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Abstract

Background: Geometric distortion in echo-planar (EPI) magnetic resonance (MR) images,

caused by low bandwidth combined with variations in magnetic susceptibility, is a problem

that can make it challenging to connect functional MR data to anatomical position. A distor-

tion correction method based on the acquisition of images with opposing phase encoding

directions has been successfully used at NTNU for several years. However, this method can

currently only be performed offline on anonymised images and is therefore not used in clin-

ical routine. The aim of this master’s project was to implement and test this method in the

clinical software environment of syngo.via Frontier.

Materials and methods: A prototype for distortion correction was made in MeVisLab and in-

stalled in syngo.via Frontier. It was tested on diffusion-weighted EPI images from 13 breast

and 16 prostate patients, and the images were examined visually to determine the robust-

ness in terms of percentage non-failed corrections, and the quality of corrections. Various

image similarity metrics were also calculated in order to try to determine the quality of cor-

rections quantitatively. To assess the user-friendliness of the prototype, it was tested by a

radiographer and a medical physicist.

Results: None of the corrections failed, giving a robustness of 100%. By visual assessment,

the quality of correction was determined to be successful for 12 of 13 breast patients and

all 16 prostate patients. The calculated metrics generally showed good results for the breast

images, but they gave some inconclusive results for the prostate images. The feedback from

the user-friendliness testing showed that after minimal training it would be relatively easy to

use the prototype.

Conclusion: The prototype was able to successfully correct geometrically distorted images.

Nevertheless, the calculated metrics yielded varying results, and more investigations should

therefore be performed to find suitable metrics for determining the quality of corrections

quantitatively. Although there is still room for improvements, the prototype has potential to

be an easy-to-use tool for geometric distortion correction of EPI images in clinical workflow.
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Sammendrag

Bakgrunn: Geometrisk distorsjon i ekko-planare (EPI) magnetresonansbilder (MR-bilder),

forårsaket av lav båndbredde i kombinasjon med varierende magnetisk susceptibilitet, er et

problem som kan gjøre det utfordrende å koble funksjonelle MR-data til anatomisk posisjon.

En distorsjonskorreksjonsmetode basert på opptak av bilder med motsatt fasekodingsret-

ning har vært vellykket brukt på NTNU i flere år. Imidlertid kan denne metoden kun bli

utført offline på anonymiserte bilder, og er derfor ikke brukt i klinisk rutine. Målet med dette

masterprosjektet var å implementere og teste denne metoden i den kliniske programvaren

syngo.via Frontier.

Materialer og metode: En prototype for distorsjonskorreksjon ble laget i MeVisLab og in-

stallert i syngo.via Frontier. Den ble testet på diffusjonsvektede EPI-bilder fra 13 bryst- og

16 prostatapasienter, og bildene ble undersøkt visuelt for å bestemme robustheten, defin-

ert som prosent ikke-feilede korreksjoner, samt korreksjonskvaliteten. Ulike metrikker for

bildelikhet ble også beregnet for å prøve å bestemme korreksjonskvaliteten kvantitativt. For å

vurdere prototypens brukervennlighet, ble den testet av en radiograf og en medisinsk fysiker.

Resultater: Ingen av korreksjonene feilet, noe som gir en robusthet på 100%. Ved visuell

undersøkelse ble korreksjonskvaliteten vurdert til å være vellykket for 12 av 13 brystpasien-

ter og alle 16 prostatapasienter. De beregnede metrikkene viste generelt gode resultater for

brystbildene, men ga noen inkonklusive resultater for prostatabildene. Tilbakemeldingene

fra brukervennlighetstestingen viste at etter minimalt med opplæring vil prototypen være

relativt enkel å bruke.

Konklusjon: Prototypen klarte vellykket å korrigere geometrisk deformerte bilder. Likevel ga

de beregnede metrikkene varierende resultater, og videre undersøkelser bør derfor utføres

for å finne passende metrikker for å bestemme korreksjonskvaliteten kvantitativt. Selv om

det fortsatt er rom for forbedringer, har prototypen potensial til å være et lettbrukelig verktøy

for geometrisk distorsjonskorreksjon av EPI-bilder i klinisk arbeidsflyt.
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Chapter 1

Introduction

In the later years, there have been huge technological developments in the field of magnetic

resonance imaging (MRI), leading to new functional MRI (fMRI) techniques [1]. The differ-

ence from anatomical MRI is that information about the tissue microenvironment can be

assessed, for example the diffusion or perfusion of the tissue. fMRI is usually dependent on

a good temporal resolution, and the acquisition method must therefore be fast. Echo-planar

imaging (EPI) is well-suited for this.

In EPI, images can be acquired in a very short time because of the rapid switching of mag-

netic gradients [2]. However, susceptibility-induced geometric distortion of the images is

a major problem. It appears as local deformations, and heavily distorted images may con-

sequently hinder correct diagnosis and analysis. Even though a trained radiologist is able

to see beyond the distortion when looking at the images qualitatively, quantitative analysis

becomes more difficult. The functional images must be co-registered—that is, aligned—to

anatomically correct images in order to connect functional data to anatomical position. Ge-

ometric distortion makes this challenging, and in some cases impossible. The distortion

must therefore be corrected. This correction will also become even more important in the

future, when machine learning will be increasingly used for quantification of various param-

eters from functional images.

There exist several methods for distortion correction, where the method developed by Hol-

land et al. has been successfully used at NTNU for several years [3, 4, 5]. Unfortunately, this

method can currently only be performed offline on anonymised images. The distortion cor-

rection is therefore not yet implemented in clinical routine.
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2 CHAPTER 1. INTRODUCTION

Recently, St. Olavs Hospital and NTNU have acquired a new image processing software from

Siemens named syngo.via Frontier Development Kit. In addition to the available prototypes

in the Frontier Store, this opens up for the development of own image processing proto-

types. Since syngo.via Frontier is connected to the hospital image storage and viewing sys-

tem (PACS), the method for EPI distortion correction can be implemented as a prototype

that can be used in the clinical workflow.

The aim of this master’s thesis is to get started on facilitating the use of distortion corrected

EPI images in clinical routine. The main objectives are:

1. To implement the EPI distortion correction method in syngo.via Frontier Development

Kit.

2. To evaluate the results from using the processing tool, by means of:

• User-friendliness of application.

• Robustness in terms of percentage non-failed corrections.

• Quality of corrections, tested on breast and prostate diffusion-weighted EPI im-

ages.

The thesis will begin with a description of relevant theory, followed by the materials and

methods used. The results will then be presented, and they will further be discussed and

related to other research in the field. Suggestions for future work will also be presented. At

last, a conclusion of the project is given. Relevant scripts are included in the appendix, in

addition to the feedback form used for the evaluation of prototype user-friendliness.



Chapter 2

Theory

2.1 MRI in general

Sections 2.1.1 and 2.1.2 are adapted from a previously written project thesis by the author

[6].

2.1.1 Basic principles of MRI

Magnetic resonance imaging (MRI) is a non-invasive medical imaging modality that takes

advantage of the magnetic properties of protons [7]. The theory behind MRI is quite compre-

hensive, and a detailed description is beyond the scope of this thesis. Only an introduction

to the principles of MRI relevant for this master’s thesis will be presented in the following. A

more thorough description can be found in various textbooks [8, 9].

The proton is a positively charged particle that exists in large amounts in biological material,

and it has a quantum mechanical property called spin [10]. It also has a magnetic dipole

moment~µ. If the proton spins are put into an external magnetic field ~B0 = B0ẑ, there will be

an energy splitting. The spins with a positive z-component are called "spin up" and are in

the low-energy state, and those with a negative z-component are called "spin down" and are

in the high-energy state. In addition, ~B0 will exert a torque on~µ, which leads to a movement

of~µ given by

d~µ

d t
= γ~µ×~B . (2.1)

This is called the Bloch equation, and the solution to this is precession of ~µ [8]. Thus, it will

3
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ωL

x

y

z

~µ

.

~B0

Figure 2.1: In an external magnetic field ~B0 along the z-direction, the magnetic moment ~µ
will precess around the z-axis with the Larmour frequency ωL .

precess around the direction of the magnetic field with the Larmour frequency

ωL = γB0, (2.2)

where γ is the gyromagnetic ratio (Figure 2.1). In equilibrium, there will be more spins with

spin up than spin down, and there will therefore be a net magnetisation ~M in the direction

of the external field. The motion of the net magnetisation can be also described by the Bloch

equation,
d ~M

d t
= γ~M ×~B . (2.3)

To be able to detect a signal of the magnetisation, the spins must be excited [7]. In this con-

text, excitation means that the net magnetisation is tipped away from the z-direction and

down to the xy-plane. If a second external magnetic field ~B1 that rotates with the Larmour

frequency of the spins is applied, resonance occurs, and the net magnetisation will also ro-

tate around the direction of ~B1. This can easier be visualised using a frame of reference ro-

tating at the Larmour frequency, see Figure 2.2. In this frame of reference, it appears as if

the spins are only affected by the ~B1 field. ~B1 has a rotation frequency in the radiofrequency

(RF) range, and its application is therefore called an RF pulse. By applying ~B1 for a certain
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Figure 2.2: Excitation of the spins, shown in a frame of reference rotating at the Larmour
frequencyωL . (a) The net magnetisation vector before excitation. (b) The net magnetisation
vector immediately after excitation. ~B1 has rotated it 90° around the x’-axis.

amount of time tr f , ~M will rotate an angle α, given by

α= γB1tr f . (2.4)

B1 and tr f can be adapted to rotate ~M an angle of for example 90° or 180°, and the applica-

tion of ~B1 is then called a 90° or 180° pulse, respectively.

After the spins have been excited, the net magnetisation will start to precess in the xy-plane.

However, interactions with the external field ~B0 will restore the magnetisation back to its

equilibrium state in a process called relaxation [8]. There are two kinds of relaxation pro-

cesses; longitudinal and transverse. Longitudinal relaxation is the regrowth of net magneti-

sation in the z-direction, Mz . This is also called spin-lattice relaxation, because when the

individual spins are relaxed they release energy to their environment ("lattice") in the form

of heat [1]. The regrowth of Mz is exponential and is given by

Mz(t ) = Mz(t = 0+)e−R1t +M0
(
1−e−R1t ), (2.5)

where t = 0+ is immediately after excitation, M0 is the initial longitudinal magnetisation

before excitation, and R1 is the longitudinal relaxation rate [8]. Its inverse is called the longi-

tudinal relaxation time, T1.

Transverse relaxation is a dephasing process, also known as spin-spin relaxation [8]. Shortly

after the excitation, all spins will precess with the same phase. However, due to the inter-

action of magnetic fields from adjacent spins, not all spins will rotate with the exact same
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Figure 2.3: Illustration of transverse dephasing of spins, shown in a frame of reference rotat-
ing with the Larmour frequency. (a) Immediately after excitation, all spins are in the same
phase. (b) Because the spins are rotating at slightly different frequencies due to spin-spin
interactions and external field inhomogeneities, the spins will start to dephase. (c) After a
while, the spins will be completely out of phase.

frequency. This leads to a dephasing of the spins, and after a while they will completely can-

cel each other out (Figure 2.3). This is an exponential decay with transverse relaxation rate

R2, and its inverse is the transverse relaxation time T2. However, in addition to this dynamic

spin-spin dephasing, there is an additional static dephasing effect from inhomogeneities in

the external magnetic field ~B0 [8]. This is because different materials get magnetised to a

different extent by an external magnetic field—that is, they have different magnetic suscep-

tibility [11]. The rate of the resulting total dephasing is called R2*, with its inverse denoted as

T2*. Its relation with R2 is given by

R2* = R2 +R ′
2, (2.6)

where R2’ describes the extra dephasing added by the external field inhomogeneities. The

resulting exponential decay of transverse magnetisation is given by

Mx y (t ) = Mx y (t = 0+)e−R2*t . (2.7)

The MR signal is recorded using receiver coils. When the spins have been excited, there will

be a rotating net magnetisation in the transverse plane. According to the laws of electro-

magnetism, this varying magnetic field will induce a current in the receiver coils of the MRI

scanner [8]. This current is the MR signal. The signal that is recorded after an excitation is
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called the free induction decay (FID) signal (Figure 2.4) [1].

Figure 2.4: The FID signal oscillates with the Larmour frequency because the rotating ~Mx y

induces a varying current in the receiver coils, while being damped exponentially by T2*
dephasing.

The fact that the Larmour frequency varies with field strength can be used to locate the spins

[8]. By applying an external magnetic field that varies linearly with z-position, the Larmour

frequency will also vary linearly. A spatially varying magnetic field is called a magnetic field

gradient. The gradients are what enables spatial encoding in MRI. By applying gradients

in different directions, the position of the spins along those directions can be determined.

However, what is actually recorded in MRI, is the Fourier transform (FT) of the object. Hence,

the k-space of the object is sampled. The application of gradients determine which positions

in k-space are being sampled. An illustrated example of this is shown in Section 2.2.1. By in-

verse Fourier transforming the acquired k-space, an image of the object can be obtained, as

shown in Figure 2.5.

To acquire an image, an MR sequence has to be performed [8]. This is a combination of

RF pulses and gradients which makes it possible to record a signal that contains the desired

information. Different combinations create different sequences, and this can be used to

extract a great variety of information from MR images [1]. In the following, MR sequences
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kx

ky

FT−1

FT

(a) (b)

Figure 2.5: The relationship between (a) k-space and (b) a T2-weighted breast MR image.
The MR image can be found by taking the inverse Fourier transform (FT−1) of k-space, while
the k-space can accordingly be derived by taking the Fourier transform of the image.

relevant for this thesis will be introduced.

2.1.2 Spin echo sequence

After the spins have been excited, they will start to dephase, in a combination of static and

dynamic dephasing. However, it is possible to reverse the static dephasing by applying a 180°

pulse (Figure 2.6). The rephasing following the 180° pulse is called a spin echo, and the time

at which this rephasing occurs is called the echo time (TE) [9]. This principle is used to create

a spin echo sequence. It is a simple, but fundamental sequence in MRI, which other more

complex sequences can be based on [2].

A spin echo (SE) sequence starts with a 90° pulse to excite the spins (Figure 2.7) [8, 9]. How-

ever, it is desirable to only excite one slice at a time. Therefore, a slice selection gradient (Gz)

is applied so that the Larmour frequency varies with z-position. Only spins with Larmour fre-

quency close to the frequency of the RF pulse will be excited. Then, a short phase encoding

gradient blip (Gy) is applied to move to the desired y-position in k-space, and a frequency en-

coding gradient (Gx) to move to the desired x-position in k-space. The spins will completely

dephase, and a 180° pulse is applied to rephase them again. Gx, also called the read-out gra-

dient, is applied again and a spin echo occurs at t = TE. It is called the read-out gradient

because signal acquisition is performed while it is on. One line in k-space is sampled during
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180° pulse

Figure 2.6: Illustration of spin echo, shown in a frame of reference rotating with the Larmour
frequency. (a) Immediately after excitation (t = 0+), all spins are in the same phase. (b)
The spins will start to dephase because they precess at slightly different frequencies. (c) By
applying a 180° pulse, the spins are rotated through 180°, and will start to rephase again. (d)
At t = TE, a spin echo occurs and all the spins are in the same phase again.

this application of Gx. To sample more lines, the whole sequence is repeated several times. It

is also possible to apply more than one 180° pulse after the same 90° pulse to achieve several

spin echoes. The time between successive 90° pulses is called the repetition time (TR). Note

that this approach where the slice selection gradient is used is called two-dimensional (2D)

imaging. Three-dimensional (3D) imaging is obtained by omitting the slice select gradient

and blipping Gz in the same way as Gy, so that phase encoding is achieved in both y- and

z-direction [8].

2.1.3 Diffusion-weighted MRI

Diffusion is the random movement of molecules in a medium [2]. In the body, diffusion of

water molecules can be restricted in one or more directions, depending of the structure of

the tissue [1]. Diffusion-weighted imaging (DWI) can therefore give information about tissue

structure and function. It has a number of uses, and can for example be used to characterise

breast and prostate tumours [12, 13].

One way to obtain diffusion-weighting is by adding a pair of diffusion-sensitising gradients

(Gdiffusion) to a spin echo sequence (or to the SE-EPI sequence described in Section 2.2.1), see

Figure 2.8 [2]. The first diffusion gradient, which is placed before the 180° pulse, will produce

a position-dependent phase shift of the spins. The second diffusion gradient, which is placed

after the 180° pulse, will produce a corresponding position-dependent negative phase shift,

which reverses the phase shift produced by the first gradient. This means that for station-

ary spins, there will be no net phase shift after the two diffusion gradients. However, during
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RF pulse

Gz

Gy

Gx

Signal

90° 180°

Time

Time

Time

Time

Time

TE
2

TE

Figure 2.7: Schematic illustration of a spin echo pulse sequence. A 90° pulse is applied si-
multaneously as the slice select gradient (Gz), followed by a phase encoding blip (Gy) and
a preparatory frequency encoding gradient (Gx) to move to the desired position in k-space.
The spins are dephased, and then a 180° pulse is applied at t = TE

2 . Gx is applied again, and a
spin echo occurs at t = TE. The blue dashed curve indicates the dynamic (T2) dephasing.

the time between the two gradients, some of the spins will be displaced, depending on the

diffusion of the tissue. Thus, some of the spins will not experience equal gradient strength

from both diffusion gradients, and they will therefore have residual phase after the applica-

tion of the second gradient. The refocusing of the signal will consequently not be perfect.

This means that areas with higher diffusion will give lower signal in the resulting diffusion-

weighted image, because spins that are out of phase will cancel each other out.

The resulting signal S(b) is given by

S(b) = S0e−bD , (2.8)



2.1. MRI IN GENERAL 11
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Time

Time

TimeGdiffusion

Figure 2.8: Schematic illustration of a diffusion-weighted pulse sequence. A 90° pulse is ap-
plied simultaneously as the slice select gradient (Gz), followed by a phase encoding blip (Gy)
and a preparatory frequency encoding gradient (Gx) to move to the desired position in k-
space. The spins are dephased, and the first diffusion gradient (Gdiffusion) is applied. A 180°
pulse is applied, before the second diffusion gradient. Gx is then applied again and a spin
echo occurs, where only the spins that have not diffused between the diffusion gradients will
be completely rephased.

where S0 is the signal in the absence of diffusion, b is the b-value and D is the diffusion co-

efficient of the spin [2]. The b-value controls the degree of diffusion weighting, and depends

on the diffusion gradient strength, for how long the gradients are turned on, and the time be-

tween the diffusion gradients. Often, both images with b = 0 (denoted b0) and images with

b > 0 are acquired, which allows for calculation of the diffusion coefficient by performing

a linear regression of Equation (2.8). Note that D is the diffusion coefficient along the di-

rection the diffusion gradients are applied. Since D can vary between directions, diffusion-

weighting is usually performed for several directions. However, when measuring the diffu-
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sion using DWI, there are many spins in each pixel. Therefore, it is instead the apparent

diffusion coefficient (ADC) that is observed, which is the mean diffusion in a pixel.

2.2 Echo-planar imaging

In echo-planar imaging (EPI), images can be acquired in a very short time. This makes it

well-suited for acquiring functional MR images, where a high temporal resolution is needed

to follow the temporal changes of the spins [1]. It is able to create images at such a speed

because a whole 2D image can be acquired from a single excitation. However, this imposes

strict requirements to the hardware of the MRI scanner. The technique was conceived in

1977 by Peter Mansfield, but because of practical difficulties, images of acceptable quality

were not produced until the second half of the 1980s [14, 15]. Since then, there have been

great improvements in hardware, and EPI has become a widely used imaging sequence and

revolutionised the field of fMRI.

2.2.1 EPI sequence

EPI can be performed in several ways, but here a common spin echo (SE)-EPI sequence will

be described (Figure 2.9). This sequence begins in the same way as the basic SE sequence,

with a 90° excitation pulse and a slice select gradient (Gz) [2, 15]. The preparatory phase

encoding (Gy) and frequency encoding (Gx) gradients are then applied, followed by a 180°

pulse to rephase the spins. The read-out gradient Gx is applied again, and this produces a

gradient-driven rephasing and dephasing of the spins, also called a gradient echo. Then, in-

stead of waiting for the next excitation pulse, the phase encoding gradient is blipped, and

the read-out gradient is applied again in the opposite direction as the previous application.

A new gradient echo is produced, and this procedure is repeated many times. A new line in

k-space is acquired for each gradient echo. The reversals of the read-out gradient and the

blipping of the phase encoding gradient leads to a raster-like sampling of k-space, as shown

in Figure 2.10.

The gradient echoes are formed under the envelope of the spin echo, where the peak am-

plitude of the signal occurs at the echo time of the spin echo, TEse [2]. The time at which

the central line in k-space is acquired is called the effective echo time, TEeff. TEse and TEeff

may or may not occur at the same time, but if they do, the sensitivity to off-resonance effects
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Figure 2.9: Schematic illustration of an SE-EPI sequence. A 90° pulse is applied simulta-
neously as the slice select gradient (Gz), followed by preparatory phase encoding (Gy) and
frequency encoding gradients (Gx) to move to the desired position in k-space. The spins are
dephased, and a 180° pulse is applied. Then, the read-out gradient is oscillated to produce
several gradient echoes, with a phase encoding blip at each gradient reversal. The gradi-
ent echoes are formed under the envelope of the spin echo, which is indicated by the blue
dashed curve. The peak amplitude of the signal occurs at t = TEse.

caused by magnetic field inhomogeneities is substantially reduced.

The number of k-space lines sampled in one excitation is known as the echo train length

(ETL) of the sequence [2]. The time between two adjacent echoes is the echo spacing (ESP).

The ETL is limited by decay of the transverse magnetisation, and also by the ESP. It is possi-

ble to sample all the k-space lines in a single excitation, so that a whole 2D slice is acquired

at once, and this is called single-shot imaging. This is, of course, the fastest way to acquire

images, but the image quality might be compromised. Multi-shot imaging, where k-space is

sampled over several excitations, may improve image quality, but is more sensitive to motion

artefacts because of the longer imaging time.
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kx

ky

Figure 2.10: K-space trajectory of the SE-EPI sequence described. It is sampled in a raster-
like pattern, where the blue dashed lines represent the read-out gradients, and the red
dashed lines represent the phase encoding blips.

The main limitation of EPI is that it is prone to image artefacts. There are several reasons for

this, including rapid gradient switching, the reversal of every second echo, and the long read-

out period causing phase shift accumulation [15]. Common artefacts are ghosting, eddy-

current artefacts, chemical shift artefacts, image distortion, blurring, and signal loss due to

intravoxel dephasing [2]. In this thesis, the focus will be on susceptibility-induced geometric

distortion.

2.2.2 Susceptibility-induced geometric distortion

The pixel bandwidth ∆ν of an MR image can be expressed as the frequency difference from

one pixel to the next [15]. It is given by

∆νx = dkx

d t
∆x (2.9)

in the x-direction, and accordingly in the y-direction. ∆x is the pixel spacing in image space.

The bandwidth therefore depends on how fast k-space is traversed. In EPI, the time between

sampling points in the read-out direction is very short, which gives a high bandwidth in this
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direction because k-space is traversed very fast. However, in the phase encoding direction,

k-space traversal is slower and the time between sampling points is relatively long, because

a whole k-space line is sampled in between them. This gives a quite low bandwidth in the

phase encoding direction, which can give rise to artefacts along this direction.

Different materials have different magnetic susceptibility, meaning that they will become

magnetised to a different extent in the presence of an external magnetic field [11]. This gives

rise to magnetic field inhomogeneities, where spins will precess at slightly different reso-

nance frequencies. Since it is the difference in frequency that enables spatial encoding, spins

with a different frequency than expected will be misplaced in the resulting image [2, 15]. Due

to the low bandwidth in the phase encoding direction in EPI, this effect will be enhanced.

The lower the bandwidth, the larger number of pixels the spins will be misplaced. The effect

will also increase with increasing field strength. This artefact is called susceptibility-induced

geometric distortion, and can be seen in Figure 2.11. The distortion is especially prominent

near boundaries between low and high susceptibility, such as air-tissue or bone-tissue in-

terfaces. It appears as stretching or compression of the imaged object. Note that stretching

will cause the signal intensity to be lower in that region, and compression will cause it to be

higher because a larger number of spins are located in the same pixel.

This artefact is one of the major problems in EPI today. EPI is often used in fMRI, where infor-

mation about function is sought. However, it is desirable to register the functional images to

anatomical images, that is, to align them so that function can be connected to an anatomical

position [17]. Geometric distortion can make this very difficult, and in some cases impossi-

ble. The functional information may also be compromised by the distortion.

Measures can be taken in order to reduce the extent of the geometric distortion. As men-

tioned earlier, a lower magnetic field strength will reduce the distortion, but this will also re-

duce the signal-to-noise ratio (SNR). Another way is to increase the bandwidth by decreasing

the ESP and/or the ETL. However, this can compromise the spatial resolution, even though

other techniques may be used to overcome this [2]. In addition, it also decreases the SNR be-

cause a higher bandwidth allows for more noise [15]. A different approach is to try to reduce

the field inhomogeneities by for example choosing the imaging plane wisely, or by filling up

air cavities (e.g. bowels) with another medium.
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Figure 2.11: Geometric distortion in selected EPI brain slices. In the upper row, the phase
encoding direction is anterior-posterior, and the distortion is therefore seen in this direction.
In the bottom row, the phase encoding direction is left-right, with corresponding distortion
in this direction. Reproduced with permission from [16] (©2000 IEEE).

2.2.3 Distortion correction methods

There exist several post-processing methods to correct geometrically distorted images. In

this section, a variety of methods will be presented briefly, before the correction method

used in this thesis will be presented in more detail.

The most commonly used method, and one of the earliest to be developed, is field map-

based unwarping. A field map shows the magnetic field inhomogeneities, and based on this

the pixels can be relocated [18]. By acquiring a pair of phase maps at two different echo

times, the phase difference between them can be determined. The field inhomogeneity is

found from this phase difference. Then, the pixels can be relocated to their correct place be-

cause the pixel shift depends on the field offset and the bandwidth per pixel. However, the

acquisitions required for producing the field map take considerably longer time than acquir-

ing the EPI images themselves, allowing for subject motion during the scans, which can lead

to large errors in the resulting field map [3]. The field map method also has problems near

tissue boundaries, and in regions with very high field inhomogeneity. In addition, the field
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map can be very noisy in areas with low signal.

Another way to correct geometric distortion is based on the point spread function (PSF).

Since a distorted image is made from a convolution between the true, undistorted image and

a PSF, it is possible to find the undistorted image if the PSF is known [19, 20]. By applying ad-

ditional phase encoding gradients in different directions in an EPI sequence, it is possible to

image the contents within each voxel. Therefore, the PSF of all the points in the image can be

found, and the displacement field of the image can be determined. This method does also

require relatively long scan times, but other techniques may be used to overcome this [3].

Furthermore, it is less sensitive to noise and large field inhomogeneities than the field map

method.

A kind of simplified PSF method using an EPI field map also exists, known as "phase labelling

for additional coordinate encoding" (PLACE) [21]. Here, two EPI acquisitions are performed,

where the preparatory phase encoding gradient of the second scan has a slightly larger area

than in the first scan, so that there is a slight phase shift between the two scans in the phase

encoding direction. This leads to a known phase difference in the y-direction of the two

sampled k-spaces. The phase difference between the distorted images is then directly en-

coded into the y-coordinate of each pixel in undistorted space, and the correct location of

the pixel is found. As it only requires two EPI scans, and the post-processing is not too time-

consuming, this method is quite fast [3].

A method with a different approach is "two reduced acquisitions interleaved" (TRAIL) [22,

23, 24]. Here, two read-outs are performed per excitation, and the data is then interleaved

in image space. This reduces blurring and distortion in the phase encoding direction by a

factor of 2. Additional distortion correction can be performed from measurements of local

phase changes. However, the SNR is reduced by a factor of
p

2.

It is also possible to correct the images by directly co-registering them with anatomical im-

ages [16, 25]. If the geometric distortion is not too comprehensive, nonlinear registration

might be sufficient correction. This has been successfully performed, but it can fail in areas

with heavier, nonlinear distortion, and it does not correct for intensity distortions [26]. It also

depends on the registration algorithm used. However, registration has been suggested to be
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a finer step to improve the distortion correction after another method has been performed

[27].

The most promising methods today are based on reversed gradients [26]. Here, two EPI scans

are performed using the phase encoding gradients in opposite directions [28]. The thought

is that the geometric distortion will also be opposite, and the undistorted image will then be

the midway between these two images [3]. In one of the reversed gradient methods, the un-

warping is done in 1D only, along the phase encoding direction [29]. This method performs

an acceptable correction along this direction, but may show streaking or discontinuities in

the other directions [27].

Andersson et al. further developed this idea into an alternative reversed gradient method,

where the distortion correction is performed in 3D [30]. This is accomplished by computing

a continuous and smooth 3D deformation field using discrete cosine basis functions. Relo-

cation of the pixels is then done using this deformation field. This method is able to perform

relatively good distortion correction, but the computations can be time-consuming. In ad-

dition, the resolution of the distortion field is limited by the highest frequency component

of the discrete cosine transform [3].

2.2.3.1 Method by Holland et al.

The method developed by Holland et al. is similar to the one by Andersson et al. in the use

of a 3D deformation field, but it is more computationally efficient [3]. This method will be

the focus of this thesis. Here, the deformation field is found by setting up a cost function and

minimising it.

The pixel shift u caused by the distortion depends on the field offset∆νB and the bandwidth

per pixel ∆νpp in the phase encoding direction,

u = ∆νB

∆νpp
. (2.10)

Let I denote the undistorted image, I1 the forward phase encoded image, and I2 the reverse

phase encoded image. Pixel i placed at (xi , yi , zi ) in I will then be placed at (xi , yi +ui , zi ) in
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I1, and at (xi , yi −ui , zi ) in I2 [3]. The Jacobian J of this transformation is given by

J = 1+ ∂u(y)

∂y
, (2.11)

so that

I (xi , yi , zi ) = J1i I1(xi , yi +ui , zi ) = J2i I2(xi , yi −ui , zi ). (2.12)

Here, J1i and J2i are the Jacobian of the i th pixel (i = 1,2, ..., N ) in the forward and reverse

phase encoded image, respectively. They can be calculated discretely as

J1i = 1+ uip −uim

2
(2.13)

and

J2i = 1− uip −uim

2
, (2.14)

where ip is the neighbouring pixel on the +ŷ side of i , and im on the −ŷ side. From this, a

suitable cost function is

f (u1, ...,uN ) = 1

N

N∑
i=1

[
J1i I1(xi , yi +ui , zi )− J2i I2(xi , yi −ui , zi )

]2 +λ1

N∑
i=1

u2
i +λ2

N∑
i=1

[
~∇i ui

]2
.

(2.15)

The first term of this function vanishes by design when the two distorted images are cor-

rectly unwarped into identical undistorted images. λ1 and λ2 are regularisation parameters

that control the quality of the unwarping. The two last penalty terms constrain the ampli-

tude of the displacements, and control the smoothness of the deformation field, respectively.

The cost function must then be minimised in an efficient way. It is important to make sure

that it is indeed a global minimum, and to not get trapped in any local minima. This is

obtained by smoothing the forward and reverse phase encoded images, for example by con-

volution with an isotropic Gaussian kernel, so that they become more similar [3]. It is then

easier to find the global minimum, and this is done iteratively using decreasing levels of

smoothing, all the way to the original unsmoothened images. The distortion field ~u is first

initialised to zeros. The minimisation is performed using the equation

H(~u) ·~v =−~g (~u), (2.16)
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where H(~u) is the Hessian of f at ~u, and ~g (~u) is the gradient of f at ~u. ~v = (v1, ..., vN ) is the

displacement of~u that moves f to the new global minimum~u+~v at the next level of smooth-

ing. Several methods can be used to find~v , such as conjugate gradients squared, generalised

minimal residuals, or biconjugate gradients stabilised method.

To sum up the method, ~u is first initialised to zeros, and the smoothing kernel is set to 3.5-4

mm [3]. Then:

1. The forward and reverse original images are smoothed.

2. H(~u) and ~g (~u) is set up for the current distortion field.

3. ~v is found by solving Equation (2.16).

4. The new distortion field ~u is updated to be ~u +~v .

5. The smoothing kernel is decreased by 0.25-0.5 mm.

Step 1-5 is repeated until there is no smoothing. This method is shown to provide supe-

rior accuracy relative to the field map method (see Figure 2.12), and it is also very fast,

since it only requires an additional b0 acquisition in the opposite phase encoding direction.

Diffusion-weighted images can be corrected by applying the distortion field calculated from

the b0 images.
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Figure 2.12: Comparison of distortion correction using the field map method and the
method described by Holland et al. (a) Forward phase encoded image, uncorrected. (b) Re-
verse phase encoded image, uncorrected. (c), (d) Forward and reverse images, respectively,
corrected using the field map method. (e), (f ) Forward and reverse images, respectively,
corrected using the method by Holland et al. The forward and reverse images look virtu-
ally identical, and the result is superior to the field map-based correction. Reproduced with
permission from [3].
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Chapter 3

Materials and methods

3.1 Making the prototype

In order to integrate distortion correction into the clinical workflow, a tool must be made

that is easily available for the clinicians. In the Siemens software syngo.via Frontier (Siemens

Healthcare GmbH, Erlangen, Germany), there is a library of various applications—so-called

prototypes—that can be used for post-processing of medical images. In addition, users

can make their own prototypes using MeVisLab (MeVis Medical Solutions AG, Bremen, Ger-

many; Fraunhofer MEVIS, Bremen, Germany). This software provides a framework for im-

age processing, using modules based on C++ and Python programming. Here, the process of

making a prototype for distortion correction of EPI images will be described.

3.1.1 Requirements

There are certain requirements this prototype needs to fulfil:

• To let the user select forward and reverse phase encoded b0 images, and diffusion-

weighted images.

• To let the user choose certain parameters for the distortion correction.

• To correct geometric distortion in all the images mentioned above.

• To let the user view both the uncorrected and the corrected images.

• The corrected images can be sent back to the syngo.via server.

• It must be easy for the user to navigate through the prototype.

23
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3.1.2 Starting point

To make a prototype for syngo.via Frontier, the MeVisLab add-on packages Frontier Devel-

opment Kit and MR StarterKit (Siemens Healthcare GmbH, Erlangen, Germany) must also

be installed. These contain modules that are necessary for compatibility with the Frontier

environment. MR StarterKit also provides a demo prototype which can be used as a basis to

develop own prototypes suitable for MR images, and this was used as a starting point for the

distortion correction prototype. This demo prototype had some simple functionality where

the user could select an image to be rendered, in addition to a basic image processing ex-

ample. There was also a menu with some example buttons. A demo prototype can be made

using the "Create Modules" wizard that comes with the MR StarterKit. Note that a Frontier

license is needed to exploit all the functionalities of MeVisLab and the Frontier add-on pack-

ages, and to build the prototype installer.

When building the distortion correction prototype in MeVisLab, it is represented by the mod-

ule EPIdistortionCorrection (Figure 3.1), with all the implementation hidden as internal net-

works (Figure 3.2) and scripts. The modules represent a task or some functionality, for ex-

ample a step in the image processing or how the layout in the prototype should be. They

can either be built from internal networks containing other modules, or only from scripts,

or from a combination of both. Normally, the module is an object that is defined by a C++

script, while its functions are implemented using Python scripts. The scripts belonging to a

module can be found by right-clicking on a module and choosing "Related Files". A set of

scripts is generated automatically when creating the demo prototype using the wizard, and

most of these can be tailored, but own scripts can also be created later.

Figure 3.1: The module EPIdistortionCorrection.

The modules have different colours depending on their type. Blue modules perform some

kind of image processing, green modules modify the layout and control how the images
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Figure 3.2: Overview of the internal network of the EPIdistortionCorrection module. This
particular network is not intended to be tailored and its details are therefore not described
here. The core module of the prototype, EPIdistortionCorrectionCore, is indicated with a red
arrow. This module will be modified to achieve the desired functionalities.

are rendered in the prototype, and the brown modules are combinations of the other types.

MeVisLab and the add-on packages come with a library of modules, but own modules can

also be made. Modules can be named with instance names to keep track of what they are

used for, and then the instance name is shown in the upper line on the module, and the

module name is shown in the bottom line. The modules also have panels with choices and

parameters that are shown when the modules are double-clicked.

The modules can have zero, one or several input and output fields. In/out fields that look

like triangles represent images, squares represent pointers to data structures, and half-circles

represent some kind of layout design or image rendering. Coloured lines connect the in/out

fields of different modules together. In addition, there are parameter connections repre-

sented by thin dark grey lines with an arrow between modules, and these pass on internal

parameter values from one module to another.

In the following, the process of modifying the demo prototype—in order to meet the require-

ments from Section 3.1.1—will be described. Relevant scripts are included in Appendix A.
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3.1.3 Loading several images into the prototype

The demo prototype only comes with the possibility to load one image series. Since it might

be necessary to load images from different series to perform the distortion correction, this

feature must be modified in the internal network of EPIdistortionCorrectionCore (Figure

3.3). In the demo prototype there was only one MRPatientBrowserRoles module, so two

more were added to the network (Figure 3.4). The scripts EPIdistortionCorrection.py (A.1)

and EPIdistortionCorrectionPatientBrowserPanel.py (A.2) were also modified in order to let

the user first choose the forward phase encoded b0 image (MRPatientBrowser), then the re-

verse phase encoded b0 image (MRPatientBrowser2), and then all the diffusion-weighted

images (MRPatientBrowser3). Since some of the image volumes might be represented as a

2D mosaic image, DeMosaic modules were added to convert them into 3D images. Mosaics

are 2D image grids that are made up from all the slices of a 3D volume. Switch modules were

added to allow the user to select whether the images initially were mosaics.

3.1.4 Image processing

After the images have been loaded into the prototype, they are sent into the EPIdistortion-

CorrectionProcessing_Custom module (Figure 3.5). If the user has selected more than one

forward or reverse phase encoded b0 image, they are averaged by a custom-made module

(MeanOfPhases) before the main processing is performed. This is because the calculation of

the distortion field can only take in one forward and one reverse phase encoded image, but

the user might want to take the average of several images to increase the SNR.

3.1.4.1 Distortion correction

The distortion correction is performed using the command-line tool CMTK (Computational

Morphometry Toolkit; Neuroimaging Informatics Tools and Resources Clearinghouse, Menlo

Park, CA, United States, www.nitrc.org) [31, 32]. Its distortion correction function, called

epiunwarp, is based on the method by Holland et al. described in Section 2.2.3.1. This func-

tion corrects the forward and reverse b0 images and calculates the distortion field, which

in turn can be used to correct diffusion-weighted images. The functions reformatx and

imagemath are used to correct these. Note that for these functions to work properly in Win-

dows, the Cygwin version of CMTK should be installed. Cygwin, which provides a Unix-like

command line environment, must also be installed. To make this run smoothly when inte-

www.nitrc.org
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Figure 3.4: There are three MRPatientBrowserRoles modules so that the user can select first
the forward and then the reverse phase encoded b0 images, and then all the diffusion-
weighted images. DeMosaic modules resolve 2D mosaic images into 3D volumes, and the
Switch modules allow the user to choose whether the images initially are mosaics. After the
images have been loaded into the prototype, they are sent into the main processing module,
EPIdistortionCorrectionProcessing_Custom.

grating CMTK into MeVisLab, the Cygwin binaries should be placed in the same folder as the

CMTK binaries.

The CMTK tools are the ones already in use for distortion correction at NTNU, but here they

will be implemented more user-friendly for users who are not accustomed with this type of

command-line tools. The method will also be easier integrated into clinical workflow, since

the images do not need to be anonymised, downloaded, and transported to a dedicated re-

search computer before processing in syngo.via Frontier.

The external executables are integrated into the MeVisLab network by means of the Exter-

nalExecutableWrapper module, which comes with the MR StarterKit package (Figure 3.6).

First, the distortion field is calculated from the forward and reverse phase encoded b0 im-

ages, and these are corrected, using the epiunwarp function. The default optimisation pa-

rameters of the epiunwarp function were used. Then, reformatx and imagemath use this
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Figure 3.5: Overview of the internal network of the EPIdistortionCorrectionProcess-
ing_Custom module. Important parts of the network will be shown in more detail later.
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distortion field to correct the diffusion-weighted images. However, these functions can only

handle 3D images, whereas the DW images are stored in a 4D volume. This is solved by using

the SubImage module to select 3D volumes one by one, which are passed on to reformatx

and imagemath. This process is iterated until all the diffusion-weighted images are cor-

rected. To obtain this, a FieldListener is created that starts imagemath when reformatx is

finished, and another FieldListener is created that starts reformatx when imagemath is fin-

ished if there are still more images to be corrected (A.3, A.4). Also, the index of the 3D image

selected by SubImage is incremented when imagemath has finished. The corrected 3D im-

ages are composed into a 4D volume again later.

Figure 3.6: Distortion correction using the ExternalExecutableWrapper module. The String-
Field modules on the left are used to pass on arguments to the epiunwarp function.
epiunwarp is executed first, and then the calculated distortion field is used to correct the
diffusion-weighted images using reformatx and imagemath. Since these functions only ap-
ply to 3D volumes, 3D images are first selected from the 4D diffusion-weighted series using
the SubImage module. reformatx and imagemath are then iterated for each 3D volume in
the DW image series. The corrected 3D images are composed into a 4D volume again later.

After distortion correction, the images are in the NIfTI format. Since they are going to be

stored in the DICOM format, the data type must be converted from float to 16-bit unsigned

integer. However, the distortion correction may have given some of the pixels a negative

value, and these will then be converted into large, positive integers. This problem was solved

by setting all negative pixels to zero before changing the data type. To obtain this the pixel
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values were first rounded, and then the image and the absolute value of the image were

added together, before the resulting image was divided by two. It was discovered that the

module Arithmetic had some problems with adding the images correctly when negative pix-

els were involved, so an Arithmetic2 module was used to add the images together. The float

image was then converted to 16-bit unsigned integer using the ImagePropertyConvert mod-

ule. At last, all of the corrected 3D diffusion-weighted images were composed into a single

4D volume again using the ImageComposer module.

3.1.5 Image rendering layout

Back in the internal network of EPIdistortionCorrectionCore (Figure 3.3), the image render-

ing layout of the prototype can be tailored. The SyngoViaViewersMRExtensionsMPR and

the SyngoViaViewersMR modules control this (Figure 3.7). In the demo prototype, the user

can select whether the colour bar should be visible only for the unprocessed image, but not

for the processed image. The same goes for choosing the type of colour map. This is be-

cause only the aforementioned modules for the unprocessed image are connected to Syn-

goViaViewersMRCornerMenus and AddCornerMenu modules. To get this functionality also

for the processed image, these modules have to be replicated and connected in the same

way to the image rendering modules for the processed image.

It is also desirable to have the same look-up tables (LUTs) for both the unprocessed and the

processed images, so all fields in ViewerExtensions1 controlling LUT values are passed on

with connectors to ViewerExtensions2. The LUT determines the screen intensity of a given

pixel value, so that using different LUTs can give different contrast in the image. In addition,

Switch modules are added before these so that the user can choose whether the forward or

reverse phase encoded b0 images should be rendered, or the diffusion-weighed images. The

different layout types of the prototype can be changed in EPIdistortionCorrectionCoreLay-

outs_Custom.py (A.5). The default layout is set to "Single Screen 2x3", with 2x3 images where

the top three images show transverse, sagittal and coronal view of the unprocessed image,

and the bottom three images show the same for the processed image.
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3.1.6 Saving images

The SaveFiles group in the internal network of EPIdistortionCorrectionCore is used to save

the corrected images (Figure 3.8). It contains DicomUIDGenerator modules to create new

unique identifiers (UIDs) for the headers of the new DICOM files, a StringUtils module to

pass on the directory name where the images should be stored, and two custom-built Export

modules to save the images. Export2 is used to save the corrected reverse phase encoded

b0 image, whereas Export3 is used to save all the corrected forward phase encoded images

(both b0 and DW).

Figure 3.8: The group SaveFiles is used to save the corrected images. Export2 is used to save
the reverse phase encoded b0 image, while Export3 is used to save all the corrected forward
phase encoded images (both b0 and diffusion-weighted).

The internal network of the Export modules is shown in Figure 3.9. However, in the Export

module that saves the reverse phase encoded image, there is in addition a distortion correc-

tion step that is applied if there are more than one reverse phase encoded image, because
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these were not corrected inside EPIdistortionCorrectionProcessing_Custom. These images

are then corrected using SubImage, reformatx and imagemath in the exact same manner as

before. This is necessary for the DICOM header tags from the uncorrected image to be pre-

served, because in MeVisLab the frame-specific tags cannot be restored if the image matrix

size is not the same as in the original image. Therefore, the corrected reverse and forward

(including diffusion-weighted) phase encoded images series must be saved with the same

dimensions as the uncorrected image series. Because of this, it is important that the user

selects all the images in the series when choosing the images to be distortion corrected in

the prototype.

If the images initially were mosaics, they are composed back into a mosaic image using the

custom-made MakeMosaic module (Figure 3.10). The itkFlipImageFilter is used to flip the z-

axis of the image, because the DeMosaic module initially flipped it. SubImage is then used to

select one 2D frame from the image volume, and ImageComposer then places the frame on

a certain position on the image grid. The whole process is controlled by the functions make-

MosaicFwd and makeMosaicRev in EPIdistortionCorrectionCoreProcessing_Custom.py (A.6).

When the image dimensions of the corrected image match those of the original image, the

DICOM header of the original image is passed on to the corrected image. This is done using

an Arithmetic module with the expression 0∗ a +b, where a is the original image and b is

the corrected image (Figure 3.9). This works because it is always the DICOM header from

image a that is passed on from the Arithmetic module. Then, a MinMaxScan module is used

to set the correct minimum and maximum values of the image, before some of the DICOM

tags are modified using a DicomTagModify module. Here, the postfix "/DICO" is added to

the ImageType tag of the image, a new seriesInstanceUID is given, and the postfix "_Distor-

tionCorrected" is added to the SeriesDescription.

When the image dimensions and the DICOM header of the corrected image are correct, the

image can be exported back to the syngo.via server using the AnnotatedDicomExport mod-

ule, which comes with the MR StarterKit. Also, for testing of the prototype, it is desirable to

be able to save the images locally. This is performed using the DicomTool module. Note that

for the frame-specific DICOM tags to be preserved, the box "Restore frame specific" in the

module’s panel must be checked.
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Figure 3.9: The internal network of an Export module. Note that in the Export module that
saves the reverse phase encoded image, there is in addition a distortion correction step that
is applied if there are more than one reverse phase encoded image. If the image initially was
a mosaic, it is composed back into a mosaic image with the MakeMosaic module. DICOM
header tags are then modified, before the image is saved.
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Figure 3.10: The internal network of the MakeMosaic module. The z-axis of the images is
flipped by the itkFlipImageFilter module, a frame is then selected by SubImage, which is
placed on the image grid by ImageComposer.

3.1.7 User interface

Designing the user interface is an important step in order to make the prototype easy to

use. First, the user has to choose the forward and reverse phase encoded b0 images, and the

diffusion-weighted images. To guide the user, pop-up windows were created to tell the user

which images to choose and when. This was implemented in EPIdistortionCorrection.py

(A.1). Note that screenshots of the user interfaces described here will be shown in Section

4.1.

After choosing the images, the user enters the main window of the prototype. Here, the un-

corrected and the corrected images will be shown, and there is a sidebar menu on the left

side of the screen. This feature originated from the demo prototype, but the contents of

the menu were modified using EPIdistortionCorrectionCoreControlArea_Custom.py (A.7).

Functions that are called when pressing various buttons are defined in EPIdistortionCorrec-

tionCoreProcessing_Custom.py (A.6).
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The upper tab of the sidebar menu contains information about the prototype, and how to

perform the distortion correction. In the second and third tabs, the user can select which

unprocessed and processed images should be rendered (forward or reverse b0, or diffusion-

weighted) in the top and bottom part of the screen, respectively. Then, the tabs containing

the distortion correction steps follow, and these are:

1. Parameter selection: The user selects whether the images are mosaics, and whether the

reverse phase encoded image is flipped relative to the forward phase encoded image.

The phase encoding direction of the images must also be chosen.

2. Calculate distortion correction: Clicking the button in this tab initiates the epiunwarp

function in EPIdistortionCorrectionProcessing_Custom, which corrects the forward

and reverse phase encoded b0 images. When epiunwarp is running, a "knight rider"—

a bar of alternating brightness—appears above the information tab to show the user

that the prototype is working on the distortion correction.

3. Correct images: Clicking the button in this tab initiates the loop with SubImage, reformatx

and imagemath in EPIdistortionCorrectionProcessing_Custom, that corrects all the

forward phase encoded (including diffusion-weighted) images. The number of im-

ages currently corrected is shown to the user to show the progression of the distortion

correction. If there are more than one reverse phase encoded b0 image, the correc-

tion of these (in the Export2 module) automatically starts after the correction of all the

forward phase encoded images has finished.

4. Save results: Here, the user can export the corrected images back to the syngo.via

server.

In addition, a tab was made with the option to save the images locally. However, this step

was only used in the testing of the prototype, and does not appear in the finished prototype.

There are also some buttons in the bottom of the sidebar menu, but these originate from the

demo prototype. The only modification here was that a "Send Results" button was removed,

since this option was put into step 4.
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3.1.8 Making an installer

For the prototype to be used in syngo.via Frontier, an installer must be made. This can be

done using the "Create Installer" wizard that comes with the MR StarterKit. Note that some

additional external tools might need to be installed to make the prototype installer. This can

be checked using the wizard. The prototype can then be installed on any computer with

syngo.via Frontier.

3.2 Testing the prototype

The Frontier Development Kit package comes with a module called FrontierHost, which can

be used to test the prototype in MeVisLab (Figure 3.11). Running the prototype locally in

FrontierHost gives basically the same functionality as running it in syngo.via Frontier, except

from saving the images to the syngo.via server. FrontierHost was therefore used for testing

and debugging during development of the prototype.

Figure 3.11: The window of the FrontierHost module. Here, the prototype can be tested
locally in MeVisLab without installing it in syngo.via Frontier. The name of the prototype
and the directory of the input images can be chosen on the left side of the window, while the
prototype interface will be shown on the right side of the window.
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3.2.1 Correcting images

The performance of the distortion correction was tested on breast and prostate diffusion-

weighted images. Sagittal EPI breast images from 13 patients, and coronal and transverse

EPI prostate images from 16 patients were distortion corrected. All images were acquired at

3T (details are shown in Table 3.1). The breast patients had three forward phase encoded b0

images, one reverse phase encoded b0 image, and 60 diffusion-weighted images (30 images

with b = 200, 30 images with b = 700). Phase encoding direction was anterior-posterior. These

had varying degrees of motion between image volumes, and were therefore motion corrected

before distortion correction using the CMTK functions registrationx and reformatx. The

prostate patients had one forward phase encoded b0 image, one reverse phase encoded b0

image, and three trace-weighted DW images (b = 50, b = 400 and b = 800), for both coronal

and transverse images. Phase encoding direction was right-left. There was no discernible

motion between these images.

All images were distortion corrected running the prototype in FrontierHost, and the cor-

rected images were stored locally. The number of failed corrections was determined by vi-

sual examination of the images. A correction was defined as failed if the corrected image

was unchanged from, or even worse than the uncorrected image. The robustness was then

determined, defined as the percentage non-failed corrections. The quality of the corrected

images was also assessed visually. The quality of the correction was defined as successful

if the resulting image was the midway between the forward and reverse phase encoded im-

ages, and the shapes of the anatomy looked apparently natural. To compare the similarity

between the forward and reverse b0 images before and after correction, the mean squared

difference (MSD) between them was calculated. CMTK’s similarity function was used for

this. The MSD looks directly at the intensity difference between pixels of the two images,

and is therefore suitable to compare images with the same type of contrast. A paired, two-

sided Wilcoxon signed-rank test was performed on the MSD values before and after correc-

tion, and results with p-value < 0.05 were defined as statistically significant [33]. This test

was chosen because with the relatively small cohort of this project, the values cannot be ex-

pected to be normally distributed. The MATLAB function signrank was used to perform the

signed-rank test (R2017b, The MathWorks, Inc., Natick, Massachusetts, United States). In

addition, the time it took to go through all the distortion correction steps of the prototype

was noted.
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3.2.1.1 Co-registration

Co-registration was also used in order to determine the quality of corrections. This was per-

formed by building a network containing the CMTK functions registrationx and reformatx

(Figure 3.12). First, an uncorrected forward phase encoded b0 image is co-registered with a

T2-weighted image, and then a corrected b0 image is co-registered with the same T2-weighted

image. T2-weighted images were used for the co-registration because they are anatomical

images, and they are therefore the gold standard when investigating whether the corrected

EPI images are anatomically correct.

Both the breast and prostate images were co-registered to T2-weighted images using nor-

malised mutual information (NMI), which quantifies the amount of information obtained

about an image when looking at the other image, as the registration metric [34]. Using nor-

malised cross-correlation (NCC) as the metric, where the pixel-wise cross-correlation of the

images is maximised, was also initially tried but did not give a successful co-registration [35].

While NCC assumes a linear relationship between the pixel intensities of the two images,

NMI also looks at the pixel intensities but allows them to have different ratios between the

images (e.g., bright areas in one image can be dark in the other image). Therefore, NMI is

more suitable when co-registering images with different types of contrast. For the prostate

patients, co-registration using NMI was also performed for cropped images with only the

prostate area in the field of view (FOV), to see whether the edges of the images had any ef-

fect on the results. In addition, for 11 of the breast patients, fat-suppressed T2-weighted

images had been acquired. The contrast of these is more similar to the b0 images, so they

were also co-registered with these. Here, NCC was used as the registration metric because

it gave a better co-registration than using NMI. For all co-registered images, NMI, NCC and

MSD were calculated using CMTK’s similarity function in order to quantify the similarity

between the b0 and the T2-weighted images before and after correction. The signed-rank

test was also performed for these values. These metrics were used for comparison between

uncorrected and corrected images, to try to determine the quality of corrections.

3.2.2 User-friendliness

The prototype was installed on a computer with syngo.via Frontier, and tested to make sure

that it worked as intended there.
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Figure 3.12: The network built for performing co-registration. Uncorrected and corrected
forward phase encoded b0 images, in addition to a T2-weighted image, are loaded by
the DirectDicomImport modules. Co-registration is performed by the CMTK functions
registrationx and reformatx, integrated into the network by means of ExternalExe-
cutableWrapper modules.

To evaluate the user-friendliness of the prototype, it was tested by a radiographer and a med-

ical physicist not involved in the project. However, problems occurred when trying to install

an updated version of the prototype in syngo.via Frontier, so the testing had to be performed

in FrontierHost in MeVisLab. The test subjects tried to correct transverse diffusion-weighted

images from a prostate patient, and evaluated the prototype by filling out the feedback form

attached in Appendix B.



Chapter 4

Results

4.1 The prototype

The browser where the user can select the images to be corrected is shown in Figure 4.1. The

image series can be selected in the top of the screen, and images in the series can be selected

in the bottom of the screen. Information to the user about which images to select when are

given in pop-up windows (Figure 4.2). When all images are selected, the user enters the main

window of the prototype, shown in Figure 4.3. Here, the uncorrected image is shown in the

top row, and the corrected image will be shown in the bottom row. On the left of the screen

there is a menu for performing the distortion correction. The tabs of the menu, described in

Section 3.1.7, are shown in Figure 4.4.

To correct the images, the user should first read the information tab, before moving on to

the parameter selection and make sure that the correct parameters are specified. Then,

the distortion correction calculation is performed by pressing the button in the "Calculate

distortion correction" tab. When this has finished and the corrected forward/reverse im-

ages appear in the bottom row of the screen, the user can move on to correct the diffusion-

weighted images by clicking the button in the next tab. Which images to be rendered on

the screen (forward or reverse b0, or diffusion-weighted) can be chosen in the "Choose im-

age in top/bottom panel" tabs. At last, when all images are corrected, the user can save the

resulting images in the "Save results" tab.

43
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(a)

(b)

(c)

Figure 4.2: Pop-up windows shown to the user before selecting images for the prototype.
Information is given about how and when to select (a) forward phase encoded b0 images,
(b) reverse phase encoded b0 images, and (c) diffusion-weighted images.
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(a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

Figure 4.4: Tabs of the sidebar menu. (a) Information to the user about how to perform the
distortion correction. (b), (c) Let the user select which uncorrected and corrected image to
be rendered in the top and bottom row of the screen, respectively. (d) Parameters that the
user can select for the distortion correction. (e) The user can calculate the distortion cor-
rection from the forward and reverse phase encoded b0 images. (f ) The user can correct the
other images. (g) The user can send the results back to the syngo.via server. (h) Additional
step for saving the corrected images locally when testing the prototype (this step is not in-
cluded in the final, installed version of the prototype).
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4.2 Testing the prototype

When testing the finished prototype in FrontierHost, it worked as intended and it was able

to perform the distortion correction and save the corrected images locally.

4.2.1 Correcting images

For all three image types, none of the distortion corrections failed. This gives a robustness

of 100%. By visual assessment of the images, the quality of correction was found to be suc-

cessful for 12 of 13 breast patients. For the last breast patient, the corrected images appeared

to be the midway between the forward and reverse phase encoded images, but there was

too much noise in the images to determine whether the result was anatomically correct. For

both the coronal and transverse prostate images, the quality of correction was found to be

successful for all patients. Examples of uncorrected and corrected forward and reverse phase

encoded b0 images from breast, prostate (coronal) and prostate (transverse) can be seen in

Figures 4.5, 4.6 and 4.7, respectively. All images are from a central slice showing the breast or

prostate. The mean relative change in MSD between forward and reverse phase encoded b0

images from before to after distortion correction for the three image types, with p-values, is

shown in Table 4.1, and a box plot showing the corresponding distribution of relative change

in MSD for all patients can be seen in Figure 4.8.

For the breast images, the calculation of the distortion correction took approximately 4 to

7 minutes. The correction of all the diffusion-weighted images took approximately 5 to 10

minutes, and the time from opening the prototype to have finished saving all the images

took approximately 15 to 20 minutes. For the coronal prostate images, these times were 3-4

minutes, 30-40 seconds and 6-7 minutes. For the transverse prostate images, they were 2-3

minutes, 20-30 seconds and 4-5 minutes. Note that these numbers are very approximate and

are only meant to give the order of magnitude.
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(a) (b)

(c) (d)

(e) (f )

Figure 4.5: Uncorrected and corrected forward and reverse phase encoded b0 images from
a breast patient, sagittal view. (a), (b) Uncorrected and corrected forward phase encoded
b0 image, respectively. Phase encoding direction is anterior-posterior (which is left-right
when looking at the images), and distortions can therefore be seen along this direction. (c),
(d) Uncorrected and corrected reverse phase encoded b0 image, respectively. The corrected
images are the midway between the two uncorrected images, and the natural shape of the
breast is restored. (e) Overlay of the forward and reverse uncorrected images. The forward
image is coloured red, while the reverse image is coloured green. For closely matched pixel
intensities, the colour will become yellow. (f ) Overlay of the forward and reverse corrected
images. The yellow colour shows that the images match to a large extent. The relative change
in MSD in this case was −86.48%.
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(a) (b)

(c) (d)

(e) (f )

Figure 4.6: Uncorrected and corrected forward and reverse phase encoded b0 images from
a prostate patient, coronal view. (a), (b) Uncorrected and corrected forward phase encoded
b0 image, respectively. Phase encoding direction is right-left, and distortions can therefore
be seen along this direction. The yellow arrow indicates the spine, the blue arrow indicates
the bladder, and the green arrow indicates the prostate. (c), (d) Uncorrected and corrected
reverse phase encoded b0 image, respectively. The corrected images are the midway be-
tween the two uncorrected images, and distortions in the prostate area as well as skewness
of the spine have been corrected. (e) Overlay of the forward and reverse uncorrected images.
The forward image is coloured red, while the reverse image is coloured green. For closely
matched pixel intensities, the colour will become yellow. (f ) Overlay of the forward and re-
verse corrected images. The yellow colour shows that the images match to a large extent.
The relative change in MSD in this case was −92.11%.
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(a) (b)

(c) (d)

(e) (f )

Figure 4.7: Uncorrected and corrected forward and reverse phase encoded b0 images from a
prostate patient, transverse view. (a), (b) Uncorrected and corrected forward phase encoded
b0 image, respectively. Phase encoding direction is right-left, and distortions can therefore
be seen along this direction. The green arrow indicates the prostate, and the red arrow in-
dicates the rectum. (c), (d) Uncorrected and corrected reverse phase encoded b0 image,
respectively. Note that these show some ghosting artefacts in the upper part of the images.
The corrected images are the midway between the two uncorrected images, and distortions
in the prostate and rectal area have been corrected. (e) Overlay of the forward and reverse
uncorrected images. The forward image is coloured red, while the reverse image is coloured
green. For closely matched pixel intensities, the colour will become yellow. (f ) Overlay of the
forward and reverse corrected images. The yellow colour shows that the images match to a
large extent. The relative change in MSD in this case was −93.29%.
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Table 4.1: Mean relative change in MSD between forward and reverse phase encoded b0

images from before to after distortion correction for breast and prostate (coronal and trans-
verse) images. All three groups show a significant negative change. A relative change of
−100% would indicate that the resulting forward and reverse images are identical.

Type of image Mean relative change in MSD (%) 95% CI (%) P-value

Breast −86.96 [-89.86, -84.05] 0.0002
Prostate (coronal) −87.69 [-91.05, -84.33] 0.0004
Prostate (transverse) −90.94 [-92.77, -89.12] 0.0004

Figure 4.8: Box plot showing the distribution of relative change in MSD between forward
and reverse phase encoded b0 images from before to after distortion correction, for breast,
prostate (coronal) and prostate (transverse) images. The red line inside the boxes indicates
the median values, while the top and bottom sides of the box indicate the 75th and 25th per-
centile of the distribution, respectively [36]. The whiskers extend from the top and bottom
of the box and reach all values outside the interquartile range. Outliers that are further away
from the box than 1.5 times the interquartile range are not included by the whiskers, but are
shown by a red + sign.

4.2.1.1 Co-registration

All forward b0 images were successfully co-registered to the T2-weighted images. Examples

of breast b0 images co-registered to a conventional T2-weighted image are shown in Figure

4.9, and examples of breast b0 images co-registered to a fat-suppressed T2-weighted image

are shown in Figure 4.10. Examples of coronal and transverse b0 images co-registered to T2-

weighted images, full-size and cropped, respectively, are shown in Figures 4.11, 4.12, 4.13

and 4.14.
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(a) (b)

(c) (d)

(e)

Figure 4.9: Breast (sagittal) b0 images co-registered to a T2-weighted image. (a), (b) Uncor-
rected and corrected co-registered forward b0 image, respectively. Phase encoding direction
is anterior-posterior (which is left-right when looking at the images). (c), (d) Overlay of the
uncorrected and corrected b0 image on the T2-weighted image, respectively. The b0 images
are coloured green, and the T2-weighted image is coloured red. The colour will become yel-
low for closely matched pixel intensities, but this is not achieved here because the contrasts
of the b0 and T2-weighted images are different. However, the overlay of the corrected b0 im-
age on the T2-weighted image is clearly a good match. In this case, the relative changes in
NMI, NCC and MSD were 1.15%, 2.22% and −0.29%, respectively. (e) T2-weighted image.
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(a) (b)

(c) (d)

(e)

Figure 4.10: Breast (sagittal) b0 images co-registered to a fat-suppressed T2-weighted image.
(a), (b) Uncorrected and corrected co-registered forward b0 image, respectively. Phase en-
coding direction is anterior-posterior (which is left-right when looking at the images). (c), (d)
Overlay of the uncorrected and corrected b0 image on the T2-weighted image, respectively.
The b0 images are coloured green, and the T2-weighted image is coloured red. The colour
will become yellow for closely matched pixel intensities. There is more yellow in the cor-
rected overlay than the uncorrected one, and more green colour is visible in the uncorrected
overlay, implying that the corrected image is a better match with the T2-weighted image. In
this case, the relative changes in NMI, NCC and MSD were 0.48%, 7.41% and −14.22%, re-
spectively. (e) Fat-suppressed T2-weighted image, which has a much more similar contrast
to the b0 images than conventional T2-weighted images.
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(a) (b)

(c) (d)

(e)

Figure 4.11: Prostate (coronal) b0 images co-registered to a T2-weighted image. (a), (b) Un-
corrected and corrected co-registered forward b0 image, respectively. Phase encoding di-
rection is right-left. (c), (d) Overlay of the uncorrected and corrected b0 image on the T2-
weighted image, respectively. The b0 images are coloured green, and the T2-weighted image
is coloured red. The colour will become yellow for closely matched pixel intensities. There
is not much yellow in the images because the contrasts of the b0 and T2-weighted images
are so different, but there is a visible increase in the match of the prostate area and below
it. In this case, the relative changes in NMI, NCC and MSD were 0.09%, 13.58% and −0.90%,
respectively. (e) T2-weighted image. The green arrow indicates the prostate.
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(a) (b)

(c) (d)

(e)

Figure 4.12: Prostate (transverse) b0 images co-registered to a T2-weighted image. (a), (b)
Uncorrected and corrected co-registered forward b0 image, respectively. Phase encoding
direction is right-left. (c), (d) Overlay of the uncorrected and corrected b0 image on the T2-
weighted image, respectively. The b0 images are coloured green, and the T2-weighted image
is coloured red. The colour will become yellow for closely matched pixel intensities. There is
not much yellow in the images because the contrasts of the b0 and T2-weighted images are
so different, but there is a little more yellow in the corrected overlay than the uncorrected
one. The skewness in the prostate and rectal area has improved, and it is a better match to
the T2-weighted image in the corrected case. In this case, the relative changes in NMI, NCC
and MSD were 0.26%, 12.00% and −0.32%, respectively. (e) T2-weighted image. The green
arrow indicates the prostate, and the red arrow indicates the rectum.
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(a) (b)

(c) (d)

(e)

Figure 4.13: Cropped prostate (coronal) b0 images co-registered to a T2-weighted image. (a),
(b) Uncorrected and corrected co-registered forward b0 image, respectively. Phase encoding
direction is right-left. (c), (d) Overlay of the uncorrected and corrected b0 image on the T2-
weighted image, respectively. The b0 images are coloured green, and the T2-weighted image
is coloured red. The colour will become yellow for closely matched pixel intensities. There
is not much yellow in the images because the contrasts of the b0 and T2-weighted images
are so different, but the bladder (above the prostate) shows a good match in both cases. The
skewness in the prostate area and below it has improved, and it is a better match to the T2-
weighted image in the corrected case. In this case, the relative changes in NMI, NCC and
MSD were 0.27%, 4.45% and −6.44%, respectively. (e) T2-weighted image. The green arrow
indicates the prostate.
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(a) (b)

(c) (d)

(e)

Figure 4.14: Cropped prostate (transverse) b0 images co-registered to a T2-weighted image.
(a), (b) Uncorrected and corrected co-registered forward b0 image, respectively. Phase en-
coding direction is right-left. (c), (d) Overlay of the uncorrected and corrected b0 image on
the T2-weighted image, respectively. The b0 images are coloured green, and the T2-weighted
image is coloured red. The colour will become yellow for closely matched pixel intensities.
There is not much yellow in the images because the contrasts of the b0 and T2-weighted im-
ages are so different. However, the skewness in the prostate and rectal area, in addition to
their shapes, have improved and they are a better match to the T2-weighted image in the
corrected case. In this case, the relative changes in NMI, NCC and MSD were 0.03%, 7.57%
and −0.58%, respectively. (e) T2-weighted image. The green arrow indicates the prostate,
and the red arrow indicates the rectum.
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The mean relative changes in NMI, NCC and MSD between forward phase encoded b0 and

T2-weighted images from before to after distortion correction, with p-values, are shown in

Tables 4.2, 4.3 and 4.4, respectively. Box plots showing the corresponding distributions of

relative change in NMI, NCC and MSD for all patients can be seen in Figures 4.15, 4.16 and

4.17, respectively.

Table 4.2: Mean relative change in NMI between forward phase encoded b0 and T2-weighted
images from before to after distortion correction for the different types of images. In theory,
a successful correction should give a positive change in NMI. Only the breast group has a
95% CI enclosing only positive numbers, and a significant difference between NMI for un-
corrected and corrected images. Co-reg. = co-registered, fat-supp. = fat-suppressed, rel. =
relative.

Type of image Mean rel. change in NMI (%) 95% CI (%) P-value

Breast 0.42 [0.06, 0.78] 0.048
Breast (co-reg. to fat-supp. T2) 0.36 [-0.07, 0.65] 0.118
Prostate (coronal) 0.01 [-0.08, 0.09] 0.918
Prostate (transverse) 0.06 [-0.02, 0.13] 0.121
Prostate, cropped (coronal) 0.08 [-0.05, 0.22] 0.196
Prostate, cropped (transverse) −0.03 [-0.20, 0.15] 0.836

Table 4.3: Mean relative change in NCC between forward phase encoded b0 and T2-weighted
images from before to after distortion correction for the different types of images. In the-
ory, a successful correction should give a positive change in NCC. Breast (co-registered to
fat-suppressed T2), prostate (coronal) and cropped prostate (coronal) have a 95% CI only
enclosing positive numbers. All groups have a significant difference between NCC for un-
corrected and corrected images. However, for the transverse prostate groups, the relative
change is negative, which is the opposite of what was expected. Co-reg. = co-registered,
fat-supp. = fat-suppressed, rel. = relative.

Type of image Mean rel. change in NCC (%) 95% CI (%) P-value

Breast 4.06 [-0.19, 8.31] 0.033
Breast (co-reg. to fat-supp. T2) 5.31 [3.45, 7.16] 0.001
Prostate (coronal) 8.62 [0.96, 16.28] 0.0004
Prostate (transverse) −8.35 [-33.50, 16.79] 0.044
Prostate, cropped (coronal) 4.66 [0.51, 8.82] 0.011
Prostate, cropped (transverse) −36.24 [-74.75, 2.27] 0.001
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Table 4.4: Mean relative change in MSD between forward phase encoded b0 and T2-weighted
images from before to after distortion correction for the different types of images. In the-
ory, a successful correction should give a negative change in MSD. Breast (co-registered to
fat-suppressed T2), prostate (coronal) and cropped prostate (coronal) have a 95% CI only
enclosing negative numbers. All groups have a significant difference between MSD for un-
corrected and corrected images. However, for the transverse prostate groups, the relative
change is positive, which is the opposite of what was expected. Co-reg. = co-registered, fat-
supp. = fat-suppressed, rel. = relative.

Type of image Mean rel. change in MSD (%) 95% CI (%) P-value

Breast −2.60 [-6.02, 0.82] 0.021
Breast (co-reg. to fat-supp. T2) −9.89 [-15.22, -4.57] 0.010
Prostate (coronal) −1.05 [-1.42, -0.68] 0.0004
Prostate (transverse) 0.98 [0.17, 1.78] 0.026
Prostate, cropped (coronal) −1.90 [-2.82, -0.99] 0.001
Prostate, cropped (transverse) 6.33 [3.00, 9.65] 0.002

Figure 4.15: Box plot showing the distribution of relative change in NMI between forward
phase encoded b0 and T2-weighted images from before to after distortion correction. In
theory, a successful correction should give a positive change in NMI. For all groups there
are both positive and negative values, although there for the two breast groups is a trend
towards positive numbers. Only the breast group has a significant difference between NMI
for uncorrected and corrected images. Cor. = coronal, trans. = transverse.
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Figure 4.16: Box plot showing the distribution of relative change in NCC between forward
phase encoded b0 and T2-weighted images from before to after distortion correction. The y-
axis has been zoomed in to show the boxes more clearly, and extreme outliers are indicated
by arrows and their values. In theory, a successful correction should give a positive change
in NCC. Most groups show a trend towards positive numbers, but for the transverse prostate
groups there is a trend towards negative numbers. All groups have a significant difference
between NCC for uncorrected and corrected images. Cor. = coronal, trans. = transverse.

4.2.2 User-friendliness

The prototype was successfully installed in syngo.via Frontier on the first attempt, and it es-

sentially worked as intended there. However, there were two things that deviated—firstly,

that Frontier seemed to automatically split up the mosaic images before they were sent

into the prototype. This led to the loss of some frame-specific DICOM tag values, includ-

ing the b-values. Secondly, when saving the images after correction, they cannot be saved

under the original patient name. They will instead be saved under the new patient name

"!ResearchOnly_(Original- PatientName)", and this behaviour is set deliberately by Frontier

for security reasons. The distortion correction calculation and the correction of diffusion-

weighted images took approximately half the time compared to that in FrontierHost. How-

ever, as mentioned in Section 3.2.2, there were problems with installing an updated version

of the prototype later.
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Figure 4.17: Box plot showing the distribution of relative change in MSD between forward
phase encoded b0 and T2-weighted images from before to after distortion correction. In the-
ory, a successful correction should give a negative change in MSD. Most groups show a trend
towards negative numbers, but for the transverse prostate groups there is a trend towards
positive numbers. All groups have a significant difference between MSD for uncorrected
and corrected images. Cor. = coronal, trans. = transverse.

The test subjects’ answers on the short answer questions from the feedback form are shown

in Table 4.5. They did not think it took too long time to use the prototype, and they both

pointed out that the use would be faster after the first time they tried it. It also became clear

that to use the prototype as it is now, the user should have some knowledge about the distor-

tion correction method used.

The two things that turned out to be the most challenging were selection of the images—

especially which images to choose when—in the browser, because the user interface of that

was not very intuitive, and understanding how to view the different uncorrected and cor-

rected images (forward and reverse b0 and DW images) in the prototype. It was also sug-

gested to have step 2 and 3, which are the calculation of the distortion correction and the

correction of the DW images, in one single step. Another thing was to have more informa-

tion about the images (e.g. b-values) in the main window of the prototype. In addition, it

could be somewhat unclear what buttons to press in the parameter selection. However, both

test subjects answered that they could have used the prototype in their workflow, because
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Table 4.5: The short answer questions from the feedback form with answers from the test
subjects.

Radiographer Medical physicist

How long time did it take to use the application, from
start to end?

18 minutes 13 minutes

What do you think about the time it took to correct
the images?

Okay Okay

Were you able to correct the images? Yes Yes
How easy was it to understand how to correct them?
(1 = very difficult, 5 = very easy)

3 4

How intuitive was it to understand the user interface
and to navigate in the prototype? (1 = very difficult,
5 = very easy)

3 4

Is this a prototype that you could have used in your
workflow?

Yes Yes

after trying the prototype for the first time it would be relatively easy to use.



64 CHAPTER 4. RESULTS



Chapter 5

Discussion

This chapter will begin with a discussion of the methods used and their strengths and chal-

lenges. The results will further be discussed and interpreted, and related to other research

in the field. At last, implementation of the prototype in clinical workflow will be discussed,

followed by suggestions for future work.

5.1 Methods

5.1.1 Making the prototype

MeVisLab can be challenging for those who have not used the program before. The combi-

nation of modules and scripts may be somewhat confusing, and it can be hard to understand

the relationship between them. When making an MR-related prototype for syngo.via Fron-

tier, it is highly recommended to base it on a demo prototype from the MR StarterKit. This

provides a functioning framework which can further be developed and tailored. An advice

for new developers, to understand how everything is connected, is to try to change small

things in the networks—e.g. the instance name of a module—and see in which scripts error

messages occur. Also, one can change small things in the networks and scripts to see how

the behaviour of the prototype changes in FrontierHost. Once these relations have been

understood, further prototype development will be much easier. Also, it is possible to dis-

cuss problems with fellow MeVisLab developers in the Fraunhofer MEVIS Forum (https:

//forum.mevis.fraunhofer.de).
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5.1.1.1 Image processing

The vital module in this project, in order to implement the distortion correction method by

Holland et al., was the ExternalExecutableWrapper (EEW). This module can, however, be

slightly challenging in the beginning due to the lack of a detailed help documentation. A

crucial point of getting the module to run the external executable, is to ensure that all path

names are correct. The EEW creates the folders algo_input and algo_output, where the input

and output files of the executable are placed, respectively. When specifying paths as argu-

ments for an executable, these should be written on the form "algo_input/FileName". For

these relative paths to work, the "Executable Working Dir" of the "Binary File & Arguments"

tab of the EEW panel should be identical to the "Working Dir" of the "Files & Directories"

tab. It can be wise to create a connector between these two fields to pass on the correct

name from the "Working Dir" to the "Executable Working Dir".

There was also a problem when trying to correct all the diffusion-weighted images consecu-

tively by iterating reformatx and imagemath, because the EEW will only run the executable

after a function has finished, and not inside it. Thus, if trying to start the executable inside

an iterative loop in the function and incrementing the 3D image selected by SubImage in

every loop, all these incrementations would first be performed inside the function, before

all iterations of the executables would be run after this. The result of this is that the same

3D image will be corrected every time the executable is run. Trying to start the next run of

the executable from the post processing script of the previous one did not solve the prob-

lem either, as this solution was very unstable because the post processing script of the EEW

was not run every time. The solution was then to use FieldListeners to initiate the next exe-

cutable, as these are triggered when the previous executable has finished. They will then call

a function where the execution of the next executable is initiated. Before this solution was

found, the user had to click the button one time for each image to be corrected, which is not

very user-friendly if there are many images.

Some pixels in the corrected images ended up with a negative value, and it was decided to set

all of these to zero. This had to be done because DICOM images are stored in the unsigned

16-bit integer format where there can be no negative numbers. The reason why some pixels

become negative is probably that when applying the calculated distortion field, intensity is

being removed from a place where there is little or no intensity from before. There could
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be imperfections in the distortion field, for example due to noise or movement between im-

ages. It was actually noted that before the breast images were motion corrected, the extent

of negative pixels in the diffusion-weighted images was higher than after motion correction.

It was considered reasonable to set the negative pixels to zero because a negative pixel in-

tensity can be interpreted as no intensity. If instead trying to adjust this by shifting the scale

so that the lowest pixel value would be set to zero, the result would be that the image inten-

sities would no longer be comparable to those in non-corrected images. It would also cause

problems when trying to calculate parameters based on the pixel values.

5.1.1.2 DICOM tags

As mentioned in Section 3.1.6, to preserve all frame-specific DICOM tags when saving the

corrected images, the solution was that the user has to select all the images in a series. How-

ever, a workaround solution for this problem was found later, suggested by someone from

Siemens. The MRPatientBrowserRoles module has a field called "phasesChecked", which

contains a string telling which phases in the image series that have been selected. By con-

necting the square output of MRPatientBrowserRoles (see Figure 3.4) to a module called Mul-

tiFileVolumeListImageOutput, it is possible to extract the DICOM headers from the selected

phases. This way, the user could get away with selecting only some of the images in the se-

ries. However, this was discovered very late in the process, so this could not be implemented

in this version of the prototype due to time limitations.

5.1.1.3 User interface and user-friendliness

In the menu of the prototype, it is currently possible to change a few parameters of the dis-

tortion correction. This includes choosing whether the images are mosaics, whether the

reverse image is flipped relative to the forward images, and the phase encoding direction.

For all other parameters, the default values were used. These were the maximum and min-

imum smoothing kernel, number of iterations, folding constraint weight and smoothness

constraint weight (the two last terms of Equation (2.15)), among others. If these other pa-

rameters should be changed, there are two options; to let the users select the values of all

parameters themselves, or to predefine a set of parameters for different image types (e.g.

breast, prostate) and then let the user select which image type is being corrected. The first

option requires the user to have more knowledge about the distortion correction method

and the parameters than the second option. To select the parameters, the user could either
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select from a list of values in a dropdown menu, or there could be fields where the user can

type in the desired values—however, this requires that the user types in a valid value. For

the second option, analyses need to be performed to determine the best set of parameters

for each image type. Also, the possibility of automatic detection of mosaics, flipped reverse

images and phase encoding direction needs to be investigated more closely.

The EPI distortion correction prototype developed here is still an early version, and needs

to be further modified to improve robustness, flexibility and efficiency. To obtain this, the

prototype should be as little "hard-coded" as possible. This has been tried to achieve in

this first version of the prototype, for example in the correction of the diffusion-weighted

images, which adapts to the number of images present. However, there is still room for im-

provements. In addition to the points already discussed, it should also be possible to use

the prototype for distortion correction of other types of EPI images than DWI, and the user

interface should therefore be adapted to fit all types of cases. To make the distortion cor-

rection process more efficient, it should be investigated whether it is possible to run parallel

computations in MeVisLab and Frontier. The existing code must also be examined to see if

it can be made more efficient.

5.1.2 Testing the prototype

5.1.2.1 Correcting images

The default values of the distortion correction parameters were used for all patients. It is pos-

sible that the corrected images would have been better if the parameters had been optimised

individually for each patient, but then the results would not have been comparable between

patients. In addition, adjusting the parameters for each patient might not feasible in clini-

cal practice because it would not be very effective, perhaps unless the distortion correction

obviously fails. Another option could then have been to perform a more extensive analysis

where the best set of parameters for all patients was found, but this would have been too

time-consuming for this project. It was therefore chosen to use the default parameter values

for all patients, and they seemed to work satisfactory, at least for the images investigated in

this project. It should also be noted that changing the value of certain parameters may in-

crease the time it takes to calculate the distortion correction.
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The MSD was chosen for comparison of forward and reverse phase encoded b0 images be-

fore and after correction. It should be well-suited for this since the forward and reverse b0

images have the same type of contrast, giving an MSD of 0 if the images are identical. The L2-

square norm can also be used for this purpose, and it is qualitatively very similar to the MSD

[4]. For comparison between corrected b0 and T2-weighted images, NMI, NCC and MSD

were calculated. These metrics were chosen because they represent slightly different ways

to measure the similarity between two images, and it was desirable to see which of them

performed best. Other similar metrics that have been previously used are Mattes mutual

information, which is qualitatively similar to the NMI but not normalised, and other unnor-

malised forms of the NMI and NCC [37, 4, 26]. Linear correlation coefficient, Jaccard index,

and the translation and rotation parameters from the co-registration have also been reported

used [38, 26, 5]. In addition, it has been suggested to smooth the b0 and T2-weighted images

before calculating the metrics, in order to reduce noise effects [38].

5.1.2.2 User-friendliness

Due to problems when trying to install an updated version of the prototype in syngo.via

Frontier, the user-friendliness testing had to be performed in FrontierHost in MeVisLab.

However, the functionality and layout of the prototype should be the same in FrontierHost

as in syngo.via Frontier, the only difference might be the speed of the calculations, and that

the corrected images cannot be saved to the server when using FrontierHost. The user expe-

rience would therefore be quite similar, so it was not considered to be a large problem to test

the prototype in FrontierHost. The prototype was tested by a radiographer and a medical

physicist, but in the future it should probably also be tested by radiologists.

The reason for the installation problems in syngo.via Frontier was not known, even though

an expert from Siemens also was involved in the troubleshooting. The only difference in the

prototype from the first version, which was installed successfully, was that the values of some

DICOM tags were changed. This problem has to be further investigated and solved at a later

point.
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5.2 Results

5.2.1 The prototype

The user interface and the functionalities of the prototype ended up as planned. The lay-

out styles are to a large extent controlled by code and modules from the demo prototype,

to fit in well with the syngo.via Frontier environment. The interface of the prototype should

be relatively intuitive for the user to understand, but pop-up windows and tabs with infor-

mation were in addition made to make things clearer. This was considered to be especially

important in the browser where the user selects the images, because this is possibly the least

intuitive part of the prototype, and it is important for the distortion correction that the cor-

rect images are selected in the correct order.

5.2.2 Testing the prototype

5.2.2.1 Correcting images

None of the performed distortion corrections failed. By visual assessment, the quality of cor-

rection for 12 of 13 breast patients and all prostate patients was determined to be successful.

The natural anatomy appears to have been restored by the correction. However, in the edges

of the images, "banding effects" can sometimes be seen, such as in the edges on the right

of the images in Figure 4.7b and d. These appear as streaks or "bands" of alternating bright

and dark pixel intensity. These are the result of discontinuities in the distortion field, and

can be reduced by increasing the value of the distortion correction parameter "smoothness

constraint weight", which is the last term in the cost function, Equation (2.15). However,

increasing the smoothness of the distortion field can also lead to a less successful correc-

tion because the absolute values of the displacement could be restrained. This will lead to

a smaller displacement than necessary to correct for the distortion, and the resulting image

will look more and more similar to the uncorrected image for higher values of this parameter.

Furthermore, since the banding effects observed here are not too severe and are only found

in the edges, they do not interfere with the regions of interest—breast and prostate—that are

located near the centre of the images. They are therefore considered as acceptable, and do

not affect the correction quality at this extent.

The corrected forward and reverse phase encoded b0 images look very similar. This is sup-
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ported by the calculated MSD, which decreased significantly by approximately 87-91% after

correction. An MSD decrease of 100% would indicate that the forward and reverse images

are identical. Teruel et al. performed distortion correction on breast images from the same

study as the breast images in this project, and found a mean L2-square norm change of 94%

[4]. As both MSD and L2-square norm measure the intensity difference between pixels in the

images, their result is in almost the same range as here, only slightly better. However, other

distortion correction parameters could have been used, as the parameter values used are not

stated in the paper, only that they were kept fixed for all patients.

Regarding the efficiency of the distortion correction using FrontierHost, approximate times

were noted but the exact time can vary and depends on several factors, such as computer

strength, type of image and degree of geometric distortion. The computer used in this case

was almost 10 years old and had a computer processing unit (CPU) at 3.10 GHz with 4 cores

and 4 threads, and a random access memory (RAM) of 8 GB. Newer computers with better

CPU and RAM would most likely be more efficient. Also, regarding the time it took to run

through the whole prototype, it will probably take longer time to run through it for those

who use it for the first time.

5.2.2.1.1 Co-registration

Co-registration was successfully performed for all patients using NMI as the metric to be

optimised. However, for co-registration of breast b0 images to fat-suppressed T2-weighted

images NCC was the best metric, probably because the contrast of these two image types

is more similar. When comparing co-registered b0 images to the T2-weighted images, the

change in NMI was significantly positive for the breast group. Breast co-registered to fat-

suppressed T2-weighted images also showed a trend towards positive changes, although not

significant. For the prostate images, there were no significant changes in the NMI. All groups

had a significant change in NCC and MSD. However, while most groups showed a positive

change in NCC, the two transverse prostate groups had a negative change. Likewise, most

groups had a negative change in MSD, while the two transverse prostate groups had a posi-

tive change. Nevertheless, both the distortion correction and co-registration look successful

by visual examination, even for the transverse prostate images.

For the breast patients, all three metrics support the visual assessment of the quality of cor-
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rections, while for the prostate patients the results are more inconclusive. This is possibly

because the prostate area is surrounded by much more structures than the breast. The val-

ues of the metrics are based on the whole image volume, while the distortion effects can

be quite local. Therefore, the prostate images were also cropped to only include (approxi-

mately) the prostate area, but this did not considerably affect the change in NMI. However,

for the NCC and MSD, the changes were enhanced for the cropped images relative to the

full-size images. That is, the metrics that already had a positive change became more pos-

itive, while the metrics that already had a negative change became more negative. For the

coronal prostate images, this supports the hypothesis about local distortion effects versus

whole-volume metrics.

For the transverse prostate images, the results are more complicated. There is a significant

change in both NCC and MSD, but it is negative and positive, respectively. Since both NCC

and MSD impose stricter requirements to pixel intensity similarities between the images

than NMI, an intensity mismatch between the b0 and T2-weighted images might cause this

behaviour. A hypothesis could be that for the transverse b0 images, the prostate and rec-

tum appear bright and the area around them is dark, while on the transverse T2-weighted

images the prostate and rectum are quite dark and the area around them is bright (see Fig-

ure 5.1a, b). However, for the coronal images this relationship is opposite, for both b0 and

T2-weighted images the prostate area is brighter than the area around it (see Figure 5.1c, d).

This way, in the uncorrected transverse images, the bright pixels of a distorted prostate in the

b0 image would be a better match to the bright area around the prostate in the T2-weighted

image. Accordingly, the match would be poorer after distortion correction. This would also

explain why the negative change in NCC and the positive change in MSD are enhanced for

the cropped images. Most other structures in the image that could affect the metrics are

eliminated in the cropped images, and the effects of the prostate area are enhanced. How-

ever, even if this hypothesis was correct, this would only be an explanation of the behaviour,

and the results cannot be used to draw any conclusions. Another reason for the inconclusive

results could possibly be the banding effects in the corrected images, but these should not

be severe enough to affect the metrics to that extent. In addition, these effects should be

removed in the cropped images. However, it should also be noted that the co-registration

could actually partially compensate for linear distortion effects, thus decreasing the differ-

ence between the uncorrected and corrected image [5].
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(a) (b)

(c) (d)

Figure 5.1: (a), (b) Examples of corrected b0 and T2-weighted cropped, transverse prostate
images, respectively. In the b0 image the prostate area is brighter than the area around it,
while in the T2-weighted image the prostate area is darker than the area around it. In this
case, the relative changes in NMI, NCC and MSD were −0.70%, −113.88% and 14.65%, re-
spectively. Note that these two images are from the same patient as in Figure 4.12. (c), (d)
Examples of corrected b0 and T2-weighted cropped, coronal prostate images, respectively.
In both images, the prostate area is brighter than the area around it. In this case, the relative
changes in NMI, NCC and MSD were 0.27%, 4.45% and −6.44%, respectively.

Another thing that might have affected the metrics is the fact that after distortion correction

and co-registration, the first and last slices of the image volumes can end up being partially

or completely zero, because pixels have been shifted. This phenomenon was present to a

much greater extent in the co-registered transverse prostate images than the coronal ones.

For the uncorrected co-registered transverse prostate images it was also present, however,

the outer slices were often only partially zero, while for the corrected images the outer slices

were more often completely zero (see Figure 5.2a, b). This might have affected the similarity

metrics, possibly to a large enough extent to make the relative change of NCC negative (and

positive for MSD) for the transverse images. Although the prostate images were in addition
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cropped to try to eliminate edge effects, they were only cropped in the in-plane direction,

and not in the slice direction. When comparing the full-sized transverse prostate images with

the cropped ones, it was found that the outer slices of the cropped images often had a larger

percentage of zero-valued pixels than the full-sized images (see Figure 5.2c, d). This might

explain why the relative change in NCC became even more negative (and more positive for

MSD) for the cropped transverse images, because their larger percentage of zero-valued pix-

els in the image volumes would give a poorer similarity to the T2-weighted images. For the

coronal prostate images, the full-sized images had a larger percentage of zero-valued pixels

after co-registration (however, this was in-plane and not in the outer slices) than the cropped

images, because the FOV of the coronal b0 images was very different from the T2-weighted

images (see Figure 5.2e, f). Accordingly, this might explain why the relative change in NCC

became even more positive (and more negative for MSD) for the cropped coronal images,

because their lower percentage of zero-valued pixels in the image volumes would give a bet-

ter similarity to the T2-weighted images. In the future, the outer slices of the images should

probably also be removed in order to exclude this phenomenon. This could not be tested in

this project due to time limitations.

Teruel et al. calculated Mattes mutual information between the b0 and fat-suppressed T2-

weighted breast images before and after distortion correction [4]. They found that the metric

was higher for all patients after correction, and the difference was significant when pairwise

comparing the metric before and after correction. This is similar to the results in this project,

where breast b0 images co-registered both to conventional T2-weighted images and to fat-

suppressed T2-weighted images showed a trend towards an increase in NMI, although only

significant for the conventional T2-weighted images. Hancu et al. also performed distortion

correction on breast images using the same distortion correction method, and used NCC to

compare the b0 images with fat-suppressed T2-weighted images [39]. They found a signif-

icantly higher NCC for the corrected images than the uncorrected ones, which is the same

as found in this project. No comparable results have been found for the prostate, although

others have used the distortion correction method in their papers to show how prostate and

tumour alignment relative to T2-weighted images qualitatively improves after distortion cor-

rection [5, 40].
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(a) (b)

(c) (d)

(e) (f )

Figure 5.2: (a), (b) Examples of the outer slice of uncorrected and corrected b0 transverse
prostate images, respectively. The uncorrected slice is only partially zero, while the corrected
slice is completely zero. In this case, the relative change in NCC between the uncorrected
and the corrected image was negative, and the relative change in MSD was positive. (c),
(d) Examples of the outer slice of corrected full-sized and cropped b0 transverse prostate
images, respectively. The cropped slice has a larger percentage of zero-valued pixels than
the full-sized slice. Here, the relative change in NCC was more negative in the cropped case
than in the full-size case, and the relative change in MSD was more positive in the cropped
case than in the full-size case. (e), (f ) Examples of a central slice of corrected full-sized and
cropped b0 coronal prostate images, respectively. The full-sized slice has a larger percentage
of zero-valued pixels than the cropped slice. Here, the relative change in NCC was more
positive in the cropped case than in the full-size case, and the relative change in MSD was
more negative in the cropped case than in the full-size case.
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To sum up, for the breast images all three metrics supported the visual assessment of the

corrected images, where images from 12 of 13 patients were successfully corrected. For the

coronal prostate images, NCC and MSD supported the visual assessment, where all images

were successfully corrected. However, for the transverse prostate images, all metrics gave

inconclusive results even though all images were visually assessed to be successfully cor-

rected. Therefore, even though the metrics examined gave good results for some of the

groups, one should be careful of using them to assess the quality of corrections on a gen-

eral basis, at least without considering various factors that could affect them. If they are to

be used, these factors should be ruled out, or new metrics have to be tried. It should also

be considered to always use fat-suppressed T2-weighted images—instead of conventional

T2-weighted images—for co-registration, since these often have a more similar contrast and

may therefore give better values of the similarity metrics. For the breast images investigated

in this project, using fat-suppressed T2-weighted images yielded a larger relative change in

NCC and MSD than using the conventional ones.

5.2.2.2 User-friendliness

After successfully installing the prototype in syngo.via Frontier, it was discovered that Fron-

tier automatically split up mosaic images before they were sent into the prototype, and since

the image volumes then do not have the original dimensions anymore, frame-specific DI-

COM tags will be lost (e.g. b-values). Since it can be useful to know the b-values when

choosing images for the correction, this problem should be solved, but it is not yet known

how deep this behaviour is implemented. It could either be a feature that is deeply rooted in

syngo.via Frontier, or it might be controlled by the network or some code in MeVisLab. This

has to be further investigated.

Also, the corrected images could not be exported to the server under the original patient

name, and this behaviour is set deliberately by Frontier for security reasons. However, a

(somewhat complicated) workaround for this has been suggested in the Fraunhofer MEVIS

Forum. Nevertheless, whether this should be implemented to save the images under the cor-

rect patient name has to be considered carefully, so that it is safe to use in terms of privacy

policies. There must be no risk of overwriting or deleting original image series or other per-

sonal data from the server.
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Since the distortion correction calculations took approximately half the time in syngo.via

Frontier compared to in FrontierHost, the time to use the prototype there would probably

be in the order of 2 to 10 minutes. Depending on what images to be corrected and who is go-

ing to use the prototype, this might be a little too long for use in clinical practice. The time it

takes to perform the calculations depends on the syngo.via server. Therefore, the efficiency

might be improved in the future if the server is upgraded.

The feedback from the test subjects showed that the prototype has potential to be an easy-

to-use tool for distortion correction, but as it is now some training might be needed when

using it for the first time. Also, they did not think it took too long time to use it. However,

the browser for selecting the images to be corrected should be improved. As already men-

tioned in Section 5.1.1.2, the prototype will in the future be changed so that it is possible to

select only some of the images in a series. In addition, after consulting with someone from

Siemens, it became clear that it is possible to select all the images (forward and reverse b0

and DW images) and assign them to the correct roles in only one step instead of three, which

might be easier for the user. This will also be implemented in a future version of the proto-

type. Furthermore, explanations of what images to choose when must be improved.

It must also be made clearer for the user how to select which images should be rendered in

the top and bottom row in the prototype interface. Both test subjects did not immediately

understand how to view the diffusion-weighted images after correcting them. This should

either be explained better in this step (step 3), or the whole layout of how to choose which

images to be rendered should be changed. In addition, the other feedback from the test sub-

jects must also be taken into consideration, and the prototype should be further adapted—

e.g. in terms of terminology used—depending on which professions might use the prototype

in the future.

5.3 Implementation in clinical workflow

For the prototype to be used in clinical workflow, it needs to be efficient enough for it to pay

off to use distortion corrected images, rather than using the uncorrected images. As men-

tioned before, the efficiency of the calculations depends both on the prototype itself and the

syngo.via server, and there is room for improvements. One must also consider which profes-
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sions are going to use the prototype—is it radiologists, radiographers or medical physicists?

The prototype must then accordingly be adapted to fit into their workflow. The most prob-

able application of the prototype is distortion correction of functional images before quan-

tification of various parameters (e.g. ADC), but if it is efficient enough, it might also be used

before visual assessment of heavily distorted images.

Another important question is whether syngo.via Frontier is the optimal platform for this

kind of prototypes. Although it has some limitations, its strengths are that syngo.via is al-

ready installed and in use at St. Olavs hospital, and that images can be taken directly from

the server for in-house processing without having to anonymise the data. Furthermore, the

MeVisLab add-on packages Frontier Development Kit and MR StarterKit provide a frame-

work that facilitates development of own prototypes. NTNU and St. Olavs hospital have in

addition established a dialogue with Siemens, which can make it easier to solve any prob-

lems that may occur. At this time, syngo.via Frontier is therefore considered as suitable for

this use and the distortion correction prototype will be further developed on this platform.

5.4 Future work

Further, the prototype must be improved to make it more robust, flexible and efficient, based

on the suggestions already given in this chapter. The possibility of allowing the user to

change more parameters in the prototype should be assessed. Furthermore, the user-friendliness

should also be improved based on the feedback from the test subjects. Motion and eddy-

current correction could in addition be integrated into the prototype at a later point, so that

this does not have to be performed in separate steps. Eventually, the prototype should be

integrated into clinical workflow for a test period to see how it performs. However, first and

foremost, the installation problems in syngo.via Frontier must be solved.

Even though the images in this project were found to be successfully corrected using the

default parameters, a more thorough investigation should be performed to optimise the dis-

tortion correction parameters for a larger number of patients, to see if the corrected images

can be improved even further. More research needs also to be performed to find metrics that

reliably can quantitatively determine the quality of corrections. A number of different met-

rics must therefore be tested for this purpose, and evaluated on different types of images.
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The metrics can be used in the prototype to warn the user if the correction has failed, or in

more automated distortion correction methods to detect poorly corrected images. They can

also be used to evaluate the outcome of different distortion correction parameters.
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Chapter 6

Conclusion

In this master’s project, a prototype for geometric distortion correction of EPI images has

been successfully developed in MeVisLab and installed in syngo.via Frontier. It has been

tested on diffusion-weighted EPI images from breast and prostate patients, where none of

the corrections failed, giving a robustness of 100%. By visual assessment of the images, the

quality of correction was determined to be successful for 12 of 13 breast patients and all 16

prostate patients.

The MSD between forward and reverse images before and after distortion correction was

calculated, and it was found to decrease significantly for all types of images, which supports

the results from the visual examination. Uncorrected and corrected forward b0 images were

co-registered to anatomically correct T2-weighted images, and NMI, NCC and MSD between

the b0 and T2-weighted images before and after correction were calculated. These metrics

generally showed good results for the breast images, but gave some inconclusive results for

the prostate images, and one might need to be careful of using them to assess the quality

of corrections on a general basis. More investigations should be performed to find suitable

metrics for this use.

To assess the user-friendliness of the prototype, a radiographer and a medical physicist tested

it and gave feedback about both its efficiency and the user interface. From this, the conclu-

sion is that the prototype has potential to be an easy-to-use tool for geometric distortion

correction of EPI images in clinical workflow, although there is still room for improvements.

In the future, the prototype will be further developed to improve its functionality, efficiency

and user-friendliness.
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Appendix A

Scripts

Note that only relevant parts of the scripts are included.

A.1 EPIdistortionCorrection.py

1 from PythonQt import QtGui

2 from mevis import *

3 import os.path

4 import ast

5

6 _frontier = None

7 _monitorConfiguration = None

8 _landscapeLayout = True

9 _monitorGrid = None

10 _gridElement = None

11 _monitorLayoutObject = None

12 _segmentImagesAndPositionList = list()

13 _computedHeight = 0

14 _computedWidth = 0

15

16 _patientBrowserOpened = 1

17

18 # −−−−−−−−−−− Patient/Volume data −−−−−−−−−−−
19
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20 def startImport():

21

22 MLAB.log("starting MRPatientBrowser")

23 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser2.

patientBrowserHasBeenOpened").value = 1

24

25 # Must stop the bypassing to avoid dividing with 0 in MeanOfPhases

26 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.MeanOfPhasesForward.Bypass1.

noBypass").value = True

27

28 # index DICOM data

29 dataDirectory = _frontier.getIncomingDicomDirectory()

30 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser.

frontierSourceDir").setValue(dataDirectory)

31 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser.import").touch()

32

33 return

34

35 def importFinished():

36

37 global _frontier

38 global _landscapeLayout

39

40 MLAB.log("import finished")

41

42 # Show patient browser to enable the user to select a volume.

43 ctx.module("PatientBrowserPanel").call("showPatientBrowser")

44 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser.

resetCheckBoxStatus").touch()

45 # show patient browser

46 if _landscapeLayout:
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47 _frontier.selectLayout("SINGLE_CA−LEFT_H(1)", ["controlArea", "

outPatientBrowser"])

48 else:

49 _frontier.selectLayout("SINGLE_CA−BOTTOM_H(1)", ["controlArea", "

outPatientBrowser"])

50

51 # Popup window with information

52 title = "Choose forward phase encoded images"

53 text = 'Please select the forward phase encoded image(s) (b0). If

several forward phase encoded images are selected, the distortion

correction will be computed from their average.\n\nImage series are

shown in the upper panel, and the phases are shown in the lower panel

when an image series is marked.\n\nNote that both an image series

and at least one phase must be checked in order to move on to the

next step. All phases checked must also be from the same image series

(only one series can be checked).'

54 buttonNames = ["Ok"]

55

56 if (ctx.field("EPIdistortionCorrectionCore.frontierEnvironment").value):

57

58 frontier = None

59 frontierAPI = ctx.field("EPIdistortionCorrectionCore.inSyngoVia").

object()

60

61 if (frontierAPI != None):

62 frontierAPI.showMessageBox(title, text, buttonNames)

63

64 else :

65 MLAB.showInformation(text, title, buttonNames, 0)

66

67 return

68

69 def loadingCompleted():
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70 global _monitorConfiguration, _landscapeLayout

71

72 MLAB.log("loading completed")

73

74 #_frontier.setIsProcessing(False)

75

76 ctx.module("EPIdistortionCorrectionCore").call("switchToInitialLayout")

77

78 ctx.module("EPIdistortionCorrectionCore").call("loadingDatasetCompleted"

)

79

80 #Allowing for computation in MeanOfPhases

81 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.MeanOfPhasesForward.

Arithmetic5.i1").value = ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.InfoForward.sizeT").value

82

83 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.MeanOfPhasesForward.Bypass1.

noBypass").value = False

84

85 #Starting the next patient browser

86 startImport2()

87

88 return

89

90

91 # −−−−−−−−−−− Patient/Volume data 2

92

93 def startImport2():

94

95 MLAB.log("starting MRPatientBrowser2")
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96 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser2.

patientBrowserHasBeenOpened").value = 2

97

98 # Must stop the bypassing to avoid dividing with 0 in MeanOfPhases

99 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.MeanOfPhasesReverse.Bypass1.

noBypass").value = True

100

101 # index DICOM data

102 dataDirectory = _frontier.getIncomingDicomDirectory()

103 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser2.

frontierSourceDir").setValue(dataDirectory)

104 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser2.import").touch

()

105

106 return

107

108 def importFinished2():

109

110 global _frontier

111 global _landscapeLayout

112

113 MLAB.log("import finished 2")

114

115 # Show patient browser to enable the user to select a volume.

116 ctx.module("PatientBrowserPanel").call("showPatientBrowser")

117 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser2.

resetCheckBoxStatus").touch()

118 # show patient browser

119 if _landscapeLayout:

120 _frontier.selectLayout("SINGLE_CA−LEFT_H(1)", ["controlArea", "

outPatientBrowser"])

121 else:
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122 _frontier.selectLayout("SINGLE_CA−BOTTOM_H(1)", ["controlArea", "

outPatientBrowser"])

123

124 # Popup window with information

125 title = "Choose reverse phase encoded images"

126 text = 'Please select the reverse phase encoded image(s) (b0). If there

are several reverse phase encoded images, the distortion correction

will be computed from their average.\n\nIMPORTANT: Select ALL phases

in the chosen image series! This is required for the DICOM tags to be

stored correctly after processing.\n\nImage series are shown in the

upper panel, and the phases are shown in the lower panel when an

image series is marked.\n\nNote that both an image series and all its

phases must be checked in order to move on to the next step. All

phases checked must also be from the same image series (only one

series can be checked).'

127 buttonNames = ["Ok"]

128

129 if (ctx.field("EPIdistortionCorrectionCore.frontierEnvironment").value):

130

131 frontier = None

132 frontierAPI = ctx.field("EPIdistortionCorrectionCore.inSyngoVia").

object()

133

134 if (frontierAPI != None):

135 frontierAPI.showMessageBox(title, text, buttonNames)

136

137 else :

138 MLAB.showInformation(text, title, buttonNames, 0)

139

140 return

141

142 def loadingCompleted2():

143 global _monitorConfiguration, _landscapeLayout
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144

145 MLAB.log("loading completed 2")

146

147 #_frontier.setIsProcessing(False)

148

149 ctx.module("EPIdistortionCorrectionCore").call("switchToInitialLayout")

150

151 ctx.module("EPIdistortionCorrectionCore").call("loadingDatasetCompleted"

)

152

153

154 #Allowing for computation in MeanOfPhases

155 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.MeanOfPhasesReverse.

Arithmetic5.i1").value = ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.InfoReverse.sizeT").value

156 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.MeanOfPhasesReverse.Bypass1.

noBypass").value = False

157

158 #Starting the next patient browser

159 startImport3()

160

161 return

162

163 # −−−−−−−−−−− Patient/Volume data 3

164

165 def startImport3():

166

167 MLAB.log("starting MRPatientBrowser3")

168 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser2.

patientBrowserHasBeenOpened").value = 3

169
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170 # index DICOM data

171 dataDirectory = _frontier.getIncomingDicomDirectory()

172 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser3.

frontierSourceDir").setValue(dataDirectory)

173 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser3.import").touch

()

174

175 return

176

177 def importFinished3():

178

179 global _frontier

180 global _landscapeLayout

181

182 MLAB.log("import finished 3")

183

184 # Show patient browser to enable the user to select a volume.

185 ctx.module("PatientBrowserPanel").call("showPatientBrowser")

186 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser3.

resetCheckBoxStatus").touch()

187 # show patient browser

188 if _landscapeLayout:

189 _frontier.selectLayout("SINGLE_CA−LEFT_H(1)", ["controlArea", "

outPatientBrowser"])

190 else:

191 _frontier.selectLayout("SINGLE_CA−BOTTOM_H(1)", ["controlArea", "

outPatientBrowser"])

192

193 # Popup window with information

194 title = "Choose DWI images"

195 text = 'Please select all forward phase encoded images to be corrected,

including any DWI images (b > 0).\n\nIMPORTANT: Select ALL phases in

the chosen image series! This is required for the DICOM tags to be
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stored correctly after processing.\n\nImage series are shown in the

upper panel, and the phases are shown in the lower panel when an

image series is marked.\n\nNote that both an image series and all its

phases must be checked in order to move on to the next step. All

phases checked must also be from the same image series (only one

series can be checked).'

196 buttonNames = ["Ok"]

197

198 if (ctx.field("EPIdistortionCorrectionCore.frontierEnvironment").value):

199 frontier = None

200 frontierAPI = ctx.field("EPIdistortionCorrectionCore.inSyngoVia").

object()

201 if (frontierAPI != None):

202 frontierAPI.showMessageBox(title, text, buttonNames)

203 else :

204 MLAB.showInformation(text, title, buttonNames, 0)

205

206 return

207

208 def loadingCompleted3():

209 global _monitorConfiguration, _landscapeLayout

210

211 MLAB.log("loading completed 3")

212

213 #_frontier.setIsProcessing(False)

214

215 ctx.module("EPIdistortionCorrectionCore").call("switchToInitialLayout")

216

217 ctx.module("EPIdistortionCorrectionCore").call("loadingDatasetCompleted"

)

218 ctx.field("EPIdistortionCorrectionCore.MRPatientBrowser2.

patientBrowserHasBeenOpened").value = 0

219



98 APPENDIX A. SCRIPTS

220 # Initializing various parameters

221 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.Flip.value").value = "−−no−
flip"

222 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.Flip.FlipPressed").value =

False

223 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.PhaseEncodeDirection.value")

.value = "−−phase−encode−ap"
224 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.imagemath1.

NumTimesDWICorrectionPerformed").value = 0

225 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.SubImage1.t").value = 0

226 ctx.field("EPIdistortionCorrectionCore.

EPIdistortionCorrectionProcessing_Custom.ImageComposer.clear").touch

()

227 ctx.field("EPIdistortionCorrectionCore.Export2.imagemath1.

NumTimesDWICorrectionPerformed").value = 0

228 ctx.field("EPIdistortionCorrectionCore.Export2.SubImage1.t").value = 0

229 ctx.field("EPIdistortionCorrectionCore.Export2.ImageComposer.clear").

touch()

230

231 ctx.field("EPIdistortionCorrectionCore.Switch1.currentInput").value = 0

232 ctx.field("EPIdistortionCorrectionCore.Switch2.currentInput").value = 0

233 ctx.field("EPIdistortionCorrectionCore.Switch3.currentInput").value = 0

234 ctx.field("EPIdistortionCorrectionCore.Export2.Switch.currentInput").

value = 0

235 ctx.field("EPIdistortionCorrectionCore.Export3.Switch.currentInput").

value = 0

236
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237 ctx.field("EPIdistortionCorrectionCore.Switch1.mosaicPressed").value =

False

238 ctx.field("EPIdistortionCorrectionCore.Switch2.mosaicPressed").value =

False

239 ctx.field("EPIdistortionCorrectionCore.Switch3.mosaicPressed").value =

False

240 ctx.field("EPIdistortionCorrectionCore.Export2.Switch.mosaicPressed").

value = False

241 ctx.field("EPIdistortionCorrectionCore.Export3.Switch.mosaicPressed").

value = False

242

243 ctx.field("EPIdistortionCorrectionCore.Export2.Switch1.currentInput").

value = 0

244

245 if ctx.field("EPIdistortionCorrectionCore.Export2.InfoUncorr.sizeT").

value == 1: ctx.field("EPIdistortionCorrectionCore.Export2.

imagemath1.NumTimesDWICorrectionPerformed").value = 1

246 else: ctx.field("EPIdistortionCorrectionCore.Export2.imagemath1.

NumTimesDWICorrectionPerformed").value = 0

247

248 return

A.2 EPIdistortionCorrectionPatientBrowserPanel.py

1 from mevis import *

2

3 g_layoutPatientBrowser = None

4 g_scenePatientBrowser = None

5 g_PatientBrowserGraphicsView = None

6

7 g_layoutPatientBrowser2 = None

8 g_scenePatientBrowser2 = None
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9 g_PatientBrowserGraphicsView2 = None

10

11 def showPatientBrowser():

12 global g_PatientBrowserGraphicsView

13 global g_layoutPatientBrowser

14 global g_scenePatientBrowser

15 global g_PatientBrowserGraphicsView

16

17 g_scenePatientBrowser = g_PatientBrowserGraphicsView.scene()

18 contentArea = g_scenePatientBrowser.addLayer();

19

20 g_layoutPatientBrowser = g_scenePatientBrowser.createGridLayout(

contentArea)

21

22 # always show patient browser

23 # if−elif−else to distinguish between the three patient browsers

24 if ctx.field("parent:EPIdistortionCorrectionCore.MRPatientBrowser2.

patientBrowserHasBeenOpened").value == 1:

25 mdl = g_scenePatientBrowser.addMDL ("Panel { module=parent:

EPIdistortionCorrectionCore.MRPatientBrowser window=

MRPatientBrowserRoles }")

26 g_layoutPatientBrowser.addItem(mdl,0,0)

27 elif ctx.field("parent:EPIdistortionCorrectionCore.MRPatientBrowser2.

patientBrowserHasBeenOpened").value == 2:

28 mdl = g_scenePatientBrowser.addMDL ("Panel { module=parent:

EPIdistortionCorrectionCore.MRPatientBrowser2 window=

MRPatientBrowserRoles }")

29 g_layoutPatientBrowser.addItem(mdl,0,0)

30 else:

31 mdl = g_scenePatientBrowser.addMDL ("Panel { module=parent:

EPIdistortionCorrectionCore.MRPatientBrowser3 window=

MRPatientBrowserRoles }")

32 g_layoutPatientBrowser.addItem(mdl,0,0)
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A.3 EPIdistortionCorrectionProcessing_Custom.script

1 Interface {

2 Inputs {

3 Field inImage1 { internalName = GateInImage1.input0 }

4 Field inImage2 { internalName = GateInImage2.input0 }

5 Field inImage3 { internalName = GateInImage3.input0 }

6 }

7 Outputs {

8 Field outOriginalImage { internalName = GateOutOriginalImage.output0

}

9 Field outOriginalImage2 { internalName = GateOutOriginalImage2.

output0 }

10 Field outOriginalImage3 { internalName = GateOutOriginalImage3.

output0 }

11 Field outProcessedImage { internalName = GateOutProcessedImage.

output0 }

12 Field outProcessedImage2 { internalName = GateOutProcessedImage2.

output0 }

13 Field outProcessedImage3 { internalName = GateOutProcessedImage3.

output0 }

14 Field outPanel1 { internalName = RenderUserPanelsExample.

outPanel1 }

15 Field outPanel2 { internalName = RenderUserPanelsExample.

outPanel2 }

16 Field outPanel3 { internalName = RenderUserPanelsExample.

outPanel3 }

17 Field outPanel4 { internalName = RenderUserPanelsExample.

outPanel4 }

18 Field outPanel5 { internalName = RenderUserPanelsExample.

outPanel5 }
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19 }

20 Parameters {

21 Field workingDir { internalName = WorkingDir.

value }

22

23 // Trigger fields

24 Field externalExecutableEpiunwarpStartedTrigger { internalName =

epiunwarp.executionStartedTrigger }

25 Field externalExecutableEpiunwarpFinishedTrigger { internalName =

epiunwarp.executionFinishedTrigger }

26 Field externalExecutableReformatx1StartedTrigger { internalName =

reformatx1.executionStartedTrigger }

27 Field externalExecutableReformatx1FinishedTrigger { internalName =

reformatx1.executionFinishedTrigger }

28 Field externalExecutableImagemath1StartedTrigger { internalName =

imagemath1.executionStartedTrigger }

29 Field externalExecutableImagemath1FinishedTrigger { internalName =

imagemath1.executionFinishedTrigger }

30 }

31 }

32

33 Commands {

34 source = $(LOCAL)/EPIdistortionCorrectionProcessing_Custom.py

35

36 // FieldListeners to start the next iteration of distortion correction

when the previous one has finished

37 FieldListener externalExecutableReformatx1FinishedTrigger { command =

StartImagemath }

38 FieldListener externalExecutableImagemath1FinishedTrigger { command =

NextIteration }

39 }

40

41 Window {
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42 fixedWidth = 500

43 fixedHeight = 200

44 Category { expandY = Yes

45 Empty { expandY = Yes }

46 Label { title = "This is the main processing module." expandX = Yes

textAlignment = Center }

47 Label { title = "It is recommended to add all your custom modules and

code here." expandX = Yes textAlignment = Center }

48 Empty { expandY = Yes }

49 }

50 }

A.4 EPIdistortionCorrectionProcessing_Custom.py

1 from mevis import *

2

3 # Starts the next iteration of the distortion correction. The 3D image

selected by SubImage has already been incremented in the post−
processing script of imagemath

4 def NextIteration():

5

6 ctx.field("ImageComposer.add").touch()

7

8 if ctx.field("imagemath1.NumTimesDWICorrectionPerformed").value < ctx.

field("Info.sizeT").value:

9 MLAB.log("starting to correct DWI image")

10 ctx.field("reformatx1.startExecution").touch()

11 else:

12 MLAB.log("all fwd images are corrected")

13 if ctx.field("InfoReverse.sizeT").value > 1:

14 ctx.field("parent:Export2.Switch1.currentInput").value = 1

15 CorrectRev()
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16

17 return

18

19 # Starts imagemath when reformatx has finished

20 def StartImagemath():

21

22 ctx.field("imagemath1.startExecution").touch()

23

24 return

25

26 # Corrects the reverse phase encoded b = 0 images if there are more than

one

27 def CorrectRev():

28

29 if ctx.field("parent:Export2.imagemath1.NumTimesDWICorrectionPerformed")

.value < ctx.field("parent:Export2.InfoUncorr.sizeT").value:

30 MLAB.log("starting to correct rev images")

31 ctx.field("parent:Export2.reformatx1.startExecution").touch()

32 else:

33 MLAB.log("all rev images are corrected")

34

35 return

A.5 EPIdistortionCorrectionCoreLayouts_Custom.py

1 from MRViewers import Layout, MonitorLayout

2

3 def initLayouts():

4

5 #

6 # Modify this function if you want to customize the available layouts.

7 #
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8

9 global g_controlArea

10

11 # Define the layouts

12

13 layout = Layout("Single_Screen_2x2", title = "Single 2x2")

14 firstMonitorLayout = MonitorLayout()

15 firstMonitorLayout.addViewer(1, 0, 0, 1, 1)

16 firstMonitorLayout.addViewer(2, 0, 1, 1, 1)

17 firstMonitorLayout.addViewer(3, 1, 0, 1, 1)

18 firstMonitorLayout.addViewer(4, 1, 1, 1, 1)

19 layout.setFirstMonitorLayout(firstMonitorLayout)

20 addLayout(layout)

21

22 layout = Layout("Single_Screen_2x3", title = "Single 2x3")

23 firstMonitorLayout = MonitorLayout()

24 firstMonitorLayout.addViewer(1, 0, 0, 1, 1)

25 firstMonitorLayout.addViewer(2, 0, 1, 1, 1)

26 firstMonitorLayout.addViewer(3, 0, 2, 1, 1)

27 firstMonitorLayout.addViewer(5, 1, 0, 1, 1)

28 firstMonitorLayout.addViewer(6, 1, 1, 1, 1)

29 firstMonitorLayout.addViewer(7, 1, 2, 1, 1)

30 layout.setFirstMonitorLayout(firstMonitorLayout)

31 addLayout(layout)

32

33 layout = Layout("Single_Screen_3+1_Static", title = "Single 3+1 (static)

")

34 firstMonitorLayout = MonitorLayout()

35 firstMonitorLayout.addViewer(1, 0, 0, 1, 1)

36 firstMonitorLayout.addViewer(2, 0, 2, 1, 1)

37 firstMonitorLayout.addViewer(3, 0, 1, 1, 1)

38 firstMonitorLayout.addViewer(4, 1, 0, 1, 3)

39 firstMonitorLayout.forceStaticLayout(True)
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40 layout.setFirstMonitorLayout(firstMonitorLayout)

41 addLayout(layout)

42

43 layout = Layout("Single_Screen_3+2", title = "Single 3+2")

44 firstMonitorLayout = MonitorLayout()

45 firstMonitorLayout.addViewer(1, 0, 0, 1, 2)

46 firstMonitorLayout.addViewer(2, 0, 2, 1, 2)

47 firstMonitorLayout.addViewer(3, 0, 4, 1, 2)

48 firstMonitorLayout.addViewer(4, 1, 0, 1, 3)

49 firstMonitorLayout.addViewer(5, 1, 3, 1, 3)

50 layout.setFirstMonitorLayout(firstMonitorLayout)

51 addLayout(layout)

52

53 layout = Layout("Single_Screen_3+2_Static", title = "Single 3+2 (static)

")

54 firstMonitorLayout = MonitorLayout()

55 firstMonitorLayout.addViewer(1, 0, 0, 1, 2)

56 firstMonitorLayout.addViewer(2, 0, 2, 1, 2)

57 firstMonitorLayout.addViewer(3, 0, 4, 1, 2)

58 firstMonitorLayout.addViewer(4, 1, 0, 1, 3)

59 firstMonitorLayout.addViewer(5, 1, 3, 1, 3)

60 firstMonitorLayout.forceStaticLayout(True)

61 layout.setFirstMonitorLayout(firstMonitorLayout)

62 addLayout(layout)

63

64 layout = Layout("Complex", title = "Complex")

65 firstMonitorLayout = MonitorLayout()

66 firstMonitorLayout.addViewer(1, 0, 0, 3, 3)

67 firstMonitorLayout.addViewer(2, 0, 3, 3, 3)

68 firstMonitorLayout.addViewer(3, 3, 0, 3, 3)

69 firstMonitorLayout.addViewer(4, 3, 3, 3, 3)

70 firstMonitorLayout.addViewer(5, 6, 0, 2, 2) # Segment 5 is displayed in

all of the small viewers...
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71 firstMonitorLayout.addViewer(5, 6, 2, 2, 2)

72 firstMonitorLayout.addViewer(5, 6, 4, 2, 2)

73 firstMonitorLayout.addViewer(5, 6, 6, 2, 2)

74 firstMonitorLayout.addViewer(5, 0, 6, 2, 2)

75 firstMonitorLayout.addViewer(5, 2, 6, 2, 2)

76 firstMonitorLayout.addViewer(5, 4, 6, 2, 2)

77 firstMonitorLayout.forceStaticLayout(True)

78 layout.setFirstMonitorLayout(firstMonitorLayout)

79 addLayout(layout)

80

81 layout = Layout("Dual_Screen_1x1", title = "Dual 1x1")

82 firstMonitorLayout = MonitorLayout()

83 firstMonitorLayout.addViewer(1, 0, 0, 1, 1)

84 layout.setFirstMonitorLayout(firstMonitorLayout)

85 secondMonitorLayout = MonitorLayout()

86 secondMonitorLayout.addViewer(1, 0, 0, 1, 1)

87 layout.setSecondMonitorLayout(secondMonitorLayout)

88 addLayout(layout)

89

90 layout = Layout("Dual_Screen_1x3_1x1", title = "Dual 1x3 + 1x1")

91 firstMonitorLayout = MonitorLayout()

92 firstMonitorLayout.addViewer(1, 0, 0, 1, 1)

93 firstMonitorLayout.addViewer(2, 0, 1, 1, 1)

94 firstMonitorLayout.addViewer(3, 0, 2, 1, 1)

95 layout.setFirstMonitorLayout(firstMonitorLayout)

96 secondMonitorLayout = MonitorLayout()

97 secondMonitorLayout.addViewer(4, 0, 0, 1, 1)

98 layout.setSecondMonitorLayout(secondMonitorLayout)

99 addLayout(layout)

100

101 layout = Layout("Dual_Screen_2x2", title = "Dual 2x2")

102 firstMonitorLayout = MonitorLayout()

103 firstMonitorLayout.addViewer(1, 0, 0, 1, 1)
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104 firstMonitorLayout.addViewer(2, 0, 1, 1, 1)

105 firstMonitorLayout.addViewer(3, 1, 0, 1 ,1)

106 firstMonitorLayout.addViewer(4, 1, 1, 1, 1)

107 layout.setFirstMonitorLayout(firstMonitorLayout)

108 secondMonitorLayout = MonitorLayout()

109 secondMonitorLayout.addViewer(1, 0, 0, 1, 1)

110 secondMonitorLayout.addViewer(2, 0, 1, 1, 1)

111 secondMonitorLayout.addViewer(3, 1, 0, 1 ,1)

112 secondMonitorLayout.addViewer(4, 1, 1, 1, 1)

113 layout.setSecondMonitorLayout(secondMonitorLayout)

114 addLayout(layout)

115

116 layout = Layout("Dual_Screen_1x2", title = "Dual 1x2")

117 firstMonitorLayout = MonitorLayout()

118 firstMonitorLayout.addViewer(1, 0, 0, 1, 1)

119 firstMonitorLayout.addViewer(2, 0, 1, 1, 1)

120 layout.setFirstMonitorLayout(firstMonitorLayout)

121 secondMonitorLayout = MonitorLayout()

122 secondMonitorLayout.addViewer(3, 0, 0, 1, 1)

123 secondMonitorLayout.addViewer(4, 0, 1, 1, 1)

124 secondMonitorLayout.forceStaticLayout(True)

125 layout.setSecondMonitorLayout(secondMonitorLayout)

126 addLayout(layout)

127

128 layout = Layout("Dual_Screen_2x1", title = "Dual 2x1")

129 firstMonitorLayout = MonitorLayout()

130 firstMonitorLayout.addViewer(1, 0, 0, 1, 1)

131 firstMonitorLayout.addViewer(2, 1, 0, 1, 1)

132 firstMonitorLayout.forceStaticLayout(True)

133 layout.setFirstMonitorLayout(firstMonitorLayout)

134 secondMonitorLayout = MonitorLayout()

135 secondMonitorLayout.addViewer(3, 0, 0, 1, 1)

136 secondMonitorLayout.addViewer(4, 1, 0, 1, 1)
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137 layout.setSecondMonitorLayout(secondMonitorLayout)

138 addLayout(layout)

139

140 # Set initial layout which is shown after an image is loaded depending

on the number of monitors.

141 # If you just provide single screen layouts you have pass it also to

setInitialLayoutForDualMonitorConfiguration()

142 setInitialLayoutForSingleMonitorConfiguration("Single_Screen_2x3")

143 setInitialLayoutForDualMonitorConfiguration("Single_Screen_2x3")

144

145 return

A.6 EPIdistortionCorrectionCoreProcessing_Custom.py

1 from mevis import *

2 from time import sleep

3

4 # Some global variables. Be careful when using them!

5 #

6 #global g_vortal # Reference to the vortal

7 #global g_controlArea # Reference to the Control Area

8 #global g_secondaryWindow # Reference to the secondary window

9 #global g_layouts # Reference to the layouts

10 #global g_lastSnapshotFolder # Reference to the snapshot folder

11 global g_prototypeName # Reference to the prototype name

12 global g_task_EPIdistortionCorrection # Reference to the task

specification

13

14 # −−−−−−−−−−− User code −−−−−−−−−−−−−−−
15 #

16 # Add own functionality here if needed.

17 #
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18

19 # Calculate distortion correction

20 def ExecuteExternalAlgoButtonClicked1():

21

22 ctx.field("EPIdistortionCorrectionProcessing_Custom.epiunwarp.

startExecution").touch()

23

24 return

25

26 # Correct images

27 def ExecuteExternalAlgoButtonClicked2():

28

29 if ctx.field("EPIdistortionCorrectionProcessing_Custom.imagemath1.

NumTimesDWICorrectionPerformed").value < ctx.field("

EPIdistortionCorrectionProcessing_Custom.Info.sizeT").value:

30 MLAB.log("starting to correct DWI images") ctx.field("

EPIdistortionCorrectionProcessing_Custom.reformatx1.startExecution"

).touch()

31 else:

32 MLAB.log("all fwd images are corrected")

33

34 return

35

36 # Resolve mosaic images

37 def MosaicButtonClicked1():

38

39 if ctx.field("Switch1.mosaicPressed").value == False:

40 ctx.field("Switch1.currentInput").value = 1

41 ctx.field("Switch1.mosaicPressed").value = True

42 else:

43 ctx.field("Switch1.currentInput").value = 0

44 ctx.field("Switch1.mosaicPressed").value = False

45



A.6. EPIDISTORTIONCORRECTIONCOREPROCESSING_CUSTOM.PY 111

46 return

47

48 def MosaicButtonClicked2():

49

50 if ctx.field("Switch2.mosaicPressed").value == False:

51 ctx.field("Switch2.currentInput").value = 1

52 ctx.field("Switch2.mosaicPressed").value = True

53 ctx.field("Export2.Switch.currentInput").value = 1

54 ctx.field("Export2.Switch.mosaicPressed").value = True

55 else:

56 ctx.field("Switch2.currentInput").value = 0

57 ctx.field("Switch2.mosaicPressed").value = False

58 ctx.field("Export2.Switch.currentInput").value = 0

59 ctx.field("Export2.Switch.mosaicPressed").value = False

60

61 return

62

63 def MosaicButtonClicked3():

64

65 if ctx.field("Switch3.mosaicPressed").value == False:

66 ctx.field("Switch3.currentInput").value = 1

67 ctx.field("Switch3.mosaicPressed").value = True

68 ctx.field("Export3.Switch.currentInput").value = 1

69 ctx.field("Export3.Switch.mosaicPressed").value = True

70 else:

71 ctx.field("Switch3.currentInput").value = 0

72 ctx.field("Switch3.mosaicPressed").value = False

73 ctx.field("Export3.Switch.currentInput").value = 0

74 ctx.field("Export3.Switch.mosaicPressed").value = False

75

76 return

77

78 # Distortion correction parameter (is the reverse image flipped)
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79 def FlipButtonClicked():

80

81 if ctx.field("EPIdistortionCorrectionProcessing_Custom.Flip.FlipPressed"

).value == False:

82 ctx.field("EPIdistortionCorrectionProcessing_Custom.Flip.value").value

= ""

83 ctx.field("EPIdistortionCorrectionProcessing_Custom.Flip.FlipPressed")

.value = True

84 else:

85 ctx.field("EPIdistortionCorrectionProcessing_Custom.Flip.value").value

= "−−no−flip"
86 ctx.field("EPIdistortionCorrectionProcessing_Custom.Flip.FlipPressed")

.value = False

87

88 return

89

90 # Set the phase encoding direction parameter

91 def PhaseEncodeAP():

92

93 ctx.field("EPIdistortionCorrectionProcessing_Custom.PhaseEncodeDirection

.value").value = "−−phase−encode−ap"
94

95 return

96

97 def PhaseEncodeIS():

98

99 ctx.field("EPIdistortionCorrectionProcessing_Custom.PhaseEncodeDirection

.value").value = "−−phase−encode−is"
100

101 return

102

103 def PhaseEncodeLR():

104
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105 ctx.field("EPIdistortionCorrectionProcessing_Custom.PhaseEncodeDirection

.value").value = "−−phase−encode−lr"
106

107 return

108

109 # Save images locally

110 def saveResultsOffline():

111

112 ctx.field("seriesUID.create").touch()

113

114

115 if ctx.field("Export3.Switch.mosaicPressed").value == True:

116 makeMosaicFwd()

117

118 ctx.field("Export3.DicomTool3.saveSlices").touch()

119

120

121 if ctx.field("Export2.Switch.mosaicPressed").value == True:

122 makeMosaicRev()

123

124 ctx.field("Export2.DicomTool2.saveSlices").touch()

125

126 return

127

128 # Make a mosaic image

129 def makeMosaicRev():

130

131 MLAB.log("Running makeMosaicRev()")

132

133 ctx.field("Export2.MakeMosaic.ImageComposer.clear").touch()

134

135 numTilesX = (ctx.field("Export2.InfoUncorr.sizeX").value)/(ctx.field("

Export2.InfoCorr.sizeX").value)
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136 numTilesY = (ctx.field("Export2.InfoUncorr.sizeY").value)/(ctx.field("

Export2.InfoCorr.sizeY").value)

137 numSlices = ctx.field("Export2.InfoCorr.sizeZ").value

138 numPhases = ctx.field("Export2.InfoCorr.sizeT").value

139

140 xJump = ctx.field("Export2.InfoCorr.sizeX").value

141 yJump = ctx.field("Export2.InfoCorr.sizeY").value

142

143 tPos = 0

144 xPos = 0

145 yPos = 0

146 zPos = 0

147 cPos = 0

148 uPos = 0

149

150 zSlice = 0

151

152 for t in range(0,numPhases):

153 ctx.field("Export2.MakeMosaic.SubImage.t").value = t

154 for y in range(0,numTilesY):

155 for x in range(0,numTilesX):

156 ctx.field("Export2.MakeMosaic.ImageComposer.userPos").value = [

xPos,yPos,zPos,cPos,tPos,uPos]

157 ctx.field("Export2.MakeMosaic.SubImage.z").value = zSlice

158 ctx.field("Export2.MakeMosaic.ImageComposer.add").touch()

159 zSlice += 1

160 xPos += xJump

161 yPos += yJump

162 xPos = 0

163 tPos += 1

164 yPos = 0

165 xPos = 0

166 zSlice = 0
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167 MLAB.log("makeMosaicRev() finished")

168

169 return

170

171 def makeMosaicFwd():

172

173 MLAB.log("Running makeMosaicFwd()")

174

175 ctx.field("Export3.MakeMosaic.ImageComposer.clear").touch()

176

177 numTilesX = (ctx.field("Export3.InfoUncorr.sizeX").value)/(ctx.field("

Export3.InfoCorr.sizeX").value)

178 numTilesY = (ctx.field("Export3.InfoUncorr.sizeY").value)/(ctx.field("

Export3.InfoCorr.sizeY").value)

179 numSlices = ctx.field("Export3.InfoCorr.sizeZ").value

180 numPhases = ctx.field("Export3.InfoCorr.sizeT").value

181

182 xJump = ctx.field("Export3.InfoCorr.sizeX").value

183 yJump = ctx.field("Export3.InfoCorr.sizeY").value

184

185 tPos = 0

186 xPos = 0

187 yPos = 0

188 zPos = 0

189 cPos = 0

190 uPos = 0

191

192 zSlice = 0

193

194 for t in range(0,numPhases):

195 ctx.field("Export3.MakeMosaic.SubImage.t").value = t

196 for y in range(0,numTilesY):

197 for x in range(0,numTilesX):
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198 ctx.field("Export3.MakeMosaic.ImageComposer.userPos").value = [

xPos,yPos,zPos,cPos,tPos,uPos]

199 ctx.field("Export3.MakeMosaic.SubImage.z").value = zSlice

200 ctx.field("Export3.MakeMosaic.ImageComposer.add").touch()

201 zSlice += 1

202 xPos += xJump

203 yPos += yJump

204 xPos = 0

205 tPos += 1

206 yPos = 0

207 xPos = 0

208 zSlice = 0

209 MLAB.log("makeMosaicFwd() finished")

210

211 return

A.7 EPIdistortionCorrectionCoreControlArea_Custom.py

1 global g_task_EPIdistortionCorrection

2

3 def initControlArea(controlArea):

4

5 global g_task_EPIdistortionCorrection

6

7 # Set the prototype name.

8 # In standalone, the passed name is used as task flow label and as

window title.

9 # In frontier environment, the passed name is not used, instead as task

flow label 'MM Research Frontier' is used by default.

10 setPrototypeName("EPI distortion correction")

11

12 # Add task and set its label.
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13 #g_task_EPIdistortionCorrection = addTaskFromUIModule(controlArea) #

Use this line to automatically generate the Control Area from the

EPIdistortionCorrectionControlAreaUI_Custom module of the internal

network.

14 g_task_EPIdistortionCorrection = addTaskManually(controlArea) # Use

this line to generate the Control Area manually. You need to edit

the AddTaskManually() method to actually add controls.

15

16 # Add the common controls which are shown on the bottom of the control

area.

17 # If a control is not connected, it will not be shown

18 # The connected functions are defined in

EPIdistortionCorrectionCoreCommonControlsCommands_Custom.py

19 commonControls = controlArea.addCommonControls()

20 commonControls.help.connect("clicked", showHelp)

21 commonControls.reset.connect("clicked", resetViewers)

22 commonControls.snapshot.connect("clicked", createSnapshots)

23 # commonControls.sendResults.connect("clicked", sendResults)

24 commonControls.toggleRefLines.connect("clicked", toggleRefLines)

25 commonControls.toggleText.connect("clicked", toggleImageText)

26

27 return g_task_EPIdistortionCorrection

28

29 def addTaskManually(controlArea):

30

31 # do not change this line. It adds the main task

32 task = addTaskAndInitKnightRider(controlArea, "EPI distortion correction

", canCollapse = False)

33

34 # Add information step:

35 newStep = task.addStep("Information", idNr="myStep0")

36 newStep.setCollapsed(True) # Specifies whether the task is initially

collapsed
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37 newStep.connect("expanded", ExampleTaskExpanded)

38 newStep.addMDL("Label { title = @@This prototype corrects geometric

distortion in EPI images.\n\nThe layout of the screen can be chosen

using the button in the upper right corner of the menu. Using the

default 'Single 2x3' layout, the unprocessed images will be shown in

the upper row, and the processed images will be shown in the bottom

row. In order to observe the results, this layout should be used.\n\

nIt is important that steps 1−4 are performed in the correct order.

However, which images that are shown in the top and bottom row can be

changed at any time.\n\nPlease make sure that all parameters are

correctly adjusted before performing the distortion correction, to

avoid errors in the resulting images.@@ fixedWidth = 266 textWrap =

WordBreak }", 24, 12)

39

40 # Add "choose image" step:

41 newStep = task.addStep("Choose image in top panel", idNr="myStep1")

42 newStep.setCollapsed(True) # Specifies whether the task is initially

collapsed

43 newStep.connect("expanded", ExampleTaskExpanded)

44

45 # Choose which image to render in the top panel:

46 paletteButton = newStep.addPaletteButton((0, 0))

47 iconPath1 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonF.png")

48 subButton1 = paletteButton.addButton(iconPath1, title = "Forward phase

encoded image")

49 subButton1.connect("clicked", lambda: ctx.field("SwitchUnprocessedView.

currentInput").setIntValue(0))

50 iconPath2 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonR.png")

51 subButton2 = paletteButton.addButton(iconPath2, title = "Reverse phase

encoded image")

52 subButton2.connect("clicked", lambda: ctx.field("SwitchUnprocessedView.

currentInput").setIntValue(1))

53 iconPath3 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonD.png")
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54 subButton3 = paletteButton.addButton(iconPath3, title = "All forward

phase encoded (including DWI) images")

55 subButton3.connect("clicked", lambda: ctx.field("SwitchUnprocessedView.

currentInput").setIntValue(2))

56 newStep.addMDL("Label { title = @@Choose which uncorrected image to view

in the top panel.@@ fixedWidth = 200 textWrap = WordBreak }", 90,

12)

57

58 # Add "choose image" step:

59 newStep = task.addStep("Choose image in bottom panel", idNr="myStep2")

60 newStep.setCollapsed(True) # Specifies whether the task is initially

collapsed

61 newStep.connect("expanded", ExampleTaskExpanded)

62

63 # Choose which image to render in the top panel:

64 paletteButton = newStep.addPaletteButton((0, 0))

65 iconPath1 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonF.png")

66 subButton1 = paletteButton.addButton(iconPath1, title = "Forward phase

encoded image")

67 subButton1.connect("clicked", lambda: ctx.field("SwitchResultView.

currentInput").setIntValue(0))

68 iconPath2 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonR.png")

69 subButton2 = paletteButton.addButton(iconPath2, title = "Reverse phase

encoded image")

70 subButton2.connect("clicked", lambda: ctx.field("SwitchResultView.

currentInput").setIntValue(1))

71 iconPath3 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonD.png")

72 subButton3 = paletteButton.addButton(iconPath3, title = "All forward

phase encoded (including DWI) images")

73 subButton3.connect("clicked", lambda: ctx.field("SwitchResultView.

currentInput").setIntValue(2))

74 newStep.addMDL("Label { title = @@Choose which corrected image to view

in the bottom panel.@@ fixedWidth = 200 textWrap = WordBreak }", 90,
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12)

75

76 # Add parameter selection step:

77 newStep = task.addStep("1. Parameter selection", idNr="myStepParameters"

)

78 newStep.setCollapsed(True) # Specifies whether the task is initially

collapsed

79 newStep.connect("expanded", ExampleTaskExpanded)

80

81 button = newStep.addToggleButton(ctx.expandFilename("$(LOCAL)/Graphics/

ButtonMosaic.png"), "Mosaic (Fwd)", (0, 0))

82 button.connect("clicked", lambda : MosaicButtonClicked1())

83 newStep.addMDL("Label { title = @@Press this button if the forward phase

encoded image is a mosaic.@@ fixedWidth = 200 textWrap = WordBreak }

", 90, 12)

84

85 button = newStep.addToggleButton(ctx.expandFilename("$(LOCAL)/Graphics/

ButtonMosaic.png"), "Mosaic (Rev)", (0, 1))

86 button.connect("clicked", lambda : MosaicButtonClicked2())

87 newStep.addMDL("Label { title = @@Press this button if the reverse phase

encoded image is a mosaic.@@ fixedWidth = 200 textWrap = WordBreak }

", 90, 86)

88

89 button = newStep.addToggleButton(ctx.expandFilename("$(LOCAL)/Graphics/

ButtonMosaic.png"), "Mosaic (DWI)", (0, 2))

90 button.connect("clicked", lambda : MosaicButtonClicked3())

91 newStep.addMDL("Label { title = @@Press this button if alle the forward

phase encoded (including DWI) images are mosaics.@@ fixedWidth = 200

textWrap = WordBreak }", 90, 160)

92

93 button = newStep.addToggleButton(ctx.expandFilename("$(LOCAL)/Graphics/

ButtonFlip.png"), "Flipped", (0, 3))

94 button.connect("clicked", lambda : FlipButtonClicked())
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95 newStep.addMDL("Label { title = @@Press this button if the reverse phase

encoded image is flipped relative to the forward phase encoded image

.@@ fixedWidth = 200 textWrap = WordBreak }", 90, 232)

96

97 paletteButton = newStep.addPaletteButton((0,4))

98 iconPath1 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonAP.png")

99 subButton1 = paletteButton.addButton(iconPath1, title = "Anterior−
posterior")

100 subButton1.connect("clicked", lambda : PhaseEncodeAP())

101 iconPath2 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonIS.png")

102 subButton2 = paletteButton.addButton(iconPath2, title = "Inferior−
superior")

103 subButton2.connect("clicked", lambda : PhaseEncodeIS())

104 iconPath3 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonLR.png")

105 subButton3 = paletteButton.addButton(iconPath3, title = "Left−right")
106 subButton3.connect("clicked", lambda : PhaseEncodeLR())

107 newStep.addMDL("Label { title = @@Choose the phase encoding direction of

the images.@@ fixedWidth = 200 textWrap = WordBreak }", 90, 308)

108

109 #Choose the image type, to determine certain parameters.

110 # paletteButton = newStep.addPaletteButton((0, 5))

111 # iconPath1 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonB.png")

112 # subButton1 = paletteButton.addButton(iconPath1, title = "Breast images

")

113 # subButton1.connect("clicked", lambda : ImageTypeBreast())

114 # iconPath2 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonP.png")

115 # subButton2 = paletteButton.addButton(iconPath2, title = "Prostate

images")

116 # subButton2.connect("clicked", lambda : ImageTypeProstate())

117 # iconPath3 = ctx.expandFilename("$(LOCAL)/Graphics/ButtonO.png")

118 # subButton3 = paletteButton.addButton(iconPath3, title = "Other")

119 # subButton3.connect("clicked", lambda : ImageTypeOther())
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120 # newStep.addMDL("Label { title = @@Choose the image type.@@ fixedWidth =

200 textWrap = WordBreak }", 90, 382)

121

122 # Add "calculate distortion correction" step

123 step = task.addStep("2. Calculate distortion correction")

124 step.setCollapsed(True)

125 iconPath = ctx.expandFilename("$(LOCAL)/Graphics/ExecuteButton.png")

126 button = step.addButton(iconPath, "Correct", (0, 0), name="

buttonExecuteExternal")

127 button.setToolTip("Click here to calculate distortion correction.")

128 button.connect("clicked", lambda : ExecuteExternalAlgoButtonClicked1())

129 step.addMDL("Label { title = @@Perform EPI distortion correction on

forward and reverse phase encoded images by pressing the 'Correct'

button.\n\nThe calculations may take a few minutes.@@ fixedWidth =

200 textWrap = WordBreak }", 90, 12)

130

131 # Add "correct images" step

132 step = task.addStep("3. Correct images")

133 step.setCollapsed(True)

134 iconPath = ctx.expandFilename("$(LOCAL)/Graphics/ExecuteButton.png")

135 button = step.addButton(iconPath, "Correct", (0, 0), name="

buttonExecuteExternal2")

136 button.setToolTip("Click here to correct forward phase encoded images.")

137 button.connect("clicked", lambda : ExecuteExternalAlgoButtonClicked2())

138 step.addMDL("Label { title = @@Perform EPI distortion correction on all

forward phase encoded (including DWI) images, using the distortion

field calculated in the previous step.@@ fixedWidth = 200 textWrap =

WordBreak }", 90, 12)

139 panelDefinition = 'Horizontal { expandX = Minimum alignX = Left '

140 panelDefinition += ' Label { titleField =

EPIdistortionCorrectionProcessing_Custom.imagemath1.

NumTimesDWICorrectionPerformed alignX = Left } '

141 panelDefinition += ' Label { title = " of " } '
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142 panelDefinition += ' Label { titleField =

EPIdistortionCorrectionProcessing_Custom.Info.sizeT alignX = Left } '

143 panelDefinition += ' Label { title = " forward images corrected." } '

144 panelDefinition += '}'

145 step.addMDL(panelDefinition, 90, 100)

146 step.addMDL("Label { title = @@To scroll through the images, use the

left and right arrow keys after clicking on the image.@@ fixedWidth =

200 textWrap = WordBreak }", 90, 124)

147 step.addMDL("Label { title = @@If there are more than one reverse phase

encoded image, they will be corrected after the correction of all the

forward phase encoded images is finished.@@ fixedWidth = 200

textWrap = WordBreak }", 90, 182)

148 panelDefinition = 'Horizontal { expandX = Minimum alignX = Left '

149 panelDefinition += ' Label { titleField = Export2.imagemath1.

NumTimesDWICorrectionPerformed alignX = Left } '

150 panelDefinition += ' Label { title = " of " } '

151 panelDefinition += ' Label { titleField = Export2.InfoUncorr.sizeT

alignX = Left } '

152 panelDefinition += ' Label { title = " reverse images corrected." } '

153 panelDefinition += '}'

154 step.addMDL(panelDefinition, 90, 268)

155

156 # Add "save results" step:

157 newStep = task.addStep("4. Save results", idNr="myStepSave")

158 newStep.setCollapsed(True) # Specifies whether the task is initially

collapsed

159 newStep.connect("expanded", ExampleTaskExpanded)

160 iconPath = ctx.expandFilename("$(LOCAL)/Graphics/saveImage.png")

161 button = newStep.addButton(iconPath, "Send results (Fwd)", (0, 0), name=

"buttonSendResults3")

162 button.connect("clicked", lambda : sendResultsFwd())

163 newStep.addMDL("Label { title = @@Send all the corrected forward phase

encoded (including DWI) images back to Syngo.via.@@ fixedWidth = 200
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textWrap = WordBreak }", 90, 16)

164 button = newStep.addButton(iconPath, "Send results (Rev)", (0, 1), name=

"buttonSendResults2")

165 button.connect("clicked", lambda : sendResultsRev())

166 newStep.addMDL("Label { title = @@Send the corrected reverse phase

encoded image(s) back to Syngo.via.@@ fixedWidth = 200 textWrap =

WordBreak }", 90, 90)

167

168 # Add "save results locally" step:

169 # newStep = task.addStep("4. Save results (offline)", idNr="

myStepSaveOffline")

170 # newStep.setCollapsed(True) # Specifies whether the task is initially

collapsed

171 # newStep.connect("expanded", ExampleTaskExpanded)

172 # button = newStep.addButton(iconPath, "Save results", (0, 0), name="

buttonSendResults1")

173 # button.connect("clicked", lambda : saveResultsOffline())

174 # newStep.addMDL("Label { title = @@Save the corrected images.@@

fixedWidth = 200 textWrap = WordBreak }", 90, 16)
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Feedback form

Attached is the feedback form used for user-friendliness testing of the prototype.
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Testing of EPI distortion correction prototype 
Please read the instructions of the prototype carefully. 

 

 

What is your profession? ______________________________________________________ 

 

How long time did it take to use the application, from start to end? ____________________ 

 

What do you think about the amount of time it took to correct the images? 

 Okay  Too long 

 

Were you able to correct the images?  Yes   No 

 

How easy was it to understand how to correct them? (1 = very difficult, 5 = very easy) 

 1   2   3   4   5 

 

If anything about the correction process was difficult to understand, what was it? ________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

 

Additional feedback about the correction process: __________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

 

How intuitive was it to understand the user-interface and to navigate in the prototype? (1 = 

very difficult, 5 = very easy) 

 1   2   3   4   5 

 

 



If anything in the user-interface was difficult to understand, what was it? _______________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

 

Additional feedback about the user-interface: _____________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

 

Is this a prototype that you could have used in your workflow?  Yes  No 

 

Why/why not? ______________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

 

Other comments: ____________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 
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