
June 2008
Alf Inge Wang, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Mobile and Social Video Games
Prototype, Concepts, and Evaluation

Øivind Nøsterud

Problem Description
The goal of this project is to explore new game consepts for mobile and social games
implemented in J2ME. The games can focus on either mobile multiplayer real-time games or
mobile multiplayer asynchronous games where several players interacts using the mobile
network. The game can also utilize the location of the player in the gameplay and all the
functionality of the mobile phone (screen, loudspeaker, vibration, camera, microphone, etc.).

Assignment given: 15. January 2008
Supervisor: Alf Inge Wang, IDI

Abstract

The main goal of this project was to create new game concepts for mobile and social
games. The project was a continuation of the depth study performed by the project in
the course TDT 4570, Game Technology, at NTNU. The focus of this project was slightly
more shifted toward the social side of mobile multiplayer games compared to the depth
study. Additionally the project group were to create a prototype game using one of the
concepts implemented in Java ME.

The project group performed a prestudy of the technologies required to create the pro-
totype(such as Java ME and features speci�c to mobile phones, such as location), as
well as looking at games from a general viewpoint, but also by looking more closely at
mobile and social games, current game genres, and multiplayer games available on mobile
platforms and looking at how these games implement social game mechanisms.

Several concepts were conceived and described during the project, with concepts from
both the depth study and concepts created speci�cally in this project. The Platform-
puzzler concept was chosen to be implemented as the prototype game. The prototype
game is a 2D side scrolling platform multiplayer platform game with puzzle elements.
The game was implemented in a development process, and at the end of the process the
game was tested by two testers not from the project group. The test allowed the project
group to assess how it performed in a simulated setting using emulators, as well as testing
to see how the cooperative elements of the game performed, and additionally the test
was performed in two sessions were in the �rst session the two testers were located in the
same room, whereas in the second test the were located in the same room.

The test session performed on the prototype indicated to the project group that there for
the prototype game there were quite clear di�erences between playing the game in the
same versus playing the game in di�erent rooms. This indicates further that special care
must be taken when designing and creating cooperative games for mobile platforms. The
additional research performed by the project group also indicate to the project group
that creating mobile and social games for mobile platforms is highly viable, and that
social gameplay mechanisms can strengthen the experience of playing games.

i

Preface

This project was performed as a master thesis in TDT 4900 Computer and Information
Science, which is the conclusion of the Master of Science degree in Computer Science
at the Norwegian University of Science and Technology(NTNU). The project group con-
sisted of Øivind Nøsterud, and the work was carried out from January to June 2008. The
project description was outlined by the project participants and the supervisor, Alf Inge
Wang of the Department of Computer And Information Science(IDI) at NTNU.

We would like to thank the supervisor Alf Inge Wang for help and advice during the
project. In addition the supervisor helped in giving feedback both to ideas and on the
report, as well as giving help with the testing performed on the prototype created during
this project.

Trondheim, June 10, 2008

Øivind Nøsterud

iii

Contents

I Introduction 1

1 Introduction 2

1.1 Motivation . 2

1.2 Project Context . 4

1.3 Problem de�nition . 4

1.4 Reader's guide . 4

2 Research questions and methods 6

2.1 Research questions . 6

2.2 Research methods . 7

3 Development tools and methods 9

3.1 Development methods . 9

3.1.1 The waterfall model . 9

3.1.2 Modi�ed waterfall model . 11

3.2 Development tools . 11

II Prestudy 15

4 Technology 16

4.1 Java Platform, Micro Edition . 16

4.1.1 Java ME Architecture . 16

4.1.2 Limitations . 19

4.2 Mobile game devices . 20

4.2.1 Mobile phones . 20

4.2.2 Location . 25

4.2.3 Hand-held game consoles . 26

4.3 Mobile network technologies . 27

4.3.1 1G . 27

4.3.2 2G . 28

4.3.3 3G . 28

4.3.4 WLAN . 29

v

vi CONTENTS

4.3.5 Bluetooth . 29

5 Mobile games and social gaming 31

5.1 Mobile games . 31

5.1.1 Multiplayer mobile gaming . 33

5.1.2 Pervasive gaming . 33

5.2 Social gaming . 34

5.3 Game genres . 37

5.3.1 Action . 39

5.3.2 Casual . 41

5.3.3 Fighting . 44

5.3.4 Racing . 45

5.3.5 Role-Playing Games . 45

5.3.6 Sport . 47

5.3.7 Strategy . 48

5.3.8 Social game genre discussion . 49

6 State of the art 54

6.1 Mobile games on the market today . 54

6.1.1 Pictionary . 55

6.1.2 Mobile Battles: Reign of Swords 56

6.1.3 AMF Bowling Deluxe 3D . 58

6.2 Summary . 60

III Own Contribution 63

7 Previous game concepts 64

7.1 Pervasive game concepts . 64

7.1.1 Museum Game . 64

7.1.2 Haunted House . 65

7.1.3 Real life event game . 67

7.1.4 Capture Point Domination . 67

7.1.5 Pervasive Battleship . 69

7.2 MMO Framework . 70

7.2.1 Robot Fighters . 73

7.2.2 SpaceShip Wars . 74

7.2.3 Massive Football . 75

7.3 Mini game collection . 75

7.4 Turn based multiplayer RPG mechanism 76

7.5 2D Multiplayer Shooter . 77

CONTENTS vii

8 New game concepts 80

8.1 Strategy game . 80

8.1.1 Tower defense . 80

8.1.2 Tanks . 82

8.2 Puzzle game . 84

8.2.1 Platform-puzzler . 85

8.3 Mystery solving game . 89

8.3.1 Adventure style . 91

8.3.2 Quiz/Trivia style . 93

8.3.3 Mini game style . 94

8.4 Quiz game . 95

8.5 Concept summary . 99

8.5.1 Concept Comparison . 100

8.5.2 Concept choice . 102

9 Prototype: Platform-puzzler 104

9.1 Game concept design . 104

9.2 Requirements . 110

9.2.1 Functional requirements . 110

9.2.2 Non-functional requirements . 112

9.3 Game Design & Implementation . 113

9.3.1 Client . 114

9.3.2 Server . 125

9.3.3 Client-server interaction . 129

9.4 Testing . 140

IV Evaluation 145

10 Technology evaluation 146

10.1 Emulator . 146

10.2 Network . 147

10.3 Test computer . 147

11 Prototype evaluation 148

11.1 Prototype testing and results . 148

11.1.1 Questionnaire . 151

11.1.2 Results . 153

11.2 Prototype evaluation . 163

viii CONTENTS

V Summary 165

12 Conclusion 166
12.1 Answers to research questions . 166
12.2 Conclusion . 169

13 Further work 171
13.1 Improvements to Platform-puzzler . 171
13.2 Further research . 172
13.3 Improvements to the other concepts . 173

14 Recommended readings 174

VI Appendices 181

A Installation and execution guide 182
A.1 How to start the client . 182
A.2 How to start the server . 182
A.3 How to play the game . 183

List of Tables

4.1 A table showing the test phones used in this project 24

8.1 Table showing a comparison between the di�erent concepts in this chapter
quanti�ed. 102

9.1 Table showing which of the requirements where implemented in the game 141

11.1 Questions to the testers ranging from questions about the game concept
to the game mechanics . 153

ix

x LIST OF TABLES

List of Figures

3.1 The waterfall process model . 10

3.2 Modi�ed waterfall model . 12

4.1 Java ME components . 17

5.1 Interest graph . 35

5.2 A screenshot of the game Soldat . 41

5.3 A screenshot of Tetris DS for the Nintendo DS 42

5.4 A screenshot of Buzz! The Mega Quiz for the Sony Playstation 2 43

5.5 A screenshot of the game Tekken 5 (2004) for the Sony Playstation 2 . . . 45

5.6 A screenshot of Orcs and Elves for mobile phones 47

5.7 A screenshot of Mario Strikers Charged (2007) for the Nintendo Wii . . . 48

6.1 Various screenshots from Pictionary . 56

6.2 Various screenshots from Mobile Battles: Reign of Swords 57

6.3 Various screenshots from AMF Bowling Deluxe 3D 59

7.1 A concept image of the Check Point Domination game concept 68

7.2 Screenshot of a prototype JavaME implementing a verison of the MMO
framework . 72

8.1 Screenshot of Pocket Tanks . 83

8.2 A concept image of a possible puzzle for the Platform Puzzler 87

9.1 Puzzle scenario for the prototype . 105

9.2 Puzzle scenario showing movable platforms and player throwing 106

9.3 Puzzle scenario showing wall bouncing . 107

9.4 Puzzle scenario showing a more complex puzzle 108

9.5 Package diagram of the client application 114

9.6 Various screenshots from the prototype game client running on Sony Er-
icsson Wireless Toolkit emulator . 115

9.7 A class diagram of the classes in the pp package 117

9.8 A class diagram of the classes in the pp.model package 118

9.9 A class diagram of the classes in the pp.model.event package 121

xi

xii LIST OF FIGURES

9.10 A class diagram of the classes in the pp.ui package 123
9.11 A class diagram of the classes in the pp.network package 124
9.12 Package diagram of the server application 126
9.13 A class diagram of the classes in the pps.model package 127
9.14 A class diagram of the classes in the pp.server package 128
9.15 Sequence diagram showing a client sending a message to the server 130
9.16 Sequence diagram showing the server sending a message to a client 131
9.17 The basic syntax of the messages in the prototype 131
9.18 The de�nition of the message syntax used in the prototype 133
9.19 Sequence diagram showing the process of a client connecting to a server . 134
9.20 Sequence diagram showing the server requesting the position of a player . 136
9.21 Sequence diagram showing how the client handle a "player position change"

message . 137
9.22 Sequence diagram showing how events are handled by the client and server 138
9.23 Sequence diagram showing the club mechanic 140

11.1 One of testers playing the game alone . 149
11.2 The other tester playing the game . 149
11.3 The testers are playing the game co-located 150

Part I

Introduction

1

Chapter 1

Introduction

This chapter gives the motivation and de�nition of the project, and it also describes the
research context the project is a part of, as well as a reader's guide for the rapport.

1.1 Motivation

This project is a continuation of a depth study performed by the same project group
in the course TDT 4570, Game Technology, at NTNU[Nøsterud, 2007]. In the previous
project the group looked at mobile and social real time multiplayer games, and created
several concepts for mobile and social games. The concepts utilized the unique abili-
ties of mobile devices, such as location, and other pervasive elements, as well as more
mobile phone speci�c technologies such a SMS, and rumble functionality among other.
To further experiment with mobile and social games a prototype game was built by us-
ing one of the concepts conceived during the project. The concept chosen was the MMO
Framework, and the �nal prototype game was a multiplayer roleplaying(RPG) game that
had three distinct separate parts, namely a single player part, a multiplayer part, and
a simulation part. Among the conclusions drawn from the project where that games
and genres found on computer and console video games could be used for games on mo-
bile devices, at least in some form, and also that current games do have social elements
in them, but that there is still room for improvements. The results from the project,
along with the fact that the prototype did not perform as well as could be expected lead
the project group to believe that there were still unanswered questions in the assignment.

Mobile devices are becoming increasingly popular, especially in recent years, and the
devices are becoming increasingly technological advanced and useful for the users of the
devices. Most families in Norway currently have at least one mobile phone per house-
hold, with some households containing upwards to one mobile phone per family member.
Giving users the ability to be mobile, and supporting this mobility in the applications
and in the devices themselves is becoming increasingly important as mobile devices gain
popularity. The growth of the mobile user market, and the large user base either owning,
or planning on obtaining a mobile device gives a large potential for new users of new

2

1.1. MOTIVATION 3

exciting and fun mobile applications, there among mobile and social games.

Games have been around for a very long time, and humans have always looked for ways
to entertain themselves in the form of activities and games. The growth and popularity
of computers gave new possibilities for interactive and digital activities in the form of
computer and video games, as well as hand-held games. Since the mid eighties video and
computer games have grown steadily in popularity, and the game market has grown so
much in size that i currently competes with the �lm industry in revenue. The growth
of popularity of mobile devices, and the increased functionality and computing power
o�ered in these devices also lead to games becoming an important part of the mobile
devices. Early mobile phone games such as Snake came pre-installed with the mobile
phones, and an increase in games available to the users, as well as bundled games on
mobile devices have lead to an increase in the popularity of games on mobile devices.

Mobile devices give the players the addition of mobility to the gaming experience, and
the players can enjoy fun and engaging games while waiting for the buss, on the train to
work, or simply as a relaxing activity in their homes after a stressful day. The increase in
popularity of mobile devices, perhaps especially mobile phones, smart phone and PDA's,
give a large potential market for mobile games, and tailoring the games to the mobile
community while still maintaining fun, engaging and exciting gameplay will be important
to take advantage of the market possibilities.

The social aspect of gaming is equally important to the technological prowess of the
platforms running the games. Long gone are the days when games where only played
by teenagers in their parents basement. In the game market today games are created
and marketed toward di�erent groups of people, and the content of the games are as
varied as the people that play the games. Playing games with other people both locally
and over Internet have become an important part of modern games, and multiplayer
have been part of computer and video games since the early days of playing Pong in the
family living room with friends and family. The social interactions that spur between
the players can in some games be equally important to the gameplay itself. Games like
Guitar Hero and Buzz! are highly social experiences when played together with friends.
Virtual environments such as Second Life, and MMORPG's like World of Warcraft or
Age of Conan have a large focus on social interaction between its users, and indeed the
social interaction supported in these games are a crucial part of their success. The social
aspect of games is not restricted to simply allowing the players to move around in the
same virtual world either, and social networks and hierarchies in games can give rise to
exciting new possibilities within the games. Social gaming could give rise to new exciting
game concepts and game types, and the mobile platform could be ideal to cater for such
an environment.

4 CHAPTER 1. INTRODUCTION

1.2 Project Context

This project was conducted as a part of the MOSS project, or Mobile and Social Games
project, which is a part of the Research Program in Computer Games at NTNU.

1.3 Problem de�nition

The goal of this project is to explore new game concepts for mobile and social games
where the games should either be real-time or asynchronous mobile multiplayer games
where several players interact using the mobile network. The use of mobile devices gives
the games the option to take full advantage of the extra features found in mobile devices,
such as vibration, camera, microphone, and location. These features could help increase
the user experience in the games, and certain features could give rise to new game con-
cepts. An important part of the concepts should the social part of the concepts, and how
the social interaction between the players could help the concepts.

The second goal of the project is use any of the new concepts created in this project
to create a game prototype implemented in Java ME. This prototype could take advan-
tage of any of the features discussed above, and it could help answering the research
questions in the project.

1.4 Reader's guide

Part I - Introduction The introduction explains the motivation and context of the
project, as well as de�ning the research questions for the project, and details the
development tools and methods used in the project.

Part II - Prestudy The prestudy gives background information about the various tech-
nologies used in the project, as well as give more information about the main prob-
lems of the project, namely about gaming in general, and more speci�cally mobile
and social gaming. Java ME is also explained as it is the development environment
to be used in the project.

Part III - Own contribution In this part, the contribution made by the project team
is described and explained. The part looks at concepts created by the project team,
both the concepts created in the depth study leading up to this project[Nøsterud, 2007],
as well as new concepts for this project. The new concepts are then evaluated and
one of the concepts are chosen to be implemented as a prototype game. The part
then further looks at the requirements, design and implementation, as well as the
testing of the prototype.

Part IV - Evaluation The evaluation looks at the prototype game, and the technolo-
gies used, and evaluates them, as well as taking a look at the problems encountered
in the project, and looking at and trying to explain unresolved problems found

1.4. READER'S GUIDE 5

during the development and use of the game and technologies. The results from
the prototype testing are also evaluated in this part.

Part V - Summary The summary gives a conclusion to the research questions, and
concludes the �ndings of the project. The summary also looks at further work that
may be done to improve both the concepts and the prototype game.

Chapter 2

Research questions and methods

This chapter identi�es and de�nes the research questions of the project. The chapter
also describes the research methods that will be used to �nd answers for the research
questions.

2.1 Research questions

The research questions identi�ed and de�ned in this section are the guideline for the
investigation pursued by the project team in this project. The questions try to identify
the possibilities and challenges of mobile and social games.

1. How does player co-location(i.e. an environment where two or more
people are located in the same room) a�ect the experience of playing
games?

(a) Are some game concepts more suited for co-located environments than others?

(b) Can some game concepts a�ect the experience of playing the game di�erently
depending on whether the players are co-located or not?

2. How do gameplay mechanics a�ect social gaming?

(a) Can social gameplay mechanics in games a�ect the experience of the player?

(b) What game mechanics can be used to make mobile games social?

3. What game genres are most suited for mobile collaborative games?

The �rst question along with its sub questions tries to look at whether the location of the
player has an impact on the experience the player has of the game. Can being located
in di�erent rooms when playing a multiplayer game lessen the experience of playing cer-
tain games, and will then playing the game in the same room have the opposite e�ect
of encreasing the experience of the player? This could help in deciding how to develop
cooperative games, and what considerations should be made when making such games.

6

2.2. RESEARCH METHODS 7

The second questions and its sub questions tries to look at how the speci�c gameplay
mechanics a�ect games. Can social game emchanics increase the experience of the player,
and if so; what game mechanics are used today, and which game mechanics could be pos-
sible to use in the future. The questions therefore takes a look at how social gaming is
incorporated into games, and how best to incorporate social game mechanics into games.

The third and �nal questions takes a look at game genres, and how they are suited
with mobile collaborative games. Could it be that there are certain game genres that are
more suited because of the genre itself, or are there no di�erences in how game genres
are suited in collaborative games? This could help developers decide which game genre
they should develop mobile and social games in.

2.2 Research methods

This section describes the methods used to understand the context of the goal of the
project, as well as give answers the research questions of the project.

Basili[Basili, 1992] identi�es three main research approaches commonly used in exper-
iments belonging to the software development domain:

1. The engineering method: When using the engineering method, the researchers
create a test system which is meant to prove or disprove a hypothesis. The results
of the test are then used by the researchers to improve the test system iteratively
until there are no further measurable improvements applicable to the system.

2. The empirical method: The empirical method is a statistical method used to
validate a hypothesis, and data is gathered to verify or falsify the hypothesis.

3. The mathematical method: The mathematical method is a formal method
based on mathematics and formal methods for doing experiments. Empirical ob-
servations are compared to a formal theory created by the researchers.

In addition to the research methods described above, Wang[Wang, 2006] describes sev-
eral other research methods, where one method is useful in this project. In a literature
search the results of papers and other documents relevant to the subject matter are
analyzed, and they can be used to either con�rm an hypothesis, or to improve previously
collected data in a project. This method will be used to give additional insight on certain
aspects not easily found through any of the three methods above, by looking at previous
work in the area to �nd information to answer the questions raised in this chapter.

The main focus of this project is to look at mobile and social games, and �nd new
concepts for these games, as well as creating a prototype that implement one or more of
these concepts in order to answer the questions raised in this chapter. The engineering
method is well �t for such a task, especially since the prototype development will be an
iterative process, and that the prototype will be used to answer research questions.

8 CHAPTER 2. RESEARCH QUESTIONS AND METHODS

The empirical method is also applicable to the scope of this project since it can be
used to watch players test the prototype game, and thereby observe how they react to
the prototype, how they play the game, and how the players work together to solve the
obstacles found in the prototype. To gather further data questionnaires can be given to
the testers, and they can give further indication about how the prototype works, how
it is to play the prototype, as well as indications to answers for some of the research
questions de�ned in this chapter.

Chapter 3

Development tools and methods

This chapter looks at development tools and methods used in this project to create the
prototype game, and to answer the research questions raised in the previous chapter.

3.1 Development methods

There are many development process models that may be used to create software, or in
this project; to create a prototype game for one or more of the concepts identi�ed in this
report. Development process models deals with the distribution of usual development
tasks, such as testing and design, and how the transition between each task functions.

3.1.1 The waterfall model

Figure 3.1 shows a diagram describing the phases and transitions of the waterfall model,
as depicted in [Braude, 2001]. The waterfall model is one of the most straightforward
and basic models. As seen on the diagram, the model has �ve phases, and the transition
between the models is from the phase the development team is currently in, to the under-
lying phase. Normally though, most development teams will have to overlap the various
phases, as certain aspects of the development may be di�cult to perform otherwise.

The �ve phases of the waterfall model are as shown in the diagram; the requirement
analysis, the design, the implementation, the integration, and �nally the test phase. The
requirements analysis phase consists of gathering requirements for the system that is to
be developed, and the design phase deals with transforming requirements and wanted be-
havior of the system into a structured manner which can be used to develop the system.
This is usually done both graphically by using diagrams such as UML class diagrams, or
activity diagrams, and textually which further describe the details and functionality the
system should incorporate. The implementation phase involves coding and programming
the system, at all levels, and the integration phase handles the integration of all parts of
the system into a working system and a complete product. The test phase tests the �nal

9

10 CHAPTER 3. DEVELOPMENT TOOLS AND METHODS

Figure 3.1: The waterfall process model

3.2. DEVELOPMENT TOOLS 11

product and attempts to �nd �aws in the design, the program code, and any other issue
that may reduce the functionality of the �nal product.

3.1.2 Modi�ed waterfall model

The basic waterfall model is not a perfect process model, and often receives criticism for
being an unrealistic development model, since in its most basic form, it does not allow for
iteration of development phases, which could be very helpful if say for instance a customer
halfway through the implementation phase �nds new requirements that must be included
in the �nal system. However, the waterfall model is a simple model, and a modi�cation of
the model as seen in Figure 3.2 allows for some backtracking between phases. The model
is much like the basic waterfall model, except that it allows for developers to back to
previous phases when the need arises, such as when tests force the developers to redesign
and re-implement a part of the system. For this project such as modi�ed model of the
waterfall model suits the project team well, since the scope of the prototype game will
be relatively low, making the need for more complex iterative process models low. If
however the project team �nds that they must go back and redesign certain aspects of
the prototype game, the modi�ed model still allows this.

3.2 Development tools

The development tools described in this section have been used in this project, some for
creating the prototype, but also some that help in creating this rapport.

MiKTeX 2.6 MiKtex is an up-to-date implementation of TEX, which is a typesetting
system that can be used to write reports, technical papers, mathematical formulas
and more. The MiKTeX distribution has several tools and compilers allowing the
users to write reports in LATEX, and compile the reports into PDF documents.

TeXnicCenter 7.01 TeXnicCenter is a IDE(integrated development environment) for
developing LATEX documents, and the program gives the user an editor that helps
in writing and creating documents using LATEX.

Java Wireless Toolkit 2.5 The Java Wireless Toolkit is a toolbox for developing wire-
less applications that are based on Java ME. The toolkit includes such features as
emulation environment, performance optimization and examples of Java ME pro-
grams to help the programmer get started.

Java Development Kit SE 5.0 Java Development Kit SE 5.0 is a toolkit that allows
developers to create and build Java applications in Java 1.5 SE(standard edition),
and give the developer such features as compilers.

Eclipse 3.2.1 Eclipse is a IDE that help developers develop programs in Java. The
program o�er features aimed at helping the developer, such as debugging and con-
struction tools. There are also modules available for Eclipse that helps developer
creating Java ME applications.

12 CHAPTER 3. DEVELOPMENT TOOLS AND METHODS

Figure 3.2: Modi�ed waterfall model

3.2. DEVELOPMENT TOOLS 13

Sony Ericsson SDK 2.5.0.2 The Sony Ericsson SDK 2.5.0.2 is similar to the Java
Wireless Toolkit in that it is a toolkit to help in development of Java ME programs
and that it includes such features as emulators. This toolkit is specialized in Sony
Ericsson mobile phones, and gives a more proper environment to for example test
programs that are meant to be used on Sony Ericsson phones.

Altova UModel 2008 Professional Edition Altova UModel 2008 is a visual design
software that can either be used to visually design a system which can then be
turned into code, or the tool can be used to reverse engineer already existent code
to create diagrams from source code.

Microsoft O�ce Visio 2003 Visio is a part of the Microsoft O�ce package, and is
a visual design program tool that allows users to create diagrams using diagram
standards such as UML.

14 CHAPTER 3. DEVELOPMENT TOOLS AND METHODS

Part II

Prestudy

15

Chapter 4

Technology

This chapter looks at some of the technologies within the scope of the project. More
speci�cally the chapter looks at the Java Micro Edition Platform, with its features and
limitations. The chapter also describe functionality o�ered by modern day mobile phones,
and how these functionalities can be used in mobile games. Finally this chapter looks at
some of the mobile network technologies o�ered to consumers. This chapter is based o�
of the project members depth study[Nøsterud, 2007] in the same subject, however it has
been altered to better re�ect the new focus of this project.

4.1 Java Platform, Micro Edition

Sun Microsystems describe the Java Platform, Micro Edition(Java ME) as follows[Java ME]:

Java Platform, Micro Edition (Java ME) is a collection of technologies
and speci�cations to create a platform that �ts the requirements for mobile
devices such as consumer products, embedded devices, and advanced mobile
devices. It is a collection of technologies and speci�cations that can be com-
bined to create a complete Java runtime environment speci�cally to �t the
requirements of a particular device.

I.e. Java ME is a collection of technologies and speci�cations created partly by Sun
Microsystems itself with the additional help of expert groups in charge of standardizing
the platform. The expert group consist of members from various industrial companies
with many of the leading companies in mobile device development involved [Riggs, 2003].

4.1.1 Java ME Architecture

Figure 4.1 shows the di�erent components of Java ME, and how they relate to the other
Java Platforms. Java o�ers solutions ranging from servers and enterprise computers,
which demand high resources, through Java EE, to smart cards, which require low re-
sources, with Java Card.

16

4.1. JAVA PLATFORM, MICRO EDITION 17

Figure 4.1: Java ME components

18 CHAPTER 4. TECHNOLOGY

Java ME itself is divided into two parts with one intended for the high-end consumer
devices such as smart-phones and set top boxes. The other part is intended for low-end
consumer devices with limited memory, processing powers and graphical capabilities such
as cell phones, pagers and personal organizers[Riggs, 2003].

Since this project is aimed more toward mobile phones, or at least more mobile de-
vices commonly used by the public, the rest of the section will focus on the low-end part
of the Java ME platform. Common though for both of the two parts are that they are
divided into three parts; the con�guration with the virtual machine, the pro�les and the
optional packages. These will be described in the following sub sections.

Con�gurations

A Java ME con�guration de�nes a minimum platform for a broad range of devices, de�n-
ing the Java language and the virtual machine features and minimum class libraries that
a device manufacturer must provide in order to comply with the standard.

There are currently two con�gurations for the Java ME platform; Connected Device
Con�guration(CDC) targeting the high-end devices, and Connected Limited Device Con-
�guration(CLDC) focusing on the low-end devices.

CLDC uses the K Virtual Machine(KVM)[J2ME Building Blocks]. It is a compact,
portable Java virtual machine intended for small resource-constrained devices. The K
stands for kilobyte, since the KVM was designed to run in an environment with a small
amount of memory, down to just hundreds of kilobytes. A Java Virtual Machine(JVM)
is an abstract computing machine[JVM]. Its main responsibility is executing Java code.
When Java code is compiled(e.g. using javac), it's translated to bytecode and stored in a
.class �le. The JVM reads these class �les and execute the bytecode using the instruction
set of the operating system the JVM resides on. A KVM can be seen as a stripped down
JVM.

The most current version of CLDC is CLDC 1.1 (JSR 139), which is an improved in-
cremental version of CLDC 1.0 (JSR 30). Version 1.1 of CLDC adds features such as
�oating numbers and weak reference support.

Pro�les

A pro�le is layered on top of a con�guration, there by extending the con�guration with
more functionality. An important goal of a pro�le is that various device families or do-
mains have a standard Java platform such that various devices in the device families
can work with the same Java applications. The pro�le de�ned for CLDC is the Mobile
Information Device Pro�le(MIDP). The MIDP adds a application model to the CLDC
as well as giving user interface support, network support, persistent storage, control over
sound, network security and various other classes. MIDP 2.0 also adds support for 2D

4.1. JAVA PLATFORM, MICRO EDITION 19

games with classes for handling sprites, tiles, backgrounds, layers and layer management
which simpli�es game development [Williams, 2004]. The newest version of MIDP is
MIDP 2.0 (JSR 118), which is an improved version of MIDP 1.0 (JSR 37) where MIDP
2.0 is backward compatible with MIDP 1.0.

An application created in MIDP is called a MIDlet. A MIDlet is a class that extends
the class javax.microedition.midlet.MIDlet and implements the required methods
startApp, pauseApp and destroyApp. The startApp method is called when the MIDlet
is initiated, thus maintaining the role of the main() method in Java SE and EE. MIDlets
are deployed in so called MIDlet suites, which consisted of one or more MIDlets packaged
in a JAR(Java Archive). The MIDlets within the suite share the same namespace, run-
time object heap, and static �elds in classes. Each JAR should also be accompanied by
an application descriptor �le(JAD �le) to enable third party distribution of the MIDlets.

Optional packages

Java ME also o�ers additional packages apart from CLDC and MIDP. These are layered
on top pf the pro�les and are generally packages that are applicable to a large number of
devices o�ering functionality not found in the standard minimum Java ME platform(i.e.
CLDC and MIDP). Some of the optional packages are:

• JSR 120: Wireless Messaging API

• JSR 135: Mobile Media API

• JSR 172: Java ME Web Services Speci�cation

• JSR 179: Location API for Java ME

• JSR 184: Mobile 3D graphics for Java ME

• JSR 190: Event Tracking API for Java ME

4.1.2 Limitations

Java ME is generally built for devices with low memory and limited computational power.
This gives limitations in how much functionality Java ME can o�er. Java ME can thus
not be used to develop highly advanced enterprise applications for mobile phones; the
limitations of Java ME should thus be taken into consideration when MIDlets are being
created.

Another issue is that the mobile devices support di�erent packages and sometimes even
di�erent versions of e.g. MIDP. The developers must then consider various tradeo�s
when implementing the applications since not all of the mobile devices will support all
of the functionality o�ered in all of the available packages. This is especially true with
the optional packages. The mobile device manufacturers decide themselves how many, if

20 CHAPTER 4. TECHNOLOGY

any, of the additional packages they should include in their devices, often on the basis of
the equipment supported by the mobile device. The developers must therefore consider
the mobile device they are developing their application for, and whether they want to
sacri�ce functionality over interoperability.

4.2 Mobile game devices

There are several mobile devices today that o�er games to their users. Some of these
devices are custom made for games, such as Nintendo DS or the Playstation Portable, but
there are also many games for the more common mobile phones, often created in Java ME.
Here common relates to the fact that mobile phones have become very common in recent
years. Informal Telecoms & Media. According estimated in may 2005 that the number
of mobile subscribers were 1,8 billion, and that the number would to rise to over 2,14
billion subscribers by the end of 2005. They also stated that many European countries
were nearing 100% penetration [MobileTracker, 2005]. This project will therefore focus
on mobile phones even though other mobile devices are able to use Java ME, e.g. PDA's.
Hand-held gaming consoles are related to mobile gaming; however they are out of the
scope of this project, especially since this project focuses on Java ME as its development
platform.

4.2.1 Mobile phones

This section looks at some of the functionality o�ered by mobile phones, and more
speci�cally the functions that can be used in mobile gaming, since the focus of this
project lies on mobile gaming. All of the functionality described in this section is not
o�ered by all mobile phones though, since mobile phones di�er in the functionality they
o�er their users. Some functionality is now considered standard in mobile phones, while
other is only o�ered by some phones. This must be taken into consideration when creating
games for mobile phones.

Camera

Many, if not most, of the modern mobile phones o�er camera functionality in their phones
where the user can take photographies and save them to their phone. Some games use the
camera actively in the game, such as Before Crisis: Final Fantasy VII [BeforeCrisis.net],
where as other use the camera more indirectly, e.g. by allowing the users to take a photo-
graph and use it as a background in the game. Though strictly not a game, CybStickers
[CybStickers] use the camera of a mobile phone, as well as MMS to take pictures of stick-
ers which contain information as a optical code. The information on each sticker can be
gathered by sending the image of the code to a server, or information can be added to
the sticker.

Even though cameras have become common these days, there may be di�culties with
implementing it in a game since camera functionality is implemented di�erently between

4.2. MOBILE GAME DEVICES 21

di�erent mobiles, especially between manufacturers, and it may be di�cult to create an
application that easily use the camera functionality while still retaining modi�ability.
For a real-time multiplayer game the size of images in bytes can also be an issue because
of the speed of the connection between mobiles.

Keypad

The keypad is the main source of user input for the mobile phone. Other parts of the
mobile are also suited, e.g. microphone, camera, but the main source for user input in
most games comes from the keypad, and most games uses the keypad to control the game
in some way. Most mobile phone keypads have less buttons, or keys, than a computer
keyboard giving less options of key usage, and the position of the buttons on the keypad
are usually somewhat more cumbersome than on traditional gamepads used by consoles,
some times making the games di�cult or awkward to control. On top of that some but-
tons are standard for some manufacturers and phone models, while not on other. This
could be buttons such as a small directional joystick which some newer phones have, or
additional buttons that give menu shortcuts. These shortcut buttons are usually not the
same from mobile phone to mobile phone.

All of this implies that extra care must be taken when deciding how the con�guration
of the buttons is to be done in game, and how many buttons the game should rely on
for game control. Most mobile phones have a keypad with at least 12 buttons, i.e. the
1-9 keys with 3 additional keys for '0', '*' and '#', even though some phones have less
keys, or some phones don't have any of these regular keys at all, e.g. iPhone [iPhone].
Nevertheless most mobiles have at least 12 keys on the keypad, so that should be a safe
starting number when considering how many keys the game could have.

Vibration

Most mobile phones today have vibration. This is usually used for silent mode where
instead of a ring tone you get vibration, or in conjunction with the ring tone to make
the user aware of incoming calls. Vibration is also well suited for games where the
vibration can help increase the game immersion e.g. by vibrating after a explosion, or
using vibration to highlight a certain event in the game. Consoles have used vibration in
their games via vibration support in their controllers for several years in consoles such as
Nintendo 64, Sony Playstation 2 and Microsoft's XBox. The drawback of using vibration
is that is uses the battery of the mobile phone. Thus the usage of vibration should be
considered used where appropriate, but if battery time becomes an issue it can be left
out or have its duration shortened in the game to increase battery time.

Screen

Most mobile phones have a screen and they are increasing in size, resolution and color
range. Color displays are becoming de facto standard in modern mobile displays. Even

22 CHAPTER 4. TECHNOLOGY

so there are di�erences in size and resolution between the di�erent phones. This is a
crucial factor when designing games, since the size of the screen have a strong impact
on the complexity of the game, especially on how many items can be shown on screen at
once, and how complex the graphics and environments can be. Most of the displays on
mobile phones are relatively small, at least compared to console and PC games. Most
phone displays are also smaller than hand held consoles. The problem thus becomes to
decide which resolution the game should use, and how detailed the graphics in the game
should be while keeping the game clutter free, but still enjoyable enough that people are
able to see what is going on in the game without to much trouble.

Touchscreen

A few mobile phones have touchscreen such as iPhone [iPhone] or the Sony Ericsson
P990i(technically a smart phone) [P990i]. Touchscreen opens up exiting new possibilities
for game control, as illustrated by the Nintendo DS [Nintendo DS]. The touchscreen
could be used for steering a character on screen, to navigate menus and press buttons,
which could help with the limited amount of keys available on the keypad, or to control
any other objects on screen using either the users �nger or a stylus.

There are however very few mobile phones available with touchscreen, so creating a
game with only touchscreen control highly limits the phones, and users, that can play
the game. Thus this feature is best added as an optional game control mechanism, if
need be.

Movement sensors

A few mobile phones support movement sensors, such as the iPhone [iPhone]. These
sensors may detect movement of the phone or the orientation of the device. This opens up
new possibilities in the game design where the movement of the phone can be incorporated
in the game, e.g. by moving a ball by tilting your phone. Being able to detect movement
is one of the selling points for the Nintendo Wii [Nintendo Wii]. However there are few
mobiles that incorporate this functionality, so creating a game for mobile phones using
movement sensors severely limits the amount of mobiles and players that are able to play
the game.

Speech

Every mobile phone have a microphone since the main functionality of a mobile phone is
to be able to call and talk to other people. Using speech in gaming opens up interesting
possibilities, such as players being able to speak to each other during a play session.
Communication between players is often used in First Person Shooters such as Counter-
Strike and the Battle�eld series, both as a means of communication, but also more
directly in the game by for instance having team leaders direct the other players, or
discuss strategies and enemy positions. Speech could also be used more directly in the

4.2. MOBILE GAME DEVICES 23

game by using speech to control the game with speech recognition. Speech recognition
might however be very di�cult to create on a mobile platform, not only because of
generally low computational power on mobile phones, but also since speech recognition
in itself is complicated. As for using speech as voice chat in the game, it adds more data
that must be sent over the network, thereby increasing the cost of running the game, as
well as straining an already limited bandwidth.

Sound

Most new mobile phones have support for either compressed(e.g. MP3) or uncom-
pressed(e.g. WAVE) sampled audio, or at least MIDI. Sound support is usually in-
corporated into every game in some way or other as it increases the gameplay and if
music is used; atmosphere. Sound is usually used to indicate events in the game, such
as a gaining an item, or indicating a player action, such as a player jumping, or �ring a
gun.

SMS / MMS

Most, if not all, mobile phones o�er SMS(Short Message Service), which o�er the phone
subscribers a way to send text messages to other subscribers, and most modern mobile
phones also come with MMS(Multimedia Messaging Service), which o�ers a standard
way of sending multimedia objects, i.e. images, audio, video and rich text, between
subscribers. Even though sending multimedia objects and text messages in a game could
be done through for instance a server client architecture by using TCP/IP or UDP, but
SMS and MMS are standardized ways of doing the same, and most users are familiar
with this technology, making it easier for the players to use. SMS could for instance be
used by a server to send information about game state changes to the player, and MMS
could be used to send multimedia objects from the server to the client applications.

Limitations

Mobile phones have several functions and possibilities in o�ering a platform to create
games, but mobile phones also have limitations compared to PC's and gaming consoles.
As showed above the mobile phones have relatively small screens, and small resolutions,
which must be taken into consideration when creating mobile applications. The keypad
of mobile phones may also have complications compared to PC's and gaming consoles,
as they can be awkward for the user if not utilized correctly, and some types of applica-
tions and games may have a lack of input options because mobile phone keypads usually
have a limited amount of keys in the keypad. Another problem can be that of computa-
tional power, as generally mobile phones are relatively low on computational power, when
compared to PC's and gaming consoles, even though smart phones are becoming quite
powerful. Battery consumption is also a problem with mobile phones, as running appli-
cations on mobile phones drains the battery life faster, and using advanced functionality
in games and applications worsen the problem further. This is a problem which should

24 CHAPTER 4. TECHNOLOGY

Manufactor Phone model Java features Screen Size

Sony Ericsson W810i MIDP 2.0, CLDC 1.1 176x220

Table 4.1: A table showing the test phones used in this project

be taken into consideration when developing applications. Another problem with mobile
phones is that the various phone models from the various manufacturers have di�erent
functionality o�ered in their phones, and even among phones from the same manufacturer
there are di�erences in the o�ered functionality. By developing applications and games
utilizing a relatively uncommon feature, the market for those applications is instantly
lowered.

Requirements mobile phones in this project

These will be the minimum requirements to run the prototype games created in this
project and the game will not run on mobile devices that do not support at least the
requirements described below.

• An Java ME enabled mobile device

• JSR 118: MIDP 2.0

• JSR 139: CLDC 1.1

• At least 12 dials(since this is standard, see Section 4.2.1

• At least 94x54 screen resolution(de�ned as minimum for the MIDP standard [Riggs, 2003])

Test phones used in this project

This section lists the available test phones in this project. Even though there are several
emulators available from various actors, e.g. from Sony Ericsson and Sun Microsystems,
true performance of the game can only be tested in a real-life environment, i.e. on the
mobile phones it is supposed to be played on. The prototype games created in this project
should work on most mobiles that comply to the requirements speci�ed in section 4.2.1,
the only mobile phones the prototypes have been tested on are the phones mentioned in
table 4.1, and these are the only mobile phones the project can guarantee will work with
the games

Emulators

An emulator is a program that tries to emulate another program or device. In developing
the prototype of this project, the project team will use emulators to emulate mobile
phones, i.e. by testing the prototype on emulators. The project team will also test the
prototypes on the test mobile phones, but emulators will be used to ease testing. Since
the prototypes will be created in Java ME the emulators used for testing will emulate

4.2. MOBILE GAME DEVICES 25

Java-enabled mobile phones. In the Sun Java Wireless Toolkit, there is functionality built
in which emulates a typical mobile phone with a virtual keypad and a screen emulating
the mobile phone screen, i.e. showing the output from the prototype. The various
mobile phone manufacturers' also provide their own mobile phone emulators, which may
be better suited for testing the prototype on the various manufacturers phone models, as
the emulation will be closer to that of the original. Since emulators can't emulate mobile
phones a hundred percent accurately, the prototype will still be tested on the physical
test mobile phones.

4.2.2 Location

Location o�ers a new perspective to gaming. The location of the mobile phone, and thus
the player, becomes relevant in the game. This could be used in several ways. The entire
game could be built around location by having the location of the player in reality have
meaning to the character in the game world. The player could for instance move around
in the real world and as the player moved the character in the game world would move
accordingly, perhaps by having the character in the game world move in a computer
representation of the world(this could either be a 2D drawn map, or perhaps even a fully
3D world). It could also be used as a interface tool, in the sense that the location of the
user has an e�ect on the interface, or the objects shown on screen. For instance as an
aid for museum tours, where the location of the user decides what information is shown
[Wang, 2005].

As for the technologies used for �nding the location of the user, there are several op-
tions. Some mobile phones support GPS, Global Positioning System, either directly in
the phone or as an accessory. The GPS system consists of several satellites orbiting the
earth, control and monitoring stations on Earth and the GPS receiver(incorporated in
some way into the mobile phone). The GPS satellites broadcast one-way signals that
give the satellites position and time. The user uses this information to calculate its
three-dimensional position and time. The method used for calculating the user position
is triliteration, which require at least 3 known positions, i.e. satellite positions. The ben-
e�t with GPS is that it is freely available, except for the equipment. The problem with it
is that it is controlled by the US government, which means that in a crisis situation the
acquisition of the GPS location in certain areas may be unavailable because of security
reasons and military strategy. GPS can also not be used for indoor positioning. Another
drawback is the need for a GPS enabled mobile phone.

Another way to �nd the location of the user is by GSM localization. There are sev-
eral ways of getting GSM location information about a mobile phone, but most of them
involve the Cell Identity of the phone, i.e. the identity of the cell, or coverage are of the
base station, that the phone reside in [Anderson]. Just using the cell id only discovers
which cell the phone resides in, which will not give an accurate position. By using timing
information, that is using the time information to calculate more exactly where in the
cell the phone is, the accuracy of the positioning can be raised. By using more than

26 CHAPTER 4. TECHNOLOGY

one base station in the positioning accuracy can be raised even further. This is done
by using timing information from 3 or more base stations to calculate the position(Time
of Arrival(TOA) [Anderson], [Drane, 1998]). There are also other methods that can be
used. The main advantage with most GSM location techniques is that they are supported
directly in the current networks and thus it work with all mobile phones that uses the
network. Another advantage is that it can be used indoors. The disadvantages with
GSM location is that it is not very accurate, it can �nd the location of a mobile phone
with about 60-1000 meter accuracy [Fuglem, 2004], depending on the method used and
the density of base stations. The accuracy also varies with the amount of base stations,
making it more inaccurate in rural areas.

WLAN(Wireless Local Area Network) can also be used for location purposes. There
are several ways of doing this. One way is by setting up several WLAN antennas around
an area. The antennas then listens to WLAN tra�c and give the positions of the MAC
addresses found within the antennas coverage. The accuracy then varies with the distance
to the antenna. Another way of getting WLAN location information is by retrieving the
signal strength of all nearby WLAN access points. This information is then used to cal-
culate a position based on an experience database. This system will require calibration
of the experience database. The main advantages of WLAN location is that it o�ers
a fairly accurate, 0.5-5 meters [Fuglem, 2004], position of a WLAN apparatus and that
it can be used indoor by setting up several WLAN access points. The disadvantage is
that several access points will be needed, thus increasing cost, and that not every mobile
phone today have WLAN, which reduces the users that can use the technology.

In addition to the before mentioned technologies Bluetooth [Hallberg, 2003] and Ir(infrared)
[Abowd, 1997] technology can also be used to get location information, however these
methods require that the technology is available on the mobile phone.

4.2.3 Hand-held game consoles

Although outside the scope of this project, there have been many hand-held game consoles
over the years, and some of them have been very successful. Hand-held game consoles are
usually aimed exclusively toward video games, even though Playstation Portable(PSP)
[Playstation Portable] o�ers the possibility to watch movies, listen to music, watch pho-
tos and connect to the Internet with the built-in Wi-Fi functionality. PSP, along with
Nintendo DS(DS) [Nintendo DS], are the market leaders among the hand-held consoles
today. The DS also o�ers support for browsing the Internet though WLAN. Both PSP
and the DS o�er multiplayer locally through Wi-Fi, or over the Internet through WLAN.
Both the DS and PSP o�er 3D graphics, even though the PSP is more capable in that
area, and the DS also o�ers dual screen(hence the name; Nintendo Dual Screen), where
one of the screen is touch sensitive which o�ers new opportunities for game design.

The DS and PSP both are the evolution of several hand-held game consoles that have
come before them. Hand-held gaming consoles dates back to at least the 70's with the

4.3. MOBILE NETWORK TECHNOLOGIES 27

Microvision [Microvision]. There have been many consoles such as the Sega Game Gear,
Neo Geo Pocket Color, Wonderswan Color, Gizmondo and the N-gage and the improved
version of N-gage, N-gage QD, [N-Gage QD] which was a combination between a mobile
phone and game console created by Nokia. The N-gage was unsuccessful though and was
discouraged, however Nokia are planning to reintroduce N-Gage as a gaming application
toward the end of 2007 [N-Gage]. This will not be a console however, but purely a gaming
application.

Arguably the most popular and most bought hand-held gaming console is the Game
Boy [Game Boy] created by Nintendo and originally released in 1989. The Game Boy
was originally in two colors only, but later a version with color was released, the Game
Boy Color. The original Game Boy was also released as a smaller version, but with the
same games, called the Game Boy Pocket. In 2001 Nintendo released the Game Boy
Advance which o�ered much more computational power than the Game Boy Color, and
had richer colors, almost rivaling the Super Nintendo. The Game Boy Advance has since
received several redesigns including the Game Boy Micro and the Game Boy Advance
SP which both improved lighting and redesigned the appearance of the console. The
Nintendo DS is the newest addition to the Nintendo hand-held family. The Game Boy
family is arguably the most selling console franchise and as of June 2004 outselling the
entire Playstation family [Liz, 2004].

4.3 Mobile network technologies

There are several network technologies used for mobile phones, but they are gener-
ally divided into three so-called generations,1G, 2G and 3G, and 4G for the next gen-
eration. The di�erent generations are divided by the functionality o�ered in them.
The entire section is based from information from Computer Networks, Fourth Edi-
tion[Tanenabum, 2003], Wikipedia articles about mobile technologies[Wikipedia] and
Ericsson technology articles[Ericsson, Ericsson, Edge], except for the Bluetooth section
which takes its information from the Bluetooth webpage[Bluetooth].

4.3.1 1G

1G, or �rst generation, mobile phones had analog voice and were introduced in the
1980's. The idea of frequency reuse and the division of geographic regions into cells was
introduced in this generation. Geographic regions are divided into several cells. Each cell
uses some set of frequencies not used by its adjacent cells, but a cell may reuse frequencies
used in nearby cells(but not adjacent). The system used in Norway which incorporated
this cellular system was NMT, or Nordic Mobile Telephony, which had cell sizes in the
range from 2 km to 30 km, and supported two frequency bands(450 and 900).

28 CHAPTER 4. TECHNOLOGY

4.3.2 2G

The second generation introduced digital voice. The system introduced to Europe for
the second generation was GSM1. GSM uses narrowband TDMA(Time Division Multiple
Access), and allow eight simultaneous calls to occupy the same radio frequency. GSM
operates on the 900MHz and 1800MHz wavebands in Europe. GSM has used various
voice codecs to compress 3.1 kHz audio into between 5.6 kbit/s and 13 kbit/s. 2.5G is
a term used for technologies which are not truly 3G, but makes improvements over 2G
technologies, such as GSM. Two such technologies are EDGE and GPRS

EDGE

EDGE, or Enhanced Data rates for GSM Evolution, is an enhancement over GSM and
allows for packet switched applications. EDGE is built upon GSM, but achieves higher
capacity and performance by introducing sophisticated methods of coding and transmit-
ting data. Today it can o�er user bit-rates of around 250 kbit/s, with end-to-end latency
of less than 150 ms, but has as a theoretical maximum bit-rate of 473.6 kbit/s. EDGE
is often thought of as a 3G technology, dependent on how it is implemented, with the
highest bit-rates in within the requirements for a 3G network.

GPRS

GPRS, or General Packet Radio Service, is an overlay packet network on top of other
2G technologies, e.g. GSM. It o�ers its users packet-switched data transmission, and
the users are usually billed per kilobyte of information received. GPRS allows users to
wireless internet and data communications, and o�ers users throughput rates of up to 40
kbit/s.

4.3.3 3G

The third generation brings improvements to voice transmission and gives possibilities
for digital data to be send over the network(even though this is also supported in 2.5G
technologies). Such data could be multimedia such as music, audio or video, internet
access or messaging services.

UMTS

UMTS, or Universal Mobile Telecommunications System, or the most common form
used, W-CDMA(Wideband Code Division Multiple Access), is a 3G technology which
supports theoretical data transfer rates of up to 14.0 Mbit/s, but the expected transfer
rate is transfer rates of up to 384 kbit/s. The frequency bands originally de�ned in the
UMTS standard are 1885-2025 MHz for mobile-to-base and 2110-2200 MHZ for base-to-
mobile.

1Global System for Mobile Communications

4.3. MOBILE NETWORK TECHNOLOGIES 29

HSDPA

HSDPA, or High Speed Downlink Packet Access, is an improvement to the UMTS stan-
dard which improves latency and data rates from 284 kbit/s to 14 Mbit/s in the downlink
and 5,8 Mbit/s in the uplink.

4.3.4 WLAN

Apart from the traditional mobile technologies described above, certain mobile phones
also have support for WLAN, or Wireless Local Area Network, which is short-range
packet data communication between base stations and user terminals(i.e. mobile phones
or any other device with WLAN support, or between terminals. WLAN enables higher
data rates than that of even 3G technologies, with data rates of up to 54 Mbit/s, how-
ever WLAN generally have shorter range in their base stations and thus require more
base stations to have the same coverage as mobile technologies, and generally speaking
the coverage of WLAN is lower than that of mobile network technologies. WLAN has
several standards but the IEEE 802.11.x(x is one of several available standards) series of
standards is arguably the most widespread used of the WLAN technologies. The newest
standard is the 802.11g2 standard, which operates in the 2.4 GHz band, and o�ers up to
54 Mbit/s data rates.

4.3.5 Bluetooth

The Bluetooth Web page describes Bluetooth as such: "Bluetooth wireless technology is a
short-range communications technology intended to replace the cables connecting portable
and/or �xed devices while maintaining high levels of security". The technology is created
to be robust, have low power consumption, and have a low cost. Bluetooth operates in
the 2,4 GHz ISM3 band, and divides its frequency band into 79 RF channels, and uses a
frequency hop transceiver in order to combat interference and fading. Bluetooth incor-
porates three di�erent classes which are separated by their power consumption, which in
turn decides their e�ective range. Bluetooth de�nes two modulation mode, called Basic
Rate, and the optional mode Enhanced Data Rate, which in turn has two variants. The
Basic Rate mode o�ers 1 Mbps data rate, while the Enhanced Data Rate o�ers 2 Mbps
and 3 Mbps, depending on which modulation used.

Bluetooth utilizes a master-slave topology, and forms piconets. A piconet consists of
two or more devices that occupy the same physical channel, which means that they
are synchronized to a common clock and hopping sequence. The synchronization and
hopping sequence is controlled by the master device, and the devices that connects to
the master becomes slaves. Up to seven slaves can be active in a piconet, but many
more slaves can remain connected in a parked state. The devices in a piconet can be
connected to more than one piconet, but one node, or device, can only be the master

2There is however a new standard, the 802.11n, but it is not yet approved as an standard
3Industrial Scienti�c Medical

30 CHAPTER 4. TECHNOLOGY

of one piconet. When there are several connected piconets, they are called scatternets,
however the Bluetooth core protocols do not o�er routing capabilities between devices
in piconets, but higher level protocols can be added on top which add this functionality
to the scatternet.

As mentioned in the description of Bluetooth, it intends to replace cables connecting
portable and/or �xed devices, and it can be used for instance to transfer data wirelessly
between mobile devices, mobile and �xed devices, or mobile devices and extra accessories,
e.g. between a mobile phone and a Bluetooth headset.

Chapter 5

Mobile games and social gaming

This chapter takes a look at mobile games and discuss some of the potential in mo-
bile games as well as describing some of the game genres available today, where a game
genre is a group of games with similar gameplay and game mechanics. The chapter also
discusses social gaming and social interaction in games. This chapter contains informa-
tion originally written for the depth study performed by the project group in TDT-4570
[Nøsterud, 2007]; though in some areas it has been altered to better �t the slightly altered
focus of this project. However the information used here will not require prior knowledge
of the depth study to be understandable.

5.1 Mobile games

Games have existed for a long time. Remains of old game boards of various games have
been found that are as old as 5000 years [Fox. 2002]. Computer and video games them-
selves are rather new in the game concept, dating back to the 1940's, popularized on the
home market by the release of the Nintendo Entertainment System in 1985 [Fox. 2002].
After 1985 games have become increasingly complex, both in gameplay and graphics, and
modern PC and console games, now represented by the Nintendo Wii [Nintendo Wii],
Sony Playstation 3 and the Microsoft XBox 360, all have very realistic 3D graphics, and
they o�er online multiplayer for its users. Hand-held consoles and their games have also
been popular, as described in Section 4.2.3.

Mobile games outside of the hand-held console market are relatively new, even compared
to computer and video games. One of the �rst games, at least in Europe, was Snake,
which was embedded in Nokia phones, and was released in 1997. The �rst games for
mobile phones where simple, small games compared to its console and computer cousins,
and originally they were played in short time periods, often while commuting between
the job and work. The games provided relaxation and a small escape from everyday
concerns. After these initial small games, browser based WAP-games and SMS-based
games appeared, but with the introduction of color display and downloadable games in
2001, wireless gaming was brought into the masses [Pelkonen, 2004]. The introduction

31

32 CHAPTER 5. MOBILE GAMES AND SOCIAL GAMING

of 3G(and beyond) network technology has also helped mobile gaming reach new levels
in terms of quality and user experience, and today gamers can enjoy games ranging from
simple puzzle games, to 3D multiplayer games [Chau, 2006].

Mobile games are growing in popularity. A estimate from 2002 showed that out of a
total market sale for computer games of approximately $20 billion, the mobile game
market was $0.9 billion. Other analysts from Informa Telecom & Media estimate that
the game sales for 2005 reached $2.5 billion, and predicted that by 2010 the game sales
would be over $10 billion. Juniper Research is even more optimistic, predicting that
mobile games sales will grow from $3 billion in 2006, to $10.5 billion in 2009, and in
2011 and beyond the sales will reach annual revenues of $17.6 billion. An estimate by
The ARC Group from 2002, predicted that the amount of mobile gamers would rise from
196 million in 2002 to 667 million in 2005. The increased number of revenue is also
believed to come from casual gamers, and unlike the computer and console game market,
the mobile game market is approximately equally split between female and male gamers.
In MOBILE GAMES BUSINESS [Luukainen, 2007], Anssi Vanhanen claims that casual
games such as puzzle games generated one-third of the total revenue for the �rst quarter
of 2006, with a full 65% of all mobile game revenue generated by female wireless sub-
scribers. Both the amount of players predicted and the market revenue predictions show
that there is a relatively big market for mobile games; however several other reports show
that while many people play mobile games, not everyone buys new games. Ovum Asia
Paci�c estimated that only about 5% of mobile users buy games, and the speculate that
the reason for this is that most people who play mobile games, play the games that come
embedded with the phone, and as an example of this, MMEtrics, a mobile data company,
stated that in November 2004 over 10 million subscribers downloaded and paid for games
for their games, but there were more than 47.1 million subscribers that played games
that where already embedded into their mobile phones. Another reason that mobile users
don't download that many games is that the download service o�ered to the users is dif-
�cult to use, and that the games are di�cult to �nd. A representative from Telcogames
claims in an interview with telecomasia.net that some of the responsibility for such a
low percentage of users downloading games also come from an insu�cient e�ort from the
value chain actors that is responsible for marketing and promoting the games to the users.
The estimates of this paragraph stems from [Chau, 2006, Pelkonen, 2004, Gibson, 2006].

The thing that separate mobile games from computer and video games, is the fact that
they can be played everywhere since people tend to bring their mobile devices with them.
Micro Java Game Development [Fox. 2002] names four qualities to aim for when design-
ing games for mobile devices; they should be easy to learn since the small hand-held
screens leave small room to have detailed descriptions and tutorials for new players, and
most users won't bother playing the game if it's to complicated. Clarity of visuals,
since screens on mobile devices generally are relatively small, the graphics should be as
large as possible to make it more attractive and easier to play the game. Simplicity
of gameplay, since many users are interested in short gaming sessions, and because

5.1. MOBILE GAMES 33

the keypad can be awkward to play on, the games should have simple controls and be
clear and easy to understand. Quick game periods, since users often play the games
on their way to work or while waiting in line, the games should be broken down into
short, quick sessions. However, other studies also show that many players play games in
longer game sessions as well, from about 15- to 20-minutes, and that players are more
frequently playing the games in the evening, while they are at home[Luukainen, 2007].
Interactivity, by giving the player the possibility to play against other players, the sense
of community grows among the players making it more likely that they will continue to
play the game.

5.1.1 Multiplayer mobile gaming

Ovum Asia Paci�c estimated that mobile multiplayer games generated 12.5% of the total
revenue on the Asian mobile game market in 2005[Chau, 2006], indicating that there is a
market for multiplayer games. Multiplayer and community aspects in multiplayer games
started with highscore support, tournaments and limited chat functionality in the earlier
mobile games and where followed by turn-based games which did not require real-time
transfer latency, since the user usually spent more time on each turn than the network
latency. In recent years however, real-time games with multiplayer are becoming more
common, but the main problem with real-time multiplayer mobile games is still network
latency, measured in hundreds of milliseconds across the Internet, some times rising
toward thousands of milliseconds over mobile operators' networks across the Internet.
Another problem with such games is the network bandwidth, indicating that the data
transmissions should be kept to a minimum. A factor with multiplayer games is that
the network tra�c increases with the amount of players making the bandwidth increase
proportionally with the number of players[Powers, 2006].

5.1.2 Pervasive gaming

Pervasive gaming has its roots in ubiquitous computing, which looks at integrating infor-
mation processing into everyday objects and activities. The mobile phone has since its
�rst appearance become an ubiquitous consumer device[Rashid, 2006], by letting the user
have a truly mobile device with a relatively powerful computer, at least when compared
to the early mobile phones of the early 90's.

When a computer becomes pervasive, it becomes a companion for the user that
the user can keep on him(her) constantly and everywhere, and the device becomes an
o�erer of informal, unstructured activities without clear starting or ending points. Per-
vasive gaming uses the notion of a constant companion, and implements and exploits
the unique features it o�ers in game design. Pervasive gaming o�ers the users mobile,
place-independent gameplay, in the sense that the games do not have to be played on
a single location, but the player can bring the game with him and play it wherever it
suits the user, and the location of the user may even be incorporated into the gameplay.
Pervasive games also integrate the physical world into the virtual world. This can be
done in several ways, and using data from the physical world open up many new ways

34 CHAPTER 5. MOBILE GAMES AND SOCIAL GAMING

of playing games and could even create new game types. The �nal point that pervasive
games o�er is social interaction between players[Jegers, 2006].

One particular type of pervasive games use the location of the player in the gameplay,
and may be called location games. These games gather the location of the player, and
sometimes locations of other physical world objects are gathered as well, through one of
the methods described in Section 4.2.2, and this information is then used in the virtual
world of the game. This can be done in several ways, and there have been several
games made that use location information in the gameplay, such as Human Pacman
[Cheok, 2004], which combines the physical world with the classical game Pacman and
requires the user to wear complicated, wearable-computer equipment. Another example
of a game that uses location information in its gameplay is a game called Capture the
Flag [Cheok,2006], which creates a version of the classic Capture the Flag gameplay where
the players are split into teams and places a �ag, which represents their base, on an
actual location in the physical world by using a GPS transmitter, and the objective then
becomes to capture the other team's �ags by �nding the GPS transmitter of the other
teams in the physical world, and then bring the �ags back to their own base.

5.2 Social gaming

Social gaming, and social interaction between players have existed since the early days
of gaming, and games such as Pong had the option for multiplayer where two players
could play against each other in the same game, using the same screen and game console.
With the growth and rise in popularity of networked games, and perhaps in particular,
the Internet, gamers now also have the opportunity to have social interaction with other
gamers within the virtual world of the game, without being in the same room as the
other gamers. Thereby the social gaming grew from being social interactions between
gamers located in the same room, playing the same game together, to also allow social
interaction between gamers situated possibly at very long distances from each other,
something which gives new challenges, as well as new possibilities.

In HEARTS, CLUBS, DIAMONDS, SPADES: PLAYERS WHO SUIT MUDS [Bartle, 1996]
Richard Bartle looks at MUDs1, and which player types exist within these games. Bartle
�nds that there are generally 4 play styles to be found in MUDs, and in most virtual
worlds, which are the achiever, the explorers, the socializers and the killers. The achiev-
ers focus on achieving goals speci�c to the context of the game, e.g. by gathering points
or rising in levels. The explorers focus on exploring the virtual game world, and under-
standing the underlying mechanics of the game, e.g. by �nding hidden places within the
world, or by �nding bugs in the game. The socializers focus mainly on the social aspect
of the game, i.e. in the social interaction with other players. The focus of the killers is
to impose themselves onto other players by killing them, and they are generally more
interested in the �ghting, or combat aspect of the game. Bartle uses the graph in Figure

1Multi User Dungeon ,or Domain

5.2. SOCIAL GAMING 35

Figure 5.1: Interest graph

5.1 to show the main interests of the players who �t into one of the four categories, i.e.
killers are more interested in acting out against other players inside, while explorers like to
interact with the game world, but are not as interested in the other aspects of the game.
Players according to Bartle all fall into one of the four player types, and while players
in one player type may use several of the aspects of the other player types, it is usually
to gain bene�ts in his(her) own player type, e.g. for a killer to be good at killing other
players, (s)he must �rst be of a high enough level, and have good enough equipment to be
able to kill other players, thus some degree of achieving is needed to be a successful killer.

In Social gaming interactions parts 1 through 3 [Appelcline,2003-1, Appelcline,2003-2,
Appelcline,2003-3], Shannon Appelcline takes a further look at the player types found
by Bartle. According to Appelcline the two player types of killers and socializers form
a spectrum where the range of socialization goes from cooperative interaction, from the
socializers, to competitive interaction, for the killer archetype. She also claims there is
yet another type of socialization not found by Bartle, the game-agnostic behavior, or the
freeform socialization. The di�erence between freeform socialization and the other two
types is that freeform socialization is not goal oriented.

The competition socialization can have several forms, but the most basic and most
used is direct competition. Direct competition in games is supplied by allowing players

36 CHAPTER 5. MOBILE GAMES AND SOCIAL GAMING

to �ght other players. If not restrained or regulated, this type of gameplay can be
considered an nuisance by other players, e.g. if the game allows players to attack other
players regardless of whether the other players wants it or not, the players attacked by
the other player may be annoyed, and repeated deaths caused by this will become a
serious nuisance for the player. Appelcline therefore suggests several other mechanics
that could help improve the direct competition. Agreeable �ghts are �ghts where both
players agree upon �ghting each other. This can be accommodated by having special
areas created solely for player versus player combat, or to allow duels between players
where both players agree upon the duel, or even have special servers dedicated to player
versus player combat. The other suggestions were that of lowering the consequence of the
competition, e.g. by having other penalties for losing a competition other than death, e.g.
by getting loss in honor or reputation by losing a competition. Appelcline also suggests
that direct competition does not necessary have to be in the form of combat, but could be
in negotiation, in oral contests, or for instance in sport contests. Appelcline also describes
two other forms of competition, the resource competition and the economic competition.
The resource collection competition is aimed toward competition between players about
the resources found in the virtual world, and she claims that for games to support resource
competition the games should give players limited resources, but players should also be
allowed to have more of one resource than another. Resource acquisition should also be
rewarded in order to ensure that the players are interested in collecting the resources.
The economic competition also have several forms; the capitalistic competition, which is
the straight forward supply and demand mechanism, where the market decide the prices
on wares, auctions; where players use auctions to sell and by their items, voting; where
voting is used as a means of changing the game rules by giving the player a certain
number of votes decided by certain in game factors, and then the player can use these
votes to vote for game changes, and �nally bids, which is the gambling of the game world,
where the player places bids on certain events.

For the cooperative socialization the direct cooperation involves several players work-
ing together to achieve a goal inside the game world, which is often to defeat an opponent
in the game that require several players to work together. There is also possibilities for
hierarchical cooperation, in which the cooperation is based on hierarchical relations be-
tween players, e.g. by having a master/slave relationship between players in which the
master gives tasks to its slaves, which in turn cooperate with the master to receive an
award, or perhaps in order to grow in the social hierarchy. The supportive cooperation
is a cooperation form where players o�er resources to each other in order to achieve the
goal desired.

The freeform of socialization is usually o�ered in games by giving the players the
basic ability to chat with each other. There are however other possibilities for games
to support freeform interaction between players. Freeform interaction is either not goal
oriented, or it is not supported by the system, i.e. the game. This means that freeform
socialization does not spur from goals set by the system, but rather from the players
themselves, often because of boredom, to get attention, or as an ice breaker. Creative
pursuits is an interaction form where the players come together to create stories, pictures,

5.3. GAME GENRES 37

or any other objects the game allows. Even though some games do not have hierarchical
structures, players will often create their own structures through hierarchical building, for
instance by claiming ownership of speci�c items as a part of a social hierarchy. Freeform
competitions are competitions created by the players and are not supported by the sys-
tem, i.e. these are competitions originally not supported by the system, but created by
players, e.g. by having races inside the game.

In Living a Virtual Life: Social Dynamics of Online Gaming [Kolo, 2004] Castulus Kolo
and Timo Baur takes a look at the game Ultima, which is a MMORPG. Here they found
four player types, based on the amount of time they spent in the game. They also found
three distinct levels of social behavior and social interaction. The social micro-level con-
sist of the individual player and their character, and why the individual player decide
to play such games. The social meso-level consist of the social interaction among play-
ers, and the social formation among players. In Ultima players are often members of a
guild, which is an organization of several players which often has its own social struc-
ture and leadership hierarchy, but common to all guilds is that the social relationship
between the members of the guild is usually stronger than that of players outside the
guild. The last level is the social macro-level, and is a broader sense of social relationship,
and often consists of communities of players, e.g. the entire community of Ultima players.

The social interaction types, and player types presented in this section gives an indi-
cation of the level of social interaction in multiplayer games. It also gives an indication
on which features should be incorporated into a multiplayer game in order to support
social interaction between players, and shows that social interaction between players is
more than simply chatting with, or killing, other players.

5.3 Game genres

Video and computer games have traditionally been placed in genres. Genres traditionally
help gamers, or the players(users) of video and computer games, classify games in order
to make it easier to talk about similarities between games [iHobo]. By looking at simi-
larities between games one can subtract the essence of the game and place it in a genre.
Games that are similar by nature may attract a certain type of gamers, i.e. some gamers
like a certain type of games better than others. Some players may even exclusively play
games from one genre. This can be used by market analysts and marketers in order to
market games speci�cally for the appropriate audience, or it could help the developers
and the marketers in deciding what kind of game they want to create based on the size of
the user group, as opposed to creating games purely out of artistic or narrative reasons.
Purely making games to �t a particular genre however may make them less enjoyable and
unimaginative, if the developers choose to only implement features currently available
within the genre. Such thinking will make games stagnate, making no room for new
innovations in gameplay and game mechanics, and may cause new games to become less
attractive to gamers simply because they are "just more of the same". Thus innovation

38 CHAPTER 5. MOBILE GAMES AND SOCIAL GAMING

and imaginative thinking also becomes a factor in game development. However thinking
in genres is a good starting point in terms of thinking about basic functionality that the
game should o�er.

Genres are usually divided into genres and sub-genres, where the overall functionality,
the core elements of the gameplay, and the game mechanics decide which genre the game
belongs to. Genres are then the overall description of the genre, while the sub-genres
give a more detailed view of the game mechanics usually found in games within the
sub-genre. Thinking of game genres as taxonomies, the genre - sub-genre relationship
is similar to subtype-super type relationship, or a parent-child relationship, or in object
oriented terms; the subclass and the super class relationship. However not all games
can be placed in only one particular genre or sub-genre, since they can be mixtures of
genres. Some games may belong to one genre, but have certain elements from other
genres. These elements may in�uence the game to various degrees. A game could for
instance be a �rst-person shooter game, but have elements from role-playing games, e.g.
by having an inventory system, or by having the player gain new abilities as (s)he gets
further into the game. Deus Ex [Deus Ex] and BioShock [BioShock] are good example
of �rst-person shooters that incorporate elements from role-playing games, but are still
characterized as �rst-person shooters. When the various elements the game incorporates
are of equal importance gameplay vice, the game is a cross genre game, i.e. the game
belongs to more than one genre at once.

There are no standardized genre speci�cations or genre division mechanics, even though
there are several taxonomies and genre description available. Mark J. P. Wolf created a
list of about 40 genres [Wolf, 2000], while the game website GameSpot [GameSpot], which
follows and reviews games, uses a list of more than 30 genres to classify the games that
they review. There is also interest in genres and game classi�cation in research. Craig A.
Lindley [Lindley, 2003] suggests a high level framework for classifying games that classify
games by using several dimensions. The framework looks at the amount of ludology, sim-
ulation and narratology. The framework can also be extended for instance by looking at
�ction versus non-�ction games, or virtual versus physical gaming. There are however no
�nal de�nition or standardization of game genres, and the classi�cation frameworks that
have been introduced so far are open for discussion and criticism. Thomas H. Apper-
ley [Apperly, 2006] discusses several of the proposed classi�cation frameworks and looks
closer at four common and popular genres, concluding that putting games into certain
genres is di�cult in that several games should be able to belong to several genres at
once. He also discusses the various methods for classifying games, which usually consist
of looking at either the narrative aspect of the games, or those that oppose this notion,
the ludologists. He also concludes that market-based categories often divide games by
their similarity to previously released games.

The genres discussed in this section are based partly on genres used by the gaming
industry and game web sites, but also through own experience and on how well suited

5.3. GAME GENRES 39

games in these genres are for the project and the scope of the project.

5.3.1 Action

Action is a somewhat ambiguous name for a genre since most games contain some element
of action in them, however there are certain games that have the action element as their
main element and there are some sub-genres that �t well inside the action genre. The
main focus of action games lies in combat by having the player facing one or more
opponents which aim at harming or killing the player. The task of the player is then
to dispose of or avoid these opponents. The combat can be the main component in the
game, as in �rst-person shooters, or just be a tool to advance through the game, as in
platform games.

First-Person Shooters

First-Person Shooters(FPS) puts emphasize in combat and shooting from the perspective
of the character controlled by the player. Such games are usually 3D games where the
player see the action through the eyes of the character they play. This gives a feeling of
immersion into the game by having the player become the main protagonist. Become in
the sense that the player becomes the character since he controls the character directly
and sees what the character sees. FPS games usually involve weaponry of some sort and
the player usually have the opportunity to aim the weapon in any direction, although in
earlier games the player could not aim their weapon, but instead relied on auto-aiming, a
mechanism where the game helps the player to aim at their opponents. Most FPS games
have some degree of violence in them, where the player shoots opponents.

Multiplayer in FPS games has usually been a selling point of games in the genre, since
this seems to be popular among many gamers. Multiplayer in FPS games usually has
several players �ght against each other. The players �ght each other in one of several
gameplay modes to gain what is usually called frags, or points, i.e. points rewarded to the
player for killing other players. These modes range from all-against-all matches, often
called deathmatch, to team-based gameplay. In team-based matches the players form
several teams which then �ght against each other. There can also be other objectives to
the game than pure killing such as Capture The Flag(CTF) where the teams try to steal
a �ag located in the enemies base and return it to its own base to gain points. There are
many more modes available in modern FPS games.

Multiplayer FPS games are well suited for mobile phones in theory. They o�er pos-
sibilities for both quick and longer game sessions. Console and PC FPS games usually
allow the players to decide on how long the rounds should last, how many frags are
needed to win, or how many �ags the team must get in order to win a CTF match.
By allowing the players to choose the game settings the players can choose how long the
want to play the games, making it ideal for mobile phones. The disadvantage with having
such game styles on the mobile phone is the graphics requirement, especially when the

40 CHAPTER 5. MOBILE GAMES AND SOCIAL GAMING

games are in 3D. The keypad also becomes an issue since for traditional console and PC
FPS games the aiming and steering of the character is done with either the mouse, or
with analog sticks on the gamepad. Free aiming using the keypad could be awkward on
certain phone models. The amount of data that must be send in such games must also
be taken into consideration, especially when many players play the game. FPS games
on mobile phones should therefore be scaled down appropriately with aim help, graphics
that suit the mobile platform, and other concerns related to mobile phone development.

Third person shooter

Third person shooters share some of the properties with FPS games, but the player
see the character in the third person perspective, often looking over the shoulders of
the character(or in some cases the camera can be controlled by the player). Popular
third person shooters include Gears of War [Gears of War], created by Epic Games and
released in November 2006 on the Microsoft XBox 360.

Third person shooters incorporate most of the same multiplayer possibilities and game
modes as FPS games, and thus have most of the same limitations for mobile games.

2D Shooters

2D shooters are essentially third person shooters in 2D, i.e. the perspective of the char-
acter is viewed in third person, but the character and the game world is drawn in 2D.
2D shooters generally involve shooting elements and they have most of the game modes
and possibilities as the third person and �rst person shooters, however since the graphics
in the game is 2D, the computational power needed by the mobile phone is less, and the
information needed to be sent over the network also decreases, since the positions of the
players are no longer 3D positions. Thus 2D shooters might be a better alternative than
third- and �rst person shooters, however there will still be a problem will game control
through the keypad. Figure 5.2 shows a screenshot of the 2D multiplayer shooter Soldat
[Soldat], created by Michal Marcinkowski. The game is a multiplayer 2D shooter with
several available weapons and game modes, and has several players �ght each other.

Other

Other action sub-genres include such genres as:

Platform games Platform games usually involve jumping to and from various plat-
forms, such as New Super Mario Bros. [New Super Mario Bros.] created by Nin-
tendo for the Nintendo DS. New Super Mario Bros. o�er both single player, and 2
player multiplayer, however usually platform games don't incorporate multiplayer.

Action-adventure Action-adventure usually involve adventure elements, action ele-
ments and puzzle elements, or more generally problem-solving. Games in this
genre include such games as the Zelda series from Nintendo and the God of War
series created by SCEA for the Sony Playstation 2. These games are usually not
known to have multiplayer support, but there are exceptions.

5.3. GAME GENRES 41

Figure 5.2: A screenshot of the game Soldat

5.3.2 Casual

Casual games as a genre is perhaps not the most used in the industry, but the term
casual here is meant to re�ect on the fact that these games are mainly targeted toward
what is known as casual players, i.e. players that play games purely for recreation and
fun, and possibly not for long periods at a time.

Puzzle

Puzzle games usually have the players solve logical puzzles, to navigate complex environ-
ments or to use quick re�exes and hand/eye coordination to solve problem. The main
gameplay mechanism in these games is problem solving where the player is faced with
a problem that he must solve, some times within a time limit. Some games use point
systems to make the game more interesting and competitive for the players. The small
size of most puzzle games make them a good �t for the mobile phone platform, and the
games often have an "easy to play, di�cult to master" mantra, making it easy for new
players to pick up and play, but hard to master.

Figure 5.3 shows the game Tetris DS created by Nintendo for the Nintendo DS, re-
leased in 2006. It is a remake of the original Tetris, which is arguably the most popular
puzzle game. Tetris DS have several gameplay modes, including the original Tetris mode
where the player must place di�erent shaped blocks on the bottom of the screen and
cover and entire row with blocks, which in turn makes the row disappear giving the
player points in return. Tetris DS also have multiplayer functionality as shown in Figure
5.3, where the opponents' game boards are shown in the upper screen. The objective for
the player then becomes to get more points than the other players.

42 CHAPTER 5. MOBILE GAMES AND SOCIAL GAMING

Figure 5.3: A screenshot of Tetris DS for the Nintendo DS

5.3. GAME GENRES 43

Figure 5.4: A screenshot of Buzz! The Mega Quiz for the Sony Playstation 2

Puzzle games are well suited for mobile phones, as described above, and competitive
multiplayer games should be doable on a mobile platform; the graphics need not be to
computational straining and the network tra�c required between the players should be
low, compared to other games.

Trivia

Trivia games are games that have players compete either against a computer controlled
opponent or against other players in question answering. Players get points for answering
correct, for answering fast or in some other way de�ned by the game. Trivia games
are well suited for multiplayer gameplay and trivia games have existed long before the
computer. The gameplay it self may not be exiting, but there is certainly a social
aspect to the games, and the focus of the multiplayer matches becomes to beat your
friends, or opponents, and perhaps show that you are smarter, or at least better at trivia
games, than them. Figure 5.4 shows a screenshot form the game Buzz! The Mega Quiz,
which is a game, released for the Sony Playstation 2 that have several players compete
against each other using specially designed controllers formed as game show buzzers. The
controllers help the players immerse themselves into the game, making the sensation of
being a contestant in a game show stronger. Buzz! is also played on a single Playstation
machine making it a social game. Buzz! include several di�erent game modes and use
elements such as video and music in their questions. Trivia games are well suited for

44 CHAPTER 5. MOBILE GAMES AND SOCIAL GAMING

mobile phones since the graphic requirement is relatively low, and the mobile phone is
well suited to act as a game show buzzer. Using mobile phone features such as vibration
could further increase the gameplay. There are however some issues that arise such as
synchronization issues, especially if the di�erent players use di�erent network technologies
that may have di�erent transmission speeds. This is however only a problem in game
modes that require timing, e.g. when deciding who answered �rst, or whether a player
answered within the time limit. If these issues are solved trivia games are well suited for
mobile phones, because of their relatively low computational cost, their competitive and
social gameplay and the ease of playing such games(the ease of playing trivia games lies
of course in the di�culty of the questions as well as the interface shown to the user).

5.3.3 Fighting

Fighting games usually have the player face an opponent in hand-to-hand combat. The
opponents may be computer controlled or controlled by another player. Fighting games
usually have the player comply to certain �ghting styles, or martial arts styles. For
instance the character controlled by the player could be skilled in kung-fu, while the
opponent could be a wrestler. Older �ghting games might not put that much emphasis
on realistic �ghting styles, but many of the newer �ghting games have a bigger focus
on having realistic �ghting techniques, such as the game shown in Figure 5.5, Tekken 5
created by Namco LTD. and released for the Sony Playstation 2 in 2004. Some �ghting
games are also restrained to a single �ghting style, for instance boxing games, or wrestling
games. The aim for the player is usually to make the opponent unconscious, or to kill
the opponent. This is usually done by performing physical attacks against the opponent,
which then looses health if the attack was successful(most �ghting games incorporate a
blocking mechanism which reduces damage). Some �ghting games also allow the players
to use items such as swords or spears to hit their opponents, and some games even
incorporate some long range attacks, e.g. by having the player cast a �reball at their
opponent if the player performs a series of key presses in the correct order(known as a
combo).

A special sub-genre of the �ghting genre is the beat'em'up genre, which usually con-
sisted of side scrolling stages where the player �ghts against several computer controlled
opponents before continuing to the next stage. Such gameplay is well suited for coop-
erative multiplayer, where two or more players play together to defeat the computer
controlled opponents.

Fighting games can be well suited for mobile phones depending on the complexity of
the game. Modern �ghting usually use button combos to perform complex movements,
and this could be an issue with the keypad control on mobile phones. The graphics need
not be a problem, especially if the games are created in 2D, but network tra�c could be
an issue, and to some extent timing issues.

5.3. GAME GENRES 45

Figure 5.5: A screenshot of the game Tekken 5 (2004) for the Sony Playstation 2

5.3.4 Racing

In a racing game the player have control of a vehicle, which could be a boat, a car, a
motorcycle or any other vehicle used for racing, and then compete in races where the
point usually is to get from point A to point B with the fastest time. There are di�erent
game modes available in racing games, but most of them strive to get the racing feeling
and have the racers race either against computer controlled opponents or against other
players. Racers often vary in the realism that they o�er. At one end of the scale you
have the simulator games which strive to create as realistic a game as possible, and on
the other end of the scale you have the arcade style racers, which usually have their focus
on creating a enjoyable and fun experience in a racing setting. The di�erence typically
shows itself in steering, weather conditions, damage models, car models, etc. Modern
racers usually o�er di�erent view of the cars, such as views from inside the car, and
viewing the car from behind the car.

Racers can be well suited for mobile phones, especially when made in 2D, but simulation
style racers may require to much computational power, so the arcade racers is perhaps
the better choice. Network issues due might be an issue, but the problem becomes less
for arcade racers.

5.3.5 Role-Playing Games

Role-playing games, or RPG's, usually give the player control over one or more characters,
or adventures or protagonists, which (s)he must guide through combat and adventures.
In single-player there is usually a storyline that the would-be heroes must follow, and
the player controls the protagonists as they venture through the story. Many RPG's

46 CHAPTER 5. MOBILE GAMES AND SOCIAL GAMING

use magic as a part of the combat system, and the protagonists can cast spells, which
usually have either a negative e�ect against he opponents, or give a positive e�ect to
the player and his party. Most RPG's incorporate a character-development system,
where the player can be upgraded and gain additional powers and abilities by gaining
experience points, either by killing monsters or by doing quests, which are missions given
by non-playable characters in the game that the player must complete. Most RPG's also
incorporate items and statistics that de�ne how well the player's character performs in
the game(some times called stats by gamers). The items range from weapons and armor
to potions that increase the player's health. The statistics usually decide factors such as
how much health the player has, how much damage the player do in combat and how
many magic attacks, or spells, the player can cast.

There are di�erent sub-genres within RPG games, and the games di�er in terms of
how much they rely on action or combat sequences, whether they are real-time or whether
they are turn or round based. Some RPG games are more similar to the old Dungeon
and Dragons pen-and-paper games with an advanced system of dice rolls that decide the
outcome of player actions, whereas other games are more action oriented. One of the
more popular genres is the Massively Multiplayer Online Roleplaying Games genre, or
the MMORPG genre, which is described in the subsection below.

RPG's are usually quite complex and require a lot of work, not only pure program-
ming and art design, but work such as making sure the experience gain is balanced, that
the stats are balanced and that the weapon and spell combat is balanced. There is also
a lot of work involved in creating quests and in creating the background story for the
game. If the gameplay and graphics are not to complex however, RPG's can suit mobile
phones well, and there are several RPG's currently available, such as Doom RPG and
Orcs and Elves both created by id Software. Figure 5.6 shows a screenshot from Orcs
and Elves, which is a turn based RPG for mobile phones created in Java. Network issues
could arise though, especially if the game supports many characters.

Massively Multiplayer Online Roleplaying Games

Massively Multiplayer Online Roleplaying Games, or MMORPG's for short, are online
RPG's that support thousands of players at once. They usually have a client server archi-
tecture and incorporate several servers that divide the player mass into servers with equal
loads. Much of the same features found in regular RPG's can be found in MMORPG's,
such as experience gain, questing, and combat based on spells and weapons, but the
scale of the multiplayer aspect of the games is huge in comparison. MMORPG's usually
also focus more on the social aspect of gaming, and in player interaction. These games
allow the players to work together in groups to complete tasks, and they support in-game
chatting and some of the games also have a social system called guilds, or clans, which
allows groups of player with similar goals and interests to join into groups that have a
strong sense of belonging for its members.

MMORPG's have the same problem of complexity as ordinary RPG's for mobile phones,

5.3. GAME GENRES 47

Figure 5.6: A screenshot of Orcs and Elves for mobile phones

but on top of that is the network tra�c. With thousand of simultaneous players on the
same server there is a lot of tra�c on the network. This can be a bottleneck on mobile
networks, and solutions must be found to the problem. Many MMORPG's use a system
called instancing, where they create a special instance of a part of the world, that only
the player and his(her) team can see and interact with, thereby reducing the tra�c for
the players in the instance. Such solutions will be necessary for mobile phones as well.

5.3.6 Sport

The sport game genre consists of games that try to either emulate existing sports, or
create new ones. Some games try to simulate the sports relatively realistic, such as the
FIFA series from EA SPORTS(Electronic Arts Inc.) which try to simulate football and
have had many entries in its series. Other sport games are less realistic, or more arcade
like, and shifts the focus from realism to other factors, e.g. by creating a more fast
paced or simpli�ed gameplay. An example of a more arcade style of football game is
Mario Strikers Charged created by Nintendo for the Nintendo Wii and released in 2007,
as shown in Figure 5.7, which is a arcade style football game where added elements such
as power-ups and megastrikes(a special move each player have that is highly e�ective at
scoring goals) shift the focus away from the realistic style of gamplay that the FIFA series
use. Other games focus more of the strategy and tactics behind the sports, such as the
Championship Manager series, now developed by Beautiful Game Studios and published
by Eidos Interactive, which gives the player the opportunity to be the manager of a
football, a job which involve elements such as buying players, planning strategies and
supervise training sessions.

48 CHAPTER 5. MOBILE GAMES AND SOCIAL GAMING

Figure 5.7: A screenshot of Mario Strikers Charged (2007) for the Nintendo Wii

Popular sports in this genre include sports such as football, American football, ice
hockey, base ball and various other sports.

Multiplayer in sport games usually have players either compete against each other, or
work together as a team to beat the opponents. In football games direct competition
between two players could for instance happen when one player have control over one
team, and another player have control over the other team, and the winner is the player
that scores the most goals. Some games also allow more than one player on each team,
and some games include cooperative gameplay where two or more player compete against
a computer controlled team. Depending on the complexity of the games, sport games are
suited for mobile phones. They will perhaps never be as complex as the most realistic
sports games, but an arcade style sport game �ts the mobile phones well, since these types
of games can be less computationally requiring. There are however di�erences between
di�erent sports, as some sports involve more complex gameplay than other, and more
complex control mechanisms. It is therefore necessary to decide how accurately the sport
at hand should be portrayed. Since sport games are usually real-time games, with the
exception of certain aspects of manager style games, network tra�c and synchronization
issues could arise.

5.3.7 Strategy

Strategy games require the player to use tactics and strategies in order to win the game.
The games also usually require more attention to planning actions and many strategy

5.3. GAME GENRES 49

games incorporate resource management, where the player is either given a preset amount
of resources, or the player must gather the resources. The player must then use the re-
sources to create troops, buildings and other items and artifacts in order to create a means
of winning the game. Some strategy games incorporate elements such as construction,
where the player must create buildings, roads, etc, commerce, or diplomacy, but other
games focus more on pure combat, sporting two or more teams of armies against each
other. The complexity of the games grows with the amount of features found in the
games, and some games have several means of winning the game, such as the Civilization
series, produced by Sid Mayer, where there are several ways of winning the game, e.g. by
gaining control over all territories through combat or by gaining diplomatic connections
with other nations.

Strategy games are usually divided into two categories; real-time strategy games, and
turn based strategy games. The two genres di�er in the way the game is updated where
turn based games usually have each player update their armies, cities and other artifacts
as much as the game allows, in turn, such that each player updates his artifacts and
then passes over the turn to another player. When all the players have done their turns
the current round is over, and a new round begins. Winning conditions in turn based
games need not di�er from real-time games, but it opens up new possibilities. Real-time
strategy games do not rely on turns, but instead let the players update their troops and
cities in real-time, even though some actions such as unit building may take a preset
time, the game itself does not stop and wait for the player to �nish up his or her turn,
but instead lets the other players update their troops and cities at the same time, and
at their own pace.

Strategy games have generally been di�cult to create for mobile devices because of
their complexity in gameplay and because of the di�culty of creating good control mech-
anisms on limited keypads. If the gameplay is simpli�ed and the controls are created to
suit mobile keypads, it should be possible to create strategy games, but the amount of
network tra�c that had to be sent, because of the number of units the player have, could
become an issue.

5.3.8 Social game genre discussion

The genres described and discussed in this section are all genres that are present on
today's mobile platforms. Multiplayer may not be as common on mobile platforms as it
has become on video game consoles and in computer games, but there are nonetheless
opportunities to create exiting and fun games in these genres that all support multiplayer
in some form.

Apart from gameplay and game mechanical di�erences between the di�erent genres,
the genres may also di�er in how well they support social gaming. Certain genres are for
instance more suited to house competitive games and thus spur competitiveness between
players, while others are more focused on the social experience itself, however it would

50 CHAPTER 5. MOBILE GAMES AND SOCIAL GAMING

be wrong to say that a genre that has some sort of multiplayer gameplay does not sup-
port social gaming, since even competition between players is a form of social interaction.

The games in the action genre usually have a natural focus toward competitive gameplay
where the players �ght against each other, especially the �rst- and third-person shooters,
and the 2D shooters. In console games however it is not uncommon for such games to
have so called coop modes, or modes where players work together cooperatively to solve
problems, kill enemies, and overcome obstacles. First- and third- person shooters also
generally have support for voice communication, either through outside applications such
a Ventrilo2 on computers, or built in voice capabilities, such as on the Microsoft Xbox
360. Such voice communication can be helpful to a team that wants to work together
to win the match, as they may speak to each other to discuss strategies for winning the
match, or to give the players in the team instructions on where to go. All players however
may not want to use the voice chat in such a way, and people may for instance use it to
talk about issues unrelated to the game entirely, or talk nonsensical in order to harass
other players. Some of the current video game consoles also have features that support
a sense of community, with features such as creating a personal pro�le where the players
can add friends, chat with friends, and invite friends to player games with them.

In the multiplayer part of these games the social interaction also changes dependent
on which team the players are on. The shooter games usually support team based modes,
where two or more teams �ght against each other, and thus the players that are able to
work well together as a team may have an advantage over players who do not know
each other, and simply play for their own motives. Some games have options to turn on
"team-killing", or "friendly �re", which makes weapons able to hurt players on the same
teams as well as players on other teams. Such a mechanic may further show di�erences
in social behavior between players. Certain players will attempt not to hit team mates,
while other players will try to hurt players on the same team on purpose, perhaps out of
boredom, but it does nonetheless make it more di�cult for the team to win the match.

The issues discussed above show some of the social interaction that may occur in
games that are usually highly competitive, and it shows that social interaction between
the players can be both a hindrance, and an enhancement to the games. Hindrance and
enhancement here are however related to the context of the game, i.e. to winning the
game. There could however be other objectives equally important to the players that play
these games, such as simply having fun, even when loosing, or to simply have a conversa-
tion to a friend in a di�erent environment than the players are used to in the real world.
This shows the diversity of social interaction, and how it a�ects games. To certain players
conversations about issues not related to the current game are not relevant and act as a
nuisance, but for other players it is a part of an experience that make the game more fun.

The games of the platform genre have usually not o�ered much in the way of multiplayer,
but new games in the genre are beginning to o�er change this. Super Mario Galaxy, cre-
ated by Nintendo for the Nintendo Wii has a mode where an additional player can join

2http://www.ventrilo.com/

5.3. GAME GENRES 51

a single player game and help the main player by gathering resources and items found
throughout the world. The helping players has however no control over he movement of
Mario(the controllable character in the game), but the two players are certainly having
a social experience by sitting close to each other and helping each other player the game.

Casual games such as the Buzz! series are social games, where the players sit in the same
room together using the same game console and compete against each other. While the
games in the previous paragraph(i.e. the shooters) usually focus on o�ering multiplayer
where more than 10-12 players are connected at once(except for the coop modes), many
casual games focus more on having smaller number of players, where the players are often
friends that play the games together locally together in the same rooms. This creates a
di�erent social experience and environment than the competitive online shooter games;
however the experience can be relatively equal in terms of competitiveness, especially
when friends are playing together and each player wants to show o� to the other players.
The competitiveness will also di�er between the persons playing the games, as certain
players are more competitive than others, while some players just want to play against
their friends and have a good time. This goes to show that social gaming not only de-
pends on the games, and what functionality they o�er to the players, but to the players
playing the games as well.

Fighting games have generally been very social games, especially the versus-�ghting
games where a player faces another player in direct combat. These games usually have
computer controlled opponents to play against, but the more social experience can be
found by playing against another human opponent, and they are also generally better
opponents. Fighting games have a property where the experience and skill level of the
players can a�ect the experience of playing the games because of the complex move-
ments available to the �ghters in these games(i.e. players that play more will have better
control over their �ghters, and will have learned to utilize the best combos and �ghting
techniques). A relatively experienced player may �nd it outright boring to play against
a low experienced player, and vice versa, since the experienced player usually beats the
less experienced player. Such a situation shows how game experience and the skill of
the player may a�ect the social experience of the game, and how well a person likes
that game. A player facing a highly experienced player and loosing repeatedly may be
discouraged from playing the game again, even though that player may have a good time
playing the game against an opponent of the same skill level.

Racing games usually has a focus on competitive multiplayer where several players race
against each other in the same race, and they try to be the fastest. Newer racing ti-
tles often have support for online races, where players can race against players over the
Internet. Although quite di�erent from shooter games game mechanically, the issues re-
garding social interaction with other players are similar between the two genres, although
the racing games usually do not have game modes where the players are on the same
teams. In some sport games on the other hand layers can either be on the same team, or

52 CHAPTER 5. MOBILE GAMES AND SOCIAL GAMING

play against each other, e.g. in football games where the players can either control virtual
players on the same team, or control a separate team and compete against each other.
Newer sport games also incorporate online connectivity as part of the multiplayer experi-
ence. Features such as online leagues, tournaments, and world wide rankings help create
and support a community round the games, which may in turn create more interest in
the games by promising a social experience for new players, as well as a environment for
the player to interact with each other, and keep track of each other. Rankings and high
score lists can for instance help to create new goals for certain players, where they will
try to improve their ranking or high score in order to rise in the ranking. The ranking
feature then works as a motivator for the player to continue playing the game.

Role playing games range from non social experiences, to highly social experiences in
the form of MMORPG's where often thousands of players are connected to the same
game. In MMORPG's the social experience is one of the key factors for the games, as
they o�er many mechanics that support player interaction, such as textual communica-
tion tools(chats), and voice communication. Certain MMORPG's also have the possibil-
ities of creating groups of players that share some sort of social bounds with each other.
These groups are sometimes called guilds, and these guilds usually give the players tools
to support a social structure for the players. The guilds social structures can be based
on di�erent ideals, but the social structures and the goal of the guilds may of course
change during the lifetime of the guilds. A guild may for instance be created in order
to overcome obstacles in the games that require several players to beat, thus making the
reason for creating the guild more competitive in nature, but a guild could also be created
in order for players to have a social hub where they can talk to like minded players, or a
guild where friends join together to more easily �nd each other in the games. Once the
players in competitive guilds start to know each other better though, the goals of the
guilds, and the reason to continue to stay in the guild may change to be more social in
nature, i.e. when friendships start to arise. There are other social features in the games
than guilds however, such as friend lists.

Competitiveness is usually also supported by MMORPG's, and the player types de-
scribed in Section 5.2 are usually all found within the realms of the games. Economical
social interaction such as trading and bidding, and exploration and gathering are usually
all well supported by games in this genre, and the complexity, and size and scope of these
games create a unique social environment where many di�erent personalities �t in with
the games, and where they can play the games the way that they want to.

Strategy games support both competitive and cooperative gameplay, and some strat-
egy games also have support di�erent variations on how to play the games, such as
o�ering both online multiplayer along with hotseat, in which two or more players use the
console or computer to play in the multiplayer session. Competitiveness is usually well
supported where the goal of the games are to use strategy and tactic in order to con-
trol the units at the players disposal to outmaneuver the opponent and beat their armies.

5.3. GAME GENRES 53

This Chapter took a more general look at games in general, as well as social and mobile
games. The next Chapter will take a closer look at some of the games that are available
on the market today.

Chapter 6

State of the art

This chapter looks at some of the mobile games available on the market today, with
special focus on multiplayer games.

6.1 Mobile games on the market today

There are several games available on the mobile games market today that o�er multi-
player functionality. The multiplayer functionality itself also comes in several varieties,
from Massively Multiplayer Online Games(MMO's) over the Internet, to proximity based
multiplayer utilizing Bluetooth for multiplayer with other people within a small radius of
each other. The games also vary in the gameplay they o�er. Some of the games are simple
puzzle games with multiplayer functionality, while other games are Role Playing Games,
RPG, some with relatively deep story lines and relatively advance combat mechanics.
Samurai Romanesque [Krikke, 2003] and Undercover 2: Merc Wars [Undercover 2] are
two MMO games where many players can play at the same time, where Samurai Ro-
manesque is a RPG game and Undercover 2: Merc Wars is an action game. Tibia Micro
Edition [Tibia ME] is another massively multiplayer online role-playing where hundreds
of players can play in the same virtual world. Pirates of the Caribbean Multiplayer
[POTCM] allows up to 16 players to compete against each other in real time where each
player has control of a pirate ship and �ght against the other pirates(i.e. the other play-
ers). There are also more casual games available that support multiplayer, such as Pool
Pro Online II, which is a pool game that o�er multiplayer, Bejeweled Multiplayer, which
o�er a multiplayer version of the puzzle game Bejeweled, Chess Everywhere, which is a
chess game that o�er multiplayer with not only other mobile users, but also PC and
PDA players, 5-Card Draw Multiplayer, which is a multiplayer poker game, and Tetris
Multiplayer [Tetris Multiplayer], which is a version of the game Tetris with multiplayer
supported by EA Mobile. Duke Nukem Arena 3D is a �rst person shooter created by
MachineWorks Northwest LLC [MachineWorks Northwest], and is based on the Duke
Nukem games. The game has multiplayer deathmatch between up to 4 players, single
player modes, and is in 3D.

54

6.1. MOBILE GAMES ON THE MARKET TODAY 55

These are just some of the mobile games available with multiplayer support, and the
rest of this chapter looks at three mobile games which o�er multiplayer gameplay more
thoroughly, and the gameplay, the business model, the network technology supported by
the games is described for each game, as well as the social aspects of the games.

6.1.1 Pictionary

Pictionary1 is developed and published by EA Mobile. It is a mobile phone version of
the classic board game Pictionary created and published by Mattel. The core gameplay
consists of one team drawing �gures or pictures, while another team will attempt to
guess what is drawn. The game o�ers single player, hotseat(two to four users play on the
same phone by passing the phone between each other), and multiplayer over network.
The single player part of the game consists of guessing what the computer is drawing by
entering the correct word.

In multiplayer up to four players can play against each other. The players form two
team where one each team there is a drawer and a guesser. The drawer is told by the
game what to draw, draws it, and the guesser is tasked with guessing the drawing of the
other team. Each round ends when either a guesser guesses correctly, time runs out, or
a player leaves the match.

The drawing in the game is done one the phone using built in tools, such as brush,
bucket, and shapes, in the game, as displayed in Figure 6.1(a), and the game also o�er
the drawer ten di�erent colors to draw with. Figure 6.1(b) shows a game in session with
a �nished drawing in colors. The game also has a free drawing mode where the players
can practice drawing, and save up to �ve drawings for later use.

Business model

The game is published by EA Mobile, and is available in several countries by several
mobile carriers; however the game is currently not available for download through EA
Mobile in Norway. The game has a one time fee for buying, as well as fees for downloading
the game which will di�er between mobile carriers. During network multiplayer matches
additional fees for transferred data may also apply, depending on the mobile carriers.
Some mobile carriers charge for the data downloaded, and some mobile carriers also
special payment arrangements, such as a maximum fee per day, i.e. regardless of the
data down- or up-loaded, the fee is never larger than the maximum fee.

Network technology

Pictionairy has match making built into its multiplayer game, where the game �nds
suitable matches for the player to join. To join matches, the player need only start the

1http://www.eamobile.com/Web/Catalog/US/en/game/mobile/ProductDetailOverviewView/product-
25602

56 CHAPTER 6. STATE OF THE ART

(a) Blank drawing screen, showing the
di�erent drawing tools

(b) A game session showing a �nished
drawing

Figure 6.1: Various screenshots from Pictionary

multiplayer game, but in order to host matches the players must create an EA account
which is done in-game.

Social aspects

When creating an EA account, the player is given a buddy list, where they can add
players and chat with, and send messages to them. The players can also send in-game
pictures to each other, and the game also has a online leaderboard where the players can
post their scores. The multiplayer itself is divided into networked and non-networked
multiplayer, where the non-networked multiplayer has the players use the same mobile
phone to play against each other. This may enable a collocated social experience for
the players, and players using this option are usually acquaintances. The networked
multiplayer force players to work as a team against another team of human opponents,
which may give the players a more social experience than being purely competitors.

6.1.2 Mobile Battles: Reign of Swords

Mobile Battles: Reign of Swords2 is a turn-based strategy game for mobile phones, with
functionality for PC as well. The game is created by Punch Entertainment Inc.3. The
game is fantasy themed, with gameplay mechanics similar to the Nintendo Advance
Wars4 series. Figure 6.2(a) and 6.2(b) show screenshots of the game running on a mobile
phone. The game has both single and multiplayer modes.

2http://www.mobilebattles.com/
3http://www.punch-entertainment.com/index.htm
4http://www.advancewars.com/

6.1. MOBILE GAMES ON THE MARKET TODAY 57

(a) Combat e�ect (b) Selecting troop movements

Figure 6.2: Various screenshots from Mobile Battles: Reign of Swords

The single player game utilizes a grid based system and has 23 di�erent unit types
the player can use in the battles. The di�erent maps have di�erent terrains, and the
di�erent terrains have di�erent e�ects, e.g. slower movement rate. The di�erent unit
types consist of a range of di�erent units, such as more traditional sword men, to shape
shifting druids. The mode consists of 49 missions, and has a story that connects the
missions together. Before each mission, the player decides which units to bring to the
battle by using points earned through combat. Certain units work against other, so the
player must choose wisely.

The multiplayer aspect of the game is not real-time, but instead uses a system where
the player chooses which units to send to battle, as in the single player mode, and then
decides the basic tactics for each unit as well as placing them on the battle�eld. The
player then sends the units to battle another human opponent, and the result of the
battle is calculated by the game server without any further interaction from the players.
After the battle is over the players are given the result of the combat, as well as given
points for their e�orts. Each player must create an avatar which is saved on the main
game server, and the points earned in combat can be used to buy more forces.

The game also o�er the possibility to play the game on the PC, and since the player
stats are saved on the main game server, the players can play with the same character
both on the mobile and on the PC.

Business model

Mobile Battles: Reign of Swords has a one time fee for buying and downloading the game.
Additional fees may also apply when playing the multiplayer mode of the game, but that

58 CHAPTER 6. STATE OF THE ART

will di�er from mobile carrier to carrier. The game is available for several mobile carriers
in several countries, but it is not yet available in Norway5.

Network technology

Mobile Battles: Reign of Swords is created in Java ME and should thus work on most
Java enabled mobile devices which support online network. The game has a main server
that holds the player account information, and that calculates the battles between the
opponents in multiplayer battles.

Social aspects

A part from the direct multiplayer combat, the game has online leaderboards with high-
scores. The game world is divided into regions, and player may choose a region to join.
Each week the leaders of each region are granted noble titles and bonus titles, thus giving
more incentive to gain a higher score in the game. The creation of a character also creates
more incentive to play the game, as the character, or avatar, is continuously improved by
playing and winning battles. The players may create rival lists, which is a list of other
players that can be used to compare highscores between players, as a means of keeping
track on friends in the game, as well as in the game it can be used to send challenges to
other players. If the other player accepts the challenge, a battle between the two players
commences.

6.1.3 AMF Bowling Deluxe 3D

AMF Bowling Deluxe 3D6 is a mobile rendition of bowling in 3D developed and pub-
lished by Vir2L Studios LLC7. The game has several di�erent modes, including single
player and multiplayer modes, and is running in 3D.

The player throws bowling balls in the game by �rst lining up the character, which
represents the player in the game, and is selected among several di�erent bowlers, with
the pins by moving to the left or right, which is seen in Figure 6.3(a), where the arrows
indicate that the player can move the character to the right or left. After having lined
up the character, the player decides the power of the throw, which is shown in Figure
6.3(b), where the characters arm moves up and the player presses a button at the wanted
level, which indicates the throwing power. After having decided the power of the throw,
the ball is thrown, and for a few seconds after the throw, the player can add spin to the
ball. The bowling throwing in the ball is controlled the same in both single player, and
multiplayer modes, and both single and multiplayer modes have full bowling matches,
i.e. 10-frames bowling with 10 pins, and 2 throws per frame.

5Last checked 10 of March 2008
6http://vir2l.com/games/amf3d/overview.php
7http://vir2l.com/index.php

6.1. MOBILE GAMES ON THE MARKET TODAY 59

(a) A player lining up the throw (b) A player throwing the ball

Figure 6.3: Various screenshots from AMF Bowling Deluxe 3D

The single player mode of the game has several di�erent tournaments the player can
choose, as well as several distinct lanes to bowl in, such as jungle and classic lanes, and
the player can also unlock hidden extras for the game by completing in-game challenges.
The game has both hotseat multiplayer where two players play a full match of bowl-
ing using the same phone, and online multiplayer. In the multiplayer, the player plays
against other human opponents in real-time, but the players throw their bowling balls
simultaneously, and after each throw the players are given the result of the throw.

Business model

As with the other games described in this chapter, AMF Bowling Deluxe 3D has a one
time fee for buying the game, as well as additional fees that may apply during the online
part of the game, which will depend on the mobile carrier of the player. The game is
available on several di�erent mobile carriers in the US, but it is currently not available
in Norway8.

Network technology

AMF Bowling Deluxe 3D is implemented as a BREW application, but the development
team also have a version of the game in Java ME, even though the game has a di�erent
name. BREW (Binary Runtime Environment for Wireless) [BREW] is a application
development platforms for mobile phones created by Qualcomm. BREW runs between
the between the application and the mobile phones operating system, much like Java
ME, and allows the user to develop code in C or C++ without coding explicitly for the
particular mobile phone. As described above, the players play real-time, although they
play in parallel with each other, and see each others results as they play after each turn.

8Last checked 11 of March 2008

60 CHAPTER 6. STATE OF THE ART

The players start a online multiplayer game by connecting to the main game server,
which is based on the Swervenet network services platform developed by Superscape9.

Social aspects

AMF Bowling Deluxe 3D has online leaderboards and rankings, where the players can
upload their online match scores, and see the scores of the other players. The leaderboard
is hosted on the main game server, and is global. During multiplayer matches the players
are allowed to taunt each other by using in-game taunts. After each turn the players can
view the scores of the opponents via a in-game menu.

6.2 Summary

The games discussed in this chapter shows that there are several available multiplayer
games for mobile platforms, more speci�cally mobile phones, and that there are many
di�erent type of games available with multiplayer support, both over network, on the
same mobile, and using more local type of networks such as Bluetooth. The games dis-
cussed here were a strategy game, a virtual take on a traditional board game, and a
bowling game, as well as several other games not discussed as thoroughly as these three.
The way mobile multiplayer games implement their multiplayer also di�er between the
games, where some games use more traditional multiplayer seen in console and computer
games, such as the multiplayer found in Duke Nukem Arena 3D, whereas other games
take more untraditional approaches such as Mobile Battles: Reign of Swords which is
more similar to e-mail multiplayer found in some PC games than that of the common
multiplayer found in other strategy games on other platforms. This takes the limitations
of the mobile platform, and focuses on multiplayer gameplay that the mobile platform
is able to support and try to create an engaging experience which is not limited by the
platform limitations. Pictionairy and AMF Bowling Deluxe 3D also support hotseat,
where the players use the same mobile device and swap the device between each other
after each turn. Such a multiplayer type creates a social experience where the players
are collocated in the same room able to talk directly to each other with both verbal and
non-verbal communication; however they rely on the players to �nd other players to play
the game together with.

The way the various games discussed in this section support social gaming and social
interaction also di�ers somewhat from game to game, although there are some similari-
ties. A common mechanic that is found in all of the three games is online leader boards
and rankings, where players can upload their high scores in the game. These leader
boards can help create communities around games where the players compete against
each other to get higher scores, and creates an incentive to continue to play the game
by having the players compete against each other. Mobile Battles: Reign of Swords goes
even further by giving the top players on the high score lists in-game advantages in the

9http://www.superscape.com/gamedelivery/process.php

6.2. SUMMARY 61

form of in-game rewards, which further gives an incentive to play the game more, and
learn to play it better. In that respect it can also act as a community builder, but it may
depend on the player base itself, and the people inside the player base since if certain
players dominate the lists, the players that are not able to get on top of the list may �nd
it more of a nuisance than a feature that add to their game experience. Mobile Battles:
Reign of Swords also divide the game world into several regions where the players may
choose which region to join. Such a diversion could further spur a community sense,
especially for players within each region since the players in each region may feel more
connected to his(her) region than the other regions thus helping creating a community
of players that can relate to a region where they can play and compete against each other.

Another mechanic that is used in some of the games, namely Mobile Battles: Reign
of Swords and Pictionairy, is buddy lists, or as it is called in Mobile Battles: Reign of
Swords, rival lists. The buddy lists act similar to buddy lists found in instant messenger
applications such as MSN Messenger where the players can keep track of other players
thus making it easier to keep track of players that the players wants to keep in touch
with. The list itself is inherently a social mechanism that helps the players keep track of
each other, and act as a list of people that each player wants to interact with. The list
also spurs further social mechanisms and allows for additional in-game mechanisms that
can be added to them, such as allowing the players to send messages to other players on
their buddy lists, sending battle challenges to each other as in Mobile Battles: Reign of
Swords, or as in Pictionairy sending in-game objects to each other where in Pictionairy
the players can send images drawn in-game by the players to each other.

The way the games incorporated direct communication between the players di�er be-
tween the games. Pictionairy allows players that are on each others buddy lists to send
message to each other, as described above, or to chat with each other directly. Samurai
Romanesque, which is brie�y discussed here, has a separate application where players can
chat together with a instant message similar service. Mobile Battles: Reign of Swords,
even though it does have a rival list, does not have such a direct communication mech-
anism within the game. AMF Bowling Deluxe 3D as well does not have a mechanism
within the game that allow the player to communicate directly with text messages or
chat, but the players can taunt each other with in-game taunts which then acts as a
game mechanism where the players can show their emotions, or simply gloat about how
they are better than the other players.

The last mechanism that support social mechanisms in the games discussed in this chap-
ter is having players work together in teams against other player teams. All of the game
allows the compete against each other, and supports competitiveness with such features
discussed above such as leader boards, but Pictionairy also has teamwork in their mul-
tiplayer where there are two players on each team that must work together in order to
win against the other team. Such teamwork may further spur social interaction between
the players since the players in some form or other must coordinate their e�orts in order

62 CHAPTER 6. STATE OF THE ART

to win against the other team.

Part III

Own Contribution

63

Chapter 7

Previous game concepts

This chapter looks at the game concepts conceived in the depth study performed by
the project group in TDT 4570 [Nøsterud, 2007], where the subject was similar. The
concepts of the depth study apply to the scope of this project as well. The concepts
here are general concepts and not full ideas, and to some extent some of them are also
abbreviations of the concepts described in the previous project, however knowledge of
the previous project will not be needed to understand the concepts in this chapter.

7.1 Pervasive game concepts

This section looks at several game concepts involving elements of pervasive gaming, e.g.
by using location in the game. The games described in this chapter rely on pervasive
game elements as a main component in the game. A similarity for all the concepts in
this section is that the suitability for the game on mobile phones will depend on the
implementation of the game, i.e. the graphic complexity of user interface, the network
implementation, and to some degree, the location technology used in the game, since
location technologies are not available on all mobile phones.

7.1.1 Museum Game

The idea of the Museum game is that the game should be used for educational purposes
in museums. It could for instance be used by teachers who take their school class on �eld
trips to museums, especially for children. On such �eld trips there are usually some kids
who are not interested in the displays in the museum, and therefore might �nd it boring.
This leads to them getting little or no use out of the �eld trip. Using a game could help
the teacher in a situation such as this by o�ering an exiting learning environment in a
familiar form for the kids. The game should be educational, as well as focus on aspects
that make the kids want to play it.

The game itself could be implemented as a simple quiz, where the game was o�ered
on some sort of mobile device with a quiz game installed. The questions from the game

64

7.1. PERVASIVE GAME CONCEPTS 65

would be created from information available inside the museum, and the players would
then have to look at the exhibitions in the museum to gather the necessary information
to answer the questions. To make the game more interesting and competitive for the
players, the scores from each player could be stored during the museum trip, and at the
end of the trip the winner would be announced, possibly with a price, e.g. by giving the
winner a souvenir from the museum, or maybe some other treat.

The game itself would then consist of a application on a mobile device, which gives
questions to the players, and the players use the application to answer the questions.
The questions should be presented in an interesting way, i.e. the presentation should be
�tting for the target audience, and the answers should be easy to input. The questions
should either be formulated such that players of various ages are able to answer them,
or di�erent questions could be created for di�erent age ranges.

A variation of the quiz game could be to have a set of questions o�ered to the player
where the answers to the questions would be found by gathering information from the
museum. These questions could also be tied to the location of the player such that when
the player came in the vicinity of a museum display, they got questions related to that
display. The players would then wander around the museum, and when they came in
the proximity of a exhibition information about that exhibition would appear inside the
game, and a quiz with questions about the speci�c exhibition would also appear where
the player could answer the questions. This could encourage the players to examine the
museum more thoroughly since the player would be able to answer more questions when
�nding more exhibitions. The game would have to track the location of the players,
which could be done in various ways, e.g. a WLAN zone could be established around
each exhibition, and when the player entered the WLAN zone (s)he would receive the
information and questions about that zone.

A problem for this sort of game is �rstly that not every child in a school class has a
mobile phone. This could be solved by dealing out mobile devices at the entrance to
the museum, but this could be costly for the museum, and a problem of stolen mobile
devices could arise. The problem of theft could be solved by registering the devices, and
keeping track of which person borrows which mobile device.

7.1.2 Haunted House

This concept uses a real life location to form the basis of a game, and uses the mobile
device as a tool in the game, making a bridge between a traditional computer game and
real life game. An example of this could be to use a haunted house as a basis for a murder
mystery by setting up a scary house with various artifacts and introduce a murder, that
the players will have to solve. This could either be a competition between the players, or
it could be a collaborative e�ort. The concept is similar to the �rst game in the Resident
Evil series, created by CAPCOM, where the player investigated mysterious events in an
seemingly abandoned house, except blending a real life location with a computer game,
and being multiplayer. A mobile device could be used to show the map plan of the house,

66 CHAPTER 7. PREVIOUS GAME CONCEPTS

indicating which rooms the player has visited and show clues found by the player. By
incorporating sensors in the house and sending the information to the mobile device, the
map could show in which room and on which �oor the players were at.

The mobile devices could also be used for other purposes such as getting clues sent
to the mobile device, which would then be used to further solve the mystery, and per-
haps the clues could also give further details on where the players should go next. The
clues could be given either as textual information, audio logs or as video logs. Video and
audio logs could give the impression that the house was actually occupied and give a
more realistic experience. Actors would have to record and perform these logs. BioShock
and Doom 3 are modern games that use video and audio logs to tell the story of the
game, in addition to more traditional full motion video sequences with digitally acted
performances.

The mobile devices could also be used more directly in the story by forcing the players
to send information to a server in order to advance the story, e.g. by having to answer
riddles to open closed doors. The doors, remotely controlled by the game server, would
then open if the player answered the question correctly.

The player could also be forced to answer questions or riddles to control the lighting
in certain areas of the house. Certain areas of the house could be covered in darkness,
but when the player answered certain story related questions, the area would be either
fully or partly covered in light. This light could uncover new clues, artifacts or details
about the story which was otherwise hidden in the darkness.

Physical world puzzles could also be incorporated into the game. The player could
be forced to solve a physical world puzzle, e.g. by having to move certain blocks into the
right position, or press buttons in the correct order. The player could then get informa-
tion that help to solve the puzzles via the mobile device.

Clues in the game would have to be scattered around the house, and the players would
have to actively look for them and use them in some sort of game mechanic to advance
the story. The mobile device could be used to store information about items gathered,
and notes found. Sensors could be incorporated into important game objects to make
sure this happened properly. The player could use the notes found to for instance send a
password to the server. This password would then be used to unlock new clues or riddles
which the player would have to use/solve to advance the story.

This sort of game supports both single player and multiplayer gaming. The multiplayer
aspect could either with be a group helping each other to solve the mystery, or a com-
petition between the group members to see who solves the game the quickest.

When designing such a game there are several problems and di�culties that must be
overcome. The �rst thing is of course the technical solution for combining the real life
location with the mobile devices, senors, and the game play. Secondly a client server

7.1. PERVASIVE GAME CONCEPTS 67

system should be set up, game software must be made, and limitations on mobile de-
vices come into play. Also the length of such a game must be carefully considered, since
not everyone will have time to for instance use 4-5 hours in such a game. A solution
could be to make di�erent kinds of mysteries with di�erent lengths, or to incorporate
some kind of save system that would save the state of the game and the players could
then return to the game on another occasion. This would then open up other problems
such as the real life objects that would have to be considered, e.g. if a riddle involves
transferring an object to another room then the object should be in that room when the
players returns. This would have to be carefully considered when designing the actual
game play. Another problem with the saving system could be data storage, since if the
game becomes popular a lot of information may be needed for storage; however magnetic
disc storage is becoming increasingly less expensive over the years and this could be a
non-issue. Another issue would be the cost of creating the real life house, the cost of the
software and hardware development and the cost of running the game.

7.1.3 Real life event game

The idea behind this concept is that the game uses real life data to govern the data used
in the game, the game state,and the gameplay of the game. E.g. using real life data from
the stock indexes in a stock exchanging game, or use weather reports to determine how
the weather in a game behaves. This could be used to control the wind in a game about
sailboats. It could also be used in a farming game where the weather reports would be
used to show the in game weather. The in game weather could then be used to decide
how good the harvest would be, when the farmer should collect his(her) corn, or when
the farmer should gather his(her) animals because of rain.

7.1.4 Capture Point Domination

Capture Point Domination is a game concept which utilizes the location of the players
in the gameplay. The basic idea is that a predetermined amount of virtual markers are
placed on a map representation of the physical world. The map displays the actual phys-
ical world with streets and buildings, and the virtual markers set by either the players,
or randomly placed by the game server, are capture zones which the players must catch
in order to win the game. The players of the game are divided into teams, and the
map could display the other players on your team, as well as your own position. The
object of the players then becomes to move around in the physical world while the po-
sition and location of the players are recorded using a location technique. The players
would then have to move in the vicinity of the capture zones in order to capture the zones.

By implementing an item system in the game, the players could use items to get ad-
vantages over the other players. Some items could be attack items, such as booby traps,
while other could give bene�cial e�ects, such as being able to see the players of the other
team for a brief period of time.

68 CHAPTER 7. PREVIOUS GAME CONCEPTS

Figure 7.1: A concept image of the Check Point Domination game concept

7.1. PERVASIVE GAME CONCEPTS 69

The game could support several gameplay modes, where each mode has di�erent ob-
jectives and di�erent game mechanics. One mode could for instance be a mode where
the winner is the team that had control over the most capture zones after a predeter-
mined amount of time. The players could then decide which mode they wanted to play
before starting the game. The game would then have several options which altered the
game, and which the players would have to decide upon before starting the game.

Figure 7.1 shows a concept image of the game view of Capture Point Domination. The
game window shows the map representation of the center of Trondheim, with street
names and some building information. The map has four capture points, CP:A, CP:B,
CP:C and CP:D. The center of the capture points are marked on the map with a red
dot with a black dot surrounding it. The colored circles surrounding the center of the
capture points are the capture zones of each capture point. The player does not have
to stand in the center of the capture zone to take over the zone as it is enough to be
inside the colored zone around the capture point to take the zone1. The other players
are shown on the map as well, and they are represented with a player avatar on the map
with the name of the player displayed over the avatar's head. The exact location of the
player on the map is displayed as a green dot on the map, and the avatar is there merely
to make it easier to see the players. The color of the name of the player indicate which
team the player is on, and in this case there are two teams; the red and the blue team.
While the map in this �gure shows players from both teams, this would not be bene�cial
for the competitive aspect in a game implementation, and thus in a implementation of
the game the map should only show players that are on the same team. There are also
two items shown on the map. These are represented by an image showing the property of
the item, and the exact location of the item is shown by the blue dot next to the image.
The players must be in the proximity of the blue dot to get the item.

The two di�erent items on the map are a bomb and an artillery strike. These are
just two of many items that might be implemented in the concept. The red part on the
bottom of the game screen is a information part of the UI, showing such information as
the score of the two teams, how many items the player has, and �nally the length in
meters to the closest capture point. This is just an idea of which information could be
displayed in the information �eld, and the information should be changed.

7.1.5 Pervasive Battleship

The idea behind the concept Pervasive Battleship is to create a version of the classic
game Battleship using location technology on a mobile device. For each game there are
two teams of players, where the objective of each team is to kill the players of the other
team. The team that kills all the players on the other team wins. The players move
around in the physical world, and the physical world is represented as a map on the

1The di�erent colors of the circles are random, and are not game related but chosen to di�erentiate
the di�erent capture points

70 CHAPTER 7. PREVIOUS GAME CONCEPTS

mobile device. The map does not show the positions of the players of the opposite team,
but it should show the players position, as well as the positions of the other players on
the team. The players would not be forced to stay immobile in one position, but would
instead be free to move around within the area of the physical world used by the game.

The player attacks other players by choosing to attack a spot on the map. This could
be done by moving a marker around on the map with a keypad, or by entering the coor-
dinates directly in a text box. The attack would then consist of a virtual bomb, which
would be launched and explode on the position chosen by the player. Every player of
the opposite team which reside within a predetermined radius of the explosion is killed,
and is out of the game for the remainder of the game round. The game could allow the
players to choose for instance to play three rounds, where the winner would be the best
out of the three rounds. This option would be available to the players at the start of the
game, and the players should have an opportunity to vote over the game options. Other
options available to the players could be for instance to decide whether the bombs used
by the players could kill the player which sent it or not. This could create situations
where the player knew that (s)he was in a zone with a enemy, for instance because (s)he
saw the physical player, and the player would then choose to sacri�ce (her-)himself in
order to kill the enemy.

The game should have restrictions on player attacks, i.e. the players should not be
allowed to send bombs limitlessly as this could create situations where the players sim-
ply bombed every location possible on the map, causing the game to be to easy. This
could be solved by only allowing one player to attack other players at a time, using a
turn-based structure. When a turn is given to player, the player is able to attack other
players, and after the player has �nished his(her) turn by attacking a position, the turn
ends and a new player is able to attack. The turn system would only a�ect the possibility
for players to attack with bombs, while the availability to move around does not depend
on the turn, as this would be di�cult to incorporate in a physical environment.

7.2 MMO Framework

The idea behind this concept is to describe a concept for multiplayer mobile games that
can be used for a MMO2, but that also have other aspects which can give a single-player
experience as well as other modes. The basic idea is to split the games using this con-
cept into several distinct parts which use the same character data, where the characters
are created by the players. The gameplay is separated into 3 distinct parts; the single
player portion, the multiplayer portion, and the "free roaming play". All of the parts are
connected through the player character, or avatar3, and the player uses the same avatars

2Massively Multiplayer Online game, games with many simultaneous players(in the region of hun-
dreds, or thousands)

3A term used about a players character, i.e. the game character controlled by the player in the game's
virtual world

7.2. MMO FRAMEWORK 71

in the three game parts, and the avatars are updated across the three modes.

The player data, i.e. the di�erent data about the players avatars, must be stored on
a central database, controlled by a game server. The idea is that a player creates one or
several avatars which are used in the various game modes. The concept does not require
the game to be a RPG, so the avatar does not have to have complex statistics, but as
a minimum the avatar should be able to represent the player in the virtual world. The
games implementing this concept should use a client server architecture, since the games
rely on a central database containing sensitive player data, at least in the setting of the
game, and the client server architecture also gives greater control of login control, and
makes it easier to control the player mass in a market situation.

The single player portion of the game is possible to implement as either a pure o�ine
mode, which makes the game a single player game, or to make the single player portion of
the game online, which enables the player to use the single player portion of the game as
a training facility for his(her) avatar. The idea is that the player creates an avatar in the
single player portion of the game, and the avatar can then be trained in the single player
portion of the game to improve the avatar, or simply to give the player a fun experience.
The data about the avatar must be stored on the game database in the online mode,
while the data can be stored locally in the o�ine mode. The o�ine mode is conceived to
be similar to the game Tamagotchi as the player trains and controls the avatar around,
but the player is unable to take the avatar into multiplayer.

The multiplayer portion of the game can consist of several di�erent gameplay modes,
such as a simple virtual chat environment where the players are represented by their
avatars, or as a arena combat style of game where the players pit their avatars against
other players' avatars. The player uses the avatars trained in single player in the game
modes of the multiplayer portion of the game, but the game can also allow the avatars
to be improved and trained in the multiplayer part.

The free roaming part of the game is a simulation environment where the players place
their avatars, and then leave the game server to simulate their behavior. This is supposed
to be a voluntary game mode, well suited for casual gamers who do not have a lot of time
to play, as these players can place their avatars in the simulation environment, and still
have their avatars update and improve themselves. The mode could give information to
the players in form of SMS messages with for instance reports about the daily behavior
and experiences of the avatar, or inform the player that their avatar is in a combat sit-
uation, giving either the opportunity to take the avatar out of the free roaming mode,
or to engage the enemy in combat with direct control over the avatar. The free roaming
mode can also include several di�erent views of the simulations, such as allowing the
players to see what their avatars are doing on a website. The player should be allowed
to give directions to their avatars upon delivering them to the simulation environment.
Final Fantasy XII, created by Square Enix, uses a system called gambits, which act as

72 CHAPTER 7. PREVIOUS GAME CONCEPTS

Figure 7.2: Screenshot of a prototype JavaME implementing a verison of the MMO
framework

AI routines and give the players the option to automate certain actions by for instance
saying that "when my character's health is below 30%, cast a healing spell". By allowing
the player to give AI routines to the avatar in the free roaming mode, the player can
be more certain that the simulation will choose the correct action in dangerous avatar
situations.

The suitability for this concept for a mobile phone will depend on the complexity of the
game implementing the concept, but the main problem with games using the concept will
be network bandwidth and latency, but again this will depend on the implementation of
the concept.

The MMO Framework may be suited for several games and game types. Figure
7.2 shows a screenshot of the prototype game built in the depth study by using a sim-
pli�ed version of this framework. The game is a multiplayer RPG (not an MMO) where
the player can create an avatar that can either be a magician or a soldier, and the player
then use this avatar to kill monsters in order to gain experience and gold. The proto-
type created a single player part, a multiplayer part, and a simulation environment, and
it showcased a simple implementation of the framework, even though it did not func-

7.2. MMO FRAMEWORK 73

tion 100% properly since the projet group su�ered some problems(the single player and
simulation portion of the game functioned, but the multiplayer portion was not fully
functional due to time constraints and implementation problems).

The previous example is one of many games that could be created by using this
concept, and below three ideas that might be used to create a game with the framework
are listed and explained brie�y. All of the ideas look at ways to use the single player,
multiplayer and free roaming mode.

7.2.1 Robot Fighters

Robot Fighters is a game where the players create their own robots and battle other
players' robots in arena style battles, either one versus one, or many versus many. In the
single player part of the game, the players can customize their robots and train against
a computer controlled opponent in a arena �ght. The player gains resources, e.g. virtual
money, in the multiplayer part of the game which can be used to modify and improve
their robots even further in the single player part. Players could face o� against other
players in multiplayer either in tournaments which could be events started by the de-
velopment team and gave higher rewards than the standard �ghts, or they could �ght
against either random opponents, or chosen opponents in non-tournament games. Each
win could give a standard amount of resources to the winner. The game could also allow
other players to place virtual bets on the �ghts, such that players could get resources
even when not winning �ghts, however they would loose the money they bet if the �ghter
they bet on lost the �ght.

The parts of the robots that could be improved by the players could be weapons, which
could either be ranged weapons, such as ri�es and hand guns, or close combat weapons
such as pneumatically(in order to convey a sense of realism in the game) controlled axes
and spikes. Other improvements could be robot armor to decrease damage, improved
motors to increase power and speed, etc. The combat in Robot Fighters would be real-
time combat where the players moved their robots around virtual arenas and used the
weapons attached to the robot to attack the opponents. The robots would have a health
bar that would reset after each �ght. Each attack would do damage to the opponent
depending on the armor of the opponent, the attack power of the weapon on the robot,
as well as various other factors which could be applied to the �ghts, e.g. how blunt
weapons work on metal casings etc.

The free roaming mode could be used as a way for the players to gain items for their
robots. The players would send their robots into a arena �ght simulator which spawned
random battles against computer controlled adversaries, and if the robots won they would
get random items generated by the server. This would work as another way of gaining
items besides spending virtual money gained in the multiplayer �ghts on items. The
items could then be used in the single player mode to improve the robots. The player
would set certain parameters that would decide the robots behavior, which �ghts the
robot should �ght, how often the player wanted the robot to �ght, the �ghting pattern

74 CHAPTER 7. PREVIOUS GAME CONCEPTS

of the robot, and more.

7.2.2 SpaceShip Wars

SpaceShip Wars is similar to Robot Fighters in that the players can improve their avatars,
in this case their space ships. The player can create one or several space ships which
the player then can improve. The ship improvement element consists of modifying and
improving various ship components such as armament, ship armor, ship engines, giving
the ship new abilities, and more. The game would however not be a arena �ghter like
Robot Fighters, but instead be a open virtual world, i.e. the universe, which the players
could explore. The virtual world of the multiplayer would consist, apart from the players,
of several planets where the players could dock their space ships and get quests, talk to
NPC's, buy and sell items, and more. The universe would be full of various monsters and
space pirates that the player could kill for money and items. The NPC's on the various
planets could also give quests revolving around these monsters, or the quests could be
deeper and more involved. The game could also give players the option of focusing on
trading. The players could be tasked by NPC's to travel trade routes with wares, or the
players could make their own trade routes. Resources would spawn randomly throughout
the universe which the players could gather, and there would be trade professions that
utilized the various resources to craft items. There could for instance be weapon makers,
ship makers, etc. The combat in the game would be real-time with RPG elements such
that the statistics of the player space ships would decide the strength of the ships in com-
bat. The player could also choose not to partake in the more combat focused elements,
but instead focus on the trade aspects as described above.

The single player part of the game could consist of the player improving their ships
and train in combat against computer controlled monsters. The training would not give
any negative e�ects upon death, and neither give any bene�ts upon victory, but instead
give the player training for the multiplayer component of the game. The ship improve-
ment could consist of using money and items gained during multiplayer to enhance their
space ships. The space ships would have several statistics that governed the attributes
of the ships, such as health, strength, speed, cargo capacity, etc., and the ships could be
improved by gaining new items.

The free roaming mode would simulate ship movement in the universe, and would have
the players' space ships �ght against computer controlled space ships. The reward for
winning against the monsters could be random resources and money, while the penalty
for dieing could be a lowered resource generation rate for some time, e.g. for 5 minutes,
during the multiplayer mode. This penalty could accumulate forcing the player to make
strategic decisions about the simulation.

7.3. MINI GAME COLLECTION 75

7.2.3 Massive Football

The Massive Football game would be a game where the players would have control of vir-
tual football4 team. The player would get control of a football team that they would have
to train, and face other players in football matches. The players could choose whether or
not they wanted to be part of virtual football leagues, or whether they instead wanted
random matches with other players. The virtual leagues could be based on the player
locations, or they could be randomized with a team limit for each league, e.g. the leagues
could only have 20 teams. The matches in the leagues could either be organized by the
players in the leagues to match their real life schedules, or the server could set time spaces
where the players would have to play against each other, e.g. the players could be forced
to play against each other within two days of the time limit, otherwise the game ends
with a tie, or a loss to the team that did not show up to the game.

The winner of the matches would depend on the players on the virtual teams, i.e. their
statistics such as shooting skills, tackle power, etc., as well as the tactics laid out by
the player, much like the Championship Manager game series. The matches themselves
would be simulated based on these statistics, and they could also be animated. The player
would have to train his(her) team, and make sure that (s)he had enough players in case
of injuries, and the game could also allow the players to buy players from other teams, or
trade their athletes with other players athletes. The single player part of the game would
consist of the player training the athletes of the team, planning strategies against the
next opponent, and allowing the player to buy or trade new athletes. The player would
gain money from simulated ticket income from virtual visitors of the matches, and this
income would be controlled by the skill and position of the players team in the leagues,
if the player had joined a league. This income could then be used to buy new athletes.

The free roaming mode could be a simulation environment where the player could test
new strategies and new players in either preparation of the next game, or just for fun.
The results from this simulation could be used to alter strategies in the next match, and
to check which players would be most suited to use in the next match.

7.3 Mini game collection

The idea behind this concept is to create a game lobby for players where they can in-
teract with each other and also play games against each other. The lobby should allow
players to chat with each other, either in private chat rooms, or in public chat canals.
It should also list games available for the users of the lobby to play. The users of the
lobby should be able to invite other users to game sessions, where they play the games in
multiplayer against each other. The lobby should have a list of active users, from which
users can choose users to play against, however the lobby should also o�er the possibility
to join games without inviting other users, or being invited by other players, using a

4Not American football, but soccer

76 CHAPTER 7. PREVIOUS GAME CONCEPTS

matchmaking functionality where the server waits for incoming players until the server
limit is reached and the game commences.

The chat rooms or canals o�ered in the lobby could help players to decide which game
they wanted to play through discussion, or the users could simply chat about topics unre-
lated to the games. The lobby should also include a buddy list, where the users can place
other users. The buddy list then acts as a list of the friends the user have made during
the time spent in the lobby and playing the games, or it could include friends known prior
to using the game lobby. The lobby could also have a rating system for the games where
the players rated the games so that the other players could get an indication about the
di�erent games. The lobby could even support a system where the players could write
small reviews of the games where they wrote their views about the game, which could
further help the players �nd new and exiting games.

The games featured in the game lobby should be short games, hence mini games, and
they should o�er short playing sessions, e.g. ranging from 5-20 minutes. By having
shorter playing sessions it is easier for players to start playing the games, as the games
steal less of their time. As for the genre of games the lobby could o�er there would be
little to no restriction; however games with short game sessions and simple gameplay
may be better suited for such environments. The games o�ered could be such games as
multiplayer puzzle games, or multiplayer miniature golf, pool, etc.

The games o�ered by the game lobby could change over time. The lobby could o�er
the games as separate downloads where the connecting point would be the lobby itself.
The players could then download only the games they wanted to play, and they could
download and play new games when they were available. Each game would be charged
separately, but the lobby itself would be free to download, and only act as a social hub
and as an enabler of multiplayer gaming sessions. The lobby could also o�er trial games,
or demos of games, where the players could download a limited version of the games for
free, and if they liked it, they could buy the full version of the game.

7.4 Turn based multiplayer RPG mechanism

The idea behind this concept is not so much to create an entire game, but rather to de-
scribe a game mechanism that could be used in multiplayer RPGs for the mobile phones.
The concept uses turn-based mechanics for the combat, while the other aspects of the
game can be real-time, e.g. such as player interaction, chatting, and wandering around
the game world. The idea is to use a system similar to the one used in traditional
Japanese RPGs, such as the earlier Final Fantasy games. By incorporating a variation
of one of the system used in such games the player can be free to wander the game world
and interact with other players in real-time, but when the player enters combat, which
can be invoked by the player by walking into a computer controlled enemy or another
player, or by selection of an action from an in-game menu option, the player and the

7.5. 2D MULTIPLAYER SHOOTER 77

enemy(either computer controlled or controlled by another player) is then taken to a
combat screen which is only visible to the player and the enemy, and the combatants
start a turn based �ght.

The combat itself can be implemented in various ways, but the main idea is that the
combatants get to attack each other in turns. By using player statistics, such as agility
or speed, the game can use these statistics to decide which combatant should get to
attack �rst, how many attacks each combatant can do before the turn is over, and when
there are more than two players; decide how many turns the combatant must wait after
its turn is over. The combat can be implemented in a fantasy style, a modern, or a
futuristic style, and the damage output can be based on statistics of both the equipment
of the character, and the character statistics.

The outcome for the loser of the battle will depend on the game that implements it.
Certain games will kill o� the looser and give a penalty for loosing, while other games
will simply give a bene�cial e�ect to the winner. The system could also be used as a
duel, where both combatants agree to �ght each other, usually for fun, or for showing
o�, and the winner only gains the ability to brag about the win to the other combatant,
while the looser can only loose his(her) pride.

By having a turn-based system, the problem with network latency and low bandwidth
can be neglected as the combat then only relies on the turns, and not on the time aspect
of the combat. This system may also not require much computation making it well suited
for a mobile phone multiplayer game.

7.5 2D Multiplayer Shooter

The idea behind this concept is to create a 2D multiplayer shooter for mobile phones.
The perspective of the game should be that of for instance the old Super Mario Bros.
games from Nintendo.

The game could incorporate one or more of the multiplayer modes found in other shoot-
ers, such as deathmatch where there are no teams, and the score of the player is decided
by how many other players (s)he kills, team deathmatch, which is a version of death-
match, but where the players are divided into teams and the score of the team is the
accumulated scores for each player, where the score for each player is decided by how
many other players (s)he kills. Other modes could include such modes as domination,
which creates one or several points on the map which the players must stand on in or-
der to gain points. The points are captured by the players by standing on them for a
predetermined time, and when captured the points generate points for either the player
in situations where there are no teams, or for the team when teamplay is activated, and
the player or team with the most points win(this could either be done by having a point
limit where the winner is the �rst team or player who reaches the limit, or incorporate

78 CHAPTER 7. PREVIOUS GAME CONCEPTS

a time limit, where the winner is the one with the most points generated after the time
has run out).

The di�erent modes could di�er in whether they allowed players to respawn or not.
When players are allowed to respawn in a round, there is some times a timer incorporate
such that either the player is generated after a certain time after death, or there could
be a independent timer which had players respawn at predetermined time intervals. In
modes where players do not respawn there are usually rounds involved, where each round
lasts until either a certain objective is reached, e.g. by planting a bomb and having it
explode(as is done in certain Counter Strike maps), or when a team kills all of the other
players of the other team. The winning team of the round then increases its points, and
the winning team overall is the team with the most points after either a preset time, or
after having reached a point limit.

The player would be in control of a character on screen, and the character would use
weapons to kill his opponents in order to gain frags5. The game could support several
di�erent weapons, both ranged and melee style of weapons(i.e. non-ranged weapons).
The weapons could either be modern day such as assault ri�es, more medieval style
of weapons with with crossbows and swords, or more futuristic with lasers and energy
weapons.

One problem that could arise in the mobile platform is that the player could �nd it
di�cult to aim his(her) weapon at the enemy because of the limitations found in many
mobile phone keypads, e.g. by not having a mouse to steer the aiming reticle. This
problem would have to be solved in order for the game to be fun to play. One solution
would be to slow down the pace of the game to make it easier for players to aim and �re
their weapons at enemies, similar to the game style of for instance the Worm series of
games, where the players take turns controlling weapon-holding worm characters. This
could either be done by level design, i.e. by designing the levels in such a way that
encounters between two or more players gives the players time to react to the situation.
It could also be done like in the Worm games by implementing a turn based system, but
that would alter the gameplay signi�cantly.

The maps6 in the game should have strict boundaries as to which areas of the map
the player could access. The maps themselves could consist of various platforms for the
players to jump around on, buildings, or nature artifacts, such as rocks, mountains and
rivers.

A 2D shooter multiplayer game could be well suited for mobile phones. The graph-
ics do not have to be a problem as it is a 2D game, and the only problem besides the
before mentioned keypad problem, would be that of network tra�c. The e�ect of the
network tra�c problem depend on the network technology o�ered by the users mobile

5A term used by many gamers to describe the points gathered by killing opponents
6Each round in the game is played on a certain map, which acts as the battleground for the multiplayer

sessions

7.5. 2D MULTIPLAYER SHOOTER 79

phones, and this could create di�erences in both latency and network speed among users,
giving users with better mobile phones an advantage. There are however ways to avoid
some of the problems[Powers, 2006], and such solutions should be used to make the game
more playable.

Chapter 8

New game concepts

This chapter describes the new game concepts conceived in this project. These concepts
where created for this project alone, and where not previously conceived in the depth
study performed in TDT 4570 [Nøsterud, 2007]. Some of the concepts are described
generally, while others are described more thoroughly, however all of the concepts in this
chapter are not complete game ideas, but merely display the core gameplay concept and
ideas that can be used by games implementing the concepts.

8.1 Strategy game

Strategy games are usually di�cult to create for mobile game platforms, especially the
more complex real-time strategy games found on PC's. The problem lie in the complexity
of the games and the limitations of the systems. There are however strategy games for
mobile platforms, albeit in a less complex form than that of its PC counterparts. Turn
based strategy games could be well suited for mobile platforms due to the relatively low
network tra�c needed for these games. This section looks at some concepts that could
be used for mobile multiplayer games.

8.1.1 Tower defense

Tower defense: Wrath of Gods created by New Edge[New Edge] in JavaME is an ex-
ample of a strategy game adaption of the popular tower defense sub-genre for mobile
JavaME compatible platforms. The game does not have networked multiplayer however,
but it does have hotseat, i.e. the possibility for two or more players to play against each
other on the same mobile phone. The tower defense genre has been popularized by Flash
games on the Internet, and the game by New Edge is an adaption of the common fea-
tures of tower defense games. These games focus on tasking the player with placing out
certain protective objects on a virtual battleground, which could for instance be guard
towers that shoot arrows at intruders, or hired mercenaries with machine guns that shoot
incoming hostiles. The games usually have waves of enemy intruders which the player
must fend o� in order to survive and win the game. The player is usually rewarded with

80

8.1. STRATEGY GAME 81

money for killing the intruders, as well as for defeating each wave. The money gathered
can then be used to upgrade the troops and equipment of the player, buy new troops, or
in some games buy special powers and abilities that has bene�cial e�ects on the player,
e.g. by giving the player damage spells (s)he can throw at the enemies.

Even though most of the tower defense games found on the Internet are singe player
games, the concept itself could be made into a relatively simple multiplayer strategy
game for mobile platforms with either competitive or cooperative multiplayer. Common
for both the cooperative and the competitive mode would be the strategic elements of
the game, and the strategic game mechanics of the game. The main element of the game
would be placing defenses against waves of attacks, either from the computer controlled
component, or a human component. To �esh out the gameplay, other elements could be
added to the games. The players could allowed to create not only defense structures and
immobile defense troops, but also vehicles and troops that could be used to attack the
opponent. The acquisition of defense structures and attack units would require virtual
money, or to add more complexity to the game; one or more of several resources which
the player must collect in the virtual game map. Many strategy games have resource
nodes in the virtual maps which the player must control in order to gain the speci�c
resource. The main source of in-game money would be that of defeating the opposing
forces, which would grant a small sum of money for each defeated unit, but the games
could also have certain areas on the virtual game map that would give additional supply
of money when controlled by a player. Such control points are usually important strate-
gic points in strategy games. The virtual game world would be represented by several
virtual maps, where each map is the battleground for the speci�c match between the
components of each round. In each round the di�erent opponents would be placed in
di�erent areas of the map, and each player is given a start sum which can be used to
buy troops and defenses. The defensive structures are then placed by the player on the
map, using a tile based system where each structure may have special requirements on
placement, such as not being able to be placed in forests, or requiring more tiles than
the standard tile number. The round would then commence and the combatants would
send their units to attack and defend against each other.

The actual combat should be turn based and each combatant would have a certain
available options for each turn available, e.g. the possibility to move their units, or buy
new defense structures and units. There would also be limitations on each turn such
as units only being able to move a certain distance each turn, and limitations on the
number of units and structures that could be bought each round. In each turn the com-
batant is able to buy units and structures and place them and order strategic movement
of units and issue attack orders. The units able to move around the maps would move
in a similar fashion to that of the structure placement, i.e. by using a tile based system
where each unit would be able to move a certain amount of tiles each round. The combat
would be done by matching the combat statistics of the di�erent units, where the one
with the most units and the most powerful units would be more likely to win. Each

82 CHAPTER 8. NEW GAME CONCEPTS

unit would have several sub-units which together constituted the actual unit represented
on the game map, i.e. each unit on the game map would have X number of sub-units
inside it, making for small troops for each unit. Units within the reach of the defense
structures would be attacked by the defense structure one time each round. The game
would also use rounds in addition to individual turns. When each combatant �nishes
its turn, the round is over and a new round begins. In the beginning of each round the
combatants would be rewarded with the resources from the control points controlled on
the game map, and the each round restriction, such as structure restriction, would have
its counters set to zero again. The winning conditions for each match could vary, and
could for instance be the last surviving combatant, or each match could have certain
conditions that must be met in order to win, for instance to destroy a speci�c structure
found in the starting area of each combatant.

The di�erence between cooperative and competitive game modes for this concept is the
opponent of the players. In the cooperative game mode, the players work together to
fend o� the incoming computer controlled forces. In traditional tower defense games the
objective is usually to survive and defend against attacks on your base, and the cooper-
ative mode is well suited for this. In the competitive mode the opponent for each player
would be another player, and the pure defense mode would be di�cult to implement. At
the very least it would have to be implemented as a round based concept where for each
round one team is attacking, and one team is defending against the attacks. The mode
described in this section have a di�erent structure where each player can both attack
and defend in each match. Both of these modes could however be implemented into the
game as di�erent modes of gameplay.

8.1.2 Tanks

Albeit not purely a strategy game, the Tanks concept sport turn-based gameplay with
strategic elements. The concept is based on the old concept of opposing tanks which have
to eliminate the other tank by �ring at them. The players must then take into consider-
ation such elements as the distance to their opponent, the angle of the attack, and the
force of the attack. Pocket Tanks created by Blitwise Productions[BlitWise Productions]
for Windows is a modern version of the classic concept, shown in Figure 8.1 where the
two tanks controlled by the two players are placed on opposite sides of the map.

This concept uses the basic ideas of the classic concept and is based on turn-based
gameplay, where each player has a limited time for each turn to complete di�erent in-
game tasks. Each player have the possibility to have more than one unit though, and
the winner of each match is the one that has destroyed all of the units of the opponent.
The players earn gold by destroying enemy units, and for winning each round. The
money gained in previous rounds can be used to buy improvements and reinforcements
for the next round, and thus the games should have relatively short playing times for each
round, in order to support consecutive rounds of gameplay for the players. The players
starts with a predetermined amount of gold, and can use the gold to buy units before

8.1. STRATEGY GAME 83

Figure 8.1: Screenshot of Pocket Tanks

each round starts. This is done through a pre-round screen where the players can buy
improvements for their units as well as the units themselves. When every player is ready
to start the round, the round starts with placing the players units at random locations
and the players must then navigate the game level and destroy the other players' units.
An alternative to the turn-based mechanic described here, could be to use real-time as a
basis, but then add mechanics to slow the pace of the game down. The features could for
instance be to add relatively large reloading times betweens each units attack, such that
each player attacks with one unit, and after the attack has to wait for instance 50-60
seconds, where in the meanwhile the player has the opportunity to attack with his(her)
other units.

The games implementing this concept should have several tank units, with di�erent
abilities and behavior for each unit, and di�erent costs depending on the strength of
the unit. The player should however have control of the angle and force of each units
attacks, unless the attack does not need to; e.g. a homing missile. The units should
have either di�erent weapons, or have di�erent movement abilities. Each unit should be
able to move, but the movement should be limited for each turn either by having a time
limit for each turn, or have a maximum distance each unit can move, which could be
a di�erentiator between units. The units could also be allowed to make more complex
movement than strictly forward and backward movement, such as jumping, or the game
could have items that granted the player the ability to for instance teleport the di�erent
units around the maps, or allow units to being airlifted to other locations by airplanes.
Each unit should have a unique weapon, unless its movement pattern and abilities are

84 CHAPTER 8. NEW GAME CONCEPTS

relatively unique compared to units with similar weaponry, and the weapons could have
di�erent e�ects, such as standard tank missiles, homing missiles, cluster bombs, mines,
air strikes, etc.

The games implementing the concept would be best suited with a 2D viewpoint in the
game, and not overhead view, but instead have a side view of the combat. A problem
with mobile devices may be the size of the screens, as for instance most mobile phones
have screens with higher height than width. A solution to the problem could be to imple-
ment a mini map of sorts that is placed in the uppermost area of the screen. This would
allow the maps to be larger than the actual screen size of the mobile, as the mini map
would help the player keep track of enemy units. The upper half of the screen could also
then have additional information such as information about all of the players units, and
for instance a feature where the players could have a chase camera of the projectiles �red
by the tanks. This would work by adding a chase camera to the projectile which then
followed the projectile from the barrel of the tank, all the way to the �nal destination.
This feature, along with the mini map, would help the player in targeting o�-screen ene-
mies and could function in such a way that it only activated the chase camera when the
projectile of the tank targeted areas not currently shown on screen. The maps could have
di�erent terrain in the levels, and could also have natural obstructions such as stones and
mountains which would force the player to move around the obstacles in order to gain
a better position to attack their opponents. In more complex games, the terrain could
be deformable and destroyable, such that the gun�re of the tank units would deform the
terrain, creating several strategic possibilities, as well as potential di�culty with move-
ment for the units. As described above, the games could also support in-game items such
as teleportation devices, or crates that grants the player who obtains them more gold.
The di�erent items could appear at random locations on the map and at random or �xed
time intervals, and the �rst player that got to the item would get it.

8.2 Puzzle game

Puzzle games are usually relatively low in complexity in terms of graphics and perfor-
mance requirements for systems running the games, and thus puzzle games are well suited
as mobile games, and there are already many puzzle games available for mobile systems.
Currently though, most puzzle games for mobile systems are single player games, but
the added functionality of multiplayer could add new depth to the puzzle games as well
as support competitive and social interaction between the players.

Puzzle games revolve around solving puzzles, which come in many forms. Games like
Tetris is a game with puzzle elements and revolves around placing bricks to gain points,
but a game like Portal, which can be described as a �rst person puzzle game, is also a
puzzle game where the player solves 3D environmental puzzles using a portal gun1. The

1A gun that creates an enter and exit portal which can be placed on certain areas. The player can
then move through the portals.

8.2. PUZZLE GAME 85

Tetris style puzzle games are usually not suited to have multiplayer where the players
share the same puzzle area, so multiplayer games similar to Tetris usually have sepa-
rate puzzle areas for each player. The multiplayer sessions then usually revolves around
getting the highest score, or �nishing �rst. Certain elements could however be used to
improve the social aspect of the games, and some game incorporate similar techniques,
such as adding actions that could alter the state in another players game. This could for
instance be done by having in-game items which a�ects other players. The e�ects of such
items could for instance be that a opposing player could have his(her) screen covered in
virtual ink, making it di�cult to see, make the screen of another player shake violently,
making it di�cult to see what's going on in the screen, resizing another player's puzzle
area, adding elements to another player, which in Tetris would mean adding more blocks,
and there are many other possibilities. The rest of this section is devoted to a concept
of a multiplayer platform-puzzle game.

8.2.1 Platform-puzzler

The basic concept behind this idea is a multiplayer 2D puzzle game, where the objective
for the players is to move through a in-game map which has several obstacles the players
must overcome in order to proceed to the next map and puzzle challenge. The con-
cept incorporates platforming techniques in that the players are able to move and jump
around the map. Other elements may also be used as navigation utilities, for instance
teleporters, jump pads, grappling hooks, and other means of transporting a player to a
di�erent location.

The social aspects and interaction in the game can be implemented in three di�erent
ways, at least, all of which alter the way the game is played and how each level should be
created and which utilities and abilities each player should have access to. The extreme
variants of the three ways discussed here are the purely cooperative and the purely com-
petitive game style, which are also discussed in Section 8.3 about the mystery solving
game concept, but the concept could also incorporate both cooperative and competitive
gameplay. The di�erence between the various approaches to the social interaction lie in
how the players work together to reach the �nal destination in each level in the game,
and how much cooperation is needed in order to overcome the various obstacles in the
game levels.

In the completely competitive approach the players are competitors and compete against
each other to complete the level with the fastest time, and with the most points at the
end of each level. In order to sustain the interest of the player, the game should be tai-
lored to the competitive nature of the players, and give the players a reason to want to
win the game. Giving out points for completing objectives and having high score lists are
some measures that can be used to peak player interest, but there are other techniques
that can be used as well. As suggested earlier the players could for instance have the
possibility to gather items that alter the game state of other players, such as placing
traps that immobilize the player that steps on it, or items that generate additional ob-

86 CHAPTER 8. NEW GAME CONCEPTS

stacles in the game levels, for instance oil stains that make the �oor slippery, or a wall
that slows other players down. The level design would have to take into account that
the players will not cooperate in overcoming the obstacles and thus the puzzles must be
solvable by a single person, and the obstacles must be passable by a single person as well.

The opposite direction of complete competitive gameplay is completely cooperative game-
play. In this setting the objective for the players is still to get through the di�erent
obstacles and puzzles to reach the end of each level, but now the players are forced to
cooperate in order to solve the puzzles. That is, the puzzles and obstacles are designed
such that more than one person is required to solve them. The players are then forced
to work together in order to get through the level and onto the next. This will require
a di�erent strategy than that of a completely competitive game. The score system is
one thing that is a�ected by the cooperative nature o� this approach, as generally each
player will try to get as high a score as the player is capable o�, but now the score of each
player is dependent on at least one other player, and the score system itself must also be
taken into consideration, i.e. how the points for solving puzzles and clearing obstacles
are divided among the players that complete them. By giving each player that completes
each level in the same game round the same amount of points, there is little competitive-
ness between the players of the game, but in a game focused on cooperative gameplay
this might not be a problem. A solution to this problem could be to have online high
score rankings where the score for each level is uploaded on a global ranking site so the
players can see which team of players is the best. This could further spur cooperative in-
teraction between the players, since they are forced to work even better together in order
to get a higher score. The other important thing to consider when having a cooperative
game is the level and puzzle design. With the focus on players cooperating in solving
problems, the puzzles and obstacles in the levels can be designed around that concept
and may be designed in such as way that they require more than one player in order
to be solved. There are several possibilities in making such puzzles and obstacles. One
approach would be to make obstacles in the level that speci�cally require more than one
player to overcome by using their abilities and wits. These challenges would be physical
in nature, i.e. requiring physical action in the virtual game world such as jumping, and
could for instance be obstacles such as large walls which require the players to stand
on top of each other in order for the player on top to jump over the wall. That player
would then perhaps press a switch on the other side of the wall that opened a door in
the wall to let the other players through, lower the wall in the ground, or raise additional
platforms for the other players to jump on. The obstacles could also be tackled in a
di�erent manner, by for instance giving each player various abilities that are needed to
solve the puzzles. These abilities could for instance give the players the ability to toss
their teammates over obstacles, to operate teleportation devices which require more than
one person to operate, operate canons in which one of the players must enter carrying a
rope which is tied to a �rm location on the canon's end, and then being blown across a
chasm and �nally tying the rope on the other end of the chasm so the other players can
cross the chasm using the rope. Figure 8.2 shows a concept image of a puzzle in which

8.2. PUZZLE GAME 87

Figure 8.2: A concept image of a possible puzzle for the Platform Puzzler

player 1(P1) and player 2(P2) are faced with a chasm which they can not simply jump
over. Therefore P1 uses his(her) club to hit P2, which then is hurled over the chasm by
the force of the impact with the club. When P2 lands on the other side of the chasm,
his(her) attention is drawn to a console with a large red button on it, and upon pressing
the button, a bridge is created that spans the chasm, enabling P1 to cross the chasm as
well.

The puzzles and obstacles could also be based on other factors than the virtual phys-
ical obstacles discussed above. The players could for instance be placed in various areas
of the level, physically separated from each other, where each player push button and
pull on levers in order to open doorways and paths for other players. Each player is then
unable to �nish a level alone, since the player must rely on other players to open the
path for him(her). The buttons and levers could be used to open doors, raise and lower
platforms, turn the light on and o�(in situations where the puzzle depends on the level
of light in the room), turn on and o� wind(if a player is placed in a balloon, the wind will
allow the player to be blown across the room), as well as many other possibilities. One
challenge that comes from such a design is that the players may be unaware that they
are supposed to help each other, and thus be frustrated when unable to solve the puzzle,
open the door, etc. The game must therefore be aware of this issue, and incorporate in-
game hints that allows the players to understand that they must wait for other players
to overcome the obstacle or complete the puzzle in front of them. Simply allowing the
players to send messages to each other could also help the players, but in puzzles where
for instance the time aspect is important, such as when a player has raised the ceiling,
which is full of nails and spikes, to the top position, and the other player must run across

88 CHAPTER 8. NEW GAME CONCEPTS

the room in order to not be crushed by the ceiling which shortly after having been raised
to its top position comes crushing down again. In such situations the game should give
in-game hints to the player that something or someone has raised the ceiling and that
it's time to move in order not to be crushed by the ceiling.

The two ways of creating the puzzles and obstacles in the game discussed so far, are
the extreme variations of competition and cooperation between players, where in one the
players do not cooperate at all, while in the other they are forced to cooperate in order to
�nish the level. A better solution might be to incorporate elements of both and create an
environment where the players are able to chose either to help each other, or to treat the
other players strictly as competitors. Each level could for instance have several possible
routes to the exit, where each route either require more than one player, or can be done
alone. The points for solving each puzzle and obstacle should then be di�erent for the
di�erent paths, in order not to make one of the paths more preferable than the other.
The single player path could for instance give less points for each obstacle, but because
of the nature of the puzzles be easier and faster to perform, while the multiplayer paths
could give more points, but at the same time would require more time thus balancing
the di�erent paths. In such a scenario the player should not be penalized in choosing
either of the paths, but should instead be encouraged to try di�erent possibilities out of
curiosity and for the fun of it.

Another possibility would be to have the players work together similarly to the com-
pletely cooperative style, but give the players the possibility to abandon the teamwork
and instead �nish the level alone. The idea is that at each level the players start out on
the same team and the puzzles and obstacles require teamwork between the players to
solve and overcome, and the players get a relatively large amount of points where each
player receives the same amount. Each player however has the option of turning against
the other players at which point the level's structure changes and becomes a completely
competitively structured level and it is then every player for him(her)-self. The player
which then �nishes �rst gets more points than the rest of the players. This structure
creates tension between the players since the players never knows if or when a player
turns against the team. In the situation where one player abandons the group, all of the
players will get less points than they would have if they solved the puzzles as a group, but
the �rst person to �nish the level will receive more points than the other, thus forcing the
players to consider how they want to play each level. The players who do not abandon the
group should not be penalized though, and they should have an equal chance of �nishing
the level, that is, a player probably would choose a strategic point to go over to the solo
mode, but the rest of the player should still have the possibility to �nish the level, which
is why the structure of the level at that point should be slightly altered to allow the rest of
the players to �nish the level. The players could also be given items at that point, which
could help remove some of the issues of fairness some players may experience upon such
a changing point in the game. These items could be some of the items mentioned above,
such as traps, ropes that can be thrown on players to slow them down, creating walls in
front of people, teleportation devices, etc. As an interesting twist, these items could be

8.3. MYSTERY SOLVING GAME 89

given to the part of the players that did not abandon the group, as a way of hunting down
the player that left the group, but the items should however be usable against all players.

The three di�erent directions for the game discussed above are not without their �aws.
Some of the problems are mentioned above, but there are also other problems. One of the
problems stems from the screen size of mobile phones, which is generally relatively small
with screen resolutions of 180x250 being in the normal range of most mobile phones. The
resolution then limits the number of players that can be shown simultaneously on screen
without them cluttering the screen, making it impossible for players to actually play the
game. A solution could be, at least for the completely competitive direction, to create
a separate level for each player so that the players are not on the same screen, however
this solution might be less enjoyable for the players to play as it might feel less like a
multiplayer game, and more like a single player game where the score of each player is
shown at the end. Another problem with having to many players is the puzzles them-
selves, for the cooperative puzzles. Creating puzzles requiring 5 peoples, when there are
4 players in the game will be a problem. The solution might be to create puzzles that can
scale in proportion to the amount of players, so if for instance the puzzle is getting over
a wall, the wall will lower if there are fewer players in the game than originally planned.
A limitation in the number of players on each level would also help with the problems.

8.3 Mystery solving game

The gist of this game concept is that several players must unravel a mystery either in
competition against each other, or as a cooperative activity where the players must help
each other to solve the mysteries in the game. The initial idea of the concept was that
of a detective story where the players must solve a murder mystery in for instance an
old mansion. The players would upon entering the game session be informed about the
murder, and during the course of the game be given clues that help the players toward
solving the mystery.

The game itself would be a multiplayer game running on mobile platforms with JavaME.
The virtual game world should be represented in either 2D or 3D, and the mansion, or
any other location used in the game, as well as the story, should be presented to the
player using either in game graphics or pre-rendered animations, e.g. movies or pre-
made images forming animations. The initial thought of the project members went to
"�ashy" cartoon graphics, to create a loose and more humorous atmosphere for the game.

There are several game types which could be used to present the murder mystery to
the players, and the game type used for the game would decide how the game play and
game mechanics should be implemented in the game, as well as how the game is played
by its users. The game could for instance be implemented as an adventure style point-
and-click game, as a more quiz or trivia style of game, as a mini game collection style
game, or as a more action oriented adventure style game, more similar to the Zelda games

90 CHAPTER 8. NEW GAME CONCEPTS

from Nintendo, than the point-and-click adventure style games like Monkey Island. The
main part of the game, regardless of game style, should however be to uncover the mys-
tery behind the murder by uncovering clues about the murder and �nally revealing the
murderer. Each of the clues available for the players would be handed out to the players
by awarding them as prices for completing subtasks within the game. These subtasks
could for instance be competitive puzzles, mini games, or individual puzzles. The players
should also be awarded a game score, or points, for completing these subtasks, in order
to support competitiveness between the players. The atmosphere should as mentioned
above be more to the lighter side, and it could for instance be a theft instead of a murder
for the players to unravel.

The multiplayer aspect of the games should allow for several players to either compete
against each other in solving the mysteries, or help each other solving the various puzzles
and tasks of the games. The games implementing the concept should consider whether
a competitive or a cooperative approach should be taken, or implement game mechanics
that support both. In a situation where the players are all situated in the same room for
instance, the players could talk to each other in order to solve the problem, but if the
game does not accommodate cooperation inside the virtual game world and reward the
players for cooperating, there is not much incentive for the players to do so. As men-
tioned above, the players should be given clues about the solution of the murder mystery
or main puzzle, and the players could be given individual clues by for instance giving
the players a random clue after successfully completing a subtask within the game, or if
the subtask itself enables generating clues relevant to the subtask itself, give the players
one of the clues associated with the current subtask. The game should give the players
the option to view and go over their clues at any time, e.g. by giving the players a clue
inventory list where all the clues collected by each player are listed.

The �nal part of any of the games implementing the concept should consist of solv-
ing the main mystery of the game, i.e. the murder mystery or main puzzle of the games.
The main mystery of the game should reward the most points out of all tasks in the
game. All of the players should be given a chance to solve the mystery. In a more action
oriented game the solution could rely on winning a mini game for instance, or in a more
adventure and puzzle oriented game, the players would be allowed to enter their murderer
candidate, selected after reading through the clues gathered throughout the various sub
tasks of the game. In games relying on the players to use the clues gathered to select
a murderer, a problem would arise to players who did not earn any clues, thus creating
a situation where such players would have no other option than to guess. In such cases
the game could as a minimum give the players a small amount of standard clues for
each murder case. In order to support both competitive and cooperative gameplay, the
games could give the players the option to share one or more of their clues with the other
players, where the player could select to reveal his(her) clues to all of the competitors, or
only a selected few of them. The players chosen to receive other players clues then would
have to either accept the clues and be forced to share his(her) own clues, or deny the

8.3. MYSTERY SOLVING GAME 91

o�er from the other player(s). The game could also allow the player to trade clues. The
players that choose to share their clues would share the points for solving the murder
mystery or puzzle, given that the answer produced by the players is correct. Such a game
mechanic would force the players to consider whether or not to play the game coopera-
tively or not. Having too few clues would give the player a good incentive to cooperate
with another player in order to gain the necessary information to solve mystery, while
the shared point strategy would create a situation where competitive players would think
twice about cooperating with other players, as this strategy might cause the other player
to win the game overall, even if the added information from the clue sharing would lead
to the player solving the mystery.

This game mechanic could also di�erentiate players located in the same room, versus
players that are not collocated. Players that are collocated have the option to com-
municate with each other in the real world where the players that are not collocated
may not be given such options. In a mixed game, i.e. a game with both collocated
and non-collocated players the collocated players could have an advantage by working
together both to solve the subtasks as well as discussing the main mystery. One tactic
for the collocated could even be to solve the mystery out of the game, but choose not to
share their clues in game, thus gaining more points by giving the same answer without
point loss. Problems like these are not unique to this concept, but it could be a problem
nonetheless and should be remedied in the game.

8.3.1 Adventure style

The murder mystery could be presented to the players as a adventure style of game. Ad-
venture style games usually involve solving puzzles, and exploring and investigating the
environment in order to for instance gain items needed in puzzles that will unlock new
areas of the game. The adventure genre is usually divided into several genres where the
two main genres are the ones focused on action, like the Zelda games for the Nintendo
console systems, while the more traditional adventure games like the Monkey Island se-
ries, Grim Fandango, etc., are less focused on action, and focus more on puzzle solving
and exploration.

The games implementing this concept could be either a traditional adventure style game,
or a more action oriented adventure game, or a mix between the two genres. With a set-
ting of a murder mystery happening within a mansion, a adventure game implementing
the idea could focus on exploring the mansion to gain clues about the murder, interro-
gating the relevant suspects to the crime, and solving puzzles related to the environment
and the game. There are several possibilities for implementing these features in a game.

One way to do it is to force the players to solve puzzles in order to progress through
the mansion and to gain clues about the murder. The mansion could then be divided
into several rooms where the players would have to solve the puzzle in each room to
progress the next room and �nally arriving in the �nal room, for instance the room

92 CHAPTER 8. NEW GAME CONCEPTS

where the murder took place, where the players are tasked with identifying the iden-
tity of the murderer by using the clues gathered throughout the game session, or simply
guess. The players could be rewarded with clues by solving the puzzles in each room.
The puzzles themselves could be puzzles relevant to the di�erent rooms, i.e. the current
environment of the player int he virtual world, or be a more general puzzle, e.g. a tower
of Hanoi style of puzzle.

The actual structure of the room progression could be changed according to the wanted
level of cooperation between the players:

Competitive focus With a competitive focus on the game the players would try to get
more points than the competitors by solving more puzzles and gaining more clues.
One way to organize the rooms in order to support competitiveness would be to
have each of the players going through either the same rooms, but not have each
players actions a�ect the other players, i.e. by having a separate instance of the
mansion rooms for each player, and the players then would gain clues when solving
the puzzles in the rooms and advancing to the next room. The main focus then
would be to solve the puzzles the fastest in order to gain access to the �nal room
�rst and have the most time to solve the puzzle. The players actions could also be
made to have impacts on the other players by having each player be in the same
room at the same time always, but the �rst player to solve the puzzle in the room
would gain the clue and also open the door to everyone, thus being the only player
to gain access to the clue in that particular room.

Cooperative focus In a cooperative environment the players would help each other in
solving the puzzles and in order to gain access to the clues and the next room in
the mansion. This could be done either by having the players be in the same room
solving puzzles that requires more than one person to solve and execute(e.g. by
having environmental puzzles that requires the strength of more than one person
to solve). The game could also be structured in such a way that the players would
have to help each other in order to gain access to new rooms. This could be done
by having the puzzle in the player's current room not open the next room for the
player when solved, but instead open a door for another player. The players would
then not be located in the same virtual rooms, but instead be located in various
rooms throughout the mansion where the puzzle in one room opens an exit in a
completely separate room.

The games could also focus less on puzzles and more on other factors, such as explo-
ration and investigation, and more action oriented puzzles. The players could be forced
to investigate the environments they are faced with, e.g. within a virtual room in the
virtual mansion, and �nd clues in the environment itself instead of gaining them through
secondary tasks such as puzzles, i.e. the players could be forced with investigating and
exploring the di�erent rooms in the mansion in order to �nd evidence that support their
theories and strengthen their belief that one of the murder suspects must be the mur-

8.3. MYSTERY SOLVING GAME 93

derer2. The player should be given the option to store thoughts and clues gathered
through this investigation in-game, for instance by allowing the player to store notes in
an notebook or inventory system in the game.

With a more action oriented approach to the adventure style, the players could be forced
to solve more environment and spacial oriented puzzles, i.e. by for instance pushing
levers and solving puzzles involving moving objects on screen instead of solving brain
teasers. This approach could also be implemented di�erently according to the social and
collaborative focus of the game. The players could as previously mentioned be forced
to work together to solve the spacial puzzles by for instance having one lever pushed by
a player open a door for another player. The other player then in turn would have to
solve a spacial puzzle in order to open a new way for the �rst player. The players could
also be placed in the same room as before solving spacial puzzles requiring more than
one player. In more competitive focused games the players could as suggested above try
to solve the spacial puzzles faster than the other players in order to gain more time in
solving the �nal murder, but the game could also allow for more direct interaction with
between the players by for instance having objects that the players could place in the
other players room in order to slow them down.

The actual moving between the di�erent rooms of the mansion could also be done in
di�erent ways. In the more action oriented approach for instance the players could have
avatar representations of themselves on-screen which they would have to move around
using the keypad of their mobile devices, while in the more traditional adventure style
of games, the players would not necessarily have to have an on-screen avatar to control,
but could instead be given a simpler interface where they where given animated images
and had a limited way of interacting with the images in order to solve the puzzles, or
gather clues from though investigation and exploration, in order to progress through the
game and through to the next room.

8.3.2 Quiz/Trivia style

Another game genre that could work well with the concept is that of the quiz or trivia
genre, as a version of the quiz concepts in Section 8.4. The overall atmosphere and main
goal of the games implementing the concept would still be a murder mystery, and the
various questions asked in the games should tie in to the games by for instance having
the correct answers to questions reward the player with a clue about the murder, and the
questions themselves may even relate directly to the plot of the murder mystery, thus
indirectly leading the player toward the identity of the murderer; i.e. since the questions
relate directly to the plot, a correct answer to a question regarding events in the plot
make the players aware of that speci�c part of the plot, while wrong answers will tell the
players that either a previous assumption made by the player is incorrect, or that parts

2The investigation could be conducted for instance in a similar fashion as for instance the TV series
CSI where the investigators look through the crime scene in order to �nd evidence and clues about the
murderers identity.

94 CHAPTER 8. NEW GAME CONCEPTS

of the plot can be ruled out as irrelevant to the overall plot.

The questions asked throughout the game could also be unrelated to the plot of the
murder mystery. The murder mystery would then be the background of the game, and
correct answers to the questions would reward the players with clues relevant to the
murder. The �nal task for the players would then be to solve the mystery utilizing
the clues gathered through the question answering to solve the mystery. The way the
questions would relate to the background story of the game could be that of tasks given
by characters withing the game world. The mansions ins the games could be inhabited
by several non-playable characters which would act as question givers within the game.
These characters would then give out clues to players answering questions correctly. In
the case of questions that are related to the background story of the murder mystery,
the characters could for instance have their own suspicions around either circumstances
regarding the murder, the environment in the virtual game world(e.g. suspicious changes
in the mansion that could be related to the murder), or suspicious persons in the man-
sion. For the concept of questions unrelated to the story the characters could for instance
give questions as a means of challenging the players by only giving clues to the players
who really deserve, i.e. the players who can answer their questions correctly.

As for the multiplayer aspects of the games, the questions presented to the players could
be either given to the players individually, or to all of the players simultaneously. In
either case, the correct answer would lead to a clue be given as a reward, but the dif-
ference between the two options lie in that for individual questions, each player has the
possibility of gaining the clue, while for simultaneous player questions there can only be
one winner of each question, and only one player will be given a clue for each question.
The competitive aspect of the games can also change between the two di�erent options.
For the individual questions the competition between the players is less, since each player
is given equal possibilities to answer each question, and each player has the possibility
of gaining the clue from the question. When the question is given to all of the players
and only one player can receive the clue, there is a higher tension between the players,
and a higher incentive to answer the question correctly since the players can loose out on
clues, which could ultimately leading to the players not being able to solve the murder
mystery.

8.3.3 Mini game style

The mini game style is somewhat similar to the adventure style discussed above in that
it revolves around the players progressing through separated parts of the game, and in
each segment, or part, the players have the chance of gaining a new clue in the murder
mystery. The di�erence between the two styles is that while the adventure style was more
focused on puzzles, the mini game style focuses more on mini games. The mini games can
be any mini game suited for the game, and it could even include puzzle elements such as
that of the adventure style. The games using the mini game style could be implemented
using the room structure as explained in the adventure style section, where in each new

8.4. QUIZ GAME 95

room the players enter, there is a new and unique mini game that the players must play
and win in order to gain new clues. The �nal challenge for the players would still be that
of solving the murder mystery though.

As with the quiz style discussed above, the mini games could be created to be rele-
vant to the setting of the virtual mansion, the environment within the mansion, or be
more generic standard mini games. The mini games themselves could also be presented
to the players in a similar fashion as discussed in the quiz style with non-playable charac-
ters giving out clues through challenging the players to mini games where the winner of
the mini game is rewarded with the non-playable characters clue. Buzz! Junior Monster
Rumble for the Sony Playstation 2 is an example of a mini game collection that has sev-
eral mini games, but adds them to a context where the di�erent mini games themselves
�t into the environment of the virtual game world, in the game's case a castle inhabited
by monsters. The Buzz game incorporates several well known mini games, and some
new ones, and changes them to �t into the new context of a monster world, and since it
is a game targeted toward a younger audience it inhabits a lighter and more humorous
atmosphere throughout the game. A similar approach could be used in this concept by
incorporating general and new mini games into a setting where a murder must be solved.
The added element of clues gained through winning the mini games and the overall goal
of solving the murder mystery makes the concept more unique than simply a mini game
collection.

As with the quiz and adventure style, the mini game style could either have the mini
games separate for each player, or have all of the player �ght against each other in the
mini games, or a mix of both. The players could for example walk through the virtual
mansion in separate paths and encounter a new mini game in each entered room, but at
certain points in the mansion the paths of the players intertwine allowing the mini game
in the particular room to be fought amongst all of the players.

8.4 Quiz game

The core idea of this concept is to create a multiplayer quiz game for mobile devices,
where the players players get questions and answers them on their mobile devices. The
game should support several players where the players are given the same questions,
which depending on the game mode, could have several answer alternatives, and the
players should be given points in order to compete against each other. The points could
be divided according to several factors, for instance depending on the time the players
used to answer the questions, where the players that answered correctly �rst gets the
most points. The player with the most points after the game has �nished, is the winner.
The questions could stem from one of several categories, with for instance questions from
music, sports, history, geography, etc. The game could either keep the questions in each
game round separate, i.e. by only asking questions from a certain category, or it could
ask questions from di�erent categories. The questions would however not necessarily

96 CHAPTER 8. NEW GAME CONCEPTS

be traditional questions where each question is about remembering facts, but the game
could also have small tasks or brain teasers, where the player must solve small problems.
The game could still o�er the players answer alternatives though, and the teasers could
be mathematical problems, logical puzzles, and other small tasks.

The questions are the crucial part of the quiz game, but they could be presented to the
players in di�erent ways, and the game could support several modes where each mode
alters the gameplay slightly to create variation in the game. The modes could di�er by
several factors, in for instance how points are divided among the players with correct
answers, whether the players receive negative points for answering falsely, whether the
time and order of the correct answers should factor into the point giving, and whether
the modes should change the gameplay more substantially. The players could then before
each game round decide which game modes should be used in the game round, and how
many questions there should be in each mode. The modes could be played in succession,
and the points for each player would be accumulated and the points of all the players
would be compared to each other at the end of the round, and the game could have high
score lists that keeps track of the points. The Buzz! series for the Sony Playstation 2,
a game which utilizes special buzzer controllers to answer trivia questions, o�ers several
di�erent game modes the player can choose from, and some of these game modes would
�t the mobile platform. Below some of the modes in the Buzz games, and how they
would �t, or could be �tted to a mobile quiz game:

The Point Builder is a standard mode where the players are presented with a question
with answer alternatives and a time limit of say 20 seconds for each question, and
all players are awarded the same score if they answer correctly, with no penalty
for answering incorrectly. This mode would �t well as a default mode, and �ts the
mobile platform nicely.

Fastest Finger is similar to the point builder mode, in that the players are given a
question with answer alternatives, and every player with the correct answer gets
points, but now time is a factor as well, and the order in which the players answered
the questions would factor into how many points the players would get. It would
be more di�cult to implement due to network latency in mobile networks, but the
problem could be worked around.

Spin is a mode where the players are presented with a roulette wheel with several di�er-
ent genres of questions, for instance di�erent sports, and the players in turn start
an arrow that spins around the di�erent genres and the player tries to stop the
arrow at his(her) preferred genre. The gist of the idea is to have several genre of
questions and have each player in turns decide the genre for the next question. This
could be well suited for the mobile platform, depending on the selection technique
is implemented, which would not have be made in the roulette spin way as done in
Buzz. The questions themselves could be presented and scored in the same way as
for instance point builder, but the main point behind the mode is the selection of
di�erent genre of questions, and how this is presented to the players.

8.4. QUIZ GAME 97

Expert is a mode where each player select his(her) preferable genre among several, and
has to answer as many questions correctly as possible within a time limit, where
each correct answer raises a score bar, and each incorrect answer lowers the score
bar. After every player has �nished answering questions in his(her) category, the
points are divided according to the score bar, where the highest scoring player gets
the most points. The mode would be well suited on a mobile platform, as it has
turn based mechanics for presenting the questions.

Point Stealer is similar to the fastest �nger mode in that here time is a factor. The
�rst player to press the button will get the chance to answer the question, and if
the player answers correctly, the player then is able to steal points from another
player, where the winning player chooses which player to steal from. As with the
fastest �nger mode, timing issues and network latency might be a problem here,
but as a social mode and mobile mode it �ts well.

Risk adds gambling to the questions. Before each question the players are shown the
category of the question, and are asked to bet points among several options. If
the players then answer the question correctly they gain the amount of points they
bet, and if they answer incorrectly they loose the amount of points they bet. The
mode is well suited for mobile phones, since time is not a crucial factor as with the
fastest �nger mode. The mode could also be expanded to allow the players to not
only bet on themselves, but also bet on the other players.

Pass the Bomb is a mode where one player gets a question which acts as a bomb. The
player must then answer the question given to (her)him before a timer goes o�.
If the timer goes o� the player loses points, but if the player answer correctly the
bomb is passed on to the next player, in a round robin fashion, where the round
continues until the bomb is blown up. On a mobile phone the game could use
vibration to notify the player about the bomb, for instance by vibrating when the
player gets the bomb, and increase its vibration until �nally the bomb explodes,
which causes the vibration to reach its maximum, which could be followed by an
animated explosion in the game and sound e�ects. The mode is well suited for
mobile devices and using the di�erent functionality of the mobile devices could
create a more immersive experience for the players.

Last man standing is a mode where all of the players are given the same question,
where each question has answer alternatives. If a player answer incorrectly on a
question, the player is out of the round, but if the player answers the question
correctly, the players continues to the next round where a new question is given to
the remaining players. The mode continues until there is only one player left. The
mode is well suited for mobile devices, but if there are few players the mode made
be less fun than if there are more players. A solution to this problem could be to
introduce lives to the mode, where each player has for instance three lives, and for
each incorrect answer the player looses one life. When the player has lost all of
his(her) lives, the player is out.

98 CHAPTER 8. NEW GAME CONCEPTS

Quiz master is a mode where one of the player is the quiz master, and is the one that
is deciding which questions should be asked, and gives the questions to the other
players. The quiz master does not get points for answering questions, but the quiz
master role can be shifted among the players. The quiz master could also be given
the ability to decide how many points the players should get for answering the
questions correctly, as well as deciding the mode for each round or question, as the
quiz master mode is based around the questions, and not on which mode they are
presented to the players. The questions given to the players in this mode, could
either be those of the standard game, or the game could allow the quiz master to
give the players user created questions. These questions would be created by the
users. The game should have a question creator editor in which the players could
create questions, and possibly upload them to an online server where other players
could download them. Players could then share questions with each other, with
the goal of creating a community around the game, possibly by supporting a web
page with user created questions, high score lists, and forums. The user created
questioned could also be extended to �t the other modes of the game, so that the
players could decide whether to use the standard questions within the game, or
user created ones.

In the modes and gameplay mechanics suggested above, the main component is the ques-
tions. The di�erence between the modes lie mainly in the presentation of the questions to
the player, as well as whether the time aspect ties into the game mode, and the di�erent
question categories the game can draw its questions from. This structure, with di�erent
modes changing the presentation of the questions to the players, are well suited for short
play sessions which is important for certain mobile gamers, but it may lack the potential
of engaging the players to play for longer play sessions, and the only goal for the players is
that of getting more points than the other players, aside from the psychological e�ect of
showing ones prowess and wits to the other players. By adding additional gameplay me-
chanics on top of the core gameplay, i.e. the questions, the game can be more immersive
for the players, as well as give more de�ned goals to the players.

There are several gameplay mechanics which could suit being structured around ques-
tion asking and answering, such as implementing a classic board game structure where
the game world consists of a game map which is divided into several separate sectors
which are interconnected in a way as to form a pattern, e.g. a circular ring of sectors
with an center section similar to the game board in the game Trivial Pursuit. The play-
ers, which are represented on the game map by for instance in-game avatars, must then
move around the di�erent sectors, and the movement could for instance be determined
by a server controlled dice throw where the number on the dice would decide how many
sectors the players could move. After having moved to the location decided by the dice,
the players are then asked questions, and if they answer correctly, they then gain an
advantage in the game. The advantage would depend on the game implemented, but
it could for instance be an additional move by dice throw, that the players would be
given points for answering correctly, or as in the trivia board game Trivial Pursuit that
the players be given an object vital to the game progression. The players could also be

8.5. CONCEPT SUMMARY 99

divided into di�erent teams, where each team moves as one avatar on the game map,
and the players on each team are asked the same questions and must then together come
to the solution of the question. The game could give the players various features to help
with communication between team members, such as text based chatting, and giving the
players a majority vote system in which each player on the team votes for the most prob-
able answer to the question in that players mind. The game would be played turn-based,
where in each turn the players or the player teams would move according to a server
controlled dice throw. The goal of the game would then either be to traverse all of the
sectors in the game map before any of the other players or player teams, or as discussed
above, gather all of the vital game objects.

The approach taken above could also be widened to include elements from other
genres than board games and quiz, such as for instance the roleplaying genre. In such
an approach the player would be in control of an avatar which they moved around the
game map, which could be divided into interconnected sectors such as described above.
The avatar would have health and experience points associated with it, and the player
would gain experience points by going into battle with other entities on the game map,
or with other players. The battles would be quiz based where the players involved in the
battle would compete against each other by answering questions, perhaps by using one
of the modes discussed above. The health of the player would decide the outcome of the
battle, as wrong answers could for instance lower the health of the player. The game
could also have levels, where the experience points gained from winning battles would
be used to give additional health points, and add special abilities, such as for instance
the ability to reduce answer alternatives in questions asked to oneself, or increase the
answer alternatives of the question asked to the combatant in a battle. The goal of the
game could be one of several things, such as gaining the most experience points within a
time limit, gaining the most in-game objects within a round, where the game map would
incorporate several in-game objects which would be won by entering the sector the object
resided in and winning against the opponent residing in the sector.

A Quiz game would suit the mobile platform well, since it does not require complex
graphics, and the network data needed to be send would be relatively low. The mobile
phone could also add features to the game, such as vibration mentioned above. A prob-
lem could be that of deciding who answered the question the fastest, and keep track of
time events. This could be avoided by designing the game modes in such a way that time
and synchronization is a non issue, but that could limit the game modes available.

8.5 Concept summary

This section compares the concepts described in this chapter, and gives a indication of
the most prominent concept to use as a prototype in the project.

The main focus of this project is social gaming, and thus the social aspect of the
concepts, and how well they support social interaction between the players is important,
where social interaction range from cooperative gameplay, to in-game text message possi-

100 CHAPTER 8. NEW GAME CONCEPTS

bilities, and even as far as in-game character gestures can be considered social interaction,
as they can be used to convey the feelings and emotions of the player.

Competitiveness is also important for games, where it gives players an incentive to
play the game, however competitiveness can in some cases hinder social and cooperative
gameplay. When competitiveness is the focus of a game, the cooperative and social expe-
rience for the players may be less of a focus, and certain elements of competitive games
can hinder cooperability between players, as for instance in MMORPG games where
competitive player-versus-player combat can be a nuisance to players who simply want
to experience the game world in a social player group without being attacked by other
players. However, the competitiveness can be incorporated as to support cooperability
and social gameplay. Consider for example team-based games, where the players are
grouped into teams who then compete against each other in some form. In such a situ-
ation more often than not the team that is best organized and is able to work together
against the opposing team has an advantage against a team of players who do not know
how to work together as a group. In such a situation the game supports and rewards and
social interaction between indirectly by not forcing cooperative gameplay on the players,
but the players that are able to work together as a team will have an advantage over
the others. When placing such gameplay into a situation where there are other players
around the team-based gameplay not participating in the competition between the teams,
as described in the MMORPG example above, the competitive nature of the gameplay
can be intrusive to the players not participating in it. Therefore competitiveness in this
project is not as important as social gameplay and cooperativeness.

Being able to implement the concept as a prototype game is also important for the
project, and thus the implementation complexity is also important when considering
the di�erent concepts. The implementation complexity for this project will depend on
factors such as network latency and bandwidth limitations, general problems relating to
the mobile environment, and the complexity of the concept and how di�cult the concept
is to realize into a game when considering development time and project size. The
implementation complexity is then equally important as the social aspect of the concept,
as a concept with extreme social features, but with highly complex implementation is
unlikely to make it into a working prototype.

8.5.1 Concept Comparison

Below the di�erent concepts described in this chapter are discussed in respect to the
three problem areas described above; social gaming, competitiveness, and implementation
complexity.

Quiz game The quiz game concept is well suited for social gameplay, as is evident in the
Buzz game series for the Sony Playstation 2, and the concept can be implemented
in several di�erent to support di�erent aspects of social interactivity. The di�erent
modes suggested in the concept description shows some of the potential to alter the
gameplay of the concept, and the question answering game mechanic can be used as
part of a larger concept which uses the question mechanic as a part of the gameplay,

8.5. CONCEPT SUMMARY 101

for instance as a trivia board game, or as suggested in the concept description, as
a quiz with role-playing elements incorporated. The concept is also well suited for
competitiveness, as the concept can o�er social gameplay in a competitive setting.
The players competes against each other in answering questions, and for instance in
a situation where all of the players are collocated in the same room, the experience
become more social as the players can interact outside of the game and see the
reactions of the other players after in-game events. The complexity of the concept
will di�er based on how many di�erent modes is supported, and whether the concept
utilizes for instance the RPG-quiz approach, which would require more work. The
network latency and bandwidth are not that big of a problem for the concept, as the
data needed to be transfered between the players is relatively low, however when
time is used as a de�ning factor in the gameplay mode, synchronization issues may
arise which must be solved.

Mystery solving game As described in the concept description, the concept can be
implemented in several di�erent ways, and some of the ways are more tailored
toward competitiveness, while certain ways of implementing it focuses more on
cooperability. However the competitiveness is not intrusive to the point of not
allowing social interaction between the players, and it can thus can give the players
an social experience with friendly competitiveness between the players. The speci�c
concept that enforce cooperative problem solving between the players force social
interaction upon the players. and may feel intrusive to certain players, in a di�erent
way than that of imposing competitive gameplay upon the players, but for the
context of this project, the social behavior between the players in such a situation
would be interesting. The implementation complexity however would be relatively
great for any of the di�erent ideas of the concept, where the gameplay itself could
potentially be to di�cult to implement within the time space of the project. The
network bandwidth and latency needn't be big problems because of the non real-
time gameplay of the concept, while when implemented using time constraints, as
discussed in the quiz concept case, synchronization might become an issue.

Platform-puzzler As with the mystery solving concept, the platform-puzzler concept
can be implemented in several ways, however the completely cooperatively game-
play direction described in the concept description is the most interesting in the
context of this project, as it has social gameplay as it main focus. The concept gives
rise to questions such as the di�erence between playing cooperative games in a col-
located or non-collocated situation from the players perspective. Competitiveness
is not the main focus in the completely cooperatively direction, but competitive
elements can be added to the game, such as Internet leader boards. The imple-
mentation complexity need not be big for the concept, but the complexity of the
concept lies in the gameplay mechanics used in the game, i.e. the di�erent puz-
zle solving tools given to the player. Implementing a portal gun system as seen
in Portal, created by Valve as a part of The Orange Box 3, would lead to a more

3See http://www.whatistheorangebox.com/ for the game description of The Orange Box

102 CHAPTER 8. NEW GAME CONCEPTS

Concept Social Competitive Imp Sum

Quiz 5 3 3 11
Mystery solving 3 3 1 7
Platform-puzzler 5 3 5 13
Tower defense 1 5 3 9

Tanks 1 5 3 9

Table 8.1: Table showing a comparison between the di�erent concepts in this chapter
quanti�ed.

complex game than implementing a simple crate pushing game. Network latency
and bandwidth need not be problems either, but again this would depend on the
puzzle solving game mechanics implemented in the game.

Tower defense The tower defense concept is at its core a competitive turn-based con-
cept, with an added mode with cooperative play. Both modes o�er a social experi-
ence for the player, where the cooperative mode may be more focused on the social
part. The implementation complexity of the concept vary on the gameplay ele-
ments added, but can develop to be relatively complex the more strategic elements
and mechanics are added to the concept.

Tanks The main focus with the tanks concept, as with the tower defense is competitive
gameplay, where two or more players control several units that �ght each other for
victory on the battle�eld. The social aspect of the concept lie in the competition
between the players, and the in-game interaction between the players. The im-
plementation complexity of the game is relatively moderate, with bandwidth and
latency not being big issues because of the turn-based combat system planned in
the concept, while more elements, units and strategic gameplay mechanics add to
the complexity of the concept.

8.5.2 Concept choice

Table 8.1 shows a quanti�ed comparison of the di�erent concepts described in this chap-
ter. The di�erent concepts are compared according to the competitiveness, the social
aspects, and the implementation complexity. Each of the three di�erentiators are given a
weight and summed up, where the highest �nal sum may be best suited for this project.
The weights consist of a number which is either 1, 3, or 5, where 5 is more suited for
this project, and 1 is not well suited for this project, i.e. regardless of category 5 is the
most positive weight, and 1 is the most negative weight. The �nal sum is simply the
three numbers combined into a sum. The weights are based on the discussion above, as
well as the intuition of the project members. The Table shows that the platform-puzzler
may be the best suited concept for this project, at least when using this weight system.
The project members also �nd the concept to be interesting, and that it has possibilities
to be used to investigate interesting questions regarding social gaming. Therefore this

8.5. CONCEPT SUMMARY 103

concept is chosen to be implemented as a prototype for the project.

Chapter 9

Prototype: Platform-puzzler

This chapter describes the prototype game developed during the project. The prototype
game developed during the project is based on the Platform-puzzler concept described in
Section 8.2.1. This chapter �rst describes the game, its setting and the game rules, and
then describes the requirements, the game design, and the implementation of the game,
before �nally describing the testing of the prototype.

9.1 Game concept design

Platform-puzzler is a 2D side scrolling networked multiplayer platform game with puzzle
elements where two or more players solve puzzles together in the same level. The pro-
totype game focuses on the more cooperatively concept found in Section 8.2.1 in which
the players are forced to work together in order to solve the puzzles, i.e. the puzzles are
designed and implemented in such a way that they require at least two players in order
to be solved. Each player have control over an in-game character that moves through the
game. The game world is divided into several levels that the players go through sequen-
tially. Each level consist of one or more puzzles that are based around environmental
challenges, such as overcoming obstacles, and opening locked doors, and each level has
an exit that leads to the next puzzle level, and all of the players must go through the
exit for each level to end.

Figure 9.1, 9.2, 9.3, and 9.4 show the basic mechanics the prototype should support
and how some of the puzzles could be created. These �gures act as scenarios that show
the basics of the game and what the prototype game should support and implement.
Figure 9.1 shows the �rst puzzle scenario with the most basic functionality. The Figure
shows the players, here named P1 and P2, as simplistic characters which are able to move
forwards and backwards as well as being able to jump in the 2D side scrolling environ-
ment. The puzzle in the scenario revolve around the wall, which is to high for a player
to jump over without help, and a switch that lowers the wall. To get to the switch the
players must help each by having one of the players jump on top of the other in order to
be able to jump high enough to be able to get over the wall. When the player gets over

104

9.1. GAME CONCEPT DESIGN 105

Figure 9.1: Puzzle scenario for the prototype

106 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.2: Puzzle scenario showing movable platforms and player throwing

9.1. GAME CONCEPT DESIGN 107

Figure 9.3: Puzzle scenario showing wall bouncing

108 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.4: Puzzle scenario showing a more complex puzzle

9.1. GAME CONCEPT DESIGN 109

the wall, that player then presses the switch which lowers the wall such that the other
player can get past the wall as well. Then as the last part of the puzzle the players cross
the exit together. This implies several game mechanics, where the �rst one being that
the player has control of in-game character that is able to move in several directions, as
well as having additional abilities, where in this scenario jumping and jumping on top of
another player are crucial to the puzzle.

Another implication of the scenario is that the environmental puzzles consist of, apart
from the player abilities, in-game objects that can have properties. The objects in this
scenario �rstly show that the objects can be of any shape, and that they can be static,
or be able to move, such as wall. The switch also implies that the game should have
a trigger system, where a player can trigger an event, which leads to an action. The
player can trigger the action either directly by pressing a button when near a in-game
switch, such as the switch panel in the scenario, or more indirectly by walking over an
trigger that resides within a speci�c area of the game map. The trigger/event mechanic
then becomes a object property, since an object can be assigned a trigger that creates an
event when invoked. This event in turn leads to an action, which could either alter the
environment, such as lowering the wall in the scenario, or alter the properties of objects,
such as for instance making a object climbable.

Figure 9.2 shows a new scenario that introduces a new player ability, and thus a new
game mechanic. The puzzle itself involves a chasm that is to big for the players to able
to jump over, even if one player stands on top of the other. On the other side of the
chasm stands a switch that raises a platform such that the players are able to get over
the chasm, and go to the exit. The new mechanic allows a player to force another player
to �y through the air, in the scenario represented by a club that is controlled by a player
so that the player can hit the other player with the club, and the other player then �ies
over the chasm enabling the switch to be pressed. The mechanic itself could be presented
as something di�erent than a club, but it should have a visual in-game representation to
make it more understandable.

Figure 9.3 shows another scenario that utilizes the club mechanic discussed above, and
adds an additional mechanic that work together with club mechanic to create new puz-
zles. The puzzle itself in the scenario involves a high platform that has a switch on top
of it, but the platform is to high for a player to jump on top to, as well as being to high
also if a player stands on top of another player. The switch lowers the platform such
that the players are able to go to the exit. In order to reach the switch, the players are
forced to use the new mechanic which allows a player to bounce o� of walls and objects
after being hit by the club mechanic. In the game a player should bounce o� of walls or
objects after being hit by the club mechanic, but it should be restricted to vertical faces
such that a player does not bounce o� the ground.

Figure 9.4 shows a scenario that has two main elements to it. The puzzle utilizes the

110 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

mechanics introduced above and introduces a new property to objects, which is the prop-
erty that allows player to move vertically on objects, which in the scenario is represented
by a ladder. The puzzle involves a wall that is to high to reach by jumping, jumpoing
from another player, or by using the club mechanic on the left back wall. The solution
to this is to use the club mechanic to launch a player into the wall, and the player then
bounces on top of the platform above. On top of the platform is a switch that lowers the
ladder such that the player below can climb the ladder in order to reach the platform
as well. The �nal part of the puzzle involves using the club mechanic again which then
launches a player over the wall, which enables that player to press the switch that lowers
the wall such that all the players can cross the wall and reach the exit.

The game mechanics discussed above are the basic building blocks of the puzzles in
the game, and as the fourth scenario shows, these mechanics can be utilized together in
order to create new puzzles which involve more than one core mechanic in order to be
solved. Another idea not speci�cally mentioned in the scenarios is to have the players
start in di�erent locations in the puzzle level, but the players must still work together
in order to solve the over all puzzle in the level such that they get to the exit together.
This could be done by for instance having switches that open doors or raises platforms
not for the player that invokes the switch, but for another player in another area in the
level, which in turn may have a switch that opens a new path for the �rst player.

9.2 Requirements

This section will look at the various requirements for the prototype. The requirements
are created from the description of the prototype game in this chapter, as well as from
the description of the Platform-puzzler concept found in Section 8.2.1. The focus of the
prototype is to get a working prototype game of the Platform-puzzler concept, using
JavaME and tailored toward mobile phones, that can be used further in the project, so
the functional requirements are the most important ones, while non-functional require-
ments such as security, performance and modi�ability are not as important, but may still
contribute to the system. All requirements are numbered using "FR-#" for functional
requirements, where FR stands for functional requirements, and # is the number of the
requirement, while the non-functional requirements are numbered using "NFR-#", where
NFR stands for non-functional requirements, and # is the number of the requirement.

9.2.1 Functional requirements

The functional requirements describe the functionality the prototype game must o�er to
the player.

FR-1 - Player In the game each player should controll an in-game character by using
keypad buttons.

FR-2 - Character movement The character controlled by the player should be able

9.2. REQUIREMENTS 111

to move forward, backward, and be able to jump, thus requiring the acquisition of
3 keypad buttons that support these player abilities.

FR-3 - Action triggers The prototype should incorporate a trigger/event system where
action triggers cause an event that leads to an action. The action triggers should be
invoked by players by pressing a button, thus requiring a keypad button to support
this action.

FR-4 - Events An event should be trigger by an action trigger and the event should
be sent to the receiver of the event which can then act on the event.

FR-5 - Actions An action should be triggered by an event and should either change
the properties of in-game objects, or alter the state of the prototype game.

FR-6 - Objects The in-game world should be populated by in-game objects. The ob-
jects should be represented in the game by graphical artifacts or images.

FR-7 - Object properties A in-game object should have one or more properties that
a�ect the behavior of that object, and the interaction between the player character
and the object.

FR-8 - Object property, player collision An object should either allow a player char-
acter to move through the object, or not.

FR-9 - Object property, trigger An object should be able to have an action trigger
associated with. The player triggers the action triggers, and the object creates
an event appropriate for the wanted action. The action trigger could either be
triggered by a player key press, or by setting up an area that triggers an event
when a player enters it.

FR-10 - Object property, event/action An object should be able to receive an event,
and instigate the proper action based on the type of event.

FR-11 - Object property, vertical character movement An object should either
allow an player to move vertically on the object, e.g. similarly to walking a ladder,
or not. Vertical player movement would require tow keypad buttons representing
vertical ascending and descending movements.

FR-12 - Object property, static An object should either be static, or be able to
move along a predetermined path. The movement could either be continuous, or
be triggered by an event.

FR-13 - Multiplayer The prototype game should not have any single player compo-
nent, thus requiring multiple players.

FR-14 - Game world The game world should be presented to the player as a 2D side
scrolling world. The player should be able to control his(her) character in the world
and solve puzzles along with other players. The game world should be divided into

112 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

several separate, but interconnected levels in which each level consist of one or more
puzzles. The completion of all the puzzles in a level should lead to the exposure of
the level exit. A level exit should lead to either a new level, or when there are no
more available levels, an screen informing the player that there are no more puzzle
levels available in the current game session.

FR-15 - Puzzles The puzzles should consist of environmental puzzles and be created
using one or several objects. The solution to the puzzles should require the players
using character abilities, and utilizing the object properties.

FR-16 - Character abilities A player character should have one or more abilities that
should be utilized when solving puzzles.

FR-17 - Character ability, club mechanic A player should be able to use a club
mechanic in which the player uses a club that has the ability to force other players
to �y a predetermined distance. The club should be represented in the game via
either graphical artifacts, or as an image, and the player should be able to invoke
the club mechanic by using a keypad button.

FR-18 - Character ability, wall bouncing A player that is a�ected by the club me-
chanic should be able to bounce o� of objects. This should however only apply to
vertical player-object collisions, e.g. after �ying into a wall.

FR-19 - Character ability, player-on-player jumping A player should be able to
jump on top of another player in order to gain an elevated vantage point.

9.2.2 Non-functional requirements

These requirements describe requirements that describe qualities about the prototype
not necessarily related to the functionality o�ered by the prototype game.

Network

These requirements relate to issues regarding network.

NFR-1 - Client server The prototype should use a client server architecture.

NFR-2 - Multiplayer player amount The prototype game server should allow for at
least two simultaneous player connections while running, thus the puzzles should
be designed and implemented in a way that require two players in order to solve
them.

NFR-3 - Client server disputes In circumstances where latency or bandwidth cause
state data to di�er from client and the server, the server's state data is to be
trusted.

9.3. GAME DESIGN & IMPLEMENTATION 113

NFR-4 - Client disconnection If a player disconnects from a game session, the re-
maining players in the session should be noti�ed about the disconnection as well as
be given a warning that the game session is closing, after which the game session
must close. The game session must close because the puzzles require two players
to solve them, and in the situation where there is only one player left in the game
session, that player can not continue solving the puzzles since (s)he would require
assistance from another player in order to continue1.

Usability

These requirements relate to the usability of the prototype, i.e. how easy it is for the
players to use and understand the game.

NFR-5 - Puzzle understanding A player team in a game session should be able to
understand how a puzzle works, and thus be able to solve it, in less than 5 minutes,
with an additional 5 minutes added if the players are not co-located in the same
room.

NFR-6 - Puzzle completion After having understood a puzzle, the players should
be able to solve the puzzle and reach the exit in less than 10 minutes, with an
additional 5 minutes added if the players are not co-located in the same room.
This applies to all of the puzzles such that no puzzle should take longer than 10
minutes to solve.

NFR-7 - Game understanding A player should be able to join a multiplayer game
within 5 minutes after having started the game for the �rst time, not counting in
network delay and shortage of players to join the game. The player should also be
able to understand all of the controls in the game and be able to understand and
move the in-game character within 5 minutes of starting his(her) �rst multiplayer
game session.

9.3 Game Design & Implementation

The prototype is, as described previously in this chapter, based on the Platform-puzzler
concept found in Section 8.2.1, as well as the description of the prototype discussed
earlier in this chapter. The prototype game is a multiplayer game where two or more
players control an in-game avatar, which in the prototype game is represented as a
red ball. The game consists of two main components; the client application and the
server application2. The client application is developed in the Java Platform, Micro
Edition(Java ME) utilizing MIDP 2.0 and CLDC 1.1. Each player has a separate client

1A solution to the problem could be either to allow disconnections and reconnections such that players
could join on-going game sessions, or in the case where there are two or more players remaining after a
disconnection, the game session could continue as normal.

2The source code for both the client and the server along with the binaries for both are located in
the zip �le attachment of this report

114 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.5: Package diagram of the client application

application running on his(her) mobile device, and the client and server communicates
through a TCP/IP connection, where for the mobile device this will typically be wireless
communication where the mobile device of the player dictates bandwidth and latency.
The server is created in Java SE 1.5, and for each game session there are one server that
support two or more players. The server can run on any platform that has a network
connection and support Java SE 1.5.

9.3.1 Client

The client part of the prototype is, as discussed above, a separate application created in
Java ME, and it consist of the packages shown in Figure 9.5. The top level package of the
package hierarchy of the client application is the pp package. This package contains the
MIDlet class, i.e. the class that is �rst started when the application is run, as well as the
other classes in the client application. The other packages in this system are pp.model,
pp.model.event, pp.ui, and pp.network. The pp.model package handles the classes
in the client that incorporates classes representing the player, and player actions, the
levels in the game world and generating these levels, as well as the objects in these levels
and their properties. pp.model.event is a sub package of pp.model and it has classes
that are involved in the event trigger system used in the game. The package pp.ui on the
other hand contains the classes that handle the user interfaces of the client application,
i.e. how the game is represented to the users. The �nal package is the pp.network
package, and it contains classes that handle communication with the server. The client
communicates with the server via TCP/IP sockets, and the package contains classes for
sending and receiving messages, as well as classes for de�ning and handling incoming and
outgoing messages.

9.3. GAME DESIGN & IMPLEMENTATION 115

(a) The start screen of
the application, where the
player input the server IP
address

(b) Two players who are at
their starting locations in
the current level

(c) One of the players try
to apply their club to the
other player

(d) Here the exit of the
current level is shown

(e) This is the screen that
the players face after hav-
ing �nished the prototype
levels

Figure 9.6: Various screenshots from the prototype game client running on Sony Ericsson
Wireless Toolkit emulator

116 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Main class,the game MIDlet

The main class of the client application is the PlatformPuzzler class, which lie in the
pp package. Figure 9.7 shows the class diagram of the PlatformPuzzler class. Plat-
formPuzzler inherits from the MIDlet class of MIDP and acts as the starting screen
for the player. Figure 9.6(a) shows this class as it is displayed in the emulator used
to test the application. The graphical user interface created by the class informs the
player that (s)he is playing Platform-puzzler, as well as displaying one text box for
user input, and two command buttons. The text box is used by the player to enter the
IP-address of the server. The two commands are "Exit" and "Start" commands. The
"Exit" command simply exits the game, returning to regular interface of the platform
running the client application, while the "Start" command attempts to connect to the
server using the IP-address entered by the user. If the IP-address is not valid, or no
IP-address is entered, nothing will happen and the user must enter a valid password,
but if the IP-address is valid, the PlatformPuzzler class sends a message to the server,
requesting that a player should join the server session. Upon receiving an acknowledg-
ment of the request message from the server, the PlatformPuzzler class creates a new
GameWindow object, which contain the main game loop, as well as a new Player
object that handles player information.

Model

Figure 9.8 shows the classes in the pp.model package. The package contains, as dis-
cussed brie�y previously, objects that contain information about and handle the actions
of the levels of the game world, the generating of these levels, the in-game objects that
populate the levels, as well as a player class.

Vector2D is a class that represents simple 2 dimensional vectors, i.e. it is a class
containing two variables(which are integers in this class) x and y. The class also imple-
ment some elementary vector operations such as vector addition, the scalar product(or
dot product), and multiplication of the vector with a scalar. This class is used in the
prototype to represent positions of the player and level objects, as well as being used
as speed vectors indicating the speed of the player. The positions of the player and the
objects are global such that position (x,y) is located in the same point in the game world
for every client connected to that game world. The speed vector of the player contains
the relative speed of the character controlled by the player, as the speed itself depends of
the time between each main game loop execution, as well as being pulled down by gravity.

The Player class represents the user of the prototype game, as well as other clients
connected to the same game server. Each Player object has two vectors, as discussed
above, where one vector is the global position of the player while the other vector is the
speed of the player, both in the x- and y-direction. The player class has several methods
that handles these vectors, such as updating the position of the player. In the graphical
user interface each player is represented as red ball. This red ball is represented in the

9.3. GAME DESIGN & IMPLEMENTATION 117

Figure 9.7: A class diagram of the classes in the pp package

118 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.8: A class diagram of the classes in the pp.model package

9.3. GAME DESIGN & IMPLEMENTATION 119

code by a sprite in the class PlayerSprite. The sprite class handles the image repre-
senting the player, as well as supplying functionality for checking collisions between the
sprite of the player, and other sprites; a functionality which is inherited from the Sprite
class, the class that the PlayerSprite extends.

The club mechanic, which is discussed earlier in this chapter, is supported in the Club
class, which both contain the position of the club, as well as the graphical representation
of the club in-game by extending the Sprite class and using an image to represent the
club. The player and the club can be seen in Figure 9.6(b) which shows two player where
the red balls are representations of the players, and the green "stick" is the graphical
representation of the club. The club is controlled via a keypad button which the user
presses to initiate the club mechanic. The game then shows a simple animation of the
player attempting to beat another player with his(her) club. The collision detection be-
tween the club and the other players depend on whether the club is being actively used,
or whether it is idle, i.e. when the club mechanic is not initiated by the player. If the
club hits another player while not being idle, that other player is then thrust forward
and upward by the impact.

A part from before mentioned functions, the Player class also have methods for con-
trolling the state of the player, such as keeping track of whether the player is falling
or jumping. Other methods updates the speed vector of the player depending on the
direction and the action the player wants to undertake, e.g. jumping require speeds both
in the x- and y-direction, while going right in the coordinate system of Java only requires
a speed vector that has a positive x-direction.

The Level class represents the level structure of the game world, where the world is
divided into one or more levels, where each level is populated with level objects. The
Level class acts as a level object container in the code, where it stores the di�erent
level objects in lists depending on the type of level object. The PPObject class is the
representation of level objects. This class contains and handles the global position of the
level object in the game world, which is represented as a Vector2D object, the graphical
presentation of the level object, which is handled by a PPObjectSprite object, and it
also has a ObjectProperty object which contains the properties of the object. The
PPObjectSprite contains the image of the level object and it supplies a collision detec-
tion method inherited from the Sprite class, which in the game is used to check whether
the player is colliding with the level objects. The ObjectProperty class contains the
di�erent properties of the object, as discussed previously in this chapter, and it decides
how the game treats the object. The properties of the object decides whether the object
has a graphical representation or is translucent, whether the object can move or not,
and whether the object has the property of being able to trigger an event. An event
is triggered if the player is standing inside an object that has an action trigger, i.e. if
the player is colliding with the object, and if the players has pressed the keypad button
that indicates that the player wants to trigger the event. After the button is pressed the

120 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

game then checks whether or not the player is colliding with an object that has an action
trigger, and if so an event is then created.

In the pp.model package there are three sub classes of the PPObject, each with special
properties not found in the ObjectProperty class. ExitPPObject is a level object
that represents the exit of the level. Figure 9.6(d) shows the graphical representation
of the ExitPPObject. If the player collides with a ExitPPObject the game either
loads the next level, or loads the exit window of the game if there are no more levels to
load. The StartPPObject represents the starting position of the player in a level. This
level object has no graphical representation, and only indicates in a level the positions
the player can start in after a new level has been loaded. The ImgPPObject is the
standard level object do not have any special properties, thus only having the properties
described in the ObjectProperty class.

The LevelGenerator class creates a new level through its readLevel(...) method.
Each possible level in the prototype game is saved as two text �les inside the JAR of the
prototype game, where one of the �les is a textual representation of the level where each
level object in the level is represented as a character. Each of the textual representation
�les create a single level in the game. The LevelGenerator then reads through a �le
character by character and creates level objects with positions relative to the position
of the character in the text �le. There are two special characters that are treated dif-
ferently than regular characters; 's' and 'e'. 's' indicates that the level object created
in that position should be a StartPPObject, while 'e' indicates that the level object
should be a ExitPPObject. The other of the two �les representing a level, is a simple
script �le that creates ObjectProperty objects. Each line in the script �le creates a
ObjectProperty object, and each of these properties are identi�ed by an id. This id
is used in the LevelGenerator to tie ObjectProperty objects to level objects. The
readLevel(...) method �rst reads the script �le creating the ObjectProperty objects,
and after that it reads through the textual representation �le. Each character in the
textual representation �le is handled as an id. This means that if the character of the
speci�c level object is equal to a ObjectProperty identi�er, that ObjectProperty is
then tied to the level object. Each ObjectProperty can apply top several level objects
such that the script �le does not need to contain a ObjectProperty for each level object
in the level. Also, the characters 's' and 'e' cannot be used in the script �le as identi�ers
since they have special meanings in the textual representation �les.

Each Level created by the LevelGenerator class then contains the di�erent level ob-
jects created by the LevelGenerator. The di�erent level objects, i.e. ImgPPObject,
StartPPObject, and ExitPPObject, are kept in separate lists in the Level object
in order to simplify collision detection for instance when the player is checking to see
whether (s)he is colliding with an ExitPPObject since the list of ExitPPObject's is
usually smaller than the list of all level objects in the level.

9.3. GAME DESIGN & IMPLEMENTATION 121

Figure 9.9: A class diagram of the classes in the pp.model.event package

Event

The pp.model.event package is a sub package of the pp.model package, and its classes
implement the action trigger/event system which is described previously in this chapter.
There are three classes in this package, PPEvent, PPEventListener, and PPTrigger.
Figure 9.9 shows the class diagram of these classes. The classes of this package implement
a simple version of the event noti�cation pattern, where an object can be noti�ed about
an event. An object that implements the PPEventListener interface and registers to a
PPTrigger object is able to listen to noti�cations about events. Classes implementing
thePPEventListenermust implement the eventTriggered(...) method. This method
is called by a PPTrigger when a situation in the game has created a new PPEvent.
The PPTrigger class has a list of event listeners that it noti�es when another class
calls the �rePPEvent(...) method. Any PPEventListener object that has registered
to the speci�c PPTrigger is then noti�ed about the new event, and they receive an
PPEvent that gives an indication about what event has occurred in the game. The
PPEvent class has a identi�er that is used to distinguish between events, as well as a
variable that tells the listeners what the original object of the event creation was. The

122 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

identi�er of the event is used in the game to distinguish between the level objects that
created the event.

Each level object can listen to incoming events, and the identi�er is used to decide
whether or not the listening level objects should respond to the event. In the prototype
game the player has a keypad button tied to the trigger mechanism such that when the
player presses the button, the game checks to see whether or not he player is colliding
with an level object that has the property of being able to trigger events. If the player
has collided with such an object, the game takes the trigger id of the trigger object and
by using a PPTrigger object, calls the �rePPEvent(...) method thereby notifying the
listening level objects about the event. If any of the listening level objects are listening
to the speci�c identi�er of the original trigger object, the listening object performs the
action that is tied to that speci�c identi�er.

UI

Figure 9.10 shows the class diagram of the classes in the pp.ui package. This package
contains the di�erent graphical user interface screens that are used in the prototype game,
except the starting screen which lie in the pp top package. The EndWindow is the
screen that pops up after the player has entered an exit are of a level, and there are no
more levels to load. The screen informs the player that the prototype game is at its end,
and that the player should exit the game. The HelpWindow is a screen that is meant
be a help screen for the player where (s)he can read how the game is controlled, and how
some of the mechanics of the game work, but this screen is currently not functioning
correctly, and the player is unable to invoke the screen in the game, even though the
class still exists in the source code.

GameWindow is the class that contains the main game loop in the prototype game, as
well as the screen on which the user is playing. The class inherits from the GameCan-
vas class which is found in MIDP, giving the GameWindow rendering possibilities, as
well as button press pulling, i.e. the ability to pull the super class information about
button presses. The GameWindow class is thus responsible for both rendering the
graphical output to the player, as well as controlling the game logic. GameWindow
keeps both a Player object, which is the client running the application, as well as a
list of the other players connected to the same server. The GameWindow class uses
these to keep track of and initializing player movements and actions after the player has
invoked these actions by pressing buttons on the keypad, or after having received mes-
sages from the server requiring updates to either the main player, or the players in the
player list. TheGameWindow displays and keeps track of the current level, after having
received a message from the server telling the GameWindow which level it should load.

As mentioned above the main game loop is also controlled by the GameWindow. In
each round of the loop it executes methods that check to see whether the player has
pressed any buttons on the keypad, and if so it takes the appropriate actions such as for

9.3. GAME DESIGN & IMPLEMENTATION 123

Figure 9.10: A class diagram of the classes in the pp.ui package

124 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.11: A class diagram of the classes in the pp.network package

instance moving the player to the left. Each execution of the game loop also checks for
collision between the player and the game world. Speci�cally it checks to see whether the
player collides with any of the level objects in the current level that have the property
that enables them to be collidable, as well as checking to see whether the player collides
with an exit level object, and whether the club of the player collides with another player
after the player has activated the club mechanic. Lastly the game loop renders the cur-
rent frame by using a LayerManager to keep track of all of the sprites in the level,
i.e. the level objects, the players, and the clubs of the players. After having invoked all
of the actions above, the game loop sleeps for a short period; a period which takes into
account the time spent for each execution of the loop in order to try to create a stable
frame rate.

Network

Figure 9.11 shows the class diagrams of the classes inside the pp.network package. The
source code in this package is based on the code produced in the depth study in TDT-
4570 [Nøsterud, 2007], but it is slightly changed in order to accommodate the changes to
the underlying game concept, as well as changes to the source code utilizing this package.

The main components of the pp.network package is the ClientConnector class with
its inner nested classes, and the two classes responsible for the message handling on the

9.3. GAME DESIGN & IMPLEMENTATION 125

client side. The MessageListener class along with the MessageHandler handles the
creation, parsing, and noti�cation of messages to and from the server in the client. The
two classes form a simple implementation of the observer pattern in that classes wish-
ing to listen to incoming messages from the server implements the MessageListener
interface as well as creating a MessageHandler object in order to parse the incoming
messages, as well as create the out going messages. The MessageListener has sev-
eral methods that noti�es the implementor class which types of messages the sever has
sent the client. In going messages �rst go through the MessageHandler which parses
the messages looking for the information found within the message, and then calls the
correct notifying method in the MesasgeHandler depending on the message content.
The MessageListener interface then informs, or noti�es, its implementor about the
message, and the implementor then takes the appropriate action to the message. The
MessageHandler is also used to create valid messages with the correct message syntax
used in the prototype game, thereby de�ning the syntax.

The ClientConnector handles the communication between the client and the server
through a TCP/IP connection. The class has a MessageHandler object that it sends
the incoming messages to in order to parse them, and it also contains the di�erent Java
streams used to send and receive messages from the server. The ClientConnector has
two nested inner classes, Sender and Receiver, and these classes run in two separate
threads. The Sender thread sends out going messages to the server and uses a mes-
sage queue in order to receive more than one outgoing message at a time. When the
Sender thread is not sending messages it is sleeping and waiting for the ClientCon-
nector to notify the Sender that there are new messages to be sent to the server. This
happens by classes calling the sendMessage(...) of a ClientConnector object. The
Receiver thread handles incoming messages from the server, and it sends each message
to the MesasgeHandler so that the message can be parsed. The Receiver runs in a
loop that for each iteration of the loop attempts to read a new message from the server
stream, and if the stream contains a message the Receiver reads the stream message
for message and sends each complete message to the MessageHandler.

9.3.2 Server

The server package is, as discussed above, a separate application from the client applica-
tion, and it is not created in Java ME either, but instead in Java SE and can thus run on
a PC's, or any other platform able to run Java SE applications. The server contains two
main packages which are the pps.model package, and the pps.server package. Figure
9.12 shows the package diagram of the server application. The pps.model package con-
tains a class than handles server speci�c level information, i.e. information relevant for the
server to know about the levels, as well as a 2 dimensional vector class. The pps.server
package contains classes that handle the communication and connection with the clients,
the server logic, and the message handling which consists of handling incoming messages
and parsing them, as well as creating outgoing messages with the correct syntax.

126 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.12: Package diagram of the server application

Model

Figure 9.13 shows the class diagram of the classes inside the pps.model package. The
package contains the two classes Vector2D and LevelCoordinator. The Vector2D
class is the same class as the vector class in the client application. It supports simple
vector math and is used in the server to keep track of the locations of the players, as
well as being used in the LevelCoordinator class to keep track of the starting points
in each level.

The LevelCoordinator class handles level speci�c information in the server applica-
tion. The main responsibilities for the class are to keep track of the current level for
the server, appointing start locations to each individual player at the start of each level,
as well as keeping track of the current level and deciding which level should be loaded
next. The server has a description �le that decides the level order, i.e. in which order
the levels should be loaded and played by the players. The server also has copies of
the level description �les which are found in the client application(but not the script
�les found in the client application), and these textual description �les are used to �nd
the starting points of the level, as each level may have more than one starting point.
The LevelCoordinator �rstly reads in the order of the levels in the system and sets
the current level to the �rst level in that �le, and then it �nds the starting points in
that level. When a new level should by loaded after a player has entered an exit level
object, the LevelCoordinator �nds the next level and resets the starting points to �t
the new level. If there are no more levels to load, the server sends a message to the client
saying that it should load its end screen, i.e. quit the main game loop and initialize a
EndWindow object.

9.3. GAME DESIGN & IMPLEMENTATION 127

Figure 9.13: A class diagram of the classes in the pps.model package

Server

Figure 9.14 shows the class diagram of the classes in the pps.server package. The
classes in this package are similar to the ones in the pp.network package on the client
application. The source code of this package is also based on the depth study performed
in TDT-4570 [Nøsterud, 2007], but it has been modi�ed to �t the Platform-puzzler
prototype. The biggest changes are in the messages and the server logic.

The MessageHandler class and the MessageListener class are similar to the same
classes found in the pp.network package in the client application, and they work in
the same way where an object implements the MessageListener interface in order to
listen to incoming messages from the client which are parsed by the MessageHandler.
The MessageHandler also similarly as in the client application de�ne and controls the
message syntax, and is used to create valid messages.

ServerConnector is the main class in the server application. It controls the server
logic in the prototype game, and it implements the MessageListener interface in order
to be informed about incoming messages from the clients. The ServerConenctor runs
a loop that listens to incoming connections from new clients, and after a new client has
connected, it creates a new PlayerSession object that keeps track of that particular
client. Each client thus has a PlayerSession object and the messages received from
the clients are identi�ed by their PlayerSession object. Each PlayerSession has two

128 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.14: A class diagram of the classes in the pp.server package

9.3. GAME DESIGN & IMPLEMENTATION 129

threads that take care of the communication between the server and that particular client.
These threads are the nested inner classes SessionReceiver and SessionSender, and
they function similarly to the Sender and Receiver classes of the pp.network package.
SessionSender has a message queue where it saves outgoing messages that the server
intends to send to the client, and while there are no messages in the message queue the
SessionSender waits idly until it is noti�ed about new messages that should be sent
to the client. The SessionReceiver runs in a loop where for each iteration of the loop
it tries to receive new messages from the client. If there are new messages to the server
these messages are sent to the MessageHandler which in turn parses them and gath-
ers the information found within the messages, and noti�es the ServerConenctor such
that it can take the appropriate action to the message. Each PlayerSession is given an
identi�er used to distinguish between the di�erent clients, and it also keeps track of the
position of the player that is associated with that particular PlayerSession.

A part from connecting to new clients, the ServerConnector also handles the server
logic. It periodically sends out requests to the clients about their player positions, and it
also takes the appropriate actions depending on the incoming messages from the clients,
e.g. when a client wants to initiate a club mechanic on another player, or when a player
has entered an exit object in a level and a new level should be loaded by the clients. The
server's logic is typically based around deciding the appropriate action based on incoming
messages from clients, informing the server about the current state of the game levels,
and the server then sends out the information to the correct clients which then uses the
information to conduct the appropriate client action.

9.3.3 Client-server interaction

The actual transmission of messages between the server and the clients happen through
TCP/IP and there are dedicated packages that in both the client and server applications
that control the network and �ow of messages. The package pp.network for the clients,
and pps.server for the server, handles the network in the two applications, as discussed
above.

Figure 9.15 shows a sequence in which a generic message is sent from a client to a
server. To send a message to a server, the client must �rst create a ClientConnector
object with the correct IP address to the server. The ClientConnector then creates
two threads that handle sending and receiving messages to and from the server. The
ClientConnector object can then be used to send messages to the server, as is shown
in the Figure. Here an object has created an ClientConnector object, and uses it to
send a message to the server. Because the MessageHandler de�nes the message syn-
tax in the prototype, which is discussed more thoroughly above, the ClientConnector
must use a method in theMessageHandler that creates a message that has the correct
message syntax for the message type the client wants to send. The prototype game has
several di�erent message types, and the MessageHandler has a method for each of
the method types which creates a valid message of that type. In Figure 9.15 the client

130 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.15: Sequence diagram showing a client sending a message to the server

is sending a message that where the message is not speci�ed, so it could be any valid
message. The client then uses the Sender object created by the ClientConnector to
the server. In the server the class PlayerSession is similar to the ClientConnector,
which is described in the previous section, and the SessionReceiver object created by
the PlayerSession receives the message sent by the client. The message is then sent to
the MessageHandler which validates it and parses the information found within it. If
there are any classes that are registered asMessageListener's to theMessageHandler,
these classes are noti�ed about the incoming message. Just like the MessageHandler
has a method for the creation of valid messages for each message type, the Message-
Listener has a notify method for each message, and calls the methods based on the
type of message. On the server, the ServerConnector is the only listener, and thus it
ultimately receives the �nally parsed message, and decides which actions must be taken.
While Figure 9.15 showed a client sending a message to the server, Figure 9.16 shows the
server sending a message to a client. Since the classes handling the message sending and
receiving are similar for both the client and server applications, the process is similar
between the �gures. The ServerConnector starts by getting a valid message from the
MessageHandler and sends it to the client using the SessionSender object created
by the PlayerSession. A di�erence between the client and the server is that the server
has several connections where each connection corresponds to a client, represented by a
PlayerSession object, whereas the client only has one connection; the server. The server
thus has the additional work of deciding which client to send the message to. On the
client side the message is received by a Receiver object, and the message is forwarded
to a MessageHandler that parses the message and noti�es the object listening to the
connection. Another di�erence between the server and client is that on the server side,
the ServerConnector is the only object implementing theMessageListener interface,

9.3. GAME DESIGN & IMPLEMENTATION 131

Figure 9.16: Sequence diagram showing the server sending a message to a client

<message prefix>:<message part 1>,<message part 2>,...,<message part n>|

Figure 9.17: The basic syntax of the messages in the prototype

while on the client side there are more than one object implementing the interface, and
they react di�erently to the messages types. Generally though the GameWindow class
handles most of the logic regarding incoming messages.

Message structure

The diagrams explained above show how the basic connection between the client and
server are handled in the prototype, however they do not show the structure of the
messages. Figure 9.17 shows the basic syntax of a message. Each message is a Java String
object, sent on the TCP/IP connection as bytes, and parsed in the MessageHandler,
and the message consists of a message pre�x that shows what type of message it is,
e.g. a message telling the server that a client wants to join the server. The rest of the
message(the tail of the message) is separated with an ':' character, and the tail of the
message contains from 0 to n message parts. These message parts contains variables that
are parsed. Each variable is separated by an ',' character, and they are not identi�ed by
a String such as the message pre�x. The message parts must thus be put in the correct
position, and be of the correct type(e.g. a integer or �oating point number) in order to
be read correctly. This is however not a problem since the MessageHandler de�nes
the syntax, and it both creates and parses the messages. Each message is ended by a
'|' character; this in order to separate the messages when reading them. Figure 9.18
shows the entire message syntax with all of the di�erent message types. The syntax is
described using BNF(Backus Naur form). Here a message can be one of the di�erent

132 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

message types and each message type can have 0 to n variables where the variables are
either an integer, a Java String, or an Java boolean. The di�erent message types are:

Join request which is used when the player wants to join a server

Join acknowledgment which is sent by the server to inform the client that the client
can as well as assigning an ID to the client

Create player which is sent by the server to notify the client that there are another
player that is playing on the server

Club request which is sent by the client when it wants to initiate a club mechanic on
another player

Initiate clubbing which is sent from the server to the client that should initiate the
clubbing mechanic on itself, after the server has received a club request from another
client

Exit reached which is sent by a client when that client has reached the end of an level,
and it leads to the server trying to load a new level and sending the message Load
level

Disconnect request which is sent by a client when it wants to disconnect from the
server, which leads to the server sending a player disconnect message to the
other players informing the other players that a player has quit the server

Position request which is sent by the server to request the position of the player, which
leads to the client sending a positionmessage which contains the information about
the position of the player, i.e. the x and y position

Player position change which is broadcast to all of the players to inform the players
that the player with the speci�ed position has moved

Trigger event request which is sent by a client after having pressed a level object that
has an trigger, and it leads to the server broadcasting a "trigger event" message
which informs all of the players that an event with the speci�ed ID should be
created and sent to the listeners

Connecting to the server

Figure 9.19 shows a sequence diagram describing the process of a client connecting to a
server, although it is in a simpli�ed form where the message handling sequences shown in
Figure 9.15 are left out. The connection is established by sending messages between the
client and server, where they react to the messages and possibly send new messages to
each other based on the type of message received. The �rst message of the diagram is the
player wanting to start the game. When the game starts, a PlatformPuzzler object is
created, and to connect to the server the player has to enter the IP of the server to connect

9.3. GAME DESIGN & IMPLEMENTATION 133

<message> ::= <join request> | <join acknowledgment> |

<create player> | <club request> |

<initiate clubbing> | <exit reached> |

<load level> | <disconnect request> |

<player disconnect> | <position request> |

<position> | <player position change> |

<trigger event> | <trigger event request>

<join request> ::= "jo" ":" "|"

<join acknowledgment> ::= "ja" ":" <player id> "|"

<create player> ::= "cp" ":" <player id> "," <player x-pos> ","

<player y-pos> "|"

<club request> ::= "cr" ":" <player id> "," <right> "|"

<initiate clubbing> ::= "ic" ":" <right> "|"

<exit reached> ::= "er" ":" "|"

<load level> ::= "ll" ":" <level name> "," <player x-pos> ","

<player y-pos> "|"

<disconnect request> ::= "dr" ":" "|"

<player disconnect> ::= "pd" ":" <player id> "|"

<position request> ::= "pr" ":" "|"

<position> ::= "po" ":" <player x-pos> "," <player y-pos> "|"

<player position change>::= "ppc" ":" <player id> "," <player x-pos> ","

<player y-pos> "|"

<trigger event> ::= "te" ":" <event id> "|"

<trigger event request> ::= "ter" ":" <event id> "|"

<player id> ::= <integer>

<player x-pos> ::= <integer>

<player y-pos> ::= <integer>

<right> ::= true | false

<level name> ::= <string>

<event id> ::= <integer>

<integer> ::= Java integer

<string> ::= Java String

Figure 9.18: The de�nition of the message syntax used in the prototype

134 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.19: Sequence diagram showing the process of a client connecting to a server

9.3. GAME DESIGN & IMPLEMENTATION 135

to, and press the connect button as shown in Figure 9.6(a). A ClientConnector object
is then created and it is used to send a "join request" message to the server. The server
in the meanwhile is listening to incoming client connections, and creates a PlayerSes-
sion object when the client has connected. The PlayerSession object then noti�es the
Serverconnector about the "join request" message, and the ServerConnector then
sends a "join acknowledgment" message back to the client via the PlayerSession. The
PlatformPuzzler is then noti�ed about the message from the server by theClientCon-
nector (via the MessageListener interface described previously in this Section), and
the PlatformPuzzler then creates the main game window that will render the game,
run the game logic, and receive the messages from the server as of that moment instead of
the PlatformPuzzler. GameWindow is that class, and it creates a new Player object
with the identi�er brought with it from the server in the "join acknowledgment" message.

In the diagram, the messages from the server are sent after the appropriate actions
to the previous message are taken on the client side, however in reality the messages
from the server are sent one after the other in succession and then handled in turns by
the client, but in order to keep the diagram more readable the di�erent server messages
are divided more sequentially. The next message is the "load level" message, which is
sent by the ServerConnector via the PlayerSession to the ClientConnector, which
then noti�es theGameWindow. This message contains both the name of the level to be
loaded by the client, as well as the starting position for the player object representing the
player in the game. The GameWindow then calls it internal method loadLevel(...)
which loads the level with the speci�ed name using a LevelGenerator which returns a
Level object, and �nally the method sets the starting position of the player and centers
the camera, or viewpoint, around the center of the player. The Club object and the
sprite associated with that object is also placed relative to the player.

The next message is a "create player" message. The server will send one of this message
for each of the players connected to the server, excluding the client itself, and the client
then creates player object locally and draws them on-screen. The ServerConnector
sends the "create player" message, which also contains the position of that player and
the identi�er of that player, via the PlayerSession to the ClientConnector which
noti�es the GameWindow about the message. The GameWindow then calls the
method addPlayer(...) which in turn creates a new Player object with the identi�er
and position contained in the message from the server. The player object is then added
to the list of players and added to the LayerManager which handles the graphics and
drawing of sprites. The position of the Club object of that player is also updated relative
to the position.

The �nal action performed of the server is to notify the rest of the clients that a new
client has joined the game. The ServerConnector thus broadcasts a "create player"
message to all of its PlayerSession objects, except the client that joined, informing
them that a new client has joined the game with a speci�ed identi�er, and that the client

136 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.20: Sequence diagram showing the server requesting the position of a player

should be drawn in their game worlds.

Updating positions

The ServerConnector keeps track of the positions of the players connected to the
server, and the positions are stored in the PlayerSession objects. The way that posi-
tions are handled in the prototype is that the players are free to move around as much as
they please, and that he server periodically requests the information about the position
of each of the players connected to the server. Even though the players move locally
by using speed vectors, the prototype does not use prediction of player movement, and
does thus not send the speed vectors of another client to a client, but instead sends the
most current position received by the server. This can lead to the observation of discrete
movement for the player, but since the focus of the prototype is on the social side, this
issue is not as important.

Figure 9.20 shows the sequence of the server requesting the position of a client. The
ServerConnector has a thread that periodically requests the position information of
its clients. The ServerConnector sends a "position request" message via the PlayerS-

9.3. GAME DESIGN & IMPLEMENTATION 137

Figure 9.21: Sequence diagram showing how the client handle a "player position change"
message

138 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.22: Sequence diagram showing how events are handled by the client and server

ession representing the client to the ClientConnector of that client. The ClientCon-
nector then noti�es the GameWindow that the server wants to know the position of
the player. The GameWindow then retrieves the position information from its Player
object, i.e. the object representing the client, and it sends a "position" message back to
the server via the ClientConnector. This message contains the position information
about the client, and it is received by the PlayerSession of that client on the server side,
and the ServerConnector is then noti�ed. The �nal action of the ServerConnector
is to broadcast a "player position change" message to the rest of the clients, excluding
the requested client. This message contains the new position of the client that moved.

Figure 9.21 shows how the client handles a "player position change" message. The
ServerConnector broadcast was shown to broadcast the message above, and it uses the
PlayerSession to send the "player position change" message, which contains the new
position of the client with the speci�ed identi�er. This message is sent to a ClientCon-
nector. Here the client is any of the clients connected to the server. The ClientCon-
nector then noti�es the GameWindow about the message, and the GameWindow
then calls the updatePlayerPos(...) method, which updates the position of the player
with the identi�er retrieved from the message. The position of the Club object of that
client is also updated.

9.3. GAME DESIGN & IMPLEMENTATION 139

Event system

The event system here means the system that handles the events and triggers related
to level objects. An event is triggered when a player presses the corresponding button
on the keypad that attempts to activate an trigger. If the player is in the vicinity of an
level object that has an trigger, the client noti�es the server about this. The client does
not however trigger this event locally yet, but instead waits for the response from the
server. The GameWindow sends a "trigger event request" via the ClientConnector
to the server. This message contains the identi�er of the trigger, and is received by the
PlayerSession, which in turn noti�es the ServerConnector about the message. The
ServerConnector does not check the validity of the trigger id in the prototype, but
instead broadcasts a "trigger event" message to all of its clients. This message contains
the identi�er of the event that should be triggered, and tells the clients that they should
trigger this event locally.

The part of the diagram that is below the dotted line describes what happens for a
client that receives the "trigger event" message. The ServerConnector sends the mes-
sage via the PlayerSession associated with the client, and the ClientConnector of
that client receives the message and noti�es the GameWindow about the message.
The GameWindow then uses the event identi�er retrieved from the message to �nd
the level object that has the trigger with that identi�er. This object along with the event
identi�er itself is used by the PPTrigger to �re an PPEvent which is sent to all classes
that implement the PPEventListener interface. The objects that are then listening
to the exact identi�er of the event then performs the action related to that identi�er as
speci�ed in the script �le, i.e. the script �le associated with the current level.

Club mechanic

The club mechanic is, as described in the previous Section, activated when the player
presses the button on the keypad assigned to that action. The client then starts the
clubbing animation on the client side, however the animation is not shown for the other
clients in the prototype. The main game loop checks to see whether the player's club is
colliding with another player for each round of the loop, however it only checks this if the
variable clubbing is set true in Club object of the Player. If the GameWindow �nds
that there is an collision with the club of the player, and that it also has initiated the
club mechanic, the GameWindow sends a "club request" message to the server via the
ClientConnector. This message contains the identifer of the player that the client has
hot with its club, as well as the direction the client was moving when it hit the player, in
order for the player to �y o� in the right direction. The message is received on the server
side by the PlayerSession associated with the client, and the ServerConnector is
noti�ed about the message. Currently in the prototype the validity of the club request is
not checked, due to the fact that it is a prototype, and that the social aspect of the game
is the most important part, however it could be a point of improvement in future upgrades
of the prototype to check for the validity of the club request. The ServerConnector

140 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Figure 9.23: Sequence diagram showing the club mechanic

then sends a "initiate clubbing" message to the client that has the identi�er retrieved
from the message the server got from the �rst client. In the diagram the two clients
are separated by the dotted vertical lines. The "initiate clubbing" message is then sent
to the second client, and it is received by the ClientConnector of that client. The
GameWindow of the second client is then noti�ed about the message, and the Player
object of the GameWIndow then activates the club mechanic on itself by calling the
method clubMe(). The Player's speed vector is then updated to be a standard value
speci�ed in the source code to be the default value of the club mechanic. This speed
vector is reliant on the direction of the �rst client, and the x-component of the speed
vector is set to go in the direction that the �rst client was moving in when clubbing the
second client.

9.4 Testing

This section looks at the testing performed in this project3. The prototype game was
tested on both emulators, and on the test phones, however the multiplayer was only only
tested on emulators, due to network constraints on the test lab used. The test phone
was a Sony Ericsson W810i, which is described in Section 4.2.1. The emulator used for
testing were mainly the emulator created by Sony Ericsson and released in the Sony

3The README.txt �le which is provided in the zip �le attachment to this report explains how to
play the prototype game and setup the server.

9.4. TESTING 141

ID Description Imp Impl

FR-1 Player H F

FR-2 Character movement H F

FR-3 Action triggers H F

FR-4 Events H F

FR-5 Actions H F

FR-6 Objects H F

FR-7 Object properties H F

FR-8 Object property, player collision H F

FR-9 Object property, trigger H F

FR-10 Object property, event/action H F

FR-11 Object property, vertical character movement M P

FR-12 Object property, static M P

FR-13 Multiplayer H F

FR-14 Game world H F

FR-15 Puzzles H F

FR-16 Character abilities H F

FR-17 Character ability, club mechanic H F

FR-18 Character ability, wall bouncing M N

FR-19 Character ability, player-on-player jumping M N

NFR-1 Client server M F

NFR-2 Multiplayer player amount H F

NFR-3 Client server disputes M P

NFR-4 Client disconnection L P

NFR-5 Puzzle understanding M F

NFR-6 Puzzle completion M P

NFR-7 Game understanding M P

Table 9.1: Table showing which of the requirements where implemented in the game

142 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Ericsson SDK 2.5.0.2. The emulator in the Sun Java Wireless Toolkit was initially used,
but the Sony Ericsson emulator had better performance, especially when the multiplayer
code was added to the prototype, and the emulator was also more similar to the test
phone(since the phone was a Sony Ericsson mobile phone).

The test process used in the project involved three parts: to continuously and incre-
mentally implement code, then compile the prototype, and lastly to test for errors. It
was easier to test the prototype after each increment than to created test plans and check
for errors and bugs at the end of the development process. This was partly due to the
small size of the project group, which made it easy to keep control of the code and thus
make it easier to test for errors after each increment, but the relatively low implementa-
tion complexity of the prototype game also enabled the project group to use this method.

Table 9.1 shows a list of all the requirements for the prototype game, both functional and
non-functional requirements, and it gives an indication of how important each require-
ment is, based on the description of the Platform-puzzler concept, and the description of
the prototype game. The Imp column, or importance, shows this, and rates the require-
ments from low(L) to high(H), with medium(M) as the middle value. The Impl column
shows whether or not the requirement was implemented into the prototype game, and
gives three di�erent degrees of implementation of the requirement in the game; namely
not implemented(N), partly implemented(P), and fully implemented(F).

In addition to tests performed by the project group, the prototype game was also tested
on users not part of the project group. This test looked more on the social side of the
prototype than on the technical, and it is described in Chapter 11. There the prototype is
also evaluated, but the requirements with "not implemented" and "partly implemented"
values in Table 9.1, are further discussed below:

FR-11, Object property, vertical character movement: This requirement said that
a object should allow a player to move vertically on it. This is however not sup-
ported at all in the prototype. The property was scrapped from the prototype due
to di�culty implementing it, as well as time constraints within the project.

FR-12, Object property, static: This requirement said that a object should be able
to move continuously. This requirement is only partly met since an object can be
static, and they are able to move, but hey are not however able to move continuously
from point A to point B, and back to point A in a loop, as was the intention of the
requirement. This was due to the di�culty such a functionality would bring to the
development with the time constraints of this project.

FR-18, Character ability, wall bouncing: This requirement stated that a player should
bounce o� of walls when it is being a�ected by the club mechanic. This is not sup-
ported at all in the current version of the prototype. It was however tested during
development, but it was scrapped since it did not function as planned. This was
due to the fact that the project team had di�culties with the collision detection,

9.4. TESTING 143

and thus an additional functionality that requires alteration of the collision detec-
tion routine could lead to more troubles than it was worth when considering the
time frame of the project.

FR-19, Character ability, player-on-player jumping: This requirement speci�ed that
the players should be able to jump and stand on top of each other. This is not work-
ing in the prototype. The project team had as stated above di�culties with the
collision detection, and this forced this speci�c functionality not to be implemented
in the prototype.

NFR-3, Client server disputes: In the current prototype the server has not enough
knowledge of the clients in order to fully support this requirement.

NFR-4, Client disconnection: The disconnection process is currently not functioning
properly in the prototype, and disconnections can some times work, but other times
they may cause the server to stall, and the clients that are left when another player
disconnects may also experience problems after such an disconnect. The concrete
source of the problem was not found, but it could partly be related to the way
messages are handled in both the server and the client.

NFR-6, Puzzle completion: During the testing of prototype with testers not from the
project group, the testers struggled to complete the game, and could not �nish the
level within the time limit speci�ed in the requirement on the �rst run when they
were not co-located. In the second run when they were co-located however they
�nished the puzzles well within the time limit. This is more thoroughly explained
in Chapter 11.

NFR-7, Game understanding: During the testing of the prototype with testers not
from the project group, the testers had some problems with the controls, and did
not fully understand them within the time period speci�ed in the requirement,
however this could also be because of the prototype running on an emulator on a
computer and not a mobile phone, thus the requirement is partly ful�lled.

All in all the prototype is functioning well enough to be used in the project, and the
errors described above does not completely break the game, or make it unplayable. In a
future version however, these faults should be investigated and improved upon.

144 CHAPTER 9. PROTOTYPE: PLATFORM-PUZZLER

Part IV

Evaluation

145

Chapter 10

Technology evaluation

This chapter looks at how the technologies used to develop and run the prototype has
a�ected the game, both in runtime and how the technologies have a�ected the devel-
opment. Only technologies that have had a noticeable e�ect on the development of the
game are evaluated here.

10.1 Emulator

As described in Section 9.4 the project group initially used the emulator found in the
Sun Java Wireless Toolkit. This emulator functioned well in the early parts of the pro-
totype development, before the multiplayer network code was added. The addition of
the network code lead to the emulator performing poorly: to the point that it could not
read the player input. The network code allowed the client application to connect to the
server application, which both where running on the same computer, with the emulator
running the client application, but the game became unplayable since the players where
unable to move due to the poor performance of the emulator.

The network code used in the client and server applications were similar to the code
used in the previous project of the group, the depth study performed in the course TDT-
4570 [Nøsterud, 2007], and the project group had similar problems with the network in
that project. However, since the code itself did manage to connect the client and server,
the project group wanted to try another emulator to check to see whether the problem
lie with the emulator, or the network code itself. Since the test mobile phone was a Sony
Ericsson phone, the emulator found in the Sony Ericsson SDK 2.5.0.2 was tested with
the prototype game. The Sony Ericsson proved to perform better on the computer used
to develop and test the prototype(which was the same computer used in the previous
project) than the Sun emulator. With the Sony Ericsson emulator the game became
playable, and the emulator could read keypad presses, allowing the testers to play the
game. This indicated that the problem experienced in the depth study was mainly due to
the emulator being used in that project. The discovery of this lead to the Sony Ericsson
emulator being used for the remainder of the development period.

146

10.2. NETWORK 147

10.2 Network

The server and client communicated using messages of strings translated by a speci�c
class in the game which controlled the syntax and message format, and the communica-
tion was done using TCP/IP. Because of the design of the levels used in the prototype,
only two players were needed to solve each level, meaning that there were no reason
to test the prototype using more than two players connected at once. The �rewall and
router setup on the computer used for testing the prototype however did not allow for
the test mobile phone to connect to the server(which was running on the test computer).
The prototype game was thus only tested on the emulators. The game did thus not ex-
perience any bandwidth or latency problems related to the network, and such problems
can only be found by further testing. This issue however was not thought to be critical
to the project group, since the focus of the project was more on the social side of the
prototype, than on the performance.

10.3 Test computer

As mentioned above, the test computer used in test and development process could not
be used to test multiplayer with the test mobile phone. The project group also believes
that the emulator problem discussed above with the Sun Java ME emulator could lie
equally with the test computer. The Sun emulator did not read keypad input well when
the network code was added, but it performed well before this code was added. The
Sony Ericsson emulator did also struggle on the test computer when the test computer
was forced to run two separate emulators and the server. The game was still playable,
but it was considerably slower than when running simply one emulator. This slowdown
in performance when running two clients at the same time lead to the development team
having to force certain constrictions on the network code. The most severe of these
restrictions were to only update the player positions once or twice each second. This
was due to the amount of messages that needed to be sent and parsed when the player
position updating interval was lower than this, and as a result of this the emulators
performed poorly. The project team acknowledges that the prototype code itself could
cause some of the problems, but was unable to test this problem more thoroughly in the
time period of the project. Further testing could �nd the source of the problem, be it
the emulator, or the network code.

Chapter 11

Prototype evaluation

As described in Chapter 9, the prototype game Platform-puzzler is a multiplayer 2D side
scrolling platform game, with focus on cooperative gameplay and puzzles.In this chapter
the prototype will be evaluated, along with the test that was performed on the prototype.

11.1 Prototype testing and results

Section 9.4 describes the test process used in the development phase of the project, and
shows how the prototype adheres to the requirements created for the prototype. This
Section describes an additional test performed by the project group with the help of the
supervisor. In this test people outside of the project group were brought in to test the
game. The testers had no previous knowledge of the game, and had not played the game
prior to the test session.

The test was conducted at NTNU, and two testers were found on campus. The test
session consisted of two smaller play sessions, where each session were followed by the
testers answering a questionnaire about the prototype game. The two testers were the
same for both play sessions. It should be noted that since there were only two testers,
the answers to the questionnaire and the information found during testing may not be
generic, or statistically valid, but they may show indications on areas that should be
further investigated, or even show areas that may need further research. Bugs and er-
rors in the prototype game found during the testing though are valid regardless of how
many testers there were, and these bugs should be �xed in future improvements of the
prototype.

Figures 11.1; 11.2, and 11.3 show the testing environment, along with the two testers.
The test was, as previously discussed, performed in two play sessions, where the di�erence
between the two sessions were that in the �rst test the testers were not playing the game
in the same room, something which is shown in Figure 11.1 and 11.2, while in the second
and last test the two testers were playing the game in the same room, which is shown in
Figure 11.3. The di�erence for the testers then was found in the communication avail-

148

11.1. PROTOTYPE TESTING AND RESULTS 149

Figure 11.1: One of testers playing the game alone

Figure 11.2: The other tester playing the game

150 CHAPTER 11. PROTOTYPE EVALUATION

Figure 11.3: The testers are playing the game co-located

able for each tester with the other tester. When the two testers where not located in the
same room they could not communicate verbally or textually with each other, since this
functionality is not present in the prototype, but in the session were they where playing
together in the same room they were allowed to talk to each other and assist each other
with the game. During the testing the project group was interested in observing how the
two testers played with each other, and whether they worked together as a team to solve
the puzzles in the game. The project group was especially interested in observing whether
there were any di�erences in how the two testers played the game when they were located
in di�erent, versus when they were located in the same room. The interaction between
the players, both in the game and in the real world where then interesting in that respect.

The actual testing was performed, as discussed above, at NTNU June 3, 2008 using
two laptop computers provided by the project supervisor. The two laptop computers
where both out�tted with the newest version of Java as well as the emulator provided
in the Sony Ericsson SDK 2.5.0.2. One copy of the prototype game ran on each laptop
computer, and each prototype game ran on the Sony Ericsson emulator. The server,
which used Java SE 1.6, was run on one of the laptop computers. The two computers
where both located in the same network, and the di�erence between the two computers
where then the hardware in the computers themselves(however they were both capable
of running the prototype game well), and that one computer was simultaneously used
as both client and server, although this did not bring any advantages in the prototype
game to the tester running this computer other than slightly less network latency. The
network latency between the two clients running the prototype game was at times mod-

11.1. PROTOTYPE TESTING AND RESULTS 151

erately high, but it did not interfere to much with the actual testing, and the reason for
the latency is not known as it could be either the network, the computers themselves(due
to �rewall settings etc), or the network code in the prototype game.

Before the �rst play session started the testers were briefed about the game, and told
how to control the game as well as what the objective of the testing session was and
what the prototype game was about. The two testers were then allowed to start, and
they �rst tested the game by playing it in separate rooms. During both play sessions the
two players were observed and timed to see if there were any di�erences between the two
play sessions. In the second session the two testers were located in the same room and
were allowed to communicate and help each other.

During both of the play session the two testers played the prototype game Platform-
puzzler together in a level which was speci�cally created for this test. In this level the
two players are forced to work together in order to solve all of the puzzles, and in order
to reach the exit. There are several puzzles in the level, and one exit. All of the puzzles
can all be solved using the basic game mechanics previously discussed in this report,
namely by jumping, by pressing buttons, or panels, in the game trigger events, or by
using the club mechanic. For the test there was only one level, and that level was used
for both play sessions. The project group acknowledges that might lead to results that
are a�ected by the fact that for the second play test the testers are already familiar with
the level and the puzzles within it. The focus of this test however lies in observing and
trying to understand how the players work together cooperatively, and whether there are
any di�erences between playing it in the same room or in separate rooms. The project
group thus believes that the results from the test can still give indications of the true
nature of the prototype game. The results from the test are discussed later in this chapter.

After each of the play sessions the testers answered the questionnaire, which is further
discussed below.

11.1.1 Questionnaire

The questionnaire in Table 11.1 was given to the two players at the end of each play
session. The testers where given the questionnaire along with a short description on
how to �ll out the questionnaire. The questions themselves ask the testers what they
thought about the prototype game itself, the concept behind it, speci�c gameplay me-
chanics within the game, and the social experience of the prototype for the testers.

The questionnaire is structured as a table with two columns and one row for each ques-
tion. The questions itself is presented in the left column and is given a identi�er on the
form of 'Q#', where 'Q' stands for question and '#' is the unique number of the ques-
tions. The right column is used by the tester to answer the question. In the questionnaire
there are three di�erent ways of answering the questions, where each question has one
answer form. Most of the questions have the numbers 1 to 5, i.e. '1 - 2 - 3 - 4 - 5', where 1

152 CHAPTER 11. PROTOTYPE EVALUATION

corresponds to 'strongly disagree', 2 corresponds to 'disagree', 3 corresponds to 'neutral',
4 corresponds to 'agree',and 5 corresponds to 'strongly agree'. The testers answer these
questions by writing under the number that they feel best corresponds to their opinion.
The second question type has a simple 'positive' or 'negative' answer option to the tester,
which are used to indicate how the game a�ected them. Lastly there are some questions
that have blanc answer �elds. In these �elds the testers are encouraged to write in free
form the answer to the question, and about their opinion on di�erent elements of the
game.

The results from the two play sessions, both the observations of the project group and
to the questionnaires, are discussed in the next section.

Question Alternatives

Q1: I found that playing the game with an-
other person enabled us to cooperate and work
together to solve the puzzles

[1 - 2 - 3 - 4 - 5]

Q2: I think this concept is suitable for a mobile
platform; for instance on a mobile phone

[1 - 2 - 3 - 4 - 5]

Q3: I would like to play a �nalized game based
on this concept

[1 - 2 - 3 - 4 - 5]

Q4: I found the puzzles suitable for a multi-
player game

[1 - 2 - 3 - 4 - 5]

Q5: I think the game would be more enjoy-
able to play if it contained more competitive
elements, for example with a high score list

[1 - 2 - 3 - 4 - 5]

Q6: I found it easy to work together with an-
other player to solve the puzzles

[1 - 2 - 3 - 4 - 5]

Q7: I think the experience of playing the game
would change for the worse if I was to play this
game alone

[1 - 2 - 3 - 4 - 5]

Q8: I found that the game supported cooper-
ative gameplay well

[1 - 2 - 3 - 4 - 5]

Q9: Did you �nd that the game forced you to
work together with another player, and if so,
did you �nd it to be negative or positive

[Negative - Positive]

Q10: I thought the controls were easy to un-
derstand and use

[1 - 2 - 3 - 4 - 5]

Q11: I found the puzzles in the game easy to
understand and solve

[1 - 2 - 3 - 4 - 5]

Continued on next page

11.1. PROTOTYPE TESTING AND RESULTS 153

Table 11.1 � continued from previous page

Question) Alternatives

Q12: I found that the game mechanics avail-
able to me(i.e. the club mechanic, being able
to jump, and being able to pull triggers) were
suitable for a cooperative multiplayer game

[1 - 2 - 3 - 4 - 5]

Q13: Did you encounter any serious �aws, or
bugs in the game; and if so, what where they?

Q14: Did you see any room for enhancements
to the game, either in terms of player abili-
ties(like the club mechanic) or puzzle design;
and if so, what where some of your ideas?

Q15: If you found that there were elements of
the prototype game you would want to change,
or that there where elements missing, which el-
ements would you want to change/add in order
to improve a future version of the prototype
game?

Table 11.1: Questions to the testers ranging from questions
about the game concept to the game mechanics

11.1.2 Results

As discussed above the test session consisted of two play sessions where two testers tested
the game �rstly in di�erent rooms, then lastly in the same room. After each play session
the testers answered a questionnaire. The observations of the player behavior as well
as the game behavior are discussed below, along with general observations in the test
sessions along with the results of the questionnaire.

First play session: di�erent rooms

In the �rst session the two testers where placed in di�erent rooms, as shown in Figure
11.1 and 11.2, with no way of communicating with each other, neither vocally nor tex-
tually. During the test the testers seemed to be hampered by the lack of communication
options, and they had problems solving some of the puzzles. On puzzle in particular
was troublesome for the players, since it requires that the two players work together and
utilize the club mechanic to throw one player on top of a platform that can only be
reached by using this mechanic. Initially the players had trouble understanding exactly
how to solve the puzzle, but after some time they understood that they had to use the
club mechanic. Then the problem became that they did not know which player should
use his club, and which player should stand still and wait to be clubbed.

154 CHAPTER 11. PROTOTYPE EVALUATION

The group made an interesting observation during this particular puzzle where one of
the player started to jump up and down on top of a platform. This platform was indeed
the platform that the project group had designed to be used as a launching pad using the
club mechanic of that puzzle. The player that jumped up and down repeatedly wanted
to indicate to the other player that the other player should hit him with the club. This
action indicated to the observers that because of the lack of communication between the
players, the players themselves tried to created a way of communication by using the
available game mechanics, similar to the freeform socialization described in Section 5.2.
The player tried to create a means of communicating with the other player by using the
tools given to the player, even though the project group themselves had not thought of
the possibility of this speci�c game mechanic being used in such a way.

The other player though did not seem to fully understand the intention of the player
creating this communication method though, and the players still had problems solving
this puzzle. They did however manage to solve the puzzle, but they used relatively longer
time than the project group had envisioned the puzzle to take.

Another problem discovered during this session was that the players sometimes had
problems knowing where the other player was. The game allows the two players to move
out of each others viewpoints, and it has no indicators showing a player where the other
player is when this happens. This did at times make it harder to solve some of the
puzzles in the game since they did not know whether to wait for the other player, or
go look for him. A problem related to this was that because the players did not know
initially how to solve the puzzle, they had to investigate and explore the level in order to
�gure out how to get to the next part of the level. When the players then were unable
to communicate with each other they could not tell the other player whether they were
exploring, or standing somewhere in the map waiting for them, and with no indication
of where the players were it got even worse.

The testers used 24 minutes from the game was started until the game was stopped.
The testers did not manage to �nish the level due to a bug that lead one of the players
to get thrown out of the map. Instead of restarting the level the project group decided
to move the testers to the same room and start the second part of the test instead. This
was due to the players being close to the exit, and because the play session had taken
much longer than �rst anticipated by the group.

Second play session: same room

During the second play session the testers were located in the same room and were allowed
to talk to each other and help each other with the game. The two testers immediately
started communicating with each other. This communication was used to let each other
know how they should solve each puzzle, where they should stand in relation to each other
when using the club mechanic, in which direction the club mechanic should be used in
each speci�c puzzle, deciding who should use the club and who should be clubbed, and
generally giving advice and helping each other. Here the vocal communication was used

11.1. PROTOTYPE TESTING AND RESULTS 155

to solve that arose in the �rst play session(and which was discussed previously): that
of deciding who should use the club and who should be clubbed, and in which direction
to club each other. When they could not talk to each other they were forced to use
in game mechanics to try to hint to the other player that they wanted to use the club
mechanic, or simply use the club randomly. Now when they had were able to talk they
could communicate with each other and decide how to best solve the issue. The two
testers talked to each other in every puzzle. After each action they performed they also
informed the other tester about it, e.g. if they pressed a button in the game they would
inform the other tester about it and thus they both knew what the other tester was doing.

Even though they were able to talk to each other, they still struggled with the same
club mechanic puzzle in which they struggled in the �rst play session. They did however
solve it much quicker since they were able to discuss with each other how best to solve
the puzzle, and they agreed upon where they should position themselves in the level, and
who should use the club. By communicating with each other they seemed to solve the
puzzle much faster than they did in the previous play session, but for the project group
it also indicated than in future work with the prototype this puzzle should be modi�ed
in order to make it easier to solve, especially since the problem the testers struggled with
was not how to solve the puzzle, but where exactly to position themselves in order to
use the club mechanic exactly correct. They understood relatively fast that the club me-
chanic should be used for this puzzle, but the actual solving of the puzzle proved harder
due to the design of the objects in the level: the character of the players repeatedly hit
an object in the level due to not standing exactly on the correct starting position when
using the club mechanic.

Another observation made by the project group was that the testers would occasion-
ally ask where the other player were in the level. This happened when the two players
were so far apart from each other that they could not see each other in the game. This
problem was also present in the �rst play session indicating that this is a problem that
should be looked into for the project group. In terms of the second play session it was
not a big problem since it could be solved by communication between the testers, but
for situations where communication is unavailable this can be a relatively big problem,
as previously discussed. This could be solved by having a visual indication of where the
other players are when they are can not be seen on screen in the game. Arrows could for
instance be used where the arrow would point in the direction of the player and be shown
on the edge of the screen. This arrow would then indicate in which direction the other
players are relative to the player, and also to some extent whether the other players are
located higher, or lower than the player. Such an arrow would however not give an exact
position of the other players. To give players the exact location of other players a mini
map system could be used where in for instance one of the upper corners of the screen
there is a small representation of the level, and all of the players could for instance be rep-
resented on this level representation as red dots. This mechanic is used in many games,
but it would take space away from the player in which the player can not see the level.

156 CHAPTER 11. PROTOTYPE EVALUATION

The size of the mini map must also be large enough to enable the players to recognize the
level representation, and di�erentiate the di�erent players from each other in the mini
map. This could mean that the map had to be so large as to be obstructive to the player.

The testers used 3 minutes to complete the test level in the second play session. That
is 21 minutes faster than during the �rst session. Even when taking account for the fact
that in the second play through they knew the controls better as well as the puzzles, this
is still so much faster that it indicates that the addition of the possibility of communi-
cating properly with each other helped the players a lot. This was also indicated from
the testers where after the second test one of the testers said that after this test he was
now much better able to answer the questionnaire, and especially the questions about
the social experience of the game and the cooperation of the players. The project sees
this a strong indication that there is a distinct di�erence in playing games in the same
room versus playing in di�erent room, at least in games where communication tools are
not present.

General observations

The project group made observations that were not strictly related to the di�erence be-
tween the location of the testers in the play sessions. One observation relates to the way
messages are handled by the server. Messages sent to the server by player 1 before player
2 has joined are not sent to player 2 when (s)he joins. In the play sessions this showed
itself when a tester pressed a button in the level that caused a action trigger to trigger
an event which was sent to the server, and the appropriate action was performed for this
player. The other tester though had not yet entered the game, and when he entered the
game the action that had occurred on the �rst player did not occur for the second player
thus making inconsistencies between the two game worlds. The �rst player was then
forced to press the button again in order to trigger the event for the new player. This
is in reality a rather big error, especially when the players are not located in the same
room and thus not able to tell the other player about it. It could be solved by storing
important messages, like event messages, in a list on the server and use this list when
a player joins to send the information so that the state of the game world for the new
player is not di�erent from the states of the other players in the game.

Another observation made was when one of the testers exclaimed "I did not see the
exit!". This occurred when one of the testers had entered the exit of the level, thus
ending the demo. The players that said this was in fact nowhere near the exit when this
happened, but the game still ended with a message saying that a layer had reached the
exit and that the game was over. This was in fact intended by the project group so that
the players that did not enter the exit would not have to go to the exit, but instead be
brought to the new level instantly. For the player that went through the exit this was
not a problem, but for the other player this was a strange experience, and had he not
known that it was the end of the session and the level he would not have understood
what had happened. This could be solved by giving visual clues or text when one of

11.1. PROTOTYPE TESTING AND RESULTS 157

the players enter the exit, but it could still be strange for the players. Another solution
would be to not load the new level until all of the players had entered the exit. This how-
ever would not have been possible with the current test level as it only allows one player
to reach the exit. A re-design of the level would thus be necessary in order to support this.

The testers had more problems with the controls than the project group had antici-
pated. This could stem from the fact that the game was run on a laptop computer using
an emulator and that the button layout thus became quite awkward. The project group
could however have explained the controls better, and perhaps given the testers either
a help screen in the game that described the controls and the basic mechanics of the
game, or as a real world instruction paper that explained the basics of the game to the
testers. On of the testers had problems with the controls for at least half of the �rst play
session. How the controls work on a real mobile phone though can not be judged by this
test since the di�erence between the laptop computer and a mobile phone is severe. The
button layout also di�ers from mobile phone to mobile phone since the manufacturers
can choose how to implement certain Java ME keypad actions since Java ME has generic
action description in MIDP.

A problem observed by the project team was that of the graphical representation of
a trigger in the game world. These triggers generate events, as described previously, and
in the test level there are several such trigger objects which open up doors. These trigger
objects are presented graphically as a panel with a red button on them. They do not
however have separate graphical representations for when they are not pressed, versus
when they are pressed. This had the consequence that the players would occasionally
try to press a trigger several times and since in the current version of the prototype such
triggers can only be triggered once, nothing happens when they do this. This happened
especially often when they reached a trigger that they did not press themselves(even
though some times they also attempted to press such triggers), and also when they
reached a trigger object that had previously been pressed by another player when they
were not close enough to this trigger that they could see the action that corresponded to
the event triggered by the object, e.g. they had not seen that a door had been opened
by the other player pressing this trigger object.

A solution to this problem could be to have a visual di�erence between the two states
that such a trigger object can be in. For instance when the object has not been triggered,
the red button on the panel could stand further out from the panel than when it has
been triggered. When a player then triggers it the red button could be pressed in. Visual
clues that were clear could also be used, e.g. by destroying the trigger object when a
player presses it, or for instance have the trigger object look like it is malfunctioning by
for instance animating it so that there seems to �y electric sparks out of it. Audio clues
could also be used for the trigger objects such that the object plays a di�erent when
a player can trigger it, versus when the player can not trigger it. Thus the player can
relate a sound to a door opening, and may thus conclude that when another sound than
this is played when (s)he presses the button, the trigger object has already been triggered.

158 CHAPTER 11. PROTOTYPE EVALUATION

The project group observed several bugs during the test sessions, some of which were
known in advance. The �rst bug that was observed was that when a player walks a
object that has moved from one position to another in a level, the player will get stuck
on the edge between a non-movable object and the object that previously moved. This
was known in advance and is caused by a fault in the collision detection. A solution to
this problem was not found during the development and it was thus left in the game.

Another bug that was found during the test sessions was not known by the developers.
The bug happened when a player was jumping and was hit by another player with the
club. When this was done in certain areas of the level the player that was hit with the
club was thrown out of the bounds of the level. The player was then falling endlessly and
could not come back to the inside of the level, thus forcing the player to quit the game,
and it could also make the level unsolvable for the other players since the level requires
more than one player in order to be solvable. This was what happened at the end of the
�rst play session, and cause the session to be ended. A solution to this problem could be
to redesign the level by setting up high wall around the level such that a player could not
jump out of the level. Another solution could be to check whether the player is within
the boundaries of the level, and if the player then falls out of the boundaries of the level
reset him(her) to for instance the last position of the player before (s)he fell o� the level.

The di�erence of skill level between the two testers in the test sessions was relatively
high, were one of the testers had played games before, while the other did not have much
experience in playing games. This fact did indeed show itself during the test sessions
were the more skilled player understood the concepts of the game quicker, and understood
better how to control the game and how to use the di�erent game mechanics available
to the testers(i.e. the club mechanic, the character movement, and the ability to trigger
certain objects). It also showed itself in that the more skilled player took more control
of the session, especially in the second play session, and that tester tried to take control
of the situation and navigate the two testers through the puzzles. The di�erence of skill
between the player became less apparent as they became more familiar with the controls
and when they became more able to understand how best to use the game mechanics
available to them though. Nonetheless it shows a interesting social behavior of players
that are more skilled than other players where they sometimes attempt to take control
of the situation, perhaps because they feel that in that way they stand a better chance
of completing the objective at hand. This behavior could be interesting to investigate
further in future research.

Another observation was made by the project group that involved the di�culty of un-
derstanding how to solve the puzzles. This was especially evident in the �rst play session
where they could not discuss how to solve the puzzle. At certain points in the level the
testers seemed unclear about how to solve the puzzles. This is to be expected however
since they are not fully able to understand how to use the game mechanics properly after
having just started to play the game. The project group however could still do a better

11.1. PROTOTYPE TESTING AND RESULTS 159

job as to indicate how to solve the puzzles. This could be done subtly in the game, for
instance with painted arrows that indicate the route the testers should take, or basic
drawn out instructions on how to solve a speci�c puzzle, for instance by drawing a club
poster next to a puzzle that requires the player to use his(her) club. Another solution
could be to measure how long the players take to solve a puzzle. If the players then use
more time than had been initially intended by the developers, the game could give visual
or audio clues to the testers, making it easier for them to understand the solution to the
puzzle.

The problem could also stem from the fact that the level was designed in such a
way that it was to di�cult to understand for new players. It may be di�cult for a new
player to understand that (s)he must use a speci�c game mechanic to solve a puzzle
if (s)he has never used this mechanic to solve a puzzle before. The developers should
then possibly introduce the game mechanics to the players in a less di�cult way by for
instance introducing only one new gameplay mechanic for each level, and at the start of
each level explain how to use the mechanic, and by guiding the player through the level
indicate to the player in which situations (s)he should expect to use this mechanic. By
introducing the game mechanics in such a way, the developers could create increasingly
complex puzzles where in the �nal levels all of the game mechanics would have to be used
together to solve the puzzles. In these more complex levels then the player would have
a better chance of understanding how to solve the puzzles since they had experienced
similar situations previously in the game.

Questionnaire

Because the two testers answered a questionnaire after each play session there are four
answer sets. The interesting part is that there are two ways of looking at the question-
naires. The �rst ways is to simply look at the answers to the questions in order to gain
some insight into how the game works, but the questionnaires can be checked for di�er-
ences between the two play sessions thereby trying to see whether the opinions of the
testers changed in the two di�erent situations. Due to the low sample size however, no
true statistic results can be drawn from the questionnaires, but they may show areas that
can be further investigated(as discussed previously). The questions in the questionnaire
from Table 11.1 themselves are discussed sequentially below:

Q1: This question asked the testers whether they found that playing the game with
another person enabled them to cooperate and work together to solve the puzzles.
All four answers gave this question a 5, or strongly agree, thus indicating that the
testers felt that playing the game with another play was a cooperative experience,
and that this did not change between the sessions.

Q2: This question asked the testers whether they thought that the concept was suitable
for a game on a mobile platform. All of the testers gave 5 as an answer, thus
indicating that they indeed thought this to be the case. It also indicated that the
two di�erent environments they played the game in did not change this fact.

160 CHAPTER 11. PROTOTYPE EVALUATION

Q3: This question asked the testers whether they would like to play a �nalized game
based on this concept. All of the answers were a 5, and they did not change between
the play sessions. This indicates to the project group that the concept for this game
may be worth continuing and perhaps take some of the points found during this
test session and enhance the game further.

Q4: This question asked the testers whether they found the puzzles suitable for a mul-
tiplayer game. On this question there was a slight di�erence between the answers
of the two play sessions. In the �rst play session the average of the answer was
4.5(i.e a 4 and a 5), and in the second the play sessions the average answer was
5(i.e. two 5's). Although the di�erence between the two play sessions is small,
and that a 4.5 still means that the testers agree with the question, it still shows
that the testers found the puzzles slightly more suitable for a multiplayer game
after having playing he second time. The reason behind this though could be both
because they understand the game better the second time they played it, or that
the communication in the second play session made it easier to solve the puzzles.

Q5: This question asked the testers whether the though the game would be more enjoy-
able to play if it contained competitive elements. As with the previous question this
question slightly di�erent answers between the two play sessions. In the �rst session
the average was 4.5, and in the second the average was 5. Firstly this indicates
that both the testers after both play sessions feel that the game would be better
or more fun if there had been competitive elements in it. This was not the focus of
the prototype, but the project group acknowledges that competitive elements could
make the game more fun, or bring more incentive for the players to play the game,
and make it more rewarding for the players as well. This is something that could
be added in future iterations of the game. The second interesting observation was
that the average answer score changed between the two play sessions, and that it
changed to be a higher score in the second play sessions. This may indicate that
when the testers play the game in separate rooms the fact that they are unable to
communicate easily makes the game more di�cult, and that they then do not re-
quire as much competitive elements in the game, while in the second session where
they play in the same room the communication options makes it easier to them
and thus the need for competitive elements gets stronger. These are just thoughts
though since the changed was very small, and the results from both play sessions
indicated that the testers would have liked to have more competitive elements in
the game.

Q6: This question asked the testers whether they found it easy to work together with
another players to solve the puzzles. The di�erence between the answers after
each play session for this question was higher than that of the previous questions.
For the �rst play session the average score was 3.5. This shows that even though
the testers were able to play the game, they had problems working together with
another player to solve the puzzles when they were located in separate rooms. This
was also observed by the project group during the play session. The score for

11.1. PROTOTYPE TESTING AND RESULTS 161

the second play session was 5, thus indicating that when the two testers were in
the same room they found it easier to work together and solve the puzzles. This
indicates to the project group that there is in fact a di�erence between the two
situations, at least in this game.

Q7: This question asked the testers whether they thought that the experience of playing
the game would change for the worse if they had to play the game alone. The
average score for the question was 5 for both play sessions. This indicates that
the prototype game adheres to the focus of the project group for the game, i.e. to
create a prototype game where the focus was on cooperative multiplayer gameplay.

Q8: This question asked the testers whether they thought that the game supported co-
operative gameplay well. The average score for this question was 5 for both play
sessions, and like the previous question(Q7) it thus indicates that the prototype
game adheres to the main focus the project group had when developing the proto-
type.

Q9: This question asked the testers whether they thought that the game forced the
testers to work together and if so whether they found it to be positive or negative.
The answers to the question from the testers were all 'positive' thus indicating that
the game indeed forced the two players to work together, which was the aim for
the project group. It also indicated that the testers found this to be a positive
experience, which could further lead the project group to believe that the concept
behind the prototype game is sound.

Q10: This question asked the testers whether they though the controls were easy to
understand and use. Here the answer scores di�ered the two play sessions again
with the average score of the �rst play session being 3.5(where the scores were 3
and 4), and the average score of the second session being 4(where the scores where
4 and 4). This �rstly indicates that the testers did not fully agree with the controls
being easy to use and learn, thus meaning that the controls were not perfect. It
could also indicate though that the project group had not explained the controls
to the testers good enough, which was previously discussed in the observation part
of this section. Secondly it indicates that the testers found it easier to control the
game in the second play session. This is most probably because the testers had
become more used to the controls by the second session, and thus it was easier for
them to control the game then.

Q11: This question asked the testers whether they found the puzzles in the game to
be easy to understand and solve. Here the average scores of the questions di�ered
between the two play sessions. For the �rst sessions the average score was 3.5(with
a 3 and 4), where for the second sessions the average score was 4(with two 4). This
indicates that the testers found the puzzles to be slightly easier to solve during the
second play session. This could be because of the communication that occurred
between the two players in the second session, which was observed by the project

162 CHAPTER 11. PROTOTYPE EVALUATION

group as well. It could also indicate that the puzzles themselves are not perfect
since the average score for both sessions were below 5. Even though the testers
mostly agreed with the puzzle4s being easy to solve, there might still be room for
improvement in the design of the puzzles in future work with the prototype game.

Q12: This question asked the testers whether they found the game mechanics available
to them were suitable for a cooperative multiplayer game. For both play sessions
the average score of the question was 4.5(with a 4 and a 5). This indicates that the
testers found the game mechanics to be suitable for a cooperative multiplayer game,
but also that there is room for improvement in future work with the prototype since
none of two average scores were 5.

Q13: This was an open question that asked the testers to write down any �aws or
bugs they found while playing the game. One of the testers wrote about the bug
involving jumping and using the club mechanic on a player that is jumping, which
was previously discussed previously in this section. This further indicates that this
is a bug that should be �xed.

Q14: This was an open question that asked the testers to write about their thoughts
of enhancements to the game in terms of player abilities, or in puzzle design. One
of the testers suggested that the club mechanics to be changed to also allow for
clubbing other players vertically into the air. Currently the club mechanic can
only be used to club players left or right. The project group acknowledges that this
could indeed add to the game, and it would give possibilities to create new puzzles
around the club mechanics. These new puzzles would be similar to the old puzzles
revolving around the club mechanic in nature, and they would thus feel similar to
the players.

Q15: This was an open question that asked the testers whether they found any parts of
the prototype game that they wanted to change, or whether there were anything
they would like to add to the game in order to improve it. One of the testers
suggested that the developers could add monsters to make it more di�cult, and
more interesting. These monsters would then be controlled by the server and the
players would have to either bypass them, or disable them in some fashion, for
instance by using the club to beat them. The project group acknowledges that
this could add more incentive to the player for playing the game, similar to adding
more competitive elements previously discussed, but for this project this was not
the main focus. The focus of this project, as previously discussed, was more on the
social and cooperative side of the game. In future iterations of the game however,
server controlled enemies would be a great addition that could make the game more
exciting to play, and an element of di�culty not directly tied to puzzles.

11.2. PROTOTYPE EVALUATION 163

11.2 Prototype evaluation

The �nished prototype game is a 2D side scrolling platform game with puzzle elements
with a focus on cooperative multiplayer where two or more players play in the same level
and help each other to �nish the level and continue to either the next level, or the end
of the game. The main focus for the group was to create a prototype that allowed the
group to see how players can work together in a cooperative game, and whether such a
game can be made for a mobile game.

The prototype game in its �nal state seems to have reached the goals of the project
group, at least in terms of it being a game that requires two or more players to work
cooperatively together in order to �nish the game. The observations made during the
testing session and the questionnaires answered, which were discussed in the previous
section, also indicate that the game itself has reached the goals of the project group, and
it allowed the project group to test some of the questions of the project group. During
the test session the game also indicated that there were di�erences in the experience
of players that play the game in the same room versus players that play the game in
separate rooms. This may indicate both that there exist a di�erence in how players play
games when they are in di�erent location situations, which should be further investi-
gated, but it may also indicate that the games themselves should be created with this
in mind. The project group could for instance attempt to implement tools in the games
that helps the players to overcome the di�erences. Another issue that could be further
investigated is whether the players themselves play games di�erently when they are lo-
cated in the same room, versus when they are located in separate rooms. Will a player
for instance be more helpful when (s)he is located in the same room as another player,
and does that mean that a player is less likely to help a player if they are not located
in the same room? These and similar questions could lead to further research in the area.

From a technical viewpoint the game could have performed better. Even though it
was only meant to be a prototype, and that the focus was not on the technical side, or
on the performance of the game. The project group found some bugs during the test
sessions, which are described in the previous section. There were also game mechanics
and features that the project group wanted to add to the game, but were not able to;
either because of time constraints or because of implementation problems(which is dis-
cussed more thoroughly in Section 9.4). These problems did however not make the game
unplayable, and it was still able to give the project group an insight into the problems
that it wanted to look into, such as the cooperative part of the game.

The project group was also unable to test the prototype on a real mobile device, such
as a mobile phone, but used a emulator instead to test out the game and the concept.
Since the focus of the project was not performance though, this is not a big problem
since the emulator still allowed the project to test out the game. In future work with the
game however a real world test situation using a mobile network and a real server should
be considered since it will help with creating a better performing multiplayer game in

164 CHAPTER 11. PROTOTYPE EVALUATION

terms of network capacity.

Based on the test sessions and the evaluations in this chapter the project group claim
the prototype game to be conceptually sound since it followed the concept behind the
Platform-puzzler, and it allowed the project group to investigate and research the coop-
erative and social nature of mobile games within the context of this project.

Part V

Summary

165

Chapter 12

Conclusion

This chapter seeks to answer the research questions identi�ed in Chapter 2, as well as
concluding the work done in the project and the �ndings of the project.

12.1 Answers to research questions

1. How does player co-location(i.e. an environment where two or more people
are located in the same room) a�ect the experience of playing games?

This research question tries to look at co-location and how it a�ects the experience of
playing games.

(a) Are some game concepts more suited for co-located environments than
others?

As the test session of the prototype game created for this project shown, which was
discussed in Chapter 11, there are at least some game concepts that are easier to play
when the players are located in the same room. When the prototype game was tested
with testers from outside the project group the project group observed di�erences between
the situation where the testers were located in the same room, versus when they were
located in the same room. This indicates that some game concepts are more suited for
co-location than non co-location. Then you can also argue that games in for instance
the �rst person shooter genre may not gain much from enforcing co-location since these
games are typically more played in non co-located situations than co-located situations.
The answer to the question then becomes yes, since a game that is purposely created to
be played co-located will most likely be better at it than games that were not created
speci�cally for this.

The test session of the prototype game also shows that games that were created to
enforce cooperative multiplayer, where the players are forced to help each other to �nish
the game, will work better in a co-located situation than a non co-located situation when
the games do not support communication within the game. The observations made by
the project group showed this quite clearly since the testers completion time became

166

12.1. ANSWERS TO RESEARCH QUESTIONS 167

much smaller during the play session where they were located in the same room, so much
so that the di�erence seemed more likely to come from this change in co-location rather
than the skills of the testers themselves increasing. If a game has good communication
tools included in the game however, this might change. This was not shown in the tests
done in this project however, and can not be fully concluded here.

(b) Can some game concepts a�ect the experience of playing the game dif-
ferently depending on whether the players are co-located or not?

During the test session discussed and described in Chapter 11 the testers where asked
questions regarding the nature of the game after having played it. The testers answered
these questions after both sessions giving the project group the opportunity to look for
di�erences between the two play sessions1. The answers the testers gave after each of
the test sessions showed that the testers found the it easier to play the game and work
together with another player when they were located in the same room, and also that
they found the puzzles to be easier to solve and understand when they were in the same
and were able to talk and discuss with each other the solutions to the puzzles, and how
the players should work together to solve them. The observations made by the project
group during the test sessions also showed that the testers seemed to solve the puzzles
easier when they were located in the same room.

This indicates that there are in fact concepts that can a�ect the experience of playing
games di�erently depending on whether the players are located in the same room, versus
being located in di�erent rooms. Due to the small sample size(being only two testers)
though this may not be a general fact, but at least for this concept and in these testing
conditions the di�erence was quite clear to the project group.

2. How do gameplay mechanics a�ect social gaming?

This research question tries to see whether the gameplay mechanics in a game can a�ect
the social experience of the game.

(a) Can social gameplay mechanics in games a�ect the experience of the
player?

The social archetypes and game mechanisms discussed in Section 5.2, which were iden-
ti�ed by Richard Bartle and Shannon Appelcline, shows that the availability of social
mechanisms in a game may help a player archetype express his(her) interest. The so-
cializers discussed by Bartle for instance may �nd it very di�cult to socialize with other
players if there are no gameplay mechanics available in the game that support socializa-
tion(which could be as simple as a chat system with textual messages). The di�erent
gameplay mechanisms can also a�ect each other. A player that is for instance only in-
terested in �ghting against other players in a game, i.e. the killers, may be a nuisance

1In the play sessions one session was performed with the testers located in di�erent room, whereas in
the other sessions the players were located in the same room.

168 CHAPTER 12. CONCLUSION

for an explorer, i.e. a player that likes to explore the game world, since the game might
allow the killer player type to kill the explorer. Here the social mechanism that allows a
player to kill other players is a�ecting another player in a negative way. The gameplay
mechanisms can thus a�ect the players both positively and negatively, and the develop-
ers must then strive to create a balanced game where the players have mostly positive
experiences, but that they also ensure this does not feel restricting to the players. In
the previous example for instance the game could have certain areas that players were
allowed to kill other players, like it is done in World of Warcraft.

(b) What game mechanics can be used to make mobile games social?

In Section 5.2 several mechanisms suggested by Appelcline are discussed. Appelcline sug-
gests for instance agreeable battles in which to players agree to �ght each other, which
was discussed in the previous research question as well. Other mechanisms include such
mechanisms as having auctions were players can sell and trade virtual game items, and
having player votes where the players votes for game rules, which maps to play on in
shooter games, etc.

The mobile games that were investigated in Chapter 6 also showed some of the so-
cial mechanisms that exist in some games today. Some of the games in the chapter have
online leader boards with player rankings where the players can enter the scores they
achieved in the games and thereby test their skills against other players. Another feature
found in some of the games were buddy lists which allowed the players to save a pro�le
for the players that the meat during the multiplayer game sessions. These buddy lists
can then be used to keep track of players, to send instant messages between the players
in the list, or to send game invites directly to the players on the list. Some of the games
also had an emote system that allowed the players send taunts to the players which could
for instance show the emotions of the player, or be used to gloat.

These are just some of the gameplay mechanisms that can be implemented into games
to make playing the games a more social experience for the players.

3. What game genres are most suited for mobile collaborative games?

In Section 5.3 several di�erent game genres are discussed, and the social aspect of them
are also discussed. Generally there are not many genres that can have a form of col-
laborative element to them at all. Some �rst person shooters for instance have a coop
mode where two or more players can play together either through the original single
player mode, or through a special dedicated coop mode. First person shooters are usu-
ally considered to be competitive and often have mutliplayer modes where the players
compete against each other and kill each other for points. They also however have team
based modes where they work together as a team to kill players on other teams, or to
complete in game objectives such as planting bombs in the game Counter Strike. This
shows that while a genre like the �rst person shooter genre which is considered to be a

12.2. CONCLUSION 169

highly competitive genre in multiplayer, still has elements of collaborative and coopera-
tive gameplay in them.

The other genres discussed in the same section also have, or at least have the oppor-
tunity to have, elements that support collaborative and cooperative gameplay. Team
based modes is very common in many multiplayer games, and in such modes the players
have an advantage if they are able to work together. Whether they actually want to
cooperate with the players on their team is another matter completely though. Since all
of the game genres have elements of collaboration in their multiplayer in some form it is
di�cult to say that a game genre is more suitable than another. It may even be easier
to look at di�erences between individual games, and what the vision of the people that
created the games had. A game could be meant to have only single player for instance,
or that it was intended not to have collaborative elements at all. A single game does
not equate to the whole genre though, and even though not all games in a genre have
collaborative elements, does not mean that games in the genre could not, or should not
have collaborative elements. There are therefore no genres that are completely unsuited
for collaborative games, and rating the genres on how collaborative they are might not
even be as interesting as looking at individual games.

12.2 Conclusion

The goal of this project is to explore new game concepts for mobile and social games
where the games should either be real-time or asynchronous mobile multiplayer games
where several players interact using the mobile network. In addition a prototype that
enabled the project group to help test some of their research questions was also to be
built, and the focus of the project was slightly more on the social side of gaming than on
the technical or performance side.

The prototype , Platform-puzzler, was conceptually sound as it allowed the project group
to test some of their research questions, and during the test sessions described in Chapter
11 it showed that it enabled the project group to test the cooperative nature of the game,
and how players are a�ected when they are located in the same room versus when they
are located in di�erent rooms. The prototype game indicated to the project group that
there in fact is a di�erence between the two situations, and that this di�erence should
be considered when developing cooperative games.

Even though the prototype had some bugs, and that it lacked some of the mechanisms
originally planned for the game, it still echoed the idea of the underlying concept that
social games can be created on a mobile platform, and that it can enable cooperative
gameplay between players.

The other concepts discussed in this project also show the possibilities of games on
mobile platforms. Mobile games have unique experiences, but also unique possibilities
by enabling mobility to factor into the gameplay, as well as fact that the di�erent tech-

170 CHAPTER 12. CONCLUSION

nologies found in the mobile devices can be used to enhance the gameplay and experience
of playing the game further. Mobile games also utilize and incorporate social gameplay
mechanics into them, and there are still more areas where social mechanisms can improve
the experience of the players in multiplayer games, as well as new mechanisms that can
be implemented in games. The concepts described in Chapter 7 and Chapter 8 show
only some of the possibilities with mobile and social games.

Chapter 13

Further work

This chapter looks at improvements in the form of ideas of new functionality as well as
improvements to the existing game, that the project group feels will lead to a better
prototype game.

13.1 Improvements to Platform-puzzler

The �rst step in the future work with the prototype game would be to look at the bugs
found during the test session discussed in Chapter 11, as well as look at how the game
deviated form the requirements found by the developers, which is described in Section
9.4. The bugs should be �xed, but the deviations from the requirements are not so clear.
Some of the deviations stem from features originally planned that were left out of the
prototype game, such as players bouncing o� walls. If these features were to be added the
game would have to be further tested to see whether they �t the game, and whether they
function properly. The project team experienced some problems with the collision code
and this would also have to be �xed in order to implement the features that were left out.

The performance of the game in multiplayer should also be tested further so that it
performs better, has less latency and perhaps also require less bandwidth. Further tests
to see how the game performs on mobile networks should also be performed since this
was not done during this project due to time constraints.

A problem that was found during the play testing was that the testers found the puzzles
in the game to be somewhat di�cult to understand, especially when they played the
game in di�erent rooms. A solution to this problem was discussed in Chapter 11 where
some of the solutions discussed were to create introduction levels that introduced each
new game mechanic to the player such that the player could become more acquainted
with the game mechanics, and thus �nd it easier to use them in more di�cult puzzles.
Having in game clues was also discussed, such as signs that explain certain puzzles. Hav-
ing arrows that show where the other players are located when they are not on the players
screen was also discussed, since this was a problem for some of the testers.

171

172 CHAPTER 13. FURTHER WORK

The test level itself should also be evaluated, especially since one of the puzzles proved to
be di�cult for the testers to complete due to a slight design error by the project group.
New levels could also be created that introduced increasingly more di�cult puzzles. If
new gameplay mechanisms where to be introduced the developers would also have to
create new levels that contained puzzles that used these mechanics. The levels could also
be tailored to suit more than two players, and even require more than two players.

The testers wrote on one of the questions in the questionnaire that they would like
to have more competitive elements added to the game, both to make the more interest-
ing as well as increasing the di�culty. One of the testers suggested adding monsters to
the game. These monsters could for instance try to stop the players from completing
the levels. The player could for instance use his(her) club to hit the monster, or a new
gameplay mechanic could be introduced. Borrowing an idea from the Super Mario games
the players could jump on the enemies to remove them from the game for instance.

Other competitive elements could also be added, and these elements could incorporate
non violent elements such as a score system. The game could add scores either such
that the players gained individual scores thereby increasing the competition between the
players, or the score could be team based with an online high score list that ranked
the score of the di�erent teams. Individual scores would add a competitive element to
the cooperative nature of the game thereby making the players both team mates and
opponents. This could lead to a more exciting experience for the players where they
could decide to get for instance sabotage the cooperative puzzles in an attempt to get
more points for (her-)himself.

The score itself could come from for instance in game objects that the players would
have to collect, similar to the coins found in Super Mario games. The score could also
come from other sources, e.g. from killing monsters if monsters were included to the game.
The players could also gain points from completing puzzles and �nishing the levels. The
levels could then have di�erent scores where some of the scores were individual whereas
other points were cooperative points which were given to all the players that completed
the objective bound to it. This could carry out to level design as well by for instance
having multiple paths though a level were one path required teamwork from two or more,
where another path could require less teamwork, but have a higher amount of objects
that gave individual points. The players would then have to choose whether to play the
game cooperatively, or whether they wanted to be more individual. The points given for
each of these paths should therefore be carefully chosen as to encourage both cooperative
players and individual players.

13.2 Further research

Additional testing of the prototype could give further insight into social gaming, and
cooperative gaming. New ares of interest could be cooperative versus competitive gam-
ing, and how best to incorporate the two into games and how they a�ect players, and

13.3. IMPROVEMENTS TO THE OTHER CONCEPTS 173

whether they a�ect players di�erently. If the prototype was to be updated with some of
the improvements suggested in the previous section, additional testing would also help
in testing the new game as well as give further insight into the research questions of this
project as well as potential new research questions.

The test sessions discussed in Chapter 11, and the indications found during both the
observation made during the play test sessions by the project group, along with the an-
swers from the questionnaires, should also be investigated further. A larger study could
also be performed. Since the test session only had two testers the results found during
the test session was mainly indications, and a larger study could help give more de�nite
answers to the questions raised in this project, along with the observations already made
during the �rst test session.

13.3 Improvements to the other concepts

The other concepts described in this report could also be further investigated and pro-
totyped to identify new functionality suited for the concepts as well as discovering the
value of the concept itself, and whether the concept is worth considering. Some of the
concepts may give additional insight into the questions raised in this project, as well as
give additional insight into social and mobile games. Some of the concepts conceived and
described in this report could also be used together, and use components of each other
to form new concepts.

Chapter 14

Recommended readings

This chapter noti�es the reader of articles or books read by the project team which
will help interested readers in further understanding the source material and resource
material found during the projects lifetime. The following list shows some of the sources
of information used in this project.

Programming Wireless Devices With the Java 2 Plattform Micro Edition, Second Edition
by Roger Riggs et al. is a book that describes the Java ME architecture in a easy-
to-understand way. It describes the various parts of Java ME, and describe in more
detail the API's of CLDC and MIDP, and show the di�erences between the various
versions of the API's. The book also shows many relevant examples on how to use
the various parts of the CLDC and MIDP framework and describe how to create
MIDlet's using MIDP.

HEARTS, CLUBS, DIAMONDS, SPADES: PLAYERS WHO SUIT MUDS
by Richard Bartle is an excellent article discussing the various social behavior of
people who play MUDs, or Multi User Dungeons. The article discuss the normal
behavior of such players as found by the author, which himself has been involved
in the creation of various MUDs.

Social Gaming Interactions, Part One-Three by Shannon Appelcline further builds
on the social behavior described by Richard Bartle in his article, and gives a list of
functionality and features ideal for developers to utilize in order to create possibili-
ties for players to engage in social interaction. The article builds on the information
found by Bartle, and describes several features utilizing the various social behavior
patterns discovered by Bartle.

174

Bibliography

[Abowd, 1997] Gregory D. Abowd, Anind K. Dey, Gregory Abowd, Robert Orr & Jason
Brotherton, 1997 Context-awareness in wearable and ubiquitous computing Last vis-
ited 11 of October 2007 at http://www.cc.gatech.edu/fce/pubs/iswc97/wear.html

[Anderson] Christo�er Andersson Mobile Positioning - Where You
Want To Be! Last visited 11 of October 2007 at
http://www.wirelessdevnet.com/channels/lbs/features/mobilepositioning.html

[Appelcline,2003-1] Shannon Appelcline, 2003-11-20 Social Gaming Interactions,
Part One: A History of Form Last visited 18 of October 2007 at
http://www.skotos.net/articles/TTnT_/TTnT_136.phtml

[Appelcline,2003-2] Shannon Appelcline, 2003-12-04 Social Gaming Interac-
tions, Part Two: Competition Last visited 18 of October 2007 at
http://www.skotos.net/articles/TTnT_/TTnT_137.phtml

[Appelcline,2003-3] Shannon Appelcline, 2003-12-18 Social Gaming Interactions,
Part Three: Cooperation & Freeform Last visited 18 of October 2007 at
http://www.skotos.net/articles/TTnT_/TTnT_138.phtml

[Apperly, 2006] Thomas H. Apperley, University of Melbourne, SIMULATION & GAM-
ING, Vol. 37 No. 1, March 2006 6-23 Genre and game studies: Toward a critical
approach to video game genres

[Bartle, 1996] Richard Bartle, 1996, HEARTS, CLUBS, DIAMONDS, SPADES:
PLAYERS WHO SUIT MUDS Last visited 18 of October 2007 at
http://www.mud.co.uk/richard/hcds.htm

[Basili, 1992] Victor R. Basili, The Experimental Paradign in Software Engineering

[BeforeCrisis.net] Before Crisis.net Last visited 7 of October 2007 at
http://www.beforecrisis.net/

[Belcher, 2006] James Belcher, 27 of January 2006 Mobile Gaming is Taking O� Last
visited 15 of October 2007 at http://www.imediaconnection.com/content/8022.asp

[BioShock] 2K Boston and 2K Australia, 2007, http://www.2kgames.com/bioshock

175

176 BIBLIOGRAPHY

[BlitWise Productions] BlitWise Productions. Last visited 20 of February 2008 at
http://www.blitwise.com/ptanks.html

[Bluetooth] Bluetooth.com Last visited 5 of March 2008 at
http://www.bluetooth.com/Bluetooth/Technology/

[Braude, 2001] Eric J. Braude, 2001, Software Engineering An Object-Oriented Perspec-
tive

[BREW] Quelcomm BREW Last visited 14 of October 2007 at
http://brew.qualcomm.com/brew/en/

[Chau, 2006] Fiona Chau, 16 of September 2006, Mobile gaming
aims for mass market Last visited 15 of October 2006 at
http://www.telecomasia.net/article.php?id_article=1744&page=5

[Cheok, 2004] Adrian David Cheok, Kok Hwee Goh, Wei Liu Farzam Farbiz, Siew Wan
Fong, Sze Lee Teo Yu Li, Xubo Yang, 2004, Human Pacman: a mobile, wide-area
entertainment system based on physical, social, and ubiquitous computing

[Cheok,2006] Adrian David Cheok, Anuroop Sreekumar, Cao Lei, Le Nam Thang, 2006
Capture the Flag: Mixed-Reality Social Gaming with Smart Phones

[CybStickers] CybStickers - nå kan du lage digitale helleristninger med mobilen! last
visited 7 of October 2007 at http://www.sintef.no/content/page1____6785.aspx

[Deus Ex] Eidos Interactive Ltd., 2000, http://www.eidosgames.com/games/info.html?gmid=109

[Doom] id Software, 1993, http://www.idsoftware.com/games/doom/doom-ultimate/

[Doom 3] id Software, 2004, http://www.doom3.com/

[Drane, 1998] Christopher Drane, Malcolm Macnaughtan, Craig Scott Computer Sys-
tems Engineering University of Technology, Sydney, 1998 Positioning GSM Tele-
phones

[Duke Guide] Duke Nukem 3D Arena User Guide Duke Nukem Arena 3D Last visited 14
of October 2007 at http://cache.getitnow.edgesuite.net/imgs/appmedia/4117.pdf

[Ericsson] Technology, We develop the innovations and establish the stan-
dards that lead the industry, Last visited 18 of October 2007 at
http://www.ericsson.com/technology/tech_articles

[Ericsson, Edge] White Papir, Ericsson, February 2007, THE EVO-
LUTION OF EDGE Last visited 18 of October 2007 at
http://www.ericsson.com/technology/whitepapers/3107_The_evolution_of_EDGE_A.pdf

[Forman, 1994] George H. Forman, John Zahorjan, University of Washington, 1994 The
Challenges of Mobile Computing

BIBLIOGRAPHY 177

[Fox. 2002] David Fow, Roman Verhovsek, 2002 Addison Wesley Micro Java Game De-
velopment

[Fuglem, 2004] Ingebrigt Fuglem, Tore Worren, Steinar Brede, 2004 De nye lokasjonste-
knologiene for tjenesteproduksjon.

[Game Boy] Game Boy micro Last visited 11 of October 2007 at
http://www.gameboy.com/

[GameSpot] GameSpot.com Last visited 12 of October 2007 at
http://www.gamespot.com

[Gears of War] Epic Games, 2006, http://gearsofwar.com/

[Gibson, 2006] Bruce Gibson, 2006 Press Release: Casual Gamers
and Female Gamers to Drive Mobile Games Revenues Over the
$10 Billion Mark by 2009 Last visited 15 of October 2007 at
http://www.juniperresearch.com/shop/viewpressrelease.php?id=19&pr=16

[GPS] Global Positioning System Serving the World Last visited 9 of October 2007 at
http://www.gps.gov/

[Hallberg, 2003] Josef Hallberg, Marcus Nilsson, Kåre Synnes, Luleå University of Tech-
nology / Centre for Distance-spanning Technology Department of Computer Sci-
ence and Electrical Engineering, 2003 Positioning with Bluetooth

[IGN Duke Nukem Review] Levi Buchanan, June 15, 2007 Duke
Nukem Arena 3D Review Last visited 14 of October 2007 at
http://wireless.ign.com/articles/796/796848p1.html

[iHobo] A Guide to Computer Game Genres Last visited 13 of October 2007 at
http://ihobo.com/gaming/genres.shtml

[iPhone] Apple - iPhone Last visited 8 of October 2007 at
http://www.apple.com/iphone/

[Java ME] The Java ME Platform - the Most Ubiquitous Application Platform for Mobile
Devices, Last visited 3 of October 2007 at http://java.sun.com/javame/index.jsp

[Jegers, 2006] Kalle Jegers, Mikael Wiberg, 2006, Pervasive Gaming in the Everyday
World

[JVM] Tim Lindholm, Frank Yellin The Java Virtual Ma-
chine Speci�cation Last visited 4 of October 2007 at
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html

[J2ME Building Blocks] J2ME Building Blocks for Mobile Devices Last visited 4 of Oc-
tober 2007 at http://java.sun.com/products/cldc/wp/KVMwp.pdf

178 BIBLIOGRAPHY

[Kolo, 2004] Castulus Kolo, Timo Baur, November 2004 Living a Virtual Life:
Social Dynamics of Online Gaming Last visited 18 of October 2007 at
http://www.gamestudies.org/0401/kolo/

[Krikke, 2003] Jan Krikke, IEEE Computer Graphics and Applications, Jan/Feb 2003,
Samurai Romanesque, J2ME, and the Battle for Mobile Cyberspace

[Lindley, 2003] Craig A. Lindley, October 3, 2003 Game Taxonomies: A High Level
Framework for Game Analysis and Design Last visited 13 of October 2007 at
http://www.gamasutra.com/features/20031003/lindley_01.shtml

[Liz, 2004] Joze Liz, June 2004 Nintendo Releases GBA Sales Milestones Last visited 11
of October 2007 at http://www.pgnx.net/news.php?page=full&id=4968

[Luukainen, 2007] Editor: Sakari Luukkainen, Topical Evolution Paths of Mobile Multi-
media Services , p.53-63, Anssi Vanhanen, MOBILE GAMES BUSINESS

[MachineWorks Northwest] MachineWorks Northwest Last visited 14 of Ocotber 2007 at
http://www.machineworksnorthwest.com/

[Microvision] MILTON BAILEY'S MICROVISION (1979-1981) THE GAME-
BOY WASN'T THE FIRST Last visited 11 of October 2007 at
http://ryangenno.tripod.com/sub_pages/Microvision.htm

[MobileTracker, 2005] Total mobile subscribers top 1.8 billion Last visited 7 of October
2007 at http://www.mobiletracker.net/archives/2005/05/18/mobile-subcribers-
worldwide

[New Edge] New Edge, Tower defense: Wrath of Gods 2007. Last visited 18 of February
at http://www.newedge.ru/en/ourgames/td.html

[New Super Mario Bros.] Nintendo 2006, http://mario.nintendo.com/

[N-Gage] N-Gage Last visited 11 of October 2007 at http://www.n-gage.com/

[N-Gage QD] N-Gage QD Game Deck | Gaming Deck | Gaming Phone | Gaming De-
vice | Accessories Last visited 11 of October 2007 at http://www.n-gage.com/en-
R1/gamedeck/ngage_qd/

[Nintendo DS] Nintendo DS Lite revolutionizes hand-held gaming with dual screens,
touch screen technology, built-in PictoChat software and more. Last visited 8 of
october at http://www.nintendo.com/systemsds

[Nintendo Wii] Wii.Nintendo.com - In-Depth Regional Wii Coverage Last visited 8 of
October 2007 at http://wii.nintendo.com/

[Nøsterud, 2007] Øivind Nøsterud, Alf Inge Wang(Main-supervisor), Anne Marte
Hjemås(Co-supervisor), autumn 2007. Mobile and social video games. Depth study
in the course TDT4570 - Game Technology at NTNU.

BIBLIOGRAPHY 179

[P990i] P990i - Oversikt - Sony Ericson Last visited 8 of Oc-
tober 2007 at http://www.sonyericsson.com/spg.jsp?cc=no&
lc=no&ver=4000&template=pip1&zone=pp&pid=10336

[Pelkonen, 2004] Tommi Pelkonen, February 2004 Mobile Games E-Content Report 3 an
integrating report by ACTeN Anticipating Content Technology Need

[POTCM] mDisney Studios - Pirates of the Caribbean Multiplayer game Last visited 21
of October 2007 at http://www.plundertheport.com/

[Playstation Portable] PlayStation.com - PlayStation Portable - About PSP Last visited
11 of October 2007 at http://www.us.playstation.com/PSP/About

[Powers, 2006] Michael Powers, November 2006, Mobile Multiplayer Gam-
ing, Part 1: Real-Time Constraints Last visited 15 of October 2007 at
http://developers.sun.com/mobility/midp/articles/gamepart1/

[Rashid, 2006] Omer Rashid, Ian Mullins, Paul Coulton, Reuben Edwards, 2006, Ex-
tending Cyberspace: Location Based Games Using Cellular Phones

[Riggs, 2003] Riggs, Taivalsaari, Peursen, Huopaniemi, Patel, Uotila, 2003, Programming
Wireless Devices With the Java 2 Plattform Micro Edition, Second Edition

[Soldat] Michal Marcinkowski, Soldat Last visited 16 of October 2007 at
http://www.soldat.pl/

[Tanenabum, 2003] Andrew S. Tanenbaum, 2003, Pearson Education Interantional,
Computer Networks, Fourth Edition

[Tetris Multiplayer] Tetris | EA Mobile Games | Mo-
bile Games Last visited 14 of October 2007 at
http://www.eamobile.com/Web/Catalog/US/en/game/mobile/ProductDetailOverviewView/product-
24171

[Tibia ME] Tibia Micro Edition. Last visited 14 of Ocotber 2007 at
http://www.tibiame.com/home/?language=en

[Undercover 2] Undercover 2: Merc Wars Last visited 21 of October 2007 at
http://undercover2.com/main.php

[Verizon] Duke Nukem 3D Arena Last visited 14 of October 2007 at
http://products.vzw.com/search_games.aspx?id=search_games&appSearchText=duke+nukem&appSearch+ParentCategoryId=247&appSearchCategoryId=0

[Verizon V CAST] Verizon V Cast. Last visited 14 of October 2007 at
http://products.vzw.com/index.aspx

[Verizon Wireless] Verizon Wireless. Last visited 14 of October 2007 at
http://www.verizonwireless.com/b2c/index.html

180 BIBLIOGRAPHY

[Wang, 2006] Alf Inge Wang, Dr.Ing Thesis, February 5. 2001, Using a Mobile, Agent-
based Environment to support Cooperative Software Processes

[Wang, 2005] Alf Inge Wang, Carl-Fredrik Sørensen, Steinar Brede, Hege Servold, Sigurd
Gimre, 2005 The Nidaros Framework for Development of Location-aware Applica-
tions

[Wang, 2006] Alf Inge Wang, Michael Sars Norum, Carl-Henrik Wolf Lund, 2006, Issues
related to Development of Wireless Peer-to-Peer Games in J2ME

[Wikipedia] Wikipedia, Last visited 18 of October 2007 at http://en.wikipedia.org/

[Williams, 2004] Christopher Williams, Mark Burge, 2004 MIDP 2.0 Changing the Face
of J2ME Gaming

[Wolf, 2000] Mark J. P. Wolf, 2000 Genre and the Video Game Chapter 6 of The Medium
of the Video Game

Part VI

Appendices

181

Appendix A

Installation and execution guide

This appendix describes how to install and play the prototype game. All folder destina-
tions are destinations to the zip �le that was delivered with the report.

A.1 How to start the client

The client is a Java ME application and can be started either by starting the game in
an emulator, or transfer the �les in the "platform puzzler/bin/client/" folder on to your
mobile phone, i.e. the PlatformPuzzler.jad and PlatformPuzzler.jar, where the jar �le is
the actual game and the jad �le is the description �le of the game. When the game is
transfered to the mobile phone, go to the folder that it has been transfered to and in-
stall it on your mobile phone. This will require that the mobile phone is able to connect
to the server via mobile network however, and it has not been tested by the project group.

Depending on your emulator you may in some emulators start the game by double click-
ing the jad �le. For other emulators however refer to their own descriptions on how to
start MIDlet applications. The project group used the emulator that can be downloaded
on Sony Ericsson's web sites1(Please note that this will require Java SE 1.6 or higher),
and the project group can only vouche for this emulator since no other emulators were
tried.

A.2 How to start the server

The server requires Java SE 1.5 or higher in order to run. To start the server simply go
to the "platform puzzler/bin/server/" folder and double click on "run Server.bat" which
will start the server.

1http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp

182

A.3. HOW TO PLAY THE GAME 183

A.3 How to play the game

Install the server and start the server on any device able to run Java SE 1.5 applications
and have a network connection. Please note that the update rate of the position request-
ing from the server can be updated in the .bat �le by altering the number displayed after
the java call. It is set to 250 as default which means that it sends a position request to
all of the clients on time every 250 milliseconds(roughly).

Then start the mobile game by either using a emulator or run it from your mobile
phone. Then you enter the IP address of the server to join the server. One server is
required per game and the game is most suited for two players at the moment; however
the server and an emulator can be run on the same computer. The controls will di�er
between the emulator/phone you use, but on the standard emulator from Sony ERicsson
the 4 and 6 are left and right movement, 5 is jumping, and the A is used to press trigger
objects while B is used to use the club. The game require two players in order to solve
the �rst level, and currently there is only one level in the game.

	Title Page
	Problem Description
	I Introduction
	Introduction
	Motivation
	Project Context
	Problem definition
	Reader's guide

	Research questions and methods
	Research questions
	Research methods

	Development tools and methods
	Development methods
	The waterfall model
	Modified waterfall model

	Development tools

	II Prestudy
	Technology
	Java Platform, Micro Edition
	Java ME Architecture
	Limitations

	Mobile game devices
	Mobile phones
	Location
	Hand-held game consoles

	Mobile network technologies
	1G
	2G
	3G
	WLAN
	Bluetooth

	Mobile games and social gaming
	Mobile games
	Multiplayer mobile gaming
	Pervasive gaming

	Social gaming
	Game genres
	Action
	Casual
	Fighting
	Racing
	Role-Playing Games
	Sport
	Strategy
	Social game genre discussion

	State of the art
	Mobile games on the market today
	Pictionary
	Mobile Battles: Reign of Swords
	AMF Bowling Deluxe 3D

	Summary

	III Own Contribution
	Previous game concepts
	Pervasive game concepts
	Museum Game
	Haunted House
	Real life event game
	Capture Point Domination
	Pervasive Battleship

	MMO Framework
	Robot Fighters
	SpaceShip Wars
	Massive Football

	Mini game collection
	Turn based multiplayer RPG mechanism
	2D Multiplayer Shooter

	New game concepts
	Strategy game
	Tower defense
	Tanks

	Puzzle game
	Platform-puzzler

	Mystery solving game
	Adventure style
	Quiz/Trivia style
	Mini game style

	Quiz game
	Concept summary
	Concept Comparison
	Concept choice

	Prototype: Platform-puzzler
	Game concept design
	Requirements
	Functional requirements
	Non-functional requirements

	Game Design & Implementation
	Client
	Server
	Client-server interaction

	Testing

	IV Evaluation
	Technology evaluation
	Emulator
	Network
	Test computer

	Prototype evaluation
	Prototype testing and results
	Questionnaire
	Results

	Prototype evaluation

	V Summary
	Conclusion
	Answers to research questions
	Conclusion

	Further work
	Improvements to Platform-puzzler
	Further research
	Improvements to the other concepts

	Recommended readings

	VI Appendices
	Installation and execution guide
	How to start the client
	How to start the server
	How to play the game

