
June 2008
Arne Halaas, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Online Meat Cutting Optimisation

Uno Wikborg

Problem Description
In a meat processing plant for warm cutting of cattle carcasses, different cutting patterns can be
used to make different products. The possible cutting patterns depend on the attributes of the
carcass, such as fat percentage and gender. Only a limited number of carcasses are in storage
between measurements are taken and cutting. Information such as the fat percentage is not
available for the unmeasured carcasses.

This thesis will look at online optimisation techniques for determining which cutting patterns to
use. The goal will be to choose the best cutting patterns to satisfy the plants production plan.

Assignment given: 15. January 2008
Supervisor: Arne Halaas, IDI

I

Abstract

Nortura, Norway’s largest producer of meat, faces many challenges in their operation. One of these

challenges is to decide which products to make out of each of the slaughtered animals. The meat from

the animals can be made into different products, some more valuable than others. However, someone

has to buy the products as well. It is therefore important to produce what the customers ask for.

 This thesis is about a computer system based on online optimisation which helps the meat

cutters decide what to make. Two different meat cutting plants have been visited to specify how the

system should work. This information has been used to develop a program which can give a

recommendation for what to produce from carcasses during cutting.

 The system has been developed by considering both the attributes of the animals and the

orders from the customers. The main focus of the thesis is how to deal with the fact that the attributes

are only known for a small number of the animals, since they are measured right after slaughtering. A

method has been made to calculate what should be made from the different carcasses, and this method

has been realised with both exact and heuristic algorithms.

II

III

Preface

This report presents my Master’s Thesis in Computer Science at the Department of Computer and

Information Science (IDI) at the Norwegian University of Science and Technology (NTNU). The problem

was proposed by SINTEF with cooperation with Nortura. The work has been conducted during the spring

2008 and is a continuance of a project performed by me during the fall of 2007, which will from now on

be referred to as [Wikborg07].

I would like to thank my supervisor at NTNU, Arne Halaas, for allowing me to choose the problem from

SINTEF.

I would like to thank my supervisors at SINTEF, Arnt-Gunnar Lium and Kristin Tolstad Uggen, for

suggesting the problem and for their invaluable advice and thorough inspection of this report.

Finally I would like to thank Trond Malmo and Klas Forfang at Nortura for their great response and their

hands-on knowledge of the meat cutting industry. The tour of the meat cutting plant at Rudshøgda was

particularly helpful.

Trondheim, 9th June 2008

Uno Wikborg

IV

V

Table of Contents
1 Problem description .. - 1 -

1.1 Nortura .. - 1 -

1.2 Hierarchical planning .. - 1 -

1.3 Making decisions for meat cutting ... - 3 -

1.4 Cold cutting ... - 3 -

1.5 Warm cutting .. - 4 -

1.6 Packing .. - 4 -

1.7 Choosing the cutting pattern .. - 5 -

1.8 Computer aided decisions .. - 5 -

1.9 Finding good solutions .. - 6 -

1.10 Adjustments at the work place ... - 7 -

2 Model description ... - 8 -

2.1 Definitions ... - 8 -

Indexes .. - 8 -

Variables.. - 8 -

Constants .. - 8 -

2.2 Data ... - 9 -

2.3 Offline Model .. - 10 -

2.4 Performance analysis .. - 14 -

2.4.1 Minimising unsatisfied demand .. - 14 -

2.4.2 Maximising value .. - 16 -

2.4.3 Combined objective function .. - 16 -

2.4.4 Maxmin ... - 16 -

2.4.5 Minimax regret.. - 16 -

3 Online model ... - 18 -

3.1 Heuristics ... - 19 -

3.2 Local search ... - 21 -

3.3 Genetic Algorithms ... - 22 -

3.3.1 Evolution through generations ... - 23 -

4 Implementation .. - 25 -

4.1 Offline solution ... - 25 -

VI

4.1.1 Implementation tools ... - 25 -

4.1.2 Input data .. - 27 -

4.1.3 Programming... - 28 -

4.2 Online solution .. - 29 -

4.2.1 Implementation tools ... - 29 -

4.2.2 Program structure for the master problem .. - 32 -

4.2.3 Data structures .. - 33 -

4.2.4 Local search ... - 35 -

4.2.5 Genetic algorithm ... - 36 -

5 Results and discussion .. - 39 -

5.1 Results of the offline algorithm .. - 39 -

5.2 Convergence of the genetic algorithm ... - 42 -

5.2.1 Discussion of the genetic algorithm .. - 44 -

5.3 Results from the online algorithm .. - 45 -

5.3.1 Local search comparison ... - 47 -

5.3.2 Production comparison ... - 48 -

5.3.3 The chosen cutting patterns ... - 49 -

5.3.4 Discussion of the online algorithm ... - 50 -

5.4 Execution time .. - 51 -

5.5 Sources of error .. - 53 -

5.6 Other uses of the online algorithm ... - 54 -

6 Conclusion ... - 55 -

7 Further work ... - 56 -

8 Bibliography .. - 57 -

9 Appendixes .. - 59 -

9.1 Appendix A .. - 59 -

9.2 Appendix B Results .. - 60 -

9.2.1 Results for optimisation program ... - 60 -

9.2.3 Results for genetic algorithm used on offline problem .. - 63 -

VII

Table of figures

Figure 1 Hierarchical planning .. - 1 -

Figure 2 Production line a) Animals lined up for slaughtering b) Animals are measured c) Carcasses ready

for cutting d) Cutting pattern is chosen .. - 3 -

Figure 3 Meat cutting .. - 4 -

Figure 4 Today’s solution .. - 5 -

Figure 5 Carcasses during production ... - 6 -

Figure 6 Unsatisfied demand for the online algorithm ... - 15 -

Figure 7 Global and local optimum ... - 21 -

Figure 8 New individuals ... - 22 -

Figure 9 Mutations .. - 22 -

Figure 10 Crossovers ... - 22 -

Figure 11 Genetic Algorithm ... - 23 -

Figure 12 Program structure ... - 32 -

Figure 13 Data relationships ... - 33 -

Figure 14 Offline results from 4th June 2007 ... - 39 -

Figure 15 4th June 2007 without a production plan ... - 40 -

Figure 16 Production from 4th of June to 6th of June .. - 41 -

Figure 17 Generation 1-10 of offline 4th of June.. - 42 -

Figure 18 Generation 11-100 of offline 4th of June.. - 43 -

Figure 19 Online algorithm results 4th of June ... - 45 -

Figure 20 Effect of measured carcasses .. - 46 -

Figure 21 Comparison of the offline and online production .. - 48 -

file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737744
file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737745
file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737745
file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737746
file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737747
file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737748
file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737750
file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737751
file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737752
file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737753
file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737754
file:///C:\Documents%20and%20Settings\Uno\Desktop\master\pro10.docx%23_Toc200737755

VIII

Table of tables

Table 1 Example of problem size .. - 11 -

Table 2 Number of constraints ... - 11 -

Table 3 Number of continuous variables .. - 12 -

Table 4 Binary variables .. - 12 -

Table 5 Example after problem size reduction ... - 12 -

Table 6 Reduced problem ... - 13 -

Table 7 Two carcass example .. - 14 -

Table 8 Minimax regret example .. - 17 -

Table 9 Data structure .. - 19 -

Table 10 Evaluation of Xpress for offline model ... - 26 -

Table 11 Cutting pattern format ... - 27 -

Table 12 Cutting pattern matrix .. - 27 -

Table 13 Evaluation of Xpress for optimal solutions of the sub problem ... - 30 -

Table 14 Evaluation of Visual Studio with C++ for heuristic solution of the sub problem - 31 -

Table 15 Parameter settings for the genetic algorithm .. - 42 -

Table 16 Performance of online algorithms ... - 46 -

Table 17 Local search comparison .. - 47 -

Table 18 Execution time .. - 51 -

Table 19 Results from 4th of June 2007 ... - 60 -

Table 20 Offline production 4th June 2007 without production plan .. - 61 -

Table 21 Offline production 4th - 6th June 2007 .. - 62 -

Table 22 Genetic algorithm results for 4th of June .. - 63 -

Table 23 Online algorithm 4th of June 2007 ... - 65 -

- 1 -

Strategical planning

Operational planning

Tactical planning

Online decisions

Figure 1 Hierarchical planning

1 Problem description

1.1 Nortura
The case studied in this thesis is one of Nortura’s meat cutting plants. Nortura is Norway’s largest

producer of meat and a cooperative consisting of more than 30,000 farmers.

“The group’s purpose is to sell the members’ slaughtered animals, eggs, live animals and wool in the best

possible manner. The group shall through its operations contribute to the members receiving the best

possible financial result from their livestock production.” – Nortura’s objective clause [Nortura08]

By being a cooperative Nortura has to work in order to benefit all of its members, not only by giving

profit to its owners, but Nortura is obliged to accept animals for slaughter from its members and to pay

a fair price for it. This is what creates the framework for their operation.

To accept animals from all farmers creates various challenges. The animals are not allowed to be

transported more than 8 hours by truck [Schütz05], which means slaughterhouses have to be located in

proximity to the farmers, while the slaughterhouses also have to be efficient enough for Nortura to

obtain a profit from their operation. The profit is made by selling final products to paying customers.

These challenges make up a value chain stretching from every farmer all the way to the grocery stores,

where every part is crucial for the success of Nortura.

1.2 Hierarchical planning
A meat cutting company makes decisions on many levels, as can be

seen in Figure 1. This section will explain the hierarchical structure of

the decision process to make it easier to understand the role of online

optimisation.

Strategic planning - This level of planning decides the long term

strategies of the company. These kinds of decisions involve where to

locate new slaughterhouses in the future, which slaughter houses to shut

down and which markets to focus on.

Tactical planning - On this level of planning, the whole value chain is in

scope. The value chain of meat production includes slaughtering,

cutting, processing, logistics and sales. The time horizon is long enough to

deal with annual variations. Some products are more popular during

certain time periods such as Christmas. Tactical planning should make

sure that enough is produced to cope with these variations and make

an overall plan for the production.

Operational planning - On this level of planning, the production for a

- 2 -

shorter period of time is in scope, typically from one to three days. The slaughtering, cutting and

demand for a limited period is used to determine exactly what to produce during a day. The final

production plan is decided on this level, based on the estimates from the tactical planning.

Online decisions – Online decisions are decisions which have to be taken with limited amount of

information. These decisions cannot wait for more information because they are crucial for the

production. One such decision is which products to produce from an animal.

- 3 -

1.3 Making decisions for meat cutting
The last section described the scope of online decisions. This

section will describe decisions that have to be done while cutting

meat.

 After cattle are slaughtered, some parts of the animals such

as the hooves, intestines and the head are removed. The rest of the

carcass is sent to cutting. Here it is first measured for

characteristics such as fat percentage and weight. During cutting,

the carcass is cut into different kinds of products. Which products

the carcass should be made into has to be decided before the

production can continue. Cutting patterns have estimates of what

can be produced from a carcass. This pattern will tell what to make

out of each part of the carcass. When a cutting pattern is chosen, it

will give an estimate of how much of each product the carcass will

be made into. One pattern can have the estimates that the carcass

will turn into 1.4% tenderloin, 3% sirloin, 49% meat containing 14%

fat, 21% round steak, 7% shoulder steak and 4% waste. These

estimates are not accurate and will therefore not always sum up to

100%. This is because various factors will determine exactly how

the cutting is done, which can result in significant variations. A

newly recruited cutter will not be as skilled as a more experience

cutter. He or she would leave more waste and degrade more of the

meat into lesser quality.

A good choice of cutting patterns will make a trade off

between making valuable products and fulfilling the production

plan. If there is a large demand for meat with 7.5% fat, it might be a

good idea to choose cutting patterns which make 7.5% fat meat out of the round steak. If the

production plan has no need for more 7.5% meat, it might be better to keep it as a round steak, since

this is a product with higher sales value.

1.4 Cold cutting
 There are two different techniques used for cutting meat. The most common is cold cutting. The

animals are slaughtered, cooled down and then moved for storage. The meat does not go bad as fast

after having been cooled down, and this makes it easier to plan ahead. If too many animals are

slaughtered, they can be stored in the storage and cut later. A period with less slaughtering will make it

necessary to reduce the size of the storage. This has been the most common practice for years because

of the flexibility the storage provides, and due to the technical difficulties with cutting warm meat.

When the meat stays on the carcass during storage, the meat will not be able to shrink since it is

attached to the bone structure of the carcass. This has until now made it less desirable to cut the meat

before storage, since the meat will become less tender when it shrinks.

Figure 2 Production line a) Animals
lined up for slaughtering b) Animals
are measured c) Carcasses ready for
cutting d) Cutting pattern is chosen

- 4 -

1.5 Warm cutting
 Another technique is warm cutting. During warm

cutting, the carcasses are being cut right after being

slaughtered. The carcass has not been cooled down and is

still warm. Cutting through warm carcasses improves the

working environment since the cutters do not have to

worry about keeping their fingers or their body warm while

touching the meat and standing in a cold room. But the

comfort of the workers is not the main reason for warm

cutting. Warm cutting does not need a storage facility for

the carcasses, but might need additional storage for live

cattle. This is because warm cutting is less flexible to vary

the speed of the slaughtering since the slaughtered animals

have to be cut right away. Another advantage is the fact

that the carcasses are being processed much faster. This

leads to less stock line and a higher rate of turnover, which

is good for profitability. While carcasses are being stored,

some of the water dries out from the meat. This leads to a

weight loss of the carcass which will eventually lead to a

weight loss in the products. When the carcasses are being cut right away, this weight loss will not

happen since the moisture do not have time to leave the meat. Cattle cut with warm cutting will

therefore have less waste than those cut with cold cutting. Packing the meat right away does also create

some challenges. The meat will shrink because it has no bone structure to keep it stretched. This

problem has been solved with a new vacuum technology which capsules the steak in a special wrapping

which prevents the steak from shrinking. Because of these advantages, more and more of the cutting is

warm cutting and almost all new cutting plants which Nortura builds support warm cutting.

1.6 Packing
 The products are not quite ready for delivery even if the meat has been cut from the carcass.

The meat has to go through one more step where the final products are made. Except for the vacuum

packed steaks, cold cutting and warm cutting will produce the same type of meat. The quality is the

same regardless of the technique used under production. Products such as sausages, ground meat and

bacon will be made out of the meat. The meat will then either be packaged into the final wrapping or

sent to another cutting facility. The reason why meat is sometimes shipped between cutting facilities is

to even out the capacity or to enable different cutting facilities to produce different products. At some

stages of the production the meat can be sent to freezing to be stored for later use.

Figure 3 Meat cutting

- 5 -

1.7 Choosing the cutting pattern
Which cutting patterns are used can have

drastic results on what is being produced. If this

task is left for each cutter to decide, it will be

impossible for him to have an overview of which

products are needed the most. The orders for the

day have to be fulfilled, but how much is left to

fulfil will vary during the day because of the

continuous production. Today this is solved by

having one person responsible for monitoring the

production. He or she will know which products

are needed the most and give the cutters

recommendations on how to cut the carcasses. It

is not possible for him to tell each and every

cutter what to do. Instead; one recommendation

is given for all the cutters to follow. This is done

on a whiteboard with directions to follow as to what should be made out of certain parts of the animal.

It is therefore not possible to make decisions for individual carcasses with this system. A large part of the

carcass will be used for different selections of meat. Selections are mixtures of different kind of meat

and are graded by the fat percentage. As shown in Figure 4, excess meat should be added to the 18% fat

selection, the shoulder part should be used for the 5% selection and so on.

1.8 Computer aided decisions
There has already been developed a system to help chose cutting patterns for cold cutting. This

method uses the measured carcasses in storage to calculate how many carcasses should be cut with

each cutting pattern. An offline algorithm is an algorithm which has all necessary information available

at the start of the execution [Albers97]. The method for cold cutting can therefore be called an offline

algorithm since all the carcasses used for the calculations are already measured. These measurements

measure the fat percentage of the carcass and give the carcass a classification. This classification defines

which cutting patterns can be used on the carcass. The offline algorithm can use a large number of

carcasses for its calculations. It is therefore possible to view the carcasses as a continuous amount of

carcasses instead of discrete numbers without losing too much precision. Such problems can be solved

with linear programming. The offline algorithm might conclude that 102.6 carcasses will be cut with a

certain pattern, which is rounded off to 103. This can help the supervisor to know what to recommend

to fulfil the production of the day.

Figure 4 Today’s solution

- 6 -

Figure 5 Carcasses during production

Not all the carcasses

are measured at the same time

when using warm cutting. Only

a few carcasses are measured,

and only these can be used to

calculate which cutting pattern

to use. These are represented

by the red sections in Figure 5.

A decision has to be made from

this limited knowledge. An

online algorithm is an algorithm

which makes decisions before

all the data concerning the

problem is available [Albers03].

The method for choosing the

cutting pattern to use for warm cutting is therefore an online algorithm. How many carcasses are being

measured at a time can vary between production plants. Nortura’s plant at Rudshøgda is supposed to

have 10 measured carcasses at any given time during production. To calculate each carcass individually

becomes much more important with as few as 10 carcasses, since rounding off 0.5 carcass is a significant

portion of the total. More and more carcasses will have been cut throughout the day. Since the total

number of carcasses for a day is constant, the amount of unmeasured carcasses will shrink accordingly.

This can be seen in Figure 5 which illustrates how unmeasured carcasses become measured carcasses

and then cut carcasses.

1.9 Finding good solutions
For the computer aid to be of any use, it has to give recommendations which will make it easier

for the cutters to fill the production quotas from the production plan whilst making the most valuable

products. Nortura has already experience with defining the goal of the computer system for cold cutting.

To produce a product without an explicit need will be given a lower value than to produce a product

which fills the production quota. The same system can be used for warm cutting, since warm cutting and

cold cutting produce the same products.

The challenge with choosing cutting patterns for warm cutting is that only a few of the carcasses

have been measured. What to produce can only be decided for the measured carcasses, since the

quality of the unmeasured carcasses is unknown. It is impossible to know if a later carcass is even better

suited for making a certain product than the one which is about to be cut, but it is necessary to make a

decision fast. A decision support system should recommend cutting patterns which are likely to give

good results when the production from all the carcasses is summed. The recommendation has to be

given before new carcasses are queuing up, since this would create a bottleneck in the production. To

be sure that the recommendation system does not delay the production, the maximum time for giving

the recommendation should be in a matter of seconds, typically 6 seconds for a plant like the one at

Rudshøgda.

06:00

08:00

10:00

12:00

14:00

16:00

18:00

Cut carcasses Measured carcasses Unmeasured carcasses

- 7 -

1.10 Adjustments at the work place
The purpose of computer aid is to make it easier to produce close to the production plan whilst

not degrading quality meat into less valuable products. The system for cold cutting makes it easier to

give good recommendations for what to cut; it does not however take into account individual

differences between the carcasses. The system for warm cutting would give an individual

recommendation for every carcass. This would require a new system to inform the cutters. This could be

done by stamping each carcass with the cutting pattern to use or by installing a monitor for each cutter.

Requirements:

-give recommendations which in average will be better than the system used today

-execute fast enough in order to not create a delay in the production

-not add a significant amount of extra work for the employees

- 8 -

2 Model description
This section will describe how the meat cutting problem is represented as a model. The model will

represent the problem as an optimisation model using the following definitions.

2.1 Definitions

Indexes

c: carcass, every carcass being cut is defined as an individual carcass.

a: cutting pattern.

p: product, what is produced from the carcasses.

Variables

xc,a:
1 if carcass 𝑐 is cut with cutting pattern 𝑎

0 otherwise

vp: regular production of product p. This is production which is planned in the production plan.

sp: surplus production of product p. This is production which is not specified in the production plan.

up: unsatisfied demand for product p. This is the part of the production plan which is not fulfilled.

Constants

Pa,p: percentage of the carcass which becomes product p while using cutting pattern a.

Wc: weight of carcass c.

Dp: quota for product p, how much it has been planned to be produced of this product.

Lp: loss or penalty for each kg of demand for p not fulfilled.

Vp: value of planned production of product p per kg.

Tp: value of surplus production of product p per kg.

- 9 -

2.2 Data
This section will describe the data used in the model. The model is based on the data from Nortura’s

data system. Only data available from their system will be used in the model since this is the only

information which can be easily gathered automatically. By using only the information from the

database without any manual adjustments, less maintenance will be needed when the data is altered. It

is therefore a goal to make the program as generic as possible concerning the input and be oblivious to

the actual properties of the data. A generic solution will not differentiate between what the input

represent as long as it uses the same format as the original problem. This means the program will be

able to solve the same problems for pigs, sheep or any animal which is cut according to a cutting pattern.

Products – all the products from Nortura’s databases is extracted and included in the model even if they

are not relevant for today’s production. To extract only the relevant products would require added

complexity and make the program less flexible to changes. As long as the excess products will not slow

down the calculations significantly all will be considered, otherwise the number will be reduced after

loading.

Each product has a price per kilo. This price is used to calculate the value of the production. The

value of surplus production can be set individually to reflect the anticipated need of the product in the

future. If no value is set, a base value of B% is set while a penalty of F kroner is subtracted representing

the cost of freezing the product. Typical values for B and F would be 60% and -5 kroner respectively.

Carcass type – the animals are classified according to their age, fat percentage and gender.

Cutting patterns – cutting patterns tell which products to make from a carcass. Only a few cutting

patterns can be used for each carcass type. A cutting pattern contains a list of the products which will be

produced when using that particular pattern. For each product in the list, there is also a percentage

which tells how much of the carcass is expected to turn into that product. The sum of all the products

should turn into the weight of the original carcasses. This is not always the case since there will be

inaccuracies in practice. Not all possible cutting combinations are described in a cutting pattern. The

most useful combinations have been picked out to limit the number of patterns. There exist other

cutting patterns which would give even better results, but experience has shown that present cutting

patterns are satisfactory.

Carcasses – production data is necessary to run a model of the production line. The carcasses being

measured will be fed to the system one by one. Historical data of slaughtered carcasses will be used for

test cases. The historical data will then be revealed one carcass at a time for the online system to

simulate real time production.

Production plan – a production plan is a goal for what should be produced of each product during a time

period. This time period is for Rudshøgda one day. The production plan does not have to be satisfied

strictly, but it should be followed as long as no large sacrifices are made. Large underproduction will hurt

the relationship to customers, while sacrifices will hurt the profit. The whole production plan for a

period is available at the beginning of the period. Historical data can be used for production plans as

long as the time period matches the time period of the carcasses slaughtered.

- 10 -

2.3 Offline Model
The offline model describes how the problem would be solved if measurements of all the carcasses were

available before the optimisation model starts.

 The objective function consists of three parts. The first part tries to maximise the value of the

regular production. This is the production which is scheduled in the production plan. The second part

tries to maximise the value of the surplus production. This production is not in the production plan, but

it is still important not to let resources go to waste even if it is not an immediate demand for the

product. The value for surplus production is typically a portion of the value of regular production of the

same product. The third part subtracts a penalty for each product in the production plan which is not

satisfied. This is a similar function to what has been used for optimisation for meat cutting of cold

carcasses. There is no fundamental difference in the objectives between cold and warm cutting, and

what has been learnt from cold cutting should therefore be used to make this objective function.

Objective Function 1

𝑀𝑎𝑥 𝑉𝑝 ∗ 𝑣𝑝
𝑝

+ 𝑇𝑝 ∗ 𝑠𝑝
𝑝

− (𝐿𝑝 ∗ 𝑢𝑝)

𝑝

 Constraint 1 defines the relationship between chosen cutting pattern and produced products.

The left side says that each carcass turns into the amount of each product which is defined by the

chosen cutting pattern. The right side says the production is either turned into regular production or

surplus production. Regular production will always have higher priority than surplus production since it

is valued more highly in the objective function.

Subject to:

Constraint 1

 𝑥𝑐,𝑎 ∗ 𝑃𝑎,𝑝 ∗ 𝑊𝑐 = 𝑣𝑝 + 𝑠𝑝 , ∀𝑝

𝑎𝑐

Constraint 2 makes sure only one pattern is chosen for each carcass.

Constraint 2

 𝑥𝑐,𝑎

𝑎

= 1,∀𝑐

Regular production cannot be greater than what is planned in the production plan.

Constraint 3

𝑣𝑝 ≤ 𝐷𝑝 , ∀𝑝

The sum of the regular production and the unsatisfied production equals the production plan.

- 11 -

Constraint 4

𝑣𝑝 + 𝑢𝑝 = 𝐷𝑝 , ∀𝑝

Constraint 5 and Constraint 6 define the range of the variables.

Constraint 5

𝑣𝑝 , 𝑢𝑝 , 𝑠𝑝 ≥ 0, ∀𝑝

Constraint 6

𝑥𝑐,𝑎 ∈ 0,1 , ∀𝑐, 𝑎

This optimisation model is a representation of the consequences the choices of cutting patterns have.

With the assumption that the data and the model represent the real problem well, a maximisation of

this model will decide which cutting pattering is the best choice for each carcass.

2.4 Problem size
 How easy it is to find the optimal solution depends on the size of the problem. The size of the

problem can be described by the number of variables and constraints. This model contains both binary

and continuous variables. Binary variables will in worst case pose the largest computational difficulties

in this problem, since this problem is related to 0-1 integer programming which is NP-hard [Karp72].

 Table 1 shows the typical number of carcasses, products and cutting patterns for Nortura.

Table 1 Example of problem size

 Number of elements

Carcasses (c) 200

Products (p) 1000

Cutting patterns (a) 400

The number of non-trivial constraints is shown inTable 2. Non-negativity constraints and binary

constraints are here considered trivial constraints. The total number of constraints are 3 * p + c. This will

with the sample from Table 1 give a total of 3200 constraints.

Table 2 Number of constraints

Constraint type Number of constraints

Constraint 1 p (product)

Constraint 2 c (carcass)

Constraint 3 p (product)

Constraint 4 p (product)

Total 3 * p + c (3 * product + carcass)

- 12 -

There are three types of continuous variables in the model, 𝑣𝑝 , 𝑢𝑝 and 𝑠𝑝 . This will with the sample from

Table 1 give a total of 3000 continuous variables.

Table 3 Number of continuous variables

Continuous variable Number of continuous variables

𝑣𝑝 p (product)

𝑢𝑝 p (product)

𝑠𝑝 p (product)

Total 3 *p (3 * product)

𝑥𝑐,𝑎 are the only type of binary variables. The number of binary variables is with the numbers from the

sample in Table 1 give a total of 80000 binary variables.

Table 4 Binary variables

Binary variables Number of binary variables

𝑥𝑐,𝑎 c * a (carcass * cutting pattern)

Total c * a (carcass * cutting pattern)

The 80000 binary variables can pose a problem. The optimisation would take very long to finish if a large

number of combinations of these variables have to be explored. The numbers used here is a theoretical

worst case. The numbers can be reduced considerably if domain knowledge is used to exclude irrelevant

information and impossible states.

Some of the variables and constraints can be removed without changing the results. Not all of

the 1000 products in Nortura’s example are relevant for the problem. Most of these products are not

made before packing stage of the production. Only a limited number of the 40 products are made during

the cutting stage. The number of carcasses cannot be reduced since every carcass is unique when it

comes to weight and carcass type combination. Even though every carcass in theory can be combined

with any cutting pattern, this is not the case in practice. Only a limited number of the cutting patterns

can be used for each carcass. This number is usually between 5 and 20. By only considering the possible

number of cutting patterns and not every cutting pattern, the elements in c will be reduced from 1000

to 20. With these reductions, the numbers in Table 1 can be reduced to those in Table 5.

Table 5 Example after problem size reduction

 Number of elements after reduction

Carcasses (c) 200

Products (p) 40

Cutting patterns (a) 20

- 13 -

Even after this reduction, the time to find optimum is very much dependent on how many of the binary

variables which have to be explored. It could in worst case be impossible to solve with 4000 binary

variables, but the nature of the problem will most likely not be close to a worst case.

Table 6 Reduced problem

 Numbers after reduction

Constraints 320

Continuous variables 120

Binary variables 4000

- 14 -

2.5 Performance analysis
This section will look at a theoretical analysis of the performance of methods for choosing cutting

patterns. It is a continuance of the work done in [Wikborg07] and gives insight to the problems with

creating a model for the online algorithm.

2.5.1 Minimising unsatisfied demand

The objective function of the model which minimises the unsatisfied demand can be written as

Objective Function 2 [Wikborg07]. The problem is written as a minimisation of cost instead of a

maximisation of value because this makes competitiveness analysis easier.

Objective Function 2

𝑀𝑖𝑛 (𝑢𝑝 ∗ 𝐿𝑝)

𝑝

The competitiveness of the online algorithm A is defined as Inequation 1, where fA is the cost of the

online algorithm, f0 is the cost of the optimal offline algorithm, b is a constant, C is the competitiveness

factor and p1, p2, … , pn is a sequence of requests [Motwani95].

Inequation 1

𝑓𝐴 𝑝1 , 𝑝2 , … , 𝑝𝑛 − 𝐶 ∗ 𝑓0 𝑝1 , 𝑝2 , … , 𝑝𝑛 ≤ 𝑏, ∃𝑝1 , 𝑝2 , … , 𝑝𝑛

A special characteristic of this problem is the fact that the offline algorithm can have zero cost. In the

case where the offline algorithm has zero cost and the online algorithm has a positive cost, the

competitive ratio will always be unbounded. In the following example there will be two cutting patterns

and two products with the output shown in Table 7.

Table 7 Two carcass example

 Product 1 Product 2

Pattern 1 100% 0%

Pattern 2 0% 100%

In this example there is a sequence of two carcasses, both weighing w kg. The demand for each product

is also 200 kg. The first carcass can be cut with any of the cutting patterns. Which cutting pattern the

second animal can be cut with is unknown at the moment the first cutting pattern is chosen.

 With an adaptive adversary, the available cutting patterns for carcass #2 will simply be set to

the same pattern as the carcass #1 has been cut with, see Figure 6. This will force the online algorithm

to use the same pattern for both carcasses and produce w kg of one product and 0 kg of the other. Since

the offline algorithm would know which pattern was available for carcass #2 it would simply have

chosen the other for carcass #1 and therefore satisfied all of the demand. With the assumption that

- 15 -

there are penalties for not fulfilling a demand, this will lead to a positive cost for the online algorithm

and 0 as the cost for the offline algorithm. The right hand side b of Inequation 1 would therefore have to

be equal to the weight w to satisfy the equation. Since w is a variable, no constant for b can ensure this

property for every weight w, and the algorithm is therefore unbounded.

Choice of

cutting

pattern for

carcass 1

Available

cutting

pattern for

carcass 2

Cutting pattern 1

Available

cutting

pattern for

carcass 2

Cutting pattern 2

Cutting pattern 1

Cutting pattern 2

Cutting pattern 1

Cutting pattern 2

w

0

w

0

Figure 6 Unsatisfied demand for the online algorithm

For the oblivious adversary, it is not possible to choose the patterns for carcass #2 to always be

the same as the one used for carcass #1. The oblivious adversary can chose a random pattern to be

available for carcass #2. Since the algorithm will have no way of anticipating which pattern is available

for carcass #2, it will on average choose the same pattern for carcass #1 50% of the time When this

happens, the penalty will be the same as with an adaptive adversary, w. When the other pattern is

chosen there will be no penalty. The average penalty will therefore be w/2 while the worst case penalty

will be w. Since the offline algorithm will always give perfect results without any penalties, this will lead

to an unbounded competitiveness in a similar way as for the adaptive adversaries.

- 16 -

2.5.2 Maximising value

As shown in [Wikborg07] see Appendix A, the competitiveness of the online version of the value

maximising problem is 1-competitive since it performs identically to the offline version. A value

maximising problem is a problem which does not consider the production plan, but only look at the

product value.

2.5.3 Combined objective function

The objective function which both minimises the unsatisfied demand and maximises the value can be

written as Objective Function 3 [Wikborg07]. The objective function has been converted to a

minimisation function to make competitiveness analysis easier.

Objective Function 3

𝑀𝑖𝑛 (𝑢𝑝 ∗ 𝐿𝑝)

𝑝

− (𝑉𝑝 ∗ 𝑣𝑝)

𝑝

− (𝑇𝑝 ∗ 𝑠𝑝)

𝑝

The first part of this function is identical to the objective function for minimisation of unsatisfied

demand, while the other part increases the value of the products produced. If the constants can be

assigned any value, the values for all of the Vp and Tp could be equal to zero. This will lead to an identical

analysis as is the case with Objective Function 2 which leads to an unbounded competitiveness factor.

Even with Vp and Tp above zero, the competitiveness will be unbounded without restrictions in the

relationship between Vp, Tp and Lp.

2.5.4 Maxmin

Maxmin is a method of maximising the value of the worst case scenario. The method for achieving this is

trivial for the online meat cutting problem and the complete objective function as shown in Objective

Function 4 will therefore be used right away.

Objective Function 4

𝑀𝑎𝑥 (𝑉𝑝 ∗ 𝑣𝑝)

𝑝

+ (𝑇𝑝 ∗ 𝑠𝑝)

𝑝

− (𝐿𝑝 ∗ 𝑢𝑝)

𝑝

It is not possible to guarantee any value from the unmeasured carcasses. This can be proven by the fact

that there is no lower bound on the weight of the carcasses. The minimal value will therefore be the

value of the measured carcasses. To create the maxmin value for the problem, the minimal value has to

be maximised. This can be done by maximising the value of the measured carcasses without considering

the unmeasured carcasses.

2.5.5 Minimax regret

Regret is defined as the difference between the online solution and an optimal offline solution. While a

competitiveness ratio uses the ratio between the online solution and the optimal offline solution, the

minmax regret method will instead minimise the regret. An example would be to choose between two

options, A1 and A2.There are two possibilities of how the future will be. In one possible future, A1 will

yield 60 in utility while A2 will yield 40. In the other possible future these numbers will be 10 and 20.

- 17 -

 From the point of view of competitiveness, the worst case for A1 would be future 2 where it

yields 1/2 of the maximum profit. The worst case for A2 would be future 1 where it yields only 2/3 of the

maximum profit. A2 would therefore be chosen as the best alternative. By using minimax regret, the

worst case for A1 would be future 2 with a regret of 10. The worst case of A2 would be future 2 with a

regret of 20. This means that a different solution will be chosen by using the minimax method instead of

a competitiveness ratio.

Table 8 Minimax regret example

 A1 A2

Future 1 60 40

Future 2 10 20

Maxiumum regret 20 – 10 = 10 60 – 40 = 20

Minimax regret can also be used for the meat cutting problem. With the purely profit maximising

objective function, the results will be just the same as with competitiveness ratio. The offline and online

algorithm will perform identical and the regret will be zero.

The example described in Figure 6 can be used to analyse how minimax regret will perform with

Objective Function 3, which only emphasises on satisfying the demand. There is no guarantee that the

online algorithm will be able to fulfil any more of the demand after the first cutting pattern has been

chosen. The offline algorithm may on the other hand fulfil all of the demand. This can be used as an

upper bound for the regret. The online algorithm will know for sure how much of the demand it can

fulfil with the measured carcasses, but it cannot guarantee that any of the unmeasured carcasses will

count towards the unfulfilled demand. This upper bound is easy to achieve by only considering the

measured carcasses and assume that the unmeasured carcasses will produce nothing while doing the

optimisation. This method will most likely not perform very well in practice. It will only look at short

term benefit and in the beginning produce mainly products which have a large penalty for unsatisfied

demand. This can lead to overproduction of certain products.

2.5.6 Relationship with the real problem

 The production plan is usually made to reflect the animals being slaughtered that day. This

means the extreme cases discussed above are very unlikely to occur. Even if it could happen, what is

important for the Nortura is the average profit or the expected value and not to minimise the regret or

competitiveness ratio. Since the production plan usually is achievable or close to achievable with normal

production, overproduction is likely to happen. This can be prevented by adjusting the production plan

to only consider a portion of the total plan. If only 10% of the animals are measured, these animals can

be expected to produce 10% of the total plan. This would be a fair estimate as long as the variation

between the early and the later animals is not too large. This technique will from now on be referred to

as an adjusted production plan.

- 18 -

3 Online model
The online model describes how the problem would be solved if measurements of the carcasses become

available one at a time while the optimisation model is run, as can be seen in Figure 5. The problem of

determining what to make out of the first of the measured carcasses will from now on be called the sub

problem, while the problem of finding out what to make out of every carcass will be called the master

problem. The master problem therefore consists of one sub problem for each carcass which is being cut.

 As shown in the performance analysis section, there is no guarantee that the unmeasured

carcasses will make any valuable products at all. A natural approach to an online model would therefore

be to maximise the value of the measured carcasses without considering the unmeasured carcasses. The

model for this sub problem would be very similar to the offline model, but only consider the measured

carcasses instead of all carcasses.

The goal of this model would be the same as for the offline model, to maximise the total value.

The objective function will therefore be identical. The restrictions will look identical as well, but the

difference lies in the number of variables. The 𝑥𝑐,𝑎 variables will only be created for the measured

carcasses and the set of carcasses c will therefore include a lot fewer members in the sub problem than

in the offline model. While the offline model decide which cutting patterns to use for all the carcasses,

the model for the sub problem only makes a decision for the first carcass. The model will be run again

with new data for each carcass to solve the master problem.

Objective Function 5

𝑀𝑎𝑥 (𝑉𝑝 ∗ 𝑣𝑝)

𝑝

+ (𝑇𝑝 ∗ 𝑠𝑝)

𝑝

− (𝐿𝑝 ∗ 𝑢𝑝)

𝑝

Subject to:

Constraint 7

 𝑥𝑐,𝑎 ∗ 𝑃𝑎,𝑝 ∗ 𝑊𝑐 = 𝑣𝑝 + 𝑠𝑝 , ∀𝑝

𝑎𝑐

Constraint 8

 𝑥𝑐,𝑎

𝑎

= 1,∀𝑐

Constraint 9

𝑣𝑝 ≤ 𝐷𝑝 , ∀𝑝

Constraint 10

𝐷𝑝 = 𝑣𝑝 + 𝑢𝑝 , ∀𝑝

- 19 -

Constraint 11

𝑣𝑝 , 𝑢𝑝 , 𝑠𝑝 ≥ 0, ∀𝑝

Constraint 12

𝑥𝑐,𝑎 ∈ 0,1 , ∀𝑐, 𝑎

The online model will look identical whether the adjusted production plan is used or the full

production plan. The difference will be in 𝐷𝑝 .The value of 𝐷𝑝 will be adjusted between each instance of

the sub problem. After the cutting pattern has been determined for one carcass, the production from

this carcass will be added to what have been produced so far. With a full production plan, the difference

between the production plan and the production so far will be used directly as a goal for the sub

problem. With an adjusted production plan, only a fraction of the production plan will be used. This

fraction is equal to the fraction of the remaining carcasses which are measured. An example would be if

there were 60 uncut carcasses and 10 of these are measured. Only 10/60 or 17% of the unsatisfied

production will be used in the adjusted production plan.

3.1 Heuristics
Heuristics can be used to create a solution for an optimisation problem without a guarantee of an

optimal solution. The core of many heuristics is a local search. A local search requires a neighbourhood

structure for the states of the problem. Many neighbourhood structures can be used to describe the

same problem, and how the neighbourhood structure is defined can have large consequences on the

performance of the search [Gendreau02]. A neighbourhood structure describes how to move from one

solution to another, even if these solutions are not feasible.

A feasible solution for the meat cutting problem described in this paper is when each carcass

has assigned one cutting pattern. Every carcass can be represented with a vector for all the available

cutting patterns. One value in the vector will be 1 while the rest is 0. This binary value will determine

which cutting pattern is used for the carcass, see Table 9. Not only is this a neighbourhood structure, but

the structure also span all feasible, but no infeasible solution. It will therefore not be necessary to check

for feasibility when exploring the neighbourhood.

Table 9 Data structure

 Carcass 1 Carcass 2 Carcass 3 ... Carcass N

Pattern 1 0 1 0 0 1

Pattern 2 0 0 1 0 0

Pattern … 1 0 0 0 0

Pattern N 0 0 0 1 0

- 20 -

By reassigning a carcass to a new cutting pattern, a move in the neighbourhood structure will be

performed. This would be done in the data structure by changing one vector by moving the value 1 to

another position. The search neighbourhood can be defined by a change in any single vector. For the

example in Table 9, every carcass has 4 possible cutting patterns. A single cutting pattern for one carcass

can therefore be changed to any of the other cutting patterns. By this definition of search

neighbourhood, this can be done for only one carcass at a time. The number of neighbours is therefore

equal to the number of unused patterns times the number of carcasses.

- 21 -

Figure 7 Global and local optimum

3.2 Local search
A local search,can be performed on this search neighbourhood to find a local optimum. One way

of doing this is to cycle through the carcasses and to pick the cutting pattern which gives the best value

for the objective function at each step. Eventually this method will no longer make any changes. This

means that it has found a local optimum since none of the neighbours has a higher value [Rardin98]. A

feasible solution can be a good start location for the local search. One possibility would be to assign

cutting pattern 1 to all the carcasses. This would lead to the same solution every time. Another

possibility would be to assign random cutting patterns to every carcass. By running the model again, a

new starting position would be used and a local optimum would be found again. This optimum can be a

worse optimum, the same, or hopefully a better one. If the first optimum found is the local optimum B

in Figure 7, a new starting position further to the left might find the global optimum A instead.

The easiest method to use the neighbourhood structure to improve a solution is to perform a

local search. A local search searches through its neighbourhood for a local optimum. There is no

guarantee that the local optimum is the best global solution. This is illustrated in Figure 6. Point B is a

local optimum, and none of its neighbours have a higher value. Point A does however have a higher

value and is for this graph segment a global optimum.

A local search can be performed on the data

structure described for the meat cutting problem.

This can be done by cycling through all the carcasses

and pick the cutting patterns which maximises the

total value. Since changing the cutting patterns will

change the total production made of each product,

a product which used to be in demand can suddenly

become abundant. Since this will make other

cutting patterns seem more valuable, changes

might have to be done to carcasses already assigned

a cutting pattern. The changes will always increase

the objective value. Only a limited number of changes

can therefore be made before a local optimum is found. The local optimum might not be the global

optimum. To increase the chance of finding a good optimum, the algorithm can be run several times

with different starting positions.

 An advantage of the local search is that it is generally a simple algorithm which will execute fast.

The results can vary a lot depending on the problem’s neighbourhood structure and how easily the

algorithm can get stuck in a local optimum which is much worse than the global one.

- 22 -

Figure 8 New individuals

3.3 Genetic Algorithms
One type of heuristics is based on the evolutionary processes seen in nature. The genes of an

organism form the basis traits of the organism. Changing these genes will also change the traits of the

organism. The genes can change through different methods from generation to generation.

Reproduction will let the next generation inherit some of the genes from the ancestors, while mutations

can form new genes which has never been in any of the ancestors before.

 Genetic algorithms represent the data as a gene structure [Reeves93]. Each gene represents a

part of the solution. In the data structure described in Table 9, each column can be considered a gene

while the whole table is an individual. An individual can therefore be looked upon as one possible

solution, although it might not be a good solution. Methods for improving these solutions have been

developed with inspiration from the evolution seen in nature.

An initial population is needed to base the evolution on. This

population consists of solutions which are made by assigning all the genes

randomly. This can be seen in Figure 10 where there is no common origin

for the genes.

Mutations are made by choosing some genes from an existing

individual while randomly assigning the other genes. Figure 9 shows how

some of the genes are kept from the white individual, while 3 new genes

are assigned random values.

Crossovers from the survivors can be seen as children of the

survivors. They are made by taking genes from two other individuals and

mixing them together into a new individual. Figure 8 shows how a white

and a blue individual are crossed to make a third individual with genes from

the two other.

Figure 9 Mutations

Figure 10 Crossovers

- 23 -

3.3.1 Evolution through generations

Different individual will have different combinations of genes. A group of individuals is called a

population. The goal of genetic algorithms is to evolve fit individuals through evolution. A fitness

function is used to evaluate how fit an individual is. A

fit individual is the term used for good solutions. The

fitness function for the online problem would

therefore be the objective function seen in Objective

Function 5.

Genetic algorithms can be broken down into 6

steps as seen in Figure 11.

1) An initial population is generated. This can be

done randomly by generating a number of individuals

by giving them a set of random genes.

2) Evaluation of population. In this step the

population is evaluated by calculating the fitness value

of the individuals in the population.

3) Continue? In this step a choice has to be made

to either accept the current solution or continue to

look for better solutions. When to quit is often decided

either on the fitness of the best solution or after a

certain number of iterations of the algorithm.

4) Some of the individuals are chosen to survive

to the next generation. Each iteration of the loop

consisting of steps 2, 3, 4 and 5 is considered a

generation. The fittest individuals are typically chosen

to survive while the others are removed from the

population.

5) The individuals which got selected in step 4) are used to form the basis of a new generation of

individuals. There are 4 types of individuals in the next generation.

i. Survivors from the last generation

ii. Brand new individuals, see Figure 8.

iii. Mutations from the survivors, see Figure 9.

iv. Crossovers from the survivors, see Figure 10.

The population can be kept constant by always creating as many new individuals as the ones

being removed in step 4. The algorithm will go back to step 2 after step 5 is finished and a new

generation is ready to be evaluated.

6) The final population is the current population at the last generation. The population becomes

better and better with each generation, and the final population is therefore likely to consist of

1. Initial

population

2. Evaluation

of population

4. Selection

6. Final

population

3. Continue? Yes

No

5.

Reproduction

Figure 11 Genetic Algorithm

- 24 -

fit individuals. The best of these individuals can be chosen as the final solution and be

considered the output of the algorithm.

- 25 -

4 Implementation

4.1 Offline solution
The offline solution is very closely related to the offline model. Any implementation of the offline model

would result in an offline solution. Since the model is a mixed integer programming model, a method for

solving mixed integer programs is needed. A specialised language for mathematical programming is very

well suited for solving the problem. Regular programming languages such as C++ or Java can also be

used, but would require additional programming since the model is harder to represent without a

mathematical programming language.

4.1.1 Implementation tools

Various tools can be used to implement the model. Certain requirements have to be fulfilled for a tool

to be well suited.

Requirements:

1. Easy to learn

2. Giving good results

3. Fast development

4. Affordable

5. Well suited for the model

Xpress from Dash Optimization has to be evaluated based on these requirements in Table 10. Xpress is

optimiser software for solving various kinds of optimisation problems such as linear programming

problems and mixed integer problems. Xpress includes its own development environment called Xpress-

IVE for writing constriction based programs with the programming language Mosel.

- 26 -

Table 10 Evaluation of Xpress for offline model

Requirement Description Degree of fulfilment

Easy to learn Already known by the developer High

Giving good results Solves the model to optimality. High

Fast development The developer has experience

with the tool and will therefore

work faster than with new tools

High

Affordable Sintef has already paid for a

licence for the product. Other

companies which want to

develop the program further

would have to acquire their own

licence.

Medium

Well suited for the model Xpress has efficient algorithms

for solving linear programming

problems and mixed integer

problems [Dash08]. This is the

kind of problems which has to

be solved for the model.

High

Xpress scores overall very well on the requirements. The largest disadvantage is the license price other

developers would have to pay if they want to further develop the program. This would have been less of

a problem with open source tools or less expensive tools. The goal of the offline problem is to make an

optimal solution which the online solution can be compared with. As a benchmark for the online

solution, there will be little need to develop the offline solution further after the online model is finished

since it will not be used for production.

 Xpress fulfil requirements 1 and 3 in a way no other tool would be able to, since Xpress is the

only tool for solving mixed integer programs which the developer has previous experience with and

SINTEF has been using. The time it would take to learn a new tool and the risk of not performing as well

as anticipated is too large for any other tool to be considered. Xpress will therefore be chosen without

evaluating other options.

- 27 -

4.1.2 Input data

 All the input data needed for the offline model is available from Nortura’s databases. The most

challenging data to format is the cutting patterns. The cutting patterns are originally represented by a

list of entries with 4 values. The ID of the cutting pattern, the ID of the product produced, the carcass

type the cutting pattern is used on and how much will turn into this product. Multiple entries can have

the same cutting pattern ID, because the cutting pattern can produce more than one product. A new

entry will therefore be added for each product a cutting pattern produces. An example with 2 cutting

patterns, 3 products and only one carcass type can be seen in Table 11.

Table 11 Cutting pattern format

Cutting pattern ID Product ID Carcass Type Yield percentage

1 100 10 50%

1 101 10 20%

1 102 10 30%

2 101 10 60%

2 102 10 40%

The data in Table 11 is represented by 𝑃𝑎,𝑝 in the offline model. 𝑃𝑎,𝑝 can be represented by a two

dimensional matrix with cutting patterns and products as the two indexes. Each cell in the matrix will

represent how much of product p will be produced by using cutting pattern a. The data from Table 11

will be represented by Table 12 in this format.

Table 12 Cutting pattern matrix

 Product 100 Product 101 Product 102

Cutting pattern 1 50% 20% 30%

Cutting pattern 2 0% 60% 40%

- 28 -

Some information has not represented in the new table. There is no longer a carcass type associated

with each cutting pattern. This information will be represented elsewhere by only creating xc,a variables

for the carcasses which can be cut by cutting pattern a, see Pseudo Code 1.

forall (Carcasses c) do

 forall (Cutting patterns a) do

 if (Usable pattern (c, a) equals true) then

 create(x(c, a))

 end-if

 end-do

end-do

Pseudo Code 1 Creating relevant variables

The other data such as product price, planned production and the input carcasses are stored in the

database in a similar format as the one used in Xpress with only minor adjustments needed.

4.1.3 Programming

The offline model is programmed in a language named Mosel. Mosel is a programming language

designed for mathematical modelling. The constraints in the offline model can therefore be modelled

directly in Mosel. Constraint 1 can be written as Pseudo Code 2. The pseudo code is identical to the

constraint in the original model, but is no longer written as a mathematical formula.

forall (Products p) do

 SUM(Carcasses c, Cutting Patterns a) x(a, c) * P(a, p) * W(c) = v(p) + s(p)

end-do

Pseudo Code 2

All the constraints have to be modelled in a similar way before any optimisation can be done. The

optimisation is done by defining the objective function and asking the Xpress solver to either minimise

or maximise this function. The objective function can be written as Pseudo Code 3. No specific value for

surplus production has been defined, and the value is therefore set to B of regular price –F kroner per

kilo.

Value = SUM(Products p)(V(p) * v(p) + ((V(pr) * B)- F) * s(pr) - u(pr)*L(pr))

Pseudo Code 3 Objective function

- 29 -

The value defined in Pseudo Code 3 will be maximised to calculate which cutting patterns each carcass

should be cut with to create the most value. The value of x(c, a) determines whether the cutting pattern

should be used for carcass c or not, while the amount produced of each product is stored in the

variables for regular production v(p) and the variables for surplus production s(p).

4.2 Online solution
The model can be solved optimally like the offline model or heuristics can be used to find approximate

solutions.

4.2.1 Implementation tools

The model to be solved has no fundamental differences from the offline model. The only difference is

the data the model uses, since the data is adjusted according to which carcasses have been measured.

There is however additional requirements for the implementation of the online model. It has to be run

for each carcass during production. That means the calculations have to be finished and present the

results for the cutter in a matter of seconds. A larger execution time can create

The requirements

Requirements:

1. Easy to learn

2. Giving good results

3. Fast development

4. Affordable

5. Well suited for the model

6. Fast execution time

Xpress can be used to find optimal solutions to the sub problems in the online model. An

evaluation has been done in Table 13. Xpress is a good choice for all the same reasons it was for the

offline solution, but for the additional requirement, fast execution time, it does not perform as well. An

exact solution can take more time than what is available at the cutting plant, which will result in a bottle

neck in the production. Another problem is the licensing costs. A solution will need adjustments when

the cutting plant request changes and licenses for Xpress is a considerable expense.

- 30 -

Table 13 Evaluation of Xpress for optimal solutions of the sub problem

Requirement Description Degree of fulfilment

Easy to learn Already known by the developer High

Giving good results Solves the model to optimality. High

Fast development The developer has experience

with the tool and will therefore

work faster than with new tools.

High

Affordable Sintef has already paid for a

licence for the product. Other

companies which want to use

the program further would have

to acquire their own costly

licence.

Medium

Well suited for the model Xpress has got efficient

algorithms for solving linear

programming problems and

mixed integer problems.

[Dash08]. This is the kind of

problems which has to be solved

for the model.

High

Fast execution time

Xpress will search for an optimal

solution for the model. Since the

model is a mixed integer

problem, the execution time can

be hard to predict with no

certain upper limit.

Low

The heuristics described in the online model section can be realised with various programming tools.

This could for example be done in Visual Studio with C++ or Eclipse with Java. C/C++ is the de facto

standard for implementing heuristics and will therefore be used.

- 31 -

Table 14 Evaluation of Visual Studio with C++ for heuristic solution of the sub problem

Requirement Description Degree of fulfilment

Easy to learn Already known by the developer High

Giving good results Heuristics can give varying

degree of optimality, but

execution time can be sacrificed

for better results.

Medium

Fast development The developer has experience

with the tool and will therefore

work faster than with new tools.

C++ is often considered more

vulnerable to bugs than other

programming languages, which

can prolong the development

time.

Medium

Affordable Visual Studio available through

NTNU or through the free Visual

Studio Express Edition.

High

Well suited for the model C++ is well suited for

implementing heuristics since it

has got libraries including the

needed algorithms and data

structures.

High

Fast execution time

Heuristics can be adjusted to

execute fast by sacrificing

guaranteed optimality. C++ is a

programming language which is

known to run fast because of

how it is compiled into machine

code.

High

As can be seen from Table 13 and Table 14, the different methods have different advantages and

disadvantages. The heuristic solution is assumed to be faster than the exact method, while the exact

method gives better results. Both methods are well known to the developer and implementation should

therefore not be a problem. However, a major concern is the cost of Xpress. Licensing of commercial

optimisation solutions can be a costly affair, and a free alternative should be used if the performance is

equal.

- 32 -

4.2.2 Program structure for the master problem

Various optimisation methods can be implemented in C++. Some functionality will always be

shared by these implementations. The data has to be loaded into the program, the results have to be

written somewhere. This makes up a common framework which the optimisation methods have to

communicate with. This framework should provide the optimisation method with the measured

carcasses and the production plan, while the

optimisation method will provide the cutting pattern

with which to use for the first carcass. The framework

will then update the production plan according to the

products made from the carcass, and ask the

optimisation method to calculate what to do with the

next carcass. The structure of the program can be seen in

Figure 12.

Loading data: The data described in section 2.2

is loaded in this phase and loaded into appropriate data

structures.

Initialise optimisation: This phase prepares the

data for the optimisation method. The produced amount

of each product will be summed. This amount will

increase for each carcass which has been cut. Then the

measured carcasses will be updated. For the first

iteration, a given number of carcasses will be added as

measured carcasses to be used for the optimisation. For

subsequent iterations, the first carcass will be removed

from the list of measured carcasses, because it has been

cut, and a new carcass will be added to keep the number

of measured carcasses constant. The number of

unmeasured carcasses will be reduced by one.

Choose method: This phase will simply choose

which optimisation method to use. This is typically

predefined by the user.

Optimisation method: This phase solves the sub

problem by determining which cutting pattern to use on

the next carcass. Many methods can be used to achieve this goal, these methods are further explained

in section 3.

Display pattern: This phase simply displays the result from the optimisation method. This is

where the cutters get the information as to which cutting pattern should be used for the current carcass.

Loading data

Initialise optimisation

Local search Genetic search Other opt.method

Choose

method

Finished?

[Yes]

Write output

Display pattern to use

[No]

Figure 12 Program structure

- 33 -

Finished? If there are no more carcasses to be cut, the program will start writing the outputs. If

there are still more carcasses left, another iteration will be performed to determine what to do with the

next carcass.

Write output: The program has now calculated the production of each product after all the

carcasses have been cut. This can either be displayed as the total production of each product or the

production compared with the production plan.

4.2.3 Data structures

The data described in section 2.2 has to be represented efficiently to allow fast access and

execution. A simplified figure of the relationships between the data types can be seen in Figure 13.

“Carcasses” is a list of the measured carcasses. Each carcass has a weight and a carcass type. Each

carcass type can be cut with a predefined number of cutting patterns. No cutting pattern can be used for

more than one carcass type. Each cutting pattern turns a percentage of the carcass into each product.

The production plan defines how much of each product is the production target.

-CarcassType

Carcass

-CuttingPatternSet

Carcass Type* 1

-ProductVector

-PercentageVector

Cutting Pattern

1

*

-Price

Product * *

-ProductVector

-QuantityVector

Production Plan 1 *

-CarcassVector

-WeightVector

-CuttingPatternVector

-CuttingPatternMap

Carcasses

1 *

*

*

Figure 13 Data relationships

While loading the data, the cutting patterns are read line by line in the format show in Table 11.

New elements have to be added each time a new carcass type or cutting pattern is encountered. Each

carcass type is placed in a map linking its ID to the appropriate object. The same is done for cutting

patterns. This makes it much easier to set up the appropriate linking since the numbers read in from the

data sources can be used to look up the objects in the maps instead of traversing long arrays.

During execution of the heuristics, the most common operations are to assign cutting patterns

to the carcasses and to calculate the value of the chosen cutting patterns. The cutting pattern is

assigned by putting the Cutting Pattern in the CuttingPatternVector which matches the Carcass in the

CarcassVector. To find which cutting patterns can be used for that particular carcass, the following steps

have to be followed:

-access the carcass from the CarcassVector in Carcasses

-find the carcass type from CarcassType in Carcass

-access the Cutting Patterns in the CuttingPatternSet in CarcassType

- 34 -

This set will contain all the cutting patterns which can be used for the carcass.

To calculate the value of a set of cutting patterns, the total production of each product has to be

summed up, as can be seen in Pseudo Code 4. The value of the production depends on the production

plan, since some of the products are considered regular production while others are surplus production.

Penalties will also be added for unsatisfied demand.

forall(Carcasses a) do

 forall(Products p) do

production(p) += weight(a) * PercentageVector(CuttingPatternVector(a))

 end-do

end-do

Pseudo Code 4 Summation of the production

The calculation of the total value of the normal production, surplus production and penalties is
done in Pseudo Code 5. The normal production is given full price, while the price of the surplus
production is reduced to B% of the regular production and given a penalty of F kroner per kilo.

forall(Products p) do

 value += product.price * MIN(production(p), ProductionPlan(p))

 value += ((product.price * B) – F) * MAX(production(p) – ProductionPlan(p) , 0)

 value -= product.penalty*(ProductionPlan(p) – MIN(production(p), ProductionPlan(p))

end-do

Pseudo Code 5 Calculating value

- 35 -

4.2.4 Local search

This section will explain how the local search is implemented.

continue = true

while(continue) do

 continue = false

 bestValue = calcValue(currentSolution)

 forall(Carcasses c in currentSolution) do

tempSolution = currentSolution

 forall(Cutting Patterns a in c) do

c.assign(a)

if(calcValue(tempSolution) > tempValue(currentSolution) do

 currentSolution = tempSolution

continue = true

end-if

 end-do

 end-do

end-do

Pseudo Code 6 Local search

The local search is a simple algorithm which goes through every measured carcass and assign the cutting

pattern which makes the total value the highest. Each change can make chain reactions for the other

cutting patterns, and every carcass therefore has to be evaluated again when a change is done. How this

is done can be seen in Pseudo Code 6.

- 36 -

4.2.5 Genetic algorithm

The genetic algorithm described in section 3.3 has been implemented from scratch in C++. This

section will explain the implementation with pseudo code. The first stage is to create an initial

population. This can be done as shown in Pseudo Code 7. New solutions are created by assigning

random cutting patterns to all the carcasses in the solution.

while(population.size < desired size) do

 new solution

forall(Carcasses c in solution) do

c.assign(Random cutting pattern)

 end-do

population.add(solution)

end-do

Pseudo Code 7 Generating a population

Each solution has to be evaluated after the initial population has been generated. The results from these

evaluations can be used to rank the solutions according with their fitness.

forall(Solutions s in population) do

 calculateValue(s);

end-do

sortByValue(population)

Pseudo Code 8 Evaluation population

The next generation is first populated by the best from the last population, Pseudo Code 9. These

individuals make sure the best genes survive and make the basis for the crossovers and the mutations.

forall(Survivors) do

nextPopulation.add(population.remove(best))

end-do

Pseudo Code 9 The best solutions survive

- 37 -

Crossovers are made by taking two solutions from the surviving population are chosen as parents. For

each gene in the new solution, there is 50% chance of taking the gene from the first parent and an equal

chance of taking the gene from the other parent, as can be seen in Pseudo Code 10.

forall(Crossovers) do

 new solution

 parent1 = population.get(Random Survivor)

 parent2= population.get(Random Survivor)

forall(Carcasses c in solution) do

if(random(50%)) do

c.assign(parent1.get(c))

 else do

c.assign(parent2.get(c))

 end-if

end-do

nextPopulation.add(solution)

end-do

Pseudo Code 10 Crossovers

Mutations are done by creating new solutions which are partly based on a single parent and partly

based on random mutations, see Pseudo Code 11. The degree of mutation can be chosen by adjusting

the mutation chance. Most of the genes will typically be taken from a parent while some are mutated.

forall(Mutations) do

 new solution

 parent = population.get(Random Survivor)

forall(Carcasses c in solution) do

if(random(Mutation Chance) do

c.assign(Random Cutting Pattern)

else do

c.assign(parent.get(c))

end-if

end-do

nextPopulation.add(solution)

end-do

Pseudo Code 11 Mutations

- 38 -

Some newborns are added to the solution, see Pseudo Code 12. Newborns are created exactly like they

were for the initial solution.

forall(New born) do

 new solution

forall(Carcasses c in solution) do

c.assign(Random cutting pattern)

 end-do

nextPopulation.add(solution)

end-do

Pseudo Code 12 New born

The nextPopulation will become the current population, and the whole process will be done all over

again. This will continue until enough generations have passed away. The best solution from the current

population will be chosen as the final solution.

- 39 -

5 Results and discussion
This section will present and discuss the results of the optimisation program. The data used to produce

these results are taken from the production of one of Nortura’s cutting plants in June 2007.

5.1 Results of the offline algorithm
The results of the offline algorithm will be a goal for the online algorithm. Results of the exact

offline algorithm can be found in the appendix.

The offline model has been run with carcass data and the production plan from 4th June 2007 in

Figure 14. Take notice of the logarithmic scale. The total value from this production is 912 174 kroner

and 95 carcasses were cut during the day.

Figure 14 Offline results from 4th June 2007

 Product 11 stands out particularly in this graph. It is plenty of demand for this product, but

nothing is being produced. This reflects a weakness in the model. Product 11 is tendons, which will

always be produced during production of other products. It is therefore not included in all of the cutting

patterns, and the optimisation algorithm will not register any production of it. Some of the cutting

patterns have tendons included, but the value of tendon is very small compared with the value of other

products. This will not affect the production since the production of tendons is independent from the

cutting pattern that was used. It does however make it harder to use the system for planning since these

products have to be handled separately.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

g

p

r

o

d

u

c

t

i

o

n

Products

Surplus production Unsatisfied production Regular production

- 40 -

Figure 15 4th June 2007 without a production plan

Figure 15 shows the production for the same day without a production plan. The most valuable products

will always be produced since there is no production plan to consider. In this situation, each carcass of

the same type will be cut with the same cutting pattern since there is no production plan to fulfil.

 The production of product 9 matches the production plan closely in Figure 14. It seems like this

production is forced up by the production plan, and it is therefore likely that the production would be

lower without the plan. Figure 6 shows that this is exactly what happened. The production of product 9

fell in favor of product 6 and 12. Nothing at all is produced of product 1 without the production plan.

This is because product 1 is a byproduct of some of the cutting patterns which produce the products

demanded in the production plan.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

g

p

r

o

d

u

c

t

i

o

n

Products

Surplus production Unsatisfied production Regular production

- 41 -

Figure 16 Production from 4th of June to 6th of June

Except for the tendons, the offline algorithm fills up the complete production plan in all the test cases.

This can be seen in Figure 16 which shows the total production when the production for 3 days are

calculated together. The plan for product 3 and 8 are fulfilled even if none of these products would

have been produced without the production plan. Product 6 and 9 is matched even closer to the plan

with little surplus production.

 The conclusion of the results from the offline algorithm is that the results are what the cutting

plant need. There can be small mistakes for certain products, but in this case it is because of the lack in

the cutting patterns and not because of the algorithm.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

g

p

r

o

d

u

c

t

i

o

n

Products

Surplus production Unsatisfied production Regular production

- 42 -

5.2 Convergence of the genetic algorithm
This section will evaluate the genetic algorithm described in section 3.3. The genetic algorithm can give

varying results because it is a heuristic. The parameters in the algorithm should be adjusted to give a

good trade off between speed and solution quality. Speed can be sacrificed for better results by either

performing more generations of the algorithm or by having a larger population in each generation. Both

mutations and crossovers can be important for the population. How important one is over the other

varies a lot depending on the problem type [Luke98]. The offline problem using the production on 4th of

June will be used as an example to test the algorithm. Different settings shown in Table 15 are used to

evaluate how the algorithm converges.

Table 15 Parameter settings for the genetic algorithm

Regular
population

Small
population

No
Mutations

No
crossovers

No new
born

Fewer
survivors

More
survivors

Survivors 200 100 200 200 200 50 400

Crossovers 400 200 400 0 400 400 400

Mutations 400 200 0 400 400 400 400

Newborns 400 200 400 400 0 400 400

The exact results can be seen in Table 22 in the Appendix. Two graphs will be used to represent these

results. Figure 17 shows the first 10 generations while Figure 18 shows the next 90 generations. This is

done to improve the readability due to the large variations in scale when the algorithms converge.

Figure 17 Generation 1-10 of offline 4th of June

650000

700000

750000

800000

850000

900000

1 2 3 4 5 6 7 8 9 10

O

b

j

e

c

t

i

v

e

f

u

n

c

t

i

o

n

Generation

Regular

Small

No mutations

No crossovers

No new born

Fewer survivors

More survivors

Optimal

- 43 -

 A few settings stand out the most during the first 15 generations. The setting with fewer

survivors converges much faster than the other settings. The new generations are in a larger degree

based on good solutions since only the very best are picked out to survive. The setting with increased

number of survivors does the opposite. There is less change with each generation since solutions with

bad objective value are allowed to survive. This is what can be expected based on literature on genetic

algorithms, since there is a higher degree of selection while the diversity is lower. By far the worst

setting is the one without any crossover. Little is brought with it from generation to generation since the

surviving solutions are not allowed to be merged, and the algorithm resembles closer to a guessing

game by generating random changes. The rest of the settings perform almost equally well, and it is hard

to say if one is better than the other.

Figure 18 Generation 11-100 of offline 4th of June

 The setting without crossovers has been omitted from the graph for the last 90 generations

because it is too far behind. The setting with fewer survivors starts to slow down soon and converges

prematurely. Few survivors have caused the diversity to be too low and the right gene combinations for

a better solution cannot be found in the gene pool. The setting with more survivors takes longer, but

catches up with the other solutions slowly. The small version lags behind and comes to a halt

substantially worse than the regular solution. The regular solution ends up as the best heuristic, but the

differences without mutations or new born are very small. This clearly shows that new born and

mutations are much less important than the crossovers. Research shows that mutations or new born are

vital to keep the diversity of the gene pool [Mauldin84]. Diversity generally increases the value of the

point of convergence, but requires more generations to give a good solution. Keeping many solutions

between each generation also helps to maintain diversity. The graph shows that reducing the number of

survivors has bad effect on the long term results. From what can be learned from these conclusions, a

good combination of speed and good solutions would be to keep the regular setting but decrease the

number of mutations and new born. These settings will have to be tweaked for each problem size. For

890000

895000

900000

905000

910000

915000

10 20 30 40 50 60 70 80 90

O

b

j

e

c

t

i

v

e

f

u

n

c

t

i

o

n

Generations

Regular population

Small population

No mutations

No crossovers

No new born

Fewer survivors

More survivors

Optimal

- 44 -

the online problem with only 10 carcasses, fewer generations and smaller populations will be needed.

Testing has showed that 20 generations with 100 survivors, 200 crossovers and 50 of both mutations

and newborns is adequate for convergence in cases with 10 carcasses.

 The genetic algorithm performs a global search in the search space. Even though the algorithm

seems to have converged, there might be better solutions in the nearby neighbourhood. This can be

exploited by running a local search after the genetic algorithm has finished. That would drive a good

global solution into a local optimum. The “Regular” setting in Figure 18 performs best of all the

heuristics in the graph with a final value of 912033. This is however still not the local optimum. If a local

search is performed on the solution with value 912033, it will be further increased to 912104. To

perform a local search on the solution from the genetic algorithm will never make the solution worse,

and is therefore a safe improvement to the genetic algorithm.

5.2.1 Discussion of the genetic algorithm

The quality of a genetic algorithm often depends on the data structure which it is based on and

the problem it solves. The problem solved here reaches 99.992% of the optimal objective function.

0.008% is insignificant for this kind of problems since the inaccuracies elsewhere is very large in

comparison. The inaccuracies in the measurement equipment and the variation between the cutters can

be 100 times larger [NorStaff08]. The algorithm can be considered as good as an exact algorithm for all

practical purposes.

Today’s solution for cold cutting solves a similar problem to that of the genetic algorithm. It has

therefore been asked by Trond Malmo [NorStaff08] from Nortura if it is possible to also use this method

for cold cutting of carcasses. Cold cutting optimisation does not handle each carcass individually, but is

based on a LP solution which is then translated into whole carcasses by a heuristic. To solve the cold

cutting problem for individual carcasses should therefore theoretically be able to outperform today’s

solution. It has been shown here that the genetic algorithm is able to solve problems with a hundred

carcasses, and it will be able to solve the amount of carcasses used for cold cutting in a matter of

minutes. The question will therefore be how different are the problems. The cold cutting optimisation

program does today include prognoses for future demand and spans over a larger operational field than

what has been discussed in this thesis. Storage and logistics is as much a focus as the cutting patterns in

itself. Even though cold and warm are partly overlapping problems, the differences are too large for any

direct comparison.

- 45 -

5.3 Results from the online algorithm
The online algorithm uses the genetic algorithm which has been tested out in section 5.2 to solve

the sub problem. This is then done once for each carcass to solve the master problem such as explained

in section 3. Whether to use the full production plan for the sub problem or adjust the production plan

was discussed in section 2.5. To use the full production plan would give the theoretically minimum

regret, but it was acknowledged that this did not relate well to the actual problem. A comparison

between the methods is shown in Figure 19. The exact results can be found in Table 23 in the appendix.

The horizontal axis shows the number of measured carcasses, while the vertical axis shows the objective

value for the master problem. To the far right at 95 carcasses, both methods perform identically since

both methods will be a heuristic solution to the offline problem. To the far left, the method using an

adjusted production plan outperforms the methods using a full production plan significantly. Using the

full production plan lacks any foresight into the future, and is therefore outperformed by the method

which depends on the quality of future carcasses. The method using the full production plan will not be

considered any further because of its poor performance.

Figure 19 Online algorithm results 4th of June

As can be seen in Figure 19, the quality of the online algorithms depends on the number of measured

carcasses it uses for the sub problem. More measured carcasses clearly improve the solution, as the sub

problem becomes a bigger part of the master problem. Figure 20 gives a more detailed view of the

effect. In the beginning, the solution improves strongly with more measured carcasses, but after a while

the quality of the solution stabilises. The improvements are largest from 1 to 3 measured carcasses,

noticeable from 3 to 7 carcasses and only minor from 7 carcasses and more.

904000

905000

906000

907000

908000

909000

910000

911000

912000

913000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

O

b

j

e

c

t

i

v

e

f

u

n

c

t

i

o

n

Measured carcasses

Optimal Adjusted production plan Not adjusted production plan

- 46 -

Figure 20 Effect of measured carcasses

More detailed numbers are given in the appendix. As can be seen, the difference from the optimal

solution quickly decreases when more measured carcasses are used in the sub problem. For this

example, 7 measured carcasses give a close to perfect solution with only 0.034% different from the

optimal solution. The number of measured carcasses needed to achieve this accuracy will depend on the

specific problem and will vary each time. 3 test cases have been used in Table 16 to create an average

with less statistically variance. The trends still resemble what have been seen in the graphs above. Quite

large improvements can be seen in the beginning while less is gained after the 7th measured carcass.

Table 16 Performance of online algorithms

Measured
carcasses 1 3 7 10 15

Optimal
offline
solution

6th of June 964951 966514 968244 968714 968784 969629

5th of June 668271 671620 673230 673449 673121 673460

4th of June 908275 910679 911844 911933 911999 912174

Sum 2541497 2548813 2553318 2554096 2553904 2555263

% of optimal 99.461% 99.748% 99.924% 99.954% 99.947% 100.000%

908000

908500

909000

909500

910000

910500

911000

911500

912000

912500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O

b

j

e

c

t

i

v

e

f

u

n

c

t

i

o

n

Measured carcasses

Adjusted production plan Optimal

- 47 -

5.3.1 Local search comparison

A local search can be used to solve the sub problem instead of the genetic algorithm. A local search

alone will be less likely to find good solutions to the sub problem. The results of solving the master

problem with a local search can be seen in Table 17. The performance of the local search is much worse

than that of the genetic search. Because the local search will look for the first local optimum, more

measured carcasses may not enhance the performance as much. The local search will always adjust the

cutting pattern for the first carcass first, which leads to certain cutting patterns being chosen more often

for the first carcass in the sub problem.

Table 17 Local search comparison

Local search 908275 908771 910462 908722 908401

% of optimal 99.573% 99.627% 99.812% 99.622% 99.586%

Genetic search 908275 911504 911933 911999 912036

% of optimal 99.573% 99.927% 99.974% 99.981% 99.985%

Measured carcasses 1 5 10 15 20

The local search gives the same results as the genetic search when only one carcass is measured. Only

one carcass is being evaluated by the sub problem, and the local search will evaluate every possible

cutting pattern for this carcass. Every possible solution will therefore be explored by a single iteration of

the local search. An optimal solution will therefore be found for the sub problem each time. Not even

the genetic search can guarantee as good results as the local search, since it is based on randomness.

However, it is very likely that the genetic search will find the same solution since the mutations will

make a random walk towards the same optimum.

 Even if only test data from one day is used in Table 17, it is safe to conclude that the local search

is unsuited for solving sub problems with many measured carcasses since the performance is well below

the worst performance which has been seen by the genetic algorithm. Nonetheless, the local search is a

good choice if only one carcass is measured, or to improve the best solution found by the genetic

algorithm.

- 48 -

5.3.2 Production comparison

Since the objective function from the online algorithm is almost the same as the objective function for

the offline value, it is likely that the variation between what is produced with the two algorithms is small.

Figure 21 Comparison of the offline and online production

Tendons are still not produced by any of the algorithms, as can be seen in Figure 21. Product 3 is only

produced by the online algorithm. Product 3 is actually a low priced product compared with the others.

It would therefore seem like the offline algorithm has been able to do the optimisation without

degrading the quality of the meat into product 3.

The production plan is accurately matched in production by both the online and offline

algorithm for product 9. To produce any more of this product is clearly not worth it, while penalties for

not fulfilling the demand forces the algorithm to produce everything that is planned. From Nortura’s

point of view, this is one of the purposes of using an optimisation method, since it would be very hard to

fill the production plan for product 9 without surplus production by manually picking the cutting

patterns.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K

g

p

r

o

d

u

c

t

i

o

n

Products
Online production Offline production Production plan

- 49 -

5.3.3 The chosen cutting patterns

Only a few of the cutting patterns are being used in this example. Most of the carcasses of the same

type will be cut with the same pattern. While some carcasses will be cut with another pattern to prevent

overproduction, there are only 2 or 3 patterns which are used for each carcass type. The online

algorithm has a tendency of varying the type of cutting pattern more than the offline algorithm. This is

quite logical, since the online algorithm will use different cutting patterns to fill up the different

demands earlier in the production, while the online algorithm will know how to fulfil the demand with

future carcasses.

It can seem like the unused cutting patterns could have been removed from the calculations

completely. However, not all products can be produced by the most popular cutting patterns. If the

production plan was different, a different set of patterns would have been the most popular ones. It

would in theory be possible to analyse the production plan to discover which of the cutting patterns are

needed, and with this information reduce the number of possible cutting patterns before doing the

optimisation. Even if this is theoretically possible, it is not a trivial task to calculate which cutting

patterns are needed for every combination of production plans. Some cutting patterns can easily be

removed if they are neither the most valuable cutting pattern for the carcass type nor consist of any of

the products in the production plan.

- 50 -

5.3.4 Discussion of the online algorithm

The relationship between the number of measured carcasses and the quality of the solution of the

master problem has been shown in the previous sections. How close to optimality the solution should

be to be useful depends on what it is used for. If simplicity of the implementation is the main focus, the

results with only 1 measured carcass 0.5% from optimal value can be adequate. However, if the results

have to be as good as possible, it will be well worth it to measure more carcasses.

Nortura’s system is however already designed to measure multiple carcasses, and the benefit of

10 measured carcasses instead of 1 is noticeable. The following arguments are made based on the

results in Table 16. If the model and data is a good representation of the real world, the difference

between the 0.5% optimality gap with 1 measured carcass and the 0.05% optimality gap with 10

carcasses, this makes up 0.45% of the total revenue of the cutting facility. With the estimated value for

the production of 4th of June at approximately 900 000 kroner, 0.45% would equal 4050 kroner. This is

for a single cutting plant, and similar profits could be gained from every warm cutting plant.

The difference of 0.45% is however huge in comparison with the difference between the online

algorithm with 10 measured carcasses and the offline algorithm. The optimality gap is only 0.05% which

would make out only 450 kroner out of the 900 000 kroner revenue. This gap is so small that there is in

practice no reason to use more than 10 carcasses, and the online algorithm has been demonstrated to

work as intended.

- 51 -

5.4 Execution time
The critical execution time is the execution time of the sub problem. The program will have plenty of

time to load the data before the production starts. What is important is how long it takes to solve the

sub problem. The sub problem has to be solved for each carcass. The cutter would have to wait if the

algorithm takes too long to calculate which cutting pattern to use.

 All runs in this section has been performed on a 1.2 GHz Intel Dual Core running Windows XP.

 How long the genetic algorithm will use before it terminates mainly depend on two factors, the

number of generations and the number of individuals in each generation. Each individual has to be

evaluated for each generation, which is the time consuming operation.

 Execution time = number of generations * size of population

Equation 1 Execution time of the genetic algorithm

For convergence on the sub problem with 10 carcasses, 20 generations with a population of 400 has

been used. To solve this sub problem takes between 5 and 6 seconds. Tests have shown that this scales

up linearly when more generations are performed, which supports Equation 1. By using the upper limit

of 6 seconds, the algorithm takes 75 µs per individual per generation.

 The genetic algorithm should be compared with the exact method implemented in Xpress. The

differences in the results between the two methods are so small that it makes little difference which

one is used. However, it should be taken into consideration what happens with the execution time if the

problem changes.

The timing of the algorithms has been taken by running various sub problems used in the master

problem for 4th of June 2007. An upper limit is set by rounding up the longest execution time. The

genetic search is performed with 20 generations and 400 population size.

Table 18 Execution time

Algorithm Execution time

Local search 0.5 seconds

Genetic search 6 seconds

Exact method 6 seconds

All of the methods evaluated in Table 18 perform well enough for the time limit of 6 seconds. A faster

computer could easily have brought the results further below the time limit. These results mean both

the genetic search and the exact method can be used for the sub problem with 10 measured carcasses.

In practice, the problem might be larger than what is described in this thesis. Nortura has visions of

including multiple cutting plants in the optimisation and include more of the value chain. This would

make the problem larger and the execution time would increase.

- 52 -

 The genetic algorithm is much more flexible to different objective function than the exact

solution. As long as the objective function can be calculated from the production, any function can be

used. This means the objective function could be much more complex. One example is to make a non-

linear objective function. Large overproduction is a large problem, while some overproduction is

tolerated. The objective function could therefore penalise large overproduction more severely than

minor overproduction. Similar methods could be used for underproduction.

 The execution time of the genetic algorithm can easily be adjusted for any time limit. The

number of generations and the population size can simply be adjusted for the execution time in

Equation 1 to be below the time limit. Another approach is to make the genetic algorithm to finish when

the time limit is approaching instead of performing a predefined number of generations. The best

solution from the genetic algorithm is still likely to give a good result even if it has not converged

completely. This is not the case for the exact method. In many instances no solution will be available

before the final and optimal solution is found. This means it is impossible to stop the optimisation when

the time limit is reached to get an approximate solution. This is a serious weakness of the exact method.

 Xpress, which is used to find the optimal solution, is highly tweaked and optimised to perform

fast. The genetic algorithm is however not thoroughly optimised for performance. The inner loop of the

algorithm is the value calculation. An improvement of the method used to calculate the value of a

solution could improve the execution time of the genetic algorithm significantly. Another advantage of

genetic algorithms is the fact that they are naturally parallel. This means the algorithm can be

performed on multiple processors without any fundamental changes in the algorithm. Different

processors can work with different populations and exchange survivors regularly.

 Conclusion: the exact method gives slightly better results. However, its execution time cannot

be adjusted. It works well for the sub problem with only 10 carcasses and today’s cutting patterns, but

would too slow lacking if the problem size increases. Licences for Xpress are a considerable expense and

makes the solution dependant on the Dash Optimizations which provides Xpress. The genetic algorithm

performs almost as good as the exact method and will be just as good in practice. The method can easily

sacrifice optimality for fast execution time, and will therefore be able to uphold tighter time limits for

larger problems. The source code of the genetic algorithm will be owned by the developer and there will

be no license costs or external dependencies. It can therefore be concluded that the genetic algorithm is

a better choice.

- 53 -

5.5 Sources of error
How well the data and model resembles the reality is not a source of error for the algorithm, but

it is a huge source of error when making the algorithm work in real production. It is not possible for the

optimisation program to get perfect information about the reality. These inaccuracies have been noticed

when the results from the algorithm were compared to the actual production of a cutting plant. Even if

the measurements received by the optimisation program were the same as the ones done in the real

cutting plant, the results could have large differences. In some occasions the real production would

report a significantly larger production than the input weight to the optimisation program. Reasons for

this can be additional production procedures. These kinds of variations have to be taken into account by

the program, by systems which are continuously reporting actual production.

Only 3 days of production has been used as test sets for testing the online algorithm. These test

sets use real data from one of Nortura’s actual cutting plants. The results could vary if test sets from a

larger time period or from different cutting plants were used. However, there are strong points

suggesting that this algorithm is likely to work for other test sets as well. The algorithm has by no means

been adjusted to perform well with these test sets and has been developed before the test sets were

known. For all of the test sets the optimality gap from the offline solution has been less than 0.1%,

which is insignificant in this context.

- 54 -

5.6 Other uses of the online algorithm
Many production processes have similar characteristics as the one discussed in this thesis. The algorithm

is flexible enough to be used on other problems as long as the basic conditions are the same.

Conditions for a problem to be suitable for the online algorithm:

1) Input resources cannot be uniform

2) The resources can be turned into different products.

3) There has to be a production plan.

4) Production in addition to what is specified in the production plan has to be valued less than or

equal to the products in the production plan.

5) Production starts before all resources are known.

One problem which suits these conditions are sawmills. Logs can be cut into various types of boards.

Some types of boards can only be made from certain logs. Wide boards can typically only be made from

large logs. Orders from the customers have to be fulfilled and makes up the basis for a production plan.

All the conditions are fulfilled as follows:

1) Logs vary in quality and size.

2) Different kind of boards can be made from the logs.

3) Orders of boards create a production plan.

4) Products which the customers do not demand are not valued as highly.

5) The logs can be measured at the saw mill during production.

The value of using the online algorithm depends on the logistics of the production. If large storages can

be made of the products and there is little time pressure to keep the turnover rate high, the problem

will resemble cold cutting. However, just in time production will resemble warm cutting and gain more

from the online algorithm.

- 55 -

6 Conclusion
Online algorithms have to our knowledge not been applied to meat cutting. This thesis has shown that

online algorithms absolutely are competitive with offline algorithms for this problem type. It has also

shown the importance of measuring carcasses, how a few measured carcasses give a large improvement

while a large number of measured carcasses will only give slightly better results.

Nortura has shown great enthusiasm about the project and are very satisfied with the results

[NorStaff08]. The program developed can serve as a prototype if Nortura decides to make an

operational system with online optimisation. What will make or break this system is how accurately the

model resembles the reality and how robust it will be to manually override. The cutters will be able to

see what the optimisation system cannot see, and will at times have to ignore the systems

recommendations. Feedback from the production system is required for each product, since using

estimates from the cutting patterns alone will result in large inaccuracies.

The test data shows that the genetic algorithm comes extremely close to the optimal solution. This

provides a fast and flexible solution method for the sub problem, which makes sure each carcass will be

calculated in time even if the system become more complex than what is described in this thesis.

- 56 -

7 Further work
To make the prototype into an operational system is the largest challenge in the future. The system has

to work with the measurement instruments and deliver the recommendations to the cutters, which

require both integration with other systems and interaction with humans. For this to work well,

extensive testing of usability and robustness will be needed, as well as the feedback systems discussed

earlier.

 Today’s cutting patterns do not include all possible patterns. They are only a selection of

patterns which has been shown to work well. With more cutting patterns, even better results could have

been made since it would have been easier to make the products fit the production plan. An even more

advance system could decide what to make for each part of the carcass instead of using predefined

cutting patterns.

 Not all cutters will know every possible cutting pattern and some cutters may want to use

particular patterns for reasons unknown for the optimisation program. It would therefore be very

helpful for the cutters if the optimisation program could suggest more than one cutting pattern. There

are often a few cutting patterns which contribute almost equally to the objective function. If all of them

were presented to the cutter, it would be up to he or she to choose the best suited among them.

 Various improvements can be done to the algorithms. The genetic algorithm can be optimised

through parallelisation, improvements to the code and adjustments to the algorithm. While the two first

improvements are to the code, the last one has to do with finding the best combination of population

size, reproduction style and number of generations. The selection function can increase its diversity by

also letting some of the unfit individuals survive.

 Since the genetic algorithm can solve non-linear as well as linear objective functions, this

advantage should be exploited. The objective function can be tweaked and adjusted to be more helpful

for the cutting plant. One such improvement would be to let the value of products drop continuously for

production beyond the production plan instead of today’s simple view of regular and surplus production.

 The results can be tested by applying more test cases from a larger time span and from different

cutting plants. Other cutting plants may produce a larger variety of productions and can have production

plans which are more challenging to fulfil.

- 57 -

8 Bibliography

[Albers97]

Competitive Online Algorithms

Optima Mathematical Programming Society Newsletter No 54 1997

Susanne Albers

Max-Planck-Institut für Informatic

[Albers03]

Online algorithms: a survey

Susanne Albers

Max-Planck-Institut für Informatic 2003

[Dash08]

http://www.dashoptimization.com/home/products/products_optimizer.html 10. May 2008

[Gendreau02]

An Introduction to Tabu Search Michel Gendreau - Centre de recherche sur les transports and

Département d´informatique et de recherche opérationnelle - Université de Montréal July 2002

[Karp72]

Reducibility among Combinatorial Problems 1972

Richard M. Karp

[Lewis03]

Performance of Java versus C++

J.P.Lewis and Ulrich Neumann

Computer Graphics and Immersive Technology Lab

University of Southern California

Jan. 2003

[Luke98]

A Revised Comparison of Crossover and Mutation in Genetic Programming

Sean Luke

Lee Spector

Department of Computer Science

University of Maryland

1998

[Mauldin84]

Maintaining Diversity in Genetic Search

http://www.dashoptimization.com/home/products/products_optimizer.html

- 58 -

Michael L. Mauldin

Department of Computer Science Carnegie Mellon University

August, 1984

 [Nortura08]

http://www.nortura.no/organisasjon/formal/ 2. April 2008

[NorStaff08]

Discussions with staff from Nortura, including Trond Malmo, Paul Hosen and Klas Forfang

[Rardin98]

Optimization in Operations Research

Ronald L. Rardin

1998

[Reeves93]

Modern heuristic techniques for combinatorial problems

Coling R. Reeves

1993

[Wikborg07]

Online Meat Cutting Optimisation

Pre-study project conducted by Uno Wikborg

Fall 2007

http://www.nortura.no/organisasjon/formal/

- 59 -

9 Appendixes

9.1 Appendix A

This is a proof of the competitiveness of a profit maximising objective function disregarding demand. It is copied
directly from [Wikborg07]

The value of each cutting pattern can be determined by summing the value of all the products it produces. An
online algorithm can simply pick the most valuable cutting pattern available for each carcass. The result of this
online algorithm will be exactly the same as the result of the profit maximising offline objective function.

Proof:

(1) , ,(* *)pr ca pa pa pr ca

pr ca pa

Max V x P W 

Subject to:

(2)
, 1,ca pa

pa

x ca 

(3) , (0,1), ,ca pax ca pa 

(1) can be rearranged to (4).

(4) , ,(* * *)ca pa pr pa pr ca

ca pr pa

Max x V P W

(2) means that only one cutting pattern can be used for each carcass. It would therefore be equivalent if
the maximisation function could choose one cutting pattern for each carcass. (4) can be written as (5) to
be forced to choose between the cutting patterns directly.

(5) 1, 2, ,((* *), (* *),..., (* *))pr pr ca pr pr ca pr N pr ca

ca pr pr pr

Max V P W V P W V P W   

By replacing the constants with ,pa caC for readability, the results will be (6), which is exactly what the

algorithm does. The most valuable cutting pattern is chosen for each carcass.

(6)

Since the results are identical, this algorithm is a 1-competative online algorithm. It will, just like the offline
algorithm, not make sure that the production fits the demand.

1, 2, ,(, ,...,)ca ca N ca

ca

Max C C C

- 60 -

9.2 Appendix B Results

9.2.1 Results for optimisation program
Table 19 Results from 4th of June 2007

Product
Regular
Production

Unsatisfied
Production

Surplus
Production

1 0 0 19.6463

2 0 0 294.886

3 0 0 0

4 0 0 189.526

5 0 0 117.878

6 0 0 1463.29

7 0 0 902.92

8 343 0 604.78

9 9250 0 10.4617

10 180 0 2573.5

11 0 300 0

12 0 0 408.347

13 0 0 880.885

14 0 0 630.898

15 0 0 502.432

16 270 0 225.953

17 0 0 97.8575

18 0 0 215.779

19 0 0 78.5851

- 61 -

Table 20 Offline production 4th June 2007 without production plan

Product Regular Unsatisfied Surplus

1 0 0 0

2 0 0 395.698

3 0 0 0

4 0 0 200.366

5 0 0 131.63

6 0 0 4932.09

7 0 0 729.494

8 0 0 0

9 0 0 1422.7

10 0 0 3611.51

11 0 0 150.294

12 0 0 3987.21

13 0 0 439.816

14 0 0 952.767

15 0 0 645.633

16 0 0 456.737

17 0 0 734.283

18 0 0 542.996

19 0 0 358.214

20 0 0 0

- 62 -

Table 21 Offline production 4th - 6th June 2007

Product
Regular
production

Unsatisfied
production

Surplus
production

1 0 0 28.8433

2 0 0 612.032

3 500 0 618.457

4 0 0 523.282

5 0 0 340.829

6 1199.9 0 0

7 0 0 2175.99

8 1674 0 704.01

9 30247.8 2.20418 0

10 3060 0 2905.32

11 0 900 0

12 0 0 1143.91

13 0 0 2449.45

14 0 0 1768.65

15 0 0 1405.5

16 305 0 1360.89

17 0 0 80.2436

18 0 0 745.928

19 0 0 115.373

- 63 -

9.2.3 Results for genetic algorithm used on offline problem
Table 22 Genetic algorithm results for 4th of June

Generation Regular Small
No
mutations

No
crossovers

No new
born

Less
survivors

More
survivors Optimal

1 662442 662442 662442 662442 662442 662442 662442 912174

2 697754 691486 697754 678560 697754 713485 697754 912174

3 736447 731654 718216 692302 714640 755437 706570 912174

4 750615 757588 744619 717688 754592 808765 733293 912174

5 779617 775079 769001 717688 792077 830044 747562 912174

6 813729 807013 786974 717688 792077 878396 762378 912174

7 830518 835451 808149 723777 814055 891038 794253 912174

8 855193 849520 825496 723777 837048 895105 811584 912174

9 872871 871358 860818 736365 859895 898086 815223 912174

10 887064 887450 888394 736365 883714 898691 816664 912174

11 891984 889458 888394 736365 889733 899531 851850 912174

12 896031 891089 893232 736365 893675 901121 851850 912174

13 896031 891640 895059 742698 895308 902172 886504 912174

14 896031 893831 896121 742698 897880 903171 886504 912174

15 896031 895405 897176 761361 897880 904321 890975 912174

16 897210 896467 897929 761361 898027 905681 894927 912174

17 898755 896467 898603 761361 899842 905958 894927 912174

18 899441 898591 900337 761361 899842 906811 894927 912174

19 900626 898730 902160 761361 900653 907908 894927 912174

20 901709 900212 902512 765291 901943 907908 895373 912174

21 902153 901660 902515 765291 903378 908186 895373 912174

22 903030 901660 904395 783172 903986 908556 895949 912174

23 904989 902157 904395 783172 904833 908653 897525 912174

24 904989 902833 904395 783172 905511 908692 897905 912174

25 905112 904326 905061 783172 905988 909003 897964 912174

26 905490 904326 906166 783172 906597 909113 899548 912174

27 905733 904642 906166 783172 907147 909118 900078 912174

28 906624 906073 906701 783172 907788 909120 900649 912174

29 907496 906073 906956 783172 908176 909120 901757 912174

30 907721 906525 907331 783172 908176 909120 901757 912174

31 908630 907191 907728 803345 909035 909120 903206 912174

32 908630 907414 908144 803345 909143 909120 903465 912174

33 908630 907562 908345 803345 909366 909120 904321 912174

34 908799 908050 908957 803345 909366 909120 904748 912174

35 909622 908105 908957 803345 909598 909120 904833 912174

36 909906 908126 908957 803345 910186 909120 906290 912174

37 909916 908668 909191 803345 910186 909120 906290 912174

38 910238 908668 909282 803345 910186 909120 907313 912174

39 910731 909023 909637 803345 910502 909120 907313 912174

40 910731 909220 910015 803345 910733 909120 907313 912174

41 910731 909220 910015 803345 910733 909120 907313 912174

42 910731 909361 910119 803345 911060 909120 907313 912174

43 910934 909691 910119 803345 911060 909120 907850 912174

44 911031 909840 910577 803345 911060 909120 907850 912174

45 911031 909840 910577 803345 911141 909120 908833 912174

46 911174 909843 910739 803345 911304 909120 908833 912174

47 911176 909973 910739 803345 911304 909120 908833 912174

48 911248 910068 910770 803345 911304 909120 908833 912174

49 911456 910104 910911 803345 911304 909120 908833 912174

50 911457 910246 911015 803345 911304 909120 908833 912174

51 911639 910246 911015 803345 911323 909120 909510 912174

- 64 -

52 911664 910288 911285 803345 911511 909120 909510 912174

53 911664 910291 911285 803345 911511 909120 909510 912174

54 911664 910317 911385 803345 911511 909120 909756 912174

55 911692 910340 911385 803345 911511 909120 909756 912174

56 911692 910340 911385 803345 911511 909120 909756 912174

57 911692 910340 911387 821795 911567 909120 910323 912174

58 911749 910340 911451 821795 911567 909120 910323 912174

59 911749 910340 911540 821795 911591 909120 910323 912174

60 911797 910340 911540 821795 911596 909120 910657 912174

61 911800 910340 911540 821795 911596 909120 910657 912174

62 911800 910340 911540 821795 911596 909120 910657 912174

63 911848 910340 911552 821795 911639 909120 910657 912174

64 911848 910340 911552 821795 911726 909120 910657 912174

65 911848 910340 911571 821795 911744 909120 911030 912174

66 911848 910340 911628 821795 911744 909120 911030 912174

67 911880 910340 911628 821795 911744 909120 911030 912174

68 911893 910340 911628 821795 911744 909120 911030 912174

69 911893 910340 911628 821795 911784 909120 911030 912174

70 911914 910340 911628 821795 911874 909120 911030 912174

71 911921 910340 911628 821795 911874 909120 911030 912174

72 911921 910340 911628 821795 911874 909120 911111 912174

73 911921 910340 911628 821795 911874 909120 911111 912174

74 911921 910340 911688 821795 911874 909120 911277 912174

75 911921 910340 911688 821795 911874 909120 911277 912174

76 911934 910340 911688 821795 911874 909120 911277 912174

77 911934 910340 911688 822786 911874 909120 911277 912174

78 911934 910340 911688 822786 911874 909120 911277 912174

79 911934 910340 911688 822786 911874 909120 911277 912174

80 911934 910340 911688 822786 911888 909120 911277 912174

81 911947 910340 911688 822786 911888 909120 911379 912174

82 912003 910340 911688 822786 911888 909120 911379 912174

83 912003 910340 911688 822786 911901 909120 911379 912174

84 912003 910340 911688 822786 911901 909120 911379 912174

85 912003 910340 911688 822786 911901 909120 911417 912174

86 912003 910340 911688 822786 911901 909120 911417 912174

87 912003 910340 911688 822786 911915 909120 911573 912174

88 912003 910340 911688 822786 911929 909120 911573 912174

89 912003 910340 911688 822786 911929 909120 911573 912174

90 912003 910340 911688 822786 911929 909120 911573 912174

91 912003 910340 911688 822786 911933 909120 911622 912174

92 912003 910340 911688 823794 911933 909120 911622 912174

93 912003 910340 911688 823794 911933 909120 911622 912174

94 912003 910340 911688 823794 911940 909120 911622 912174

95 912003 910340 911713 830852 911940 909120 911622 912174

96 912033 910340 911713 830852 911945 909120 911651 912174

97 912033 910340 911713 830852 911958 909120 911651 912174

98 912033 910340 911713 830852 911958 909120 911651 912174

99 912033 910340 911759 830852 911969 909120 911651 912174

100 912033 910340 911759 830852 911969 909120 911651 912174

- 65 -

Table 23 Online algorithm 4th of June 2007

Measured carcasses Optimal
Adjusted production
plan

Not adjusted
production plan

1

908275 904784

2

909707
 3

910679

 4

910709
 5

911504 906252

6

911414
 7

911844

 8

911828
 9

911799

 10

911933 907260

11

912072
 12

912071

 15

911999 909873

20

912036 910302

40

911445

95 912174 912104 912104

	Title Page
	Problem Description
	masteroppgave.pdf

