@ NTNU

Norwegian University of
Science and Technology

Optimizing & Parallelizing a Large
Commercial Code for Modeling Oil-well
Networks

Atle Rudshaug

Master of Science in Computer Science
Submission date: June 2008
Supervisor: Anne Cathrine Elster, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

Since the entry of recent programmable GPUs (Graphics Processing Units), the GPUs are
becoming an increasingly interesting platform for more general computations. Much like the math
co-processors of the 1980's, GPUs can speed up the CPU by taking care of arallelized compute-
heavy calculations.

In this project, we investigate whether a large commercial application that models a network of oil
wells, can benefit from off-loading computations to the GPUs. However, to make this project
worth-while, the applications first needs to be profiled and optimized. Other modern parallel
architectures such as multicore PCs and workstations may also be considered as time permits.

Assignment given: 15. January 2008
Supervisor: Anne Cathrine Elster, IDI

Abstract

In this project, a complex, serial application that models networks of oil wells
is analyzed for today’s parallel architectures. By heavy use of the profiling
tool Valgrind, several serial optimizations are achieved, causing up to a 30-50x
speedup on previously dominant sections of the code, on different architectures.
Our initial main goal is to parallelize our application for GPGPUs (General
Purpose Graphics Processing Units) such as the NVIDIA GeForce 8800GTX.
However, our optimized application is shown not to have a high enough compu-
tational intensity to be suitable for the GPU platforms, with the data transfer
over the PCl-express port showing to be a serious bottleneck.

We then target our applications for another, more common, parallel archi-
tecture — the multi-core CPU. Instead of focusing on the low-level hotspots
found by the profiler, a new approach is taken. By analyzing the functionality
of the application and the problem it is to solve, the high-level structure of the
application is identified. A thread pool in combination with a task queue is im-
plemented using PThreads in Linux, which fit the structure of the application. It
also supports nested parallel queues, while maintaining all serial dependencies.

However, the sheer size and complexity of the serial application, introduces
a lot of problems when trying to go multithreaded. A tight coupling of all parts
of the code, introduces several race conditions, creating erroneous results for
complex cases. Our focus is hence shifted to developing models to help analyze
how suitable applications with traversal of dependence-tree structures, such as
our oil well network application is, given benchmarks of the node times.

First, we benchmark the serial execution of each child in the network and
predict the overall parallel performance by computing dummy tasks reflecting
these times on the same tree structure on two given well networks, a large
and a small case. Based on these benchmarks, we then predict the speedup
of these two cases, with the assumption of balanced loads on each level in the
network. Finally, the minimum amount of time needed to calculate a given
network is predicted. Our predictions of low scalability, due to the nature of
the oil networks in the test cases, are then shown.

This project thus concludes that the amount of work needed to successfully
introduce multithreading in this application might not be worth it, due to all
the serial dependencies in the problem the application tries to solve. However,
if there are multiple individual networks to be calculated, we suggest using Grid
technology to manage multiple individual instances of the application simulta-
neously. This can be done either by using script files or by adding DRMAA API
calls in the application. This, in combination with further serial optimizations,
is the way to go for good speedup for these types of applications.

Acknowledgments

First, I would like to thank Associate Professor Dr. Anne C. Elster at IDI-NTNU
for supervising this project, and for involving me in three different conferences
in the process.

Second, thanks to Yggdrasil AS for providing their large production code
and test cases as a basis for this thesis. A special thanks to Asbjgrn Sigurdsgn
for numerous detailed discussions and help with multithreading problems, Gud-
brand Nerby for detailed descriptions of the algorithm and Ole Jacob Velle for
providing the test cases.

I would also like to thank my fellow students, especially Rune E. Jensen,
for numerous discussions on optimization techniques and other implementation
ideas.

ii

iii

Contents

1 Introduction
1.1 Project Goal
1.2 Our Application L
1.3 Outline e

2 Serial Optimizations
21 Profiling
2.1.1 Valgrind + KCachegrind
2.2 Benchmarking oo
2.2.1 Hardware Used
2.3 Optimizing and Profiling Our Application
2.3.1 Steady State Calculation
2.3.2 Transient Temperature Calculation
2.3.3 Full Transient Calculation

3 Parallel Programming and Architectures
3.1 Parallel Computing Theory
3.1.1 Amdahl’'sLaw
3.1.2 GQGustafson’s Law oL
3.1.3 Adding Parallelism to a Serial Application
3.1.4 Challenges When Parallelizing
3.2 Imtroduction to GPUs
3.2.1 GPU Comparedto CPU
3.2.2 Previous GPU Architectures
3.2.3 Unified Architecture
3.24 Programming the GPU
3.3 Programming Multi-Core CPUs
3.3.1 C++ Parallel Programming APIs.
3.3.2 Parallel Programming Tools

4 Multi-Core & GPU Models
4.1 Related Models
4.2 The Algorithm
43 GPUModel

iv

21
21
21
21
22
22
23
23
24
24
25
28
28
31

4.4 Multi-Core CPU
4.4.1 Parallel Implementation Model
4.4.2 Practical Performance Model
4.4.3 Theoretical Performance Model 1
4.4.4 Theoretical Performance Model 2
4.4.5 Model Results

5 Parallel Implementations

51 Profiling

5.1.1 Quick Load Balancing Test for GPU Code

5.2 Hardware Used
5.3 Debugging
5.4 Parallelizing the Application for GPU
54.1 CUDA Benchmarks
5.4.2 Steady State Calculation
5.4.3 Transient Calculation
5.5 Parallelizing the Application for Multi-Core
5.5.1 Parallelizing by looking at the profile
5.5.2 Thread pool Implementation

6 Conclusion and Future Work

6.1 Future Work,

A Thread Pool Overview

A.1 Using the Thread Pool

B Benchmark Scripts and Code

B.1 Bash Scripts.o
B.2 CUDA Ping-Pong Test

C Poster Presented at NOTUR 2008

65
65

68
68
72

76

List of Figures

21
2.2
2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

4.1
4.2
4.3
4.4

5.1
5.2

Original steady state profile with target with target optimization

codeencircled L Lo 7
Optimized steady state profile. Notice the encircled code from

Figure 2.1 isnow gone. 8
Steady state speedup on different architectures 10

Original transient calculation, with original database storage.

Notice 83.17 CPU time used by the SQL storage routine, totally
dominating the overall performance of the application. 13
Transient temperature- with steady state flow calculation, with
binary file data storage.

Notice the previous SQL storage routine is replaced by the binary

write routine which now is so fast it no longer shows in the profile.

Now, the steady state calculation is dominant instead. 14
Cutout from 2.5. The temperature calculation takes 10.27% CPU
time NOW. Lo 15
Optimized version of profile from Figure 2.6. The temperature
calculation now takes 1.50% of the total CPU time. 16
Un-Optimized full transient calculation, with binary file storage.
Encircled functions are targets. 17
Effect of temperature calculation optimization. The large circle
in Figure 2.8 isgone. oL o 18

Effect of momentum calculation optimization. All circles in Fig-
ures 2.8 and 2.9 are now gone, since these routines are now opti-
mized so much that they no longer have significant performance

impact. 19
Speedup achieved, on two different architectures, by optimizing

the transient computations 20
Algorithm overview 35
Timer slowdown 38
Time predicted by all models, for Case I and Case IT 44
Speedup predicted by all models, for Case I and Case IT 45
Thread pool test: Small sized tasks 54
Thread pool test: Medium sized tasks 55

vi

5.3 Thread pool test: Large sized tasks
5.4 Thread pool test: Speedup of Small, Med. and Large tasks

vii

List of Tables

21

5.1
5.2
5.3

Serial Optimization Benchmark Hardware 6
CUDA Hardware v i it it e 47
Multi-core Hardware 47

CUDA benchmark results, pinned memory

viii

ix

Chapter 1

Introduction

When the speed barrier was hit, and multi-core technology introduced, serially
programmed applications lost their main speed contributor, the increase in CPU
frequency. For these applications to be competitive in the future, they have to
be adapted to be able to utilize parallel technology.

However, multi-core CPUs is not the only option. The gaming industry’s
constant craving for more graphical computing power, has spawned a technology
capable of immense parallel computation, the GPU. Lately, the science commu-
nity has been playing with this toy, to speed up their highly computationally
intensive tasks.

Another contributor in the era of parallel computation, is the CELL pro-
cessor. This, unlike the previously mentioned technologies, is a heterogeneous
design with one central general-purpose core and eight special-purpose compute
cores. It can be looked as a combination of a CPU and a GPU in terms of
the combination of general- and special-purpose cores. However, currently the
CELL processor is only available in the PlayStation 3 multimedia console, and
in expensive server rack units, unlike CPUs and GPUs which can be found in
almost every PC or workstation.

1.1 Project Goal

Adapting an existing serial applications to utilize multiple cores, is a common
problem in today’s industry. Even writing multithreaded code from scratch is
challenging without proper tools and training.

The goal of this project is to try to adapt a large and complex, serially coded
application, to two of today’s parallel architectures, the GPU and multi-core
CPUs. The costs of offloading CPU cycles on the GPU shall be identified, while
extensive profiling will be used to locate target code. Different parallelization
and optimization opportunities will also be discussed. In the same process,
possibilities for serial optimizations, prior to parallelization, will be identified
and performed.

Finally, the applications scalability and speedup gained by utilizing parallel
architectures, shall be identified.

1.2 Our Application

The application used in this project is supplied by Yggdrasil A/S (http://www.
yggdrasil-as.no). It is a flow-optimization application for petroleum oil-well
networks, which can be used to perform network simulations with input from
reservoir simulators and flow monitoring of production networks. It uses several
equation solvers for calculating pressure loss from the wells to the terminal, and
it automatically tweaks actuator input for optimal flow through arbitrary oil-
field networks. Transient momentum and temperature calculations are targeted,
as well as steady state calculations.

Network simulation can be performed over several years, with variable time
step intervals, using minutes to weeks between each time step. This is an in-
herently serial operation, since the results from each time step is used as input
to the next. However, multiple individual pressure system-/network topology
configurations can be simulated for each time step, allowing for embarrassingly
parallel computations. This operation can add valuable information to which
network topology is optimal for each time step, or over time.

The application calculates the pressure loss and phase flows from the reser-
voir to topside for each network configuration. The oil networks are basically
dependence trees, with interdependencies between each level in the tree. This
means that all child nodes must be calculated before their parents. When calcu-
lating the network serially this is no problem, however, if computed in parallel,
care must be taken to preserve the correct order of execution.

For the steady-state calculations, rather simple equation solvers are used to
compute the actual pressure and phase flow characteristics in each pipe in the
network. The transient momentum and temperature calculations, however, are
far more advanced, and might be suited for GPU computing.

1.3 Outline
The rest of the report is structured in the following way:

e Chapter 2 describes the serial optimizations performed in this project.

e Chapter 3 gives an introduction to topics related to parallel computing.
It starts off with two important laws related to the maximum parallel
speedup possible in an application. Next, an introduction to some new
challenges introduced when writing parallel code is presented. A detailed
introduction to GPU history, design and how they are programmed is
given, followed by an introduction to different tools available for paral-
lelizing applications for shared memory multi-core CPUs.

Chapter 4 starts with a brief introduction to interesting related work and
technology. Next, it describes the main target algorithm in the applica-
tion, followed by the strategy used to locate target code for parallelization
on GPU and multi-core technology. Three models are then described,
which all predict potential parallel speedup in the algorithm in different
ways. Finally, the test cases are described, followed by a summary of the
potential speedup predicted by the models.

Chapter 5 starts with a brief introduction to available GPU profilers and
the hardware used for the parallel implementations. This is followed by
a debugging strategy for multi-core implementations. Next, the results
of different GPU implementations is presented, and their results are dis-
cussed. Finally, different multi-core CPU implementations are described,
and their results presented.

Chapter 6 concludes the work performed in this project, and presents
different ideas for future work.

Appendix A gives a short description of the thread pool and its files. It
also gives an example on how to use it and how to include it as a library
in an application.

Appendix B lists all the benchmark related bash scripts used and a ping-
pong test for CUDA enabled GPUs.

Appendix C includes a poster presented at NOTUR 2008, which summa-
rizes this project.

Chapter 2

Serial Optimizations

This project focuses extensively on using profilers to locate inefficiencies and
hotspots in an application. This chapter starts off with an introduction to
different profilers, and the choice of profiler for this project is presented. Next,
the benchmarking method and the hardware used is described.

The target application had not been optimized thoroughly prior to this
project and it was seen as necessary to perform some optimizations before in-
troducing parallelism to the application. A detailed description of each opti-
mization performed is described in this chapter.

2.1 Profiling

By profiling the application, hotspots and bottlenecks can be located and tar-
geted for optimizations and parallelization. Finding these areas of an application
is difficult without using special tools.

If different parts of a current CPU code are to be moved to a GPU, the cur-
rent CPU code should be profiled first. This will locate where the performance
hits are, and will help see what parts can be done in parallel. Profiling and im-
proving the CPU code, may remove unnecessary overhead before moving parts
over to the GPU. If the parts that originally used a lot of CPU-time executing
a lot of unnecessary instructions, after a cleanup of the code, these might not
be the best parts to target anymore.

There are different tools for profiling CPU code, including the ones below:

e Valgrind

— Callgrind + KCachegrind
— Helgrind
— Memcheck

e Rational Quantify

Intel VTune + Intel Thread Checker

AMD CodeAnalyst
e gprof

e TAU

In this project, Valgrind and its tool Callgrind became the preferred profiler.
Intel VTune and TAU were tested as well, but they always crashed with unknown
errors or segmentation faults during profiling.

2.1.1 Valgrind + KCachegrind

Valgrind is a profiler available in Linux, which can generate profiles for any
application. Different tools can be used with Valgrind, such as Callgrind and
Memcheck. The output from Callgrind can be quite unreadable and luckily
there is a tool, called KCachegrind, which can give a graphical representation
of the data. Calling an application with Valgrind is as simple as:

valgrind -v —tool=callgrind ./executable -args

Using callgrind as the tool, will give a good representation of the CPU-
time used for each function in the application. The graphical representation by
KCachegrind gives an excellent overview and makes it simple to target exact
lines of code, by showing CPU-usage for each line inside the source code. This
tool will be used extensively throughout this project.

2.2 Benchmarking

Benchmarks will be performed using the scripts in Appendix B. These scripts
are used to automatically launch different binaries, a user defined amount of
times. Wall clock is used as timing parameter, by using the built in “date”
application in Linux. Speedup listings are acquired by taking the average of 5
runs for each calculation, which is automatically done by the benchmark scripts.

2.2.1 Hardware Used

Table 2.1: Serial Optimization Benchmark Hardware

Hardware HP ASUS W5F Laptop AMD64
CPU(s) 4 x Intel Xeon X7350 1 x Intel Centrino Duo AMD64
Freq. 2.93 GHz 1.66 GHz 3500+
Num. Cores 16 2 1
RAM 64 GB 2.5 GB 2GB
OS. CentOS 5 64-bit Ubuntu 7.10 32bit Ubuntu 7.10 64bit
Compiler gee 4.1.2 gee 4.1.2 gee 4.1.2

2.3 Optimizing and Profiling Our Application

This section describes the serial optimizations performed, and the speedup
gained for both the steady-state and transient calculations. Multiple screen
shots from KCachegrind are included, showing the effects of each optimization
on the profile. We show that there is a lot of potential for serial optimizations,
which can result in high speedup.

2.3.1 Steady State Calculation

The program at hand was profiled extensively to locate the critical sections of
the code. Figure 2.1, shows a profile of the original code, using a combination
of Valgrind and KCachegrind. The final optimized code, results in the profile
image shown in Figure 2.2. Here the encircled function calls from the former
profile are gone. The other optimizations only alter the percentage usage of the
different targets and are not easily observed in the image. Here follows a short
description of each optimization:

1. The calls represented by the small squares, inside the function Pipe::CalcDP,
consists of 3 instances of the following mathematical function inside pvt-
tab::propertyFromVect:

x=a+(b—a)/(c—d)x(p—d)

In one case, this function was called about 1 396 800 000 x 3 times. It was
observed that this function was called multiple times with the same ¢, d
and p parameters, thus resulting in multiple unnecessary math operations.
The operator ”/” is much slower than ” % ”, and should be called as few
times as possible. Thus, the formula was altered to the following:

tmp =1.0/(c —d)* (p—d) = (p —d)/(c — d)
x=a+ (b—a)xtmp

(F

I
__7
lq

.....

=

at

Figure 2.1: Original steady state profile with target with target optim
code encircled

Figure 2.2: Optimized steady state profile. Notice the encircled code from
Figure 2.1 is now gone.

The tmp variable is calculated inside the function puvttab::getPosition,
where the variables ¢ and d are acquired. The function puvttab::getPosition
is always executed before the target mathematical functions, to get indices
to the correct input variables for each of them. Thus, the pre-calculated
tmp variable can be reused many times.

2. puttab::getPosition, searches through arrays to find the correct array-
positions for the respective input variables, p and t. The array-index
before and after the variable’s position are saved for later use. A simple
linear search algorithm was originally used, which is far from the fastest
search algorithm available. However, these arrays can have lengths of only
10 to 20. Thus, a formidable speedup of changing the search algorithm
is not expected, however, if these arrays grow in size, a better algorithm
than linear search should give better results. The two arrays were also
observed to be constant throughout the current case. Thus, a table look
up algorithm seemed perfect, but the input variables are floats that have
small variations for each call to this function. An exact value is not to be
found, only the two positions in the array the input variable is in between.
It was also observed that the input variables could be outside the scope
of the array, resulting in the function returning the extremal indices; 0 for
lower values and length-1 for higher. Two simple if-tests could, in many
cases, eliminate the search altogether, by directly testing the two extremal
values and setting the indices accordingly. Thus, getPosition was altered
to first test the extremal values, then to use a the simple binary search
algorithm when needed. Compared to the last optimization, this reduced
the CPU usage of the getPosition function by only 0.75%.

3. The original supplied code has been written for readability and under-
standability, and has not been optimized i any way. Many places, different
“in” and “out” objects of the same type are used for readability. Many of
these objects contain multiple arrays, resulting in many copies of arrays
between objects. Local “tmp _array” variables were also used, which re-
sulted in many unnecessary array copies. It was observed that this could
be avoided by getting references to the arrays and objects, instead of first
copying them to local tmp-variables, then altering them and ultimately
copying them back to the object’s array. By checking the “in” and “out”
objects for equality, correct execution could be maintained when directly
updating one of the objects instead of copying all the data back and forth.
This removed the calls encircled in red in Figure 2.1.

4. An optimization similar to the former, was performed on the calls encir-
cled in blue in Figure 2.1, thus removing these unnecessary computations
from the program execution. Figure 2.2 shows the profile after the above
optimizations were performed, resulting in even more speedup in the com-
putations.

Figure 2.3, shows to speedup gained in each optimization step of the steady
state’s calculation. It shows an interesting result, which is the higher speedup

Steady State Speedup: Case |

2,8

26

2,4
Q22 B AMD64
3 2 B Asus W5F
(%'1,8 [J HP-Xeon

1,6

1,4

1,2

1

1 2 3 4
Optimization Step

Steady State Speedup: Case |l

1,8
1,7
1,6

1,5
B AMD64

B Asus W5F
1 HP-Xeon

Speedup
a

-
w

1.1

1 2 3
Optimization Step

Figure 2.3: Steady state speedup on different architectures

10

Listing 2.1: Return by reference removed large portions of Figure 2.6

const WallSpec GetWallSpec () const { return pwspec;}
J /o korrokkokokkok altered o sk Rk Rk Rk Rk Rk kR k [/

const WallSpec& GetWallSpec()const { return _pwspec;}

gained on the slower laptop computer, compared to the other architectures. This
might have something to do with memory bus saturation, where the slower
CPU frequency of the laptop might, to a lesser extent, saturate its memory
bandwidth. It’s important to keep in mind that the total run time of the
calculations were much shorter on the other two computers.

During the project period, the application provided by Yggdrasil AS went
through some major modifications, including some design alterations and bug
fixes. Some of these updates resulted in very different run times compared
to the initial revision, which shows how important it is not to use too much
effort optimizing small, narrow parts of non-fixed code, at least without close
cooperation between developers. Thus, a single revision was chosen for the
duration of the project, to keep the run times consistent.

2.3.2 Transient Temperature Calculation

In this calculation, a transient temperature calculation is performed in addition
to the original steady state flow calculation. The transient part is not in pro-
duction code yet, but will be in the future. Figure 2.4, shows that it is highly
unoptimized. More than 83% of the CPU-time is used for database storage. For
each step in the calculation, a data frame is written to a SQLite database file.
The database function used is designed for the steady state calculation which
has totally different database needs. A new data storage design is needed for
the transient calculation.

An alternative function was implemented, where the data is saved directly
to a binary file during computation. When the calculations are done, the data
can be retrieved from the binary file and written to the database. This makes it
possible to focus on other optimizations other than the database in the rest of
this project. Figure 2.5, shows the profile when saving to a binary file instead
of the database. The speedup can be seen in Figure 2.11, optimization step 1i).

Figure 2.6, is a profile of the total CPU usage of the temperature transient
calculation. As seen in the profile, creating and destructing instances of Wall-
Spec, uses 2.43% of the CPU-time. This might be too little of what should be
focused on initially when optimizing, but removing this was as simple as return-
ing the WallSpec object by reference instead of copying it, as shown in Listing
2.1.

11

Listing 2.2: Many areas of the code was changed like this, using pointers and
references to arrays

vector <double> kwal;
kwal = ppipe—>GetWallSpec (). GetSpecK ();

kwalP1 = kwal;

J /R okkokokokokok altered o kR kR k)
vector <double> xp kwal;

1;.)-_.kwa1 = &ppipe—>GetWallSpec (). GetSpecK ();

[.)'_'kwalPl = p_kwal;

const vector<double> & kwal = xp_ kwal;

to the vectors, instead of copying the arrays to new vectors in memory. There
were multiple instances of similar code, as shown in Figure 2.2, which copied
the arrays between different vector variables. By using pointers instead, only
pointers are swapped instead of arrays copied. The arrays were intensively used
further down in the code, and by getting a reference to the array, no further
code had to be altered. The result can be seen in Figure 2.7.

Initially, the temperature calculation seemed perfect for GPU implemen-
tation, since calculations could be done on multiple pipe-segments in parallel.
However, as Figure 2.7 shows, the optimized version uses only about 1.5% of
the CPU time for this particular case. Pipe::CalcDP, from the steady state flow
calculation, is dominating the total runtime. Thus, even though the target func-
tion is able to utilize the GPU’s parallelism, its minimal impact on the runtime
does not justify maintaining a GPU code for it.

2.3.3 Full Transient Calculation

This calculation consists of both transient flow calculations and transient tem-
perature calculations. This profile ends up being quite different from the com-
bined steady state flow calculation and transient temperature calculation, from
the previous section. The optimization of the temperature calculation from Sec-
tion 2.3.2 applies here as well. The red circle in Figure 2.8 was removed in the
previous section, and the total CPU-time used by the temperature calculation
drops from 71.42% to 24.20%, which can be seen in Figure 2.9. The speedup

12

Figure 2.4: Original transient calculation, with original database storage.
Notice 83.17 CPU time used by the SQL storage routine, totally dominating
the overall performance of the application.

13

Figure 2.5: Transient temperature- with steady state flow calculation, with
binary file data storage.

Notice the previous SQL storage routine is replaced by the binary write routine
which now is so fast it no longer shows in the profile. Now, the steady state
calculation is dominant instead.

14

Figure 2.6: Cutout from 2.5. The temperature calculation takes 10.27% CPU
time now.

15

Figure 2.7: Optimized version of profile from Figure 2.6. The temperature
calculation now takes 1.50% of the total CPU time.

16

ST

Figure 2.8: Un-Optimized full transient calculation, with binary file storage.
Encircled functions are targets.

can be seen in Figure 2.11, optimization step ii).

The blue circles, seen in both Figures, represent the same function call and
became new targets after the temperature optimization. Removing these should,
in theory, remove about 11% of the momentum calculation’s CPU-time, increas-
ing the temperature calculation’s CPU-time accordingly. Thus, speedup may
be gained by offloading the temperature calculation to the GPU in this case, es-
pecially if both the momentum and temperature calculations can be performed
simultaneously. Finally, however, the temperature calculation only takes about
30% of the CPU time after this last optimization, which is probably too low
for a GPU implementation. The speedup of the last optimization can be seen
in Figure 2.11, optimization step iii). This last optimization included altering
large portions of the momentum calculation to use pointers and references to
arrays and objects instead of doing unnecessary data copies.

There is another important matter at hand, which is the highly unoptimized
database storage routine. This has to be reimplemented somehow. An idea is
to use a dedicated database thread, which gets its workload by other threads.
Thus, when the database thread is busy saving data, other threads/cores or the

17

Figure 2.9: Effect of temperature calculation optimization. The large circle in
Figure 2.8 is gone.

18

Figure 2.10: Effect of momentum calculation optimization. All circles in Figures
2.8 and 2.9 are now gone, since these routines are now optimized so much that
they no longer have significant performance impact.

19

Transient Speedup

60
50
40
o
=
3 B Asus W5F
@ 30
o B HP-Xeon
n
20
10
0 I
Original i) i) i)
i) Change from unoptimized SQL to binary file storage
i) Removing array and object copies by using references and pointers
in the temperature calculation
iii) Removing array and object copies by using references and pointers

in the momentum calculation

Figure 2.11: Speedup achieved, on two different architectures, by optimizing
the transient computations

GPU can do computations, feeding the database thread with new data.

20

Chapter 3

Parallel Programming and
Architectures

In this chapter, an introduction to parallel computing is given, starting with two
important laws about maximum theoretical speedup. The next section gives
a thorough introduction to previous and current GPU technologies. Finally,
different technologies for programming multi-core technology are described.

3.1 Parallel Computing Theory
3.1.1 Amdahl’s Law

Amdahl’s law [1] states the theoretical limit of a parallel application’s scala-
bility, based on the amount of sequential operations in an application. In the
following formula, P is the parallel portion of the process and N is the number
of processors used.

1
1Pk

As an example, if P=90%, which means that 90% of the process is paralleliz-
able, using an infinite amount of processors and neglecting parallel overhead,
gives a maximum speedup of 10. Thus, minimizing the serial portion by adding
more parallelism is actually more important than adding additional processor
cores.

3.1.2 (Gustafson’s Law

Gustafson’s law [1] differs from Amdahl’s law in that linear speedup may still
be gained, even though Amdahl’s law predicts otherwise. Gustafson’s law takes
into mind the possibility of increasing the problem size when more processors
are available, resulting in constant runtime of the application. Amdahl’s law

21

assumes that the problem size stays the same. Amdahl’s law also assumes that
the serial algorithm is the fastest one available, however, this may not always
be the case. Multi-core architectures may also give extra speedup, because of
the extra cache for each core holding more of the problem data.

In the following formula, also known as scaled speedup, N is the number of
processor cores and s is the ratio of the time spent in the serial part versus the
total execution time:

N+ (1—-N)xs

3.1.3 Adding Parallelism to a Serial Application

Adding parallelism in an application can be quite hard and time-consuming.
Thus, to get the most out of your work, it’s important to find the most time-
consuming parts of code and parallelize those first. The next step is dividing
the time-consuming code into individual tasks, if possible. This can either be
functional decomposition, splitting multiple function calls in to independent
groups, or data decomposition, splitting a large amounts of data into indepen-
dent groups, and assigning a thread to each group [6].

3.1.4 Challenges When Parallelizing

Several issues emerge when going from serial to multithreaded code, that were
a non-issue in the former. One serious issue is data-race conditions. This occurs
when multiple threads access or update the same memory location at the same
time, which may result in erroneous results [1].

Creating and killing threads introduces some overhead to the program ex-
ecution as well. It is important that this overhead does not exceed the work
given to each thread. If there is not enough work to be split among the threads,
the program execution may actually become slower than the serial version.

The programmer must also take care when handling critical sections in a
code, that has to be executed in a specific order. Barriers and locking variables
can be used to synchronize threads before and after critical sections, to make
sure the order of execution is correct.

When using multiple processors, it is important that each processor is given
the same amount of work. This is known as load balancing. If some threads have
twice as much work as others, the other threads will finish, leaving processors
idle while waiting for the threads with larger workload to finish.

When working with multi-core processors, a new cache issue may occur called
false sharing. Multi-core processors can have multiple caches that may become
out of sync. False sharing may happen when two cores are working on neigh-
boring memory locations. If the neighboring data values are stored in the same
cache line, the memory system may mark the cache line invalid for one core,
which may not be the case for another. This will result in cache line flushing,
invalidating the cache system. This should be avoided by introducing strides

22

between data for different cores, which will result in data being buffered in
different cache sectors on the CPU [1, 6].

3.2 Introduction to GPUs

In pre-GPU times, graphics hardware consisted of multiple cards with multi-
ple chips working together for outputting graphics on the screen. One could,
for example, combine a 2D accelerator with a 3D accelerator expansion card.
3DFX’s Voodoo2 cards had three chips on each card, and allowed for two 3D
accelerators combined. In the era of the AGP (Accelerated Graphics Port), mul-
tiple accelerators was no longer possible, due to the limitation of only having
one AGP port. Today, however, multiple PCI-express ports allow for multiple
GPUs again, using NVIDIA’s SLI and ATI/AMD’s Crossfire technology.

In the mid 1990’s, the graphics hardware evolved into considerably cheaper
one-chip designs, combining 2D and 3D acceleration in the same chip. Eventu-
ally, more and more of the graphics pipeline steps were moved from the CPU
to the GPU, as well as opening for more configuration and programmability.
First generation GPUs, relieved the CPU of having to update individual pix-
els on screen, however, the CPU still had to do all the vertex transformations.
Second generation GPUs offloaded the CPU by also doing the 3D vertex trans-
formation and lighting operations, and allowing some configurability. Third
generation GPUs offered vertex programmability and more pixel configuration
than before, although still not truly programmable. Not until the fourth gener-
ation, released in 2002, did GPUs provide fully programmable vertex and pixel
shaders. The first fully programmable GPUs included NVIDIA’s GeForce FX
and ATT’s Radeon 9700 [5].

The GPU’s main purpose has always been massive graphics calculations for
video games on PCs and consoles. However, when the fourth generation GPUs
opened for full programmability, higher level programming APIs were developed
for easier access to the tremendous power hidden inside them. Until then, the
small amount of programmability and configurability of the GPUs, had to be
done through low-level assembly language. With the new high-level languages,
programming the GPU became more attractive to less hardcore programmers.
It also caught the interest of the HPC community, wanting to utilize the GPU’s
massive parallel performance for scientific computing.

3.2.1 GPU Compared to CPU

The GPU is a special-purpose processor, specially designed for processing mas-
sive amounts of graphical data, using massive parallelism. Unlike CPUs, it
devotes its hardware to computation instead of communication and administra-
tion [19]. The most recent high-end GPUs, have a total of 128 special purpose
stream processors, compared to four cores of high-end CPUs. Because of its spe-
cial design, the GPU is not suitable for general-purpose tasks, such as running
the operating system or word processors [5].

23

The CPU on the other hand, is a general-purpose processor able to execute
all kinds of different applications written in general purpose languages, such as
C++ and Java. This generality comes at a cost. Many of the CPU’s transistors
are used for administrative tasks, such as memory prediction and task switching,
leaving fewer transistors for actual computations.

CPUs have SIMD MMX and SSE extensions, but these are often unused
directly by the programmers. Newer GPUs have gone from MIMD to SIMD
design, where multiple threads execute the same instruction on different data
elements. Is necessary to exploit the SIMD design of GPUs as much as possible,
if any speedup is to gained.

This difference in design requires different techniques to exploit the GPU to
the max, which is discussed in the following sections.

3.2.2 Previous GPU Architectures

Previous GPU architectures split their computation units into two groups,
namely vertex and pixel shaders [8]. For instance on a GeForce 7 series, there
were 8 vertex shaders and 24 pixel shaders [27]. If running heavy geometri-
cal calculations, the vertex shaders would be saturated while the pixel shaders
would do nothing, thus wasting 24 calculation units. This would result in wasted
computation cycles by not utilizing the total power of the GPU.

Earlier architectures from both ATI and NVIDIA used a MIMD processor
design. This allowed computations on four components per pixel at a time, for
example RGBA color values or XYZW coordinates. For instance, MUL and
ADD instructions could be executed simultaneously on these four values [26].

3.2.3 Unified Architecture

The latest trend is the unified architecture. This design features one single type
of shader unit, capable of both vertex- and pixel shader operations. This yields
better utilization of the computing power, since all the shader units can be used
for either vertex or fragment operations, according to current needs. GPUs from
both ATT and NVIDIA are now using the unified architecture.

NVIDIA’s G80 GeForce 8 and Tesla Cards

The GeForce 8, NVIDIA’s current flagship series, at the time this was written,
is a total redesign from the former 6 and 7 series. While the older series had
separate vertex and pixel shaders, the 8 series has a unified architecture, where
the pixel shader engines has been extended to support vertex shader capabilities.
The instruction set has been changed from vector MIMD to fully scalar SIMD.
In certain cases, this reorganization may give a 25% increase in performance,
using the same amount of resources [26]. The Tesla is a product targeted at
the GPGPU community, sporting 1.5 GB of RAM compared to the mainstream
card’s 768 MB.

24

The high-end 8 series cards, have a total of 128 shader units running at 1.35
GHz [15]. The shaders units are grouped into 16 multiprocessors with 8 shader
units each. Each multiprocessor has access to 16K shared memory, which allows
threads within a thread block to share data between themselves. This is good
news for GPGPU programmers, since data can be shared between threads with
very little latency.

GPUs have highly efficient thread context switching, which is virtually free
in terms of overhead. Thus, unlike CPUs, GPUs prosper when thousands of
threads are running at the same time. This is actually recommended, since this
can mask memory latency by having some threads do computations while others
wait for memory transfers from global memory [16].

3.2.4 Programming the GPU

Programming GPUs, requires detailed knowledge of the hardware architecture
to fully exploit their special design [8]. Data parallelism is extremely important,
since the GPU is optimized for independent computations. However, the new
memory hierarchy with shared memory, allows fast sharing of data between
threads in same multiprocessor.

It is important to have algorithms with high arithmetic intensity. This means
having a high ratio between the number of arithmetic operations and the number
of words transferred. Because of the high memory transfer latency through the
PCI express port, it is important to transfer as little as possible between the
host and the GPU during computation [16].

Memory transfer latency between global GPU memory and shared memory,
should be masked by employing more threads than there are hardware calcula-
tion units. This will keep the GPU’s calculation units continuously fed with new
data. However, the amount of threads to create also depends on the problem
to be solved. If there is not enough work, the extra threads created will not do
anything useful [16].

Solving linear equations often employ a high arithmetic intensity, doing com-
putations on large matrices and vectors (streams of data). The shared memory
allows for fast sharing of data between threads, such as when using five-point
stencils to solve differential equations.

Current GPUs do not support double precision values, and some even have
deviations from the IEEE 754 standard when it comes to single precision floating-
point values[7]. In the future, however, double precision values are said to be
supported.

Branching

Branching was first introduced on the GeForce 6 series [9, 26]. However, care
should be taken to avoid divergent branches. GPUs are designed to work on
groups of pixels, executing identical instructions on all pixels simultaneously.
Thus, the GPU cannot execute instructions in multiple branches simultaneously.
If different threads in a group is to execute different branches, the execution of

25

the different branches will be serialized. This can give an enormous performance
hit.

There are different branching mechanisms available for different scenarios.
For branches with a small number of instructions, both branches can be eval-
uated and only the correct branch write its results. This is called predication.
For larger, more complex branches, other methods should be used, such as static
branch resolution, pre-computation and Z-Cull techniques [9].

However, the G80 architecture only has a branching granularity of 32 objects
per clock, also known as a warp, where the former architectures, using Shader
Model 3.0, had a granularity of at least 800 objects per clock [3]. Although still
a factor to be considered, the G80 minimizes the branching penalties compared
to earlier designs.

GPGPU Before

Previous GPGPU applications had to be adapted specifically to the GPU pipeline,
by splitting the application into fragment- and pixel shader code. The fragment
shader could read data unlimited times in a kernel, but only write once at the
end. The computational domain for GPUs were in the form of texture coordi-
nates, which are similar to indices in an array on a CPU. Each fragment was
given a set of texture-coordinates by the rasterizer, which were linearly inter-
polated between the input vertices. The fragment processor manipulated the
data in its texture-coordinate, passed the result to the vertex processor, which
in turn controlled the output range of the computation. Each computation was
invoked by drawing geometry [4]. The texture unit was thought of as read-
only interface, while Render-to-Texture was thought of as write-only interface.
For better utilization of the hardware, manually distributing specific workloads
amongst the rasterizer, fragment- and vertex processor was necessary.

Initially, a fragment program had no scatter instructions (writing to memory
from computed address, a[i] = x), because a fragment shader had no texture
write operation. One could convert a scatter to gather operation by multiple
passes over the data. However, one could use the vertex shader, instead of
fragment shader, to scatter values using point rendering. While the fragment
processors had direct access to texture memory, the vertex processors had to
go through the rasterizer and fragment shader to access memory. With the
GeForce6800, VTF instructions gave the vertex processor direct access to tex-
ture memory as well [8].

GPGPU Now

With introduction of the unified architecture, it is no longer necessary to split
a GPGPU application into vertex and fragment programs. Now, the shader
units have become more general purpose than before, supporting both vertex
and fragment operations.

With the new memory hierarchy, data can be quickly shared between threads
within the same execution unit. All stream processors have access to the global

26

memory [16]. Synchronization between threads can be performed local on a
multiprocessor, to make sure all threads have their correct data before starting
the computations. However, synchronization is not supported between multi-
processors.

CUDA [16] is a new high-level GPGPU API introduced by NVIDIA. CUDA
is very similar to the C programming language, only with some extra GPU
specific functions and variables. Unlike Cg, CUDA is only supported by NVIDIA
GPUs.

Using this API, the programmer can split the threads into a grid of blocks
in multiple dimensions. Each block of threads is guaranteed to execute on the
same multiprocessor, thus easily allowing for quickly sharing data between the
threads within the same block. To share data between different blocks, it is
necessary to transfer data to the global memory first. This is a much slower
operation and should be avoided, if possible.

Code that runs on the GPU is called a kernel. These kernels are started
from the host, after the necessary data has been transferred from the host to
the GPU memory. The kernel calls are asynchronous, which means that the
CPU can continue its work, while the GPU works on the kernel code. However,
the memory transfers to and from the GPU are blocking operations.

ATT’s alternative is called CTM (Close-To-Metal), which is a low level spec-
ification of the GPU instructions. They leave it to the open source community
to develop APIs for their GPUs. Brook+ is an alternative to CUDA for pro-
gramming ATT GPUs [29].

Data Types

Previous GPUs only supported 16 to 32-bit floating point values. The NVIDIA
FX and 6 Series supports both formats, according to the IEEE-754 standard.
However, the competing ATI products, Radeon 9800 and X800, only supports
a non-compliant 24-bit format. Integers were not supported at all, and had to
be represented by shorter range floating point values [8]. However, the latest
GPUs support integer values, and the latest FireStream GPUs from AMD,
support double precision floating point numbers as well. NVIDIA’s Tesla cards
are to support double precision in the future.

GPU Languages
Multiple languages are available for programming GPUs [13]:

e Cg: Offers a C-like syntax for creating GPGPU applications for split
shader architectures. A Cg compiler is used to compile fragment and
vertex processor instructions.

e Microsoft HLSL: Basically Microsoft’s implementation of Cg. The differ-
ence is that Microsoft has added some extra functions for calling DirectX
via the shader programs, thus not adding anything to GPGPU applica-
tions, except making them platform dependent to Windows and DirectX.

27

e OpenGL SL: This is also similar to Cg, and was included in OpenGL 2.0.

e CUDA [16]: This is the new vendor specific API for programming NVIDIA
cards. It is very simple to use, with its C-like syntax and straightforward
thread-domain decomposition support. However, for full utilization of a
GPU, important factors, such as memory alignment, must be handled by
the programmer. This requires skilled programmers and intricate knowl-
edge of the specific hardware.

e Brook+: An extension to the Brook stream programming language, de-
veloped at Stanford University, for use with ATT GPUs.

e RapidMind: The RapidMind platform [20] is interesting, because of its
one code fits all paradigm. The programmer simply uses RapidMind’s
data types and program structure in combination with regular C+-+ code,
and libraries takes care of the underlying architectures (e.g. Cell, GPU,
multi-core CPU). There is no need to alter the source code when changing
platforms. It is especially interesting in combination with the Cell proces-
sor, which is quite hard to program using SPU and PPU intrinsics. We
tried to contact RapidMind for an academic license to their platform, but
they did not offer this nor single commercial licenses. Thus, we were not
able to use it this project.

3.3 Programming Multi-Core CPUs

Multi-core CPUs were introduced to the market when heat dissipation and
power consumption became a limiting factor when pushing the clock speeds
further. Multiple slower cores were a cheaper solution, which generated less
heat and needed less power than increasing the speed of a single core [24].

The production size technology is currently at 45 nm, which opens for an
incredible amount of transistors on a small area. Hence, the number of cores
will grow in the future, as the production size gets smaller and smaller.

For software developers, this means that investments have to be made in
multithreading their applications, to keep up with the current computer archi-
tecture development. Luckily, there are multiple tools are available to make
the transition from serial to parallel code easier. In the following sections, an
introduction to different tools will be introduced, and pros and cons of each are
discussed.

3.3.1 C++ Parallel Programming APIs
Compiler auto parallelization

The Intel compiler has auto-parallelization capabilities, which is an easy way to
add parallelism to an application. Adding the -parallel flag to the compilation,
will make the compiler look for parallelizable loops and try to parallelize them
automatically, using OpenMP. However, auto-parallelization is not magic, and

28

0O Ot Wi

— e e
QL W NN = OO

Listing 3.1: Creating and joining threads using Pthreads

int main ()

{

pthread t thread;
int input = 10;

pthread create(&thread , NULL,
threadFunctionName , (voidx)&input);

pthread join(thread , NULL);
}

void* threadFunctionName (voidx in)

{

...do work ...

}

if the compiler for some reason thinks a loop should not be parallelized, even if
it is parallelizable, it will not try to do so.

Adding the flag -par-report8 to the compiler, will make it print report infor-
mation about the loops it analyzes. The programmer can use this information
to find which loops were not parallelized and why, and try parallelize them
manually.

POSIX Threads

POSIX threads is a portable raw threads standard for consistent programming
of multi-threaded applications, across different operating systems. It gives the
programmer more control over the threads than OpenMP, but in the same time
leaves things to the programmer which OpenMP does automatically, such as
thread creation and load balancing. Thread synchronization is done using mu-
texes, which can be locked and unlocked by the programmer to protect critical
sections of code from other threads. Condition variables are also available for
the programmer to suspend threads in certain cases. The suspended thread can
be signaled by other threads to wake up and continue execution when a specific
condition applies [14].

There are different implementations of the POSIX standard, such as Pthreads
in Linux and Windows threads. The Boost library includes a thread wrapper,
that provides a highly portable raw threads interface [21].

Listing 3.1 shows how to create and join threads using the Pthreads API.

29

N OOk W

Listing 3.2: OpenMP parallel for
#pragma omp parallel for
for(int i = 0; i < n; ++i)
ali] += 1i;

#pragma omp parallel for
for(int i = 1; i < n; ++i)
ali] = a[i] + a[i—1];

OpenMP

OpenMP is a portable API which offers an easy approach to parallelization.
It provides different pragmas and function calls, leaving the threading details
to the compiler. Thus, the programmer does not have to handle load balanc-
ing, synchronization and creating and destroying threads, and can focus on
re-designing and locating parallelizable algorithms instead [1][18].

Adding OpenMP parallelism to existing serial code is as easy as enclosing
existing code in simple pragma statements. However, care must still be taken
when there are interdependencies between data and when working with large,
advanced algorithms. Since OpenMP hides the parallel logic behind the scenes,
the programmer does not have the same amount of control as with Pthreads.
This restriction may, in some cases, force the programmer to use Pthreads in-
stead. However, combining Pthreads and OpenMP is fully supported, and can
be used as a tool to add parallelism to advanced applications.

Another excellent property of OpenMP is that the serial code is kept intact.
If a compiler does not support OpenMP, the pragma statements are ignored and
the application is compiled serially. Although most compilers today support
OpenMP, this adds an higher level of code portability.

The next version of OpenMP, v3.0, will have support for a new taskq and
task pragma [18]. A similar construct has been available in the Intel compiler
for some time. This new pragma adds a work-queuing execution model to an
application, allowing to parallelize recursive algorithms, dynamic-tree search
and while loops [23]. The work-queuing model allows for fast task switching
between threads, using a thread pool, instead of creating and destroying threads
per task. The master thread enqueues tasks in the work queue, while the other
threads dequeue tasks in the other end until it is empty. Nested task-queuing
is also possible, where a task’s thread becomes the master thread for any new
taskq block it encounters inside its current task.

Listing 3.2 shows two for-loops parallelized by OpenMP. The first loop will
be parallelized correctly, however, the second has flow dependencies between
elements in the loop. A limitation in OpenMP is that it does not analyze code
correctness [10], thus the second loop will generate wrong results, which will not
be detected by the compiler. This means that the programmer must carefully
design code, with good data decomposition, to avoid problems like this.

30

Intel Threading Building Blocks (TBB)

Intel TBB is a portable library adding scalable parallelism to standard C++.
It focuses on splitting the work into tasks, leaving the threading details, such
as synchronization, to the library [21]. It includes concurrent containers, such
as queues, vectors and hash maps, and provides interfaces for scalable memory
allocation.

3.3.2 Parallel Programming Tools

Debugging parallel code can be quite hard without tools to help you. Detecting
race conditions and deadlocks in parallel code can be close to impossible without
debugging tools. Different tools are available for debugging parallel code, such
as Intel’s VTune with Intel Thread Checker, Tau, Valgrind and GDB.

31

Chapter 4

Multi-Core & GPU Models

In this chapter, different models used in this project are described. It starts with
a description of related work and models, followed by a description of the target
algorithm. The strategy for introducing GPU computing in the application is
then described, followed by a theoretical multi-core performance and implemen-
tation model. Finally, three performance models are introduced. First, a model
using serial timings to predict parallel speedup is presented, followed by two
theoretical performance models.

4.1 Related Models

In the current era of multi-core architectures, a lot of development and research
has been done not only on homogeneous architectures, but also on heterogeneous
execution models. Both Intel with Nehalem and AMD with Fusion are focusing
more and more on heterogeneous chip designs, scheduled to arrive in 2009. The
already available Cell processor is another example of a heterogeneous design
with huge performance capabilities. GPGPU computing, where CPU cycles
are offloaded on GPUs, is another example. However, parallel programming
introduces many caveats such as race conditions and data locality problems,
and requires a new way of thinking. For homogeneous multi-core platforms,
OpenMP has been a standard for handling parallel execution for a long time.
However, for heterogeneous platforms, new tools and extensions are needed to
utilize the new architectures.

EXOCHTI [28] is an attempt to tightly couple specialized accelerator cores
and general purpose CPU cores, by representing heterogeneous accelerators as
ISA-based MIMD resources in a shared virtual memory heterogeneous multi-
threaded execution model. It extends the OpenMP pragma for multithreading
and allows for accelerator-specific in-line assembly in a C/C++ environment,
creating an TA32 look-and-feel in the programming environment. Prototyping
was performed on an Intel Core 2 Duo in combination with an Intel GMA X3000,
and speedups between 1.41x to 10.97x was gained using this execution model.

32

Korch and Rauber [12] have implemented different types of task pools, in
both C and Java, and performed a thorough comparison of the different im-
plementations. They saw that the choice of implementation for a task pool,
can have great impact on its performance. They concluded that dynamic task
stealing, using a private and a public queue for each thread, provides the best
scalability. Using this design, the bottleneck of having multiple threads ac-
cessing a single, global queue is eliminated. They also implemented a memory
manager, which allowed the task pool to reuse memory for new tasks, instead
of allocating and de-allocating tasks in memory for each calculation.

Several thread pool implementations are described in various literature [1,
14], and different libraries, under various licenses, include working thread pool
implementations. One thread pool is built on top of the C+-+ Boost library,
and is a work in progress [25]. Intel also provide a working solution in their
Threading Building Blocks library [21].

Aliaga et al. [2] used a task pool strategy to create a parallel preconditioner
based on ILUPACK. By first using the Multilevel Nested Dissection algorithm
on the initial sparse coefficient matrix, they were able to extract balanced elim-
ination trees with a high level of concurrency. By manipulating this elimination
tree, they were able to organize all tasks in a tree like structure, while pre-
serving the dependencies between them. Their tree structure is similar to the
tree structure in our application, which means that our application could be
parallelized in a similar way.

Kessler and Lowe [11] have proposed a framework for performance aware
functions, which automatically selects the optimal implementation variant, based
on component meta-code and information about the current hardware. The
choice is performed dynamically during runtime, based on the current prob-
lem size and the number of available processors to each respective component.
A simplified version of this framework, which could choose between serial or
parallel execution dynamically, would be interesting for our application.

4.2 The Algorithm

The algorithm’s main purpose is to optimize flow by calculating phase flow from
the wells, through to network and up to the terminal. By manipulating different
parameters in the network, different targets, such as min/max pressure, will be
maintained if possible.

Our application can be used, in combination with an oilfield simulator, to
stimulate the development of an ocilfield over time. Our application’s job is
to assure optimal flow through the network of oil-wells, by collecting sensor
information and controlling different actuators that in turn affect the flow in
the pipes. The simulation over time is necessarily a serial operation, since the
results from the previous time steps is used as input into the next. Thus, it
is not possible to parallelize this operation. However, our application allows
the user to simulate multiple network topologies in each time step, to find the
optimal topology over time. These different topologies are fully independent of

33

each other and can therefore be computed in parallel. This is the highest level
of parallelism possible in this application.

The second highest level of parallelism, is parallel traversal of the oilfield
networks. However, these networks have interdependencies between each level
in the tree structure they compose. All child nodes must be calculated before
their parent nodes, since the results from the children are used as input to the
parent.

The third level of parallelism is similar to the previous, only in that smaller
parts of the tree is recalculated when certain parameters are reached. These
smaller parts are the applicable child nodes of the current node in the previous
parallel level. This third level will yield the lowest speed up of the three, since
in certain cases there might only be one or two child nodes to be calculated.
This may cause the setup and management of the parallel computation to add
significant overhead compared to the amount of calculations to be performed.
It may even cause slowdown. Figure 4.1 gives a graphical representation of the
algorithm.

4.3 GPU Model

Our initial focus was on seeing if GPUs could be used to speed up the calculation,
by using profilers are used to locate hotspots in the application. While looking
for hotspots, it is important to keep in mind to GPU’s high level of parallelism.
If the hotspots located cannot be split up into a significant amount of parallel
operations, the GPU might end up being severely underutilized.

So, what are the costs of offloading CPU cycles to the GPU? The main factor
is data locality. The latency of transferring data from the host, through the PCI
express port, via the GPU’s global memory and finally to the GPU’s shared
memory, severely exceeds transferring data between RAM and the CPU. Thus, it
is important to look for parts of the code which transfer as little data as possible
between the host and the GPU, compared to the number of computational
instructions performed on the data.

The theoretical transfer rate of the PCI express port is 4GB/s i each direc-
tion. DDR2-1300 (PC2-10400) RAM modules, have a bandwidth of 10.4 GB/s,
and for comparison, the CUDA SDK bandwidth test returns a bandwidth of
~86 GB/s between the GPU (GeForce 8800 GTX) and its global memory. The
global memory bandwidth on the GPU is over 20 times faster than the transfer
rate over the PCI express port, and eight times faster than the main memory
bandwidth on the host. The two last bandwidths are theoretical, and may not
be the actual numbers in a real-life benchmark.

When the data has arrived in GPU’s global memory, it is extremely impor-
tant to utilize the shared memory, since they offer one cycle access to a value,
compared to the global memory’s 2-300 cycle transfer latency [17].

Another important factor is the data-type support offered by different GPUs.
Older GPUs only supported proprietary floating-point values. Integer values
were not supported, and floating-point values had to be used instead. This

34

Present (Serial) Timeline 2030.0603
| | | -
| | | | | | | | | | | | | -

(Parallel)
Different pressure
®eo® systems in each
time step

(Serial)
Levels in
the network

® ‘\ \
Ne— I
(Parallel) Independent nodes on each level

Figure 4.1: Algorithm overview

35

could induce problems with addressing, because of the floating point precision.
Newer GPUs, however, support integer values as well as IEEE 754 standard
floating point values. Special GPGPU’s, such as the ATI FireStream, support
double position values as well. All this must be considered when targeting the
hotspots in an application [4].

Recursion is not directly supported by GPUs either, however, this can be
made possible by implementing a stack, say, in CUDA. All in all, GPUs are
happiest when doing the same instructions on enormous amounts of data at the
same time, without transferring anything between two are from the host. Using
these criteria, together with the profiler, we will try to find suitable code to put
on the GPU to offload the CPU.

4.4 Multi-Core CPU

Using multi-core CPUs allows for higher level parallelism than by using special-
purpose GPU technology. Thus, parallelizing the application using multi-core
technology will be attempted from top to bottom, instead of bottom to top, as
in the GPU attempt.

The overhead introduced with multithreading may in some cases cause cal-
culations to be slower in parallel than in serial. Thus, a method for suspending
threads is needed to minimize threading overhead. A model over serial versus
parallel traversal of the trees can be used to predict if the target case will benefit
from parallel execution.

4.4.1 Parallel Implementation Model

The order of execution of the initial target, the second level of parallelism, in
serial mode, is maintained in a one-dimensional vector and traversed using a
regular for-loop. Since there is only one thread traversing the tree in serial
mode, the only important traversal issue in this mode is building the traver-
sal order vector correctly. However, when using multiple threads, care must
be taken to make sure all child tasks are completely finished before a thread
can execute the parent. Parallelizing the tree traversal while maintaining the
dependencies, requires low-level control over the order of execution, thus using
a simple OpenMP parallel-for is not possible.

Another important property in our application is that each calculation is
fairly small, but executed millions of times during a simulation. Thus, creat-
ing and destroying threads for each calculation will add a lot of unnecessary
overhead. To avoid this, a thread pool using suspended threads will be devel-
oped, in combination with a task queue. By creating a base task and using
polymorphism, the task queue can easily be used with different kinds of tasks.

A task queue can be used for all three levels of parallelism mentioned in
Section 4.4. The tasks in the highest level of parallelism, namely the different
pressure systems, are totally independent of each other. Thus, there is no need
to maintain interdependencies between these. However, since the second level

36

of parallelism is inside the first, and the third inside the second, the task pool
must be able to handle nested parallelism. This can be handled by allowing
the use of multiple task queues. By pushing nested queues on a FILO stack,
threads will pop tasks from the innermost queues first, thus maintaining the
correct order of execution. When a task queue is empty, it is popped from the
queue stack, revealing the higher-level queues again.

For the second and third levels of parallelism, each pipe will be defined as a
task which a single thread can execute. To maintain the dependencies between
parent and child tasks, each task must know when its children are done. This
will be implemented by using a child counter in each task which is initialized
with the number of children for this task. Each task will have a pointer to
its parent, and will decrement its parent’s child counter when completed. The
value of the counter will be returned to the thread which executed the child
task, and the thread that gets zero in return, will execute the parent task next.
This counter will be accessed by multiple threads, thus it is a critical section
which must be protected by a mutex. This task tree must be created prior
to execution, to define the interdependencies correctly and to ensure correct
execution order.

The simplest form of task queue will be implemented, namely using a single
global queue, to see if a task queue is a feasible parallelization solution. For
the parallel tree traversal, only the leaf nodes will be put in the queue, while
the remaining tasks will be accessed through each task’s parent pointer when
all child tasks are finished. Thus, only the leaf nodes will get the performance
hit of using a single global queue.

4.4.2 Practical Performance Model

This model uses a hands on approach to try to determine which part of an ap-
plication would best benefit from parallelization, without actually parallelizing
it. By doing detailed timings of the serial execution and building replica tasks,
which are doing dummy CPU-intensive work for the same amount of time as it
did serially, one should be able to determine if it’s worthwhile parallelizing the
timed code.

A replica network will be created using timings from the serial executions.
Each task in the replica network will be set to sum a variable for the same
amount of time the task used serially. When a task reaches its execution time,
it will simply exit, and the thread running it will get a new task from the
queue. Although these tasks will not behave exactly like the tasks in the actual
application, this should give a basic idea of the possible speedup to be gained
by parallelizing the selected code.

Timers

The first thing to do when doing detailed timings of code, is to find a decent
timer. Three important characteristics for timers is its overhead of use, its pre-
cision and finally, its correctness. A simple benchmark was performed between

37

Slowdown Having Timer Inside Loop
800

700
600

500
B Gettimeofday

400 M std::clock

Slowdown

300

200

100

Figure 4.2: Timer slowdown

two timers, namely std::clock and gettimeofday, determining the overhead and
granularity of the two. Determining their correctness is more difficult on a mi-
crosecond level, and the timer was chosen from the first two criteria. The chosen
timer will be used for timing the replica tasks as well, which should make its
correctness irrelevant relative to the real time used.

The timers were tested with a simple for loop, summing an integer value for
9999999 iterations. The base case had the timers outside the loop only, and
the overhead test had the timers inside the loop as well. Figure 4.2, shows the
overhead of having the respective timers inside the loop, and that std:.clock has
the most overhead of the two. The benchmark also showed that gettimeofday
had the highest precision, as can be seen in Listing 4.1.

4.4.3 Theoretical Performance Model 1

In this section, a performance model of the serial and parallel computation of
an arbitrary network configuration, is developed. The algorithms used to solve
the nonlinear equations are highly irregular, thus making it hard to model them
in detail. Hence, several simplifications will be made. A similar tree structured
problem can be found in [2].

The main simplification is the predicted calculation time of each pipe. Only
the number of segments in a pipe will be used to predict its calculation time.
Also, the application might perform an undefined number of traversals of the
tree in each time step, altering the input to available actuators in each traversal,
to try to match the target pressures defined by the users. Since it is impossible
to know the number of times this will happen before the calculation, this will

38

Listing 4.1: Output from timer benchmark

9999999 iterations in loop for all benchmarks:

—— Timing sum+=1 outside loop wusing std::clock
STD outside loop timed: 0.020000 seconds

—— Timing sum+=1 outside loop using gettimeofday
TIMEVAL outside loop timed: 0.026519 seconds

—— Timing sum+=1 outside and inside loop using std::clock
STD inside loop timed: 6.860000 seconds

STD outside loop timed: 14.090000 seconds

—— Timing sum+=1 outside and inside loop using gettimeofday
TIMEVAL inside loop timed: 4.287836 seconds

TIMEVAL outside loop timed: 8.803945 seconds

not be included in the formulas. However, this will be the same for the serial
and parallel model. The model also assumes a fairly balanced work load across
each level in the network, since it will use the average time to compute one pipe
on each level and it assumes that the overhead of distributing work to threads
is negligible. It will use the timing output described in Section 4.4.2 for the
calculations.

A model for serial execution follows:

N
T, = Z nSeg; * ,Tseg
1=0

Where N is the total number pipes in the tree, nSeg; is the number of
segments in the ith pipe and T, is the average time to calculate one segment.

The following formula will be used to predict the parallel execution time of
an arbitrary network. Because of the interdependencies between the levels in
the tree, it is necessary to involve the height of the tree in the calculation. Each
higher level in the tree will have fewer pipes than the levels below, thus the
higher one gets in the tree, the fewer threads will be able to do work in parallel.

However, another important property of the parallel traversal, is that it is
not necessary to compute all nodes in a level before going to the next. Once all
child nodes of a specific node are finished, this parent node can be computed in
parallel with nodes from lower levels. Thus, once finished with one level, most
nodes in the level above might be finished already, even nodes in higher levels
as well. The model assumes all nodes in a level is completed before going to the
next.

A model for parallel execution follows:

h
T,=) Ti*R;
=0

39

where h is the height of the three.

The next formula sums the time taken to calculate the total number of
segments in a level in the tree, and averaging them over the total number of
pipes on the same level. This gives the average amount of time it takes to
calculate one pipe on this level.

ng
Zj:o nsegj * Teegj
7

ﬂ:

Where n; is the number of pipes on the current level, nSeg; is the number of
segments in the jth pipe and Ty, is the average time to calculate one segment
on the jth level. The last variable must be timed using a benchmark to get the
correct value on each platform.

The last formula calculates the ratio between the number of pipes on one
level and the number of processors/threads used in the calculation. Since only
one thread can be assigned to a pipe at a time, the number of threads utilized
cannot, be greater than the number of pipes on the current level. Thus, the ratio
cannot be smaller than one.

R; = o , D n;
p

Where p is the number of processors, which cannot be higher than the num-

ber of pipes, n;, on the current level.

4.4.4 Theoretical Performance Model 2

This section describes a simple model which finds the minimum time needed to
calculate a network in parallel, while maintaining the serial dependencies. It
assumes perfect conditions with unlimited threads and no scheduling overhead.
This model will also use the timing output described in Section 4.4.2.

This model can be summarized as follows:

1. Obtain timing results from calculating network serially
2. Build execution tree of tasks with this timing info

3. Traverse this tree recursively from root to find most expensive path. This
path will be the best parallel performance possible, since all other paths
will take less time.

The model calculates the minimum time needed, by finding the most expensive
path from the root node, through the network and down to the leaf node level.
Since the model assumes unlimited threads, all other paths in the network will
be finished before this path reaches the root node. Thus, it will not be possible
to calculate the network faster than this model predicts, while still maintaining
the serial dependencies.

The model is calculated by recursively traversing the network from the root
node down to the leaf nodes. Each node in the tree calculates which child node

40

_ O © 00~ Otk Wi -

—_ =

13
14
15

Listing 4.2: Model 2 calculation

//

// Calculates the minimum amount of time needed
// to calculate a whole tree in parallel,
// by finding most expensive path from root to leaf

//
double findMostExpensivePath (SleepTasks task)

double max = 0;
for(int i = 0; i < task—>getChildren().size(); i++)

double time = findMostExpensivePath ((SleepTaskx)
task—>getChildren () [i]) ;
max = (time > max) ? time : max;

}

return max + task—>sleep usec;

is most expensive, by using the timing data from Section 4.4.2, and returns its
own time plus the time of its most expensive child. Thus, the most expensive
calculation time from the leaf node level up to the root is summed and returned.
See Listing 4.2 for the code.

4.4.5 Model Results

Three different test cases, two for steady-state and one for transient calculations,
are used in the benchmarks. The small steady-state case (Case I) consists of four
wells and three transport lines while the large case (Case II) varies its amount
of wells between 60 and 80 at different times steps. The transient case (Case
III) is the same size as Case I. The main focus is on the steady-state cases I and
II, since the transient calculations is still in the alpha stage.

Case II also has a lot of events specified, which are triggered at specific times
during the calculation. These events might affect the whole network in different
ways, such as closing of wells or changes in different targets throughout the
network. It also has three root nodes, since there are three platforms and three
transport lines to shore. One of these transport lines is an order of magnitude
more expensive to calculate and the two others, which might degrade parallel
performance.

Results

Detailed timings were performed of the serial network traversal of Case I and
Case II. The execution time of each branch in the network was saved to a file
during serial execution, using the function "gettimeofday". Listing 4.3, shows

41

Listing 4.3: Practical model’s timing output of the serial execution of the net-
work traversal

Column descriptions
Node name;line (0) /well (1) ;Parent name;Num. segments;
Time in usec.

A—14H;1;TM_OS 2;38;2542
A—13H;1;T™M_OS 2;36;2399

™ OS 2;0;FCP;20001;374457
A—12HT2;1;TM OS 1;40;261
A—11AH;1;TM_OS 1;37;2154
™ OS 1;0;FCP;20001;332785
FCP;0;0;1002;7845
A—-14H;1;T™M_OS 2;38;237
A—13H;1;TM_OS 2;36;184

T™ OS 2;0;FCP;20001;248254
A—12HT2;1;TM _OS 1;40;258
A—11AH;1;T™M_OS 1;37;180

™ OS 1;0;FCP;20001;164595
FCP;0;0;1002;5999

(...)

the output from the serial timings inserted into the target code in the applica-
tion. The fields, from the left, are: pipe name, if it is a well (1) or a transport
line (0), its parent’s name, its number of segments and finally the calculation
time used, in microseconds. This data was then parsed by a test application in
the thread pool implementation, which used both models to predict the parallel
time used.

Figure 4.3, shows the results produced by the different models. Real and User
is the output from the time function, in Linux, for the practical model. Real
is the wall clock time and User is the combined time used by the application,
which includes the time used by all threads and other overhead. It is observed
that the User time is stable as the number of cores increase, which shows that
the thread pool implementation scales well, without introducing a lot of extra
overhead per new thread.

It is also observed that the Real time used matches Model 2 very well. For
Case I, the theoretical best time is reached already at two cores, which is due
to the low amount of parallelism for this case. For Case II, the theoretical best
is reached at around nine cores due to its higher level of parallelism. However,
even though there are more tasks available to do in parallel, it does not scale
over nine cores due to the low level of parallelism in the highest levels in the

42

network and their order of magnitude longer computation time.

Model 1 is able to model speedup using arbitrary number of cores, however,
it does not match the others very well. This model’s assumption that all tasks
on each level are fairly well balanced, does not necessarily match to real case
scenarios. If one task on a level is much more expensive than the others, this
task’s computation time will be spread out over all tasks on that level. This
will in turn make multiple threads work for a shorter amount of time, instead
of having some threads working for a very short time, while one thread keeps
working for a long time after the others are done and waiting. This is what
happens in both cases, and especially for Case II, where one of the three top-
level nodes is an order of magnitude more expensive than the others, thus, an
artificially high speed up is predicted. Thus, care must be taken when making
assumptions in a model, such that decisions are not made on the wrong basis.

By using three different models and analyzing the problem cases in accor-
dance with the assumptions made, we conclude that the practical timing model
and Model 2 give reliable results, while Model 1’s predictions are too ambitious
for the current test cases.

43

Parallel Time Used Case |
Real, User, Model 1 and Model 2
110

M0 00006 00 06 006 06 600 0

105 “\
_100 \
3 ‘ B Real
§ \ 9 User
g 95 | 7 Model 1
Tg’ : — Model 2
= 90

8 v v v vvVvVvVVVVVVVV VYV

80
1723 45678 910111213141516
Number of Cores

(a) Predicted times for Case I

Parallel Time Used Case Il
Real, User, Model 1 and Model 2

140
130
120
110

0000000 O 0O > ¢

100 & Real
- User
90 v Model 1
80 = Model 2

Time (seconds)

70
60
50

40
12 3 4567 8 910111213141516
Number of Cores

v
VVVYVvYVvVVVYVVvVVY VYV

(b) Predicted times for Case II

Figure 4.3: Time predicted by all models, for Case I and Case II

44

Speedup Case |
Practical, Model 1 and Model 2

1,3
S0 0000 O O OO OO0 09
1,25
1,2
=== m m m m m o m m = m = = 5 #Rea
S - Model 1
B 1,15 Model 2
[0
Q.
(%)
1,1
1,05
1
123 4567 8 910111213141516
Number of Cores
(a) Predicted speedup Case I
Speedup Case Il
Practical, Model 1 and Model 2
3,5
3 ’7777‘,,,,,.,47070 o o O o o
* &
2,5 / - Real
=3 - Model 1
? Model 2
a
0n 2 ¢
1,5

123 456 7 8 9101112131415 16
Number of Cores

(b) Predicted speedup Case II

Figure 4.4: Speedup predicted by all models, for Case I and Case 11

45

Chapter 5

Parallel Implementations

This chapter describes the parallel implementations performed in this project.
First, short introduction to different profilers and given, followed by a listing
of the hardware used in the benchmarks. Next, debugging issues introduced
in parallel code is discussed, followed by a descriptions of the GPU implemen-
tations and the problems encountered when trying to offload CPU-cycles on
the GPU. The last section gives a detailed description of the multi-core CPU
implementation and its results.

5.1 Profiling

Special GPU profilers are available which can show how the GPU is utilized.
However, these were not initially intended for GPGPU applications and will
therefore not be used in this project. Care must be taken when using general
CPU profilers on code with calls to GPUs. Blocking and non-blocking calls
between CPU and GPU may give erroneous profiles [30].

Here is a list of GPU profilers:

e NVIDIA’s NVPerfHUD
e AMD’s GPU PerfStudio
e AMD’s GPU ShaderAnalyzer

5.1.1 Quick Load Balancing Test for GPU Code

A quick way to see if the GPU computations are memory bandwidth limited, is
to change the frequency of either the core or the memory to see if the time used
changes. If the timing results are the same after down-clocking or overclocking
the core, it means that memory is the bottleneck [30]. On earlier split shader
designs, adding more work to either the fragment or vertex shaders, could help
determine if either are overloaded. If the timings are the same after adding more

46

work, the respective shader processor is underutilized and the new computations
are for free.

5.2 Hardware Used

Table 5.1, shows the hardware used for the CUDA implementations. Initially,
a rather outdated computer was used with CUDA, since there was already a
GeForce 8800GTX installed in it. The P4 machine was soon replaced by the
another AMDG64 machine, for reasoned explained in Section 2.3.1. For CPU
and multi-core implementations, the hardware listed in Table 5.2 was used for
testing.

Table 5.1: CUDA Hardware

Hardware P4 AMDG64

CPU P4 AMD64

Freq. 3.2 GHz 3500+

Extras HT 64-bit

RAM 1GB 2GB
MotherB. MSI 945PL Neo v1.0 ASUS A8E-V Deluxe

GPU GeForce 83800GTX GeForce 83800GTX

Driver 169.09 169.09

CUDA Toolkit 1.1 1.1
OS. Linux Ubuntu 7.10 32bit Linux Ubuntu 7.10 64bit

Compiler gee 4.1.2 gee 4.1.2

Table 5.2: Multi-core Hardware

Hardware HP ASUS W5F Laptop
CPU(s) 4 x Intel Xeon X7350 1 x Intel Centrino Duo
Freq. 2.93 GHz 1.66 GHz
Num. Cores 16 2
RAM 64 GB 2.5 GB
OS. CentOS 5 64-bit Linux Ubuntu 7.10 32bit
Compiler gee 4.1.2 gee 4.1.2

5.3 Debugging
Multithreaded code, because of its undefined order of execution, introduces some

new interesting bugs which can be daunting to address, known as deadlocks
and race conditions. Deadlocks occur when a thread is waiting on a signal

47

from another thread or waiting for a locking variable to be unlocked by another
thread, without this ever happening. This will cause the program to hang
indefinitely.

Race Conditions

Race conditions occur when multiple threads are accessing a shared resource or
memory location at the same time. If one thread writes to this location while
another thread reads from the same location, a race condition occurs and the end
result is undefined. However, the application may pass such critical sections with
no harm done, which makes these bugs harder to detect. Duplicating these bugs
may also be a problem, since they may not occur in an orderly fashion, because
of arbitrary threading conditions or other events in the operating system. Even
worse, debugging using a debugger may introduce certain synchronizing events,
which hides the bugs altogether.

Even introducing too many printfs may mask this bugs in certain cases. The
order of appearance of these statements are random onscreen, making it harder
to debug using this technique. However, printf statements are still used for
debugging multithreaded code. Information such as thread ID and the function
the printf statements is called from should be printed. Pthreads do not have a
thread ID in the specification, but one could use the thread handle’s address,
which is returned from the call to pthread create [14]. In our implementation,
a thread class will be created containing this handle as well as an integer value
ID.

Calls to mutex and condition variables should be surrounded with a printfs
when trying to locate a deadlock or a race condition. This makes it easier to
see if a certain call to mutex or a condition variable actually happened. It is
convenient to conditionally compile these debug printf statements into the code
by defining a DEBUG symbol, since these debug statements can come in handy
at a later time.

Debugging Tools

In this project, a combination of debuggers will be used. First of all, printf
statements will be placed in strategic locations in the code. Our second weapon
will be a thread enabled debugger, GDB, already available in Linux. There is
also a convenient graphical user interface, DDD, available. The third, and most
advanced, is Valgrind’s tools Helgrind and Memcheck, available in version 3.3.0
and above. Helgrind is a multithreading debugger, which locates possible race
conditions during runtime. Memcheck can be used to locate memory leaks in
the code. Profiling is executed like this':

valgrind -v —tool=helgrind . /executable -args

'More options can be found on the Valgrind web page, valgrind.org.

48

valgrind -v —tool=memcheck ./executable -args

5.4 Parallelizing the Application for GPU

The following sections describes the different parts of the code that was imple-
mented on the GPU, and the resulting speedup/slowdown.

The steady-state calculation, uses an integral method for calculating pressure-
loss from the start to the end of a pipe. Each section has to be calculated se-
rially, since the current section needs the result from the former as input. This
indicates that to introduce parallelism, multiple pipes have to be calculated in
parallel. Because of the applications complexity, this will be extremely hard
to implement on a GPU. Thus, some attempts at lower lever parallelism were
attempted, to see what the impact of introducing GPU computations would be.

The transient calculation, however, can do calculations on multiple pipe-
segments simultaneously, thus should be much more suitable on a GPU. It also
consists of a single function, with no tree-traversal, external function calls or
administration logic, thus should be low-level enough to fit for GPU computa-
tion.

5.4.1 CUDA Benchmarks

Both the included bandwidth test and a simple ping-pong test was performed on
both CUDA machines. It was observed that none of the machines were able to
reach close to maximum transfer rates between the CPU (Host) and the GPU
(Device). With newer motherboards and CPUs, the bandwidth between the
Host and Device has been reported, on GPU forums, to push close to the theo-
retical maximum of 4 GB/s over a PCle 16x port. Due to restricted resources,
this has not been confirmed in this project.

Table 5.3: CUDA benchmark results, pinned memory

Test\Machine P4 AMD64
Bandwidth: Host->Device =~ 7980 MB/s ~1.5 GB/s
Bandwidth: Device->Host 7650 MB/s ~670 MB/s

Ping Pong Test: 32 floats 725 000 iter/s 731 000 iter/s

5.4.2 Steady State Calculation

Figure 2.1, shows that the only candidate code for GPU computations is Pipe::CalcDP.
It is the function with the largest impact on CPU-time as well as having multi-
ple values that can be calculated in parallel. It includes 93% of the program’s
runtime. Profiling also shows that this particular function is called 43 573 093
times for 100 calculation steps. Benchmarks, using wall-clock as parameter,

49

states that this setup uses an average of 61 seconds to complete. Thus, this
function is called ~700 000 times/second. This means that transferring data
from the CPU to the GPU and back again, must be possible to do at least 700
000 times/second, to gain any speedup.

A simple ping-pong program, shown in Appendix B.2, was written to see if
this is possible. Tests show that sending 32 single-precision values to and from
the CPU and GPU, without any calls to a kernel, peaked at around 25 000
times/second for the P4 Neo chipset and at about 31 000 on the AMD64 Via
chipset. This is not even close to what is needed to gain speedup in this case.

Thus, in theory, this calculation is not suited for GPUs. It’s computational
intensity is too low, and the target functions are called too often. To see just
how unsuitable it is, a few implementations were attempted and their speedup
calculated. A short description of each implementation follows:

1. Each function, represented by the small squares inside CalcDP seen in
Figure 2.2, calls the same mathematical calculation with different input
data. Hence, it was seen as a candidate for parallelization and moved from
the CPU to the GPU. Different instances of these functions are called from
other places of the code as well, which will also utilize this code. The
implemented function takes 16 input variables and returns a single float.
It executes only one single thread in each call, thus highly unoptimal for
GPUs. This resulted in extreme slowdown of 508.08. The CPU code used
61 seconds, while the GPU implementation used 29977 seconds! The fact
that the implementation only executes a single thread on the GPU speaks
for itself.

2. After the obvious failure of the first attempt, more code was added to in-
troduce parallelism on the GPU. A function getDensity calls six instances
of the function described in the previous point. On the GPU, these six
instances are called simultaneously. However, the amount of instructions
needed to create different arrays of input data for the GPU, supersedes
the amount of computations needed by the CPU to do the computations
itself. The former implementation did not need these arrays to be com-
puted, since it only sends 16 variables in the argument list. Despite this,
a speedup of 1.095 was observed compared to the former implementation.
However, a slowdown of 463.95, compared to the CPU version, is still
observed.

3. The third stage was to implement all 32 calculations on the GPU, including
the ones in getDensity. This implementation consists of a large function
in C++, that gathers the necessary data from the different input matrices
and sends it to the GPU. The GPU uses 32 threads to calculate all values
simultaneously, before the results are transferred back to the CPU. A
speedup of 11.68 was observed, compared to the first implementation.
This shows how extremely important it is to utilize the GPU’s parallelism.
However, 32 threads are not even close to the number of threads needed to
fully utilize a GPU and a slowdown of 43.49 is still observed compared to

30

the CPU version. The main bottleneck, is that the data cannot be moved
fast enough between the CPU and the GPU, as mentioned in Section
2.3.1. There is also a lot of necessary data gathering and administration
overhead on the CPU, before the data is sent to the GPU for computation.

4. There are other areas of the code which calls some of the same functions
represented by the squares mentioned in point 1, but none that show up
in the profile. As a last attempt, only the part in PipeNS::Pipe::CalcDP
is run on the GPU, since this is the only sufficient place where all 32
variables are needed. The rest is run on the CPU. This shows the impact
only on the part really showing in the profile. A speedup of 1.75 was
observed, compared to the former implementation, which concludes that
there is nothing to gain by offloading CPU-cycles on the GPU for this
particular calculation. A slowdown of 24.71 compared to the full CPU
implementation, is still observed.

All these attempts confirms the conclusion in Section 2.3.1, that this calculation
is not suitable to run on the GPU. A lot more code has to be moved to the GPU
to be able to gain any speedup. The primary element that has to be eliminated,
is the transfer of data between the CPU and the GPU. It can not be done fast
enough for this part of the code, thus the necessary input data would have to be
generated on the GPU. This will not be tested in this project, since the possible
gain is assumed to be too low compared to other parts of the code. A better
parallelization for this particular code, would be to use multithreading on the
CPU on a higher level of the code instead.

5.4.3 Transient Calculation

In this calculation, multiple parts of a pipe can be calculated simultaneously. A
pipe can consist from tenth to thousands of sections, each that can be calculated
in parallel. There are two parts in this calculation. A momentum calculation
followed by temperature calculation. The latter calculates how the temperature
spreads out of the pipe walls and into the ground. It has no external function
calls, as the momentum calculation does. Since these calculations are done one
after the another on the CPU, it should be possible to execute the temperature
calculation on the GPU, while the CPU executes the momentum calculation.
However, after the serial optimizations from Section 2.3.3, the target tempera-
ture calculation function only occupies about 30% of the total CPU-time. This,
in combination with the function’s complexity, does not justify maintaining
GPU code for it, thus it will not be implemented in this project.

5.5 Parallelizing the Application for Multi-Core

Parallelizing the application for multi-core CPUs, was soon seen as a more
feasible solution than utilizing a GPU. The application has several possible

o1

SO W N

o

11
12
13
14
15
16
17

Listing 5.1: Pipe::CalcDP: OpenMP Sections

pvt.getposition (p,t);
#pragma omp parallel sections

{

#pragma omp section
{
pvt.Getdensity (p,t, roa, roof, roga, rogf, rowl, rowv,
roglyc) ;
pvt.Getmasratios (p,t, mratghci,mratohci, mratwgac);
pvt. Getviscosity (p,t, viso, viswl, visg, visglyc);
}
#pragma omp section
{
pvt.GetdHdP (p,t, dhdpo, dhdpw, dhdpg,dhdpglyc);
pvt.GetdHdT (p,t, dhdto, dhdtw, dhdtg,dhdtglyc);
pvt.Getentalpy (p,t, ho, hw, hg, hglyc);
pvt.Getsoundvel (p,t, svelo, svelw, svelg,h svelglyc);
}
}

high-level parallelization opportunities, which is unsuitable for GPUs due to its
special purpose design.

When testing the thread pool, the Bash utility Time will be used. This can
give an indication of the scalability of the thread pool, by calculating both the
real and the user time used by an application. The script B.4 in Appendix B.1
converts the output, from the Time utility, into seconds.

5.5.1 Parallelizing by looking at the profile

Looking at the profile image in Figure 2.2, the first parallel option that comes
in mind is the same as was tried on the GPU, namely Pipe::CalcDP. By using
OpenMP sections, the code in listing 5.1 was altered to add parallel execution of
the 32 puttab::(...) functions inside Pipe::CalcDP. However, this actually caused
a slowdown compared to the serial version, which tells us that the overhead of
managing threads for these computations is too large to gain any speedup by
executing them in parallel. It is not a scalable solution either, since there are
only two sections. Adding a section to each function call was even slower. Thus,
it is necessary to go to a higher level for parallelization to gain speedup in this
application.

This shows that profiling alone is not always enough to find the correct
targets for optimization in an application. Deeper knowledge of the respective
algorithms and applications is also necessary.

92

5.5.2 Thread pool Implementation

Initially, Intel’s taskq pragma, also to be available in the OpenMP 3.0 specifica-
tion, was investigated to see if it could solve our problem with little programming
effort. However, no option to easily maintain the interdependencies between the
tasks was found, thus it would result in incorrect results.

A task pool was created using the Pthreads library available in Linux in-
stead. Using Pthreads, controlling the interdependencies between the tasks was
possible, using parent pointers and a child counter protected by mutexes. The
same tools were used to control the thread pool. A thread class was developed
which supports suspending the threads between computations instead of de-
stroying them. When there’s no more work available, the threads will register
themselves in a ready queue and put themselves in suspend mode. The main
thread resumes worker threads by getting a task from the queue and assigning
it to a ready thread. It then signals the worker thread to start executing its
new task. When the main thread has assigned a task to each worker thread, it
starts emptying its queue alongside the other threads until it’s empty. There is
also a barrier for the main thread, which makes sure all tasks are done before
the main thread continues.

Each worker thread will get new tasks from the queue themselves, until there
is no more work left. Since only the leaf nodes are placed in the queue, each
thread checks its current task’s parent task, to see if its current task is the last
child. If it is, the thread will execute the parent task before getting a new task
from the task queue. The last thread to finish its task in a queue, signals the
main thread for this queue to continue.

Nested Parallel Queues

Another important feature of the thread pool, is support for nested parallel
queues. This means that a task in a queue may itself create a queue of its
own and register it in the thread handler, in a FILO manner. Thus, the most
recent queue to be registered will be emptied first, by all available threads. This
feature requires the main thread to join the work of emptying its own queue, or
else all threads would eventually end up waiting at the barrier mentioned above.

Debugging

The thread pool implementation was debugged extensively by using a small and
simple dummy task tree. It is extremely important to protect all critical sections
with mutexes to avoid race conditions. Each execution may slightly differ from
each other, which in turn may result in deadlocks or other errors arbitrarily, if
the code has not been made 100% thread safe.

Using printfs to debug parallel code is quite hard, since the order of the
printouts are arbitrary and may differ in every execution. In Linux, GDB can
debug multithreaded code by allowing the user to step through the code, fol-
lowing every thread’s execution. DDD is a graphical user interface for GDB.
By using GDB in combination with Valgrind’s tool Helgrind, for multithreaded

33

Threadpool time:
1e6 tasks summing for 1e4 iter

\ - Real
\ @ User

8
6
4 _ /ta/.
iy B EESEESSS
2
0
1 2 3456 7 8 9101112131415 16
Number of Cores

Figure 5.1: Thread pool test: Small sized tasks

debugging, and Memcheck, for memory leak detection, all race conditions and
memory leaks were addressed and fixed. Without these tools, this would have
taken much longer. Intel’s VTune and TAU were also tried, but they always
crashed without giving any profiling results.

The thread pool implementation was compiled as a dynamic library and
linked into the application. An example can be found in Appendix A.

Results

Figures 5.1, 5.2, 5.3 and 5.4, shows the scalability of the thread pool up to 16
cores, for very short tasks, and the effect of having larger tasks. For short tasks,
the overhead of managing more threads reduces the efficiency of the calculation,
when using more than 10 threads. Adding more work to the tasks gives better
scalability, as expected.

The first attempt at parallelizing, focused on the third level, mentioned in
Section 4.2. This quickly showed that the overhead of creating a task tree and
maintaining the threads, is too large compared to the amount of computations
performed. The main problem is that it’s not possible to reuse the task tree
once created, since it may change in each iteration.

The second attempt focused on the second level, namely the traversal of the
whole three. This time it’s possible to reuse the tree for multiple iterations,
thus minimizing overhead for this operation. However, the number of iterations

94

Time (seconds)

Threadpool time:

1e6 tasks summing for 1e6 iter
140

’—0—0—00—00000—0—0—0—0—00
120 |

\
\

-
o
o

B Real
\ - User

[o]
o

[2]
o

N
o

N
o

ﬁ\.\t

—|—
- g - g

o
-

2 34567 8 9101112131415 16
Number of Cores

Figure 5.2: Thread pool test: Medium sized tasks

Threadpool time:
1e5 tasks summing for 1e7 iter

i Real
800 |

& User

123456 7 8 91011121314 15 16
Number of Cores

Figure 5.3: Thread pool test: Large sized tasks

39

Threadpool Speedup

Small, Medium and Larger tasks

18
16 ¥
gy
14 ¥
v

12 V - Small
g, Wt ¢ Med.
3 s V Large
Q &
o -
w J

!
/

1 23 4567 8 91011121314 1516
Number of Cores

Figure 5.4: Thread pool test: Speedup of Small, Med. and Large tasks

is unknown and might even be a single iteration.

Although the application, in theory, as a lot of independent computations,
the developer’s focus has been on serial execution. Thus, problems occurred
when introducing multiple threads, mostly due to race conditions. The devel-
opers have made an effort to minimize memory consumption, by having different
parts of the code pointing to the same shared memory locations. This is fine
for serial execution, however, when introducing multiple threads, an enormous
amount of possible race conditions were detected by the Valgrind profiler.

A large amount of time and effort was used trying to remove all potential
race conditions, by making multiple copies of shared data, making functions
static and cleaning up different parts of the code. Still, a lot of potential race
conditions were detected by the profiler and a solution for these was not found
within the time frame of this project, even with the help from the developers.
Despite this, for Case I, correct results were produced in some cases, while others
not, by altering the number of threads used. However, this is not acceptable.
For Case II, the complexity of the event system triggered during the execution,
resulted in erroneous results for every parallel traversal of the network.

Due to the race condition problems, there was no attempt in trying to par-
allelize the highest level, namely multiple pressure systems in parallel. Another
way to parallelize this level, is to simply execute multiple instances of the ap-
plication at the same time, using different input files. This can be streamlined
by using Grid technology, were script files can be used to enqueue different jobs

96

(e.g. different pressure systems) [22]. The Grid middleware will then assign a
job to each core in a network of computers.

o7

Chapter 6

Conclusion and Future Work

In this project, we have optimized a large commercial, serially coded application
for computing optimal flow through oil-well networks. Then, we saw how it
would adapt to two of today’s parallel architectures, the GPU and multi-core
CPUs.

We also created one practical and two theoretical parallel performance pre-
diction models for traversing the oil-well networks in parallel. For different test
cases, we were able to predict the maximum speedup theoretically possible to
gain, by traversing the network in parallel.

Serial Optimizations

Initially, the application was thoroughly profiled and analyzed, using Valgrind,
to find hotspots in the code, and to get an overview of the application. Prior
to this project, not much time had been spent in code optimization, thus, this
became the first goal.

In this project, we showed that for this application, in its current state, there
was more to gain by optimizing the algorithms and changing storage strategies,
than by adding parallelism.

Multiple serial optimizations were performed, gaining between 1.5x-3x speedup
for the steady state calculation, and 30x-50x speedup for the transient calcula-
tion, on different architectures. The latter was achieved by switching from an
unoptimal database storage to a fast binary file storage during the computation.

GPU

By using profilers to locate hotspots in the application, target code for GPU
was located. However, the goal to ofload CPU cycles to the GPU, for the
steady-state calculation, was in the early stages of the projects seen as unfit,
due to the lack of computational intensity. The transient calculation was at
the time of this project too experimental to convert to GPU code and after our
serial optimizations gained 30x-50x speedup, the target temperature calculation

38

only took about 30% of the total CPU time in the Valgrind profile. It was
hence concluded that, with only using 30% of the CPU-time, implementing and
maintaining a GPU code for the transient calculation, would not give adequate
speedup compared to the effort needed to do so. Large parts of the application
must be redesigned and rewritten to work on a GPU, with the most important
factor being minimizing data transfer over the PCI express port.

Multi-Core

Realizing that GPU technology was likely unfit for this application, we moved
our focus to multi-core CPU technology. By instead doing a top down approach
to find suitable parallel parts of the application, the choice of parallelization
technique was a thread pool implementation in combination with a task queue,
which could be well adapted to the structure of the application. By using a
thread pool, the threads can be reused for different tasks during the compu-
tation, saving the overhead of creating and destroying threads for each small
computation. However, introducing multiple threads also introduced the main
problem in multithreading, namely race conditions. In both test cases, the pos-
sible race conditions (more than 600), found by Valgrind, resulted in erroneous
results for the multithreaded executions. A lot of work was put into fixing these
errors, with the help from the developers of the application. However, not all
could be addressed within the time-frame of this project.

The final part of the project, took a more theoretical approach in trying
to determine if parallelization is worthwhile for these types of applications, on
given sets of test data, and to figure out what which parts of the application is
suited for parallelization. Detailed timings of the serial execution were used to
create parallel replica calculations. Using three models, we saw that the parallel
traversal of the networks did not scale well beyond 2-4 threads. The practical
model showed low overhead caused by the thread pool, compared to the other
models, which suggests that the shared task queue is not the bottleneck here,
although a better thread pool implementation would be using distributed queues
with task stealing [12].

A maximum speedup of only 1.18 was predicted for the small case, and 1.34
for the large case, both with unlimited processors available. The small test case
did not gain any more speedup due to the small amount of wells, and the large
test case did not scale well, due to high workload imbalance between the top
and the bottom layers of the network, and the serial dependence in between.

Summary

From the results of this project, the recommended strategy for further speeding
up the given application, is focusing on serial optimizations of the core algo-
rithms and storage routines. A lot of wasted cycles can be saved, by removing
unnecessary data copying and simplifying or changing database storage rou-
tines with other, simpler data storage methods. Our binary file storage showed
a tremendous speedup compared to the database routine in use now, and by

99

using this binary file as a buffer, a thread could be used for storing this data in
a database, while another thread is calculating as usual.

Our models also predicted low scalability and gain in speed, by multithread-
ing only the network traversal part of the application. A lot of work has to be
done to remove the remaining possible race conditions and, for any decent scal-
ability at all, multiple networks must be calculated in parallel using the thread
pool.

6.1 Future Work

In this section, different suggestions for future work is presented, starting with
recommendations for this application:

e The first priority for this code should be a thorough cleanup of the main
algorithms. Simple things such as removing unnecessary variables and
breaking extremely long functions into smaller ones, will make the code
easier to read and manage. By making each function smaller and less
complex to analyze, compilers may also be able to do optimizations of its
own more successfully. Breaking the code into smaller functions, might
also reveal other portions of the code which can be used in the thread
pool, in addition to portion targeted in this project.

e There’s still a lot of potential for serial optimizations in this code, which
should be addressed with close cooperation with the developers to main-
tain correct results.

e A suggestion for parallel execution of the application, is using Grid tech-
nology to enqueue multiple instances of the application, with different
input data. This can either be done using script files, which defines differ-
ent jobs to be executed, or the DRMAA API which gives access to Grid
middleware from within an application. The former has already been tried
for this application in previous work [22], with success. Grid middlewares
are able to deliver work throughout a network of computers. Each core
can be defined as a worker, thus utilizing multi-core technology without
multithreading the application. This, however, requires multiple instances
of the application being queued by the user, which again requires the user
to have multiple individual cases to be computed simultaneously.

Other ideas for future work:

1. Further development of the models: The models created in this project,
only models the traversal of the network by itself. However, there might
be more potential speedup to be gained by utilizing the support for nested
parallel queues in the thread pool. Extending the models to include multi-
ple networks in parallel, could reveal if there is enough potential speedup
to be gained to justify the amount of work needed to remove all race
conditions and managing the added complexity of multithreaded code.

60

2. Verifying the models against similar dependence-tree problems: The mod-
els created in this project should, with minor modifications, be usable in
similar applications to predict potential speedup by adding parallelism,
such as the preconditioner problem in [2].

3. During this thesis project, NVIDIA introduced two new GPU series, the
9 series and the G260/G280 series. The latter was announced during the
last week of my work on this thesis. The most important updates from the
9 series is a 512 bit memory bus and 240 shaders compared to 128 shaders.
Testing applications more suitable for GPU, such as the mandelbrot set

or 3D ultra sound applications, would be very interesting with these new
GPUs.

61

Bibliography

1]

2]

3]

[4]

[5]

[6]

7]

18]

[9]

Shameem Akhter and Jason Roberts. Multi-Core Programming. Increasing
Performance through Software Multi-threading. Intel Press, first edition,
April 2006.

José 1. Aliaga, Matthias Bollhofer, Alberto F. Martin, and Enrique S.
Quintana-Orti. Parallelization of multilevel preconditioners constructed
from inverse-based ilus on shared-memory multiprocessors. In Proceedings
of the International Conference ParCo 2007: Parallel computing: Archi-
tectures, Algorithms and Applications, pages 287-294. NIC-Directors, 2007.

Beyond3D. Nvidia g80: Architecture and gpu analysis. http://www.
beyond3d.com/content/reviews/1/1, 2007. [Online; accessed 08.02.08].

Tan Buck. Taking the Plunge into GPU Computing, volume 1 of GPU Gems
2 Programming Techniques for High-Performance Graphics and General-
Purpose Computation, chapter 32, pages 509-519. Addison-Wesley, Upper
Saddle River, NJ, first edition, March 2005.

Randima Fernando and Mark J. Kilgard. Introduction, volume 1 of The Cg
Tutorial, The Definite Guide to Programmable Real-Time Graphics, chap-
ter 1, pages 1-35. Addison-Wesley, Upper Saddle River, NJ, first edition,
February 2003.

M. Gillespie and C. Breshears(Intel Corp.). Achieving threading
success. www.intel.com/cd/ids/developer/asmo-na/eng/212806.htm,
2005. [Online; accessed 02.04.08].

gpgpu.org GPU floating point. http://www.gpgpu.org/w/index.php/
FAQ#Where_can_I_get_information_about_GPU_floating_point_
precision.3F_Is_it_IEEE-compliant.3F. [Online; accessed 04.05.08].

Mark Harris. Mapping Computational Concepts to GPUs, volume 1 of
GPU Gems 2 Programming Techniques for High-Performance Graphics and
General-Purpose Computation, chapter 31, pages 493-508. Addison-Wesley,
Upper Saddle River, NJ, first edition, March 2005.

Mark Harris and Ian Buck. GPU Flow-Control Idioms, volume 1 of
GPU Gems 2 Programming Techniques for High-Performance Graphics and

62

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

23]

General-Purpose Computation, chapter 34, pages 547-555. Addison-Wesley,
Upper Saddle River, NJ, first edition, March 2005.

Andrew Binstock (Intel). Choosing between openmp* and explicit thread-
ing methods. http://softwarecommunity.intel.com/articles/eng/
1677 .htm, 2008. [Online; accessed 02.04.08].

Christoph Kessler and Welf Lowe. A framework for performance-aware
composition of explicitly parallel components. In Proceedings of the Inter-
national Conference ParCo 2007: Parallel computing: Architectures, Algo-
rithms and Applications, pages 227-234. NIC-Directors, 2007.

Matthias Korch and Thomas Rauber. A comparison of task pools for dy-
namic load balancing of irregular algorithms: Research articles. Concurr.
Comput. : Pract. Exper., 16(1):1-47, 2003.

Leif Christian Larsen. Utilizing gpus on cluster computers. Technical re-
port, NTNU, Norway, 2006.

Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads
Programming. O’Reilly and Associates Inc., 101 Morris Street, Sebastopol,
CA, first edition, September 1996.

NVIDIA. http://wuw.nvidia.com. [Online; accessed 20.01.08].

NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Program-
ming Guide v1.1. NVIDIA, November 2007.

Lectures Univ. of Illinois. http://courses.ece.uiuc.edu/ece498/all/
Syllabus.html. [Online; accessed 04.02.08].

openmp.org. http://www.openmp.org. [Online; accessed 26.03.08].

John Owens. Streaming Architectures and Technology Trends, volume 1
of GPU Gems 2 Programming Techniques for High-Performance Graphics
and General-Purpose Computation, chapter 29, pages 457-470. Addison-
Wesley, Upper Saddle River, NJ, first edition, March 2005.

RAPIDMIND. http://www.rapidmind.net. [Online; accessed 25.03.08].

James Reinders. Intel Threading Building Blocks. O’Reilly Media Inc., 1005
Gravenstein Highway North, Sebastopol, CA 95472, first edition, July 2007.

Atle Rudshaug. Grid technologies for task parallelization of short jobs,
2007.

E. Su, X. Tian, M. Girkar, G. Haab, S. Shah, and P. Petersen. Compiler
support of the workqueuing execution model for intel smp architectures. In
Proceedings, EWOMP, Rome, 2002.

63

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Craig Szydlowski. Multithreaded technology and multicore processors.
preparing yourself for next-generation cpus. In Dr. Dobb’s, May 2005.

threadpool.sourceforge.net. http://threadpool.sourceforge.net/. [On-
line; accessed 16.04.08].

Damien Triolet. Nvidia geforce 8800 gtx and 8800
gts. http://www.behardware.com/articles/644-1/
nvidia-geforce-8800-gtx-8800-gts.html, 2007. [Online; accessed
05.02.08].

Damien Triolet and Marc Prieur. Nvidia geforce 7800 gtx. http://www.
behardware.com/articles/574-1/nvidia-geforce-7800-gtx.html,
2005. [Online; accessed 05.02.08].

Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang,
Xinmin Tian, Milind Girkar, Nick Y. Yang, Guei-Yuan Lueh, and Hong
Wang. Exochi: architecture and programming environment for a hetero-
geneous multi-core multithreaded system. In PLDI ’07: Proceedings of
the 2007 ACM SIGPLAN conference on Programming language design and
implementation, pages 156-166, New York, NY, USA, 2007. ACM.

Wikipedia. http://en.wikipedia.org/wiki/Close_to_Metal. [Online;
accessed 16.06.08].

Cliff Woolley. GPU Program Optimization, volume 1 of GPU Gems 2 Pro-
gramming Techniques for High-Performance Graphics and General-Purpose
Computation, chapter 35, pages 557-571. Addison-Wesley, Upper Saddle
River, NJ, first edition, March 2005.

64

Appendix A

Thread Pool Overview

e ThreadHandler: Creates and manages threads and distributes work to
available threads from a list of task queues.

e CThread: A thread wrapper which supports suspending threads. When a
thread is signaled from the thread handler, the thread resumes execution
until all task queues are emptied. When there is no more work, it puts
itself in suspend mode and registers itself as available.

e TaskQueue: Holds a queue of tasks and condition variables used for syn-
chronizing the parallel queue traversal with the main thread.

e CTask: A base class for tasks, with pointers to parent tasks to support
tree structured workloads. Override this class to make arbitrary tasks.

e ThreadTimer: Has functions for starting and stopping timers, and saving
timings in arrays.

e main: Includes a lot of test code and examples of thread pool usage.

A.1 Using the Thread Pool

The thread pool implementation can be compiled as a library and linked into
any application as in Listing A.4. For tasks with interdependencies, use parent
pointers between tasks to keep the correct order of execution. Only leaf tasks
must be added to the queue, since the parent tasks will be accessed through
the parent pointers from their children. Thus, it is necessary to register at least
one root task in the queue to maintain synchronization with the main thread.
When all root tasks are finished, the main thread is signaled to continue.

Listing A.3, A.1 and A.2, shows a simple example of how to use the thread
pool.

65

Listing A.1: Thread pool build test task tree example

1 // Recursively builds a test case tree
2 CTask+ buildTaskTree(TaskQueue & taskQueue, CTaskx
parent task, int depth)

3

4 if(g_counter <= (1 << depth))

5 return 0;

6

7 TestTaskx task — new TestTask;

8 task—>setId (g _counter——);

9 task—>setParent (parent_task);

10 task—>startValue = 100;

11 task—iter = 100000;

12

13 if (0 = parent_task)

14 {

15 taskQueue . addRootTask (task) ;

16 task—>setIsRootTask (true);

17 }

18 else

19 parent task—>addChild (task);

20

21 bool isLeafNode = true;

22 for(size_t i = 0; i < 3; i++)

23 {

24 if (0 != buildTaskTree (taskQueue, task, depth-+1))

25 {

26 task—>setChildCount (task—>getChildCounter ()
+1);

27 isLeafNode = false;

28 }

29

30 if (true = isLeafNode)

31 taskQueue . push (task);

32

33 return task;

34}

66

Listing A.2: Thread pool task example

1 // A test task that overrides the threadpool task class
2 struct TestTask : public CTask
3

4 int iter;

5 int startValue;

6

7 //Override work

8 void Work ()

9 {

10 do

11 {

12 startValue+-+;

13 iter ——;

14 }while(iter > 0);

15 }

16 };

Listing A.3: Thread pool usage example

int main(int argc, char xxargv)

1

2

3 // Register number of threads to use in threadpool
4 int numThreads = atoi(argv[1l]);

5 g_counter = atoi(argv[2]);

6 ThreadHandler:: Instance ()—>addThreads (numThreads) ;
7 TaskQueue taskQueue;

8

9 // Some function for building a tree structured queue
10 buildTaskTree (taskQueue, 0, 0);

12 // Distribute work to threads
13 ThreadHandler:: Instance ()—>distributeWork (&taskQueue) ;

15 // Clean up threads
16 delete ThreadHandler::Instance () ;

Listing A.4: Including the thread pool into your application

1 #Add the following to Makefile for threadpool support
2 INCLUDES = —I/path/to/threadpool/headers
3 LDLIBS = —1ThreadPool

67

Appendix B

Benchmark Scripts and Code

B.1 Bash Scripts

The following bash scripts were used to automatically execute different binaries
and collect average run times for each execution.

Listing B.1: Script for automatic benchmarking

[u—y

[\

./runMultiBenchmark.sh <num_bench_pr_ binary> <start> <
stop > <binary_ >

3 # FEzecutes binary files $1 times from start=$2 to stop=§3

4 # Collects and writes average time used to a resultfile

5

6 #!/bin/bash

7

8 resfile=benchmarks/timingResults.‘date +%Y%ftd—YHAVILS ¢

9 for filename in $(ls $4%); do

10 for ((i=0;i<$1;i++)) ; do

11 echo "Running dagocbench on" $filename §i

12 ./runDagocBenchmark.sh $filename $2 $3

13 done

14

15 echo "bench_$2_$3-"$filename >> $resfile

16 ./ getTimeFromBenchFiles.sh benchmarks/bench $2 $3
—$filename >> $resfile

17 eChio " skokok sk kot sk sk ok ok sk ok sk ok kKR Kok KSRk Rk ok kokok ok 1T S
$resfile

18

19 done

68

0 O Ui Wi+

16
17
18
19
20
21
22
23

Listing B.2: Script for executing and timing a steady state binary

./runDagocBenchmark. sh <binary> <start> <stop>
Ezecutes binary file §1 from start=$2 to stop=$3
Writes application output and time used to a resultfile

#!/bin/bash
unique="‘date +%YVa{d—IHAS

echo "unique: " $unique
res=benchmarks/bench $2 $3—$1—8$unique. txt
echo "ResultFile: " $res

s0=$ (date +%s)

./$1 —c —start=$2 —stop=%$3 ~/ygg/dagocproject/setups/TEST
.sup >> S$res

s1=$(date +%s)

let s=$s1-8s0

echo "Start:" $2 >> S$res

echo "End:" $3 >> S$res

echo "Executable:" $1 >> $res

echo "Total time:" $s "seconds" >> $res

69

0~ O Ui W N+

—
N = OO

13
14
15
16
17
18
19

Listing B.3: Script for getting average time for multiple benchmarks

./getTimeFromBenchFiles.sh <bench_file>
Collects and writes average time wused to a resultfile

#1/bin/bash
t=0
num=0
for i in $(Is $1x); do
echo "File: " §i
tmp=$ (tail —n 1 $i | grep —oE [0—9]+)
echo "Time used: " $tmp
echo "

let t=t+tmp
let num=num-+1

done
echo "Total time for" $1 ":" $t
echo "Total files:" $num

let tot=t/num
echo "xx*AVERAGE TIMEx*x" $tot

70

0 O Ui Wi+

Listing B.4: Script for converting time output to seconds

./convert_timings.sh <bash time output>
Converts real and user time output from

bash time function into seconds

#!/bin/bash

echo "REAL:"

for i in $(grep "real" $§1 | cut —d"
min=9$ (echo $i | cut —d"m" —f1)
sek=$(echo $i | cut —d"m" —f2 | cut
echo "scale=4; ($min*60)+$sek" | bec

done

echo "USER:"

for i in $(grep "user" $1 | cut —d"
min=$ (echo $i | cut —d"m" —f1)
sek=$(echo $i | cut —d"m" —f2 | cut
echo "scale—4; ($minx60)+8$sek" | bc

done

" —f5); do
—d"s" —f1)

| sed ’'s/\./,/’
" —f5); do
—d"s" —f1)

| sed ’s/\./,/’

71

B.2 CUDA Ping-Pong Test

The Ping-Pong test is used to check how many times pr. second data can be
transferred between the Host and the Device.

72

Listing B.5: CUDA Ping-Pong main.cpp

1 #include <iostream >

2 #include <stdio.h>

3

4 extern "C" float run_ pingpong host(intx data, int
numElements, int timeToRunInMs) ;

)

6 int main(int argc, charsx argv)

T A

8 int numElem = 32;

9 int seconds = 10;

10 if(arge = 3)

11 {

12 numElem = atoi(argv[1]) ;

13 seconds = atoi(argv|[2]);

14 }

15

16 printf ("PingPong %d elements for %d seconds\n",
numElem, seconds);

17 pingpongtest (numElem, seconds%1000);

18

19 return 0;

20 }

21

22 void pingpongtest (int numElements, int timeToRunInMs)

23 {

24 int data[numElements];

25 float iterPrSec = 0.0f;

26 int value = numElements % timeToRunInMs;

27

28 //Run pingpong test

29 iterPrSec = run_pingpong host(data, numElements,
timeToRunInMs) ;

30

31 printf("Value in: %d\n", value);

32 printf (" Values out:\n");

33 for (int i = 0; i < numElements; ++i)

34 {

35 if (i%10 = 0 && i != 0)

36 printf("\n");

37 printf ("%d\t", data[i]);

38 }

39 printf("\nlterations pr. second: %.2f\n", iterPrSec);

40 }

73

Listing B.6: CUDA Ping-Pong Host

#include
#include
#include
#include
#include

N O Ut W N

<stdlib .h>
<stdio .h>
<cutil .h>
<cuda.h>
<kernel .cu>

extern "C" float run_ pingpong(int* data_ slow, int

numElements, int timeToRunInMs)

8 {
9

10

11

12

13

14

15

16

17

18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34

//Get a CUDA device
if (0 != getCudaDevice())
return —1.0f;

//Data pointers
int xh data, *d_data;

//Calculate memory size to allocate
const unsigned int mem size = numElementsxsizeof (
int);

//Alloc faster page—locked host memory
cudaMallocHost ((void x*)&h _data, mem _size) ;

//Alloc device memory
cudaMalloc ((void xx)&d data, mem _size);

//Copy data from slower pageable memory to page—
locked memory
for(int i = 0; i < numElements; ++i)

h data[i] = data_slow|[i];
//Create o timer
unsigned int timer = 0;

float elapsedTimeInMs = 0.0f;
cutCreateTimer(&timer) ;

74

35
36
37
38

39
40
41
42
43
44
45

46
47
48
49
50
51

52
53
54
35
56
57
58
59
60
61
62
63
64
65
66

67

//Iteration counter
unsigned int numlterations = 0;

//Copy data from Host to Device then back again
for a user defined time duration

while (elapsedTimeInMs < timeToRunInMs)

{
//Start CUDA timer
cutStartTimer (timer) ;

//Copy data from host to device
cudaMemcpy (d_data, h data, mem size,
cudaMemcpyHostToDevice) ;

//Call kernel here
//pingpong kernel <<<1,1>>>(d_data);

//Copy data from device to host
cudaMemcpy (h _data, d_data, mem size,
cudaMemcpyDeviceToHost) ;

//Increment number of iterations
++numlterations;

//Stop timer and get current time used
cutStopTimer (timer) ;
elapsedTimeInMs = cutGetTimerValue(timer);

}

//Free data
cudaFree(d data);
cudaFreeHost (h_data) ;

//Return number of iterations pr. second
return (float) numlterations/(elapsedTimeInMs
/1000) ;

75

Appendix C

Poster Presented at NOTUR
2008

76

Analyzing

Code for Today's Parallel Architectures

-

and Optimizing an Oil Well Network HPC

C};;y Research

Group

)

5
777

Atle Rudshaug, IDI-NTNU, rudshaug@stud.idi.ntnu.no
Supervisor: Anne C. Elster, IDI-NTNU, elster@idi.ntnu.no

Present
|

(Serial) Timeline
| | | | |

))) ‘2030“0603

The Application (METTE by Yggdrasil AS):
e Figure to the left identifies possible parallelism in the application
Calculates pressure loss in oil well networks (tree structure)

Controls actuators from sensor information for optimal flow

(Parallel)
Different pressure
systems in each
time step

(Serial)
Levels in
the network

Sample cases:

o Small - order 10 wells/lines

o Large - order 80 well/lines

o Also varying time steps and distances
(Seconds - weeks; 10m - 500km)

Only serial application available

Valgrind Used for Serial Optimizations:

Cachegrind

Callgrind

o KCachegrind (GUI)

Helgrind: Thread debugger

Memcheck: Detects memory-management problems
(Both Intel VTune and TAU failed to give any results)

Hardware Used:
e AMDG64 3500+, 512kb L2, 2GB RAM
e Asus Centrino Duo 1.66GHz, 2MB L2, 2.5GB RAM
e HP 4xQuad Xeon 2.93GHz, 4MB L2, 64GB RAM

Soo ®

(Parallel) Independent nodes on each level

Step 1: Optimize Serial Code

Original profile:

i) Temperature calc. 71.42%

ii) Temperature calc. 24.20%

iii) Temperature calc. 28.62%

SQL 85.17%

Steady State Speedup

Momentum calc. 23.85%

Momentum calc. 63.28% Momentum calc. 56.58%

Transient Speedup

Q.
=]
o

& 15
joR
(7]

1

0,5

0

)

B AMD64

[=8

=]

e}
B Asus W5F o 27
O HP-Xeon 3 2
25
24
23

B HP-Xeon

ii)

i)

iv)

Optimization Step

~3x speedup gained on Asus

i)
Optimization Step

NB! Calculation time faster on the other architectures

il

i)

~31x speedup gained

NTNU
@ Norwegian University of

Science and Technology

Step 2: Parallelize Serial Code

Original Goal:
e Parallelize network traversal using thread pool and
task queue
e Problem: Profiler detected multiple possible race
conditions when running multiple threads!
e Large amount of work to fix this problem

New Goal:
e Model/Predict parallelization to:
o Determine if parallelizing is worth-while
o Estimate which part of code worthy of
parallelization

Modeling Steps:

e Perform detailed timings of serial code

e Model network of tasks working/sleeping for same amount of time as individual task in serial code
Compare traversal of tree with one thread vs. multiple threads (1-16 threads tested)

Different timers, different granularity and overhead!
9999999 iterations in loop for all benchmarks:

--- Timing sum+=1 outside loop using std::clock
STD outside loop timed: 0.020000 seconds

--- Timing sum+=1 outside loop using gettimeofday
TIMEVAL outside loop timed: 0.026519 seconds

--- Timing sum+=1 outside and inside loop using std::clock
STD inside loop timed: 6.860000 seconds

STD outside loop timed: 14.090000 seconds

--- Timing sum+=1 outside and inside loop using gettimeofday
TIMEVAL inside loop timed: 4.287836 seconds

TIMEVAL outside loop timed: 8.803945 seconds

Slowdown Having Timer Inside Loop
800
700
600
500

B Gettimeofday

400 W std::clock

Slowdown

300

200

100

0

Threadpool time: Test Case.

84
----- e _=r—wr
R

82 B
W 80 4
kel
s
o
8}
O ,g L Real Time —E— |
o User Time -----
[}
=
o 76 -

74

72

0 2 4 6 8 10 12 14 16

Number of Cores

Results

Our results show minimal gain parallelizing tested part of
code, since individual nodes on top level takes much
longer than sum of nodes on bottom levels, "serializing"
code.

However, significant speedup were gained through analysis
and optimizations!

TO DO: Check run-time & model for running multiple

networks in parallel.

Also tried off-loading work to GPU:
(NVidia GForce 8800GTX using CUDA)

Experienced ~500x to ~43x slowdown due to data transfer overhead and processor under-utilization.

Acknowledgments:

We would like to thank Yggdrasil AS for providing a test application and a test case,
and for many detailed discussions.

	Title Page
	Problem Description
	masteroppgave.pdf

