Prologue rule, since a Prologue rule may
still produce an empty production via the PrefixDeclList rule.

29

Prologue
: BaseDecl
{
...

}
| BaseDecl PrefixDeclList
{
...

}
| PrefixDeclList
{
...

}
|
{ /* empty */ }
;

PrefixDeclList
: PrefixDecl PrefixDeclList
{
...

}
|
{ /* empty */ }
;

Figure 3.9: SPARQL Grammar Reduce/Reduce Sample

3.2.3 The Abstract Syntax Tree

Abstract syntax trees, described in 3.1.4, are constructed during parsing
to represent the SPARQL queries. The productions defined in the parser
specification contain code snippets for instantiating AST nodes of the ap-
propriate type for representing the corresponding language construct.

The node class types used in the AST are defined in a class hierarchy
closely resembling the syntactical constructs of the SPARQL grammar.

Class Hierarchy

An AST node is defined by a simple interface, INode, shown in Figure
3.10. This interface supports the construction of a tree structure, navigable
in both directions through the Parent and Children properties. The Accept
method is part of the Visitor interface, explained in Section 3.1.5.

Below the INode interface in the class hierarchy is the abstract class
NodeBase, shown in Figure 3.11. The complete implementation of Node-
Base is provided in Appendix A. The purpose of this class is to provide a
basic implementation of the INode interface. All its members are virtual,
allowing for subclasses to override them if necessary. Although this class
has no abstract members, it is marked as abstract to prevent instantiation,
and to allow for future abstract members.

30

+ Accept(visitor: IVisitor)

+ Parent: INode
+ Children: IList<INode>

«interface»

INode

Figure 3.10: The INode Interface

+ NodeBase()
+ NodeBase(children: NodeBase[])
+ Accept(visitor: IVisitor)

+ Parent: INode
+ Children: IList<INode>

«abstract»

NodeBase

INode

Figure 3.11: The NodeBase Abstract Class

The public Parent and Children properties expose the protected parent
and children fields respectively.

NodeBase provides two constructors. The default parameterless con-
structor makes sure the children field is initialized as an empty collection,
while a second constructor allows for initializing the children field with ini-
tial NodeBase objects.

The Children property of NodeBase is exposed as an IList<INode> in-
terface, and implemented as a custom NodeCollection class. This class is
marked as internal and is thus not exposed by the API. A custom IList im-
plementation was chosen over the standard ones to allow for customiza-
tion.

The concrete AST classes all reside in the SharQL.Ast.Nodes namespace.
Ultimately, they are all descendants of NodeBase and thus implement the
INode interface.

3.3 The Parser Facade Class

The MPLex and MPPG tools generate a scanner and a parser, respectively.
In order for the end-user to perform any parsing, a scanner and a parser
have to be instantiated, and the parser has to be made aware of the exis-
tence of the scanner instance in order to read its output. The scanner, in
turn, needs to know what input to tokenize.

To encapsulate all this plumbing, a parser facade class, as shown in

31

+ Parse(source: string) : bool
+ Parse(source: string, offset: int) : bool

+ Errors: Collection<Error> {readOnly}
+ AstRoot: INode {readOnly}

Parser

Figure 3.12: The Parser Facade Class

Figure 3.12, has been developed. The intention of this class is to let the
end-user instantiate it once, and make successive calls to one of its Parse
methods without needing to have a notion of a scanner at all. When a
parsing succeeds, the resulting AST is made available through the AstRoot
property. Additionally, the parser facade reports any errors that may occur,
through its Errors property.

A UML sequence diagram showing parser facade class operation dur-
ing parsing is shown in Figure 3.13.

Using the SharQL Parser is straight-forward. The Parser class resides
in the SharQL namespace, and is instantiated and used as shown in Fig-
ure 3.14. The Parse method of the Parser class returns true only if the input
query was successfully parsed. The abstract syntax tree can then be ac-
cessed from the parser’s read-only property AstRoot. This property returns
an INode object representing the root node of the AST. The Parent and Chil-
dren properties can be used to traverse the AST manually, or the Visitor
pattern can be employed by providing the Accept method with an IVisitor
object.

32

:Parser

:ParsingEngine

new

new

:Scanner

Parse(source:string)
new

:SharQLError-
Handler

new

:Escape-
Sequence-
Resolver

ResolveCodepointEscapeSequences(source:string):string

unescapedSource:string

SetSource(unescapedSource:string)

Handler = :SharQLErrorHandler

scanner = :Scanner

Parse()

success ResolveCommonEscapeSequences()

Performed via a
visitor object that
only handles string
literal nodes.

true

error

false

AddError(:Error)

aClient

Figure 3.13: UML Sequence Diagram Showing Parser Facade Class Opera-
tion

33

string query = "SELECT ?var WHERE ...";
SharQL.Parser parser = new SharQL.Parser();
SharQL.Ast.INode astRoot = null;

try
{
if (parser.Parse(query))
{

astRoot = parser.AstRoot;
}

}
catch (Exception e)
{
// Report error

}

// Act on AST represented by astRoot

Figure 3.14: Using the SharQL Parser

34

Chapter 4

Storage Models

Efficiently storing and retrieving RDF data has been subject to a lot of re-
search. While the RDF data model is simply a set of triple statements, effi-
cient storage models are considerably more complex. Various approaches
have been proposed, each with its strengths and weaknesses. In this chap-
ter, the most relevant approaches are discussed, followed by a proposal for
a storage model, given the confinements of Mars.

As iAD focuses on schema-agnostic indexing services, only schema-less
approaches are considered [3].

4.1 Alternative Models

Various approaches to efficiently storing RDF data have been proposed.
This section discusses relevant, schema-agnostic alternatives which meet
different requirements in different scenarios.

4.1.1 General Triple Store

A general triple store is the basic naïve approach to storing RDF data. This
method stores every statement in a single three-column table as shown in
Table 4.1, cited from [15], usually in an RDBMS. Without further modifica-
tions, this approach is terribly slow, mainly because of the self-joins neces-
sary for even relatively simple queries. Because RDF puts no restrictions
on the size of URIs and literals, a straight-forward triple store is also very
space consuming.

No field or combination of two fields is guaranteed to be unique
throughout the triple store table. Hence, the primary key must consist of all
three fields. Applying secondary non-unique indices on each separate field
would improve efficiency when retrieving a triple through lookup on either
subject, predicate or object.

35

Subject Predicate Object
ID1 type BookType
ID1 title “XYZ”
ID1 author “Fox, Joe”
ID1 copyright “2001”
ID2 type CDType
ID2 title “ABC”
ID2 artist “Orr, Tim”
ID2 copyright “1985”
ID2 language “French”

ID3 type BookType
ID3 title “MNO”
ID3 language “English”
ID4 type DVDType
ID4 title “DEF”
ID5 type CDType
ID5 title “GHI”
ID5 copyright “1995”
ID6 type BookType
ID6 copyright “2004”

Figure 4.1: Triple Store Example

Storing potentially large URIs and literals directly in each row of the
triple store has several negative implications; rows can not be of fixed size
and the scalability degrades because of the space consumption. A common
way to solve this issue is to dictionary-encode all URIs and literals. Every
single URI and literal is stored in a separate table and assigned a unique
fixed-size identifier, usually a 64-bit integer. These identifiers are easily
computed through hashing or auto-incrementing.

By replacing all entries of a triple with fixed-size identifiers, the rows
of the triple-store become fixed-size as well. This results in remarkably less
overhead, because field length information no longer needs to be stored
for each and every row. In fact, dictionary-encoding URIs and literals this
way is so effective that every approach presented in this section, except the
graph store, uses this technique. Dictionary encoding is explained further
in Section 4.1.7.

4.1.2 Graph Store

Rather than having to reconstruct the relevant parts of an RDF graph in
main memory from a compatible RDBMS schema, [16] proposes that the
RDF graph itself is stored in an object-oriented DBMS. Their prototype,
OO-Store, is based on the object-oriented DBMS FastObjects and translates
queries from RQL to the query language OQL used by FastObjects.

OO-Store uses three types of objects, or classes, to represent the RDF
data. A base class, Values, contain a single outedges property map. Two sub-
classes, Resources and Literals, represent URIs and literals respectively. Each
key in the property map points to a list of Value objects, resulting in the
OODBMS storing the actual graph structure, rather than storing the RDF
data as triples. While the property map of URIs contains references to all
nodes that further describe the resource identified by the URI, the property

36

Property Table
Subject type title copyright

ID1 BookType “XYZ” “2001”
ID2 CDType “ABC” “1985”
ID3 BookType “MNP” NULL
ID4 DVDType “DEF” NULL
ID5 CDType “GHI” “1995”
ID6 BookType NULL “2004”

Left-Over Triples
Subject Object Property

ID1 author “Fox, Joe”
ID2 artist “Orr, Tim”
ID2 language “French”
ID3 language “English”

Figure 4.2: Property Table Example

map of literals are typically only used to store any data type information.
If object-oriented storage is available, storing RDF data as a graph in

this way makes sense. Evaluating path queries is then a matter of following
edges of the object graph, rather than requiring joins of relational tables.
The performance gain is not significant, however. In fact, [16] states that
the main advantage of its approach is the close relationship between the
query languages OQL and RQL, simplifying the translation process.

4.1.3 Property Tables

RDF data often describes several properties1 of the same subjects. If one
can identify a common set of properties that are used to describe a set of
subjects, one can construct a property table containing a subject identifier
field in addition to fields for each of the properties identified. Additionally,
data-typed literals can be stored directly in the property table using their
corresponding native data types. A left-over triple store is used to store
data that do not fit into any property table, as shown in Figure 4.2, cited
from [15].

The major advantage of this approach is that expensive subject-subject
self-joins are no longer needed to retrieve the common set of properties for
one particular subject. Reading the single row containing information on
the subject is sufficient. If a query requires information stored in another

1In this context, a property is equivalent to the predicate in an RDF triple. The value of
the property is the object of the triple.

37

type
ID1 BookType
ID2 CDType
ID3 BookType
ID4 DVDType
ID5 CDType
ID6 BookType

title
ID1 “XYZ”
ID2 “ABC”
ID3 “MNO”
ID4 “DEF”
ID5 “GHI”

(etc.)

Figure 4.3: Vertical Partitioning Example

property table or in the triple store, however, potentially expensive self-
joins still need to be applied.

A disadvantage of property tables is their lack of support for properties
with multiple values. A book with several authors are easy to represent in
a triple store, using one triple for each author, but can not be stored in a
single Author field of a property table.

The main challenge with implementing property tables is to choose the
set of properties to include. Including too few properties reduces the gain
of implementing property tables in the first place. Including too many
properties increases the chance of NULL values posing a significant stor-
age overhead [15].

Designing property tables from schema-less RDF data sets is essentially
a matter of deducing a schema from available data. [17] proposes an it-
erative method of deducing schemas from existing data sets. However,
such an approach undermines the fundamental pay-as-you-go principle of
schema-less RDF data by posing a significant overhead to the process of
storing the data.

4.1.4 Vertical Partitioning

The authors of [15] propose using vertical partitioning, that is, rewriting
the triples table into n two-column tables as shown in Figure 4.3, n being
the number of unique predicates present among the data. The two columns
of each table contain the subject and the object for each occurrence of the
predicate represented by that table.

Predicates with multiple values are easily represented with this ap-
proach, by adding several rows with the same subject identifier to the table
representing the predicate. NULL values are non-existent, as missing pred-
icate values are simply omitted from the tables. While property tables force
you to retrieve entire sets of properties at a time with potentially irrelevant
fields, this approach has the benefit that only relevant fields has to be ac-
cessed on disk.

38

Another advantage is the possibility of materializing path expressions.
In an example from [15], queries that fetch books where the author is born
in a given year are identified as particularly common. By merging the
tables author and wasBorn into a materialized author:wasBorn view, these
queries are easily and efficiently resolved.

Accessing several properties in the same query still involves joining ta-
bles. However, these tables are substantially smaller than the single triple
store used by other approaches.

Insert operations can be slower in vertically partitioned tables com-
pared to property tables and triple stores, because up to n tables must be
accessed to store n statements.

[15] also explores the possibility of storing the vertically partitioned ta-
bles in a column-oriented DBMS. By modifying the open source C-Store
DBMS [18], a 32-fold performance gain compared to the state of the art
triple stores is achieved, according to their benchmarks. However, [19]
questions the benchmarks used, and argues that when proper clustered
indices are used, triple stores perform better overall than vertical partition-
ing, especially for large data sets with many unique properties.

4.1.5 MAP Indexed Triple Store

[20] proposes extending a regular triples store with a set of access pattern
indices. [21] refers to this approach as MAP (Multiple Access Patterns). The
principle is that no matter which part(s) of a triple in a query that is unspec-
ified, a B+ tree index [22] should exist to efficiently resolve all matching
triples.

For a triple (s : p : o), there exist eight different access patterns where
parts of a triple may be unspecified, as shown in Table 4.1 (? denoting an
unspecified part). Note that the belonging context element of the triple,
accounted for by [20], is considered irrelevant in this context and omitted
in this example.

A naïve approach is to provide eight indices, one for each access pat-
tern. A better approach is to use combined indices. In fact, every access
pattern from Table 4.1 can be resolved using one of three combined indices.
For example, the access pattern (s : ? : ?) can be resolved using a pre-
fix query on an spo index. Necessary indices and the access patterns they
support are shown in Table 4.2.

This simple and general, yet reasonably efficient approach to storing
RDF data has made it popular and the method is used in systems like YARS,
HPRD and RDF-3X [20, 23, 24].

39

Access Pattern
1 (? : ? : ?)
2 (s : ? : ?)
3 (s : p : ?)
4 (? : p : ?)
5 (? : p : o)
6 (? : ? : o)
7 (s : ? : o)
8 (s : p : o)

Table 4.1: Possible Access Patterns for an RDF Triple

spo po os
(? : ? : ?) (? : p : ?) (? : ? : o)
(s : ? : ?) (? : p : o) (s : ? : o)
(s : p : ?)
(s : p : o)

Table 4.2: Necessary Indices to Support All Access Patterns

4.1.6 TripleT

The Three-way Triple Tree (TripleT) approach [21] stores triples in a special
type of clustered B+ tree index. Every single URI reference and literal (in ef-
fect, the set of all subjects, predicates and objects) are indexed in this single
B+ tree. The payload of every leaf node k in the B+ tree is a record consist-
ing of three tuple-lists, dubbed s, p and o, as shown in Figure 4.4. The s-list
contains predicate/object pairs representing every statement where the k
node appears as subject. Accordingly, the p- and o-lists contain subject/ob-
ject pairs and subject/predicate pairs respectively.

TripleT can be considered a generalization of vertical partitioning. After
all, the approach described in Section 4.1.4 is equivalent to a TripleT index
where only predicates are indexed, and the payloads consist only of the
p-list of subject/object pairs.

MAP’s property of supporting all access patterns through indices are
held also by TripleT. While the MAP approach requires multiple indices,
however, TripleT requires only a single index.

A disadvantage of TripleT is the extra level of complexity added as a
result of the customized payload. Each index lookup involves an extra step
of accessing the appropriate of the three possible lists of tuples.

40

s p o

o1p1

.

.

.

.

s1o1

.

.

.

.

p1s1

.

.

.

.

k

Figure 4.4: The Payload of a TripleT Index

4.1.7 Similarities Among Alternatives

Dictionary Encoding Every approach discussed in this section, except for
the graph store, uses dictionary encoding on URIs and literals. This in-
volves maintaining a separate repository, or dictionary, of mappings from
fixed-size identifiers to the URIs and literals they represent.

The identifiers are typically integers and created in one of two ways;
either by auto-incrementing or by hashing. Auto-incrementing starts by
assigning the first entry the value zero, and then every new entry is as-
signed a value one higher than the previous. The benefit of this method is
that the entire value space of the chosen integer type can be used without
having to worry about collisions. However, to find the identifier of a URI
or literal at a later point, a lookup in the dictionary is required.

Another way of creating dictionary identifiers is to use hashing. A hash
function takes an arbitrary input and produces a fixed-size integer output.
The MD5 hash function is a widely used universal2 hash function, produc-
ing 128-bit integer keys. If 64-bit keys are used, the output of the MD5 hash
can simply be truncated.

The benefit of using hashing is that it is easy to find the identifier of a
URI or literal by just applying the hash function once more, removing the
need to perform a dictionary lookup. There is a slight possibility that two
input values yield identical output values, however, causing a key collision
in the dictionary. This has to be asserted and accounted for in the imple-
mentation.

Regardless of whether auto-incrementing values or hashing is used, it is
beneficial to store the dictionary in a B+ tree index, sorted on the key. This

2A universal hash function has the property that the probability of a collision between
two different keys x and y are the same for all x and y [25].

41

makes it easier to perform prefix queries on URI and literal values [20].
By storing the RDF data using fixed-size identifiers rather than the ac-

tual URIs and literals, every triple becomes fixed-size as well. This de-
creases the space consumed and increases the speed of scans and lookups.
It also significantly increases the speed of performing joins, as fixed-size
integer values are much faster to compare than variable-size strings.

Auxiliary lookup structures MAP and TripleT in particular use indices as
auxiliary structures, tailored for fast lookup of RDF triples meeting certain
criteria. TripleT even specifies a custom format for the payload of its index,
consisting of three separate lists of tuples. The rest of the approaches do
not explicitly dictate the use of indices, but the underlying DBMSs will
certainly use indices implicitly in order to improve performance.

4.2 Existing Implementations

This section discusses the approaches to RDF storage for the most com-
monly used implementations on the market. Most systems are based on
variations of the general triple store, using a relational DBMS for persis-
tence.

4.2.1 Sesame

Sesame is conceptually a generic architecture, independent of the choice
of underlying DBMS. An abstraction layer handles the interfacing between
the DBMS and the querying engine. An adapter for this abstraction layer
has to be implemented for each DBMS to support. The adapter chosen
for this abstraction layer dictates the structuring of the RDF graph in the
DBMS. [26]

Initially, PostgreSQL was used as the underlying storage engine. Se-
same supports RDF Schema, and PostgreSQL was chosen for its object-
relational capabilities. Subclasses from the RDF Schema are represented
in PostgreSQL by subtables. This resembles the graph store discussed in
Section 4.1.2.

Sesame also has an adapter implemented for MySQL support. Unlike
PostgreSQL, MySQL does not support subtables. Hence, the RDF Schemas
are stored explicitly in separate tables which have to be consulted in order
to answer RDFS queries. This prevents the database schema from chang-
ing when the RDF schema changes. The actual RDF triples are dictionary-
encoded and stored in a general triple store as discussed in Section 4.1.1.

42

4.2.2 Jena

Jena is an open-source framework written in Java for storing and querying
RDF data and RDFS schemas. [27]

The persistence functionality of Jena is supported through relational
databases like MySQL, PostgreSQL, Oracle or Microsoft SQL Server. The
DB schema is based on a triple store. Rather than strictly dictionary encod-
ing every URI and literal, however, a hybrid solution is used where short3

URIs and literals are stored directly in the triples table, while the remain-
ing elements are stored as references to a resource dictionary. This way,
the amount of joins between the triples table and the resource dictionary
is decreased compared to a strict dictionary-encoded approach. The triples
table has two non-unique indices, one on the key <Subject, Property> and
another on the key <Object>. [28]

4.2.3 YARS

YARS (Yet Another RDF Storage) is an RDF storage system hosted as a
web service. Storing and querying of RDF data is done via an HTTP-based
interface. [29]

The developers of YARS proposed the MAP index structure as discus-
sed in Section 4.1.5 [20]. A context node is stored with each RDF triple, ef-
fectively turning them into quadruples. Multiple indices are introduced in
order to support all possible access patterns. By combining indices, fewer
indices are needed than the number of possible access patterns.

Storage is implemented using the open-source persistence engine JDBM
which supports B+ tree indices [30]. This relieved the authors of imple-
menting B-tree structures themselves. An additional layer to support con-
catenated keys in the indices still had to be implemented.

4.2.4 Redland RDF Libraries

As the name implies, Redland is merely a set of libraries. These open-
source libraries include functionality for manipulation, storage, querying
and serialization of RDF graphs. It is written in C, but bindings are offered
for the languages Perl, PHP, Python and Ruby. [31]

The storage engine is based on hashes. Each triple is stored using three
hashes, each mapping two elements of the triple to the third. This method
makes for efficient querying of triples where only one element is unknown.
However, when more than one element is unknown, querying is poten-
tially very slow when models grow large [32]. This approach is an im-
provement over the naïve triple store discussed in Section 4.1.1, but still

3By default, “short” means less than 256 characters, but this is configurable.

43

has major shortcomings with regards to the discrimination of some types
of queries.

Persistence of the hash storage is supported via many alternative back-
ends, among others Berkeley DB, MySQL, PostgreSQL and plain files. [31]

4.2.5 3store

3store is an RDF triple store written in C for POSIX compliant operating
systems. Persistence is based on traditional relational database principles
and it uses MySQL as its storage engine. A design principle of 3store has
been to delegate as much as possible of the workload to the DBMS in order
to benefit from optimizations performed by the query optimizer. This dif-
fers from the approaches of e.g. Sesame and Jena where queries are mostly
evaluated by the RDF-engine on top of the DBMS. The approach taken by
3store is based on a dictionary-encoded triple store as discussed in Section
4.1.1. [25]

4.3 Choosing the Storage Model

Choosing the storage model is a matter of finding the most suitable so-
lution given the confinements of the environment in which the solution
will be implemented. As discussed in Section 2.3, Mars implies a different
paradigm compared to standard relational DBMSs. This affects the choice
of storage model.

4.3.1 Reasonable Alternatives

Several of the alternative storage models from Section 4.1 are possible to
adapt to Fast’s storage model. The general triple store is not considered in
this section, due to its inferiority compared to the other approaches.

Property tables are possible to implement, e.g. by regarding each row of
the property table as a document with scopes corresponding to the fields
of the property table. However, the disadvantages discussed in Section
4.1.3 still apply, particularly the difficulty of choosing which properties to
include in the table and which to leave for the left-over triples table.

The vertically partitioned approach from Section 4.1.4 can be adapted to
Fast’s storage model by regarding triples as documents. The subject/object
pairs are stored in inverted lists, corresponding to the predicate keys of the
index.

The MAP Indexed Triple Store approach from Section 4.1.5 is hard to
implement in Fast’s storage model, as having multiple indices pointing to
a single data store is problematic, according to our supervisor from Fast.

The TripleT approach from Section 4.1.6 is also hard to implement in
Fast’s storage model, as having a payload list composed of three lists, one

44

per triple element, is problematic, also according to our supervisor from
Fast.

4.3.2 Proposed Solution

Based on an evaluation of existing alternatives and feedback from our su-
pervisor from Fast, a storage model based on TripleT was chosen. This
approach, as the pure vertically partitioned approach, is highly suitable for
efficient storage and retrieval in a column based storage system. Fast’s stor-
age engine supports column based storage, and is thus able to take advan-
tage of the potential performance improvement in scenarios where vertical
partitioning is beneficial.

Dictionary encoding of all URIs and literals should be used, with IDs of
64 bits or more, but no larger than the platform is able to handle natively4.
Dictionary encoding is explained in Section 4.1.7.

Fast already supports mechanisms for efficiently resolving URLs from
document IDs through their Value operator, used internally by the search
engine. We propose that this mechanism can be altered to support the re-
solving of URIs and literals from IDs produced during dictionary encoding,
reusing existing functionality where applicable.

Another benefit of using dictionary encoding is that it takes advantage
of Fast’s support for compressing index keys using delta coding. For a
sequence of n values, delta coding only leaves the first value unaltered.
Every subsequent value is encoded using a delta value, computed as the
difference between the value of the current and previous element in the se-
quence. Delta coding is more efficient when the encoded values are within
a 64-bit range than if they were of arbitrary size, because the sizes of delta
values are upper-bound by the maximum size of the values they represent.
[33]

Although based on TripleT, some modifications are proposed in order
to adapt to Fast’s storage model. Storing three lists of tuples in the payloads
is problematic. Thus, rather than having a payload consisting of three dif-
ferent lists, this approach includes the role of the triple element as part of
the key. A node element x will potentially appear three times in the index
tree, as s:x if it appears as subject in the data set, as p:x if it appears as pred-
icate or as o:x if it appears as object. As with TripleT, a B+ tree index is used
for efficient indexing and lookup.

The payload of each index key is a single two-column list containing
predicate/object pairs, subject/object pairs and subject/predicate pairs re-
spectively. These lists are analogous to the predicate tables discussed in
Section 4.1.4, and yield the same benefits with regards to column storage.

4Using larger values than the platform can handle natively introduces a significant over-
head e.g. when performing value comparisons.

45

o:c p:b s:a

(a , b , c)

s p o

s:a à (b , c)

p:b à (a , c)

o:c à (a , b)

B
+
 tree

.

.
(a,b)

.

.
(a,c)

.

.
(b,c)

Figure 4.5: Inserting a Triple in the Chosen Storage Model

Using the proposed solution, the process of inserting a new triple is
illustrated in Figure 4.5. The triple is decomposed into three tuples, each
identified by the concatenation of the omitted triple element and a symbol
identifying its role in the triple. Next, these three tuples are inserted into
the B+ tree. If the key exists, the tuple is appended to the payload of the
existing key. Otherwise, the key is inserted and a new list containing the
tuple is set as the payload.

This proposed solution is based on results from state of the art research
on RDF storage, but adapted to the environment in which Fast’s systems
operate. The solution is completely schema-agnostic, pursuant to the pay-
as-you-go philosophy of the Semantic Web.

46

Chapter 5

Method

Initially, all SPARQL queries are parsed from their textual representations
into abstract syntax trees by the SharQL Parser. An abstract syntax tree is
little but an object graph representation of the corresponding query.

The SPARQL specification introduces the concept of SPARQL algebra.
The semantics of SPARQL, in turn, is based on this algebraic representa-
tion of queries. The transformation from a textual SPARQL query to its
algebraic representation is formally described in the specification [2].

Although Mars operates on directed acyclic graphs of operators, only
graphs qualifying as trees will be used in the context of this thesis, and
operator trees is consequently the term that will be used throughout the
rest of this thesis.

When the query has been transformed into SPARQL algebra, the next
step is to translate it into a tree of Mars operators. This step involves find-
ing an equivalent set of Mars operators for each construct defined by the
SPARQL algebra.

The different representations a query takes during evaluation are shown
in Figure 5.1. In the end, the resulting tree of Mars operators is passed to
Mars and evaluated. The results from this evaluation are then presented to
the user.

Textual Query
Abstract Syntax

Tree
SPARQL
Algebra

Mars Operators

Figure 5.1: The Intermediate Representations Taken by a Query During
Evaluation

47

Query

 Base

<http://music.org/>

Select

<album/3cef327d>

Query

Select

<http://music.org/album/3cef327d>

Prefixes

album: <http://music.org/album/>

album:19fb4543

<http://music.org/album/19fb4543>

Figure 5.2: Applying Base and Prefix Declarations

5.1 Preparing the AST

The SPARQL language supports several shorthand notations to ease the
writing of queries. In order to simplify the analysis of queries, such short-
hand notations can be replaced by the equivalent explicit notation. This
section presents the shorthand notations available in SPARQL and desc-
ribes how to prepare the AST for transformation by replacing them with
explicit notation.

The intention of preparing the AST before performing further analysis
is to simplify the analysis process. When all nodes of the AST with certainty
are represented in their explicit forms, the analysis will not need to consider
different types of syntax for equivalent semantics.

Base and Prefix specifications URIs are essential in RDF and SPARQL.
URIs tend to be very verbose, however. To compensate for this, SPARQL
allows the specification of a base URI and a set of named prefixes, as de-
scribed in Section 2.2.6. During AST preparations, all base and prefix dec-
larations are applied to the URIs in the AST, as described in Section 6.4.5.
Figure 5.2 shows a simple AST before and after applying base and prefix
declarations.

48

Shorthand notation Explicit notation
123 "123"ˆˆxsd:integer
123.4 "123.4"ˆˆxsd:decimal
123e10 "123e10"ˆˆxsd:double
true (or false) "true"ˆˆxsd:boolean

Table 5.1: Implicitly Data-Typed Literals in SPARQL.

Implicitly Data-Typed Literals RDF allows for data-typed literals. The
data-typed integer 42 is e.g. represented in Turtle notation by the literal
"42"ˆˆxsd:integer. SPARQL supports shorthand notations for some
of the most common data types, as shown in Table 5.1. The preparation
process traverses the AST and replaces any occurrence of these shorthand
notations with the equivalent explicitly data-typed literal, as described in
Section 6.4.1.

Other Syntactic Sugar Shared subject triple lists, blank node property
lists and RDF lists can all be specified in SPARQL using shorthand notation
as explained in Section 2.2.7. The preparation process expands all occur-
rences of these notations to their explicit notation, as described in Sections
6.4.2, 6.4.3 and 6.4.4 respectively.

5.2 From AST to Algebra

Parsing a SPARQL query yields an AST consisting of nodes closely re-
sembling the structure of the SPARQL grammar, as described in Section
3.2. This tight coupling with the grammar makes it easy to recognize the
query structure. Reasoning about its semantics becomes rather cumber-
some, however, calling for transformation into an intermediate representa-
tion.

After preparing the AST as described in the previous section, the AST
is transformed into a SPARQL algebra representation [2]. This eases future
analysis of the query significantly, as needless metadata from the parsing
process is eliminated as well as the fact that the semantic description of the
SPARQL query language is based on such algebra.

5.2.1 Graph Patterns

Section 12.2.1 in the SPARQL specification [2] describes the transformation
of SPARQL query patterns into SPARQL algebra patterns, originating from
the WHERE clause. The specification defines a set of algebra patterns for
evaluating any WHERE clause. These are:

49

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/#convertGraphPattern

• Filter(expression, pattern)

• Join(pattern, pattern)

• LeftJoin(pattern, pattern, expression)

• Union(pattern, pattern)

• Graph(uri or variable, pattern)

Additionally, to represent the basic graph patterns of the WHERE clause
used for matching triples, a special algebra pattern is introduced:

• BGP(list of triple statements)

In order to discuss the semantics of SPARQL algebra, some terminology
is introduced. A solution mapping is denoted by µ and defined as follows.

Definition 5.1 (Solution Mapping). A solution mapping, µ, is a partial func-
tion µ : V → T , where V is the set of query variables and T is the set of RDF
terms. The domain of µ, dom(µ), is the subset of V where µ is defined.

Definition 5.2 (Compatible Mappings). Two solution mappings µ1 and µ2 are
compatible if, for every variable v in dom(µ1) and in dom(µ2), µ1(v) = µ2(v).

Further, the RDF specification defines an instance mapping of blank
nodes to RDF terms, denoted σ in the SPARQL algebra, as follows [34].

Definition 5.3 (Instance Mapping). Suppose that M is a mapping from a set
of blank nodes to some set of literals, blank nodes and URI references; then any
graph obtained from a graph G by replacing some or all of the blank nodes N in G
by M(N) is an instance of G.

From these definitions, a solution for a basic graph pattern is defined as
follows [2].

Definition 5.4 (Basic Graph Pattern Matching). Let BGP be a basic graph
pattern and let G be an RDF graph.

µ is a solution for BGP from G when there is a pattern instance mapping P
such that P (BGP) = µ(σ(BGP)) is a subgraph of G and µ is the restriction of
P to the query variables in BGP .

With these basic definitions established, the graph patterns listed in the
beginning of this section can be formally defined and described. In these
definitions, Ω is used to denote multisets, or bags, which are a variation of
unordered sets where elements may appear more than once. By default,
SPARQL queries do not remove duplicates. Thus, it makes sense to repre-
sent intermediate results as multisets.

50

Definition 5.5 (Filter Pattern). Let Ω be a multiset of solution mappings and
expr be an expression.

Filter(expr,Ω) = {µ | µ in Ω and expr(µ) is an expression that has an effec-
tive boolean value of true}

For each solution in Ω, the Filter pattern evaluates expr. If the result of
this evaluation yields a boolean value of true, the solution against which
the expression was evaluated is included in the result set.

Definition 5.6 (Join Pattern). Let Ω1 and Ω2 be multisets of solution mappings.
Join(Ω1,Ω2) = { µ1 ∪ µ2 | µ1 in Ω1 and µ2 in Ω2, and µ1 and µ2 are com-

patible }

For each solution in Ω1, the Join pattern checks for compatibility with
every solution in Ω2. For each compatible pair of solution mappings found,
the two mappings are merged and included in the result set. From Defini-
tion 5.2, a Join pattern will result in the Cartesian product when Ω1 does
not contain solutions for any query variables included in the solutions of
Ω2, as such solutions are considered compatible.

Definition 5.7 (Diff Pattern). Let Ω1 and Ω2 be multisets of solution mappings.
Diff(Ω1,Ω2, expr) = { µ | µ in Ω1 such that for all µ′ in Ω2, either µ and µ′

are not compatible or µ and µ′ are compatible and expr(µ ∪ µ′) has an effective
boolean value of false}

The Diff pattern is used internally for defining the LeftJoin pattern, de-
scribed below. The criteria for a solution in Ω1 to be included in the result
set is that it is not compatible with any solution in Ω2 and the evaluation
of expr on the union of the two solution must yield an effective value of
false.

Definition 5.8 (LeftJoin Pattern). Let Ω1 and Ω2 be multisets of solution map-
pings and expr be an expression.

LeftJoin(Ω1,Ω2, expr) = Filter(expr, Join(Ω1,Ω2)) ∪ Diff(Ω1,Ω2, expr)

The LeftJoin pattern is a combination of the Filter, Join and Diff patterns,
as shown above. It differs from a regular Join pattern in that solutions from
Ω2 are optional. If no solutions from Ω2 are compatible with a solution from
Ω1, the solution from Ω1 is still included.

Definition 5.9 (Union Pattern). Let Ω1 and Ω2 be multisets of solution map-
pings.

Union(Ω1,Ω2) = { µ | µ in Ω1 or µ in Ω2}

The Union pattern simply includes a solution to the result set if the so-
lution is part of either Ω1 or Ω2.

The Graph specifier pattern is used for specifying the currently active
RDF data set to be queried.

51

5.2.2 The Transformation to Algebra

Several query forms exist, as described in Section 2.2.4. In the context of
this thesis, however, only SELECT queries are considered. Such queries
consist of a set of patterns and a set of modifiers, which are transformed
into a set of algebra graph patterns and a set of solution modifiers, respec-
tively. Transforming modifiers is trivial, whereas the transformation of the
patterns is a more complicated process.

The set of patterns present in a SELECT query has its origin from the
WHERE clause. This clause contains a GroupGraphPattern production
which, in turn, is comprised of the following patterns: TriplesBlock, Fil-
ter, OptionalGraphPattern, GroupOrUnionGraphPattern and GraphGraphPat-
tern. Section 12.2.1 in the SPARQL specification[2] describes a Transform
function for transforming these patterns into SPARQL algebra, its pseudo
code shown in Figure 5.3. This algorithm is initially invoked by passing a
query’s GroupGraphPattern as the only argument. The implementation of
this function is discussed in Section 6.5.1.

A sample transformation from [2] is shown in Figure 5.4. Both the
UNION and OPTIONAL keywords are left-associative. Hence, the Union
pattern is a child of the LeftJoin pattern. The third argument to the Left-
Join operator is true because no filters are specified in any of the patterns
belonging to the OPTIONAL keyword.

5.3 Evaluation Approaches

When it comes to evaluating queries against an RDF store, it is desirable to
perform the majority of the query evaluations at the lowest possible layer
of execution, typically inside the data store itself. The naïve approach on
the other hand, involves potentially fetching all the data from the store
and performing the entire evaluation independently, at a higher level of
execution, typically outside the store.

5.3.1 Existing Solutions

A selection of commonly used RDF store implementations is presented in
Section 4.2 with regards to the storage models used. The different imple-
mentations support querying using different query languages and different
approaches.

The Sesame implementation is a generic architecture, independent of the
choice of underlying data store [26]. In Sesame, query evaluation is mainly
performed in the query engine itself, greatly reducing the dependency on
the data store used. However, tailoring the query evaluation for specific
data storages by utilizing their evaluation and optimization mechanisms,
would probably offer better performance as it is reasonable to expect such

52

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/#convertGraphPattern

Function Transform(syntax form)

If the form is TriplesBlock

The result is BGP(list of triple statements)

If the form is GroupOrUnionGraphPattern

Let A := undefined

For each element G in the GroupOrUnionGraphPattern
If A is undefined

A := Transform(G)
Else

A := Union(A, Transform(G))

The result is A

If the form is GraphGraphPattern

If the form is GRAPH IRI GroupGraphPattern
The result is Graph(IRI, Transform(GroupGraphPattern))

If the form is GRAPH Var GroupGraphPattern
The result is Graph(Var, Transform(GroupGraphPattern))

If the form is GroupGraphPattern

Let FS := the empty set
Let G := the empty pattern, Z

For each element E in the GroupGraphPattern
If E is of the form FILTER(expr)

FS := FS set-union {expr}
If E is of the form OPTIONAL{P}

Let A := Transform(P)
If A is of the form Filter(F, A2)
G := LeftJoin(G, A2, F)

Else
G := LeftJoin(G, A, true)

If E is any other form:
Let A := Transform(E)
G := Join(G, A)

If FS is not empty:
Let X := Conjunction of expressions in FS
G := Filter(X, G)

The result is G.

Figure 5.3: Pseudo Code for the Algebra Transformation

53

... WHERE
{
 {?s :p1 ?v1} UNION {?s :p2 ?v2}
 OPTIONAL {?s :p3 ?v3}
}

WhereClause

LeftJoin

Union

expression = true

BGP
S = ?s
P = :p3
O = ?v3

BGP
S = ?s
P = :p2
O = ?v2

BGP
S = ?s
P = :p1
O = ?v1

Figure 5.4: Sample Transformation of a WHERE Clause

mechanisms to perform best at the lowest possible level of execution, being
inside the data store itself. Also, the query engine would only be a proxy
for the data store’s query engine, relieving it from performing the actual
evaluation itself.

The YARS (Yet Another RDF Storage) implementation, on the other
hand, approaches the query evaluation in a less generic manner [29]. A
specific data store is introduced [20], and query evaluation is tailored for
this specific store. As a result, YARS is completely dependent on the data
store. This is quite advantageous with regards to performance, however, as
the entire evaluation is tuned solely for a single data store, allowing for the
evaluation to make use of all mechanisms available in the data store.

5.3.2 Approaching Mars

As the focus of this thesis is to explore the possibilities of extending the
capabilities of Mars specifically, tight integration with Mars and the cor-
responding data store is a matter of course. The SPARQL algebra is con-
sequently transformed into Mars operators, which is exclusively executed
inside the search engine. Thus, RDF data or any metadata from the system
catalog never leave the Mars query engine before the result is returned.

54

5.4 From Algebra to Mars Operators

When a complete representation of a query, containing solution modifiers
and algebra patterns, is ready, the actual evaluation of the query can be
performed. This process is handled by the Mars query engine.

As far as possible, evaluation of SPARQL queries should reuse existing
Mars operators. A central task is thus to identify an equivalent set of Mars
operators for each SPARQL algebra pattern.

Once the equivalent Mars operators are identified, the query object hold-
ing the SPARQL algebra and other solution modifiers can be transformed
into a tree of Mars operators. This tree serves as a definition for which data
needs to be fetched and the operations that have to be applied to this data
before presenting the result to the user. The implementation of the trans-
formation from query objects to trees of Mars operators and having Mars
evaluate these operators is further discussed in Section 6.6.

5.4.1 Graph Patterns

The SPARQL algebra graph patterns include BGP (basic graph pattern),
Join, LeftJoin, Union and Graph. The LeftJoin and Graph patterns are both ig-
nored in the transformation procedure as the needed functionality is present
in Mars yet.

The Mars operators used to achieve the behavior of the graph patterns
include the Map, Select, Lookup, Sort and MergeJoin operators.

Basic Graph Patterns

To simplify the method of transforming a BGP containing multiple triple
patterns, such BGPs are split into multiple new BGPs, each containing only
a single triple pattern. These are further connected using join graph pat-
terns in order to achieve the behavior specified for a BGP with multiple
triple patterns.

A BGP graph pattern consisting only of variables should be transformed
into a Scan operator returning all triples, followed by a Map operator for
mapping the variables appropriately. As no Scan operator is currently avail-
able in Mars, queries containing such BGPs are not supported. BGPs con-
sisting only of blank nodes and variables are not supported either, as the
Lookup operator is only capable of looking up exact terms. Looking up a
blank node would require looking up all terms prefixed as blank nodes.

A BGP consisting of other elements than just variables and blank nodes
is transformed into a Lookup operator, possibly a Select operator, and fi-
nally a Map operator, as shown in Figure 5.5. The Lookup operator outputs
records with document ID and predicate/object, subject/object or
subject/predicate pair fields, depending on the kind of triple element used

55

Lookup
 Word = o:”U2”

Select
 <pred> = http://music.org/title

Map
 artist ß <subj>

BGP

S = ?artist
P = <http://music.org/title>
O = ”U2”

Figure 5.5: BGP Transformation

to perform the lookup. The sample lookup is performed on o:"U2", that is,
the object triple element, resulting in a subject/predicate pair.

If any of the two BGP triple elements not used to perform the lookup
is either a literal or a URI, a Select operator is added to filter the records re-
turned by the Lookup operator. As the sample BGP contains a URI predicate
in addition to the object literal used in the lookup, a Select operator is used
to filter records matching the predicate.

Finally, a Map operator is used to map any variables or blank nodes in
the BGP to the corresponding triple field, based on the triple element type.

Join

A Join graph pattern is transformed either to an equi-join or to a Cartesian
product depending on whether the two operands have any variables in
common or not.

An equi-join is achieved using a Map operator, followed by a Sort oper-
ator and finally a MergeJoin operator, as shown in Figure 5.6.

The Map operator is needed to coordinate the order of the record fields
for the two inputs to be joined. Common variable fields are identified and
placed first, in the same order for both inputs.

As the MergeJoin operator requires the input to be sorted on common
fields on which to perform the equi-join, a Sort operator is needed. Finally,
the MergeJoin operator performs the join on the join-prefix first fields of the
two inputs.

Union

A union graph pattern is transformed into a Union operator, as shown in
Figure 5.7. As the SPARQL specification defines union as non-distinct, the

56

Join

[Pattern] [Pattern]

Variables in scope:
{a, b, c}

Variables in scope:
{b, d}

MergeJoin
 JoinPrefix = 1

Sort
 SortFields = {b}

Sort
 SortFields = {b}

Map
 b ß b
 a ß a
 c ß c

Map
 b ß b
 d ß d

[Results from subtree] [Results from subtree]

Figure 5.6: Join Transformation

Union

[Pattern] [Pattern]

Union
 UnionType = All

[Results from subtree] [Results from subtree]

Figure 5.7: Union Transformation

operator is parameterized to include all records from both inputs, including
any duplicates.

5.4.2 Solution Modifiers

The SPARQL algebra solution modifiers include order, projection, distinct,
reduced, offset and limit, as described in Section 2.2.3. In accordance with
the SPARQL specification, the modifiers are applied in the order shown in
Figure 5.8.

As the reduced modifier simply permits duplicates to be eliminated from
the solution set, it is completely ignored in the transformation procedure.
No well-defined behavior exists beyond that duplicates may or may not
be eliminated. Thus, ignoring this modifier and not eliminating any dupli-
cates is still in accordance with the SPARQL specification.

The Mars operators used to achieve the behavior of the solution mod-

ORDER BY Projection DISTINCT REDUCED OFFSET / LIMIT

Figure 5.8: SPARQL Specification Solution Modifier Ordering

57

BASE <http://music.org/>
SELECT ?title
WHERE
{
?album <artist> "U2" .
?album <title> ?title

}
ORDER BY ?title
OFFSET 20
LIMIT 10

Figure 5.9: Composite SPARQL Query

ifiers include the Sort, ProjectDistinct, Map and Trim operators, which are
described in Section 2.3.2.

The behavior of the order modifier is achieved using the Sort operator,
as the names suggest. Projection is achieved using the Map operator, and
the behavior of the offset and limit modifiers are achieved using the Trim
operator. The behavior of the distinct modifier is achieved using the Sort
operator followed by the ProjectDistinct operator, as the latter expects the
input records to be sorted in advance.

Regarding the ordering rules described in Section 2.2.3, the Sort opera-
tor does not distinguish between different resource types, and will sort all
resources lexicographically. This is a limitation that will be apparent in the
resulting prototype, breaking with the SPARQL specification.

5.5 Example: Finding Album Titles

To illustrate the entire process of transforming a SPARQL query into a Mars
operator tree, this section presents an example query and walks through
the different transformation steps. Note that this example does not discuss
the abstract syntax tree representation. For an elaborate discussion on ab-
stract syntax trees, see Chapter 3.

The example query in question is shown in Figure 5.9. The first triple
pattern matches all albums with an artist property of “U2”, while the sec-
ond pattern matches all album title properties for all albums. The result
is the titles of all of U2’s albums, sorted alphabetically by the album title.
The OFFSET and LIMIT keywords specify typical values for a paged result,
returning only ten results, skipping the first twenty.

First, the query is parsed and transformed into the intermediate rep-
resentation as discussed in Section 5.2. The result of this process is the
representation illustrated in Figure 5.10.

The root Query object holds values that are generic for any query type.
BASE declarations are examples of such values. For this query, the root
object thus keeps the URI http://ex.org/music in its Base property.

58

Query

Description

Base = http://music.org/

Variables = {title}
OrderConditions = {title(ASC)}
Offset = 20
Limit = 10
DistinctReducedModifier = None

WhereClause

Join

BGP

S = ?album
P = http://music.org/title
O = ?title

BGP

S = ?album
P = http://music.org/artist
O = ”U2"

Figure 5.10: Intermediary Query Representation

Besides BASE, the remaining modifiers are specific to this being a SE-
LECT query. Hence, these values are stored in corresponding properties of
the root’s Description child node.

The WHERE clause is transformed into SPARQL algebra and stored in
the root’s WhereClause node. Each of the two triple patterns is stored in a
BGP pattern which contains both the value and the type of each triple node.
For instance, the value of the subject node of the first triple is “album”,
while the type is variable. As these two triples describe required properties
of the same results, a Join pattern is the parent of the BGP patterns.

This intermediate representation makes reasoning about the query
much less complicated, compared to having to do the equivalent reasoning
directly on the abstract syntax tree. In addition to evidently being a more
compact data structure, this representation has a more intuitive location of
the query properties.

The final transformation step is from the intermediate query represen-
tation to the full-fledged Mars operator tree as discussed in Section 5.4. For
SELECT queries, the query solution modifiers are applied as operators in
a strict serial order, directly at the root. Below these operators, the sub-
tree constituting the transformed SPARQL algebra from the WHERE clause
is added. The resulting operator tree for this example is shown in Figure
5.11.

The two leaf nodes are both Lookup operators performing index lookups
on the value of their Word properties. The first triple has two known values,
leading to an extra Select operator which is not present for the second triple.
The following Map operator makes sure the correct values are stored in
fields with names corresponding to the variable names. This concludes the
transformation of the two BGP patterns from the SPARQL algebra.

59

MergeJoin
 JoinPrefix = 1

Lookup
 Word = o:”U2”

Select
 <pred> = http://music.org/artist

Map
 album ß <subj>

Map
 album ß album

Map
 album ß album
 title ß Input1.title

Sort
 SortFields = {album}

Sort
 SortFields = {title}

Map
 title ß title

Trim
 Offset = 20
 Hits = 10

Lookup
 Word = p:http://music.org/title

Map
 album ß <subj>
 title ß <obj>

Map
 album ß album
 title ß title

Sort
 SortFields = {album}

Figure 5.11: Complete Operator Tree

60

The Join pattern from the SPARQL algebra is mainly realized by the
MergeJoin operator. Its JoinPrefix property is set to 1, indicating that the first
of the fields is used as the join key. This operator also requires that all input
is sorted on the join key. Thus, two Sort operators are added as immediate
children, sorting on the album field. It is also required that the fields used
as join key are the first fields of every record. The Map operators below the
Sort operators ensure this. Another peculiarity of the MergeJoin operator
is that fields which are not used as join key are prefixed in the output to
ensure uniqueness. The Map parent operator simply removes this prefix.
This concludes the transformation of the WHERE clause.

The remaining operators are added to achieve the various solution mod-
ifiers of the query. The Sort operator orders the output alphabetically by the
title field. The Map operator performs a projection by specifying the only
field of its output is a title field containing the value of the title field of its
input records. Finally, the behavior specified by the OFFSET and LIMIT
keywords is achieved by the Trim operator at the root, by setting appropri-
ate values for its Offset and Hits properties.

61

62

Chapter 6

Implementation

This chapter discusses the implementation of the Mars component, from
the transformation of abstract syntax trees, via the intermediate query rep-
resentation, to the operator tree evaluable by the Mars query engine. Au-
tomated testing is also employed to a certain degree. This is discussed
towards the end of the chapter.

6.1 Priorities for the Prototype

For this thesis, a prototype SPARQL query service for Mars is created. The
top priority of this prototype is to support SELECT queries on a single RDF
data set, consisting only of triple patterns in their WHERE clauses. This
requires index lookups in triple patterns and merging of lookup results
according to graph patterns.

Further, solution modifiers, such as ordering and requiring only distinct
values, can easily be added in a pipe-and-filter fashion immediately before
the outputting the results. The Union pattern is also realizable using built-
in Mars operators. General filters are currently not supported in Mars, and
is consequently not supported in the prototype. Left joins originating from
the OPTIONAL keyword, typically containing filters, are not prioritized as
well as not being realizable with the available Mars operators.

ASK, CONSTRUCT and DESCRIBE queries is not supported, nor will
SELECT queries against data sets other than the default one.

Query optimization is not prioritized for the prototype. Rather, the
focus is on implementing as much functionality as possible to facilitate
demonstration purposes. When the basics are implemented, remaining
pieces of the SPARQL specification can be implemented incrementally.

63

Parser

SPARQL Mars Component

Algebra
Transformer

SPARQL
Query Service

ISparqlQueryService

IQueryEngine

translate ASTparse source
ISystemCatalog

Figure 6.1: Overview of System Components

6.2 Overall System Description

The overall structure of the system is shown in Figure 6.1. The resulting
Mars component consists of three major sub-components. The Parser com-
ponent is responsible for converting SPARQL source code into abstract syn-
tax trees. This component was developed prior to this thesis [4], and its
principles are described in Section 3.

The Algebra Transformer component further transforms abstract syntax
trees to an intermediary representation based on SPARQL algebra. This
component does not use the parser component directly, but depends on
the data types it defines. The principles of this transformation process are
discussed in Section 5.2, while the implementation is described in Section
6.5.

The SPARQL Query Service component is responsible for the system’s
public API. When a query execution is requested, the parser and algebra
transformer is used to construct SPARQL algebra. Based on this, a Mars
operator tree is constructed as described in Sections 5.4 and 6.6. This tree
of operators is then passed to the Mars Query Engine. The results from this
evaluation process is formatted as XML and returned to the caller.

The Mars runtime environment is responsible for providing the proto-
type component with a reference to the Mars query engine. This is done
using a technique called Dependency Injection1. By reading the attributes
of the Mars component, the runtime will discover a dependency for an
IQueryEngine object. Likewise, the runtime will discover that our compo-
nent exposes an ISparqlQueryService object which can be injected into other
components which depend on the query service.

1A supplementary introduction to DI can be found at http://martinfowler.com/
articles/injection.html.

64

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

Details about the architecture of the SPARQL Query Service are further
discussed in Section 6.7.

6.3 SharQL Parser Project Modifications

The SharQL parser project has been somewhat modified during the imple-
mentation of the Mars component. Modifications range from essential ex-
tensions to pure convenience patches to ease the processing of the abstract
syntax tree.

6.3.1 Visitor Pattern Processing Order Option

The traversal of the abstract syntax tree was performed in a depth-first-
manner, processing a node’s children before processing the node itself. Pro-
cessing the abstract syntax tree in this manner proved rather cumbersome
while deducing different syntactic sugar constructs because of numerous
upward dependencies in the syntax tree.

Depending on the specific syntactic sugar construct being resolved, the
most reasonable approach varies quite a lot in regards to node processing
order. In order to resolve different constructs in the best suitable way, being
able to control the processing order is essential.

The Visitor pattern traversal algorithm has been modified to accept an
optional processing order parameter to control whether a node is processed
before or after its children. The latter is still the default option.

6.3.2 Visitor Pattern Reflection-Based Type Identification

The initial visitor implementation identified the element type based on a
NodeBase property. Reflection is now used, resulting in significantly cleaner
code. The overhead that is introduced with using reflection for this purpose
will be negligible compared to the workload of executing the query.

Consequently, the IVisitor interface no longer uses a string parameter
for its indexer. The signature of the indexer is now as shown in Figure 6.2,
accepting System.Type objects as its parameter. Such objects can be obtained
by calling the typeof() operator on any class or calling the GetType() method
of any object. Hence, the Accept method will typically include the code
visitorObj[GetType()](this); Figure 6.3 shows the initial part of
the new dispatch sequence.

6.3.3 INode Interface Inheriting from ICloneable

When transforming syntactic sugar constructs in the abstract syntax tree,
several nodes have to be duplicated and reused in the replacement con-

65

+ Accept(visitor:IVisitor)

«interface»

INode

+ this[nodeType: Type]: Action<INode>

«interface»

IVisitor

+ Accept(visitor:IVisitor)

Node

+ this[nodeType: Type]: Action<INode>

Visitor

Figure 6.2: Visitor Pattern Delegate

aNodeaClient

aVisitor
new

Accept(aVisitor)

aVisitor[theType]

anAction: Action<INode>

IVisitor

INode

anAction(aNode)

GetType

Figure 6.3: Visitor Pattern Delegate Dispatch Using Reflection

66

structs. For instance, when expanding a list specified using syntactic sugar,
a blank node has to be introduced and used twice per list element.

The INode interface implemented by the NodeBase abstract class of which
all AST nodes are descendants, has further been modified to inherit from
the .NET framework ICloneable interface to support cloning. The latter
interface’s methods have been implemented in a general manner in the
NodeBase abstract class, allowing for a node to be duplicated simply by
calling its Clone() method, resulting in a shallow copy of the node and
all its child nodes.

6.4 Syntactic Sugar

The implementation supports all syntactic sugar constructs defined in the
SPARQL specification. The constructs are transformed into their core
SPARQL language counterparts using syntactic sugar resolving visitors be-
fore the query is evaluated.

6.4.1 Implicitly Data-Typed Literals

Numeric and boolean literals may be specified as numbers and true or false
string literals, respectively, in a query. This is by far the simplest kind of
syntactic sugar, and it is rather easily transformed.

In the AST, these literals are represented as NumericLiteral and Boolean-
Literal nodes, respectively, and are simply replaced by RdfLiteral nodes with
the respective string value and a child IriRef node containing the data type
URI. The RdfLiteral-IriRef node combination corresponds to the full form
literal representation that general data-typed literals have in the abstract
syntax tree.

6.4.2 Shared Subject Triple Lists

Triple lists sharing the same subject are probably the most complicated syn-
tactic sugar in SPARQL. Figure 6.5 shows the extract of the abstract syntax
tree for the query shown in Figure 6.4.

The shared subject is represented by the PrefixedName node directly be-
low the TriplesSameSubject node. The predicates are directly below Prop-
ertyList nodes and the objects are placed directly below ObjectList nodes
inside the PropertyList nodes. Transforming this construct in a children-
before-parent order, starting off with the leaf object :f, requires knowledge
of the above abstract syntax tree nodes. Traversing the tree all the way up
to the subject :a along with the predicate :d is not as trivial as starting off
from the top in a parent-before-children order.

67

:a :b :c . :d :e , :f

⇓

:a :b :c .
:a :d :e .
:a :d :f

Figure 6.4: SPARQL Shared Subject Triple List Syntactic Sugar Sample

The shared subject triple construct is transformed by identifying the
shared subject node before traversing the tree downwards looking for Prop-
ertyList nodes and ObjectList nodes. A PropertyList node below another
PropertyList node represents a predicate and object sharing a common sub-
ject, while an ObjectList node below another ObjectList node represents an
object sharing both a common subject and predicate from the ancestor Prop-
ertyList node. Figure 6.6 shows the abstract syntax tree for the transformed
construct presented in Figure 2.9 on page 14.

6.4.3 Blank Node Property Lists

Blank node property lists are basically a variant of shared subject triple
lists. The shared subject is omitted from the list, and an induced blank node
representing the blank node property list itself is used as a shared subject.
If no list is specified inside the [] blank node property list operator, the list
itself is still replaced by a blank node.

The processing of blank property node lists uses the very same algo-
rithm used for processing shared subject triple lists. The only difference
is the initial identification of the shared subject, which is set to be a new,
blank node for blank node property lists. Also, as blank node property lists
is represented by a blank node, they may be used as subjects or objects in
triples and as elements in lists and other constructs. Hence, the context of a
blank node property list is of interest and affects the transformation of the
construct.

6.4.4 Lists

Lists are a rather trivial syntactic sugar construct, especially because of the
strictly recursive abstract syntax subtrees. The traversals of such trees are
straight forward compared to those of shared subject triple lists. Figure 6.7
shows the abstract syntax tree for the query presented in Figure 2.8 on page
13.

Transforming a list construct simply involves tracking down Collection
nodes and recursively iterate GraphNodeList nodes and extract their con-
tents. Once all list elements have been extracted, a recursive triple block

68

TriplesBlock

TriplesSameSubject

PrefixedName :a PropertyList

PrefixedName :b ObjectList

PrefixedName :c

PropertyList

PrefixedName :d ObjectList

PrefixedName :e ObjectList

PrefixedName :f

:a :b :c ; :d :e , :f

Figure 6.5: Shared Subject Triple List Syntactic Sugar AST Extract

sequence may be created. Figure 6.8 shows the abstract syntax tree for the
result after applying the transformation to the AST in Figure 6.7.

6.4.5 Prefix Expansion

Prefix expansion is not syntactic sugar with regards to the SPARQL speci-
fication, but the expansion of prefixes is handled in the very same manner
as syntactic sugar.

The abstract syntax tree is traversed looking for IriRef nodes to check
if their URIs are relative and should be prefixed with the BASE URI. Also,
PrefixedName nodes originating from using a prefixed URI are replaced by
IriRef nodes having the prefixed URI expanded.

constructed from that of the prefix used appended and the correspond-
ing identified from the PrefixedName node.

6.4.6 Identification of Unlabeled Blank Nodes

Blank nodes are usually labeled in the queries. Some blank nodes, however,
are not explicitly specified and are consequently not labeled by the query
writer. Such unlabeled blank nodes arise as a result of deducing syntactic
sugar or by using specific operators.

69

T
ri

p
le

s
B

lo
c

k

T
ri

p
le

s
S

a
m

e
S

u
b

je
c

t

P
re

fi
x

e
d

N
a

m
e

 :
a

P
ro

p
e

rt
y

L
is

t

P
re

fi
x

e
d

N
a

m
e

 :
b

O
b

je
c

tL
is

t

P
re

fi
x

e
d

N
a

m
e

 :
c

T
ri

p
le

s
B

lo
c

k

T
ri

p
le

s
S

a
m

e
S

u
b

je
c

t

P
re

fi
x

e
d

N
a

m
e

 :
a

P
ro

p
e

rt
y

L
is

t

P
re

fi
x

e
d

N
a

m
e

 :
d

O
b

je
c

tL
is

t

P
re

fi
x

e
d

N
a

m
e

 :
e

T
ri

p
le

s
S

a
m

e
S

u
b

je
c

t

P
re

fi
x

e
d

N
a

m
e

 :
a

P
ro

p
e

rt
y

L
is

t

P
re

fi
x

e
d

N
a

m
e

 :
d

O
b

je
c

tL
is

t

P
re

fi
x

e
d

N
a

m
e

 :
f

T
ri

p
le

s
B

lo
c

k

.

:
a

:
d

:
e

.

:
a

:
d

:
f

:
a

:
b

:
c

Figure 6.6: Shared Subject Triple List AST Extract

70

TriplesBlock

TriplesSameSubject

PrefixedName :a GraphNodeList

PrefixedName :b GraphNodeList

PrefixedName :c

(:a :b :c)

Collection

GraphNodeList

Figure 6.7: Lists Syntactic Sugar AST Extract

The blank node property list operator, [], either empty or containing a
predicate-object property list like shown in Figure 6.9, induces a new blank
node. Also, syntactic sugar like lists, described in Section 2.2, introduces
several placeholder blank nodes.

Such blank nodes induced during query evaluation are labeled inter-
nally using GUIDs to guarantee uniqueness [35].

6.4.7 Example: The Literal Explicator Visitor

To illustrate how the Visitor pattern is used to resolve syntactic sugar, this
section will present the visitor in the implementation which is responsible
for explicating the implicitly data-typed literals presented in Section 6.4.1.

This visitor class is called LiteralExplicatorVisitor and implements the
IVisitor interface. As discussed earlier, the only member of this interface
is an indexer which takes a Type as its only argument and returns a dele-
gate which references the method to be called by each node. The code for
this indexer is shown in Figure 6.10. Only NumericLiteralNode and Boolean-
LiteralNode objects are handled by this visitor; other nodes are ignored by
letting the indexer return null.

The explicateNode method reference which is returned by the indexer is
shown in Figure 6.11. This method casts the node reference to an appro-

71

T
ri

p
le

s
B

lo
c

k

T
ri

p
le

s
S

a
m

e
S

u
b

je
c

t

B
la

n
k

N
o

d
e

 _
:b

1
P

ro
p

e
rt

y
L

is
t

P
re

fi
x

e
d

N
a

m
e

rd

f:
fi

rs
t

O
b

je
c

tL
is

t

P
re

fi
x

e
d

N
a

m
e

 :
a

T
ri

p
le

s
B

lo
c

k

T
ri

p
le

s
S

a
m

e
S

u
b

je
c

t

B
la

n
k

N
o

d
e

 _
:b

1
P

ro
p

e
rt

y
L

is
t

P
re

fi
x

e
d

N
a

m
e

rd

f:
re

s
t

O
b

je
c

tL
is

t

B
la

n
k

N
o

d
e

 _
:b

2

T
ri

p
le

s
S

a
m

e
S

u
b

je
c

t

B
la

n
k

N
o

d
e

 _
:b

3
P

ro
p

e
rt

y
L

is
t

P
re

fi
x

e
d

N
a

m
e

rd

f:
re

s
t

O
b

je
c

tL
is

t

P
re

fi
x

e
d

N
a

m
e

rd

f:
n

il

T
ri

p
le

s
B

lo
c

k

_
:
b
1

r
d
f
:
f
i
r
s
t

:
a

.

_
:
b
1

r
d
f
:
r
e
s
t

_
:
b
2

.

_
:
b
3

r
d
f
:
r
e
s
t

r
d
f
:
n
i
l

Figure 6.8: Lists AST Extract

72

[] :a [:b :c ; :d :e , f]

Figure 6.9: SPARQL Blank Node Property List Syntactic Sugar Sample

public Action<INode> this[Type nodeType]
{

get
{
if (nodeType == typeof(NumericLiteralNode) ||

nodeType == typeof(BooleanLiteralNode))
{

return explicateNode;
}
else
{

return null;
}

}
}

Figure 6.10: Indexer of LiteralExplicatorVisitor

priate type and delegates the explication to other methods. Finally, the old
AST node is replaced by the new and explicit form. This replacement is
performed by a general helper method, transferring parent and children
references.

The implementation of the explicateBooleanLiteralNode method is shown
in Figure 6.12. This method simply returns what would have been the
result if the explicit notation had been parsed, namely an RdfLiteralNode
with two children: a StringLiteralNode node containing the value and an
IriRefNode containing the data type identifier. The explicateNumericLiter-
alNode method works equivalently and its implementation will not be dis-
cussed here.

By applying this visitor to an AST, all numeric and boolean literal nodes
will, in effect, replace themselves with their equivalent explicit representa-
tion.

6.5 Intermediate Query Representation

As discussed in Section 5.2, SPARQL queries are transformed into an inter-
mediate representation based on SPARQL algebra. The base of this repre-
sentation is the Query class, shown in Figure 6.13.

Each query may specify a base and any number of named prefixes.
Also, depending on the type of query, a query description is stored as a
QueryDescriptionBase object. QueryDescriptionBase is an abstract class, rep-
resenting any of the concrete implementations. The details of these imple-

73

private void explicateNode(INode node)
{
INode newNode = null;

if (node is NumericLiteralNode)
{

newNode = explicateNumericLiteralNode((NumericLiteralNode)node);
}
else if (node is BooleanLiteralNode)
{

newNode = explicateBooleanLiteralNode((BooleanLiteralNode)node);
}

if (newNode != null)
{

Util.ReplaceNode(node, newNode);
}

}

Figure 6.11: The explicateNode Method of LiteralExplicatorVisitor

private RdfLiteralNode explicateBooleanLiteralNode(BooleanLiteralNode node)
{
return new RdfLiteralNode(

new StringLiteralNode { Value = node.Value ? "true" : "false" },
new IriRefNode { Value = "http://www.w3.org/2001/XMLSchema#boolean" }

);
}

Figure 6.12: The explicateBooleanLiteralNode Method of LiteralExplicatorVisi-
tor

74

+ Base: string
+ Prefixes: Dictionary<string,string>

Query

+ WhereClausePattern: Pattern

«abstract»

QueryDescriptionBase

SelectQueryDescription

Description

AskQueryDescription ConstructQueryDescription

DescribeQueryDescription

Figure 6.13: Overview of the Query Class

mentations are omitted from the figure.
The type of the query description dictates the type of the query. All

description types contain WHERE clauses2. These are stored in the Where-
ClausePattern property as SPARQL algebra expressions.

SPARQL algebra expressions are built using classes that derive from the
abstract Pattern class, as shown in Figure 6.14. These classes correspond to
the SPARQL algebra operators presented in Section 5.2.1, except for the
EmptyPattern class which is used as a placeholder where no pattern has yet
been determined.

Note the VariablesInScope property of every pattern. This list of string
objects contains the name of all the variables that are visible to the pattern.
This collection is introduced at the pattern level to ease the reasoning when
performing the transformation into Mars operator trees, as discussed in
Section 6.6. For the BasicGraphPattern, the VariablesInScope property is pop-
ulated with the names of variables occurring in the corresponding basic
graph pattern of the query. For other patterns, it is assigned the set-union
of the children’s VariablesInScope properties.

The BasicGraphPattern class, corresponding to the BGP pattern of
SPARQL algebra, is simply a list of Triple objects, as shown in Figure 6.15.
Each Triple object holds three references to Resource objects, representing its
subject, predicate and object. Each Resource object has a textual value as

2In DESCRIBE queries, the WHERE clause is optional

75

+ VariablesInScope : List<string>

«abstract»

Pattern

BasicGraphPatternFilter

Graph

Join

LeftJoinEmptyPattern Union

Figure 6.14: Classes Used to Build SPARQL Algebra Expressions

well as a Type indicating the role of this value.

6.5.1 Transforming the Abstract Syntax Tree

The process of transforming the abstract syntax tree from the parser into
SPARQL algebra is done recursively. An overview of the method is pre-
sented in Section 5.2. The prototype implementation is based around a
transform method which takes a single INode argument. The concrete type
of this argument decides to which of the several transform[...] methods the
actual transformation is delegated.

Each of the transform[...] methods is implemented as suggested by
pseudo code in Figure 5.3 on page 53. For completeness, the entire source
code for translating WHERE clauses into SPARQL algebra is provided in
Appendix B.

The final result of this transformation is a SPARQL algebra expression
represented by a Pattern-derived root node. As mentioned, this reference is
stored in the WhereClausePattern property of the query’s description object.
However, there are other factors that affect the result of a query.

For instance, the result of a SELECT query can be affected by a dis-
tinct/reduced modifier or a specified ordering. All these factors are cap-
tured and stored in designated properties of the SelectQueryDescription
class, as shown in Figure 6.16. If specified, these values are easily read
directly from the AST.

Solution limits and offsets are specified as integers in queries. In C#,
the int type is not nullable. Hence, the Limit and Offset attributes of the Se-
lectQueryDescription class has to be of type Nullable<int>. The Nullable<T>
type is a wrapper for value types, allowing null to be assigned if a value is
not available.

Conducting the entire transformation from abstract syntax tree to the
intermediary Query object representation is the responsibility of the static

76

BasicGraphPattern Triple

+ Value: string

Resource

· Iri
· Blank
· Literal
· Variable

«enumeration»

ResourceType

1

Type

1

Object

0..*

Triples

1

Predicate

1

Subject

Figure 6.15: Overview of the BasicGraphPattern Class

+ Variables: List<string>
+ DefaultGraphcs: List<string>
+ NamedGraphcs: List<string>
+ Limit: Nullable<int> = null
+ Offset: Nullable<int> = null

SelectQueryDescription

«abstract»

QueryDescriptionBase

· None
· Distinct
· Reduced

«enumeration»

DisitinctReducedModifiers

1
DistinctReducedModifier

+ Value: INode

OrderCondition

· Ascending
· Descending

«enumeration»

OrderTypes

1
Type

0..*
OrderConditions

Figure 6.16: Overview of the SelectQueryDescription Class

77

public static Query Transform(QueryNode queryNode)
{
Query query = CreateQueryFromPrologueNode(

queryNode.Children[0] as PrologueNode);

(· · ·)

if (queryNode.Children[1] is SelectQueryNode)
{

query.Description = SelectQueryTransformer
.TransformSelectQueryNode(queryNode.Children[1] as SelectQueryNode);

}

(· · ·)

else
{

throw new ArgumentException(. . .);
}

return query;
}

Figure 6.17: Conducting the Transformation Process.

Transform method of the QueryTransformer class. This method inspects the
syntax tree and decides what type of query is being processed. The trans-
formation process is then delegated to other methods. This concept is
shown in code in Figure 6.17.

6.5.2 Example: Transforming a part of the AST

While the source code of the WHERE clause transformer is provided as
Appendix B, one of its methods will be discussed in this section to illus-
trate how this class operates. The method to be discussed is transform-
GroupOrUnionGraphPattern which corresponds to the second If-statement
in the pseudo code in Figure 5.3 on page 53.

The source code for this method is listed in Figure 6.18. Apart from the
population of the VariablesInScope collection, there is an apparent equiva-
lence between the pseudo code and the actual C# code. The Children col-
lection of the specified node is enumerated and each child is transformed
separately. If more than one child is present, they are aggregated with
Union constructs and the VariablesInScope property of each union is pop-
ulated with the set-union of the VariablesInScope properties of its two chil-
dren. The Union class is merely a data container, without any logic. Its
implementation is shown in Figure 6.19.

The call to Where in the foreach statement is passed a lambda expres-
sion which ensures that only non-null values in the Children collection is

78

private static Pattern transformGroupOrUnionGraphPattern(
GroupOrUnionGraphPatternNode node)

{
Pattern pattern = null;
foreach (INode child in node.Children.Where(c => c != null))
{
if (pattern == null)
{

pattern = transform(child);
}
else
{

pattern = new Union(pattern, transform(child));

pattern.VariablesInScope.AddRange(
((Union)pattern).FirstPattern.VariablesInScope.Union(
((Union)pattern).SecondPattern.VariablesInScope));

}
}
return pattern;

}

Figure 6.18: The transformGroupOrUnionGraphPattern of WhereClauseTrans-
former

public class Union : Pattern
{

public Pattern FirstPattern { get; private set; }
public Pattern SecondPattern { get; private set; }

public Union(Pattern firstPattern, Pattern secondPattern)
{
FirstPattern = firstPattern;
SecondPattern = secondPattern;

}
}

Figure 6.19: The Union Class

79

included in the iteration. This is the LINQ3-construct for filtering a col-
lection. Likewise, the call to Union inside VariablesInScope.AddRange is the
LINQ-construct for performing set-unions.

By passing every child to the transform method, this implementation
uses indirect recursion to iteratively transform the entire sub-tree into the
form required by the intermediate query representation.

6.6 Operator Trees

The transformation of the intermediate query representation into Mars op-
erators is discussed in Section 5.4. The implementation of the transforma-
tion is closely based on the transformation algorithm, although several me-
thodical approaches are not directly transferable.

As described in the beginning of Chapter 5, Mars evaluates queries
based on operator graphs, but in the context of this thesis only graphs qual-
ifying as trees are used, and the term operator tree is consequently used.

The operator trees are constructed top-down, using the set of operators
described in Section 2.3.2. In addition, a special OutputOperator is used
as the root operator. The construction itself is a rather trivial procedure,
consisting of appending operators to the desired position in the operator
tree. Once the operator tree is fully constructed, it is validated. During
validation, the ordering and parameterization of operators are checked. In
addition, necessary metadata for nodes and edges in the operator tree is
supplied, making the operator tree ready for execution.

6.6.1 Transforming Algebra Graph Patterns

The SPARQL algebra graph patterns are transformed into Mars operators
as described in Section 5.4.1. The implementation corresponds closely to
the described method. However, complementary implementation details
for some of the graph patterns are worth mentioning.

Basic Graph Pattern

A BGP is transformed into a LookupOperator, possibly a SelectOperator, and
finally a MapOperator. The lookup may only be performed on a literal or a
URI, as variables or blank nodes may not be specified as a lookup term. If
a triple pattern contains at least one literal or URI, however, the remainder
of the triple pattern may contain both variables and blank nodes.

The SelectOperator does currently not support using filters containing
escaped quotation marks, needed in order to specify literal values, which

3Language Integrated Query: http://msdn.microsoft.com/en-us/data/
cc299380.aspx

80

http://msdn.microsoft.com/en-us/data/cc299380.aspx
http://msdn.microsoft.com/en-us/data/cc299380.aspx

are indexed on the form o:"[value]"ˆˆ[data type], including the
quotation marks. Thus, if such an element is present in a triple pattern,
the lookup has to be performed on that element, and the filtering on the
remainder of the triple elements. However, the object element is expected
to be the most selective element in the RDF triple, which circumvents the
SelectOperator limitation.

Consequently, lookups are preferentially performed on triple objects,
subject or predicates, in that order, on the first element whose value are ei-
ther a literal or an URI. Additional literal or URI value elements are filtered
after the lookup.

Variables and blank nodes present in a triple pattern are mapped us-
ing the MapOperator. Variables are mapped using the names given in the
query string, whereas blank node names are prefixed with a unique string
in order to separate them from variables.

Join

A join is transformed either into an equi-join or into a Cartesian product.
In order to determine the kind of join operation to be performed, the Vari-
ablesInScope property of every pattern, described in Section 6.5, is used to
find any common variables.

Unique fields in the incoming records are automatically prefixed with
InputX in the resulting record set, X being the sequence number of the input
from which the field originated. Thus, unique fields from the two inputs
in a two-way join are prefixed Input0 and Input1, respectively. As a con-
sequence, every join operation has to be succeeded by a remapping of the
variable names back to the corresponding names before the join operator.

6.6.2 Example: Constructing an Operator Tree

To illustrate how Mars operators are parameterized and composed into an
operator tree, the required code for manually constructing the operator tree
for a sample query is shown in Figure 6.20. This code is not part of the
implementation; it is simply an attempt to give a glimpse into the basics of
operator tree construction.

As the transformation implementation is decomposed into several parts
handling different parts of the SPARQL algebra, showing the course of the
transformation would require quite a lot of code. Thus, this sample code
simply brings together extracts of the pure operator tree construction code
analogous to that produced by the transformation process.

The sample query is stated at the very beginning of the code sample. It
is a simple query containing only a single basic graph pattern and a pro-
jection on the ?title variable. Corresponding to the RDF sample graph in

81

Figure 2.1 on page 5, the ?title variable should be bound to “U2” when the
query is evaluated.

Initially the root OutputOperator object and the OperatorFlow object rep-
resenting the operator tree are created. The latter contains methods for con-
structing the tree by adding operators at specific positions in the operator
tree.

The basic graph pattern is transformed into three operators. First a
LookupOperator is used to fetch records from the inverted index Occurrence2.
Since no literal or URI object triple element is given in the query, the next
preferred lookup element is the subject triple element, which qualifies for
the lookup as it is a URI. Consequently, all RDF triples having the sub-
ject http://music.org/artist/a3cb23fc, prefixed by s: to match subject triple ele-
ments, are looked up.

In addition to the subject triple element, a URI predicate element is
specified as well. This calls for additional filtering using the SelectOperator.
The record set produced by the LookupOperator contains three fields; DocID,
Value1 and Value2, of which Value1 and Value2 represent the corresponding
triple predicate and object elements, respectively, since the lookup was per-
formed on the triple subject element. The filter is consequently set to match
all records where the Value1 field, the predicate triple element, equals the
http://purl.org/dc/elements/1.1/title predicate URI.

Next, the MapOperator is used to map the ?title variable to the Value2
field, that is, the object triple element. Yet another MapOperator is used to
perform the projection. As the ?title variable is the only variable present
in the record set at this stage, performing a mapping from the variable to
itself is not necessary. The prototype’s transformation process translates the
SPARQL algebra naïvely, however, unconcerned with optimization issues
like this one.

Finally, the operators are added to the tree. This is performed in a top-
down manner, where the operators are added as predecessors to each other,
in the appropriate order, starting off with the root OutputOperator and the
projection MapOperator.

6.7 Component Architecture

This section describes the architecture of the SPARQL query service and
its encapsulating Mars component. An overview of the classes involved
is shown in Figure 6.21. Note the custom UML stereotypes injected and
exposed which are used to indicate properties involved in dependence in-
jection.

The central entity of the Mars component is the SparqlQueryServiceCom-
ponent class. This class encapsulates the entire SPARQL Query Service and
exposes it to Mars through the ISparqlQueryService interface. By exposing

82

// SELECT ?title WHERE {
// <http://music.org/artist/a3cb23fc>
// <http://purl.org/dc/elements/1.1/title>
// ?title
// }
OperatorBase root = new OutputOperator();
OperatorFlow tree = new OperatorFlow(root);

// Basic graph pattern
LookupOperator lookupOperator = new LookupOperator();
lookupOperator.IndexName = "Occurrence2";
lookupOperator.Word = "s:http://music.org/artist/a3cb23fc";

SelectOperator selectOperator = new SelectOperator();
selectOperator.Filter = "Value1 ==

StringFunctions.ToSafeString(\"http://purl.org/dc/elements/1.1/title\")";

MapOperator mapOperator = new MapOperator();
mapOperator.ParameterMap =

new Dictionary<IdentifierProperty, ExpressionProperty>()
mapOperator.ParameterMap.Add(

new IdentifierProperty("title"), new ExpressionProperty("Value2"));

// Projection solution modifier
MapOperator projectionMapOperator = new MapOperator();
projectionMapOperator.ParameterMap =

new Dictionary<IdentifierProperty, ExpressionProperty>();
projectionMapOperator.ParameterMap.Add(

new IdentifierProperty("title"), new ExpressionProperty("title"));

// Add operators to operator tree
tree.AddPredecessor(root, projectionMapOperator);
tree.AddPredecessor(projectionMapOperator, mapOperator);
tree.AddPredecessor(mapOperator, selectOperator);
tree.AddPredecessor(selectOperator, lookupOperator);

Figure 6.20: Operator Tree Construction Sample

83

+
 C

o
n

fig
u

re
d
(p

re
v
C

o
n

fig
,

n
e

w
C

o
n

fig
)

+
 A

c
tiv

a
tin

g
()

+
 I

n
te

ra
c
tiv

e
(:

T
e

x
tR

e
a

d
e

r,
 :
T

e
x
tW

ri
te

r)

-
c
o

n
fig

:
IS

p
a

rq
lQ

u
e

ry
S

e
rv

ic
e

C
o

n
fig

u
ra

tio
n

+
 C

o
n

fig
u

ra
tio

n
T

y
p

e
:
T

y
p

e

S
p

a
rq

lQ
u

e
ry

S
e

rv
ic

e
C

o
m

p
o

n
e

n
t

«
a

b
st

ra
c
t»

A
b

s
tr

a
c

tM
a

n
a

g
e

a
b

le
C

o
re

C
li

e
n

t

In
te

ra
c
tiv

e
(:

T
e

x
tR

e
a

d
e

r,
 :
T

e
x
tW

ri
te

r)

«
in

te
rf

a
c
e

»

II
n

te
ra

c
ti

v
e

C
o

m
p

o
n

e
n

t

+
 E

x
e

c
u

te
Q

u
e

ry
(:

s
tr

in
g

)
:
s
tr

in
g

-
q

u
e

ry
E

n
g

in
e

 :
 I

Q
u

e
ry

E
n

g
in

e
+

 E
rr

o
rs

 :
 I
E

n
u

m
e

ra
b

le
<

s
tr

in
g
>

S
p

a
rq

lQ
u

e
ry

S
e

rv
ic

e

1
«

in
je

c
te

d
»

 I
Q

u
e

ry
E

n
g

in
e

«
in

je
c
te

d
»

 I
S

y
s
te

m
C

a
ta

lo
g

«
e

x
p

o
s
e

d
»

 I
S

p
a

rq
lQ

u
e

ry
S

e
rv

ic
e

E
x
e

c
u

te
Q

u
e

ry
(:

s
tr

in
g
)

:
s
tr

in
g

E
rr

o
rs

 :
 I

E
n

u
m

e
ra

b
le

<
s
tr

in
g
>

«
in

te
rf

a
c
e

»

IS
p

a
rq

lQ
u

e
ry

S
e

rv
ic

e

+
 C

o
n

v
e

rt
Q

u
e

ry
T

o
O

p
e

ra
to

rG
ra

p
h
(:

Q
u

e
ry

)
:O

p
e

ra
to

rG
ra

p
h

-
c
o

n
fig

 :
 I
S

p
a

rq
lQ

u
e

ry
S

e
rv

ic
e

C
o

n
fig

u
ra

tio
n

-
c
a

ta
lo

g
:

IS
y
s
te

m
C

a
ta

lo
g

O
p

e
ra

to
rG

ra
p

h
B

u
il

d
e

r

1

Figure 6.21: Architecture of the Mars Component

84

the service to the dependency injection framework, any other Mars compo-
nent can request access to the SPARQL Query Service.

SparqlQueryServiceComponent is also responsible for providing the
SPARQL Query Service with access to the Mars query engine and system
catalog. This is achieved by registering a dependency for an IQueryEngine
object and an ISystemCatalog object, respectively. Only when these depen-
dencies are resolved is the actual SPARQL Query Service object created.

It is important to note that these dependencies are a consequence of the
SPARQL Query Service not evaluating the Mars operator trees itself, but
passing them to the query engine component. The system catalog is used
as a parameter to the operator trees in order for the query engine to find
the RDF data.

Most of the plumbing required by Mars components is provided by the
AbstractManageableCoreClient class. By inheriting from this class, one gets
both XML configuration capabilities as well as virtual methods to override
in order to act on certain events. The Activating method, for instance, is
called when all dependencies are resolved, and is overridden in this com-
ponent to instantiate the SPARQL Query Service.

Also note that this component implements the IInteractiveComponent in-
terface. The purpose of this is to provide an interactive shell to users who
run Mars’s command line interface.

The ISparqlQueryService interface is the interface providing access to
the SPARQL Query Service. It consists only of two members, an Execute-
Query method and an Errors property. The ExecuteQuery method accepts a
SPARQL query string and returns a string representation of an XML docu-
ment containing the results of the query. Errors that occur are enumerated
through the Errors property.

The transformation from SPARQL algebra patterns to a Mars operator
tree, discussed in the previous section, is the responsibility of the Opera-
torGraphBuilder class. Objects from this class require access to the config-
uration and the system catalog. These are provided by the SparqlQuery-
Service constructor which is responsible for instantiating an operator graph
builder.

The operator graph builder contains a single public method which trans-
forms a Query object into a Mars operator tree. This tree is then validated
and passed to the Mars query engine for evaluation.

As mentioned, inheriting from AbstractManageableCoreClient provides
XML configuration capabilities. For the SPARQL Query Service, the default
configuration is as shown in Figure 6.22. The configuration parameters are
all related to how and where the index is stored.

At runtime, the configuration is automatically retrieved and stored in
an ISparqlQueryServiceConfiguration field on the SparqlQueryServiceCompo-
nent object. The members of this interface exactly match the elements in
the configuration XML, as shown in Figure 6.23. Ultimately, this configura-

85

<cc:Configuration
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cc="http://www.fastsearch.com/Ceres/Config/Configuration/2008/11">
<OccurrenceIndex>Occurrence2</OccurrenceIndex>
<FirstValueField>Value1</FirstValueField>
<SecondValueField>Value2</SecondValueField>
<SubjectPrefix>s:</SubjectPrefix>
<PredicatePrefix>p:</PredicatePrefix>
<ObjectPrefix>o:</ObjectPrefix>

</cc:Configuration>

Figure 6.22: SPARQL Query Service Configuration

«readonly» OccurrenceInde : string

«readonly» FirstValueField : string

«readonly» SecondValueField : string

«readonly» SubjectPrefix : string

«readonly» PredicatePrefix : string

«readonly» ObjectPrefix : string

«interface»

ISparqlQueryServiceConfiguration

Figure 6.23: Interface of Configuration Object

tion object is passed to the constructor of the operator builder class.

6.8 Testing the Component

This section outlines the measures taken to test the correctness of the pro-
totype component. The testing methods and degree of thoroughness vary
among the sub-components. While some tests are fully automated, other
tests are based on manual visual inspection. Some tests are even conducted
completely by hand, without using any testing frameworks.

6.8.1 Parser Testing

The Data Access Working Group of W3C has released a set of test cases, in-
cluding syntax tests for the SPARQL language [36]. All in all, the test suite
contains five syntax test sets of 199 SPARQL queries in total which should
either parse or fail to parse. While such tests do not fully test all aspects of
a SPARQL parser, they constitute a solid foundation.

The test queries do not specify how a resulting AST should look like.
After all, the structure of an AST depends on the application. Thus, it is
not possible to verify the correctness of the ASTs produced by the parser,
based on these tests alone. The tests neither provide any means of testing
the scanner isolatedly. Such tests have to be authored by manually iden-

86

[TestMethod]
public void TestLiteralExplication()
{

INode node = new NumericLiteralNode()
{
IntValue = 123,
Type = NumericLiteralNode.LiteralType.Int

};
explicateLiterals(ref node);
Assert.IsInstanceOfType(node, typeof(RdfLiteralNode));
Assert.AreEqual("123",
((node as RdfLiteralNode).String as StringLiteralNode).Value);

Assert.AreEqual("http://www.w3.org/2001/XMLSchema#integer",
((node as RdfLiteralNode).IriRef as IriRefNode).Value);

}

Figure 6.24: Fully Automated AST Preparation Test

tifying the token stream that should be produced. Once again, this is a
natural constraint, given that the tokens chosen, like the AST, depend on
the application.

Using the integrated support for automated testing in Visual Studio
2008, the W3C SPARQL Test Suite is completely automated. The running of
the test suite is essential in determining the parser’s level of conformance
with the SPARQL grammar specification, and because of the great impor-
tance of running such tests, this should be as easy to carry out as possible.

As the parser used in this component is created and tested as a related
but different project, the entire discussion on testing the parser is not recited
here. For a complete presentation on the measures taken to test the parser,
see [4].

6.8.2 Transformation Testing

Two aspects of the transformation from AST are tested using Visual Studio:
the initial preparation of the AST and the following transformation into
SPARQL algebra.

An example of a fully automated AST preparation test is shown in
Figure 6.24. This test tests the LiteralExplicatorVisitor implementation dis-
cussed in Section 6.4.7. An AST node representing an implicitly data-typed
numeric literal is created and applied the explication visitor as part of the
call to the explicateLiterals method. Consequently, properties of the result-
ing node are inspected to make sure the explication was correct.

Other AST preparation tests are more advanced, creating ASTs which
are subject to a visitor and then asserting properties on the entire trees.
Some surrogate tests have also been created, which, when run in debug
mode, will visualize the AST before and after the visitor is applied. These
are not tests per se, but have been a helpful tool in debugging many of the

87

[TestMethod]
public void TestDistinctModifier()
{
Parser parser = new Parser();
parser.Parse("SELECT DISTINCT * {}");
Query query = QueryTransformer.Transform(parser.AstRoot as QueryNode);

SelectQueryDescription description =
query.Description as SelectQueryDescription;

Assert.AreEqual(DistinctReducedModifiers.Distinct,
description.DistinctReducedModifier);

}

Figure 6.25: Fully Automated SPARQL Algebra Transformation Test

visitor classes.
A separate set of tests were created to verify the transformation from

AST to the intermediate query representation. By parsing queries and pass-
ing the resulting ASTs to QueryTransformer.Transform, properties on the re-
sulting Query object can be verified. An example of such an automated
transformation test is shown in Figure 6.25. This particular test verifies the
transformation of a query’s DISTINCT modifier into a property value on
the intermediate query description.

Transformation of WHERE clauses are tested in a similar fashion, but
the resulting transformation is a tree of SPARQL algebra, rather than a sim-
ple property on a Query object. Hence, these tests traverse entire trees of
SPARQL algebra patterns and verify both types and values on each ele-
ment.

6.8.3 Evaluation Testing

The set of test cases released by the Data Access Working Group of W3C
used for parser testing also contains numerous evaluation tests. Besides
the syntax tests, the test cases contain a total of 241 SPARQL queries and
accompanying data and result sets. Several of the evaluation tests do not
qualify for testing the prototype, however, as the current implementation
only supports a subset of the SPARQL specification, as discussed in Section
7.3.

As the actual evaluation of the operator trees is performed within Mars,
the evaluation testing is performed in a manual fashion. The test procedure
involves launching a Mars node, in which the test data set is indexed, before
feeding the test query to the prototype component, all via a Mars interac-
tive shell.

88

Chapter 7

Results and Discussion

This chapter starts by presenting the storage model that was provided by
Fast for the SPARQL Query Service prototype, comparing it to the pro-
posal from Section 4.3.2. Next, a brief introduction is given on how triples
are being passed to Mars for indexing and which format those triples are
assumed to have for the prototype to work. Following, the features of
SPARQL supported by the prototype is discussed before finally presenting
results from the tests conducted.

7.1 Prototype Storage Model

Section 4.3 discusses the reasonable storage model alternatives, from which
a storage model based on TripleT has been proposed. The actual storage
model provided by Fast for the prototype closely resembles the proposed
storage model, shown in Figure 4.5 on page 46.

The most notable deviation from the proposal is the omission of dic-
tionary encoding. Hence, all URIs are indexed and stored in their entirety.
Further, if the payload lists contain two or less rows, they are stored directly
in the B+ tree index.

As discussed in Section 2.3.3, Mars identifies every document by a
unique document identifier. When the RDF data is indexed, every triple
is considered a document and assigned a unique DocID. In addition to the
two triple elements in the payload lists, the DocID is also included. As this
value is never of any interest to the SPARQL query evaluation, it is simply
ignored.

Payload lists are actually logical lists based on hash maps holding the
status of every document. A linked list exists per document, holding the
deltas for every state. Should SPARQL ever acquire constructs for specify-
ing the generation of the RDF data to be queried, Mars has the infrastruc-
ture required to implement such a feature.

89

<doc>
<s>{subject}</s>
<p>{predicate}</p>
<o>{object}</o>

</doc>

Figure 7.1: XML Format for RDF Triples

7.2 Triple Format

In order to let Mars index RDF triples, each triple is stored in a separate
XML file, before being passed to Mars’s Document Feeder component.
Mars will further decompose each triple and index each triple element in
a B+ tree, as discussed in Section 4.3.2. The XML must follow a specific
format, shown in Figure 7.1

Also note that, in order to preserve whitespace and avoid having to
replace special characters with entity references, CDATA nodes can be used
for representing triple nodes in the XML, rather than regular text nodes.

The SPARQL Query Service component further assumes a certain for-
mat on the triple elements. This format is based on the Terse RDF Triple
Language[7], with one notable difference: resource and data type URIs are
stored as absolute URIs without enclosing angle brackets. This is primarily
to make the XML representation more readable. For completeness, these
assumed formats are listed below.

Resource URIs http://example.org/ID

Simple Literals "Literal"

Data-Typed Literals "2"ˆˆhttp://example.org/type

Language Tagged Literals "Copenhagen"@en

Blank Nodes _:BnodeLabel

7.3 Supported SPARQL Features

The prototype implementation only supports a subset of the features de-
fined in the SPARQL specification [2]. However, supporting the entire spec-
ification was never the intention. The top priority was to support SELECT
queries, consisting only of triple patterns, evaluated against a single RDF
data set.

90

Query ::= Prologue (SelectQuery | ConstructQuery |
DescribeQuery | AskQuery)

Prologue ::= BaseDecl? PrefixDecl*
BaseDecl ::= 'BASE' IRI_REF
PrefixDecl ::= 'PREFIX' PNAME_NS IRI_REF
SelectQuery ::= 'SELECT' ('DISTINCT' | 'REDUCED')? (Var+ | '*')

DatasetClause* WhereClause SolutionModifier
ConstructQuery ::= 'CONSTRUCT' ConstructTemplate DatasetClause*

WhereClause SolutionModifier
DescribeQuery ::= 'DESCRIBE' (VarOrIRIref+ | '*') DatasetClause*

WhereClause? SolutionModifier
AskQuery ::= 'ASK' DatasetClause* WhereClause

Figure 7.2: SPARQL Grammar Extract

7.3.1 Query Forms

SPARQL defines four query forms, of which only SELECT queries are partly
supported by the prototype. Figure 7.2 shows an extract of the EBNF
SPARQL grammar defining the top level SPARQL constructs. All queries
start off with an optional prologue construct, declaring base and prefixes,
which is fully supported.

A SELECT query consists of an optional set of solution modifiers, an op-
tional set of DatasetClauses and a mandatory WhereClause specifying one or
more graph patterns.

Solution modifiers are almost fully supported, as discussed further in
Section 7.3.2. The dataset clause is not supported, and the single RDF data
set used for evaluating SPARQL queries is determined by the context in
which the queries are executed, that is, the current Mars node hosting the
prototype component. The where clause is partly supported, as discussed
further in Section 7.3.3.

Of the other three query forms, the CONSTRUCT and DESCRIBE query
forms also consist of solution modifiers, dataset clauses and where clauses;
the ASK query form consists only of the latter two. Although the query
forms themselves are not supported, the constructs shared with the SE-
LECT query form are.

7.3.2 Solution Modifiers

All solution modifiers, including order, projection, distinct, reduced, offset and
limit, are fully supported except for the order and limit solution modifiers,
which are only partly supported.

The order solution modifier has a well-defined behavior, as described
in Section 2.2.3. However, as resources, literals and blank nodes are all
indexed and stored as string values, only lexicographical ordering can be
achieved by the Sort operator, as discussed in Section 5.4.2.

91

The limit solution modifier behavior is achieved using the Trim operator,
which also handles the offset solution modifier. The SPARQL specification
defines a limit of 0 as no results being returned at all, while the Trim opera-
tor with the same limit would return all results, that is, no limit.

7.3.3 Graph Patterns

The graph patterns that may be specified in the where clause include Filter,
Join, LeftJoin, Union, Graph and Basic Graph Pattern. The Join, Union and Basic
Graph Pattern are fully supported, whereas the remaining graph patterns
are not supported.

The Filter graph pattern is a complicated construct supporting complex
expressions for testing values. Supporting this graph pattern has not been
a priority, and it is consequently unsupported.

The LeftJoin graph pattern performs a conditional left join, typically
combined with a Filter graph pattern. As no suitable operator is currently
available in Mars, as well as this not being a priority, the LeftJoin graph
pattern is not supported.

The Graph graph pattern is used to specify the currently active RDF data
set to be queried. This graph pattern is not supported, and in the prototype
only a single RDF data set is queried.

7.3.4 Data Types

RDF allows data types to be stored along with literals in order to attach
semantics to the data. For instance, a numeric literal may be stored as an
integer data type to indicate that it should be treated as a numeric value
rather than a string of digits.

The prototype supports querying for literals of a specified data type.
A query searching for "12"ˆˆxsd:Integer will not return literals like
"12" or "12"ˆˆxsd:Decimal. This behavior is according to the specifi-
cation.

It does not, however, consider any semantics affiliated with data types.
While the SPARQL specification considers the two literals
"12"ˆˆxsd:Decimal and "12.0"ˆˆxsd:Decimal to be equal, this is
not the case with the prototype which relies solely on string comparisons.
This also affects ordering. According to the specification,
"3"ˆˆxsd:Integer should appear before "12"ˆˆxsd:Integer in as-
cending order. However, the prototype always uses lexicographical order-
ing, incorrectly ordering these two literals the other way around.

92

7.4 Test Results

Testing has been an important instrument in the development of the pro-
totype, both as a measure of correctness and as a bug tracking mechanism.
The W3C SPARQL Test Suite [36] has been a great resource for validating
both the parsing and evaluation of SPARQL queries.

Testing has been employed at three different stages during the devel-
opment of the prototype. First the parsing has been tested, followed by
the transformation from abstract syntax trees to the intermediate represen-
tation, and finally the behavior of the evaluation of the generated Mars
operator trees.

The test suite contains five sets of syntax tests, consisting of 199 SPARQL
queries in total, all of which should either parse or fail to parse. The syn-
tax tests have been used to test the parser’s level of conformance with the
SPARQL grammar. All syntax tests pass, indicating complete conformance
with the SPARQL grammar covered by the test suite.

Besides the syntax test sets, the test suite contains 109 test data sets and
241 belonging SPARQL test queries and expected result sets. Of these, 45
data sets and 72 queries qualify for testing the SPARQL features supported
by the prototype. As some SPARQL features are only partly supported, like
value comparison for data-typed literals, 12 of the 72 queries fail.

Table 7.1 lists the failing tests, categorized by reason for failing. The first
5 tests fail because of limited support for data types. For instance, the in-
dexed, data-typed literal "5.0"ˆˆxsd:Decimal and the test query literal
5 interpreted as "5"ˆˆxsd:integer, are not detected as being equal since
the two are compared as strings instead of numbers. The next 5 tests fail
because of limited support for international characters, most likely caused
by an internal bug in Mars, according to feedback from our supervisor from
Fast. The last 2 tests fail because of missing support for resource classifica-
tion, required in order to correctly have URIs appear before literals when
sorted in ascending order, as discussed in Section 5.4.2.

In addition to the tests from the W3C SPARQL Test Suite, custom tests
tailored for the three stages, the intermediate representation in particular,
have been employed to validate aspects not covered by the test suite.

93

Test Reason for failing

Basic Term 6

Limited support for data types
Basic Term 7
Basic Term 8
sort-4
sort-7

kanji-01

Limited support for
international characters

kanji-02
normalization-01
normalization-02
normalization-03

sort-6 Missing support for resource
classificationsort-8

Table 7.1: Failing, Relevant Tests From the W3C SPARQL Test Suite

94

http://www.w3.org/2001/sw/DataAccess/tests/r2#term-6
http://www.w3.org/2001/sw/DataAccess/tests/r2#term-7
http://www.w3.org/2001/sw/DataAccess/tests/r2#term-8
http://www.w3.org/2001/sw/DataAccess/tests/r2#dawg-sort-4
http://www.w3.org/2001/sw/DataAccess/tests/r2#dawg-sort-7
http://www.w3.org/2001/sw/DataAccess/tests/r2#kanji-1
http://www.w3.org/2001/sw/DataAccess/tests/r2#kanji-2
http://www.w3.org/2001/sw/DataAccess/tests/r2#normalization-1
http://www.w3.org/2001/sw/DataAccess/tests/r2#normalization-2
http://www.w3.org/2001/sw/DataAccess/tests/r2#normalization-3
http://www.w3.org/2001/sw/DataAccess/tests/r2#dawg-sort-6
http://www.w3.org/2001/sw/DataAccess/tests/r2#dawg-sort-8

Chapter 8

Conclusion and Further Work

Throughout this project, research on how to efficiently store and index RDF
data in the Mars search engine has been conducted. Further, the possibili-
ties of evaluating SPARQL queries in Mars have been explored, prototyped
and tested.

A storage model based on state of the art research within the Seman-
tic Web initiative has been proposed. This model is based on dictionary
encoding and decomposition of RDF triples in order to facilitate efficient re-
trieval of data and evaluation of queries. During the course of this project,
Fast has provided a prototype storage model based on this proposal which
has been used as the basis for evaluating SPARQL queries.

A prototype SPARQL Query Service component for Mars has been
created, using a parser developed in a related project during fall 2008.
Transformations from common SPARQL queries to SPARQL algebra and
from SPARQL algebra to Mars operator trees have been described and im-
plemented. Hence, the prototype is able to evaluate a wide range of typical
SPARQL queries.

To quantify the degree of conformance with the specification, testing of
the prototype has been performed using W3C’s own SPARQL test suite
as well as custom tests. All 199 syntax tests pass, indicating complete con-
formance with the SPARQL grammar. Further, 72 of 241 evaluation tests
were considered relevant for the prototype. Of these, only 12 fail due to
incomplete support for data types, international characters and resource
classification.

8.1 Further Work

As discussed in Section 7.3, the prototype lacks support for parts of the
SPARQL specification. Further work includes adding support for all query
types as well as implementing Mars operators for handling the currently
unsupported SPARQL operators of SELECT queries.

95

Correct interpretation of data-typed literals has to be implemented, par-
ticularly with regards to comparisons and ordering. The ORDER BY key-
word from SPARQL has to be transformed into Mars operators that meet
the special semantics of ordering results from SPARQL queries described
in Section 2.2.3.

Optimizations regarding performance should also be considered. Im-
plementing dictionary encoding, in particular, will decrease the size of the
index, enforce constant field sizes and improve the efficiency of performing
value comparisons. The introduction of dictionary encoding would, how-
ever, require changes to how the prototype operates. The index lookup
values would have to be substituted by their corresponding keys in the
dictionary, and the keys produced as query results would have to be sub-
stituted back to their original values before being returned to the user.

Further performance gains could be obtained by optimizing the Mars
operator trees produced by the prototype. Using the general transforma-
tion algorithms described in this thesis will often produce sub-optimal op-
erator trees. One example is the frequent occurrence of two Map operators
in a row that could be merged into one single but semantically equivalent
Map operator.

96

References

[1] W3C. RDF Primer. http://www.w3.org/TR/2004/
REC-rdf-primer-20040210/, February 2004.

[2] W3C. SPARQL Query Language for RDF. http://www.w3.org/
TR/2008/REC-rdf-sparql-query-20080115/, January 2008.

[3] iAD. About the iAD Research Centre. http://www.iad-centre.
no/about.html.

[4] Tormod Fjeldskår and Ole Petter Bang. Developing a SPARQL parser
for .NET. Enclosed in ZIP archive, see Appendix C, December 2008.

[5] W3C. W3C Semantic Web Activity. http://www.w3.org/2001/
sw/, January 2009.

[6] W3C. RDF Vocabulary Description Language 1.0: RDF Schema.
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/,
February 2004.

[7] Turtle - Terse RDF Triple Language. http://www.w3.org/
TeamSubmission/2008/SUBM-turtle-20080114/, January
2008.

[8] W3C. RDF Data Access Use Cases and Requirements. http://www.
w3.org/TR/2005/WD-rdf-dawg-uc-20050325/, March 2005.

[9] Microsoft. Managed Babel. http://msdn.microsoft.com/
en-us/library/bb165037(VS.90).aspx, November 2007.

[10] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools. Addison Wesley, 2nd edition,
2006.

[11] ISO/IEC 14977:1996(E). Information technology - Syntactic metalanguage
- Extended BNF. ISO/IEC, Geneva, Switzerland.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1994.

97

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.iad-centre.no/about.html
http://www.iad-centre.no/about.html
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/
http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/
http://www.w3.org/TR/2005/WD-rdf-dawg-uc-20050325/
http://www.w3.org/TR/2005/WD-rdf-dawg-uc-20050325/
http://msdn.microsoft.com/en-us/library/bb165037(VS.90).aspx
http://msdn.microsoft.com/en-us/library/bb165037(VS.90).aspx

[13] W3C. Extensible Markup Language (XML) 1.1. http://www.w3.
org/TR/2004/REC-xml11-20040204/#sec-notation, Febru-
ary 2004.

[14] The Lex & Yacc Page. http://dinosaur.compilertools.net/.

[15] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollen-
bach. Scalable semantic web data management using vertical parti-
tioning. In VLDB ’07: Proceedings of the 33rd international conference on
Very large data bases, pages 411–422. VLDB Endowment, 2007.

[16] Valerie Bönström, Annika Hinze, and Heinz Schweppe. Storing RDF
as a Graph. In LA-WEB ’03: Proceedings of the First Conference on Latin
American Web Congress, page 27, Washington, DC, USA, 2003. IEEE
Computer Society.

[17] Luping Ding, Luping Ding, Kevin Wilkinson, Kevin Wilkinson, Craig
Sayers, Craig Sayers, Harumi Kuno, and Harumi Kuno. Application-
specific schema design for storing large RDF datasets. In In First Intl
Workshop on Practical and Scalable Semantic Systems, 2003.

[18] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam
Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan
Zdonik. C-store: a column-oriented DBMS. In VLDB ’05: Proceedings
of the 31st international conference on Very large data bases, pages 553–564.
VLDB Endowment, 2005.

[19] Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels Nes,
and Stefan Manegold. Column-store support for RDF data manage-
ment: not all swans are white. Proc. VLDB Endow., 1(2):1553–1563,
2008.

[20] Andreas Harth and Stefan Decker. Optimized Index Structures for
Querying RDF from the Web. In LA-WEB ’05: Proceedings of the Third
Latin American Web Congress, page 71, Washington, DC, USA, 2005.
IEEE Computer Society.

[21] G. H. L. Fletcher and P. W. Beck. A role-free approach to indexing large
RDF data sets in secondary memory for efficient SPARQL evaluation.
ArXiv e-prints, November 2008.

[22] Raghu Ramakrishnan and Johannes Gehrke. Database Management
Systems. McGraw-Hill Higher Education, 3rd edition, November 2002.

[23] Liu Baolin and Hu Bo. HPRD: A High Performance RDF Database. In
NPC, pages 364–374, 2007.

98

http://www.w3.org/TR/2004/REC-xml11-20040204/#sec-notation
http://www.w3.org/TR/2004/REC-xml11-20040204/#sec-notation
http://dinosaur.compilertools.net/

[24] Thomas Neumann and Gerhard Weikum. RDF-3X: a RISC-style en-
gine for RDF. Proc. VLDB Endow., 1(1):647–659, 2008.

[25] Stephen Harris and Nicholas Gibbins. 3store: Efficient Bulk RDF Stor-
age, June 2003.

[26] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame:
A Generic Architecture for Storing and Querying RDF and RDF
Schema. pages 54–68. Springer, 2002.

[27] Jena - A Semantic Web Framework for Java. http://jena.
sourceforge.net/, February 2009.

[28] Jena2 Database Interface - Database Layout. http://jena.
sourceforge.net/DB/layout.html, February 2009.

[29] YARS: Yet Another RDF Store. http://sw.deri.org/2004/06/
yars/, February 2009.

[30] The JDBM project. http://jdbm.sourceforge.net/, February
2009.

[31] Dave Beckett. Redland RDF Libraries. http://librdf.org/.

[32] David Beckett. The Design and Implementation of the Redland RDF
Library. In Proceedings of WWW10 conference, 2001.

[33] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Giga-
bytes: Compressing and Indexing Documents and Images. Morgan Kauf-
mann, 2nd revised edition, May 1999.

[34] W3C. RDF Semantics. http://www.w3.org/TR/2004/
REC-rdf-mt-20040210/, February 2004.

[35] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier
(UUID) URN Namespace. RFC 4122 (Proposed Standard), July 2005.

[36] W3C. DAWG Testcases. http://www.w3.org/2001/sw/
DataAccess/tests/r2.

99

http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://jena.sourceforge.net/DB/layout.html
http://jena.sourceforge.net/DB/layout.html
http://sw.deri.org/2004/06/yars/
http://sw.deri.org/2004/06/yars/
http://jdbm.sourceforge.net/
http://librdf.org/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/2001/sw/DataAccess/tests/r2
http://www.w3.org/2001/sw/DataAccess/tests/r2

100

Glossary

AST Abstract Syntax Tree, a tree representation of the syntax of some
source code.

BNF Backus-Naur Form, a metasyntax used to express context-free gram-
mars.

C# One of the programming languages supported by Microsoft for creat-
ing applications that target on the .NET Framework.

EBNF Extended Backus-Naur Form, an extension to BNF containing sev-
eral shorthand notations.

iAD Information Access Disruptions, a constellation between Fast Search
& Transfer (Fast), two Norwegian enterprises, the Norwegian Uni-
versity of Science and Technology (NTNU) and several other univer-
sities.

IRI Internationalized Resource Identifier, a generalization of the Uniform
Resource Identifier (URI), allowing Unicode character rather than be-
ing restricted to a subset of ASCII characters.

Keyword When used in the context of a programming language, a key-
word typically denotes a reserved identifier which specifies certain
behavior.

LALR Parser Lookahead LR parser, produces the rightmost derivation,
reading the input from left to right.

LL(k) Parser Produces the leftmost derivation, reading the input from left
to right, using at most k tokens lookahead.

Mars The next generation search engine by Fast, combining database and
search engine technology, targeting enterprises.

Mars Node An instance of Mars, typically part of a larger constellation of
nodes, collectively constituting a search engine.

101

.NET Framework A software technology available from Microsoft which
provides a library of pre-fabricated components and a virtual ma-
chine for managing application execution.

Parser A program that performs syntactical analysis on a sequence of to-
kens to determine the grammatical structure. A parser usually pro-
duces an Abstract Syntax Tree (AST) for further analysis.

Pattern A pattern can refer to a recognizable pattern in a data structure.
It is also used to denote a semantically defined entity in SPARQL al-
gebra.

RDF Resource Description Framework, a model for representing informa-
tion about resources on the World Wide Web.

RDF Graph An RDF graph is a set of RDF triples, where subjects and ob-
jects constitute the nodes of the graph while predicates constitute the
directed arcs between nodes.

RDF Triple An RDF triple consists of a subject and an object, as well as
a predicate describing the subject’s relationship with the object. A
collection of RDF triples constitute an RDF graph.

Scanner A program that reads a sequence of characters and produce a se-
quence of tokens which represent one or more characters. A scanner
performs the first step (the lexical analysis) when parsing input in a
given language.

Semantic Web An extension of the World Wide Web in which the seman-
tics of information and services on the web is defined, making it pos-
sible for the web to understand and satisfy the requests of people and
machines to use the web content.

SharQL A SPARQL parser created in a related project.

SPARQL SPARQL Protocol And RDF Query Language, a query language
for RDF data.

Turtle Terse RDF Triple Language, a serialization format for RDF, resulting
in a less verbose output than the equivalent XML serialization.

URI Uniform Resource Identifier, a compact string of characters used to
identify or name a resource on the Internet.

Visitor Pattern A way of separating an algorithm from the object structure
upon which it operates.

W3C World Wide Web Consortium, the main international standards or-
ganization for the World Wide Web.

102

Appendix A

NodeBase Class

This appendix contains the NodeBase class, from which all classes used to
represent the abstract syntax trees (ASTs) descend. This abstract class im-
plements the INode interface and thus the Accept methods that realize the
Visitor pattern used for traversing the ASTs. In addition, the class imple-
ments functionality for cloning nodes, used when resolving syntactic sugar.

The NodeBase class is discussed in Section 3.2.3.

1 using System;
2 using System.Collections.Generic;
3 using SharQL.Ast.Visitor;
4

5 namespace SharQL.Ast
6 {
7 /// <summary>
8 /// The base implementation of the <see cref="INode"/> interface.
9 /// </summary>

10 public abstract class NodeBase : INode
11 {
12 #region Protected Fields
13

14 /// <summary>The parent of the node.</summary>
15 protected INode parent;
16 /// <summary>The children of the node.</summary>
17 protected IList<INode> children;
18

19 #endregion
20

21 /// <summary>
22 /// Default constructor.
23 /// </summary>
24 public NodeBase()
25 {
26 children = new NodeCollection();
27 }
28

29 /// <summary>
30 /// Constructs the object and adds a set of children.
31 /// </summary>
32 /// <param name="children">The children to add</param>
33 public NodeBase(params INode[] children)

103

34 : this()
35 {
36 foreach (INode node in children)
37 {
38 if (node != null) node.Parent = this;
39 this.children.Add(node);
40 }
41 }
42

43 /// <summary>
44 /// Gets or sets the parent of the node. Should be set to
45 /// <c>null</c> if node is root.
46 /// </summary>
47 public virtual INode Parent
48 {
49 get { return parent; }
50 set { parent = value; }
51 }
52

53 /// <summary>
54 /// Gets the list of children of the node.
55 /// </summary>
56 public virtual IList<INode> Children
57 {
58 get { return children; }
59 }
60

61 /// <summary>
62 /// Accepts a visitor. The visitor pattern can be used for
63 /// e.g. optimizing the AST.
64 /// </summary>
65 /// <param name="visitor">The visitor</param>
66 public virtual void Accept(IVisitor visitor)
67 {
68 Accept(visitor, VisitorOrder.ChildrenBeforeParent);
69 }
70

71 /// <summary>
72 /// Accepts a visitor. The visitor pattern can be used for
73 /// e.g. optimizing the AST.
74 /// </summary>
75 /// <param name="visitor">The visitor</param>
76 /// <param name="order">The visitor order</param>
77 public virtual void Accept(IVisitor visitor, VisitorOrder order)
78 {
79 if (order == VisitorOrder.ChildrenBeforeParent)
80 {
81 for (int i = children.Count - 1; i >= 0; i--)
82 {
83 INode child = children[i];
84

85 if (child != null)
86 child.Accept(visitor, order);
87 }
88 Action<INode> action = visitor[GetType()];
89 if (action != null)
90 {
91 action(this);
92 }
93 }
94 else if (order == VisitorOrder.ParentBeforeChildren)
95 {

104

96 Action<INode> action = visitor[GetType()];
97 if (action != null)
98 {
99 action(this);

100 }
101 for (int i = children.Count - 1; i >= 0; i--)
102 {
103 INode child = children[i];
104

105 if (child != null)
106 child.Accept(visitor, order);
107 }
108 }
109 }
110

111 /// <summary>
112 /// Returns a string representation of the node.
113 /// </summary>
114 /// <returns>A string representation of the node</returns>
115 public override string ToString()
116 {
117 return this.GetType().FullName;
118 }
119

120 /// <summary>
121 /// Returns a prefixed string representation of the node.
122 /// </summary>
123 /// <param name="prefix">The string prefix to which the string
124 /// representation should be appended.</param>
125 /// <returns>A prefixed string representation of the node</returns>
126 public virtual string ToString(string prefix)
127 {
128 return prefix + ToString();
129 }
130

131 #region ICloneable Members
132

133 /// <summary>
134 /// Creates a new <see cref="NodeBase"/> object, with it memebers
135 /// initialized to the same values as the current object.
136 /// </summary>
137 /// <returns>a new <see cref="NodeBase"/> object, with it memebers
138 /// initialized to the same values as the current object</returns>
139 public virtual NodeBase Clone()
140 {
141 NodeBase newNode = (NodeBase)MemberwiseClone();
142 newNode.children = new NodeCollection();
143 foreach (INode node in children)
144 {
145 if (node != null)
146 {
147 newNode.children.Add(node.Clone() as INode);
148 }
149 else
150 {
151 newNode.children.Add(null);
152 }
153 }
154

155 return newNode;
156 }
157

105

158 object ICloneable.Clone()
159 {
160 return Clone();
161 }
162

163 #endregion
164 }
165 }

106

Appendix B

WhereClauseTransformer Class

This appendix contains the WhereClauseTransformer class, which is respon-
sible for transforming WHERE clause constructs from the abstract syntax
trees into their corresponding SPARQL algebra representations. The un-
derlying transformation algorithm is shown in Figure 5.3.

The WhereClauseTransformer class is described in Section 6.5.1.

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using SharQL.Algebra.QueryStructure;
5 using SharQL.Ast;
6 using SharQL.Ast.Nodes;
7

8 namespace SharQL.Algebra
9 {

10 /// <summary>
11 /// Contains functionality for transforming
12 /// <see cref="WhereClauseNode"/> objects into trees of
13 /// <see cref="Pattern"/>-derived objects.
14 /// </summary>
15 internal static class WhereClauseTransformer
16 {
17 /// <summary>
18 /// Transforms the specified where clause into SPARQL algebra.
19 /// </summary>
20 /// <param name="whereClause">The where clause to transform.</param>
21 /// <returns>A <see cref="Pattern"/> object representing the SPARQL
22 /// algebra expression.</returns>
23 public static Pattern Transform(WhereClauseNode whereClause)
24 {
25 if (whereClause.Children[0] == null)
26 {
27 throw new ArgumentException(
28 "First child of whereClause can not be null", "whereClause");
29 }
30

31 try
32 {
33 return transform(whereClause.Children[0]);
34 }

107

35 catch (ArgumentException e)
36 {
37 throw new FormatException(
38 "Unexpected node encountered in whereClause", e);
39 }
40 }
41

42 /// <summary>
43 /// Transforms the specified node.
44 /// </summary>
45 /// <param name="node">The node to transform.</param>
46 /// <returns>The resulting SPARQL algebra</returns>
47 private static Pattern transform(INode node)
48 {
49 if (node is TriplesBlockNode)
50 {
51 return transformTriplesBlock((TriplesBlockNode)node);
52 }
53 else if (node is GroupOrUnionGraphPatternNode)
54 {
55 return transformGroupOrUnionGraphPattern(
56 (GroupOrUnionGraphPatternNode)node);
57 }
58 else if (node is GraphGraphPatternNode)
59 {
60 return transformGraphGraphPattern((GraphGraphPatternNode)node);
61 }
62 else if (node is GroupGraphPatternNode)
63 {
64 PatternNormalizer.NormalizeGroupGraphPattern(
65 (GroupGraphPatternNode)node);
66 return transformGroupGraphPattern((GroupGraphPatternNode)node);
67 }
68 else
69 {
70 throw new ArgumentException(
71 "Unexpected node " + node.GetType().FullName, "node");
72 }
73 }
74

75 /// <summary>
76 /// Transforms the triples block.
77 /// </summary>
78 /// <param name="node">The <see cref="TriplesBlockNode"/>
79 /// node.</param>
80 /// <returns>The resulting SPARQL algebra</returns>
81 private static Pattern transformTriplesBlock(TriplesBlockNode node)
82 {
83 Triple[] triples = getListOfTriples(node);
84 Pattern prevPattern = null;
85 foreach (var triple in triples)
86 {
87 BasicGraphPattern bgp = new BasicGraphPattern();
88 bgp.Triples.Add(triple);
89 bgp.VariablesInScope.AddRange(getVariables(triple));
90

91 if (prevPattern != null)
92 {
93 Join join = new Join(prevPattern, bgp);
94 join.VariablesInScope.AddRange(
95 prevPattern.VariablesInScope.Union(bgp.VariablesInScope));
96 prevPattern = join;

108

97 }
98 else
99 {

100 prevPattern = bgp;
101 }
102 }
103

104 return prevPattern;
105 }
106

107 /// <summary>
108 /// Transforms the group or union graph pattern.
109 /// </summary>
110 /// <param name="node">The <see cref="GroupOrUnionGraphPatternNode"/>
111 /// node.</param>
112 /// <returns>The resulting SPARQL algebra</returns>
113 private static Pattern transformGroupOrUnionGraphPattern(
114 GroupOrUnionGraphPatternNode node)
115 {
116 Pattern pattern = null;
117 foreach (INode child in node.Children.Where(c => c != null))
118 {
119 if (pattern == null)
120 {
121 pattern = transform(child);
122 }
123 else
124 {
125 pattern = new Union(pattern, transform(child));
126

127 pattern.VariablesInScope.AddRange(
128 ((Union)pattern).FirstPattern.VariablesInScope.Union(
129 ((Union)pattern).SecondPattern.VariablesInScope));
130 }
131 }
132 return pattern;
133 }
134

135 /// <summary>
136 /// Transforms the graph graph pattern.
137 /// </summary>
138 /// <param name="node">The <see cref="GraphGraphPatternNode"/>
139 /// node.</param>
140 /// <returns>The resulting SPARQL algebra</returns>
141 private static Pattern transformGraphGraphPattern(
142 GraphGraphPatternNode node)
143 {
144 Graph graph = null;
145

146 if (node.Children[0] is IriRefNode)
147 {
148 graph = new Graph((IriRefNode)node.Children[0],
149 transform(node.Children[1]));
150 }
151 else if (node.Children[0] is VarNode)
152 {
153 graph = new Graph((VarNode)node.Children[0],
154 transform(node.Children[1]));
155 }
156 else
157 {
158 throw new ArgumentException(

109

159 "Expected IriRefNode or VarNode as first child of
GraphGraphPatternNode.", "node");

160 }
161

162 graph.VariablesInScope.AddRange(graph.Pattern.VariablesInScope);
163

164 return graph;
165 }
166

167 /// <summary>
168 /// Transforms the group graph pattern.
169 /// </summary>
170 /// <param name="node">The <see cref="GroupGraphPatternNode"/>
171 /// node.</param>
172 /// <returns>The resulting SPARQL algebra.</returns>
173 private static Pattern transformGroupGraphPattern(
174 GroupGraphPatternNode node)
175 {
176 List<INode> filterConstraintExpressions = new List<INode>();
177 Pattern pattern = new EmptyPattern();
178 foreach (INode child in node.Children)
179 {
180 if (child == null)
181 {
182 continue;
183 }
184 else if (child is FilterNode)
185 {
186 filterConstraintExpressions.Add(child.Children[0]);
187 }
188 else if (child is OptionalGraphPatternNode)
189 {
190 Pattern optionalPattern = transform(child.Children[0]);
191 if (optionalPattern is Filter)
192 {
193 pattern = new LeftJoin(pattern,
194 ((Filter)optionalPattern).Pattern,
195 ((Filter)optionalPattern).ConstraintExpression);
196 }
197 else
198 {
199 pattern = new LeftJoin(pattern,
200 optionalPattern,
201 new BooleanLiteralNode() { Value = true });
202 }
203 pattern.VariablesInScope.AddRange(
204 ((LeftJoin)pattern).LeftPattern.VariablesInScope.Union(
205 ((LeftJoin)pattern).RightPattern.VariablesInScope));
206 }
207 else
208 {
209 Pattern graphPattern = transform(child);
210 if (pattern is EmptyPattern)
211 {
212 pattern = graphPattern;
213 }
214 else
215 {
216 pattern = new Join(pattern, graphPattern);
217 pattern.VariablesInScope.AddRange(
218 ((Join)pattern).FirstPattern.VariablesInScope.Union(
219 ((Join)pattern).SecondPattern.VariablesInScope));

110

220 }
221 }
222 }
223 if (filterConstraintExpressions.Count > 0)
224 {
225 INode conjunctionOfConstraints = conjugateConstraints(
226 filterConstraintExpressions);
227 pattern = new Filter(conjunctionOfConstraints, pattern);
228 pattern.VariablesInScope.AddRange(
229 ((Filter)pattern).Pattern.VariablesInScope);
230 }
231 return pattern;
232 }
233

234 /// <summary>
235 /// Conjugates the specified list of constraints.
236 /// </summary>
237 /// <param name="filterConstraintExpressions">The filter
238 /// constraint expressions.</param>
239 /// <returns>The conjugation of the specified constraints.</returns>
240 private static INode conjugateConstraints(
241 List<INode> filterConstraintExpressions)
242 {
243 INode conjunction = filterConstraintExpressions[0];
244

245 for (int i = 1; i < filterConstraintExpressions.Count; i++)
246 {
247 conjunction = new ConditionalAndExpressionNode(
248 conjunction as NodeBase,
249 filterConstraintExpressions[i] as NodeBase);
250 }
251

252 return conjunction;
253 }
254

255 /// <summary>
256 /// Gets the list of triples from the specified
257 /// <see cref="TriplesBlockNode"/> object.
258 /// </summary>
259 /// <param name="triplesBlockNodeRoot">The triples block root
260 /// node.</param>
261 /// <returns>An array of <see cref="Triple"/> objects.</returns>
262 private static Triple[] getListOfTriples(
263 TriplesBlockNode triplesBlockNodeRoot)
264 {
265 List<Triple> triples = new List<Triple>();
266

267 TriplesBlockNode current = triplesBlockNodeRoot;
268

269 while (current != null)
270 {
271 triples.Add(translateTripleNode(current));
272 current = current.Children[1] as TriplesBlockNode;
273 }
274

275 return triples.ToArray();
276 }
277

278 /// <summary>
279 /// Translates a <see cref="TriplesBlockNode"/> object into a
280 /// <see cref="Triple"/> object.
281 /// </summary>

111

282 /// <param name="triplesBlock">The <see cref="TriplesBlockNode"/>
283 /// object to translate.</param>
284 /// <returns>The resulting <see cref="Triple"/> object</returns>
285 private static Triple translateTripleNode(TriplesBlockNode

triplesBlock)
286 {
287 INode subject = null, predicate = null, @object = null;
288

289 TriplesSameSubjectNode tssn = triplesBlock.Children[0] as
TriplesSameSubjectNode;

290 if (tssn != null)
291 {
292 subject = tssn.Children[0];
293

294 PropertyListNode pln = tssn.Children[2] as PropertyListNode;
295 if (pln != null)
296 {
297 predicate = pln.Children[0];
298

299 ObjectListNode oln = pln.Children[1] as ObjectListNode;
300 if (oln != null)
301 {
302 @object = oln.Children[0];
303 }
304 }
305 }
306

307 Triple triple = new Triple();
308

309 triple.setSubject(subject);
310 triple.setPredicate(predicate);
311 triple.setObject(@object);
312

313 return triple;
314 }
315

316 /// <summary>
317 /// Sets the triple's subject.
318 /// </summary>
319 /// <param name="triple">The target triple.</param>
320 /// <param name="subject">The subject to set.</param>
321 private static void setSubject(this Triple triple, INode subject)
322 {
323 if (subject is VarNode)
324 {
325 triple.Subject = new Resource(ResourceType.Variable,

((VarNode)subject).Value);
326 }
327 else if (subject is IriRefNode)
328 {
329 triple.Subject = new Resource(ResourceType.Iri,

((IriRefNode)subject).Value);
330 }
331 else if (subject is BlankNode)
332 {
333 triple.Subject = new Resource(ResourceType.Blank,

((BlankNode)subject).Value);
334 }
335 else if (subject is RdfLiteralNode)
336 {
337 RdfLiteralNode node = (RdfLiteralNode)subject;
338

112

339 triple.Subject = new Resource(ResourceType.Literal, '"' +
((StringLiteralNode)node.String).Value + '"');

340 if (node.IriRef != null)
341 {
342 triple.Subject = new Resource(triple.Subject.Type,

triple.Subject.Value + "^^" +
((IriRefNode)node.IriRef).Value);

343 }
344 else if (!string.IsNullOrEmpty(node.LangTag))
345 {
346 triple.Subject = new Resource(triple.Subject.Type,

triple.Subject.Value + "@" + node.LangTag);
347 }
348 }
349 }
350

351 /// <summary>
352 /// Sets the triple's predicate.
353 /// </summary>
354 /// <param name="triple">The target triple.</param>
355 /// <param name="predicate">The predicate to set.</param>
356 private static void setPredicate(this Triple triple, INode predicate)
357 {
358 if (predicate is VarNode)
359 {
360 triple.Predicate = new Resource(ResourceType.Variable,

((VarNode)predicate).Value);
361 }
362 else if (predicate is IriRefNode)
363 {
364 triple.Predicate = new Resource(ResourceType.Iri,

((IriRefNode)predicate).Value);
365 }
366 }
367

368 /// <summary>
369 /// Sets the triple's object.
370 /// </summary>
371 /// <param name="triple">The target triple.</param>
372 /// <param name="object">The object to set.</param>
373 private static void setObject(this Triple triple, INode @object)
374 {
375 if (@object is VarNode)
376 {
377 triple.Object = new Resource(ResourceType.Variable,

((VarNode)@object).Value);
378 }
379 else if (@object is IriRefNode)
380 {
381 triple.Object = new Resource(ResourceType.Iri,

((IriRefNode)@object).Value);
382 }
383 else if (@object is BlankNode)
384 {
385 triple.Object = new Resource(ResourceType.Blank,

((BlankNode)@object).Value);
386 }
387 else if (@object is RdfLiteralNode)
388 {
389 RdfLiteralNode node = (RdfLiteralNode)@object;
390

391 triple.Object = new Resource(ResourceType.Literal, '"' +

113

((StringLiteralNode)((RdfLiteralNode)@object).String).Value +
'"');

392 if (node.IriRef != null)
393 {
394 triple.Object = new Resource(triple.Object.Type,

triple.Object.Value + "^^" +
((IriRefNode)node.IriRef).Value);

395 }
396 else if (!string.IsNullOrEmpty(node.LangTag))
397 {
398 triple.Object = new Resource(triple.Object.Type,

triple.Object.Value + "@" + node.LangTag);
399 }
400 }
401 }
402

403 /// <summary>
404 /// Gets the variables present in the specified
405 /// <see cref="Triple"/>.
406 /// </summary>
407 /// <param name="triple">The triple to investigate</param>
408 /// <returns>The variables present in the specified
409 /// <see cref="Triple"/>.</returns>
410 private static IEnumerable<string> getVariables(Triple triple)
411 {
412 if (triple.Subject.Type == ResourceType.Variable)
413 {
414 yield return triple.Subject.Value;
415 }
416 else if (triple.Subject.Type == ResourceType.Blank)
417 {
418 yield return QueryTransformer.BlankNodeVariablePrefix +

triple.Subject.Value.Substring(2);
419 }
420

421 if (triple.Predicate.Type == ResourceType.Variable)
422 {
423 yield return triple.Predicate.Value;
424 }
425 else if (triple.Predicate.Type == ResourceType.Blank)
426 {
427 yield return QueryTransformer.BlankNodeVariablePrefix +

triple.Predicate.Value.Substring(2);
428 }
429

430 if (triple.Object.Type == ResourceType.Variable)
431 {
432 yield return triple.Object.Value;
433 }
434 else if (triple.Object.Type == ResourceType.Blank)
435 {
436 yield return QueryTransformer.BlankNodeVariablePrefix +

triple.Object.Value.Substring(2);
437 }
438 }
439 }
440 }

114

Appendix C

Enclosed ZIP Archive

This appendix describes the contents of the ZIP archive enclosed with this
thesis. This archive is available through the DAIM system at http://
daim.idi.ntnu.no/.

The folder structure of the archive is as follows.

• Documents

– Developing a SPARQL parser for .NET
A digital copy of [4]

– Storing and Querying RDF in Mars
A digital copy of this document

• Source

– Component
The source code for the prototype presented in this thesis

– Parser
The source code for the SPARQL parser used in the prototype

Note that Fast’s libraries have been removed from the prototype solu-
tion. Thus, the prototype source code will not build due to broken depen-
dencies.

115

http://daim.idi.ntnu.no/
http://daim.idi.ntnu.no/

	Title Page
	Problem Description
	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Definitions
	Introduction
	Background
	RDF
	Data Model
	Schema

	SPARQL
	Graph Pattern Matching
	Matching and Constraints
	Query Results
	Alternative Query Forms
	Lack of Schema Support
	Base and Prefixes
	Syntactic Sugar

	The Mars Search Engine
	Query Evaluation
	Important Mars Operators
	Indices in Mars

	Parsing and Syntax Trees
	Theory
	Context-Free Grammars
	Common Parsing Techniques
	Parser Generators
	Abstract Syntax Trees
	Tree Traversal using the Visitor Pattern

	Parsing SPARQL
	The Scanner Specification
	The Parser Specification
	The Abstract Syntax Tree

	The Parser Facade Class

	Storage Models
	Alternative Models
	General Triple Store
	Graph Store
	Property Tables
	Vertical Partitioning
	MAP Indexed Triple Store
	TripleT
	Similarities Among Alternatives

	Existing Implementations
	Sesame
	Jena
	YARS
	Redland RDF Libraries
	3store

	Choosing the Storage Model
	Reasonable Alternatives
	Proposed Solution

	Method
	Preparing the AST
	From AST to Algebra
	Graph Patterns
	The Transformation to Algebra

	Evaluation Approaches
	Existing Solutions
	Approaching Mars

	From Algebra to Mars Operators
	Graph Patterns
	Solution Modifiers

	Example: Finding Album Titles

	Implementation
	Priorities for the Prototype
	Overall System Description
	SharQL Parser Project Modifications
	Visitor Pattern Processing Order Option
	Visitor Pattern Reflection-Based Type Identification
	INode Interface Inheriting from ICloneable

	Syntactic Sugar
	Implicitly Data-Typed Literals
	Shared Subject Triple Lists
	Blank Node Property Lists
	Lists
	Prefix Expansion
	Identification of Unlabeled Blank Nodes
	Example: The Literal Explicator Visitor

	Intermediate Query Representation
	Transforming the Abstract Syntax Tree
	Example: Transforming a part of the AST

	Operator Trees
	Transforming Algebra Graph Patterns
	Example: Constructing an Operator Tree

	Component Architecture
	Testing the Component
	Parser Testing
	Transformation Testing
	Evaluation Testing

	Results and Discussion
	Prototype Storage Model
	Triple Format
	Supported SPARQL Features
	Query Forms
	Solution Modifiers
	Graph Patterns
	Data Types

	Test Results

	Conclusion and Further Work
	Further Work

	References
	Glossary
	== Appendices ==
	NodeBase Class
	WhereClauseTransformer Class
	Enclosed ZIP Archive

