
June 2008
Maria Letizia Jaccheri, IDI
Andre Heie Vik, Miles AS

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Achieving loose coupling in the
component-based Miles software
development Platform
A Proof of Concept

Erling Wegger Linde

Problem Description
This Master Thesis is intended to implement and evaluate the Proof of Concept that was planned
in the Specialization Project conducted by Erling Wegger Linde, the fall 2007.

The Proof of Concept involves implementing a layered interface/intermediate/wrapper between an
issue tracker and its surrounding dependent components. The layered interface shall use the
following technologies and architectural styles:

 *REST
 *Atom feeds and the Atom Publishing Protocol
 *Semantic Web technology

Dependent components of the issue tracker are Eclipse, Hudson and customised Web Interfaces
which will be used by developers, project managers and customers.

This Master Thesis are intended to answer the following research questions:

 1.To which extent is it possible to implement the different layers of the Proof of Concept?
 2.How does the addition of each layer affect the degree of coupling?
 3.How does these layers affect the amount of work spent on replacing a component?

Assignment given: 15. January 2008
Supervisor: Maria Letizia Jaccheri, IDI

i

Abstract
The overall aim of this Master Thesis was to achieve a long life-time for the Miles
Platform by enabling loose coupling between its various components and tools.
The Miles Platform is a software development platform consisting of several in-
terconnected tools and components. For this platform to survive future changes in
technology it must be possible to replace the various components without requir-
ing large changes to the surrounding dependent components.

Based on a preceding prestudy, a layered Proof of Concept was implemented
and evaluated with respect to the success of the implementation, coupling (mod-
ifiability) and amount of work. Simple prototypes involving the two first layers,
namely the RESTful and the Atom Publishing Protocol based layers were imple-
mented. The final prototype included all three layers, which involved using Se-
mantic Web technology in addition the RESTful Atom Publishing Protocol. Only
a few non-blocking issues are unresolved for this final prototype.

Both the RESTful, Atom Publishing Protocol and Semantic layer contributed
to maintaining a stable interface on top of the issue tracker component. By en-
forcing stable interfaces and serving as wrappers or intermediares between the
issue trackers and their dependent components, each layer contributed to achiev-
ing looser coupling, if not in all dimensions.

If the issue trackers have many dependent components that needs customiza-
tion in order to communicate with the issue trackers, and the issue trackers are
expected to be replaced one or preferably several times, a positive return on in-
vestment are expected from this Proof of Concept.

ii

iii

Preface
This work is a contribution to the Miles software development Platform that is
being developed by Miles. This Master Thesis is a continuation from my work in a
preceding specialisation project [9]. Based on a literature study, the specialization
project illustrated a Proof of Concept that could help to achieve loose coupling in
the Miles Platform. This previous work was intended to act as a foundation for
this Master Thesis.

Acknowledgements

I want to thank my supervisor at Miles, André Heie Vik, for his supporting enthu-
siasm. You and everyone else at Miles have made this project a great joy.

Furthermore, I want to thank Henry Story for initiating and welcoming me
on the Baetle Project. You have helped me a lot with your ideas and guidance.
I also want to thank all other communities and people on mailing lists such as
REST-Discuss, Jena-dev, ROME, Trac, Grails, Hudson and probably many more.

Finally, a big thanks to my dear Anne-Linn for supporting me throughout this
exciting process.

iv

Contents

I Introduction and Design 3

1 Introduction 5
1.1 Problem statement . 5
1.2 Aim . 5
1.3 Scope . 5
1.4 Overview . 6

2 Background 7
2.1 Prestudy . 7

2.1.1 Miles Platform . 7
2.1.2 REST . 8
2.1.3 Atom Publishing Protocol 9
2.1.4 The Semantic Web . 10

2.2 Related Work . 11
2.3 Tactics . 11
2.4 Conclusion . 12

3 Research Design 13
3.1 Research Questions . 13
3.2 Development Method . 14
3.3 Comparing Coupling . 14

3.3.1 Framework . 15
3.4 Estimating work . 17
3.5 Conclusion . 17

II Results 19

4 Initial scenario 21
4.1 Design . 21
4.2 Coupling . 22

v

vi CONTENTS

4.3 Work . 25
4.4 Conclusion . 26

5 RESTful layer 27
5.1 Design . 27
5.2 Issues . 28

5.2.1 Oustanding issues . 29
5.2.2 Resolved issues . 29

5.3 Coupling . 29
5.4 Work . 33
5.5 Conclusion . 33

6 APP layer 35
6.1 Design . 35
6.2 Issues . 38

6.2.1 Outstanding issues . 38
6.2.2 Resolved issues . 38

6.3 Coupling . 39
6.4 Work . 42
6.5 Conclusion . 42

7 Semantic layer 43
7.1 Design . 43

7.1.1 Sparql Endpoint . 44
7.2 Issues . 46

7.2.1 Oustanding issues . 46
7.2.2 Resolved issues . 46

7.3 Coupling . 46
7.4 Work . 49
7.5 Discussion . 50
7.6 Conclusion . 50

III Synthesis 51

8 Discussion and conclusions 53
8.1 Summary . 53
8.2 Issues . 54
8.3 Coupling . 55
8.4 Work . 56
8.5 Research approach . 56

CONTENTS 1

8.6 Further work . 58

IV Appendix 65

A Template for coupling discussion 67

B Test Environment 71
B.1 Jira . 71

B.1.1 Jira Plugin . 71
B.2 Trac . 72
B.3 Project and Customer Web . 72
B.4 Hudson . 72

B.4.1 Plugin . 72
B.5 Eclipse . 73

B.5.1 Mylyn Plugin . 73
B.6 Subversion . 73

B.6.1 Expand log script . 73
B.7 Wrapper layer . 74
B.8 Conclusion . 74

C Source Code 75

2 CONTENTS

Part I

Introduction and Design

3

Chapter 1

Introduction

This chapter will present the problem statement as well as present the aim and
scope for this Master Thesis. Section 1.1 presents the problem statement. Section
1.2 gives the aim of this Master Thesis. Section 1.3 limits the scope, while Section
1.4 gives an overview of this document.

1.1 Problem statement
The Miles Platform is a software development platform consisting of several in-
terconnected tools and components. For this platform to survive future changes
in technology it must be possible to replace the different components without re-
quiring large changes to the surrounding dependent components. By achieving
loose coupling between these components one can hopefully extend the life-time
of the Miles Platform, as well as reduce the amount of time and money needed to
implement and deploy a change.

1.2 Aim
The overall aim of this Master Thesis is to ensure a long life-time of the Miles
software development Platform by enabling loose coupling between its different
components and tools.

1.3 Scope
Previous to this Master Thesis I wrote a Specialization Project [9] where a Proof
of Concept was planned. This Proof of Concept suggested to use a layered ap-
proach based on various specified technologies between an issue tracker and its

5

6 CHAPTER 1. INTRODUCTION

surrounding components (described in Chapter 2). It is within the scope of this
Proof of Concept I will try to reach the aim of this Master Thesis.

Furthermore, this Master Thesis is not intended to be a case study in order to
find out if elements from this Proof of Concept can enable loose coupling on a
more general level, although this might be the case. The goal is primarily to deal
with loose coupling, not other quality attributes such as performance, concurrency
and security.

1.4 Overview
• This chapter presented the aim deduced from the problem statement, as well

as the scope for this Master Thesis.

• Chapter 2 presents relevant background material from the preceding Spe-
cialization Project [9], as well as discusses related work and methods.

• Chapter 3 presents research questions and methods.

• Chapter 4 presents the initial situation before any of the layers are imple-
mented.

• Chapter 5 presents Layer 1, the RESTful Layer, and discusses its effect on
coupling etc.

• Chapter 6 presents Layer 2, the Atom Publishing Protocol (APP) Layer, and
discusses its effect on coupling etc.

• Chapter 7 presents Layer 3, the Semantic Layer, and discusses its effect on
coupling etc.

• Chapter 8 discusses and concludes this Master Thesis, as well as suggests
further work.

Chapter 2

Background

The previous Chapter 1 presented the aim and scope of this Master Thesis. The
goal of this chapter is to provide relevant background material. Section 2.1 sum-
marizes the most important topics from the preceding prestudy. Section 2.2 presents
related work, while Section 2.3 discusses tactics. Finally, Section 2.4 concludes
the chapter.

2.1 Prestudy
In advance of this Master Thesis I conducted a prestudy: [9]. This prestudy pre-
sented the Miles Platform as well as different technologies that could be used to
enable loose coupling in this Software Development Platform. Furthermore, it
illustrated a layered approach that was intended to be implemented as a Proof of
Concept in this Master Thesis. A set of research questions were also deduced. To
give the current reader some more insight, a summary of the most important parts
is presented here. The research questions are however not presented until Section
3.1.

2.1.1 Miles Platform

The Miles Platform is to be an efficient and long-lived software development plat-
form. It will consist of both Open Source Components as well as In-House de-
veloped applications. A key concept is to provide efficient tools for work and
communication to both the project manager and developers as well as customers.
Code repositiories are intended to boost up start-up time for a project, while
automatic building tools and support for efficient development processes could
increase effectivity. Requirements management and customer interfaces are in-
tended to boost satisfaction of customers, and at the same time avoid discussions

7

8 CHAPTER 2. BACKGROUND

due to lack of information.
Many of the platform’s components will be interconnected in various ways.

Over time it is also very likely that new components will replace others. If a lot of
components depend on a component that is replaced or upgraded, this could mean
that a lot of work has to be carried out in order to successfully integrate the new
component. In order to reduce the amount of work one can hopefully find a way to
reduce the coupling between the different components. This goal coincides with
the aim of this thesis.

Issue Tracker

The part of the Miles Platform that was considered to be most relevant to first
enable loose coupling was between the issue tracker and its surrounding compo-
nents. An issue tracker is a tool that helps a project team to keep track of bugs and
other issues that needs to be dealt with.

In the Miles Platform the issue tracker is referred to by several components.
The developers uses an IDE or Integrated Development Environment. Currently
Eclipse [7] is the preferred IDE. Eclipse can be integrated with several issue track-
ers, allowing the programmer to monitor and report issues while programming.
Furthermore, an automatic building tool such as Hudson [17] scans the commit
logs from code repositories such as Subversion [33] in order to find issue keys
mentioned. If an issue key is mentioned in the commit log, Hudson can provide
links to relevant issues, as well as post comments to the related issues regarding
the status of the builds etc.

Components called Project Web and Customer Web are additional intended
components for the Miles Platform. These components are yet not specified, but
may be developed in-house by Miles. They should provide useful interfaces to
both developers and customers, and allow them to monitor and change require-
ments etc. These web interfaces are also intended to be connected to the issue
tracker, for instance by showing which issues relates to which requirements etc.

Besides from the components that depends on the issue tracker, the issue
tracker itself monitors Subversion commit logs as well in order to find code and
revisions that relates to different issues. There are currently two issue trackers
of interest for the Miles Platform. Jira [19] is a mature issue tracker being used
today, while Trac [36] is a potential future candidate to replace Jira.

2.1.2 REST
REST or REpresentational State Transfer can be explained best as an Architectural
Style. The term REST was introduced by Roy Thomas Fielding in his Phd Thesis
[27]. REST is actually based on the successful architectural principles that are

2.1. PRESTUDY 9

used by the internet today. The concept is based on Resources that can be referred
to by URIs. One can for example refer to the resource “Issue Tracker” in the Miles
Platform as: http://miles.no/issuetracker. However, although the URI refer to the
“Issue Tracker”-resource the data you receive when doing a HTTP GET to that
URI might be a HTML document. In REST such a document is not considered to
be the resource itself, but a Representation of it.

A constraint of REST is that the server side should be entirely stateless. This
breaks with the modern web’s use of cookies etc, but it provides a huge potential
for scalability. For instance a resource can be accessed with HTTP GET, up-
dated with HTTP UPDATE, created with HTTP POST and deleted with HTTP
DELETE. Out of these four operations, three of them are idempotent, which
means that the response from the server will not change whether the operations
are executed one or hundreds of times. A resource can only be deleted once, and
since the new representation of a resource is always included in the HTTP UP-
DATE the server will always know if the update has already been made. This
implies that every operation except from HTTP POST can be cached. This is also
one of the most argued benefits of REST ws. SOAP-based web service, as every
SOAP operation uses a HTTP POST.

Finally, the term “State Transfer” indicates that a client navigates through
states by traversing representations using URIs. For instance a client can be said
to move from State1 to State2 if it jumps from http://www.example.org/state1
to http://www.example.org/state2. Such URLs should be provided as hyperlinks
contained in the representation of the resources in order to indicate possible state
transitions to a client.

RESTful Layer

The prestudy [9] suggested that a RESTful layer should be added on top of the
Issue Trackers. Although a Wrapper Layer was indicated as a convenient Layer
0 (see Section B.7), this RESTful layer should be the first externally visible layer
that enables a looser coupling between an Issue Tracker and its dependent compo-
nents. By providing a layer between the issue tracker and its surrounding compo-
nents, one could potentially reduce the direct coupling a great deal. Furthermore,
by providing the constraints of REST one should have a limited set of operations
available to use on the representations belonging to the issue tracker, and hence
limit the effects of a change to the clients.

2.1.3 Atom Publishing Protocol
The Atom Publishing Protocol is a RESTful protocol for interacting with the
Atom syndication feed format [2]. Atom is a content syndication format that

10 CHAPTER 2. BACKGROUND

was created in response to the mess of different RSS formats. The basics of
the Atom format is a Feed that contains Entries. The Atom Publishing Proto-
col describes how one could for instance fetch a collection using HTTP GET on
example.org/feed, or do a HTTP PUT example.org/feed/entry1 to update entry1
belonging to the feed.

The Atom format contains several default elements such as title, created, pub-
lished etc. that are common attributes for many types of data. Some of these
attributes may overlap with the attributes of data belonging to an issue tracker,
hence one can take advantage of these built-in semantics of Atom and at the same
time provide a RESTful interface to the issue tracker.

APP Layer

Using the Atom Publishing Protocol as a basis for the RESTful interface to the
issue tracker can help structure the data in a standardized way, making it even
easier for clients to understand the data.

2.1.4 The Semantic Web

The Semantic Web was invisioned by Tim Berners-Lee et al. [35] as a web where
the computers can understand the meaning of the data. Ontologies are key ele-
ments to make this possible. They allow us to describe concepts of different do-
mains and how they are related. Ontologies can be expressed in languages such as
RDF(S) or OWL. By adding information from ontologies as some form of meta-
data to different representations of a resource, a client can actually understand the
meaning of this resource - creating huge possibilities for interoperability.

In addition to the ontology languages RDF(S) and OWL, SPARQL is a query
language that can be used to query “semantic data”. Such queries could be a very
powerful tool that can find results across different, but somehow related ontolo-
gies. Another powerfol feature of the Semantic Web is inference; for instance if
an individual is a member of class A, and class A is a subclass of class B, then it
can be inferred that the individual is also a member of class B. Other much more
powerful inferred statements can be made from many other RDF(S) and OWL
statements, for instance OWL restrictions. [5]

Semantic Layer

Even if the Atom Publishing Protocol has standard elements for describing some
common attributes to data, the data belonging to an issue tracker might have a lot
of other attributes. If one could express these attributes in an ontology that could

2.2. RELATED WORK 11

be understood by other applications, one could increase the possibility for new or
external applications to understand this data.

2.2 Related Work
The Google Data APIs or GDATA is an example of how one can extend the
Atom Publishing Protocol to expose all sorts of data. GDATA has also dealt with
different issues such as concurrency. However, the way Google has extended the
Atom Publishing Protocol indicates that GDATA is almost a new protocol on its
own. It is possible that GDATA actually becomes as widespread as the Atom
Publishing Protocol but one might suspect that sticking with the original Atom
Publishing Protocol makes it easier for clients to understand your data. [13]

Queso is a RDF server where you can post data in the form of Atom entries.
The data is then stored in RDF triples, and it is also possible to query it through a
SPARQL endpoint [8]. There is however only minimal information to find on this
server through various blog entries. [38]

Henry Story has created the AtomOwl Vocabulary Specification which is an
ontology that describes the Atom format.[15]

Baetle is short for Bug And Enhancement Tracking LanguagE and is an on-
going open source project that aims to develop an ontology to describe issues and
their properties, which is highly relevant for the Semantic Layer of this Proof of
Concept.[16]

Semap is a server where you can store and retrieve data through a RESTful
interface. Semap also provides the possibility to query data related to a resource
using SPARQL. Semap is however dependent on that you inject data into it, hence
it can’t easily be layered on top of an issue tracker. [30]

2.3 Tactics
Len Bass et al. [20] describes different tactics to prevent ripple effects. Two tactics
that can be related to this Proof of Concept are “Maintain existing interfaces”
and “Use an intermediary”. The goal of the first tactic is to keep the interface
of a component or service stable, so that dependent components do not need to
change. The second tactic involves inserting a layer between a component and its
dependants, in order to deal with the dependencies. It can be argued that “use an
intermediary” is actually a method to “maintain existing interfaces”, hence the two
tactics may in fact overlap. Both tactics are well known and widely used, however
little work has been done involving the combination of technologies chosen for
this Proof of Concept, at least not within the same scope as this Master Thesis.

12 CHAPTER 2. BACKGROUND

2.4 Conclusion
There is a need for enabling loose coupling in the Miles software development
Platform in order to ensure it a long life time. Furthermore, no similar combi-
nation of REST, Atom Publishing Protocol and the Semantic Web is available for
putting directly on top of the issue trackers. Hence these layers will have to be im-
plemented in order to demonstrate or evaluate this Proof of Concept. The Proof of
Concept will consist of a layered intermediary or wrapper between issue trackers
and their dependent components, such as an IDE or a building server.

Chapter 3

Research Design

The previous Chapter 2 introduced the context and background for this Proof of
concept. In order to find out whether such a Proof of concept can help to reach the
aim stated in 1.2 I need a set of reserach questions to answer, as well as methods
and metrics that could be used to answer these. Section 3.1 presents the research
questions found in [9]. Section 3.2 presents the development method that will be
used when developing this Proof of Concept. Section 3.3 presents a framework for
comparing coupling between the different layers. Section 3.4 presents a method
for estimating the work effort required to adapt to a change to or of the issue
tracker. Finally Section 3.5 concludes the chapter.

3.1 Research Questions
The following research questions were suggested in my previous prestudy [9].
They are still considered to be the best candidates, so that answering them will
help me conclude to what degree I have reached the aim of this Master Thesis or
not.

1. RQ1: To which extent is it possible to implement the different layers of the
Proof of Concept? By answering this question one can prove whether it is
possible to implement either parts of or the entire Proof of Concept.

2. RQ2: How does the addition of each layer affect the degree of coupling?
Answering this question will state how each layer affects the coupling, al-
though in combination with lower layers.

3. RQ3: How does these layers affect the amount of work spent on replacing
a component? Answering this question would give an indication of whether
applying the layers to the platform would be a good investment in the short
or long run.

13

14 CHAPTER 3. RESEARCH DESIGN

3.2 Development Method
The development method that will be used when implementing this proof of con-
cept is called Evolutionary Prototyping [10]. The basic principle of Evolutionary
Prototyping is to start with a simple prototype that fulfills some of the few known
requirements. When this prototype is created and new requirements are revealed,
perhaps due to an increased understanding of the system, the prototype can be
extended and refined. Eventually the prototype turns out to be the final system.

When developing this Proof of Concept the known requirements are to create
three layers that provides access to the underlying issue trackers. I am familiar
with the overall architecture of these layers as well as a few details about the
API and datamodels of the issue trackers, but many details most be uncovered.
I will start by creating a vertical prototype for each layer, that means that just a
few attributes, such as the summary of an issue can be accessed in the beginning.
Eventually new attributes will be supported, as well as options to add, edit or
delete issues etc. Note that due to time constraints, only the last layer (which
is assumed to incorporate the two previous layers) will be extended significantly
both horisontally and vertically.

Furthermore as stated in [10]; “For a system to be useful, it must evolve
through use in its intended operational environment”, there is a need to develop
the Proof of Concept within a realistic environment. However, since not all the
surrounding components of the Miles Platform yet exist, and that only Jira has
been used etc., I decided to set up a Test Environment on my local machine. In
this Test Environment both the issue trackers, as well as instances of the sur-
rounding components needs to be installed and adapted to work with this Proof of
Concept. This could also involve development of several Plugins to these compo-
nents. Some prototype of the Project or Customer web must also be created. The
test environment are described in Appendix B.

Finally, in order to answer RQ1, a list of outstanding and solved issues shall be
given for each layer. The outstanding issues should be described detailed enough
to indicate whether it is architectural constraints, limitations of libraries or lack of
time that prevents them from being solved.

3.3 Comparing Coupling
In order to answer RQ2, a set of metrics and methods to measure the achieved
coupling is needed. I have found several papers that presents different metrics
and methods for measuring and calculating coupling. However, many metrics
apply only to programs written in functional programming languages where one
has to count different types of in and out parameters, for instance as described in

3.3. COMPARING COUPLING 15

Franck Xia [12] and Gregory A. Hall et al. [14]. The majority of the other metrics
found are directed towards the Object-Oriented paradigm such as Martin Hitz and
Behzad Montazeri [21]. That existing coupling metrics are mostly classified into
metrics for Procedural and Object-Oriented programs was also recently confirmed
by Jarallah S. Alghamdi [18].

Charles Zhang and Hans-Arno Jacobsen [3] approaches the Web Service paradigm
by suggesting that metrics can be captured based on data mining from CORBA
IDL or WSDL files. However, the planned RESTful Semantic Web Service does
not have a formal service description (i.e. WADL) to capture these characteristics
from. Furthermore, Anthony M. Orme et al. [1] presents three different metrics to
predict coupling for ontology-based systems. These metrics are calculated from
the number of references, imports etc. an ontology has to other ontologies. How-
ever, this measure cannot be used to compare the different layers for this Proof of
Concept due to the fact that only the final layer is directly based on ontologies.

Mikhail Perepletchikov et al. [23] provides a model for describing service ori-
ented systems. In Mikhail Perepletchikov et al. [22] the same authours 1 present
a set of metrics for measuring coupling in Service-Oriented designs. They argue
that existing metrics are not directly applicable to service-oriented designs and
hence they decided to develop such metrics themselves. They present nine dif-
ferent metrics to indicate coupling for the Service-Oriented paradigm. However,
an initial evaluation I performed on these metrics, indicated that these metrics are
not sufficient to separate the three layers of this Proof of Concept from each other,
although they do support the idea of putting a wrapper on top of the issue tracker.

Len Bass et al. [20] presents a set of tactics to improve modifiability. They
state that the goal of the modifiability tactics are to ensure that future changes
to a system occurs within an affordable amount of time and cost. Furthermore,
they specify a set of eight types of dependencies between modules of a system. I
believe that this set of dependencies can serve as a basis for comparing the effect
on coupling from each one of the layers.

3.3.1 Framework
Based on [20] I have created a framework for comparing coupling between the
different layers. The input to the framework is specified in the following scenarios:

SCENARIO1: An issue tracker is replaced with another issue tracker

SCENARIO2: The issue tracker’s interface changes due to an update or upgrade

SCENARIO3: The implementation of the Proof of Concept changes within the
constraints of its architecture.

1Except for Heinz Schmidt / Zahir Tari

16 CHAPTER 3. RESEARCH DESIGN

SCENARIO1 is a scenario that are likely to occur in the future. Perhaps Jira
are replaced with a the less expensive alternative Trac. If many components that
previously communicated with Jira must be changed and adapted to communicate
with Trac, this could cost a lot of time or money. If it is to expensive, perhaps one
is stuck with Jira, or worse the platform cannot be used without major changes.

SCENARIO2 could involve new attributes added for an issue, or changes to
the remote api etc. If dependent components have to be changed for each minor
update this could be very expensive in the long run.

SCENARIO3 goes beyond the changes to the issue trackers themselves. It
also deals with the changes that programmers can do to the Proof of Concept in
the future. The architecture or technologies used in the Proof of Concept might
limit the options a future developer has in order to change the Proof of Concept.
This could help clients anticipate the scope of future changes.

The effect of these scenarios should then be discussed agains the following
eight dependency types from [20]:

D1: Syntax of data and service. The type or format of data as well as signature
of services must be consistent with a client’s assumptions.

D2: Semantics of data and service. The semantics of data and services must be
consistent with a client’s assumptions.

D3: Sequence of data and control. Either the sequence of data are important, or
there exists timing constraints.

D4: Indentity of an interface. The name or handle of a service’s interface must
be consistent with a client’s assumptions.

D5: Runtime location of a module/service. The runtime location of a mod-
ule/service must be consistent with a client’s assumptions.

D6: Quality of service/data. The quality of data or service must be consistent
with a client’s demands.

D7: Existence of a module/service. The module/service must exist.

D8: Resource behavior of a module/service. The resource consumption or own-
ership of a module/service must be consistent with a client’s assumptions.

Such a discussion should point out benefits and drawbacks from implementing the
different layers of this Proof of Concept. A template for such a discussion can be
found in Appendix A and should be used when evaluating each of the layers.

3.4. ESTIMATING WORK 17

3.4 Estimating work
The implementation of the three layers of this Proof of Concept could be con-
sidered as tactics to prevent ripple effects [20]. Hence the work that needs to be
carried out when a new issue tracker should be supported would hopefully be lim-
ited to only a small part of the system. This amount of work should then be less
than or equal to the amount of work that is needed without this Proof of Concept,
at least in the long run, for it to be economically feasible. A comment on the
amount of work needed when an issue tracker is changed should then be given for
each layer.

3.5 Conclusion
Outstanding issues should be presented for each layer in order to answer to what
degree it is possible to implement the different layers. A framework for measuring
or comparing coupling between the different layers of the Proof of Concept were
not easy to find, but were eventually created. Each layer should be evaluated
against this framework. Finally, a comment on the amount of work required when
any of the scenarios should occur should also be given for each layer. The latter
should indicate the possible return on investment of this proof of concept.

18 CHAPTER 3. RESEARCH DESIGN

Part II

Results

19

Chapter 4

Initial scenario

This chapter will discuss the initial coupling and effect of a change before the
Proof of Concept is implemented. This chapter will hence serve as a baseline to
which the above layers could be compared to. This discussion is made on the
background of my gained familiarity with Jira and Trac’s interfaces.

4.1 Design

Figure 4.1 illustrates the initial scenario where Hudson, the Project Web and
Eclipse all are using the Issue Tracker directly. The issue tracker itself can be
connected to Subversion in order to link issues to relevant code and revisions.

Figure 4.1: Initial Scenario

21

22 CHAPTER 4. INITIAL SCENARIO

4.2 Coupling

This section will discuss this layer’s effect on coupling within in the framework
presented in 3.3. Recall the scenarios from Section 3.3:

SCENARIO1: An issue tracker is replaced with another issue tracker

SCENARIO2: The issue tracker’s interface changes due to an update or upgrade

SCENARIO3: The implementation of the Proof of Concept changes within the
constraints of its architecture.

D1: Syntax of data and service. The type or format of data as
well as signature of services must be consistent with a client’s
assumptions.

SCENARIO1: The type and format of data can change completely if an issue
tracker is replaced with another. The same goes for the the services signa-
ture.

SCENARIO2: If the issue tracker is upgraded or updated, it is unlikely that its
interface will change completely, at least some backward compatibility are
expected. However in the long run Trac could for instance get a RESTful
interface instead of the provided XML-RPC interface available today. So
the effect on the syntax are likely to increase over time. Taking Jira’s SOAP
interface as an example, it would probably continue to provide a SOAP
API, although new APIs might be added or gain more focus. The methods
and parameters would certainly change, while it is more likely that XML
is kept as the preferred format of exchanged data. Hence method names
can change, as well as input parameters etc., but the format will most likely
remain as XML.

SCENARIO3: The only architectural constraint that exists on this initial scenario
is that other components or tools needs access to the data used by an issue
tracker. This could be through a remote API, e.g. XML-RPC, SOAP or
REST. In theory it could also be more directly for instance by accessing the
database. Hence it is very hard for a client to predict future changes.

4.2. COUPLING 23

D2: Semantics of data and services. The semantics of data and
services must be consistent with a client’s assumptions.
SCENARIO1: The semantics of the data and service can of course change com-

pletely if an issue tracker is replaced. However it is likely that most issue
trackers will have many concepts in common, although specific methods
that are related to workflow etc. can change dramatically from issue tracker
to issue tracker. The problem is of course if methods or attributes with sim-
ilar names actually have completely different semantics.

SCENARIO2: It is unlikely that the semantics of data and methods will change
significantly due to an update. There’s of course a potential that some meth-
ods will create new side-effects etc. Hence the client may find itself execut-
ing a method that gives a different result than what it expected.

SCENARIO3: Potentially, a method called changeStatus(newStatus) can per-
form a completely different operation than before, it is however unlikely that
significant changes will occur, but there is no constraints in e.g. SOAP or
XML-RPC etc. which can prevent a programmer from making such drastic
changes. Perhaps even more important is the fact that various issue trackers
might provide a very different set of methods, hence it could be very dif-
ficult to figure out which method to use in order to get the same results as
with another issue tracker.

D3: Sequence of data and control. Either the sequence of data
are important, or there exists timing constraints.
SCENARIO1: Different workflow models etc. can require that different se-

quences of methods are called in order to achieve the intended status.

SCENARIO2: Again, changes to the workflow model can affect the sequence of
methods one needs to execute in order to get the intended result.

SCENARIO3: As there are few constraints limiting the scope of change for se-
quence of data and control on this initial scenario, almost anything could
change.

D4: Identity of an interface. The name or handle of a service’s
interface must be consistent with a client’s assumptions.
SCENARIO1: The endpoint adress are very likely to change for a new issue

tracker, as these endpoint adresses are often URLs using some implementa-

24 CHAPTER 4. INITIAL SCENARIO

tion details. E.g. like trac has ../xmlrpc/. One could of course use a standard
URL and redirect this to the specific endpoint.

SCENARIO2: Different versions of interfaces can lead to new endpoint adresses
e.g. Jira’s WSDL are fetched from “jirasoapservice-v2?wsdl” which clearly
indicates that this is related to a specific version of the remote interface.
However, this also implies that one should be able to continue to use the old
interface even if a new one is added.

SCENARIO3: The endpoint adress to the remote interfaces can potentially change
to almost anything.

D5: Runtime location of a module/service. The runtime location
of a module/service must be consistent with a client’s assump-
tions.

As long as the issue tracker is available on the inter- or intranet it should be ir-
relevant to clients which CPU or whatever hardware the issue tracker uses. It is
important though that the URL to the issue tracker’s API doesn’t change even if
the issue tracker is moved to another server.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D6: Quality of service/data. The quality of data or service must
be consistent with a client’s demands.

SCENARIO1: Bad response times may lead to a too early time out at the client
application.

SCENARIO2: Hopefully updates to an issue tracker shouldn’t affect quality of
service negatively, although this could be the case if for instance a new
version is released early.

SCENARIO3: Again, within the wide scope of change for this scenario, the
quality of service or data can change both to the better or for the worse.

4.3. WORK 25

D7: Existence of a module/service. The module/service must
exist.
SCENARIO1: If a new issue tracker is installed, the old one is likely to be re-

moved, and hence will not exist anymore. If no issue tracker is installed or
used, the surrounding components must be able to continue to work. The
data belonging to the old issue tracker might be lost if no action is taken.

SCENARIO2: An update doesn’t remove the issue tracker, although it could be
unavailable for a certain amount of time.

SCENARIO3: -

D8: Resource behavior of a module/service. The resource con-
sumption or ownership of a module/service must be consistent
with a client’s assumptions.
As the amount of dependent components increase, the network traffic can increase
too, otherwise a client should not be affected of an issue tracker’s resource con-
sumption.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: .

4.3 Work
With respect to the three scenarios, a lot of work would be needed to be carried out
for each of them. However, that depends also on the issue tracker, if for instance
Jira are replaced with Trac, then one has two options; develop a plugin for Eclipse
and Hudson yourself or use the already existing ones, which certainly would be
the obvious choice here. However, there is not guaranteed that there will exist
such plugins for all future issue trackers.

For the projectweb and other potential in-house developed applications, one
would have to rewrite or replace the part of the code which communicates with
the issue tracker. Furthermore, it is possible that a tight integration with the issue
tracker’s architecture could require that other parts of these applications would
need to be rewritten as well. Table 4.1 illustrates the units of work that has to be
carried out with regards to the number of dependent components and the number

26 CHAPTER 4. INITIAL SCENARIO

Table 4.1: Work
#Dependants Initial issue tracker First replacement Second replacement

1 1 2 3
2 2 4 6
3 3 6 9
4 4 8 12

of times an issue tracker is replaced. This model presumes that one has to modify
the dependent components, i.e. not use existing plugins. I chose to define the
amount of work as “units of work”. What a unit of work really is, is impossible to
determine. Writing code that communicates with an issue tracker would depend
a lot on the remote interface of the actual issue tracker. Furthermore, it would
also depend on how much information and/or functionality a client would use.
Hence, a generic “unit of work” seemed the most intuitive and correct way to use
for measuring or estimating work.

4.4 Conclusion
The changes that may have to be made to the clients (dependent components)
can be very drastic as many things can potentially change with respect to the
three scenarios. Hence it should be possible to reduce the likelihood of having to
make changes to the dependent components if some of the three scenarios should
occur. The amount of work required were estimated as generic units of work. This
chapter could serve as a baseline for comparing the three layers of this Proof of
Concept against.

Chapter 5

RESTful layer

The previous Chapter 4 presented the initial situation before any part of this Proof
of Concept was implemented. This chapter will present the first layer, namely the
RESTful layer. Section 5.1 will present the design of this layer. Section 5.2 will
present and discuss both solved and outstanding issues. Section 5.3 will discuss
this layer’s effect on coupling while Section 5.4will discuss how this layer could
affect the amount of work that must be carried out on this layer and the depending
components. Finally, Section 5.5 will conclude the chapter.

5.1 Design
The overall goal of this layer is to provide a generic RESTful interface to any
issue tracker. The first thing that was done was to create a URI scheme for the
resources. First of all a URI was needed in order to refer to an issue. Furthermore,
issues do belong to a project. The following URIs were possible to refer to:

• /projects/{project}/config/ - Referring to the configuration of the project.

• /projects/{project}/issues/ - Referring to all issues belonging to the project.

• /projects/{project}/issues/{issue}/ - Referring to a specific issue belonging
to the project.

Restlet [25] is a Java framework that was used as a basis for implementing this
layer. By fetching {project} and/or {issue} from the incoming request URL one
can then use the BugTrackerWrapperInterface from the Wrapper Layer described
in Section B.7 to fetch one or all issues belonging to a project.

The URI: /projects/{project}/config/ was used to configure which bugtracker
should be used. This information could then be used to instantiate the correct in-
stance of the BugTrackerWrapperInterface provided by the Wrapper Layer. The

27

28 CHAPTER 5. RESTFUL LAYER

Figure 5.1: RESTful Layer

Figure 5.2: Example Representation

<issues>
<issue>

<url>http://localhost:8182/projects/LC/issues/634</url>
<summary>summary..</summary>

</issue>
<issue>

...
</issue>

</issues>

project is named no.miles.mpl.restful.endpoint, see Appendix C for details on
where to find the source code. A simple test client was also made, see the project
no.miles.mpl.restful.client.

Figure 5.1 illustrates the basic architecture where this layer serves as a wrap-
per or mediator between the issue tracker and the dependent components. Figure
5.2 illustrates how a collection of issues could be represented in an XML repre-
sentation. Note that the representation of an issue was not very detailed due to
time constraints.

5.2 Issues

This section presents issues that are either unresolved or resolved.

5.3. COUPLING 29

5.2.1 Oustanding issues
This section presents outstanding issues that have not yet been resolved for this
layer.

1. Extend this layer to support all attributes of issues etc. This layer was
not fully implemented due to time constraints. I had to start working on the
above layers before this layer was horizontally and vertically completed.
Therefore, only a few attributes of an issue, such as the summary were sup-
ported in this early version.

2. Concurrency. If a PUT request A is executed before PUT request B, but ar-
rives after B. Then the resource is most likely put into the state specified by
request A. Some form of concurrency control may need to be implemented,
so that clients can be notified if they are trying to update an resource and
they are not aware of that this resource has changed.

5.2.2 Resolved issues
No significant issues were resolved while implementing this layer.

5.3 Coupling
This section discusses this layer’s effect on coupling within in the framework
presented in 3.3. Recall the scenarios from Section 3.3:

SCENARIO1: An issue tracker is replaced with another issue tracker

SCENARIO2: The issue tracker’s interface changes due to an update or upgrade

SCENARIO3: The implementation of the Proof of Concept changes within the
constraints of its architecture.

D1: Syntax of data and service. The type or format of data as
well as signature of services must be consistent with a client’s
assumptions.
SCENARIO1: If an issue tracker is replaced with another, this does not have

an effect on what methods such as PUT, POST etc. will do. However the
dataformat of the representations may change. For instance new attributes

30 CHAPTER 5. RESTFUL LAYER

must be implemented. As for Trac, only one component per issue is sup-
ported while Jira issues can have many. This could mean that an XML
representation may need to change from

<component>comp1</component>

to

<components>
<component>comp1</component>
<component>comp2</component>

</components>

Which could potentially break a clients ability to fetch any component names
if a client for instance assumes that only one <component> element exists
on the root node.

SCENARIO2: An update may lead to an attribute being added. This means that
the XML document must be extended etc.

SCENARIO3: As for the format of the representation, REST gives almost no
constraints as long as it is within a valid mime type. Hence it is possible
that a future developer may want to change the default representation to
JSON or RDF.

D2: Semantics of data and service. The semantics of data and
services must be consistent with a client’s assumptions.
Common for all three scenarios are that the operations e.g. PUT, POST and GET
has well-known meanings.

SCENARIO1: If a new issue tracker is installed, the mappings to the XML ele-
ments etc. may be wrong or hard to do. Maybe the previous format doesn’t
capture the correct semantics at all.

SCENARIO2: An update to an issue tracker may change the semantics of an
attribute. Such a change could be difficult for a client to uncover and/or
deal with.

SCENARIO3: If one were to implement the PUT, POST, GET and DELETE
operations in another fashion than the intended way, such as adding an issue
with GET, this could have huge consequences. However, these operations

5.3. COUPLING 31

are so clearly agreed upon (at least the major differences, such as that a PUT
updates a resource and DELETE deletes it) that a client should not have to
deal with ambiguity in the same way as if it should use an operation named
for instance updateIssue(Array[] data, boolean delete).

D3: Sequence of data and control. Either the sequence of data
are important, or there exists timing constraints.
Common for all three scenarios are that the REST architecture requires that the
server are stateless. However, concurrency issues as mentioned in 5.2 must be
dealt with.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D4: Identity of an interface. The name or handle of a service’s
interface must be consistent with a client’s assumptions.
By following the guidelines of Tim Berners-Lee [34] there are no reasons for the
URIs of the resources e.g. /projects/{project}/issues/ to change. The only topic
that should be discussed is whether to apply a date prefix, e.g. /2008/projects/ to
the URIs. This could allow applications to access old versions of interfaces as
long as the old applications are kept running.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D5: Runtime location of a module/service. The runtime location
of a module/service must be consistent with a client’s assump-
tions.
One must assume that the RESTful interface are reachable from the internet.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

32 CHAPTER 5. RESTFUL LAYER

D6: Quality of service/data. The quality of data or service must
be consistent with a client’s demands.

Common for all three scenarios are that REST supports extensive use of caching,
which should make it possible to achieve a reasonable response time.

SCENARIO1: A new issue tracker may not support large attachments. Its exter-
nal API may impact response times etc.

SCENARIO2: -

SCENARIO3: -

D7: Existence of a module/service. The module/service must
exist.

If for some reason an issue tracker should not be used in a project, it is important
that the surrounding components keep on working, e.g. handles a 404 error. How-
ever, if an issue tracker are unavailable for a certain amount of time, information
will most likely be lost or unavailable.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D8: Resource behavior of a module/service. The resource con-
sumption or ownership of a module/service must be consistent
with a client’s assumptions.

As REST supports extensive use of caching, it may be possible to reduce the load
on the network.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

5.4. WORK 33

Table 5.1: Work
#Dependants Initial issue tracker First replacement Second replacement

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

5.4 Work
Assuming that all the surrounding components already communicates with this
layer, the impact of the three scenarios would be limited as to supporting new at-
tributes, or perhaps a new format etc. The work invested in writing this layer, plus
the client code, should then be less or equal to the amount of work discussed in
Section 4.3. This depends on both the number of clients that one has to write code
for and also the number of times the issue tracker are replaced. Table 5.1 illustrates
the units of work required with respect to the number of dependent components
and the number of times an issue tracker is replaced. Assuming that the interface
remains stable, one only has to do changes at the dependent components (client
side) once. Furthermore, when a new issue tracker is installed, one only has to
change the server-side implementation (wrapper). The table shows break-even
points in italic and less amount of work in bold. This implies, that if one has only
one dependent component, the amount of work invested will always be greater
with this Proof of Concept. However if one has two dependent components, the
break-even point is reached when the issue tracker is replaced for the first time.
Hence, as the number of dependent components increase and the issue trackers
are replaced several times, the return on investment are expected to increase.

One could argue that the amount of work required to implement this Proof
of Concept is proportionally larger than just writing the client code needed to
communicate with the issue tracker, something which could mean that the break-
even point should be shifted one place to the right and/or down. However, the
investment could still be beneficial in the long run.

5.5 Conclusion
This layer was implemented trying to follow the architectural constraints of the
architectural style REST [27]. Due to time constraints, only a simple prototype
that returned a partial XML representation of an issue was implemented. How-
ever, apart from a few issues that should be possible to overcome, it should be
possible to extend this layer to include all relevant properties and functionality.

34 CHAPTER 5. RESTFUL LAYER

Both the addition of an intermediary in general, as well as the REST specific
constraints had positive impact on reducing coupling between an issue tracker
and its surrounding components. By using the HTTP methods such as GET, PUT,
POST and DELETE the interface to the the issue tracker are expected to remain
more stable (than the initial scenario).

Regarding the amount of work invested in this Proof of Concept, it is difficult
to determine the exact point where the return of investment breaks even. However,
if more than one dependent component has to be adapted to be able to communi-
cate with the issue tracker, and if the issue tracker is replaced several times, one
can assume that the investment will pay off, at least in the long run.

Chapter 6

APP layer

The previous Chapter 5 presented the first layer of this Proof of Concept. This
chapter will present the next layer by extending the RESTful layer to implement
the Atom Publishing Protocol. Section 6.1 will present the design of this layer.
Section 6.2 will present and discuss both resolved and outstanding issues. Section
6.3 will present the effect on coupling while Section 6.4 will discuss the amount
of work. Finally, Section 6.5 will conclude this chapter.

6.1 Design

Rome [26] and its subproject Propono were used as a framework to implement this
layer. Basically, a class implementing the com.sun.syndication.propono.atom.server.
-AtomHandler had to be written. This class has methods that are executed when
GET, PUT, POST or DELETE requests are received. The appropriate actions must
then be taken. For a GET request, the Wrapper Layer presented in Section B.7 is
used to fetch no.miles.mpl.wrapper.datastructures.Issue(s). These issues are then
converted to com.sun.syndication.feed.atom.Entry(ies) and a com.sun.syndication.feed
-.atom.Feed is returned containing these entries. The URI scheme below illus-
trates which feeds and entries are available through this interface. See Appendix
C for details on how to view the source code.

Figure 6.1 illustrates that the basic architecture has not changed much from
the previous layer, although the endpoint now returns and accepts Atom feeds and
entries. Figure 6.2 shows an example Atom feed. Additional information such as
a detailed XML representation of an issue should be put in the content element of
an entry.

35

36 CHAPTER 6. APP LAYER

Figure 6.1: APP Layer

URI scheme:

The URI scheme from the previous layer 5 was modified and extended to support
the following request URIs:

../projects/{projectname} - the project - with configuration

../projects/{projectname}/issues/ - all the issues belonging to the project

../projects/{projectname}/issues/{issue}/ - an issue

../projects/{projectname}/versions/ - all versions belonging to the project

../projects/{projectname}/components/ - all components belonging to the project

../projects/{projectname}/types/ - all issuetypes possible for issues belonging to
the project

../projects/{projectname}/priorities/ - all priorities possible for issues belong-
ing to the project

../projects/{projectname}/issues/{issue}/comments/ - all the comments on the
issue

../projects/{projectname}/issues/{issue}/states/ - all possible states (transitions)
for the issue

One can GET, PUT, POST and DELETE projects and issues. Comments support
GET and POST. The other feeds only support GET.

6.1. DESIGN 37

Figure 6.2: Example Atom feed

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:app="http://www.w3.org/2007/app"
xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:taxo="http://purl.org/rss/1.0/modules/taxonomy/">
<title>LC issues</title>
<id>http://localhost:8070/no.miles.mpl.semantic.app.endpoint/

projects/LC/issues/</id>
<updated>2008-05-14T08:23:45Z</updated>
<entry>

<title>summary..</title>
<link rel="alternate" href="http://localhost:8080/jira/

browse/LC-634" />
<link rel="alternate" type="application/xml"

href="http://localhost:8070/no.miles.mpl.semantic.app.endpoint/
projects/LC/issues/634?contentformat=application/xml" />

<link rel="about" href="http://xmlns.com/baetle/#Issue" />
<link rel="edit" href="http://localhost:8070/

no.miles.mpl.semantic.app.endpoint/projects/LC/issues/634" />
<author>

<name>test</name>
</author>
<id>http://localhost:8070/no.miles.mpl.semantic.app.endpoint/

projects/LC/issues/634</id>
<updated>2008-04-09T10:05:15Z</updated>
<content type="application/xml">

< XML REPRESENTATION HERE! >
</content>
<summary type="text" />

</entry>
<entry>

....
</entry>

</feed>

38 CHAPTER 6. APP LAYER

6.2 Issues

6.2.1 Outstanding issues

This section presents the outstanding issues for this layer.

1. Extend this layer to support all attributes of issues etc. This layer was
not either fully implemented due to time constraints. I had to start working
on the above layer before this layer was horizontally and vertically com-
pleted. Therefore, only a few attributes of an issue, such as the summary
were supported for this layer too.

2. Content negotiation on the <content> element is outside of HTTP scope.
The media type for an atom feed are always application/atom+xml. Hence
if the type attribute of the content element could be both application/xml or
text/plain, HTTP negotiation in the form of using the Accept header, cannot
be used. Instead an alternate link with the type attribute set to the different
media types can be used to indicate which format the content should be in.
This works, but requires additional interaction between a client and a server,
not to mention that the client must know the details of the Atom format.

6.2.2 Resolved issues

This section presents issues that been resolved for this layer.

1. Concurrency. I implemented the GDATA approach [13] by providing a
versioned edit-uri to each entry. If an entry is updated the entry’s edit uri
are incremented. Hence, the server can easily tell if a client is trying to
update an entry that has changed since the client fetched it. A 409 -Conflict
HTTP code is returned if a client tries to update or delete an entry with an
old edit-uri.

2. Security. This issue might only be partially resolved, but what the APP end-
point does, is really only to pass the user credentials forward as arguments
to the various issue tracker’s specific APIs. Hence if a user isn’t allowed
to view issues from Jira, he won’t be allowed to view them with this APP
endpoint either. However, this layer may introduce increased vulnerability
to man-in-the-middle attacks etc. Using SSL or a simliar solution should
probably have a positive impact on security. As this is a bit out of scope of
this Master Thesis I have not dealt with this issue any further .

6.3. COUPLING 39

6.3 Coupling
This section will discuss this layer’s effect on coupling within in the framework
presented in 3.3. Recall the scenarios from Section 3.3:

SCENARIO1: An issue tracker is replaced with another issue tracker

SCENARIO2: The issue tracker’s interface changes due to an update or upgrade

SCENARIO3: The implementation of the Proof of Concept changes within the
constraints of its architecture.

D1: Syntax of data and service. The type or format of data as
well as signature of services must be consistent with a client’s
assumptions.
In addition to the uniform interface applied by the previous layer, this layer spec-
ifies parts of the syntax in the form of the Atom syntax. Additional attributes are
put inside of the <content> element of an entry. Furthermore, the Atom format
describes how to represent collections of data, as entries in a feed.

SCENARIO1: The attributes or properties that fit into the Atom format such
as title, summary etc. will not change. However, the representation put
inside the <content> elements - probably an XML representation similar to
the one in the previous layer may have to change if new attributes must be
supported.

SCENARIO2: Just like the previous layer, an attribute may need to be added,
hence if it is not supported by the Atom format it would lead to an extension
of the representation included in the <content> element.

SCENARIO3: As mentioned above, the Atom format specifies the basic syn-
tax. However, the representation included in the <content> element could
change from text to XML or XHTML etc. Atom adds some constraints to
how binary files or media content should be included. One should either in-
clude it as a base64 encoded document, or one should just specify the URI
to the representation.

D2: Semantics of data and service. The semantics of data and
services must be consistent with a client’s assumptions.
In addition to the meaning of the HTTP operations, the Atom format elements
are well defined and one could assume that they are commonly understood. For

40 CHAPTER 6. APP LAYER

instance an author of an entry is the one who created or wrote the entry. However,
the “one-liner” summary attribute in Jira, actually maps better to the <title> ele-
ment of the Atom format. Furthermore, the description attribute of an issue in Jira
and Trac, actually maps better to the <summary> element of Atom. This means
that although the Atom format’s semantics are intuitive, different implementations
may actually map different attributes to the Atom elements.

SCENARIO1: If a new issue tracker has a different set of attributes with slightly
different semantics, then it could be hard to map them to the same elements
of the Atom format. A client may experience a different use of the same
Atom elements.

SCENARIO2: -

SCENARIO3: -

D3: Sequence of data and control. Either the sequence of data
are important, or there exists timing constraints.

No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D4: Identity of an interface. The name or handle of a service’s
interface must be consistent with a client’s assumptions.

No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

6.3. COUPLING 41

D5: Runtime location of a module/service. The runtime location
of a module/service must be consistent with a client’s assump-
tions.
No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D6: Quality of service/data. The quality of data or service must
be consistent with a client’s demands.
No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D7: Existence of a module/service. The module/service must
exist.
No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D8: Resource behavior of a module/service. The resource con-
sumption or ownership of a module/service must be consistent
with a client’s assumptions.
No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

42 CHAPTER 6. APP LAYER

6.4 Work
On a general level, the amount of work should be similar to what was presented
in Section 5.4. However, as discussed in the previous Section 6.3 the interfaces
are expected to remain a bit more stable than the RESTful layer. Hence it is more
unlikely that the dependent components would be impacted of a change.

6.5 Conclusion
This layer added more functionality to this Proof of Concept. A new issue re-
garding content negotiation were uncovered, but it is not necessarily hard to work
around in practice. Furthermore, it had some impact on coupling beyound what
the previous layer added. The likelihood of maintaining a stable interface has in-
creased due to the introduction of the Atom format. This should then reduce the
likelyhood of changes needed to be implemented on dependent components.

Chapter 7

Semantic layer

The previous Chapters 5 and 6 presented the two first layers of this Proof of con-
cept. This chapter presents the final layer, namely the Semantic layer, extending
the previous layers with Semantic Web technology. Section 7.1 presents the de-
sign of this layer while Section 7.2 presents outstanding issues. Section 7.3 dis-
cusses this layer’s effect on coupling, while Section 7.4 discusses work. Section
7.5 discusses a few topics regarding ontologies and Semantic Web technology.
Finally, Section 7.6 concludes this chapter.

7.1 Design

The RDF data about an issue etc. is contained in an text/rdf+n3 representation
inside the <content> element of an Atom entry. The issue is described using
the envisioned Baetle ontology, which I have contributed to during my work on
this Master Thesis [16]. The Baetle ontology links an issue and its properties to
several other public ontologies such as FOAF, SIOC and DOAP [6] [11] [31].
These ontologies were also reused in the project feeds as well as in the comment
feeds.

A design issue that I got into was whether to use OWL-DL or OWL-FULL.
OWL-FULL does not come with a computational guarantee, hence one can end
up with infite loops etc. However, when importing public ontologies that are
OWL-FULL, my ontologies became OWL-FULL too. Hence I was left with a
question of loosing value in form of abandoning these public ontologies, or risk
that reasoning on these ontologies might stall or crash the application. I received
good help from different Semantic Web communities and learned that the best
practice was to include everything and test it - if it doesn’t crash, it’s okay. This
approach is also a match with the open world mindset of the web today, one had
to accept the 404 Error in order to allow the web to scale. In [5] this is described

43

44 CHAPTER 7. SEMANTIC LAYER

Figure 7.1: Semantic Layer

with the AAA slogan, which is short for; “Anyone can says Anything about Any
topic”.

When choosing a URI to represent the actual issue I consulted the W3C article
“Cool URIs for the Semantic Web” [37]. It is difficult to decide whether an issue is
an abstract thing or in fact the actual representation given by either Trac or Jira. I
landed on using URIs such as http://localhost:8080/jira/browse/LC-105 for issues.
These URIs make it easy for a human to understand that this is an issue. It is also
probably a better approach than to use the same URI as the Atom entry, because
that is more of a temporary wrapper/container for the issue. However, one should
perhaps include both URIs to ensure future applications can recover this issue,
even if it has been moved into another issue tracker. This could be implemented
using the rdfs:seeAlso property.

Figure 7.1 illustrates almost the same basic architecture as the two previous
layers. However, the endpoint now returns and accepts Atom feeds and entries
bundled with semantic data. Figure 7.2 illustrates how a semantic representation
(N3) of an issue is included in the <content> element of an Atom entry.

7.1.1 Sparql Endpoint
The same URI scheme as mentioned in Section 6.1 was used, but with a small
extension; namely the support for SPARQL queries on issues.

• ../projects/{projectname}/issues/?sparql=SELECT * WHERE ..

This was implemented by fetching all the issues to the specific project, merging
them together in an in-memory model together with the Baetle (meta model) on-
tology itself. Then a sparql query is executed and an Atom feed with one entry for
each SPARQL Resultset is returned.

7.1. DESIGN 45

Figure 7.2: Example Semantic Atom feed

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom" ... >

<title>LC issues</title>
<id>http://localhost:8070/...</id>
<updated>2008-05-14T08:23:45Z</updated>
<entry>

<title>summary..</title>
<link rel="alternate" ... />
...

<content type="text/rdf+n3">
@prefix : <http://xmlns.com/baetle/#> .
@prefix sioc: <http://rdfs.org/sioc/ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix doap: <http://usefulinc.com/ns/doap#> .
@prefix wf: <http://www.w3.org/2005/01/wf/flow#> .

<http://localhost:8080/jira/browse/LC-634> a :Task ;
wf:state [a :Open] ;

:assigned_to [a sioc:User ;
foaf:accountName "test"] ;

:created "2008-04-9T12:05:15.0" ;
:priority [a :Major] ;
:project [a doap:Project ;

doap:name "LC"] ;
:reporter [a sioc:User ;

foaf:accountName "test"] ;
:title "summary.." ;
:updated "2008-04-9T12:05:15.0" .

...

</content>
<summary type="text" />

</entry>
</feed>

46 CHAPTER 7. SEMANTIC LAYER

7.2 Issues
This section presents both outstanding and resolved issues.

7.2.1 Oustanding issues
This section presents the outstanding issues for this layer.

1. Enable an external application to automatically deduce what this feed
is about and that RDF data can be found in the content. This issue is a
result of that this Proof of Concept does not use a standardized combination
of Atom Feeds and Semantic Web technology. Although Atom feeds are a
nice way to express collections of data, and that RDF and OWL are a uni-
form way to express this data, few clients would be able to know that this
is actually a “Semantic Feed” with semantic data in the <content> element.
It would certainly find out by studying the feed, but it is unclear whether
an entry is an issue, contains data about an issue or just mentions an issue.
I used a link with rel=”about” and a URI to the baetle ontology. However,
this is not yet a standardized way to specify what a feed is about. If the
rel=”about” practice was to be standardized, one could use the Awol ontol-
ogy [15] to describe each feed and state that the content contains the data
etc. One would then need to specify the URI of the about link to point to
for instance the concept IssueFeed.

7.2.2 Resolved issues
This section presents issues that been resolved for this layer.

1. Performance. Long response times were experienced when dealing with
hundreds of issues. However, by caching all the entries, and only fetch the
ones that are updated (and leave out the ones that have been deleted), the
response times have improved. To be able to do this I had to write a plugin
to Jira (see Section B.1.1). However, as a feed containing thousand issues
carries a lot of data, it might be beneficial to partition the feed. For instance
one could get only issues assigned to a user, or only recently updated issues
etc. in order to decrease the response times even further.

7.3 Coupling
This section will discuss this layer’s effect on coupling within in the framework
presented in 3.3. Recall the scenarios from Section 3.3:

7.3. COUPLING 47

SCENARIO1: An issue tracker is replaced with another issue tracker

SCENARIO2: The issue tracker’s interface changes due to an update or upgrade

SCENARIO3: The implementation of the Proof of Concept changes within the
constraints of its architecture.

D1: Syntax of data and service. The type or format of data as
well as signature of services must be consistent with a client’s
assumptions.
SCENARIO1: If an issue tracker is replaced, a property or attribute could be

added or removed from the RDF representation of the issue, however a
client should be able to parse the model anyway. The risk is of course
that a client may fail provide an attribute that is mandatory by the new issue
tracker.

SCENARIO2: See SCENARIO1.

SCENARIO3: The syntax of the data contained within the <content> element
of the Atom entries should now be text/rdf+n3, application/rdf+xml or any
other widely used textual representation of RDF. This means that most RDF
parsers could understand this part. Hence the scope of change in syntax is
very limited. By using SPARQL as a query language to query issues, one
can be sure that the query language does not need to change. Even if totally
different ontologies are used, one can always use SPARQL as a query lan-
guage in the future. However, the “SPARQL to Atom mapping” described
in Section 7.1 are not necessarily intuitive and at least not standardized.
Hence an external application might expect another format in return after
executing the SPARQL query. This should however be possible to over-
come using HTTP Content Negotiation and providing different formats for
displaying SPARQL results (e.g. the standard SPARQL XML serialization).
[32]

D2: Semantics of data and service. The semantics of data and
services must be consistent with a client’s assumptions.
SCENARIO1: If an issue tracker is replaced, a property may need to be added

to the representation (Atom + N3). A client may be able to understand this
property, either partially or fully. For instance, if a new state is added as
a subclass of baetle:New, the client may not understand the details, but it
would probably be able to make sense of it.

48 CHAPTER 7. SEMANTIC LAYER

SCENARIO2: See SCENARIO1.

SCENARIO3: The model describing an issue could for instance be linked to
many other new ontologies, without enforcing any trouble on the client. As
mentioned in SCENARIO1, a client that for instance uses inference and
SPARQL could potentially understand new properties without any further
implementation, given that they are related to already known concepts.

D3: Sequence of data and control. Either the sequence of data
are important, or there exists timing constraints.
No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D4: Identity of an interface. The name or handle of a service’s
interface must be consistent with a client’s assumptions.
No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D5: Runtime location of a module/service. The runtime location
of a module/service must be consistent with a client’s assump-
tions.
No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

7.4. WORK 49

D6: Quality of service/data. The quality of data or service must
be consistent with a client’s demands.
No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D7: Existence of a module/service. The module/service must
exist.
No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

D8: Resource behavior of a module/service. The resource con-
sumption or ownership of a module/service must be consistent
with a client’s assumptions.
No additional impact from this layer.

SCENARIO1: -

SCENARIO2: -

SCENARIO3: -

7.4 Work
On a general level, the amount of work should be similar to what was presented in
Section 5.4. However, this layer could potentially keep the interfaces even more
stable than the previous layers. Hence even less changes should propagate to the
client side. Furthermore, this layer makes it possible to create somewhat intelli-
gent agents, that could be preprogrammed to understand a large set of widespread
ontologies, hence increasing the possibility of understanding changes or addons to
this Proof of Concept in the future. It is however doubtful that the latter possibility
would pay off within a reasonable amount of time.

50 CHAPTER 7. SEMANTIC LAYER

7.5 Discussion
As presented in Section 7.1 there’s being developed an ontology for describing is-
sues (Baetle [16]). A few other public ontologies are used in this Proof of Concept
too. As different ontologies are linked, new links between different concepts are
uncovered. There should be possible to link many other parts of the Miles Plat-
form together in a uniform way using different ontologies. For instance should all
users be described using both FOAF [11] and SIOC [31]. Each project described
with DOAP [6] could be linked to many other things besides issues, for instance
SVN Repositories, wikis or websites. One could then end up with a Platform
consisting of semantically interlinked concepts or resources. New relationships or
properties could potentially be deduced and exploited.

Furthermore, external applications which are familiar to any of these public
ontologies could automatically understand and use parts of the Miles Platform.
One could also see this from the opposite viewpoint, namely allowing the Miles
Platform to understand data from external applications or projects. One poten-
tial feature would be to let some part of the Miles Platform search through issue
trackers for different projects that has been included in a Miles Platform project
in the form of for instance a library. Hence, the Miles Platform could potentially
suggest that an issue reported on the Miles Platform issue tracker is very similar
to an issue reported on a library being used by the current project. A developer
could find a potential solution on this library’s issue tracker, or at least contribute
with more information on the issue.

However, as these ontologies help providing a stable interface to a client, what
is indicated in [1] is that coupling are expected to increase as ontologies imports
or refers to each other. Hence, there is likely to exist a trade-off when using
ontologies between interconnectability vs. loose coupling.

7.6 Conclusion
This layer extended the previous layer by describing issues etc. with public on-
tologies. This layer was also extended both vertically and horizontally to support
full CRUD on an issue, with almots every relevant attribute.

Once clients are told where to find this data describing the issues, they could
interpret it in a uniform way. Furthermore, this layer further narrowed the possible
scope of change, as well as increased a clients possibility to understand or cope
with future changes to this Proof of concept’s interface. Hence this layer should
potentially reduce the amount of work required even further, at least in the medium
or long run.

Part III

Synthesis

51

Chapter 8

Discussion and conclusions

The previous chapters presented background, design and results for creating this
Proof of Concept. This chapter will discuss and conclude this Master Thesis with
respect to the aim stated in Section 1.2. Section 8.1 will summarize this Master
Thesis. Section 8.2 will discuss issues, Section 8.3 will discuss coupling and
Section 8.4 will discuss work. Section 8.5 will discuss the research approach.
Finally, Section 8.6 will suggest further work.

8.1 Summary

This Master Thesis involved implementing and evaluating the Proof of Concept
I planned in [9]. The Proof of Concept consists of three layers. The first layer I
implemented was the RESTful layer. This layer was placed on top of the issue
trackers; Jira and Trac. This initial layer served as an intemediary or wrapper
between the issue trackers and their surrounding tools and components. While
still following the constraints of REST I extended the Proof of Concept by imple-
menting the second layer using the Atom Publishing Protocol. Finally, I added the
third layer which involved Semantic Web technology by using RDF(S) and OWL
to represent issues and their properties.

Before I had implemented this Proof of Concept I first started out with design-
ing the research approach. I decided that the Research Questions produced in [9]
were still the best candidates to answer in order to evaluate if I would reach the
aim of this Master Thesis. The aim was to “ensure a long life-time of the Miles
software development Platform by enabling loose coupling between its different
components and tools” 1.2.

To be able to test and use the Proof of Concept, a test environment had to be
installed, configured and set up. I had to implement several plugins and proto-
types myself (see Appendix B for details). The source code for both this Proof of

53

54 CHAPTER 8. DISCUSSION AND CONCLUSIONS

Concept and some configuration details for the test environment were submitted
together with this thesis (see Appendix C).

8.2 Issues
To answer RQ1: “To which extent is it possible to implement the different layers
of this Proof of Concept?“, I decided to present all the important issues that were
either resolved or not, when this Proof of Concept was finished or I ran out of
time. The following issues have been resolved:

• Concurrency. The issue of concurrency has been dealt with, using a similar
approach as GDATA [13]. The edit-uri of an Atom entry are incremented
each time it is updated. Hence the server can tell if a client is not aware of
the latest update.

• Performance. By caching entries one can fetch only the updated issues
from the issue trackers. Hence the response times have improved signifi-
cantly.

• Security. When a client uses the Semantic APP endpoint, the credentials
are passed on to the issue tracker. If the user does not have the correct
privileges on the issue tracker, the server returns a HTTP error code such as
403 Forbidden.

The following issues have not yet been resolved:

• Enable an external application to automatically deduce what a feed is
about and that RDF data can be found in the content. Based on my un-
derstanding of the current state of the art, it is unclear whether a so called
intelligent client would interpret an entry containing a semantic description
of an issue as an entry with some data about an issue, as the issue itself or
something else. This is not at all a blocking issue. It is more a symptom
of that I have used somewhat immature technologies, in a special combi-
nation, where few best practices yet exist. Future versions of Atom might
prove to be more integrated with Semantic Web technologies, or I might
explore another solution, but for now the approach I used seemed like the
best alternative.

• Content negotiation on the <content> element is outside of HTTP scope.
A client cannot use the HTTP Accept Header to specify the content type of
the <content> elements of an Atom Feed as this header is already been
used for application/atom+xml. This should not be treated as a blocking

8.3. COUPLING 55

issue either. It does require a client to perform an extra step if links are
provided to other representation formats, but following hyperlinks to other
representations is also clearly a part of the REST architectural style.

Although the prototypes of the RESTful and the Atom Publishing Protocol layers
were not fully implemented, they are both a part of the final prototype containing
all three layers. Hence I have proved that it is possible to successfully combine
these architectural styles and technologies within the scope of this Master Thesis.
All unresolved issues are considered non-blocking and almost trivial, although
they have resulted in interesting discussions. I have dealt with important issues
such as concurrency, performance and partially security. However, these solutions
could possibly be improved even further. Although the quality attribute in focus
for this Master Thesis has been modifiability, I have shown that it is possible to
deal with other quality attributes too, by overcoming the initial negative effects
that this Proof of Concept had on them.

8.3 Coupling
Answering RQ2: “How does the addition of each layer affect the degree of cou-
pling?” was done by discussing each layer’s effect on coupling and modifiability
within a chosen framework (see Appendix A). This framework was considered
the best framework available (see Section 3.3). Each layer contributed especially
to keeping interfaces stable, either because the methods or the formats were not
expected to change significantly.

As I have worked with this Proof of Concept I have experienced that a very im-
portant aspect of achieving loose coupling is about maintaining stable interfaces.
First of all, stable interfaces reduces the possibility for ripple effects. First the
RESTful layer applied a standard set of methods. Second that the Atom Publish-
ing Protocol layer introduced the Atom formats, making the syntactical room for
change a bit narrower. Finally, the Semantic layer narrowed this scope of change
even further by standardizing on the attributes that didn’t fit well into the Atom
elements. This Proof of Concept was implemented as a wrapper or intermediary
between the issue trackers and their dependent components. This approach served
as a foundation for keeping the interfaces stable. [20]

The dependency type “D7: Existence of a module/service” was not signifi-
cantly reduced by any of the layers. It is unclear how a client can cope with a 404
error. In the best case, it should just keep on doing whatever it could do without
data from an issue tracker. A topic that could shed some light on this issue is
perhaps the dimension of time. What if an issue tracker is currently unavailable?
Then information could be lost due to a client giving up. This is a shortcoming of
this Proof of Concept.

56 CHAPTER 8. DISCUSSION AND CONCLUSIONS

This Proof of Concept involved implementing three layers, one on top of the
other. Hence, there might exist other combinations of the layers that might be
more beneficial. One could then ask the question “do we actually need the APP
layer?”. What I learned from creating the RESTful layer, was that it was difficult
to know how to express collections of elements. Atom solved this in a very nice
way. However, by combining only the RESTful and the Semantic layer, a number
of alternatives exists that might solve this problem. One could for instance just
include all the issues belonging to a project in an N3 document. This might even
remove some overhead from Atom, and potentially increase performance. How-
ever, by excluding Atom you would remove the possibility for people to easily
make sense of these feeds using a feed reader.

Each layer contributed to keep the interfaces stable, although other dimen-
sions, such as time, have not been dealt with from a modifiability perspective. I
expect the three layers or different combinations of these to serve as a good foun-
dation for ensuring the Miles Platform a long life-time.

8.4 Work
The last research question, RQ3: “How does these layers affect the amount of
work spent on replacing a component?” were discussed on a general level for
each layer. The discussion focused on whether one could expect a return on in-
vestment by implementing this Proof of Concept in the short or long run. As
the sections describing Work discussed, using an intermediary/mediator/wrapper
only pays off if there are several dependent components, and the central compo-
nent is actually replaced one or preferably several times during its life-time. Using
these techniques can therefore not be defended, at least not from a modifiability
perspective alone, if none of the Scenarios presented in Section 3.3 are expected
to occur.

8.5 Research approach
By answering RQ1: “To which extent is it possible to implement the different
layers of this Proof of Concept?“, I could state how successful I have been with
implementing this Proof of Concept. Listing solved and unresolved issues was
an easy and effective way to indicate to which extend I was able to implement
this Proof of Concept. However, before the Proof of Concept has been thoroughly
tested by other people than me, it is reasonable to assume that a lot of bugs and
issues have not yet been uncovered.

Using Evolutionary Prototyping [10] some of the code used for the prototypes

8.5. RESEARCH APPROACH 57

of the two first layers was actually reused in the prototype containing all three lay-
ers. The development method was easy to use when working within a previously
unfamiliar field. As I tested out new libraries and designs I could just continue to
build on top of what already worked. However, as I gained new knowledge and
became familiar with the technologies and libraries, new better solutions were
uncovered, and a lot of changes had to be made to the prototype. If one could
gain this knowledge by experimenting with each technology or library one at a
time before starting on the final system, one might end up with a better design or
architecture on the final system.

RQ2: “How does the addition of each layer affect the degree of coupling?”,
was designed so that I could evaluate each layer’s effect on coupling. As argued
in Section 3.3, it was difficult to find any suitable coupling measures for this kind
of RESTful (Semantic) Web Services. However, by considering coupling as a part
of the more general quality attribute modifiability, I was at least able to perform
a qualitative discussion on this topic for each layer. This disussion or evaluation
of each layer’s effect on coupling and modifiability, could however be influenced
by my subjective values or beliefs. Hence a reader of this Master Thesis should
perhaps be considering my conclusions more as an advice from me, rather than
quantitatively confirmed scientifical results.

The last research question, RQ3: “How does these layers affect the amount of
work spent on replacing a component?”, was only answered on a general level. It
was impossible to create exact estimates as it is hard to predict the future. How-
ever, this question was perhaps more directed towards the general approach of
using an intermediare and keeping interfaces stable, than towards the specific ar-
chitectural styles and technology used in this Proof of Concept.

As the above discussion indicates, RQ2 was probably the most central re-
search question for this Master Thesis. It clearly correlates with the aim of this
Master Thesis and it uncovered several aspects that have been thoroughly dis-
cussed. The coupling was mostly reduced due the fact that the interface(s) a client
should use to communicate with the issue tracker(s) is expected to remain sta-
ble. Both format and methods, i.e. syntax of data and service, are not expected
to change significantly. Although all the layers contributed to maintaining stable
interfaces, the use of public ontologies might have introduced new dependencies
through referring to other ontologies, hence there exists a trade-off here one should
be aware of.

“Ensure a long life-time of the Miles software development Platform by en-
abling loose coupling between its different components and tools” as stated in Sec-
tion 1.2 was the aim of this Proof of Concept. Based on the results and previous
discussions it is reasonable to believe that this Proof of Concept will contribute to
extending the life-time of the Miles Platform by enabling loose coupling between
its components. Either the Proof of Concept are adopted (fully or partially) into

58 CHAPTER 8. DISCUSSION AND CONCLUSIONS

the Miles Platform or the the experience and knowledge gained from this thesis
could be used as a basis for new solutions or decisions.

8.6 Further work
This Section presents further work that could be conducted in order to improve
this Proof of Concept.

• To deal with the dimension of time, and implement the asynchrounous
publish-subscribe pattern, an Atom Publishing Protocol (APP) extension to
the XMPP protocol could be implemented on top of this Proof of Concept
as suggested in [28]. Atom entries could be passed as the payload of mes-
sages. Furthermore, by listening to incoming messages instead of polling
an APP endpoint directly, one could potentially reduce the load on the APP
endpoint.

• The Atom Format attributes such as <title>, <summary> etc. can be parsed
by most feed readers and displayed to a human in a readable way. However,
the representations used inside the <content> element are in this Proof of
Concept text/rdf+n3. One can argue that this format is more readable than
application/rdf+xml. However, many web sites uses for instance HTML or
XHTML together with CSS to provide a far better user experience than if a
user would have read pure N3. RDFa makes it possible to include seman-
tic meta-data in XHTML. This has the impact that an XHTML document
can be both human and machine readable (understandable). One could po-
tentially change this Proof of Concept to include RDFa (XHTML) in the
<summary> element of an Atom Feed, hence making the representation
presented to the user equal to the representation used by the applications.
[24]

• Using SWRL to map from one ontology to another, it should be possible to
create one ontology for Trac and one ontology for Jira etc. and then specify
how these ontologies map to Baetle and other ontologies. This could make
it easier to make changes to the Wrapper Layer (see Section B.7) because
some of the changes could probably be made at run-time. [29]

• As the data describing issues etc. are available on a uniform format across
different issue trackers, there should be fairly easy to backup this data and
use it in the future regardless of whether the issue tracker are replaced or
not. The latter could be considered as a contribution to extending the life-
time of the Miles Platform, by actually extending the life-time of its data.

8.6. FURTHER WORK 59

Perhaps this is equally or more important that achieving loose coupling with
stable interfaces.

60 CHAPTER 8. DISCUSSION AND CONCLUSIONS

Bibliography

[1] Anthony M. Orme, Haining Yao, and Letha H. Etzkorn. Coupling Metrics
for Ontology-Based Systems. IEEE Software, 2006.

[2] Atomenabled. URL http://www.atomenabled.org/. Last accessed: 22
January 2008.

[3] Charles Zhang and Hans-Arno Jacobsen. Quantifying Aspects in Middle-
ware Platforms. Proceedings of the 2nd international conference on Aspect-
oriented software development, 2003.

[4] Codehaus. Grails. URL http://grails.codehaus.org/. Last accessed:
14 April 2008.

[5] Dean Allemang and Jim Hendler. Semantic Web for the Working Ontologist.
Morgan Kaufmann, 2008.

[6] Edd Dumbill. Doap. URL http://trac.usefulinc.com/doap. Last ac-
cessed: 6 May 2008.

[7] Eclipse. URL http://http://www.eclipse.org/. Last accessed: 22
January 2008.

[8] Elias Torres. Queso. URL http://torrez.us/archives/2006/07/17/
471/. Last accessed: 14 April 2008.

[9] Erling Wegger Linde. Achieving Loose Coupling in the Component-Based
Miles Software Development Platform. Specialization Project, 14 December
2007.

[10] Evolutionary Prototyping. URL http://en.wikipedia.org/wiki/
Evolutionary_prototyping#Evolutionary_prototyping. Last ac-
cessed: 16 April 2008.

[11] FOAF. URL http://www.foaf-project.org/. Last accessed: 6 May
2008.

61

http://www.atomenabled.org/
http://grails.codehaus.org/
http://trac.usefulinc.com/doap
http://http://www.eclipse.org/
http://torrez.us/archives/2006/07/17/471/
http://torrez.us/archives/2006/07/17/471/
http://en.wikipedia.org/wiki/Evolutionary_prototyping#Evolutionary_prototyping
http://en.wikipedia.org/wiki/Evolutionary_prototyping#Evolutionary_prototyping
http://www.foaf-project.org/

62 BIBLIOGRAPHY

[12] Franck Xia. On the concept of coupling, its modeling and measurement. The
Journal of Systems and Software 50, 2000.

[13] Google. Google Data APIs. URL http://code.google.com/apis/
gdata/overview.html. Last accessed: 14 April 2008.

[14] Gregory A. Hall, Wenyou Tao, and John C. Munson. Measurement and
Validation of Module Coupling Attributes. Software Quality Journal 13,
2005.

[15] Henry Story. Atomowl vocabulary specification, . URL http://bblfish.
net/work/atom-owl/2006-06-06/AtomOwl.html. Last accessed: 14
April 2008.

[16] Henry Story. Baetle, . URL http://code.google.com/p/baetle/. Last
accessed: 14 April 2008.

[17] Hudson. URL http://hudson.gotdns.com/wiki/display/HUDSON/
Meet+Hudson. Last accessed: 22 January 2008.

[18] Jarallah S. Alghamdi. Measuring Software Coupling. Proceedings of the
6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed
Systems, 16 February 2007.

[19] Jira. URL http://www.atlassian.com/software/jira/. Last ac-
cessed: 22 March 2008.

[20] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Prac-
tice Second Edition. Addison-Wesley, November 2006.

[21] Martin Hitz and Behzad Montazeri. Measuring Coupling and Cohesion In
Object-Oriented Systems. Proc. Int. Symposium on Applied Corporate Com-
puting, 1995.

[22] Mikhail Perepletchikov, Caspar Ryan, Keith Frampton, and Zahir Tari. Cou-
pling Metrics for Predicting Maintainability in Service-Oriented Designs.
Proceedings of ASWEC’07, 2007.

[23] Mikhail Perepletchikov, Caspar Ryan, Keith Frampton, and Heinz Schmidt.
Formalising Service-Oriented Design. Journal of Software, Vol. 3, No. 2,
February 2008.

[24] RDFa Primer. URL http://www.w3.org/TR/xhtml-rdfa-primer/. Last
accessed: 09 May 2008.

http://code.google.com/apis/gdata/overview.html
http://code.google.com/apis/gdata/overview.html
http://bblfish.net/work/atom-owl/2006-06-06/AtomOwl.html
http://bblfish.net/work/atom-owl/2006-06-06/AtomOwl.html
http://code.google.com/p/baetle/
http://hudson.gotdns.com/wiki/display/HUDSON/Meet+Hudson
http://hudson.gotdns.com/wiki/display/HUDSON/Meet+Hudson
http://www.atlassian.com/software/jira/
http://www.w3.org/TR/xhtml-rdfa-primer/

BIBLIOGRAPHY 63

[25] Restlet. URL http://www.restlet.org/. Last accessed: 16 April 2008.

[26] ROME. URL https://rome.dev.java.net/. Last accessed: 16 April
2008.

[27] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, UNIVERSITY OF CALIFOR-
NIA, IRVINE, 2000.

[28] P. Saint-Andre. Atomsub: Transporting atom notifications over the
publish-subscribe extension to the extensible messaging and presence
protocol (xmpp). URL http://www.xmpp.org/internet-drafts/
draft-saintandre-atompub-notify-07.html. Last accessed: 09 May
2008.

[29] SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
URL http://www.w3.org/Submission/SWRL/. Last accessed: 27 May
2008.

[30] Semap. URL http://code.google.com/p/semap/. Last accessed: 8
April 2008.

[31] SIOC. URL http://sioc-project.org/. Last accessed: 6 May 2008.

[32] Sparql Query Language for RDF. URL http://www.w3.org/TR/
rdf-sparql-query/. Last accessed: 09 May 2008.

[33] Subversion. URL http://subversion.tigris.org/. Last accessed: 22
January 2008.

[34] Tim Berners-Lee. Cool URIs don’t change. 1998. URL http://www.w3.
org/Provider/Style/URI. Last accessed: 17 April 2008.

[35] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Sci-
entific American, 17 May 2001.

[36] Trac. URL http://trac.edgewall.org/. Last accessed: 25 January
2008.

[37] W3C Interest Group. Cool URIs for the Semantic Web. URL http://www.
w3.org/TR/cooluris. Last accessed: 31 March 2008.

[38] wingerz. A queso example. URL http://wingerz.com/blog/?p=38. Last
accessed: 14 April 2008.

http://www.restlet.org/
https://rome.dev.java.net/
http://www.xmpp.org/internet-drafts/draft-saintandre-atompub-notify-07.html
http://www.xmpp.org/internet-drafts/draft-saintandre-atompub-notify-07.html
http://www.w3.org/Submission/SWRL/
http://code.google.com/p/semap/
http://sioc-project.org/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://subversion.tigris.org/
http://www.w3.org/Provider/Style/URI
http://www.w3.org/Provider/Style/URI
http://trac.edgewall.org/
http://www.w3.org/TR/cooluris
http://www.w3.org/TR/cooluris
http://wingerz.com/blog/?p=38

64 BIBLIOGRAPHY

Part IV

Appendix

65

Appendix A

Template for coupling discussion

The following is a template for discussing the coupling of a Layer for this Proof
of Concept. Comments are given in parantheses:

D1: Syntax of data and service. The type or format of data as
well as signature of services must be consistent with a client’s
assumptions.
(Place for general discussion across scenarios)

SCENARIO1: (Place for scenario specific discussion)

SCENARIO2: (a “-” can be given if no scenario specific discussion is relevant)

SCENARIO3:

D2: Semantics of data and service. The semantics of data and
services must be consistent with a client’s assumptions.
SCENARIO1:

SCENARIO2:

SCENARIO3:

D3: Sequence of data and control. Either the sequence of data
are important, or there exists timing constraints.
SCENARIO1:

67

68 APPENDIX A. TEMPLATE FOR COUPLING DISCUSSION

SCENARIO2:

SCENARIO3:

D4: Identity of an interface. The name or handle of a service’s
interface must be consistent with a client’s assumptions.

SCENARIO1:

SCENARIO2:

SCENARIO3:

D5: Runtime location of a module/service. The runtime location
of a module/service must be consistent with a client’s assump-
tions.

SCENARIO1:

SCENARIO2:

SCENARIO3:

D6: Quality of service/data. The quality of data or service must
be consistent with a client’s demands.

SCENARIO1:

SCENARIO2:

SCENARIO3:

D7: Existence of a module/service. The module/service must
exist.

SCENARIO1:

SCENARIO2:

SCENARIO3:

69

D8: Resource behavior of a module/service. The resource con-
sumption or ownership of a module/service must be consistent
with a client’s assumptions.
SCENARIO1:

SCENARIO2:

SCENARIO3:

70 APPENDIX A. TEMPLATE FOR COUPLING DISCUSSION

Appendix B

Test Environment

As indicated in 3.2, in order to develop the Proof of Concept in a realistic environ-
ment, I had to install and also develop some scripts, plugins and prototypes. This
chapter gives an overview of the different components of the Test Environment
that has been used. Section B.1 and B.2 presents the two candidate issue track-
ers. Section B.3 presents future important components of the Miles Platform,
namely the Project and Customer Web. Section B.4 presents Hudson and gives an
overview of the plugin that was written for it. Section B.5 presents Eclipse and
describes the extension to the Mylyn Plugin that was implemented. Section B.6
presents Subversion and explains the motivation for creating a script that expands
the commit logs. Section B.7 presents the Wrapper Layer that was used as a basis
for the three layers, by providing a transparent interface to Trac and Jira. Finally,
Section B.8 concludes the chapter.

B.1 Jira

Jira is a partial Open Source, widely used issue tracker. It is currently used by
Miles. Jira was installed on a Tomcat web container. Version 3.12.1 of Jira was
used for this Proof of Concept.

B.1.1 Jira Plugin

In order to be able to fetch the ids of only the recently updated issues I had to write
a plugin to Jira. This plugin adds another SOAP interface to Jira. See Appendix
C for additional details on the source code.

71

72 APPENDIX B. TEST ENVIRONMENT

B.2 Trac
Trac is an Open Source issue tracker that could be a future competitor to Jira.
Trac was configured to be run with Apache 2. Several plugins had to be installed
in order to access Trac through a remote interface. Version 0.10.4 of Trac was
used for this Proof of Concept. See Appendix C for additional details.

B.3 Project and Customer Web
The Project Web is planned to be an interface for developers working with the
Miles Platform. Customer Web is respectively planned to be an interface for
customers. These web interfaces should provide services and features that are
beneficial to customers and developers as well as project managers.

As these interfaces are currently on the planning stage, it is hard to test them
against this Proof of Concept. However, as they will most likely be developed
in-house (at least partially, IBMs Jazz is a candidate for Project Web), no plugins
for communicating with Trac or Jira or other Bug Trackers exists. It could be
reasonable to believe that the Project and Customer Web could be the applications
that would benefit the most from this Proof of Concept, as they would be very
tightly coupled to the issue trackers without this Proof of Concept.

To demonstrate how such applications could benefit from the Proof of Con-
cept, I created a prototype for the Project Web using Grails [4]. This simple client
was used as an administrator interface for configuring which project uses which
issue tracker. See Appendix C for details on the source code.

B.4 Hudson
Hudson is an automatic building system, which implies that when you check in
code in for instance Subversion, Hudson executes a build and creates a report
and notification from the result of the build. Furthermore, there exists plugins to
integrate Hudson with both Trac and Jira. Hudson recognizes issue keys in the
commit logs at the Subversion repository and then includes links to the issues in
the generated report.

B.4.1 Plugin
In order to reduce the coupling between Hudson and the Issue trackers, I devel-
oped a Miles Platform Plugin for Hudson that recognizes Miles Platform issue
keys formatted as {projectkey}/{issuekey} and verifies that these issues exists.

B.5. ECLIPSE 73

However, it might be more beneficial for the Hudson plugin to actually fetch the
issuekeys from some part of the Proof of Concept. See Appendix C for details on
the source code.

B.5 Eclipse
Eclipse is a widely used Integrated Development Environment (IDE). There exists
plugins to integrate Eclipse with both Subversion and Issue Trackers such as Jira
and Trac.

B.5.1 Mylyn Plugin
To avoid the direct coupling between Eclipse and the Issue Trackers, the candidate
developed a Miles Platform extension to Mylyn. Mylyn is an Eclipse Plugin that
enables integration with Jira, Trac and many other issue trackers. Mylyn provides
a framework that makes it easy to add support for other issue trackers, or more
specifically this Proof of Concept. Due to time constraints this Mylyn Extension
was not finished. But it is able to fetch issues and a few of their attributes from
the endpoint. Creating a new issue is also partially supported. See Appendix C
for details on the source code.

B.6 Subversion
Subversion is a repository that is used to store source code etc. Eclipse, Jira,
Trac and Hudson are all possible clients to Subversion repositories. They also
interact indirectly by committing to and reading from Subversion. Jira and Trac
has plugins that links issues to source code and revisions. Hudson could also link
to Trac and Jira based on issue keys found in Subversion commit logs. See the
Appendix C for configuration details.

B.6.1 Expand log script
Both Trac and Jira has support for Subversion (through widely used plugins).
These plugins recognizes issue keys in the commit logs in Subversion repositories.
If a known issue key is found, then an issue can be linked to files and revisions in
Subversion. However, this would imply that a user of the Miles Platform needs
to be aware of which Bug Tracker is being used in order to specify the correct
issue key. Jira keys are formatted as {projectname}-{issue} while Trac keys are
formatted as #{issue}. To avoid this tight coupling a script was created that would

74 APPENDIX B. TEST ENVIRONMENT

expand the commit log with keys for the relevant issue trackers. The script takes
a Miles Platform issue key, formatted as {projectname}/{issue} and appends the
Jira and Trac equivalent keys to the commit log. The script are executed using two
Subversion hooks:

post-commit hook is a hook that is executed by Subversion when a commit is
finished. Such a hook was written in order execute the Perl script that ex-
pands the log with Jira and Trac issuekeys if a Miles Platform issue key is
found in the commit log.

pre-revprop-change hook is a hook that is executed before a revprop(erty) is
changed. The svn:log is the revprop used by the script. A simple pre-
revprop-change hook was needed in order to allow changes to the commit
log.

However, as discussed in Section B.4.1 it might be more beneficial for the Hudson
plugin etc. to just fetch the issue keys from the Proof of Concept directly in order
to avoid duplication etc.

B.7 Wrapper layer
In order to communicate with the issue trackers, a wrapper layer was written in
Java. The most important part of this wrapper is the BugTrackerWrapperInterface
and its implementing classes TracWrapper and JiraWrapper. The JiraWrapper and
TracWrapper connects respectively to the Jira SOAP interface and the Trac XML-
RPC interface. All another class that uses this interface needs to know is which
Wrapper to instantiate. Besides that, transparent access to the two issue trackers
are given. Other issue trackers could of course be supported to by providing a
suitable wrapper. The project is named no.miles.mpl.wrapper.api.

Furthermore, to provide a reusable datamodel, the classes Issue, Project, Com-
ment etc. was created and maintained in the project no.miles.mpl.wrapper.datastructures.
These classes could then be reused on the client side. This project is of course ref-
erenced by no.miles.mpl.wrapper.api. See Appendix C for details regarding the
source code.

B.8 Conclusion
In order to test and use the Proof of Concept, many applications needed to be
installed and configured. Furthermore, I developed a few applications and plugins
myself.

Appendix C

Source Code

This is an index of the contents of the .zip file provided together with this Master
Thesis. The .zip file was uploaded in DAIM (see http://daim.idi.ntnu.no/) together
with this Master Thesis.

\README.txt - Includes this index as well as a few installation instructions.

\projects\ - This folder includes the source code for every project I have imple-
mented.

\environment\ - This folder contains configuration files for the Test Environment.

\libraries\ - This folder includes external libraries that are hard to find in the
online Maven repositories are included here. Use the ROME and Propono
libraries from here, as they have been recompiled by me.

75

	Title Page
	Problem Description
	I Introduction and Design
	Introduction
	Problem statement
	Aim
	Scope
	Overview

	Background
	Prestudy
	Miles Platform
	REST
	Atom Publishing Protocol
	The Semantic Web

	Related Work
	Tactics
	Conclusion

	Research Design
	Research Questions
	Development Method
	Comparing Coupling
	Framework

	Estimating work
	Conclusion

	II Results
	Initial scenario
	Design
	Coupling
	Work
	Conclusion

	RESTful layer
	Design
	Issues
	Oustanding issues
	Resolved issues

	Coupling
	Work
	Conclusion

	APP layer
	Design
	Issues
	Outstanding issues
	Resolved issues

	Coupling
	Work
	Conclusion

	Semantic layer
	Design
	Sparql Endpoint

	Issues
	Oustanding issues
	Resolved issues

	Coupling
	Work
	Discussion
	Conclusion

	III Synthesis
	Discussion and conclusions
	Summary
	Issues
	Coupling
	Work
	Research approach
	Further work

	IV Appendix
	Template for coupling discussion
	Test Environment
	Jira
	Jira Plugin

	Trac
	Project and Customer Web
	Hudson
	Plugin

	Eclipse
	Mylyn Plugin

	Subversion
	Expand log script

	Wrapper layer
	Conclusion

	Source Code

