@ NTNU

Norwegian University of
Science and Technology

Reuse of Past Games for Move
Generation in Computer Go

Tor Gunnar Hgst Houeland

Master of Science in Computer Science
Submission date: July 2008

Supervisor: Agnar Aamodt, IDI
Co-supervisor: Helge Langseth, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

Creating a good computer player for the board game Go represents a significant challenge in the
fields of artificial intelligence and abstract game theory. The programs that currently exist are
significantly weaker than professional human players, and new and currently unexplored artificial
intelligence methods and game playing approaches may be required to improve this situation.

This master thesis project will study how to use case-based reasoning (CBR) methods to improve
a computer Go playing program. This includes obtaining an overview of the existing techniques for
creating Go-playing programs, and also an examination of how CBR methods have previously been
used to play Go and other games. The initial task will be to design and partially implement a
computer Go playing program based on existing methods. This system should then be expanded
with CBR-based methods in an attempt to improve the playing skill of the system by reusing
information from game records of other previously played Go games.

Assignment given: 10. September 2007
Supervisor: Agnar Aamodt, IDI

Abstract

Go is an ancient two player board game that has been played for several thou-
sand years. Despite its simple rules, the game requires players to form long-term
strategic plans and also possess strong tactical skills to handle the complex fights
that often occur during a game.

From an artificial intelligence point of view, Go is notable as a game that has
been highly resistant to all traditional game playing approaches. In contrast to
other board games such as chess and checkers, top human Go players are still
significantly better than any computer Go playing programs. It is believed that
the strategic depth of Go will require the use of new and more powerful artificial
intelligence methods than the ones successfully used to create computer players
for such other games.

There have been some promising new developments using new Monte Carlo-
based techniques to play computer Go in recent years, and programs based on
this approach are currently the strongest computer Go players in the world.
However, even these programs still play at an amateur level, and they cannot
compete with professional or strong amateur human players.

In this thesis we explore the idea of reusing experience from previous games
to identify strategically important moves for a Go board position. This is based
on finding a previous game position that is highly similar to the one in the
current game. The moves that were played in this previous game are then
adapted to generate new moves for the current game situation.

A new computer Go playing system using Monte Carlo-based Go methods
was designed as a part of this thesis work, and a prototype implementation
of this system was also developed. We extended this initial prototype using
case based reasoning (CBR) methods to quickly identify the most strategically
valuable areas of the board at the early stages of the game, based on finding
similar positions in a collection of professionally played games.

The last part of the thesis is an evaluation of the developed system and the
results observed using our implementation. These results show that our CBR-
based approach is a significant improvement over the initial prototype, and in
the opening game it allows the program to quickly locate the most strategically
interesting areas of the board.

However, by itself our approach does not find strong tactical moves within
these identified areas, and thus it is most valuable when used to provide strategic
guidelines for other methods that can find tactical plays.

ii

Preface

This master’s thesis was carried out within the Knowledge-Based Systems (KBS)
group in the Division of Intelligent Systems (DIS) at the Department of Com-
puter and Information Science (IDI) at the Norwegian University of Science and
Technology (NTNU).

I would like to thank my supervisor Agnar Aamodt for his guidance, helpful
suggestions and valuable feedback during this thesis work.

Trondheim, July 16th, 2008

Tor Gunnar Hgst Houeland

iii

iv

Contents

1 Introduction 1
1.1 Background and motivation 1
1.2 Objectives 2
1.3 GO . o o 3
1.4 Computer Go 3
1.5 CBRand Go 4
1.6 Research method 4
1.7 Evaluation. 4

2 Go 5
2.1 Capturing 5
2.2 Seki ... 6
23 Ko . . 6
24 Scoring 7
25 Groups.o e 8
26 Gamestages. 9

2.6.1 Theopening moves 9
2.6.2 Middlegame 10
2.6.3 Endgame 10
2.7 As amathematical game 11

3 Go tactics 13
3.1 Ladders 13
3.2 Nets . . . o o o e 14
3.3 Snmap-back 14
34 Eyes 15
3.5 Kotactics 18
3.6 Double-purpose moves 18
3.7 Goplayingskill 18

4 Game theory and analysis 21
4.1 Game characteristics 21

4.1.1 Computational complexity analysis 23
4.2 Board position analysiso 25
4.2.1 Combinatorial game theory 25
4.3 Grouplife 26
4.4 Score estimation oL o 27

Computer Go

5.1 Rule-based systems L.
5.1.1 Josekisequences
51.2 GNU Go e

5.2 Neural networks oL

5.3 Monte Carlo Go
5.3.1 UCT algorithm
5.3.2 Efficient game simulation

5.4 Playing strength Lo 0oL

CBR and games

6.1 JCOLIBRI

6.2 TIELT

6.3 Planning tactical operations 0L

6.4 Creating game stories L.

6.5 Using CBR for Gogames

Using cases

7.1 Previous gameso

7.2 Reusing strategicplans
7.2.1 Matching similar board positions
7.2.2 Evaluating and adapting the previous plan

7.3 Finding vital tactical moves oo
7.3.1 Matching fighting situations
7.3.2 Comparing status of affected groups

7.4 Overall use of previous experience

System Construction

8.1 Main system components
8.2 Game representation Lo
8.2.1 Board positions oo
83 UCT . . . e
8.4 Result estimation Lo oo
8.4.1 Score estimation L.
842 Randomplay
8.4.3 Group status evaluation
8.4.4 Local tactical play
85 CBRapproach
8.6 Implementationo oL
8.6.1 Previous game representation
Results
9.1 Implemented system
9.1.1 Reuse of tactical situations
9.2 Board representations Lo
9.3 UCT implementation
9.4 Scoreestimator o
9.5 Random play continuation
9.6 Reusing previous games
9.7 CBR-assisted opening play

vi

29
29
30
31
31
32
33
33
35

37
37
37
38
38
38

41
41
42
43
43
45
45
45
45

47
47
48
48
49
50
50
50
o1
51
52
93
%)

9.7.1 Limitations of our method

10 Discussion

10.1 Gotheory

10.2 Computer Go approaches

10.3 Experimental Go implementation

10.3.1 Estimated Go program playing strength
10.4 Use of experience to improve playing level

11 Conclusion

Bibliography

vii

73
73
73
74
74
75

77

79

viii

Chapter 1

Introduction

This chapter introduces the background, motivation and objectives for the the-
sis. The board game Go is introduced, and an explanation is given of why
creating a computer Go player is an interesting and difficult challenge.

1.1 Background and motivation

Go is a very old board game that has been studied by humans for several
millenia. It is based on very simple rules, but requires surprisingly complex
strategies to play well. The challenge of producing a good computer Go player
has been attempted numerous times[1, 2, 3], but the developed programs have
so far not reached the level of strong human players.

Because of this, Go has attracted some attention from the AI community.
Well-explored techniques highly focused on search have produced programs that
beat the best human players for other superficially similar board games such as
chess[4], checkers[5] and Othello[6], but these approaches do not seem to work
for Go.

(There are also other games such as Arimaa[7] for which it is also very
difficult to create good computer players, but these other games have typically
been created specifically to be easy for human players compared to computer
programs. Go on the other hand has been played since long before computers
existed.)

Ilustrating this significant challenge of Go, an IEEE Intelligent Systems
letter from the editor in 2006 was entitled “Computers play Chess; Humans
play Go”[8], which urged AI to focus more on the parts of human intelligence
we do not yet understand instead of focusing on solving well-defined problems.
This comparison to Go is justified, since one of the big problems for computer
Go is to even discover which information is important to consider at various
stages of the game.

There are specialized Go problem-solving programs[9] that can solve even
very difficult Go problems, but only when these problems are seen in isolation
or separated from the rest of the board by thick walls of stones. This never
happens in real games between humans, since building these overly thick walls
are a waste of valuable moves that could be placed elsewhere.

If a thin wall is breached in a real game, a human player will often have

CHAPTER 1. INTRODUCTION

anticipated this possibility beforehand. The human player will then adapt and
turn this into a gain for another area of the game, which can dramatically reduce
the impact of such an invasion. Human players rarely fully settle for one specific
interpretation of the board position until the game is nearly over.

In contrast, many traditional approaches to automatically playing games rely
on having distinct and well-defined states and sub-states, that don’t overlap or
have unclear boundaries. Some other AI approaches such as neural networks
have produced even worse initial results[10], even though these approaches are
often better for handling similar uncertain problem boundaries. There have also
been other attempts where neural networks have been applied in a much more
narrow scope and combined with other search-based methods. For these smaller
sub-problems the neural networks have produced acceptable results[11].

Somewhat surprisingly, many different approaches to creating Go playing
programs tend to result in programs they can play at approximately the same
level, around that of an intermediate amateur human player. There are some dif-
ferences and some approaches have cleared achieved better results, but these dif-
ferences are rather small compared to the wide span of different player strengths
seen in humans players.

All current computer programs are easily beaten by serious amateur players
who have devoted significant time to studying the game, and the programs are
nowhere close to beating professional players. This shows that there is still room
for significantly better artificial intelligence approaches for playing Go.

1.2 Objectives

The overall objective of this master’s thesis is to examine how computer pro-
grams can learn to play the board game Go, with an emphasis on methods that
achieve this by reusing past experience. Contemporary methods for construct-
ing Go-playing systems will be examined, and a new system will be proposed
for playing the game with a focus on reusing previous experience as part of the
playing process. The following have been the main goals for the thesis:

e Examine Go theory and previous approaches for creating computer Go
players.

e Examine how experience can be used to improve game-playing perfor-
mance based on previous games.

e Develop a new computer program prototype that can play Go.

e Examine how this program can use experience to improve its performance,
with a focus on using case-based reasoning methods.

Examining previous Go and computer Go theory and developing the new
computer program prototype will be large parts of the thesis work. Creating
a working Go playing program is a significant challenge in itself, and before
attempting to extend and improve such a program the fundamental theory un-
derlying its construction must be well known.

CHAPTER 1. INTRODUCTION

1.3 Go

Go is an ancient strategic board game that originated in China and has been
played for thousands of years. The rules and methods of playing have remained
largely the same, but it is still a highly challenging game today and the complex
strategies that result from the game’s few and simple rules are not yet fully
understood.

Go was traditionally played primarily in eastern Asia, and has only relatively
recently spread to the western world. It spread early on from China to Japan
and some time afterwards to Korea, and all the best players in the world today
are still generally from these three countries. The theories about the game have
also been heavily influenced by eastern philosophy, and this is still apparent
today.

In the last 50 years it has become more popular to take a more analytical
approach to the game and clearly specifying internally consistent sets of rec-
ommendations and guidelines. However, professional-level books concerning Go
are still more focused on such aspects of the game as elegance, balance and
fairness between the players, and only a few of these advanced books have been
translated to English.

1.4 Computer Go

There have been many attempts to create programs for playing Go, but these
have not yet been as successful as for other games such as chess or Othello.
The main reason for this is that the successful approaches for other games are
heavily based on searching through many possibilities, while the number of
possibilities a Go player faces is of a different order of magnitude. This means
that a complete search of the possible move sequences is clearly not feasible, and
there is a need for good heuristics to guide such a search to limit the number of
positions that have to be explored[1].

This ties in with the other big problem for computer Go, which is that it is
very difficult to evaluate Go board positions. In chess and Othello, you can often
get a reasonable first approximation of a board position by counting the number
of game pieces each player has of each kind, where e.g. in chess having a queen
is usually much better than not having one. In contrast, such considerations are
rarely as useful in Go. In an even game the two players will normally have almost
exactly the same number of stones on the board, and these small differences in
number of stones are normally not at all useful for determining who is winning.
This is because it is the empty intersections remaining that will determine the
winner, and the stones played so far only indirectly influence who will control
these intersections in the end.

Because of this it is often beneficial to play moves that strengthen the influ-
ence in an area or indirectly capture the opponent’s stones, while a purely game
piece material-driven search would instead aim to directly capture as much as
possible. Human players normally learn that this directly aggressive approach
is strategically unsound after a handful of games, and even weak amateur play-
ers know how to achieve their real goals indirectly while also expanding their
territory.

CHAPTER 1. INTRODUCTION

1.5 CBR and Go

Case-based reasoning (CBR) is a problem solving and machine learning approach[12]
that relies on explicitly stored previous experience to generate solutions to new
problems. Since human players often use what they have learned from previ-
ous games and tactical situations when thinking about possible moves, a CBR
approach may be useful for programs learning to play Go.

The computer program developed as part of the thesis work will employ
CBR-based methods to reuse experience from previous game records. This will
be done by comparing the overall strategic objectives and local tactical problems
in the current situation to the previous games. Then the moves performed in
a previous game will be adapted to discover new moves for the current board
position, which are also likely to be good moves if the board positions in the
current and previously stored game are substantially similar.

1.6 Research method

Part of the thesis will consist of exploring the existing literature in the field
of computer Go and analytical analysis of Go games. This will be followed by
a further, narrowed focus on the most promising methodological approach for
creating a Go playing program.

The results of this theoretical study will be used to design a new computer Go
playing system, and include developing a new program as an initial prototype
implementation of the proposed system. The development of this prototype
implementation will be a large part of the thesis work. This implementation
will largely be based on methods used in existing Go programs, and will allow
us to get an in-depth understanding of the state of the art for current computer
Go approaches. When implemented, the program will also be used as a basis
for experimenting with possible further improvements of our basic system.

The main focus for such enhancements will be on allowing the program
to learn from previous games, based on game records containing the move se-
quences played in these previous games. The prototype will be expanded to
attempt to include methods for reusing these previous games, both to examine
whether they can be easily integrated in practice and to evaluate the effect they
have on the playing skill level of the program.

The impact of these suggested improvements will be qualitatively evaluated
by comparing different versions of the program with and without these enhance-
ments.

1.7 Evaluation

The last part of the thesis will be an overall evaluation of the thesis work, and
a discussion of to what extent these initial objectives have been accomplished.

This part will also include an evaluation of the proposed computer Go play-
ing system and the prototype implementation, and an assessment the signif-
icance of the results achieved by creating and experimentally modifying the
prototype.

Chapter 2

Go

The objective of Go is to score more points than the opponent, by enclosing
areas of the board with your stones. The opposing player will naturally try to
prevent this, but it is also possible to capture the opponent’s stones by fully
surrounding them, and this is worth points as well. Because of this capturing
rule it is not beneficial to attempt overly aggressive moves that don’t survive,
and much of the challenge of the game is in finding the proper balance between
offense and defense.

2.1 Capturing

Each group of stones has a number of liberties, which are empty intersections
adjacent to the stones, as shown in figure 2.1. The single stone on the left has
4 liberties, marked with a, while the 4-stone group in the bottom right has 6
liberties, marked with b.

If the opponent fills in all the liberties of a group, the group is captured
and removed from the board. In figure 2.2, white captures the black stone by
filling in the last liberty when playing the marked stone. The black stone is
removed from the board and counts as one point scored for white. The now
empty intersection will also be worth one additional point for white if he still
controls it at the end of the game.

Sometimes one of the players can capture the opponent’s stones whenever

|
[
a
1.@a
a

Figure 2.1: An illustration of group liberties in Go. The single black stone has 4
liberties marked a, while the black group in the lower right corner has 6 liberties
marked b.

CHAPTER 2. GO

«{)é(}» @%@

A B

Figure 2.2: An example of the capturing rule. White captures the black stone
by playing the marked white stone.

he wants, without any risk of first having his own stones surrounded instead. In
this case, the situation is typically left as it is until the end of the game, since
the captured player will only lose more stones if he plays in the area, while the
capturing player is in no rush and can focus on first scoring points in other parts
of the board.

2.2 Seki

However, in close games there are often situations where both players try to
capture each other first. The player whose group has the most liberties typically
wins these capturing races, but this is not always the case. Sometimes this even
leads to situations where neither player is able to capture the other. This is
known as mutual life or seki and is illustrated in figure 2.3. In this example,
neither player wants to play at a or b. If black plays at a, white can then
respond at b to capture the marked black stones, and vice versa.

When a seki occurs, sometimes the surrounding stones will be captured
later in the game, which will then allow one player to safely capture the other.
Otherwise the situation simply remains a seki until the end of the game, in
which case both groups are counted as being alive.

2.3 Ko

In some situations, the game could go into a loop where the players capture
each other back and forth continually. An example of this is shown in figure
2.4. To avoid this, there is also an additional ko rule which states that a player
may not repeat the previous game board state. This means that they cannot

Figure 2.3: An example of seki (mutual life). The marked black and white
stones cannot be captured because a move in this area by either player would
let the other player capture first.

CHAPTER 2. GO

\ | |
A B C

Figure 2.4: An example of a ko. Because of the ko rule, black cannot immedi-
ately recapture the stone as shown on the right, but must first play somewhere
else to avoid repeating the previous position.

immediately recapture a single stone without first playing at least one other
move on the board somewhere else. In figure 2.4, the black move in step C
cannot be played immediately after white captures in B. Black must first play
another move somewhere else before he can play to capture this white stone.
Such capturing situations that involve the ko rule are simply called kos.

2.4 Scoring

For the example game position shown in figure 2.5, black has surrounded the
area at the top, while white has surrounded the area at the bottom. By playing
in the middle of the lower line, white can capture the black group in the lower
left corner, gaining 2 points for capturing the stones and another 2 points for
now surrounding the area they occupied. Board B shows the resulting position
after this capture, and the surrounded area for each player is shown in board C.

There are a number of slightly different rule sets for playing Go. These rule
sets also include small variations in how the final board positions are scored.
However, there will normally never be more than a 0 or 1 point difference in
the final score based on these different scoring rules. This is small compared
to the number of points the players normally get during play. Between evenly
matched top professional players, even these minor differences can sometimes
be important, but by comparison the skill difference between professional Go
players and computer Go programs corresponds to about 100 points. Because
of this the slight differences between these different scoring rules will not be

b-b@b-b
b-b-b

A B C

Figure 2.5: Scoring for an example 5x5 board. At the end of the game white
plays the marked stone to capture two black stones, and then both players pass.
The surrounded intersections marked with b are points for black, and the ones
marked with w are points for white.

CHAPTER 2. GO

Figure 2.6: A black group with two eyes marked a and b. This group is alive
and cannot be captured by white.

further explored in this thesis.

Using a common scoring rule known as area scoring for the example in figure
2.5, black has 7 points from the marked surrounded intersections and 7 more
points from the black stones remaining on the board, for a total of 14 points.
White has 4 marked intersections, 7 stones and 2 captured stones for a total of
13 points.

This would mean that black wins. However, black always plays the first
move, and this gives the black player a significant advantage. To make the game
fair, white receives a number of bonus points known as komi as compensation.
How many komi points white receives depends on the rule set used, but values
of 6.5 or 7.5 points are currently the most common for a 19x19 board. (The
half point is used to break ties.)

The use of komi is relatively recent and has only become common in the last
century. Previously the game without komi was also known to give black an
advantage, but playing white was simply considered a handicap for the stronger
player. This allowed for tracking the progress and relative strength of players
based on the ratio of black to white wins, while today komi is used to instead
make all games relatively fair for both players.

(The true value komi should have for an even game at a 19 x 19 board is
not known, and the value used in tournament play has been slowly increased. A
value of 5.5 was used for many years, but in the last decade most competitions
have increased komi to values around 7, which appears to be more reasonable.)

2.5 Groups

Because of the way the capturing rule works, it is possible (and common) to
have groups of connected stones on the board that can no longer be captured
by the opponent. The most common example of this is a group that has two
eyes, e.g. as shown in figure 2.6.

To capture the black stones, the white player has to play at both a and
b. However, both of these moves would have to be played at the same time,
otherwise the white stone played would be a suicide, which is not allowed. Since
white cannot play two stones at once, there is no way to kill the black group
(unless black intentionally plays a or b himself, which would be very bad and
self-destructive moves).

This concept of unkillable groups can be further divided into two kinds. The
first classification is for groups that can never be killed even if the opponent
always passes and never responds to your moves, which will be referred to as
pass-alive[13]. This concept is mostly used in academia and detailed game-
theoretic analysis of board positions, since no real life opponent would ever

CHAPTER 2. GO

behave in this way.

The other, and more common, concept of life is a group that will end up as
being alive at the end of the game if you answer all of the opponent’s moves
correctly, no matter which moves the opponent plays. For these kinds of groups,
not answering an opponent’s threat or answering incorrectly could still make the
group die, but with correct play they will end up living at the end of the game.

Such groups are simply said to be alive. However, sometimes these groups
may require winning a ko fight for the group to be alive, which will not always be
possible depending on the situation on the rest of the board. Such alive groups
that depend on a ko fight are said to be conditionally alive , and groups that do
not depend on a ko fight are called unconditionally alive®. Being unconditionally
alive is a significantly better result in actual play, since winning ko fights can
often be very difficult and always involves some sacrifice on another part of the
board.

2.6 Game stages

A large part of the high-level and strategically oriented Go theory is related
to what objectives are most important during various parts of the game, and
these are typically classified into three different stages. Games normally contain
significant overlap between these stages instead of consisting of distinct parts,
but discussing the various stages is nevertheless useful for describing what kind
of trade-offs the players should consider and what they should focus on to obtain
the best result at that point in the game.

The moves considered important earlier in the game are typically classified
this way because they are the biggest and most valuable plays, and should thus
normally always be played if possible. If instead an opponent prematurely plays
a move that should have been postponed until a later stage, the player can gain
an advantage by ignoring the move and taking the initiative to play first in
another area of the board. This will typically involve sacrificing some points
in the undefended area, but lets the player gain a larger number of points in
return by gaining a larger influence over the new area.

2.6.1 The opening moves

The game of Go has been extensively studied for hundreds of years, and the very
early stages of the game have been examined in great detail. All games start
with an empty board, so there are fewer possible board positions early in the
game than later. The theory regarding these first opening moves is known as
fuseki, which concerns what kind of board positions tend to work well together.
In particular, many different initial move sequences have been examined for the
corners of the board, which are known as joseki sequences|14].

These sequences are considered fair and balanced for both players, and either
player would normally end up at a loss if they deviate from these established
moves. For this reason professional players typically know dozens or hundreds
of possible joseki variations, and can also recognize when special considerations

1Unfortunately the term unconditional life is ambiguous and has also been used to mean
pass-alive. In this report the terms will be used as defined in this section, where responses to
opponent moves may be required for groups that are considered to be alive.

CHAPTER 2. GO

based on the rest of the board mean that the joseki sequence should not be
followed.

2.6.2 Middle game

Afterwards follows the middle game, which is characterized by fighting for ter-
ritory. In the opening, the players have laid out an initial claim on areas of
the board, but at some point either an area or the border between two areas
becomes contested. The cost of losing an entire such area of the board will be
too big to ignore, so both players continue to play moves around this area until
it is settled.

There have also been some attempts to classify middle game joseki sequences,
but because of the wide variety of possible sequences at this point it has not been
studied as extensively. Players often have their own preferences for these situa-
tions related to their playing styles, instead of relying on any general consensus
on what the best responses are, as is possible for the corner joseki sequences.

In this middle part of the game, the players no longer know the full extent of
their moves and possible responses, but are guided by principles such as placing
stones in good shapes, which means stones that are efficient and flexible. These
stones perform their specific task, such as attack, defense or even both at the
same time, using a minimal number of stones. At the same time such well-
placed stones will also have the flexibility to be sacrificed if necessary, but still
indirectly provide some benefit for the neighbouring areas even if they will later
be surrounded and captured.

Apart from playing in positions that give good shape, it is also important
that the stones played work well together. When playing a new move, it is often
very important to adapt the exact position played so it interacts well with your
own previously placed stones, rather than directly answering the opponent’s
last move. It is considered especially important not to make a previous move
worthless, or to make a previous move seem oddly placed. Even if it is not
immediately obvious from the local tactical situation, making stones work well
together in this way tends to be advantageous later in the game.

Among strong players, these considerations are planned many moves in ad-
vance, and guidelines for such play are organized in concepts such as following
the direction of play and preserving the flow of the stones when deciding on
moves. These and other similar concepts are meant to appeal to human intu-
ition and have so far not been systematized in a way that clearly explains when
they are applicable and how they should be used in a way that allows them to
be performed automatically by a computer player.

2.6.3 Endgame

After the fights on the board have been settled and there are no longer any
groups whose life and death status are unknown, the last stage of the game
begins. At this point there will no longer be any attacks on the board that
realistically attempt to kill groups, but instead the focus will be on playing the
remaining moves in the best way and particularly in the most beneficial order.

If neither player makes any large mistakes there will no longer be any major
sudden shifts in the expected score result, but in close games between evenly

10

CHAPTER 2. GO

matched players even these comparatively smaller differences can often deter-
mine who ends up winning.

The situations encountered in the endgame can to a much larger degree be
isolated from the rest of the board and studied by themselves than the other
parts of the game. Some specific endgame situations[15] have been studied in
great detail, and the exact number of points they are worth has been calculated
with optimal play, even for complicated situations that do not arise during
normal play.

This theory is currently rarely used in actual games, and it is mainly of aca-
demic interest and used for especially thorough analysis of previously completed
games.

2.7 As a mathematical game

As a mathematical game, Go is classified as a two-player adversarial game with
perfect information. It is quite similar to some other board games like chess,
checkers and Othello, but there are also some important differences. The game
tree complexity for all of these games, containing all possible moves and re-
sponses until the end of the game, grows exponentially with the length of the
game.

Go games are both longer and have more possibilities at each step than the
other games mentioned, which means that the game tree is of a different order
of magnitudel[1, 16].

Despite the enormous game trees that occur in Go, human players can play
the game quite well. One of the main reasons for this is that in Go, pieces are
never moved around on the board, and once placed they are only rarely removed
by being surrounded and captured. This allows a visual image of the board
position to remain valid for much of the game, which leverages the advanced
pattern recognition abilities humans possess to quickly understand the situation
on the board.

11

CHAPTER 2. GO

12

Chapter 3

Go tactics

In addition to an understanding of the strategic objectives that should be pur-
sued during the game, players need to be able to carry out their plans using
tactically strong moves.

Go tactics deal with local areas of the board, where the players are fighting
each other based on groups that are close together. The most valuable fights
typically involve the life or death status of these groups, but good tactical plays
can also force the opponent to spend extra moves in an area or just provide a
few extra points to a skilled player.

The most basic tactical plays are those that aim to conclusively capture
the opponent’s small groups or single stones, when the player’s own stones in
the area are already strong. These are relatively simple to understand and are
typically one of the first things new players learn after understanding the rules
of the game.

3.1 Ladders

A ladder is a situation where one player continuously reduces an opponent’s
group to only having one liberty, which threatens to capture the group on the
next move if he doesn’t respond. However, in a successful ladder, the opponent is
only able to increase the number of liberties to two, and is immediately reduced
to one liberty again on the next move. This continues while the fight moves
across the board, until it either runs into the edge of the board or some other
stones on the board.

An example of this is shown in figure 3.1. The marked stone on the left starts
the ladder, and even though the white stone tries to escape it is trapped in a
ladder formation by black. Eventually black captures the entire white group at
the edge of the board with @.

If it runs into the edge or the attacking player’s stone, the escaping player
loses all his stones, and it is said that the ladder works. Amongst good players,
ladders like this are never played out entirely, but simply assumed to kill the
escaping stones if they cannot reach another friendly stone.

If the escaping player wants to save the stone, he must first play an assisting
stone elsewhere on the board, known as a ladder breaker, that will prevent the
ladder for working. Similarly, if the attacking player wants to capture a stone

13

CHAPTER 3. GO TACTICS

A

Figure 3.1: An example of capturing stones using a ladder. The white stone
tries to escape, but black finally captures the entire white group at the edge of
the board.

in a ladder that doesn’t currently work, he must first play an assisting stone
elsewhere that can assist future ladder formation.

3.2 Nets

Another basic technique for capturing stones are nets. They require a slightly
stronger initial position for the attacking player, but allow for capturing the
stone locally, without being affected by the rest of the board like a ladder is.
Using a net the stone is not attacked directly, but instead locked out from having
any future route of escape, which is why it is referred to as being trapped in a
net. The stone is only actually captured and taken off the board if the escaping
player tries to save it.

An example of this is shown in figure 3.2. The marked black stone traps the
white stone in a net, and the white stone is considered dead and will eventually
be captured. If white tries to escape, black shuts him in as shown on the right,
and captures the white group with @.

3.3 Snap-back

Another basic but slightly less common way to capture stones is with a snap-
back. They are normally used to gain some extra points, whereas ladders and
nets often capture strategically important single stones but without directly
gaining many points through captures.

[

Figure 3.2: An example of using a net to capture stones. The marked black
stone traps the white stone in a net formation. The white stone cannot escape,
and will be shut in and finally captured if the white player attempts to save it.

14

CHAPTER 3. GO TACTICS

[[[

Figure 3.3: A capture using snap-back. When white captures the marked stone,
black responds by capturing the entire white group.

Snap-backs work by immediately recapturing a group after it has captured
one of your stones, because the opponent’s group reduced itself to only one
liberty when capturing. This often comes as a bit of a surprise to new players,
who do not think that capturing a stone could be bad. However, the group
was actually already killed by the initial stone, since the following snap-back
normally cannot be avoided.

An example of this is shown in figure 3.3. After white plays (D to capture
the marked black stone, black responds by playing @ at the same spot as the
captured stone, which now captures the white group.

3.4 Eyes

The most important criterion for determining if a group will live or dies, is
whether it has (or can always form) two eyes. If a group has two separate
eyespaces where such eyes can be created, it cannot be killed unless the opponent
can somehow create his own group inside the eyespaces, which is rare. Because
of this, groups with only one eyespace are the most interesting for the purpose
of this project, and groups with two eyespaces can simply be considered to be
alive.

Reducing the eyespace of a group to only containing one possible eye is
thus an effective way to kill the group. If a group is reduced to only one eye
in this way and the group is disconnected from other groups belonging to the
same player, it will eventually be killed regardless of the surrounding areas (the
exceptions being if it can kill a neighbouring group first, or achieve mutual life
in seki).

Usually a larger eyespace is better than a smaller one, since they are worth
more points and a large eyespace is more likely to allow for two separate eyes.
However, there are some notable exceptions, and even amateur players typically
know the most basic eyespace forms and their corresponding life-and-death sta-
tus. These basic eyespace forms are shown in figures 3.4 through 3.8.

Some of the shown groups are dead, some are alive, but the most interesting
groups are those that are unsettled. The life or death of these groups depends on
which player plays the next move in the area. For the unsettled groups the points
marked with z are the vital points of these groups. White can play on the vital
point to kill the groups, while black playing there saves the group!. These vital
points are usually at the center of the eyespaces, and human players develop an

LFor the larger eyespaces there may also be other black moves that save the group, but the
vital point is normally preferred since it also removes any remaining ko threats.

15

CHAPTER 3. GO TACTICS

intuition for quickly finding these vital points even when the surrounding stones
are not as fully settled as in these illustrative figures.

Figure 3.4: Groups with a small eyespace containing 1 or 2 spaces are dead.

T T T 11T

Figure 3.5: Groups with 3 spaces are unsettled and depend on who plays next.
If white plays z the groups die, while black paying = saves the groups.

Figure 3.6: These three versions of 4 point eyespaces are unconditionally alive.
As long as black answers any white move inside the eyespaces, these groups
cannot be killed by white.

16

CHAPTER 3. GO TACTICS

Figure 3.7: 4 or 5 points in a cross are unsettled and depend on who plays next.
The vital points for these groups are marked with z.

Figure 3.8: The bulky five and flower six are unsettled and depend on who plays
next. The vital points for these groups are marked with z.

17

CHAPTER 3. GO TACTICS

Figure 3.9: An example of a ko fight. The ko is shown on the left, and the
player that wins the ko will be able to kill an additional 4 stones. On the right

there is an unconditionally alive white group that contains a possible ko threat
for black.

3.5 Ko tactics

Kos are situations where both players can capture a stone back and forth, but
because this could lead to an endless loop, the ko rule forces the players to play
elsewhere in between. Ko captures by themselves are only worth one point, but
important kos can often be worth much more indirectly, typically by deciding
whether an entire group lives or dies. An example of this is shown in figure 3.9,
where the black group will die unless it can capture the marked white stone.

If white gets to keep the white stone and also play at a, the black group will
die, while if black can capture the marked stone by playing at x and then also
play at b, the white group will be captured instead.

Assuming that white captured a black stone at a with the marked white
stone, the ko fight has started and black cannot immediately recapture by play-
ing at z. First, he has to play somewhere else on the board, someplace where
white will want to respond instead of capturing the group by playing a. Because
of this, the move has to pose a significant threat if it is left unanswered, which
is why such moves are called ko threats.

An example of a good ko threat is to play inside a straight 4-point eyespace
of an otherwise surrounded group, as shown on the right hand side of the figure.
After white plays the marked stone in the ko fight, black answers by playing
© as a ko threat. The group is alive and cannot be captured as long as white
answers correctly, and both players know this. However, white has to answer
this ko threat immediately, otherwise black can play another stone inside the
eyespace afterwards, and this would kill the group. To avoid losing the group,
white answers at (2), but now black can play at z in the ko fight and then white
is the one who has to find a new ko threat or lose the ko fight.

3.6 Double-purpose moves
Another very effective type of move is a double-purpose move, a move that is
useful in two different ways at once. For example, this can be attacking two

groups at once, attacking a group while at the same time strengthening your
own group, or setting up a ladder-breaker that also threatens to capture a group.

3.7 Go playing skill

For a human Go player, it is important to both have a decent understanding
of the high-level strategic objectives and the skill and experience to find good

18

CHAPTER 3. GO TACTICS

moves in a local tactical situation. It is natural to assume that a computer player
would also benefit from having this level of knowledge and understanding. This
means that our computer Go playing program preferably should have some way
to determine strategically important moves, and also a method to find good
tactical moves for local situations.

19

CHAPTER 3. GO TACTICS

20

Chapter 4

Game theory and analysis

A lot of research has gone into games and how they can be played, and this
also includes the game of Go. In this chapter we will examine some theories
regarding the analysis of Go positions, and also comparisons between Go and
other similar board games.

These theoretical considerations can be useful to determine how various parts
of the game should be addressed by our Go playing program. They can also
provide guidelines for how difficult it will be to find methods for reasoning about
these various parts of the game, and estimates for how well these approaches
can be expected to perform.

4.1 Game characteristics

The number of possible board positions and the number of possible games of Go
are numbers beyond normal human understanding, and also significantly larger
than for most other similar board games. A comparison with other popular
games is shown in figure 4.1[1, 16].

The number of game positions is an estimate of the number of legal states
the game can be in, while the number of game sequences (the number of leaf
nodes in the game tree) is an estimate of the total number of ways the game can
be played. These measures are related, but they are not directly proportional
because the branching factor (the number of legal moves at each position) also
greatly affects the size of the game tree.

’ Game \ Game positions \ Game sequences ‘

Tic-tac-toe 10° 10°

Connect Four | 10 10%0
Checkers 1020 1030
Othello 1030 1000
Chess 10°0 10120
Shogi 1070 10230
Arimaa 1083 10300
GO 10170 10360

Table 4.1: Complexity of some common games.

21

CHAPTER 4. GAME THEORY AND ANALYSIS

O
el

O

/N
O O

3

Figure 4.1: An example of a game tree.

o

Shogi is a Japanese variant of chess where previously captured pieces can be
placed anywhere on the board instead of making a normal move. This increases
the number of possible positions and games, but still allows for many of the
same types of strategies and tactics as normal chess. Creating computer shogi
players is not expected to require any fundamentally different artificial intelli-
gence methods from those used to play chess, but instead mostly continuations
of existing methods using increased computational power.

Arimaal[7] is a recent game that was created to be easy to learn for human
players but difficult to solve using AI methods. It has a very large number of
possible moves at each position, and a correspondingly large number of possible
game sequences. Human Arimaa players are currently much better than com-
puters, even though there have been some attempts to produce good computer
players. However, the game is only about 6 years old and both humans and
computers are still getting significantly better and discovering new strategies.

The other games listed in the table are more common and assumed to be well
known. Tic-tac-toe, Connect Four and checkers have already been solved, which
allows a computer player to play them optimally. Computer Othello players are
vastly better than any human players, and computer chess players are better
than even top human professionals, but not flawless.

There is an obvious correlation between the game tree complexity and com-
puter player achievements, but this is not caused by the game tree alone. In
Go the reason for the comparatively good human results are to a large degree
attributed to the human ability to form complex abstractions and our very
strong pattern recognition skills. For some other games that have very large
game trees, computer players are still vastly better than humans because in
these games there are no such discernable patterns that aid humans in very
effectively dealing with only extremely narrow parts of the game tree the way
they can for Go.

Figure 4.1 shows an illustrative example of a small game tree. The marked

22

CHAPTER 4. GAME THEORY AND ANALYSIS

nodes show one possible path through the game tree, where each node represents
one board position and each arrow represents a move. The example shown has
a maximum of 4 children for the root node and consists of 5 node levels. A full
game tree for Go would have an average of about 100 children for every node,
and about 200 levels of such nodes. Exhaustively searching through even 10 of
these levels is impossible using modern computer systems, and the number of
nodes grows exponentially at every level.

4.1.1 Computational complexity analysis

Finding the optimal move in Go is known to be a very hard problem. Some
results from the field of computational complexity theory have analysed parts of
Go to determine just how difficult they really are. These consider a generalized
version of Go played on an N x N board, and find bounds for exactly how much
more difficult the tasks become as N grows.

Complexity classes

Problems in complexity class P[17, 18] are commonly regarded as problems that
are tractable, or efficiently solvable on a computer. Formally, the complexity
class P consists of those decision problems that can theoretically be solved in
polynomial time by a deterministic Turing machine.

Using big O notation, these are problems where a solution to a problem of
size N can be found in time O(p(N)) where p(N) is a polynomial function of
N, such as p(N) = N3. This means that the solution to any such problem can
be solved by one algorithm that will always be able to find the solution in less
than a constant multiple of N* steps, where the constant multiplier is mostly
used to allow for different “base step sizes” and is rarely considered important
for the analysis.

A well-known example of this is sorting, where general comparison-based
sort is known to be O(N X logN), and many algorithms are known that fall
within this category. (For comparison-based sorting this is also known to be a
tight bound, i.e. the minimal bound is Q(N x logN). This notation means that
it is impossible to find the solution in less than a constant multiple of N x logN
steps.)

Another important complexity class is NP, which are decision problems that
can be solved in polynomial time by a non-deterministic Turing machine. This
is an imaginary machine that can have multiple possible actions for any given
state, and the machine can always “magically” pick the most beneficial one.
Another more intuitive explanation is that the solutions to problems in NP can
be verified quickly, but finding these solutions might be very difficult.

All problems in P can also be solved by these non-deterministic machines,
which means that all problems in P are also in NP. However, it is believed
that there are many problems in NP that are not in P, and are thus considered
more difficult. (It is not actually known if this is true, and whether P = NP
remains an important open question[19]. An affirmative answer would have large
ramifications for many parts of computer science, for instance the most common
forms of contemporary computer cryptography would be rendered ineffective.)

This leads to some additional definitions of how hard a problem is, where e.g.
an NP-hard problem is at least as hard as any problem in NP. This means that if

23

CHAPTER 4. GAME THEORY AND ANALYSIS

you have an efficient method of solving the NP-hard problem, any problem in NP
could be converted to input for this problem in polynomial time, which would
essentially mean that the same solution could be used to solve all problems in
NP as well.

If a problem is both in NP and NP-hard, it is said to be an NP-complete
problem. Such problems exist for other complexity classes as well, and can be
considered the most difficult problems within each class. If these problems are
solved, they would allow all other problems in the same complexity class to be
solved as well.

PSPACE consists of problems that can be solved using an amount of memory
that is polynomial in the size of the input, regardless of the number of steps
this takes. These problems are even harder, and PSPACE is at least as big as
NP (although it is not known if NP is a true subset or whether they’re actually
identical sets of problems).

EXPTIME is the set of problems that can be solved by a deterministic
Turing machine in exponential time, i.e. O(2P(Y)), where p(N) is a polynomial
function of N. Since the number of separate states in a system is exponential
in the amount of memory, e.g. 2%V for IV bits of memory, these problems are at
least as hard as those in PSPACE, since they could simply examine all possible
states (again, whether this means strictly harder is not known, and even NP
and EXPTIME could actually be the same).

Complexity of Go

Determining the result of ladders in Go is known to be in PSPACE[20], and it
is also at least as hard as any other problems in PSPACE, making it PSPACE-
complete. Go endgames have been shown to be PSPACE-hard[21], at least as
hard as any problems in PSPACE, although they may possibly be even harder.
The game of Go itself is known to be EXPTIME-complete[22] (using Japanese
ko rules).

However, these results in themselves do not mean that it must be pro-
hibitively difficult to create a Go player, since many other games are also
EXPTIME-complete when properly generalized, such as chess and even ver-
sions of tic-tac-toe known as m,n k-games.

What it does indicate is that creating an algorithm that will always produce
the correct result is very unlikely, even for smaller and often relatively simple
parts of the game such as ladders and the last plays in the endgame. This is
an important result, since it means that our program cannot be expected to
be able to handle all situations correctly. Instead our program should focus on
finding solutions that work reasonably well most of the time, especially for those
situations that are most likely to occur in real games.

Another result is that playing a game on a 19 x 19-sized board can be
expected to be much more difficult than on a 9 x 9-sized board, which matches
the experience of computer Go programmers. This suggests that the same type
of algorithms that work on a small board do not necessarily translate to a larger
board, which also corresponds to how humans play.

Human players approach a 19 x 19 board game with a larger emphasis on
the opening and early middle game, while a 9 X 9 board game is understood to
be a more tactical situation, where the skills normally used in the late middle
game and endgame are used almost exclusively.

24

CHAPTER 4. GAME THEORY AND ANALYSIS

4.2 Board position analysis

Many different parts of the game have been separately analysed in detail, with
methods that give provably correct results although only for their specific subset
of game situations. Some of the methods used could be useful for creating a
general computer player, and some concepts and insights developed in these
specialized analyses may be useful in a broader context.

4.2.1 Combinatorial game theory

Combinatorial game theory (CGT)[23] deals with two-player games consisting of
various positions where the players can perform moves, and the current position
and possible moves are known to both players. The goal is to find the optimum
move, which is usually difficult unless the games are rather simple.

A well-known and important example is Nim[24], a game consisting of stacks
of various sizes, and the players alternately pick a stack and take as many objects
as they wish from that one stack. The same moves are available to both players,
and the only difference between them is which player is the next to move in
each position. These Nim games can be solved, and in fact the Sprague-Grundy
theorem[25] states that every such two-player game where the same moves are
available to both players is equivalent to a mimber, which describes a specific
Nim position.

The situation becomes vastly more complex in partisan games, where some
moves in a given position are available to one player and not the other. Most
well-known board games are partisan games, e.g. in Go only the first player can
play black stones, while the second player plays the white stones.

Combinatorial game theory is not directly applicable to Go games, but most
endgame Go positions can be transformed to chilled Go[15] positions, and these
chilled positions can be solved using CGT. The correct solution to chilled Go
positions will normally also apply to the original Go position, except in some
cases involving ko and seki. Chilled Go is played according to normal Go rules,
except that each play costs 1 extra point as a special tax. This form of chilled
Go is not particularly interesting to play in itself, but is only considered because
it allows for the mathematical analysis of otherwise cumbersome positions.

This theory can sometimes find optimal solutions to the very last part of
the game, and even sometimes point out moves by professional players that
caused them to lose the game. Using the developed theory, combinatorial game
theorists can create Go endgame positions that are quite difficult but could have
reasonably resulted from normal play and do not appear overly constructed.
However, in these positions the theory can be used to defeat even professional Go
players regardless of which side the professional chooses to play. (Typically the
player’s scores in these positions are very close, and the positions are constructed
in such a manner that there are many possibilities for suboptimal plays that will
lose the game.)

Interesting as this may be, it is not directly useful for creating a general
computer player, since it can only be solved for a very limited number of possible
situations and not positions that occur earlier in the game. It could be useful
for creating an automated solver for endgames, but this is unlikely to result in
more than a couple of points difference compared to normal non-optimal play

25

CHAPTER 4. GAME THEORY AND ANALYSIS

and as such is not nearly enough to allow computer players to approach human
level playing skill.

Game temperature and move urgency

One important contribution from combinatorial game theory is the concept of
game temperature. Playing a “hot” move is much more urgent than a “cold®
move, and this classification is based not only on the expected gain, but on what
possibilities the opponent would have if you do not play them. This corresponds
to concepts that are already known in traditional Go theory but more loosely
defined. The most important such Go concepts are known as sente and gote
plays.

A sente play is one that the opponent has to answer rather directly, which
means that the player will retain the initiative and get to choose which area to
play in once more. Being the first to play sente moves in all interesting areas
of the board would be a very significant advantage, and a better understanding
of sente and gote plays is often essential to reduce a weaker player’s initial
advantage in handicap games.

The opposite term is gote, which simply means a move that does not have to
be answered. Playing gote moves is not always bad, since gote moves are often
required to make sure that a group lives, or to kill one of the opponent’s groups.
However, weaker players typically play smaller gote moves too soon, and a gote
move worth only a couple of points should almost always be postponed until
the endgame. Some more complicated concepts such as reverse sente also exist,
which is a gote move that prevents an opponent from getting a sente move in the
area. This is usually much better than a normal gote move, and worth playing
earlier in the game.

In CGT these concepts are analysed more rigorously and at a very exact level,
where the different areas are considered as separate surreal numbers which can
be analysed individually and later combined. The temperature then corresponds
to the size of the most important such play, and naturally the players should
attempt to play moves that are worth as close to this amount as possible. The
temperature is said to noticeably drop when moving from the opening to the
middle game, and from the middle game to the endgame, and it is often very
advantageous to get the last move before such a large temperature drop. This
is natural since the last move was worth a large number of points, and after a
decrease in temperature most future moves will be worth much less, so such a
play will give the player one more big move than the opponent.

4.3 Group life

An algorithm known as Benson’s algorithm[13] can be used to determine which
groups are pass-alive, i.e. groups that cannot be captured even if the opponent
is allowed to play an infinite number of moves in a row. It is a static algorithm
that finds such groups without any form of search or experimental play, but the
fact that it only finds groups that are pass-alive drastically reduces its usefulness
during normal play.

A group that is pass-alive is obviously also alive in the traditional sense, but
a computer player needs to also know the status of groups that are not played

26

CHAPTER 4. GAME THEORY AND ANALYSIS

to this level of completion. Typically only groups with small eyespaces will be
pass-alive, and they still often do not become pass-alive until the latter part of
the endgame.

A proficient Go player has to determine whether the group may be likely
to die much earlier, so that the dying group can be connected to other groups
for life or sacrificed in a more meaningful manner that provides some benefit.
There are no known very good methods for doing this analysis in a computer
program, but counting and evaluating the eyespaces is a reasonable approach
that sometimes works sufficiently well.

4.4 Score estimation

Estimating what the score will be at the end of the game from a given board
position can be very difficult in Go. Amateur human players typically only
have a very rough idea of what the score will be, sometimes only on the level of
whether the game is hopeless and at a point where they should resign or not.
Instead of playing based on the expected outcome from each possible move,
various areas of the board are thought of as being important or big, and this
is used to guide the player in finding an appropriate move. The specific move
within this selected area is then picked based on tactical skill and experience.

Computer Go players are instead often based on at least some form of search,
where the different possibilities have to be evaluated in a manner that can be
expressed in a computer program. Because of this, estimating the score for each
resulting position is a common approach — a good estimate would in return yield
good moves. However, it is very difficult to calculate the expected score from
a position, because of the many tactical considerations that appear in an area
before the game is over.

Computer score estimates are often reasonably good in the opening game,
where the stones can be considered somewhat independent without drastically
reducing the accuracy of the score estimate. Using different methods, computers
can also often give good estimates during the very last parts of the endgame,
when the board has been partitioned into clearly separated areas and stones are
only affected by very close neighbours.

However, none of these methods actually have a real understanding of how
the stones affect each other, which makes them poor at estimating the score
during the middle game. To estimate the score during the middle game, a
human player analyzes the different areas of the board tactically and is able to
also estimate how the various stones will affect each other much later in the
game.

Contemporary computer players do not have this level of understanding,
and often give worse estimates for tactical position than even weaker amateur
players they could beat in an even game.

27

CHAPTER 4. GAME THEORY AND ANALYSIS

28

Chapter 5

Computer Go

Since very strong computer players have been developed for many other board
games, there has also been significant interest in developing computer programs
that play Go. Many such programs have been developed, and the playing
strength achieved by state-of-the-art programs gradually increases.

However, at this time even the best programs are still playing at an amateur
level, and are easily defeated by professional players. When developing Go
programs many difficulties have been encountered that are not as significant
in other board games. These mostly involve a larger emphasis on strategic
considerations and the fact that Go board positions allow for a vast number of
possible continuations.

The earliest programs typically contained some rules and considered each
stone to spread some influence to the nearby area. GNU Go is a program
that primarily utilizes a more advanced and expanded form of this approach
with many generalized rules patterns. It is currently one of the best computer
programs available, and is often used as a basis for contrasting and evaluating
other programs.

More recently an approach based on Monte Carlo simulations has been in-
troduced, which is based on using a very large number of computations and
evaluations and finding good moves based on analyzing these evaluations sta-
tistically. This approach has become popular and achieved good results within
the computer Go community, particularly for smaller board sizes where this
approach has even led to significantly better results than any other currently
known methods.

5.1 Rule-based systems

The oldest kind of computer Go-playing programs[1] contained various rules,
where the program has been explicitly told to perform in certain ways based on
the board position. An example of this could be “If there is a bulky five shape
on the board, play on the vital point. Otherwise check the other rules.” This
rule is rather simplistic - while playing at the vital point is often a very good
move, it might be possible to connect the group to another eye in response to
this play, or even some other plays that are worth more, such as a game-deciding
ko fight.

29

CHAPTER 5. COMPUTER GO

Another example of a more advanced rule is to always play in the position
that will provide the biggest increase to the player’s influence over the board.
This sort of rule is unusual for traditional rule-based systems, but quite common
for even the early Go programs since the other rules typically only covered a
limited number of situations, while the program should be able to play even in
positions that weren’t covered.

Another very difficult problem is one that is common to many such rule-
based systems, which is ensuring that the rules remain consistent and actually
perform as intended. In a Go-playing program there would typically be hundreds
of rules, and keeping these rule sets functional and properly ordered can be
a significant challenge. To somewhat reduce this problem, the rules can be
generalized and sorted into groups and subsystems, which is fairly effective if
the groups of rules can be separated in such a way that the different groups do
not affect each other and can be analyzed separately.

Stone patterns and generalized stone patterns where some of the intersections
are ignored are often used to implement such rules[l]. The benefits of this
approach are that the patterns can often be relatively easily checked against
the current board position, and that they are mostly easy to read for human
experts when designing the system.

However, such programs are normally only as good as they are explicitly
told to be. Other mechanisms are needed to allow these systems to learn from
experience, such as reordering or weighting rules according to how well they’ve
performed in played games. The trade-off for this possible increase in play-
ing performance is that these reorderings or rule weights may no longer be as
intuitive or even understandable to the human experts.

5.1.1 Joseki sequences

An important use for these pre-established rules is in the early opening game,
where even human professional players know a large number of possible opening
move sequences in the corners called joseki sequences. The moves in these joseki
sequences are considered the best moves in these situations, and in general any
deviation from them will produce a worse result. Human professionals know
many such sequences, but they understand them at a deeper level and can
adapt the moves when the specific board situation demands it, which happens
on a relatively frequent basis. Another very important skill professionals possess
is knowing which of the sequences to follow in each situation, since there are
typically several that start from the same initial stone position.

For a computer player, getting this deeper understanding of the moves does
not seem to be feasible at this time, since a solid understanding of Go is required
to be able to study these sequences. Because of this, extended study of such
sequences is only recommended for stronger amateur human players, which are
players that devote a significant amount of time to the game and can beat the
best contemporary Go programs today. Weaker human amateurs typically know
a couple of sequences, but not the meaning behind each play or how to react if
the opponent plays something else.

A computer player can easily replicate the plays from the general joseki se-
quences, and at least against weaker amateur players this may be enough to
achieve a decent opening strategy. Because of this, some very useful joseki
sequences are likely to be beneficial as part of a program’s Go knowledge. How-

30

CHAPTER 5. COMPUTER GO

ever, the value of adding a larger set of joseki sequences is likely to be limited
by the lack of ability to apply them properly in the way stronger human players
can.

5.1.2 GNU Go

One of the best knowledge-based computer Go programs is GNU Go|2], an open
source project that is developed by volunteers all over the world. It uses large
amounts of expert knowledge encoded into the program for various purposes
and at several different levels of abstraction.

The program begins by separating the stones into worms, which are also often
called strings and consist of contiguous 4-connected groups of stones (which
will always share the same life and death status). Afterwards these worms may
be combined into dragons, which are not expressly connected but will still be
considered as a whole by the program. This is useful because live groups can be
made more efficiently by not having all the stones directly connected, since fully
connecting them would naturally require more moves. The program assumes
that these dragons are connected and will also live or die together, just like the
stones in a worm.

Afterwards, GNU Go uses several special-purpose move generators to ob-
tain a list of possible next moves, which include moves to play specifically in
the opening game (based on a fuseki database), to capture/defend a worm,
kill/defend a dragon, or break into the opponent’s territory. It can also perform
pattern-based moves that try to enable a future attack or defense, or make good
shape if specific recognized patterns of stones are on the board. It also includes
special endgame moves that are only considered after there are no more other
interesting moves to be made.

Then these possible moves are evaluated, which is primarily based on the
difference they make to the players’ expected territories, but also including
some estimates of strategic importance and good shape. This separate step is
performed to discover when a move that was suggested by one generator can also
be beneficial for another purpose, and as mentioned earlier such double-purpose
moves are worth significantly more than moves that only do one thing.

Another benefit is that this separate evaluation allows for some kinds of
tuning, such as how to value influence compared to territory, or playing safer
moves when ahead and more risky moves when behind.

5.2 Neural networks

There have also been many attempts[l, 11, 26, 10] to use neural networks for
playing Go, with the hope that playing skill and understanding would emerge
naturally. Most of these experiments have ended in failure, but when used in
a larger framework to analyse specific subsets of the game, these methods have
been shown to be viable and helpful.

Neural networks have been successfully trained to evaluate parts of Go, such
as shape and the potential for territory in an area. Some success has also been
achieved in segmenting the board into different parts that can then be analyzed.
Since these areas are often not clearly defined, strictly separated or independent,

31

CHAPTER 5. COMPUTER GO

it is possible that a neural network approach might be better for this problem
than many other techniques.

The resulting plays from neural network programs also often seem more
natural and human-like than other computer playing programs, which can be
considered an advantage for some purposes.

Unfortunately the use of neural networks for playing Go does not seem to be
as extensively examined as other approaches, perhaps because the most basic
intuitive method of using the entire board as input produces discouragingly bad
results.

Other forms of subsymbolic, evolutionary or biologically inspired approaches
have not received significant attention for implementing Go programs. This is
probably because neural networks can more easily be adapted to use board
positions as input, and are generally more popular for creating game-playing
programs.

5.3 Monte Carlo Go

Monte Carlo[27] methods are a class of algorithms for solving tough computa-
tional problems. They are based on probabilistic processes and have bounded
execution times by only performing a certain number of computations, but be-
cause only some possibilities are tried they do not necessarily produce an optimal
solution.

Monte Carlo methods are typically used when the dependencies between
multiple variables are known, but the problem is too difficult or costly to solve
analytically or using other methods. An example of this is primality testing, that
is determining whether a certain number is prime. It is possible to determine
this with 100% certainty in polynomial time, but using probabilistic methods is
the most popular way because they can detect composite numbers with a very
high probability much faster than any known deterministic algorithm.

In Computer Go, Monte Carlo methods are used to find a good result, but
without guaranteeing that the opponent has no clever moves which would lead
to a poor result for the computer player. Such Monte Carlo Go methods[28, 3]
have become very popular recently, mostly because of the very good results
achieved using an algorithm known as UCT to guide the probabilistic search.

These methods are based on performing the same very simple procedures
thousands or millions of times, which aligns well with the brute computing power
of modern machines. The aggregate of the results from these many experiments
are then used to eventually decide where to play.

These procedures are naturally too simplistic to directly capture the strate-
gical and tactical depth in Go. Instead the approach relies on analysing very
many games to detect important moves and tactics indirectly as part of the
normal experimentation, without the computer having a true understanding of
their meaning and purpose.

For Go, the success of these approaches strongly correspond to how much
of the game tree they explore, and because of this the best results have been
obtained for the smaller 9 x 9 board size. For the exponentially larger game
tree associated with full 19 x 19 boards, this partial exploration has not been
as successful in discerning important plays, since the number of possibilities is
of a completely different order of magnitude.

32

CHAPTER 5. COMPUTER GO

5.3.1 UCT algorithm

The Upper Confidence Bounds applied to Trees (UCT)[29] algorithm provides
a way to choose between exploiting previous good results and exploring other
possibilities that provide uncertain results, as in the classic multi-armed bandit
problem. UCT also support selecting between such nodes when they are part
of a tree, and for computer Go it is used to determine which node to further
examine in the planned future game tree.

The choice between examining known good nodes and uncertain nodes that

2Int
s

could potentially be better is represented by using a bias ¢, = , where
t is the total number of node evaluations performed, and s is the number of
times the specific node has been evaluated. The node with the highest sum
of expected reward and bias is selected as the next node to examine. Because
of the Int term, even bad nodes are guaranteed to be revisited eventually, and
given unlimited time the algorithm will always converge to the best result.

The original paper also includes a stronger convergence proof that relies on
using biases multiplied by some problem-specific constants C),. Assuming that
all these problem-specific constants are known, it guarantees that the failure
probability at the root node converges to zero at a polynomial rate for all evalu-
ations after the first Ny evaluations. However, this result is mostly of theoretical
interest since finding the C, constants is not feasible for Go game trees and Ny
might be very large and never even reachable by the computer player.

When used in practice for computer Go[30], the algorithm simply performs
as many evaluations as possible under the game’s time restrictions, without
any guarantees about failure rates. Existing implementations typically perform
these node evaluations by playing the game from the node position to the end
of the game using randomized moves, and determine a score of 0 or 1 based
on whether the computer player lost or won at the end of this hypothetical
continuation.

An illustration of how the UCT algorithm works is shown in figure 5.1. Every
simulation begins at the root node, and the UCT values for exploring each of its
child nodes are calculated. Then the algorithm moves to the child nodes with
the highest calculated UCT value, and the process is repeated for this node’s
children.

In this way the algorithm moves through the game tree until it reaches a leaf
node. At that point the game will be quickly simulated using a much simpler
random play method until end position is reached, and the score for this end
position is calculated. The value of the leaf node will be updated according
to whether or not the computer player won the game using this hypothetical
continuation of the game.

5.3.2 Efficient game simulation

The most important aspect of these approaches is that they rely on a very large
number of game simulations, and because of this the system should be able to
perform the individual simulations as quickly as possible. The strength of the
approach depends on the number of simulations, and the number of simulations
possible in a game playing situation naturally depends on the time it takes to
perform each individual simulation.

33

CHAPTER 5. COMPUTER GO

0 / \
o) O O
T @ /N
8 ® O O 0
D9 5 & ¢
e & &b o
& b o
¢ o ¢ ¢
¢ ¢ o ¢
O D
O O

Figure 5.1: An illustrative example of a small UCT node tree explored using
Monte Carlo methods. Every node in the graph has been further explored
using a random playing algorithm (shown using rows of smaller circles) until a
final end position has been reached. This includes the initial evaluations of the
internal nodes before they were expanded, but for clarity it is only shown for
the current leaf nodes in this figure. The actual UCT node trees used to play
Go are naturally much larger.

34

CHAPTER 5. COMPUTER GO

This leads to a trade-off between the quality of the simulations and the time
it takes to ensure this quality. Having each simulation consist of purely random
play is one possibility, and often the starting point for most methods[3]. The
next step is to add some understanding to the moves such that the games bear
a closer resemblance to how real Go games are played. In practice some extra
knowledge about Go has been shown to improve results, but the amount should
be surprisingly limited. Two reasons for this are the aforementioned reliance on
quick simulations, and the fact that often the best move will not be considered
when using these more advanced methods.

This is natural, since otherwise the methods themselves could just be used to
play the game directly. Random moves on the other hand will always consider
all possible legal moves, and with a large enough number of simulations the
beginning of much better sequences may be encountered even in this random
manner. The problem is that the number of simulations required to get the
same confidence in the results grows exponentially in the number of steps in
the sequence. This means that there is another trade-off between the number
of moves explored at each step, and the maximum length of sequences that can
be covered.

The way these trade-offs should be handled has not been fully determined,
but as mentioned the use of some limited form of Go knowledge when playing
simulations has produced the best results.

5.4 Playing strength

The three outlined approaches, heavily knowledge-based, neural network and
Monte Carlo simulations, are all quite different. Monte Carlo simulations have
a greater emphasis on building and searching the game tree extensively, although
all methods consider different possible future move sequences to some degree.

Surprisingly, the methodologies tend to produce program of somewhat sim-
ilar strengths, which is around that of a mediocre amateur human player. All
the approaches also have some characteristic quirks and weaknesses, and even
weaker human players can typically beat the programs after playing a number
of games against them and learning to take advantage of these weakness.

Knowledge-based programs were the first attempts at computer Go players,
and neural network approaches appeared as a bit of a contrast to the more tradi-
tional approach. The development of strong Monte Carlo programs is relatively
recent, and unlike the other approaches, Monte Carlo programs have also been
proven to be rather strong at the smaller 9 x 9 board, at a level where they
can often beat quite strong amateur players and even provide a challenge for
professional players.

35

CHAPTER 5. COMPUTER GO

36

Chapter 6

CBR and games

Case-based reasoning (CBR) is a powerful problem solving approach based on
reusing previous experience. Since the main focus for improving the Go player
developed in this thesis will be through reusing previous experience, previous
case-based approaches to game playing may provide valuable insights.

This chapter will examine some existing frameworks for developing and using
case-based methods, and also examine previous attempts to use CBR as part of
game Al

6.1 jCOLIBRI

jCOLIBRI[31] is a domain independent Java framework for CBR development.
It allows the usage of generic problem-solving methods that can be applied to
many different tasks and domains through common ontology-based knowledge
representations. Because of this JCOLIBRI can be useful for comparing and
contrasting knowledge-intensive CBR approaches.

In our project, we will examine and experiment with different ways to gener-
ate and reuse experience. Using existing implementations for existing problem-
solving methods would not be suitable for this kind of work

Generalizing the developed method to handle other problems would be an
interesting further development which could benefit from using jCOLIBRI, but
the current project is narrowly focused on developing a method that only has to
work for playing Go. However, any such future development would be unlikely
to benefit from reusing the specific prototype implementation of the program
developed in this project.

6.2 TIELT

TIELT[32] is a software tool for integrating AI systems with gaming simulators.
Compared to jJCOLIBRI, TIELT provides an abstraction of the games played
instead of focusing on assisting the internal reasoning processes in the Al system.
Much of the work done on TIELT concerns real-time strategy games and military
combat, which typically deal with imperfect information and randomness. Our
AT will be focused entirely on Go, and is not intended to work in other games

37

CHAPTER 6. CBR AND GAMES

or scenarios. Because of this we will not develop a TIELT interface for our Go
playing program.

6.3 Planning tactical operations

Other projects have also attempted to use case-based reasoning as a part of
game-playing agents, sometimes using TIELT to provide the game mechanics.
These approaches are normally based on having various low-level operations
that can be performed in real-time tactical combat systems, and reuse plans for
ordering sequences of such operations.

The most prominent examples of this are programs that play game types
based on Civilization[33] and Warcraft[34], two popular computer games that
have been used to evaluate AI approaches since they are non-trivial and it is
not easy to beat human players.

In these games the significant improvement achieved by using CBR has often
been that such plans of operations are retrieved and reused to directly react to
the opponent’s behavior, while many other methodologies have only worked
(but often extremely well) against static opponents that do not adapt or change
strategies during play.

6.4 Creating game stories

Another use of case-based reasoning in the game domain has been as part of
plot generation[35]. A problem with many computer games is that the most
interesting parts of the games contain specific plots that were created explicitly
by the human game designers. This means that although the game can be very
entertaining, these plot elements will always remain the same, which means that
replaying the game a second time will typically not be as enjoyable.

An approach to address this is to use case-based reasoning to generate such
plots automatically from a case base of possible plot elements. Although such
automatically produced plots can often be of a lower quality and a bit bland,
the prospect of doing this automatically is nevertheless appealing.

6.5 Using CBR for Go games

For this project, a large number of professional game records are available for
reuse, but the game records only contain the move sequences and no information
about their purpose or how the moves are related to each other, neither tacti-
cally nor strategically. This information is considered to simply be unavailable,
since automatically reconstructing these relations would require a deep under-
standing that in itself would be sufficient to play the game better than any
current computer programs. An alternative approach would be to have human
experts annotate the games, but doing so for a significant number of games is
not feasible as part of this project.

Because this information is not available, the tactical plan-based reuse em-
ployed in real-time games is not directly applicable, and some other method will
have to be used. A similar approach to the one used for game story creation
could be applied to Go to make the computer program behave in different ways

38

CHAPTER 6. CBR AND GAMES

each game. This could be useful, especially to let human players enjoy play-
ing against the computer without having it do exactly the same blunders every
time, but it does not directly make the computer player stronger.

Because of this the approach used in this project will be slightly different. It
will focus on being able to quickly reuse game positions, where the reuse process
and the game positions do not rely on deep analysis or use of Go-specific theory.
Instead the process will be used to quickly find moves that may be good, and
rely on the other parts in the system to actually verify whether they produce
good results in the given game position.

This approach allows all the available game records to be reused directly
without a human expert to analyze and transform them. It should also hopefully
work well with the Monte Carlo UCT approach to playing Go, which is also
based on quickly performing a large number of possibly inaccurate evaluations.

39

CHAPTER 6. CBR AND GAMES

40

Chapter 7

Using cases

Human players can be said to use experience in at least two different ways.
One is by generalizing these experiences into abstract concepts that are then
remembered and used to understanding future situations. When these concepts
are reused, they may also be modified based on how applicable they were, or if
something unexpected happened.

Another way experience is used is in the case of unexpected events. These
events are typically remembered explicitly, and humans may be reminded of the
particular previous incident if something similar is about to happen. Normally
only the most important and characteristic parts of such incidents are remem-
bered, which indicates that some method of abstraction is applied even in such
cases.

When trying to reuse experience for computers, similar approaches have been
used. The results of these attempts show that generalizing and abstracting seem
to be very difficult concepts to implement in a sufficiently advanced manner.
Because of this, there have been many attempts to let the computer somehow
abstract the information on its own, with the human programmer only designing
and knowing the general approach and not exactly how the abstractions are
formed or represented.

Another approach is to exploit the vast storage available in computers, and
not generalize anything until it is necessary. This typically means to wait until
something should be analyzed, and then only looking at the experiences that
are most relevant for the specific problem at hand. It is hoped that this type
of delayed learning will allow for more accurate analysis, or just that simpler
methods may be sufficient to solve a specific complex task if a similar solution
already exists.

This latter approach will be employed in this master’s thesis, and the experi-
ence to be reused will be complete game records of previous professional games.
When the computer program is playing, these will be consulted to see if any of
the professional players’ moves can be adapted to the current situation.

7.1 Previous games

The program will attempt to reuse game records of previous games that only
contain the order in which the moves were played on the board, with no sort

41

CHAPTER 7. USING CASES

of deeper semantic understanding or explanations. This means that the game
record itself cannot be used to directly determine exactly what is important
on the board at any given time. We will not attempt to infer exactly what
the original purpose behind each move was, but instead use the professional
player’s moves as guidelines to find which parts and areas of the board are the
most interesting to evaluate.

This restriction is natural, since there is currently no form of syntax or
terminology that accurately describe the concepts these professional players
apply when deciding on moves. As has been noted before, much of the advanced
Go theory is formulated through proverbs and inexact statements that do not
always apply, and they should instead be processed and understood as vague
guidelines.

Amateur players are typically not able to understand the reasoning behind
the moves found in professional games, because the amateur player does not
know how to locate and evaluate the most important aspects of the situations
that occur in such games. By having a better sense of which moves and tactics
will become interesting in a situation, a strong player will often be able to look
ahead a dozen moves further than an amateur, which corresponds to evaluating
a completely different order of magnitude of possible game sequences.

Instead amateur players are suggested to simply look quickly through such
advanced games, to get a “feel” for how moves are placed in succession instead
of focusing too much on analyzing exactly how the move affects the local tactical
situation.

This has been recreated with some success in computer programs[36, 37,
by using statistical approaches based on tens of thousands of professional and
strong amateur player games to build up fairly accurate move predictions. Some
of the best programs can even predict the exact move a professional player will
play about 1/6th of the time, which is rather impressive compared to programs
that attempt to actually play.

When these techniques are used to actually generate moves to play in a
game, this is typically much less successful. Normally many of the moves will
be very good, but then a few of them will be disastrous and negate most of the
advantage of all the professional-level moves preceding it, due to the computer
program simply having no idea how the stones actually work together.

However, in Monte Carlo-based approaches similar concepts have been used
to produce more plausible game sequences when combined with some local tac-
tical patterns. Although each game is still fairly poorly played, combining thou-
sands or millions of such games as is typically done has been shown to provide
better results than random play[3].

7.2 Reusing strategic plans

In our approach, the previous games will instead be used to attempt to locate the
most important parts to play on the board. As noted above, this is optimistic
since even fairly strong amateur human players do not really understand the
move sequences in professional games. However, it may provide better results
than approaches based on random play.

There are two main differences between this approach and the other Monte
Carlo methods outlined above. One is that we will attempt to use the previous

42

CHAPTER 7. USING CASES

game experience only at the game tree exploration level, and still use random
play to determine the result of each game. The other is that the games will be
stored explicitly and only a handful of the most similar board positions will be
used to analyze each position.

This is in contrast to the statistical approaches, which use all the hundreds of
thousands of games to build up probability tables that are then always applied
in the same way without any means to differentiate between original games
that matched the current game better. In our approach, we will attempt to find
moves specifically for the current game, instead of finding moves that may be
good in general.

7.2.1 Matching similar board positions

The first important challenge is determining which of the previous games are
similar enough to the current game that the moves may be adapted for reuse.
Since the goal is to find the general strategic direction the game should move in,
this comparison will be based more on the strength and influence players have
in areas than on the local tactical situation.

To accomplish this, an influence map is created for each board position,
which contains the estimated areas of the board each player is in control of.
This is similar to the approaches normally used for score estimation, where
each stone spreads a certain amount of influence to the surrounding area.

In our approach, this influence is spread as a flow that cannot move through
stones, whereas the most common approach is to simply base the influence on the
distance from a stone without considering the surrounding area. When manually
inspecting the influence maps generated, this flow-based influence spreading
seemed to provide more accurate results. An example influence map generated
by this algorithm is shown in figure 7.1.

The similarity between different board position is then calculated by count-
ing how many intersections on the board has the same player controlling them
in the generated influence maps. This provides fairly good results, at least for
the first opening moves.

7.2.2 Evaluating and adapting the previous plan

Another problem is determining how to generate a new move based on the
current board position and the professional player’s move in the matched game.
We take a simplistic approach, where the areas of the board that are in nearly
the same position as the professional player’s move are given priority over other
moves. This is done by exploring these moves first when evaluating possible
moves, and providing a small bonus to the estimated score for these moves.

43

CHAPTER 7. USING CASES

;
19

*
I 11111*‘*&#
...0. +4 O....
0000 eeeeees i ‘I’+‘+‘+‘
0.0.00.0 0.0.00
VOSUIGHR +++4++++ ARSI

Influence map generated for the shown position

Figure 7.1: Influence map for a sample board position. The original board
position is shown at the top, and the corresponding influence map is shown

below.

44

CHAPTER 7. USING CASES

7.3 Finding vital tactical moves

Another interesting use for previous game records is in reusing local tactical
moves. If a local tactical situation is the same as in the previous game, the
moves from the previous game may be reused in the current situation. If it is
a perfect match the moves can simply be reused directly, while otherwise they
may be used as guidelines for which types of moves are most promising.

7.3.1 Matching fighting situations

The benefit of only matching local tactical situations is that they are much
smaller, and thus more likely to exactly match something that has been played
before. Unfortunately these local situations are never completely independent of
the rest of the board, most directly through the number of ko threats available,
which often decides the outcome of a fight.

In our approach, only the common eyespace shapes outlined in chapter 3
will be used for tactical matching. Reusing the professional game case base
would be preferable, but this would require a method for discovering when
fights occur in these games. This can be very difficult since professional-level
players rarely enter a fight unless they are likely to win, and instead indirectly
threaten to create such local situations that would give them an advantage
unless the opponent responds. Because of this, even strong amateur players
may have trouble determining when a group of stones is actually threatened,
which means that it is unlikely to be easy for a computer program.

7.3.2 Comparing status of affected groups

An important aspect for the validity of the local tactical matching is the life
or death status of the connected groups. Determining this status can often be
very difficult, so our approach will ignore this aspect and always consider the
eye-stealing moves interesting.

This means that the tactical moves will always be considered as possible
next moves during move generation, and explored further than they normally
would, but they will only actually be played if they lead to an increased chance
of winning. The problem of actually determining how and when to reuse the
moves is also addressed by only considering it for situations where the move can
be directly copied. This limits the possible benefit from this approach since it
will not always be applicable, but can be implemented rather easily in the cases
where it works.

7.4 Overall use of previous experience

The most significant reuse of previous experience in the proposed Go playing
system will be through biasing the moves in the opening game towards where
professional players have played in similar situations. The system will not at-
tempt to understand the underlying intention behind playing in these areas, but
it is believed that playing better will nevertheless be an advantage compared to
only using the UCT algorithm and random play.

Another proposed use of previous experience is through specific tactical sit-
uation cases created by a human expert where the most interesting positions

45

CHAPTER 7. USING CASES

have been marked. These interesting positions can then be focused on for the
further game tree exploration, which should allow them to be explored sooner
and deeper than during normal search. Since for this use the tactical moves
will be reused almost directly with no adaptation, this approach is somewhat
similar to the use of generalized patterns in other computer Go approaches.

46

Chapter 8

System Construction

In this chapter we present the overall design for our Go playing system, and
give some details about how the various components interact to generate moves
from a given positions.

The initial prototype implementation is also presented, with a description of
how some of the most important parts of the system work.

8.1 Main system components
Our proposed Go playing system consists of four main components:

e Game representation
e Score estimation
e UCT game tree exploration

e Case-based reuse of previous games

All of these components will be included in various degrees as part of our
prototype implementation in order to get a working computer Go playing pro-
gram. The first three main parts are based on how other contemporary Go
playing programs are constructed. The last part will be an example implemen-
tation of the main idea presented in this thesis, which is to use explicitly stored
previous game records to influence game play.

A diagram of our system is shown in figure 8.1. GoGame stores all informa-
tion about the games, including most importantly the current board position.
The CaseBase component is used to retrieve the stored game that is most
similar to the board position for the current game, based on the minimum dif-
ference in estimated board influence. The UCT component performs the UCT
game tree exploration, based on random play score estimations performed by
the ScoreEstimator. This score estimate also includes a bonus for moves that
are close to the professional player move in the game record retrieved from the
CaseBase.

The system works by first retrieving the most similar previous game from
the case base. This is used to find the location of the professional player’s move
for a position that is similar to the current board situation, which means that

47

CHAPTER 8. SYSTEM CONSTRUCTION

CaseBase

+ retrieve_game(current_game : GoGame) : GoGame

GoGame ucr

+get_move(game : GoGame)

ScoreEstimator

+ estimate_score(game : GoGame) : int

Figure 8.1: Diagram for the proposed Go playing system.

the same area of the board is likely to be interesting for the current game as
well.

Afterwards the possible legal moves in the current situation are analyzed by
the UCT game tree component. When reaching a leaf node during UCT evalu-
ations, the system will play the rest of the game randomly using the ScoreEsti-
mator component, and given an extra bonus if it is close to the move retrieved
from the professional game. After performing a large number of such UCT game
tree explorations followed by random play, the built up UCT tree will be used
to find the move with the highest winning rate, and this move is returned by
the system as the next move to play.

8.2 Game representation

In our program, a game is represented as a sequence of full board positions.
Support has been added for reading game records in the Smart Game Format
(SGF)[38], which is commonly used to store Go games. The SGF file format
itself only contains the sequence of moves the players performed, and the exact
results have to be calculated by the computer program reading them. Our
program reads a sequence of moves from an SGF file, and returns a sequence of
the resulting board positions, with the Go rules applied to remove stones that
have been captured.

8.2.1 Board positions

Two different approaches for storing the individual board positions were imple-
mented and compared. The first was a very simple approach, where each board
simply contained an array of N x N intersections to store the information (either
empty, black stone or white stone).

The code for evaluating possible moves then had to implement all the game
logic, such as identifying groups and determining whether they would get cap-
tured. Additionally, to implement the ko rule, Zobrist[39] hashes of all the
previous board sequences in a game were stored to make sure a board position
was not repeated. Zobrist hashing is a fast, reasonably collision resistant hash-

48

CHAPTER 8. SYSTEM CONSTRUCTION

ing method commonly used for chess and Go positions. Another benefit is that
the hashes can be very quickly incrementally updated.

The other approach also included all the intersection data and Zobrist hashes,
but in addition it explicitly stored information about what groups were on the
board and where their liberties were. This allowed the algorithms for evalu-
ating moves and estimating score to be much simpler and quicker to execute.
However, the trade-off was that some additional computation (but simpler than
that normally performed during evaluation) has to be done every time a new
move is played on the board.

8.3 UCT

Due to the recent success of UCT-based Go playing programs|[1, 40|, the under-
lying game playing approach for this thesis is also based on UCT. The thesis
includes a new UCT implementation created specifically for this thesis, to be
able to easily modify parts of the algorithm for experimentation. Fully im-
plementing the algorithm also allowed for a better understanding of how the
algorithm works and which parts of it are suitable for such modifications.

Node scores

When using UCT one of the most important decisions is which formula to use
for scoring individual nodes in the tree, since this directly affects the order in
which the nodes are explored. For Go playing programs using UCT, each node
evaluation normally results in a value of 0 or 1, depending on whether the game
was won or not.

The most common scoring algorithm for Go programs[30] is

UCTvalue =

wins \/ln(pa,rent.plays) (8.1)

plays 5 X plays

where plays is the number of times the node has been evaluated, wins is the
number of times this has resulted in winning, parent.plays is the number of
times the parent node in the game tree has been played and in() is the natural
logarithm function.

This algorithm is also used in this thesis, although some modifications have
been experimentally tested, such as also including the margin of victory in the
individual evaluations instead of just whether it was a win or not. The scoring
algorithm does not know that the win rate cannot be below 0 or above 1, and
therefore will explore other options in an attempt to find win rates above 1 even
if it has found a move that seems to never lose.

Some experiments using different expressions that avoid this problem have
also been performed, but visual inspection of the resulting trees built using these
alternative score equations have not resulted in any significant differences. Since
the estimated win rate using random play tends to be around 0.3 - 0.8 after many
simulations have been performed, this is not particularly surprising. Although
these alternatives were equally viable and did not decrease performance, the
more common UCT scoring algorithm for Go listed above will be used to allow
for easier comparison with other work.

49

CHAPTER 8. SYSTEM CONSTRUCTION

However, as was previously mentioned, a small bonus was also added on top
of the UCT score when evaluating early opening moves that are placed close to
a professional player’s move in the most similar previous game. This encourages
the program to explore these moves more deeply. When the program decides on
a move this bonus is also included in the final node evaluation, which biases the
program towards playing these moves unless they are clearly inferior to other
moves the program has tested.

8.4 Result estimation

The UCT algorithm works very well in practice, and will explore the tree ac-
cording to how good the results are for different branches in the game tree.
However, this exploration is based on being able to estimate the score at any
given node, and this is a difficult problem.

8.4.1 Score estimation

One very simple approach is to use normal score estimation techniques at each
leaf node, such as our approach based on influence maps. The problem with
this is that these score estimators typically have biases and there are many tac-
tical situations they do not correctly classify. In particular, our score estimator
performs no specific tactical analysis, which means that it rarely determines
the correct status for tactical life and death problems. If the move generation
is directly guided by such estimators the computer player will also have these
problems, resulting in a poor playing performance.

Another aspect of score estimators is that they are normally deterministic
and will always produce the same result for a given board position. For use
with UCT tree exploration algorithm, it is normally better to use a leaf node
evaluation function that will return a stochastic result based on the remaining
uncertainty in the position, since the algorithm handles this very well and by
repeated application it can produce a score distribution which is more expressive
than one single score result.

8.4.2 Random play

Another very popular approach, and the basis for the recent success and pop-
ularity of UCT-based algorithms, is to use a Monte Carlo-inspired approach
and estimating the score by randomly playing the game to the end and evalu-
ating this end result[28]. The individual results will be close to random, but if
they are biased towards winning for good initial positions, the UCT exploration
approach will be able to relatively quickly identify the most successful moves.

When sufficiently many games (at least tens of thousands) are played, this
approach also works in practice. Random play does not always work as well
in highly tactical situations, but as long as enough trials are performed it will
normally find many good game sequences simply by chance.

Two random play approaches were implemented for this thesis work. One
is based on playing the game one stone at a time until the end, using mostly
random play but influenced by some guidelines and patterns to achieve some-
what natural-looking play. Using some guidelines and pattern in this way has

50

CHAPTER 8. SYSTEM CONSTRUCTION

been successfully implemented by other UCT-based program authors[3], and
our version also performed better than a purely random version without these
features enabled.

The other approach is based on using an even quicker but less accurate
method to play the rest of the game. All the remaining empty intersections
on the board are filled in randomly with black and white stones, without con-
sidering any game rules. Then all the smaller groups on the board consisting
of 3 stones or less are removed, and the resulting position is then used for the
evaluation after removing dead groups that do not have two eyes. This method
is significantly faster and actually also produces ending board positions that
look somewhat similar to real game results.

8.4.3 Group status evaluation

Evaluating the status of a group can be very difficult, particularly in the case
of nearby groups that both threaten each other and where neither of them will
be alive without killing the other group.

In our approach the only place where this group status evaluation is abso-
lutely needed is for the final part of the random fill algorithm for board score
estimation. Since this approach is based on performing a comparatively larger
number of trials with less accuracy, it also means that the group status evalua-
tion does not necessarily have to be accurate, as long as it is fast.

With this in mind, a simple group status evaluation approach was created,
which is simply based on the number and size of the eyespaces bordering each
group. A group that encloses two eyespaces (or one eyespace that is larger than
5 spaces) is assumed to be alive, and a group that is only connected to one
eyespace and the opponent’s groups is considered dead.

If eyespaces are shared between groups of both players and neither of the
groups are independently alive or dead according to this procedure, they are
assumed to both be alive in seki.

This approach produces relatively good results for the kind of positions that
result from the random fill procedure, even though it is not nearly general
enough to work correctly for all endgame positions, and it does not work at all
for evaluating group status in the middle of the game.

8.4.4 Local tactical play

Similarly, the functionality for determining decent tactical play in an area also
has to be relatively quick, which means that it cannot be too advanced and
certainly not always correct (which in itself is known to be too difficult due to
the possible complexities that can theoretically occur, as previously mentioned.)

To accommodate this, the tactical play evaluation consist of a number of
separate tactical evaluators that are then used to determine a move.

The first of these is based on capturing, where the program will capture or
defend groups if necessary, where bigger groups are given priority.

Another evaluator uses the local playing patterns employed for tactical play
in MoGol[3] (a strong Monte Carlo-based Go program), which was shown to
produce significantly better results than random play in their experiments.

Thirdly the program will attempt to play in relatively free parts of the board
around the 3rd or 4th line, which based on our personal playing experience are

51

CHAPTER 8. SYSTEM CONSTRUCTION

4 |
s34 53
+4-303 44 34
130T 234 Q1231
3200123 10®123
432To34 d32To3d
Fasasat 4284t

Figure 8.2: Distance from each intersection to the marked black stone. A com-
mon metric-based approach is shown on the left, while our flow-based approach
is shown on the right. The benefit of our algorithm is that the influence is lim-
ited by nearby stones, which corresponds better to how influence is evaluated
by human players.

often valuable positions.
Otherwise, if there are no moves that fulfill any of these requirements, the
program will simply choose and play a random legal move.

8.5 CBR approach

The main idea behind our CBR-based approach is the reuse of previous games
as explained in section 7.2. An important part of this approach is our influence
map algorithm, since this algorithm forms the basis for assessing the similarity
between various board positions.

An illustrative example of how this flow-based algorithm works in practice
is shown in figure 8.2. On the left a more common distance-based method is
shown!, while our flow-based approach is shown on the right.

In each case the numbers represent the distance each intersection is away
from the marked black stone. The influence a stone exerts on an intersection is
inverserly proportional to the distance to this intersection. For our algorithm,
intersections that are more than 5 steps away are not counted as being influenced
by a stone.

(Our final algorithm is similar to the one shown in the example, but it actu-
ally sends out multiple such streams of flows simultaneously in each direction.
This further enhances the ability of nearby stones to block or reduce the amount
of influence that can be exerted around them, but is based on the same concept
as shown in the illustration.)

Before games are added to our case base, they are processed using this algo-
rithm to spread influence from every stone on the board. This is used to generate
the influence map based on the sum of influence exerted on each intersection
by the black and white stones. If the sum of black influence for an intersection
is signficantly higher than the sum of white influence, this intersection will be
marked as belonging to black in the influence map. A similar process is used for
white influence, and the intersection is marked as empty if the sums of white
and black influence are nearly equal (and in particular when both sums are 0
because there are no stones nearby).

1In this case using Manhattan distance, which emphasis the 4-connectedness requirement
for stone groups. Euclidean distance is also often used as an alternative distance metric.

52

CHAPTER 8. SYSTEM CONSTRUCTION

Each case in our case base contains the corresponding influence map as an
index which is used when finding the most similar board position in the case
base. When the current board position should be used to retrieve one of the
previous games from the case base, an influence map is first generated for the
current board position as well. This influence map is then compared to the
influence maps for all the previous board positions stored in the case game.

Fach individual influence map comparison is performed by counting the
number of intersections that has the same classification in both influence map.
This means that for each intersection there are only two possibilities, either
they are exact matches or they are not. No additional penalties are applied for
intersections that belong to black in one influence map and white in the other.

During retrieval, the case base will return the game position with the in-
fluence map that is most similar to the current board position’s influence map
when scored in this way.

8.6 Implementation

The code created as part of the thesis work consists of prototype implemen-
tations of the main system components outlined above. Some of the planned
features were first tested in Python to make sure they were feasible, while the
final system was programmed in C++ because of the demand for very quick
execution of the most frequently repeated code in the system. Using the UCT
algorithm, the resulting skill of the computer player is directly affected by how
many operations the program can perform and how deep the searches can ex-
plore the game tree.

A class diagram illustrating the implementation at a high level is shown in
figure 8.3. The code contains many other utility functions and low level details
that are not included for brevity, but they implement the same functionality as
shown in the abstracted class diagram.

The GoBoard class contains an array describing the board position itself,
and whether each intersection has a black stone, a white stone or is empty.
Additionally it keeps track of the current player to move, the current score
based on komi and captures and it maintains the Zobrist hash code for the
current board position.

The GoBoard class also contains some of the most important methods in
the entire system. First among these is the play() function, which adds a stone
to the specific position for the current player, and updates the board position
according to the Go rules. Another important method is evaluate_move(),
which performs a tactical evaluation of a proposed move and determines how
big or important the move is, as described in section 8.4.4. The final important
method in the GoBoard class is estimate_score(), which quickly plays the game
until the end using random moves and returns the resulting score at the end of
this hypothetical continuation.

The UCT and UCT _node classes respectively implement the game tree
exploration algorithm and the representation of nodes in the game tree. The
per form_simulation() method will explore the game tree until it reaches a
leaf node and then call estimate_score() to obtain an evaluation of the board
position at the leaf node. The get_best_move() method will return the move with
the highest chance of success (biased by proximity to the professional player’s

53

CHAPTER 8. SYSTEM CONSTRUCTION

GoBoard
- hash_code : int UcT
- current_player :int L e
- + perform_simulation()
- board_position : array " .
- komi : float +get_hest_move() : position

- capture_score : int

+ play(move : position)
+ evaluate_move(move : position)

+ estimate_score() : float

UCT_node
Userinterface InfluenceMa -
GoProgram 2 - plays :int
+ show_board(board : GoBoard) — +get_influence_code(board : GoBoard) wins :int
+get_player_move() : position +rung) + store_board(board : GoBoard)
SGF

+load_sgf_file(filename : string)

Player

+get_move(board : GoBoard) : position

HumanPlayer ComputerPlayer

Figure 8.3: Class diagram illustrating the major parts of the prototype imple-
mentation.

54

CHAPTER 8. SYSTEM CONSTRUCTION

move) and is called by the ComputerPlayer class after all the simulations that
will be performed for the current move have been completed.

The InfluenceMap class contains the case base of professional game records
and the functionality for retrieving these based on the influence map of the
current board position.

The Player class is an abstract base class that allow computer and hu-
man players to be used interchangeably by the control system, which allows for
changing who controls the black and white player, and the possibility of letting
the computer play against itself.

The UserInterface class provides a simple textual user interface that dis-
plays the current board position and allows the player to input moves by spec-
ifying the desired coordinates, which is used by the HumanPlayer class to let
the human operator control one of the players.

The GoProgram class is the main entry point for our program and is used
to set up game conditions and initiate instances of the other classes. It also uses
the SGF class to load the files containing professional game records and add
them to InfluenceMap.

8.6.1 Previous game representation

Before board positions are stored in the InfluenceMap class, the influence map
method described in 7.2.1 is used to determine an influence code representing
the board position. Each stored game position consists of such an influence
code that is used during retrieval to find the most similar case, and the position
played by the professional player which is reused to provide a bias during move
generation.

To retrieve a previous game from the case base, the influence code describing
the current position is compared to the influence codes for all the previously
stored game board positions, and the position corresponding to the most similar
influence code is returned. The way these influence codes are compared is by
examining each intersection and determining whether it is equal to the current
board or different. The previous game position that has the same classification
for the highest number of board intersections is used as the closest match.

Figure 8.4 shows an example of a previous game record as stored by the
InfluenceMap class. The code element contains the influence map encoded
as a sequence of bits using three bits per intersection. Exactly one of these three
bits will be set, representing whether the intersection is empty, controlled by
black or controlled by white.

By using this bit-based representation, the similarity comparisons can be
performed very quickly. When two influence codes are being compared, first
a bitwise AND operations is performed, and then the matching score can be
found by counting the number of bits that are set in the result.

The position element contains the position that was played by the profes-
sional player in this situation, while player contains which player’s turn it was
at this point. (This is encoded as 1 for black and 2 for white.) During case re-
trieval, only cases where it’s the same player’s turn will be considered. Finally
the filename element contains the name of the SGF file this board position was
taken from. This is only used for informational and debugging purposes.

%)

CHAPTER 8. SYSTEM CONSTRUCTION

code

0100010100100100100100101000010100100100100011001001000011000101
0001001001001001010000101001001001000110010010010010010010010001
0010010100100100010010010010100100100100100100100100100100010001
1001001000100100100101001001001001001001001001001001001001001001
0001001001001010010010010010010010010010010010010010010010000101
0010100100100100100100100100100100100100100100100100100001001010
0010101000011000010100100100100100011001001000010010100100100100
1001001001001001001001001001000110000100101001001001001001001001
0010010010010010010010010001001001001010010010010010010010010010
0100100100100100010010010010010010011001001001001000010100100100
1001000100100100100100110010010010010010010001001001001001010000
1001100001001100100100100100100100100010010010010010010100100100
1001001001000100100100100100100100100100100101001001001001001001
0010001001001001001001001001001001001010010010010010010010010001
0010010010010010010010010010010100100100100100100100100010010010
0100100100100100100100011001001001001001001001000010100100100100
10001010010010001100100100100100100100100001010010010010001

position

R18

player

1

filename

games/sgf/Honinbo.Shusaku-Ota.Yuzo-1853-05-15.sgf

Figure 8.4: Schematic for an example board position case from a professional
game. The code element is used to index these cases for retrieval purposes,
while the position and player are reused to generate to new moves using our

approach.

56

Chapter 9

Results

In this chapter the results from the developed prototype are presented. It in-
cludes a demonstration of how the program is used to generate new moves, and
the results from improving the system by reusing previous game records.

After the results from some experiments that led to further improvements
of our initial implementation, these improvements and of our final prototype
implementation are also presented with some additional explanations and com-
ments.

We evaluate the games played by the prototype implementation according to
our amateur understanding of Go, and our impressions of what types of moves
strong and weak human players normally tend to play.

9.1 Implemented system

The prototype implementation provides a stable and functional computer Go
player that can play reasonably well on a 9 x 9 board and provide a challenge
to weaker amateur players. An example screen shot from a 9 x 9 game played
against the implemented prototype is shown in figure 9.1.

However, for the larger 19 x 19 board, the implementation does not find
good moves quickly enough to be a worthy opponent. In the very beginning of
the opening game the implementation can find good moves relatively quickly
by relying on the CBR-based reuse of previous professional games, but this is
only feasible for approximately the first 20 moves. To play a real game, at least
about 150 moves have to be performed, and often significantly more to finish
the endgame.

9.1.1 Reuse of tactical situations

The planned case base also included descriptions of local tactical situations
created by human experts, which could be reused directly if they were matched.
However, this is not included in the implemented system.

The reason for using tactical cases in our system was to locate vital points
to kill groups with single eyespaces. However, our implementation of the basic
UCT algorithm turned out to already be capable of finding these simple vital
points and many others simply through exploring the game tree.

o7

CHAPTER 9. RESULTS

Fle Edit View Terminal Tabs Help
Al: 0.666667 (6 / 9) uct[1.81695]
A5: B.666667 (6 / 9) uct[1.81695]
F2: 0.502618 (96 / 191) uct[©.600823]
A2: ©.909091 (1@ / 11) uct[1.21811]
A3: 0.333333 (1 / 3) uct[0.733158]
H7: ©.833333 (5 / 6) uct[1.25175]
E2: 0.8 (8 / 10) uct[1.12411]
D4: 0.5 (87 / 174) uct[0.6082891]
D2: ©.48951 (70 / 143) uct[0.603008]
E8: 0.485714 (68 / 148) uct[0.600421]
D6: ©.48062 (62 / 129) uct[08.600117]
Computer considers best move D5 worth 0.665331

lastplay: D5
{board} (move 9)
X to play (2a45e339)
A B CDETFGH]

-

9 . . 9
8 . . 8
7. + 0 + X 7
6 . 0 . X . 6
5. + (0) + X + 5
4 . .0 X 4
3. + 3
2. . 2
1 1

A B CDEFGH

Enter move:

Fle Edit View Terminal Tabs Help

C7: ©.662921 (177 / 267) uct[0.745982]

D6: ©.661765 (180 / 272) uct[0.744859]

F1l: ©.661654 (176 / 266) uct[©.744871]
Computer considers best move D8 worth ©.723174

lastplay: D8
{board} (move 17)
X to play (2bal3543)
A B CDEF
. (0)
+ 0

=}

0

SN WAL O - DO
+
S ooo+ xOx-
=+ X .
R
A WED O -0 W

Cox o

A B CDETFGH]
Enter move: 8
playing f 8

lastplay: F8
{board} (move 18)
0 to play (415b4a3c)
A B CDETFGH]
Xy .
X X

0
0

o+ -

0 X

+ o+

X
X

HNWEUO N X0
+

- D00+ XOX-

HNWAUD DO

A B CDEFGH]

eval: @ ©.85 8.1 0.15

Figure 9.1: Screenshots showing the prototype implementation playing a 9 x 9
board game. The first screenshot shows the position in the game after move 9,
and the second screenshot shows moves 17 and 18 from later in the same game.
Our implementation plays as white in these screenshots, marked as O, while a
human player plays the black stones, marked with X.

58

CHAPTER 9. RESULTS

Implementing the reuse of tactical cases might allow such moves to be found
more quickly, which could possibly be beneficial for the large 19 x 19 board
where our system is relatively slow. However, the isolated situations where this
would be beneficial seem unlikely to result in a noticeable increase in general
playing speed, and were thus left out of the prototype implementation.

9.2 Board representations

The two implemented board representations could both fully represent the cur-
rent board position, but differed substantially in how computationally expensive
it was to perform various computations using them. The first board representa-
tion that only contained the individual stone positions could usually be updated
very quickly, but occasionally required expensive computations to find larger
groups of stones and determining captures.

The second board representation contained a list of all the stone groups cur-
rently on the board and their liberties, which allowed for simpler algorithms
when using the board state to determine tactical moves and also when per-
forming captures. This representation is better suited for performing complex
calculations on the board positions, but adds a small amount of overhead after
every play to update the internal data structures.

In practice, the differences between these two board representations seemed
to cancel each other out and did not result in any significant differences in
playing speed. As expected, the first board representation was faster for purely
random play, where a large number of moves were generated but with fewer
computations at each step. When using the improved random player which
incorporated some tactical considerations and simple playing patterns there
were no substantial differences in total execution time between the two board
representations. (An example of this is that one experiment using the first
board representation and 10,000 simulations to generate the first move took 2.4
minutes, while using the second board representation this took 2.5 minutes.)

The second board representation was kept as the main board representation
for further experiments, since it encapsulated some of the complex consequences
of the Go rules without incurring a significant performance penalty. This allowed
for simpler implementations of the other classes, which meant that it was easier
to perform additional experiments without introducing programming errors.

9.3 UCT implementation

The UCT implementation developed as part of the system performs well and
efficiently focuses on searching the most promising parts of the game tree. It is
a basic implementation of UCT and does not include some of the optimizations
that more advanced Monte Carlo programs include, which means that it can
require more simulations than these programs to find good moves. However,
our implementation is sufficiently efficient to perform the planned modifications
and experiments and plays reasonably well on a small board.

An example of the UCT node tree after performing 10,000 simulations at
the beginning of a new game on a 9 X 9 board is shown on the next page,
as displayed by our prototype implementation. Each line corresponds to one

59

CHAPTER 9. RESULTS

node in the game tree, consisting of the move considered, the win ratio for the
considered move and the UCT value associated with further exploring this node.

D5: 0.5 (261 / 522) uct[0.559404]
E5: 0.8 (12 / 15) uct[1.08885]

A2: 0.5 (2 / 4) uct[0.867971]

Al: 0.666667 (2 / 3) uct[0.970673]
Al: 0.333333 (1 / 3) uct[0.758229]
A3: 0 (0 / 1) uct[0.735942]

C7: 0.733333 (22 / 30) uct[0.937583]

B8: 1 (2 / 2) uct[1.5832]

Al: 0 (0 / 1) uct[0.37233]

A8: 0.5 (2 / 4) uct[0.912383]

Al: 0.333333 (1 / 3) uct[0.809512]
F6: 0.730769 (19 / 26) uct[0.950168]
D9: 0.666667 (10 / 15) uct[0.955519]
F4: 0.666667 (10 / 15) uct[0.955519]

F6: 0.497967 (245 / 492) uct[0.559156]
G5: 0.73913 (17 / 23) uct[0.971294]

B5: 1 (1 / 1) uct[1.7919]

A6: 0.6 (3 / 5) uct[0.954147]

Al: 0.333333 (1 / 3) uct[0.790535]
E5: 0.7 (14 / 20) uct[0.948967]

B4: 1 (1 / 1) uct[1.77405]

A5: 0.5 (2 / 4) uct[0.887023]

B3: 0.5 (2 / 4) uct[0.887023]

C7: 0.666667 (4 / 6) uct[1.12122]

F5: 0.666667 (10 / 15) uct[0.95415]
G7: 0.666667 (10 / 15) uct[0.95415]
E4: 0.493298 (184 / 373) uct[0.563572]

F7: 0.75 (12 / 16) uct[1.02207]

A9: 1 (1 / 1) uct[1.74466]

C5: 0.733333 (11 / 15) uct[1.01432]
E3: 0.714286 (10 / 14) uct[1.00514]
G3: 0.485294 (165 / 340) uct[0.5589]
E7: 0.48503 (162 / 334) uct[0.559294]
E8: 0.48503 (162 / 334) uct[0.559294]
F4: 0.48503 (162 / 334) uct[0.559294]

The first line D5: 0.5 (261 / 522) uct[0.559404] means that moving
at D5 next is considered to be the most valuable move, with a win rate of
50%. It has been explored 522 times, and this has resulted in 261 wins for the
computer player. The UCT value for exploring this node is also shown, which
in this particular case is around 0.56.

The next line (E5: 0.8 (12 / 15) uct[1.08885]) is indented, which in-
dicates that it is a child node of the line above. In this case it represents the
opponent playing E5 after the computer first played D5. This has been explored
15 times, which has resulted in an 80% win rate for the opponent, and it is thus
considered the most likely next move if the computer begins by playing D5.

The other lines are similar and combined they show the most interesting
subset of the game tree after it has been explored by UCT for 10,000 simulations.

60

CHAPTER 9. RESULTS

The most valuable next moves are considered to be, in order of preference, D5,
F6, E4, G3, E7, E8 and F4. Most of these suggested moves are reasonable, but
our amateur evaluation of them suggest that E8 is weaker than the others and
that it should not be used as an opening move.

The computer considers moves at E5, C7, F6, D9 and F4 to be the strongest
responses to a play at D5. Significantly fewer plays of these child nodes have
been performed, which means that there is a much higher uncertainty regarding
how strong these moves actually are. D9 is actually a very poor response and
has only resulted in a high percentage of wins by chance, but in our opinion the
other responses suggested by the computer are reasonable. At the third level
in the game tree the uncertainty surrounding these moves are even greater, and
many of these considered responses-to-responses are actually rather bad moves.

By performing a larger number of simulations, the computer program will
examine a larger part of the game tree and find more accurate estimates for
the considered moves. A smaller subset of a UCT game tree the implementa-
tion produced after performing 100,000 simulations is shown below. Using this
increased number of simulations, the program is better able to evaluate moves
properly and it produces a more reasonable list of strong moves. Correspond-
ingly the program will also play stronger moves using this increased number of
simulations (and play at around a medium amateur level), but for our imple-
mentation this takes around 20 minutes per move even on a 9 x 9 board.

E5: 0.55662 (9649 / 17335) uct[0.568145]
F4: 0.501109 (904 / 1804) uct[0.534004]
F5: 0.666667 (16 / 24) uct[0.916629]
E3: 0.591549 (42 / 71) uct[0.736878]

C3: 0.491262 (759 / 1545) uct[0.526808]

E8: 0.612903 (38 / 62) uct[0.766807]

F8: 0.612903 (38 / 62) uct[0.766807]

D5: 0.475034 (352 / 741) uct[0.52636]

E6: 0.471139 (302 / 641) uct[0.526324]
E4: 0.534617 (16602 / 31054) uct[0.543228]
E7: 0.518549 (2502 / 4825) uct[0.539255]
E3: 0.501403 (4288 / 8552) uct[0.516956]
E6: 0.532843 (10651 / 19989) uct[0.543576]

The evaluations for the first and second levels of the game tree are reasonable
when using 100,000 simulations, but at the third level the program should not
have considered E8 and F8 as good moves. However, this is still a significant
improvement from using 10,000 simulations, where at the third level moves such
as A1, A2 and A3 were considered, which would be very bad moves at that point
in the game.

9.4 Score estimator

The score estimator developed based on the influence map algorithm provides
reasonably accurate scores for many relatively difficult game positions. However,
it does not include any knowledge about tactical situations or life and death
evaluations, which means that it does not provide reasonable estimates if there
are any big dead groups on the board.

61

CHAPTER 9. RESULTS

Original board position Tactical player

O

Purely random player Filler algorithm

Figure 9.2: Random play continuations using the three implemented Monte-
Carlo based methods.

Attempting to use the score estimator to provide evaluations for the UCT
algorithm at the leaf nodes produced substantially worse results than using
random play. It was also many times faster, but altogether it cannot be recom-
mended as a viable alternative, particularly because it does not improve much
by increasing the number of simulations performed. This was expected, since
the UCT algorithm is designed to handle large numbers of stochastic estimates,
and does not perform as well when using deterministic leaf node evaluations
such as our score estimator.

9.5 Random play continuation

To evaluate the positions in the leaf nodes of the UCT game tree, three different
Monte Carlo-based methods were implemented as part of our prototype imple-
mentation. Figure 9.2 shows an example of the kind of resulting positions these
different methods generated.

Our first method was based on purely random play, where every legal move
was considered equally likely at every step. This is the most basic, unbiased
Monte Carlo-based approach, one that will never overlook any possible moves
since all moves are considered equally important. Because of this it also has a
large variance and it does not always lead to natural-looking final game posi-
tions.

As described in 8.4.4, a second method that extends the first purely ran-
dom playing method was also implemented. This second method was based on
the approaches that have successfully been used in other Monte Carlo-based
UCT programs. It tries to capture and defend nearly surrounded groups when

62

CHAPTER 9. RESULTS

possible, and also contains some patterns for creating natural-looking move con-
tinuations. This bias means that it will not consider every possible resulting
move sequence, but in return it will almost always provide more natural-looking
positions at the end of the game.

The third method was based on the observation that our Monte Carlo-based
methods were rather slow on the larger 19 x 19 board. This third method
randomly fills in all the remaining empty intersections of the board, and then
performs some basic life and death evaluations to make the end position look
more like the end of a real Go game. The third method was significantly faster
and provided good results in the early opening game for 19 x 19 boards, but
unfortunately it performed poorly in highly tactical situations. This is not
surprising though, since it does not contain the same tactical considerations
that were explicitly added for the second method. This third method also
has a large variance and can sometimes produce end positions that bear little
resemblance to the original position. However, this variance is handled well by
the UCT algorithm as long as a larger number of simulations performed. On
a 19 x 19 board this method is an order of magnitude faster than the previous
two methods, which allows many such extra simulations to be performed.

For our program the second method was used exclusively for 9 x 9 boards
because of the increased emphasis on tactical play for this board size. For the full
19 x 19 board the third method which produces faster estimates is used for the
first 40 moves. This allows the program to perform early opening moves much
more quickly, while the corresponding loss in tactical accuracy is less important
for this stage. After 40 moves the program will switch to the slower second
method also for the large board games, because the faster third method does
not work well in the middle game where tactical situations become increasingly
important.

9.6 Reusing previous games

Our reuse of previous games is based on a collection of 1339 professional games
in Smart Game Format (SGF) format. Some of these contained errors or un-
recognized commands, while 1323 of them contained at least 40 moves that
could be read by our SGF implementation. Examples of these errors were such
things as the same player playing twice in a row or on top of another stone.
Such illegal moves could have been used to indicate that the player resigned
(which is how some human players indicate resignation), but our implementa-
tion simply considers this an error. Our implementation also discarded games
that contained comments, since these were sometimes also used to indicate im-
portant information such as a player resigning. Since most of the games could
be read successfully and form a sufficiently large case base on their own, our
implementation simply ignores the games that contain such errors or unhandled
elements.

Only the first 40 moves of each game were used, since the opening game
is our main focus for strategically reusing previous games. The results from
testing our implementation indicate that this restricted focus was a wise choice,
because our approach is not particularly useful for finding good tactical moves.
Such tactical evaluations often become very important in the middle game, and
our CBR-based approach is thus not very useful for this part of the game.

63

CHAPTER 9. RESULTS

These games cover a large collection of good opening sequences, but after
about 20 moves the new games typically do not match any of the stored games
any more, because at this point there are simply too many possible minor vari-
ations between the current game position and the professional game record. To
address this problem our implementation only uses these game records to assist
in move generation for the first 20 moves.

Without using influence maps for the similarity comparison, only around
a maximum of 8 moves could be placed before the game would no longer be
expected to match any of the stored games. (If a non-standard opening has
been used, it probably has never been played before at all. Assuming that about
40 of the approximately 350 legal moves in the opening are viable alternatives,
there are on the order of 6 trillion possible opening sequences consisting of 8
moves.)

9.7 CBR-assisted opening play

Our approach of finding similar professional games to aid the program during
the opening game made a significant improvement to the very first moves played
during each game. The main advantage of our CBR-based approach is that it
allows the program to quickly focus on the most strategically interesting areas
of the board, even using relatively few simulations.

Figure 9.3 shows a screenshot of our implementation running on a 19 x 19
board, using our approach for reuse of previous games. By using the profes-
sional game records as guidance to bias the UCT exploration, our program is
able to generate moves in reasonable areas of the board, even though only 100
simulations per move are performed in this example.

With our CBR-based approach enabled, each UCT node also has an addi-
tional section containing the bonus generated from the most similar professional
game. An example of a line representing one node in this expanded UCT tree
is shown below.

P11: 0.85 (3 / 4) uct[1.22985] cbr[R14: 0.1 Jud-1982-4.sgf]

This format used for nodes in the expanded UCT tree is almost the same
as for our basic UCT implementation, but it contains an additional cbr ele-
ment that is used to guide the implementation towards certain moves based on
previous games.

In this example the previous game record that was most similar to the current
board position was found in Jud-1982-4.sgf, which is a record of a game played
between Cho Chikun and Otake Hideo in 1982 as part of the annual competition
for the Judan title. The professional player’s next move from the matched board
position was R14, while the UCT node shown is for a move at P11.

The move at P11 is considered to be somewhat close to R14, and thus gets
a 0.1 point bonus using our CBR approach. This means that the resulting node
score is 0.85, after having won 75% of the simulations and adding the CBR-
based bonus. (This is done using simple addition, where 0.75 + 0.1 gives the
resulting score of 0.85. This bonus is also added to the UCT value, where in
this case the original unbiased UCT value would have been 1.12985.)

64

CHAPTER 9. RESULTS

Fle Edit Wiew Terminal Tabs Help

D5: @.4 (0 / 2) uct[@8.401178] cbr[D5: 0.4 Hon-1995-3.sgf] E
K3: 1.4 (1 / 1) uct[1.37233] cbr[K3: 8.4 Hon-1995-3.sgf]

J3: 777 (unplayed) uct[1.37233] cbr[K3: 8.3 Hon-1995-3.sgf]
K2: 777 (unplayed) uct[1.37233] cbr[K3: ©.3 Hon-1995-3.sgf]
D4: 777 (unplayed) uct[®.767351] cbr[D5: 0.3 Hon-1995-3.sgf]
D6: 777 (unplayed) uct[®.767351] cbr[D5: 0.3 Hon-1995-3.sgf]
E5: 777 (unplayed) uct[®.767351] cbr[D5: 8.3 Hon-1995-3.sgf]
013: 9.85 (3 / 4) uct[1.22985] cbr[R14: 0.1 Jud-1982-4.sgf]

08: 1.3 (1 / 1) uct[1.52655] cbr[R8: 0.3 Jud-1982-4.sgf]

R8: 0.4 (0 / 2) uct[®.37233] cbr[R8: 8.4 Jud-1982-4.sgf]

R7: 777 (unplayed) uct[0.776554] cbr[R8: 0.3 Jud-1982-4.sgf]
P11: 9.85 (3 / 4) uct[1.22985] cbr[R14: 0.1 Jud-1982-4.sgf]
012: 8.766667 (2 / 3) uct[1.22875] cbr[R14: 8.1 Jud-1982-4.sgf]
015: 8.766667 (2 / 3) uct[1.22075] cbr[R14: 8.1 Jud-1982-4.sgf]
P13: 8.766667 (2 / 3) uct[1.22075] cbr[R14: 8.1 Jud-1982-4.sgf]
CBR bias position for root node[70258908]: R14
CBR-suggested move R14 is worth 8.6 (based on Jud-1982-4.sgf)
Computer considers best move N14 worth @.9
lastplay: N14

{board} (move 9)

X to play (3ad31868)
A B CDEFGHJI KLMNMNGOPOIQOQRST

19 19
‘.0 18
17 . . 17
16 . + + 0 + 16
) - T L]
e 0
13 . X P X 13
12 . 12
11 . . 11
10 + + + 10
9 . 9
7 . 7
6 . . 6
5 X . 5
4 + + 0 + 4
3 . . 3
2 X . 2 —
1 1

A B CDETFGHJIKILMMNIOPA QR RST

eval: @ 0.85 8.1 ©.15 0.2 0.25 0.3 0.35

Figure 9.3: Screenshot showing the prototype implementation playing on a 19 x
19 board using our CBR-based approach. In this example only 100 simulations
are performed for each move, but the implementation is still able to generate
moves in strategically valuable areas of the board.

65

CHAPTER 9. RESULTS

This extra bonus based on the most similar game ranges from up to 0.4 for
an exact match, to no bonus added at all for moves that are not in the general
vicinity of the professional player’s move.

A comparison of the opening game played with and without the use of this
CBR approach is shown in figure 9.4 and figure 9.5. In both cases the program
is playing against itself with 100 simulations per move. The game played using
CBR is a vast improvement over the one played using the unassisted approach,
which is unable to generate any good moves at all with only 100 simulations per
move.

The opening moves in the CBR-assisted game in figure 9.5 are generally
placed in strategically important areas. With only 100 simulations the program
is mostly unable to find good tactical positions for the moves within these areas,
but overall the opening game looks significantly better than without using the
CBR method.

66

CHAPTER 9. RESULTS

oo

Figure 9.4: The first opening moves in a game played using 100 simulations per
move, based only on the UCT algorithm and random play.

(@

o
2)

e

Figure 9.5: The first opening moves in a game played using 100 simulations for
each move, biased by our CBR-based approach for reusing previous games.

67

CHAPTER 9. RESULTS

Figure 9.6 shows an opening game using the unassisted UCT algorithm with
1,000 simulations per move instead, and figure 9.7 similarly shows an opening
game using our CBR approach and 1,000 simulations per move.

In this case the moves generated by our CBR-based approach are also signif-
icantly better than the unaided approach, and in fact the moves generated by
the CBR approach using 100 simulations is comparable to the unassisted UCT
exploration with 1,000 simulations per move.

68

CHAPTER 9. RESULTS

>
2)

R
8)

Figure 9.6: A game played using 1,000 simulations for each move, using the
basic UCT algorithm.

-0 15
0® @

6“

Figure 9.7: A game played using 1,000 simulations for each move, and our CBR-
based approach. The 6th move at Al is actually a very bad move, but by chance
the computer happened to win all 13 times simulations that started with Al at
that point in the game.

69

CHAPTER 9. RESULTS

=)
&/

oo

Figure 9.8: A game played between a computer player using the basic UCT al-
gorithm with 10,000 simulations for each move, and our CBR-directed approach
using 1,000 simulations per move. The CBR-assisted approach plays as white,
and has placed greater emphasis on the corner areas of the board.

Figure 9.8 shows a game where the black player uses the unassisted UCT
algorithm with 10,000 simulations per move while the white player uses the
CBR-assisted approach and 1,000 simulations per move. Even though it is
based on fewer simulations, the CBR approach is better able to focus on the
corners of the game, which are normally considered to be more valuable and are
also played first by human players.

9.7.1 Limitations of our method

One problem with our CBR approach is that it will only find strategically inter-
esting areas of the board to play in. It is not able to find strong tactical moves
within these areas by itself, and will have to rely on other methods for achiev-
ing this. Our basic prototype implementation of the Monte Carlo-based tactical
random player is too weak to properly address this issue for the full 19 x 19
board. Similarly, our approach does not recognize situations where there are
tactically important moves that need to be performed in the opening, which can
happen if the opponent is playing overly aggressive moves.

An example of this is shown in figure 9.9, where our program plays black
and the white player prematurely attacks the black corner. The program will
not recognize this as an important tactical situation, but will instead continue
to play other strategically interesting moves elsewhere on the board.

In itself this does not necessarily lead to a bad result for black, since the
moves on the other parts of the board are worth many points. However, it
would typically be better to respond to these white moves using local tactical
moves, rather than simply sacrificing the black stone.

70

CHAPTER 9. RESULTS

®

Figure 9.9: An example of an aggressive white player against our CBR approach
playing black. In this case the generated black moves are not bad moves, but it
would be preferable to instead respond tactically to the white moves.

Another weakness in our approach is that it will only find good moves in
situations that are similar to the professional games in the case base. In the
example game in figure 9.8, the black stone at @ places a very weak influence
on the upper right corner. This means that the white player could easily invade
this area, which would be worth a large number of points.

Because our CBR approach is only based on professional games it will not be
able to find this possibility. No professional player would play at @ or anywhere
similar, and because of this there are no games in our case base that suggest
that a good white response to such moves would be to invade the corner.

Our approach to reusing previous games is useful for quickly determining
which areas of the board are the most strategically interesting, but it will only
be able to do so if the opponent also plays good, strategic opening moves.

71

CHAPTER 9. RESULTS

72

Chapter 10

Discussion

This chapter contains an evaluation of our master’s thesis and a discussion re-
garding the initial thesis objectives and to what extent they have been fulfilled.
It also includes an overall evaluation of the results from our prototype imple-
mentation, and a discussion of the impact of reusing previous games to improve
the playing ability of our program.

10.1 Go theory

Many interesting aspects of Go theory have been examined in some detail. This
includes theory regarding how to play that is applicable for humans, and also
theories at an abstract mathematical level where the game aspects can be for-
mally analyzed and the game positions can be processed through automatic
methods.

The practically oriented theory and techniques employed by very strong
human amateur and professional players have not been explored as deeply, since
such material is difficult to apply in games even for strong amateur players. This
advanced theory is typically presented as guidelines and ideas, which does not
have clear boundaries that indicate where they can be applied or exactly how
they should influence moves.

This makes it very difficult to translate these strategies into computer code
that can be used as part of move generation, so only amateur-level theory that
has already been examined and structured in greater detail has been used during
the development of this (and most other) Go playing programs.

10.2 Computer Go approaches

Several different approaches to creating computer Go players have been exam-
ined and the most popular recent approach, Monte Carlo-based UCT game tree
exploration, has been reused for this project.

However, other approaches have also been shown to produce programs of
nearly the same playing strength, and are likely to also contain useful methods
and techniques for developing Go playing programs.

It is not clear how these different approaches can be combined in an efficient
manner, so our project only attempts to add reuse of experience to the chosen

73

CHAPTER 10. DISCUSSION

UCT approach. Combining our CBR-based move biasing with methods from
other computer Go playing approaches could be an interesting direction for
future work.

10.3 Experimental Go implementation

The prototype implementation of our Go playing computer system works and
the implementation contains no known major bugs. It can be used to play
games both with and without reusing previous game records to guide the move
generation.

The playing strength of this prototype implementation is not nearly as strong
as the best Monte-Carlo based Go programs. This is understandable since these
other programs have been developed and improved by teams of developers over
several years. However, this difference in playing strength means that the effects
of reusing previous game records in our system does not necessarily translate to
these stronger programs that already have other methods to handle the early
opening game.

On a 9 x 9 game board, our system plays acceptably well, but still at a
weak amateur level. For the full 19 x 19 board, our system can play reasonably
well and often very good moves during the opening game by using our CBR
approach. In the middle game it does not find good moves in a timely manner,
and the program can only play the rest of the game at a novice level.

10.3.1 Estimated Go program playing strength

A common system for describing Go player skill is the use of kyu grades, where
lower numbers are better and an absolute beginner start at around 25-30 kyu.
Differences in kyu grades approximately correspond to fair handicaps, and a
game between 13 kyu and 9 kyu players would be reasonably fair if the 13 kyu
player starts the game with 4 handicap stones (and a komi of 0.5, since komi
points are not used in handicap games).

For strong amateur players an additional set of dan grades exists, where 1
dan is stronger than a 1 kyu, and in this case a higher dan grade is better. The
best amateur players are 6 to 7 dan, and at these level they are comparable to
some professional players. (Professional players also use dan grades, but even
a professional 1 dan is at around a 6 to 7 amateur dan level and thus much
stronger than an amateur 1 dan.)

Our estimate of the prototype implementation’s playing skill would be that it
is around a 10 kyu player for 9 x 9 boards, where it uses only the UCT algorithm
and our version of a random player with some additional tactical considerations
as described earlier.

The first opening moves on a 19 x 19 board generated by our program are
around the level of a 6 to 8 kyu player, but this is only for strategic moves
and our implementation is not able to properly respond to early tactical fights
against very aggressive opponents.

For the opening game our program reuses previous game records to guide
the game tree exploration, and it also uses our faster third method for random
play which can only produce reasonable results for the opening game. The reuse
of previous game records is the most significant reason for this result, and using

74

CHAPTER 10. DISCUSSION

only this method combined with the tactical random player it may instead be
considered to play at around the level of a 7 to 11 kyu player.

During the middle game and endgame on a 19x 19 board, our implementation
only uses the UCT algorithm, which causes it to play at around a 15 to 20 kyu
level. Without our method for reusing previous games, this approach would also
be used for the opening game which would result in a similar novice playing level
(15 to 20 kyu) for the opening game.

GNU Go plays at around a 3 to 7 kyu level, while the best Monte Carlo-based
programs are currently playing at about a 1 to 4 kyu level on 19 x 19 boards, and
an impressive 5 dan amateur level on smaller 9 x 9 boards. Programs created
using other approaches such as neural networks generally play at about a 5 to
10 kyu level for 19 x 19 boards.

(At the beginning of this thesis work, GNU Go and the Monte Carlo ap-
proaches were more similar in playing strength. However, during the work on
this thesis, GNU Go has not changed significantly and has not improved more
than one kyu grade, while the Monte Carlo-based programs have gained ap-
proximately 2 to 4 kyu grades, and if this continues they might reach a clear
amateur dan level even for large boards in the next year.)

10.4 Use of experience to improve playing level

Even using the influence-based similarity measure which works rather well for
finding similar games, our approach to reusing previous games is only useful for
the beginning phases of the opening game. This is because later in the game
there are too many other surrounding stones that influence the position, and
our method does not properly adapt the moves to these nearby stones.

Another problem is that even though the opening moves the computer pro-
gram plays using this approach are good, the computer program is only mim-
icking professional players and does not actually know how to use the moves
later in the game.

Because of this our program normally does not take full advantage of the
opening moves for the rest of the game, even if the opening moves are very
good. Experiments using the entire previous game record to guide the rest of
the game have not been successful, simply because there are too many ways for
the opponent to respond and he is unlikely to pick exactly the same one as the
original opponent.

The use of case-based methods for finding good tactical moves was not in-
cluded in our implementation, because our program was able to find relatively
simple tactical moves such as vital points in eyespaces by only using our imple-
mentation of Monte Carlo-based UCT game tree exploration.

It is possible that such tactical reuse could be applied for other situations
where unaided UCT tends to perform poorly, but it is not clear that this lo-
cal CBR-based reuse will be more effective than the purely pattern-based ap-
proaches successfully employed in other programs.

This is because the approaches used in e.g. GNU Go are already very good,
and the strong Monte Carlo programs have shown that many tactical situations
can also be solved without large amounts of expert knowledge. One important
exception is long sequences of relatively simple moves, such as predicting how a
long ladder formation moves across the board.

(0]

CHAPTER 10. DISCUSSION

However, reusing tactical cases does not seem to be the most useful ap-
proach for these exceptional tactical situations. Reuse of previous game records
appears to the most useful for high-level strategic considerations, which are most

common in the opening game.

76

Chapter 11

Conclusion

Our prototype implementation of the Go playing program works, and in the
opening game the approach based on reusing previous games usually results
in better moves than the straight-forward application of the underlying UCT
algorithm.

However, it is unlikely that this will result in any drastic improvements
if the same approach is added directly to contemporary computer Go playing
programs. One reason for this is that these programs are already rather strong,
and often already contain some specialized approaches for the opening game.

Another important reason is that even when good moves are found using
our approach, these moves usually depend on the computer program being able
to follow them up correctly later, and current computer playing programs are
not able to do this in a satisfactory manner. In particular, our implementation
of a tactical player is too weak on a full 19 x 19 board, which means that our
combined prototype Go playing program is unable to play at a competitive level.

Our approach is likely to be more useful for a computer program that con-
tains a deeper knowledge of the purpose and intentions behind each move it
performs, but today this is still closer to how a human plays than a computer.
No automated computer system implementations with this level of understand-
ing currently exist, nor are they likely to be feasible to develop in the near
future.

Today, the most promising computer Go approaches seem to be a continued
development of the statistical- and heavily computational-based Monte Carlo
methods.

7

CHAPTER 11.

CONCLUSION

78

Bibliography

1]

[2]

3]

[10]

[11]

[12]

B. Bouzy and T. Cazenave, “Computer Go: An Al oriented survey,” Arti-
ficial Intelligence, vol. 132, no. 1, pp. 39-103, 2001.

“GNU Go.” http://www.gnu.org/software/gnugo/. Retrieved on July 16th,
2008.

S. Gelly, A Contribution to Reinforcement Learning; Application to
Computer-Go. PhD thesis, Université Paris-Sud, 2007.

C. Donninger and U. Lorenz, “The chess monster Hydra,” in FPL
(J. Becker, M. Platzner, and S. Vernalde, eds.), vol. 3203 of Lecture Notes
in Computer Science, pp. 927-932, Springer, 2004.

J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M. Muller, R. Lake,
P. Lu, and S. Sutphen, “Checkers Is Solved,” Science, vol. 317, no. 5844,
pp. 1518-1522, 2007.

M. Buro, “An evaluation function for Othello based on statistics,” tech.
rep., NEC Research Institute, 1997.

O. Syed and A. Syed, “Arimaa - a new game designed to be difficult for
computers,” International Computer Games Association Journal, 2003.

J. Hendler, “Computers Play Chess; Humans Play Go,” IEEFE Intelligent
Systems, vol. 21, no. 4, pp. 2-3, 2006.

A. Kishimoto and M. M. 0003, “Search versus knowledge for solving life
and death problems in Go,” in AAAI (M. M. Veloso and S. Kambhampati,
eds.), pp. 1374-1379, AAAT Press / The MIT Press, 2005.

P. Donnelly, P. Corr, and D. Crookes, “Evolving Go playing strategy in
neural networks.” AISB Workshop on Evolutionary Computing, 1994.

M. Enzenberger, “The integration of a priori knowledge into a Go
playing neural network.” http://www.cgl.ucsf.edu/go/Programs/neurogo-
html/NeuroGo.html, 1996. Retrieved on July 16th, 2008. This web site is
a mirror, the author’s original publication site is no longer available.

A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues,
methodological variations, and system approaches,” AI Communications,
vol. 7, pp. 39-59, March 1994.

79

BIBLIOGRAPHY

[13] D. B. Benson, “Life in the game of Go,” Information Sciences, vol. 10,
no. 1, pp. 17-29, 1976.

[14] “Wikipedia article on Go opening theory.”
http://en.wikipedia.org/wiki/Go_opening_theory. Retrieved on July
16th, 2008.

[15] D. W. Elwyn Berlekamp, Mathematical Go: Chilling Gets the Last Point.
A K Peters Ltd, Natick, MA, 1994.

[16] L. V. Allis, Searching for Solutions in Games and Artificial Intelligence.
PhD thesis, University of Limburg, 1994.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Second Edition. The MIT Press, September 2001.

[18] “Wikipedia article = on computational complexity theory.”
http://en.wikipedia.org/wiki/Computational complexity_theory. Re-
trieved on July 16th, 2008.

[19] S. Cook, “The P versus NP problem.” Official problem description as part
of the Clay Mathematics Institute Millenium Prize Problems, 2000.

[20] M. Crasmaru and J. Tromp, “Ladders are PSPACE-complete,” in Comput-
ers and Games, pp. 241-249, 2000.

[21] D. Wolfe, “Go Endgames Are PSPACE-Hard,” in More Games of No
Chance, MSRI Publications, pp. 125-136, Cambridge University Press,
2002.

[22] J. M. Robson, “The Complexity of Go,” in IFIP Congress, pp. 413417,
1983.

[23] R. K. G. Elwyn R. Berlekamp, John Horton Conway, Winning Ways for
Your Mathematical Plays vol 1-2. Academic Press, London, 1982.

[24] C. L. Bouton, “Nim, a game with a complete mathematical theory,” The
Annals of Mathematics, vol. 3, pp. 35-39, 1901.

[25] “Wikipedia article on the Sprague-Grundy theorem.”
http://en.wikipedia.org/wiki/Sprague-Grundy_theorem. Retrieved on
July 16th, 2008.

[26] A. Lubberts and R. Miikkulainen, “Co-Evolving a Go-Playing Neural Net-
work,” in Coevolution: Turning Adaptive Algorithms upon Themselves
(R. K. Belew and H. Juille, eds.), pp. 14-19, 7 2001.

[27] “Wikipedia article on Monte Carlo methods.”
http://en.wikipedia.org/wiki/Monte_Carlo_method. — Retrieved on July
16th, 2008.

[28] B. Briigmann, “Monte Carlo Go.” http://www.ideanest.com/vegos/MonteCarloGo.pdf,
1993. Retrieved on July 16th, 2008. This web site is a mirror, the author’s
original publication site is no longer available.

80

BIBLIOGRAPHY

[29]

[33]

[34]

[35]

L. Kocsis and C. Szepesvari, “Bandit based monte-carlo planning,” in
ECML (J. Farnkranz, T. Scheffer, and M. Spiliopoulou, eds.), vol. 4212
of Lecture Notes in Computer Science, pp. 282—-293, Springer, 2006.

S. Gelly and Y. Wang, “Exploration exploitation in Go: UCT for Monte-
Carlo Go,” Twentieth Annual Conference on Neural Information Processing
Systems (NIPS 2006), 2006.

J. J. Bello-Tomés, P. A. Gonzélez-Calero, and B. Diaz-Agudo, “JColibri:
An Object-Oriented Framework for Building CBR, Systems,” in FCCBR,
pp. 32-46, 2004.

M. Molineaux and D. W. Aha, “TIELT: A Testbed for Gaming Environ-
ments,” in Proceedings of the Sixteenth National Conference on Artificial
Intelligence (M. M. Veloso and S. Kambhampati, eds.), pp. 1690-1691,
AAAI Press, 2005.

R. Sanchez-Pelegrin, M. A. Gémez-Martin, and B. Diaz-Agudo, “A CBR
Module for a Strategy Videogame,” in ICCBR Workshops (S. Briininghaus,
ed.), pp. 217226, 2005.

M. J. V. Ponsen, S. Lee-Urban, H. Munoz-Avila, D. W. Aha, and M. Mo-
lineaux, “Stratagus: An open-source game engine for research in real-time
strategy games,” in Papers from the IJCAI Workshop on Reasoning Repre-
sentation and Learning in Computer Games (D. W. Aha, H. Munoz-Avila,
and M. van Lent, eds.), 2005.

B. Diaz-Agudo, P. Gervéas, and F. Peinado, “A case based reasoning ap-
proach to story plot generation,” in ECCBR (P. Funk and P. A. Gonzalez-
Calero, eds.), vol. 3155 of Lecture Notes in Computer Science, pp. 142-156,
Springer, 2004.

D. Stern, R. Herbrich, and T. Graepel, “Bayesian pattern ranking for move
prediction in the game of Go,” in ICML ’06: Proceedings of the 23rd inter-
national conference on Machine learning, pp. 873-880, ACM, 2006.

F. A. de Groot, “Moyo Go Studio.” http://www.moyogo.com/. Retrieved
on July 16th, 2008.

“SGF file format.” http://www.red-bean.com/sgf/. Retrieved on July 16th,
2008.

A. L. Zobrist, “A new hashing method with applications for game playing,”
Tech. Rep. 88, University of Wisconsin, Computer Science Department,
1970.

“Go results from the 12th Computer Olympiad.” http://www.grappa.univ-
lille3.fr/icga/tournament.php?id=167, 2007. Retrieved on July 16th, 2008.

81

BIBLIOGRAPHY

82

	Title Page
	Problem Description
	masteroppgave.pdf

