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Abstract
We study applications of the Goldstone boson equivalence theorem to decay and
scattering processes, exemplifying the broken gauge theory structure of electroweak
interactions. Apart from interest on theoretical grounds, we are motivated by the
problem of the dark matter identity, and the importance of electroweak bremsstrahlung
contributions to dark matter annihilation. Higgs decay into charged gauge bosons is
approached using four separate methods, including the utilisation of the equivalence
theorem, and we show that the results of all approaches agree. Furthermore, the
equivalence theorem is applied to electroweak bremsstrahlung corrections in the
specific process of quark production from electron-positron annihilation. We find
that the emission of the Goldstone boson intrinsically has the appropriate high-
energy behaviour, in contrast to the longitudinal component of the massive gauge
boson. Thus, the equivalence theorem necessitate a cancellation of the longitudinal
contributions from all sub-processes at a given order in perturbation theory.
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Sammendrag
Vi ser på anvendelser av Goldstone-boson-ekvivalensteoremet på desintegrasjon- og
spredningsprosesser, som eksemplifiserer den brutte, justerinvariante strukturen til
elektrosvak teori. Utover teoretisk interesse, motiveres vi av det ubesvarte spørsmålet
om mørk materie, samt betydningen av elektrosvak bremsestråling i mørk-materie-
annihilasjon. Desintegrasjon av Higgs-bosonet til ladede justerbosoner studeres ved
hjelp av fire forskjellige metoder, deriblant ved hjelp av ekvivalensteoremet, og vi
viser hvordan resultatene fra de forskjellige metodene samsvarer med hverandre. I
tillegg anvender vi ekvivalensteoremet på elektrosvake bremsestrålingskorreksjoner
til kvark-produksjon fra elektron-positron-annihilasjon. Vi finner at emisjonen av
Goldstone-bosonet har iboende akseptabel høyenergioppførsel, i motsetning til den
longitudinale komponenten til det massive justerbosonet. Dermed nødvendiggjør
ekvivalensteoremet kanselleringen av longitudinale bidrag fra alle delprosesser i en
gitt orden i perturbasjonsteori.
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1 Introduction
The Standard Model of particle physics currently represents the best framework for
describing nature at its fundamental level [1]. It categorises all known elementary
particles and describe their interactions via three of the four known fundamental
forces.
On the theory side, the Standard Model is a quantum field theory, exhibiting

interesting physics such as local gauge invariance, spontaneous symmetry breaking,
anomalies and asymptotic freedom. Nevertheless, the applicability of a theory is
not established by how interesting it is, but rather on its explanatory and, perhaps
most important, predictive power. Fortunately, theoretical predictions from the
Standard Model have resulted in perhaps the best agreement between prediction and
experiment in the history of science [2]. Examples of predictions which have been
experimentally verified to a high degree of accuracy are: (i) the value of the electron
magnetic moment, which agrees with the value measured experimentally to eight
significant figures [3, 4], (ii) the existence of the massive weak gauge bosons W and
Z and their properties [5, 6], and (iii) the existence of the Higgs boson [7].
On the other hand, it is apparent that the Standard Model is not the full story

in terms of a complete theory of fundamental interactions. Indeed, it only accounts
for about 5 % of the content of the universe, according to the ΛCDM (Lambda Cold
Dark Matter)-model of cosmology [8]. The rest of the universe consists of dark matter
(∼ 26 %) and dark energy (∼ 68 %), whose identities remain great unresolved mysteries
of cosmology [9–13]. In addition, the model does not incorporate a description of
gravity, since there are no consistent quantum theory of gravity yet. Other issues
which presumably require physics beyond the Standard Model include observed
neutrino oscillations [14, 15] and the hierarchy problem [16].
The model describes the electromagnetic, weak and strong interactions by gauge

groups, where the force carriers are gauge fields. In 1954, C. Yang and R. Mills
generalised the gauge invariance of electromagnetism to construct a non-abelian gauge
theory [17], which motivated the search for non-abelian gauge theories describing the
weak and strong interactions. In light of this, S. Glashow, A. Salam and J. Ward
combined electromagnetism and weak interactions using a SU(2) ⊗ U(1) group
structure in the early 1960s [18, 19]. In 1967, S. Weinberg incorporated the Higgs
mechanism to explain the masses of the gauge fields W and Z, giving electroweak
theory its present-day form [20]. The Higgs mechanism is the description of how gauge
bosons acquire mass by absorbing (“eating”) the Goldstone bosons from spontaneous
symmetry breaking [21–23].
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1 Introduction

The fact that the theory of electroweak interactions is a broken gauge theory, has
interesting consequences, which we investigate in this thesis. In particular, we study
the Goldstone boson equivalence theorem and applications of it. The theorem was
first proven by Cornwall et al. [24], and essentially states that at energies much
higher than the scale set by spontaneous symmetry breaking, the unbroken theory
becomes an accurate description. The longitudinal degree of freedom of the massive
gauge boson, which was obtained through the Higgs mechanism, becomes distinct
and equivalent with the Goldstone boson from which it originated.
In addition to the equivalence theorem being interesting in its own right, our

motivation for studying it is the question of the dark matter identity. An important
probe for dark matter properties is indirect searches, where one uses observations
of radiation (presumably) coming from dark matter annihilation to construct and
constrain theoretical models of potential dark matter particles [11]. The significance
of electroweak corrections to such models has been studied and acknowledged by
several publications [25–36], and remain to be of interest. For a dark matter candidate
considerably heavier than the weak scale, the equivalence theorem becomes applicable
for those kinds of radiative corrections, and can simplify calculations to a great extent
in many cases.

Structure of thesis
The thesis consists of seven chapters including this introduction and the conclusion,
as well as three appendices. Below, we outline the contents of each chapter.
In Chapter 2, we review the current understanding of dark matter including cos-

mological evidence and proposed candidates. Also, the importance of electroweak
bremsstrahlung to dark matter annihilation is discussed. Chapter 3 lays the fundamen-
tal theoretical groundwork for this research, introducing quantum chromodynamics,
the Glashow-Salam-Weinberg model and finally, the equivalence theorem. Moving
on to concrete calculations, Chapter 4 revisits the standard computation of electron-
positron annihilation to hadrons at next-to-leading order in quantum chromodynamics.
We show how the arising infrared divergences cancel at that order, and introduce
a convenient formalism for computing s-channel processes which is also used later
in the thesis. In Chapter 5, we consider Higgs decay to charged gauge bosons, and
compute the decay rate using several methods including the equivalence theorem. The
various approaches to the calculation illustrate multiple features of electroweak theory.
Finally, in Chapter 6, we apply the equivalence theorem to a W bremsstrahlung
diagram and compare the total cross section to that from a “standard” calculation.
In Chapter 7, we conclude. Mathematical conventions used in the thesis as well

as relevant mathematical formulae are presented in Appendix A. In Appendix B we
list the relevant Feynman rules used in our calculations, and Appendix C derives
kinematics for scattering and decay processes.
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2 Dark matter
The identity of dark matter (DM) is one of the great unresolved problems in particle
physics and cosmology [9–12]. Despite great amount of cosmological evidence pointing
to its existence, the nature of the DM particle has yet to be determined. In this
chapter, we give a brief review of the current knowledge about DM, including the
cosmological indications, the most promising candidates, methods of detection, and
finally, the importance of electroweak corrections to DM annihilation.

2.1 Evidence
Rotation curves
Observations of rotation curves of nearby galaxies provides some of the most direct
and convincing evidence for DM. Rotation curves are graphs of rotational velocities
of stars and gas as a function of distance to the galaxy center. From Newtonian
dynamics we expect that the rotational velocity is given by

v(r) =
√
GM(r)

r
(2.1)

where G is the gravitational constant and M(r) is the total mass enclosed within
radius r. In particular, we expect a 1/

√
r-dependence beyond the bulk of the

luminous matter. However, observed rotation curves show a flat behaviour at large
distances, suggesting a non-luminous component with M(r) ∝ r. Figure 2.1 from
Ref. [37] shows a rotation curve for a collection of galaxies that fall into a luminosity
interval centered around 〈MI〉 = −20.9. The horizontal axis is normalised against
an appropriate length scale Ropt, defined as the radius containing the bulk of the
optical disk. Correspondingly, the vertical axis is scaled in terms of the measured
velocity at Ropt. Indeed, we see an approximately constant velocity beyond Ropt.
The dashed line shows the required contribution of the dark component to account
for the measured rotation velocities.

Gravitational lensing
According to general relativity, light propagates along geodesics of spacetime, and
gets bent when passing a massive object. Therefore, large concentrations of mass act
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Figure 2.1: Universal rotation curve for galaxies associated with a luminosity bin
centered around 〈MI〉 = −20.9 from Ref. [37]. The dotted line shows
the contribution from the luminous disk, while the dashed line shows the
dark halo.

as lenses deflecting passing light. The angle of deflection is proportional to the mass
of the structure responsible for the lensing [38]. We divide the gravitational lensing
effects into three classes [39]:

1) Strong lensing. The images of distant objects are clearly visibly distorted, we
observe for instance multiple images, arcs or Einstein rings.

2) Weak lensing. The distortion of an object is hard to distinguish from the intrinsic
shape of the object (e.g. subtle stretching of an elliptic galaxy). However,
taking an average over large ensembles of galaxies, the lensing effect shows up
statistically.

3) Galactic microlensing. No distortion is observed or statistically inferred, but
the light from a background object changes in time. A transient lensing object
passes in-between source and observer, and gives a characteristic light curve.

We can use gravitational lensing of a distant object to make a map of the mass
distribution between the object and the observer. Comparing this to the mass
distribution of observed luminous objects provides sound indications of the presence
of non-luminous matter. Perhaps the best evidence for DM is the observations of the
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2.1 Evidence

collision of the galaxy clusters 1E0657-558 [40]. X-ray observations of the collision
show that intergalactic gas collided and interacted, while observations by visible light
show that the stars of the galaxies were insignificantly affected, although slowed down
by gravity. The intergalactic gas make up most of the baryonic matter, but the mass
distribution derived from gravitational lensing demonstrates that the dominant mass
component follows the stars throughout the collision, not the gas. This suggests that
the dominant component is non-luminous and non-interacting, which, by definition,
is DM.

Galaxy clusters

The signature of DM becomes eminent at distance scales of galaxies and clusters of
galaxies, as we have seen above. One of the first indications for DM came from an
estimation of the mass-to-light ratio of the Coma cluster, by F. Zwicky in 1933 [41].
Using the virial theorem in combination with measurements of the dispersion of
radial velocities, he inferred a mass-to-light ratio of around 400 solar masses per solar
luminosity. Today, we have additional methods for measuring the mass of a cluster,
including gravitational lensing and the examination of X-ray profiles from hot gas in
the cluster. These methods are generally in agreement that visible matter constitute
around 20–30 % of the total mass on cluster scales [11].

Cosmic microwave background

The evidence for DM we have presented so far, do not let us determine the total
amount of DM in the universe. This information can be obtained from observations
of the cosmic microwave background (CMB). The CMB is radiation from the last-
scattering-surface of the early universe. When electrons and protons combined
into hydrogen, photons decoupled from matter and have been propagating freely
throughout the universe ever since. These photons are the CMB radiation. The
spectrum is very close to a black-body with temperature 2.726 K and isotropic at
the 10−5 level. However, density fluctuations on the last-scattering-surface leads to
anisotropies in the CMB. These anisotropies are usually expanded in the spherical
harmonics, and the variance of the coefficients are plotted against the angular scale
defined by the expansion. The form of this power spectrum provides a good testing
mechanism for cosmological models, and it puts rigid constraints on the cosmological
parameters. We do not present the justification of this statement here; an introduction
to the subject can be found in e.g. Ref. [42].

Measurements of the CMB performed by the Planck satellite constrain the various
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2 Dark matter

energy density parameters of the universe to be [8]:

Ωbh
2 = 0.022 25± 0.000 16, (2.2a)

ΩDMh
2 = 0.1198± 0.0015, (2.2b)

ΩΛ = 0.6844± 0.0091, (2.2c)

where Ωi = ρi/ρc is the abundance in units of the critical density ρc. The critical
density corresponds to a flat universe, and the fact that the data sums up to
Ωtot ' 1 suggests that our universe is indeed flat or nearly flat. The reduced Hubble
parameter is defined as h = H0/(100 km s−1 Mpc−1) = 0.6727± 0.0066 [8]. Finally,
the abundances Ωb, ΩDM and ΩΛ are defined for the baryonic matter, dark matter,
and dark energy, respectively. We see that the baryonic matter only contributes
∼ 19 % of the total matter in the universe, implying that the dark component is
dominating.

2.2 Candidates
A vast number of possible DM particle candidates have been proposed.1 The can-
didates can firstly be divided into baryonic and non-baryonic. The main baryonic
candidate is the massive compact halo objects (MACHOs), which are small astro-
physical objects that emit little or no light, e.g. dead stars. These MACHOs are
mostly ruled out as potential DM candidates, however: Searches for microlensing
events of the Large Mangellanic Cloud constrain the MACHO abundances to a tiny
fraction of the DM [44, 45].
Among the non-baryonic candidates, an important distinction is that between

hot or cold candidates [9]. Hot DM candidates were moving relativistically in the
early universe, while cold candidates moved non-relativistically. The distinction has
decisive consequences for models of structure formation.

In this section, we present some of the most promising non-baryonic DM candidates.

Weakly interacting massive particles
The weakly interacting massive particles (WIMPs) constitute a class of hypothetical
particles with mass in the 10 GeV–TeV range that only interact with the weak gauge
bosons, and not gluons or photons. WIMPs are non-baryonic and cold, and they are
perhaps the most studied DM candidates. In addition to being a DM candidate, the
gauge hierarchy problem (essentially why the Higgs mass is much smaller than the

1There are also models which attempt to explain the cosmological phenomena attributed to DM
without the introduction of one or more new particles, e.g. Modified Newtonian Dynamics
(MOND) [43]. We do not discuss them in this text.
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Planck mass) is a noteworthy motivation for the WIMPs, because typical attempts
to alleviate the problem involve new particles at the weak scale [12].
The formation history of the WIMPs is well understood, if it was produced as

a thermal relic of the Big Bang. In the beginning, the universe is dense and hot.
In particular, the temperature is larger than the WIMP mass, T > mχ, and the
annihilation rate is large compared to the expansion rate of the universe. The WIMPs
remain in equilibrium. Subsequently, the universe cools to temperatures below mχ,
and the abundance of the DM particle becomes Boltzmann suppressed; it drops by a
factor proportional to exp(−mχ/T ). This would lead to a vanishing abundance, if it
were not for the simultaneous expansion of the universe. The WIMP annihilation
drops dramatically because the particles are more and more dilute, thus stabilising
the abundance. This is known as freeze-out.
The process is described quantitatively by the Boltzmann equation,

dn
dt = −3Hn− 〈σAv〉

(
n2 − n2

eq

)
, (2.3)

which express the time evolution of the number density n of WIMPs. The first term
on the right hand side accounts for the expansion of the universe, where H = ȧ/a is
the Hubble expansion rate. If there were no interactions, this would be the only term
and the solution would be n ∝ a−3, as expected. In the second term, the n2-term
arises from WIMP annihilation processes, while n2

eq accounts for the reverse processes.
The 〈σAv〉-factor is the thermally averaged total cross section for annihilation of
WIMPs. At early times, the expansion term is negligible compared to the creation
and destruction terms, so the density is at equilibrium. Freeze-out is defined by
H = n〈σAv〉. Using an analytic approximation to the Boltzmann equation, as well as
entropy considerations, the relic density of DM today is found to be [9]

ΩDMh
2 ≈ 3× 10−27 cm3s−1

〈σAv〉
. (2.4)

From Eq. (2.2) we have ΩDMh
2 ≈ 0.11 which requires a thermally averaged cross

section
〈σAv〉 ≈ 3× 10−26 cm3s−1. (2.5)

Nevertheless, this result arose from a rough analysis, and there are several effects
that could lead to thermal relic DM having a higher or lower cross section. Moreover,
it is not certain that DM is indeed a thermal relic.

One of the well-motivated theoretical frameworks for beyond the Standard Model
(SM) physics is supersymmetry (SUSY). SUSY theories typically provide elegant
solutions to the gauge hierarchy problem, because new weak-scale physics is intro-
duced [12]. In SUSY extensions of the SM, all fermions of the SM have a new (as
of now undiscovered) bosonic partner particle, and vice versa. Thus, several DM
candidates arise in this framework. We do not discuss details of supersymmetry here,
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reviews can be found in e.g. [9, 11, 46]. Many SUSY theories feature a symmetry
called R-parity, defined as R = (−1)3B+L+2s, where B, L and s are baryon number,
lepton number and spin, respectively. SM particles have R = 1 while SUSY particles
have R = −1, so if R-parity is conserved, the lightest supersymmetric particle (LSP)
must be stable and can only annihilate into SM particles. Hence, the LSP is a good
DM candidate.
In the larger parts of most SUSY models’ parameter spaces, the LSP is the neu-

tralino. It is a linear combination of the supersymmetric partners of the electroweak
gauge bosons and the Higgs bosons (for technical reasons, there are two Higgs bosons
in SUSY models). It is a spin-1/2 Majorana fermion, and its Majorana nature leads to
helicity suppression for annihilation into SM fermions, which we discuss in Section 2.4.

Sterile neutrinos
SM neutrinos have decidedly been ruled out as DM candidates, because of their light
mass and low abundance. CMB data from the Planck satellite strongly constrain the
SM neutrino abundance to Ωνh

2 < 0.0063 [8], which is less than 6 % of the total DM
abundance.
Sterile neutrinos are right-handed neutrinos which do not interact through the

SM apart from mixing. In the SM, neutrinos are massless, but observation of
neutrino oscillations imply neutrino masses [14, 15]. Adding sterile neutrinos lets
neutrinos acquire mass through Yukawa couplings similar to the other fermions,
which may be the explanation of neutrino masses. Additionally, a gauge-invariant,
so-called Majorana mass term involving only sterile neutrinos can be added to the
SM Lagrangian. Then, the mass eigenstates follows from diagonalizing the resultant
mass matrix. Assuming neutrino Yukawa couplings of order y ∼ O(1), one obtains
the desired light neutrino masses if the sterile neutrino masses are large, typically
M ∼ 1014 GeV. This is called the see-saw mechanism. Sterile neutrinos at this scale
seem unlikely DM candidates [12]. Nonetheless, there is no compelling reason to
assume a Yukawa coupling of order O(1), so a possible DM candidate might be light
sterile neutrinos.

There are a number of ways sterile neutrinos may have been produced. Possibilities
include production through neutrino oscillations [47], or from decays of heavier
particles [48]. Furthermore, the abundance may be enhanced if the universe has a
non-zero lepton asymmetry [49].

Axions
Axions are particles postulated as a potential solution to the strong CP problem in
quantum chromodynamics (QCD). In the QCD Lagrangian, there is a charge-parity
violating term proportional to a parameter θ. This term gives a large contribution
to the electric dipole moment of the neutron, de ∼ 10−16e cm, but measurements
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constrain the dipole moment to be de < 10−26e cm [50]. It follows that the parameter
must be remarkably small. The axion solution to this problem is to add fields to the
SM yielding an anomalous U(1) symmetry. The symmetry is spontaneously broken,
and the associated Goldstone boson is called the axion [51–53]. This leads to a small
value of θ.

Axions have interactions with gluons, fermions, and photons. It may decay into
a pair of photons, and the lifetime of this process constrains the axion mass to
ma . 20 eV if the axions are to live longer than the universe. Further limits from
cosmological observations imply ma . 10 meV [54].

Axion DM also has several possible production mechanisms. Thermal production
implies a relic density of Ωa ∼ 0.22(ma/80 eV), but the lifetime constraint mentioned
above implies that this mechanism cannot produce axion abundance corresponding
to the observed DM abundance [12]. Nevertheless, there are non-thermal production
mechanisms, for example through spontaneous symmetry breaking when the tem-
perature is of the same order as the vacuum expectation value (vev). This is called
a Peccei-Quinn phase transition, and whether this transition happened before or
after inflation gives different constraints on the axion parameters [55]. The allowed
parameters typically imply that axions are light and weakly-interacting, making them
a viable DM candidate.

2.3 Detection
Efforts to detect DM can primarily be divided into indirect and direct detection
methods.
Indirect detection attempts to probe DM by observable flux of SM particles

produced in its annihilation or decay. Regions where presumably large amounts of
DM accumulate seem like reasonable places to look at, since the annihilation rate is
probably high. Such regions are for example the center of the galaxy, or even near
smaller objects like the Sun or the Earth, where DM particles lose energy due to
scattering [11]. The indirect detection methods can be used to constrain the DM
annihilation cross section, and if we assume that DM is the lightest beyond-the-SM
particle, it will exclusively annihilate into SM particles. If an observed signal is to be
attributed to DM annihilation, there should be no astrophysical explanation, and a
specific DM model should be able to reproduce the correct annihilation rate. Examples
of such signals which may be ascribed directly or indirectly to DM annihilation are:
(i) observation of positron excess compared to conventional production models by
the Fermi and PAMELA satellites [56, 57] and (ii) detection of high-energy (PeV)
neutrinos by the IceCube telescope [58].
If WIMPs constitute DM and our galaxy is filled with them, numerous amounts

should be passing through the Earth. Direct detection methods aim to observe
recoils of nuclei induced by interactions with DM. The event rate is expected to be
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Figure 2.2: Bremsstrahlung corrections to DM annihilation into SM particles.

low, so to do this effectively it is essential to minimize background noise. Therefore
the experiments operate deep underground to avoid interference from cosmic rays.
Furthermore, a possible signal can be distinguished from the background by looking
for an annual variation due to Earth’s motion around the Sun, since the velocity
and orientation of the detector relative to the DM halo in our galaxy will vary [59].
Ongoing experiments include XENON [60], EDELWEISS [61], SuperCDMS [62] and
DAMA/LIBRA [63].
Other detection methods include collider searches. In a collider experiment a

DM signal would be missing energy, since the particle will (presumably) escape the
detector. As of yet, no evidence for DM production at a collider have appeared.

2.4 Bremsstrahlung processes
Annihilation of DM to SM particles will necessarily be accompanied by radiative
corrections on the form of bremsstrahlung (brake radiation), where a gauge boson is
emitted from intermediate (internal bremsstrahlung) or final (external bremsstrahlung)
state particles, see Fig. 2.2. Photon bremsstrahlung from DM annihilation have
important consequences since the observed gamma ray flux imposes constraints on the
model in question [64–66]. For example, so-called leptophilic models where DM mainly
annihilates into leptons have been proposed to explain the observed positron excess
mentioned in Section 2.3, see e.g. Ref. [67]. These models typically require boost
factors [68], but the accompanying production of photons might violate observational
constraints on the gamma ray flux.
Another class of bremsstrahlung corrections to DM annihilation is electroweak

bremsstrahlung, where massive W or Z bosons are radiated from the intermediate or
final state. Its importance has been recognised and investigated in several publica-
tions: Ref. [25] calculates neutralino annihilation into three massive particles, and
Ref. [26] considers superheavy DM annihilation and consequences of the following
electroweak cascade. External bremsstrahlung from leptonic final states are studied
in Refs. [27–31], while internal bremsstrahlung is the topic of Refs. [32–34]. Finally,
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Ref. [35] considers final state radiation of weak gauge bosons or Higgs bosons in
the minimal supersymmetric standard model (MSSM). Electroweak bremsstrahlung
has noteworthy phenomenological consequences since the decay of W or Z leads to
production of photons, hadrons or leptons, regardless of the direct DM couplings [36].
Thus, even if for instance the DM particle only annihilates to neutrinos, gamma rays
and hadrons will be produced.

Helicity suppression
Photon and electroweak bremsstrahlung play major roles in certain DM models. If
the annihilation into a light fermion pair is helicity suppressed, this suppression is
often lifted by photon or electroweak bremsstrahlung and these channels become the
dominant ones. We discuss shortly the origin of this suppression in the following; a
thorough analysis can be found in e.g. Ref. [35].

The thermal averaged cross section for a non-relativistic species can be expanded
in even powers of the Møller velocity [69],

〈σv〉 = a+ bv2 + · · · . (2.6)

It can further be shown that the a arises from s-wave annihilation, while b corresponds
to both s- and p-wave channels. For a dark matter halo today, we have v ∼ 10−3c so
the second term is strongly suppressed. Thus, the s-wave is the only unsuppressed
contribution to the annihilation rate today.
Consider a pair of Majorana DM particles (e.g. the neutralino mentioned in

Section 2.2) annihilating into a Dirac fermion pair. An initial state of two identical
Majorana fermions must be antisymmetric, and since the spacial wave function is
symmetric for an s-wave contribution (L = 0), the spin wave function must be
antisymmetric. Hence, the spin wave function is the antisymmetric singlet S = 0.
Moreover, for a fermion pair we have the following general expressions for charge
conjugation and parity:

C = (−1)L+S and P = (−1)L+1. (2.7)

It follows that the initial state has C = 1 (as required for a Majorana pair) and
P = −1. Assuming CP invariance, the final state must necessarily have JCP = 0−.
Since CP = (−1)L+S(−1)L+1 = (−1)S+1, the final state fermion pair must therefore
also be in the singlet state S = 0. Combined with the fact that the fermions are
produced back-to-back, we conclude that they have the same helicity.

A theory of massless fermions exhibits chiral symmetry, where left-handed and right-
handed fermions transform independently, and chirality and helicity are equivalent
quantities. Accordingly, a fermion-antifermion pair has the same chirality and opposite
helicity. From the discussion above, it follows that the annihilation of DM Majorana
particles into Dirac fermions is only possible if chiral symmetry is broken, for example

11



2 Dark matter

through a Dirac mass term in the Lagrangian. Therefore, we can conclude that the
annihilation rate is proportional to the fermion mass squared, and becomes suppressed
for light fermions.
The helicity suppression may be lifted by adding a vector boson in the final

state [70]. Thus, radiative “corrections” like this might in fact give the dominant
contributions to the annihilation rate.
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3.1 Quantum chromodynamics
QCD is the theory of strong interactions of quarks and gluons. We will in this
section discuss the Lagrangian of QCD, through which the Feynman rules we use in
Chapter 4 are defined. Furthermore, we review a noteworthy feature of the theory:
asymptotic freedom.

QCD Lagrangian
QCD is a non-abelian gauge theory, with gauge group SU(3) [71–73]. The associated
charge with the symmetry group is called colour, and fermions which carry colour are
the quarks. We denote the quark fields by ψqi , where i = 1, 2, 3 is the colour index
and q = u, d, . . . is the flavour label. There are eight gauge bosons called gluons, with
fields Aaµ, a = 1, . . . , 8.1 The QCD Lagrangian is

LQCD = −1
4F

a
µνF

aµν +
∑
q

ψ
q

i

(
i /Dij −mqδij

)
ψqj (3.1)

where a summation of repeated colour indices is understood. The gluon field-strength
tensor is

F a
µν = ∂µF

a
ν − ∂νF a

µ − gsf
abcF b

µF
c
ν . (3.2)

Here, gs is the SU(3) gauge coupling constant and fabc are structure constants of the
fundamental representation of SU(3). The covariant derivative acting on quarks is
given by

(Dµ)ij = δij∂µ + igsA
a
µT

a
ij (3.3)

where T a are the group generators in the fundamental representation. These defini-
tions leave the Lagrangian invariant under SU(3) transformations, where the quarks,
antiquarks and gauge bosons transform under the fundamental, antifundamental and
adjoint representations, respectively.

The generators T a obey the commutation relations [T a, T b] = ifabcT c, which define
their Lie algebra su(3). We conventionally normalise the generators in a given

1We use a, b, c, d = 1, . . . , 8 for gluon colour indices and i, j = 1, 2, 3 for quark colour indices in
this section.
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3 Theoretical preliminaries

representation so that
Tr(T aT b) = 1

2δ
ab. (3.4)

Furthermore, it is very useful to label representation in a basis independent manner,
such labels are called Casimir invariants. We define for example the quadratic
Casimir C2 by ∑

a

T aT a = C21, (3.5)

which is basis independent. (To show that this operator is proportional to the identity,
one can use Schur’s Lemma, see e.g. Ref. [2, sec. 25.1].) To evaluate the quadratic
Casimir CF in the fundamental representation of SU(N), we set a = b and sum over
a in Eq. (3.4). Using that Tr 1 = N and δaa = N2 − 1, it follows that

CF = N2 − 1
2N = 4

3 (3.6)

where we in the last equality set N = 3.
As it stands, the functional integral

�
DA exp

(
i
�

d4xLQCD

)

with the Lagrangian from Eq. (3.1) is ill-defined: Because of gauge invariance the
functional integral will sum over an infinite set of physically equivalent configurations.
The issue must be fixed by an appropriate gauge-fixing procedure before we can
develop the QCD Feynman rules. If we insist on a Lorentz covariant gauge-fixing,
additional, unphysical Faddeev-Popov ghosts must be added to the Lagrangian to
compensate for the unphysical degrees of freedom that are not eliminated by the
gauge-fixing [74]. No ghosts appear in the QCD processes considered in this text
(they appear in higher order corrections however), therefore we do not discuss the
dynamics of the QCD ghosts here.

Some selected QCD Feynman rules used in the text are presented in Appendix B.

Asymptotic freedom
A significant property of QCD is the asymptotic freedom [72], which implies that
we only can legitimately apply perturbative methods in the short-distance limit.
Asymptotic freedom is a general feature of pure Yang-Mill theories, stating that the
coupling constant decreases as the renormalisation scale increases. This behaviour
can be derived from the beta function of the running coupling, which describes its
variation under the renormalisation group. One can show that the one-loop beta
function of QCD is

β(αs) = µ2∂αs

µ2 = −α2
s

(11
3 NC −

2
3nf

)
≡ −α2

sb1, (3.7)
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3.2 Glashow-Salam-Weinberg model

where αs = g2
s /(4π), NC is the number of colours and nf is the number of active

quark flavours. The renormalisation scale is µ. Thus, for a world with six flavours,
nf = 6, the sign of the leading term of the beta function is negative. Consequently,
the coupling αs decreases as µ→∞.

This effect can be understood qualitatively by the action of virtual particles polar-
ising the vacuum. In quantum electrodynamics (QED), virtual fermion-antifermion
pairs in the vicinity of a charge act as a dielectric medium and screen the charge.
Thus, the effective charge decreases at larger distances. The QCD vacuum behave
the same way, but the effects from virtual quark-antiquark pairs are small compared
to contributions from virtual gluons. Virtual gluons work in the other direction
and augment the charge field. In consequence, the effective charge increases with
increasing distance.
The solution of Eq. (3.7) is

1
αs(µ2) = 1

αs(µ2
0) + b1 ln

(
µ2

µ2
0

)
, (3.8)

from which we see that the coupling constant diverges for a finite value of µ. We call
this scale the QCD scale, defined by α−1

s (Λ2
QCD) = 0. Writing the coupling constant

in terms of this scale, we have

αs(Q2) = 1
b1 ln(Q2/Λ2

QCD) . (3.9)

Perturbation theory is only valid when αs � 1, thus we must require Q2 � Λ2
QCD.

For low-energy processes alternative approaches must be used, we return to this issue
in Section 4.1.

3.2 Glashow-Salam-Weinberg model
In this section, we introduce the Glashow-Salam-Weinberg (GSW) model of elec-
troweak interactions. We describe how the SU(2)L⊗U(1)Y gauge symmetry is broken
down to U(1)em through spontaneous symmetry breaking (SSB), and how the weak
gauge bosons acquire masses through the Higgs mechanism. After a brief discussion
of the fermion sector, we end the section by considering the GSW model in the
general Rξ gauge.

Electroweak Lagrangian
In the SM, electroweak interactions are the combined description of the electro-
magnetic and weak interactions [18–20]. This unification of two of the fundamental
interactions is described mathematically by the SU(2)L⊗U(1)Y gauge group, where Y
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stands for hypercharge. The SU(2)L group is called weak isospin, and the L indicates
that only left-handed fermions take part in the gauge interaction, an experimental
fact [75].
The unbroken theory contains four massless gauge bosons, of which three should

acquire mass through the Higgs mechanism in SSB. We add therefore a scalar, complex
SU(2) doublet called the Higgs multiplet, supplying four additional degrees of freedom.
Three of these will become the longitudinal degrees of freedom of the massive gauge
bosons. We write the complex doublet as follows:

Φ = 1√
2

(
ϕ1 + iϕ2
ϕ3 + iϕ4

)
≡
(
ϕ+

ϕ0

)
. (3.10)

In the last equality, we introduced notation which will be convenient later: Following
convention, we will choose the vev of SSB in the lower component of Φ. Then the
upper component will obtain U(1)em charge Q(ϕ+) = +1, and similarly Q(ϕ0) = 0.
Moreover, we will frequently use ϕZ ≡ ϕ4 since this field is eaten by the Z boson in
the unitary gauge.
The complete electroweak Lagrangian consists of the following pieces,

L = LHiggs + LGauge + LFermion + LYukawa + LGF + LGhost. (3.11)

We will investigate the various terms in the coming sections: First, we consider the
gauge and Higgs Lagrangians, and then we will go on to the fermion sector with the
fermion and Yukawa Lagrangians. We will initially use the unitary gauge, where
there are no gauge-fixing (GF) or ghost terms. Subsequently, we proceed to the
general Rξ gauge, where contrastingly gauge-fixing and ghost terms must be included.

Gauge sector
The Higgs term contains the kinetics of the Higgs multiplet and the Higgs potential,

LHiggs = (DµΦ)†(DµΦ) + µ2Φ†Φ− λ(Φ†Φ)2 (3.12)

where the covariant derivative is

Dµ = ∂µ + ig
2 τ

aW a
µ + ig′

2 Bµ. (3.13)

We define g and g′ as the SU(2)L and U(1)Y couplings, respectively. Furthermore,
we have labeled the hypercharge boson B and the three weak isospin gauge bosons
W a, a = 1, 2, 3. Finally, we use the Pauli matrices τa as the generators for the
fundamental representation of SU(2), while we have chosen the hypercharge of the
Higgs multiplet to be 1, Y (Φ) = 1. The factors 1/2 are added by convention.
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3.2 Glashow-Salam-Weinberg model

Secondly, the gauge term contains the kinetic terms of the gauge bosons,

LGauge = −1
4W

a
µνW

aµν − 1
4BµνB

µν (3.14)

where W a
µν and Bµν are the field-strengths

W a
µν = ∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν , (3.15a)

Bµν = ∂µBν − ∂νBµ. (3.15b)

Here, εabc are the structure constants in the fundamental representation of SU(2), i.e.
the completely antisymmetric tensor.
The Higgs potential in Eq. (3.12) induces a vev for Φ, 〈Φ†Φ〉 = µ2/λ ≡ v2. We

choose the vev to be in the lower, real component of the Higgs multiplet,

Φ = 1√
2

(
ϕ+

v + h(x) + iϕZ
)
. (3.16)

where h(x) is the fluctuation around the vev which is the physical Higgs field. In the
unitary gauge we remove the ϕ-fields by a gauge transformation, hence

Φ = v + h(x)√
2

(
0
1

)
. (3.17)

Consequently, after SSB, the Higgs field has a mass term mh =
√

2µ as well as cubic
and quartic self-interactions. Moreover, the part containing v in the kinetic term in
Eq. (3.12) gives the mass terms

Lm = v2

2
(
0 1

)(g
2τ

aW a
µ + g′

2 Bµ

)(
g

2τ
aW aµ + g′

2 B
µ

)(
0
1

)

= v2g2

8
(
0 1

)g′

g
Bµ +W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ
g′

g
Bµ −W 3

µ

g′

g
Bµ +W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ
g′

g
Bµ −W 3

µ

(0
1

)

= v2g2

8

(W 1
µ)2 + (W 2

µ)2 +
(
g′

g
Bµ +W 3

µ

)2
 . (3.18)

Next, we diagonalize these mass terms to get rid of the cross term. We rotate the
Bµ and W 3

µ fields as follows,

Zµ ≡ cos θWW 3
µ − sin θWBµ, (3.19a)

Aµ ≡ sin θWW 3
µ + cos θWBµ, (3.19b)

which preserve the normalisation of the kinetic terms in Eq. (3.14). We defined the
weak mixing angle θW by

tan θW = g′

g
. (3.20)
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Furthermore, the coupling of Aµ with W a
µ is determined by the commutator

g
[
Aµ,W

a
µ

]
= g sin θWW 3

µW
a
µ

[
τ 3, τa

]
.

We identify the electromagnetic charge e = g sin θW = g′ cos θW , and define

τ± = 1√
2

(τ 1 ± iτ 2) and W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ), (3.21)

which satisfy [τ 3, τ±] = ±τ± and W a
µ τ

a = W+
µ τ

+ + W−
µ τ
− + W 3

µτ
3. Thus, the W±

µ

combinations have charges ±e, and appear in charged current interactions. The mass
terms of the physical gauge bosons become

Lm = 1
2m

2
WW

+
µ W

−µ + 1
2m

2
ZZµZ

µ, (3.22)

where we read off the masses mW = gv/2, mZ = (gv/2) cos θW = mW cos θW and
mA = 0.
Inserting the physical fields in the covariant derivative, Eq. (3.13), we have

Dµ = ∂µ + ig
2 τ

aW a
µ + ig′

2 Bµ1

= ∂µ + ig
2
(
τ+W+

µ + τ−W−
µ

)
+ ig

2 (cos θWZµ + sin θWAµ) τ 3 + ig′
2 (− sin θWZµ + cos θWAµ) 1

= ∂µ + ig
2
(
τ+W+

µ + τ−W−
µ

)
+ i

2e(τ
3 + 1)Aµ + ig

2 cos θW

[
τ 3 − sin2 θW (τ 3 + 1)

]
Zµ. (3.23)

Here, we used Eq. (3.20) as well as e = g sin θW . We recognise (τ 3 + 1)/2 as the
electromagnetic charge generator, and observing that the hypercharge generator
is the identity, we obtain the Gell-Mann-Nishijima relation Q = T 3 + Y/2 where
T 3 = τ 3/2 [76, 77]. Using this operator on the Higgs multiplet shows that our initial
notation for its components is consistent.

Fermion sector
Next, we consider the kinematics and mass terms of the SM fermions, and their
coupling to the electroweak gauge bosons. Weak interactions are maximally parity-
violating: only left-handed fermions couple to the charged, weak gauge bosons.
In mathematical terms, the left-handed fermions transform in the fundamental
representation of SU(2), while the right-handed fermions are unaffected by SU(2)
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3.2 Glashow-Salam-Weinberg model

Table 3.1: Values of T 3, Y and Q for scalars and fermions in the SM. The quantum
numbers are repeated for the second and third generations.

Field φ+ φ0 νeL eL eR uL dL uR dR

T 3 1/2 −1/2 1/2 −1/2 0 1/2 −1/2 0 0
Y 1 1 −1 −1 −2 1/3 1/3 4/3 −2/3
Q 1 0 0 −1 −1 2/3 −1/3 2/3 −1/3

transformations, i.e. they are singlets. Thus we pair each generation of left-handed
leptons and quarks in doublets the following way:

Li =
{(

νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)}
and Qi =

{(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)}
, (3.24)

where i = 1, 2, 3 labels the generation. Similarly, we denote the right-handed singlets
as

eiR = {eR, µR, τR} , uiR = {uR, cR, tR} ,
νiR = {νeR, νµR, ντR} , diR = {dR, sR, bR} .

(3.25)

Right-handed neutrinos have not yet been observed, but we include them here for
completeness.
The kinetic terms for the SM fermions are

LFermion =
∑
i

(
iLiγµDµL

i + iQi
γµDµQ

i

+ ieiRγµDµe
i
R + iνiRγµDµν

i
R + idiRγµDµu

i
R + idiRγµDµd

i
R

)
,

(3.26)

where the covariant derivatives are given by

DµψL =
[
∂µ + ig

2
(
τ+W+

µ + τ−W−
µ

)
+ ig

2 τ
3W 3

µ + ig′
2 Y Bµ1

]
ψL

=
[
∂µ + ig

2
(
τ+W+

µ + τ−W−
µ

)
+ ieQAµ + ig

cos θW

(
T 3 −Q sin2 θW

)
Zµ

]
ψL

(3.27a)
and

DµψR =
[
∂µ + ig

2 τ
3W 3

µ + ig′
2 Y Bµ

]
ψR = [∂µ + ieQ (Aµ − tan θWZµ)]ψR. (3.27b)

Here, T 3, Y and Q are the weak isospin, hypercharge and electromagnetic charge of
the fermions, respectively. These quantum numbers are shown for the SM scalars
and fermions in Table 3.1.
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In order to generate masses for the fermions, we include Yukawa couplings between
the fermions and Higgs multiplet,

LYukawa = −Y ij
l

(
L
iΦejR + eiRΦ†Lj

)
− Y ij

d

(
Q
iΦdjR + d

i

RΦ†Qj
)
, (3.28)

where a sum over generations i, j is implied, and Yl and Yd are complex 3×3 matrices
of Yukawa coupling constants. Note that all terms written down in Eq. (3.28) are
SU(2)L and U(1)Y invariant. This however, introduces only mass terms for the
fermions in the lower components of the doublets in Eq. (3.24). To get masses for
the up-like quarks we must use the charge conjugated Higgs multiplet,

Φc ≡ iτ 2Φ∗ = 1√
2

(
ϕ3 + iϕZ
−ϕ1 + iϕ2

)
≡
(
ϕ0

−ϕ−
)
. (3.29)

Thus, we have2

LYukawa = −Y ij
l L

iΦejR − Y ij
d Q

iΦdjR − Y ij
u Q

iΦcdjR + h.c. (3.30)

The Y -couplings are arbitrary complex 3× 3 matrices. They can be diagonalized
by a bi-unitary transformation, and the fields can be transformed by the unitary
transformations into mass eigenstates (see e.g. Ref. [2, sec. 29.3]). The new eigenstates
are not diagonal in the interactions, which yields flavour mixing in weak, charged
current. We will only consider one generation in this text, and therefore we do not
go into details on flavour mixing. Writing the coupling in terms of masses, we have
for instance

yu ≡ Y 11
u =

√
2mu

v
= g√

2
mu

mW

. (3.31)

Rξ gauges
In Eq. (3.17), we removed the Goldstone fields by a gauge transformation, corre-
sponding to the unitary gauge which gives the mass spectrum of physical particles.
Although this gauge is suitable for showing how the gauge bosons acquire mass
through the Higgs mechanism, it is often convenient to work in another gauge when
performing calculations. In this section we will keep the Goldstone fields and fix the
gauge by the Faddeev-Popov prescription [74].

We go back to the introduction of a vev to the Higgs potential, and the shift of the
lower component in the Higgs doublet after SSB in Eq. (3.16). The doublet became

Φ = 1√
2

(
ϕ+

v + h(x) + iϕZ
)
. (3.32)

2We do not discuss neutrino masses here, a discussion on the matter can be found in e.g. Ref. [2,
p. 600-602].
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Expanding the kinetic Higgs term, we find the following terms quadratic in the fields:

LHiggs = · · ·+ v2g2

8

(W 1
µ)2 + (W 2

µ)2 +
(
g′

g
Bµ +W 3

µ

)2


+ vg

2

(
g′

g
Bµ −W 3

µ

)
∂µϕZ + ivg

2 W+
µ ∂

µϕ− − ivg
2 W−

µ ∂
µϕ+.

(3.33)

Performing the diagonalization in Eq. (3.19) and using mW = vg/2 and
mZ = mW cos θW , we get

LHiggs = · · ·+ 1
2m

2
ZZµZ

µ + 1
2m

2
WW

+
µ W

µ−

−mZZµ∂
µϕZ − imW

(
W−
µ ∂

µϕ+ −W+
µ ∂

µϕ−
)
.

(3.34)

The last terms complicate the propagator definitions. In addition, the mass spectrum
is the same as in the unitary gauge, but at the same time the Goldstone bosons have
not disappeared. This means that the degrees of freedom before and after SSB do not
match. We fix both issues by employing the Faddeev-Popov gauge-fixing procedure.

First, we define four gauge-fixing functionsGA(Aµ), GZ(Zµ), G+(W+
µ ) andG−(W−

µ ),
with four corresponding gauge-fixing conditions: GA(Aµ) = 0, GZ(Zµ) = 0 etc. Fol-
lowing [78, sec. 9.4], we introduce the constraint δ(G(x)− ω(x)) in the path integral
and integrate over ω(x) with a Gaussian weight (for all four gauge-fixing functions).
Effectively, this adds the following terms to the Lagrangian:

LGF = − 1
2ξA

G2
A −

1
2ξZ

G2
Z −

1
ξW

G+G−. (3.35)

We can use the arbitrary gauge-fixing functions to cancel the last terms in Eq. (3.34),
let

GA = ∂µAµ, (3.36a)
GZ = ∂µZµ + ξZmZϕ

Z , (3.36b)
G+ = ∂µW+

µ + iξWmWϕ
+, (3.36c)

G− = ∂µW−
µ − iξWmWϕ

−. (3.36d)

These gauge-fixing conditions define the Rξ gauge for the GSW model, and choosing
different values for the ξ parameters corresponds to working in different gauges.
Usual choices are the Landau gauge, ξ = 0, and the Feynman-’t Hooft gauge, ξ = 1.
From e.g. ϕZ = ∂µZµ/(ξZmZ) we see that the unitary gauge corresponds to ξ →∞.
Calculating for example the square of GZ , we have

G2
Z = (∂µZµ)2 + 2ξZmZϕ

Z∂µZ
µ + ξ2

Zm
2
Z(ϕZ)2.
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Performing a partial integration of the cross terms, we obtain
1

2ξZ
G2
Z = 1

2ξZ
(∂µZµ)2 −mZZ

µ∂µϕ
Z + 1

2ξZm
2
Z(ϕZ)2, (3.37)

which cancels out the third term in Eq. (3.34). One can similarly verify that the
definitions of G+ and G− cancel the last term.

The introduction of the gauge-fixing constraint in the Lagrangian is accompanied by
a Jacobian determinant det(δG/δα), which correctly accommodates for the variable
shift in the Dirac delta function. Here, α is the expansion parameter of an infinitesimal
gauge transformation. The determinant can be represented by a functional integral
over anticommuting scalar fields. Thus additional particles called Faddeev-Popov
ghosts are added to the generating functional, and consequently to the Feynman
rules. The part of the Lagrangian containing the ghost fields becomes

LGhost =
4∑
i=1

[
c̄A
δGA

δαi
+ c̄Z

δGZ

δαi
+ c̄+

δG+

δαi
+ c̄−

δG−
δαi

]
ci. (3.38)

In Appendix B, we present a selection of the Feynman rules (those used in this
thesis) for the GSW model in the Rξ gauge.

3.3 Goldstone boson equivalence theorem
The breaking of the SU(2)L ⊗ U(1)Y gauge symmetry in the GSW model involves a
conservation of degrees of freedom. In the unbroken theory, the gauge bosons have
only two (transverse) degrees of freedom. After SSB, the W± and Z bosons have
acquired a longitudinal component, while the Goldstone bosons ϕ± and ϕZ have
disappeared from the physical mass spectrum. Thus the physical degrees of freedom
are the same before and after symmetry breaking.

We might suspect that in a physical sense, the Goldstone bosons have become the
longitudinal components of the gauge bosons. The polarisation states of a massive
gauge boson at rest are completely equivalent, but when the boson is moving at
relativistic speed the longitudinal polarisation is easily distinguishable. Thus, at high
energies a longitudinal polarised gauge boson might show its root as a Goldstone
boson. Our suspicion is made precise by the Goldstone boson equivalence theorem
(EQT), first proven by Cornwall et al. [24]. The theorem states that an amplitude
involving longitudinal gauge bosons is equal to one with unphysical Goldstone bosons
up to corrections of O(mW/E), i.e.

M(W+
L ,W

−
L , ZL, . . . ) =M(ϕ+, ϕ−, ϕZ , . . . )×

(
1 +O

(
mW

E

))
. (3.39)

We do not prove the equivalence theorem here, but we follow Ref. [79] and argue
why it holds in the special case of the Feynman-’t Hooft gauge. The complete proof
is based on the Ward identities of the broken theory, and it is given in Ref. [80].
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Consider a massive vector boson travelling in the z direction with momentum
kµ = (E, 0, 0, kz). We choose the transverse polarisation vectors to be

εµ1 = (0, 1, 0, 0) and εµ2 = (0, 0, 1, 0)

which satisfies the conditions (εi∗)µ(εj)µ = −δij and εµi kµ = 0 for i = 1, 2. The
longitudinal polarisation vector is the third vector satisfying these conditions:

εµL = 1
m

(kz, 0, 0, E). (3.40)

For high energies, we have

kz =
√
E2 −m2 ' E

(
1− m2

2E2

)
= E

(
1 +O(m2/E2)

)
,

E =
√
k2
z +m2 ' kz

(
1 + m2

2k2
z

)
= kz

(
1 +O(m2/E2)

)
,

and thus
εµL = kµ

m
+O(m/E). (3.41)

We defined the Feynman-’t Hooft gauge for the W+ bosons, ξW = 1, in Eq. (3.36d)
as

∂µW+
µ (x) + imWϕ

+(x) = 0,

which in momentum space implies

kµ

mW

W+
µ (k) = ϕ+(k). (3.42)

We can write a longitudinal polarised W+ boson as W+
L = εµLW

+
µ , which combined

with Eqs. (3.41) and (3.42) yields

W+
L = kµ

mW

W+
µ +O(mW/E) = ϕ+ +O(mW/E). (3.43)

Similar expressions are found for the W− and Z gauge bosons, with the Goldstone
bosons ϕ− and ϕZ . Hence, we have verified the EQT in the Feynman-’t Hooft gauge.
The theorem comes in particularly useful when one computes cross sections with

massive, high-energy gauge bosons in the initial or final state. We can then use
transverse polarisation vectors in the polarisation sum, while we additionally compute
diagrams with absorption or emission of the corresponding Goldstone bosons. This
usually simplifies the calculations, and by the EQT we know that this approach is
valid up to O(mW/E) corrections. We will make use of this method in Chapter 6.
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3 Theoretical preliminaries

3.4 Polarisation sums
We will frequently need to sum matrix elements over possible spin configurations
for incoming and outgoing particles in a given scattering process. In a typical
experiment, it is difficult to prepare incoming particles in definite spin states, and
also complicated to analyze the spin of outgoing particles. Therefore, one usually
uses beams of unpolarised particles and the particle detectors are mostly blind to
spin orientation. In addition, when considering final states consisting of quarks
and gluons, the particles undergo hadronisation before they can be detected in an
experiment. To compute such processes using perturbation theory, we must define
inclusive observables which typically include summation over spin polarisations. We
will discuss this in more detail in Chapter 4.

For these reasons, cross sections computed in this thesis are averaged over initial
state spins and summed over final state spins. In this section, we will obtain
expressions for polarisation sums for massive and massless spin-1 particles, which
will be used in subsequent chapters.

Massive spin-1 fields
We can always boost a massive spin-1 field to its rest frame, where total angular
momentum reduces to spin and non-relativistic quantum mechanics is valid. Thus,
we know that a massive field with spin s = 1 has 2s+ 1 = 3 spin degrees of freedom.
To describe a relativistic particle with three degrees of freedom, we need a four-vector
and a constraint to eliminate the additional degree of freedom. Each component must
satisfy the Klein-Gordon equation, and the only linear, Lorentz invariant constraint
is ∂µAµ = 0. The two equations can be combined into one equation that governs a
vector field Aµ with mass m:

(ηµν�− ∂µ∂ν)Aν +m2Aµ = 0. (3.44)

This equation is called the Proca equation. Going to Fourier space, we find the
general solutions of this equation to be

Aµ(x) =
∑
s

� d3k√
(2π)32ωk

[
as(k)εµs (k)e−i(ωkt−k·x) + a†s(k)εµs ∗(k)ei(ωkt−k·x)

]
(3.45)

where the momenta of the Fourier modes are on-shell, kµ = (ωk,k), and as(k) and
a†s(k) are ladder operators. For a fixed momentum kµ, there are three independent
solutions of Eq. (3.44) which we label by the polarisation vectors εµs (k), with s = 1, 2, 3.
These vectors are conventionally normalised as εµ∗εµ = −1. Furthermore, the
constraint ∂µAµ = 0 implies in Fourier space that kµεµ = 0.
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3.4 Polarisation sums

The propagator of the massive vector field is the time-ordered product of two fields,

iDµν
F (x) = 〈0|T{Aµ(x)Aν∗(0)}|0〉

=
∑
s

� d3k

(2π)32ωk

[
εµs (k)ενs∗(k)e−ikxθ(x0) + εµs (k)ενs∗(k)eikxθ(−x0)

]
=
� d4k

(2π)4
Pµνe−ikx

k2 −m2 + iε. (3.46)

Here, we defined the polarisation tensor Pµν as the sum of the polarisation states
εµs (k)ενs∗(k). The result can be obtained by using the commutation relations of the
ladder operators and the Feynman prescription for the k0 contour integration. We can
argue physically why the propagator Dµν

F takes this form as follows: The amplitude
for creation of a particle with momentum k and polarisation s is proportional to
εµs
∗(k), and similarly the amplitude for absorption is proportional to ενs(k). The

propagator describes the amplitude for propagation from source to sink, hence we
multiply the individual amplitudes and sum over possible polarisations.
We want to obtain the polarisation sum Pµν for a massive spin-1 field in the Rξ

gauge. To do this, we will find the propagator in this gauge, and compare it with
Eq. (3.46). Consider for example the Zµ gauge boson from the GSW model discussed
in the previous section, then we have the following quadratic terms in Zµ,

LZµ,2 = −1
4 (∂µZν − ∂νZµ)2 + 1

2m
2
ZZµZ

µ − 1
2ξZ

G2
Z , (3.47)

where GZ is the gauge-fixing function in the Rξ gauge defined in Eq. (3.36b). Inserting
only the term quadratic in Zµ from Eq. (3.37), we get

LZµ,2 = −1
4 (∂µZν − ∂νZµ)2 + 1

2m
2
ZZµZ

µ − 1
2ξZ

(∂µZµ)2. (3.48)

Next, we integrate by parts to obtain

LZµ,2 = 1
2Zµ [ηµν�− ∂µ∂ν ]Zν + 1

2Zµη
µνm2

ZZν + 1
2ξZ

Zµ∂
µ∂νZν

= 1
2Zµ

[
ηµν(�+m2

Z)− (1− ξ−1
Z )∂µ∂ν

]
Zν

≡ 1
2ZµΩµνZν (3.49)

where we defined Ωµν as a shorthand for the terms in the bracket.
Varying the action of the Lagrangian in Eq. (3.49), one can show that the equations

of motion are ΩµνZν = 0. Thus, the propagator Dµν
F is the Green function of the

differential operator Ωµν ,

Ωµν(x)iDνρ
F (x− y) = δρµδ

4(x− y), (3.50)
Ωµν(k2)iDνρ

F (k2) = δρµ, (3.51)
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3 Theoretical preliminaries

where we went to momentum space in the second line. We have

Ωµν(k2) = −(k2 −m2
Z)ηµν + (1− ξ−1

Z )kµkν . (3.52)

To invert this operator, it is convenient to write it in terms of projection operators.
We define P µν

L ≡ kµkν/k2 which projects four-vectors on the subspace spanned by kµ.
The projection operator onto the complementary subspace becomes P µν

T = ηµν −P µν
L .

These operators satisfy P 2
L = PL, P 2

T = PT , PLPT = 0 and P µν
L + P µν

T = ηµν . It
follows that

Ωµν(k2) = −(k2 −m2
Z)
(
P µν
T + kµkν

k2

)
+ (1− ξ−1

Z )kµkν .

= −(k2 −m2
Z)P µν

T − ξ−1
Z (k2 − ξZm2

Z)P µν
L . (3.53)

We can now invert the two prefactors to obtain

iDµν
F (k2) = −iP µν

T

k2 −m2
Z + iε + −iξZP µν

L

k2 − ξZm2
Z + iε

= i
k2 −m2

Z + iε

[
−ηµν + (1− ξZ) kµkν

k2 − ξZm2
Z + iε

]
. (3.54)

By inserting this into Eq. (3.51) and using the projection operator properties, one can
show that this is indeed the inverse of Ω. Hence, we have obtained the polarisation
sum ∑

s

εµs
∗ενs = Pµν = −ηµν + (1− ξZ) kµkν

k2 − ξZm2
Z

. (3.55)

By performing analogous manipulations to the Lagrangian, one can show that the
propagators of the Higgs boson, the Goldstone bosons and the Faddeev-Popov ghosts
becomes

h = i
p2 −m2

h + iε, (3.56)

ϕZ

= i
p2 − ξZm2

Z + iε, (3.57)

cZ = i
p2 − ξZm2

Z + iε. (3.58)

Moreover, similar results to Eqs. (3.55), (3.57) and (3.58) are found for the W bosons,
the ϕ± bosons and the c± ghosts, only with mW and ξW . The Goldstone bosons
and the Faddeev-Popov ghosts have mass terms which depend on the gauge fixing
parameter, e.g. mϕZ =

√
ξZmZ , indicating that these fields are not physical. Thus,

the unitary gauge corresponds to the physical mass spectrum.
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3.4 Polarisation sums

Massless spin-1
Massless spin-1 fields are described by Maxwell’s equations, which correspond to the
m = 0 limit of the Proca equation:

∂µF
µν = �Aµ − ∂ν∂µAµ = 0. (3.59)

This equation and the corresponding Lagrangian, L = −F 2
µν/4, are invariant under

the gauge transformation

Aµ(x)→ Aµ(x) + ∂µΛ(x), (3.60)

for some function Λ(x), a significant property the massive Lagrangian did not have.
Massless spin-1 fields have two spin degrees of freedom, and we can use the gauge
freedom to eliminate the unphysical degrees of freedom. For example, we may impose
the Lorenz gauge condition ∂µA

µ = 0 (which is not automatically satisfied as it
was in the Proca equation). This only eliminates one degree of freedom, so we can
e.g. additionally set ∂iAi = 0 (Coulomb gauge) or nµAµ = 0 for some arbitrary
four-vector n (physical gauges). Note that the last two conditions are not Lorentz
covariant, while the Lorenz condition is.

The solution of Eq. (3.59) can be expanded in Fourier components as in Eq. (3.45),
with summation over two spin degrees of freedom in stead of three. The gauge
conditions translate into constraints on the polarisation vectors εµs , and consequently
alter the polarisation sum. In this section, we present the polarisation sums for the
generalised Feynman gauges and the physical gauges.

If we employ the Faddeev-Popov gauge-fixing prescription, the propagator for a
massless spin-1 particle becomes

iDµν
F (k2) = i

k2 + iε

[
−ηµν + (1− ξγ)

kµkν

k2

]
. (3.61)

This is called the generalised Feynman gauge, and it is similar to the Rξ gauge of
electroweak theory which we presented earlier. We can read off the polarisation sum:

∑
s

εµs
∗ενs = −ηµν + (1− ξγ)

kµkν

k2 . (3.62)

As in Eq. (3.36), ξγ parametrises the gauge; ξγ = 0 corresponds for example to the
Lorenz gauge. This gauge-fixing procedure has the virtue of being Lorentz covariant,
but on the other hand, all unphysical degrees are not eliminated.
Alternatively, we can fix the gauge by imposing the Lorentz and physical gauge

conditions: kµεµs = 0 and nµε
µ
s = 0. Considering the available quantities carrying

Lorentz indices, we can write down the following ansatz for the polarisation sum:∑
s

εµs
∗ενs = Aηµν +Bkµkν + Cnµnν +Dkµnν + Enµkν . (3.63)
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3 Theoretical preliminaries

Applying the gauge conditions, as well as the normalisation εµ∗εµ = −1, we obtain

∑
s

εµs
∗ενs = −ηµν + kµnν + kνnµ

k · n . (3.64)

Here, we used our freedom in choosing n to set n2 = 0. In this gauge-fixing scheme, all
unphysical degrees of freedom are eliminated, but it came at the expense of Lorentz
covariance. This is a general feature of gauge theories: we have to choose between a
covariant gauge with unphysical degrees of freedom or a gauge with only physical
degrees of freedom but in a selected frame [81].

In this text, we will in general operate in the middle ground and use the covariant
propagator in Eq. (3.61) for virtual particles while using the polarisation sum in
Eq. (3.64) for external particles.
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4 Electron-positron annihilation
In this chapter, we calculate the total cross section for electron-positron annihilation
to hadrons. First, we argue why this process can be calculated via perturbative
methods. Then we compute the leading order process e+e− → qq̄, and introduce a
convenient formalism for the computation of total cross sections of s-channel processes.
We go on to the leading order corrections and calculate the Feynman diagrams with
real gluon emission and virtual gluon exchange. The corrections contain infrared (IR)
divergences, and we show how these divergences cancel at next-to-leading order using
dimensional regularization (DR). The presentation follows partly Ref. [82, Sec. 3.5].

4.1 Hadronisation
As discussed in Section 3.1, the asymptotic freedom of QCD means that we can
only employ perturbative methods at the short-distance scale. It is, however, in the
long-distance, low-energy processes where the formation of hadrons from quarks and
gluons occurs. This process is called hadronisation. Due to colour confinement, the
phenomenon that colour charged particles cannot be isolated, we can only detect
hadrons in an experiment. Thus we need some method to connect perturbative QCD
to experiment.

One approach to solve this issue is to define observables so that they are insensitive
to the long-distance physics. In the case of e+e−-annihilation, the only process
which involves hadronisation at leading order in both electroweak theory and QCD
is e+e− → qq̄. Thus the cross section of this process is equal to the total cross section
of e+e− → hadrons at leading order. This argument is repeated at any order in
perturbation theory, when we include all partonic states subjected to hadronisation.

In the reasoning above, we have assumed that we can consider the partonic process
and the hadronisation as independent processes. We argue why this assumption is
valid as follows: The time scale in which the e+e− → q̄q process takes place is 1/

√
Q2,

where Q is the momentum transfer, while the time scale involved in the hadronisation
is 1/ΛQCD. Thus we can view the quark creation and the hadronisation independently
if we consider processes with Q2 � Λ2

QCD.
This brief, heuristic introduction of perturbative QCD can be made rigorous to

greater extent, see e.g. Ref. [83].
The fact that we will consider processes in the limit Q2 � Λ2

QCD, lets us make some
simplifications. If we take ΛQCD ∼ 200 MeV, then Q2 � Λ2

QCD implies Q2 � m2
q for
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4 Electron-positron annihilation

Q

γ∗

e−

e+

q̄

q

Figure 4.1: Leading order diagram for e+e− → qq̄.

the quarks q = u, d, s. If we also take 4m2
b < Q2 < 4m2

t , it is a good approximation
to assume that all particles are massless (no top quark will be produced), which
simplifies our calculations.

Next, we turn to the specific partonic processes at next-to-leading order. Splitting
the total cross section according to partonic final state, we have

σhadrons = σqq̄ + σqq̄g + · · · . (4.1)

We write the matrix elements in a perturbative series,

σqq̄ = 1
4I

�
dΦ2|Mqq̄|2 = 1

4I

�
dΦ2

[
|M(0)

qq̄ |2 + 2αs<
{
M(0)

qq̄

∗M(1)
qq̄

}
+ · · ·

]
, (4.2a)

σqq̄g = 1
4I

�
dΦ3|Mqq̄g|2 = 1

4I

�
dΦ3

[
αs|M(0)

qq̄g|2 + · · ·
]
, (4.2b)

where we expressly factored out the strong coupling. In this chapter, we will in
general use subscripts like qq̄ to denote the final state of the process the quantity
belongs to. The only initial state considered is e+e−, so this notation unambiguously
identifies the process in question. Additionally, a superscript (0) or (1) indicates the
order in the perturbation expansion.

As we will see, theM(0)
qq̄g and theM(1)

qq̄ diagrams contain IR divergences. Thus, a
finite total cross section at order O(αs) requires�

dΦ22<
(
M(0)

qq̄

∗M(1)
qq̄

)
+
�

dΦ3|M(0)
qq̄g|2 = finite. (4.3)

In order to make our mathematical operations valid, we must employ an appropriate
regularisation scheme for the IR divergences. We will use DR and work in d = 4− 2ε
dimensions. This scheme is particularly useful since gauge invariance is preserved.

4.2 Leading order process
We begin with the leading order process, which is given by the Feynman diagram
in Fig. 4.1. There is also a diagram with the virtual photon replaced by a Z boson,
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4.2 Leading order process

but it is strongly suppressed except around the Q2 = m2
Z ≈ 90 GeV pole of the Z

propagator. We neglect the contribution in this calculation, thereby assuming a
momentum transfer away from this resonance.

The diagram in Fig. 4.1 contains only QED vertices, and using the Feynman rules
from Appendix B we get the amplitude

iM(0)
qq̄ = vs′(l+)(−ieγµ)us(l−)iDµν(Q)ur(q)(−ieeqγν)δijvr′(q̄) (4.4)

where l+, l−, q and q̄ are the four-momenta of the positron, electron, quark and
antiquark, respectively. The momentum of the virtual photon is Q, which by energy-
momentum conservation satisfies l+ + l− = Q = q + q̄. We repeat the photon
propagator from Eq. (B.2) for convenience,

iDµν(Q2) = i
Q2 + iε

(
−ηµν + (1− ξγ)

QµQν

Q2

)
, (4.5)

where ξγ parametrises the gauge.
Furthermore, the subscripts s′, s, r and r′ on the Dirac spinors v, u, u and v label

the spin of the positron, electron, quark and antiquark respectively. The quarks have
colour i and j, thus we enforce colour conservation with δij, and finally, eq is the
electric charge of the quarks in units of e.1
It is convenient to define lepton and hadron currents,

(JL)µ = −ievs′(l+)γµus(l−), (4.6a)(
J

(0)
qq̄

)ν
= iδijeequr(q)γνvr′(q̄), (4.6b)

from which we can write

iM(0)
qq̄ = iDµν (JL)µ

(
J

(0)
qq̄

)ν
.

Contracting the currents with Qµ, we have

Qµ (JL)µ ∝ vs′(l+)(/l+ + /l
−)us(l−) = vs′(l+)(−me +me)us(l−) = 0, (4.7a)

Qµ
(
J

(0)
qq̄

)
µ
∝ ur(q)(/q + /̄q)vr′(q̄) = ur(q)(mq −mq)vr′(q̄) = 0, (4.7b)

where we used that the spinors obey the Dirac equation. Hence, we can discard
the QµQν-part in the photon propagator. This is in accordance with the fact that
the amplitude should be gauge invariant. It follows that

iM(0)
qq̄ = −i

Q2 (JL)µ
(
J

(0)
qq̄

)µ
. (4.8)

1To avoid ambiguity with the momentum transfer, we use eq instead of Q for the electric charge of
the quarks here.
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4 Electron-positron annihilation

As discussed in Section 3.4, we are generally interested in cross sections where the
initial and final spins are averaged and summed over, respectively. Moreover, we used
the fact that the partonic state is completely inclusive in the hadronic state when we
argued why perturbation theory is applicable to the process e+e− → hadrons. It is the
total cross section which is independent of the complicated physics of hadronisation,
hence we must sum over spins and colours in the partonic state. We therefore write
the squared amplitude as

|M(0)
qq̄ |2 = 1

4
∑

s,s′,r,r′,i,j

|M(0)
qq̄ |2 = 1

Q4Lµν
(
H

(0)
qq̄

)µν
, (4.9)

where we defined the leptonic and hadronic tensors

Lµν = 1
4
∑
s,s′

(JL)µ (JL∗)ν , (4.10a)
(
H

(0)
qq̄

)µν
=

∑
r,r′,i,j

(
J

(0)
qq̄

)µ (
J

(0)
qq̄

∗)ν
. (4.10b)

We can perform this factorisation at all orders in perturbative QCD, since the processes
always have the same s-channel structure with the initial e+e− state. Furthermore,
the factorisation is very useful since the leptonic tensor remains the same for all
diagrams.

Total cross section
We can use the factorisation into leptonic and hadronic tensors to simplify the general
expression for the total cross section. In the case of e+e− → X, where X is some
partonic state, we can write the total cross section as

σX = 1
2Q2Lµν

1
Q4

�
dΦXH

µν
X . (4.11)

Here, we used the flux factor 4I = 4|l+|√s ' 2s = 2Q2, simplified using that
Q2 � m2

e. After the phase space integration in Eq. (4.11), the momenta of the
final state particles are integrated out, so the only free variable is Q. Thus the only
quantities available carrying Lorentz indices are ηµν and Qµ, and we can use the
ansatz �

dΦHµν = Aηµν +BQµQν . (4.12)

Gauge invariance in QED implies that QµL
µν = QµH

µν = 0, such that the gauge-
dependent (1− ξγ)QµQν-part of the photon propagator drops out. At leading order,
we showed this explicitly with the currents in Eq. (4.6). Going to higher order, the
cancellation is only guaranteed to happen when summing over all diagrams at a given
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4.2 Leading order process

order. In our particular case, the leptonic tensor stays the same and will always cancel
the gauge-dependent part of the propagator. However, since gauge invariance holds
for all QED processes, the hadronic currents should also cancel gauge-dependent
terms (consider for example a process M ∝ HµνH

µν). Consequently, we contract
Eq. (4.12) with Qµ to get A = −BQ2, which enables us to write

�
dΦHµν = 1

d− 1

(
−ηµν + QµQν

Q2

)
H(Q2) (4.13)

where
H(Q2) = −ηµν

�
dΦHµν(Q2) = −Hµ

µ(Q2)Φ. (4.14)

The phase space integration in the last step is only valid if the hadronic tensor only
depends on Q2. We can now express the total cross section of e+e− → X as

σX = 1
2(d− 1)Q6 (−Lµµ)HX(Q2). (4.15)

Hence, the problem of computing the total cross section is reduced to computing the
trace of the leptonic tensor and evaluating the hadron function HX(Q2).

Trace evaluations
Writing out the leptonic and hadronic tensors from Eq. (4.10), we have

Lµν = e2

4
∑
s,s′

[
vs′(l+)γµus(l−)

] [
vs′(l+)γνus(l−)

]∗
(4.16a)

(
H

(0)
qq̄

)µν
= NC(eeq)2∑

r,r′
[ur(q)γµvr′(q̄)] [ur(q)γνvr′(q̄)]∗ (4.16b)

where we performed the quark colour sum, ∑i,j δijδij = NC . To evaluate the tensors,
we first note that the brackets contain spinor-space scalars, so we can replace the
complex conjugate with the Hermitian conjugate. We have e.g.

(uγµv)† = v†(γµ)†(γ0)†u = v†γ0γ0(γµ)†γ0u = vγµu,

where we used the Dirac matrix properties γ0γ0 = 1 and (γ0)† = γ0. Furthermore,
we will use the following identities for Dirac spinors:2∑

s

us(p)us(p) = (/p+m), (4.17a)∑
s

vs(p)vs(p) = (/p−m). (4.17b)

2A derivation of these relations can be found in almost any book on quantum field theory (QFT),
see e.g. Refs. [2, 78, 81].
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4 Electron-positron annihilation

We will from now on assume that the electrons and quarks are massless, me = 0,
mq = 0, as justified in Section 4.1. The leptonic tensor is evaluated to

Lµν = e2

4
∑
s,s′

[vs′γµus] [vs′γνus]†

= e2

4
∑
s,s′

(vs′)aγµab(us)b(us)cγνcd(vs′)d

= e2

4
/l

+
daγ

µ
ab
/l
−
bcγ

ν
cd = e2

4 Tr
[
/l

+
γµ/l

−
γν
]
, (4.18)

where we used the relations in Eq. (4.17). The trace can be computed using results
from Appendix A,

Lµν = e2

4 Tr
[
/l

+
γµ/l

−
γν
]

= e2

4 l
+
ρ l
−
σ Tr [γργµγσγν ]

= e2l+ρ l
−
σ [ηρµησν + ηρνηµσ − ηρσηµν ]

= e2
[
l+µl−ν + l+νl−µ − (l+ · l−)ηµν

]
= e2

[
l+µl−ν + l+νl−µ − (Q2/2)ηµν

]
, (4.19)

where we in the last step used the energy-momentum relation

Q2 = (l+ + l−)2 = 2(l+ · l−)

for massless particles. Using that ηµνηµν = d in d dimensions, the trace of Lµν over
Lorentz indices becomes

ηµνL
µν = µ2εe2Q2 2− d

2 = µ2εe2Q2(ε− 1). (4.20)

We supplied here a scale µ with mass dimension 1. The action should remain
dimensionless in DR, where we have mass dimensions

[Aµ] = d− 2
2 = 1− ε, [ψ] = d− 1

2 = 3
2 − ε, [e] = 4− d

2 = ε. (4.21)

Thus the replacement e→ µεe ensures that the coupling remains dimensionless.
Similar manipulations for the hadronic tensor yield(

H
(0)
qq̄

)µν
= NCµ

2ε(eeq)2 Tr
[
/qγ

µ
/̄qγ

ν
]

= 4NCµ
2ε(eeq)2

[
qµq̄ν + qν q̄µ − (Q2/2)ηµν

]
and consequently

ηµν
(
H

(0)
qq̄

)µν
= 4NCµ

2ε(eeq)2Q2(ε− 1). (4.22)
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4.3 Real gluon emission

This expression does not depend on the outgoing momenta, so we are allowed to
move it outside the phase space integral.
The phase space integral in d = 4− 2ε dimensions is derived in Appendix C, and

repeated here:

Φ =
�

dΦ(d)
2 = 1

4π
|q|√
Q2

(
π

|q|2
)ε Γ(1− ε)

Γ(2− 2ε) = 1
8π

(
4π
Q2

)ε Γ(1− ε)
Γ(2− 2ε) , (4.23)

where we in the last equality used |q| =
√
E2
q −m2

q = Eq =
√
Q2/2. Inserting

Eqs. (4.20), (4.22) and (4.23) into Eq. (4.15), we conclude that

σ
(0)
qq̄ = 1

4I

�
dΦ2|M(0)

qq̄ |2 =
4πNCe

2
qµ

2εα2
em

Q2

(
4πµ2

Q2

)ε (1− ε)2

3− 2ε
Γ(1− ε)
Γ(2− 2ε) . (4.24)

Here, αem = e2/4π. The result does not contain any IR divergences, so the ε → 0
limit is straightforward:

σ
(0)
qq̄ = 4πα2

em
3Q2 e2

qNC . (4.25)

This formula reproduces the standard result, see e.g. Eq. (17.4) in Ref. [78]. Although
it was not strictly necessary to use DR in the calculation of this process, it conveniently
allows us to sum the result with IR divergent contributions at higher order later.

4.3 Real gluon emission
In this section we consider the process e+e− → qq̄g. The Feynman diagrams are
shown in Fig. 4.2, where the e+e−-part is omitted. As discussed in the previous
section, we only need to compute the Lorentz index trace of the hadronic tensor
to evaluate the total cross section (the leptonic tensor stays the same). Using the
gluon-quark-antiquark vertex from Eq. (B.6), we find the sum of the hadron currents
of the two diagrams to be

(
J

(0)
qq̄g

)µ
= −iµ2εeeqgsT

a
ij (εt∗)σ ur(q)

γσ /q + /g

(q + g)2γ
µ + γµ

−(/̄q + /g)
(q̄ + g)2 γ

σ

vr′(q̄) (4.26)

where gs is the QCD coupling constant, and we use the same notation for the momenta
and spin of the quarks as in Section 4.2. The emitted gluon has four-momentum
g, colour a, and polarisation vector εt. Factoring out the polarisation vectors, and
summing over the polarisation and colour of the gluon in addition to the quarks, the
hadron tensor is given by(

H
(0)
qq̄g

)µν
=
∑
t

(εt∗)σ (εt)ρ
∑

r,r′,i,j,a

(
J

(0)
qq̄g

)µσ (
J

(0)
qq̄g

∗)νρ
(4.27)
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Figure 4.2: Leading order diagrams for e+e− → qq̄g. We have omitted the leptonic
current part, which is identical to that in Fig. 4.1.

The polarisation sum for the massless gluon is given by Eq. (3.64). However, since
there are only one external gluon, any part proportional to gσ drops out in the
Feynman amplitude [84]. Therefore, we can perform the replacement∑

t

(εt∗)σ (εt)ρ → −ησρ.

It follows that (
H

(0)
qq̄g

)µν
= −

∑
r,r′,i,j,a

(
J

(0)
qq̄g

)µσ (
J

(0)
qq̄g

∗)ν
σ
. (4.28)

To evaluate the sum over quark and gluon colours, we use the results from Eqs. (3.5)
and (3.6), ∑

a

T aij(T aij)
∗ =

∑
a

T aijT
a
ji = CF δii = CFNC , (4.29)

where we used that SU(N) generators are Hermitian in the fundamental representa-
tion.
The remaining sum is that over spinor polarisations. We can use the same

manipulations as in Section 4.2 to write it as a trace over Dirac matrices,
(
H

(0)
qq̄g

)µν ∝ Tr
[
/q

(
γσ
/q + /g

2q · gγ
µ − γµ /̄q + /g

2q̄ · gγ
σ

)
/̄q

(
γν
/q + /g

2q · gγσ − γσ
/̄q + /g

2q̄ · gγ
ν

)]
. (4.30)

By the linearity of the trace, we can consider the terms in Eq. (4.30) one by one. We
define

tqq = Tr
[
/qγ

σ(/q + /g)γµ/̄qγµ(/q + /g)γσ
]
, (4.31a)

tqq̄ = Tr
[
/qγ

σ(/q + /g)γµ/̄qγσ(/̄q + /g)γµ
]
, (4.31b)

tq̄q = Tr
[
/qγ

µ(/̄q + /g)γσ/̄qγµ(/q + /g)γσ
]
, (4.31c)

tq̄q̄ = Tr
[
/qγ

µ(/̄q + /g)γσ/̄qγσ(/̄q + /g)γµ
]
, (4.31d)
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4.3 Real gluon emission

from which we can write

ηµν
(
H

(0)
qq̄g

)µν
= CFNCµ

4ε(eeqgs)2
[
− tqq

(2q · g)2 −
tq̄q̄

(2q̄ · g)2 + tqq̄ + tq̄q
(2q · g)(2q̄ · g)

]
. (4.32)

Inspecting this expression, we see that it diverges for q · g → 0 and q̄ · g → 0. Writing

q · g = EqEg(1− βq cos θ), βq =
√√√√1− m2

q

E2
q

, (4.33)

it is apparent that the hadron tensor contains an IR divergence for Eg → 0. A
singularity at zero energy like this is called soft. Note that it appears even without
assuming massless quarks. When we additionally set mq = 0, we get βq = 1 and
Eq → 0 becomes allowed. Then the expression diverges for both θ → 0 and Eq → 0.
The singularity at zero angle is called collinear.

Next, we evaluate the spinor-space traces in Eq. (4.31). We will make use of the
computer algebra system FORM to compute traces like these [85]. Nonetheless, we
include an explicit calculation of Eq. (4.31a) to show how one could do this manually.
We use the cyclic property of the trace to write

tqq = Tr
[
γσ/qγ

σ(/q + /g)γµ/̄qγµ(/q + /g)
]
.

This expression is simplified using the second relation in Eq. (A.13), which we repeat
for convenience:

γµ/pγµ = pα(2ηµαγµ − γαγµγµ) = −2(1− ε)/p.

We have therefore

tqq = 4(1− ε)2 Tr
[
/q(/q + /g)/̄q(/q + /g)

]
= 16(1− ε)2qµ(q + g)ν q̄ρ(q + g)σ Tr [ηµνηρσ + ηµσηνρ − ηµρηνσ]
= 16(1− ε)2

[
2(q · (q + g))(q̄ · (q + g))− q · q̄(q + g)2

]
= 32(1− ε)2(q · g)(q̄ · g), (4.34)

where we used that q2 = g2 = 0.
Using FORM, we also get tq̄q̄ = tqq and

tqq̄ + tq̄q = −32(1− ε)
[
(q · q̄)Q2 − 2ε(q · g)(q̄ · g)

]
. (4.35)

Thus, the Lorentz index trace of the hadron tensor becomes

ηµν
(
H

(0)
qq̄g

)µν
= 8CFNCµ

4ε(eeqgs)2(1− ε)

×
[
−(1− ε)

(
q · g
q̄ · g + q̄ · g

q · g

)
− (q · q̄)Q2

(q · g)(q̄ · g) + 2ε
]
. (4.36)
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4 Electron-positron annihilation

Phase space integration
The phase space integral for three outgoing particles is simplified considerably when
the particles are massless. In the center-of-momentum (CoM) frame, it is convenient
to define momentum fractions

xi = 2pi ·Q
Q2 . (4.37)

They satisfy xq + xq̄ + xg = 2, as well as

1− xq = 2q̄ · g
Q2 , 1− xq̄ = 2q · g

Q2 and 1− xg = 2q · q̄
Q2 .

Writing the hadron tensor in terms of momentum fractions combined with the
three-particle phase space from Eq. (C.24), we get

H
(0)
qq̄g(Q2) = −ηµν

�
dΦ(d)

3

(
H

(0)
qq̄g

)µν
=
CFNCe

2
qαemαsQ

2

π

(
4πµ2

Q2

)2ε 1− ε
Γ(2− 2ε)I(ε)

(4.38)
with αs = g2

s /4π and where

I(ε) =
� 1

0
dxq

� 1

1−xq
dxq̄ [(1− xq)(1− xq̄)(xq + xq̄ − 1)]−ε

×
[
(1− ε)

(
1− xq̄
1− xq

+ 1− xq
1− xq̄

)
+ 2(1− xg)

(1− xq)(1− xq̄)
− 2ε

]
. (4.39)

The collinear divergences now arise in the xq → 1 or xq̄ → 1 limit, while the
soft gluon divergence corresponds to taking both limits simultaneously. Note that
the interference term has a double pole in this limit. We simplify the integral
by substituting xq = x and xq̄ = 1 − vx. The Jacobian of this transformation is
|det J | = x, so we rewrite our integral as

I(ε) =
� 1

0
dx

� 1

0
dv x

[vx2(1− x)(1− v)]ε

[
(1− ε)

(
vx

1− x + 1− x
vx

)
+ 2(1− v)
v(1− x) − 2ε

]
.

We identify the integral of each term as two instances of Euler’s Beta function, which
can be expressed by Gamma functions using Eq. (A.6). Hence,

I(ε) = 2(1− ε)Γ(2− ε)Γ(1− ε)Γ(−ε)
Γ(3− 3ε) + 2Γ(2− ε)Γ2(−ε)

Γ(2− 3ε) − 2εΓ3(1− ε)
Γ(3− 3ε)

= Γ3(1− ε)
Γ(1− 3ε)

( 2
ε2

+ 3
ε

+ 19
2 +O(ε)

)
, (4.40)

where we repeatedly used Γ(z + 1) = zΓ(z). The 1/ε2 divergence comes from the
interference term and is therefore associated with the combined soft gluon and
collinear divergence. The other 1/ε pole corresponds to collinear divergences.
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Figure 4.3: Hadronic part of e+e− → qq̄ at next-to-leading order.

Finally, combining Eqs. (4.38) and (4.40) as well as the leptonic tensor in Eq. (4.20),
we find the total cross section of e+e− → qq̄g at leading order to be

σ
(0)
qq̄g =

2CFNCe
2
qµ

2εα2
emαs

Q2

(
4πµ2

Q2

)2ε (1− ε)2

3− 2ε
Γ3(1− ε)

Γ(2− 2ε)Γ(1− 3ε)

×
( 2
ε2

+ 3
ε

+ 19
2 +O(ε)

)
= σ

(0)
qq̄

CFαs

2π

(
4πµ2

Q2

)ε Γ2(1− ε)
Γ(1− 3ε)

( 2
ε2

+ 3
ε

+ 19
2 +O(ε)

)
. (4.41)

4.4 Virtual gluon exchange
The next-to-leading order corrections to e+e− → qq̄ are shown in Fig. 4.3. In our
perturbative series of the matrix element in Eq. (4.2), the O(αs)-contribution to the
cross section is the interference betweenM(0)

qq̄ andM(1)
qq̄ . Writing the amplitudes in

terms of leptonic and hadronic tensors, we have

|Mqq̄|2 = |M(0)
qq̄ |2+2αs<

{
M(0)

qq̄

∗M(1)
qq̄

}
+· · · = 1

Q4Lµν
[(
H

(0)
qq̄

)µν
+ αs

(
H

(1)
qq̄

)µν
+ · · ·

]
where the strong coupling was explicitly factored out. Thus, the hadronic tensor we
are looking for at order O(αs) is the interference term

αs
(
H

(1)
qq̄

)µν
= 2<

 ∑
i,j,r,r′

(
J

(0)
qq̄

∗)µ (
J

(1)
qq̄

)ν . (4.42)

The only new part we need to calculate is J (1)
qq̄ , which is the sum of the diagrams in

Fig. 4.3.
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4 Electron-positron annihilation

Self-energy diagrams
The diagrams in Figs. 4.3b and 4.3c involve the one-loop gluon contribution to the
quark self-energy, which for massless quarks is

iΣ = (µεgs)2CF δij

� ddg
(2π)d

γµ(/g + /q)γν
[g2 + 2g · q]2 g2

[
ηµν − (1− ξG)g

µgν

g2

]
. (4.43)

The denominator in the integrand can be simplified using Feynman parameters, in
particular by utilising the following identity:

1
ab

=
� 1

0
dx 1

[a(1− x) + bx]2
. (4.44)

We get

1
[g2 + 2g · q]2 g2

=
� 1

0
dx 1

[(g2 + 2g · q)x+ (1− x)g2]2
=
� 1

0
dx 1

(g2 + qx)4 ,

where q2 = 0 was used. The next step is to shift the integration variable, g → g− qx,
which does not alter the integration measure. Performing the shift in the numerator,
it is straightforward to show that the self-energy is proportional to

iΣ ∝ /q

� 1

0
dxf(x)

� ddg
(2π)d

1
g4 , (4.45)

where f is some function of the Feynman parameter. In this expression, terms linear
or cubic in g were dropped, due to their antisymmetry under g → −g which implies
that they vanish when integrated over all g.

The integral in Eq. (4.45) is not convergent for any value of d. Moreover, for d = 4
it is both ultraviolet (UV) and IR divergent. This is an example of a scaleless integral,
a loop-integral where one can scale the momenta and the result is proportional to
the original integral, i.e. I(αk) = αI(k). In dimensional regularization, we define
scaleless integrals to be zero. This can be justified as follows: We introduce a scale Λ
to separate the UV and IR divergent regions of the integral:

� ddkE
k4
E

= Ωd

� Λ

0
dkEkd−5

E + Ωd

� ∞
Λ

dkEkd−5
E = Ωd

(
Λ−2εIR

−2εIR
− Λ−2εUV

−2εUV

)
. (4.46)

Here, we used d = 4−2εIR for the first integral, with εIR < 0, and d = 4−2εUV for the
second integral, assuming εUV > 0. The subscript E indicates that the momentum is
Euclidean. We know that εIR and εUV must vanish from physical quantities, thus we
can set εIR = εUV = ε. Then the integral is 0. More physically, we could argue that
the integral has dimension d − 4, but there is no available quantity with non-zero
mass dimension, so it must vanish in d dimensions.

Consequently, the quark self-energy diagrams do not contribute to the cross section.
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Vertex correction
We are left with the vertex correction in Fig. 4.3a; the hadron current is given by(

J
(1)
qq̄

)µ
= µ3εeeqg

2
sT

a
ikT

a
kj

� ddg
(2π)d

ur(q)Γµvr′(q̄)
g2(q + g)2(q̄ − g)2 , (4.47)

where

Γµ = γρ(/q + /g)γµ(/g − /̄q)γσ
(
−ηρσ + (1− ξG)g

ρgσ

g2

)

= −γρ(/q + /g)γµ(/g − /̄q)γρ + 1− ξG
g2 /g(/q + /g)γµ(/g − /̄q)/g. (4.48)

The summation over colours gives a factor CFNC , and the summation over spins
introduces a trace over Dirac matrices. Thus, the Lorentz index trace of the hadronic
tensor from Eq. (4.42) becomes

αsηµν
(
H

(1)
qq̄

)µν
= 2<

∑
i,j,r,r′

(
J

(0)
qq̄

∗)
µ

(
J

(1)
qq̄

)µ
= −2iCFNCµ

4ε(eeqgs)2

×
� ddg

(2π)d
Tr
[
γµ/qΓµ/̄q

]
g2(q + g)2(q̄ − g)2 . (4.49)

We use FORM to compute the trace, the result is
N ≡ Tr

[
γµ/qΓµ/̄q

]
=− 8(1− ε)

[
Q4 − 4(q · g)(q̄ · g)− 2g · (q − q̄)Q2 + εg2Q2

]
− 4(1− ε)1− ξG

g2 Q2(q + g)2(q̄ − g)2.

(4.50)
The factors (q+g)2 and (q̄−g)2 in the second line cancels against the same factors in the
denominator in Eq. (4.49). This gauge-dependent term is consequently proportional
to � ddg

(2π)d
1
g4 ,

which is scaleless and vanishes in DR.
To compute the integral in Eq. (4.49), we use the method of Feynman parameters.

For three factors in the denominator, the method is based on the following identity:
1
abc

=
� 1

0
dx

� 1−x

0
dy 2

[ax+ by + c(1− x− y)]3
. (4.51)

Using this relation, we write the denominator in Eq. (4.49) as
1

g2(q + g)2(q̄ − g)2 =
� 1

0
dx

� 1−x

0
dy 2

[x(q + g)2 + y(q̄ − g)2 + (1− x− y)g2]3

=
� 1

0
dx

� 1−x

0
dy 2

[(g + xq − yq̄)2 − xyQ2]3
. (4.52)
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Next, we shift integration variable in the momentum integral, g → g − xp + yq̄.
Shifting the numerator given by Eq. (4.50) yields

N = −8(1− ε)
[
(1− x− y + xy(1− ε))Q4

− 2g · (q − q̄ − (1− ε)(xq − yq̄))Q2 + εg2Q2 − 4(g · q)(g · q̄)
]
.

We can omit the term linear in g, since it vanishes under integration. Furthermore,
we can simplify the (g · q)(g · q̄)-term via the following trick: Consider

� ddg
(2π)d g

µgν = ηµν
� ddg

(2π)df(g2). (4.53)

The integral transforms as a tensor under Lorentz transformations, but does not
depend on any quantity carrying a Lorentz index (g is integrated out). Thus it
must be proportional to the only tensor available, ηµν , with an unknown isotropic
function f(g2) in the integrand. Contracting both sides of the equation with ηµν
shows that f(g2) = g2/d. Therefore we can replace gµgν → ηµνg2/d, which gives

N = −8(1− ε)Q2
[
(1− x− y + xy(1− ε))Q2 − (1− ε)2

2− ε g2
]
. (4.54)

We compute the g-integrals using Eq. (A.7),
� ddg

(2π)d
1

[g2 + xyQ2]3 = i
2(4π)2

(
−4π
Q2

)ε 1
(xy)ε

1
xyQ2 Γ(1 + ε), (4.55a)

� ddg
(2π)d

g2

[g2 + xyQ2]3 = i
2(4π)2

(
−4π
Q2

)ε 1
(xy)εΓ(1 + ε)2− ε

ε
. (4.55b)

Here, the relation Γ(z + 1) = zΓ(z) was applied to make the expressions easily
comparable.
Combining Eqs. (4.49), (4.52), (4.54) and (4.55), we obtain

αsηµν
(
H

(1)
qq̄

)µν
= −8NCCF e

2
qµ

2εαemαsQ
2<

{(
−4πµ2

Q2

)ε
(1− ε)Γ(1 + ε)I(ε)

}
(4.56)

with

I(ε) =
� 1

0
dx

� 1−x

0
dy 1

(xy)ε

[
1− x− y + xy(1− ε)

xy
− (1− ε)2

ε

]
. (4.57)

The integral I(ε) over Feynman parameters is solved by the substitution y = (1− x)v
as well as similar manipulations to those solving Eq. (4.39) in the previous section.
The result is

I(ε) = 1
2

Γ2(1− ε)
Γ(1− 2ε)

( 2
ε2

+ 3
ε

+ 8
1− 2ε

)
. (4.58)
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4.5 Combined O(αs) correction

There is no dependence on the quark momenta in Eq. (4.56), hence we can use
the phase space integral from Eq. (4.23). It follows that the next-to-leading order
correction to the cross section is

σ
(1)
qq̄ =

CFNCe
2
qµ

2εα2
emαs

Q2

(
4πµ2

Q2

)2ε

<{(−1)ε} (1− ε)2

3− 2ε
Γ3(1− ε)Γ(1 + ε)

Γ(1− 2ε)Γ(2− 2ε)

×
( 2
ε2

+ 3
ε

+ 8 +O(ε)
)

= σ
(0)
qq̄

CFαs

2π

(
4πµ2

Q2

)ε
<{(−1)ε} Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)

( 2
ε2

+ 3
ε

+ 8 +O(ε)
)
.

(4.59)

In Eq. (4.59), we have successfully moved the divergences to the last parenthesis. It
is illuminating to investigate what types of divergences the terms in the parenthesis
represent. First, if we carefully inspect the integration of I(ε), we find that the
1/ε2-term originates from the first term in I(ε), Eq. (4.57). The integral of this term
is only convergent when ε < 0, thus the 1/ε2-term represent IR divergences. Second,
tracing the 1/ε-term back reveals that it arose from the momentum space integration
in Eq. (4.55b). This integral is UV divergent, and only convergent for ε > 0. The
result becomes the second term in the Feynman parameter integral I(ε), but this
integration needs no further constrictions on ε to converge. Thus, the 1/ε-term
corresponds to an UV divergence.

Evidently, we should have used two separate dimension parameters, e.g. εIR and εUV,
regulating the IR and UV divergences with the corresponding constraints, respectively.
However, we will demonstrate that both divergent terms cancel when combined with
the cross section for real gluon emission.

4.5 Combined O(αs) correction
Combining the result from the real gluon emission and the virtual correction, we
obtain the complete cross section for electron-positron annihilation to hadrons at
O(αs),

σ = σ
(0)
qq̄

1 + CFαs

2π

(
4πµ2

Q2

)ε Γ2(1− ε)
Γ(1− 3ε)

( 2
ε2

+ 3
ε

+ 19
2 +O(ε)

)

+ <{(−1)ε} Γ(1 + ε)Γ(1− 3ε)
Γ(1− 2ε)

( 2
ε2

+ 3
ε

+ 8 +O(ε)
)+O(α2

s ).

(4.60)
To combine the terms, we expand the prefactor in the second line. The prefactor
must be equal to one up to O(ε3)-terms for a cancellation of the poles to occur. We
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use the expansion in Eq. (A.4), repeated here for convenience:

Γ(1 + ε) = 1− εγE + 1
2

(
γ2
E + π2

6

)
ε2 +O(ε3). (4.61)

From (1 + x)−1 = 1− x+ x2 − x3 + · · · , we also have

Γ−1(1− 2ε) =
[
1 + 2εγE + 2

(
γ2
E + π2

6

)
ε2 +O(ε3)

]−1

= 1− 2εγE + 2
(
γ2
E + π2

6

)
ε2 + 4γ2

Eε
2 +O(ε3). (4.62)

Combining the Gamma functions yields
Γ(1 + ε)Γ(1− 3ε)

Γ(1− 2ε) = 1 + (πε)2

2 +O(ε3), (4.63)

and when multiplied with <{(−1)ε} = <{exp(iπε)} = 1 − (πε)2/2 +O(ε4), we see
that the ε2-terms cancel. Thus we can safely take the ε→ 0 limit:

σ = σ
(0)
qq̄

{
1 + 3CFαs

4π +O(α2
s )
}

=
4πNCe

2
qα

2
em

3Q2

{
1 + 3CFαs

4π +O(α2
s )
}
. (4.64)

We have demonstrated that the total cross section of electron-positron annihilation
to hadrons at order O(αs) is free of IR divergences. An argument for why this is the
case can be made as follows: Compared to the rapid quark production, which occurs
in a time scale 1/

√
Q2, the emission and virtual exchange of soft or collinear gluons

are very slow processes. The virtuality of the virtual quark (or antiquark) is 2q · g,
and hence it lives for a time 1/(2q · g) before it decays. At arbitrary long time and
distance scales, the emission or virtual exchange of a gluon becomes indistinguishable,
which suggests that both processes must be taken into account when considering
quantities including soft or collinear regions.
Another point of view is that of experimental reality. Physical observables have

to be measurable, and since any experimental instrument has a finite energy and
angular resolution, it is not possible to detect soft or collinear splitting below these
resolution limits. From this perspective, only the detectable gluon momenta should
have been integrated over in the computation of the gluon emission cross section.
The soft or collinear gluon emission is to be regarded as part of the cross section
without emission. Thus, the cross sections of unresolved processes must be summed
up.
The discussion above is generalised and made precise by the Kinoshita-Lee-

Nauenberg (KLN) theorem, which states that a fully inclusive observable is free of IR
divergences to all orders in a general quantum field theory [86, 87]. In general, the
observable requires a summation of initial states as well as final states. However, we
were able to avoid this since the initial state did not participate in QCD interactions.
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5 Four approaches to Higgs decay
In this chapter, we consider the decay of a Higgs boson into charged W bosons at
leading order. The decay rate of this process is usually computed in the unitary
gauge where only physical particles appear in the Feynman diagrams. In addition to
repeating the calculation in the unitary gauge, we will here compute the amplitude
using three different approaches:

(i) with the Goldstone boson equivalence theorem,

(ii) in the Feynman-’t Hooft gauge, and

(iii) using the optical theorem on a W -boson loop.

The various approaches are illustrative of multiple features of electroweak theory.
Firstly, gauge invariance lets us choose any gauge to work with. In the gauges
where the gauge bosons have unphysical degrees of freedom, Goldstone bosons and
Faddeev-Popov ghosts appear to cancel these degrees of freedom. Secondly, in the
limit of high energy, the unbroken theory becomes a valid description, rigorously
guaranteed by the EQT. Third, unitarity implies that the imaginary part of a loop
diagram corresponds to cutting the diagram and putting the cut lines on-shell.

5.1 Unitary gauge
We start with the unitary gauge (ξ =∞), defined in Section 3.2. In this gauge the
only leading order diagram contributing to h→ W+W− is the one shown in Fig. 5.1.
Let the Higgs boson have four-momentum q, and let p and p′ be the four-momenta of
W+ andW−, respectively. Using the Feynman rule in Eq. (B.14), we can immediately
write down the amplitude for this diagram,

iM = igmWη
µν(εs∗)µ(εr∗)ν (5.1)

where g is the weak coupling constant and mW is the mass of the W boson. Fur-
thermore, (εs)µ and (εr)µ are the polarisation vectors of the positive and negative
charged gauge boson, respectively. The squared amplitude is

|M|2 = g2m2
Wη

µνηαβ(εs∗)µ(εr∗)ν(εs)α(εr)β = g2m2
W (εs∗)µ(εr∗)µ(εs)α(εr)α. (5.2)
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5 Four approaches to Higgs decay

q p

p′
h

W +

W −

Figure 5.1: Leading order diagram for h→ W+W− in the unitary gauge.

Since we are not interested in a particular polarisation of the final state gauge
bosons, we sum over the different polarisations. From Eq. (3.55), we have that the
polarisation sum in the unitary gauge for a gauge boson with mass m and momentum
k is ∑

t

(εt∗)µ(εt)ν = −ηµν + kµkν
m2 . (5.3)

Thus, we have

|M|2 ≡
∑
s,r

|M|2 = g2m2
W

(
−ηµα + pµpα

m2
W

)(
−ηµα + p′µp′α

m2
W

)

= g2m2
W

(
2 + (p · p′)2

m4
W

)
. (5.4)

We can use four-momentum conservation, q = p+ p′, to write the scalar product
in terms of particle masses.

q2 = p2 + p′2 + 2p · p′,

p · p′ = 1
2(m2

h − 2m2
W ) ≡ m2

h

2 (1− 2z). (5.5)

Here we defined the mass ratio z ≡ m2
W/m

2
h for later convenience. The squared

amplitude becomes

|M|2 = g2m2
W

(
2 + m4

h

4m4
W

(1− 2z)2
)

= g2

4

(
m2
h

mW

)2 (
1− 4z + 12z2

)
. (5.6)

Decay rate
The differential decay rate of a two-body decay in the CoM frame is given in Eq. (C.4),
and repeated here for convenience:

dΓ = 1
32π2

|p|
M2 |M|

2 dΩ, (5.7)
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5.2 Goldstone boson equivalence theorem

where M is the mass of the decaying particle, and p is the momentum of either of the
particles in the final state. To find the magnitude of the spacial momentum of the
W -particle, we can calculate the scalar product p · p′ in the CoM frame and compare
with Eq. (5.5) (valid in any frame),

m2
h

2 (1− 2z) = p · p′ = E2 + |p|2 = m2
W + 2|p|2,

where we used that EW+ = EW− and p = −p′. Hence

|p| = m2
h

2
√

1− 4z. (5.8)

The Feynman amplitude in Eq. (5.6) has no angular dependence, we can therefore
immediately integrate Eq. (5.7) over outgoing solid angles to obtain the total decay
rate

Γh→W+W− = g2

64π
m3
h

m2
W

√
1− 4z

(
1− 4z + 12z2

)
. (5.9)

This result agrees with e.g. Eq. (2.3) in Ref. [88, sec. XV].

5.2 Goldstone boson equivalence theorem
This section illustrates the EQT in the case of Higgs decay into charged gauge bosons.
As explained in Section 3.3, the theorem states that in the limit of high energy, the
amplitude of emission or absorption of a longitudinal gauge boson becomes equal to
the amplitude of emission or absorption of the corresponding Goldstone boson. In
the case of Higgs decay to W bosons, the high-energy limit corresponds to the Higgs
mass being much larger than the W mass, mh � mW . We compute first the decay
into longitudinal polarised W bosons, and compare the result in the high-energy limit
to that of Higgs decay into Goldstone bosons.
The calculation of the amplitude of h→ W+

LW
−
L mirrors the one in Section 5.1,

except for the polarisation sum. We saw in Section 3.3 that the polarisation vectors
for longitudinal vector bosons become proportional to kµ at high energy, therefore
the polarisation sum is ∑

t

(εt∗)µ(εt)ν = kµkν
m2

. (5.10)

It follows that the squared amplitude summed over polarisations is given by

|MWL
|2 = g2m2

W

(
pµpα
m2
W

)(
p′µp′α

m2
W

)
= g2m2

W

(p · p′)2

m4
W

= g2

4

(
m2
h

mW

)2

(1− 4z + 4z2)
(5.11)
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q p

p′
h

ϕ+

ϕ−

Figure 5.2: Leading order diagram for Higgs decay into Goldstone bosons.

where we used Eq. (5.5) and z = m2
W/m

2
h. In the high-energy limit, z goes to zero, so

|MWL
|2 −→ g2

4

(
m2
h

mW

)2

. (5.12)

Comparing the result with Eq. (5.6), we note that the leading term of that result is
associated with the longitudinal component.
Next, we consider Higgs decay into Goldstone bosons, see Fig. 5.2. Since all

particles involved in this process are scalars, the squared amplitude is simply the
square of the vertex factor in Eq. (B.15),

|Mϕ±|2 = g2

4

(
m2
h

mW

)2

. (5.13)

This result is exactly equal to the high-energy limit in Eq. (5.12), as predicted by the
EQT.

5.3 Feynman-’t Hooft gauge
We will now consider Higgs decay in the Feynman-’t Hooft gauge (ξ = 1). In this
gauge, there are additional (unphysical) particles which couples to the Higgs particle:
charged Goldstone bosons ϕ+ and ϕ−, and Faddeev-Popov ghosts c+ and c− from the
W± gauge fixing condition. At leading order, the diagrams contributing are shown in
Fig. 5.3. In all diagrams we label q as the four-momentum of the Higgs boson, while
p is the four momentum of W+, ϕ+ and c+, and p′ is the four-momentum of W−,
ϕ− and c−.

We begin with Fig. 5.3a and compute the amplitude of this process in the Feynman-
’t Hooft gauge. The calculation follows closely that of Section 5.1, except that in this
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h

W +

W −

(a)

h

ϕ+

ϕ−

(b)

h

W +

ϕ−

(c)

h

ϕ+

W −

(d)

h

c+

c−

(e)

h

c−

c+

(f)

Figure 5.3: Diagrams contributing to Higgs decay into charged bosons in the Feynman-
’t Hooft gauge. The arrows next to the ghost lines indicate if it is a particle
or antiparticle.

gauge we replace the polarisation sum as follows:
∑
t

(εt∗)µ(εt)ν = −ηµν . (5.14)

Thus, the squared amplitude summed over polarisations becomes

|MWT
|2 = g2m2

W (−ηµα)(−ηµα) = 4g2m2
W = g2

4

(
m2
h

mW

)2

(16z2), (5.15)

with z = m2
W/m

2
h.

We already computed the amplitude of the diagram in Fig. 5.3b in Section 5.2, the
matrix element is given in Eq. (5.13).
Third, we consider the diagrams in Figs. 5.3c and 5.3d. Their vertex factors are

equal up to a change of sign (see Eq. (B.16)), so the squared Feynman amplitude is
equal for the two diagrams. It is given by

|MWϕ|2 = g2

4 (q + p′)µ(q + p′)ν(εs∗)µ(εs∗)ν .

Using the polarisation sum in Eq. (5.14), we obtain

|MWϕ|2 = −g
2

4 (q + p′)2. (5.16)
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As in Section 5.1, we use four-momentum conservation to express the scalar product:

m2
W = p2 = (q − p′)2 = m2

h +m2
W − 2q · p′

2q · p′ = m2
h,

and consequently
(q + p′) = 2m2

h +m2
W . (5.17)

The result becomes

|MWϕ|2 = g2

4

(
m2
h

mW

)2

(−2z − z2). (5.18)

Finally, we compute the ghost diagrams in Figs. 5.3e and 5.3f. The amplitude for
both diagrams is merely the vertex factor in Eq. (B.17),

iM = − i
2gmW .

For 2n external Faddeev-Popov ghosts, we must include a factor (−1)n in order to
cancel the unphysical contributions to the squared amplitude in this gauge [81, sec.
10.3]. This follows from the fact that ghost fields are anticommuting scalars. Hence,
we multiply the squared amplitude with (−1),

|MWϕ|2 = (−1)g
2m2

W

4 = g2

4

(
m2
h

mW

)2

(−z2). (5.19)

We are ready to sum the contributions from the diagrams in Fig. 5.3. Figures 5.3c
and 5.3d and Figs. 5.3e and 5.3f have equal amplitudes, therefore we count the
contributions from Eqs. (5.18) and (5.19) twice. The sum is

|M|2 = g2

4

(
m2
h

mW

)2 (
1− 4z + 12z2

)
, (5.20)

which is in agreement with the result in the unitary gauge, Eq. (5.6).

5.4 Charged boson loop
We consider a W boson loop correction to the Higgs self-energy, shown in Fig. 5.4.
We will calculate this diagram in the unitary gauge, and show that the imaginary
part equals the decay rate obtained in Eq. (5.9). This is a consequence of the optical
theorem, as we will demonstrate in the first paragraph. The loop-diagram is UV
divergent, i.e. it diverges for large momenta. We must therefore use a regularisation
scheme to separate the result in a divergent and a finite part.
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5.4 Charged boson loop

Optical theorem
In quantum field theory, the scattering matrix or S-matrix encodes all information
about how initial states and final states evolve in time. It is defined in the Heisenberg
picture, where states are stationary and all time-dependence is put into operators.
Thus, a state |i; t = −∞〉 evolves into |f ; t =∞〉 with amplitude given by the inner
product

〈f |S|i〉H = 〈f ; t =∞|i; t = −∞〉S. (5.21)
Here, the subscripts denote the Schrödinger and Heisenberg pictures. In this definition,
it is assumed that all interactions happen in a finite time interval, so that the
asymptotic states |i〉 and |f〉 are free of interactions. The probability of evolution
from an initial state to a final state is given by the squared amplitude, 〈f |S|i〉2.
Conservation of probability then implies that the S-matrix must be unitary. One
important consequence of this is the optical theorem.
We can split the S-matrix into a trivial and a transition part: S = 1 + iT . Then

unitarity implies
iT †T = T − T †. (5.22)

Expressing the transition matrix as a matrix element times a momentum-conserving
delta function, and putting the right hand side in between asymptotic states, one
obtains

〈f |T |i〉 − 〈i|T |f〉∗ = (2π)4δ4(pi − pf )
[
Mif −M∗

fi

]
.

Inserting a complete set of states, the left hand side of Eq. (5.22) becomes

i
〈
f
∣∣∣T †T ∣∣∣ i〉 =

∑
X

�
dΠX(2π)8δ4(pi − pX)δ4(pf − pX)MiXM∗

fX ,

where dΠX is the Lorentz invariant phase space for multi-particle state X (it equals
dΦX defined in Eq. (C.2), except the delta function is factored out). Setting these
expressions equal and cancelling the overall delta function gives the generalised optical
theorem:

Mif −M∗
fi = i

∑
X

�
dΠX(2π)4δ4(pi − pX)MiXM∗

fX . (5.23)

One important special case of the generalised theorem is the forward scattering
amplitude when |i〉 = |f〉 = |A〉. Then,

2i=MAA = i
∑
X

�
dΠX(2π)4δ4(pA − pX)|MAX |2. (5.24)

Comparing this to the decay rate of a one-particle state |i〉,

ΓA→X = 1
2mA

�
dΠX(2π)4δ4(pA − pX)|MAX |2,
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q

p′ = p − q

W ±

p

h h

Figure 5.4: Charged gauge boson correction to the Higgs self-energy.

we obtain
=MAA = mA

∑
X

ΓA→X . (5.25)

Thus, the imaginary part of the exact propagator equals the mass times the total
decay rate. In our case of Higgs decay to W bosons, this equation tells us that

=


 = mh

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

2

, (5.26)

which we will verify in this section.

Self-energy diagram
Let q be the four-momentum of the Higgs boson, and let p and p′ = p − q be the
four-momenta of the bosons in the loop. The one-loop correction to the self-energy
in Fig. 5.4 is

iΠ = (igm2
W )2

×
� d4p

(2π)4

(
−ηµν + pµpν

m2
W

)(
−ηµν +

p′µp
′
ν

m2
W

)
i

p2 −m2
W + iε

i
(p′)2 −m2

W + iε.

(5.27)

This integral is UV divergent, so we will use DR and compute it in d = 4 − 2ε
dimensions. Then we can separate the result in a divergent term and a finite
remainder. As we will see, the imaginary part of the self-energy, which is what we
are interested in, is finite.
We expand the parenthesis in Eq. (5.27), using that in d dimensions ηµνηµν = d.

To make the coupling constant stay dimensionless in DR, we supply a scale µ with
mass dimension 1,

g → µ2−d/2g = µεg.
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Thus, the matrix element becomes

iΠ = µ2εg2

m2
W

� ddp
(2π)d

(p2 − p · q)2 −m2
W (2p2 + q2 − 2p · q) + dm4

W

(p2 −m2
W + iε)((p− q)2 −m2

W + iε) (5.28)

≡ µ2εg2

m2
W

� ddp
(2π)d

N
D ,

where we defined N and D as shorthands for the numerator and denominator.
The evaluation of this integral will proceed in the same manner as in Section 4.4.

We will use Feynman parameters, and in particular utilise the following identity:

1
ab

=
� 1

0
dx 1

[a(1− x) + bx]2
. (5.29)

The denominator D becomes

1
D =

� 1

0
dx 1

[(p2 −m2
W + iε)(1− x) + ((p− q)2 −m2

W + iε)x]2

=
� 1

0
dx 1

[(p− qx)2 −∆]2

with
∆ ≡ −q2x(1− x) +m2

W − iε.

Having completed the square in the denominator, we can now shift p→ p+ qx. This
transformation does not affect the integral measure ddp, since it is a linear shift.
Next, we evaluate the numerator after the integration variable shift. We discard

terms which are linear or cubic in p, hence

N = (p2)2 + (p · q)2(1− 2x)2 − 2p2q2x(1− x)− 2p2m2
W

+ (q2)2
x2(1− x)2 − q2m2

W (1− 2x+ 2x2) + dm4
W . (5.30)

We can perform the substitution (p · q)2 → p2q2/d by the argument below Eq. (4.53).
The result is

N = (p2)2 + p2
(
A+ B

d

)
+ C + dm4

W , (5.31)

where some simplifying definitions were made:

A = −2q2x(1− x)− 2m2
W , (5.32a)

B = q2(1− 2x)2, (5.32b)
C = (q2)2x2(1− x)2 − q2m2

W (1− 2x+ 2x2). (5.32c)
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We are now ready to perform the p-integral. The relevant integrals are special
cases of Eq. (A.7), hence

iΠ = µ2εg2

m2
W

� 1

0
dx

� ddp
(2π)d

(p2)2 + p2
(
A+ B

d

)
+ C + dm4

W

[p2 −∆]2
,

= µ2εg2

m2
W

� 1

0
dx i∆d/2

(4π)d/2

×
{

Γ(2 + d/2)Γ(−d/2)
Γ(2)Γ(d/2) − dΓ(1− d/2)

2∆

(
A+ B

d

)
+ Γ(2− d/2)

∆2 (C + dm4
W )
}
.

(5.33)

To combine the terms in the curly bracket, we use the identity Γ(z + 1) = zΓ(z),
which yields that

Γ(2 + d/2)Γ(−d/2)
Γ(2)Γ(d/2) = 2 + d

d− 2 Γ(2− d/2) (5.34)

and
d

2 Γ(1− d/2) = d

2− d Γ(2− d/2). (5.35)

We get

Π = 1
(4π)d/2

µ2εg2

m2
W

Γ(2− d/2)
� 1

0
dx∆d/2

×
{

2 + d

d− 2 −
d

2− d
1
∆

(
A+ B

d

)
+ 1

∆2 (C + dm4
W )
}
. (5.36)

The UV divergence is now isolated in Γ(2 − d/2) = Γ(ε). We take ε small, and
Taylor expand to order O(ε).

Γ(ε) = 1
ε
− γE +O(ε),

µ2ε
(

∆
4π

)d/2
= µ2ε

(
∆
4π

)2−ε
= ∆2

(4π)2

[
1 + ε ln

(
4πµ2

∆

)
+O(ε)

]
so that

µ2ε
(

∆
4π

)2−ε
Γ(ε) = ∆2

(4π)2

[
1
ε

+ ln
(
µ̃2

∆

)
+O(ε)

]
, (5.37)

with µ̃2 ≡ 4πe−γEµ2. Furthermore, we expand the ε-dependent terms in the curly
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bracket and discard terms of second or higher order. The result is

Π = 1
(4π)2

g2

m2
W

� 1

0
dx

(
1
ε

+ ln
(
µ̃2

∆

))

×
{

∆2(3 + 2ε) + ∆(2 + ε)A+ 1
2∆(1 + ε)B + C + 2(2− ε)m4

W

}

= 1
(4π)2

g2

m2
W

� 1

0
dx
1
ε

(
3∆2 + 2∆A+ 1

2∆B + C + 4m4
W

)

+
(

2∆2 + ∆A+ 1
2∆B − 2m4

W

)

+ ln
(
µ̃2

∆

)(
3∆2 + 2∆A+ 1

2∆B + C + 4m4
W

), (5.38)

where we excluded terms of order ε. The first term in the integrand contains the UV
divergence, and it can be subtracted in an appropriate renormalisation scheme.

Imaginary part
The only part in Eq. (5.38) that develops an imaginary part is the logarithm for
negative argument. The principal value of the complex logarithm is defined as

Log(z) = ln|z|+ i Arg z, (5.39)

which implies that =(Log(x± iε)) = ±π for x ∈ R−. Here, ε is an infinitesimal shift
into the complex plane due to the principal value being discontinuous for negative
real numbers. We find the interval where ∆ is negative by identifying its roots,

− q2x(1− x) +m2
W = 0 =⇒ x± = 1

2 ±
1
2

√√√√1− 4m2
W

q2 . (5.40)

Thus ∆ < 0 for x ∈ (x−, x+). The iε-term in the definition of ∆ (which follows
from the Feynman prescription in the propagator definition) tells us to approach the
discontinuity in the complex plane from above, picking up a factor +π. Consequently,
the imaginary part of the amplitude is given by

=(Π) = π

(4π)2
g2

m2
W

� x+

x−

dx
(

3∆2 + 2∆A+ 1
2∆B + C + 4m4

W

)

= 1
64π

g2

m2
W

√√√√1− 4m2
W

q2

(
q4 − 4q2m2

W + 12m4
W

)
. (5.41)

Introducing again the mass ratio z = m2
W/m

2
h, we write the result as

=
(
Π(q2 = m2

h)
)

= g2

64π

(
mh

mW

)2√
1− 4z(1− 4z + 12z2). (5.42)
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Comparing with Eq. (5.9), we have a confirmation of the optical theorem,

=
(
Π(q2 = m2

h)
)

= mh Γh→W+W− . (5.43)
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6 Electroweak bremsstrahlung
corrections

In this chapter, we apply the Goldstone boson equivalence theorem to electroweak
bremsstrahlung corrections to quark pair production. We restrict ourselves to s-
channel processes where the mediator is a virtual photon, which means that we can
perform the same tensor factorisation as we did in Chapter 4. Thus we effectively
consider decay of a virtual photon. To combine our results with an explicit observable,
we consider an electron-positron initial state, and compute the total cross section
ratio of W bremsstrahlung to tree-level quark production. We include a calculation
of unpolarised W emission for comparison. The longitudinal component have a
unitarity-violating high-energy behaviour, but by the EQT it equals the corresponding
Goldstone boson, and should be well-behaved. Hence, we conclude that when including
all sub-processes at a given order, the leading, unitarity-violating terms cancel.

6.1 Explicit calculations
We compute in this section the process γ∗ → ud̄W− for a transverse W− boson, the
corresponding Goldstone boson and finally, for an unpolarised W− boson. In order to
employ the EQT, we consider an energetic photon with four-momentum Q2 � m2

W .
At this scale it is a reasonable approximation to assume that the light quarks are
massless, which simplifies our calculations.
We will use similar notation to that in Chapter 4, so Hµν denotes a squared

current analogous to the hadron tensor and H(Q2) is the Lorentz index trace of the
squared current integrated over phase space, as defined in Section 4.2. The quark
and antiquark spins are labeled r and r′, respectively, and eu is the electric charge of
the u quark in units of e.

Transverse W boson emission
The Feynman diagram for γ∗ → ud̄W− is shown in Fig. 6.1. Applying relevant
Feynman rules from Appendix B, we find the current to be

JµW = −i eg√
2
eu(εt∗)ρ ur(pu)

γµ−
(
/pd + /k

)
+md

(pd + k)2 −m2
d

γρPL

 vr′(pd) (6.1)
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d̄

W −

u

Q

γ∗

Figure 6.1: Electroweak bremsstrahlung correction to quark production.

where pu, pd and k are the momenta of the u quark, d quark and the W− boson,
respectively. The polarisation vector of the gauge boson is εt, and PL = (1− γ5)/2 is
the left-chiral projection operator. The weak coupling constant is denoted by g.

We construct the tensor Hµν
W by squaring the current and summing over polarisa-

tions:
Hµν
W =

∑
t

(εt∗)ρ(εt)σ
∑
r,r′

(JW )µρ (J∗W )νσ . (6.2)

Here, we also factored out the polarisation vectors. In the unitary gauge, the
polarisation sum for unpolarised weak gauge bosons is

Pρσ ≡
∑
t

ε∗t
ρεt

σ = −ηρσ + kρkσ

m2 . (6.3)

We found in Section 3.3 that ερL = kρ/m in the high-energy limit. Thus, in this limit,
the first and second term in Eq. (6.3) come from the transverse and longitudinal
degrees of freedom, respectively, so that we can replace∑

t

(εt∗)ρ(εt)σ → −ηρσ. (6.4)

Furthermore, we will eventually contract Hµν
W with ηµν , doing it right away simplifies

calculations,
ηµνH

µν
W = −

∑
r,r′

(JW )µρ (J∗W )µρ . (6.5)

The spinor index sum can once again be expressed as a trace over Dirac matrices.
We neglect the quark masses, hence

ηµνH
µν
W = −NCe

2
u(eg)2

8
1

[2(pd · k) +m2
W ]2

Tr
{
/puΓ

µρ
/pdΓµρ

}
, (6.6)

where we defined

Γµρ = γµ(−/pd − /k)γρ(1− γ5), (6.7a)
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6.1 Explicit calculations

d̄

ϕ−
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Q
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Figure 6.2: Emission of a Goldstone boson from the quark current.

and consequently
Γµρ = (1 + γ5)γρ(−/pd − /k)γµ. (6.7b)

The sign of γ5 changed in the last line due to the anticommutation property
{γ5, γµ} = 0. The trace is computed by FORM, with the following result:

Tr
{
/puΓ

µρ
/pdΓµρ

}
= 64(pu · k)(pd · k)− 32m2

W (pu · pd). (6.8)

It follows that the squared current is given by

ηµνH
µν
W = 4NCe

2
u(eg)2

[2(pd · k) +m2
W ]2

[
m2
W (pu · pd)− 2(pu · k)(pd · k)

]
. (6.9)

Goldstone boson emission
We go on to the emission of the corresponding Goldstone boson from the d quark.
The Feynman diagram is shown in Fig. 6.2. We use the Feynman rule in Eq. (B.12),
and get the following expression for the current:

Jµϕ = ieueg√
2
ur(pu)

γµ−
(
/pd + /pϕ

)
+md

(pd + pϕ)2 −m2
d

(guPL − gdPR)

 vr′(pd). (6.10)

Here, we defined the coupling constants gu ≡ mu/mW and gd ≡ md/mW for Goldstone
boson interaction with a pair of right-left- and left-right-chiral fermions, respectively.
The quark masses are set to zero, but we keep the mass ratios gu and gd non-zero
(if these are zero, the current is zero). The momentum of the Goldstone boson is
denoted by pϕ. We obtain the following expression for the squared current summed
over quark polarisation:

ηµνH
µν
ϕ = NCe

2
u(eg)2

8
1

[2(pd · pϕ) +m2
W ]2

Tr
{
/puΓ

µ
/pdΓµ

}
, (6.11)
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6 Electroweak bremsstrahlung corrections

where

Γµ = γµ(−/pd − /pϕ)
[
gu(1− γ5)− gd(1 + γ5)

]
, (6.12a)

Γµ =
[
gu(1 + γ5)− gd(1− γ5)

]
(−/pd − /pϕ)γµ. (6.12b)

The trace evaluates to

Tr
{
/puΓ

µ
/pdΓµ

}
= (g2

u + g2
d)
[
16m2

W (pu · pd)− 32(pu · pϕ)(pd · pϕ)
]
, (6.13)

from which it follows that

ηµνH
µν
ϕ = 2NCe

2
u(eg)2(g2

u + g2
d)

[2(pd · pϕ) +m2
W ]2

[
m2
W (pu · pd)− 2(pu · pϕ)(pd · pϕ)

]
. (6.14)

Comparing this expression to Eq. (6.9), we observe that the momentum dependence
of the squared currents are equal. In particular, we have

2ηµνHµν
ϕ (k) = (g2

u + g2
d)ηµνH

µν
W (k), (6.15)

where the H-tensors are written as functions of the emitted particle’s momentum.
The kinematic constraints for the momentum of the W boson and for the Goldstone
boson are identical since the masses are equal. Therefore, the phase space integration
for emission of a W boson and a Goldstone boson are equivalent, and we can sum
the contributions straight away:

ηµνH
µν ≡ ηµν(Hµν

W +Hµν
ϕ ) =

(
1 + g2

u + g2
d

2

)
ηµνH

µν
W . (6.16)

Phase space integration
The phase space integral for three outgoing particles is rather complicated, so we
simplify it by additionally setting the mass of the emitted boson to zero in the
kinematical constraints defining the available phase space. Then we can use the
momentum fractions defined in Eq. (C.18). They satisfy xu + xd + xk = 2, and we
have

1− xu = 2pd · k
Q2 , 1− xd = 2pu · k

Q2 and 1− xk = 2pu · pd
Q2 .

Inserting these definitions into Eq. (6.16) yields

ηµνH
µν = NCe

2
u(eg)2(2 + g2

u + g2
d)

(1− xk) · 1/z − (1− xu)(1− xd)
(1− xu + 1/z)2 , (6.17)
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6.1 Explicit calculations

where we defined z ≡ Q2/m2
W . Next, we perform the phase space integration. Using

the result from Eq. (C.25), we have

H(Q2) = −ηµν
�

dΦ3H
µν

= Q2

(4π)3NCe
2
u(eg)2(2 + g2

u + g2
d)

×
� 1

0
dxu

� 1

1−xu
dxd

[
(1− xu)(1− xd)− (xu + xd − 1) · 1/z

(1− xu + 1/z)2

]
. (6.18)

This integral is similar to those we encountered in Chapter 4, hence we once again
substitute xu = x, xd = 1− vx, with Jacobian x. The integral evaluates to

H(Q2) = 1
(4π)3NCe

2
u(eg)2(2 + g2

u + g2
d)Q2

[
−7

4 −
5
2z +

(1
2 + 3

z
+ 5

2z2

)
ln (1 + z)

]
.

(6.19)
This result can be interpreted as the decay rate of a virtual photon into an ud̄-quark
pair and a W− gauge boson (through the specific channel we have studied) times the
energy of the photon. In order to consider a more definite observable, we connect
our result to electron-positron annihilation using Eqs. (4.15), (4.20) and (4.22). The
ratio of the bremsstrahlung correction to tree-level u quark production becomes

REQT = σ(e+e− → γ∗ → ud̄W−)
σ(e+e− → γ∗ → uū)

= αW

2 (2 + g2
u + g2

d)
[
−7

4 −
5
2z +

(1
2 + 3

z
+ 5

2z2

)
ln (1 + z)

]
, (6.20)

where αW ≡ g2/(4π)2. Since the EQT was used to obtain this result, it is only valid
for large momentum transfer, in particular up to corrections of O(1/z). We note in
passing that the same result as Eq. (6.19) is found if we consider W+-bremsstrahlung,
where a transverse W+ boson and the corresponding Goldstone boson is emitted
from the u-quark, except for an exchange of eu with ed.

Unpolarised W boson
We include a calculation where the W boson has both transverse and longitudinal
degrees of freedom for comparison. Figure 6.1 displays the Feynman diagram, and the
calculation mirrors that for the transverse W boson except for the polarisation sum.
We can copy the result from Eq. (6.6), while adding the appropriate polarisation
tensor,

ηµνH
µν
W = −NCe

2
u(eg)2

8
1

[2(pd · k) +m2
W ]2

Tr
{
/puΓ

µρ
/pdΓ

σ

µ

}
Pρσ, (6.21)

61



6 Electroweak bremsstrahlung corrections

101 102 103 104 105 106
0

0.5

1

1.5

2

z

R
E

Q
T
/α

W

(a)

101 102 103 104 105 106

10−1

100

101

102

103

104

z

R
W
/α

W

(b)

Figure 6.3: Ratio of W -bremsstrahlung correction to the tree-level process of electron-
positron annihilation using (a) the EQT, (b) unpolarised W emission.
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Figure 6.4: Internal bremsstrahlung contribution to γ∗ → ud̄W− at order O(αW).

where Pρσ is given in Eq. (6.3). Evaluating the trace and contracting it with the
polarisation tensor yields

ηµνH
µν
W = 2NCe

2
u(eg)2

[2(pd · k) +m2
W ]2

×
[
m2
W (pu · pd)− 4(pu · k)(pd · k)− 4(pu · pd)(pd · k)− 4

m2
W

(pu · pd)(pd · k)2
]
.

(6.22)

We integrate this expression over available phase space in the same way as in the
previous paragraph. The result is

H(Q2) = 1
(4π)3NCe

2
u(eg)2Q2z

[1
6 −

21
6z −

5
z2 +

(1
z

+ 6
z2 + 5

z3

)
ln (1 + z)

]
, (6.23)
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where z = Q2/m2
W . Hence, we find in this case the bremsstrahlung-to-tree-level ratio

to be
RW = αW

2 z
[1
6 −

21
6z −

5
z2 +

(1
z

+ 6
z2 + 5

z3

)
ln (1 + z)

]
. (6.24)

We note that the process studied in this section is similar to that examined in
Ref. [29], indeed, a quick investigation shows that the momentum dependence in
their Eq. (5) is equivalent to our Eq. (6.22). Our ratio has the same z-dependence in
the high-energy limit as them, except for the overall factor which is attributed to the
difference in the specific models considered.

6.2 Discussion
We end this chapter by comparing the results obtained using EQT with those found
for unpolarised W emission, as well as discussing various properties of both results.

In Fig. 6.3, the ratios REQT (setting gu = gd = 0) and RW are plotted as functions of
the momentum transfer z = Q2/m2

W . It is apparent that the latter grows considerably
faster; specifically we have RW ∝ z while REQT ∝ ln(z) for large z. Since the
Goldstone couplings gu and gd to fermion lines are proportional to the vanishing
masses of the light fermions, we have g2

u, g
2
d � 1 and the Goldstone contribution to

REQT can be neglected. Thus, REQT incorporate the energy dependence of emission
of a transverse gauge boson, and consequently the rapidly increasing cross section for
an unpolarised gauge boson can be ascribed to its longitudinal component. The large
dissimilarity between the emission of a longitudinal gauge boson and the corresponding
Goldstone boson is ostensibly in violation of the EQT.
However, there is an issue with the total cross section σ(e+e− → ud̄W−) for

the unpolarised W boson. For z � 1 it is constant, while unitarity demands a
1/z-dependence. The resolution to the problem is that we have ignored a diagram
contributing to the process at orderO(αW) — the internal bremsstrahlung sub-process
displayed in Fig. 6.4, and the leading order contributions in both sub-processes cancel.
In fact, this cancellation is required by the EQT. Using Eq. (6.19), we find that the
cross section σ(e+e− → ud̄ϕ−) has the proper behaviour at large energies: It decreases
as 1/z for increasing z, as expected for scalar emission. By the EQT, emission of
a longitudinal massive gauge boson must have the same behaviour when all sub-
processes are included. Moreover, the statement can be extended further: Theories
including massive vector bosons which are renormalisable and have the appropriate
high-energy behaviour required by unitarity, are equivalent to spontaneously broken
gauge theories by field transformations. This is proven systematically for a large class
of Lagrangians in Ref. [24].

It is also interesting to view the obtained ratios in terms of the infrared singularities
we encountered in Chapter 4. If we let the mass of the emitted boson go to zero,
z →∞ and the ratio REQT diverges logarithmically. Going back to Eq. (6.17), it is
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6 Electroweak bremsstrahlung corrections

apparent that the expression diverges for xu → 1 when mW = 0, and we therefore
associate the logarithmic factor with a soft divergence. One can also see this by
considering splitting functions associated with the branching of a quark into a quark
and a weak gauge boson, similar to the Altarelli-Parisi splitting functions of QCD [89].
The relevant splitting functions for the GSW model are derived in Ref. [90], which
in the high-energy limit show a soft singularity for both transverse and longitudinal
weak gauge bosons.
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7 Summary and outlook
In this thesis, we have studied applications of the Goldstone boson equivalence
theorem to decay rate and cross section computations. We have seen examples of
how the broken gauge theory structure of electroweak interactions lead to substantial
and consistent properties of physical observables. In addition to being interesting by
itself, such considerations may be of value to indirect searches of dark matter, where
the significance of electroweak corrections have widely been recognised.

After a brief review of the current knowledge of dark matter, we went on to introduce
the theoretical foundation of our work. In particular, the equivalence theorem was
presented. Following this, we reproduced the standard computation of the total
cross section of electron-positron annihilation at next-to-leading order in QCD. By
defining a sufficiently inclusive observable, and using dimensional regularization to
safely manipulate the infrared infinities, we demonstrated how the singularities cancel
out at that order in perturbation theory. The cancellation of infrared singularities is
guaranteed by the Kinoshita-Lee-Nauenberg theorem for suitably defined observables
in any quantum field theory.
We proceeded to the case of massive gauge bosons, and considered Higgs decay

to W bosons. Four approaches were used, each illuminating noteworthy features of
the underlying theory. In the unitary gauge, the degrees of freedom of the gauge
boson as well as the particle spectrum are entirely physical, while in the Feynman-
’t Hooft gauge, unphysical particles are introduced to cancel the unphysical degrees
of freedom of the gauge boson. The equivalence of the two schemes are required by
gauge invariance. In the high-energy limit, the equivalence theorem is applicable and
shows that the longitudinal component is dominant. Finally, unitarity implies that
the imaginary part of the self-energy correspond to the decay rate times the mass.

Next, we examinedW bremsstrahlung in a specific process of quark production and
computed the cross section ratio to the corresponding tree-level process. Performing
the calculation using the equivalence theorem, we found that contribution from the
emission of a Goldstone boson is negligible due to the coupling being proportional to
the vanishing mass of the quark. However, a calculation of unpolarised emission yields
a dominant, unitarity-violating contribution from the longitudinal component of the
emitted gauge boson. The resolution of the apparent problem is that a cancellation of
the leading contributions from all sub-processes at next-to-leading order must occur,
necessiated by the equivalence theorem. The fact that the massive gauge bosons
emerge in a broken gauge theory, implies that they have the appropriate high-energy
behaviour, and this property is intrinsic of the scalar Goldstone bosons. Lastly, we
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7 Summary and outlook

noted that the logarithmic enhancement of the total cross sections can be associated
with soft divergences.

One may connect our last result to dark matter annihilation, if the initial state
is replaced with a dark matter pair, and the virtual particle is exchanged with a Z
boson, Higgs boson or some beyond-the-SM particle. The dark matter model may be
specified carefully, for example within the framework of supersymmetry, or one may
postulate a broader model to attempt to constrain the properties of the dark matter
particle. Due to the generality of our considerations, they should still apply for such
models.
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Appendix A

Mathematical conventions and
formulae
Mathematical conventions
We typically follow the common conventions of quantum field theory.

Four-vectors are denoted in italics, while spatial vectors are typeset in roman with
boldface. For example, we have k = (k0,k). We use the Feynman slash for contraction
of a four-vector and a Dirac matrix, /A = Aµγ

µ. For s-channel processes, we use Q for
the momentum transfer, with Q2 = s. Complex and Hermitian (adjoint) conjugation
of operators are denoted A∗ and A†, respectively. We also use the abbreviation h.c.
for Hermitian conjugate.
Spacetime indices are labeled by Greek letters: µ, ν etc. Indices a, b, c typically

refer to different generators of a gauge symmetry group, while i, j, k are usually
indices in colour or isospin space. We use a Minkowski metric with signature

ηµν = diag(1,−1,−1,−1). (A.1)

Repeated indices are summed over. Finally, we use natural units, c = ~ = 1.

Euler’s Gamma and Beta functions
The Euler Gamma function is defined by the integral

Γ(z) =
� ∞

0
dt tz−1e−t, <{z} > 0, (A.2)

which converges absolutely. Using integration by parts, one can confirm the identity

Γ(z + 1) = zΓ(z), (A.3)

and hence we have Γ(z) = (z−1)! for integer z. By analytic continuation, the Gamma
function can be extended to all complex numbers, except for z = 0,−1,−2, . . . where
it has simple poles. Expanding the function around 1 yields

Γ(1 + ε) = 1− γEε+
(
π2

12 + γ2
E

2

)
ε2 +O(ε3), (A.4)
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where γE = 0.577 215 664 . . . is the Euler-Mascheroni constant.
The related Beta function is defined as

B(a, b) =
� 1

0
dt ta−1(1− t)b−1, <{a, b} > 0. (A.5)

It can be shown (see e.g. Ref. [81, App. A3]) that

B(a, b) = Γ(a)Γ(b)
Γ(a+ b) , (A.6)

which we use frequently.

Scalar integrals. We need a particular class of d-dimensional integrals when working
in DR. The following result is not derived here, but cited from Ref. [2, p. 827]:� ddk

(2π)d
k2a

(k2 −∆)b = i(−1)a−b
(4π)d/2

1
∆b−a−d/2

Γ(a+ d/2)Γ(b− a− d/2)
Γ(b)Γ(d/2) . (A.7)

Diracology
The Dirac matrices γµ are defined by the Clifford algebra

{γµ, γν} = 2ηµν1. (A.8)

We impose the conditions (γ0)† = γ0 and (γi)† = −γi, which can be combined to
read (γµ)† = γ0γµγ0. One additionally defines the fifth Dirac matrix,

γ5 ≡ iγ0γ1γ2γ3 (A.9)
which is Hermitian, anticommutes with the other Dirac matrices and satisfies (γ5)2 =
1.

Traces for d = 4. We list some useful trace relations in four dimensions:
• Traces over an odd number of Dirac matrices vanish, and also

Tr
{
γ5
}

= Tr
{
γµγνγ5

}
= 0. (A.10)

• The simplest non-zero traces are
Tr {γµγν} = 4ηµν , (A.11a)

Tr {γµγνγργσ} = 4 [ηµνηρσ + ηµσηνρ − ηµρηνσ] , (A.11b)
Tr
{
γ5γµγνγργσ

}
= 4iεµνρσ, (A.11c)

where the antisymmetric tensor is defined such that ε0123 = −ε0123 = 1.

• Some contraction identities are
γµγµ = 4, γµ/aγµ = −2/a γµ/a/bγµ = 4(a · b). (A.12)
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Traces for arbitrary d. In the general case of d dimensions, the same Clifford
algebra {γµ, γν} = 2ηµν1d, and linearity and cyclicity of the trace hold. We have
ηµµ = d, and the trace of the identity can be defined as any well-behaved function
satisfying f(4) = 4. The simplest choice is Tr {1d} = f(d) = 4, then the relations in
Eqs. (A.11a) and (A.11b) remain unchanged. The contraction identities in Eq. (A.12)
become in d = 4− 2ε dimensions

γµγµ = d = 4− 2ε, γµ/aγµ = −2(1− ε)/a, γµ/a/bγµ = 4(a · b)1d + 2ε/a/b. (A.13)

The generalisation of γ5 to d dimensions is not obvious, and since we do not
encounter the fifth Dirac matrix when using dimensional regularization in this text,
we do not discuss it.
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Appendix B

Feynman rules

We present a selection of the Feynman rules of the Standard Model (SM), including
Goldstone bosons and ghosts. Only the vertices used in calculations in the text are
included, a full review of all the Feynman rules of the SM can be found in e.g. Ref. [91].

We will label the momenta of scalars and fermions as p, while k labels the momentum
of gauge bosons. The electric charge (in units of e) and weak isospin of fermions are
denoted Q and T 3, respectively. Furthermore, PL = (1− γ5)/2 and PR = (1 + γ5)/2
are the spinor projection operators.

Propagators.

f = iSF (p) =
i(/p+m)

p2 −m2 + iε (B.1)

µ ν
γ = i

k2 + iε

(
−ηµν + (1− ξγ)

kµkν

k2

)
(B.2)

µ, a ν, b
g = iδab

k2 + iε

(
−ηµν + (1− ξG)k

µkν

k2

)
(B.3)

µ ν
W ±

= i
k2 −m2

W + iε

(
−ηµν + (1− ξW ) kµkν

k2 − ξWm2
W

)
(B.4)

µ ν
Z = i

k2 −m2
Z + iε

(
−ηµν + (1− ξZ) kµkν

k2 − ξZm2
Z

)
(B.5)
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Fermion-gluon interaction.

f

f̄

g

i

j

µ, a = −igsγ
µT aij, (B.6)

where T a are the generators of the SU(3) gauge group in QCD.

Fermion-electroweak gauge boson interactions.

f

f̄

Aµ
= −ieQγµ (B.7)

u

d̄

W ± = −i g√
2
γµPL (B.8)

f

f̄

Z = −i g

cos θW
γµ
(
gV − gAγ5

)
(B.9)

Here, we have defined

gV = 1
2T

3 −Q sin2 θW and gA = 1
2T

3. (B.10)
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Fermion-Goldstone boson interactions.

f

f̄

ϕZ = −gT 3 mf

mW

γ5 (B.11)

u

d̄

ϕ+ = i g√
2

(
mu

mW

PL −
md

mW

PR

)
(B.12)

d

ū

ϕ− = i g√
2

(
mu

mW

PR −
md

mW

PL

)
(B.13)

Triple Higgs, Goldstone and gauge boson interactions.

W ±
µ

W ∓
ν

h = igmWηµν (B.14)

ϕ+

ϕ−

h = −i g2
m2
h

mW

(B.15)

p

p′

h

ϕ∓

W ±
µ

= ±i g2(p′ − p)µ (B.16)
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Ghost-Higgs interaction.

c±

c∓

h = −i g2ξWmW (B.17)

Here, the arrows indicate particle/antiparticle.
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Appendix C

Kinematics of scattering and decay
Cross sections from scattering events and decay rates are natural quantities to measure
in experiments. In this appendix, we relate matrix elements to cross sections and
decay rates. The general expressions for these quantities are presented, and we
derive phase space integrals in dimensional regularization for two and three outgoing
particles.

Particle decays
Consider a particle with mass M decaying into n particles in the rest frame of the
decaying particle. The decay rate is given by [92]

dΓ = 1
2M |M|

2 dΦn, (C.1)

whereM is the Feynman amplitude and dΦn is an infinitesimal element of n-body
phase space:

dΦn = (2π)4δ(4)
(
Q−

n∑
i=1

pi

)
n∏
i=1

d3pi
(2π)3

1
2Ei

. (C.2)

In this expression, Q is the four-momentum of the decaying particle, while pi is
the four-momentum of outgoing particle i. The overall delta function establishes
momentum conservation.
An important special case is decay into two particles. It can be shown that the

2-body phase space in the CoM frame is [78, App. 5]

dΦ2 = 1
16π2

|p|
ECM

dΩ, (C.3)

where |p| is the magnitude of the spacial momentum of either outgoing particle.
Thus, the decay rate into two particles is

dΓ = 1
32π2

|p|
M2 |M|

2 dΩ (C.4)

in the rest frame of the decaying particle.
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Cross sections
The differential cross section for scattering into a differential volume in n-body phase
space dΦn is given by [92]

dσ = 1
4I |M|

2 dΦn, (C.5)

whereM is the Feynman amplitude, and I is the incoming flux factor:

I =
√

(p1 · p2)2 −m2
1m

2
2. (C.6)

Here, p1 and p2 are the momenta of the two scattering particles. In the CoM frame,
the flux factor is

I = |p1|
√
s, (C.7)

where s ≡ (p1 + p2)2 is a Mandelstam invariant [92]. Note that |p1| = |p2| in this
frame.

Using Eqs. (C.3) and (C.7), we find the differential cross section for 2→ 2 scattering
processes,

dσ = 1
64π2s

|pf |
|pi|
|M|2 dΩ. (C.8)

Phase space in d dimensions
The generalisation of Eq. (C.2) to d dimensions is

dΦ(d)
n = (2π)dδ(d)

(
Q−

n∑
i=1

pi

)
n∏
i=1

dd−1pi
(2π)d−1

1
2Ei

. (C.9)

We derive specific expressions for the integrated phase spaces in the case of n = 2
and n = 3 in the following paragraphs.

Two-body phase space. For the case of two outgoing particles, the differential
phase space is

dΦ(d)
2 = (2π)(d)δ(d)(Q− p1 − p2) dd−1p1

(2π)d−1
1

2E1

dd−1p2

(2π)d−1
1

2E2
. (C.10)

We consider the phase space integral over some function f(p1,p2),

I =
�

dΦ(d)
2 f(p1,p2) = 1

4(2π)d−2

� dd−1p1 dd−1p2

E1E2
δ(d)(Q− p1 − p2)f(p1,p2).

(C.11)
First, we integrate over dd−1p2 using the momentum delta function, and obtain

I = 1
4(2π)d−2

�
dd−1p1

f(p1,Q− p1)
E1E2

δ(Q0 − E1 − E2)
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where now E2 is a function of p1: E2
2 = (Q − p1)2 + m2

2. To proceed, we must
make assumptions about the dependence of the function f on p1. If the function
is isotropic (for example after averaging over spins), we may perform the angular
integration right away. Additionally, we specialise to the CoM frame where Q = 0
and Q0 =

√
Q2 =

√
s. Define p = |p1|, then

I = Ωd−1

4(2π)d−2

� ∞
0

dp pd−2 f(p)
E1E2

δ(
√
s− E1 − E2), (C.12)

where
Ωd = 2π d

2

Γ
(
d
2

) (C.13)

is the surface area of the (d − 1)-sphere embedded in d dimensions [2]. Let the
argument of the delta function be g(p), then

g(p) =
√
s− E1(p)− E2(p), (C.14a)

g′(p) = − p

E1
− p

E2
= −p

( √
s

E1E2

)
. (C.14b)

Using that
δ [g(p)] =

∑
i

δ(p− p∗i )
|g′(p∗i )|

, (C.15)

where p∗i are the solutions to g(p) = 0, we find

I = Ωd−1(p∗)d−3

4(2π)d−2√sf(p∗). (C.16)

Here, p∗ is the positive solution to g(p) = 0. The constraint also has a negative
solution, but it does not contribute since the integration is over positive p. Inserting
Eq. (C.13) for the surface area, we obtain

I = 1
4π

(
π

p2

)ε
p√
s

Γ(1− ε)
Γ(2− 2ε)f(p) (C.17)

where d = 4 − 2ε and p is understood to be subject to constraints from energy-
momentum conservation.

Three-body phase space. The phase space integral for three massive particles is
rather complicated, so we simplify matters by considering massless particles. We
follow Ref. [2, Sec. 20.A.3] and introduce momentum fractions

xi = 2pi ·Q
Q2 (C.18)
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Appendix C Kinematics of scattering and decay

where Q is the momentum transfer and i = 1, 2, 3. For massless particles, the fractions
satisfy ∑i xi = 2 by four-momentum conservation. Moreover, in the CoM frame, we
have xi = 2Ei/

√
s = 2|pi|/

√
s. We consider the three-particle phase space integral

over some function f :
I =

�
dΦ(d)

3 f(x1, x2, x3). (C.19)

Inserting the momentum fractions into Eq. (C.9), and integrating over x3 we get that

I =
(√

s

4π

)2d−3 1
(
√
s)3

×
�

dx1 x
d−2
1 dΩd−1

�
dx2 x

d−2
2 dΩd−1

δ(x1 + x2 + x3 − 2)
x1x2x3

f(x1, x2, x3), (C.20)

where dΩd−1 denotes the differential solid angle of the sphere in d− 1 dimensions.
We cannot immediately perform the integral over the delta function, since x3 has an
implicit dependence on p1 and p2:

x3 = 2E3√
s

= 2√
s

√
(p1 + p2)2 =

√
x2

1 + x2
2 − 2x1x2 cos θ (C.21)

where θ is the angle between p1 and p2 in the CoM frame. Hence, there is a θ-
dependence in the integrand, and we must write out the differential solid angle related
to one of the particles,

dΩd−1 = dΩd−2 sind−3 θ dθ = − dΩd−2(1− cos2 θ) d−4
2 d(cos θ).

The remaining angular integration is trivial, so we have

I =
(√

s

4π

)2d−3 Ωd−2Ωd−1

(
√
s)3

�
dx1 x

d−3
1

�
dx2 x

d−3
2

×
� 1

−1
d(cos θ) (1− cos2 θ) d−4

2
δ(x1 + x2 + x3 − 2)

x3
f(x1, x2, x3). (C.22)

Having expressly collected the θ-dependence, we write it in terms of x3 using
Eq. (C.21),

cos θ = x2
1 + x2

2 − x2
3

2x1x2
. (C.23a)

and

1− cos2 θ = 4(1− x1)(1− x2)(1− x3)
x2

1x
2
2

(C.23b)
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where ∑i xi = 2 was used. Inserting this and the definition of the surface area in
Eq. (C.13), we obtain

I = s

2(4π)3

(4π
s

)ε 1
Γ(2− 2ε)

×
� 1

0
dx1

� 1

1−x1

dx2 [(1− x1)(1− x2)(1− x3)]ε f(x1, x2, x3). (C.24)

The four-momentum conservation x3 = 2− x1 − x2 is understood. Combined with
0 < xi < 1, the integration limits were determined. Furthermore, the dimension is
parametrised as d = 4− 2ε. We note the four-dimensional (ε = 0) limit of this result:

Id=4 = s

2(4π)3

� 1

0
dx1

� 1

1−x1

dx2 f(x1, x2, x3). (C.25)
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