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Abstract

Metric indexing is a branch of search technology that is designed for search non-

textual data. Examples of this includes image search (where the search query

is an image), document search (�nding documents that are roughly equal) to

search in high-dimensional Euclidean spaces. Metric indexing is based on the

theory of metric spaces, where the only thing known about a set of objects is the

distance between them (de�ned by a metric distance function). A large number

of methods have been proposed to solve the metric indexing problem. In this

thesis, we have concentrated on new approaches to solving these problems, as

well as combining existing methods to create better ones.

The methods studied in this thesis include D-Index, GNAT, EMVP-Forest,

HC, SA-Tree, SSS-Tree, M-Tree, PM-Tree, M*-Tree and PM*-Tree. These have

all been implemented and tested against each other to �nd strengths and weak-

nesses.

This thesis also studies a group of indexing methods called hybrid methods

which combines tree-based methods (like SA-Tree, SSS-tree and M-Tree), with

pivoting methods (like AESA and LAESA). The thesis also proposes a method

to create hybrid trees from existing trees by using features in the programming

language.

Hybrid methods have been shown in this thesis to be very promising. While

they may have a considerable overhead in construction time,CPU usage and/or

memory usage, they show large bene�ts in reduced number of distance compu-

tations.

We also propose a new way of calculating the Minimal Spanning Tree of

a graph operating on metric objects, and show that it reduces the number of

distance computations needed.
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Preface

This thesis is the culmination of �ve years education at the Institute of Infor-

matics at the Norwegian University of Science and Technology.

This thesis is part of the iAD (Information Access Disruption) - project,

which is a collaboration between FAST Search and Transfer and NTNU.

We would like to thank Magnus Lie Hetland for his help and support with

the thesis.

Through this project we managed to �nd an error in the sorting method in

the standard library for the Jython programming language. Although this did

not directly in�uence this thesis (it was found by accident while trying to debug

a method), we mention it here to show the work done. The bug-report can be

found at http://bugs.jython.org/issue1835099

Parts of this thesis has used text from the fall project of 2007, which had the

same focus as this thesis. These parts are Section 2.1.2 about AESA/LAESA ,

2.3.6 about CM-Tree and parts of the Introduction chapter.

3

http://bugs.jython.org/issue1835099


4



Contents

1 Introduction 9

1.1 Goal of the Master thesis . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Metric Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Space Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Ball Partitioning . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Hyperplane Partitioning . . . . . . . . . . . . . . . . . . . 11

1.4.3 Voronoi Diagram . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Examples of Metric Spaces . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Minkowski Distance . . . . . . . . . . . . . . . . . . . . . 12

1.5.2 Edit Distance . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.3 Quadratic Form Distance . . . . . . . . . . . . . . . . . . 13

2 Metric Indexing Methods 15

2.1 Pivoting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 AESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 LAESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Tree Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 SA-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Sparse Spatial Selection Tree . . . . . . . . . . . . . . . . 19

2.2.3 Geometric Near-Access Tree . . . . . . . . . . . . . . . . . 19

2.2.4 Excluded Middle Vantage Point Forest . . . . . . . . . . . 20

2.2.5 Hybrid methods . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 M-Tree Based Methods . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 M-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Slim Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 E�cient Metric MST Calculation . . . . . . . . . . . . . . 24

2.3.4 PM-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 M*-Tree and PM*-Tree . . . . . . . . . . . . . . . . . . . 26

2.3.6 CM-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5



2.4 Clustered Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 List of Clusters . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Hierarchy of Clusters . . . . . . . . . . . . . . . . . . . . . 29

2.5 Similarity Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 ρ-split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 D-Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Implementation 33

3.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Jython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Bonsai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Euclidean . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Clustered Euclidean . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 Edit Distance . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.4 Quadratic Form Distance . . . . . . . . . . . . . . . . . . 36

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 D-Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Excluded Middle Vantage Point Forest . . . . . . . . . . . 37

3.4.3 SA-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.4 Hierachy of clusters . . . . . . . . . . . . . . . . . . . . . 38

3.4.5 GNAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.6 M-Tree Based Methods . . . . . . . . . . . . . . . . . . . 38

3.4.7 E�cient Metric MST Calculation . . . . . . . . . . . . . . 40

3.4.8 Using language constructs to implement hybrid methods . 41

4 Results and Discussion 43

4.1 SSS-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Spatial Approximation Tree . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 HC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Excluded Middle Vantage Point Forest/D-Index . . . . . . . . . . 46

4.3.1 EMP-partition . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 D-Index vs EM-VP-Forest . . . . . . . . . . . . . . . . . . 46

4.3.3 Language Constructs to Implement Hybrid Methods . . . 46

4.3.4 Tree Based Methods . . . . . . . . . . . . . . . . . . . . . 48

4.4 PM-Tree Pivot Selection . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Number of Pivots in the PM-Tree . . . . . . . . . . . . . . . . . . 50

4.6 E�cient Metric MST Calculation . . . . . . . . . . . . . . . . . . 51

4.7 M-Tree Based Methods . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Comparison of The Most Promising Methods . . . . . . . . . . . 54

6



5 Conclusion 57

6 Future work 59

7



8



Chapter 1

Introduction

1.1 Goal of the Master thesis

The goal of this project is to investigate and implement new methods and ap-

proaches to indexing metric data, as well as benchmarking these methods to see

if they show an improvement when compared to existing methods.

1.2 Background

Search technology is the art of trying to �nd matches to a query in data, and

at the same time try to keep searches e�cient and accurate. Traditionally,

the notion of search technology was understood to only include textual search,

where the search query is a word or a phrase, and the data is a collection of

documents. Search on non-textual data has usually been done by searching

meta data, or by searching the context around the data. An example of this is

Google Image Search, which searches the HTML document where the image is

located, and does not look at the image itself.

For search in non-textual data where textual meta data is lacking, other

approaches has to be taken. One approach that has seen signi�cant promise is

metric indexing.

1.3 Metric Indexing

Metric indexing is a method for indexing data where little or nothing is known

about the data, except for a distance function between objects. To be used

with metric indexing methods, the distance function has to have the following

properties:
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d : X× X→ R+ (1.1)

d(x, y) = 0 ⇐⇒ x = y (1.2)

d(x, y) = d(y, x) (1.3)

d(x, z) < d(x, y) + d(y, z) (1.4)

This distance function and the objects together create a metric space. The

metric space is usually described a the tuple (U, d), where U is the universe of

objects and d is the distance function over the objects.

The most important property when using metric indexing is the triangle

inequality(1.4). Knowing this, we can exclude objects that we know are outside

thre range of our query, without actually doing the distance computation itself

(which might be an expensive operation).

This makes metric indexing good for non-domain-speci�c indexing, with the

ability to plug in a type of data and make it indexable without worrying about

what type of data is indexed. Of course, this is not always true - some data

structures will have a structure that makes it fast with one kind of indexing,

but slow with another.

In our master thesis we will try to document di�erent indexing methods, as

well as do tests to �nd which ones shows the best promise for di�erent metrics.

A weakness with many other tests of metric indexing methods is that it has

usually been done on distances between vectors. A problem with this is that

metric indexing often is meant for problems that is more advanced (and more ex-

pensive), and where the metric space doesn't necessarily share any resemblance

with an euclidian space.

1.4 Space Division

In this section we present di�erent methods to divide up a metric space into

partitions. Most of the metric indexing structures we present later use one or

more of these methods to organize their data.

1.4.1 Ball Partitioning

Ball partitioning is a basic way of dividing up a metric space. The partitioning

is de�ned by a ball (c, r), where c is the center object of the ball, and r is the

radius. All objects where d(o, c) <= r is de�ned to be inside the ball. All

objects where d(o, c) > r is de�ned to be outside the ball.
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A variant of ball partitioning is to partition into multiple shells. This is done

by de�ning k balls (c, ri)(where ri < rj ⇐⇒ i < j). The space is then divided

into shells by the limit of each ball, so that all objects where ri < d(o, c) <= ri+1

falls into shell i+1. Objects where d(o, c) <= r0 falls into shell 0, while objects
where rk−1 < d(o, c) falls into shell k − 1.

Excluded Middle Partitioning

A special case of multiple shell partitioning is the excluded middle partitioning

(EMP). With EMP we use two balls ((c, r − ρ), (c, r + ρ)) to divide the space,

where ρ is a constant that de�nes the width of the excluded middle, and r is the

division radius. Using the triangle inequality, we know that if d(c, o) ≤ r, o has
a distance of at least ρ to all objects in the outer shell. Similarly, if d(c, o) ≥ r,
o has a distance of at least ρ to all objects in the inner shell. This property is

exploited by several indexing methods.

1.4.2 Hyperplane Partitioning

Hyperplane partitioning works by selecting two objects as pivots, and then

partition the objects depending on the distance from each pivot. The division

may either divide the space so that that an object belongs to the pivot that

is the closest, or it may divide it so that there is an equal amount of objects

belonging to each pivot. This is done by �rst calculating the distance between

the pivots and all objects, �nding the value d(o,p1)
d(o,p2)

for all objects o. The median

of these values are found, and the objects are split accordingly.

The name hyperplane refers to the boundary between the two sets, which

forms a hyperplane if the space is Euclidean.

1.4.3 Voronoi Diagram

A Voronoi diagram of a metric space U is a decomposition de�ned by objects

in a subset S ⊆ U . The space is divided into parts called Voronoi Cells, where

the Voronoi Cell of s ∈ S is de�ned so that every object in the cell is closer to

s than to any other object in S. Formally it can be described as:

V C(s) = {p ∈ U |∀s′ ∈ S − {s}, d(s′, p) > d(s, p)}

The Voronoi diagram is a generalization of hyperplane partitioning, since a

Voronoi Diagram where |S| = 2 is the same as a hyperplane partition.

Some objects may fall on the edge between two or more cells (if d(t, p) =
d(s, p)), and are not technically in any cell. In a metric indexing implementation
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of a Voronoi Diagram decomposition, these are usually just assigned to one of

the cells.

1.5 Examples of Metric Spaces

In this section we will present a few of metric spaces. This is obviously not

intended to be a comprehensive list, but the selected distances are the ones we

have focused on in this thesis.

1.5.1 Minkowski Distance

Minkowski distances is a group of distances over an Euclidean space, which

includes the standard Euclidean distances. The di�erent Minkowski distances

are usually denoted as Lp, where Lp is de�ned as

Lp = p

√√√√ n∑
i=1

|xi − yi|p

L1 is more often known as the Manhattan distance, L2 as the standard

Euclidean distance, and L∞
1 as the Chebyshev distance 2. The running time

of a distance computation is O(k), where k is the number of dimensions in the

space.

How the distances are de�ned in a plane can be seen in Figure 1.1 to Figure

1.4, where the green dot represents the centre, and the red line represents the

set of all points which are equidistant to the centre.

1.5.2 Edit Distance

The edit distance is de�ned as the work that is needed to transform one string

into another, using only insert (insert a character somewhere in the string),

delete (remove a character from the string) and replace (replace one character

with another) operations. In the generalized version it is also possible to apply

weights to each of these operations, and give di�erent weights depending on

which character is inserted/replaced/deleted.

For the edit distance to be a metric, a few restrictions have to be imposed.

First, the cost of a delete must be equal to the cost of an insert(so that symmetry

holds). Second, the cost of replacing any given character a with any given

character b has to be the same as replacing character b with a.

1L∞ = maxn
i=1 |xi − yi|

2This distance is also called the chessboard distance, named because this is how one would
measure how far a king in the game of chess would have to move to get from one square to
another.
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Figure 1.1: L1 metric Figure 1.2: L2 metric

The running time of a distance computation is O(nm) where n is the length

of the �rst string, and m is the length of the second string.

1.5.3 Quadratic Form Distance

The Quadratic Form Distance (QFD) is a distance function that computes the

di�erence between two histograms by comparing every bin in the �rst histogram

with every bin in the second histogram. The correlation between two bins in

the histograms (de�ned by a correlation function) is used to weight the distance

between the two bins. QFD may be used with multidimensional histograms.

QFD(a, b) =
∑

0≤i,j<n

|ai − bi| |aj − bj | corr(i, j)

QFD is generally not a metric, but according to [NBE+93], if corr(i, j) = 1 −
d(i, j)/dmax, where d(i, j) is the euclidean distance between bin i and bin j (in

the histogram), then QFD is a metric.

In this Master thesis, we have implemented QFD to measure the di�erence

between images. Each image is �rst converted to points in a 5-dimensional space,

3 dimensions (L, a, b) for colors in the CIELAB colorspace, and 2 dimensions

(x, y) for the plane coordinates. A 5-dimensional histogram is then created for

each image by simply dividing the space into 5-dimensional bins of equal size.

13



Figure 1.3: L6 metric Figure 1.4: Linf metric

We choose d(i, j) =
√
l2 + a2 + b2 + γ(x2 + y2), where γ is a value between 0

and 1 that de�nes how much the plane coordinate dimensions in�uences the

distance.
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Chapter 2

Metric Indexing Methods

2.1 Pivoting Methods

Pivoting methods is a family of indexing methods that at indexing time �nds

the distance between all objects in the metric space and a set of objects called

pivots(this set may be a subset of the objects or a totally disjoint set). The

distances are used when searching by �rst �nding the distance between the

query object and all pivots, and then pruning out objects that cannot be in the

query (usually by using the triangle inequality to �nd a lower bound for the

distance between the query and the objects).

2.1.1 AESA

Approximating and Eliminating Search Algorithm (AESA), �rst mentioned in

[Vid86], is an indexing method where all objects can be looked at as pivot

objects. When indexing, the distance for every pair of objects in the data set is

computed and saved in a matrix. When doing a range search, a random pivot

is chosen and the distance from the query to this pivot is computed. A lower

bound distance for all the objects in the data set is computed by using the

equation |d(q, p)− d(p, o)| < d(q, o)→ dlo(q, o) = |d(q, p)− d(q, o)|. All objects
where dlo(q, o) < r are then removed from the set of possible results. A new

pivot is chosen from the the result set, and the lower bound is updated.

When choosing a pivot, the pivot which has the lowest lower bound is usu-

ally chosen. The rationale behind this is that the lower bound is used as a

heuristic for the actual distance to the object. If the actual distance is low, it

is hypothesized that there is a higher chance that it will remove a higher num-

ber of objects. This isn't necessarily true, but works for data sets where the

distribution of distances is fairly uniform.
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When searching with AESA, it is also possible to keep track of the upper

bound (du = d(q, p) + d(p, o)). If du(q, o) <= r, one can add the object to the

result set without actually computing the distance to it.

When compared to other methods, AESA performs up to an order of magni-

tude faster than other methods, and for many data sets it runs in O(1) distance
computations. This comes at a cost, however, memory usage is O(n2), and the

extra CPU time when running a query is up to O(n2).

The running time can be reduced with usage of Reduced Overhead AESA

(ROAESA)[Vil85].

2.1.2 LAESA

The main drawback of AESA (CPU and memory usage) is addressed by Linear

AESA (LAESA)[MOC96]. LAESA is based on AESA, but has as the main

di�erence that it uses only a �xed number of pivots when indexing the dataset.

This reduces the memory usage to O(nm),where m is the number of pivot

values. With m = n, LAESA is essentially AESA. With a smaller m we get

a higher number of distance computations when performing searches, meaning

that LAESA is trade-o� between CPU/memory and distance computations.

The number of pivots that is needed to get a reasonable running time (compared

to AESA) is not necessarily known, and may be di�erent in di�erent depending

on the nature of the metric space.

Pivot Selection

The selection of good pivots is important to achieve good performance for in-

dexing methods with a �xed number of pivots (like LAESA) [BNC01]. The

original selection method for these methods was to choose the pivots randomly.

This may however produce suboptimal pivots. An example is if the pivots that

are chosen are close to each other. In a query, the pivots will then prune the

same objects, making it meaningless to check both pivots.

To improve this we can use heuristics when choosing pivots. One of the most

obvious heuristic is to try to get pivots as far away from each other as possible.

This can be done by �rst choosing a random pivot as the �rst pivot. We then

choose the object that is the furthest from this object as the next pivot. We

continue is the same manner, always choosing the object where the minimum of

distances to the previous pivots are maximized. Generally, it can be described

by the following equation:

max
o∈D

(
min
p∈P

d(o, p)
)
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Another way of improving the pivot selection is the Bustos method[BNC01].

This is basically a method that tries to maximize |d(q, p)− d(q, o)| for objects.
The rationale of this is that a high value here will result in a higher lower bound

distance for objects, meaning that more objects will be pruned in a query.

The lower bound for the distance between a query and an object is then

DP (q, o) = max
p∈P
|d(p, q)− d(p, o)|

where P is the set of all pivots.

The Bustos method tries to maximize this iteratively by �rst starting with

an empty set P of pivots. It then samples N di�erent objects from the data set

in each iteration and tries to �nd the object n from these objects that maximize

∑
(q,o)∈A

DP+{n}(q, o)

where A is a set of sample queries, picked at random from the data set.

2.2 Tree Based Methods

Tree based methods generally divide up the query (by a given partition method)

into di�erent sets, and then recursively divides up each subset in the same way.

The methods vary mainly in the following ways:

Division method: The tree can divide in many di�erent ways on each level,

using balls, hyperplane division or Voronoi division.

Branching: The number of branches on each level varies from method to

method, and the amount may either be static or dynamic (dependent

on the metric space).

2.2.1 SA-Tree

Spatial Approximation(SA), �rst mentioned in [Nav99], is a method that tries

to view all objects as nodes in a Voronoi graph1. When searching one moves

from object to object on the graph so that the next object is always closer to the

1There isn't a de�nite de�nition on what constitutes a Voronoi graph in a metric space.
In Euclidean space, it is the graph between centers in a Voronoi diagram, where the edges
of the graph are between neighbours. It isn't possible to transfer this directly to a metric
space. This is because there may exist an edge (a hyperplane) that is not part of the set to be
indexed (but that is part of the universe, and may thus be a query object), which makes two
objects neighbours. Some metric spaces may also not have a Voronoi graph at all. A more
thorough discussion of this can be found in the mentioned paper.
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query. When an object is reached so that it is not possible to move to another

object that is closer to the query, we know that the object is the closest.

This idea is generally not good for a non-Euclidean metric space, since there

is not enough information in just distance operations to make a Voronoi graph

(according to [Nav99]). This means that when we try to �nd out if any object is

closer to the query than our last object, we may have to compute the distance

to all other objects to be sure.

The SA-tree tries to solve this by only using this method on a subset of the

objects, where more information is known. For each node in the tree, a center

object a ∈ S and a list of neighbouring objects N(a) is de�ned. This list of

neighbours have the following property:

∀x ∈ S, x ∈ N(a)⇔ ∀y ∈ N(a)− x, d(x, y) > d(x, a) (2.1)

This means that N(a) is a set of objects so that every neighbour is closer

to a than to any of the other neighbours. The tree is de�ned recursively, so

that each neighbour becomes the center of a new tree. The remaining objects

are then assigned to the neighbour that is the closest. We also keep track of

the maximum distance R(a) to any object in any sub-tree (this is to improve

e�ciency at query time). The tree-construction continues until there is only one

object left in each tree.

It is easy to see that there are several sets of neighbours that will ful�ll (2.1),

and �nding the best set (the one with the fewest neighbours) is not trivial. The

method proposed by [Nav99] is to sort all objects by the distance to the center

object, and then add objects to the neighbour list if they don't break (2.1).

When we do a range search we �rst compute the distance between the query

object and all objects in the set a∪N(a) (and add any object that has as distance
less than range to the result-set). We then �nd the object that is the closest, c.

We also have a variable t (tolerance) that is initially set to 2·range when the root
is queried. We then only go further down in the trees {∀b ∈ N(a), d(b, q)− t <
d(c, q)}, and recursively search each tree with tchild = tparent−(d(b, q)−d(c, q)).

Variations

Several variations of SA-tree has been proposed. The Dynamic SA-tree (DSA-

tree)[NR01] is a dynamic version of SA-tree, which has almost the same number

of distance operations as SA, while adding the possibility of adding and removing

objects from the tree dynamically. The HSA - tree (Hybrid SA-tree)[AMNR03],

is a method that combines SA-tree with pivoting, using the center objects as

pivots in the tree.
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2.2.2 Sparse Spatial Selection Tree

Sparse Spatial Selection (SSS) is a method originally developed to �nd good

pivot objects (see [BFPR06]) in pivot-based methods like LAESA. It works by

only adding new pivots if they are a certain length from all other pivot objects

so selected far.

The method goes through the list of objects and adds an object to the list

of pivots if the distance to all pivots chosen until then is more than 0.4dmax2,
where dmax is the maximum distance between any two objects in the list of

objects (in reality, dmax is approximated to 2rc, where rc is the covering radius

of a given center object).

SSS is unique in that it automatically decides how many objects should be

chosen as pivots, by automatically having more pivots if the intrinsic dimen-

sionality is high.

The SSS-tree[BPS+08] is a tree based on the SSS pivot selection method, by

using SSS on each level of the tree to �nd out which objects should be chosen as

centers on the next level of the tree. The tree is then built recursively, by �rst

putting new objects into a bucket, and then creating a tree when the size of the

bucket is above a given maximum bucket size. The maximum distance from the

center object to an object in a sub-tree is saved when creating the tree.

A range search is performed by recursively going down the nodes where the

range ball intersects with the ball of the tree (the ball with the center of the

tree as the center object, and the maximum distance as the radius). When a

bucket is reached, a standard linear search is done.

Variations

The SSS-tree is quite new (at the time of writing, the paper that mention it

has not yet been published), but it has an obvious improvement when it comes

to the bucket, which could be replaced with an AESA/LAESA implementation

instead of a linear search.

2.2.3 Geometric Near-Access Tree

Geometric Near-Access Tree (GNAT) was �rst proposed by [Bri95]. The method

works by recursively dividing up the metric space into a Voronoi diagram This

is done by �rst selecting k objects as pivots (called split points in [Bri95]). The

selection of pivots may be random, or a general pivot selection technique as

explained in 2.1.2 may be used. The pivots are then indexed in a similar way

to AESA, computing the distance between every pair of pivots. The remaining

2Why 0.4 is chosen is explained in [BFPR06]
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objects (the objects not selected as pivots) are assigned to the pivot which is

the closest, and then indexed recursively in the same way.

Search is done by going through all pivots to see if the query ball intersects

with the Voronoi Cells of the pivots. An AESA-like method is used to keep the

number of distance operations at a minimum, so that cells completely outside

the query ball (which is determined using triangle inequality) is not considered.

Since the tree may become very unbalanced, the authors proposes to make

the number of pivot objects further down in the tree dynamic. This is done by

�rst assigning a degree of k to the root node. Then each sub-tree get a degree

k′ depending on the amount of objects applied to that sub-tree such that the

average degree is k. This ensures the balance of the tree.

Variants of GNAT includes EGNAT, which saves the distance from the cen-

ter object to all objects (which may speed up distance evaluations in the leaves).

We also propose a further generalization of EGNAT called AGNAT, which trans-

forms into an AESA structure if the size of the data set gets below a certain

value.

2.2.4 Excluded Middle Vantage Point Forest

The Excluded Middle Vantage Point Forest (EMVPF) structure is a tree based

method that optimizes search for certain range, de�ned when indexing. It is

based on the Vantage Point (VP) tree, which works by recursively dividing up

the space in two by using ball partitioning. Usually the median distance is used

to divide the two spaces.

The Excluded Middle VP (EMVP) -tree is generalisation of this. Instead

of using ball partitioning, it uses Excluded Middle Partitioning. A value ρ is

chosen, and on each level all objects where med − ρ < d(o, c) < med + ρ are

removed. The objects which are removed are put in a new tree, which is then

recursively indexed, making it a forest of trees.

Search is done by going through each tree in the forest separatly. Then on

each node, the distance to the center object is computed. If the distance is

less than the query range, we add the center object to the result set. We then

recurse the left sub-tree if d(q, c) <= med − ρ + r, and the right sub-tree if

d(q, c) >= med + ρ − r (where q is the query and r is the range). If r < ρ we

can guarantee that only one sub-tree will be traversed.

A more extensive analysis can be found in [Yia98].

2.2.5 Hybrid methods

Tree-based methods are capable of excluding large parts of the search space at

once (for example, pruning out whole subtrees when it is known that the objects
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cannot be in the search range), but when the search gets closer to the leaves the

search is often less e�ective, often requiring to query all objects of a sub-tree.

Hybrid methods try to combine the good aspects of tree-based methods

(small memory footprint, less IO, etc.) with pivot-based methods (small number

of distance computations).

One way of implementing this is to go from a tree-based to pivot-based

implementation when the number of objects in a sub-tree get below a certain

threshold. The objects of this sub-tree (usually called a bucket) is then indexed

using a pivot-based method like AESA or LAESA.

A variant of this hybrid method is to use the fact that when an object in

the tree is reached, it is usually known for sure that the distance between the

query object and a certain set of objects (usually the ancestors of that object )

has already been computed. If these objects are known at indexing time they

can be used as pivots for the object. Pivot �ltering can then be added with no

cost (in terms of distance computations) since the distance to the pivot objects

has already been computed.

2.3 M-Tree Based Methods

Methods in the M-Tree family of methods are, as the family name implies, tree-

based methods. However, because of the large number of methods that have

been proposed within this family, they are discussed in their own section.

M-Tree based methods are designed to be stored on disk, and to not only

reduce CPU-costs (by lowering the number of distance computations), but also

reduce I/O-costs (by reducing the number of disk pages that need to be ac-

cessed). They attempt to accomplish this by storing each node in the tree in a

single disk page. This puts a natural limitation on the size of each node.

M-Tree based methods generally support both dynamic insertion and dele-

tion of objects, without incurring the large reconstruction costs that often plague

other methods [ZADB05]. M-Trees are grown in a bottom up fashion, in the

same way that R-Trees [Gut84] and B-Trees [Com79] are. Objects are inserted

into leaf nodes, and the leaf nodes are then split if they get too large. If the

parent node get too large after a split, it in turn is split, and this propagates

up the tree if necessary. If the root node is split, a new root node is allocated,

and the tree grows up one level. This way of growing the tree ensures that it

remains balanced.
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2.3.1 M-Tree

The standard M-Tree was �rst proposed in [CPZ97]. The M-Tree design is

pretty simplistic, and has partly because of this proved to be an excellent basis

for other ideas to expand on.

Each internal node in the tree, has an associated pivot object and a covering

radius. These two properties acts as a kind of de�nition of the node. Every

object contained in the node or its sub trees is guaranteed to have a distance

of no more than the covering radius from the pivot. When performing searches

on the tree, these properties of a node can be used for pruning.

Internal nodes in the M-tree store up to m tuples 〈p, rc, d(p, pp), ptr〉 repre-
senting child nodes. p is the child's pivot, and rc is the corresponding covering

radius. pp is the parent's pivot, and ptr is a pointer to the child node. The

distance d(p, pp) is stored to enhance pruning when searching the tree.

Leaf nodes' entries do not point to child nodes. rc and ptr are therefore

omitted, and entries are stored as tuples 〈p, d(p, pp)〉.
When a new object o is to be inserted into an M-Tree, a suitable leaf node has

to be located. The leaf node should ideally be one that contains other objects

that are close to o. The search for the leaf node starts at the root, and descends

down the tree until a leaf node has been selected. At each level, the child node

that requires the least extension of its covering radius to accommodate the new

object is selected. If there is more than one node that require no extension of

its covering radius, the node that minimizes the distance d(p, o) is selected.

There are several possible strategies proposed that the M-Tree can use when

splitting a node. The strategy the authors outlined as the one yielding the best

tree is mM_RAD_2. This strategy selects the split that results in the maximum

covering radius of the new nodes being the lowest.

Range Searching with query object q and radius r is done as follows: The

search starts at the root node. Each entry 〈p, rc, d(p, pp), ptr〉 is examined. If

|d(q, pp)− d(p, pp)| − rc > r, we don't have to calculate the distance d(q, p) in

order to know that no objects from the sub tree are in the result set, and we

do not have to search the sub tree pointed to by ptr. Otherwise we compute

d(q, p). If d(q, p) − rc > r, again we do not need to examine the sub tree ptr

points to. If none of these criteria hold, we examine the sub tree recursively.

2.3.2 Slim Tree

The Slim Tree was �rst proposed in [CTTSF00], and is a modi�cation of the

M-Tree. The Slim Tree makes no modi�cations to the structure of the M-Tree,

but changes the construction procedure with three goals in mind. One is to

make the tree more compact (reduce the number of nodes in the tree), another
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is to reduce construction time, and a third is to make the resulting tree more

suited for e�cient range queries. It tries to accomplish all of this by making

three adjustments to the M-Tree construction process.

When an object is to be inserted into the Slim Tree, a suitable leaf node is

located in a di�erent way than the one the M-Tree uses. Like the M-Tree, it

�rst tries to �nd a node that already covers the area where the object is located.

But if there is more than one candidate, the node with the minimal occupancy

is chosen. The M-Tree on the other hand, would pick the one where the distance

to the pivot is minimal. When no nodes cover the incoming object, the node

with the pivot that is closest to the object is chosen. This is another di�erence

from the M-Tree, which in this case would have picked the node that required

the least radius extension. This new way of choosing suitable leaf nodes tend

to �ll insu�ciently occupied nodes �rst, thereby helping to make the tree more

compact.

Another improvement the Slim Tree o�er, is to reduce the relatively heavy

construction cost of the M-Tree. Using the mM_RAD_2 splitting policy, the M-Tree

has an O(n3) time complexity for its splitting operations, where n is the number

of entries in a node. The Slim Tree proposes to use a Minimum Spanning Tree

(MST) algorithm for �nding a good split faster. The idea is to �rst �nd the

MST of the entries in the node to be split, then remove the longest edge. The

two disconnected subtrees remaining will then contain the entries that go into

each new node. This approach can sometimes result in an unbalanced split, so

the authors suggest picking the most suitable among the longest edges (if there

are more of them), where most suitable means the one resulting in the more

balanced split. If no good edges are found, we accept the unbalanced split, and

delete the longest edge.

The MST splitting algorithm as outlined by the authors, have an O(n2 log n)
time complexity, and uses n(n − 1)/2 distance computations. However, as we

will see in section 2.3.3, there may be better alternatives.

The �nal improvement the Slim Tree brings to the table, is the Slim-Down

algorithm. The Slim-Down algorithm is applied as a �nal post-processing step,

and aims to reduce the fat-factor of the tree.

De�nition 1. Let T be a metric tree with height H and M nodes, M ≥ 1. Let
N be the number of objects. Then the fat-factor of a metric tree T is

fat(T ) =
Ic −H ∗N

N

1
M −H

where Ic denotes the total number of node accesses required to answer a point

query for each of the N nodes in the metric tree.
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As can be seen from the de�nition, the fat-factor is a number between 0 and

1 inclusive, that tells you how much overlap there is between nodes at the same

level of the tree. The Slim-Down algorithm tries to reduce the fat-factor in the

following way: For each node N in the tree, locate the furthest object/sub node

S from the pivot. Then search the siblings of N , to see if any of them completely

cover S. If one does, move S from N to the sibling. If S was the only furthest

object from N , this will reduce the covering radius of N , without increasing the

covering radius of the node S was transferred to. Since S is no longer within

the covering radius of N , we have reduced the fat-factor of the tree.

2.3.3 E�cient Metric MST Calculation

The Slim Tree uses a metric Minimal Spanning Tree to provide an e�cient way

of splitting nodes. However, we noticed during the course of our work that the

approach to building the MST used, is ine�cient both in algorithm complexity,

and in the number of distance computations needed.

In the original Slim Tree paper [CTTSF00], the MST algorithm is presented

as having complexity O(n2 log n)), where n is the number of nodes. However,

when using Prim's algorithm with an adjacency matrix implementation, this

complexity reduces to O(n2) [CLRS01]. The standard way of computing the

MST of a graph using Prim's algorithm involves computing all n(n− 1)/2 pair-

wise distances in the graph. This approach does not however take advantage of

the properties of metric spaces to reduce the number of distance calculations.

To take more advantage of these properties, we exploit the fact that not all

distances are needed to start running the algorithm. Prim's algorithm works

by maintaining a list, storing for each unmarked node, the shortest edge from a

marked node to that node. At each iteration of the algorithm, we mark the node

N that has the shortest edge leading to it, and include that edge in the MST.

Then we update our list of shortest edges, by examining all edges leading from

N to unmarked nodes. In this �nal step, we can avoid computing the distance

from N to the unmarked node Nu if there is a node Np that has already had

its distances d(Np, N) and d(Np, Nu) calculated, and |d(Np, N)− d(Np, Nu)| ≥
Dshort where Dshort is the shortest edge found leading from a marked node to

Nu so far.

Unfortunately, this change of Prim's algorithm changes the complexity from

O(n2) to O(n3). A possible compromise is to only consider the closest node to

Nu found so far as a candidate for Np. Intuitively, closer nodes are better suited

for estimating the distance to the node. Additionally, we are guaranteed to have

already calculated d(Np, Nu) if this node is used. Implementing this approach

maintains the O(n2) time complexity of Prim's algorithm, while it potentially
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reduces the number of distance computations needed.

2.3.4 PM-Tree

The PM-Tree (Pivoting M-Tree) combines the M-Tree with principles from the

LAESA approach (see section 2.1.2). It was �rst proposed in [Sko04].

In a normal M-Tree, the pivots used are local to each node, and every node

entry has only one pivot for possible �ltering. The PM-Tree adds a number np of

global pivots to the structure. nhr (nhr ≤ np) of these pivots are used for entries

of internal nodes, and npd (npd ≤ np)are used in leaf node entries. Leaf node en-

tries 〈p, d(p, pp), DP 〉 now also contain the distance from the object to all npd leaf

pivots, represented by the array PD. Similarly, internal nodes get augmented

by an array HR of length nhr, and now looks like 〈p, rc, d(p, pp), ptr,HR〉. The
HR array however, is not an array of distances. Instead it is an array of pairs

of distances, representing the minimum and maximum distance from each pivot

to any object contained in the sub tree pointed to by ptr.

When an object is to be inserted into a PM-Tree, the distances to all np

pivots are computed and remembered �rst, so that they can be used to update

the HR and PD arrays of the tree without computing the same distance more

than once. After the node has been inserted though, only the npd distances

to the leaf entry pivots are remembered (in the leaf nodes). This could cause

splitting of leaf nodes to become a relatively expensive operation when npd <

nhr, since all the distances from objects in the leaf node to pivots that are

exclusive to internal nodes, need to be recomputed.

When initiating a range search on the query object q with range r, we can

utilize the HR and PD arrays to exclude sub trees, without computing any

additional distances (except from the distances from the query object to each

of the np pivots, computed once before the search starts). When looking at

internal node entries 〈p, rc, d(p, pp), ptr,HR〉, we no longer need to examine the

sub tree pointed to by ptr if the following expression is false:

nhr∧
l=1

d(q, pl)− r ≤ HR[l].max ∧ d(q, pl) + r ≥ HR[l].min).

Similarly, objects stored in leaf nodes need not be examined if the following

necessary condition is not met:

npd∧
l=1

(|d(q, pl)− PD[l]| ≤ r).

Since the new ways of excluding sub trees don't incur any additional distance
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computations, they provide a nice advantage over the M-Tree when performing

searches.

According to the authors, low values of npd needs the least number of disk

accesses when searching the tree. However, the number of distance computations

increases with lower values of npd. A good compromise is to use npd = nhr/4.
The number of disk accesses is in this case about the same as with the M-Tree,

while the number of distance computations is up to 10 times as low. Higher

values of npd does not reduce the number of distance computations signi�cantly.

2.3.5 M*-Tree and PM*-Tree

The M*-Tree and PM*-Tree are the result of adding a structure called �Nearest-

Neighbor Graphs� (NN-graphs) to the M-Tree and PM-Tree respectively. Nearest-

Neighbor graphs and the necessary modi�cations to the tree structure are de-

scribed in [SH07]. The modi�cations needed to make an M-Tree an M*-Tree,

and those needed to make a PM-Tree a PM*-Tree are virtually the same. There-

fore, we will only describe how to obtain an M*-Tree structure from an M-Tree

one.

The NN-graph structure is relatively simple. Every entry in a node contains

information about which other entry in the same node is the closest one, denoted

by NN(p), and how far away it is, denoted by d(p,NN(p)). Internal node

entries now are of the form 〈p, rc, d(p, pp), ptr, 〈NN(p), d(p,NN(p)〉〉, and leaf

node entries 〈p, d(p, pp), 〈NN(p), d(p,NN(p)〉〉. The purpose of the NN-graph is

to provide extra pivots for search pruning. As pivots closer to elements examined

are better for pruning than pivots farther away, NN-graphs provide each entry

with a potential pivot that is very good.

When searching a node in a M*-Tree, we gain an additional way of pruning

the search. When looking at an internal node entry, we can avoid searching the

sub tree pointed to by ptr if we have already computed the distance from the

query object q to NN(p), and |d(NN(p), q)− d(p,NN(p))| > rc + rq. Since

this new way of pruning cannot be done if we haven't already computed the

distance d(NN(p), q), we have to �sacri�ce� some entries in order to potentially

prune others.

Some entries may be the nearest neighbors of several other entries, while

other entries may not be the nearest neighbors of any entries. Clearly, the �rst

type of entry will be much better suited for a sacri�ce than the latter, since

it allows many more opportunities for other entries to be �saved� later. The

authors therefore propose using a �sacri�ce queue� to determine the order of

calculating distances to entries. The entries �rst in the queue are those that the

most other entries have as their nearest neighbor. When an entry is extracted
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from the sacri�ce queue, all entries that have that entry as their nearest neighbor

check if they can be pruned. The entries that can't be pruned are moved to

the front of the sacri�ce queue. Since it already has been determined that they

can't be pruned, they are now perfect candidates for sacri�cing.

2.3.6 CM-Tree

The Clustered Metric Tree(CM-Tree)3, as presented by [AS07] is another vari-

ation of the M-Tree structure. The CM-Tree o�ers several improvements over

previous M-Tree structures, the most important of which are outlined below.

Pairwise distance table

The biggest di�erence between the CM-Tree and other M-Tree structures is the

presence of a pairwise distance table in the nodes. The pairwise distance table

stores the distances between all entries within a node, and is used to signi�cantly

reduce the number of distance calculations needed for most of the CM-Tree's

operations.

Centered Navigation Object

A CM-Tree node maintains the property that its navigation object (pivot in

other M-Tree structures) is always the �central object� in the node. Every

operation on the CM-tree that potentially changes a node, also updates its

navigation object. This property of the CM-tree helps reduce the covering

radius and empty index volumes of nodes.

Object insertion

To �nd a leaf for insertion of a new object, the CM-tree recurses down from

the root. At each step it selects the node that minimizes, in order of priority,

the radius extension required to accommodate the new object, proximity of it's

navigation object to the object, and the associated covering radius. The pair-

wise distance table is used actively to reduce the number of distance measures

required to �nd the best path to recurse down.

3We didn't implement the CM-Tree in our thesis work. However, we found the CM-Tree
to be the best of the methods we implemented for our project last semester. We found it
interesting to analyze how the CM-Tree compares to the methods we implemented in this
thesis, and have therefore included the description of the CM-Tree from the project report
[FF07]
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Node split

The CM-tree's split operation di�ers from that of other M-tree structures in

several aspects. It may be triggered from a new �clustering criteria�, in addition

to when nodes over�ow. This is done so that objects that naturally belong in

di�erent clusters should also appear in di�erent nodes of the tree.

When splitting a node, not only two, but up to L nodes may be the result of

the operation. This is in line with the clustering criteria for splits; when a split

is initiated, objects that naturally appear close to each other should go into the

same nodes. Objects that aren't close to each other should go into di�erent

nodes.

Additionally, the CM-tree o�ers a new way of splitting nodes. It uses an

approach similar to that of the bu-Tree. It starts by assigning each object of

the node a separate �cluster�. It then iteratively merges the two closest clusters

to each other, until only two clusters remain. At each step, if the number of

clusters are less than or equal to L, the clustering is remembered as a candidate

partition.

When all the merges are done, the best partition is used in the split. Which

partition to use is dependent on a weight parameter W ∈ [0, 1]. A high value

of W means that having good clusters are most important. A low value means

having a compact tree is most important. The correct value of W depends on

the application.

2.4 Clustered Methods

Clustered Methods is a familiy of methods that all derive from the List of

Clusters(LC)-method. This method divides the objects into a list of clusters,

which are basically balls with a certain number of objects in them. If the query

intersects with a ball, the distance is computed to all objects in the cluster.

2.4.1 List of Clusters

LC, �rst mentioned by [CN05], is a simple method that is based on the VP tree.

The di�erence from the VP tree is that it is extremely unbalanced, since every

left sub-tree has a �xed size and every right sub-tree is a recursive LC.

LC works by choosing an object c as a center object (usually a random one),

and then assigning the h nearest objects in the data set to a cluster represented

by c. The rest of the objects in the data set is then divided in the same way, at

each step choosing a center object and selecting the h nearest object as objects

in the the cluster. The cluster ball is de�ned as the ball (c, rc), where rc is the
maximum distance between a center object and an object in the cluster.
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When searching, one simply measures the distance to the �rst center object.

If the query ball intersects with the cluster ball, one does a linear search through

all objects in the cluster. If the query ball is inside the cluster ball(d(query, c)+
range < rc), we can discard all the following clusters (since no object that

comes later is of interest).

A simple improvement on distance operations is to save all the distance

between the center object and all objects in the cluster. When the distance to

the center object is known, it is possible to refrain from computing the distance

to some of the objects in the cluster.

2.4.2 Hierarchy of Clusters

The Hierarchy of Clusters (HC) method is a generalization of the LC method,

�rst mentioned by [Fre07]. With HC, a binary tree is made by using the LC

method on each level, but instead of �xed number h in each cluster, a function

h(n) is used to determine how the data set is divided. Each cluster is then

divided recursively in the same way, until a minimum size has been reached.

Then the objects are stored in the same manner as a cluster is stored in LC.

Search is done in the same way as in LC, but instead of doing a linear search

on the objects in a cluster, a recursive search is done on the HC structure in

each cluster. When a leaf node is reached, a linear search is performed through

all objects in the leaf.

The HC structure resembles a VP(Vantage Point) - tree, if h(n) = n
2 . But

often, an unbalanced tree may be more e�cient (this is the rationale behind the

LC structure). [Fre07] proposes two functions for h(n), h(n) = n
k and h(n) = nk

2 .

This structure is also called Unbalanced Hierarchy of Clusters (UHC).

[Fre07] also mentions a structure called Parallel Hierarchy of Clusters (PHC)4.

This structure works in the same way as HC, but divides up each cluster into k

nodes of equal size. The nodes are selected by making a List of Clusters where

the bucket size is h(n)/k. The tree can be made unbalanced in the same way

as HC, thus creating the Unbalanced Parallel Hierarchy of Clusters (UPHC).

HC and its variations are easily combined with AESA, where AESA is used

in nodes when the size of the data gets below a certain limit.

2.5 Similarity Hashing

Similarity hashing (SH) was �rst proposed by [GSZ01] as an alternative to tree-

based hashing. SH works by dividing up the space into bins depending on the

4This is not a truly parallel method, it is called parallel because it helps with queries that
exploit bitparallelism (like certain implementations of edit distance)
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result of a hashing function (formally called a ρ-split - function). It is not

an indexing method per se, but an model for an indexing method that other

methods may be built on. The only presented method that is based on SH is

D-Index (which were de�ned by the same authors that de�ned SH).

2.5.1 ρ-split

The ρ-split function(sm,p)→ {0..m} is a function on a metric space that divides

the metric space into m+1 buckets, where any given element in bucket i < m is

separated from all elements in bucket j < m, i 6= j by at least 2ρ. All points that
cannot ful�ll these requirements (they are closer than 2ρ to a point in bucket

i < m, without being in bucket i) falls in bucket m, a special bucket called the

exclusion bucket. This is formalized in [GSZ01] as:

sm,ρ(x) < m ∧ sm,ρ(y) < m ∧ (sm,ρ(x) 6= sm,ρ(y))⇒ d(x, y) > 2ρ Separable property

ρ2 ≥ ρ1 ∧ sm,ρ2(x) < m ∧ sm,ρ1(y) = m⇒ d(x, y) > ρ2 − ρ1 Symmetry property

From these de�nitions we see that sm,0(x) 6= m. This enables us to be sure

that for all range queries with r <= ρ

∀x ∈ U, sm,0(q) 6= sm,ρ(x)⇒ d(q, x) > ρ ∨ sm,ρ(x) = m

The value m is often referred to as the order of the ρ-split function.

Combining ρ-splits

Usually ρ-split functions are binary (the order of the function is 2). But it may

also be useful to have functions that have a higher order. This can be obtained by

combining di�erent ρ-split functions. This is done by having the intersection of

all combinations of non-exclusion-buckets as buckets (in the combined function)

and the union of all the exclusion buckets as the exclusion bucket. E.g., if

you have two functions(s2,ρ1 , s2,ρ2 ), the combined function would have four non-

exclusion buckets: {s2,ρ1 = 0 ∧ s2,ρ2 = 0, s2,ρ1 = 0 ∧ s2,ρ2 = 1, s2,ρ1 = 1 ∧ s2,ρ2 =
0, s2,ρ1 = 1 ∧ s2,ρ2 = 1} while the exclusion bucket would consist of {s2,ρ1 =
2 ∨ s2,ρ2 = 2}. The order of this combined function is 4 (since there are 4 + 1
buckets).

2.5.2 D-Index

The D-Index was �rst mentioned in [DGSZ03], and is an implementation of

Similarity Hashing which uses Excluded Middle Partitioning (EMP) as its ρ-

split function.
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Excluded Middle Partitioning is a ρ-split function of order two, and de�ned

in SH-terms as:

empρi (o) =


d(pi, o) < dm − ρ : 0
d(pi, 0) > dm + ρ : 1

dm − ρ <= d(pi, 0) <= dm + ρ : 2


In D-Index, �rst a certain number of pivot objects are chosen. Then, all dis-

tances between the objects in the data set and the pivots are computed. For each

pivot the median distance is computed. The median distance is then selected

as dm for the EMP-function for that certain pivot object5. The EMP-functions

are then combined (as explained in 2.5.1), resulting in a ρ-split function of order

2np , where np is the number of pivots).

The objects are then put in buckets depending on the result from the com-

bined ρ-split function.

The exclusion bucket is then recursively indexed with D-Index (possibly with

a reduced number of pivot points) until a certain number of levels.

When a search is performed, we �rst �nd in which bucket the search object

is (by computing the ρ-split with ρ = 0). We then know that the result object

must either be in this bucket or in the exclusion bucket.

Search where r > ρ

Sometimes it may be required to do a search even though the search radius r

larger than ρ. This problem also occurs if we do a kNN-search where the kth

object is larger than ρ from the search object.

To solve this the search function is extended to also work for r > ρ. This

is done by �rst �nding all buckets that intersect with the query ball. This

is done by computing the empr−ρi (q) for the query object q. If any of the ρ-

split functions return 2, we have to check for the bucket inside and the bucket

outside. In the worst case we will have to go through all buckets (e.g. if r =∞,

all buckets has to be accessed).

The primary advantage of D-Index is that as long as the r < ρ,the amount

of distance operations has a maximum limit, de�ned by the number of levels

and the size of the biggest bucket. If the buckets does not exceed 1 IO-block,

then it can be guaranteed that the number of IO-accesses is equal to the number

of levels6. A disadvantage is that a good choice of ρ will vary from data set to

5During testing, it was found that for certain data sets (more speci�cally edit distance
between fairly short strings), a value di�erent than the median can be a good choice for dm.
This may happen if most of the objects in the data set falls in the excluded bucket of the
EMP

6Assumes that all pivots are in memory
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data set, so the data set has to be analyzed before indexing.
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Chapter 3

Implementation

3.1 Python

Python is an interpreted programming language, developed by Guido van Rossum.

It is a simple, yet powerful language, and is a good tool if you want to develop a

solution fast. It does not have the same execution speed as a low level language,

but makes up for it in development speed.

3.1.1 Jython

Jython is an implementation of the Python language, written for the Java Vir-

tual Machine. Since Jython compiles all classes into Java classes, it integrates

seamlessly with data structures in JAVA (like List and Map), and makes it easy

to include Java classes. All one needs to do is to import them as if they were

normal Python modules.

In this Master thesis we have exploited this property to write the CPU-

intensive parts of indexing function and distance evaluations in the JAVA Lan-

guage (which is several order of magnitudes faster than Jython), and write

the less CPU-intensive (and often more IO-intensive) parts in Jython (which

is generally easier to do and means less coding). Regular Python also has this

property (modules can be implemented in C), but since we had more experience

with the Java language, we chose to use Jython/JAVA.

3.2 Bonsai

One of the goals of this Master thesis was to expand a metric indexing method

library called Bonsai. The Bonsai library was started by Magnus Lie Hetland,

and tries to implement the whole range of known indexing methods.
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The library has a common interface for all methods.

All methods must have a constructor, which accepts a list of objects, as well

as a distance function over the objects. It is then assumed that the method will

do the necessary indexing of the objects. The method may have several argu-

ments, but all these must have default values, so the method can be instantiated

without knowledge of other arguments in the constructor, or the inner workings

of the method.

All methods must also have a method range_search(query,range), which

does a range search with the given query and range on the index. The values

returned can be in any order, and it is not required that distance computations

is performed on every object returned (e.g. if the method can guarantee that

an object is below the range, without doing the distance computation).

The methods may also have a method knn_search(query,n) which should

return the n closest objects to the query.

When the preproject to this thesis was started, only a handful of methods

was implemented, and the library lacked testing and benchmarking capabilities.

We have extended the library with several methods, all described in the

previous chapter. The library has also been extended with support for Edit

distance and Quadratic From Distance (it came originally only with Euclidean

metric). Since testing and benchmarking support was essential for this project,

this was added as well.

3.3 Metrics

The implementation of the metric spaces were done so that they could be used

with di�erent methods without changing how the methods work. This means

that indexing methods did not have to know the inner working of the distance

function to use it.
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3.3.1 Euclidean

We implemented the standard random Euclidean space to use in our test. The

Euclidean metric is simply vectors of n dimensions where each dimension is in

the range [0, 1]. The distance used is the L2 distance from the Minkowski family

of distances (see Section 1.5.1).

Generally, the higher the dimensions of an Euclidean space, the harder it is

to index. This is because higher dimensionality results in a smaller variation in

distances (meaning a higher and more narrow distribution plot). This means

indexing methods have a harder task the more dimensions there are. A more

thorough discussion of this can be found in [CNBYM01].

3.3.2 Clustered Euclidean

In real-world spaces, objects often have similar features/are clustered. For ex-

ample, in an image database (with a good distance function), a set of similar

images would be clustered (have a short distance to each other as compared to

other objects). To simulate this, we created a clustered euclidean space.

The clustered space is created by �rst randomly creating n center objects.

The remaining objects selects a random center object, and are placed with

Gaussian distribution from the cluster center. An object also has a small chance

of being placed totally random.

The distribution plot can be found in Figure 3.1. We see that an object has

a few objects that are quite near, while the rest of the objects are distributed

in almost the same way as the standard random Euclidean distance.

The two Euclidean spaces have a fairly low CPU-cost when it comes to

�nding the distance between two objects, which means that we are able to test

these methods on larger spaces.
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Figure 3.5: Screenshot of GUI for QFD. The �rst object is the query image, and
the rest is the results. The query image was part of the index, which is why the
�rst object returned is the same as the query.

3.3.3 Edit Distance

For the Edit Distance metric we have used the Holy Bible, Douay-Rheims Ver-

sion from Project Gutenberg[bib98] to use as a source of text. The text was

divided up in verses, spacing was removed, and the verses was converted to

lowercase. The distance function is the same as mentioned in 1.5.2.

3.3.4 Quadratic Form Distance

To create the QFD, we used images from the CLIC [MHGM05] collection of

images. The images are divided into groups depending on the motif of the image.

The division of the image into multidimensional histograms is con�gurable. The

sizes we used were 4 boxes in L dimension of the color space, 8 for the a and b

dimensions, and 2 for the x and y dimensions of the plane. We used 0.5 as the

weight for the position.

GUI for Image Search

To aid with developing QFD, we implemented a GUI that could index and query

images. The GUI is simple (but enough for our purposes), and shows the 10

nearest neighbours to an image, as well as the distance from the query to each

of the resulting images. It is also useful as a stand-alone program, to be used

as a demo on how metric indexing can be used with real world indexes.

The program uses the LAESA structure to index images.
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3.4 Methods

Here we describe how the di�erent methods have been implemented for Bonsai.

Some methods have been omitted, in cases where the implementiation did not

deviate from the description in the previous chapter.

3.4.1 D-Index

The D-Index has several implementation tweaks.

First o�, the Bustos pivot selection technique from 2.1.2 is used to choose

pivots on each level. This is also the method chosen in [DGSZ03] to choose

pivots.

Another tweak is how the division radius of the Excluded Middle Partition is

chosen. In [DGSZ03], the median is used. This distance may however not be the

best division radius. A scenario where this could be the case is if the metric space

is heavily clustered. The middle partition may then cover many objects, even

though another value for the partition may provide a better division of the data

set. We de�ne a space as better dependent on the result of a function dependent

on the size of the inner, outer and excluded partition. In our implementation we

try di�erent values for the Excluded Middle Partition so that it maximizes the

function f(i, o) = (i+o)−|i− o|, where i is the size of the inner partition and o

is the size of the outer partition. This is because we both want to minimize the

size of the excluded partition, as well as balancing the the amount of objects in

the inner and outer partition.

We also implemented hybrid pivot �ltering, meaning a small increase in

memory usage and a large decrease in the number of distance computations.

Since we have to compute the distance to all pivots on each level anyway, the

distance computation reductions for the objects come for free (disregarding extra

CPU time used for pivot �ltering).

3.4.2 Excluded Middle Vantage Point Forest

The EM-VP-Forest implementation is a hybrid implementation where the buck-

ets use center objects from nodes as pivots in the buckets. If implemented

naively, this would mean that the number of pivots is equal to the number of

levels in the tree (which is maximum log2(n)). To restrict this, we only use the

k last node centers as pivots. We have also used the the partition method as

described in D-Index to divide the spaces better (in case the median is not a

good choice).

We have modi�ed the EMVP-Forest a bit from the original paper. Since

the number of trees can be quite large (which makes indexing and range queries
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slow), we made a limit on the number of trees in a forest. We also gradually

decrease ρ for each tree in the forest, to refrain from having a big tree with all

the �leftovers� as the last tree in the forest.

3.4.3 SA-Tree

We implemented a variant of the HSA-tree[AMNR03], which again is a varia-

tion of the SA-tree. HSA is a tree that supports dynamic insertions (by using

timestamps) and pivoting.

Since we did not need dynamic insertions(this project has focused on static

structures), and it increased complexity of the implementation, we chose not to

implement the dynamic part of the tree.

[AMNR03] presents two ways of selecting which objects should be pivots.

The �rst uses the last n ancestors as pivots for an object, while the other use

the best of all objects that the objects has been compared to. [AMNR03] shows

that the latter method is only slightly better than the former, but requires more

memory (because the reference of the best objects has to remembered as well as

the distances). We chose to use the former since it was easier to implement and

used roughly the same number of distance operations while using less memory.

3.4.4 Hierachy of clusters

HC was implemented as described in 2.4.2. To ease implementation of other

cluster based methods, the implementation was done as open and extensible as

possible.

First, how objects were saved in buckets were done so that several methods

(AESA,LAESA) could be used. How clusters is split is also con�gurable, either

by a constant number (LC) or with a function (HC and UHC). More leaves per

node were also con�gurable (to help with PHC and UPHC).

3.4.5 GNAT

GNAT was implemented as described in 2.2.3. As with other implementations,

hybrid indexing was implemented. With GNAT, this was done by letting the

buckets being indexed with AESA. This limits the size of the buckets (since

memory/CPU usage is squared with the number of objects in the bucket), but

makes the method more e�ective.

3.4.6 M-Tree Based Methods

A few design decisions were made when implementing the M-Tree based meth-

ods. Since the Bonsai framework doesn't really care about anything but the
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number of distance computations made, several of the features of the M-Tree

makes little sense in our context. We have therefore eliminated some of these

aspects where it allowed for a simpler implementation.

One of the di�erences is that our implementation is completely in-memory,

rather than disk-based. The number of entries each node can accommodate, is

set in the constructor, rather than being tweaked to the size of disk pages. This

allows for more freedom in testing the impact di�erent node sizes have on the

M-Tree structures.

None of the implementations we made of M-Tree based structures take ad-

vantage of bulk-loading strategies for object insertion. Instead, we chose to

insert each object one by one, as if we had no knowledge of how many would be

inserted beforehand. Thus the results we get for construction time for M-Tree

based methods may not be accurate in cases where you can insert several objects

at once.

We have also chosen to not di�erentiate much between leaf nodes and internal

nodes of the trees. Leaf node entries are stored in the same format as internal

node entries, but with rc = 0 and ptr = null. This allows us to limit the amount

of special-case code to a minimum.

When performing a node split, we opted to distribute entries of split nodes

into all new nodes, instead of letting the node being split keep some of its entries.

The split node is then deleted from the tree. This is again done for simplicity

purposes, as it has no impact on the number of distance calculations required.

It is not however recommended for a disk-based approach.

Slim Tree

The Slim Tree is the only M-Tree based method that we let exploit the fact that

we know how many objects are to be inserted. We do this by only letting the

Slim-Down algorithm execute after all nodes have been inserted. This is because

the Slim-Down algorithm requires a lot of distance computations to run, and is

not meant to be executed after every single insert.

PM-Tree

We implemented the PM-Tree simply by subclassing the M-Tree, and adding

HR arrays to the entries. Instead of using PD arrays in leaf node entries, we

store the PD values as HR[i].min = HR[i].max = PD[i]. This way there is

still no need to treat leaf nodes any di�erent from internal nodes when pruning.

We also opted for using npd = nhr. This choice was made because the

bene�ts of using lower values of npd are seen in reduced I/O-costs rather than a

reduced number of distance computations. Since this thesis is about comparing
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the number of distance computations di�erent methods use, it seemed natural

to use the con�guration of each method that optimizes that metric.

M*-Tree and PM*-Tree

The M*-Tree and PM*-Tree were implemented by subclassing the M-Tree and

PM-Tree respectively. Unfortunately our design didn't allow for the PM*-Tree

to reuse the code for the M*-Tree (or vice versa), so we had to resort to a bit

of dirty copy-paste coding to implement both of these trees. This caused a few

bugs to need to be corrected twice, but the end result should still be good.

3.4.7 E�cient Metric MST Calculation

To be able to test our ideas on calculating Metric MST, we modi�ed our Slim

Tree implementation to allow alternate implementations for calculating MSTs.

We implemented both our O(n3) and O(n2) algorithm.

The Slim Tree runs into a slight problem when not calculating all the dis-

tances however. After the Slim Tree has decided how to split the graph into two

subgraphs, we need to locate suitable pivots for each of the two new nodes. The

optimal pivot for a subgraph is the one minimizing the maximum distance to all

the other nodes. When all the distances between nodes have already been cal-

culated, this is easy to �nd, and requires no extra distance calculations. When

all distances haven't been precalculated however, we cannot always be certain

that we have found the optimal pivot without calculating extra distances. We

came up with two possible solutions to this problem.

The �rst is to accept that we may not get an optimal pivot, and use the

center of the subtree we get from splitting the MST in two. That is, we ignore

the fact that the graph is more complex than the tree, and use the node that

minimizes the maximum distance to all the other nodes, when only traversing

edges that are part of the tree.

The second approach, is to use the distances we have calculated, and pick

the node that has the minimum maximal distance as a temporary pivot. If

this pivot has any uncalculated distances, we calculate them. If any of these

distances caused the maximal distance to become larger than that one of the

other nodes have, we pick the node that now is the �best�, and repeat the

procedure until no better nodes are found. This way of picking a pivot ensures

that the best node is used.

We chose to go with the second approach, since we are guaranteed to be

no worse o� using our method than using that of the original Slim Tree. This

should also help make testing construction costs of our splitting algorithm more

directly comparable to construction costs of the Slim Tree, due to the resulting
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Trees being almost identical (there can only be di�erences when two or more

nodes are tied for being best pivots).

3.4.8 Using language constructs to implement hybrid meth-

ods

As mentioned in section 2.2.5 it is possible to implement a hybrid method with

pivot �ltering, where the pivots chosen are only objects where the distance have

already been computed.

To implement this method, existing indexing methods may need to be mod-

i�ed to support �ltering by pivots. This is not necessarily a simple task, and

often the whole method has to be rewritten to facilitate the hybrid method. To

help with this, we propose a new approach to implement pivot �ltering in ex-

isting methods by using language constructs to make all distance computations

lazy. This means that no modi�cation has to be done to indexing methods.

We do this by wrapping the distance function in a separate class so that a

call to the distance function does not return the actual distance, but a reference

to a lazy evaluation object that represents the distance between the query and

the metric object. For each object, a set of pivots are de�ned at indexing time

(more about how these are chosen below). We then �nd the minimum and

maximum distance to the object by looking at the distance to pivots already

computed.

If the lazy object is compared with another lazy object, we �nd out if the

minimum and maximum distance for each object and see if the their ranges

overlap. If they don't, we can simply answer the comparison without actually

computing the distance. If they do, we compute one of the objects and again

check if they overlap.

In our scheme, arithmetic operations of distances are also supported. This is

done by computing what the minimum and maximum distances will be, depend-

ing on the arithmetic operation (for example will the minimum of an addition

of two objects be the sum of minimums of each object). If an arithmetic op-

eration is asked to compute the distance, only one of the lazy objects will be

computed, and the minimum and the maximum updated. This to refrain from

doing unnecessary distance computations.

It is hard to make a de�nite rule to which objects should chosen as piv-

ots. Although the method does not require that all pivot objects have to be

computed, pivot objects that have not already been evaluated will only use up

memory

One way of selecting pivot objects is to add all distance functions done

during indexing with an object as a possible pivot, and then selecting the k
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closest objects as pivot objects. This is a generally bad idea, since methods

may have comparisons with objects that it is known will not help when doing

search.

A small improvement is to add an object as an pivot only if it is the �rst

argument to the distance function. For instantce, if d(o1, o2) is computed during

indexing, o1 will be added as a pivot to o2. The rationale behind this is that the

function may be modi�ed fairly easy, without changing how the function works

without when our method is not used.

The last method is to let the method itself decide which objects should be

pivots. This will give the best result (unless it is implemented in a bad way), but

means that the method has to be modi�ed to make use of the hybrid method.
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Chapter 4

Results and Discussion

4.1 SSS-Tree

For the SSS-tree a variable α is used to de�ne the arity of the tree. The authors

of [BPS+08] found that the best value of α was 0.4. To test if this really is the

best value of the α variable, we did tests that varied α. As we see from 4.1 and

4.2, the optimal value of this variable varies from data set to data set. We also

couldn't �nd that the optimal value would be 0.4. Our tests concluded with

an optimal value near 0.2. This value does however have a considerably higher

construction cost than higher values (because the tree is wider), so a value of

0.25 or 0.30 might be better to balance this o�.

An explanation of this is that the measurement of α dates back to [BFPR06],

which describes a method to �nd good pivots for pivoting methods. When used

in a tree however, this value may be di�erent.
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Figure 4.1: Distance operations on
the Euclidean space
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the clustered Euclidean space

There is also a lack of information of the testing procedures in [BPS+08].

One example of this is that the paper mentions that nodes where the number of

objects is less than δ should be put in a bucket. It is however not revealed what
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this value was when testing, making the �ndings hard to reproduce. There is

also a lack of information about what parameters was used with the other trees

tested.

4.2 Spatial Approximation Tree

We tested the method with di�erent number of pivots to �nd the optimal number

of pivots to use in the hybrid implementation. This was to see how well pivot

�ltering worked for the tree. The results can be seen in the �gures 4.3 to 4.6.

It is obvious that pivot �ltering helps a lot, especially when no extra distance

computations are needed during construction. At the same time we see that for

the data sizes we tested, there is no need to go above 3 to 5 pivots, the exact

value depending on the metric space.
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4.2.1 HC

To test HC/UHC, we tested three variations of HC. One was with h(n) = n
2 ,

one with h(n) = n1.0/1.4

2 (UHC), and one with h(n) = n
3 (UHC2). We also tested

hybrid versions of each method, labeled AHC, UHC and UHC2. The result can

be seen in �gures 4.7 to 4.10. We chose not to test PHC or UPHC, since these

are specialized methods for distances that can be computed using bit-parallel

methods.

As can be seen from the results, the unbalanced methods are roughly as

good as the balanced, sometimes better, sometimes worse. [Fre07] mentions

that UHC may be better on metric spaces of higher dimensionality. We tested

the methods with an Euclidean data set with 20 dimensions, see �gure 4.11,

which con�rms the claim . UHC2 is however not as good, but still somewhat

better than HC.
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4.3 Excluded Middle Vantage Point Forest/D-Index

Since D-Index and EMVPF are two indexing methods that have a few similar-

ities, we decided to test them together.

4.3.1 EMP-partition

As mentioned in Section 3.4.1, we implemented a small improvement to D-Index

that should have helped with Excluded Middle-partitioning for certain data

sets. After some testing we found out that the improvement was minuscule

(the improvement, when present, was in the area of 0.3 %), and for some data

sets it even increased the number of queries. Even for the data sets that saw

improvements, it is fair to say that the extra complexity is not worth the gain.

4.3.2 D-Index vs EM-VP-Forest

When comparing D-Index with EM-VP-Forest (see �gures 4.12 to 4.15), a few

shortcomings with EM-VP-F surfaces that makes it less attractive.

First, EMVPF is harder to make hybrid. With D-Index, a constant number

of objects is chosen as pivots, while with EMVPF, this is a variable number.

When the search with EMVPF arrives at a bucket, it is unknown which pivots

the objects in the bucket has already been compared with.

Second, since D-Index uses the same pivots for each level, distance operations

inside the tree structure is lowered.

4.3.3 Language Constructs to Implement Hybrid Meth-

ods

As mentioned in section 3.4.8, we proposed to implement pivot �ltering by using

language constructs. The idea came quite late in the project, so we only man-

46



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

D
is

ta
nc

e 
C

om
pu

ta
tio

ns

Data size

EMVPF
D-Index

Figure 4.12: Distance opera-
tions(indexing) on the Euclidean
space
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Figure 4.13: Distance opera-
tions(queries) on the Euclidean
space
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Figure 4.14: Distance opera-
tions(indexing) on the clustered
Euclidean space
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Figure 4.15: Distance opera-
tions(queries) on the clustered
Euclidean space
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aged to make a proof-of-concept implementation in Python that works on a few

trees, which has a quite high overhead when doing distance computations. We

have compared the SSS-tree with and without the language constructs method,

and the result may be seen in Figure 4.16. The method clearly works (it is in

any case guaranteed to not be worse in terms of distance computations), but it

is unknown how it would compare to a custom-made hybrid implementation for

SSS.
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Figure 4.16: SSS-Tree with language constructs to implement pivoting

4.3.4 Tree Based Methods

We tested all the families of tree-based methods (except for EMVPF, since we

tested it against D-Index) against each other to see which methods are the

most promising. We tested with 1 % of the data set on each method. The

results can be seen in 4.17 to 4.20. As shown, the di�erent methods are good

at di�erent metrics. One outlier is the AUHC method, which is good at the

clustered Euclidean space, but not that good on other methods. This can be

explained by the fact that it is constructed to be especially good at clusters,

being a variant of the LC (List-of-clusters) method.

4.4 PM-Tree Pivot Selection

The authors of the original paper [Sko04] didn't say anything about how one

should select global pivots for the PM-Tree. Therefore, we decided to implement

two di�erent strategies for pivot selection, and test them to see which is the best.
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Figure 4.17: Distance operations
for Tree Based methods on the Eu-
clidean space
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Figure 4.18: Distance operations for
Tree Based methods on the Clus-
tered Euclidean space
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Figure 4.19: Distance operations for
Tree Based methods on QFD space
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Figure 4.20: Distance operations for
Tree Based methods the Edit Dis-
tance space
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The two strategies we implemented are �completely random�, and Bustos (see

section 2.1.2).

We tested the two methods using 20 pivots against both the Euclidean and

Clustered Euclidean distance metrics. The results can be found in �gures 4.21

and 4.22, and clearly show that the Bustos method of pivot selection outperform

random selection. We will therefore use the Bustos method in all other tests of

the PM-Tree structure.
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Figure 4.21: PM-Tree query costs
with the Euclidean distance metric

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

2000 4000 6000 8000 10000

D
is

ta
nc

e 
co

m
pu

ta
tio

ns

Number of objects

Random Pivot Selection
Bustos Pivot Selection

Figure 4.22: PM-Tree query costs
with the Clustered Euclidean dis-
tance metric

4.5 Number of Pivots in the PM-Tree

It is desirable to know how the number of pivots a�ect the search e�ciency of

the PM-Tree. Obviously the more pivots, the less distance computations will

be necessary when searching. However, every pivot adds both to construction

costs and memory requirements.

We tested the PM-Tree with various number of pivots, and the results can

be seen in �gures 4.23 through 4.26. When measuring construction costs, 10

di�erent samples were used for each test. The best and worst result were re-

moved, and the displayed result is the average of the remaining 8 samples. For

query costs, the results displayed are the average over 30 queries, distributed

evenly over 3 di�erent sample data sets for every data point.

The results seen indicate that construction costs scale linearly with increas-

ing number of pivots. This is not especially unexpected, as each extra pivot

requires a distance calculation from every object inserted into the tree.

Query costs seems to drop by about the same amount every time the number

of pivots doubles. This makes it hard to set a �rm recommendation on how many

pivots to use. Both construction costs and memory requirements scale linearly

with the number of pivots, so the optimal number of pivots is both dependant

on the type of problem the tree is being built to solve, as well as the system

resources available.
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Figure 4.23: PM-Tree construction
costs with the Euclidean distance
metric
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Figure 4.24: PM-Tree construction
costs with the Clustered Euclidean
distance metric
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Figure 4.25: PM-Tree query costs
with the Euclidean distance metric
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Figure 4.26: PM-Tree query costs
with the Clustered Euclidean dis-
tance metric

We chose to use 20 pivots for the other tests involving the PM-Tree. This

is partly because it seems like a reasonable compromise between query perfor-

mance and memory requirements, and partly because it matches the number of

pivots we use in the LAESA method.

4.6 E�cient Metric MST Calculation

Our tests of our O(n2) MST algorithm showed very little improvement over the

standard MST algorithm. The number of distance computations were almost

identical to that of the Slim Tree. We have therefore omitted plotting the results,

and only compare our O(n3) algorithm to the standard one.

For each test, 10 random data sets were used. The highest and lowest con-

struction costs were dropped, and the results displayed are the averages over

the remaining 8 data sets.

The results can be seen in �gures 4.27 through 4.30. �Standard� refers to the

original Slim Tree implementation, and �Improved� is when the MST algorithm

has been replaced by our O(n3) algorithm. The numbers represent the number

of entries in each node, so �Standard, 64� denotes a standard Slim Tree with up

to 64 entries in each node.
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Figure 4.27: Slim Tree construction
costs with the Euclidean distance
metric
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Figure 4.28: Slim Tree construction
costs with the Clustered Euclidean
distance metric
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Figure 4.29: Slim Tree construction
costs with the Edit Distance dis-
tance metric
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Figure 4.30: Slim Tree construction
costs with the QFD distance metric

As we can see, the improved MST algorithm result in lower construction

costs. We can also see that a higher number of objects, and a higher number of

objects per node are both qualities that improves our algorithm's performance

relative to the standard MST algorithm.

The only instance of the standard MST algorithm outperforming ours is

when using the Edit Distance distance metric. There we see a higher construc-

tion cost for the data sets with 1000 and 1500 objects. However, these cases

can most likely be attributed to the nature of the distance metric; since the dis-

tances between objects are discrete, it is more likely that more than one object

is the �best� candidate as a pivot for a node. This will result in the two methods

to be more likely to result in di�erent trees, which has potentially large random

e�ects on construction costs.

Since the original M-Tree uses a O(n3) splitting algorithm, we don't think

that our algorithm's higher complexity is too big of an obstacle. Our suggestion

is to choose which algorithm to use depending on the complexity of distance cal-

culations. If distance computations are expensive, use our algorithm, otherwise,

stick with the standard one.
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4.7 M-Tree Based Methods

In order to get a good overview of how the di�erent M-Tree based methods

compare to each other, we tested each of them using all our four distance metrics.

Construction costs were measured using 10 data sets for each number of objects.

The same sets were then indexed by each method, and the number of distance

computations counted. The highest and lowest count for each method were

dropped, and the results can be seen in �gures 4.31 through 4.34.
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Figure 4.31: M-Tree Based con-
struction costs with the Euclidian
distance metric
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Figure 4.32: M-Tree Based con-
struction costs with the Clustered
Euclidian distance metric
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Figure 4.33: M-Tree Based con-
struction costs with the Edit Dis-
tance distance metric
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Figure 4.34: M-Tree Based con-
struction costs with the QFD dis-
tance metric

The results seem pretty clear. The CM-Tree has by far the lowest construcion

costs in the M-Tree family. The Slim Tree has the largest costs. Between these

extremes we have the M-Tree, PM-Tree, M*-Tree and PM*-Tree, in that order.

The only exception to this is with the QFD distance metric, where the M*-Tree

and the PM-Tree have swapped places.

The reason for the low construction costs of the CM-Tree is probably due to

cheap node splits. All the other methods need O(n2) distance computations to

perform a node split, but the CM-Tree needs only O(n). This di�erence would
most likely be even bigger if a larger node size had been used.

To measure query costs, ten range queries were issued on three di�erent

datasets of each size. The results can be found in �gures 4.35 through 4.38.
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Figure 4.35: M-Tree Based query
costs with the Euclidian distance
metric
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Figure 4.36: M-Tree Based query
costs with the Clustered Euclidian
distance metric
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Figure 4.37: M-Tree Based query
costs with the Edit Distance dis-
tance metric
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Figure 4.38: M-Tree Based query
costs with the QFD distance metric

The query results are a bit more varied than the construction results. Still,

the PM-Tree and PM*-Tree stand out as clear winners. They are roughly tied

for �rst place in all distance metrics except the Euclidian one.

When using the Euclidian distance metric, the PM*-Tree beats the PM-Tree

by a wide margin. We can also see that in this distance metric, the gap between

the PM-Tree and the M*-Tree drastically reduces. The reason for these results

is most likely due to the non-clustered nature of the metric. In the other metrics,

it is easier to pick global pivots in a way that makes sure most of the objects has

a reasonably near pivot. In a completely random vector space this is harder.

However, the Nearest-Neighbor Graphs that the M*-Tree and PM*-Tree uses

will still provide good pivots for most objects. Therefore these methods shine

when there is no clustering e�ects.

4.8 Comparison of The Most Promising Methods

To test each group of methods against each other, we chose the best methods

from each group and ran against our data sets. We also included the LAESA

method (developed in [FF07]), so that we can test our newly developed methods

against another. The results can be found in 4.39 to 4.46.
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The results of this last comparison of methods are however not as useful as

we would like them to be. This is because the number of distance computations

alone is not the only way to describe performance of an indexing methods. The

amount of I/O and memory usage and computation overhead has not been

addressed.
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Figure 4.39: Distance operations
(indexing) on the Euclidean space
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Figure 4.40: Distance operations
(queries) on the Euclidean space
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Figure 4.41: Distance operations
(indexing) on Edit Distance space
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Figure 4.42: Distance operations
(queries) on the Edit Distance space
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Figure 4.43: Distance operations
(indexing) on the Clustered Eu-
clidean space
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Figure 4.44: Distance operations
(queries) on the Clustered Eu-
clidean space
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Figure 4.45: Distance operations
(indexing) on the QFD space
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Figure 4.46: Distance operations
(queries) on the QFD space
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Chapter 5

Conclusion

During this thesis, we have implemented methods that have been proposed in

newer literature. The number of methods in this �eld is very high, and many

methods do not have a right of life. It is an important task to �lter out the

methods that need further study.

Testing methods on di�erent metric spaces show that the properties of the

metric space used can have a large impact on the results seen. This is an

important observation, since an euclidean metric space (which is the space most

often chosen to test metric indexing methods) may show results that are di�erent

from what would be experienced in a real-life metric space.

Our experiments show that hybrid methods are| superior to non-hybrid

methods. When using pivoting also for inner nodes, the results are even bet-

ter. There is an overhead when using pivoting, but this is not very large when

compared to the bene�ts.

Out of the methods we tested, the CM-Tree is by far the best of the ones

not employing global pivoting. We have also seen that adding global pivots

to existing methods generally boost their results signi�cantly. From this we

conclude that the CM-Tree with an addition of global pivots is likely to perform

very well.
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Chapter 6

Future work

Although we have implemented many methods through this project, the Bonsai

library is still not complete. Several methods could also be studied and imple-

mented further, to see if the number of distance computations can be reduced.

In this paper, we propose a method to implement pivot selection by using

programming language constructs. Since this method was only implemented as

a proof-of-concept quite late in the thesis, it was not tested with many methods.

Further study of this concept would be interesting.

When benchmarking, we have concentrated on the number of distance com-

putations. However, many of the metric indexing functions are geared towards

reducing I/O - operations. It would be interesting to develop test cases that are

geared against these types of indexing methods.

The CM-Tree seems like a very competitive version of the M-Tree, but it

lacks global pivoting. Introducing pivots to CM-Tree seems like a promising

concept, and we belive it may prove better than any of the methods we looked

at during our work.
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