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Abstract

The tasks : discriminating music, speech and other sounds and language
identification have a broad range of applications in todays multilingual mul-
timedia community. Both tasks gave a lot of possibilities regarding methods
and development tools which also brings some risk. The Language Iden-
tification(LID) problem ended up with two different approaches. One ap-
proach was discarded due to poor results in the pre-study while the other
approach had some promising potential but did not deliver as hoped in the
first place. On the other hand, the music, speech discrimination was solved
with great accuracy using 3 simple time domain features and Support Vector
Machines(SVM). Adding ’other sounds’ to this discrimination problem did
complicate the problem but the final solution delivered great results using
the enormous BBC Sound Effects library as examples of non speech and
music. Both tasks were tried being solved using Gaussian Mixture Mod-
els(GMM) because of it’s known great ability to model arbitrary feature
space segmentations. The tools used were Matlab together with a number
of different toolboxes explained further in the text.
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Chapter 1

Speech Music Other
Discrimination

In this chapter an approach for discriminating between music, speech an
other sounds will be tried. The chapter starts with a simple time domain
speech music discriminator and from there 2 different approaches to do a
discrimination between music, speech and all ’other sounds’ are tested. Some
terms like GMM, SDC, MFCC, PLP etc. are not deeply explained until
chapter 3 where they are used the most. Setting chapter 3 as 1 would destroy
the chronological development of the language identification system. The
theory of some fundamental methods like Fourier transform, windowing,
RMS(root mean square) etc. will not be explained.

1.1 Introduction

In the last decade the problem of discriminating speech from music has
gained interest. The solution is still open, but accuracies over 90 percent
have been reached. The results depends on many factors, like corpus used,
features and test methods. It is difficult to compare two experiments if both
were not using the same corpus or collection of data because of noise and
channel distortions. The applications of the discrimination between music
and noise are numerous.

[56] proposed a real-time speech/music discriminator, which was used
to automatically monitor the audio content of FM audio channels. The
application could be to change channels during commercials. He claims
98 percent accuracy using different statistics of the Zero Crossing Rating
which is very cheap to compute. In automatic speech recognition in real
world domain it can be useful as shown in [58]. It should be possible to
disable the input to the speech recognizer during the non-speech portion
of the audio stream. They use 13 features from both time and frequency
domain to construct the discriminator. The dataset is the same as used
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in this work and they claim an error rate at 5.8 percent when used on a
frame by frame basis(20 milliseconds) and 1.4 percent over a segment of
2.4 seconds. They used a Gaussian Mixture model in combination with a
nearest neighbor classifier.

Another useful application is coding of audio. If an audio stream could
be separated into pieces of speech and music one could use a low bit coder
for speech and a hight bit coder for music to increase the bandwidth effi-
ciency[45].The classifier used was Gaussian Mixture Model(GMM) and fea-
tures were Mel Frequency MFCC an accuracy of up to 97.14% for music and
93.87% for speech were attained.

The task of discriminating music, speech and other sounds has, as far
as the author know, never been tried before. There have been some exper-
iments based on a reduction of the term ’other sounds’ to animal sounds,
environmental sounds and noise. This task depends on finding features that
discriminate speech and music strongly, and it could result in a big failure
as long as ’other sounds’ mean all other sounds in the universe. The term
’all other sounds’ is comprehensive and there will always exist sounds in this
group that are acoustically equal to speech and music. One alternative is to
reduce it to speech, music and environmental or naturally sounds, but also
here data collection could be a problem.[41] did a discrimination between
speech, music, animal sounds and environmental sounds, but he had sam-
ples from all classes.In [68] a discrimination of speech and non-speech was
accomplished based on phoneme recognition, but both training and testing
were done with collected data.

1.2 Corpus

To make a corpus that includes speech and music was at one point attempt-
ing, but the Music-Speech Corpus was chosen[59]. It has also been used in
two different studies[58, 71]. The corpus contains a training part and a test
part for both speech samples and music samples. Each sample is 15 seconds
long and there exist 240 of them. The music samples are both vocal and
non-vocal and spawn a large dimension of genres.

1.3 A First Attempt

If one considers fig 1.1 and fig 1.2 it is clear that the music waveforms
and the speech waveforms have some differences. First, the speech show a
distinct pattern of high energy states followed by low energy states while
music has a more even distribution of energy, except for rap music which
is a problematic class of music to discriminate from speech[17][33]. The
waveforms also shows that the amplitude variations of speech is higher than
that for music. The latter is not really true about rap music. So, just by
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looking at the waveforms of speech and music it is clear that speech has
more low energy frames than music due to the (silence intervals) and higher
amplitude variations. The silence intervals alone seems to be an important
feature, because music does not have the same pattern of silence intervals as
speech. This could be enough to build a simple speech/music discriminator
in the time domain with these features :

• The percentage of low energy frames and high energy frames

• The percentage of silence frames

• The variance of energy

The feature extraction was done in Matlab and a classifier was build
based on LIBSVM[11],a Support Vector Machine(SVM) library, and the
implementation WLSVM[18] which is a wrapper for LIBSVM for Weka[72].
Weka can be used a standalone tool, but one also has the alternative to use
classes from Weka in their own implementations. The latter was the chosen
alternative.

The initial time interval for feature extraction is 2 seconds, this means
that a a classification is made based on 2 seconds of data. If the RMS for a
frame was less than 0.0070 then it was defined as silence. Each frame was
2 milliseconds and a low energy frame was defined as less than 50% of the
average RMS for that interval. At this point one can suspect that there exist
some correlation between low energy frames and silence frames, because a
silence frame is also a low energy frame.

The best core for this problem was a linear, epsilon was set to 0.001 and
the cost factor was varied between 0 and 120.

The resulting accuracy was 89.1626% computed with a 10-fold cross
correlation and the confusion matrix is in table 1.1. Then the same algorithm
was tested for feature extraction intervals of 1,3 and 4 seconds and one could
see a slighly increase in accuray using 3 seconds intervals. An accuracy of
90,348% was achieved. Not a big deal and proably not significant due to a
low number of training samples.

Then the Matlab function was tuned to find the best value of low energy
frames. A low energy frames was defined as a frame with 50 percent lower
energy than the average. This percentage value was adjusted from 60 to 1 in
small steps and reached a maximum at 15 percent. The frame values were
also tested, but 20 milliseconds seemed to be near optimal.

Dealing with a linear core the cost factor is the major parameter to
optimize. All values from 1 to 200 with a step of 1 was run, while the
epsilon was set to 0.001, and and accuracy of 96,0345% was achieved with
the cost factor set to 58. The confusion matrix is found in table 1.2. This
is quite good considering the simple features used.
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music speech
356 50 music
38 368 speech

Table 1.1: Confusion matrix

music speech
281 9 music
14 276 speech

Table 1.2: Confusion matrix

1.4 The Features

Using the same settings the worth of each feature was investigated and the
result is in table 1.3. This table tells that there probably were some correla-
tion between the features. The maximum accuracy was 96 percent and the
percentage of low energy frames alone gives an accuracy of 94 percent. The
two other features contribute very little to this result in combination with
low energy frames.

1.5 A Step Further

As seen it is possible to achieve a good performance in discriminating be-
tween music and speech by just using some simple features in the time
domain. The discrimination between music and speech will further be ex-
plored, but also the possibility to perform a discrimination of music/speech
and other sounds will also be considered. These other sounds could be for
instance an explosion, a car driving by, bird songs or any environmental
sounds. This will be a much harder task than just discriminating music
and speech and it obvious that it can’t not solved using the simple energy
features above. Features that define both music and speech strongly, have
to be found. Another problem is how to perform the classification? Some
of the options are explained below.

Variance 72.6601
Percentage of silence frames 83.867
Percentage of low energy frames 94.5813

Table 1.3: Accuracy of features in isolation
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Figure 1.1: Top waveform is clean speech while bottom is a waveform of
rock music
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Figure 1.2: Top waveform is classical tune while bottom waveform is rap
music
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1.5.1 One Class Classifiers

A one class classifier’s[57]goal is to construct a decision surface around the
examples from the target class in order to distinguish between target objects
and all the other possible objects, called outliers. A rejection rate is chosen
during training so that a certain percentage of training patterns lies outside
the constructed decision surface in order to take into account the possible
presence of noise or outliers in the training set and to obtain a more precise
description of the target class. There exist several one class algorithms, but
only few will be considered here.

1.5.2 One Class SVM

A one-class classifier inspired by the two class SVM was proposed by [57].
The one-class classification problem is formulated to find a hyperplane that
separates a desired fraction of the training patterns from the origin of the
feature space F. If using the RBF kernel for the one class svm in libSVM[11]
the are to parameters to deal with, namely the gamma and the nu param-
eters. nu is a lower bound of the fraction of Support vectors, and an upper
bound of the fraction of outliers (the ’-1’ class). For nu=1 one gets a Parzen
windows estimator, while for 0¡nu ¡ 1 one gets a thresholded decision func-
tion. For instance, when nu equals 0.2 up to 20 percent of the instances
could be considered as outliers and at the same time it is the lower bound
of the fractions of support vectors. The gamma parameter can simply be
explained as a smoothness factor of the hyperplane. In fig 1.3 and fig 1.4 one
can see two examples with 2D vectors with different nu and gamma. The
real problem is how to adjust the parameters when one has high dimensional
data and proper visualization is impossible. Using cross validation is a waste
of time because the accuracy will reflect the nu parameter. A simple test
with high dimensional data showed how difficult the parameter adjusting
really was. Using one class SVM one would train a model for speech and a
model for music. If the test instances do not fit the models of speech and
music, it means it is something else.

1.5.3 Gaussian Mixture Models

The details of Gaussian Mixture Models are found in Language Identification
chapter. The idea is to train GMMs with data from each class. In this case it
will be one GMM trained with data for music, and a second one trained with
data for speech. Then one has to use probabilities to decide if it is music,
speech or other sounds. An attempting strategy would be to consider the
probability densities: if the probability for music is low and the probability
for speech is low, its probably something else.
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Figure 1.3: One class svm : nu=0.4 and gamma=0

Figure 1.4: One class svm : nu=0.3 and gamma=60
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1.5.4 2 Class SVM with calculated probabilities

Support Vector Machines (SVMs)[67] have become one of the most popular
tools for discriminative classification of static data. SVM classification of
dynamic (continuous) is not very successful using the traditional kernels. See
section refsec:svm for details on this matter. The libSVM tool[11] has the
ability to output probability predictions. One possibility could be to train a
2 class model with music and speech classes and then use the predictions to
decide if it is music, speech or anything else. One could guess that a 50-50
probability with a +/- 2 percent could be the anything else.

1.6 Tools And Implementation

The choice of classifier became GMM after some research and the main
reasons were because of it’s known ability to model speech data and the
shortcomings of SVM for the same task as explained in the beginning of
section refsec:svm. The tools used for implementation is Matlab and Netlab
Toolbox for Matlab[1] which contain implementations of several machine
learning algorithms. Other machine learning toolboxes were also consid-
ered, but the final decision was based on the simplicity of Netlab. After
some experiments with Matlab and Netlab it soon become clear that Mat-
lab on a 32-bits operating system has some serious memory issues[65] which
limit the amount of training data and number of mixtures. The problem is
based on the way 32-bits Windows and Unix addresses and limit the virtual
memory. The total amount of virtual memory has a maximum of 2 giga-
bytes(with a hack this was increased to 3). At first this seems enough for
big arrays and matrices, but the problem is that Matlab must store arrays
in memory(virtual) in continuous blocks. When this memory gets defrag-
mented by .dll files used by Windows and the largest continuous block is
1024 megabyte, problems arise. To check if this was a problem with the
implementation of Netlab, the Data Description Toolbox for Matlab[64] was
tried on the same tasks and the same shortcomings were discovered. A test
feature set extracted from the BBC Sound Effects Library[53] covering 2,2
hours of sound has 701579 instances(examples) and 40 millions entries. The
features were 7 MFCCs and 49 SDCs for each example together with one
class label. The training of a GMM with 32 mixtures got the system to
kneel with an out of memory error. The wishes to explore higher number
of mixture models forced an installation of an x64 bits operating system.
Then the training of a GMM with the above mentioned feature set’ was
possible with 64 mixtures. More than this slowed down the training process
to almost still-standing because of the swapping to hard-disc. Additional
tools used were PLP and RASTA (and MFCC, and inversion) in Matlab by
Dan Ellis together with the tools needed to be implemented for the task.
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Figure 1.5: The figure shows how the carrier(bottom) varies in frequency as
the modulating(above) signal changes in amplitude.

Figure 1.6: [37].Modulation spectrum of speech can be obtained by spectral
analysis of temporal trajectory of power spectral component of speech.

1.7 Features

Some machine learning systems as Data description toolbox (dd tools)[64]
which is build on top of and is dependent on The Matlab Toolbox for Pat-
tern Recognition[21] are able to train a one class classifier with target class
data but also make use of outliers data. This could in some situations make
a more robust classifier. The main problem is still to get a good discrimina-
tion between music, speech and other sounds. From literature many known
features are known and combinations and subsets of them will be tested.

1.7.1 MFCC

Explained in chapter3.
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1.7.2 Spectral Centroid

Spectral Centroid[62] is the balancing point of the spectrum. It can be
calculated using :

Ct =
∑N

n=1Mt(n) ∗ n∑N
n=1Mt(n)

(1.1)

where Mt(n) is spectrum of the FFT at t-th frame with a frequency bin f.
The Spectral Centroid is a measure of the spectral shape.

1.7.3 Spectral Flux

Spectral Flux[62] is defined as the variation value of spectrum between two
adjacent frames :

SF = ‖Nt(f)−Nt−1(f)‖ (1.2)

Where Nt(f) and Nt−1(f) are the normalized magnitude of the FFT at
the current frame t and previous frame t-1. Spectral Flux is a a measure of
the amount of local spectral changes.

1.7.4 Spectral Rolloff

Spectral Rolloff[62] is the frequency below which 85 percent of spectrum
distribution concentrated. It is also a measure of the spectral shaper.

1.7.5 Modulation frequency

Frequency modulation as known from digital signal system, is when the
frequency of the transmitted signal varies in proportions of input signal
X(t)[34]. The amplitude of the carrier is kept constant and its frequency
varied by the modulating signal.See fig.1.5.

There exist substantial evidence that many natural signals can be repre-
sented as low frequency modulators which modulate higher frequency car-
riers[60]. On average, the modulations present in the speech envelope have
larger amplitudes at modulation frequencies between 2 and 16Hz, with a
dominant peak at 4Hz[23]. The latter is a well known feature and used
by[71]. This is a feature worth looking into, and maybe use some statistics
of modulation spectrum. The fig.1.6 shows a few examples of modulation
spectra. The pictures are made with the ISDL Modulation Toolbox[37].
There is a lot of information in these pictures. First, there is some evi-
dence that speech has most of its energy in modulation frequency 2-8 Hz.
One other thing with speech is that most of the energy is below 4kHz in
the spectral domain. For music, one can observe that the energy is evenly
distributed over the whole modulation domain. In both, the bird example
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Figure 1.7: [10]SDC computation

and the music example, the energy is evenly distributed over the modula-
tion domain. Also clearly shown in the car example. If one takes a look
at the very left side of the frequency axis, the information from modulation
frequency 2Hz to 0 is probably garbage data because of the sample length
of 0.5 second. This is according to the formula below. Accuracy down to
modulation frequency 1Hz require 1 second of data.

T =
1
f

(1.3)

1.7.6 SDC

Shifted Delta Cepstral (SDC)[36] are obtained by concatenating the delta-
cepstral computed across multiple frames of speech data. This is an ex-
tension of the delta and delta delta cepstral coefficients where one gets the
ability to capture additional temporal information spanning multiple frames
about the speech into the feature vectors.

The SDC features are specified by 4 parameters N, d, P and k, where
N is the number of cepstral coefficients, d represents the time advance and
delay for the computation of the delta, k is the number of deltas that are
concatenated to form the final feature vector, and P is the time shift between
consecutive blocks.

N cepstral coefficients are computed for each frame and for each of these
blocks of cepstral coefficients the final SDC vector at time t is given by the
concatenation of all ∆c(t + iP) for all 0 ¡i¡k where

∆c(t+ iP ) = c(t+ iP + d)− c(t+ iP − d) (1.4)

See figure.1.7 for a graphical representation of SDC.
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Figure 1.8: [28]Modulation spectrum can be obtained by spectral analysis
of temporal trajectory of power spectral components.

1.8 GMM System

The implemented GMM system for music/speech discrimination consists
of a feature extractor, two(three) GMM models and a test module, see
fig.1.9. The decision part is adjustable so that one can make a decision
each frame(typically 20 milliseconds) and up to the whole utterance length.
The file feature extract2.m is the feature extractor. The file test gmm.m

is the test module while make gmm.m is the training module. The latter is
common for both speech/music/other and the LID system. The system was
implemented in Matlab.

1.8.1 Experiment 1 - Number Of Iterations For The EM Al-
gorithm

First the number of iterations for the EM-algorithm verses accuracy were
tested. The number of iterations for the k-mean algorithm, for setting the
initial centers, was set to 500 for all experiments. Trained GMM models
with diagonal covariance matrices for speech and music using 12 MFCC(first
excluded) were made based on the samples. The number of mixtures for this
test was 32 and the number of EM iterations set to 500,250,100,50 and 10.
This is done because further testing with a low as possible number of EM
iterations, without losing too much accuracy will be preferable. In this test
the GMM 32 converged at 462 iterations. The decision length for the test
system is set to 20 milliseconds which means that the system must make

15



Figure 1.9: Overview of GMM system

iterations speech error music error total
10,00 26,53 14,68 18,57
50,00 25,54 14,41 18,06

100,00 25,51 14,69 18,24
250,00 25,64 14,96 18,46
500,00 25,48 14,20 17,90

Table 1.4: EM iterations

an music/speech decision every 20 milliseconds and all these decisions will
count for the error rate. The feature set is extracted from the speech and
music corpus. 60 music samples and 60 speech samples were used. This set
has it own test set for comparison with other experiments. These will be
used for testing the accuracy.

The result of this test is found in table 1.4 and it is clear that the EM
algorithm converges quickly to a good state due to it’s local search nature.
Typically, clustering algorithms, like the k-mean, are initialized by random
starts and therefor the differences in the table is probably not significant.
The mixture model is initialized using a small number of iterations of the
K-mean algorithm. With this dataset it seems like it is not necessary to let
the EM algorithm converge.

1.8.2 Experiment 2 - Number Of Mixtures

In this experiment the number of mixtures verses accuracy will be tested
on this speech/music corpus. 12 MFCCs(power coefficient excluded) are
extracted as features and the covariance matrix is set to diagonal for now.
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decision interval music error speech error total error
20 ms 13,59 36,76 21,19

100 ms 11,43 32,15 18,22
500 ms 8,07 21,55 12,49

1000 ms 6,27 15,71 9,37
5000 ms 2,44 10,00 4,92

Table 1.5: 1 mixture, diagonal co-variance matrix

decision interval music error speech error total error
20 ms 16,96 31,61 21,76

100 ms 14,45 26,75 18,48
500 ms 9,50 16,04 11,65

1000 ms 8,18 11,07 9,13
5000 ms 1,22 5,0 2,46

Table 1.6: 2 mixture, diagonal co-variance matrix

The number of iterations for the K-mean and the EM algorithm were both
set to 50.

The selection of mixture number K is dependent on the amount of avail-
able training data. It needs to be large enough to accurate model the acous-
tic variability of the speech utterances. On the other hand, it should also be
small enough to allow for a reliable estimate of the model parameters[29]

Ideally the number of mixtures should approximate the number of nat-
ural classes in data. If the number of mixtures is less than the number of
natural classes, then closely placed clusters will fuse to form larger clusters
whose variance is higher[5]. This results in under fitting of the data. If
the number of mixtures is more than the number of natural classes, larger
clusters are broken up into smaller sub-clusters. The new clusters will have
lower variance and some of the consequences is : a normal distribution with
a low variance has a sharp slope, meaning that the frames that lie close to
the mean get a high score but the scores drop fast as the distance increases.
This means an increase in average and low scoring frames. This is how over
fitting a GMM works.

Table 1.5 to table 1.10 shows results of different numbers of mixtures for
the same data. From 1 mixture up to 16 mixtures the accuracy increases
in small steps, but from 16 to 32 mixtures a small drop is seen. This could
mean that the natural number of clusters in this dataset is between 16 and
32. Another thing to note is how little the accuracy increase from 1 mixtures
up to 16. This could be the nature of the dataset.
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decision interval music error speech error total error
20 ms 11,95 29,40 17,68

100 ms 9,31 23,32 13,91
500 ms 5,97 12,76 8,20

1000 ms 3,48 9,29 5,39
5000 ms 1,22 5,0 2,46

Table 1.7: 4 mixture, diagonal co-variance matrix

decision interval music error speech error total error
20 ms 11,69 28,15 17,09

100 ms 8,53 22,52 13,11
500 ms 6,13 12,76 8,31

1000 ms 3,31 10,36 5,62
5000 ms 1,22 5,0 2,46

Table 1.8: 8 mixture, diagonal co-variance matrix

decision interval music error speech error total error
20 ms 14,22 26,73 18,31

100 ms 10,02 21,14 13,66
500 ms 6,31 11,72 8,08

1000 ms 4,18 10,36 6,21
5000 ms 0 2,5 0,82

Table 1.9: 16 mixture, diagonal co-variance matrix

decision interval music error speech error total error
20 ms 14,63 26,38 18,49

100 ms 10,92 20,07 13,92
500 ms 7,65 10,52 8,59

1000 ms 5,05 8,21 6,1
5000 ms 1,22 2,5 1,64

Table 1.10: 32 mixture, diagonal co-variance matrix
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num MFCC music error speech error total error
4 4,70 13,93 7,73
8 6,27 11,42 7,96

12 4,18 10,36 6,21
14 3,83 7,50 5,04
16 4,18 7,86 5,39
18 3,14 7,86 4,68
20 2,44 7,86 4,20
22 3,30 6,43 4,33
24 2,78 6,43 3,98

Table 1.11: 16 mixture, diagonal co-variance matrix, different number of
MFCCs and 1 second decision interval

num MFCC music error speech error total error
4 4,18 13,93 7,37
8 4,70 10,00 6,44

12 5,05 8,21 6,10
14 3,48 6,43 4,45
16 2,61 7,85 4,33
18 2,61 7,14 4,09
20 2,61 6,79 3,90
22 3,14 4,10 4,10

Table 1.12: 32 mixture, diagonal co-variance matrix, different number of
MFCCs and 1 second decision interval

1.8.3 Experiment 3 - Number Of MFCCs

In this test the number of mixtures are set to 16 and 32 for an investigation
of the number of MFCCs. As seen in table 1.11 the optimal number of
mixtures for 16 mixtures is 8 and for 32 mixtures in table 1.12 the number
is 4. The conclusion of this is that there exist no such thing as an universal
correct number of MFCCs when dealing with GMMs.

1.8.4 Experiment 4 - Adding Delta and Delta Delta MFCC

Delta features is a well known feature used to capture temporal information.
Comparing table 1.13 with table 1.9 one see a quite big increase using delta
features together with GMMs(and probably Perceptual Linear Predictive
(PLP) as well). Comparing table 1.13 and table 1.14 one sees again that
the increase to 32 mixtures for this dataset is not making much differences.
From table 1.15 it become evident that using delta of deltas in addition to
delta coefficients slightly increase the accuracy.
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decision interval music error speech error total error
20 ms 7,82 22,87 12,75

100 ms 4,86 17,08 8,80
250 ms 3,51 12,46 5,45
500 ms 2,36 10,17 4,91

1000 ms 1,57 7,14 3,39
3000 ms 0,61 5,00 2,05
5000 ms 0,00 2,50 0,82

Table 1.13: 16 mixture, diagonal co-variance matrix, 12 MFCC and 12 Delta

decision interval music error speech error total error
20 ms 7,94 21,57 12,41

100 ms 4,71 16,11 8,45
250 ms 3,22 11,78 6,03
500 ms 2,02 9,66 4,52

1000 ms 1,05 6,43 2,81
3000 ms 0,00 5,00 1,69
5000 ms 0,00 2,50 0,82

Table 1.14: 32 mixture, diagonal co-variance matrix, 12 MFCC and 12 Delta

decision interval music error speech error total error
20 ms 7,26 22,91 12,39

100 ms 3,90 17,15 8,24
250 ms 2,56 11,95 5,64
500 ms 1,43 10 4,24

1000 ms 0,69 6,07 2,46
3000 ms 0,00 5,00 1,69
5000 ms 0,00 2,50 0,82

Table 1.15: 16 mixture, diagonal co-variance matrix, 12 MFCC,12 Delta
and 12 Delta Deltas
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decision interval music error speech error total error
20 ms 2,70 26,83 10,61

100 ms 1,31 23,96 8,70
250 ms 0,7 20,67 7,2
500 ms 0,25 16,38 5,54

1000 ms 0,00 12,86 4,22
3000 ms 0,00 7,50 2,46
5000 ms 0,00 2,50 0,82

Table 1.16: 16 mixtures, diagonal co-variance matrix, SDC7-1-3-7

decision interval music error speech error total error
20 ms 2,69 23,47 9,50

100 ms 1,26 20,03 7,42
250 ms 0,7 17,71 6,22
500 ms 0,334 13,27 4,58

1000 ms 0,00 8,57 2,81
3000 ms 0,00 5,00 1,60
5000 ms 0,00 2,50 0,82

Table 1.17: 64 mixtures, diagonal co-variance matrix, SDC7-1-3-7

1.8.5 Experiment 4 - Adding SDC

Shifted Delta Coefficients are an extension to Delta coefficients and will be
further explained in chapter 3.

1.8.6 Experiment 5-Testing against other sounds

It could be optimistic to believe that one could discriminate between mu-
sic/speech and other sounds with these models. The Netlab toolboxes[1]
function gmmprob() output probability density values. When making deci-

decision interval music error speech error total error
20 ms 3,00 23,30 9,65

100 ms 1,75 20,00 7,73
250 ms 1,36 17,29 5,59
500 ms 1,09 14,14 5,37

1000 ms 0,87 11,42 4,33
3000 ms 0,61 6,25 2,46
5000 ms 0,00 2,50 0,82

Table 1.18: 16 mixtures, diagonal co-variance matrix, SDC7-1-3-7 + 7
MFCCs
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decision interval music error speech error total error
20 ms 3,17 21,04 9,04

100 ms 1,51 17,58 6,78
250 ms 1,03 15,51 5,77
500 ms 0,76 11,72 4,35

1000 ms 0,17 8,93 3,04
3000 ms 0,00 6,26 2,05
5000 ms 0,00 2,50 0,82

Table 1.19: 32 mixtures, diagonal co-variance matrix, SDC7-1-3-7 + 7
MFCCs

Figure 1.10: -log likelihoods for music model

sions over longer intervals one must add the -log likelihoods. Now, a small
probability density value becomes large which means that bigger values are
less probable. In fig.1.10 and fig.1.11 the -log likelihoods are recorded ev-
ery second and one could maybe draw a border for outliers based on these
densities. To accomplish a test, 40 random sounds were picked from the
BBC Sound Effects Library[53]. The picked sounds range from baby sounds
and a river flowing to explosions. The length of the sounds range from 1-3
seconds. The probability densities for ’other sounds’ had to be larger than
0, 8− 0, 82 ∗ 10 exp−4 to be discriminated from speech and music. This was
implemented in the test function and the error rate for other sounds were
about 90 percent. It was learned that the probability densities for ’other
sounds’ mix so close to speech and music that these discriminations were
impossible using this simple approach.
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Figure 1.11: -log likelihoods for music model

1.9 Another Approach

When using GMM models it soon became clear that modeling music and
speech do not give the ability to discriminate a third class not modeled.
Another approach would be to make and model this third class using GMM.
For this purpose a lot of ’other sounds’ samples had to be used. BBC Sound
Effects Library[53], mentioned above, is an enormous database of sound
effects and it’s main categories are :

• Exterior atmospheres

• Household

• Interior backgrounds

• Transport

• Animals and birds

• Human crowds, children and footsteps

• Comedy, fantasy and humor

• International

• Communications

• Water

• British birds

23



• Industry

• Cities

• Natural atmospheres

• Cars

• Sport and leisure

• Bang!

• Electronically generated sounds

• Weather

• Ships and boats

• America

• Aircraft

• China

• Babies

• Hospitals

• Africa: the human world

• Africa: the natural world

• Equestrian events

• Greece

• Adventure sports

• Livestock

• Farm machinery

• Horses

• Horses and dogs

• Schools and crowds

• Spain

The length of the sounds range from a few seconds to several minutes
and contains over 1500 sounds. The library is delivered on 40 CDs and the
total playtime is over 40 hours covering an enormous range of sounds not
being speech nor music. The samples were divided into groups of training
instances and test instances of ratio 1 3.
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Decision Int Speech Error Music Error Other Error Total Error
0,5 s 11,11 11,92 8,61 10,45

1 s 7,93 6,25 5,63 6,65
3 s 0 4,88 0 1,98

Table 1.20: Final test for music, speech other discrimination

1.9.1 Experiment - Final

The GMM for other sounds were trained with 64 mixtures and 7 PLP-
RASTA and SDC-7-1-3-7. The test results with 1 second decision interval
is show in table 1.20. The result was quite good and better than one could
ever hope for before starting on this. To get an descent even number for
test elements, one had to reduce the test instances of other sounds(40) to
equal the number of music which has 40 test instances. Several mixes of test
instances were also tested without any big differences.
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Chapter 2

Language Identification
Using Template based Word
Spotting

This chapter describe an attempt to do keyword spotting based on whole-
word templates. This approach did fail and another approach were tried.
However a short description of the approach are listed in this chapter.

2.1 Introduction

The initial idea was to test a whole-word template based word spotting
system not based on phoneme recognition. The lack of phonemically tran-
scribed data for multilingual languages was the main reason for not using
phoneme dependent systems. The system was going to be able to detect
language with the use of word spotting. The idea was to make templates
of, let’s say 100 most used words for each language and then do a pat-
tern matching algorithm on the input stream with the set of multilingual
templates.

2.2 Word Spotting

Word spotting in general is the ability to spot words in continuous speech, in
environment where the words are either isolated or connected. The difference
is the pauses and the length of them. I continuous speech there is often no
pause between the words and in isolated word detection one expects just
one word. This could be a command to the radio : ’on’ or ’off’. Connected
words are words spoken without any considerable pause between them.

The interest for word spotting stated early in the 1970s, and was based on
templates. This meant that one had templates or models for words and then
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used some sort of pattern matching to check if a word matched the template.
The templates could be Linear Predictive Coding of the words as in[14]. A
dynamic programming algorithm was used to find the minimum distance
between the templates and the incoming words. This experiment had to
do with continuous speech and on paper it seem like reasonable results.
The speaker dependent tests shows 100 percent accuracy for 4 words, but
as seen in the paper different parameters were adjusted for each word for
the same speaker. The same is true for the independent test, one had to
adjust parameters for different words and speakers. [54] used autocorrelation
coefficients to make templates for independent isolated word recognition.

The pattern matching problem was solved by different variations of dy-
namic programming algorithms called dynamic time warping. The problem
these solve is that word utterances differs in time. Here is where the dynamic
time warping algorithm comes in handy, it finds an optimal match between
two sequences of feature vectors which allows for stretched and compressed
sections of the sequence.See [47] for an overview of the different algorithms
in this category.

One of the main problems of continuous whole word template matching
is illustrated in fig.2.1. Here the word ’3’ and ’8’ are spoken in isolation and
continuous ’38’, and one can see that the boundaries are completely erased.
The other big problem is co-articulation which means that the pronunciation
of a phoneme is dependent on the phonemes preceding and following it[20].
This means that a word articulation changes in different contexts. This
followed by the general difference in articulation and the other differences
in the speech production system of the human, make this a difficult task.

Today’s template matching using whole words as templates is not used
much, at least in systems where speaker independence is important. Instead
a state of the art Keyword Spotting system uses a speech recognition system
based on Hidden Markov Models[70].

2.3 Continuous Dynamic Time Warping

There exist several dynamic time warping algorithms for use with a continu-
ous data stream, and some claim to do real time detection[30, 31]. Common
for these algorithms is that they are all based on the traditional dynamic
time warping. The dynamic time warping algorithm of[49] was implemented
in Matlab for testing purposes. This algorithm gives a local minimum(under
a threshold) value when a template matches the stream. In this domain, as
with other speech applications it is important to reduce the data because
raw speech data is too much to handle. As with other speech recogni-
tion/application tasks the Mel-frequency cepstral coefficients (MFCCs) and
the perceptual linear prediction (PLP) coefficients is a natural choice of data
reduction tools.
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Figure 2.1: [46] Log energy for two speech utterances.

2.4 Pre-Study

The TIMIT corpus[22] consist of phonemically and lexically transcribed
speech of 630 American English speakers from 8 major dialect regions (la-
beled from DR1 to DR8). The speech signal is recorded through a high
quality microphone. All tests contain the same dialect(DR6) New York. As
a test, one speaker was chosen, FAPB0 a woman, and different words were
extracted from the sentences according to the transcribed data.Fig.2.2 shows
the word ’awkward’ spoken by the same speaker. One normally spoken and
one with the pressure on the beginning of the word. In fig2.3 a plot of the
13 first MFCC for both utterances of the word ’awkward’. One sentence
containing both ’awkward’ was set as a stream and one of the extracted
utterances was set as template. The result of this run is in fig.2.4. Both
’awkward’ were a local minimum even though the waveforms and the MFCC
plot were so different. The result is not so good in despite of the sentence
used : ’It was awkward: very awkward.’(SI1693). Next the sentence, ’Don’t
ask me to carry an oily rag like that(SA2)’ spoken by the same speaker
FAPBO and the word ’carry’ extracted from another speaker(FBCH0), also
a woman. The result of the run with the CDP-algorithm is shown in fig.2.5.
Here the correct point is not the local minimum with the lowest value, but
it’s not far away. Another test using the same sentence is seen in fig.2.6
between FAPB0 and FKLC1, where FKLC1 extracted the word ’carry’ is
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the reference and FAPB0 is the stream. Here the match is rather clear. This
test was done with 8 MFCCs. Doing tests with various MFCCs showed little
to no significant differences between 8 and 20 MFCCs. Also did a small test
with MFCCs and theirs delta MFCC without any substantial differences
besides more noise.

This fast check did not give an answer if the speaker independent recogni-
tion rate is good enough for quality word spotting. The speaker independent
word spotting is difficult to check in a big scope because there are not many
tests per speaker one can do. The words that are common for the same
speaker are words like : her, is, the and in. To cut out words from a sen-
tence for checking for a speaker will be a waste of time. The MFCCs wont
be identical, if we are not so lucky to hit the exact point where the last
coefficient in a frame ends, and also have the same luck at the end. If, not
the MFCCs wont be identical but very near identical and a match should
be an easy task. Besides the speaker dependent recognition rate is of little
or no interests in the application tested here.

2.4.1 Testing Speaker Independent Spotting

One simple way of thinking is that if one sentence contains one reference
word, this word should be the one with the lowest value for the local min-
imum. In the same way one can say that if the sentence contains two in-
stances of the word, then they should be the two with the lowest local
minimum. This is what we know for this test. In real life it could be that
a sentence does not contain a reference word but the path of the algorithm
would still have several minimum points, and in these situations one should
have threshold values connected to each template. In this way one can con-
clude that an imaginary, say ’house’ can not be that minimum because it’s
threshold is below the minimum point. The TIMIT corpus contains sev-
eral sentences from several people, both men and women, and from different
parts of USA. A Matlab script was made to extract the words from the sen-
tences according to the transcription which says where a word begins and
ends. To limit the test, only two sentences will be used : SA1 and SA2,
which contain the sentences : ’She had your dark suit in greasy wash water
all year.’ and ’Don’t ask me to carry an oily rag like that. Several speakers
will be selected, both men and women and with different dialects. Then a
systematic test will be made manually to determine if a match occurs or
not. A speaker will sometimes be the stream, where the whole sentence is
used, and sometimes a reference where one word is extracted and tested
against other streams(sentences). 13 MFCCs were used for the test and 8
speakers, 4 women and 4 men were selected from each district. A total of
5 dialects were used. The total matching accuracy was slightly under 60
percent. For women in the same district the average match accuracy was 67
percent and 65 for men. In this test one knew that the words were present
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Figure 2.2: The word awkward spoken by the same speaker.
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Figure 2.3: Plot of the MFCCs of the word awkward spoken by the same
speaker
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Figure 2.4: Local minimum points indication a match

Figure 2.5: Local minimum points indication an incorrect match
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Figure 2.6: Algorithm indication a match in a speaker independent test

in the sentence so the only task was to locate the minimum of the graph
from the algorithm. Then one had to determine if the words location in the
sentence matched the minimum. Sounds like an easy task, but when one
don’t know if the word is present or not it could lead to massive amount of
false matches even with thresholds attended to each template. To determine
the thresholds for the templates one could run the continuous dynamic pro-
gramming algorithms algorithms against each keyword of the same word.
To determine the threshold for a word x one run all other words x against
this one and the highest value of the algorithm(the word of the same kind
most different from from the word in question).
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Chapter 3

GMM based automatic LID
system

In this chapter a GMM based Language Identification system is developed
based on acoustic features.

3.1 Introduction

Automatic Language identification is the task of identifying a spoken lan-
guage from a sample of speech[61]

The importance of Automatic Language Identification can be understood
by thinking of speech recognition in a multilingual community. A multilin-
gual speech recognizer first have to determine what language to recognize.
Other applications are multimedia systems which serve users speaking dif-
ferent languages. This could be a voice controlled service in an international
airport or hotel. Routing of telephone calls, especially important for emer-
gency institutions, so that one are switched over to an operator speaking
the language in question.

The algorithms for LID can be roughly divided into two groups[75],
acoustic and phonotactic systems. In a phonotactic system, a tokenizer
transcribes the input speech into phonemes and the decision making is done
on strings of phonemes. This approach is called PRLM (Phoneme recognizer
followed by language model) or PPRLM (Parallel PRLM)[66][38]. A PRLM
language identification system use a large sets of phonemically labeled data
for training, and usually one set for each language to be identified. While
these systems are effective, the labeling can be time consuming. This means
a lot of effort and work extending the system to include other languages[75].

In an acoustic system, the input features are modeled directly by GMMs,
neural networks or SVMs and are easily implemented without thorough
knowledge of the languages to discriminate. Note that the traditionally
kernels, like RBF is not a good choice for classifying sequences like speech
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data[9]. The main issue is the inability for SVM for handle feature vectors of
unequal lengths. A successful system for language identification or speaker
recognition also have to handle sequences of speech data. This means, among
other things, the ability to capture temporal information. The sequence
kernels developed for these applications implements kernels that compare
sequences of feature vectors[10].

3.2 GMM

Gaussian mixture models (GMMs) is considered as a mature semi paramet-
ric statistical model and it is widely used to model complex distributions[74].
Usually the parameters of the GMMs are determined in a maximum likeli-
hood (ML) using the Expectation Maximization (EM) algorithm.

Gaussian Mixture Models have been used for a number of applications
in the data mining and machine learning field, like time series[39], image de-
tection[24], speaker verification and recognition[55][43] and language identi-
fication[4]. The GMM model is a semi parametric model [74].

The EM algorithm is an efficient iterative procedure to compute the
Maximum Likelihood (ML) estimate in the presence of missing or hidden
data. In ML estimation the goal is to estimate the model parameter(s) for
which the observed data are the most likely.

Details of the EM algorithm is found in [42].
Gaussian mixture model :

p(ot | Cj) = p(ot | λj) =
I∑
i=1

ciN(ot;µi,
∑
i

)[13] (3.1)

Where µi is the GMM for class Cj and ci is a mixture weight that
must satisfy the constraint

∑I
i=1 ci = 1 and I is the number of mixture

components. N(•) is

N(ot;µi, Ri) =
1

(2π)
d
2 |

∑
i |

1
2

− 1
2
(ot−µi)

T
∑−1

i (ot−ui)

[13] (3.2)

From the pictures 3.1 3.2 and 3.3 one could conclude that full covariance
matrices fit the data best, but they are costly in high dimensional feature
spaces. Also the use of a GMM with full covariance matrices leads to a huge
number of parameters and presents the risk of over-fitting[40][44]. This is
strongly dependent of the number of parameters compared to instances in
the training set.

Diagonal covariance GMM seems to be a good compromise between qual-
ity and model size.
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Figure 3.1: Example of the coverage of a GMM model with 4 mixtures from
1256 data points
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Figure 3.2: Diagonal and full covariance matrices and 8 mixtures

A last Spherical covariance GMM needs many components to cover data,
especially in high-dimensional feature spaces. In general,as seen in[44], a
GMM with a spherical covariance matrix is too constraint model the data
with a high degree of accuracy.

3.2.1 Features

The most common features for speech recognition, speaker recognition and
language identification is the MFCCs and PLPCCs. These are the ones that
are being the main focus here in one or another form.
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Figure 3.3: Diagonal,full and spherical covariance matrices and 16 mixtures

38



3.3 MFCC

Psychophysical studies have shown that human perception of the frequency
contents of sounds for speech signals does not follow a linear scale. Thus for
each tone with an actual frequency, f, measured in Hz, a subjective pitch is
measured on a scale called the ’mel’ scale. The mel-frequency scale is a linear
frequency spacing below 1000 Hz and a logarithmic spacing above 1000 Hz.
Fig.3.4 shows an example made with the Audio Processing Toolbox[32] and
Matlab. MFCCs are cepstrum coefficients in the mel-scale.It is derived as
follows[2]:

1. Take the Fourier transform of (a windowed excerpt of) a signal.

2. Map the powers of the spectrum obtained above onto the mel scale,
using triangular overlapping windows.

3. Take the logs of the powers at each of the mel frequencies.

4. Take the discrete cosine transform of the list of mel log powers, as if
it were a signal.

5. The MFCCs are the amplitudes of the resulting spectrum.

3.4 Perceptual Linear Prediction

PLPCCs(and also MFCCs) applies greater weight to perceptually-important
portions of the spectrum by to modeling some aspects of human perception
and methods motivated by the behavior of the human auditory system. The
original article is found in[25] along with detailed steps of computation. PLP
is often used in combination with RASTA[27].

3.5 Speech Corpus

A subset of the The Linguistic Data Consortiums CALLFRIEND corpus,
which is a telephone speech database, is used for testing. The corpus com-
prises two-speaker, unprompted, conversational speech messages between
friends. Hundred North-American long-distance telephone conversations are
recorded in each of twelve languages (the same as 11 languages as OGI-TS
plus Arabic). There are three sets in this corpus including training, devel-
opment and test set, each set consists of 20 two-sided conversations from
each language, approximately 30 minutes long[15].
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Figure 3.4: Mel filterbanks

3.6 Distortions and Noise

In speech and speaker recognition applications it has been shown that the
auditory environment plays a important role. A system trained on noise and
distortions free speech data, lose performance in an environment with noise
or with channel distortions. The same is true the other way. Most speech
recognition and speaker recognition systems use log-magnitude spectrum or
any of it’s linearly transformed versions like cepstrum as features and the
problem is that these are not robust to noise. A channel distortion gives an
additive component in the logarithmic spectrum of speech.Any metric based
on a short-term logarithmic spectrum (or cepstrum) of speech will reflect
this distortion.

3.6.1 Channel Distortion

Channel distortion is caused by a change in the spectral shape of the signal
due to the frequency response of the acoustic transmission channel[50]. Some
sources of channel distortion are as follows:

• Analog transmission channel. This situation occurs for example in
analog telephony, where different subscriber loops have different fre-
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quency responses.

• Microphone characteristics. The frequency response of the microphone
used to acquire the speech signal is another source of channel distor-
tion, as different types of microphones have different frequency re-
sponses.

Any convolutive distortion affects the DC component of the modula-
tion spectrum[48]. This is why methods like mean subtraction on the cep-
strum(cepstral mean subtraction) has shown to make cepstral features ro-
bust to channel distortions. This method removes the DC component of
the modulation spectrum. That efficiency of this method can bee seem
in[35][12].

RASTA(RelAtive SpecTrAl) processing is another method that has shown
to be robust to channel distortions[26]. It is based on the fact that most
channel distortions are slowly changing events, and the method band passes
spectral parameter signals to eliminate steady or slowly varying components
in the speech signal. RASTA and PLP are often combined to archive robust
features[27].

A comparison of RASTA and CMS can be found in [16] and it shows
that CMS performs slightly better than RASTA. One explanation of this
could be that RASTA always uses the same filter while the filter response
for phones varies.

Feature warping[51] is another technique for dealing with noise and chan-
nel distortions. It’s robustness has been shown in both speaker verification
and language detection. The simple description is that feature warping
maps the short-term distribution of each feature stream to a standardized
distribution, usually a gaussian. In [4] it is also discovered that the normal
distribution of the feature stream are very beneficial for an back end GMM
because of it’s distribution. In[4, 51] it is also shown that feature warping is
superior over CMS. Fig.3.5 shows an example of a noisy sound before and
after feature warping. The feature warping is done with an implemented
algorithm and the histograms are made in Matlab with the hist command.

PLP and RASTA (and MFCC, and inversion) toolbox[19] has a build in
pre-emphasis filter which is a a one coefficient digital filter :

Hpre(z) = 1 + apre ∗ z−1 (3.3)

Where that range of apre is in the range [-1,-0,4][52].
Voiced speech naturally have a negative attenuation of approximately 20

dB per decade due to physiological characteristics of the speech production
system. The intension of the pre-emphasis filter is to enhance the high
frequencies and attenuate the low frequencies.
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Figure 3.5: Feature warping of noisy speech. Showing before and after
warping to normal distribution

3.6.2 Noise

When dealing with telephone as a medium several drawbacks are known,
like limited bandwidth, channel distortions as mentioned above, different
frequency responses in the microphones, burst noise, echo, crosstalk, enve-
lope delay and clipping[69]. There also exist white noise due to electron agi-
tation in electronic components[63] To compensate for the additive ambient
noises of telephone speech one could consider the classical method spectral
subtraction[7]. This method often works well on stationary noise like white
noise but the drawback is that this method need a ’silence’ segment with
only the noise to work.

It is usually assumed that the speech and the noise are additive and
uncorrelated. The method is simply explained as estimating the noise spec-
trum in a silence interval and subtract this noise spectrum from the signal
spectrum.

Fig 3.6 shows a random pick from the speech corpus to check SNR, this
i a silence part,and it looks like white noise[50]. This was the worst example
discovered, but it seems like most of the samples contains a considerable
amount of electrical noise. The components needed to compute SNR was
measured using Praat[6] and calculated according to :

SNR = 10 ∗ log(Psignal/Pnoise) (3.4)

Where P is maximum pressure. See the documentation of Praat for
details.

3.7 Language Identification System

The language system is composed of a feature extractor, a test module and
a training module as seen in 3.7.However, this is the schematic view, in the
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Figure 3.6: A ’silence’ part of a taiwan conversation.Giving a SNR=30 db

Figure 3.7: Schematic view of the LID system

Matlab code, the test module module has a build in feature extractor. The
filenames do not fit this description. The file feature extract3.m is the
feature extraction module and test gmm2.m is the test module. The training
module is named make gmm.m and is used by both the speech/music/other
and the LID system. However, some parameters have to be changed.

3.8 Experiment - MFCC verses MFCC with re-
moved silence

As an experiment 12 MFCCs is used and only 2 languages, German and
English.Approximately 20 minutes of speech data is used for each language.
A GMM model with diagonal co-variance matrix and 32 mixtures is trained
for each language. These tests are not meant to find the optimal numbers
of mixtures but rather find the differences between no silence removal and
silence removal. It is believed the test results are possible to extend to other
features and number of mixtures. If silence removal is the most efficient
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Decision Interval Error English Error German Total Error
1 seconds 34,67 31,04 32,76
2 seconds 31,75 25 28,2
3 seconds 29,01 23,89 26,32

Table 3.1: 2 language test, 12 MFCC and 32 mixtures

Decision Interval Error English Error German Total Error
1 seconds 31,22 27,76 29,4
2 seconds 30,95 22,85 26,69
3 seconds 30,24 21,67 25,73

Table 3.2: 2 language test, 12 MFCC,32 mixtures and silence removal

here it is believed that the same is true for other number of mixtures and
features like PLP and LPC. For this tests the results are not expected to be
very good, but it is the differences that is the main importance here. The
amount of training data is considered as a minimum.

Table 3.1 shows the result of language recognition of English and German
using 12 MFCC and no silence removal and table 3.2 is the result of removing
silence segments from speech before training. The results show that there
is a difference but it is not very big and it is suspected that a part of this
difference is the fact that the model gets more training data per time unit
with silence removal compared to no silence removal. On the other side the
only interesting part of speech data is the speech and not the speech, and
one can see if the GMMs get ’confused’ with all the silence segments between
sentences and words.

3.9 Experiment - MFCC,Feature Warping and SDC

As mentioned, feature warping has shown to be very efficient to additive
noise and channel effects. That this method really works is evident from
the table 3.3 where a interval of 3 seconds is used for the feature warping
algorithm. Also a few others intervals were tested without any increase nor
decrease of any significant meaning. From literature it is evident that the 3
second interval is, as far as anybody knows, near optimal as seen in [3][8].

On the other hand, what really is quite a surprise is the performance
of the SDC, which is not very good, at least in combination with feature
warping. As seen in table 3.3 and table 3.4 the effect of adding SDC together
with feature warping has an increase that may or may not be significant.
The training of an GMM is very dependent of the initial start conditions
because of the local search nature of the EM-algorithm. In Netlab, this
accomplished with iterations of the k-mean algorithm which has a random
start conditions. This mean that training 2 models on the same training
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Decision Interval Error English Error German Total Error
0,5 sec 33,05 31,7 32,34

1 sec 25,31 26,11 25,73
2 sec 25,79 25,71 25,75
3 sec 26,54 26,11 26,31
4 sec 23,02 20 21,43
5 sec 26,67 21 23,68

Table 3.3: 2 language test, 12 MFCC,32 mixtures,silence removal and Fea-
ture Warping with 3s window

Decision Interval Error English Error German Total Error
1 sec 34,48 31,55 32,94
3 sec 29,01 23,89 26,31
5 sec 25,56 20 22,63

Table 3.4: 2 language test, 8 MFCCs, feature warping and SDC7-1-3-7,32
mixtures and silence removal

data could and probably will give different results.

3.10 Experiment - PLP-CCs

PLPCCs is doing very well as feature set for this task. As seen in table 3.5,
8 PLP-CCs is performing better than 8 MFCCs with feature warping and
SDCs in table 3.4. It also beat 12 MFCC and Feature Warping for the 3
seconds task as seen in table 3.3. In combination with RASTA and feature
warping PLP-CCs performs even better as seen in table 3.6 and table.3.7.At
last it is indeed evident that SDC has an effect, at least in combination
with RASTA filtered PLP-CCs as seen in table 3.7. No other combination
gives better performance than 7 PLP-CCs and SDC with parameter values
7,1,3,7.

3.10.1 Comparison

For both MFCCs and PLP-CCs increasing the number of coefficients did
not make any increase in performance. However, too many coefficients de-

Decision Interval Error English Error German Total Error
1 sec 35,44 27,59 31,31
2 sec 32,14 26,07 28,95
3 sec 30,25 20,56 25,15

Table 3.5: 2 language test, 8 PLP-CC,32 mixtures and silence removal
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Decision Interval Error English Error German Total Error
1 sec 34,87 28,97 31,76
2 sec 30,95 24,29 27,44
3 sec 28,4 18,89 23,39
4 sec 26,19 14,29 19,92
5 sec 26,67 15 20,53

Table 3.6: 2 language test, 8 PLP-RASTA,32 mixtures,silence removal

Decision Interval Error English Error German Total Error
1 sec 34,1 27,93 30,85
2 sec 29,37 23,57 26,31
3 sec 29,63 19,44 24,27
4 sec 25,4 13,57 19,17
5 sec 25,56 12 18,41

Table 3.7: 2 language test, 8 PLP-RASTA and Feature Warping with 3s
window,32 mixtures,silence removal

decision Interval Error English Error German Total Error
1 sec 34,48 24,67 29,31
3 sec 25,31 15 19,88
5 sec 24,44 12 17,89

Table 3.8: 2 language test, 7 PLP-RASTA and SDC7-1-3-7,32 mixtures and
silence removal
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creased the performance. With these experiments it was revealed that the
PLP-CCs combined with SDCs were superior over other features and combi-
nations. If one check other works done in this field and in the field of speaker
recognition and verification there are no true solution what features regards.
Some gets nice results with MFCCs in combination with SDCs while oth-
ers achieve the best results with PLP-CCs. In [3] there is a comparison of
PLP-CC and MFCCs in combination with SDCs and feature warping. Here
performance of the PLPCCs and MFCCs with different combinations with
SDCs and feature warping are quite even, but MFCCs with feature warping
and SDCs is slightly betters.[4] only uses MFCCs and they got their best
results with MFCC in combination with feature warping and SDCs. In [73]
the performance of both PLP-CCs and MFCCs are very even, but here PLP
performs better. It is impossible to say that PLP-CCs is better than MCFFs
or vice versa. The results varies from a lot of papers and this probably mean
that the datasets and their distribution is an important factor.

3.10.2 Experiment - Final

Only a subsection of the whole CallFriend were available. Two dialects of
English and Spanish, one from Germany,France and Japanese. A GMM
of 64 mixtures were made for English, Deutsch and France, Spanish and
Japanese, a total of approximately 1 hour of speech for each model was
used. The features used were 7 PLP-CCs-RASTA, and SDC-7-1-3-7. This
was the best option for the test runs. However, the test results showed to
be no good. Several combination were tried but nothing seemed to reduce
the error of especially France which often was taken for both English and
Deutsch. The results are shown in table 3.9 for decision intervals 3 and 5
seconds. Confusion matrices are showed in table 3.10 and 3.11.

As mentioned earlier there was some memory problems when training
models with a high number of mixtures and data. Also when going over 64
mixtures the covariance matrices had a tendency to collapse during training.
This is why there is no results showing more than 64 mixtures, but it was
succeeded to get one 96 mixture model for one language : Spanish. The
results for using this together with 64 mixture matrices is showed in table
3.12 and 3.13. This results shows that the error for Spanish decreases and i
could be a sign for not using enough mixtures for this training data because
it is evident that this model models the data with a higher accuracy. But, it
is not possible to be sure that increasing all mixtures to 96 or higher would
decrease the total accuracy(but probably). The error for Spanish using 3s
decision interval was 6,7 percent.

Table 3.14 and 3.15 shows the results of using 12 MFCCs and feature
warping and 3s decision interval. This shows that the chosen features per-
forms the best.

Table 3.16 and 3.17 shows the results for the 5 language test with a
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Decision Interval Spanish Error English Error Deutsch Error Total Error
3 Sec 28,75 40,28 25 31,04
5 sec 20 33,33 20 24,14

Table 3.9: 3 language test, 7 PLP-RASTA and SDC7-1-3-7,64 mixtures and
silence removal

Eng Ger Spa
Eng 43 17 12
Ger 3 60 17
Spa 14 9 57

Table 3.10: 3 language test, Confusion matrix for 3s test

decision interval of 3s. At last table 3.18 and 3.19 shows the results for the
5 language test with a decision interval of 5s.

Eng Ger Spa
Eng 24 7 5
Ger 1 32 7
Spa 4 4 32

Table 3.11: 3 language test, Confusion matrix for 5s test

48



Decision Interval Spanish Error English Error Deutsch Error Total Error
5 sec 0 47,22 50 31,89

Table 3.12: 3 language test, mixtures for Spanish increased to 96

Eng Ger Spa
Eng 19 4 13
Ger 1 20 19
Spa 0 0 40

Table 3.13: 3 language test, confusion matrix : mixtures for Spanish in-
creased to 96

Decision Interval Spanish Error English Error Deutsch Error Total Error
3 Sec 32,5 33,33 50 38,79

Table 3.14: 3 language test, 12 MFCCs and feature warping

Eng Ger Spa
Eng 24 8 4
Ger 6 20 14
Spa 6 7 27

Table 3.15: 3 language test, confusion matrix : 12 MFCCs and feature
warping

Decision Int Spa Err Eng Err Ger Err Jap Err Fra Err
3 Sec 40 46,3 40 51,67 56,67

Table 3.16: 5 language test, 7-PLP-RASTA and SDC7-1-3-7, 3s decision
interval

Eng Ger Spa Jap Fra
Eng 29 10 5 3 7
Ger 2 36 6 0 0
Spa 6 4 36 7 7
Jap 5 7 16 29 3
Fra 8 12 12 2 26

Table 3.17: 5 language test confusion matrix: 7-PLP-RASTA and SDC7-1-
3-7, 3s decision interval

Decision Int Spa Err Eng Err Ger Err Jap Err Fra Err
5 Sec 14 22,22 30 35 40

Table 3.18: 5 language test confusion matrix: 7-PLP-RASTA and SDC7-1-
3-7, 5s decision interval
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Eng Ger Spa Jap Fra
Eng 14 2 2 0 0
Ger 1 14 0 0 0
Spa 0 0 17 1 2
Jap 0 1 5 13 1
Fra 2 1 5 0 12

Table 3.19: 5 language test confusion matrix: 7-PLP-RASTA and SDC7-1-
3-7, 5s decision interval
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Chapter 4

Conclusion

The tasks performed are not easy to solve completely and yet there exist
no solution that does. A 100 percent solution will probably never be found,
but one can try to get as near zero error rate as possible. The results of
the music/speech/other solution gave very satisfactory results even for short
decision intervals. Also sound samples taken from the Internet were tried
with approximately the same result and because of the great results no other
solutions were sought.

When it comes to the language identification problem the results were
not so satisfactory. This task is probably even a harder task than mu-
sic/speech/other discrimination but there exist solutions with far better re-
sults achieved here(with higher number of mixtures). The main problem
here was that training with a high number of mixtures was approximately
impossible due to memory issues and it is no doubt that higher number of
mixtures were necessary to model the feature space in a decent way. This
was partially showed introducing one language with 96 mixtures verses 64
for the others. It then became evident that the GMM was able to model the
feature space for this 96 mixture language more accurately. Other than more
mixtures, accuracy gain could have been achieve with a gender detector as
a front end. Also a Universal Backend Model(UMB) probably would have
gained the accuracy. It is a mixture model with typically over 1024 mixtures
containing data for all languages. Data is then extracted, using a statistical
method, from this all-in one model to form models for each language. A
voiced/unvoiced decision module for speech in the front-end may also have
increased the accuracy.
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Chapter 5

Source Code

Here follows the implementations of the Matlab files used in the project. A
more detailed description is found in the matlab files.The toolboxes men-
tioned in the text are required to run the files.

Function delta.m

function p=delta(signal)

%functions to make delta MFCC,PLP,LPC

%Deltac(k) = c(k+2)-c(k-2)

%Signal is MFCC coeff

%Returns the same number of deltas as number of MFCCs

%Author Tommy Strmhaug, 2008

%init return value

deltas=[];

%dimension of signal

[row,col]=size(signal);

for k=1:col

%Make some trix at the beginning to be able to return same number of

%deltas as number of input

if k<3

deltas=cat(2,deltas,signal(:,k+2)-signal(:,k+1));

else

%Make some trix at the beginning

if k>col-2

deltas=cat(2,deltas,signal(:,k)-signal(:,k-2));

else

deltas=cat(2,deltas,signal(:,k+2)-signal(:,k-2));

end

end

end

p=deltas;

52



Function deltaDelta.m

function p=deltadelta(signal)

%functions to make delta delta MFCC,PLP,LPC

%Deltadeltac(k) = delta c(k+1)-c(k-1)

%Signal is delta of MFCC

%Returns the same number of deltas as number of MFCCs

%Author Tommy Strmhaug, 2008

%init return value

deltas=[];

%dimension

[row,col]=size(signal);

for k=1:col

%Make some trix at the beginning to be able to return same number of

%deltas as number of input

if k<2

deltas=cat(2,deltas,signal(:,k+2)-signal(:,k+1));

else

%Make some trix at the beginning

if k>col-1

deltas=cat(2,deltas,signal(:,k)-signal(:,k-2));

else

deltas=cat(2,deltas,signal(:,k+1)-signal(:,k-1));

end

end

end

p=deltas;

Function feature warp.m

function a = feature_warp(N,signal)

% Function to return warped features based on algorithm from the

% paper : Feature Warping for Robust Speaker Verification by

% Jason Pelecanos and Sridha Sridharan, 2001

%

% N is window width in number of features(MFCC, PLP) and

%could be seconds long(usually 3 sec).

% It also have to be an odd number for simplicity.

% signal is an array(not matrix) of MFCC,PLP features

% Return the new warped feature based on a gaussian distribution

% Author Tommy Strmhaug,2008
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% New array will have same length as input due to padding

% Check if number is odd

if mod(N,2)==0

error(’N must be odd’);

end

centerFeat = ceil(N/2);

%pad signal in a circular fashion

signal=signal;

padlength = centerFeat-1;

length(signal);

%pause(inf)

left=signal(1:padlength);

right=signal(end-padlength+1:end);

signal=cat(1,left,signal);

signal=cat(1,signal,right);

%Allocate new feature array for faster execution

%feats = zeros(1,length(signal));

for i=1:length(signal)-N+1

%Find rank of center

centerNumber = signal(i+centerFeat-1);

% Current window

%temparray=signal(i:(N-1)+i)

%Sort array

temparray=sort(signal(i:(N-1)+i),’descend’);

%Find rank of center window in the sorted list

rank = find(temparray==centerNumber,1);

feats(i)=warp(rank,N);

end

%dimesnion

a=feats;

x = -2.9:0.1:2.9;

%plot histogram

%hist(feats,40);

function b=warp(R,N)

%Function to make gaussian distributin

% Gaussian expression to warp to

%h = (1/sqrt(2*pi))*exp(-x^(2)/2);

% Solving the integral equation with respect to upper

% bound of integral. This is equation (5) in the paper.

x1 = norminv((N+0.5-R)/(N),0,1);

b=x1;

%b=solve((int(h,-inf,r)-((N+0.5-R)/(N))))
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function make gmm.m

function [mix, options, errlog] = make_gmm()

%Make a GMM to describe the distribution given by feature

%files on disc usually named ’speech.dat’ and ’music.dat’

%or names of language files :

%’engn.dat’ or ’germ.dat’.

%The function saves the model to disc.

%

%Author Tommy Strmhaug,2008

%Number of times to iterate

for it=1:1

if(it==1)

%Load feature sets

[feat, t, nin, nout, ndata] = datread(’fraq.dat’);

category =’fraq_silence_removed_7_PLP_rasta_SDC7_1_3_7’;

else

if(it==2)

[feat, t, nin, nout, ndata] = datread(’germ.dat’);

category =

’germ_silence_removed_MFCC_8_Feature_warping_SDC7_1_3_7’;

else

[feat, t, nin, nout, ndata] =

datread(’othersounds-7-5-sec.dat’);

category =’othersoundsdiagS7mfccDC7-1-3-7’;

end

end

size(feat)

tic

%feat=single(feat);

%Now make GMM approximations to the data distribution

%using various numbers of mixtures.If planning to make

%models with different number of mixtures

%one can fill the number in in the array below.

%Number of mixtures

values=[64];

for it=1:length(values)

filenamemix = int2str(values(it))

filename = [category filenamemix];

ncentres = values(it)

[inputdim,M] = size(feat);

inputdim=M;

%Number of EM-algorithm

itr = 50;

%NetLab GMM
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mix = gmm(inputdim, ncentres, ’diag’);

options = foptions;

options(1) = 1; % Display error values.

%minimum change in log-likelihood

%options(3) = .1;

% Maximum number of iterations for K-means algorithm.

options(14) = 50;

disp(’Initializing GMM with k-means’);

mix = gmminit(mix, feat, options);

% Display error values.

options(1) = 1;

% Prevent Covar values from collapsing

%options(5) = 1;

% Max. number of iterations

options(14) = itr;

disp(’Running EM for mixture model’);

[mix, options, errlog] = gmmem(mix, feat, options);

%Save model

save (filename, ’mix’);

x = [5.4 3.6] ;

%prob = gmmprob(mix, x)

%mix.nin

toc

end

end

function SDC.m

\LARGE Function SDC.m

%functions to compute shifted delta cepstral coefficients

%from MFCC and PLP

%

%Signal is coeff of MFCC or PLP

%Returns coloums of SDCs. if k=7, there are 7 coloums for each MFCC

%Author Tommy Strmhaug, 2008

%d and P considered in frames. N amd k is ints

%N=7; % number of c cepstral coefficients in each cepstral vector

%d=1; % time advance and delay for the delta computation

%P=3; % timeshift netween consecutive blocks

%k=7; % number of blocks whose delta coefficients are

%concatenated to form the SDC vector

%dimension of signal

[row,col]=size(signal);

%init variables

sdc=[];

sdc_temp=[];

%Pad data to not get out of bound. circular padding
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right=signal(:,col-9:col);

left =signal(:,1:21);

signal=cat(2,signal,left);

signal=cat(2,right,signal);

%time watch

tic

for t=11:col+10

for i=0:k-1

sdc_temp=signal(:,t+i*P+d)-signal(:,t+i*P-d);

sdc=cat(2,sdc,sdc_temp);

end

end

toc

p=sdc;

function normalize vol.m

function res = normalize_vol(stream)

%function to normalize volume for speech samples

%Author Tommy Strmhaug, 2008

min_val=0;

max_val=max(stream)

%Preallocate

newStream=zeros(1,length(stream));

%volume factor

max_amplitude=0.5;

%Normalize

for x=1:length(stream)

newStream(x)=((stream(x)-min_val)/(max_val-min_val))*max_amplitude;

end

res=newStream;

function removesilence.m

function E = remove_silence(signal, windowLength,step);

%Simple function for removing silence from sound files based

%on the RMS energy in the frame.

%The threshold is an experimental.

%Author Tommy Strmhaug, 2008

%RMS

signal = signal / max(max(signal));
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signal2=signal;

curPos = 1;

L = length(signal)

numOfFrames = floor((L-windowLength)/step) + 1

%H = hamming(windowLength);

%E = zeros(numOfFrames,1);

for (i=2:numOfFrames)

window = (signal(curPos:curPos+windowLength-1));

E = (1/(windowLength)) * sum(abs(window.^2));

if(abs(E)<0.00008)

signal2(curPos:curPos+windowLength-1)=0;

end

curPos = curPos + step;

end

newsignal=signal2(signal2~=0);

E=newsignal;

%wavplay(newsignal(1:80000),8000)

function feat extract.m

function []= feat_extract();

%Function to extract short time RMS and silence with application to

%speech/music discrimination.Function takes no paramters and dont

%return anything, but it writes feature vectors to disk.

%Author Tommy Strmhaug, 2008

%location of train files

dname=(’speech’);

%Iterate over both speech and music files

for i=1:1

tempX=0;

if (i~=1)

dname=’music’;

end

%catalog containing training files

dir2 = [’C:\matlab\musicspeech\wavfile\train\’ dirname ’\’];

%Store files and catalogs in a temp variable

a=dir(dir2);

%No overlap

overlap =0;

%Open file for writing and add ’svm’ for not to confuse

%with feat-extract routines.

fid = fopen([dirname ’svm’ ’.dat’],’w’,’a’);

%remover . and .. from file list

for x=3:4

filename=[dir2 a(x).name];
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%read in file on by one

[signal,sr]=wavread(filename);

%samples/millisecond

sm = sr/1000;

%20 millisecond window in samples

windowlength = floor(sm*20);

%total number of frames

lengthFrames=floor(length(signal)/windowlength);

%feature length in millisecond. This is a desicion window

fl=2000;

%feature length in frames. This is a desicion window

featureLengthFrames=(sm*fl)/(sm*20);

if overlap

delta = windowlength/5;

else

delta = windowlength;

end

%Help variable

index = 0;

%make copy of original signal

s=signal;

%inital number of silence windows

silenceFrames=0;

nonSilenceFrames=0;

%RMS calculation

signal = signal.^2; % Square the samples

for i = 1:delta:length(signal)-windowlength+1

index = index+1;

% Average and take the square root of each window

temp(i) = sqrt(mean(signal(i:i+windowlength-1)));

if (abs(temp(i))<0.0010)

y(index)=0;

s(i:i+windowlength)=0;

else

y(index)=temp(i);

end

end

%subplot(3,1,1);

%plot(s,’-r’)

%hold on;

%subplot(3,1,2);

%plot(temp)

%number of desicion windows

numberOfD = floor(lengthFrames/featureLengthFrames);

%init

highEnergyFrames=0;

lowEnergyFrames=0;

%Put each feature frame into an array
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totalVar=[];

%Find silence frames

for x1=1:numberOfD

frames=y(1:featureLengthFrames);

variance=var(frames);

totalVar(end+1)=variance;

average=mean(frames);

for x2=1:length(frames)

if (frames(x2)/average)<0.15

lowEnergyFrames=lowEnergyFrames+1;

else

highEnergyFrames=highEnergyFrames+1;

end

if frames(x2)==0

silenceFrames=silenceFrames+1;

else

nonSilenceFrames=nonSilenceFrames+1;

end

end

%fprintf(fid,’%f,%s\n’,lowEnergyFrames/(lowEnergyFrames+

highEnergyFrames),’speech’);

%Write to file for use with WEKA

fprintf(fid,’%f,%f,%f,%s\n’,variance,silenceFrames/

(silenceFrames+nonSilenceFrames),lowEnergyFrames/

(lowEnergyFrames+highEnergyFrames),dirname);

silenceFrames=0;

nonSilenceFrames=0;

highEnergyFrames=0;

lowEnergyFrames=0;

y(1:featureLengthFrames)=[];

frames=[];

variance=0;

average=0;

end

%subplot(3,1,3);

%plot(totalVar,’-rs’)

end

%close file

fclose(fid);

end

function feat extract2.m

function [frames,Z, s,x]= feat_extract2();

%function to extract features and save to files :

%speech.dat and music.dat othersounds2.dat
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error=0;

%Parameter adjusting, 1 means true, 0 false

%number of Melfcc coeff to extract

numCoeff=8;

%use melfcc(1) or not(0)

mel=1;

%remove power term

remove_power=0;

%delta

addDelta=0;

deltas=[];

%deltadelt

addDeltaDelta=0;

deltadeltas=[]

%SDC

%Dont use delta or deltadelta or rmover power term with

%this option. However one can use mel + SDC. With this

%option N Melfcc are added to the SDC.

%Remove power is done automatic with this option

N=7; % number of cepstral coefficients in each cepstral vector

d=1; % time advance and delay for the delta computation

P=3; % timeshift netween consecutive blocks

k=7; % number of blocks whose delta coefficients are concatenated to

%form the SDC vector

SDC_coeff=1;

SDC_c=[];

%variable to hold total coeff

totalCoeff=0;

features=[];

%name of directory for train files. This also become the filename of the

%model

dname=(’speech’);

%Iterate over both speech and music files

for i=1:3

tempX=0;

if (i==2)

dname=’music’;

end

if(i==3)

dname=’othersounds2’;

end

%Path to trainfiles music and speech

if (i==1 || i==2)

dir2 = [’d:\matlab\musicspeech\wavfile\train\’ dname ’\’]

else

dir2=[’d:\matlab\’ dname ’\BBC train\’]

end
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%read all names in dir

a=dir(dir2);

%Open file for writing

fid = fopen([dname ’.dat’],’w’,’a’);

%index start at 3 to remover . and .. from file list

for x=3:length(a);

sprintf(’%s %2.0f’,’Processing trainfile :’,x-2)

%filename of training file

filename=[dir2 a(x).name];

%read wave

[signal,sr]=wavread(filename);

%check size, files are 22kHz and use only first 4

%seconds if files are bigger than 4 seconds

length(signal);

if (length(signal)>(88200))

signal=signal(1:(88200));

end

length(signal);

if(mel==1)

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

totalCoeff=numCoeff;

end

if(remove_power==1)

%remove first coeffient

coeff1(1,:)=[];

totalCoeff=numCoeff-1;

else

totalCoeff=numCoeff;

end

if(SDC_coeff==1 && mel==1)

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

coeff1(1,:)=[];

%make a copy of MFCCs

coeff2=coeff1;

totalCoeff=numCoeff-1;

totalCoeff=(totalCoeff*k);

SDC_c=SDC(coeff1,N,d,P,k);

%to get correct length

coeff1=SDC_c;

%SDC_c(1:100)

else

if(SDC_coeff==1 && ~(mel==1))

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

coeff1(1,:)=[];

totalCoeff=numCoeff-1;

totalCoeff=totalCoeff*k;

SDC_c=SDC(coeff1,N,d,P,k);

%to get correct length

coeff1=SDC_c;

%SDC_c(1:100)
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end

end

if(addDelta)==1

deltas = delta(coeff1);

end

if(addDeltaDelta)==1

deltadeltas=deltadelta(deltas);

end

%samples/millisecond

sm = sr/1000;

%20 millisecond window in samples

windowlength = floor(sm*20);

%total number of frames

lengthFrames=floor(length(signal)/windowlength);

%feature length in millisecond. This is a desicion window

fl=2000;

%feature length in frames. This is a desicion window

featureLengthFrames=(sm*fl)/(sm*20);

%Number of chunks of mfccs

%coeff1=coeff1(:);

[r,c]=size(coeff1);

r*c;

len=r*c;

totalCoeff;

%Check that MFCC length is legal, if not cut to right length.

if (mod(len,totalCoeff)~=0)

error=error+1;

re=floor(len/totalCoeff);

len=re*totalCoeff;

end

coeff1;

%help variable

j=1;

error

%make feature file

for i2=1:totalCoeff:len

%Write flag

writeFlag=1;

if(mel && ~SDC_coeff)

%check and discard NaN feature lines

if (any(isnan(coeff1(i2:i2+totalCoeff-1))) ||

any(isnan(deltas(i2:i2+totalCoeff-1))) ||

any(isnan(deltadeltas(i2:i2+totalCoeff-1))));
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%Do not write to file

writeFlag=-1;

end

features =[coeff1(i2:i2+totalCoeff-1)];

if(addDelta==1)

features =[coeff1(i2:i2+totalCoeff-1)

deltas(i2:i2+totalCoeff-1)];

end

if(addDeltaDelta==1)

features =[coeff1(i2:i2+totalCoeff-1)

deltas(i2:i2+totalCoeff-1)

deltadeltas(i2:i2+totalCoeff-1)];

end

end

if(SDC_coeff==1 && mel==1)

%check and discard NaN feature lines

if (any(isnan(coeff2(j:j+(numCoeff-1)-1))) ||

any(isnan(SDC_c(i2:i2+(totalCoeff)-1))))

%Do not write to file

writeFlag=-1;

end

features =[coeff2(j:j+(numCoeff-1)-1) SDC_c(i2:i2+

(totalCoeff)-1) ];

else

if(SDC_coeff==1 && ~(mel==1))

features =[SDC_c(i2:i2+(totalCoeff)-1)];

end

end

j=j+7;

if(writeFlag~=-1)

fprintf(fid,’%f ’,features,6);

fprintf(fid,’\n’);

end

end

end

end

fclose(fid);

function feat extract3.m
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function []= feat_extract3();

%Function to extract features for language identification

%and save to file This file is kind of messy because there

%are little internal control, so it is possible to run

%illegal combinations of parameters. Each parameter

%has a comment of the most important restrictions.

%An example is that one should not run PLP and MFCC at t

%he same time. One also have to make sure that the parameters

%are equal for this function and the test function.

%Parameter adjusting are marked with boxes of %s, 1 means true, 0 false

%A variable to keep track of errors

error=0;

%delta parameter

di=0;

%%%%%%%%%%%

%PLP-Rasta%

%%%%%%%%%%%

%Do not use this together with MFCC. Do not use remove power

%either. When using PLP together with SDC ->order*k is the

%number of concatenated deltas to form the SDC.

PLP=1;

%Rasta filtering

rasta=1;

%model order. Remember that order+1 is number of coefficients

order=7;

%%%%%%

%MFCC%

%%%%%%

mel=0;

%Number of MFCC coeffs to extract. This is the number before removing the

%power term. Do not use together with PLP

numCoeff=8;

%%%%%%%%%%%%%%%%%%%

%Remove power term%

%%%%%%%%%%%%%%%%%%%

remove_power=0;

%%%%%%%%%%%%%%%%

%Remove Silence%

%%%%%%%%%%%%%%%%

remove_silence=1;

%%%%%%%%%%%%%%%%%

%Feature Warping%

%%%%%%%%%%%%%%%%%

featureWarp=0;

%time in seconds for feature warp window

time=3;

%Window length in number of features(default step time for MFCC is 10 ms)

if(mel==1)

windowLength=numCoeff*time*100+1;
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end

if(PLP==1)

windowLength=(order+1)*time*100+1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Cepstral Mean Substraction%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CMS=0;

%%%%%%%%%%%%%%%%%%%%

%Delta coefficients%

%%%%%%%%%%%%%%%%%%%%

addDelta=0;

deltas=[];

%%%%%%%%%%%%%%%%%%%%%%%%%%

%Delta delta coefficients%

%%%%%%%%%%%%%%%%%%%%%%%%%%

addDeltaDelta=0;

deltadeltas=[]

%%%%%

%SDC%

%%%%%

%Dont use delta or deltadelta or rmover power term with this option.

% However one can use mel + SDC. With this option N MFCC are added

%to the SDC. Remove power is done automatic with this option

N=7; % number of cepstral coefficients in each cepstral vector

d=1; % time advance and delay for the delta computation

P=3; % timeshift netween consecutive blocks

k=7; % number of blocks whose delta coefficients are

%concatenated to form the SDC vector

SDC_coeff=1;

SDC_c=[];

%variable to hold total coeff

totalCoeff=0;

%Vector of features

features=[];

%Iterate over language files

for i=1:5

%Directory of training files. This is also the filename of the feature

%files

dname=(’engn’);

tempX=0;

if (i==2)

dname=’germ’;

end

if(i==3)

dname=’japn’;
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end

if(i==4)

dname=’span’

end

if(i==5)

dname=’fraq’

end

% if(i==3)

% dname=’othersounds2’;

% end

%Path to training files

dir2 = [’e:\CallFriend\train\’ dname ’\’]

%Read all names in dir

a=dir(dir2);

%Open file for writing

fid = fopen([dname new ’.dat’],’w’,’a’);

%index start at 3 to remove . and .. from file list

for x=3:length(a);

sprintf(’%s %2.0f’,’Processing trainfile :’,x-2)

%filename of training files

filename=[dir2 a(x).name];

%read wave

[signal,sr]=wavread(filename);

%remove silence from first 5 minutes. will never use more

if(remove_silence)

’removing silence’

signal=removesilence(signal(1:2400000), 20,10);

end

%All files are approx 30 minutes, some are shorter.

%Extract 80 seconds data from each file.

%SR = 8000 for speech files

if (length(signal)>(480000))

signal=signal(1:(480000));

end

if(PLP==1 && ~(SDC_coeff)==1 && ~(mel==1))

’plp not SDC’

% Calculate orderth order PLP features with/without RASTA

[coeff1, spec2] = rastaplp(signal, sr, rasta, order);

totalCoeff=order+1;

if(remove_power==1)

’remover power’

%Remove first coefficient

coeff1(1,:)=[];

%Update total

totalCoeff=totalCoeff-1;

end

if(featureWarp)
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’feature warp’

coeff1=feature_warp(windowLength,coeff1(:));

end

coeff1;

end

if(PLP==1 && (SDC_coeff)==1 && ~(mel==1))

’plp and SDC’

% Calculate orderth order PLP features with/without RASTA

[coeff1, spec2] = rastaplp(signal, sr, rasta, order);

totalCoeff=order+1;

coeff1(1,:)=[];

%make a copy of MFCCs

coeff2=coeff1;

%Update

totalCoeff=totalCoeff-1;

di=totalCoeff

numCoeff=totalCoeff;

totalCoeff=(totalCoeff*k);

SDC_c=SDC(coeff1,N,d,P,k);

%to get correct length

coeff1=SDC_c;

if(featureWarp)

’feature warp’

coeff2=feature_warp(windowLength,coeff2(:));

end

coeff1;

end

if(mel==1 && ~(SDC_coeff)==1)

’mel not SDC’

%Extract numCoeff melfcc components with default settings

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

if(remove_power==1)

’remover power’

%Remove first coefficient

coeff1(1,:)=[];

%Update total

totalCoeff=totalCoeff-1;

end

if(featureWarp)

’feature warp’

coeff1=feature_warp(windowLength,coeff1(:));

end

end

if(SDC_coeff==1 && mel==1 && ~(PLP==1))

’SDC and Mel’

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

coeff1(1,:)=[];

%make a copy of MFCCs

coeff2=coeff1;
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%Update

totalCoeff=numCoeff-1;

di=totalCoeff;

totalCoeff=(totalCoeff*k);

SDC_c=SDC(coeff1,N,d,P,k);

%to get correct length

coeff1=SDC_c;

if(featureWarp)

’feature warp’

coeff2=feature_warp(windowLength,coeff2(:));

end

%SDC_c(1:100)

end

if(SDC_coeff==1 && ~(mel==1) && ~(PLP==1))

’SDC and not mel’

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

coeff1(1,:)=[];

totalCoeff=numCoeff-1;

totalCoeff=totalCoeff*k;

SDC_c=SDC(coeff1,N,d,P,k);

%to get correct length

coeff1=SDC_c;

if(featureWarp)

coeff1=feature_warp(windowLength,coeff1(:));

end

%SDC_c(1:100)

end

if(addDelta)==1

deltas = delta(coeff1);

if(featureWarp)

deltas=feature_warp(windowLength,deltas(:));

end

end

if(addDeltaDelta)==1

deltadeltas=deltadelta(deltas);

if(featureWarp)

deltadeltas=feature_warp(windowLength,deltadeltas(:));

end

end

%Size of signal

[r,c]=size(coeff1);

r*c;

len=r*c;

totalCoeff;

%Check that MFCC length is legal, if not cut to right length.

if (mod(len,totalCoeff)~=0)

error=error+1;

re=floor(len/totalCoeff);

len=re*totalCoeff;

end

%Helper variable

j=1;
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%Make feature file

for i2=1:totalCoeff:len

%Write flag

writeFlag=1;

if((PLP==1) && ~(SDC_coeff==1))

%check and discard NaN feature lines

if (any(isnan(coeff1(i2:i2+totalCoeff-1))) )

writeFlag=-1;

end

features =[coeff1(i2:i2+totalCoeff-1)];

% if(i2>1)

% pause(inf)

% end

end

if((PLP==1) && (SDC_coeff==1))

%check and discard NaN feature lines

if (any(isnan(coeff2(j:j+(numCoeff)-1))) ||

any(isnan(SDC_c(i2:i2+(totalCoeff)-1))))

%Do not write to file

writeFlag=-1;

end

features =[coeff2(j:j+(numCoeff)-1) SDC_c(i2:i2+

(totalCoeff)-1) ];

end

if(mel && ~SDC_coeff)

%check and discard NaN feature lines

if (any(isnan(coeff1(i2:i2+totalCoeff-1))) )

writeFlag=-1;

end

features =[coeff1(i2:i2+totalCoeff-1)];

if(addDelta==1)

features =[coeff1(i2:i2+totalCoeff-1) deltas(i2:i2+

totalCoeff-1)];

if (any(isnan(deltas(i2:i2+totalCoeff-1))))

writeFlag=-1;

end

end

if(addDeltaDelta==1)

features =[coeff1(i2:i2+totalCoeff-1) deltas(i2:i2+

totalCoeff-1)

deltadeltas(i2:i2+totalCoeff-1)];

if (any(isnan(deltadeltas(i2:i2+totalCoeff-1))))

writeFlag=-1;

end

end

end
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if(SDC_coeff==1 && mel==1)

%check and discard NaN feature lines

if (any(isnan(coeff2(j:j+(numCoeff-1)-1))) ||

any(isnan(SDC_c(i2:i2+(totalCoeff)-1))))

%Do not write to file

writeFlag=-1;

end

features =[coeff2(j:j+(numCoeff-1)-1) SDC_c(i2:i2+

(totalCoeff)-1)];

end

if(SDC_coeff==1 && ~(mel==1) && ~(PLP==1))

features =[SDC_c(i2:i2+(totalCoeff)-1)];

end

j=j+di;

%Write features to file

if(writeFlag~=-1)

fprintf(fid,’%f ’,features,6);

fprintf(fid,’\n’);

end

end

end

end

fclose(fid);

function test gmm.m

function [mu sp]= test_gmm();

%function to test for speech/music and other

%Author Tommy Strmhaug, 2008

%Parameters are marked with boxes of %

features=[];

%decision length in duration*10 milliseconds

duration = 100

%variables related to error computation

totalError=0;

speechError=0;

musicError=0;

otherError=0;

total1=0;

total2=0;
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total3=0;

errorInstancesM=0;

errorInstancesS=0;

errorInstancesO=0;

mu=[];

sp=[];

%iterate through all categories

for i=1:3

%location of train files

dname=(’speech’);

if (i==2)

dname=’music\concatenated’;

end

if(i==3)

dname=’D:\matlab\othersounds2\BBC test\’

end

globalSpeech=0;

globalMusic=0;

globalOther=0;

%%%%%%%%%%%%

%use melfcc%

%%%%%%%%%%%%

mel=1;

%number of coeff in model.

numCoeff=8;

%%%%%%%%%%%%%%%%%%%

%remove power term%

%%%%%%%%%%%%%%%%%%%

remove_power=1;

%%%%%%%

%delta%

%%%%%%%

addDelta=0;

deltas=[];

%%%%%%%%%%%%

%deltadelta%

%%%%%%%%%%%%

addDeltaDelta=0;

deltadeltas=[];

%%%%%

%SDC%

%%%%%

%Dont use delta or deltadelta or remover power term with

%this option. However one can use mel + SDC. With this option

%N Melfcc are added to the SDC. remove power is done automatic

N=7; % number of cepstral coefficients in each cepstral vector

d=1; % time advance and delay for the delta computation

P=3; % timeshift netween consecutive blocks

k=7; % number of blocks whose delta coefficients are
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%concatenated to form the SDC vector

%use SDC

SDC_coeff=1;

SDC_c=[];

totalCoeff=0;

dir2 = [’d:\matlab\musicspeech\wavfile\test\’ dname ’\’]; %dname ’\’

if(i==3)

dir2=dname;

end

%read all names in dir

a=dir(dir2)

%load models

load speechdiag7mfccSDC7-1-3-764.mat

speech_model = mix;

mix

load musicdiag7mfccSDC7-1-3-764.mat

music_model = mix;

mix

load othersoundsdiag7mfccSDC7-1-3-7_7-5s_64-finished.mat

other_model=mix

speech=1;

music=1;

other=1;

s=0;

m=0;

%fid = fopen([’testspeech.dat’],’w’,’a’);

%index start at 3 to remover . and .. from file list

for x=3:(length(a));

sprintf(’%s %2.0f :%s ’,’Processing testfile :’,x-2,dname)

filename=[dir2 a(x).name]

%Load file

[signal,sr]=wavread(filename);

signal;

%How much signa to use

if (length(signal)>(100000))

signal=signal(1:(100000));

end

if(mel==1)

%Extract numCoeff melfcc components with default settings

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

end

if(remove_power==1)

%remove first coeffient

coeff1(1,:)=[];

totalCoeff=numCoeff-1;

else

totalCoeff=numCoeff;

end

if(addDelta)==1

deltas = delta(coeff1);

end
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if(addDeltaDelta)==1

deltadeltas=deltadelta(deltas);

end

if(SDC_coeff==1 && mel==1)

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

coeff1(1,:)=[];

%make a copy of MFCCs

coeff2=coeff1;

totalCoeff=numCoeff-1;

totalCoeff=(totalCoeff*k);

SDC_c=SDC(coeff1,N,d,P,k);

%to get correct length

coeff1=SDC_c;

else

if(SDC_coeff==1 && ~(mel==1))

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

coeff1(1,:)=[];

totalCoeff=numCoeff-1;

totalCoeff=totalCoeff*k;

%SDC must have a vector

SDC_c=SDC(coeff1,N,d,P,k);

coeff1=SDC_c;

%SDC_c(1:100)

end

end

%Number of of mfccs

coeff1=coeff1(:);

coeff1=coeff1’;

length(coeff1)/numCoeff;

range=1;

j=1;

for i2=1:totalCoeff:(length(coeff1))

% tempspeech = (gmmprob(speech_model,coeff1(i2:i2+12)));

% tempmusic = (gmmprob (music_model,coeff1(i2:i2+12)));

if(mel==1)

features =[coeff1(i2:i2+totalCoeff-1)];

end

if(addDelta==1)

features =[coeff1(i2:i2+totalCoeff-1)

deltas(i2:i2+totalCoeff-1)];

end

if(addDeltaDelta==1)

features =[coeff1(i2:i2+totalCoeff-1)

deltas(i2:i2+totalCoeff-1)

deltadeltas(i2:i2+totalCoeff-1)];

end

if(SDC_coeff==1 && mel==1)

features =[coeff2(j:j+(numCoeff-1)-1)

SDC_c(i2:i2+(totalCoeff)-1) ];
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else

if(SDC_coeff==1 && ~(mel==1))

features =[SDC_c(i2:i2+(totalCoeff)-1)];

end

end

j=j+7;

%Probability density values

tempspeech = -log10(gmmprob(speech_model,features));

t=gmmprob(speech_model,features);

tempmusic = -log10(gmmprob (music_model,features));

t2=gmmprob (music_model,features);

tempother = -log10(gmmprob (other_model,features));

speech=speech+(tempspeech);

music=music+(tempmusic);

other=other+(tempother);

if range==duration

%because a smal value have a higher log value less is

%better

if (speech<music)

if(speech<other)

globalSpeech=globalSpeech+1;

’speech’

else

globalOther=globalOther+1;

’other’

end

else

if (music<other)

globalMusic=globalMusic+1;

’music’

else

globalOther=globalOther+1;

’other’

end

end

sp(end+1)=(speech);

mu(end+1)=(music);

speech;

music;

speech=1;

music=1;

other=1;

range=0;

end

range=range+1;
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end

end

if(strcmp(dname, ’speech’))==1

speechError = ((globalMusic+globalOther)/(globalSpeech+

globalMusic+globalOther))*100

errorInstancesM =errorInstancesM+globalMusic;

errorInstancesO =errorInstancesO+globalOther;

total1=globalMusic+globalSpeech+globalOther;

end

if(strcmp(dname, ’music\concatenated’))==1

musicError = ((globalSpeech+globalOther)/(globalSpeech+

globalMusic+globalOther))*100

errorInstancesS =errorInstancesS+globalSpeech;

errorInstancesO =errorInstancesO+globalOther;

total2=globalMusic+globalSpeech+globalOther;

end

if(strcmp(dname, ’D:\matlab\othersounds2\BBC test\’))==1

otherError = ((globalSpeech+globalMusic)/(globalSpeech+

globalMusic+globalOther))*100

errorInstancesS =errorInstancesS+globalSpeech;

errorInstancesM =errorInstancesM+globalMusic;

total3=globalOther+globalSpeech+globalMusic;

end

end

globalSpeech

globalMusic

%Error report

speechError

musicError

otherError

totalError = (errorInstancesM+errorInstancesS+errorInstancesO)/

(total1+total2+total3)*100

function test gmm2.m

function [mu sp]= test_gmm();

%Function to test language identification models.

%This file is kind of messy because there are little internal control, so

%it is possible to run illegal combinations of parameters. Each parameter

%has a comment of the most important restrictions. An example is that one

%should not run PLP and MFCC at the same time. One also have to make sure

%that the parameters are equal for this function and the test function.

%Parameter adjusting are marked with boxes of %s, 1 means true, 0 false

features=[];

%delta function

di=0;

%%%%%%%%%%%%%%%%%

%Decision length%
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%%%%%%%%%%%%%%%%%

%decision length in duration*10 milliseconds

duration = 500

%language ident

%use engn,span,japn,germ,fraq for English,Spanish,

%Japanese, Deutsch and France

language1=’engn’;

language2=’germ’;

language3=’span’;

language4=’japn’;

language5=’fraq’;

%total number of languages

numberOfLanguages=5;

%variables related to error computation.

%Error1 = first language, Error2 = second ...

totalError=0;

Error1=0;

Error2=0;

Error3=0;

Error4=0;

Error5=0;

total1=0;

total2=0;

total3=0;

total4=0;

total5=0;

errorInstances2=0;

errorInstances1=0;

errorInstances3=0;

errorInstances4=0;

errorInstances5=0;

mu=[];

sp=[];

%confusion matrix variables

l11=0;

l12=0;

l13=0;

l14=0;

l15=0;

l21=0;

l22=0;

l23=0;

l24=0;

l25=0;

l31=0;

l32=0;

l33=0;

l34=0;

l35=0;

l41=0;

l42=0;

l43=0;

l44=0;
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l45=0;

l51=0;

l52=0;

l53=0;

l54=0;

l55=0;

%Iterate through test dirs

for i=1:numberOfLanguages

dname=language1;

if(i==2)

dname=language2;

end

if (i==3)

dname=language3;

end

if (i==4)

dname=language4;

end

if (i==5)

dname=language5;

end

global1=0;

global2=0;

global3=0;

global4=0;

global5=0;

%%%%%%%%%%%

%PLP-Rasta%

%%%%%%%%%%%

%Do not use this together with MFCC. Do not use remove power

%either. When using PLP together with SDC ->order*k is the number

%of concatenated deltas to form the SDC.

PLP=1;

%Rasta filtering

rasta=1;

%model order. Remember that order+1 is number of coefficients

order=7;

%%%%%%

%MFCC%

%%%%%%

mel=0;

%Number of MFCC coeffs to extract. This is the number before

%removing the power term. Do not use together with PLP

numCoeff=8;

%%%%%%%%%%%%

%Remove power term%

%%%%%%%%%%%%

remove_power=0;

%%%%%%%%%%%%%%%%%

%Feature Warping%

%%%%%%%%%%%%%%%%%%
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featureWarp=0;

%time in seconds for feature warp window

time=3;

%Window length in number of features

%(default step time for MFCC and PLP is 10 ms)

if(mel==1)

windowLength=numCoeff*time*100+1;

end

if(PLP==1)

windowLength=(order+1)*time*100+1;

end

%%%%%%%%%%%%%%%%%%%%

%Delta Coefficients%

%%%%%%%%%%%%%%%%%%%%

addDelta=0;

deltas=[];

%%%%%%%%%%%%%%%%%%%%%%%%%%

%Delta delta Coefficients%

%%%%%%%%%%%%%%%%%%%%%%%%%%

addDeltaDelta=0;

deltadeltas=[];

%%%%%%%%%%%%%%%%

%Remove Silence%

%%%%%%%%%%%%%%%%

remove_silence=1;

%%%%%

%SDC%

%%%%%

%Dont use delta or deltadelta or remover power term with this

%option. However one can use mel + SDC. With this option N Melfcc

%are added to the SDC. Remove power is done automatic

N=7; % number of cepstral coefficients in each cepstral vector

d=1; % time advance and delay for the delta computation

P=3; % timeshift netween consecutive blocks

k=7; % number of blocks whose delta coefficients are concatenated

%to form the SDC vector

SDC_coeff=1;

SDC_c=[];

%Total number of coefficients

totalCoeff=0;

%Dir for test files

dir2 = [’D:\CallFriend\test\’ dname ’\’]; %dname ’\’

%Read all names in dir

a=dir(dir2);

%Load models

load engn_silence_removed_7_PLP_rasta_SDC7_1_3_7_64.mat

model1 = mix;

load germ_silence_removed_7_PLP_rasta_SDC7_1_3_7_64.mat

model2 = mix;

load span_silence_removed_7_PLP_rasta_SDC7_1_3_7_64.mat
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model3 = mix;

load japn_silence_removed_7_PLP_rasta_SDC7_1_3_7_64.mat

model4 = mix;

load fraq_silence_removed_7_PLP_rasta_SDC7_1_3_7_64.mat

model5 = mix;

lang2=0;

lang1=0;

lang3=0;

lang4=0;

lang5=0;

%index start at 3 to remover . and .. from file list

for x=3:length(a);

sprintf(’%s %2.0f :%s ’,’Processing testfile :’,x-2,dname)

%Read filenames

filename=[dir2 a(x).name];

[signal,sr]=wavread(filename);

%Remove silence from first 4 minutes. will never use more

if(remove_silence)

signal=removesilence(signal(1:1920000), 20,10);

’removing silence’

end

%All files are approx 30 minutes, some are shorter.

%Extract x seconds data from each test file.

%SR = 8000 for speech files

if (length(signal)>(280000))

%make 4 desicions per test file, and dont start at the

%beginning

signal=signal(50000:(124000));

end

if(PLP==1 && ~(SDC_coeff)==1 && ~(mel==1))

’plp not SDC’

% Calculate orderth order PLP features with/without RASTA

[coeff1, spec2] = rastaplp(signal, sr, rasta, order);

totalCoeff=order+1;

coeff1;

if(remove_power==1)

’remover power’

%Remove first coefficient

coeff1(1,:)=[];

%Update total

totalCoeff=totalCoeff-1;

end

if(featureWarp)

’feature warp’

coeff1=feature_warp(windowLength,coeff1(:));

end

end

if(PLP==1 && (SDC_coeff)==1 && ~(mel==1))

’plp and SDC’

% Calculate orderth order PLP features with/without RASTA

[coeff1, spec2] = rastaplp(signal, sr, rasta, order);

totalCoeff=order+1;
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coeff1(1,:)=[];

%make a copy of MFCCs

coeff2=coeff1;

%Update

totalCoeff=totalCoeff-1;

di=totalCoeff

numCoeff=totalCoeff;

totalCoeff=(totalCoeff*k);

SDC_c=SDC(coeff1,N,d,P,k);

%to get correct length

coeff1=SDC_c;

if(featureWarp)

’feature warp’

coeff2=feature_warp(windowLength,coeff2(:));

end

coeff1;

end

if(mel==1 && ~(SDC_coeff)==1)

’mel not SDC’

%Extract numCoeff melfcc components with default settings

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

if(remove_power==1)

’remover power’

%Remove first coefficient

coeff1(1,:)=[];

%Update total

totalCoeff=totalCoeff-1;

end

if(featureWarp)

’feature warp’

coeff1=feature_warp(windowLength,coeff1(:));

end

end

if(addDelta)==1

deltas = delta(coeff1);

if(featureWarp)

deltas=feature_warp(windowLength,deltas(:));

end

end

if(addDeltaDelta)==1

deltadeltas=deltadelta(deltas);

if(featureWarp)

deltadeltas=feature_warp(windowLength,deltadeltas(:));

end

end

if(SDC_coeff==1 && mel==1 && ~(PLP==1))

’SDC and Mel’

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

coeff1(1,:)=[];

%make a copy of MFCCs

coeff2=coeff1;
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%Update

totalCoeff=numCoeff-1;

di=totalCoeff;

totalCoeff=(totalCoeff*k);

SDC_c=SDC(coeff1,N,d,P,k);

%to get correct length

coeff1=SDC_c;

if(featureWarp)

coeff2=feature_warp(windowLength,coeff2(:));

end

%SDC_c(1:100)

end

if(SDC_coeff==1 && ~(mel==1) && ~(PLP==1))

’SDC and not mel’

coeff1=melfcc(signal,sr,’numcep’, numCoeff);

coeff1(1,:)=[];

totalCoeff=numCoeff-1;

totalCoeff=totalCoeff*k;

SDC_c=SDC(coeff1,N,d,P,k);

%to get correct length

coeff1=SDC_c;

if(featureWarp)

coeff1=feature_warp(windowLength,coeff1(:));

end

%SDC_c(1:100)

end

coeff1=coeff1(:);

coeff1=coeff1’;

length(coeff1)/numCoeff;

’length’

length(coeff1)

totalCoeff

range=1;

j=1;

for i2=1:totalCoeff:(length(coeff1))

% tempspeech =

%(gmmprob(speech_model,coeff1(i2:i2+12)));

% tempmusic =

%(gmmprob (music_model,coeff1(i2:i2+12)));

if(PLP==1 && ~(SDC_coeff==1))

features =[coeff1(i2:i2+totalCoeff-1)];

% if(i2>1)

% pause(inf)

% end

end

if((PLP==1) && (SDC_coeff==1))

%check and discard NaN feature lines

features =[coeff2(j:j+(numCoeff)-1)

SDC_c(i2:i2+(totalCoeff)-1) ];
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end

if(mel && ~SDC_coeff)

%check and discard NaN feature lines

features =[coeff1(i2:i2+totalCoeff-1)];

if(addDelta==1)

features =[coeff1(i2:i2+totalCoeff-1)

deltas(i2:i2+totalCoeff-1)];

end

if(addDeltaDelta==1)

features =[coeff1(i2:i2+totalCoeff-1)

deltas(i2:i2+totalCoeff-1)

deltadeltas(i2:i2+totalCoeff-1)];

end

end

if(SDC_coeff==1 && mel==1)

features =[coeff2(j:j+(numCoeff-1)-1)

SDC_c(i2:i2+(totalCoeff)-1) ];

end

if(SDC_coeff==1 && ~(mel==1) && ~(PLP==1))

features =[SDC_c(i2:i2+(totalCoeff)-1)];

end

j=j+di;

%Probability dinsities

temp1 = -log10(gmmprob(model1,features));

%t=gmmprob(engn_model,features);

temp2 = -log10(gmmprob (model2,features));

%t2=gmmprob (germ_model,features);

temp3 = -log10(gmmprob(model3,features));

temp4 = -log10(gmmprob(model4,features));

temp5 = -log10(gmmprob(model5,features));

lang1=lang1+(temp1);

lang2=lang2+(temp2);

lang3=lang3+temp3;

lang4=lang4+(temp4);
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lang5=lang5+temp5;

if range==duration

%because a smaller value have a higher log value

%

% if (lang1<lang2)

% if(lang1<lang3)

%

% else

%

%

% global3=global3+1;

% language3

% end

%

%

% else

% if (lang2<lang3)

% global2=global2+1;

% language2

% else

% global3=global3+1;

% language3

% end

% end

candidate = min(lang1,lang2);

candidate2 =min(lang3,lang4);

candidate3 =min(candidate,candidate2);

candidate4= min(candidate3,lang5);

if candidate4 == lang1

global1=global1+1;

language1

end

if candidate4 == lang2

global2=global2+1;

language2

end

if candidate4 == lang3

global3=global3+1;

language3

end

if candidate4 == lang4

global4=global4+1;

language4

end

if candidate4 == lang5

global5=global5+1;

language5

end

lang1=0;

lang2=0;

lang3=0;

lang4=0;
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lang5=0;

range=0;

end

range=range+1;

end

end

if(strcmp(dname, language1))==1

Error1 = ((global2+global3+global4+global5)/

(global1+global2+global3+global4+global5))*100

errorInstances2 =errorInstances2+global2;

errorInstances3 =errorInstances3+global3;

errorInstances4 =errorInstances4+global4;

errorInstances5 =errorInstances5+global5;

total1=global2+global1+global3+global4+global5;

l11=total1-(global2+global3+global4+global5);

l12=global2;

l13=global3;

l14=global4;

l15=global5;

end

if(strcmp(dname, language2))==1

Error2 = ((global1+global3+global4+global5)/

(global1+global2+global3+global4+global5))*100

errorInstances1=errorInstances1+global1;

errorInstances3=errorInstances3+global3;

errorInstances4=errorInstances4+global4;

errorInstances5=errorInstances5+global5;

total2=global2+global1+global3+global4+global5;

l22=total2-(global1+global3+global4+global5);

l21=global1;

l23=global3;

l34=global4;

l35=global5;

end

if(strcmp(dname, language3))==1

Error3 = ((global1+global2+global4+global5)/

(global1+global2+global3+global4+global5))*100

errorInstances1=errorInstances1+global1;

errorInstances2=errorInstances2+global2;

errorInstances4=errorInstances4+global4;

errorInstances5=errorInstances5+global5;

total3=global2+global1+global3+global4+global5;

l33=total3-(global2+global1+global4+global5);

l32=global2;

l31=global1;

l34=global4;

l35=global5;

end

if(strcmp(dname, language4))==1

Error4 = ((global1+global2+global3+global5)/
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(global1+global2+global3+global4+global5))*100

errorInstances1=errorInstances1+global1;

errorInstances2=errorInstances2+global2;

errorInstances3=errorInstances3+global3;

errorInstances5=errorInstances5+global5;

total4=global2+global1+global3+global4+global5;

l44=total4-(global2+global1+global3+global5);

l41=global1;

l42=global2;

l43=global3;

l45=global5;

end

if(strcmp(dname, language5))==1

Error5 = ((global1+global2+global3+global4)/

(global1+global2+global3+global4+global5))*100

errorInstances1=errorInstances1+global1;

errorInstances2=errorInstances2+global2;

errorInstances3=errorInstances3+global3;

errorInstances4=errorInstances4+global4;

total5=global2+global1+global3+global4+global5;

l55=total5-(global2+global1+global3+global4);

l51=global1;

l52=global2;

l53=global3;

l54=global4;

end

global1

global2

global3

end

%Error report

sprintf(’%s %s :%f’,language1,’error :’,Error1)

sprintf(’%s %s :%f’,language2,’error :’,Error2)

sprintf(’%s %s :%f’,language3,’error :’,Error3)

sprintf(’%s %s :%f’,language4,’error :’,Error4)

sprintf(’%s %s :%f’,language5,’error :’,Error5)

totalError = (errorInstances2+errorInstances1+errorInstances3+

errorInstances4+errorInstances5)/

(total1+total2+total3+total4+total5)*100

%confusion

sprintf(’%f %f %f %f %f’,l11,l12,l13,l14,l15)

sprintf(’%f %f %f %f %f’,l21,l22,l23,l24,l25)

sprintf(’%f %f %f %f %f’,l31,l32,l33,l34,l35)

sprintf(’%f %f %f %f %f’,l41,l42,l43,l44,l45)

sprintf(’%f %f %f %f %f’,l51,l52,l53,l54,l55)

function cdp.m

function mini=cdp(ref, stream);

% Continuous DP algorithm for spotting reference frames
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% in a stream.See article :

% Spotting Method for Classification of Real World Data, by Ryuichi Oka

% Author Tommy Strmhaug, 2008

clear P;

%init variables

tau=1;

mini=inf;

P=zeros(numel(ref),4);

%According to algorith these must be inf.

P(:,1)=inf;

P(:,2)=inf;

tic

for t2=3:numel(stream),

t=t2;

if t2>4

t=4;

P(:,1)=[];

end

while(tau<numel(ref)+1)

if (tau==1)

P(1,t)=3*abs(stream(t2)-ref(1));

end

if (tau==2)

temp=min(P(1,t-2)+2*abs(stream(t2-1)-ref(2))+abs(stream(t2)-

ref(2)),P(1,t-1)+3*abs(stream(t2)-ref(2)));

P(2,t)= min(temp,P(1,t)+3*abs(stream(t2)-ref(2)));

end

if(tau>2)

temp=min(P(tau-1,t-2)+2*abs(stream(t2-1)-

ref(tau))+abs(stream(t2)-ref(tau)),P(tau-1,t-1)+

3*abs(stream(t2)-ref(tau)));

P(tau,t)= min(temp,P(tau-2,t-1)+3*abs(stream(t2)

-ref(tau-1))+3*abs(stream(t2)-ref(tau)));

end

tau=tau+1;

end

if(P(tau-1,t)/(3*(tau-1))<mini)

mini=P(tau-1,t)/(3*(tau-1));

end

p(t2)=P(tau-1,t)/(3*(tau-1));

tau=1;

end

%At last plot the contour of spotting

plot(p)
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toc

function extract words.m

function []=extract_words()

%Function to split a file into words according to the trascription file

%Read all transcription files and wavefiles from each dialect directory and

%split files into word accordingly to trascription files

%Change variables manually for other files, like name, and number of lines

%in the .WRD file

%Author Tommy Strmhaug,2008

%Change this for other catalogs(DR1-DR8)

dialect=’DR8\’

%This has to be changed for each dialect

dir2 = [’E:\speech samples\TIMIT\TRAIN\’ dialect];

%read all names in dir

a=dir(dir2)

%Iterate all catalogs in dir2 path

for i=3:length(a)

ext=a(i).name

%Define paths

path1=[’E:\speech samples\TIMIT\TRAIN\’ dialect ext ’\’ ’SA1.wav’]

path2=[’E:\speech samples\TIMIT\TRAIN\’ dialect ext ’\’ ’SA2.wav’]

path3=[’E:\speech samples\TIMIT\TRAIN\’ dialect ext ’\’ ’SA1.WRD’]

path4=[’E:\speech samples\TIMIT\TRAIN\’ dialect ext ’\’ ’SA2.WRD’]

[wfile1,sr] = wavread(path1);

[wfile2,sr] = wavread(path2);

%obtain beginning and end of each word

[s1, e1, wrd1] = textread(path3,’%f %f %s’, 11);

[s2, e2, wrd2] = textread(path4,’%f %f %s’, 10);

%split file into words and save with same filename as word

for it=1:length(s1)

b=[’E:\speech samples\TIMIT\TRAIN\’ dialect ext ’\’ ’SA1\’ ]

mkdir (b)

name = strcat(b,wrd1{it},’.wav’);

temp=wfile1;

newWord=temp(s1(it):e1(it));

wavwrite(newWord,sr,name)

end

for it=1:length(s2)

b=[’E:\speech samples\TIMIT\TRAIN\’ dialect ext ’\’ ’SA2\’]

mkdir (b)

name = strcat(b,wrd2{it},’.wav’);
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temp=wfile1;

newWord=temp(s2(it):e2(it));

wavwrite(newWord,sr,name)

end

end

function spectral centroid.m

function c = spectral_centroid(signal,windowLength, step, fs)

%Function to calculate the spectral centroid

%Author Tommy Strmhaug, 2008

signal = signal / max(abs(signal));

l = length(signal);

numOfFrames = floor((l-windowlength)/step) + 1;

H = hamming(windowlength);

currentPos = 1;

m = ((fs/(2*windowlength))*[1:windowlength])’;

c = zeros(numOfFrames,1);

for (i=1:numOfFrames)

window = H.*(signal(currentPos:currentPos+windowlength-1));

FFT = (abs(fft(window,2*windowlength)));

FFT = FFT(1:windowlength);

FFT = FFT / max(FFT);

c(i) = sum(m.*FFT)/sum(FFT);

if (sum(window.^2)<0.010)

c(i) = 0.0;

end

currentPos = currentPos + step;

end

c = c / (fs/2);

function spectral flux.m

function F = spectral_flux(signal,windowLength, step, fs)

%Function to calculate the spectral flux

%Author Tommy Strmhaug, 2008

signal = signal / max(abs(signal));

currentPos = 1;

l = length(signal);

numOfFrames = floor((l-windowlength)/step) + 1;

H = hamming(windowlength);

m = [0:windowlength-1]’;

F = zeros(numOfFrames,1);

for (i=1:numOfFrames)

window = H.*(signal(currentPos:currentPos+windowlength-1));

FFT = (abs(fft(window,2*windowlength)));

FFT = FFT(1:windowlength);

FFT = FFT / max(FFT);

if (i>1)

F(i) = sum((FFT-FFTprev).^2);

else

F(i) = 0;

end

currentPos = currentPos + step;
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FFTprev = FFT;

end

function spectral rollOff.m

function sR = spectral_rollOff(signal,windowlength, step, c, fs)

%function to calculate spectral rolloff

%the parameter c is given in percent.Spectral Rolloff is the frequency

%below which c=85 percent of spectrum distribution concentrated.

%Author Tommy Strmhaug, 2008

signal = signal / max(abs(signal));

currentPos = 1;

l = length(signal);

numOfFrames = (l-windowlength)/step + 1;

H = hamming(windowlength);

m = [0:windowlength-1]’;

for (i=1:numOfFrames)

window = (signal(currentPos:currentPos+windowlength-1));

FFT = (abs(fft(window,512)));

FFT = FFT(1:255);

totalEnergy = sum(FFT);

curEnergy = 0.0;

countFFT = 1;

while ((curEnergy<=c*totalEnergy) && (countFFT<=255))

curEnergy = curEnergy + FFT(countFFT);

countFFT = countFFT + 1;

end

sR(i) = ((countFFT-1))/(fs/2);

currentPos = currentPos + step;

end

function spectral rollOff.m

function E = short_time_energy(signal, windowLength,step);

%function to calculate short time energy

%Author Tommy Strmhaug, 2008

signal = signal / max(max(signal));

currentPos = 1;

l = length(signal);

numOfFrames = floor((l-windowlength)/step) + 1;

E = zeros(numOfFrames,1);

for (i=1:numOfFrames)

window = (signal(currentPos:currentPos+windowlength-1));

E(i) = (1/(windowlength)) * sum(abs(window.^2));

currentPos = currentPos + step;

end
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