
PREFACE

This project is done as the Master thesis at The Department of Computer Science at the

Norwegian University of Science and Technology (NTNU) on the Spring Semester 2008.

The project is extending the work from the thesis called “Game Enhanced Lectures”

written in 2007 [1].

I would like to express my thankfulness to my supervisor Alf Inge Wang for his

enthusiasm, advice and kindly help during the project. I am grateful to my wonderful

wife, Doan Ha who gives me new inspiration everyday to complete the project. I would

also like to thank Thomas and the technical staff at Guru for their support to deploy the

game. Thank to Bian Wu, Ole Kristian Mørch-Storstein and Terje Øfsdahl for their

willingly to exchange ideas about the project. Thank to all the students in lab ITV363 and

my friends at NTNU for their support testing the game.

 2

 3

Table of content

PREFACE...1

PART I: INTRODUCTION AND RESEARCH METHODOLOGY9

1 INTRODUCTION ...11

1.1 Motivation... 11

1.2 Problem definition.. 11

1.3 Readers guide ... 12

2 RESEARCH QUESTIONS AND DEVELOPMENT METHOD13

2.1 Research question... 13

2.2 Development methodology .. 14

2.3 Research method .. 16

PART II: CURRENT SOLUTION AND PROBLEMS ELABORATION...............19

3 CURRENT SOLUTION..21

3.1 Description.. 21

3.2 The game server ... 21

3.3 The teacher client ... 23

3.4 Mobile client ... 23

4 ELABORATE THE PROBLEMS...24

PART III: STATE OF THE ART AND TECHNOLOGY.......................................25

 4

5 MARKET ANALYSIS ..27

5.1 TVREMOTE Framework ... 27

5.2 Classroom Presenter .. 27

5.3 WIL/MA.. 28

5.4 ClassInHand ... 28

5.5 Ez ClickPro... 29

5.6 Buzz! The Schools Quiz ... 30

6 EVALUATION OF PREVIOUS SOLUTIONS ..32

6.1 Prototype concept comparison.. 33

7 TECHNOLOGY ...34

7.1 Server technology platform... 34

7.2 Mobile Technology Platform... 35

7.3 Database solution ... 35

7.4 Protocols.. 37

7.5 Communication bearers .. 37

PART IV: OWN CONTRIBUTION ..41

8 REQUIREMENT ..43

8.1 Over all concept of lecture game... 43

8.2 Detailed description of the lecture game .. 44

8.3 Functional requirement ... 45

9 DESIGN...55

 5

9.1 Proposed architecture for lecture game ... 55

9.2 Game engine class design... 57

9.3 Master client class design .. 60

9.4 Mobile client class .. 62

9.5 Class interaction... 64

10 IMPLEMENTATION...68

10.1 Choosing development environment .. 68

10.2 Naming convention... 70

10.3 How to deal with error... 72

11 DEPLOYMENT ..72

11.1 Deployment of game engine... 72

11.2 Deployment of master client.. 73

11.3 Deployment of mobile client .. 76

PART V: EVALUATION AND CONCLUSION..81

12 EVALUATION..83

12.1 Evaluation of new implementation ... 83

12.2 Development process.. 85

12.3 Team work .. 89

13 CONCLUSION...91

14 FUTURE WORK ..91

 6

REFERENCE..93

APPENDIX ...97

APPENDIX A.1 THE MAIN LOOP FUNCTION IN PREVIOUS GAME97

APPENDIX A.2 COMPILING GAME ENGINE ...104

APPENDIX A.3 COMPILING MASTER CLIENT..109

APPENDIX A.4 COMPILING MOBILE CLIENT...111

APPENDIX A.5 SETUP DATABASE ...115

 7

Table of images

Figure 1. Iterative software process... 16
Figure 2. Research method... 17
Figure 3. Current game [3].. 21
Figure 4. UML class diagram of current server... 22
Figure 5. WIL/MA PDA screen shots [1] ... 28
Figure 6. ClassInHand PDA screen shot ... 29
Figure 7. Screen shot Ez ClickPro ... 30
Figure 8. EzClickPro remote controls and sensor ... 31
Figure 9. Over all communication ... 43
Figure 10. Game engine high level user case... 46
Figure 11. Master client high level use case .. 49
Figure 12. Mobile client high level use case .. 52
Figure 13. Lecture game architecture.. 56
Figure 14. Game engine class diagram.. 59
Figure 15. Master class diagram ... 61
Figure 16. Mobile client class diagram.. 63
Figure 17. Verification sequence diagram ... 64
Figure 18. Play game sequence diagram ... 66
Figure 19. Waiting screen .. 74
Figure 20. Introduction screen... 75
Figure 21. Question is displayed on the teacher’s PC ... 75
Figure 22. Configure the Jad file ... 76
Figure 23. Configure the midlet class .. 77
Figure 24. Package mobile client... 77
Figure 25. Configure mime type in IIS ... 78
Figure 26. Question and feedback on mobile phone .. 83
Figure 27. Question showing on big canvas .. 84
Figure 28. Feedback on big canvas.. 84
Figure 29. Create classes with Eclipse UML ... 86
Figure 30. Method refined process starting with descriptions and then implementation of

listen4Mobiles() method. .. 87
Figure 31. An animation building with native Java APIs... 89
Figure 32. Team work artifacts during project .. 90
Figure 33. Open workbench ... 105
Figure 34. Choose workspace .. 105

 8

Figure 35. Choose type of project .. 106
Figure 36. Configure the library .. 107
Figure 37. Configure the run.. 108
Figure 38. Configure the run of master client.. 110
Figure 39. Configure J2ME ... 112
Figure 40. Configure the run for mobile client .. 113
Figure 41. Log in screen .. 114

 9

Part I: Introduction and Research methodology

 10

 11

1 Introduction

In this section the motivation for conducting the project is described. After that we will

discuss the over view of the problems being addressed. At the end is the content for the

rest of the report.

1.1 Motivation

Computer games received much more negative critics than positive critics because games

are often coined with issue such as violence or sex content. However, there is an

emergent shifting from purely entertainment product to educational tool in recent time.

Nowadays, educational games give teachers opportunities to introduce educational and

playful elements into school classes. With the support of computer and networking,

teachers and students have a chance to experiment an education environment that could

not offer by traditional media like social interaction, critical learning, knowledge based

communication and effective interpersonal skill. Educational game makes learning fun,

easier and faster [2].

At NTNU, some projects have been started to show the benefits of computer game in

education just by utilizing the existing equipment like student mobile phones and

university network infrastructure. These projects have proved the benefit of using games

on class created game prototype and set up the foundation of applying computer games

on education [1]. However there are a need to improve these prototypes in terms of game

management and gameplay so that it is easy to create new game, add new content and

change the gameplay to adapt to different university courses and requirements.

1.2 Problem definition

Lecture Quiz is a game used to provide more active and participant students in lectures.

The game is based on a server, a teacher client and a student client. In a master thesis

done in 2007 [1], Ole Kristian Mørch-Storstein and Terje Øfsdahl have explored concept

of game to be used in higher education and develop a prototype game to further evaluate

that concept. Their game has three components; the first one is the server part running on

 12

a server. This component connect to a database and provide the services to the others

component. The second component is called teacher client, when running the game on a

lecture the teacher will use this one to show the game. This one runs on the teacher

computer such as a laptop or a PC. The last component is the one running on a mobile

phone of students; they will use it to interact with the game.

The purpose of the previous game is about illustrating the concept of using game in the

lecture. For the game to be used and accepted in the lecture and contribute to the

educational environment, a lot of matters need to be considered and improved.

In this master thesis, the goal is to extend the Lecture Quiz game with new functionalities

that can enhance the management and gameplay of the system. The focus is on the game

platform and architecture so that the game can be usable, flexible. The concept of the

game can be found out in the previous thesis and will be repeated here when appropriate.

1.3 Readers guide

This report has five parts. The first part is the introduction about the purpose and the

motivation to conduct this project. The second part describes the current game and

elaborates the problems to find out a new solution. The next part investigates the state of

the art of the applications currently used in lectures and the technology used to develop

such applications. The forth part describe our own contribution; we will propose a new

architecture for the game and implement a game using that architecture. The last part

presents our evaluation and conclusion about the whole process and outlines the future

work.

 13

2 Research questions and Development method

This section presents the problems that will be addressed during the project and the

method used to address them.

2.1 Research question

Along with the problem definition described in section 1.2, this section presents the areas

that this project focuses on.

The motivation for our project is to extend the game so that it can be applied in the real

educational environment. We need to balance between our requirements and time

constrain of our master thesis project. The research questions below are carefully selected

base on what we suppose the most important factor to enhance the game and what we can

do considering our time limitation and our experience.

RQ1: Which features of the previous lecture quiz game can be improved in term of

gameplay of the system?

This research question directly addresses the goal of our master thesis. To answer this

question, it is needed to investigate into the detail of the previous game, to understand it

thoroughly, to find out and evaluate its weakness and strength. With the note that the

previous game is not well documented, there is no requirement specification as well as

architecture design. So to understand the previous game we must use revert engineering

techniques to rebuild game functions and the system structure based on its source code.

RQ2: What architecture is suitable for this kind of game?

The lecture game will run in a distributed environment of different kind of network

spanning different platform of hardware and software. Beside that the game may need to

change a lot in the future to adapt with the specific requirement. With our knowledge and

experience in software engineering we believe that software architecture is main factor

that decide the quality of a software system. Having the right architecture for our game is

the first step to ensure the enhancement later.

RQ3: Implement a lecture game based on the proposed architecture.

 14

Based on the finding in the RQ1 and RQ2, a new game will be build with some

enhancement. The new design will be described in details in this document.

2.2 Development methodology

The lecture game will be developed using both top down and bottom up approach. The

top down method is used when coping with unclear defined problems and there is a need

to breakdown the problems in to sub problems. For example, to break down the lecture

game into three modules including the Game engine, the Master client and Mobile client.

The bottom up approach will be used when develop Master client and Mobile client.

Some class of these two modules can be coded with out the need of having the detailed

design. The classed then will be integrated into the modules.

 A well defined software development process is the critical factor to produce reliable

software on time and on budget. According to Scott W. Ambler, there are four different

categories into which a method could fall into :

1. Code and fix. This approach is also known as “hacking”, “hack and slash”, or

“no-process at all”. This approach to development is chaotic and often unplanned, or

when it is planned the plan is quickly abandoned. Estimates and schedules, when made

at all, are rarely met in practice.

2. Serial rigorous. Software processes in this category are well defined and often

include detailed procedures that developers are expected to follow in a more-or-less serial

manner. For example requirements are identified, reviewed, and accepted. The analysis

of those requirements is performed, reviewed, and accepted. The design is defined,

reviewed, and accepted. And so on. There is room for feedback between phases,

although that feedback is provided via a reasonably defined procedure and the changes

are then reviewed and accepted as before. Systems are typically delivered on an

incremental basis where the releases are on the order of several quarters or years in

length.

3. Iterative rigorous. Software processes in this category are well defined and

often include detailed procedures that developers are expected to apply in an iterative

manner. For example requirements may be initially defined at a high-level with the detail

 15

later identified on an as needed basis. Small portions of your system are fleshed out, with

software potentially delivered on an incremental basis following short release cycles

often on the order of weeks or months. The Rational Unified Process (RUP) and the

Enterprise Unified Process (EUP) are examples of an iterative rigorous process.

4. Agile. Agile is an approach to software development that is people oriented, that

enables people to respond effectively to change, and that results in the creation of

working systems that meets the needs of its stakeholders. Software processes in this

category are defined at a high-level, often presented as a collection of synergistic

practices or philosophies. Feature Driven Development (FDD), Agile Unified Process

(AUP), and XP are examples of agile software processes.

In the setting of this project as well as our experience and knowledge, the iterative and

incremental method is suitable. Developing the product during a lot of iteration reduce

the risks of unclear requirement and the risk of lacking knowledge of project

management. Using this method does not require much advance and detailed planning.

The software can be refined until it reaches the satisfaction. However, there is a need to

customize the iterative process, in this project, the requirement is quite clear. Challenge is

in the implementation phases, so the iteration will focus more on that phases.

The method is illustrated in Figure 1:

 16

Figure 1. Iterative software process

The basic steps include: Planning, Requirement, Analysis, Implementation (prototyping),

Evaluation and Deployment.

2.3 Research method

Based on the research areas chosen above, this section will present an appropriated

research method to address the research questions. According to Basili, there are three

most frequently used research methods in software engineering [2]:

The empirical method: This is a statistical method using to verify a hypothesis through

collection of empirical data. This method can e.g. be applied to find out if a new

technology is an improvement over older technologies [5].

The mathematical method: this is based on mathematical and formal methods. A formal

theory has to be constructed and results are in turn derived from this theory. Empirical

data can be used for comparison with the derived results.

The engineering method: This method is defined as "the use of heuristics to cause the

best change in a poorly understood situation with in the available resources" ([6] p.28).

This one fits into the purpose of this document in its ability to deal with systems of major

complexity by consequently finding improvements from self conducted validation

methods.

The key point of using the engineering method is about discovery the heuristics that can

be used to improve the current situation. Heuristic is difficult to define. According to

Koen, heuristic is “anything that provides a plausible aid or direction in the solution of a

problem but is in the final analysis unjustified, incapable of justification, and fallible. It

is used to guide, to discover, and to reveal” [6]. The heuristics to improve the lecture

game in this project is found out by conducting literature research and looking in to the

previous source code as well as documents to discover the points that can be improved.

The adaptation of engineering method is illustrated in Figure 2:

 17

Figure 2. Research method

The first step is to formulate the problems. After that the investigation of the previous

lecture game to find out the features needed to improve. Then we will specify the

requirement for the game. Based on the requirement we will design and implement a next

version of game. And finally is the conclusion about the whole process.

 18

 19

Part II: Current solution and Problems elaboration

 20

 21

3 Current solution

In this section, the current state of the game will be investigated in some details to find

out which features need to improve, the finding starts with the game server then the

teacher client and the mobile client.

3.1 Description

The concept of current game is shown in Figure 3.

Figure 3. Current game [3]

There are three components of the game including Server, Teacher client and Student

client (mobile client). In class the teacher uses his computer to control the game which is

running on the server. Students use their mobile phone to play the game. The game is

showing on the teacher’s computer screen or projecting on a big canvas.

3.2 The game server

The server is the center component of the game; it connects to a central database and

gives service to teacher client and student client. Currently only one game can be support

by sever at a time. The current game server is very complex and is not documented

thoroughly. The architecture of the server is not descriptive and is very difficult to

understand. The simplified class diagram in Figure 4 from the last game [1] is the class

design for the current game server.

 22

Figure 4. UML class diagram of current server

In this diagram, the class names are not descriptive and the consequence is making it

difficult to understand the logic of the game. For example the class NetworkManager is

responsible for the management of mobile client and master client as well as to manage

the communication in the game, so the name Game or GameManager is making more

sense than NetworkManager.

Some classes include too much functions and the responsibility division between classes

is replicated. For example the NetworkManager class does some functions of Question

class. It should be broken down further into smaller class also.

Extending the MasterClient from the StudentClient is not good design decision.

MasterClient and StudentClient have similar functions but they have a lot of different

features so the good decision is to make a more general class and extend MasterClient

and StudentClient from it.

The implementation of current game also makes it difficult to change and customize.

Look at the Appendix A.1 about main loop of the previous game. It is an infinity loop to

change the state of the game, and do appropriate things in each state. The function is so

 23

long (spanning 4 pages), it should be broken down. The using of constant as literature

also makes it very difficult to understand and maintain.

3.3 The teacher client

The teacher client is the component that is used by teacher and will run on teacher’s

laptop or PC. It is responsible for rendering the graphics, playing sound and it is a mean

to display feedback. Currently the teacher using JOGL (an open graphics library) for

graphics functions. This make the deployment a complicated when require additional

library. And this is problems because when comes to deployment the teacher’s laptop

have different platforms with require different version of library.

As the server, the teacher client is neither documented well enough nor have clear

architecture. The teacher client is bad implemented as well.

3.4 Mobile client

This component is a J2ME application running on mobile phone supports java. When the

game is playing, player will use this component to communicate with the server to

receive questions and submit answers. At the current version, the mobile client is

designed to support only one game that runs on the server, so there is no mechanism to

choose with game to join in, it just simple connect to the server. Other problem is that

there is no way to exit the game than shutdown the mobile. As the others component, the

mobile client is not well documented. Beside the class diagram there is a need to know

how the client communicates with the rest of the system. What kind of messages is

exchanged and so on.

 24

4 Elaborate the problems

The study of previous thesis showing the concept of a game using in the lecture and the

investigation also prove the advantage of such a game compare to traditional education

method. But there are still a lot of matter needs to be done to create a “real life” game.

In this section, those matters are to be defined.

First of all, it is not practical that one server can host only one game. In a university there

are many course and many lectures. So the need of playing many games at the same time

on one server is obviously. The current only support only one game at a time and this

need to be addressed at the next version of the game. We are going to design a new

architecture for the application that can host multi games at the same time.

Secondly, the teacher needs a tool to manage the content of the game. Currently the

questions and alternatives are inserted manually into the database. We need to develop a

“Game Content Editor” to support teacher in this task.

We can also extend the game by improving the communication protocol. Currently there

is no separate class that is responsible for manage communication. The message is

exchange and interpreter using several classes. We can improve this by design a class that

is mainly responsible for manage data communication.

The last but not least, we can extend the game by adding more game mode. There are

currently two modes, measure up mode and elimination mode. The other mode maybe

“Group mode” where players are divided into groups and game is playing between

groups.

Because of time constrain of the project, we choose to address the first problem which is

to extend the game to support multi games, multi players in this project. The architecture

we propose also address the third problem. We believe that solving this problem is the

important part to make a practical game that can be use in the real lectures.

 25

Part III: State of the art and Technology

 26

 27

5 Market analysis

In this section several applications that can be used in the lecture are presented along with

theirs features and the experiences from using these applications. This section is inspired

by the previous report [1].

5.1 TVREMOTE Framework

The TVREMOTE framework was designed to allow for student participation in lectures

counting hundreds of participants at Darmstadt University of Technology, Germany [7].

The central idea of the framework is supporting interaction such as posting question. The

framework has three components including the server, the educator display and student

tools like mobile phones.

The system can handle several interaction types. Student can submit message typed in

free text. The system features polling of student opinions and electronic question

submission. The teacher collects the feedback and reads it from a private display, from

which she can select a question for display on a second public screen. The multiple

choice quiz provides the teacher with a statistical distribution of correct and incorrect

answers. The teacher can also broadcast links and notes that are difficult to copy from

projector such as number of URLs. Studies of using the TVREMOTE show that students

generally appreciate a short explanation as to why a given answer is correct.

The TVREMOTE framework uses GPRS for data transmission and Bluetooth support is

planned as a future feature. Surveys show that students are reluctant to pay for the data

transmission fees from sending data over GPRS [7].

5.2 Classroom Presenter

The Classroom Presenter system has been used to facilitate active learning at the

University of Washington. Students can write notes in blanks in digital slides; the notes

can be their questions or problem solutions. The educator hands out a set of Tablet PCs

for student use in each lecture. Student notes will be shown on the educator's Tablet PC

and can be used for discussion or evaluation later.

 28

5.3 WIL/MA

WIL/MA is an application developed at the University of Mannheim, Germany

supporting of digital hand raising, spontaneous comments

and multiple choice

questionnaires. WIL requires personal Java Runtime environment to run. This means that

it is available on laptops, pocket PCs and PDAs. Not many students own pocket PC so

the researchers of the project had to buy pocket PC and handed out to the student

participants at the beginning of the lecture. The system uses WLAN coverage to transmit

data. The teacher receives the student data on his PC and reads it from a private screen. A

survey of similar classes where one class used WIL/MA and the other attended traditional

lectures showed the learning outcome of using WIL/MA superior [8]. Example of screen

shots from student feedback and multiple choices are shown in Figure 5.

Figure 5. WIL/MA PDA screen shots [1]

5.4 ClassInHand

ClassInHand is developed at WakeForest University, USA. The basic functions support

presentation controller, real time quiz and student/teacher interaction. The system runs on

PDAs supporting Windows Mobile 5 or Windows Mobile 2003 for PocketPC. The

 29

presentation controller allows teacher using his PDA to control a presentation such as

navigating through the slice and read notes. The quiz function allows teacher collecting

result submit from students. Currently questions are read verbally. An exam of a question

with alternatives is shown in Figure 6. Beside that the application allow student to send

text feedback and asking questions.

Figure 6. ClassInHand PDA screen shot

5.5 Ez ClickPro

EzClickPro is a commercial class room polling application developed by Avrio Ideas for

teaching in elementary school. It is commercially available for £3.450 GBP for the

maximum set including 100 custom remote controls.

 30

Figure 7. Screen shot Ez ClickPro

EzClickPro uses infrared technology and custom produced remote controls, shown in

Figure 8, with the teacher running an application on a PC as shown in Figure 7. Multiple

choice questions are displayed on a TV or projected on to a canvas, before the students

submit their answer using the remote control. Each student is assigned a number that is

displayed in a green circle if the answer is correct or otherwise if the answer was wrong.

The questions can be presented with elaborating pictures and videos [9, 10]. A new

version of the software due 2007, called PowerClip, is integrated into Microsoft

PowerPoint.

5.6 Buzz! The Schools Quiz

Buzz was originally conceived as a commercial trivia game for Playstation2 receiving

great success in terms of both sales and critics. The game is marked as “the game show in

your living room” and comes with special wired handsets called buzzers. There are

currently four versions of the game for sale in a multitude of languages, each testing

 31

knowledge in different domains such as sports, music and general trivia [11].

Figure 8. EzClickPro remote controls and sensor

With government funding, a new version of the game, designed especially as a tutoring

tool is due released late 2007, named Buzz! The Schools quiz. The game will be

marketed towards educational institutions and comes with content covering Stage 2

National Curriculum for primary schools in the UK. A new feature, “Create a quiz” is

included to allow tutors to hold revision exercises on a given subject. However, the wired

Buzzers are still in use, thus limiting the number of simultaneous players. The content is

also limited to the included questions. As a consequence, newer versions are required as

the curriculum changes and the game will also be less interesting in countries other than

the UK.

 32

6 Evaluation of previous solutions

From Table 1 we see a representation of the features of previous class room software

solutions [1]. All the solutions except EZClickPro and Classroom Presenter are tools

limited to student participation and student‐teacher communication in larger lectures.

These solutions have limited or no support for displaying feedback on a projector screen,

as a consequence of their function as a communication tool rather than a game. All of the

solutions except ClassroomPresenter feature a quiz mode. It seems the quiz is typically

intended for the teacher to monitor whether or not the students are paying attention.

There are no elements of competition, goals or amusement besides the actual selection of

alternatives and the observation of the correct answer. All the solutions except

TVRemote depend on hardware being handed out to each student before each lecture.

Two solutions stand out from the class room polling. Classroom Presenter is a powerful

communication tool, sharing edited Microsoft PowerPoint slides. But the tool does not

support any communication beyond the actual sharing of these slides. Feedback is thus

given through the teacher’s presentation and never directly to the students. EzClickPro is

a pure quiz game where animated feedback is shown directly on a big screen for the

students to enjoy.

 33

Table 1. Previous solutions features [1]

Features TVRem

ote

Cl.

Pres.

WIL/MA

X

ClassInH

and

EZ

ClickPro

Buzz!

Digital student

comments X X X

Teacher info

broadcast X

X

X X

Quiz mode X X X X X

Public feedback

display

(X) X

X X

Animated graphics X X

No custom HW

needs

X

6.1 Prototype concept comparison

In Part IV, the concept prototype subject to our research is presented. The concept idea is

similar to several of the products presented in Table 1. The prototype aims to feature the

stimulating gaming experience from “Buzz!”, with animated graphics on a public display.

Using mainstream technology, the prototype allows all students and educational

institutions to use the system without any hardware of software purchases. This is

achieved by only requiring hardware and software that are commonly installed in lecture

halls to facilitate usage of the prototype. Likewise for participants, only hardware and

software that most students already possess are required. Add‐on functions such as

information broadcast and digital student comments are omitted as the prototype is

intended to be perceived as a computer game rather than a software tool.

 34

7 Technology

This part presents various technologies available to build different parts of the lecture

game. Based on this, the chosen of the technology will be described in Section 8.3.1.

7.1 Server technology platform

This section summarizes the reasons behind the selection of technology platform for the

game engine.

7.1.1 Java

The Java is an object oriented, high level language developed by Sun Micosystems. Code

written in Java is compiled to byte code, which in turn is interpreted by a Java Virtual

Machine (JVM). Early versions of the JVM were considered quite computational

inefficient due to the fact that the virtual machine interpreted non‐optimized bytecode.

But later implementations of the JVM have improved vastly in this regard, and today

Java is considered as fast as C and C++ for some platforms. In addition Java is safer to

execute [12]. This is due to the JVM and its automatic memory management, thus sparing

the programmers of the burden of manual memory management.

One of the key philosophies behind the Java language is platform independence [13]. The

bytecode produced by the Java compiler can be run on any implementation of the JVM.

Java runtime is available at no cost for a number of platforms, including but not limited

to: Windows XP/Vista, Linux, Solaris and Mac OSX [13].

7.1.2 .Net

The Microsoft .NET Framework is a software component that is a part of several

Microsoft Window Operating system such as Window Vista or Window server 2008

[14]. It has large library for common classes and manages the execution of program

written for that platform. The platform is freely available for download for older versions

of the operating system. Other implementations also exist, like Mono for Linux. At the

heart of the .NET architecture is the Common Language Runtime (CLR) which is part of

the Common Language Infrastructure specification (CLI). The main purpose of the CLR

is to make the platform language independent and to provide automatic memory

 35

management as well as security features. Code targeted for the .net framework is

compiled to Common Intermediate Language (CIL) (previously known as Microsoft

Intermediate Language). The CIL byte‐code is then compiled at runtime to machine

code [14].

7.2 Mobile Technology Platform

There are several platforms for programming on handheld devices. A short presentation

of alternatives is given in this section along with rationale for the choice of platform.

7.2.1 Java 2 Platform MicroEdition (J2ME)

J2ME is Sun's contribution to the wireless market. It is a small scale version of Java

designed for smaller and typically handheld devices such as mobile phones, PDAs and

other consumer electronics such as car navigation systems. Much like Java a virtual

machine interfaces to the specific operating systems, making the actual code portable

across any hardware supporting J2ME within a specific configuration. There are

configurations for classes of devices such as a configuration for mobile phone, CLDC,

and one for more powerful devices such as advanced PDAs called the CDC.

To make the J2ME Runtime Environment complete, a profile constitutes a programming

API for the programmer. The only profile available for the CLDC configuration is the

MIDP profile. MIDP1.0 is the first released API. An upgraded version, MIDP2.0,

supports custom game graphics and multimedia possibilities [15]. Almost every mobile

phone being sold at the moment of writing has built in Java MIDP 2.0 support [16].

7.2.2 Microsoft .NET Compact Framework

.NET Compact Framework is a small scale implementation of the .NET frame work

optimized and limited to run on small devices. It contains a platform adaptation layer

that allows different operating systems on different hardware to run the .NET

Compact Framework applications. However, only a few operating systems such

as Microsoft CE, Microsoft Pocket PC and Smart phone offer support [17].

7.3 Database solution

There are several competing Database Management Systems (DBMS) on the market

 36

today, each powerful and feature rich in their own respects. This part briefly presents the

rationale and background for the choice of DBMS.

7.3.1 MySQL

MySQL is a DBMS owned and sponsored by MySQL AB, a Swedish based company.

MySQL AB also owns most of the copyrights to the codebase [18]. MySQL is a key

component of the LAMP (Linux, Apache, MySQL and PHP) solution stack, which is

commonly used to run dynamic websites [19]. The MySQL DBMS comes in two

different variants: Community Server and Enterprise Server. Both share the same code

base and are released under the GPL. The Enterprise Server, however, is aimed at a

commercial marked and has product support and only publicly available source (not

binaries). The Community server is released on an unspecified schedule; with binaries

being released with every major update free of charge (smaller incremental updates may

not have binaries included). As the Community Server is easily available, free of charge

and requires no compilation when using the provided binaries for the intended platform,

this version has proven itself immensely popular with developers of free software and

web sites [19].

7.3.2 Oracle

The Oracle RDBMS (Relational Database Management System) is a commercial, closed

source database system which is available on a number of platforms including Windows,

Linux, Solaris and Mac OSX.

7.3.3 Other Database Solutions

PostgreSQL is free software, Object‐Relational Database Management System

(ORDBMS). Its code base is not controlled by a single company, but rather the

community which develops and maintains the code [2].

Firebird or (Firebird SQL) is a RDBMS released under the InterBase Public License [21],

an open source software license. The application has been in development for over 20

years, starting in 1984 and became open source in 1999.

 37

7.4 Protocols

The choice of protocol is an important design decision, and imposed its own set of

constraints on the prototype with regards to robustness and reliability. In the following

subchapters we briefly introduce the protocols evaluated for use in this project: TCP and

UDP. These are the two protocols that form the core of the Internet Protocol (IP) suite.

7.4.1 Transmission Control Protocol (TCP)

With TCP two peers can establish a connection to one another, having one stream socket

at each end. A connection is maintained as the sockets at each end are open. The protocol

guarantees in‐order delivery of data between the two parties. TCP controls that no

packets has been lost in transmission via sequence numbers on the packets. When packet

has been correctly received, TCP sends an acknowledgment of which packets has been

received from the sender. In the case of lost or presumably lost packets, the packets will

be retransmitted. There is also a checksum in each packet to ensure that the data is not

corrupted [22].

7.4.2 User Datagram Protocol (UDP)

UDP does not have any of the mechanisms for reliability which TCP has. There is no

sequence numbers for guaranteed in‐order reception of data, nor is there any checking

of whether or not the data has arrived properly. These features ensure that UDP is fast

and efficient, especially for transmission of large quantities of small data. An example of

this can be broadcasting of data. Applications using UDP must tolerate lost or duplicate

data [22].

7.5 Communication bearers

The concept to be implemented requires ease of use for large numbers of participants. In

this part, we will present a short introduction to the considered communication bearers.

7.5.1 Ethernet over twisted pair

Ethernet over twisted pair cable is standardized as 10BASE‐T, 100BASE‐TX and

1000BASE‐T. The transfer rates are 10 Mbit/s, 100 Mbit/s and 1000 Mbit/s allowing

 38

for high transfer rates over short distances, typically 100 meters or less [23]. Data is

converted into electrical impulses, which are transmitted over the wires. Ethernet over

twisted pair features high transmission rates, low latency and little noise. The limitation

of this bearer is the need for the receiver to be physically connected to the sender and the

limit on cable length [23].

7.5.2 GPRS, EDGE and 3G

General Packet Switched Data (GPRS) is a packed‐switched data service available in

GSM mobile networks. Many users share the same communication channel, and transmit

data only as needed. This means that the user can be connected to a server for a very long

time, yet only pay a small fee if low volume of data is transmitted [24 USA. #22]. The

users are charged for data transfer rather than the time they have stayed connected as is

the case when using Circuit Switched Data (CSD). GPRS uses one or more times lots to

transfer data, where the maximum speed for a regular GPRS slot is 20 Kbit/s. Regular

configurations are 3 or 4 bundled slots for up stream data transfer and 1 for downstream.

Giving upper theoretical speeds of 80 or 60 Kbit/s upstream and 20 Kbit/s downstream.

The more slots used, the more increases the probability of an interrupt caused by CSD

needs, such as voice calls, which will cause delays [24 USA. #22].

An enhanced version of GPRS is currently being deployed, Enhanced Data rates for GSM

Evolution (EDGE) or Enhanced GPRS (EGPRS). EDGE increases data speeds by

increased utilization of the GSM radio signal. EDGE requires compatible handsets and

software up grades at the base stations to support the new signal encoding. Maximum

speed per slot is 59.2 Kbit/s, giving 236.8 Kb it as a theoretical maximum speed for an

EDGE connection using 4 bundled slots, and 473.6 Kbit/s for one using 8 slots [25].

UMTS (3G) is the newest mobile network technology to be deployed in Europe and

Norway. UMTS supports up to 384 Kbits/s downstream rates, or 3.6 Mbit/s in

High‐Speed Downlink Packet Access (HSDPA) enabled networks. The UMTS network

has been designed with both voice and data communication in mind, whereas the GSM

(2G)networks was originally designed to accommodate voice communication and CSD

[26].

 39

7.5.3 WiFi (IEEE 802.11 a, b, g, n)

Wireless LAN, also known as Wi‐Fi, is based on the IEEE 802.11 specifications.

Wi‐Fi uses radio waves in the 2,4 GHz spectrum for transmission of data [27]. Wi‐Fi

enabled network interface cards is typically bundled with laptops, high‐end mobile

phones and PDAs. Wi‐Fi has typically transfer rates of 54 Mbit/second (802.11g) or 11

Mbit/second (802.11b). This is substantially lower than Ethernet over twisted pair [27].

7.5.4 Bluetooth

Bluetooth is a specification for wireless Personal Area Networks (PANs). Bluetooth uses

radio waves in the 2,4 GHz spectrum for transmission, i.e. the same spectrum as Wi‐Fi

[27, 28]. Transmitters are divided into three classes, where class 1 has a range of 100

meters, class 2 has a range o f10 meters and class 3 has a range of 1 meter. Bluetooth

devices are connected in groups, so called piconets, with one master and up to seven

active slave devices. Up to other Bluetooth slave devices can be inactive and the master

can at anytime activate them, forcing a currently active device to become inactive.

Typical Bluetooth applications are file transfer between mobile phones or mobile phones

and computers or wireless connectivity between input devices such as keyboards and

computers [28].

 40

 41

Part IV: Own contribution

 42

 43

8 Requirement

To specify the requirement of the game, we first describe the over all concepts together

with the main parts of the games. Based on that, the detail of how these parts interacting

are presented. Finally, the requirements are documented using UML use case diagrams.

8.1 Over all concept of lecture game

The concept of lecture game referred to in this document is mobile multi player quiz

game. The game will be used in the lecture where teachers test knowledge of students in

a specific area by sending questions to students, collect results, evaluate and display

feedback to them on both handheld devices and big screen.

Figure 9. Over all communication

 44

The diagram shows the over all interaction of the system. There are three components

running on different platforms. The most important component is the Game Engine

running on a server, game engine provide services to Master clients and mobile clients.

The game engine has capability to support multiplayer and multi games at the same time.

In Figure 9 two examples of games playing concurrently are showing.

The next component is the mobile clients installed on shell phones of users. Before

playing, user must connect to game engine (using any networking available Wi-Fi,

GPRS). After that, he or she needs to choose with game to join and then waiting for the

game to start. On the game, mobile client will receive the questions from the game

engine, it then rendering it to player. Player will submit the answers and got feedback

when the time is out.

The last component is called the master client which runs on the teacher’s computer like

a laptop or a PC. The responsible of this one is to render graphics and displaying

feedback to user as well as guideline. In the lecture the teacher computer often connects

to a project for a better visualization.

8.2 Detailed description of the lecture game

When the Game Engine (GE) starts it listens for the connection from the Master client

and Mobile clients. The Mobile client has to wait to join the game created after a Master

client connected successful to GE.

When Master clients connect to Game engine, the user name and password have to be

submitted in encoded format to the GE, currently the encoding and decoding functions

just return the string itself without doing any thing. The GE authenticates that information

with the information about users on its database. It lets the master connected if the

authentication process is successful.

After successfully authenticate, the GE is ready to create a new game. The architecture

will be opened so that multi Master clients can connect to GE.

At this time a new game has been created and GE is ready for mobile clients to connect

to. Mobile client will receive a list of available games; it makes a choice and joins one

game at a time. Each time one client connect to the game its information will be sent to

 45

the Master client. The game starts when the Master client sends the “Start game” message

to the GE. After starting game, no more clients can connect to game.

On the game, the “game story” will progress through a lot of rounds. In each round some

things will happened: the GE then will get the a question base on the type of game (for

example the level of difficulty) from DB and then send it to the Master client and to some

or all of mobile clients (Base on game mode and … add more details later); The clients

maybe knock out if it does not answer correctly; the score will be added for correct

answer; Sound and graphic will be played and displayed. When time outs the GE got the

results, evaluate and send the summary to the master client and mobile clients to display.

The GE then moves to the next round and repeats until reaching the last questions.

At the end of the game, GE does the summarization and sends to master client and

mobile clients. After that the Master client then can choose to end or restart the game.

8.3 Functional requirement

In this section the functions of the lecture game will be described. There are three

components together make the whole system but they are different modules so they will

be described separately, when describing one component, the others components will

become the actors of that component. UML use case diagram will be used for

visualization.

8.3.1 Functional specification of Game engine

The Game engine provides services to both master client and mobile client. The basic

functions including verification service, start game, send question, receive answers, send

round result and end game. The high level use case model of Game engine in Figure 10

illustrating these functions and showing how the functions are using by its actors.

 46

Figure 10. Game engine high level user case

Table 2 to Table 4 describe use cases of game engine in details

Table 2. Verification use case description

Use case Verification

Brief description This use case allow client to login to system.

Actors Master client and mobile client

Preconditions The client is activated and trying to connect to the game engine

Main flow The use case begins when master client is activated or mobile

client send user name and password to login.

If the login request comes from master client, then GE will first

send a message to say that logging in is ok and then it tries to

create a new game. If the new game is create ok then the game

ID will be sent to master client. The GE then delegate the control

of communication with the master client to the new game created.

 47

If the login request comes from mobile client then GE will check

user name and password again the information in the database, if

the checking function return true, then it lets the mobile client to

log in.

Alternative flow If the game can not be created then a special game id will be sent

to master client

Post conditions If the use case is successful then the client will be logged in the

game engine. A new game will be created.

Table 3. Play game use case description

Use case Play game

Brief description Start sending questions to clients, evaluate result and render

feedback.

Actors Master client, mobile client

Preconditions At least one master connected to GE.

Main flow The use case begins when master client sends the “start” message

to GE.

GE then will get all the appropriate questions for that game from

database. It then iterate through those questions. With each

question, GE will send it to master and mobiles. GE collects

answers from mobiles, evaluate result and send feedback to

clients.

Alternative flow If master and GE can not exchange messages then game will be

terminated.

 48

Post conditions (none)

Replay game use case

This use case extends of Play game use case. This use case is activated when the game

has been played one time, and it allows the game to be played again. Teacher actives by

using the menu or just by press some buttons.

Table 4. End game use case description

Use case End game

Brief description This use case terminates the game.

Actors Master client

Preconditions At least one master connected to GE.

Main flow The use case begins when master client sends the “exit game”

message to GE.

GE then will release the resources allocated for the game and

terminates send “end” sign to mobile clients.

Alternative flow (none)

Post conditions The game ends.

8.3.2 Functional specification of Master client

Figure 11 shows the high level use case model of master client illustrating its functions

and showing how the functions are using by its actors.

 49

Figure 11. Master client high level use case

Table 5 to Table 8 describes the use case of master client in details.

Table 5. Response to player logging in use case description

Use case Response to player logging in

Brief description Update the status of the game when there is mobile join the game

Actors Game engine

Preconditions Mobile player choose to join the game

 50

Main flow The use case begins a mobile client join in the game, the

information of mobile will be sent to master for updating.

Alternative flow (none)

Post conditions The number of mobile clients will be updated

Table 6. Display instruction use case description

Use case Display instruction

Brief description Display short guide of how to play the game

Actors Teacher

Preconditions (none)

Main flow In the game, teacher chooses to display game instruction by

choosing from the menu of press The space bar button. Master

will change the screen and display the instruction.

Alternative flow (none)

Post conditions The instruction will be displayed.

Table 7. Play game use case description

Use case Play game

Brief description Start receiving question, feedback from GE and rendering it on

screen.

Actors Game Engine, teacher

 51

Preconditions The master client is displaying game instruction and teacher

chooses to start the game.

Main flow The use case begins when the teacher choose to start game by

press the space bar button.

The game will start and the master will receive the first question,

display it on the screen together with the count down clock. When

time is out, game engine will collect the answers from mobiles

evaluate and send the answer to master, master will then do some

statistic and display the answer.

The game moves on to the next question until reach the last one.

At that point, master will receiver the round result form GE and it

will display it on screen.

Alternative flow If master and GE can not exchange messages then game will be

terminated.

Post conditions (none)

Table 8. End game use case description

Use case End game

Brief description This use case terminates the game.

Actors teacher

Preconditions At least one master connected to GE.

Main flow The use case begins when teacher press the Escape button.

Master will send the exit request to GE to terminate the game.

 52

Alternative flow (none)

Post conditions The game ends.

8.3.3 Functional specification of Mobile client

Figure 12 shows the high level use case model of mobile client illustrating its functions

and showing how the functions are using by its actors.

Figure 12. Mobile client high level use case

Table 9 to Table 12 describes the use cases of mobile client in details.

 53

Table 9. Log in use case description

Use case Log in

Brief description Allow player to log in GE.

Actors Game player

Preconditions Game engine has been started

Main flow Display the login form

Player enter user name and password

Send username and password to game engine when players

choose “submit” button or similar.

Alternative flow If game engine is not start then exit game.

Post conditions (none)

Table 10. Choose game use case description

Use case Choose game

Brief description Choose the game to join in

Actors Player , GE

Preconditions At least one master connected to GE.

Main flow Player enter the lecture code that displays on the screen

Send the lecture code to GE and wait for feedback

The GE will check the code and send feedback to mobile client, if

there is code is not exist then mobile client will ask player to enter

 54

the code again.

Alternative flow Player can choose to exit game

Post conditions If the use case is successful then client will join the game.

Table 11. Play game use case description

Use case Play game

Brief description Start receiving question, feedback from GE and rendering it on

screen.

Actors Game Engine, game player

Preconditions The master client is displaying game instruction and teacher

chooses to start the game.

Main flow The use case begins when the teacher choose to start game by

press the space bar button.

The game will start and the mobile will receive the first question,

display it on the screen. And wait for player to submit the answer.

When time is out, will display where the player has chosen the

correct alternative.

The game moves on to the next question until reach the last one.

At that point, mobile will receiver the round result form GE and it

will display it on screen.

Alternative flow If mobile and GE can not exchange messages then the mobile will

be disconnect from the game.

Post conditions (none)

 55

Table 12. End game use case description

Use case End game

Brief description This use case terminates the game.

Actors GE

Preconditions The game engine is shutdown

Main flow The use case begins when master client sends the “exit game”

message to GE.

GE then will release the resources allocated for the game and

terminates send “end” sign to mobile clients.

Alternative flow (none)

Post conditions The game ends.

9 Design

Based on the requirements specified above, the architecture for the game is created. This

architecture will be used to find out the classes by breaking down its components into

smaller modules. The classes and the communication between them will be documented.

9.1 Proposed architecture for lecture game

The lecture game has a central server and a central database, the server and clients

communicate through network. So naturally, the lecture game is based on client-server

architecture. How ever the term client- server is very general, there is a need to customize

this term. We need to point out which components that client and server contain? We

need to decide if it is possible to use the same architecture for different kind of client?

 56

Base on the requirement specified above, the answers for those questions are found. The

mobile client and the master client can have the same architecture by using message to

communicate with the server. The components and communication between them are

illustrated in Figure 13.

Figure 13. Lecture game architecture

The communication between client and server is handled by the component called

“Message exchange” and “Listener”. In the game engine, the “Game Manager” (GM)

component is responsible for manage all other component of game engine. It will be

activated first and will exist until game engine terminates. Game manager has “Listener”

components that listen for connection from client. When a client connects to game

engine, GM will create a new Game component. The Game component is responsible for

running a specific game (that is the lecture quiz game). After the Game is created, the

client will communicate with the game by sending and receiving Messages through

Message Exchange components.

When client receives data from Game, its Message exchange component will package

that data into a message and pass it to Game component for further processing. The Game

component analyzes the message and forwards it to UI component for graphic rendering

or playing some sounds.

 57

9.2 Game engine class design

The design of game engine classes is based on the architecture proposed above. Each

component from the architecture is implemented by one or more classes. The classes that

associate with architecture component have similar name with that component so that it is

easy to understand the function of classes. The following diagram in Figure 14 models

all classes of game engine, the classes that are less important are only showed with their

names. The diagram can be read from the top to the bottom.

The classes are arranged into three packages:

package Core: contains basic classed of game engine

package DataBase: contains classes for manipulate data in a central database

package GameMode: contains classes for implementing different modes of game.

Game manager component from the architecture is associated with GameManager class

in Core package. As said above, this class starts the game engine; it contains the main

entry function. GameManager class listens for clients using two instants of GameListener

class. There are two kinds of listener: MaserListener MobileListener that listens for

master client and mobile client accordingly.

Beside the listeners, GameManage has GameList object. As seen in the diagram,

GameList and Game havs 1-* relation meaning that the GameManager can manage multi

games. Game is added to GameList when there is master client connected to GE.

After having been created, Game object is responsible manage a specific game. Each

game associates with one specific master client and n mobile clients. To communicate

with master client and mobile client, Game object use two classes MasterCommunicator

and MobileCommunicator accordingly. If client send data to Game, the communicator

classes will receive it then create a message and call the game to do the actually

processing.

The game needs to retrieve questions from database but it does not get the questions

directly. Instead it uses the Round class which organizes questions into the round and

game will request Round for questions when it needs. Round class uses

 58

DataBaseConnection class to retrieve information from the database.

Each game has a specific mode which specifies how the game is running. The

GameMode interface generalize the functions that each specific mode needs to

implemented. By using the interface, it is easy to add more modes later with out changing

the others classes. This version of game implementing one game mode called measure up

mode.

 59

Figure 14. Game engine class diagram

 60

9.3 Master client class design

Similar to game engine, the classes of master client are also derived from the proposed

architecture by breaking down the components in client part. The classes and

communication between them are capture using the UML class diagram in Figure 15. The

diagram could be read bottom up.

In this diagram, MessageExchangeThread class is responsible to communicate with game

engine. Game class represents a specific game, it holds all information about state of the

game. When MessageExchangeThread gets data from GE, it packages the data into a

message and passes the message to Game class for further processing. Base on the kind

of message game class will make a call to functions in the Graphics package to do

appropriated actions.

 61

Figure 15. Master class diagram

 62

9.4 Mobile client class

Mobile client has same architecture as master client, the classes that implements that

architecture are presented in the diagram in Figure 16.

In the diagram, the class LeGaMidlet play the role of Game class of master client. The

package Graphics of master client is compact into one class which is LegaGameCanvas.

 63

Figure 16. Mobile client class diagram

 64

9.5 Class interaction

In this section we will describe how the class work together to achieve the functions (use

cases) of the system. It is not necessary to describe all the use case, instead only the use

cases with complicated login behind will be documented. We will use UML notation with

sequence diagrams for documenting. The format of some important message that the

classes used to communicate will also documented here.

9.5.1 Verification use case of GE

The verification process start when client connect to game engine. If the process is

successful then client will login and a new game will be created. The diagram in Figure

17 describes interaction between classes on that process when master client connect to

GE.

Figure 17. Verification sequence diagram

Right after connection both GE and master client send HANDSHAKE signs to identify

 65

each other. After that the client sends user name and password to login.

Server check and send result to client (Currently all user can login.). If the result is ok

then server create a new game.

If the new game has been created successful then server sends result to client.

From this time the client will communicate with the game, not game engine. The game

thread will run in a separated thread, it runs at the same time with game engine and the

listening thread of game engine so that the game engine and create multi game at the

same time.

9.5.2 Play game use case (GE)

The interaction between classes to implement the Play game use case is expressed in the

diagram in Figure 18.

The classes take part in this use case include GameMode, Game, Round,

MasterCommunicator, MobileCommunicator and DataBaseConnection (used by Round

class to query the database). And beside that there are two actors, Master client and

Mobile client.

 66

Figure 18. Play game sequence diagram

The master client starts the use case by sending the start game message to masterServer

(an instant of MasterCommunicator). The masterServer then send processMasterMessage

message to game. In turn game send playGame message to itself. After that a create

message will be send to Round class to create a round for the game. Round will contains

all questions of the game.

The game then goes to a loop. On each iteration, game will get a question from round,

send it to master client and mobile clients. The answers will be collected and send to

master client. After the loop, game will summarize the round result and send it to master

client.

9.5.3 Message format

Before Creating game, the type of message is recognized by the order of message (the

first message is the Handshake sign, the next is the user name, and so on)

After that the message is recognized by the type of message, the first character in the

message decides that type. Each type of message is associated with a public static

constant in the Message class. The following part describes the formats of Question

 67

message and answer message.

 Question message: This is an example of a question message: “7What is a

design pattern?|4| A nice hat| A software component| Reusable experience| A

design process|30|2”.

 Each message is a string with the first letter is the type of message. In

this case the type of message is “7” and it is equal to

Message.MSG_QUESTION constant defined in Message class.

 The rest of the string (starts from the second letter) is the data. If there

are more then one fields then they are separated by “|”.

 The next field is the question, in this case the question is “What is a

design pattern?”, following is the number of alternatives which is “4”

in the exam. After that is the list of the alternatives.

 Follows the alternatives is the time period to answer question. In this

case, players have 30 seconds to find out the answer.

 The last field is the index of correct answer in the collection of

alternatives. The index starts from 0, so in this case “Reusable

experience” is the correct answer. Note that in the database the index

of alternatives starts from 1 (this presentation associates with the way

question is presented to players).

 Answer message: This message is created after game engine has combined

answers from mobile players and send it to master client for showing

summarization. An example of question is

“84|user1|0|user2|2|user3|2|user4|3”.

 The message starts with a letter specifying the type of the message. In

this case message type is “8” equals to the constant MSG_ANSWER

in Message class.

 The next number is the number of players. There are 4 playes in this

case.

 68

 The next field is the player’s name and his chosen index of alternative.

In this case the master client will interpreter that user1 chose

alternative 0, user 2 chose alternative 2 and so on.

10 Implementation

This part is will discuss the tools and the environment for coding the classes. The rules

for layout the source code are specified. And at the end is policy to deal with exceptions.

10.1 Choosing development environment

When creating a multi users distributed application, there is significant concerns about

which technologies are suitable. Costs in terms of risk, development time and the actual

price of the technology are some of these factors discussed in the following sections.

10.1.1 Server technology platform

Java and .Net are the two choice of server platform as presented in section 7.1. This

section summarizes the reasons behind the selection of technology platform for the game

engine between them.

The most important factors when choosing the technology platform for the server is

portability. The ideal situation is to have a server application which can run on any

platforms. This has several advantages: no need for additional investments in hardware

and software to run the game. Also there is the possibility to run the server application on

any modern computer and a low threshold for installing and running it. In this light, Java

is chosen to build the game engine. In addition to fulfilling the needs for a portable

solution, Java has an excellent reputation as a server and middleware platform [29].

There is also a good selection of freely available tools for Java which is not the case for

.Net.

10.1.2 Mobile Technology Platform

In this section is the presentation of a rationale choice of mobile technology platforms

between J2ME and .Net compact framework.

.NET Compact Framework and J2ME offer the same potential and freedom of

 69

implementation in our concept. However, few students own a device supporting the .NET

Compact Framework. Availability is an important feature, thus J2ME is the chosen

platform of implementation.

To offer a game‐like sense to the mobile application, the concept is implemented for

MIDP 2.0. It is likely that some students possess a phone that lacks MIDP2.0 support, but

this is considered a small loss compared to the increased usability that MIDP 2.0 allows.

10.1.3 Database solution

As presented on section 7.3, there are several competing Database Management Systems

(DBMS) on the market today, each powerful and feature rich in their own respects. The

two main options for this project are MySQL and Oracle. This part briefly presents the

rationale and background for the choice of DBMS.

Portability, price and easy installment, as well as previous experience on our part have

contributed heavily towards our decision of choosing the MySQL DBMS as a solution

over the other alternatives. All the different database applications mentioned here has

readily available Connectors for use with Java which is the project’s development

environment. MySQL has abroad user base, and there exist large amounts of tutorials

created by the community and other developers, which are freely available on the

internet. The version of MySQL used in this project is Community Server 5.0.27 for

Win32, which are the newest release containing binaries at this time.

10.1.4 Protocols

The choice of protocol is an important design decision, and imposed its own set of

constraints on the prototype with regards to robustness and reliability. As discussed in

section 7.4 there are two protocols that can be used in this project: TCP and UDP. These

are the two protocols that form the core of the Internet Protocol (IP) suite.

We decided to use the TCP protocol in this project. The reason for this is the inherent

robustness and reliability of this protocol. The game concept requires for instance that the

student clients installed on the mobile phones and laptop computer shave a persistent

connection which the server can use to push out messages. These needs take precedence

over the overhead created by TCP in comparison with UDP. We chose to use the same

 70

protocol for all the components of the prototype, ensuring interoperability and reducing

design complexity.

10.1.5 Communication bearers

The concept to be implemented requires ease of use for large numbers of participants. In

this part, we will consider the pros and cons of different communication bearers and how

can we use them in our project.

Since the development framework used in this project will be Java and TCP/IP, which

implies the use of socket programming, the data bearer is essentially transparent to the

applications per se. This, however, does not mean there is not a preferred or expected

data bearer for the different components of the prototype. The server will typically be a

stationary workstation or a server computer which is always on and always connected to

the internet. This warrants the use of Ethernet over twisted pair, as it is a stable and

widely available communication bearer on university campuses. The teacher client will

typically connect to the server from a class room. Both Wi‐Fi and Ethernet over twisted

pair are suitable for this, as these communication bearers are usually available in a class

room. In some cases we imagine 3G, EDGE or even GPRS can also be used if neither

Wi‐Fi nor Ethernet over twisted pair is available. The amounts of data to be transferred

between the server and the teacher clients are miniscule, so the bandwidth will not be an

issue.

The student clients will be run by the students, situated inside the lecture hall, on either a

mobile phone supporting J2ME or a laptop computer. This requires wireless connectivity;

preferably GPRS, 3G or Wi‐Fi, as most new mobile phone support one or several of

these communication bearers. As UMTS (3G) will increase its market penetration, we

must expect a reasonable amount of student clients will be connected over UMTS in the

future. Some newer handsets also support Wi‐Fi, and in lecture halls with Wi‐Fi

coverage, we will not be surprised if the students choose to connect over this

communication bearer, as it will be free of charge for the users.

10.2 Naming convention

In this section we discuss the naming rules for classes, objects, instances, methods and

 71

variables. It is important to make names as descriptive as possible when implementing.

Because the code might be used and expanded by others later on, it is more important that

code is easy to understand, than easy to write. The implementation is divided into three

main implementation modules:

10.2.1 Classes

For naming of classes, the following rules shall be applied:

 The different parts of the name shall start with a capital letter.

 The name shall be descriptive and easy to understand.

 Abbreviations used as a part of the name shall consist only of capital letters.

10.2.2 Instance of class

For naming of instances, the following rules shall be applied:

 The name shall start with a lowercase letter.

 The name shall star with an abbreviation of the object owner or attributes.

 The next part shall star with a Capital letter, the name shall represent the class

which the object belong to.

 The last part is an option, shall with a Capital letter and with an abbreviation

of the class.

10.2.3 Variables

For naming of variables the following rules shall be applied:

 Variable names shall be given a name that reflects what kind of value they

contain.

 Variable names can either use lowercase or mixedCase. mixedCase is used if

the name is composed by several words, with each separate word starting with

an upper case letter such as longNameForVariable.

 Variable names should preferably be self-explanatory. The exception is if the

variable is often referred to or is a counting variable.

 72

10.2.4 Methods

For naming of regular methods the following rules shall be applied:

 The name shall start with a lowercase letter.

 The name shall start with a verb.

 Other parts of the name shall start with a capital letter.

 The name shall be descriptive and easy to understand.

10.3 How to deal with error

Errors or exceptions should be deal with as soon as possible when it happened. In the

layers of application, some time the error happened at low level, if have enough

information to process then process it right at that time. If the errors need more

information to process, then forward (throw) it to the next level to process.

11 Deployment

This part describes the process of packaging, distribution and installation of different

parts of the software and library across different hardware systems. The part of game

engine and database will be deployed on a server or a workstation that always connect to

internet while the master client is installed on a PC. The last part will runs on a shell

phone that enable Java.

11.1 Deployment of game engine

Both of source code and binary of game engine are delivered. In this section we are going

to describe how to compile and run the game engine.

11.1.1 Compiling the source code

The environment using to compile game engine source code is Eclipse version 3.2. Game

engine use additional library Conector/j Driver mysql-connector for managing

database. The process of compiling game engine is documented in Appendix A.2

11.1.2 Install the database

The DataBase Management System (DBMS) used in the game is MySQL, for instruction

 73

of to set up the database see Appendix A.5

11.1.3 Installation of GE and configuration

GE is delivered as a .jar file and a configuration file. The configuration file is a .txt file

with 4 lines. The first two lines are the username and password to access the database.

The next 2 lines are the port numbers where the GE listens for connection from master

client and mobile clients accordingly. Modify the configuration file to with the

appropriate information.

The computer that hosts GE can be a server or a work station. The server must have a

fixed IP address or hostname that can be seen form internet. Server uses socket with

specific ports to communicate with clients. Make sure there ports are not blocked (for

example by some firewall programs).

The game has been tested with Dell E1405 laptop connecting to internet at NTNU

campus. At NTNU, computers often have Cisco VPN client installed with a built in

firewall that always turn on by default, it should be turn off for the game engine to run.

GE is installed just by copying the two file and put in the same directory. After that one

can start the game engine just double click on its .jar file. Before running game engine,

JVM must be installed; the version required is 5.0 or higher. JVM can be downloaded

form http://www.java.com/en/download/index.jsp.

11.2 Deployment of master client

This section describes the process to compile and run the master client

11.2.1 Compiling the master client

The environment using to compile master client is Eclipse version 3.2. Master client is

built with pure java API, so there is no need to install additional library. The process of

compiling game engine is documented in Appendix A.3

11.2.2 Installation of master client and configuration

Master client is delivered as a .jar file. In addition there are a configuration file and a

graphic file. The configuration file contains the address of game engine and the port that

game engine listens for connection.

 74

The computer hosts master client needs to have JVM version 5.0 or higher. This

computer need also connect to the game engine. There are a number of connection

options available such as wireless network, twisted pair cable or event the internet. In the

test of game master client connected to game engine in a LAN.

11.2.3 User guide

To activate teacher client, double click the .jar file. The first screen of game will be

shown with a logo. The game then waits for clients to join as in Figure 19.

Figure 19. Waiting screen

To move to the next screen press the space bar. The game introduction will display as in

Figure 20.

 75

Figure 20. Introduction screen

To start playing game, press space bar again. The game then will iterate through all the
questions. An example of a question is shown on Figure 21

Figure 21. Question is displayed on the teacher’s PC

 76

When the game finishes, press Escape to exit game, press space bar to play again.

11.3 Deployment of mobile client

In this section we present how to package the mobile client and how to deliver it using a

WAP site.

11.3.1 Package the mobile client

The mobile client runs on a shell phone that supports MIDP 1.0 specification. This

section gives instruction to package the mobile client using Eclipse, for the guide of

compiling mobile client see Appendix A.4.

To create the .jar and .jad files for shell phone, following these steps;

Open the MobileClient project in Eclipse, then open mobile_client.jad file. Make sure the

configuration is the same as in Figure 22 below

Figure 22. Configure the Jad file

Change to the Midlets tab, click “add” button to add a midlet, make sure to enter the

information as in the Figure 23

 77

Figure 23. Configure the midlet class

The last step is to create the jar file. On the package explorer view (if it does not show,

then activates it by choose Window Show View Package Explorer), right click on

the project name and choose J2ME Create Package as Figure 24.

Figure 24. Package mobile client

Make sure there is no emulator is running otherwise there will be an error. If everything

is ok then Eclipse will create 2 files mobile_client.jar and mobile_client.jad in

“deployed” folder in the project directory.

11.3.2 Delivery of mobile client part

This section will give instructions of how to deliver the mobile package using WAP site.

It is possible to use any web server that supports WAP. In this project we use IIS from

Microsoft. Some knowledge of create a web site using IIS is assumed. In the following

 78

parts we give instructions on how to configure the website so that IIS can understand the

WAP.

Make sure your computer has IP address or a domain name that can be pinged form

internet. This condition is important because you are going to put the jar file there for

shell phones to download using GPRS.

Create a virtual directory using IIS, to configure this directory as a WAP site, change the

mime type as Figure 25:

Figure 25. Configure mime type in IIS

Create an index.wml file that contains entry for the .jar and .jad you want to deliver, a

simple example is:

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>

 79

<card title="Download">

<p>Download the Jar file and istall on your phone:</p>

<p>

mobile_client.jar

</p>

<p> Download (JAD) </p>

</card> </wml>

If every thing go well then you can download the jar file in a GPRS enable shell phone by

go to the wap site http://url_of_your domain/name_of_vitual_directory/index.wml such

as http://129.241.103.165/wap/index.wml .

 80

 81

Part V: Evaluation and Conclusion

 82

 83

12 Evaluation

This section presents the evaluation of our major findings during the project. We will also

present here our experiment during the development process.

12.1 Evaluation of new implementation

It is very challenging to implement a game that spanning through different platforms and

distributed environment. That is why we are happy to end up our project with a run-able

game. We have conducted several tests on the game to make sure it running correctly.

The user test has been conducted on the real environment at NTNU campus with 3

mobiles phone and 3 emulators running on 2 laptops and a PC. Figure 26 shows how a

question and a feedback are sent during the game and how they are shown on a mobile

phone’s screen. Figure 27 and 28 show the question and feedback projected on a big

canvas. All the functional requirements are implemented and run correctly.

Figure 26. Question and feedback on mobile phone

 84

Figure 27. Question showing on big canvas

Figure 28. Feedback on big canvas

 85

In our performance test of the game within the development environment, a normal PC

can server up to 10 games at the same time. The PC in the test is a laptop running

WindowXP with the Intel T2300 processor 1.66MHz and 1Gb RAM. Also the PC

activates a master client and several mobile simulators. All the functions of game engine,

master client and mobile client are correct according to the specification in section 8.1.3.

We experience a problem of delay when logging into the game engine from mobile phone

during the daytime. On the daytime it may need up to 2 seconds to log in, meanwhile at

night the logging process happens immediately. But such a problem does not affect the

experiment to play game because after the connection, data transmission speed is fast

enough, no delay is significant.

12.2 Development process

We use iterative method to develop our game. This is an important factor leading to the

successful of our project. As we image from the beginning of the project the

implementation is very challenged so that we put more focus and made several iterations

on the prototype phase as on Figure 1 (at the begin of the report). In our project the first

iteration is to define and implement the class of main modules which are the game

engine, the master client and the mobile client. The class is first implemented with the

name of its methods together with methods’ description and attributes. The methods then

will be refined gradually to implement their functions. The refined process uses the top

down approach.

 86

Figure 29. Create classes with Eclipse UML

Our approach is supported by using a case tool call “Eclipse UML” in Eclipse

environment. The tool allows us to implement the class visually and then it can generate

the code later. We think that the tool like this is very helpful for iterative process with top

down approach. First we use the tool to create classes visually as in Figure 29, and then

we add methods, properties. The tool can be used to describe what the method does and

how it can do that. We also can use the tool to implement the method and it will generate

code later. Figure 30 shows how we have done the refined process in our project.

 87

Figure 30. Method refined process starting with descriptions and then implementation of

listen4Mobiles() method.

 88

We do not only use the top down method but also the bottom up method. The bottom up

method is used when there is some class that we can start coding immediately. For

example, a class to play some sound in our game is the kind of class can be implemented

without waiting for detail design. The bottom up method is often useful in projects that

have more than one programmer, but it also works in our project with only one

programmer; in the way that it helps to create other new classes when we integrate the

low level classes.

We experienced several problems during the implementation process. The first problem

was the limitation of some free version and this caused some conflicts. For example the

Eclipse UML that we used to implement classes and to generate the code did not work

with subversions that we used to manage version control. We have tried to overcome this

problem by disconnecting from subversion every time we use Eclipse UML. Other

example of tool problem came from a tool that we used to reverse engineering; we used

this tool to create the class diagrams, because it is a trial version so we could not use its

export function. Our solution was to use a capture screen tool to copy class diagrams.

We also faced a problem to debug the game in only one laptop. The game has three parts

that runs on different platforms. To debug the game we need to run all the parts. In our

project we addressed this problem by two solutions. The first is to run three instant of

Eclipse simultaneously; each instant has a separate work space. The second solution is to

use an Emulator to emulate the mobile phone.

In our project we decide to use Java APIs for drawing graphics. Figure 31 is an example

of graphics that we built in our game showing a count down clock. We have tested the

game on a Macbook and a Window computer. By using Java APIs, our application can

run on any platform that supports Java. Compare to the previous game this is another

improvement feature because the previous game does not work on a Macbook. The

challenging when using native Java APIs for graphics is that we have to spend a

significant amount of time to build all the animations, graphics rendering, and text

rendering functions from scratch.

 89

Figure 31. An animation building with native Java APIs

12.3 Team work

Having a good team work was an important factor contributing to the success of our

project. During our project, meetings were conducted weekly. We used artifacts like

papers, pencils, and computers for exchange information and making decisions. Some of

papers are shown on Figure 32.

Every meeting we discussed what we had done and came up with the new ideas and work

for the next week. Having been working together and meeting every week helped us to

make the necessary improvements, to set new goals, to build and manage work plan and

to reach the final goal of the project.

 90

Figure 32. Team work artifacts during project

 91

13 Conclusion

Based on the findings in the project, the answer for our research questions is presented as

follow.

RQ1: Which features of the previous lecture quiz game can be improved in term of

gameplay of the system?

We have analyzed the document as well as diged into the source to evaluate the current

game. The results have been documented in part II. There are a number of improvements

we can make to the current game and we choose to address two of them in this version of

the game which are supporting multi games at the same time and enhance the

communication layer.

RQ2: What architecture is suitable for this kind of game?

We have proposed and implemented an architecture for the multi games. The architecture

is based on client-server architecture. We have decided to use the same architecture for

mobile client and master client to simplify the development. The new architecture

dedicates a component to manage the data communication. This guarantee the easily

changes to adapt to new requirements in the future. The architecture is not only easy to

understand but it also can be implemented. The new version of the game is built on the

architecture showing that it is suitable for supporting multi games.

RQ3: Implement a lecture game based on the proposed architecture.

Base on the finding in RQ1 and RQ2, we have tailed the architecture and implement a

new version of the game. The requirements, design, implementation, and deployment

processes have been documented carefully in our report. All the functions of the game

have been implemented and tested.

Compare to the previous the new version supports multi games, has clear defined

architecture. The design document is also an important part of deliverable in our project.

14 Future work

Supporting multi games is the first step to make a practical game to be accepted and used

 92

in the real life. How ever, as the evaluation in section 4 we can do further work as the

summarization below

Game content editor

Currently the questions are putted into the database manually using DBMS. This is not

practical for every teacher. So there is need for a tool for managing the creation of lecture

and input questions, review game result later. The tool also supports the selection of

questions for a quiz, create new lecture based on the old ones. The tool may provide

statistic information to teacher and other system in schools or universities.

Communication protocol

In our implementation we have a dedicated component for managing data

communication. This component exchange data in text format which is not a standard

format for data communication anymore. In the future we can improve the

communication using XML format. Currently J2ME MIDP client and server can

communicate using SOAP protocol. There are two implementations available: the

implementation from Sun called JSR172 and kSOAP [30]. We encourage customizing

and using these protocols in the new version of the game for better data interchange. The

change should not cause any modification on other layers because of modular design.

Add more game modes

We can extend the game by adding more game modes. Because of time limit, we just

create one mode in the new version of the game but the architecture is open for adding

more game modes. The other mode maybe “Group mode” where players are divided into

groups and game is playing between groups.

 93

Reference

1. Ole Kristian Mørch-Storstein; Terje Øfsdahl, Master thesis Game Enhanced

Lectures. 2007

2. Wiki, http://en.wikipedia.org/wiki/Educational_game last access on January 26,

2008.

3. Scott W. Ambler, Choose the Right Software Method for the Job. 2006,

http://www.agiledata.org/essays/differentStrategies.html.

4. V.R. Basili, The Experimental Paradigm in Software Engineering. in

Experimental Software Engineering Issues: Critical Assessment and

Future Directions. 1993, Dagstuhl Castle, Germany: Springer Verlag.

5. A.I. Wang, Using a Mobile, Agent-based Environment to Support

Cooperative Software Processes. in IDI. 2001, NTNU: Trondheim. p. 407.

6. B.V. Koen, Toward a Definition of the Engineering Method. in ASEEIEEE

Frontiers in Education Conference. . 1984. Philadelphia.

7. H. Bär, E. Tews, and G. Rössling, Improving Feedback and Classroom

Interaction Using Mobile Phones. 2005.

8. Lecturelab: Uce Servers & Clients, WIL/MA, Wireless Interactive

Lectures in Mannheim. http://www.lecturelab.de/. Access on 3rd June 2008.

9. A.I. Educlick. 2004 Limited, http://www.avrio.co.uk/shop/educlick.htm. Access

on 3rd June 2008.

10. Aclass Technology, http://www.aclasstechnology.com/. Access on 3rd June 2008.

11. Government Backs "Buzz! For Schools",

http://www.mcvuk.com/news/25249/Government-backs-Sonys-Buzz-for-schools

Access on 3rd June 2008.

12. C.M. And C. Lengauer Pancake, High-performance Java: Introduction.

 94

Communications of the ACM. 2001. 44(10 (2001)): p. 98-101.

13. Java Technology, http://java.com/en/about/. Access on 29 June 2008.

14. Wiki, .NET Framework

http://en.wikipedia.org/wiki/Microsoft_.NET#Microsoft_.NET. Access on 2 June 2008.

15. S. Helal, Pervasive Java, in IEEE Pervasive Computing Magazine. 2002.

16. Midp Java Phones, http://www.club-

java.com/TastePhone/J2ME/MIDP_mobile.jsp. Access on 2nd June 2008.

17. C. Neable, The .NET Compact Framework, in IEEE Pervasive Computing

Magazine. 2002.

18. Mysql Wiki, http://en.wikipedia.org/wiki/MySQL. Access on 2nd June 2008.

19. Lampware, http://www.lampware.org. Access on 2nd June 2008.

20. Postgre Sql Faq, http://www.postgresql.org/docs/faqs.FAQ.html. Access on 2nd

June 2006.

21. Interbase Public License V 1.0,

http://www.firebirdsql.org/index.php?op=doc&id=ipl. Accesson 2nd June 2008.

22. S.H. Jeong, QoS support for UDP/TCP based networks. Computer

communications. 2001. 24(1): p. 64.

23. K. Azadet, Gigabit Ethernet over unshielded twisted pair cables. 1999.

24. S.N.S. Haggman, GPRS performance estimation in GSM circuit switched

services and GPRS shared resource system. in Wireless Communications

and Networking Conference. . 1999. New Orleans, LA, USA.

25. A.F.S.M.F.M.H. Olofsson, EDGE: enhanced data rates for GSM and

TDMA/136 evolution. Personal Communications, IEEE. 1999. 6(3): p. 56-66.

26. A. Samukic, UMTS universal mobile telecommunications system:

development ofstandards for the third generation. IEEE transactions on

 95

vehicular technology. 1998. 47(4): p. 1099.

27. B.P. Crow, IEEE 802.11 Wireless Local Area Networks. IEEE

communications magazine. 1997. 35(9): p. 116.

28. J. Haartsen, Bluetooth-The universal radio interface for ad hoc, wireless

connectivity. Ericsson review. 1998. 3(1): p. 110.

29. K.E.M. Martin Karlsson, Erik Hagersten, David A. Wood., Memory system

behaviour of Java-based middleware. In the ninth International Symposium on High-

Performance Computer Architecture. 2003.

30. Mobile SOA: Service Orientation on Lightweight Mobile Devices

http://www.firebirdsql.org/index.php?op=doc&id=ipl. Accesson 2nd June 2008.

http://ieeexplore.ieee.org/iel5/4279552/4279553/04279753.pdf?tp=&isnumber=&arnumb

er=4279753, Access on 5th June 2008.

 96

 97

Appendix

Appendix A.1 The Main loop function in previous game

private void action() {

 master = connectionKeeper.getMaster();

 if ((master != null || connections.size() != 0)) {

 //if(true){

 // ****** NO CONNECTIONS ********

 String res1;

 if (serverState == LG.STATE_NO_CONNECTIONS) {

 serverState = LG.STATE_CONNECTED;

 ConsoleWriter.debug("Setting serverstate " + serverState, 3);

 }

 // ****** CONNECTED ********

 else if (serverState == LG.STATE_CONNECTED) {

 if (master != null) {

 if (master.inDataAvailiable()) {

 master.wakeme();

 98

 }

 }

 for (int i = 0; i < connections.size(); i++) {

 StudentClient c = connections.get(i);

 if (c != null && c.inDataAvailiable()) {

 c.wakeme();

 }

 }

 }

 // ****** PUSH QUESTIONS ********

 else if (serverState == LG.STATE_PUSH_QUESTION) {

 currentQuestion = gameMode.nextQuestion();

 if (currentQuestion == null) {

 serverState = LG.STATE_END_OF_ROUND;

 ConsoleWriter.debug("Setting serverstate " + serverState, 3);

 return;

 }

 totalNumberOfQuestions++;

 ConsoleWriter.debug("inne i STATE_PUSH_QUESTION", 3);

 99

 // sjekker at vi har et spørsmål.

 // henter ut spørsmålet som skal sendes til klientene, og lager

 // samtidig spørsmålet som skal sendes til masteren. forskjellen ligger i at riktig

 // alternativ sendes med spm til master.

 if (gameMode.getQuestionState() ==

LG.QUESTIONSTATE_FINAL_IN_ROUND && currentRoundIsLastRound()) {

gameMode.setQuestionState(LG.QUESTIONSTATE_FINAL_IN_LECTURE);

 }

 String masterQst = gameMode.createMasterQuestion();

 if (master != null) master.sendData(masterQst);

 for (int i = 0; i < connections.size(); i++)

 if (connections.get(i).loginStatus()) connections.get(i).sendData("A");

 try {

 //her settes delayet som skal føre til at mobilene er mest mulig synchet.

 Thread.sleep(2000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 100

 String clientQuestion = gameMode.createClientQuestion();

 for (int i = 0; i < connections.size(); i++)

 if (connections.get(i).getAllowedToAnswer())

connections.get(i).sendQuestion(clientQuestion);

 serverState = LG.STATE_WAITING_REPLY;

 ConsoleWriter.debug("Setting serverstate " + serverState, 3);

 }

 // ****** WAITING REPLY ********

 else if (serverState == LG.STATE_WAITING_REPLY) {

 //setter maks totalScore mulig å oppnå

 totalPossibleScore += gameMode.getMaxScore();

 try {

 Thread.sleep(currentQuestion.getTimeLimit() * 1000 + 1500);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 for (int i = 0; i < connections.size(); i++) {

 101

 StudentClient c = connections.get(i);

 if (c.inDataAvailiable()) {

 // gir tillatelse til at connectionen kan svare; permit so that the connection

can response

 c.wakeme();

 }

 }

 try {

 Thread.sleep(300);

 } catch (InterruptedException e) {

 e.printStackTrace(); //To change body of catch statement use File | Settings |

File Templates.

 }

 res1 = gameMode.handleQuestionReply();

 if (master != null) master.sendData(res1);

 int gameModeQuestionState = gameMode.getQuestionState();

 if (gameModeQuestionState == LG.QUESTIONSTATE_NOT_FINAL)

serverState = LG.STATE_CONNECTED;

 else serverState = LG.STATE_END_OF_ROUND;

 ConsoleWriter.debug("Setting serverstate " + serverState, 3);

 }

 // *** END OF ROUND ***

 102

 else if (serverState == LG.STATE_END_OF_ROUND) {

 res1 = gameMode.handleEndOfRound();

 if (master != null) master.sendData(res1);

 nextRound();

 }

 // *** END OF LECTURE ***

 else if (serverState == LG.STATE_END_OF_LECTURE) {

 String res = handleEndOfRound();

 if (master != null) master.sendData(res);

 serverState = LG.STATE_CONNECTED;

 makeClientsDie();

 ConsoleWriter.debug("Setting serverstate " + serverState, 3);

 }

 // *** LOAD NEW LECTURE ***

 else if (serverState == LG.STATE_NEW_LECTURE) {

 resetStatistics();

 nextRound();

 serverState = LG.STATE_CONNECTED;

 ConsoleWriter.debug("Setting serverstate " + serverState, 3);

 103

 }

 // ****** PING ********

 else if (serverState == LG.STATE_PING) {

 for (StudentClient c : connections) c.triggerPing();

 serverState = LG.STATE_CONNECTED;

 ConsoleWriter.debug("Setting serverstate " + serverState, 3);

 }

 } else if (connections.isEmpty() && master == null && serverState !=
LG.STATE_NO_CONNECTIONS) {

 ConsoleWriter.debug("Waiting for Connections", 3);

 serverState = LG.STATE_NO_CONNECTIONS;

 ConsoleWriter.debug("Setting serverstate " + serverState, 3);

 }

 }

 104

Appendix A.2 Compiling game engine

We are going to present here how to use Eclipse SDK to compile the game engine, but

any java compiler can be used to compile the code.

Tools preparation

- Download Eclipse SDK, an open source java compiler at http://www.eclipse.org/platform,

the version used is 3.2

- JDK version 1.6

- Windows XP

Steps to compile GE

- Create a folder and name it “C:\LECTURE_GAME” or whatever you want. This will be

used as your working space in Eclipse.

- Copy the source folder GameEngine that is delivered with this document (this folder

contains GameEngine project and source code) into the folder you created above.

- Download Conector/j Driver mysql-connector-java-5.0.8.zip and unzip to the fold

“\jre1.6.0\lib\ext”. You can find it under the Java home directory.

- Now open Eclipse (eclipse.exe), at the first time, the screen will look like in Figure 33.

You need to choose “Workbench” to continue.

 105

Figure 33. Open workbench

- Now you need to specify the “work space” in Eclipse, to do that choose File

Switch Work space and Browse to choose the “LECTURE_GAME” directory you have

created.

Figure 34. Choose workspace

 106

- The next step is to create a Eclipse Project, choose file New Project. Choose java

project and click Next, type “GameEngine” as the project name, click finish. A project

will be opened in the workbench and Eclipse will automatically load all the source files

in to that project.

Figure 35. Choose type of project

 107

- The last step is to configure the project, right click on the project name and

choose Properties. Go to Java Build Path and choose Libraries tab. Add an external Jar

file from the mysql-connector you have just copied above. You may need to remove and

add again if it is already exist. The configuration of libraries is the same as Figure 36

Figure 36. Configure the library

 108

- To build and run the application click button. At the first run, you may

need to specify the main class, fill the main class text box with

“GameEngine.Core.GameManager” and then click “run” button.

Figure 37. Configure the run

If everything goes well then the game engine runs and print the line start listening for

master client and mobile client on the debug window.

 109

Appendix A.3 Compiling master client

To compile the master client, prepare the environment the same as for Game engine, for

detail refer to the section Tool preparation above.

Follow these steps to compile master client

- Create a folder C:\Lecture_Game\Master_Space

- Copy the folder MasterClient from the CD delivered with this document (this folder

contain the project and source files of master client) into C:\Lecture_Game\Master_Space

- Run other instance of Eclipse and change work space to

C:\Lecture_Game\Master_Space.

- The next step is to create an Eclipse Project, choose file New Project. Choose java

project and click Next, type “MasterClient” as the project name, click finish. A project

will be opened in the workbench and Eclipse will automatically load all the source files

in to that project.

- To build and run the application click button. At the first run, you may

need to specify the main class, fill the main class text box with “Masterclient.core.Game”

and then click “run” button.

 110

Figure 38. Configure the run of master client

If everything goes well then the master client will run and show the first screen.

 111

Appendix A.4 Compiling mobile client

Tools preparation

Beside the tools that specify above for compile game engine, download and install J2ME

Wireless Toolkit 2.1_0 from http://java.sun.com/products/sjwtoolkit/download-2_1.html

(There is a need to register, you can login with account longtien/longtien)

Install EclipseME, a plugin for building J2ME application in Eclipse. Go to

http://www.eclipseme.org/docs/installEclipseME.html for instruction of how to install

EclipseME.

Configure Eclipse and EclipseMe, go to Window Preferences and make sure the

“Debug Server Time-out” and “Debug Server Launch Poll Interval” are the same as

Figure 39

 112

Figure 39. Configure J2ME

Step to compile mobile client

- Create a folder C:\Lecture_Game\Mobile_Space

- Copy the folder MobileClient from the CD delivered with this document (this folder

contain the project and source files of mobile client) into

C:\Lecture_Game\Mobile_Space

- Run other instance of Eclipse and change work space to

C:\Lecture_Game\Mobile_Space.

- The next step is to create an Eclipse Project, choose file New Project. Choose java

project and click Next, type “MobileClient” as the project name, click finish. A project

will be opened in the workbench and Eclipse will automatically load all the source files

in to that project.

 113

- To build and run the application click button. At the first run, you may

need to configure the run,create new Wireless Tooket Emulator as Figure 40.

Figure 40. Configure the run for mobile client

If everything goes well then the mobile client will run and show the first login screen as

in Figure 41.

 114

Figure 41. Log in screen

 115

Appendix A.5 Setup database

To set up the database, following the steps below:

- Install MySQL database and create

- Create an account with username/password is lecturegames/ntnu

- Run the following SQL statements to create the database for lecture game

-- MySQL Administrator dump 1.4

--

-- --

-- Server version 5.0.24-community-nt

/*!40101 SET

@OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

/*!40101 SET

@OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

/*!40101 SET

@OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

/*!40101 SET NAMES utf8 */;

/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS,

UNIQUE_CHECKS=0 */;

/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,

FOREIGN_KEY_CHECKS=0 */;

 116

/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE,

SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;

--

-- Create schema test

--

CREATE DATABASE IF NOT EXISTS test;

USE test;

--

-- Definition of table `course`

--

DROP TABLE IF EXISTS `course`;

CREATE TABLE `course` (

 `courseID` varchar(7) NOT NULL,

 `name` varchar(45) default NULL,

 `description` varchar(45) default NULL,

 PRIMARY KEY (`courseID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

--

 117

-- Dumping data for table `course`

--

/*!40000 ALTER TABLE `course` DISABLE KEYS */;

INSERT INTO `course` (`courseID`,`name`,`description`) VALUES

 ('tdt4210',NULL,NULL);

/*!40000 ALTER TABLE `course` ENABLE KEYS */;

--

-- Definition of table `lecture`

--

DROP TABLE IF EXISTS `lecture`;

CREATE TABLE `lecture` (

 `lectureid` int(10) unsigned NOT NULL auto_increment,

 `course` varchar(7) NOT NULL,

 `description` varchar(45) default NULL,

 PRIMARY KEY (`lectureid`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

--

-- Dumping data for table `lecture`

--

 118

/*!40000 ALTER TABLE `lecture` DISABLE KEYS */;

INSERT INTO `lecture` (`lectureid`,`course`,`description`) VALUES

 (1,'tdt4210',NULL);

/*!40000 ALTER TABLE `lecture` ENABLE KEYS */;

--

-- Definition of table `player`

--

DROP TABLE IF EXISTS `player`;

CREATE TABLE `player` (

 `username` varchar(20) NOT NULL,

 `password` varchar(20) NOT NULL,

 `registrationdate` datetime NOT NULL,

 `deprecated` int(10) unsigned NOT NULL,

 `isAdmin` tinyint(1) NOT NULL,

 PRIMARY KEY (`username`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

--

-- Dumping data for table `player`

--

 119

/*!40000 ALTER TABLE `player` DISABLE KEYS */;

INSERT INTO `player`

(`username`,`password`,`registrationdate`,`deprecated`,`isAdmin`) VALUES

 ('a','a','0000-00-00 00:00:00',0,1),

 ('Terje','sesam','0000-00-00 00:00:00',0,1);

/*!40000 ALTER TABLE `player` ENABLE KEYS */;

--

-- Definition of table `question`

--

DROP TABLE IF EXISTS `question`;

CREATE TABLE `question` (

 `questionID` int(10) unsigned NOT NULL auto_increment,

 `question` text NOT NULL,

 `roundid` int(10) unsigned default NULL,

 `timelimit` int(10) unsigned default NULL,

 PRIMARY KEY (`questionID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

--

-- Dumping data for table `question`

 120

--

/*!40000 ALTER TABLE `question` DISABLE KEYS */;

INSERT INTO `question` (`questionID`,`question`,`roundid`,`timelimit`) VALUES

 (1,'What is your name?',1,30),

 (2,'What decide sw architecture?',1,30);

/*!40000 ALTER TABLE `question` ENABLE KEYS */;

--

-- Definition of table `question_alternative`

--

DROP TABLE IF EXISTS `question_alternative`;

CREATE TABLE `question_alternative` (

 `alternativeID` int(10) unsigned NOT NULL auto_increment,

 `questionid` varchar(45) NOT NULL,

 `alternative` varchar(80) NOT NULL,

 `isCorrectAlt` tinyint(1) NOT NULL,

 PRIMARY KEY (`alternativeID`,`questionid`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

--

-- Dumping data for table `question_alternative`

 121

--

/*!40000 ALTER TABLE `question_alternative` DISABLE KEYS */;

INSERT INTO `question_alternative`

(`alternativeID`,`questionid`,`alternative`,`isCorrectAlt`) VALUES

 (1,'1','No name',0),

 (1,'2','Software quality',1),

 (1,'3','After requirement specification',1),

 (2,'1','You have a name',1),

 (2,'2','software function',0),

 (2,'3','The first phase',0),

 (3,'1','Pupy',0),

 (3,'2','sw company',0),

 (3,'3','In the Design phase',0),

 (4,'1','Catty',0),

 (4,'2','sw designer',0),

 (4,'3','When deployment',0);

/*!40000 ALTER TABLE `question_alternative` ENABLE KEYS */;

--

-- Definition of table `round`

--

 122

DROP TABLE IF EXISTS `round`;

CREATE TABLE `round` (

 `roundid` int(10) unsigned NOT NULL auto_increment,

 `lectureID` varchar(45) NOT NULL,

 `gametype` int(10) unsigned NOT NULL COMMENT '10 for measure up, 11 for

elimination mode',

 `lecture` int(10) unsigned default NULL,

 PRIMARY KEY (`roundid`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

--

-- Dumping data for table `round`

--

/*!40000 ALTER TABLE `round` DISABLE KEYS */;

INSERT INTO `round` (`roundid`,`lectureID`,`gametype`,`lecture`) VALUES

 (1,'1',10,1);

/*!40000 ALTER TABLE `round` ENABLE KEYS */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;

/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;

 123

/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT
*/;

/*!40101 SET
CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;

/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION
*/;

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT
*/;

\

