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Abstract

We investigate the free energy of Andreev bound states (ABS) in a Josephson junc-

tion containing a ferromagnet and an element where broken inversion symmetry

produces Rashba spin-orbit coupling. Applying an extended Blonder-Tinkham-

Klapwijk (BTK) formalism and finding static solutions for the wave function in the

junction, we calculate the permissible energy levels in the Andreev regime and find

the thermodynamic free energy. The free energy is found to depend on the mag-

netization direction of the ferromagnet in such a way that the effect of ABS in the

junction on the magnet is an easy axis effective field, perpendicular to both the di-

rection of broken inversion symmetry and the direction of propagation in the junc-

tion. Treating the dynamical time evolution of the system as an adiabatic pertur-

bation, we find that the ABS effective field can be controlled by manipulating the

superconductive phase across the junction and in an example system it can used

to achieve switching of a magnetic bit.

Sammendrag

Vi undersøker fri energi for Andreev bundne tilstander i en Josephson-kontakt med

en ferromagnet og et element der brutt inversjonssymmetri forårsaker Rashba spinn-

bane-kobling. Ved bruk av en utvidet Blonder-Tinkham-Klapwijk formalisme finner

vi statiske løsninger for bølgefunksjonen i systemet, regner ut de mulige energinivåene

i Andreev-regimet og finner den termodynamiske frie energien. Vi finner at sys-

temets frie energi avhenger av magnetiseringsretningen i ferromagneten på en slik

måte at effekten Andreev bundne tilstander i kontakten har på magnetiseringen er

et effektivt felt på formen for en foretrukket magnetiseringsakse, vinkelrett på både

retningen for brutt inversjonssymmetri og propagasjonsretningen i kontakten. Vi

behandler den dynamiske utviklingen til systemet som en adiabatisk perturbasjon

og finner at dette effektive feltet kan kontrolleres ved å styre den superledende fasen

gjennom kontakten og i et eksempelsystem viser vi at dette kan utnyttes til å oppnå

tilstandsendring i en magnetisk bit.
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1. Introduction

Superconductivity is a an ordered low-temperature phase of many metals, in which

the metal exhibits exactly zero resistance to DC currents. Simply put, what happens

is that the fermionic conduction electrons form pairs that act like bosons. At low

enough temperatures, these bosonic pairs will all tend to occupy the quantum state

with lowest energy. In this state, the pairs collectively act as a macroscopic wave

function, able to effectuate transport of pairs (and thus charge) with no resistance.

Another example of an ordered low-temperature metallic phase is ferromag-

netism, though low temperatures for magnets are significantly higher than what

constitutes low temperatures for superconductors. Thus we can have magnets at

room temperature, while superconductivity requires cryogenic cooling. We can

think of a ferromagnet as a crystal with an electron spin at each lattice point, all of

which act like a tiny magnet due to the magnetic moment of the electron. Macro-

scopic magnets, like those used to stick notes on fridges, are the result of the align-

ment of a majority of the individual electron spins. The magnetization profile of a

ferromagnet will in general vary spatially within the material, in a way that achieves

an equilibrium between competing internal interactions. For instance, the ten-

dency for spin alignment discourages significant change in magnetization over small

distances, while the crystal structure of the material might encourage the magne-

tization to align with (or against) a certain crystal axis. The result can be magnetic

domains (areas of uniform magnetization) oriented with or against this easy axis,

separated by a transitional layer of finite width called a domain wall. If the system is

disturbed from equilibrium by external interactions, we enter the realm of magneti-

zation dynamics, describing the time evolution of possibly complex magnetization

profiles.

The ferromagnetic tendency of spin alignment is at odds with pair formation

in a conventional superconductor since the pairs are comprised of electrons of op-

posite spin, making the two phases somewhat antagonistic [2]. However, one does

not need a material exhibiting both phases to observe interplay between ferromag-

netism and superconductivity, as there is ample opportunity for interesting physics

in structures consisting of different elements that are either superconductive or fer-

3



4 CHAPTER 1. INTRODUCTION

romagnetic. Such structures may be of interest in constructing spintronic devices

[3], i.e. spin-electronic devices, where information is carried by spin rather than

charge. Compared to conventional electronics, spintronics offer the possibility of

devices that are smaller, faster and consume less power [4].

One interesting example of a system incorporating both superconductivity and

ferromagnetism is the superconductor-ferromagnet-superconductor (S-F-S) junc-

tion, one configuration of which may be used to construct qubits that could be a

step towards large scale quantum computing [5]. However, such (S-F-S) systems

are still isotropic in spin space, in that they are indifferent to the magnetization

direction of the magnetic element. As such, the magnetization dynamics of the fer-

romagnetic element is independent of the superconducting system.

In this thesis, we will investigate a superconducting junction with a ferromag-

net and an element that breaks the isotropy in spin space, specifically a spin-orbit

coupled element. The resulting spin space anisotropy is expected to couple the en-

ergy levels of the junction to the magnetization direction of the ferromagnet, and

thus allow the superconductive system to influence the magnetization dynamics.

1.1 Motivation

Ferromagnetic materials have long been used for information storage, encoding

bits of information in the magnetization direction of single magnetic domains. Tra-

ditionally, writing information to magnetic bits has been done by applying mag-

netic field generated by currents, but this approach scales poorly to the desired

information densities of modern devices, since domains of decreasing size require

increasingly stronger fields [6]. This makes alterative ways of manipulating mag-

netic domains very interesting with regards to applications. One such alternative

method consists of running a spin current (a current of electrons with partially

aligned spins) through the magnet, which produces a torque on the magnetiza-

tion [7, 8]. In addition to requiring lower currents when the domains become small

enough, this method gives better spatial accuracy as the torque arises from a cur-

rent running through the actual domain rather than from an externally applied

field.

Lower currents reduce resistive heating in the components, decreasing both

power consumption and the need for cooling of devices. If one can somehow ma-

nipulate the magnetization of magnetic domains using a supercurrent, one could

in theory avoid resistive heating entirely. The benefits of electronic devices that last

longer on the same battery charge and stay cooler during operation is rather obvi-

ous from our everyday experience. Perhaps somewhat less obvious, since we rarely

think of electronic devices as particularly power hungry, is the fact that more energy
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efficient computation could make significant decreases to global energy consump-

tion. For instance, it has been estimated that the power used by computations re-

lated to the cryptocurrency Bitcoin alone is on a par with the electricity consumed

by the country of Ireland [9].

1.2 Scope and approach

In order to investigate the possible coupling between the magnetization of a fer-

romagnet and a superconductive system, we will consider a modified Josephson

junction (i.e. a superconductive contact consisting of two superconductors sep-

arated by a non-superconductive element). In our modified version, the super-

conductors will be separated by two elements: a ferromagnet and an element that

breaks spin space isotropy by Rashba spin-orbit coupling of the charge carriers. The

system is depicted in Figure 1.1 as a visual reference, though it will not be explained

in detail until we have covered the requisite theory.

Figure 1.1: Schematic depiction of a modified Josephson junction consisting of two identical
superconductors (S) separated by thin plates of 1) normal metal element with Rashba spin-
orbit coupling (SOC) and 2) a ferromagnetic metal (F). The SOC element is depicted with its
normal vector n̂, for reasons that will be elucidated in a later chapter.

Modelling the interfaces as delta function barriers of variable strength, we will

investigate the system in the Andreev regime (i.e. for energies within the supercon-

ducting gap) and find the allowed energies for static solutions to the wave func-

tion for the entire junction using an extended BTK-formalism. Interpreting these

allowed energies as the excitation energies of a fermionic system will allow us to

calculate the free energy of the system, and crucially, how this free energy depends

on the magnetization direction. The reciprocal of this dependence will give us the
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effect of the superconducting system on the magnetization direction, which in turn

will allow us to model the magnetization dynamic of our ferromagnetic element.

We have devoted a chapter to the theoretical foundation for each of the main

physical effects in our system: superconductivity, ferromagnetism and Rashba spin-

orbit coupling. Once the theory is in place, we will spend a chapter presenting and

analyzing our modified Josephson junction, followed by a chapter detailing our nu-

merical method for calculating the junction free energy. Lastly, we present and dis-

cuss our results for the free energy and magnetization dynamics and give a brief

discussion of possible applications and further research.



2. Superconductivity

The phenomena of superconductivity was discovered in 1911 by H. K. Onnes when

mercury displayed no resistance to DC currents if cooled below 4.2 K by the use of

liquid helium [10]. Other metals were also found to exhibit this property below cer-

tain critical temperatures, and in 1933 it was found that superconductors will expel

all magnetic fields as they transition to the superconducting state [11]. A micro-

scopic theory of superconductivity proved to be elusive, but in 1956 Leon Cooper

provided a key piece of the puzzle by demonstrating that electrons in a metal can

form bound pairs under the influence of an attractive force [12]. The following

year, Bardeen, Cooper and Schrieffer (BCS) presented a theory of superconductiv-

ity where the superconducting state is the result of electrons forming Cooper pairs

[13, 14]. Our derivation of the BCS-theory will be a mean field approach inspired

by [15].

2.1 BCS Hamiltonian

A system of non-interacting electrons can be described by a second quantized Hamil-

tonian on the form H = ∑
k ,σ εk c†

k ,σck ,σ, where εk = ħ2k2/2m −µ is the energy of

electron states with momentum k relative to the chemical potential µ. The oper-

ators c†
k ,σ and ck ,σ are creation and annihilation operators of electron states with

momentum k and spin σ. They obey standard commutation relations for fermions

(found in e.g. [16]):

{ck ,σ,c†
k ′,σ′ } = δkk ′δσσ′ and {ck ,σ,ck ′,σ′ } = {c†

k ,σ,c†
k ′,σ′ } = 0 (2.1)

where we let curly brackets denote the anticommutator. If we now consider

an attractive electron-electron interaction between the constituents of the conven-

tional Cooper pair (i.e. electrons with opposite momenta and spin [12]) the Hamil-

tonian becomes:

H = ∑
k ,σ

εk c†
k ,σck ,σ+

∑
k ,k ′

Vk ,k ′c†
k ,↑c†

−k ,↓c−k ′,↓ck ′,↑ (2.2)

7
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Taking the fluctuations around the expectation values to be small, we expand

the operators in a mean field term and a fluctuation term.

c−k ′,↓ck ′,↑ = 〈c−k ′,↓ck ′,↑〉+
[
c−k ′,↓ck ′,↑−〈c−k ′,↓ck ′,↑〉

]≡ bk ′ +δbk ′ (2.3)

c†
k ,↑c†

−k ,↓ = 〈c†
k ,↑c†

−k ,↓〉+
[
c†

k ,↑c†
−k ,↓−〈c†

k ,↑c†
−k ,↓〉

]≡ b†
k +δb†

k (2.4)

where angled brackets denote expectation values. To simplify the Hamiltonian,

we discard terms of second order in the fluctuations and introduce the gap param-

eters, given by:

∆k =∑
k ′

Vk ,k ′bk ′ (2.5)

∆†
k ′ =

∑
k

Vk ,k ′b†
k (2.6)

We are thus left with a Hamiltonian on the form

H = ∑
k ,σ

εk c†
k ,σck ,σ+

∑
k ,k ′

Vk ,k ′
[

b†
k bk ′ +b†

k (c−k ′,↓ck ′,↑−bk ′ )+ (c†
k ,↑c†

−k ,↓−b†
k )bk ′

]
=∑

k
εk

[
1+ c†

k ,↑ck ,↑− ck ,↓c†
k ,↓

]
+∑

k

[
∆†

k c−k ,↓ck ,↑+∆k c†
k ,↑c†

−k ,↓−b†
k∆k

]
=∑

k

[
εk −b†

k∆k

]
+∑

k

[
εk c†

k ,↑ck ,↑−εk c−k ,↓c†
−k ,↓+∆†

k c−k ,↓ck ,↑+∆k c†
k ,↑c†

−k ,↓
]

= E0 +
∑
k

(
c†

k ,↑ c−k ,↓
)[
εk ∆k

∆†
k −εk

](
ck ,↑

c†
−k ,↓

)

where we have used the commutation relations and changed the sign of the

summation index in the c−k ,↓c†
−k ,↓ term (which we can do as εk = ε−k and we sum

over all k). We have introduced the constant energy term E0 = ∑
k

[
εk − b†

k∆k

]
,

which we will ignore when concerned with the dynamics of the system. As it stands,

the Hamiltonian describes a system of coupled pairs of quasiparticles: electrons

with spin up, and holes resulting from the removal of a spin down electron. In an-

ticipation of effects that lift the spin degeneracy, we would like to be able to also

describe the spin-switched pairs. To that end, we change the order of the operators

in each creation/annihilation term; this will only incur a sign change and the addi-

tion of a constant factor that could be absorbed into E0. Again changing the sign of

the summation index, this time in all terms, gives us
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H = E ′
0 +

∑
k

[
εk c†

k ,↓ck ,↓−εk c−k ,↑c†
−k ,↑−∆†

−k c−k ,↑ck ,↓−∆−k c†
k ,↓c†

−k ,↑
]

= E ′
0 +

∑
k

(
c†

k ,↓ c−k ,↑
)[

εk −∆−k

−∆†
−k −εk

](
ck ,↓

c†
−k ,↑

)

Assuming that the interaction potential is on a form that makes the gap param-

eters momentum-independent, we can now construct a fairly simple Hamiltonian

for a system described by a basis of electrons and holes with spins both up and

down. Neglecting the constant energy terms, we have

H =∑
k
ψ†

k Hkψk (2.7)

where

Hk =


εk 0 0 ∆

0 εk −∆ 0

0 −∆† −εk 0

∆† 0 0 −εk

 and ψk =


ck ,↑
ck ,↓

c†
−k ,↑

c†
−k ,↓

 (2.8)

2.2 Eigenstates of the superconducting system

The Hamiltonian for each of the decoupled subsystems can be diagonalized to find

the elementary excitations of the system, and the requisite operation is a rotation

of the basis called a Bogoliubov transformation [17]. To find the form of this trans-

formation, we simply require some linear combination of the coupled operators to

be an eigenstate of the Hamiltonian:

[
εk ∆e iφ

∆e−iφ −εk

](
uk

vk e−iφ

)
= Ek

(
uk

vk e−iφ

)
(2.9)

where u2
k +v2

k = 1 due to normalization and we have taken the superconducting

phase e iφ out of the (complex) gap parameter so that ∆ is now real. We have also

taken out a phase of the second element of the eigenvector to simplify the expres-

sions, giving:

uk

vk
= ∆

Ek −εk

vk

uk
= ∆

Ek +εk
(2.10)

so that
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E 2
k =∆2 +ε2

k (2.11)

We see that the role of the gap parameter is to prohibit arbitrarily low energies

by defining a minimum energy for the system, since Ek →±∆ as εk → 0. Addition-

ally, we note that the allowed energies are fourfold degenerate in the momentum,

with momenta ±k± given by

k± =
p

2m

ħ
[
µ±

√
E 2

k −∆2
]1/2

= kF

[
1±

√
E 2

k −∆2

µ

]1/2
(2.12)

and visualized in Figure 2.1 depicting the energy-momentum relations for quasi-

particles in the superconductor.

Figure 2.1: Quasiparticle excitation energies in a superconductor as a function of momen-
tum. ∆ is the energy gap of the superconductor, kF is the Fermi momentum and ±k± are
possible quasiparticle momenta for a quasiparticle of energy E . Redrawn from source [18]
and used previously in the precursor to this thesis [1].

We note that forbidden energies E 2
k <∆2 make the momenta complex, and thus

(disregarding unphysical solutions that blow up) give the wave function an expo-

nential decay, as should be expected. Solving for the so-called coherence factors

uk and vk , gives
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u2
k = 1

2

[
1+ εk

Ek

]
= 1

2

[
1+

√
E 2

k −∆2

Ek

]
v2

k = 1

2

[
1− εk

Ek

]
= 1

2

[
1−

√
E 2

k −∆2

Ek

]
(2.13)

where we have taken εk to be positive. This holds for k+ and will effectively

switch the role of the two coherence factors for k−. We thus have two eigenstates,

and taking the electrons and holes to be described by plane waves, they are:

ψ+ =
(

uk

vk e−iφ

)
e i(k+r−ωt ) ψ− =

(
vk

uk e−iφ

)
e i(k−r−ωt ) (2.14)

whereω= Ek /ħ . The second subsystem differs only in that it requires a relative

sign change in the coefficients, and for the entire system we get the four eigenstates

ψ+
↑ =


uk

0

0

vk e−iφ

e i(k+r−ωt ) ψ−
↑ =


vk

0

0

uk e−iφ

e i(k−r−ωt )

ψ+
↓ =


0

uk

−vk e−iφ

0

e i(k+r−ωt ) ψ−
↓ =


0

vk

−uk e−iφ

0

e i(k−r−ωt )

If we remove the superconductive characteristic of the system by letting the gap

go to zero, we observe that uk → 1 and vk → 0, allowing us to classify the four eigen-

states as electron-like (k+) and hole-like (k−) since they reduce to electron and hole

states in the normal metal case. We have labeled the states with arrows indicating

the spin of the electron or hole they reduce to as the gap parameter goes to zero.

2.3 Tunneling and the Josephson effects

As we would like to examine systems comprised of both superconductors and non-

superconducting elements, we must consider transportation phenomena across

interfaces between superconductors and various materials. In general, we will model

such boundaries as a delta function potential, often of a strength that would classi-

cally prohibit particle transport across the interface. However, as is known from any

introduction to quantum mechanics, particles can cross such barriers by quantum

mechanical tunneling.

In a normal metal-insulator-normal metal (N-I-N) contact, we would expect no



12 CHAPTER 2. SUPERCONDUCTIVITY

net tunneling current at equilibrium, as the phase space on either side of the in-

terface would be essentially equal. The phase space region where tunneling could

occur would be the energy interval centered on the Fermi energy accessible to ther-

mal fluctuations, as this is the range where thermally excited charge carriers could

find an energetically allowed state after crossing the barrier. If we were to apply a

gradually increasing voltage across the interface, tunneling in one direction would

be increasingly favored energetically and we would expect to see a current linear

in the voltage. However, in 1960, Ivar Giaever found that if one of the metals is a

superconductor, there will be virtually no current until the voltage reaches a cer-

tain strength, above which we will again see the linear current-to-voltage relation

[19, 20]. We can explain this behavior by noting that the presence of an energy gap

in the superconductor means that the phase space will have a region of forbidden

states centered on the Fermi energy as depicted in Figure 2.2. Therefore the volt-

age applied must be enough to shift the Fermi energy of the normal metal above or

below this gap before there is a sufficient phase space reachable by thermal excita-

tions that can facilitate tunneling. Indeed, this current-to-voltage relation is seen

as experimental confirmation of the superconducting gap.

Figure 2.2: Density of states for a normal metal-insulator-superconductor (N-I-S) contact
at T 6= 0. EF denotes the Fermi energy, D(E) is the density of states and f(E)D(E) is the oc-
cupation of states. The gray block represents the energy gap for single particle states in the
superconductor, EF −∆< E < EF +∆. Note that the thermal excitations in the normal metal
fall entirely within the energy gap in the superconductor. There are a small number of ther-
mally excited states above the energy gap in the superconductor. Redrawn from source [15]
and used previously in the precursor to this thesis [1].
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The tunneling across a barrier between two superconductors was in 1962 con-

sidered by B. D. Josephson [21]. He found that two superconductors separated by

an insulating layer (an S-I-S contact) should exhibit a sustained DC current at zero

applied voltage and that an applied constant voltage should generate an AC cur-

rent. We can reproduce these results using an elegant treatment by Feynman [22],

taking the superconducting state to be a collective state of the bosonic Cooper pairs

described by a single wave function. It proceeds as follows: take the wavefunctions

(ψL ,ψR ) of two identical superconductors separated by a barrier to be coupled as

iħ∂ψL

∂t
= eVaψL +KψR , iħ∂ψR

∂t
=−eVaψR +KψL (2.15)

where K is a parameter describing the tendency of a pair to tunnel across the

junction. A current Va is applied across the junction, raising the energy of a pair

(charge 2e) by 2eVa in the left superconductor relative to a pair in the right. Taking

the wavefunctions as given byψL(R) =p
ρL(R)e iφL(R) where ρ and φ are, respectively,

the density of Cooper pairs and the superconductive phase, we get four equations

by considering the real and imaginary parts of both equations. The imaginary parts

give

∂ρL

∂t
=−∂ρR

∂t
= 2K

ħ
p
ρLρR sin(φL −φR ) = J1 sin∆φ (2.16)

which we identify as the current across the junction. We have introduced ∆φ=
φL −φR and absorbed the constants in J1, the maximum supercurrent across the

junction (we consider the system to be part of a circuit allowing current to flow

through the junction with no pile up of charge so that the pair densities can be

treated as constants ρL = ρR = ρ0). This is the DC Josephson effect: we do not

need a voltage to create a current, if there is some phase difference between the

superconductors. The real part of the equations (2.15) gives us

∂∆φ

∂t
= ∂φL

∂t
− ∂φR

∂t
= 2eVa

ħ or equivalently ∆φ=∆φ0 +ωJ t (2.17)

where ∆φ0 is a constant and we have introduced the Josephson frequency ωJ =
2eVa
ħ . This is the AC Josephson effect: a constant voltage causes the phase differ-

ence to increase linearly with time, in turn causing a sinusoidal oscillation of the

supercurrent.

For other types of Josephson junctions, the current can in general deviate from

the simple sine relation on phase difference. However, since the phases are peri-

odic, any relation on phase difference can be developed in a Fourier series:
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J (∆φ) =
∞∑

n=1

(
An sin(n∆φ)+Bn cos(n∆φ)

)
(2.18)

For most junctions, symmetry considerations demand that the current is re-

versed if the phases of the superconductors are swapped, so that we must have

J (∆φ) =−J (−∆φ) (2.19)

which means that we will have zero current with ∆φ= 0 and the coefficients Bn

must disappear so that we are left with a series of sines. Thus, we recognize the

current for the traditional (strong barrier) Josephson junction as the first term in

the series

J (∆φ) = J1 sin∆φ+ J2 sin(2∆φ)+ J3 sin(3∆φ)+ ...+ Jn sin(n∆φ) (2.20)

and expect that in general the current-phase relation could include higher order

terms. The condition (2.19) can be broken in so-called φ0-junctions, produced by

a breaking of both time reversal and chiral symmetries in the system [23]. In such a

junction the ground state is shifted by a constant phase φ0 6= 0,π yielding current-

phase relations that are non-zero for ∆φ= 0 (φ0 = π would amount to sign change

in the coefficients, but would not break condition (2.19)).

2.4 BTK-theory and Andreev bound states

To deal with more complex cases than the traditional Josephson junction, we turn

to the formalism proposed by Blonder, Tinkham and Klapwijk (BTK) in 1982 [18].

The trio considered a N-S junction with a barrier of arbitrary strength and imag-

ined the case where an electron current is incident on the interface from within the

normal metal. They then determined what reflection and transmission processes

were energetically allowed, and constructed wave functions for each of the sides

of the interface by combining the incident electron state and the possible reflected

states in the normal metal and by combining the possible transmitted states in the

superconductor. Finally, they demanded that at the interface, one should have con-

tinuity of the wave function and a discontinuity in the spatial derivative of the wave

function determined by the strength of the delta function potential. This allowed

them to determine the weight of each of the states representing transmissions and

reflections and thus the rates of transport across the interface.

One of the reflection processes considered in the BTK paper is the so-called

Andreev reflection, where an electron in a metal bordering a superconductor is re-
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flected as a hole. This reflection (and the opposite process where a hole is reflected

as an electron) can occur even for energies that are insufficient to excite quasipar-

ticles in the superconductor [24]. However, even in absence of quasiparticles in

the superconductor, there is obviously a transport of charge across the interface, as

trading an electron (hole) for a hole (electron) entails a loss (gain) of two electrons

to (from) the superconductor. We interpret this as a transfer of a Cooper pair in the

ground state (i.e. at the chemical potential) into (or out of) the superconductor.

This mechanism entails an intriguing possibility: a system of electrons and holes

Andreev-reflected back and forth in an S-N-S junction with energies too low to be

transmitted into the superconductors as quasiparticles can nevertheless facilitate

transport of charge across the junction.

In a precursor to this thesis [1], we considered an S-N-S junction with such An-

dreev bound states. Using the BTK formalism, we constructed wave functions of

electrons and holes propagating in both directions in the normal metal and (ex-

ponentially decaying) quasiparticle wave functions in the superconductors. This

yielded a system of equations for the weights of the contributions from the various

eigenstates. Rather than solving for the weights, we demanded only that the system

be solvable, which resulted in an equation for the allowed energies of the system.

These we interpreted as excitation energies of a fermionic system and used to cal-

culate the thermodynamic free energy. The resulting expression for the free energy

of the Andreev bound state system was then used to show that for a strong barrier,

we should see a supercurrent proportional to sin∆φ, which is the expected result

for a standard Josephson junction. In the main part of this thesis, we will apply this

strategy to our modified Josephson junction to investigate the effect of elements

that lift the spin degeneracy of the system.
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3. Ferromagnetism

Ferromagnetic materials are commonly modeled as a crystal lattice where every

lattice point holds an electronic magnetic moment. For metallic ferromagnets this

corresponds to neglecting any magnetic contribution from the conduction elec-

trons and considering the magnetization to be a property of the unpaired elec-

trons localized at lattice points. We have thus defined two separate dynamics for

electrons as was done by Zener in his model for ferromagnetic transition metals

[25]: the itinerant (conduction) electrons in the s-orbital are (nearly) free within the

metal and can effectuate transport, while the d-orbital electrons are tightly bound

to the positive ions located at each lattice point.

As a lattice of electronic magnetic moments is very much a quantum system

that would be cumbersome to model faithfully, we will turn to the mean field ap-

proximation of the micromagnetic model for a more convenient description. The

micromagnetic model takes the material to be continuous, effectively summing

over the electronic magnetic moments in small volume elements, allowing devi-

ations from the mean field magnetization direction to cancel out. The magnitude

of the magnetization vector everywhere in the material is taken to be the saturation

magnetization of the material. As the tendency for single magnetic moments to

deviate from the mean field direction will increase with higher temperature, we re-

alize that the saturation magnetization must be a temperature dependent function.

It has a maximum value at zero temperature, and goes to zero as one approaches

the Curie temperature [26, 27] where ferromagnetism breaks down. For materials

at a low, constant temperature we will take the saturation magnetization to be con-

stant.

For the approximations of the micromagnetic model to be valid we must con-

sider a spatial resolution where the material is not resolved in single lattice points,

but rather in volume elements containing a multitude of electronic magnetic mo-

ments. Additionally, as the magnetization must be continuous at this spatial resolu-

tion, the micromagnetic model can only describe magnetization profiles that have

no discernible variation over length scales comparable to the separation of lattice

points.

17
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3.1 Magnetization dynamics

The classical motion of a magnetic moment µ in the presence of an external mag-

netic field H is a precession around the field given by

dL

d t
=µ×H (3.1)

where L is the angular momentum of the magnetic moment. For a quantum

description of the same situation, we turn to the operators representing the observ-

ables in question. The operator for an electronic magnetic moment can be given

as

µ̂=−γŜ (3.2)

where γ is the gyromagnetic ratio and Ŝ is the operator for electron spin. The

expectation values of operators will have a time evolution given by Ehrenfest’s the-

orem (found in any introduction to quantum mechanics, e.g. [22]). For operators

with no explicit time dependence Ehrenfest gives

d〈Ŝ〉
d t

= 1

iħ〈[Ŝ, Ĥ
]〉 (3.3)

where brackets denote expectation values, square brackets denote the commu-

tator and Ĥ is the Hamiltonian of the system. The Hamiltonian for an electronic

magnetic moment interacting with a magnetic field is a simple Zeeman energy

term,

Ĥ =−µ̂ ·H = γŜ ·H (3.4)

which inserted into (3.3), gives

d〈Ŝ〉
d t

= ∑
i=x,y,z

γHi

iħ 〈[Ŝ, Ŝi
]〉 (3.5)

The standard commutation relations for spin operators (as can be found in e.g.

[28]) are

[Ŝx , Ŝy ] = iħŜz [Ŝy , Ŝz ] = iħŜx [Ŝz , Ŝx ] = iħŜy [Ŝi , Ŝi ] = 0

and allow us to compute, for instance, the x-component of the commutator:
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∑
i=x,y,z

γHi

iħ 〈[Ŝ, Ŝi
]〉x = ∑

i=x,y,z

γHi

iħ 〈[Ŝx , Ŝi
]〉 = γ(

Hy 〈Ŝz〉−Hz〈Ŝy 〉
)= γ(

H ×〈Ŝ〉)x

(3.6)

Repeating the procedure for the other components gives us

d〈Ŝ〉
d t

= γH ×〈Ŝ〉 =−γ〈Ŝ〉×H or equivalently
d〈µ̂〉

d t
=−γ〈µ̂〉×H (3.7)

This is just the classical equation applied to the expectation values, since we

have for an electron L = −γµ. Within the approximations of the micromagnetic

model, the magnetization M at each point is proportional to the expectation value

of electronic magnetic moments. Thus we can write

∂M

∂t
=−γM ×H (3.8)

This classical approximation now describes a lossless dynamic where M is in

perpetual precession about the external field with a precession frequency ωP =
γ|H | (as can be seen by solving for the components, for instance in the case H =
H ẑ). Physical systems however, are dissipative, and as such we would expect the

magnetization to eventually align with the applied field. To introduce dissipation,

Landau and Lifshitz introduced a dampening term: a small torque pointing from

the magnetization towards the external field vector [29]. The result was the Landau-

Lifshitz equation:

∂M

∂t
=−γ

[
M ×H + α

MS
M × (M ×H)

]
(3.9)

Ms = |M | is the saturation magnetization and α is a small dimensionless con-

stant denoting the strength of the damping. α is determined phenomenologically,

and as such includes damping caused by energy loss to any relevant microscopic

mechanism. Examples include energy lost as excitations of phonons and as kinetic

energy to conduction electrons. Assuming that the energy loss is isotropic and uni-

form in the material, the specifics are of no concern to us with regards to the mag-

netization dynamics. Gilbert updated the equation with a new damping term that

would better describe the effects of stronger damping [30], resulting in the Landau-

Lifshitz-Gilbert (LLG) equation:

∂M

∂t
=−γ

[
M ×H − α

MS
M × ∂M

∂t

]
(3.10)

Anticipating the need for numerical calculations, we make the equation dimen-

sionless by dividing by γM 2
s and introducing a new time scale 1/(γMs ) and the di-
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mensionless variables m = M/Ms , h = H/Ms . (For SI units we would divide by

µ0γM 2
s instead.)

∂m

∂t
=−m ×h +αm × ∂m

∂t
(3.11)

Additionally, we would like to gather all time derivatives on the left, so we try to

make sense of the last term, writing

m × ∂m

∂t
=−m × (m ×h)+αm ×

(
m × ∂m

∂t

)
=−m × (m ×h)−α∂m

∂t
(3.12)

where in the last equality we have used the identity A × (B ×C ) = (A ·C )B −
(A ·B )C and the fact that m ·m = 1 and m · ∂m

∂t = 0 (the time derivative is always

perpendicular to the magnetization). Inserting this result into (3.11) we get

∂m

∂t
=−m ×h +α

(
−m × (m ×h)−α∂m

∂t

)
(3.13)

(1+α2)
∂m

∂t
=−m ×

(
h +αm ×h

)
(3.14)

3.2 Effective field formalism

To this point we have considered only the effect of an external magnetic field, which

allows us to describe rather simple systems. Interestingly, any torque felt by the

magnetization can be included by replacing the external field with an effective field

incorporating the effect of the torque. Our treatment will follow Gilbert [30], defin-

ing the potential energy density of the magnetization under rotation in the pres-

ence of any such torques, U (M). The effective field is then

Heff =−∂U (M)

∂M
(3.15)

For an external field He, we have a Zeeman energy density

Ue(M) =−M ·He giving − ∂U (M)

∂M
= He (3.16)

which is obviously what we want. As differentiation distributes over sums, we

can simply calculate the effective field resulting from various interactions and add

them all up to produce the total effective field. For other contributions to the ef-

fective field, the energy can depend on the magnetization profile over the whole

sample, and we must redefine the effective field as a functional derivative of the

energy functional U [M].
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Heff =−δU [M]

δM
(3.17)

The energy contribution for an external field will then be

Ue[M] =−
∫ [

M ·He
]
dr (3.18)

producing the same effective field term as the earlier formulation. There are

five interactions contributing to the potential energy given by Gilbert:

U [M] =Ue[M]+Uex[M]+Ud[M]+Ua[M]+Ume[M] (3.19)

The contributions following the external field are, respectively, the exchange

energy, the demagnetization energy, the anisotropy energy and the magnetoelastic

energy.

3.2.1 Exchange energy

The exchange energy is the potential energy of the direct interaction between elec-

tron spins, which in ferromagnets favors parallel spin alignment. We can under-

stand this energy as an electrostatic energy by noting that for two electrons, a sym-

metric (antisymmetric) spin distribution demands an antisymmetric (symmetric)

spatial wave function to make the total wave function antisymmetric as demanded

by the Pauli exclusion principle [31]. Thus, the charge distribution (and hence the

electrostatic energy) will depend on the relative orientations of the electron spins.

The exchange interaction between two electrons can be modeled by a Heisenberg

Hamiltonian:

ĤH =−2J Ŝi · Ŝ j (3.20)

where Ŝi , Ŝ j are the spin operators for electrons i , j and J is the exchange inte-

gral (positive for ferromagnets). As this interaction depends on overlap of electron

wave functions, it is quite short ranged, and can be taken to apply only to nearest

neighbors as a first approximation. Considering a classical model for this interac-

tion (i.e. substituting classical spin vectors for the operators) gives us an energy that

is clearly minimized for parallel spins:

E =−2JS2 cosθ ≥ E0 =−2JS2 (3.21)

where θ is the angle between the spin vectors and S is their magnitude. As the

approximations of the micromagnetic model allow only miniscule changes in the

magnetization direction over the distance separating single magnetic moments, we
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can express the angle dependence as a Taylor expansion truncated at second order:

cosθ ≈ 1−θ2/2 giving

δE = E −E0 =−2JS2(1−θ2/2−1) = JS2θ2 (3.22)

With lattice spacing a between neighboring electrons, we can identify the angle

between neighboring spins with the gradient of the magnetization:

|∇M | ≈ θMs

a
(3.23)

δE = JS2a2

M 2
s

(∇M)2 (3.24)

Finally, we can get the contribution to the potential energy by integrating over

the material volume, giving

Uex[M] = A

M 2
s

∫ [
(∇M)2]dr and Hex =−δUex[M]

δM
= 2A

M 2
s
∇2M (3.25)

where A > 0 is the exchange stiffness. In calculating the effective field, we have

dropped a surface term proportional to ∇M , effectively demanding that the mag-

netization gradient vanishes on the boundary of the material. We note that 2A
M 2

s

( 2A
µ0M 2

s
in SI units) must have dimension length squared, allowing us to define a

characteristic length scale for the magnetization profile called the exchange length:

lex =
p

2A
Ms

. The magnetization profile can be expected to be approximately constant

over distances comparable to the exchange length, which in transition metals is

typically on the order of 1-10 nanometers [32].

3.2.2 Demagnetization energy

The demagnetization energy is due to the interaction between the magnetization

and the demagnetizing field Hd, generated by the magnetization of the magnetic

material:

Ud =−1

2

∫ [
M ·Hd

]
dr (3.26)

However, the form of Hd depends both on the magnetization profile and the

shape of the magnet, and often cannot be found analytically. It is given for an ellip-

soid by Stoner and Wohlfart [33] as:

Ud = 1

2

∫ [
Nx M 2

x +Ny M 2
y +Nz M 2

z

]
dr (3.27)
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where Ni are the demagnetization coefficients along the axes of the ellipsoid.

In the limit of a prolate spheroid elongated along the x-axis so that it approaches a

cylindrical shape, we get Nx << Ny = Nz ≡ N⊥ and

Ud = 1

2

∫ [
N⊥(M 2

y +M 2
z )

]
dr =− K

M 2
s

∫
M 2

x dr (3.28)

where in the last equality we have used that the length of the magnetization vec-

tor is constant, subtracted a constant energy term and introduced a new constant

K of dimension energy density. The effective field would then be

Hd = 2K

M 2
s

Mx x̂ (3.29)

Such a field is called an easy x-axis, as it would drive the magnetization towards

±x̂ (depending on the initial sign of Mx ).

3.2.3 Anisotropy energy

The crystal lattice of a ferromagnet will in in general have certain symmetries that

make some magnetization directions more energetically favorable than others. This

difference in energy for different relative orientations of the magnetization and the

crystal axes is called the anisotropy energy (or magnetocrystalline energy, to sepa-

rate it from anisotropic contributions from e.g. demagnetization energy). We can

understand this coupling between real space and spin space by noting that spin-

orbit coupling will cause the charge distributions of electrons in the lattice to have

an asymmetry tied to the direction of the spin [27]. Since the crystal axes give the

positions of neighboring electrons, the relative angle of spins in relation to the crys-

tal axes will determine the overlap of charge distributions and thus electrostatic

energy.

To first order, the anisotropy energy of cubic and hexagonal lattice structures

can be given on the form [27]:

Ua, cubic =
K1

M 4
s

∫ [
M 2

x M 2
y +M 2

y M 2
z +M 2

z M 2
x

]
dr (3.30)

Ua, hex =− K2

M 2
s

∫
M 2

x dr (3.31)

where the cubic axes are along x, y, z and the hexagonal axis is in the x-direction.

The constants introduced are both of dimension energy density. We note that the

hexagonal anisotropy energy takes the form of an easy axis.
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3.2.4 Magnetoelastic energy

The magnetoelastic energy is due to a coupling between magnetization direction

and strains on the crystal lattice. A crystal lattice under mechanical strain can be

deformed, resulting in a change in crystal geometry. This can in turn change the

anisotropy energy discussed above, and thus the magnetization. When such a cou-

pling exists, the converse effect must also be possible: the magnetization can put

strains on the lattice and cause it to deform. This process is called magnetostric-

tion. The magnetoelastic energy for a cubic lattice can be formulated as a contri-

bution to the anisotropy energy:

Ua, cubic +Ume = K1 +Kme

M 4
s

∫ [
M 2

x M 2
y +M 2

y M 2
z +M 2

z M 2
x

]
dr (3.32)

where the constant Kme depends on the elastic and magnetostriction properties

of the material and is typically small (Kme/K1 ≈ 10−3 for iron) [34].



4. Rashba spin-orbit coupling

Spin-orbit coupling is an interaction between the momentum and spin of a parti-

cle, taking its name from instances like the hydrogen atom where it manifests as a

coupling between spin and orbital angular momentum. If we consider an electron

moving in the radial electric field of the nucleus, relativistic effects will cause the

electron to experience a magnetic field. A constant electric field in the lab frame

will cause a moving frame to experience a magnetic field given by [35]

B =−γ
c

(v ×E ) ≈−v ×E

c
=−k ×E

cme
(4.1)

where c is the speed of light, v ,k and me are the electron velocity, momentum

and mass, respectively, and E is the electric field in the lab frame. The Lorentz

factor γ can be approximated as unity in the non-relativistic limit. Inserting E =
|E |r̂ (where r̂ is the radial unit vector) then gives

B ≈− |E |
cme

k × r̂ = |E |
cme

L (4.2)

where L is the orbital angular momentum. The electron will then have a Zee-

man energy −µe ·B ∝ S ·L where S is the electron spin, making the coupling be-

tween spin and orbital angular momentum explicit.

4.1 Rashba effect

We will be interested in Rashba spin orbit coupling, where the electric field is caused

by a broken inversion symmetry in a crystal. Considering a crystal with broken in-

version symmetry in the x-direction (i.e. the crystal looks different in directions

±x̂), there can be a potential difference along the x-direction: V (x) 6= V (x +∆x).

This asymmetry in the potential produces a non-zero gradient. A rigorous micro-

scopic derivation of the Rashba effect would have to take into account the exact

form of this possibly complicated asymmetric potential. For our purposes however,

it will suffice to approximate the gradient as the first order of a Taylor expansion and

25
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model it as a constant electric field in the direction of broken symmetry.

Such a constant electric field should give a moving electron a spin dependent

energy term as seen for the hydrogen atom above. Bychkov and Rashba [36] inves-

tigated the lifting of spin degeneracy in the presence of broken inversion symmetry

and found it to be described by the Rashba Hamiltonian:

HR =αRσ · (k × n̂) (4.3)

whereαR is a constant denoting the strength of the interaction,σ=σx x̂+σy ŷ+
σz ẑ are the Pauli spin matrices and n̂ is a unit vector in the direction of broken

symmetry. In our simple model E = |E |n̂, we can write k × n̂ ∝ B where B is the

magnetic field in the electron frame as defined above. Thus we see that the Rashba

Hamiltonian describes a Zeeman energy term HR ∝ σ ·B as we expect from the

discussion of the hydrogen atom. We note that the energy splitting will be propor-

tional to the component of k perpendicular to the direction of broken symmetry,

so that if n̂ = ŷ and k = k x̂ we get

HR =αR kσ · (x̂ × ŷ) =αR kσ · ẑ =αR kσz (4.4)

Such an energy splitting would displace the Fermi surface of spin-up and spin-

down electrons in opposite directions, as illustrated for a normal metal with Rashba

SOC in Figure 4.1. The magnitude of Rashba coupling varies several orders of mag-

nitude for different materials, with a low value example αR ≈ 0.05 eVÅ (Å = 10−10m

denotes the Ångström) found for a quasi-two-dimensional electron gas at a het-

erointerface [37]. Significantly larger values appear on the surfaces of heavy met-

als: for surface states in Au(111) and Bi(111) Rashba parameters ofαR ≈ 0.3 eVÅ and

αR ≈ 0.6 eVÅ, respectively, have been found [38, 39]. An investigation of a Bi/Au sur-

face alloy showed an even stronger Rashba splitting with αR ≈ 3 eVÅ [40].
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Figure 4.1: Energy-momentum relation displaying the spin splitting of the Fermi surface in
a normal metal with Rashba spin-orbit coupling. The electron momentum is taken to be
in the x-direction, and inversion symmetry is broken in the y-direction. Arrow subscripts
denote spin, with spin-up being in the z-direction. The Fermi surface for spin-up is shifted
from [−kF ,kF ] to [−kF+,kF−] while spin-down goes to [−kF−,kF+]. Used previously in the
precursor to this thesis [1].
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5. Modified Josephson junction: S-SOC-

F-S

The system to be investigated in the remainder of this thesis will be a modified

Josephson junction, incorporating a normal metal element with Rashba spin-orbit

coupling (SOC) and a ferromagnetic metal element. The junction is illustrated

schematically in Figure 5.1. The superconducting elements are conventional su-

perconductors as described in Chapter 2, and the junction is taken to be short

enough to allow supercurrent transport by Andreev bound states. We are only in-

terested in transport across the junction (along ±x̂) and will treat the system as

one-dimensional in real space. Although the SOC and F elements are geometrically

similar, we will neglect any Rashba SOC due to broken inversion symmetry in the

ferromagnet. As we saw in Chapter 4, the magnitude of Rashba SOC varies over

several orders of magnitude, and we assume the material chosen as the ferromag-

netic element will produce negligible Rashba effects. We did initially try to solve

a system where the ferromagnet was spin-orbit coupled, but the resulting expres-

sions were hopelessly cumbersome. The approximation above was chosen mainly

to avoid this time-demanding model of the system, with the hope that it will not

alter the essential physics of the system.

5.1 Eigenstates of junction elements

To apply the BTK-formalism to this system, we must first find the eigenstates of

the different elements. To this end, we will apply the four-spinor formalism from

Chapter 2, effectively choosing a basis of electrons and holes with spin resolved in

the z-direction. We will be interested in the Hamiltonian matrices Hk given by

H =∑
k
ψ†

k Hkψk where ψk =


ck↑
ck↓

c†
−k↑

c†
−k↓

 (5.1)

29
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Figure 5.1: Schematic depiction of a modified Josephson junction consisting of two identical
superconductors (S) separated by thin plates of 1) a normal metal element with Rashba spin-
orbit coupling (SOC) and 2) a ferromagnetic metal (F). The plates are in the x-z plane, and
thus has broken inversion symmetry along the plane normal n̂ = ŷ .

where the creation and annihilation operators are taken to produce plane waves

in the x-direction. For the superconductors, we have seen that the Hamiltonian

takes the form

HS,k =


εk 0 0 ∆e iφ

0 εk −∆e iφ 0

0 −∆e−iφ −εk 0

∆e−iφ 0 0 −εk

 (5.2)

where∆> 0 is the gap energy. Solving the time-independent Schrödinger equa-

tion for this Hamiltonian yields eigenfunctions

ψ+
↑ =


uk

0

0

vk e−iφL(R)

e±ik+x ψ−
↑ =


vk

0

0

uk e−iφL(R)

e±ik−x

ψ+
↓ =


0

uk

−vk e−iφL(R)

0

e±ik+x ψ−
↓ =


0

vk

−uk e−iφL(R)

0

e±ik−x

for the left (right) superconductor with phaseφL (φR ). To remind ourselves that

they are both very close to the Fermi momentum, we write the momenta as
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k± = kF

[
1± ∆

µ

√
E 2

∆2 −1
]1/2

= kF

[
1± ∆̃

√
E 2

∆2 −1
]1/2

(5.3)

where ∆̃ is a (small) dimensionless energy parameter. Considering that the

group velocity vg = ∂E
∂ħk is positive for +k+,−k− and negative for −k+,+k− (as seen

in Figure 2.1), we note that the hole-like excitations propagate in the direction op-

posite their momenta.

For the SOC-element, we have the diagonal Hamiltonian

H = ∑
electrons

(He +HR ) = ∑
k,σ

(εk +αR kσz )c†
k,σck,σ

=∑
k

[
(εk +αR k)c†

k,↑ck,↑+ (εk −αR k)c†
k,↓ck,↓

]
where He is the non-interacting electron energy given simply by εk and HR is

the Rashba Hamiltonian given in (4.4). We have used that σz has eigenvalue +(−)1

for spin-up(down). Fermion commutation relations entail a sign change (and a

constant energy term we ignore) going from c†
k,σck,σ to ck,σc†

k,σ, while changing the

sign of k (going from ck,σc†
k,σ to c−k,σc†

−k,σ) entails a sign change only for the Rashba

term. Hence, we get the Hamiltonian matrix

HSOC ,k =


εk +αR k 0 0 0

0 εk −αR k 0 0

0 0 −εk +αR k 0

0 0 0 −εk −αR k

 (5.4)

whose eigenfunctions are obviously trivial spinors. However, we note that the

excitation energies are not indifferent to the sign of k, giving for positive momen-

tum

kck↑ =
√
α2

R m2 +2mħ2(µ+E)−αR m

ħ2 = kF

[√α2
R m

2µħ2 +1+ E

µ
− αR

ħ

√
m

2µ

]

= kF

[√
α̃2 +1+ E

µ
− α̃

]
≡ k1

where we have introduced the dimensionless energy parameter α̃ denoting the

strength of Rashba coupling. The subscript refers to the non-zero element in the

trivial spinor to which the momentum belongs. For the other spinors the sign of E

and α̃ in the momentum expression is given by, respectively, the sign of εk and the
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relative sign of εk and αR k in the appropriate Hamiltonian element.

kck↓ = kF

[√
α̃2 +1+ E

µ
+ α̃

]
≡ k2

kc†
−k↑

= kF

[√
α̃2 +1− E

µ
+ α̃

]
≡ k3

kc†
−k↓

= kF

[√
α̃2 +1− E

µ
− α̃

]
≡ k4

For negative momenta, the relative sign of the two terms in the elements of the

Hamiltonian changes, which in turn switches the roles of k1 and k2 and the roles of

k3 and k4, giving

kck↑ = k2 kck↓ = k1 kc†
−k↑

= k4 kc†
−k↓

= k3

The eight different eigenstates in the SOC-element are then

ψ1 =


1

0

0

0

e ik1x ψ2 =


0

1

0

0

e ik2x ψ3 =


0

0

1

0

e ik3x ψ4 =


0

0

0

1

e ik4x

ψ5 =


1

0

0

0

e−ik2x ψ6 =


0

1

0

0

e−ik1x ψ7 =


0

0

1

0

e−ik4x ψ8 =


0

0

0

1

e−ik3x

Finally, for the ferromagnetic element with magnetization M = Ms m our par-

ticles will have the standard non-interacting electron energy εk , and some energy

term due to the interaction of the electronic magnetic moment and the magneti-

zation. The significant part of this interaction will be a quantum mechanical ex-

change interaction corresponding to that between the spins in the lattice (the clas-

sical interaction with the magnetization field is negligible in comparison). We can

nevertheless model this interaction as a magnetic moment interacting with an ef-

fective field Heff ∝ M giving the Hamiltonian a term

Hmag =−Heff ·µe = hm ·σ= h(mxσx +myσy +mzσz ) (5.5)

where we have used that the electronic magnetic moment is antiparallel to the

electron spin. We have absorbed all dimensionful constants into h, a parameter



5.1. EIGENSTATES OF JUNCTION ELEMENTS 33

of dimension energy denoting the strength of the exchange interaction. Note that

we have approximated the ferromagnet as a single magnetic domain, which will be

accurate as long as the dimensions of the magnet are comparable to the magnetic

exchange length. If our basis were spin-resolved in the direction of magnetization

we would simply get an energy ±h added to the εk energies and the Hamiltonian

would be diagonal. However, we would like to describe the system for an arbitrary

magnetization direction and so have to consider the effects of m ·σ on the spin-up

and spin-down states resolved in the z-direction. Using the standard form of the

Pauli matrices, we have

σx |↑〉 =
[

0 1

1 0

](
1

0

)
=

(
0

1

)
= |↓〉 σy |↑〉 =

[
0 −i

i 0

](
1

0

)
=

(
0

i

)
= i |↓〉 σz |↑〉 = |↑〉

(5.6)

σx |↓〉 =
[

0 1

1 0

](
0

1

)
=

(
1

0

)
= |↑〉 σy |↓〉 =

[
0 −i

i 0

](
0

1

)
=

(
−i

0

)
=−i |↑〉 σz |↓〉 =−|↓〉

(5.7)

showing that the misalignment of magnetization and spin axis generates spin

transitions:

m ·σ |↑〉 = mz |↑〉+ (mx + imy ) |↓〉 (5.8)

m ·σ |↓〉 =−mz |↓〉+ (mx − imy ) |↑〉 (5.9)

The Hamiltonian we get is then, for the electrons:

H e
F = ∑

k,σ,k ′,σ′
〈k,σ|εk +hm ·σ ∣∣k ′,σ′〉c†

k,σck ′,σ′

= ∑
k,σ

[
〈k,σ|εk +hm ·σ |k,↑〉c†

k,σck,↑+〈k,σ|εk +hm ·σ |k,↓〉c†
k,σck,↓

]
= ∑

k,σ

[
〈k,σ|εk +hmz |k,↑〉c†

k,σck,↑+〈k,σ|h(mx + imy ) |k,↓〉c†
k,σck,↑

+〈k,σ|εk −hmz |k,↓〉c†
k,σck,↓+〈k,σ|h(mx − imy ) |k,↑〉c†

k,σck,↓
]

=∑
k

[
(εk +hmz )c†

k,↑ck,↑+h(mx + imy )c†
k,↓ck,↑+ (εk −hmz )c†

k,↓ck,↓+ (mx − imy )c†
k,↑ck,↓

]
=∑

k

(
c†

k,↑ c†
k,↓

)[
εk +hmz h(mx − imy )

h(mx + imy ) εk −hmz

](
ck,↑
ck,↓

)
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Where we have used that the states |k,σ〉 constitute an orthonormal basis. Com-

mutation of the creation/annihilation operators produces a sign change and a con-

stant energy term that we ignore, giving

H h
F =−∑

k

[
(εk +hmz )ck,↑c†

k,↑+h(mx + imy )ck,↑c†
k,↓+ (εk −hmz )ck,↓c†

k,↓+ (mx − imy )ck,↓c†
k,↑

]

=∑
k

(
ck,↑ ck,↓

)[
−εk −hmz −h(mx + imy )

−h(mx − imy ) −εk +hmz

](
c†

k,↑
c†

k,↓

)

and we get for the whole system

HF,k =


εk +hmz h(mx − imy ) 0 0

h(mx + imy ) εk −hmz 0 0

0 0 −εk −hmz −h(mx + imy )

0 0 −h(mx − imy ) −εk +hmz

 (5.10)

Solving for the (normalized) eigenvectors yields four states with energies E =
±εk ±h corresponding to electrons with spin parallel (↑) or antiparallel (↓) to the

magnetization, and the holes resulting from removing these electrons.

ψe↑ =
1p
2


p

1+mz
mx+imyp

1+mz

0

0

e ike↑x ψh↑ =
1p
2


0

0p
1+mz

mx−imyp
1+mz

e ikh↑x (5.11)

ψe↓ =
1p
2


p

1−mz

−mx+imyp
1−mz

0

0

e ike↓x ψh↓ =
1p
2


0

0p
1−mz

−mx−imyp
1−mz

e ikh↓x (5.12)

The momenta are given by

ke↑ =
p

2m

ħ
[
µ+E−h

]1/2
= kF

[
1+E

µ
−h̃

]1/2
kh↑ =

p
2m

ħ
[
µ−E−h

]1/2
= kF

[
1−E

µ
−h̃

]1/2

(5.13)

ke↓ =
p

2m

ħ
[
µ+E+h

]1/2
= kF

[
1+E

µ
+h̃

]1/2
kh↓ =

p
2m

ħ
[
µ−E+h

]1/2
= kF

[
1−E

µ
+h̃

]1/2

(5.14)



5.2. ANDREEV BOUND STATE SYSTEM 35

where we have introduced the dimensionless energy parameter h̃ = h/µ. Note

that the use of arrows as subscripts here differs from our earlier use where it de-

noted spin relative to the z-axis. Going forward, to avoid ambiguity, this combi-

nation of e(h) and arrows will only be used for the ferromagnet where the arrows

reference the magnetization direction.

5.2 Andreev bound state system

We now calculate the energies for Andreev bound states in the junction, allowing

wave functions in the SOC and ferromagnet elements to be arbitrary combinations

of eigenstates propagating in either direction. For the two superconductors, we

allow only outgoing states which in the energy regime of Andreev bound states

(E 2 <∆2) correspond to wave functions with an exponential decay moving into the

superconductors. At each interface we have a delta function potential barrier of

strength V0. We are left with 24 coefficients denoting the arbitrary weights of the

allowed eigenstates, and we produce 12 equations (three 4-spinor equations) from

demanding continuity of the wave function at each interface. By integrating over

an infinitesimal distance across each interface we produce a further three spinor

equations and are left with a system of 24 linear equations in 24 variables. We will

not be interested in solving the system, but we will demand that the system must

have a solution. Writing the system Ax = 0, where A is a 24-by-24 matrix and x is

a vector containing the 24 coefficients, we demand DetA = 0. This will allow us to

scale any of the coefficients without affecting our results.

For the left (L) and rigth (R) superconductors we then have

ψL =
[

aL


e iβ

0

0

e−iφL

+bL


0

e iβ

−e−iφL

0


]

e−ik+x +
[

cL


e−iβ

0

0

e−iφL

+dL


0

e−iβ

−e−iφL

0


]

e ik−x

(5.15)

ψR =
[

aR


e iβ

0

0

e−iφR

+bR


0

e iβ

−e−iφR

0


]

e ik+x +
[

cR


e−iβ

0

0

e−iφR

+dR


0

e−iβ

−e−iφR

0


]

e−ik−x

(5.16)

where we have simplified the spinors by introducing a new variable e iβ = uk /vk

and absorbing one of the coherence factors into each coefficient.
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For the ferromagnet, we have eight contributions to the wave function. Absorb-

ing a factor
√

2
1±mz

into the coefficients gives

ψF = e+↑


1+mz

mx + imy

0

0

e ike↑x +e−↑


1+mz

mx + imy

0

0

e−ike↑x +e+↓


1−mz

−(mx + imy )

0

0

e ike↓x

+e−↓


1−mz

−(mx + imy )

0

0

e−ike↓x +h+
↑


0

0

1+mz

mx − imy

e ikh↑x +h−
↑


0

0

1+mz

mx − imy

e−ikh↑x

+h+
↓


0

0

1−mz

−(mx − imy )

e ikh↓x +h−
↓


0

0

1−mz

−(mx − imy )

e−ikh↓x

Finally, the SOC element has the wave function

ψSOC = a+


1

0

0

0

e ik1x +b+


0

1

0

0

e ik2x + c+


0

0

1

0

e ik3x +d+


0

0

0

1

e ik4x

+a−


1

0

0

0

e−ik2x +b−


0

1

0

0

e−ik1x + c−


0

0

1

0

e−ik4x +d−


0

0

0

1

e−ik3x

Taking the interface between the SOC and ferromagnetic elements to be at x =
0, we let the lengths of the SOC element and the ferromagnet be x1 and x2, respec-

tively. The continuity condition at each interface then reads

ψL(−x1) =ψSOC (−x1) ψSOC (0) =ψF (0) ψF (x2) =ψR (x2) (5.17)

Writing them all out on homogeneous form, the first condition gives the equa-

tions for rows 1 through 4 of our matrix A:
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0 =−


a+

0

0

0

e−ik1x1 −


a−

0

0

0

e ik2x1 −


0

b+

0

0

e−ik2x1 −


0

b−

0

0

e ik1x1 −


0

0

c+

0

e−ik3x1 −


0

0

c−

0

e ik4x1

−


0

0

0

d+

e−ik4x1 −


0

0

0

d−

e ik3x1 +


aLe iβ

bLe iβ

−bLe−iφL

aLe−iφL

e ik+x1 +


cLe−iβ

dLe−iβ

−dLe−iφL

cLe−iφL

e−ik−x1

The second condition determines rows 5 through 8:

0 =


a++a−

b++b−

c++ c−

d++d−

− [
e+↑ +e−↑

]


1+mz

mx + imy

0

0

− [
e+↓ +e−↓

]


1−mz

−(mx + imy )

0

0



− [
h+
↑ +h−

↑
]


0

0

1+mz

mx − imy

− [
h+
↓ +h−

↓
]


0

0

1−mz

imy −mx


And rows 9 through 12 are given by the third condition:

0 = e+↑


1+mz

mx + imy

0

0

e ike↑x2 +e−↑


1+mz

mx + imy

0

0

e−ike↑x2 +e+↓


1−mz

−(mx + imy )

0

0

e ike↓x2

+e−↓


1−mz

−(mx + imy )

0

0

e−ike↓x2 +h+
↑


0

0

1+mz

mx − imy

e ikh↑x2 +h−
↑


0

0

1+mz

mx − imy

e−ikh↑x2

+h+
↓


0

0

1−mz

imy −mx

e ikh↓x2 +h−
↓


0

0

1−mz

imy −mx

e−ikh↓x2 +


−aR e iβ

−bR e iβ

bR e−iφR

−aR e−iφR

e ik+x2 +


−cR e−iβ

−dR e−iβ

dR e−iφR

−cR e−iφR

e−ik−x2

With the potential V (x) =V0
[
δ(−x1)+δ(0)+δ(x2)

]
diag

(
1,1,−1,−1

)
the Schrödinger
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equation of the system is
[
H +V (x)

]
ψ = Eψ. Integrating over an infinitesimal dis-

tance η across our interfaces leaves only terms with a delta function and terms with

derivatives of the wavefunction with regards to x. Thus all our Hamiltonian ma-

trices reduce to ħ2

2m diag
(− ∂2

∂x2 ,− ∂2

∂x2 , ∂2

∂x2 , ∂2

∂x2

)
(since εk = ħ2k2

2m −µ and the operator

form of k is −i ∂∂x ). For the interface at −x1 we are left with

lim
η→0

∫ −x1+η

−x1−η

[ ħ2

2m
ψ′′−V (x)ψ

]
dx = ħ2

2m

[
ψ′(−x+

1 )−ψ′(−x−
1 )

]−V0ψ(−x1) = 0 (5.18)

where we have used that
∫ 0+

0− f ′′(x)dx = f ′(0+)− f ′(0−). As x =−x+
1 is in the SOC

element and x =−x−
1 is in the left superconductor, we have

ψ′
SOC (−x1)−ψ′

L(−x1) = 2mV0

ħ2 ψL(−x1) (5.19)

0 = 1

ikF

[
ψ′

SOC (−x1)−ψ′
L(−x1)

]+ iZψL(−x1) (5.20)

where we have introduced the barrier strength parameter Z = 2mV0
ħ2kF

for conve-

nience. In the same way, we get for the other interfaces

0 = 1

ikF

[
ψ′

F (0)−ψ′
SOC (0)

]+ iZψSOC (0) (5.21)

0 = 1

ikF

[
ψ′

R (x2)−ψ′
F (x2)

]+ iZψR (x2) (5.22)

Inserting our spinor wave functions into (5.20) gives us, for rows 13 through 16

of A:
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0 = k1

kF


a+

0

0

0

e−ik1x1 − k2

kF


a−

0

0

0

e ik2x1 + k2

kF


0

b+

0

0

e−ik2x1 − k1

kF


0

b−

0

0

e ik1x1

+ k3

kF


0

0

c+

0

e−ik3x1 − k4

kF


0

0

c−

0

e ik4x1 + k4

kF


0

0

0

d+

e−ik4x1 − k3

kF


0

0

0

d−

e ik3x1

+
(
iZ + k+

kF

)


aLe iβ

bLe iβ

−bLe−iφL

aLe−iφL

e ik+x1 +
(
iZ − k−

kF

)


cLe−iβ

dLe−iβ

−dLe−iφL

cLe−iφL

e−ik−x1

Writing out (5.21) produces the equations for rows 17 through 20:

0 =
(
iZ − k1

kF

)


a+

0

0

0

+
(
iZ + k2

kF

)


a−

0

0

0

+
(
iZ − k2

kF

)


0

b+

0

0

+
(
iZ + k1

kF

)


0

b−

0

0



+
(
iZ − k3

kF

)


0

0

c+

0

+
(
iZ + k4

kF

)


0

0

c−

0

+
(
iZ − k4

kF

)


0

0

0

d+

+
(
iZ + k3

kF

)


0

0

0

d−



+ [
e+↑ −e−↑

]ke↑
kF


1+mz

mx + imy

0

0

+ [
e+↓ −e−↓

]ke↓
kF


1−mz

−(mx + imy )

0

0



+ [
h+
↑ −h−

↑
]kh↑

kF


0

0

1+mz

mx − imy

+ [
h+
↓ −h−

↓
]kh↓

kF


0

0

1−mz

imy −mx



And finally, (5.22) fills in the final rows, 21 through 24:
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0 =−e+↑
ke↑
kF


1+mz

mx + imy

0

0

e ike↑x2 +e−↑
ke↑
kF


1+mz

mx + imy

0

0

e−ike↑x2 −e+↓
ke↓
kF


1−mz

−(mx + imy )

0

0

e ike↓x2

+e−↓
ke↓
kF


1−mz

−(mx + imy )

0

0

e−ike↓x2 −h+
↑

kh↑
kF


0

0

1+mz

mx − imy

e ikh↑x2 +h−
↑

kh↑
kF


0

0

1+mz

mx − imy

e−ikh↑x2

−h+
↓

kh↓
kF


0

0

1−mz

imy −mx

e ikh↓x2 +h−
↓

kh↓
kF


0

0

1−mz

imy −mx

e−ikh↓x2

+
(
iZ + k+

kF

)


aR e iβ

bR e iβ

−bR e−iφR

aR e−iφR

e ik+x2 +
(
iZ − k−

kF

)


cR e−iβ

dR e−iβ

−dR e−iφR

cR e−iφR

e−ik−x2

We note that as the wave functions of the superconductors are evaluated at only

one position, each of the exponential factors are always paired with the same coef-

ficient and can thus be absorbed. We introduce ãL = aLe ik+x1 , ãR = aR e ik+x2 and so

on, and define our variable vector as

x = (a+, a−,b+,b−,c+,c−,d+,d−,e+↑ ,e−↑ ,e+↓ ,e−↓ ,h+
↑ ,h−

↑ ,h+
↓ ,h−

↓ , ãL , b̃L , c̃L , d̃L , ãR , b̃R , c̃R , d̃R )T

yielding the matrix seen in Figures 5.2 and 5.3 (split in two parts for readability)

as a description of our linear system. In principle, one could calculate the deter-

minant analytically and DetA = 0 would give us an equation for β and thus for the

allowed energies, since

e iβ = u

v
=

[E +
p

E 2 −∆2

E −
p

E 2 −∆2

]1/2
=

[
2

E 2

∆2 +2
E

∆

√
E 2

∆2 −1−1
]1/2

= E

∆
+

√
E 2

∆2 −1 (5.23)

so that

β=−i ln
(E

∆
+

√
E 2

∆2 −1
)
= arccos

E

∆
(5.24)
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which we can verify by inserting our expression for β in cos(β) = 1
2

[
e iβ+e−iβ

]=
E
∆ . However, various attempted approximation schemes failed to render the equa-

tion humanly legible, and instead a numerical approach was adopted.

Figure 5.2: Part one of the matrix describing our linear system. See caption of Figure 5.3.

Figure 5.3: Part two of the matrix describing our linear system. For readability we have used
the following shorthand notations: m1 = 1+mz ,m2 = 1−mz ,m3 = mx + imy ,m4 = mx −
imy ,L =φL ,R =φR . All momenta are given in units of kF , i.e. kp = k+

kF
,km = k−

kF
, k_eu = ke↑

kF
,

k_hd = kh↓
kF

etc. The positions are given in units of 1/kF (x1 = x1kF , x2 = x2kF ) and lastly
the imaginary unit is denoted by a capitalized letter ’I’.
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6. Numerical methods

With appropriate values for the various parameters, we can quickly calculate the

numerical value of the determinant of our matrix. If we hold all other parameters

constant while changing the energy, we can find the energies for which the value of

the determinant (within numerical rounding errors) goes to zero. These energies

Ei , we will interpret as the energy levels of a fermionic system. For the thermody-

namic properties of a system of fermions without conservation of particle number,

we will be interested in the fermionic grand partition function (found in e.g. [41]):

Z =∏
i

(
1+e

− Ei
kB T

)
(6.1)

giving the free energy of the system as

F =−kB T lnZ =−kB T
∑

i
ln

(
1+e

− Ei
kB T

)
(6.2)

where kB ,T denotes the Boltzmann constant and the temperature, respectively.

In general, the (supercurrent dependent) free energy of a Josephson junction is

given as an integral over the supercurrent [42]

F (∆φ) = ħ
2e

∫ ∆φ

0
J (φ′)dφ′ (6.3)

where we for the moment do not write out explicitly the dependence of param-

eters other than the phase. Although junctions similar to ours (e.g. with a single

non-superconducting element that is both magnetic and exhibits Rashba SOC) can

be used to create φ0-junctions [43], we will assume our system does not constitute

such a junction, unless our calculations produce a shifted ground state or a cur-

rent at ∆φ = 0. Under this assumption, the sine series general expression for the

Josephson current from Chapter 2 holds, and we can thus expect the free energy to

be given by a series of cosines:

F (∆φ) = Fother +
∞∑

n=1

ħJn

2e

1−cos(n∆φ)

n
=

∞∑
n=0

Fn cos(n∆φ) (6.4)

43
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where Fother is a constant (wrt. phase) containing contributions to free energy

not dependent on the supercurrent. In the last equality, we absorb all constant

terms (wrt. phase) into F0. Considering again parameters other than phase, we ex-

pect the coefficients Fn to exhibit a dependence on e.g. the magnetization direction

of the ferromagnet.

Whatever the form of the free energy, following the effective field formalism of

Chapter 3, we would like to solve for the effective field due to the Andreev bound

state current in the junction:

HABS =−δUABS[M]

δM
=−∂UABS(M)

∂M
=− 1

V

∂FABS

∂M
(6.5)

where the second equality holds in our approximation of the ferromagnet as

a single magnetic domain, and we identify the relevant energy density as the free

energy density of the Andreev bound state system in the ferromagnet UABS = FABS
V

where V is the volume of the ferromagnet. Though it might naïvely seem that FABS

is exactly the free energy we have calculated, F , the relationship between the two

energies is not quite that simple. Additionally, it is not obvious whether the effective

fields of Chapter 3, which are based on energy densities, are directly applicable to

our essentially two-dimensional ferromagnet. These concerns have been relegated

to our discussion in Chapter 8, and for now we use the formalism from Chapter 3

(essentially disregarding the fact that our magnet is a thin plate in the S-F-S cases

discussed below). With regards to the energy density, we proceed on the assump-

tion that the correct energy FABS is proportional to our F , so that the dimensionless

effective field is (in SI units):

hABS =−C
∂F

∂m
where C = 1

V

FABS

F

1

µ0M 2
s

(6.6)

and C > 0 has units inverse energy as we should expect.

6.1 Energy calculations

Other parameters held constant, choosing an energy in the ABS regime (−∆ ≤ E ≤
∆) sets the values of β and the various momenta and thus allows calculation of the

numerical value of the determinant. In Figure 6.1 the determinant value is plotted

for the possible ABS energies, and the MATLAB inbuilt function "findpeaks" has

been used to identify the energies that give DetA = 0.

Some care must be taken using this method, as two energies that become de-

generate under parameter variation will suddenly register as one energy level, po-

tentially creating discontinuities in the calculated free energy. A solution to this

problem is to encode an expectation of the number of allowed energies such that,
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Figure 6.1: Plot of determinant of Andreev bound state system as a function of energy and
a depiction of how the MATLAB "findpeaks" function is used to identify the permissible en-
ergies by finding the zeros of the determinant. These plots were made using a somewhat
arbitrarily chosen set of parameters, and are meant only to illustrate the methods used.
(∆φ = 4π/5, θm = π/3, φm = π/3, µ = 1 eV, ∆̃ = 0.001, α̃ = 0.1, h̃ = 0.05, Z = 0.5, x1kF = 20
and x2kF = 20.)

for instance, two zeros found by "findpeaks" are interpreted as two two-fold degen-

erate energies. Additionally, the function is liable to find false zeros at the edges of

the plot (i.e. at E =±∆) that must be removed. An expectation of four energy levels

is used in the following and assumed to be successful if there are no discontinuities

in the free energy. Varying ∆φ = φL −φR while keeping the other parameters as in

Figure 6.1 allows us to plot the Andreev energies (i.e. the zeros of the determinant)

as functions of superconducting phase, producing the plot in Figure 6.2.

We note that in the regions where two of the energies approach zero, they be-

come indistinguishable to our numerical scheme and are thus interpreted as a de-

generate energy level at E = 0. Presumably, in the absence of numerical errors, the

two branches would smoothly approach zero and meet in a single point on the∆φ-

axis rather than in an interval. As an estimation of the maximum error in free energy

produced by this mechanism, we set∆= 10kB T and calculate the change in free en-

ergy at each side of the interval when changing the middle energy branches from

±0.05∆ to zero. The change from F (±0.05∆,±0.8∆) is −0.0062∆, while the change

from F (±0.05∆,±0.9∆) is about −0.0061∆. Thus, for the affected phase values we

will be liable to underestimate the free energy by up to about half a percent of the

gap energy.
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Figure 6.2: Plot of Andreev bound state energies as a function of superconducting phase
∆φ=φL −φR . Parameters are the same as in Figure 6.1 except for the variation of∆φ. Notice
that in the two regions where the two middle branches are close to zero, the two energies can
no longer be distinguished and are treated as a degenerate energy level with value zero.

6.2 Validation of the numerical scheme

One strategy for assessing the validity of our model is to adjust our parameters so

as to represent junctions for which there exists results that we should be able to

reproduce. The simplest such case is the S-N-S junction with transparent interfaces

(i.e. Z = 0), for which the supercurrent can be given as [44]:

J (∆φ) = J0 sin
(∆φ

2

)
tanh

[ ∆

2kB T
cos

(∆φ
2

)]
(6.7)

which for ∆= 10kB T gives a free energy of

FSNS(∆φ) = ħ
2e

∫ ∆φ

0
J (φ′)dφ′ = F0 ln

( cosh(5)

cosh(5cos(∆φ/2))

)
(6.8)

where the zero point for the energy is implicitly set at ∆φ = 0 and the energy

maximum is attained for ∆φ = π. We can produce numerical results for an S-N-S

junction with our numerical scheme by setting the length of the SOC element and

the exchange field strength to zero. As we are interested mainly in the functional

dependence on phase, we circumvent the issue of determining the size of F0 by a

simple normalization: we divide both the analytical expression and our numerical

results on the value they attain for ∆φ = π. The resulting expression for the free

energy is plotted together with normalized numerical results in Figure 6.3. The nu-
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merical results are in excellent agreement with the analytical expression.

Figure 6.3: Comparison of numerical results and analytical expression (eq. (6.8)) for the free
energy of a S-N-S junction. For the numerical results in this plot µ = 1 eV, h̃ = 0, ∆̃ = 0.001,
Z = 0, x1kF = 0 and x2kF = 20.

As a further test of the numerical method, we attempt to reproduce the Andreev

energy levels found for an S-F-S junction by Annunziata et al. [45] (in the case of

pure Stoner magnetism). Setting the length of our SOC element to zero takes us

to the S-F-S case, except that we are left with two barriers at the S-F interface, or

equivalently, one barrier of double strength. Setting the remaining parameters to

match the calculation of Andreev energies by Annunziata et al. (the right plot in

Figure 6.4), and correcting for the double counting of barriers we produce the left

plot in Figure 6.4. Several versions of this calculation was performed with random-

ized magnetization direction to verify that the reduced system is isotropic in spin

space. No deviations from the results in Figure 6.4 were observed. The two sets of

results are in excellent agreement, indicating that our numerical scheme reduces

correctly to the S-F-S case.

Another characteristic of the S-F-S junction worth reproducing is the so called

π-junction: a configuration for which the S-F-S junction energy minima occurs at

∆φ = π instead of ∆φ = 0 as in the conventional junction [46, 47]. Note that this

does not constitute a φ0-junction: a phase shift of π in the free energy (and thus in

the current) can be taken out of any term in a sine series: sinn(∆φ+π) =±sinn∆φ,

producing a sign change for odd n. Thus we are left with zero current when there

is no phase difference. For the simple (first order) sine current of the conven-

tional Josephson junction J (∆φ) = J0 sin(∆φ), the π-junction can be seen as a re-
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Figure 6.4: Plot of Andreev bound state energies as a function of superconducting phase
∆φ=φL −φR for parameters x2kF = 10,µ= 5eV,∆= 1meV. Z is the barrier strength param-
eter and M determines the strength of the exchange field by h̃ = 2M/(1+M2). The right plot
is from a treatment of Andreev states in S-F-S junctions by Annunziata et al. [45] and the
dashed lines correspond to our system. The left plot results from setting the length of the
SOC element to zero and correcting for double counting the barrier strength.

sult of a sign change in the current amplitude, J0 → −J0. Such a change of the

current amplitude has been predicted to occur with variations in both exchange

field strength [46] and thickness [48] of the ferromagnetic element. In an attempt

to reproduce these transitions, free energy has been calculated for select values for

both exchange field strength and ferromagnet thickness, and the results are plot-

ted in Figure 6.5. Variation of both parameters is seen to take the system from a

normal junction to a π-junction, and interestingly, both transitions display a non-

sinusoidal phase dependence for the free energy in the intermediate stage of the

transition. We can understand this by noting that as the amplitude of the first order

sine term changes smoothly from a positive to a negative value, it will be close to

zero in some interval, and we will be left with the higher order terms that would

normally be small compared to the first order term.
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Figure 6.5: Normalized free energy plotted as a function of phase for various values for ex-
change field strength h and ferromagnet thickness x2. For each configuration the zero point
energy is defined as the energy at zero phase difference, and all energies have been normal-
ized to the value of F (π) in the 0-junction configuration (the two leftmost plots). For all plots
in this Figure: µ= 1 eV, ∆̃= 0.001, Z = 0 and x1kF = 0.



50 CHAPTER 6. NUMERICAL METHODS



7. Results

In an effort to restrict our parameter space, we take our junction to have the pa-

rameter values µ= 1 eV, h̃ = 0.05, ∆̃= 0.001, x1kF = 20 and x2kF = 20, correspond-

ing to a short junction with exchange energy h = 50 meV and gap energy ∆ = 1

meV. Taking the exchange field felt by the conduction electrons to be about equal

to the exchange field of the lattice electrons (up to ≈ 103 T [27]) gives h ≈ 58 meV,

so our choice should not be unreasonable. BCS theory predicts an energy gap at

zero temperature of about [14] ∆≈ 1.75kB Tc = 0.15Tc meV K−1 where Tc is the crit-

ical temperature, which corresponds to our chosen gap energy for a Tc of about 7

Kelvin. We consider a low temperature for which ∆= 10kB T , i.e. the gap energy is

significantly larger than that of thermal fluctuations. Taking the effective quasipar-

ticle mass to be equal to the electron mass (m = me ) gives junction element lengths

x1 = x2 ≈ 4 nm, which roughly corresponds to the exchange lengths for transition

metals we quoted in Chapter 3 and should thus be permissible within our single

domain approximation for the ferromagnet.

We will primarily be interested in the variations with changing magnetization

direction and superconducting phase. Secondly, we will be interested in the effect

of different barrier transparencies and varying strength of the Rashba parameter.

Again taking m = me , the Rashba parameter values we reported in Chapter 4 give

our dimensionless parameter values approximately given by the range 0.001 ≤ α̃≤
0.1. For our magnetic element, we take the saturation magnetization as Ms = 1.3×
106 A/m and the anisotropy constant as K = 103 J/m3, as applicable to e.g. Fe-Ni

alloys at about 40% Ni [49].

7.1 Free energy

For a an intermediate strength barrier Z = 0.5 and a Rashba coupling of strength

α̃= 0.1 our numerical solutions for the free energy produce the plots in Figure 7.1,

where we have chosen z as the polar axis and expressed the magnetization direction

by the polar θm and azimuthal φm angles. The results for the four different phase

values were all curve-fitted to an equation on the form F = a −b cos2θm + c f (φm)

51
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yielding excellent correspondence, with root mean square errors on the order of

10−5. Several functions were tried for the azimuthal dependence f (φm), ranging

from a simple linear relation to trigonometric functions, all of which produced a

negligible (by many orders of magnitude) value for c, suggesting a free energy that is

azimuthally symmetric in the magnetization direction. This makes intuitive sense,

as our model only has spin space isotropy broken only along the z-axis (i.e. the z-

direction is the only privileged direction in spin space). These results indicate that

the effect of the Andreev bound states is simply an easy z-axis: a free energy den-

sity proportional to the negative square of the z-component of the magnetization

(cos2θm = m2
z ) yields an effective field in the z-direction proportional to mz . The

values for the parameters a < 0 and b > 0 varied with phase in a way that is sym-

metric about∆φ=π, as can be seen in the figure as the plots are pairwise identical.

Figure 7.1: Free energy of Andreev bound state system plotted as a function of magnetiza-
tion direction for different values of superconducting phase ∆φ. The z-axis is chosen to be
the polar axis, and the magnetization direction is given by its polar (θm ) and azimuthal (φm )
angles. The free energy appears to be indifferent to the azimuthal angle, while under varia-
tion of the polar angle it attains minima along the z-axis and maxima in the x y-plane. The
effect of changing the phase difference in the superconductors appears to be a shift of the
total energy and a scaling of the θm dependence. For these plots µ= 1 eV, h̃ = 0.05, ∆̃= 0.001,
α̃= 0.1, Z = 0.5, x1kF = 20 and x2kF = 20.

Ideally, since it appears to be indifferent to φm , we would like to plot the free

energy as a function of superconducting phase and polar magnetization angle. Un-

fortunately, as can be seen in Figure 7.2 the variation with changing phase is so large

that it almost renders the smaller variation with polar angle indiscernible. However,

the resulting plots contain interesting information on the phase dependence of our

free energy, which for Z = 0 and Z = 0.5 clearly differs from that of the traditional



7.1. FREE ENERGY 53

Josephson junction, as evidenced by the dip in free energy at ∆φ=π. Interestingly,

the higher harmonic contributions responsible for the dip seem to be suppressed

at Z = 1.

Figure 7.2: Free energy of Andreev bound state system plotted as a function of polar magne-
tization angle θm and phase difference∆φ between the superconductors for different values
of the barrier strength Z . The variation with θm is so small compared to the effect of chang-
ing phase that it is difficult to see. For these plots µ = 1 eV, h̃ = 0.05, ∆̃ = 0.001, α̃ = 0.1,
x1kF = 20 and x2kF = 20.

To be able to visualize more clearly how the variation with θm depends on the

phase, we want to repeat the calculations used in Figure 7.2, only for each phase

value ∆φn we subtract from the free energy the value F (∆φn ,θ0) where θ0 is the

smallest polar angle used in our calculations. This effectively subtracts the varia-

tion in energy that is independent of magnetization direction. However, in doing

this we have moved to an energy scale where the numerical errors due to energy

levels becoming degenerate are significant. In addition to the degeneracies seen in

Figure 6.2, we will for Z = 0 also have pairs of degeneracies around ∆φ = π and at

∆φ= 0, as can be seen from the energy levels plotted in Figure 7.3.
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Figure 7.3: Plot of Andreev bound state energies as a function of superconducting phase ∆φ
for transparent barriers, i.e. Z = 0. In addition to the degeneracies seen in Figure 6.2, we also
have pairs of degenerate energy levels at ∆φ= π and ∆φ= 0. For this plot µ= 1 eV, h̃ = 0.05,
∆̃= 0.001, α̃= 0.1, x1kF = 20 and x2kF = 20.

Using Figures 6.2 and 7.3 as guides, we simply exclude the phase intervals where

degeneracies must be expected to introduce errors, with the hope that the remain-

ing data will be sufficient to reveal how the θm dependence is affected by super-

conducting phase. Unfortunately, the energy levels for Z = 1 are degenerate over a

significant phase interval and have therefore been excluded in the following. The

resulting plot can be seen in Figure 7.4. Interestingly, we see that the free energy

dependence on polar angle does not disappear for zero phase, leaving a minimum

strength for the ABS easy axis that is about a fourth of the peak strength. The effect

of increased barrier strength appears to be a flattening of the variation along ∆φ,

somewhat decreasing the strength of the ABS easy axis around ∆φ= π and slightly

increasing it at zero phase. A repetition of these calculations with the Rashba pa-

rameter reduced by an order of magnitude (α̃ = 0.01) produced results that were

close to identical in form, but about two orders of magnitude smaller, suggesting

that the strength of Rashba SOC influences only the magnitude of the effects we

have found.

Both sets of results displayed in Figure 7.4 were curve fitted to an equation on

the form

F = sin2θm

[
c0 +

N∑
n=1

cn cosn∆φ
]

(7.1)

and both achieved a tolerable fit (root mean square errors of about 10−4) at the
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Figure 7.4: Free energy of Andreev bound state system with the part dependent only on
phase subtracted, plotted as a function of polar magnetization angle θm and phase differ-
ence between the superconductors ∆φ. The intervals with no data points correspond to pa-
rameter values for which we know that the numerical scheme introduces significant errors.
For this plot µ= 1 eV, h̃ = 0.05, ∆̃= 0.001, α̃= 0.1, x1kF = 20 and x2kF = 20.

inclusion of four cosine terms. Including higher order terms further improved the

fit, reinforcing the earlier indication that the ABS effective field takes the form of an

easy z-axis (since sin2θm = 1−m2
z ). If we can find a function f (∆φ) that approx-

imates the phase dependent factor (i.e. the bracketed part of (7.1)), our effective

field will take the form

hABS =−C
∂F

∂m
= 2mzC f (∆φ) (7.2)

where C is the constant denoting the proportionality of our calculated free en-

ergy to the relevant free energy density in the ferromagnet, yet to be discussed. We

note that f (∆φ) has unit energy, making the expression dimensionless as it should

be. To find suggestions for f (∆φ), we perform a curve fitting for numerical results

with θm = π/2 varying the number of cosine terms used. The results for attempts

with four and six cosine terms are plotted in Figure 7.5, and from these we expect

the curve fit with six cosine terms to be a good approximation and will use it for our

f (∆φ).
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Figure 7.5: Strength of easy axis ABS effective field as a function of phase (calculated as
F (∆φ) = F (∆φ,π/2)−F (∆φ,0) where the second variable is polar magnetization angle) to-
gether with analytical functions found by curve fitting a series with four and six cosine terms,
respectively. The three intervals with no numerical results correspond to parameter values
for which we know that the numerical scheme introduces significant errors. For this plot
µ= 1 eV, h̃ = 0.05, ∆̃= 0.001, α̃= 0.1, x1kF = 20 and x2kF = 20.

As another data point to assess the effect of increased barrier strength, we per-

form the procedure used in Figure 7.4 for Z = 0.8, for which we do not have the

same numerical difficulties as with Z = 1. The result can be seen in Figure 7.6. Also

here the dependence on θm fits perfectly with the form of an easy axis, but now

there is almost no variation with superconducting phase. We are left with an easy

axis of approximately constant strength, a bit higher than the ∆φ = 0 strength ob-

served for weaker barriers. This could suggest that the phase dependent part of

the easy axis strength is due to a process requiring Andreev reflections (which are

suppressed in favor of normal reflections by stronger barriers), while the phase in-

dependent part is largely unaffected by barrier strength. This would be the case

if, for instance, the phase dependent part is due to the supercurrent through the

junction, while the phase independent part is the result of a population of quasi-

particles reflected back and forth at equal rates so as to create zero net current.

Such a population of quasiparticle could be the result of equal numbers of Andreev

reflections in each direction (as would have to be the case for Z = 0 where normal

reflection vanishes) and it could be due to quasiparticles trapped in the junction by

normal reflection at the interfaces (as would have to be the case with barriers strong

enough to prohibit Andreev reflection). In the general case we would assume that

both these processes contribute to this equilibrium population of quasiparticles.
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Figure 7.6: Free energy of Andreev bound state system with the part dependent only on
phase subtracted, plotted as a function of polar magnetization angle θm and phase differ-
ence between the superconductors ∆φ. The intervals with no data points correspond to pa-
rameter values for which we know that the numerical scheme introduces significant errors.
For this plot Z = 0.8, µ= 1 eV, h̃ = 0.05, ∆̃= 0.001, α̃= 0.1, x1kF = 20 and x2kF = 20.

7.2 Magnetization dynamics

If we would like to apply our results for the free energy and corresponding effective

field to a dynamically evolving system, we must consider the applicability of our

quasi-static approach: for how rapid change in the system will our static solutions

for the BTK wave functions be valid? The smallest energy scale in our system is the

gap energy ∆ = 1 meV, so the time evolution of a dynamic system can be seen as

an adiabatic perturbation as long as it evolves on a time scale τ fulfilling ħ/τ¿ ∆.

If, for instance, our magnet has an easy axis anisotropy with anisotropy constant K

and is disturbed from equilibrium, the magnetization will spiral towards the easy

axis with a precession frequency (see Chapter 3):

ωP = γ|Ha| = γ2K

Ms

M∥
Ms

≤ γ2K

Ms
(7.3)

where M∥ is the magnetization component along the easy axis. The magnetic

properties chosen for our ferromagnet give ωP ≈ 1/(3.5ns), or equivalently ħωP ≈
0.001 meV, safely within the bounds of our adiabatic approximation. A system with

such an anisotropy (let’s say along the y-axis) would be bistable and as such could

be used as a magnetic bit, encoding information in the two stable magnetization

directions (e.g. 1 for magnetization in the ŷ direction and 0 for magnetization in the

−ŷ direction). We will be interested in whether an effective field on the form that we
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have found for the Andreev bound states could be used to drive magnetic switching

in such a system. Obviously, if the magnetization is strictly along the y-axis, our

ABS easy axis would have no effect, regardless of its relative strength, since there

is no magnetization component along the z-axis. However, we will assume that

thermal excitations create small deviations from the equilibrium magnetization,

and in absence of any other torques than that of the magnetic bit easy axis we take

the magnetization to be in a tight precession (or a tight inward spiral if there is

damping in the system) about one of the equilibria.

If we were to bias the junction with a voltage Va , we would introduce a time

evolution to the superconducting phase as we saw in Chapter 2: ∆φ→ ∆φ0 +ωJ t ,

where ωJ = 2eVa
ħ is as before the Josephson frequency. In this way we could drive

the phase dependent strength of our easy axis ABS effective field at a frequency of

our choosing. However, the driving frequencies that will be of interest to us in pro-

voking magnetic switching in the system are no larger than twice the maximum

precession frequency of the magnetic bit easy axis, ωJ ≤ 2ωP , and are thus permis-

sible within our adiabatic approximation. Frequencies in this range correspond to

bias voltages on the order of 10−6 volt. Taking our junction to originally have zero

phase difference between the superconductors, and applying a bias voltage at t = 0,

we will have a total effective field

heff = ha +hABS(t ) = 2K

µ0M 2
s

my +2C mz f
(
Θ(t )ωJ t

)
(7.4)

where Θ(t ) is the Heaviside step function and f (∆φ) is the six cosine term ap-

proximation to the phase dependence plotted in Figure 7.5. The dimensionless

LLG-equation we derived in Chapter 3 is easily implemented and solved in MATLAB

using the inbuilt ordinary differential equation solver ODE45. Choosing a Gilbert

damping parameter ofα= 0.01 and an initial condition where the magnetization is

close to −ŷ , for C = 0.025/∆we are able to produce switching by choosing a driving

frequency close to ωP . The trajectory of the magnetization is plotted in Figure 7.7

Some trial and error was necessary to find a driving frequency that would pro-

duce switching given a certain value for C , as the dynamics are very sensitive to the

exact position at the time we start driving the superconducting phase. For a slightly

weaker ABS effective field, the magnetization had to be driven much more grad-

ually away from the easy axis, an example of which can be seen in Figure 7.8 for

C = 0.02/∆. While it might initially seem that even lower values for C should only

require us to drive the system at resonance frequency for a little longer to achieve

switching, this is unfortunately not the case: since the precession frequency of

the magnetic bit easy axis is proportional to the x-component of magnetization,

there is not one single frequency for us to target. Thus, if we choose a frequency

that achieves resonance with the initial precession, we will increase the radius of
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Figure 7.7: Magnetization trajectory for switching by ABS effective field. After a short time of
precession about ŷ , we start to drive the superconducting phase at a frequency close to the
frequency of precession, which drives the magnetization to the vicinity of the other stable
direction. The phase is again set to zero, and the magnetization is left precessing around −ŷ .
For this plot α= 0.01, C = 0.025/∆ and the time taken is about 180 ns.

precession until our frequency is no longer close enough to the new precession

frequency to have the desired effect. For C = 0.01/∆ we were unable to produce

switching, even if we made the system dissipationless by removing Gilbert damp-

ing. For higher values of C , we are able to produce faster switching, but only up

to a point: while C = 0.05/∆ allows slightly more expedient switching than does

C = 0.02/∆, for C = 0.1/∆ the minimum ABS easy axis strength (i.e. the strength

at ∆φ = 0) is enough to break the bistability of the easy y-axis (even for miniscule

deviations from the stable direction) and we effectively no longer have a magnetic

bit.
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Figure 7.8: Magnetization trajectory for switching by ABS effective field. After a short time of
precession about ŷ , we start to drive the superconducting phase at a frequency close to the
frequency of precession, which drives the magnetization to the vicinity of the other stable
direction. The phase is again set to zero, and the magnetization is left precessing around −ŷ .
For this plot α= 0.01, C = 0.02/∆ and the time taken is about 620 ns.



8. Discussion

In calculating our Andreev bound state free energy, we have considered only one-

dimensional transport, and thus only a single propagation mode through the junc-

tion. However, as our system has some cross-sectional area, there will be a pos-

sibility of modes with ky ,kz 6= 0. We will approximate the energy of these modes

to be the same as for the one-dimensional transport mode (i.e. the F we have cal-

culated). This is expected to be an overestimation, as the oblique angles of inci-

dence produced by the transverse momenta will increase the rate of regular reflec-

tion at the interfaces and thus have an effect similar to that of increasing the barrier

strength (i.e. suppressing Andreev reflection). Additionally, our energy splitting

in the SOC element is proportional to the x-component of momentum, any mo-

mentum along the y-axis would have no effect on the energy splitting, while the

z-component of momentum would change the axis along which spin is resolved

in the SOC-element. We will neglect this effect, as we assume that our system is

dominated by states with momentum predominantly along the x-axis.

To get some sense of the angle dependence of increased normal reflection at

oblique incidence, we consider a toy model for an electron incident on an inter-

face in the y z-plane with barrier strength Z (defined as before) between two nor-

mal metals. As we have momentum conservation parallel to the interface, we need

only consider the dependence on kx = kF cosθ where θ is the angle of incidence.

Imposing the same constraints at the interface as in Chapter 5 and solving for the

transmission probability gives:

T = 1

1+ Z 2

4cosθ2

(8.1)

For Z = 1 we reduce transmission by half for cosθ = kx /kF = 1/2, meaning we

need kx to be significantly smaller than kF to effectively suppress transmission.

However, as each Andreev reflection requires two regular transmissions (and An-

dreev bound states processes might in turn demand multiple Andreev reflections)

is seems reasonable that the effects we are interested in (i.e. the phase dependent

part of the easy axis strength) would scale with some higher power of T . Regard-

61
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less, we can see from (8.1) that (for finite Z ) any modes with transverse momenta

approaching the Fermi momentum (so that kx /kF becomes small) can be safely

neglected on the grounds that they are unlikely to allow Andreev reflection.

Taking a simple particle-in-a-box approach to the transverse modes, we can

only have the discrete set of transverse momenta

ky =
nyπ

Ly
kz = nzπ

Lz
(8.2)

where Ly and Lz are the ferromagnet thickness and width, respectively. The

momenta are of course subject to the constraint

k2
y +k2

z < k2
F so that ny(z) <

kF Ly(z)

π
(8.3)

i.e. there must be some momentum in the x-direction for the modes to prop-

agate at all. We see that for an Ly on the order of kF Ly ≈ π, there will be only one

non-zero y-mode, which we can safely ignore since ky ≈ kF . Thus transport in

the junction is essentially two dimensional in this case. The number of transverse

modes will be almost nz = kF Lz /π, and our proportionality constant for the effec-

tive field becomes:

C = 1

V

FABS

F

1

µ0M 2
s
= 1

x2Ly Lz

kF Lz

π

1

µ0M 2
s
= k3

F

π2

1

x2kF

1

µ0M 2
s

(8.4)

where we have used Ly ≈ π/kF . For the parameter values used in Chapter 7

(µ = 1eV, x2kF = 20, and taking the effective mass to be simply the electron mass)

gives us a value

C ≈ 3.2×1020 J−1 ≈ 0.05

∆
(8.5)

However, the thickness we have used is comparable to the lattice parameter of

transition metals (typically a few Ångström [27]) at Ly ≈ 6 Å, so we cannot readily

expect all our results for bulk ferromagnets to apply. Going to the 2D-case requires

us to substitute areas for volumes, both in the energy density and the saturation

magnetization (magnetic moment per volume). However, only one of the two fac-

tors of Ms got into our expression for C as a normalization of magnetization, the

other one originated as a normalization of the effective field. The effective field re-

tains the unit energy per magnetic moment, and thus must still be normalized by

(the 3D) Ms . It might seem the 3D saturation magnetization should not affect the

2D problem, and indeed it does not: it serves only as a convenient normalization of

the effective field that also sets the time scale of the problem, leaving the dynamics

unchanged. We are thus left with
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C = 1

A

FABS

F

1

µ0Ms M2D
= 1

x2Lz

kF Lz

π

1

µ0Ms M2D
= k2

F

π

1

x2kF

1

µ0Ms M2D
(8.6)

where M2D is the saturation magnetization of our 2D magnet. As a first approx-

imation, we can take M2D to be equal to the bulk saturation magnetization multi-

plied by the thickness of a single atomic layer: M2D ≈ Ms Llayer. While we should

expect this to be an overestimation of the saturation magnetization for an actual

monolayer (since there are fewer nearest neighbors to exert an exchange field on

each spin), we can expect it to be an adequate model for e.g. a stack of weakly cou-

pled magnetic monolayers. Such a stack would retain many of the properties of

the bulk ferromagnet but would essentially allow only 2D electron transport and as

such fits well with our model. This approximation for M2D simply gives us back the

3D expression for C , only with Llayer in place of Ly . As we saw that Ly should be of

the same order of magnitude as the lattice parameter (and thus Llayer), so as a first

approximation we simply use the expression (8.4) for the proportionality constant.

8.1 Potential for technological application

In the introduction, we touted the advantages of manipulating magnetic memory

without the use of a conventional current. We have shown that for an example

system, it should be possible to achieve switching of a magnetic bit through ap-

plication of a voltage bias to the junction, which can be assumed to produce only

negligible conventional currents at low temperature. Although the ability to per-

form switching was limited to a somewhat restricted interval of values for the pro-

portionality constant C (which we were only able to calculate a first approximation

for), it seems plausible that combinations of materials and junction parameters ex-

ist for which switching is indeed possible.

Assuming that magnetic switching by ABS effective field is achievable, we could

imagine that the ferromagnetic element in our junction is incorporated in a mag-

netic tunnel junction (i.e. an F-I-F junction in which large differences in tunneling

resistance occur for parallel and antiparallel magnetizations in the two magnetic

elements [50, 51]) to facilitate reading the state of our magnetic bit. Compared to

writing methods using applied magnetic fields or spin polarized currents, such a

magnetic memory unit would have the (significant) advantage of writing without

the use of a conventional current. However, it would present other difficulties, the

least of which might be the cryogenic cooling required for the superconductive ele-

ments. Since the resulting effective field is an easy axis, the exact timing of our bias

voltage would decide whether switching occurs as the ABS effective field could eas-
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ily drive the magnetization back and forth between the two states of the magnetic

bit. Contrast this with the application of an external field: for a strong enough ap-

plied field, we simply have to wait long enough for switching to occur and we will be

guaranteed that the magnetization is in the direction of the external field. Another

weakness in the proposed system stems from the fact that the ABS effective field

we have found cannot be set to zero strength by manipulation of superconducting

phase. Thus, any such field of a comparable strength with the magnetic bit easy

axis would introduce a constant easy axis in competition to that of the magnetic

bit which would effectively reduce the regions of stability from essentially the two

halves of the magnetization sphere (mx > 0 and mx < 0) to two cones centered on

the two stable directions (mx > c and mx < −c for some 0 < c < 1). This effect can

be seen in the magnetization trajectory plotted in Figure 8.1. Also taking into ac-

count that we must have some deviation from the stable magnetization directions

of the magnetic bit for the ABS effective field to have any effect, we could imagine

that the proposed system could encounter problems with poor bit stability.

Figure 8.1: Magnetization trajectory with no driving of the ABS effective field. The magne-
tization is initiated in the lower right quadrant (mx = −my = mz ) from where it would, in
absence of the ABS effective field, spiral towards my =−1. However, the minimum (∆φ= 0)
strength of the ABS easy axis is sufficient that the magnetization instead goes into a skewed
outward spiral from mx = 1 until it reaches the attractive cone around one of the stable po-
sitions of the magnetic bit easy axis. For this plot α= 0.01, C = 0.05/∆ and the time taken is
about 260 ns.



9. Concluding remarks

We have demonstrated that an extended BTK formalism can be used to find the

magnetization dependent energy levels of Andreev bound states in a version of the

Josephson junction incorporating a ferromagnet and an element displaying Rashba

spin-orbit coupling. We have shown that the resulting free energy for a range of

example systems takes the form of an easy axis effective field perpendicular to both

the direction of propagation in the junction and the direction of broken inversion

symmetry responsible for Rashba SOC. In one example system it was demonstrated

that manipulation of the easy axis strength could be achieved by oscillation of the

superconducting phase induced by a bias voltage imposed on the junction, and

that this effect could be used to perform the switching of a magnetic bit.

Although such switching without the use of a conventional current could be

construed as a step toward dissipationless magnetic memory technology, we have

argued that such a method for switching is fundamentally flawed for applications

in magnetic memory. Chief among our concerns was the fact that application of

an easy axis (e.g. perpendicular to the stable magnetization directions of the mag-

netic bit) cannot be guaranteed to achieve switching (or rather an odd number of

switches) of the bit except by exact timing of the application. Such timing would

have to account for the initial deviation of the magnetization from a stable direc-

tion assumed to be the result of thermal fluctuations, which does not seem plausi-

bly achievable for technological application.

However, the base mechanism we have demonstrated, namely the lifting of spin

degeneracy in an S-F-S junction by introduction of a spin-orbit coupled element,

can still be of interest to future applications in spintronics, and systems similar to

ours warrant further investigation. One such example could be an S-F-S junction

where one or both interfaces consist of a layer of heavy metal displaying Rashba

SOC. Such a junction could be investigated by the very methods we have employed,

with the exception that one would have to consider three-dimensional transport

explicitly, incurring an integration over angles of incidence at the barriers.
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