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Problem Description

Pattern matching in bioinformatics is a discipline in sturdy growth, and has a great need for
searching through large amounts of data. At NTNU, an FPGA prototype specified in VHDL has been
developed, which identifies short motifs or patterns in genetic data using Position-Weight Matrices
(PWM). The prototype is designed for running on a Cray XD1 supercomputer.

Use of VHDL and similar hardware specification languages is complicated, and success requires
thorough knowledge and experience. The design process is also quite time-consuming. As such, it
would benefit the bioinformatics community to be able to use co-design languages that simplifies
the design process and make FPGA

technology more accessible to scientists without special knowledge of electronic hardware.

The project consists of the following tasks:

Specification and implementation of a Impulse-C based alternative to the existing VHDL-based
solution.

Evaluation of easy-of-use of the CoDeveloper environment, and productivity vs. final performance

when comparing the Impulse-C solution and the existing VHDL-based solution.

Assignment given: 15. January 2008
Supervisor: Morten Hartmann, DI






Abstract

Pattern matching in bio-informatics is a discipline in sturdy growth, and has a great need
for searching through large amounts of data. At NTNU, a prototype specified in VHDL
has been developed for an FPGA-solution identifying short motifs or patterns in genetic
data using a Position-Weight Matrix (PWM). But programming FPGAs using VHDL
is a complicated and time consuming process that requires intimate knowledge of how
hardware works, and the prototype is not yet complete in terms of required functionality.
Consequently, a desirable alternative is to make use of co-design languages to facilitate
the use of hardware for a software developer, as well as to integrate the environment
for development of soft- and hardware.

This thesis deal with specification and implementation of a co-design based alternative
to the existing VHDL based solution, as well as an evaluation of productivity vs final per-
formance of the newly developed solution compared to the VHDL based solution. The
chosen co-design language is Impulse-C, created by Impulse Accelerated Technologies
Inc., which is a co-design language designed for data-flow oriented applications, but with
the flexibility to support other programming models as well. The programming model
simplifies the expression of highly parallel algorithms through the use of well-defined
data communication, message passing and synchronization mechanisms. The affiliated
development environment, CoDeveloper, contains tools that allow the FPGA system to
be developed and debugged using Impulse-C. The software-to-hardware compiler and
optimizer translates C-language processes to (RTL) VHDL code, while optimizing the
generated logic and identifying opportunities for parallelism. Ease-of-use for the CoDe-
veloper environment is evaluated in this thesis, based on the authors experiences with
the tools.

In total, four variations of the Impulse-C solution has been implemented; a basic
solution and a multicore solution, both implemented in a floating-point and a ’fixed-
point’ version. The implemented solutions are analyzed through various experiments
described in this thesis, done during simulation using CoDeveloper. Attempts were
made to get the solutions to run on the target platform, the Cray XD1 supercomputer
Musculus, but these were unsuccessful. A wrong choice of properties and constraints
in Xilinx ISE are believed to have caused the FPGA programming file to be generated
faulty. There was no time to confirm and correct this. Some information about device
utilization and performance could still be extracted from the Xilinx ISE "Static timing’
and "Place and route’ reports.
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Chapter 1

Introduction

1.1 Introduction
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Figure 1.1: Pattern matching in bio-informatics at NTNU

Bio-informatics involve the use of various techniques such as applied mathematics,
informatics and computer science to solve biological problems. The Cray XD1 super-
computer at NTNU, Musculus, is a computational resource mainly targeted for research
within the field of bio-informatics.

Musculus was purchased the summer of 2005, as a part of a collaboration between
the department of computer and information science (IDI) and the faculty of medicine
(DMF). In this collaboration, IDI will develop bio-informatics modules as part of own
research, usable for DMF to solve bio-informatics problems.
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1.2 Motivation

FPGA technology is well suited for acceleration of compute-intensive applications that
require little or no communication. An implementation of the PWM algorithm is a
good example of such an application; a small and compute-intensive part that requires
a minimal amount of communication. But the use of hardware descriptive languages
to program FPGAs, such as VHDL, is a complicated and time consuming process that
requires intimate knowledge of how hardware works. Consequently, it is desirable to
make use of co-design languages to facilitate the use of hardware for a software developer,
as well as to integrate the environment for development of soft- and hardware.

1.3 Objectives

Pattern matching in bio-informatics is a discipline in sturdy growth, and has a great need
for searching through large amounts of data. At NTNU, an FPGA prototype specified
in VHDL has been developed, which identifies short motifs or patterns in genetic data
using Position-Weight Matrices (PWM). The prototype is designed for running on a
Cray XD1 supercomputer.

The project consists of the following tasks:

e Specification and implementation of a Impulse-C based alternative to the existing
VHDL-based solution.

e Evaluation of easy-of-use of the CoDeveloper environment, and productivity vs.
final performance when comparing the Impulse-C solution and the existing VHDL-
based solution.

1.4 Challenges

1.4.1 Writing the report in English

Writing this report in English has to a degree been a challenge, not having English as
the mother tongue. Fairy well developed English skills were put to the test when faced
with the first experience in writing a more comprehensive report, both explaining and
discussing a great deal of technical terms and concepts, by oneself.

1.4.2 Acquiring knowledge and experience

Implementing while learning Implementing the co-design based alternative to the
existing VHDL based solution did not go as fast as initially expected. One of the
major reasons for this was the great need to acquire further knowledge about developing
systems using Impulse-C, while at the same time being in the middle of an actual
development process with a steadily approaching thesis deadline. Problems connected
with allocating memory in the software framework, such as memory leakage, contributed
to slowing down the implementation process also. Limited experience with memory
allocation in C resulted in a need to learn more.
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Implementing for hardware platform One of the great benefits of developing
systems using a co-design approach is not having to possess as much knowledge about
the underlying hardware of the target platform as when developing the same system
directly in VHDL. Trying to implement the hardware portion of the co-design solution
taking on the role of a pure software developer, ignoring a substantial share of possessed
hardware knowledge, was somewhat difficult.

Decreased level of control The increase in abstraction level when making the tran-
sition from implementing in VHDL to utilizing co-design, having to rely on special
compilers to generate the actual VHDL code, decreases the amount of control the de-
veloper has over the hardware that is generated. Having to give up a significant amount
of the control that one usually have when implementing hardware modules takes some
time to get used to.

Memory allocation and leakage As previously mentioned, problems connected
with memory allocation in the software framework arose while developing the co-design
solution. These problems were seemingly caused by so-called memory leakage. This
bug did not manifest itself until the framework read results sent from the filter-module
in hardware and stored these in a designated variable. The bug prevented the software
simulation of the co-design solution from terminating in the correct manner. Fixing
this bug, and even finding the actual cause, took a substantial amount of time. The
software was debugged using both Valgrind and the CoDeveloper Application Monitor.
Commenting out code snippets that could potentially cause the software simulation to
crash, as well as adding snippets that checked for potential errors closing streams and
files, were also used as methods for debugging the application.

1.4.3 Technical challenges

Debugging software Debugging the software framework was not intuitive using the
Impulse-C development environment, nor compatible with the OS of the development
workstation, and it was consequently found necessary to debug using an alternative de-
bug tool. Help was needed for this, not being knowledgeable about software debuggers.

Generating ISE project After letting the development environment generate the
required VHDL code, based on the Impulse-C description of the desired hardware func-
tionality, it was made ready to export to Musculus. However, the affiliated template
project file also generated did not work as it was supposed to, due to (so far) unknown
causes, and the project was consequently not able to be opened in Xilinx ISE. A new
ISE-project had to be made manually, based on the generated VHDL files. The default
properties in Xilinx ISE did not work well and sabotaged the generation of a fully func-
tional FPGA programming file. A topic about the failed translation process was posted
on the Impulse-C support forum, resulting in some problems being fixed. Taking a look
at the properties of other functional projects also helped in getting closer to generating
a functional programming file.
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1.5 Thesis Outline

Chapter 2, 'Background’, presents background information on FPGA technology, the
Cray XD1 platform, the PWM-algorithm, the concept of co-design, and Impulse-C.

Chapter 3, 'Previous work’, presents the previously implemented FPGA-solutions for
the PWM-algorithm on the Cray XD1 supercomputer, Musculus. The chapter also
present information on work done to evaluate the use of Impulse-C, as well as co-design
in general, on Cray XD1.

Chapter 4, "Possible Solutions’, presents and evaluates various design schemes that
might be suitable for implementing a PWM FPGA-solution using an Impulse-C co-
design approach.

Chapter 5, Implemented Solutions’, describes the implemented Impulse-C approach
to the FPWM-system.

Chapter 6, 'Results Analysis’, presents an evaluation of ease-of-use and final per-
formance of the newly developed solutions compared to the previously implemented
VHDL-based solution.

Chapter 7, ’Discussion’, presents a discussion on the implemented Impulse-C solu-
tions.

Chapter 8, 'Conclusion and Future Work’, presents a conclusion to the thesis, as well
as suggestions for future work.

In appendix A one can find a list of notation and abbreviations used in the report.
In appendix B one can find the source code for the implemented Impulse-C solutions.
In appendix C one can find reports from the HDL build process (CoBuiler).

In appendix D one can find block diagrams of the implemented architectures as gen-
erated by CoDeveloper Application Monitor.
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Chapter 2

Background

2.1 Introduction

This chapter describes the relevant technologies and theory. FPGA technology is pre-
sented in 2.2, the Cray XD1 platform in 2.3 and the PWM-algorithm in 2.4. Co-design
will then be presented in 2.5, and finally Impulse-C in 2.6.

The background material in this thesis is based on material from the preceding 5’'th
year project [10].

2.2 FPGA

2.2.1 Introduction

An Field-Programmable Gate Array (FPGA) is a specially made semiconductor used
to process digital information, similar to a microprocessor [7]. The FPGA consists of
digital gate array technology that can be custom programmed and reprogrammed by the
end user after manufacture to define functionality. This can be done both dynamically
and statically by changing the electrical connections, turning on switches which make
connections between circuit nodes and the metal routing tracks.

Application acceleration

FPGAs in a supercomputer accelerate applications by acting as high speed, specialized
co-processors. The FPGAs shift computational work from the main processors, by
running subroutines that take over portions of the application.

2.2.2 Architecture

When using FPGAs, it is important that an application circuit is mapped into an
FPGA with adequate resources. Although some FPGAs also have more complex units,
the average FPGA consists of an array of configurable logic blocks (CLBs) connected
by several routing channels. This array is surrounded by a outer boundary of I/O cells
that handle the communication in and out of the FPGA, as seen in figure 2.1.



10 Background

JALLL.

—il
il
il

o
n
n

-
-

EEEEEEER

i
TTTITLT

Figure 2.1: Simplified FPGA architecture

A CLB is the array of multi-input and multi-output logic cells that needs to be
programmed, and consists of several look-up tables (LUTs), flip flops, multiplexers
(MUXs), arithmetic logic (ALU) and dedicated internal routing.

2.3 Cray XD1 Supercomputer

2.3.1 Introduction

The Cray XD1 supercomputer is a computational resource purpose-built for demanding
HPC applications. It lets users simulate, analyze and solve complex problems quickly
and accurately without having to increase the size of the computer or its power budget
[3]. This is done by leveraging reconfigurable computing techniques in the form of
special subroutines. Applications that can benefit from running on Cray XD1 include
financial computing, bio-informatics and other compute-intensive activities.

2.3.2 Architecture

The Cray XD1 system is based on the Direct Connected Processor (DCP) architec-
ture [4]. The CPU system is built as a standard Symmetrical Multi-Processing (SMP)
design, extended with FPGAs for application acceleration. A chassis houses six compute
blades, where each compute blades has two AMD Opteron microprocessors and a Rap-
idArray Processor to handle communication. The FPGA expansion module attached
to the compute blade contains a Xilinx Virtex-II Pro FPGA that acts as an Applica-
tion Acceleration Processor (AAP), four QDR-IT SRAM, and an additional RapidArray
processor. A simplified representation of a Cray XD1 compute blade is shown in figure
2.2.
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Figure 2.2: Simplified Cray XD1 architecture [4]

The six compute blades, together with their FPGA expansion module, can be viewed
as nodes. Each node is an independent system with its own GNU/Linux operating
system, and is able to communicate with other nodes via the RapidArray Interconnect
System. The six nodes in Musculus at NTNU are configured into one log-in node and
five computational nodes [11].

Compute environment

AMD Opteron Microprocessor The microprocessor used in the Cray XD1 super-
computer is a 64-bit single core AMD Opteron 2.4GHz processor with 2GB RAM [2].
The two Opteron microprocessors on each compute blade are connected via AMD’s
HyperTransport, forming a 2-way SMP [4].

AMD HyperTransport HyperTransport technology is designed to help reduce
the number of buses in a system, which in turn can reduce system bottlenecks and en-
able faster microprocessors to use system memory more efficiently [1]. This will optimize
message-passing applications. AMD’s HyperTransport appear transparent to the op-
erating system and offer little impact on peripheral drivers. Mellanox on-motherboard
InfiniBand switches create a fabric for HyperTransport between compute nodes.

Application acceleration

Xilinx Virtex FPGA On each node there is a Virtex-II Pro FPGA with 3.2GB/s
interconnect [14]. Through the use of the interface Cray XD1 QDR IT SRAM Core the
users can access the QDR SRAM memory from a FPGA-design.

The Xilinx Virtex-IT Pro has two built-in PowerPC 405 RISC-processors. It has also
several 18Kb Block SelectRAM+ (BRAM) memory modules, in total 232, spread across
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the chip. It is preferable to use the BRAMsS to store larger amounts of data instead of
using the CLBs [9].

RapidArray Interconnect

The RapidArray interconnect is a 96-GB-per-second non-blocking, embedded crossbar-
switch fabric that connects the RapidArray processors (RAPs) [4]. The center of the
RapidArray Interconnect System is the RapidArray Switch, which has 24 internal links
used to connect to the 12 RAPs within the chassis. The nodes within the chassis
is therefore connected to the switch using two links each, one for each direction of
communication. The RapidArray Switch offers the nodes a bandwidth of 4GB/s for
communication; 2GB/s on each link. Communication is, as mentioned earlier, controlled
and coordinated by the RAPs on each node. RapidArray Interconnect is also used to
connect the SMP with the FPGA. What interface that is utilized depends on which
component it is that initiates the communication between the two. The Fabric Request
Interface is used in transactions that is initiated by the SMP, while the User Request
Interface is used in transactions that is initiated by the FPGA.

24 PWM

2.4.1 Introduction

Position Weight Matrices are often credited to Roger Staden, after he introduced the
concept in his article ’'Computer methods to locate signals in nucleic acid sequences’ [9]
in 1983.

Position-specific Weight Matrices (PWDMs) are the main components of many algo-
rithms used in bio-informatics to identify short patterns or motifs in nucleic acid, such
as a DNA sequence. PWMs, also known as log-odds matrices, are simplified representa-
tions of known binding sites [13]. The height of such a weight matrix is equivalent to the
length of the alphabet in the sequence to search through, while the width is equivalent
to the length of the pattern to search for.

DNA

A DNA sequence consists of a double string of symbols that represent the 4 different
nucleotide building blocks; A (adenine), G (guanine), C (cytosine) and T (thymine).
These strings are usually referred to as the positive and negative strand of the DNA
sequence; the second string being the reverse complement of the actual DNA sequence,
which is the first string. This second string is a DNA-binding protein, called a tran-
scription factor, that recognize and binds to the main DNA sequence. A DNA sequence
will contain some well-defined regions, like genes and the regulatory regions for genes.

2.4.2 The PWM algorithm

An input pattern is usually represented as a count matrix, also known as an alignment
matrix. This count matrix is generated by comparing known binding sites and counting
symbol frequencies at each position. By normalizing the count matrix it is transformed
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into a frequency matrix, which in turn is transformed into a PWM. A pseudo-count
is usually added to each position of the matrix when it is converted to a PWM. The
formula for converting the individual values of an alignment matrix to produce a PWM
is given in algorithm 1.

Alignment matrix Frequency matrix Weight matrix

Pos A CGT A C G T A C G T

1 0 & T A5 r0.00 0.33 0.58 0.087 r—2.56 027 0.80 —0.967
2 21 8 3 0.17 0.08 0.67 0.08 =037 -096 093 -0.96
3 0 0 12 O 0.00 0.00 1.00 0.00 —~2.56 —2.56 1.33 -2.56
4 120 0 0 1.00 0.00 0.00 0.00 1.33 —-2.56 —2.56 —2.56
5 00 0 12 0.00 0,00 0.00 1.00 =256 =2.56 '=2.56 1.33
6 00 0 12 0.00 0.00 0.00 1.00 -2.56 -2.56 -2.56 1.33
7 12 0 0 O 1.00 0.00 0.00 0.00 1.33 -2.56 -2.56 -2.56
8 .6 1 2 3] L 0.50 0.08 0.17 0.25 | L 0.65 =096 -—0.37 0.00 J

Figure 2.3: Example matrices

Algorithm 1 Converting a value of the alignment matrix

¢, N :int; {current count, total count}

p : double;

s : double — 0.25; {pseudo-count}

P : double «— 0.25; {background probability}

_ _(cts) .
p= (](V+4s)’
In(%);

The score of the PWM for a given sub-sequence is computed as the sum of PWM
scores, and is illustrated in figure 5.2.

The PWM is moved along the input DNA sequence, and a value is calculated for
each position in the sequence from the weights of each symbol in the PWM. The total
correspond to the value of the first visible position in the sequence. Calculated totals are
consecutively sent to one or more filter processes. Pseudo-code for the PWM algorithm
is shown in algorithm 2.

The algorithm allows for both pipelining and parallelizing. Computational loops
in hardware can be pipelined, as long as they do not contain nested loops. Parallel
instances of the algorithm can also be implemented to search through the sequence
using multiple matrices at the same time.
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Figure 2.4: Computing score for a given sub-sequence [9]

Algorithm 2 PWM
M :int; {length of DNA-sequence}
N :int; {length of sub-sequence}
S : string; {DNA-sequence}
pwm : table[4][N]; {weight matrix}
counter : int < 0; {current position in DNA-sequence}
i :int; {current position in sub-sequence}
sum : float;
while counter < M — N do
for i = 0to N do
sum « sum+ pwm-value S[counter + il;
end for
counter + +
save sum;
end while

Markov process background model A higher-order background model, modeled
as a Markov process, is sometimes used in order to improve pattern matching. This
model estimates the probability that a given sub-sequence is found in the non-pattern
background, which is then used to normalize the final probability. Separate filter mod-
ules can adjust the probability according to higher-order background models.

2.5 Co-Design

2.5.1 Introduction

Reconfigurable supercomputing uses FPGAs to improve the performance of micropro-
cessors, but at a high cost as one have to hand-code custom design in a Hardware De-
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scription Language (HDL). In areas such as embedded design the collaboration between
software and hardware is very intimate. It should therefore be possible to create vari-
ants of a product by changing parts of the implementation from software into hardware,
or the other way around, without having to redesign unchanged parts of the system.
One applicable method to achieve this is using co-design. Co-design is often defined as
"The simultaneous design of the software and hardware composing a system'". In other
words, most approaches to co-design focus on creating systems in witch both synthesis
and simulation can be done of both the software and the hardware simultaneously.

| System Specification |

A
I Cost Estimation I

[ SWHW Partitioning |«

I Specification Refinement I

I SW/HW Synthesis I

|

|  cosimulation |

Figure 2.5: Design flow of general co-design approach

2.5.2 Co-Design languages

Hand-coding custom design in an HDL is a very time consuming and error prone task;
especially since HDLs are not designed to describe algorithms. Co-design languages
provide compilers that translate fixed- and floating-point algorithms implemented in a
HLL directly into circuit design in VHDL. Adding hardware platforms is just a question
of defining new interface description files and producing the code that ties the design
to the description interface.
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Implementing applications in a co-design language, the programmer usually parti-
tions the program into software and hardware sections manually, and writes C code
to synchronize the data communication between the two parts. An illustration of the
design flow in co-design is shown in figure 2.5.

2.5.3 Co-Simulation

Co-simulation is, just like co-design, used to simultaneously validate and experiment
with the hardware and the software components of an embedded system. This can be
used to collect information about the system before actually building a prototype. A
traditional approach is to model the hardware processor and then run the software on it.
For tractability reasons, the hardware is usually modeled using bus-functional models
(Rowson). Either way, the goal is to verify whether the hardware and software can work
together.

2.6 Impulse-C

2.6.1 Introduction

Impulse-C [12], created by Impulse Accelerated Technologies Inc., is a co-design lan-
guage designed for data-flow oriented applications, but with the flexibility to support
other programming models as well. What programming model that is selected depends
on the requirements of the application to be implemented, but also on the architectural
constraints of the selected programmable platform target.

2.6.2 Programming model

Impulse-C extends standard C to support a modified form of the Communicating Se-
quential Processes (CSP) programming model. CSP simplifies the expression of highly
parallel algorithms through the use of well-defined data communication, message pass-
ing and synchronization mechanisms.

At the center of the Impulse-C programming model are processes and streams. The
data that is processed by the application will flow from process to process by means of
streams, or alternatively by means of messages and/or shared memories.

Processes Processes are independently synchronized, simultaneously operating seg-
ments of an application. Processes are written using standard C and perform the work
of the application by accepting data, performing computations and generating outputs.

Streams Streams represent one-way channels of communication between simultane-
ous processes, and are self-synchronizing with respect to the processes by the benefit of
buffering. Characteristics are specified at the time a stream is created in the application.

2.6.3 CoDeveloper

CoDeveloper contains tools that allow FPGA systems to be developed and debugged us-
ing Impulse-C. The software-to-hardware compiler and optimizer translates C-language
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processes to (RTL) VHDL code, while optimizing the generated logic and identifying
opportunities for parallelism.

Bottlenecks in the data flow and other areas of acceleration can be identified by
an application monitor, allowing designers to iteratively analyze and experiment with
alternative strategies for hardware pipelining.

The flow of application development in CoDeveloper (and Impulse-C) is shown in
figure 2.6.

Generate Generate .
FRGA ] : sofbware

hardware interfaces

Embedded
processor

platform

:H(Opﬁonan

Figure 2.6: Impulse-C design flow [3]

An application is first developed in Impulse-C, debugged in CoDeveloper using the
application monitor, then translated to HDL by the CoBuilder tools integrated in CoDe-
veloper and exported. The rest of the process takes place in a design environment more
appropriate to the target platform, such as Xilinx ISE for Xilinx FPGAs, where the
design is synthesized and implemented, and the FPGA programming file is generated.
This environment also allows for further simulation of the design. Finally, the software
is exported to the target platform together with the generated FPGA programming file.

Impulse-C API

Impulse-C’s APT includes C-compatible functions that let designers create system-level
parallelism using the Impulse-C programming model. Impulse C also includes plat-
form support packages that simplify C-to-hardware compilation for specific software-
hardware targets, including Cray XD1, with the help of an infrastructure for on-chip
bus communication. In addition, the API offer support for single and dual precision
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floating point, as well as pipelined floating point operators, for Xilinx FPGAs.

CoBuilder

CoBuilder is a set of hardware generation tools that produces a set of files ready for use
with the target platform development software and hardware.

Only those source files that have been specified as hardware get analyzed by the
hardware compiler, while all other files are overlooked. Impulse-C processes that are
found within the specified hardware source files, but that are not specified as hardware
processes, will also be overlooked.

e RTL Generator : Reads the application source files, compiles those processes
identified as hardware and creates equivalent hardware descriptions in the form
of (RTL) HDL files.

e Architecture Generator : Reads the application source files and generates hard-
ware wrappers implementing the required stream, signal and memory interfaces
allowing hardware processes to communicate with other parts of the application.

e Library Generator : Creates software library elements required for compilation of
Impulse-C software processes on the target embedded processor.

HDL library The hardware generation tools make references to additional HDL com-
ponents that are provided in a special library called "impulse". For the purpose of sim-
ulation and/or synthesis, this library must be combined with the generated component-
and system-level HDL files.

In the form of C-libraries and HDL wrapper components, CoBuilder is capable of
generating the required hardware/software interfaces. This simplifies the process of
moving a complete hardware/software application to selected programmable platforms.



Chapter 3

Previous Work

3.1 Introduction

This chapter describe previous work relevant to this thesis. The previously implemented
FPGA-solution for the PWM-algorithm in VHDL, on the Cray XD1 supercomputer
Musculus, is presented in section 3.2, while previous work on comparing co-design lan-
guages to use with Cray XD1 is presented in 3.3.

The previous work presented in this thesis is based on material from the preceding
5’'th year project [10].

3.2 FPWM

3.2.1 Introduction

FPWM (FPGA PWM) is a prototype on a custom-made FPGA-solution for identify-
ing short motifs or patterns in genetic data using a position-weight matrix (PWM).
Lars Krutadal at IDI had in his master’s thesis done an early implementation of the
prototype, and was later hired by the department to work on completing the system.
Krutadal pictured two possible extensions to his implementation in order to achieve
parallel execution; a multicore solution and an multiple node solution - the optimal
solution being a combination of the two.

Per Andreas Gulbrandsen developed the FPWM prototype further in his 2007 mas-
ter thesis, implementing a more functional FPGA-solution in VHDL code [9]. Gul-
brandsen was hired by IDI the fall semester of 2007 to continue Krutadals work on
completing the FPWM system.

Related work

"Accelerating Motif Discovery: Motif Matching on Parallel Hardware" [8] was pub-
lished in 2006 in the book "Algorithms in Bioinformatics", as a part of the book series
"Lecture Notes in Computer Science". The authors of the article include among others
several people at IDI, NTNU. In this article, the authors propose and define an abstract
module PAMM (Parallel Acceleration of Motif Matching) with motif matching on par-
allel hardware in mind. There is provided a concrete implementation of the authors



20 Previous Work

approach called MAMA, based on the MEME algorithm.

3.2.2 Architecture

The FPWM system consists of an overlaying framework for control, and four underlying
modules. These modules include a reader-, pwm-, filter- and writer-module, as seen in
figure 3.1.

reader p— pwm filter —» writer

Figure 3.1: Modules of the FPWM-system

Overlaying framework

The overlaying framework initialize the modules, both at start-up and reset. It also
manages communication and data from the SMP-node. The SMP-node writes results
to a file.

reader-module The reader-module reads the DNA-sequence and PWM from an
input-file, and passes a new sub-string to the pwm-module every cycle.

pwm-module The pwm-module perform the necessary computation, by applying the
pwm-algorithm to the input sub-strings. The result is passed to the filter-module,
together with a result index.

filter-module The filter-module processes the results from the pwm-module, both in
order to reduce the amount of results, by applying a threshold filter, and to generate
more useful results, by applying the summation filter. The filtered results are then
passed to the writer-module.

writer-module The writer-module perform all writing to the SMP-node. Two buffers
are initiated, with eight elements each, so that the module don’t have to constantly
stall. Instead, the module can read data at the same time as it writes to the SMP-node.
Thanks to the filter-module, the frequency of write-calls to the writer-module is limited.
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3.2.3 Challenges

As previously mentioned in chapter 1, developing systems in VHDL is a time consum-
ing and error prone task. This was also a significant challenge while developing the
FPWM system. VHDL is not well suited for expressing algorithms in general, and does
not support the use of floating-point operands. The latter requires the designer to al-
ways convert scores between floating-point and fixed-point when sending scores to, or
receiving scores from, hardware.

In the previous implementation of the FPWMe-system, some results were duplicated,
while others were lost when the execution finished. This could have had some effect,
small or large, on the implementation of modules filtering the results.

Filter functionality offered an improvement to the FPWM system as it limited the
burden on the bandwidth between the CPU and FPGA, one of the most critical parts
of the system [9]. Filtering the results of the computation, the queue of data to write
back to the CPU is greatly reduced, giving the system a performance boost.

3.2.4 Status

The VHDL solution still does not work completely accurately after being worked on
for the duration of more than one 5’th year project and two master’s thesis’s, which is
mostly due to the challenging task of implementing at HDL level. The biggest bottleneck
in the system today is transferring data between the CPU and the FPGA, as well as
to the embedded memory. There is also still a problem with validating the output
(results) of the FPWM system. Results may be false as the different modules of the
system could translate the fixed point values, represented in two’s complement form,
incorrectly. This is mostly an issue when working with negative values.
Some of the possible expansions to consider for the FPWM system include:

e Implementing a function that converts DNA for later use.

e Reading data from, and writing data, to a database instead of a file.

e Implementing a multiple node, or multicore, solution utilizing MPI.

e Implementing compensation for missing/skipped regions of the DNA sequence.

e Implementing more complex configurations.

3.3 Evaluating Co-Design

3.3.1 Introduction

Sometimes the explicit and precise descriptions offered by VHDL are necessary to realize
designs goals, but not always. Hardware design can benefit from development tools
that makes it possible to mix high-level and low-level descriptions as needed to meet
the design goals as fast as feasible. A co-design program is typically just a few hundred
lines of code, implemented in a few days - compared to months or years in the case
of RTL VHDL. The skill pre-requisites to writing good co-design programs are not
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extensive. Prior experience with C an advantage when using a C-based language, as
are skills in parallel programming methods such as MPI or OpenMP.

3.3.2 Comparative analysis of high level programming

Co-design languages normally trade performance with ease-of-use [6], and it is therefore
of interest to know in a general sense how much performance and utilization is given
up and how much ease-of-use is gained. "Comparative analysis of high level program-
ming for reconfigurable computers: Methodology and empirical study" [6] is an article
written by a team of computer scientists at the George Washington University, Arctic
Region Supercomputing Center. The article describes a comparative analysis of three
co-design languages, each representing different high-level programming paradigms. In
the experiment, four workloads were selected for implementation on Cray XD1, using
each of the three selected co-design languages. The experiment also involved three inde-
pendent users with different degrees of experience in the field. The resulting evaluation
of the results are illustrated in figure 3.2.
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50%)| X Graphical’Dataflow
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Ease-of-Use
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Figure 3.2: Efficiency vs. ease-of-use [6]

3.3.3 Exploring Impulse-C

The 5’th year project report "High level description for FPGA hardware acceleration of
DNA motif identification" [10], written at IDI NTNU, takes a special look at Impulse-C
as an applicable tool methodology to re-implement the FPWM system. Observations
made on the usability of Impulse-C and CoDeveloper, by doing simple testing, are
both described and discussed. Completing the tutorials available with CoDeveloper
was found to be an important part of learning about the CoDeveloper tools, as well
as gaining experience in using them. These tutorials give step-by-step instructions on
how to run example applications on various target platforms, with all the necessary
illustrations and explanations needed to understand the process. In addition to exam-
ple applications, CoDeveloper also offer several application templates to help software
designers get started on developing their own applications.
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oo | C:\,Windows\systemBE\c'md.exg 3

"CinImpulsesCoDleve Loper2hExanplessCravdDisHellollorldsHellolorld.exe"
Impulze C is Copyright ZARI-28B5 Impulse Accelerated Technologies. Inc.
Software sending value: ffffffffAGEOARBEA

FPGA harduware returns: BUBUOBOBFLELELff

Boftware sending value: 5555555577777777

FPGA harduare returns: 7777777755555555

Software sending value: 1234567887654321

FPGA hardware returns: B765432112345678

Application complete. Press the Enter key to continue.

Figure 3.3: Results from software simulation

Update

During the duration of the project, attempts at running the example application selected
for testing on Musculus, the Cray XD1 cluster at NTNU, were unsuccessful. Unfortu-
nately, there were no time to solve this problem before the project deadline. After
completion however, further exploration led to several theories as to why the example
application would not run on Musculus. For some time, it was believed to possibly be
a compatibility issue, either between Musculus and CoDeveloper, or between Musculus
and the Xilinx ISE version used to generate the FPGA programming file. The author
didn’t find any proof confirming this theory.

After opening up to the possibility that it was only this specific application that
did not work properly, and that the other Impulse-C example applications designed for
Cray XD1 could still run correctly 'out of the box’, a different application was selected
for testing. The new test application ran successfully on the first try, confirming the
new theory that there are no compatibility issues. The software simulation of the first
test application ran successfully as well, as shown in figure 3.3, suggesting that the
application did not run correctly due to an undetected error during VHDL generation.



24

Previous Work




Part 111

Solution






Chapter 4

Possible Solutions

4.1 Introduction

This chapter presents and evaluates the various design schemes possibly suitable for
implementing a PWM FPGA-solution using the Impulse-C co-design approach. Ap-
plicable processing schemes are first presented in section 4.2, after which the planned
system architecture is presented in 4.3.

4.2 Applicable processing schemes

4.2.1 Introduction

64

Figure 4.1: Simple streaming on Cray XD1

As illustrated by figure 4.1, applications generally include software processes running
on the Opteron processor and hardware processes running in the FPGA that commu-
nicate via streams over the Cray XD1 RapidArray Transport (RT) fabric interface.
A reimplementation of the FPWM-system in Impulse-C should have various potential
advantages over the VHDL-solution. Some significant ones being that it is easier to ex-
press algorithms in Impulse-C, due to the higher abstraction level, and that Impulse-C
more easily support the use of floating-point values in hardware. In addition to this,
Impulse-C streams send sequential data between processes by implicitly incorporating
the use of a FIFO-queue. Implementing these things using VHDL requires considerably
more time and competence.
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This section presents applicable processing schemes for implementing the PWM-
system. Although they are presented separately, the ideal solution will incorporate a
combination of all these schemes.

4.2.2 Shared memory

Memory

Figure 4.2: Shared memory

This scheme deals with incorporating the use of shared memory in simple data
streaming on Cray XD1. The application includes two software processes, Producer
and Consumer, running on the Opteron processor, and a number of hardware processes
running on the FPGA.

The producer can request data to be written to the shared memory, while a hardware
process will read and process the data. When computation is done, the consumer can
then either try to read result data stored in the memory embedded on the FPGA, or
receive other data directly from the hardware process. The hardware process will have
to signal the consumer when data is ready to be read.

For communication between two hardware processes, however, embedded memory is
only needed if the processes require random or irregular access to the data. In the case of
sequential data, like in the FPWM system, a stream would be the most efficient method
of data transfer. Deciding whether or not to use shared memory as described above, for
communication between a software process and a hardware process, is a more complex
task and strongly dependent on the application and the memory available. Whether or
not it is necessary, or even favorable, to use shared memory in the FPWM system on
Musculus will become more clear during implementation of, and experimentation with,
an actual Impulse-C solution.

4.2.3 Pipelined processing

This scheme deals with incorporating the use of pipelined processes. The application
includes two software processes, Producer and Consumer, running on the Opteron pro-
cessor, and a number of pipelined hardware processes running on the FPGA.

The producer will pass data to the first hardware process, which will process the
data and pass the result to the next hardware process. The data keeps getting passed
from one hardware process to another in this matter until it reaches the last hardware
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process, at which time all processing of the data should be finished and the results are
sent to the consumer. The hardware processes in the pipeline can be either distinctly
different, various instances of the same initial process, or both.

Looking at the general structure of an Impulse-C application, as well as that of the
FPWM system itself, there will be a degree of pipelining implicitly applied regardless
of the number of hardware processes. In other words, only the degree of pipelining is
optional, not whether or not to utilize pipelining in the first place. The application
modules will implicitly act jointly as a pipeline, but smaller snippets of code can also
be pipelined by the hardware compilers.

Pipelining of instructions is not automatic, but requires an explicit declaration using
the Impulse-C pragma CO PIPELINE. This declaration must be included within the
body of a loop and prior to any statements that are to be pipelined.

Figure 4.3: Pipelined processing

4.2.4 Parallel processing

This scheme deals with incorporating the use of parallel processes to handle computa-
tion. The application includes two software processes, Producer and Consumer, running
on the Opteron processor, and a number of identical parallel hardware processes running
on the FPGA.

The producer will divide the workload evenly between the hardware processes, which
in turn process the data in parallel. When the parallel processes have finished processing
their part of the data, the results are sent back to the software consumer.

In the case of the FPWM system, explicitly computing results in parallel should
be easier done with multiple input matrices and/or sequences, as entire matrices and
sequences can be distributed to each parallel process. With only one sequence and
only one matrix, the sequence would have to be broken up into multiple sub-sequences
to distribute to each parallel process. Breaking up the sequence would, based on the
PWM algorithm, reduce the number of results. The results not being computed could
be results that would have been filtered out later anyway, but could also be some of
the more relevant results. Because of this, it would be no point in explicitly implement
parallel instances of the hardware modules if there is only one matrix and sequence to
process.
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More on the use of implicit parallel processing is explained later, in the next section
of this chapter. Explicit parallel processing will only be implemented if it is found to
be time for it. First and foremost, a basic solution (successfully) processing a single
matrix-sequence pair needs to be implemented.

Figure 4.4: Parallel processing

4.3 Basic system architecture

4.3.1 System partitioning

Producer : _| Consumer
g « » wm « » L n - .
«reader» "ﬁg B " i fiter * «writers

Application pipeline

Figure 4.5: Application pipeline

Figure 4.5 show a suggested general architecture for the application, similar to that
of the previously implemented VHDL solution presented in chapter 3.2. Following the
nature of co-design, the application will be partitioned into a software section and a
hardware section. All compute intensive work, such as executing the PWM-algorithm
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itself, will be implemented in hardware for acceleration, while trivial tasks, such as
reading input and writing output, will be implemented in software. All hardware pro-
cesses must be specified as such, and located in a file separate from where the software
processes are defined. This is to make sure that all parts of the application we want
to run as hardware is translated correctly to VHDL, while the parts we want to run as
software is compiled accordingly.

The planned partitioning of the FPWM system is illustrated in figure 4.5.

4.3.2 Implicit parallelism

Figure 4.6 indicate how computation can be accelerated with the help of parallel pro-
cessing of the application pipeline. Implicitly achieving this means that the parallelism
is extracted automatically from the implemented system. Tasks that can be executed
simultaneously, will likely be executed simultaneously. This means being able to exe-
cute a new process iteration, and produce a new output, while the next process in the
application pipeline manage the output computed in the previous one. When pipelining
is enabled for inner code loops of a application through the use of the pipeline pragma,
CoBuilder will attempt to parallelize the statements appearing within that loop with
the goal of reducing the number of instruction cycles required to process the entire
pipeline. Pipelined loops may not contain any nested loops.

‘ ’~ i inter_stream1
| CPWI(1) o] cilte r(1)

2

Producer
«reader»

Consumer
wwritern

inter_streamN - P
«pwm(n)»}e weeeiied  filte r(n) »

Hardware

Application pipeline

Figure 4.6: Implicit parallel processing

4.3.3 Input/Output scheme

Input The main input to the system will be the DNA sequence and the alignment
matrix representing symbol frequencies in each sub-sequence (motif) position. The DNA
sequence and the alignment matrix should be read from separate files; either in .dat-
format or .txt-format. According to the PWM-specification supplied by Finn Drablgs
at DMF [5], the input data itself will be expressed in Fasta-format. What using the
Fasta-format implies is that both input sequences and input matrices must be preceded
with a header line. This header line will contain a ’»’ symbol, indicating the start of a
new sequence or matrix, and the identifier of the sequence or matrix to come. Example
input data is illustrated, with the matrix already in PWM format, in figure 4.7.
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>ENSG00000205139
ACCATTATATACTGTAAAATCACAAATATATGTARAtatatacatatatacatataGTGAT
ATATGTGTGTATATATGCATACTTATACATGTATACATGTGTATATATACATATTTATGT
GTGTGCATATATATGTATACATCCCCARACTATCTTAATTTAACTTTAAATCCAGTAATA
CTTTACAATAGAACATTCTT

>MAO0B01
-2.56 0.27 0.80 -0.96
-0.37 =-0.%96 0.93 -0.96
-2.b6 -2.06 1.33 -2.D6
1.38 =2&.56 =-Z.56 —2.586
~2':b6 =2.56 =2.586 1.33
=2.56 “2Z.58 =2.56 1.33
1:33 =2:86 —-2.:56 =2.:56
0.65 -0.%¢ -0.37 0.00

Figure 4.7: Example input data

ENSG0000020513% 20 27 MAO801 7.85
ENSG00000205139 113 120 MA0801 2.14

Figure 4.8: Example output data

Output The output of the system will be a list containing relevant information about
each of the filtered results, stored in a file. This final output data will be formatted
with one hit per line, consisting of sequence ID, hit start, hit end, matrix ID and score.
Example output data is illustrated in figure 4.8.

4.3.4 Application ’pipeline’

Application ’pipeline’ stages

Step 1 : Read input data from file - software

Step 2 :  Convert input alignment matrix - software

Step 3 : Send input data to hardware - software

Step 4 :  Receive input data from software - hardware
Step 5 :  Compute result scores - hardware

Step 6 : Filter result scores - hardware

Step 7 : Send filtered results to software - hardware

Step 8 :  Receive filtered results from hardware - software

Step 9 :  Write filtered results to file - software
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Read input data from file - software (stepl)

One of the first things the application needs to do is to read the application input. As
previously mentioned, all input will be read from files; the input matrix from one file,
and the input sequence from another. The header line needs to be read first, trimming
of the starter symbol (’»’), and stored for later use; after which the matrix or sequence
can be read.

Reading the input matrix The input matrix will be read and stored into a two-
dimensional integer array, using a designated function called from the ’reader’ software
process Producer.

Reading the input sequence The DNA sequence will be read and stored into a
one-dimensional character array, using a designated function called from Producer.

Convert the input alignment matrix - software (step 2)

As the name of the ‘reader’ software process, Producer, indicates, this process produces
the data needed by hardware to compute results. A part of this job is to make sure
that the input matrix is converted to a matrix the PWM-algorithm can operate with.
The input matrix is an alignment matrix, not a position-weight matrix (PWM), and
have to be converted into a PWM before it is sent to hardware for execution of the
PWDM-algorithm.

The matrix can be converted using two functions; one for converting the individual
values of a matrix, and another one calling the first function in order to convert the
entire matrix. Exactly how these conversions are done is explained in chapter 2.4.

Floating-point values The weights in the PWM will be computed as floating-point
values, as will the result score values being computed and filtered in hardware.

Send input data to hardware - software (step 3)

sequence ‘3“" ——— o
dna stream result_stream
Producer - R Elsrdinie »] Consumer
«reader» pwm streai ol «writers

Application pipeline

Figure 4.9: Data streaming

Figure 4.9 show a rough suggestion on how to perform streaming of data both to
and from the software.
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Before the application can start actual computation, the converted PWM and the
DNA sequence has to be sent from software and received by the PWM-module in hard-
ware. The length of the DNA sequence should also be sent to hardware, as it is used
by the PWMe-algorithm to keep track of when no more results can be produced.

Sending the weight matrix The weight matrix will be sent to hardware through
streaming; one weight at a time, and one row at a time.

Sending the DNA sequence The DNA sequence will also be sent to hardware
through streaming; one symbol at a time. All symbols should be sent in the same order
as they appear in the sequence.

Receive input data from software - hardware (step 4)

The PWM-module implemented in hardware needs to receive matrix and sequence data
from the software process Producer before it can start producing results. A stream
implemented in Impulse-C is a form of FIFO-queue. This means that all data written
to a stream will be read from the stream in the exact same order that it was written;
first element written is the first element read.

Receiving the weight matrix The PWM will be read from stream and stored in a
two-dimensional array straight away, as the hardware need the complete PWM to start
computation.

Receiving the DNA sequence The DNA sequence will be read from stream in
small portions at a time and stored into a one-dimensional array. As the hardware do
not need the entire sequence to start computation, it is sufficient to have a portion of
the sequence equivalent to a motif-length to start of with. The rest of the sequence can
be read consecutively during computation; one new symbol for each new score to be
computed. When a new symbol is read from software it is added to the array storing the
DNA sequence, and the portion of the sequence for which the algorithm is computing
a score for is updated.

Compute result scores - hardware (step 5)

The PWM-algorithm, described in chapter 2.4, will be implemented as a part of a
hardware process called PWM. The process should only need to compute two values;
a score computed for the current section of the DNA sequence, equivalent to a motif,
and the position in the sequence in which this sub-sequence starts. The rest of the
information relevant to each result will be added in software, before writing the results
to file, for reasons to be explained soon.

After a result is computed it will be streamed to a second hardware process for
filtering,.
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Filter result scores - hardware (step 6)

The hardware process Filter handles all filtering of results. This process will help the
system to reduce the amount of strain on the bandwidth between software and hardware,
when returning results, as well as to eliminate less relevant results.

There will be implemented two different means of filtering the results; one filtering
results based on a given threshold, and another one adding all the scores together to a
total score. Only one of these filters will be used when executing the PWM-application;
there is no need to use both at the same time. Taking ease-of-use into consideration,
the person using the application should have the possibility to choose a specific filter
with the help of a command line argument when starting the application.

Send filtered results to software - hardware (step 7)

All filtered results will be streamed back to software, so that the 'writer’ process Con-
sumer can write relevant data about the results to file. Results can be written to stream
and sent to software as soon as they pass through the filter.

Receive filtered results from hardware - software (step 8)

Filtered results sent from hardware are read from stream in software by the ’'writer’
process Consumer. As the name indicates, this process consumes the results produced
by hardware.

Write filtered results to file - software (step 9)

When information about a result is received by Consumer, it is not complete and ready
to write to the output file. First of all, we need to compute the position in the DNA
sequence in which the result motif ends. This is a trivial enough task when the starting
position and the motif length is given, to be computed in software. Saving this task for
the consumer process will also help ease the strain on the bandwidth between hardware
and software. The sequence ID and matrix ID should be accessible and ready to be
written directly to file along with the other result data.
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Chapter 5

Implemented Solutions

5.1 Introduction

This chapter presents the implemented Impulse-C co-design solutions, as well as the
reasoning behind some of the design choices made (More design choices are discussed
and explained in the synopsis). First, a rough summary of the system architecture is
presented in section 5.2. Implementation of the software framework is then presented in
section 5.3, while implementation of the PWM-module and the filter-module is presented
in 5.4 and 5.5 respectively. Finally, a short users manual for the applications is presented
in section 5.6.

In total there has been implemented four variations of the application; a basic
solution and a multicore solution, both implemented in a floating-point and a ’fixed-
point’ version. The four implemented solutions are all based on the suggested solutions
described in chapter 4. Impulse-C source code for all of the implemented solutions is
included in appendix B:

e FPWM (FPWM.h, FPWM_sw.c, FPWM_hw.c): Basic solution
e FPWMi (FPWMi.h, FPWMi_ sw.c, FPWMi_ hw.c): ’Fixed-point’ basic solution

e FPWM2008 (FPWM2008.h, FPWM2008_ sw.c, FPWM2008 hw.c): Multicore

solution

e FPWM2008i (FPWM2008i.h, FPWM2008i_sw.c, FPWM2008i hw.c): 'Fixed-

point’ multicore solution

Brute force fixed-point There is no commonly-accepted standard for represent-
ing fixed-point numbers, as yet. However, Impulse-C provides support for fixed-point
arithmetic in the form of macros and data types. Designing in Impulse-C, fixed-point
applications are usually created from a well-tested floating-point implementation, rather
than written from scratch; the process of converting a floating-point application to fixed-
point is a non-trivial task, with several issues to consider. There was no time for creating
a true Impulse-C fixed-point solution when working on this thesis. The implemented
‘fixed-point’ solutions presented in this thesis are therefore implemented using a more
brute force tactic, due to time considerations, converting floating-point values to and
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from 32-bit integer values. Fixed-point solutions utilizing the Impulse-C fixed-point
macros and data types is left as future work.

5.2 Basic application architecture

5.2.1 Introduction

The Impulse-C FPWM system consists of an overlaying framework for control, just like
the VHDL solution, and four underlying modules implemented as separate processes.
These processes include a producer, a PWM- and a filter-module, as well as a consumer.
A rough block diagram of the system architecture is shown in figure 5.1. The block
diagram was generated during software simulation of the implemented solution.

Architecture: FFWM
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Figure 5.1: Implemented architecture

Following the nature of co-design, the application is partitioned into a software
section and a hardware section. All compute intensive work, such as applying the PWM-
algorithm and filtering the results, has been implemented in hardware for acceleration,
while trivial tasks, such as reading input and writing output, has been implemented in
software.

5.2.2 Framework and modules

Overlaying framework The overlaying framework initialize the application archi-
tecture and binds the software processes, running on the SMP-node, together with the
hardware processes, running on the FPGA extension module.

Producer The producer functions as a reader-module, reading the DNA-sequence
and initial alignment matrix from their respective input-files. After converting the
alignment matrix to a PWM, it passes the PWM to the PWM-module in hardware.
The DNA-sequence is streamed to the PWM-process exactly as it was read from the
input-file.

PWM The PWM-module performs all the necessary computation, by applying the
PWM-algorithm to the input PWM and DNA-sequence streamed to hardware from the
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SMP-node. Result scores are streamed to the filter-process at the same rate as they are
computed, together with a result index.

Filter The filter-module processes results computed by and streamed from the PWM-
module. The amount of results can either be reduced, by applying threshold filtering,
or made more useful, by applying summation filtering. Results are streamed to the
SMP-node at the same rate as they pass through the selected filter.

Consumer The consumer functions as a writer-module, reading filtered results streamed
to the SMP-node from hardware before writing them to an output-file, formatted with
one hit per line. Consumer writes all results to file at the same rate as they are read
from stream.

5.3 Implementation of the software framework - FPWM?* _sw.c

The software framework consists of the the main-function, as well as the reader- and
writer-processes Producer and Consumer.

5.3.1 Choosing filter

The user of the application is informed, by the framework, of what type of filter is being
applied during execution. The applied filter is reported to the user as being a threshold
filter if an additional argument is given together with the name of the application;
the summation filter otherwise. As it is only the main-function that has access to
the command line arguments, the main-function reports this directly. It is also the
main-functions job to pass the threshold value, if set, as a parameter to Producer.
Choosing what filter to actually apply is done by passing the command line argument
given at run time as a parameter to Producer. If the parameter is found to be NULL
the summation filter will be applied; if not the threshold filter is applied. The producer
must convert the parameter to a floating-point value in the latter case, as it is initially
read as a string, before streaming the converted value to the hardware filter-process.

Variations

Threshold values are converted from floating point to 'fixed-point’, directly after being
read, in the 'fixed-point’ solutions. In the multicore solutions a file containing threshold
values for each matrix is given as input, instead of a single threshold value. These
thresholds are all read from the given file and sent to their respective instance of the
filter-module.

5.3.2 Reading and streaming input

Reading the input DNA-sequence and alignment matrix is done by Producer. Two
designated functions are called by Producer to read and store the input, one for the
DNA-sequence and another one for the matrix. These functions take the name and
handler of their respective affiliated input file as parameters. It is a requirement that
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the input is to be expressed in Fasta-format; giving the sequence and matrix their own
header line. The header line consists of a ’»’ symbol, indicating the start of a new
sequence or matrix, and the identifier of the sequence or matrix to come. The correct
input format is illustrated by figure 4.7.

When reading the DNA-sequence, three different pieces of information are collected
and stored for later use; the identifier, the sequence itself, and the length of the sequence.
Except for the sequence identifier, this information is streamed to the hardware PWM-
process using two separate streams, one designated stream for each piece of information.

The same type of information is also collected and stored about the alignment
matrix, but with two major differences. First of all, the alignment matrix is converted
to a PWM before being stored for later use, using the conversion algorithm (algorithm
1) from chapter 2.4. Secondly, we already know the number of rows and columns
of the matrix before reading it. We know the length of the sub-sequences we want to
compute scores for, giving us the number of rows, and the number of different nucleotide
building blocks a DNA-sequence consists of, giving us the number of columns. Of the
information collected about the matrix, only the converted PWM is streamed to the
hardware PWM-process, using a designated stream.

All progress in reading and streaming of output, as well as conversion of the input
alignment matrix to a weight matrix, is reported to the user.

Variations

PWM weights are converted and stored in the PWM as ’fixed-point’ values in the
'fixed-point’ solutions. In both multicore solutions the read and stream operations are
repeated, once for each matrix in the input file. The matrices are sent to each their
instance of the PWM-module along with a copy of the DNA-sequence. An array keeps
track of which instance each matrix is sent to. At the moment, the parallel solution
will read two matrices from the matrix input file. If more matrices are provided in the
input file, only the two first matrices are read.

5.3.3 Reading and writing output

Reading the filtered results streamed from the hardware filter-process is done by Con-
sumer, as well as expanding the results with more information before writing them to
the output file. This final output data is formatted with one hit per line, consisting
of sequence ID, hit start, hit end, matrix ID and score. Of this information, only hit
start and score is received from hardware; sequence ID and matrix ID is already acces-
sible for the software, while hit end is computed by appropriately expanding hit start.
Summation filtering results in only one result being read from stream, processed, and
written to the output file. Hit start and hit end is in this case 0’ and 199’ respectively.

Output data for each result is continuously reported to the user while it is being
written to file, at the same rate as the results are read from stream.

Variations

In both multicore solutions the read and write operations are repeated twice, once for
each instance of the filter-module to receive results from. The correct matrix ID to add
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to each result is fetched from the previously mentioned array of matrix IDs based on the
index of the filter that returned the score. Result scores are converted from 'fixed-point’
to floating-point in both ’fixed-point’ solutions before they are written to screen and to
the output file.

5.4 Implementation of the general PWM-module

An instance of the PWM-module is created for each PWM to process. Source code for
the module is located in the hardware file (FPWM?* hw.c).

5.4.1 Reading input from stream

The DNA-sequence is gradually read from stream during computation, at the minimum
rate needed to compute results, while the entire PWM needs to be read and stored
before computation can start.

5.4.2 Computing scores

As already mentioned, the PWM-module performs computation by applying the PWM-
algorithm to the PWM and DNA-sequence streamed from software. This algorithm
(algorithm 2) was previously presented in chapter 2.4 as part of the background infor-
mation collected about the concept and use of PWMs.

New scores are computed as long as the counter keeping track of the current result
index does not exceed the index of the last sub-sequence of the DNA-sequence. The
index of the last sub-sequence is computed by subtracting the motif length from the
DNA-sequence length.
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Figure 5.2: Computing score for a given sub-sequence [9]

Figure 5.2 illustrate how the PWM is, metaphorically speaking, moved along the
input DNA-sequence one position at a time, and a score is calculated for each position
from the weights of each symbol in the PWM. The score for the current sub-sequence is
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computed as the sum of the weights found for each of its symbols. The index associated
with each result score is the position in the DN A-sequence where the first visible position
of the sub-sequence is located.

The following pseudo code describes how the correct weights to add to each score
are found. Variables declared only once for the entire PWM-algorithm are mentioned
here to make sense of the pseudo code.

Algorithm 3 Finding correct PWM-scores
N :int; {length of sub-sequence}
[ :int; {current position in sub-sequence}
s : string; {DNA-sequence}
counter : int; {current position in DNA-sequence}
pwm : table[4][N]; {weight matrix}
sum : float < 0;
if s[l+counter] == ’A’ then
sum+ = pwm/[0][l];

else if s[l+counter] == 'C’ then
sum~+ = pwm/[1][l];

else if s[l+counter] == 'G’ then
sum~+ = pwm|[2][l];

else if s[l+counter] == "T’ then
sum+ = pwm|[3][l];

else
{do nothing}

end if

The CO PIPELINE pragma is used on the inner loop of the algorithm in an attempt
to speed up computation, this by increasing the level of parallelism extracted from the
source code by the hardware compilers.

To conclude, two values are computed: the score for the current sub-sequence, and
the index of the main DNA-sequence in which this sub-sequence starts. The rest of the
information relevant to each result will be added later in the application pipeline. After a
result is computed it is immediately streamed to the filter-module for further processing.
The result score and index are streamed to the filter using each their designated stream.

5.5 Implementation of the general filter-module

An instance of the filter-module is created for each PWM-module. Source code for the
module is located in the hardware file (FPWM* hw.c).

5.5.1 Applying summation filter

The summation filter is applied if there is no threshold value written to the designated
stream by Producer in software for the filter-module to read. All incoming result scores
are added to a total score, while the affiliated result indexes are all ignored. When all
computed scores have been read and added to the total score, the total is streamed to
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Consumer in software together with a result index of 0. The result index is set to 0’
as the total score represents the entire DNA-sequence.

5.5.2 Applying threshold filter

A threshold filter is applied if there is a threshold value written to the designated stream
by Producer in software for the filter-module to read. All incoming result scores are
compared with the given threshold value to see if they are higher than or equivalent to
the threshold value. If they are, the scores are allowed to pass through the filter. Results
are streamed to Consumer in software as soon as they pass through the threshold filter;
the score and affiliated index in each their designated stream.

5.6 Generating VHDL and hardware

Although all the desired hardware functionality for the PWM application is expressed
using Impulse-C, it has to be translated to VHDL by CoBuilder, the set of hardware
generation tools, before an FPGA programming file can be generated. How CoBuilder
works is roughly described in chapter 2.6. Summed up, the software-to-hardware com-
piler and optimizer translates C-language processes to (RTL) VHDL code, while opti-
mizing the generated logic and identifying opportunities for parallelism.

From the generated VHDL code an FPGA programming is generated, using Xilinx
ISE. Complete reports from the HDL build process are included in appendix C, while
block diagrams of the implemented architectures are included in appendix D.

5.7 Users manual

This section presents a users manual for the implemented Impulse-C solutions, describ-
ing how to run them on the Musculus Cray XD1 platform. The manual presuppose that
a fully functional FPGA programming file has been generated for each solution/appli-
cation.

To start executing the application you have to have to first make sure you have access
to all the required files, as well as a user account on a compatible Cray XDI1 cluster
such as Musculus at NTNU. The host name for Musculus is musculus.hpc.ntnu.no.

Requirements for the Cray XD1 cluster
e Xilinx Virtex-IT Pro model xc2vp50, release 1.3 or newer

e Xilinx ISE development tools, version 7.1 with service pack 4, or newer (ISE 8.1
SP1 not supported)

e Optional: Third-party FPGA synthesis software with support for Xilinx FPGAs

e Optional: Third-party HDL simulation software
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Required application files
e Generated folder sw - Necessary software source files
e top.bin.ufp - FPGA programming file
e pwm.tzrt - Input file containing the alignment matrix
e dna.txt - Input file containing the DNA-sequence
e out.trt - Output file

When executing the application, it could be recommended to log on to one of the
compute nodes of Musculus, and not the log-in node (musculus403-6). Although the
application should execute just fine on the log-in node, using one of the compute nodes
is a lot safer. Following this recommendation will ensure that you will still have access
to the remaining nodes if the one you are currently working on crashes.

If you decide to log on to the designated log-in node it is necessary to use the
batch system to distribute the work onto the various compute nodes. As previously
mentioned, it is possible to run applications on the log-in node, but this usage should
be limited to simple tasks which do not represent a prolonged computational load. In
other words, work which can be performed on the compute nodes should be performed
there. There are several reasons behind this assertion. First of all, the log-in node
is considerably slower than the compute nodes. Also, the speed of execution will be
affected for everyone if one user runs a great load on the log-in node.

When logged on to a chosen compute node, the first thing to do is to make sure
all required application files are located on an appropriate location, as well as in the
same directory. After selecting the application directory as the working directory, the
application can be started.

Running the basic application The basic application is started by writing ./F-
PWM [optional threshold value]. Giving the application a threshold value will ensure
that a threshold filter is applied to computed results; no given threshold value indicates
a wish to apply the summation filter.

Running the ’fixed-point’ basic application The basic fixed-point’ application
is started by writing ./FPWMi [optional threshold value|. Giving the application a
threshold value will ensure that a threshold filter is applied to computed results; no
given threshold value indicates a wish to apply the summation filter.

Running the parallel computation application The multicore application is started
by writing ./FPWM2008 [optional threshold input file]. Giving the application a file
containing threshold values for all matrices will ensure that a threshold filter is applied
to computed results; no given threshold value indicates a wish to apply the summation
filter.
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Running the ’fixed-point’ parallel computation application The ’fixed-point’
multicore application is started by writing ./FPWM2008i [optional threshold input file].
Giving the application a file containing threshold values for all matrices will ensure that
a threshold filter is applied to computed results; no given threshold value indicates a
wish to apply the summation filter.

Computed results is continuously written to screen during execution, as well as written
to the output-file out.tzt. Between each execution, there must be made a backup of the
results stored in owt.txt if there is a need for later review of these results.
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Chapter 6

Results Analysis

6.1 Introduction

This chapter presents experiments done during simulation and execution of the imple-
mented Impulse-C solutions, focusing on both the software framework and the hardware
modules separately, as well as the solutions as a whole.

Section 6.2 presents tests done through software simulation, while section 6.3 cov-
ers observations done during efforts made to understanding the generated HDL code.
The generated hardware logic is then analyzed in section 6.4. Finally, efforts made in
attempts to successfully generate a functional FPGA programming file is described in
section 6.5.

6.2 Software simulation

Through software simulation, the two floating-point solutions are tested with the inten-
tion to verify the implemented Impulse-C code; proving that the code describe correct
functionality for both the software and the hardware partition. As the ’fixed-point’
solutions are mostly identical to the floating-point solutions, except for the chosen score
value representation in hardware, simulating these have not been a priority. Also, it is
already known that the summation filter in the ’fixed-point’ solutions does not work as
intended; this from debugging efforts during the development process.

Testing is done by simulating with different combinations of input data, once for each
filter. The actual combinations are presented later in this section, for both solutions
tested.

6.2.1 Input data

For the software simulation tests, a selection of alignment matrices and DNA sequences
have been chosen as input. All of these matrices and sequences are in Fasta-format,
with no additional information provided in the header line after the matrix/sequence
ID. The selected alignment matrices are shown below in table 6.1.

As the second matrix is the reverse of the first matrix, it is also representing scores
for the reversed motifs. Both matrices will have the same threshold value of 1.15. The
DNA sequences selected as simulation input are shown in table 6.2.
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>MAO0801a >MAO0801b

0 4 7 1 6 1 2 3
21 8 1 12 0 0 0
0 0 12 0 0 0 0 12
12 0 0 0 0 0 0 12
0 0 0 12 12 0 0 0
0 0 0 12 0 0 12 0
12 0 0 0 2 1 8 1
6 1 2 3 0 4 7 1

Table 6.1: Input alignment matrices

>ENSG00000205139
ACCATTATATACTGTAAAATCACAAATATATGTAATATATACATATATACATATAGTGAT
ATATGTGTGTATATATGCATACTTATACATGTATACATGTGTATATATACATATTTATGT
GTGTGCATATATATGTATACATCCCCAAACTATCTTAATTTAACTTTAAATCCAGTAATA
CTTTACAATAGAACATTCTT

>ENSG00000208641
AGTTATCCACACCTCTATTTCTTGTATGCATTGCATATTACACTTTTATTCCCAAAGAGG
CACTATTTTGGGCTACCATGTTTAGACACATTTATCAAATAGTCTTTCTAGATTTGTTCA
TTTGTCCATGCTCTTTTTCAGATCCCCTCCTGGGCCTAGCACAGGTACTGTGTGCTGGGC
TAAACTGAAATGAATATGAA

>ENSG00000105971
GTTAGAATTTTATGTGAAATTAACATTTAATTCTCACGGACACCCCTGAAACAGATGCCA
CAGCCCCCATTTTGCCAACGAGGCAGCTGAGGTTCCCAGAGGCTCAATACCAGCACCATG
AGCCGCAGCACGCAAGGCAAACACAGCCGGAGGTGAGCACATACCTGCTTCGCACCCCAT
GCGCCTAACCACAAGGTTCC

Table 6.2: Input DNA sequences
The length of the sequences chosen as test input are only a fraction of that of realistic
input sequences to an FPWM system, but will serve well as test input when simulating
the Impulse-C solutions as they are implemented today.
6.2.2 Software partition

For analysis purposes the software is extended somewhat, printing additional infor-
mation to screen during execution. Questions which are answered about the software
partition during simulation are:

e ..whether the filter chosen by the user is registered by the software: 0K
e ..whether the alignment matrix is read correctly from the input file: 0K
e ...whether the alignment matrix is converted correctly to PWM: 0K

e ..whether the DNA sequence is read correctly from the input file: 0K
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e ..whether the PWM and DNA sequence is successfully sent to hardware: 0K

e ...whether filtered results are received successfully from hardware: 0K

e ..whether the correct matrix and sequence data is connected to each result: 0K
e ...whether filtered results are written to screen and file correctly: 0K

e ..whether the application terminates correctly: OK

>MAO0801a >MA0801b
-256 027 0.80 -0.96 0.65 -0.96 -0.37 0.00
-0.37 -0.96 0.93 -0.96 1.33 -2.56 -2.56 -2.56
-2.56  -2.56  1.33 -2.56 -2.56  -2.56 -2.56  1.33
1.33 -2.56 -2.56 -2.56 -2.56 -2.56 -2.56  1.33
-2.56 -2.56 -2.56  1.33 1.33 -2.56 -2.56 -2.56
-2.56 -256 -2.56  1.33 -2.56 -256  1.33 -2.56
1.33 -2.56 -2.56 -2.56 -0.37 -0.96 0.93 -0.96
0.65 -0.96 -0.37 0.00 -2.56 027  0.80 -0.96

Table 6.3: Converted matrices

The converted alignment matrices (PWMs) are shown in table 6.3. The software
gives the floating-point values calculated to six decimal places, so the reported weights
in the table are rounded off values.

Basic application

Input
Test DNA sequence Alignment matrix | Threshold | # Results
la | ENSG00000205139 MAO0801a - 1
1b || ENSG00000205139 MAO0801a 1.15 0
2a || ENSG00000205139 MAO0801b - 1
2b || ENSG00000205139 MAO0801b 1.15 0
3a || ENSG00000208641 MAO0801a - 1
3b || ENSG00000208641 MAO0801a 1.15 2
4a || ENSG00000208641 MAO0801b - 1
4b || ENSG00000208641 MAO0801b 1.15 4
ba || ENSG00000105971 MAO0801a - 1
5b || ENSG00000105971 MAO0801a 1.15 1
6a || ENSG00000105971 MAO0801b - 1
6b || ENSG00000105971 MAO0801b 1.15 0

Table 6.4: Tests done on basic solution

Table 6.4 above presents the tests done through simulation of the basic solution,
processing only one matrix at a time. Here, the input data is presented, as well as the
number of filtered results.
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Test Results
la || ENSG00000205139 0 199 MAQ080la -1562.766357
2a || ENSG00000205139 0 199 MAO0801b -1569.915894
3a || ENSG00000208641 0 199 MAO80la -1702.865112
3b || ENSG00000208641 33 40 MAO080Ola 1.687562
ENSG00000208641 176 183 MAO0801a 1.238545
4a || ENSG00000208641 0 199 MAO0801b -1705.091309
4b || ENSG00000208641 35 42 MAO0801b 2.643074
ENSG00000208641 64 71 MAO0801b 1.238545
ENSG00000208641 79 86 MAO0801b 2.275349
ENSG00000208641 96 103 MAO0801b 2.709213
5a || ENSG00000105971 0 199 MAO80la -1854.153076
5b || ENSG00000105971 15 22 MAO08Ola 3.831082
6a || ENSG00000105971 0 199 MAO0801b -1848.449097

Table 6.5: Filtered results - basic solution

Filtered results from each test done on the basic solution is presented in table 6.5.
These results will later be compared to those of the multicore solution.

Multicore application

Input
Test DNA sequence Alignment matrices | Threshold | # Results
7a || ENSG00000205139 MAO0801a - 1
MAO0801b - 1
7b || ENSG00000205139 MAO0801a 1.15 0
MA0801b 1.15 0
8a || ENSG00000208641 MAO0801a - 1
MAO0801b - 1
8b || ENSG00000208641 MAO0801a 1.15 2
MA0801b 1.15 4
9a || ENSG00000105971 MAO0801a - 1
MAO0801b - 1
9b || ENSG00000105971 MAO0801a 1.15 1
MAO0801b 1.15 0

Table 6.6: Tests done on multicore application

Table 6.6 above presents the tests done through simulation of the multicore solution,
processing two matrices at a time in parallel. Here, the input data is presented, as well
as the number of filtered results. As expected, the number of filtered results produced
for each matrix-sequence pair is the same for this solution as for the basic solution.

Filtered results from each test done on the multicore solution is presented in table
6.7. As expected, the filtered results produced for each matrix-sequence pair is the same
for this solution as for the basic solution.
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Test Results

7a || ENSG00000205139 0 199 MAO080la -1562.766357
ENSG00000205139 0 199 MAO0801b -1569.915894

8a || ENSG00000208641 0 199 MAO80la -1702.865112

ENSG00000208641 0 199 MA0801b -1705.091309

8b || ENSG00000208641 33 40 MAO0801la 1.687562
ENSG00000208641 176 183 MAQ80la 1.238545
ENSG00000208641 35 42 MAO0801b 2.643074
ENSG00000208641 64 71 MAO0801b 1.238545
ENSG00000208641 79 86 MAO0801b 2.275349
ENSG00000208641 96 103 MAO0801b 2.709213

9a || ENSG00000105971 0 199 MAQO80la -1854.153076
ENSG00000105971 0 199 MAOQ801b -1848.449097
9b || ENSG00000105971 15 22 MA0801la 3.831082

Table 6.7: Filtered results - multicore application

6.2.3 Hardware partition

For analysis purposes, the CoDeveloper Application Monitor is utilized to gather in-
formation about what happens in the hardware partition of the application during the
simulation.

PWM module

Questions which are answered about the hardware PWM module during simulation are:
e ...whether the correct sequence length is received from software: 0K
e ..whether the correct amount of result scores are computed: 0K
e ...whether the computed scores are seemingly correct: 0K

All sequences used for testing have a length of 200 bases and the PWM module(s)
computes 193 scores (with affiliated indexes) for each matrix-sequence pair; one score
for each sub-sequence. The correctness of these scores have been tested during imple-
mentation by printing the steps of computing each score to the simulation log shown in
CoDeveloper Application Monitor. A weight is added to a score for all bases of the cur-
rent sub-sequence, and the added weights are fetched from the correct row and column
in the matrix. There are no overflow issues adding the weights together.

Filter

Questions which are answered about the hardware filter module during simulation are:
e ...whether the correct filter is applied: OK
e ...whether all results from the PWM module are received and processed: 0K

e ...whether the applied filter perform correct filtering of all scores: 0K
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6.3 Generated HDL code

Even though the HDL files generated by CoBuilder contain no comments explaining the
generated HDL code, some understanding can be gained through studying the actual
code. 9-10 hours were set aside for making an effort to understand the generated HDL
code and hardware logic.

The component- and system-level HDL files generated by CoBuilder are found in
files named as follows:

e FPWM* comp.vhd
e FPWM?* top.vhd
e rt_impulse FPWM*.vhd

These files are too big to include in the thesis appendix.

6.3.1 FPWM?* comp.vhd

This file contains implementation of the application specific hardware modules. An rtl
architecture is created for each module, together with an entity defining signals for all
input and output streams. Each stream is also defined with affiliated interface signals.

For the floating-point solutions the floating-point HDL library is included. But all
solutions include a reference to external components, as they need to. Each design only
define one clock signal, as only one clock is supported by the hardware platform. States
determining what actions which will take place each clock cycle are created, defining an
appropriate flow for the application. Use of the Impulse-C pragma CO PIPELINE have
also created a pipeline for the loop adding correct PWM scores to each result score.
The six stages of the pipeline are implemented as records.

component PWM sequence RAM is

port (signal rst : in std ulogic;
signal clk : in std_ulogic;
signal we : in std ulogic;
signal addr : in std_ ulogic vector (8 downto 0);
signal addr2 : in std_ ulogic vector (8 downto 0);
signal din : in std ulogic vector (7 downto 0);
signal dout : out std ulogic vector (7 downto 0);
signal dout2 : out std wulogic vector (7 downto 0));

end component ;

For arrays storing input data in hardware a RAM entity, dualsync architecture and
RAM component is created. An example of a RAM component is shown above. Arrays
also need memory signals, signals which are created for each array. Regular variables,
on the other hand, are implemented only with the help of a single signal.

The actual functionality of the hardware modules, as it was translated to HDL, is
too confusing and partially cryptic to understand in the time set to study the HDL
code.
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6.3.2 FPWM?* top.vhd

This file contains definition of the application specific architecture. An entity defining
signals for all input and output and output signals for the architecture is created. As
intermediate streams between components of the architecture is left out, the architecture
definition can be viewed as a ’'black box’. The hardware modules are connected to the
architecture defined as components of the architecture. Stream signals defined for the
architecture are now connected to the correct component (module). A wrapper for
the architecture is also created, and the architecture is connected to an architecture
structure defined as a component of the structure.

architecture structure of FPWM is
component PWM is

port (

reset : in std wulogic;

sclk : in std wulogic;

clk : in std_ulogic;

p_pwm_stream rdy : in std wulogic;

p_pwm_stream _en : inout std_ulogic;

p _pwm_stream eos : in std wulogic;

p_pwm_stream data : in std_ ulogic_ vector (31 downto 0);
p iteration stream rdy : in std ulogic;

p_iteration stream en : inout std_ulogic;

p_iteration stream eos : in std_ulogic;

p iteration stream data : in std ulogic vector (15 downto 0);
p_dna_stream rdy : in std_ulogic;

p dna stream en : inout std wulogic;

p_dna_stream eos : in std_ulogic;

p dna stream data : in std wulogic vector (7 downto 0);
p_counter stream rdy : in std_ulogic;

p counter stream en : inout std ulogic;

p counter stream eos : out std wulogic;

p_counter stream data : out std_ ulogic vector (15 downto 0);
p_sum_stream rdy : in std wulogic;

p_sum_stream _en : inout std_ulogic;

p_sum _stream eos : out std wulogic;

p_sum_stream data : out std ulogic vector (31 downto 0)

)

end component ;

component Filter is

port (

reset : in std wulogic;

sclk : in std_ulogic;

clk : in std ulogic;

p_threshold stream rdy : in std_ulogic;

p_threshold stream en : inout std_ulogic;

p threshold stream eos : in std wulogic;

p_threshold stream data : in std ulogic_vector (31 downto 0);
p counter stream rdy : in std wulogic;

p_counter stream en : inout std_ulogic;

p counter stream eos : in std ulogic;

p_counter stream data : in std ulogic vector (15 downto 0);
p_sum_stream rdy : in std wulogic;

p_sum_ stream en : inout std wulogic;

p_sum_stream eos : in std_ulogic;

p sum stream data : in std ulogic vector (31 downto 0);
p_start stream rdy : in std_ulogic;

p start stream en : inout std wulogic;

p_start stream eos : out std_ulogic;

p start stream data : out std ulogic vector (15 downto 0);

p_score_stream_rdy : in std_ulogic;
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p_score_stream en : inout std_ulogic;
p score stream eos : out std ulogic;
p_score_ stream data : out std ulogic_ vector (31 downto 0)

)
end component ;
The architecture structure defining the hardware modules as components is shown
above. Signals are created for each stream and the streams are initialized. All stream
signals are then mapped to the correct module instance when these are created.

6.3.3 rt_impulse  FPWM¥*.vhd

This file contains system-level code providing necessary communication between the
software and the application specific hardware design over the RapidArray transport
interface (RT). Streams running between software and hardware over RT are defined
and mapped, and signals assisting in communication through streams are created. All
signals are clocked using the same clock. A MUX, implemented as a state machine,
controls when to write to or read from the different streams. This MUX is shown
below.

rt idata reg mux: process (p Producer threshold stream rt idata reg,
p_Producer pwm _stream rt idata reg,
p Producer iteration stream rt idata reg,
p_Producer dna_stream rt_ idata_ reg, p_ Consumer_start stream rt idata_ reg,
p_ Consumer score_ stream rt idata reg, rt_ conn sel) is
begin
case rt_conn_sel is
when "000" => rt resp rdata <= p Producer threshold stream rt idata reg

3

when "001" => rt resp rdata <= p Producer pwm stream rt idata reg;

when "010" => rt_resp_rdata <= p_Producer_iteration_stream _rt_idata_reg
5

when "011" => rt resp rdata <= p Producer dna stream rt idata reg;

when "100" => rt resp rdata <= p_Consumer_ start stream rt idata reg;

when "101" => rt resp rdata <= p Consumer score stream rt idata reg;

when others => rt_resp rdata <= (others => 'X’);
end case;
end process rt_idata reg mux;

6.3.4 VHDL library

For the purpose of simulation and synthesis, the generated application specific component-
and system-level HDL files are combined with additional HDL wrapper components.
These components are provided in a special library called "impulse". Wrapper compo-
nents makes CoBuilder capable of generating the required software/hardware interfaces
for the target platform Musculus. The software/hardware inferfaces specially gener-
ated for Musculus are provided as HDL code in special HDL files as well, and must be
included in the same project VHDL library as the application specific HDL code.

6.4 Generated hardware logic

Table 6.8 shows design statistics reported by Xilinx ISE after synthesizing and imple-
menting the designs from the HDL files generated by CoBuilder. The Xilinx Virtex-II
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Pro FPGA has a speed grade of -7.

Device utilization || Minimum period | Maximum frequency
FPWM 16% 12.436ns 80.412MHz
FPWM2008 21% 13.954ns 71.664MHz
FPWMi 14% 10.084ns 99.167MHz
FPWM2008i 18% 11.490ns 87.032MHz

Table 6.8: Design statistics

More detailed information on device utilization is presented in table 6.9.

Occupied Slices | Slice Flip Flops | 4 input LUTs
FPWM 16% 9% ™%
FPWM2008 21% 11% 10%
FPWMi 14% 9% 6%
FPWM2008i 18% 10% 8%

Table 6.9: Device utilization

Even though there were no time to generate functional FPGA programming files
for the implemented solutions, some limited understanding of the generated hardware
logic can be gained. Methods for doing this include studying the generated HDL code,
as well as the reports from the actual HDL build process. 9-10 hours were set aside
for making an effort to understand the generated HDL code and hardware logic. The
complete reports generated from the HDL build process of the implemented solutions
are included in appendix C.

6.4.1 PWM module

17 blocks are generated for the PWM module. The total number of stages differ between
the floating-point and the 'fixed-point’ implementation; the floating-point implementa-
tion requires 30 stages, while the 'fixed-point’ implementation requires only 27 stages.
Maximum unit delay is however 33 for both implementations.

Analyzing the PWM module further, it is reported that multiple access to the PWM
array reduces the minimum rate to two in the pipelined loop adding PWM scores to
the result scores. A warning is also reported, saying that recursively used variables may
reduce the pipeline rate.

Operators:

4 Adder(s)/Subtractor(s)
2 Adder(s)/Subtractor(s)
1 Adder(s)/Subtractor(s)
7 Adder(s)/Subtractor(s)
2 Comparator(s) (2 bit)
4
7
4

(5 bit)
(9 bit)
(16 bit)
(32 bit)

Comparator(s) (8 bit)
Comparator(s) (32 bit)
Floating-point Adder(s)/Subtractor(s) (32 bit)

From the general view of generated operators one can see that the only difference
in operators between the floating-point and the ’fixed-point’ solution is the type of four
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of the 32-bit adder(s)/subtractor(s) utilized. In the floating-point solution these need
to be floating-point operators. Operators for the floating-point PWM module is shown
above.

6.4.2 Filter module

The number of blocks generated for the filter module differ between the floating-point
and the 'fixed-point’ implementation; the floating-point implementation has 13 blocks,
while the ’fixed-point’ implementation has 14 stages. The total number of stages dif-
fer between the floating-point and the ’fixed-point’ implementation also for the filter
module; the floating-point implementation requires 22 stages, while the ’fixed-point’
implementation requires only 17 stages. Maximum unit delay is however 32 for both
implementations, less than for the PWM module.

| Operators:

1 Adder(s)/Subtractor(s) (32 bit)
3 Comparator(s) (2 bit)

2 Comparator(s) (3 bit)

2 Comparator(s) (32 bit)

I
I
I
I
From the general view of generated operators one can see that the difference in
operators between the floating-point and the ’fixed-point’ solution is that the ’fixed-
point’ solution requires two extra comparators. Both the extra block and the extra
comparators could be explained by the extra if-block in the fixed-point Impulse-C im-
plementation. Operators for the ’fixed-point’ filter module is shown below. In the
floating-point solution, the adder/subtractor is of course a floating-point operator.

6.4.3 StageMaster

dot #pragma CO FIFELINE

zuif_tmp_0 =1 [eequence[ |+ 0 suif_tmpSD]-I ]1 :

suif_tmps = 1 zuif_tmp_0 == 1 E5
if [zuif_tmpS) §
2um =53um+2pwm[]2;
belze |
zuif_tmpk =q zuif_tmp_0 =4 E7 ;
if [suif_trpiE] {
sum =58um+2pwm[]2;
telke {
suif_tmp? = zuif_trmp_0 ==y 71
if [sLif_tmp 7] £
sum =Esum+3pwm[]3;
Telse {
sulf_tmp8 = 1 suif_tmp_0 == 1 a4
iF [suif_trpd] §
] =Esum+3pwm[]3;
belsed

}
}

$pragma CO SET stageDelay 32

switch (sequence [1+counter]) {

case | (char)'a"):

| gum += pwm[0] [1];

: break:

casge ({char) 'C'):

i sum += pwm[1][1];
break;

case((char)'&"):

: sum += pwm[2][1]:

i break;

cage (| (char) 'T'):

! gum += pwm[3][1];
break;

default:

: // Do nothing here
kreak;

Figure 6.1: Pipelined loop in StageMaster vs source code
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Simulating generated hardware logic with the help of the StageMaster debugger
gives an interesting view of the instruction flow within the two hardware processes
(modules). StageMaster shows which instructions that are executed at the same time,
and how some lines of code take multiple stages to complete. Figure 6.1 shows the
pipelined loop of the PWM algorithm.

6.5 FPGA programming file

Unfortunately, there were no time to successfully generate a fully functional FPGA pro-
gramming file for the solutions. The main theory this far is that because the ISE project
had to be created from scratch, and not from the template generated by CoBuilder, the
properties applied during the different stages of generation the FPGA programming file
were incompatible with the design. Several properties had to be changed in order to
generate a programming file at all, functional or not. An example of such a property
is the Xilinx specific property adding I/O buffers to signals. This property had to be
disabled as all necessary I/O buffers were already included in the design as a part of
implementing Impulse-C streams.

Non functional means, in this case, that the FPGA programming file is (apparently)
successfully loaded on the target FPGA, but none of the expected results are returned
by the FPGA, as illustrated in figure 6.2.

fmusculus.hpc.ntnu.nn = PuTTY |B@
> /FPUM 2

ON: FFPUM ==
11d filter; threshold set at 2
i done

000105571 : done

done sending

The applic on produced for ooooi0s5971
ipplication cowplete! Press the

Figure 6.2: First faulty FPGA programming file on Musculus

Questions which are answered about the FWPM system during execution on Mus-
culus are:

o ..whether the filter chosen by the user is registered by the software: 0K

e ... whether the alignment matrix is read successfully from the input file: 0K
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e ..whether the alignment matrix is converted successfully to PWM: 0K

e ..whether the DNA sequence is read successfully from the input file: 0K

e .. whether the PWM and DNA sequence is sent successfully to hardware: 0K
e .. whether the data sent from software is received by the hardware: FAILED
e ...whether the correct amount of result scores are computed: NOT TESTABLE
e ..whether the computed scores are correct: NOT TESTABLE

e ...whether the correct filter is applied: NOT TESTABLE

...whether (all) results from the PWM module are processed by the filter: NOT
TESTABLE

...whether the applied filter perform correct filtering of all scores: NOT TESTABLE

...whether filtered results are received successfully from hardware: FAILED

e ..whether the correct matrix and sequence data is connected to each result: NOT
TESTABLE

e ..whether filtered results are written to screen and file correctly: NOT TESTABLE

e ...whether the application terminates correctly: FAILED/NOT TESTABLE

Various changes to the properties in Xilinx ISE were done in attempts at getting
closer to a fully functional programming file to run on the FPGA. One attempt involved
fully duplicating the properties applied during the generation of a known functional
FPGA programming file. This functional programming file belonged to a Cray XD1
example project supplied with CoDeveloper. These attempts had some kind of impact
on the generated programming file, as illustrated in figure 6.3, but did not result in a
functional programming file.

A large amount of warnings reported during the ISE synthesis process talk about
unconnected signals in the RT (RapidArray Transport) part of the design. However,
some of the unconnected signals reported are connected in the VHDL code and should
be so in the generated FPGA programming file also.

For a while, incompatible/incorrect timing constraints was also believed to play a
part in the generated programming file not functioning. The frequency of the converted
FPGA programming file was set both to the minimum and the maximum frequency. Of
course, as vital signals were not connected in the FPGA programming file, no apparent
impact on the programming file was observed during these experiments.
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f musculus.hpc.ntnu.ne - PuTTY
Li uluz 4 FRTIM,

FPTH

goigs9y

Oooo00105971. ..

000105971

Figure 6.3: Second faulty FPGA programming file on Musculus

./ FFTH

done
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Chapter 7

Discussion

7.1 Introduction

This chapter presents a discussion on the implemented Impulse-C solutions; comparing
them to both the planned solution and the previously implemented VHDL solution. The
newly implemented Impulse-C solutions are discussed in section 7.2, then compared to
the VHDL solution in following sections. Ease-of-use of the CoDeveloper environment is
discussed in section 7.3. Productivity and performance when comparing the Impulse-C
solutions and the existing VHDL-based solution is discussed in section 7.4 and section
7.5 respectively. The chapter is finally rounded off with some thoughts and reflections
on unanswered questions in section 7.6.

7.2 Implemented solutions

7.2.1 Functionality and features

Implemented variations In this discussing there will be references to Impulse-C so-
lutions in plural, but in reality they are all variations of the same basic solution. Fach of
the four implemented variations use a different combination of PWM weight value rep-
resentation and number of matrices processed. The reason behind implementing these
multiple variations is that it was considered to be a good way of testing and comparing
the effects of floating-point arithmetic’s and fixed-point arithmetic’s in hardware, for a
multicore implementation as well as a basic implementation.

Floating-point vs fixed-point There is, as yet, no commonly-accepted standard
for representing fixed-point numbers. Floating-point, on the other hand, is codified in
IEEE standard. Impulse-C does however provide support for a chosen standard of fixed-
point arithmetic in the form of macros and data-types. Fixed-point is an alternative
to floating-point, but has a smaller range of values and/or less precision. Converting
from floating-point to fixed-point is a non trivial task and is easier done on a well tested
floating-point solution, as the decision to scale fixed-point variables depends on the
actual values each variable is expected to take on. Floating-point variables must be
converted to fixed-point individually, and needs to be scaled throughout computation
to align decimal points, prevent overflow and manage precision. The FPWM system
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should be tested further before attempting to convert the floating-point alternatives to
Impulse-C fixed-point.

Command line arguments A missing feature of the implemented solutions is the
possibility of processing multiple input command line arguments. This is influencing the
possibility to choose which files to read input data from. Processing multiple matrices
in parallel reduces this drawback somewhat, as the user does not have to replace the
content of the default input files as often. The software should be able to process
multiple command line arguments in the future, but proved to be more work than
anticipated when implementing the Impulse-C solutions. The list of arguments can not
be processed directly in the main function, but need to be passed as a parameter first to
the architecture definition and then to the appropriate software function. This turned
out to be a less straight forward task than it sounds, thus the possibility to choose
which matrix and sequence input files to read from was given a low priority. Being able
to choose the name and location of the matrix and sequence input files were deemed to
be more a question of increased user friendliness than of being a vital functionality.

Ignoring regions of DNA The Fasta-format allows for additional information about
a matrix or sequence in its header line. The implemented solutions however, does not
support this. It has been contemplated whether or not to support the possibility of
ignoring regions of the DNA sequence, a feature which requires index considerations to
be made, but was valued as a low priority. In addition to being mentioned in the header
line, regions to ignore are also usually indicated by being typed in small letters. The
implemented solutions have no support for such sequences either, as of yet.

DNA sequence lengths At the moment, only sequences with a length of 300 or less
symbols are supported by the implemented Impulse-C solutions. Supporting the use
of longer DN A-sequences is easy up to a certain point. In the source code it is just a
matter of changing a single constant, increasing the depth of the FIFO queue for the
sequence stream. In hardware, larger sequences at up to 300 Mbases could require a
large amount of RAM components to be implemented, which is not favorable as it would
limit the amount of space left on the FPGA for the rest of the design. In any case, it
does not seem like CoDeveloper/CoBuilder would allow stream depths of 300 Mbases
to be created in the first place. Either way, long sequences could be divided into several
smaller sections and sent to hardware one such section at a time.

Parallel computation Implementing the use of multiple instances of the hardware
modules in parallel one need to take the required number of parameters (memory,
streams, signals etc.) into consideration. Impulse-C support the use of maximum 32
parameters for each process. The amount of streams, signals and memory supported
by the hardware itself is also limited due to general resource limitations such as routing
capabilities and available logic blocks.

Pipelining Pipelining of instructions is not automatic, but requires an explicit dec-
laration. This declaration must be included within the body of a loop and prior to
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any statements that are to be pipelined. Implicit flattening of logic is applied when
using the CO PIPELINE pragma. Because of this, one need to consider the size of the
required logic before choosing to pipeline a loop. Loops with many iterations are not
well suited for pipelining, while nested loops are not suited at all. One also have to
consider if there are any potential benefits in pipelining a specific loop at all. Only one
loop was found somewhat suitable for pipelining in the implemented solutions, and that
was the loop adding matrix weights to the score of the current sub-sequence.

Threshold values Choosing correct threshold filter values for matrices in the multi-
core solutions is done by listing them in the same order in the threshold input file as
the matrices are listed in the matrix input file. This was deemed to be intuitive, or that
it at least should be.

Filters Implemented filtering is summation and threshold filtering, which is the same
filters as in the existing VHDL solution. More filter types could be implemented in
the future, though there is no obvious need for it at the moment. There is also a
question about what other filters that could be applicable, if there are any. In any case,
more filters to choose from would introduce a need to implement a different method
of determining what filter to apply also. Command line parameter flags, instead of an
optional threshold value, could be utilized.

Shared memory It has been contemplated whether or not to include the use of
shared memory or not, as the Impulse-C FPWM system is implemented today. There
is a higher transfer rate with shared memory, compared to that of Impulse-C streams,
when using one or both of the Xilinx Virtex-II Pro PowerPCs. There is however no
use of the PowerPC technology in the implemented solutions. As there is no need for
the PWM module to have read and locally stored the entire DNA sequence at the start
of computation, the sequence is rather read consecutively during computation at the
minimum rate required by the PWM algorithm. Transferring the PWM to hardware
using shared memory would potentially yield greater benefits, depending on the transfer
rate, but did not work as intended when it was tried out during implementation. Making
it work was therefore left as potential future work.

FIFO depths FIFO queues are implicitly created to pass computed results to the
filter, when creating Impulse-C streams. FIFO depths in the implemented solutions are
chosen based on the maximum DNA sequence length. This length is the same as the
FIFO depth anticipated to be needed in order to avoid a communication bottleneck.
Too large depths can result in a value overflow when computing the depth of one stream
based on the depth of another, as the implemented solutions does in some cases at the
moment. This limits the maximum sequence length possible to support, and should
therefore be changed in the future.

7.2.2 Scope

e DNA sequence length: Maximum sequence length supported is currently 300,
but only temporary during development, and should be increased in the future.
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This length is only a fraction of the realistic sequence lengths mentioned in the
FPWM specification from Drablgs [5], which are up to 300Mbases.

e DNA sequence bases: The solutions are case sensitive, so that all bases in the
input DNA sequence must be in capital letters. Small letters will be ignored, and
the index of the following valid bases are skewed.

e Motif length: Motif length is set to eight; this length is hard coded in all four
solutions. All input matrices must therefore have a row count of eight, representing
the selected motif length.

e Matriz weights: There are no observed limitations on matrix weights for the
floating-point solutions. The floating-point solutions should be both more func-
tional and safer than the ’fixed-point’ solutions, due to the absence of overflow
issues.

e Multiple matrices: The maximum number of matrices which can be processed
in parallel in hardware is set to be two at the moment. More can easily be added
later, but if more than two matrices are given in the matrix input file today, only
the first two will be read and processed.

e Threshold values: No negative threshold values are allowed in software simu-
lation, at least when given as command line arguments. This should not be an
issue, as negative scores are not too interesting and matrices will most likely not
have a negative threshold value anyway. In software simulation, the summation
filter is executed instead of the threshold filter if a negative threshold value is
given as argument.

e ’Fized-point’ summation filter: A brute force method for avoiding potential
sign issues connected to negative values prunes negative scores in the ’fixed-point’
summation filter. The incorrect summation of the 'fixed-point’ values are most
likely due to overflow though, but as the majority of the observed scores during
analysis were negative, pruning negative scores will prevent overflow in these cases.
The possibility of overflow in a fixed-point solution is troublesome.

e Simulation vs execution: Simulation of the solutions is possible today, but not
execution on the actual target platform Musculus.

7.2.3 Generated HDL/HW

Understanding the logic During analysis of the implemented solutions, it was of
interest to gain an understanding of the generated HDL and resulting hardware logic.
There were both factors making this task easy and factors making it difficult, but the
latter were in majority. A lack of comments and documentation of the generated ap-
plication specific HDL files was definitely one of the factors making it difficult. Struc-
tured, tidy, organized code helped somewhat however. To a degree, it was intuitive
what Impulse-C code the individual HDL code blocks was a translation of. Details sur-
rounding the translation of actual computation were more cryptic and far less intuitive,
on the other hand. This, of course, was not helped by the limited time to study and
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gain knowledge about the code. An analysis of the generated VHDL code and resulting
hardware logic was presented in chapter 6.3.

Parallel behavior Which instructions of a hardware process that is actually per-
formed in parallel is indicated by the hardware simulator/debugger StageMaster, as
illustrated in figure 6.1 in chapter 6. There is a partially sequential execution of in-
structions in the hardware modules, though some instructions in the same block can be
executed in parallel. These are usually instructions of same nature. Recursively used
variables limits parallel computation in the pipelined loop as these are references to the
same array.

Pipelining Pipelining is an optimization that reduces the number of cycles required
to execute a loop by allowing the operations of one iteration to execute in parallel
with operations of one or more subsequent iterations. In some cases it is not possible
to perform all stages of a pipeline in parallel, such as when two stages read from the
same memory (local variable). This was initially not believed to be an issue for the
implemented FPWM solutions, though it turned out to be. Sometimes, the rate of
a pipeline that contains multiple reads of the same array can be reduced by dividing
the array into several smaller arrays. This could be done for the Impulse-C FPWM
solutions.

Device utilization Device utilization for the implemented designs is reported in the
Xilinx ISE ’Place and route’ report, and summarized and repeated in table 7.1. In
comparison, the existing VHDL solution utilize 8% of the FPGA. Floating-point is
generally significantly more expensive, in terms of computation time and hardware logic
required, than integer or fixed-point math. This is proved by comparing the device slice
utilization for the floating-point and ’fixed-point’ solutions presented in table 7.1. More
detailed information on device utilization is presented in chapter 6.4. There are also
other factors than value representations that can have an inpact on device utilization. As
the compiler will implicitly flatten control logic when the CO PIPELINE pragma is used,
the depth of the generated logic may have been dramatically increased by pipelining
the computational loop of the PWM module. Whether or not this is the case for the
implemented FPWM solutions can not be proved at this time. The increase in logic
when adding instances of the hardware modules PWM and Filter on the other hand, is
indicated by comparing the device utilizations presented in table 7.1. The logic is not
doubled, as only parts of the system needs to be duplicated. It can be worth pointing
out how there is a larger increase in logic for the floating-point solution, as was expected
beforehand. Looking at the reported utilization, some calculation can be made towards
the number of parallel processing element (PE) pairs there could possibly be room for
on the same FPGA. These numbers will of course be very aproximate. For example,
there is no guarantee that the increse in hardware logic is linear. Being realistic, it could
also be the case that the entire FPGA can not be utilized, due to resource limitations
such as routing capabilities.

Utilization without PEs + utilization PEs * X = 100%. Following this formula, 17
possible PWM-Filter pairs is calculated for the floating-point alternative, and 22 for
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the 'fixed-point’ alternative. This is under the incorrect assumption that the increase
in logic is linear and the entire FPGA can be utilized. The real numbers are probably
only half of the computed estimates.

Floating-point | 'Fixed-point’
Basic 16% 14%
Multicore 21% 18%

Table 7.1: Device utilization - slices

FPGA programming file Some theories as to why it has not been possible to gen-
erate a functional FPGA programming file was presented in chapter 6. A warning is
reported by Xilinx ISE that the entity ’top’ is duplicated. What is known is that signals
passing over the RT are unsuccessfully connected to the top module, so this could be the
cause. This is likely due to incorrect handling of the design specifications during syn-
thesis and/or implementation of the design in Xilinx ISE; though it can not be proved
or disproved at this point. If it can be proved in the future, finding a way to successfully
open the template ISE project generated by CoDeveloper could solve the problem. The
constraints in the .ucf-file is correct, and is also the standard constraints file for Cray
XD1 projects developed in Impulse-C. The alternative solution is to study all warnings
in Xilinx ISE and find the correct properties to change (in order to eliminate the critical
warnings). If it on the other hand is not in Xilinx ISE it all goes wrong, it should be
in CoBuilder. This is however harder to prove, as well as to straighten out, due to the
limited insight into and control over the HDL build and export processes.

7.3 CoDeveloper ease-of-use

The level of abstraction for the development language and tools is different from the
VHDL solution, but the target platform is the same. Considerations do need to be made
when implementing in Impulse-C also, in order to avoid implementing functionality that
requires hardware logic not supported by the target platform.

Pure software developers should be able to implement a FPWM system in Impulse-
C, according to the co-design "principles". Impulse-C must therefore support a 'brute
force’ implementation of hardware processes, as has been done in the solutions presented
in this thesis. Hardware consideration can not be a must, except for the need to stand
clear of obvious violations of what the hardware platform support. Example of such
considerations when implementing for Musculus is floating-point formats, dual-clocks,
etc. Musculus, and the Cray XD1 platform in general, does not support the use of
dual-clocks or single precision floating-point (double). The report from the HDL build
process will give feedback on the success for the HDL build process. Notice will be
given if the CoBuilder tools have observed functionality that clearly violates what is
possible to implement on the selected hardware platform. The Impulse-C code can be
easily optimized for performance later after a solution is initially developed. Optimizing
Impulse-C code for performance can be done in a few easy steps, as described in the
Impulse-C user guide.
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The abstraction level of Impulse-C allows for the designer to create and use variables
of different data-types to a large degree without having to worry about the hardware
logic required and how it should be set up. FIFO queues are also implicitly created to
pass computed results to the filter, when streams are created. This saves a designer a
lot of work when implementing.

Problems with successfully generating functional programming files from the gener-
ated HDL has its effect on the experienced ease-of-use. CoDeveloper should integrate the
functionality of Xilinx ISE, and similar tools for other platforms, allowing the designer
to get more constructive and helpful feedback/confirmation on what exactly could be
problematic at any time and in what part of the design process something fails. Having
to the FPWM design from CoDeveloper to Musculus by way of a completely separate
and independent synthesis/implementation tool gives reduced control over the process.
If something fails along the way, it is a non trivial task to figure out the exact problem(s)
and how to fix it/them. Also, it reduces the ease-of-use considerably.

7.4 Productivity

The VHDL solution was developed over a period of more than one 5’th year project,
two masters theses, and a semester of continued work. The solution still does not work
completely accurately after all this time, which is mostly due to the challenging task of
implementing at HDL level.

When deciding to utilize the co-design approach to implementing a system, designers
willingly sacrifice performance in order to gain more productivity. During the period of
time available for working on this thesis, both a basic and a multicore FPWM solution
were implemented using Impulse-C. In order to explore the effects floating point oper-
ations in hardware would have on performance, a fixed point version of both the basic
solution and the multicore solution was also implemented and tested. Both variations of
the multicore solution process multiple matrices in parallel in hardware. The multicore
solutions was originally left as future work, as it was believed that there would be no
time to finish implementing them during the time available to work on the thesis.

The process of implementing the basic Impulse-C solution started of slower than
what was expected in advance of the thesis period, creating a fear that the rest of the
implementation process would go just as slow, or even slower if implementing a more
complex multicore solution. Needles to say, the lack of previous programming experience
in Impulse-C, and co-design in general, have lead to lower productivity than if previous
experience was present. There was a considerable need to acquire further knowledge
about developing systems using Impulse-C, while at the same time being in the middle
of an actual development process with a steadily approaching thesis deadline.

'Brute force’ high level programming of the hardware partition in Impulse-C allows
for high productivity, at the expense of potential performance. As previously mentioned,
the Impulse-C code can be easily optimized for performance later, after a solution is
initially developed. Optimizing Impulse-C code for performance can be done in a few
easy steps, as described in the Impulse-C user guide.

As previously mentioned, floating-point is generally significantly more expensive
than integer or fixed-point math. Converting floating-point applications to fixed-point
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is an inherently non trivial and time-consuming process involving managing trade-offs
in precision, range and performance. In hardware processes the size of the generated
hardware also needs to be considered. Designers must convert each individual variable
initially to a fixed-point format and keep track of that format as the variable is operated
on. Fixed-point programs will therefore also be full of scaling operations. This is easier
done with well tested floating-point solutions, which the implemented floating-point
solutions are not yet. The process of converting the implemented floating-point solutions
did therefore not fit into the time schedule of this thesis.

Lack of control over the HDL build process, and insight into the generated HDL,
could easily affect productivity if something fails along the way. This has been the case
when working on this thesis. For the implemented Impulse-C FPWM solutions, the
template ISE project fails to open on the development environment machine. This has
led to problems successfully generating a functional programming file. As there is limited
amount of insight into what happens to the Impulse-C source after the 'Build HDL’
button has been pressed, it is a rather time-consuming task to investigate what has gone
wrong, and in what part of the design/implementation process. Was it implementation
of the Impulse-C source code, generation of HDL from the Impulse-C source code,
export of the HDL code, synthesis of the design, or implementation of the design that
was faulty? Is it the designer, the CoBuilder tools, Xilinx ISE, or the OS that is
the culprit? It could be any combination of these. When finally sorting it out, the
problem also has to be fixed in an appropriate manner; which is not necessarily a trivial
task either. The level of abstraction for the development language and design tools is
different from the VHDL solution, but the target platform is the same, as well as the
synthesis/implementation tools. Some productivity issues can not be avoided.

7.5 Performance

Despite limited possibility to compare performance of the implemented Impulse-C so-
lutions and the existing VHDL solution, it has been assumed that the basic Impulse-C
solution have lower performance than the VHDL solution. As a rule, designers of co-
design solutions have to sacrifice performance in order to increase the productivity, this
due to the abstraction level of the Impulse-C and other co-design languages.

Even though performance data from actual execution of the solutions on Musculus
is missing, as the programming files are not functional, various design statistics are
reported by the static timing summary in Xinlinx ISE. Table 7.2 present timing infor-
mation reported by Xilinx ISE for the implemented solutions. Due to the generated
programming files being faulty, this data should be viewed as approximate values only,
giving at least a general impression as to what the difference in computation time is
between the different solutions.

Minimum period | Maximum frequency
FPWM 12.436ns 80.412MHz
FPWM2008 13.954ns 71.664MHz
FPWMi 10.084ns 99.167MHz
FPWM2008i 11.490ns 87.032MHz

Table 7.2: Timing statistics
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Floating-point offers a greater range of values and more precision, but is also signifi-
cantly more expensive in terms of computation time than integer or fixed-point math, as
illustrated in table 7.2. Embedded systems and digital signal processing (DSP) design-
ers often choose fixed-point in order to achieve greater speed and reduce hardware costs
in their designs. The existing VHDL solution operate with fixed-point in hardware.

Parallel computation is extracted automatically from the implemented code by the
hardware compiler where it sees the possibility for it, while the compiler will attempt to
extract pipelined computation from loops the designer have marked with the Impulse-C
pragma CO PIPELINE. Both extracted the pipelined and parallel computation should
have a positive effect on performance for the Impulse-C solutions. Processing multiple
matrices in parallel should also have a significantly better performance than processing
them serial (with the same PE), as illustrated in 7.2.

The thesis report for the existing VHDL solution refer to the maximum clock fre-
quency for the Xilinx Virtex-1I Pro as the realistic best case scenario. This makes it
somewhat harder to compare performance of the Impulse-C solutions with that of the
VHDL solution, as it is doubtful that the VHDL solution really can have a maximum
frequency equal to the FPGA clock frequency of 200MHz. It can seem a bit too opti-
mistic even as a best case? As the VHDL solution sacrifice productivity for performance,
while the opposite is the case for the Impulse-C solutions, it is still a fair assumption to
make that the VHDL solution have a better performance than the Impulse-C solutions.

7.6 Unanswered questions

There is a limited possibility to compare actual performance of the implemented Impulse-
C solutions and the existing VHDL solution. The VHDL solution does not work entirely
as intended, first of all, and there is not much performance data available. There is not
much performance data available for the Impulse-C solutions either, as they have not
yet been successfully tested on the target platform.
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Chapter 8

Conclusion and Future Work

This chapter will present a conclusion for the thesis, as well as some thoughts on future
work.

8.1 Conclusion

As it says in the thesis objectives, an FPGA prototype specified in VHDL has been
developed at NTNU, which identifies short motifs or patterns in genetic data using
Position-Weight Matrices.

This thesis present work done on the following major tasks:

e Specification and implementation of a Impulse-C based alternative to the existing
VHDL-based solution.

e Evaluation of easy-of-use of the CoDeveloper environment, and productivity vs.
final performance when comparing the Impulse-C solution and the existing VHDL-
based solution.

In total, four variations of a Impulse-C alternative have been implemented; a basic
solution and a multicore solution, both implemented in a floating-point and a ’fixed-
point’ version. These solutions have all been successfully software simulated. The
floating-point solutions have also been tested and analyzed. Tests and analysis done
during software simulation show that the implemented floating-point solutions function
correctly for the tested sequence length. The VHDL code generated by CoBuilder has
also been slightly analyzed.

Unfortunately, attempts made to get the solutions to run on the target platform
Musculus were all unsuccessful. Some information about device utilization and perfor-
mance can still be extracted from the Xilinx ISE ’Static timing’ and ’Place and route’
reports. Creating a functional FPGA programming file for the most functional of the
implemented solutions should never the less be priority number one as far as future
work goes.

Designers of co-design solutions must sacrifice performance in order to increase the
productivity, this due to the abstraction level of co-design languages such as Impulse-
C. This has been demonstrated by this thesis. Co-design would clearly ease further
development of the FPWM in the future. The thesis has also demonstrated how device
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utilization is also affected by the use of co-design and giving preference to productivity.
The effects of floating-point arithmetic’s in hardware on both performance and device
utilization have also been observed and documented in the thesis. Floating-point is
generally significantly more expensive, in terms of computation time and hardware
logic required, than integer or fixed-point math.

Finally, it has been shown how some productivity issues can not be avoided even
with the use of co-design. The level of abstraction for the development language and
design tools is different from implementing a VHDL solution, but the target platform
is the same, as well as the required synthesis/implementation tools.

The implemented Impulse-C solutions have lower performance than the previously
implemented VHDL solution, as well as higher FPGA utilization. However, productivity
when implementing in Impulse-C is significantly higher than when implementing in
VHDL.

8.1.1 Project value

The use of hardware descriptive languages to program FPGAs, such as VHDL, is a com-
plicated and time consuming process that requires intimate knowledge of how hardware
works. Consequently, it is truly beneficial for productivity to make use of co-design
languages that facilitate the use of hardware, as well as to integrate the environment
for development of soft- and hardware.

There is a lack of Impulse-C competence at NTNU, as there is on a general basis no
considerably widespread use of Impulse-C as of yet. Although co-simulation languages
such as SystemC is already in use, the use of Impulse-C at NTNU could have both great
educational and significant research value also.

8.2 Future work

This section include specific recommendations for future work. These recommendations
are presented in a suggested order of priority.

8.2.1 Choosing I/0 files

Giving the user more control over the I/O process would improve both ease-of-use and
efficiency. One of the important changes to make to the system in the future is therefore
to implement the possibility for the user to choose both the input files to read data from
and the output file to write data to. As the system is implemented today, the name of
all the I/O files are specified in the application source code. Changing this, to letting
the user specify which I/0 files to use as command line arguments, would reduce the
amount of time needed between each execution to prepare the next input and take
backup of the previous output.

8.2.2 Securing written results

An alternative method for securing previous results written to the output file, instead
of writing the new results to a different output file, is to be more precise about how the
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software should handle the existing content of the output file. The way the software
handle existing content of the output file today is to simply ignore it; effectively erasing
it from the file. By telling the software to append new content to the existing content,
if there is any, all results should be secured for later review.

Whether or not to append new results to the existing content, instead of writing
over the existing content, could also be a decision left for the user of the application to
make.

8.2.3 Multiple matrices and sequences

An interesting addition to make to the system in the future could be to add the pos-
sibility to process multiple DNA-sequences during a single execution of the FPWM
application, in addition to processing multiple matrices. All DNA-sequences would be
stored in the same input file, just as all matrices are today.

The currently implemented solution, only allowing one sequence to be read and
processed at a time, has an input scheme that is prepared for being expanded to handle
multiple DNA-sequences. By already requiring all input to be expressed in Fasta-format,
the transition should go smoother than it would have otherwise. In the Fasta-format,
the header line of a matrix or sequence starts of with a >’ symbol to indicate the start
of a new input element.

Even though there is a multicore implementation of the Impulse-C solution today,
it should be extended to process more than two matrices in parallel in the future. The
use of multiple matrices also introduce the need for a module that can pre-process all
the input alignment matrices, making them ready for later use, by converting them to
PWDMs. This is a more vital change to make to the system, taking performance into
consideration, especially if the system should process more than two matrices in parallel.

Shared memory and registers

Allowing multiple matrices and/or sequences to be read and processed by the system,
as suggested in this subsection, could increase the need for implementing the use of
shared memory to transfer data between software and hardware.

8.2.4 Explicit parallel processing

Explicitly computing results in parallel could be done more effectively if other methods
of passing data between software and hardware were utilized. Shared memory is a good
example of such a method. Parallel processing using shared memory to transfer data
could potentiality increase the performance of the system. It could also allow for more
matrices to be processed.

A parallel implementation of the software framework, reading input and writing
output, could also significantly increase performance.

8.2.5 True fixed-point solution

Fixed-point is an alternative to floating-point, a more well-known method of represent-
ing real numbers. Impulse-C provides support for fixed point arithmetic in the form of
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macros and data-types that allow you to express fixed point operations in ANSI C and
perform computations either as software on an embedded CPU or as hardware modules
running in an FPGAs logic. There is however, as yet, no commonly-accepted standard
for representing fixed-point numbers.

Fixed-point applications are often created from a well-tested floating-point imple-
mentation, rather than written from scratch. The process of converting a floating-point
application to fixed-point is a non-trivial effort, with many issues to consider. Preci-
sion and range of the variables as it is run with sample data must be tracked in order
to determine the variables’ fixed-point formats. Designers must convert each variable
initially to a fixed-point format and keep track of that format as the variable is oper-
ated on. Fixed-point programs will be full of scaling operations to align decimal points,
prevent overflow, and manage precision. It is important to be able to characterize the
range and precision of input, intermediate, and output variables throughout a fixed
point program.

8.2.6 Ignoring regions of DNA

PWM scores at a positions including a non-standard symbol could either be ignored
or discarded. In some cases lower case symbols are used to indicate positions in the
input string that should be ignored/discarded during PWM scoring ("repeat-masked
sequences"). This is however optional, but could be an interesting feature to implement
in the future. Implementing the feature should not take too much time or effort.

8.2.7 Utilizing a database connection

An alternative input source to reading input data from file is to implement a database
connection so that the DNA-sequence and/or alignment matrix can be fetched from
an external database. The database can either replace the input files completely as an
input source, or be used in combination with the input files. The database connection
could also be used as an alternative to the output file for storing filtered results.

Using a database connection to handle I/O in the software framework could be a
more effective method than reading from and writing to files, and result in reduced
execution time for the system. It would also make stored results more easily accessible
for later review or processing, than when stored in a file.

The importance a database connection would have for the system is somewhat de-
batable, but should in any case be easy to implement.

8.2.8 Web interface

A method of making the FPWM system more easily accessible to the user is to connect-
ing the system to a web interface. A seemingly functional prototype for such an interface
has been implemented prior to this thesis. The time and effort needed to connect the
Impulse-C solution to this interface, and possibly extending the functionality somewhat
if found necessary, is strongly dependent on the final functionality of the interface.
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Appendix A

Nomenclature

Abbreviations

e AAP : Application Acceleration Processor

e API : Application Program Interface

e CLB : Configurable Logic Block

e CPU : Central Processing Unit

e CSP : Communicating Sequential Processes

e DMF : The Medical Faculty

e FPGA: Field Programmable Gate Array

e HLL : High Level Language

e HDL : Hardware Description Language

e HPC : High Performance Computing

e IDI : Department of Computer and Information Science
e MPI : Message Passing Interface

e NTNU : Norwegian University of Science and Technology
e PWM : Position Weight Matrix

e RAP : RapidArray Processor

e RTL : Register Transfer Level

e SMP : Symmetrical Multi-Processing

e TF : Transcription Factor

e VHDL : VLSIC Hardware Description Language

e VLSIC : Very Large-Scale Integrated Circuit



82

Nomenclature




Appendix B

Source Code

FPWM
FPWM.h

N N N N N,

Impulse—C(c) 2003—2008 Impulse Accelerated Technologies, Inc.

S~
N

#define MAX STREAMWIDTH 64 /+ buffer width for FIFO in hardware x/
#define MIN_STREAMDEPTH 1 /% minimum buffer size for FIFO in hardware x/

#define DNA_INPUT_FILE "dna.txt"
#define PWM_INPUT_FILE "pwm. txt"
#define OUTPUT_FILE "out.txt"

#define COLUMNS 4 /+ A,C,G,T =/
#define ROWS 8 /x length of pattern/motif =/

#define MAX SEQUENCE 300

#define FILTER_QUEUE MAX SEQUENCE /% FIFO length between PWM and Filter =/
#define WRITE QUEUE ((MAX SEQUENCEx%10)/100) /* FIFO length between Filter and Consumer x/

#define VALID CHAR(a) (((a) > 64) && ((a) < 91) && ((a) != 74) && ((a) != 79) && ((a) != 85)
7 (1) (0))
FPWM _sw.c

LITTTELID D00 00700 77777777777777777777777777777777177777777777771771777

Impulse—C(c) 2003—2008 Impulse Accelerated Technologies, Inc.

main() function for the basic floating —point version of
the FPWM system .

//
//
//
//
// FPWM sw.c: includes the software test bench processes and
//
//
//
// See additional comments in FPWM.h.

//

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "co.h"
#include "cosim_log.h"
#include "FPWM.h"

extern co_architecture co initialize (void x);

// Globals

static char xpwmHeader, xdnaHeader;
static float xpwm;

static char xdnaSequence;

static int pwmSize, dnaLength;
static int filterMode;
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//
// This is the function for calculating pwm—values from count—values
//
fl

oat convert_value (float c, float N) {
double s = 0.25;

double P = 0.25;

double p, valueTemp;

float pwmValueTemp ;

p = (double) ((c+s)/(N+(4xs)));
valueTemp = (double) (p/P);
pwmValueTemp = (float) log(valueTemp);

return pwmValueTemp ;

//
// This is the function for converting an alignment matrix to pwm
//
fl

oat xconvert_matrix (float * matrix) {

int 1, j;
float sxpwmTemp;
double Nj;

pwmTemp = (float *)malloc (ROWS+*COLUMNS+sizeof(float));
for (j = 0:; j < ROWS; j++) {
N = (matrix [ j*COLUMNS40]+ matrix [ j*COLUMNS+1]+matrix [ j *COLUMNS+2]+ matrix [ j *COLUMNS+3]) ;
for (i = 0; i < COLUMNS; i++4) {
pwmTemp| j *COLUMNS+i | = convert value (matrix[j*COLUMNSti ], N);

}

return pwmTemp;
}
//
// This is the function for reading an input matrix from a file and converting it to a pwm,
// based on a function from the Impulse CoDeveloper example project ’'SmithWatermanSerial’
//
void read matrix (const char % PwmFileName, FILE xpwmlInFile) {

char xbuffer = (charx)malloc(32«sizeof(char));

char xheader;

int status = 0;

int size = 32; /x size of header x/

int matrixSize = COLUMNS*ROWS;
float xmatrix;

int i, j;

char character;

// Opening matrix input file

pwmlInFile = fopen (PwmFileName, "r");

if ( pwmlInFile == NULL ) {
fprintf(stderr, "Error opening matrix input file %s\n", PwmkFileName) ;
character = getc (stdin);
exit(—1);

// Finding the size of the header line
status = fread (buffer, sizeof(char), 1, pwmlInFile);

// Making sure the matrix is in the correct input format
if (buffer[0] = '>7) {
printf("Matrix in %s must be in FASTA format, starting with >>’\n", PwmFileName) ;

}
// Closing matrix input file
if(fclose (pwmlInFile) != 0) {
printf("Error closing matrix input file\n");

}

// Allocating memory to store header line

header = (charx)malloc(sizexsizeof(char));

matrix = (floatx*)malloc(matrixSizexsizeof(float));

// Reopening matrix input file

pwmInFile = fopen (PwmFileName, "r'");

if ( pwmInFile == NULL ){
printf("Error opening matrix input file %s file\n", PwmFileName) ;
exit(—1);

// Pruning >’
fread (buffer, sizeof(char), 1, pwmlInFile);

// Reading matrix name
status = fscanf(pwmlInFile, "%s", header);
if(status <= 0 || status > size){
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/
/
/
/

printf("Error reading %s file header\n", PwmFileName);
exit(—1);

// Reading and storing the matrix

printf("\nReading matrix %s: ", header);

for(j = 0; j < ROWS; j++) {
for(i = 0; i < COLUMNS; i++) {

fscanf (pwmlInFile, "%f", &matrix[ j*COLUMNS}i |) ;

}
}
printf("done\n");
// Closing matrix input file
if (fclose (pwmlInFile) = 0) {

printf("Error closing matrix input file\n");
}
// Saving pwm data
pwmHeader = header;
printf("Converting %s: ", header);
pwm = convert_matrix(matrix);
printf("done\n");
pwmSize = matrixSize ;
free (matrix);
free(buffer);
/
/ This is the function for reading an input sequence from a file ,
/ from the Impulse CoDeveloper example project ’'SmithWatermanSerial’
/
oid read_sequence(const char s*DnaFileName, FILE sxdnalnFile) {

char xbuffer =

(charx)malloc(32«xsizeof(char));

based on a function

DnaFileName) ;

char xsequence, xheader;
int sequenceLength;
int size = 32;
int status = 0;
int nonvalid;
char character;
// Opening sequence input file
dnalnFile = fopen (DnaFileName, "r");
if ( dnalnFile == NULL ) {

fprintf(stderr, "Error opening sequence input file %s\n", DnaFileName);

character = getc (stdin);

exit(—1);
// Finding the size of the header line
status = fread (buffer, sizeof(char), 1, dnalnFile);
// Making sure the sequence is in the correct input format
if (buffer [0] = '>")

printf("Sequence in %s must be in FASTA format, starting with >>'\n",
}
// Triming off non—valid characters before sequence
buffer [0] = "\n’;
while (! (VALID _CHAR((int)buffer[0]))) {

fread (buffer, sizeof(char), 1, dnalnFile);
// Finding the size of the sequence, after pruning the header line
fscanf(dnalnFile, "%s", buffer);
sequenceLength = 0;
nonvalid = 0;
while (fread (buffer, sizeof(char), 1, dnalnFile)) {

if (VALID_CHAR((int)buffer [0]))

sequenceLength++4;
if (!(VALID_CHAR((int)buffer[0])))
nonvalid++;

}
// Closing sequence input file
if (fclose (dnalInFile) != 0) {

printf("Error closing sequence input file\n");
// Allocating memory to store the sequence and header line
header = (charx)malloc(sizexsizeof(char));
sequence = (charx)malloc((sequenceLength + 1)xsizeof(char));
// Reopening sequence input file

dnalnFile = fopen (DnaFileName,

if

Hr");
( dnalnFile == NULL ){
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//
//
//

void Producer(co_stream threshold stream ,

{

printf("Error
exit(—1);

opening sequence input file %s file\n",

s

// Pruning ’'>

fread (buffer, sizeof(char), 1, dnalnFile);

// Reading sequence name

status = fscanf(dnalnFile, "%s", header);

if (status <= 0 || status > size){
printf("Error reading %s file header\n", DnaFileName);
exit(—1);

size = 1; /+* Why shouldn’t this value be 0? Would cause an error

// Reading the sequence

printf("\nReading sequence %s: ", header);

while
if

(fread (buffer, sizeof(char),
(VALID_CHAR((int ) buffer [0])) {
sequence[size++] = buffer [0];

1, dnalnFile)) {

printf("done\n");

if (size—1 sequencelLength ) {
printf("Error reading %s file
exit(—1);

sequence\n", DnaFileName);

// Closing sequence
if (fclose(dnalnFile)
printf ("Error closing

input file

0) {

sequence

input file\n");

// Saving sequence data
dnaHeader = header;
dnaSequence = sequence;
dnaLength = sequenceLength

free (buffer);

This is the software ’reader’ process
co_stream pwm_stream,

co_stream dna_stream , co_parameter filter)
float threshold;
IF_SIM (cosim _logwindow log =
// Opening streams
co_stream_open(threshold _stream , O_WRONLY, FLOAT TYPE)
co_stream_open(pwm_stream, O_WRONLY, FLOAT_TYPE) ;
co_stream_open(dna_stream , O_WRONLY, CHAR_TYPE) ;

co_stream _open(iteration_stream , O_WRONLY, INT TYPE(MAX STREAMWIDTH/4)) ;

// Determining type of filter based on command line argument
if (filter == NULL) {

// Filter is set to summation filter

filterMode = 1;
} else {

// Filter is set to threshold filter

filterMode = 2;

threshold = atof(filter);
co_stream _write (threshold _stream , &threshold ,

}

// Reading matrix from input file and converting
const char % PwmFileName = PWM_INPUT_FILE;
FILE * pwmlInFile;
read _matrix (PwmFileName ,

sizeof(float));

it to pwm

pwmlInFile) ;

// Sending
int i;
float nSamplePwm;
printf("Sending %s: ", pwmHeader) ;
for(i = 0; i < pwmSize; i++) {

nSamplePwm = (float )pwm][i];

co_stream write (pwm_stream, &nSamplePwm,

matrix

sizeof (float));
}printf(“done\n“);

free (pwm);

// Reading sequence from input file

const char % DnaFileName = DNA_INPUT_FILE;
FILE * dnalnFile;

co_

cosim_logwindow _create (" Producer") ;)

DnaFileName) ;

*/

stream

iteration stream ,
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read_sequence(DnaFileName, dnalnFile);

// Sending sequence length and actual sequence
int k;
char nSampleDna;
co_ stream write(iteration stream , &dnaLength, sizeof(intl6));
printf("Sending %s...\n\n", dnaHeader);
for(k = 1; k <= dnalLength; k+4++) {
nSampleDna = (char)dnaSequence|[k];
co_stream write(dna_ stream , &nSampleDna, sizeof(char));

}
printf("done sending %s\n", dnaHeader);
free (dnaSequence) ;

// Closing streams
co_stream_close(threshold _stream);
co_stream_close(pwm _stream) ;
co_stream_close(iteration_stream);
co_stream_close(dna_stream);

//

// This is the software ’writer’ process

//
void Consumer(co_ stream start stream , co_ stream score stream)
{

intl6 nResultStart;

int resultEnd;

float nResultScore;

unsigned int count = 0;

const char % FileName = OUTPUT_FILE;
FILE % outFile;

IF_SIM (cosim _logwindow log = cosim_logwindow_create ("Consumer") ;)

// Opening output file

outFile = fopen (FileName, "w");

if ( outFile =— NULL ) {
fprintf(stderr, "Error opening file %s for writing\n", FileName);
exit(—1);

}

// Opening streams
co_stream open(start stream , O RDONLY, INT TYPE(MAX STREAMWIDTH/4) ) ;
co_stream open(score_ stream, O RDONLY, FLOAT TYPE) ;

IF_SIM (cosim _logwindow _write(log, "Consumer reading results...\n")};)

// Reading filtered results from stream; then writing them to screen and file

while (co_stream_read (start_stream , &nResultStart, sizeof(intl6)) —= co_err_none) {
if (co_stream _read (score_stream, &nResultScore, sizeof(float)) == co_err_none) {
if (filterMode == 1) { // Summation filter

resultEnd = dnaLength — 1;
} else { // Threshold filter
resultEnd = nResultStart + (ROWS-1);

fprintf(outFile , "%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmHeader,
nResultScore) ;

IF_SIM(cosim _logwindow fwrite (log, "Result: %s %d %d %s %f\n", dnaHeader, nResultStart,
resultEnd , pwmHeader, nResultScore);)

printf ("%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmHeader, nResultScore)

count,-|»+;
}

IF_SIM (cosim _logwindow _fwrite (log, "Consumer read %d filtered results\n", count);)
printf("\n\nThe application produced %d filtered scores for %s\n", count, dnaHeader);

free (dnaHeader) ;
free (pwmHeader ) ;

// Closing output file
if (fclose(outFile) != 0) {
printf("Error closing result output file\n");

// Closing streams
co_stream close(start stream);
co_stream close(score stream);

[P

/
/ Impulse C Main Function
/
n

t main(int argc, char =xxargv)
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co_architecture my_arch;
void xparam = NULL;

char xfilter;

char =xarg;

int c;

printf("\n\n== IMPULSE-C APPLICATION: FPWM ==\n");
switch (argc)

case 1:
printf("Executing with summation filter\n");
my arch = co initialize (param);
co_execute(my_ arch);
break;

case 2:
printf("Executing with threshold filter; ");
arg = (charx*x)argv;
filter = (charx)arg[1];
printf("threshold set at %s\n", filter);
my_arch = co_initialize (filter);
co_execute(my_arch);
break;

default :
printf("\nWrong use of parameters!\n");
break;

}

printf("Application complete! Press the Enter key to continue...\n");
¢ = getc(stdin);

return (0) ;

}
FPWM _hw.c

LITTT00 7000100070777 770070777077777777707777077770777777777777777177171717177
Impulse—C(c) 2003—2008 Impulse Accelerated Technologies, Inc.

//
//
//
//
// FPWM_hw.c: includes the hardware processes and configuration
// function for the basic floating —point version of the FPWM
// system .

//

//

//

See additional comments in FPWM.h.

#include "co.h"
#include "cosim log.h"
#include "FPWM.h'"
#include "co math.h"

// Software process declarations (see FPWM_sw.c)
extern void Producer(co_stream threshold_stream , co_stream pwm_stream, co_stream

iteration_stream , co_stream dna_stream ,
co_parameter filter);
extern void Consumer(co_stream start_stream , co_stream score_stream);

// This is the hardware ’pwm’ process

void PWM(co stream pwm _stream, co stream iteration stream , co_ stream dna_stream ,
counter stream , co_stream sum_stream)

int i, j, k, 1;
float nSamplePwm;

float pwm|[COLUMNS]|[ROWS];
intl16 dnalength;

int motifLength ;

char nSampleDna;

char sequence [MAX_SEQUENCE];
intl6 counter;

float sum;

intl6 nHitStart;

float nHitScore;

IF_SIM(int samplesread; int resultswritten;)

IF_SIM(cosim _logwindow log;)
IF_SIM(log = cosim_logwindow create ("PWM") ;)

do { // Hardware processes run forever
IF_SIM(samplesread=0; resultswritten =0;)

// Stating motif length
motifLength = ROWS;

co_stream



// Opening streams

co_stream_open(pwm_stream, O_RDONLY, FLOAT_TYPE) ;
co_stream_open(iteration_stream , O_RDONLY, INT_TYPE(MAX_STREAMWIDTH/4) ) ;
co_stream_open(dna_stream , O_RDONLY, CHAR_TYPE) ;
co_stream_open(counter_stream , O_WRONLY, INT_TYPE(MAX_ STREAMWIDTH/4) ) ;
co_stream open(sum_stream, O WRONLY, FLOAT TYPE) ;

// Reading pwm from stream
for (j=0; j<ROWS; j++) {
for (i=0; i<COLUMNS; i++) {
co_stream read (pwm _stream, &nSamplePwm, sizeof(float));

pwm[i][j] = (float)nSamplePwm ;
}
// Reading sequence length from stream
if (co_stream _read (iteration_stream , &dnaLength, sizeof(intl6)) == co_err_none) {
IF_SIM (cosim _logwindow _fwrite (log, "Sequence length is %d\n", dnaLength);)
}

// Reading portion of sequence from stream neccessary to start computation
for(k = 0; k < motifLength; k++) {
co_stream read (dna_stream , &nSampleDna, sizeof(char));
IF_SIM(samplesread++;)
sequence [k] = (char)nSampleDna;

// Initiating counter and stream
counter = 0;
sum = 0;

// Computing result scores for all subsequences
while (counter <= (dnaLength — motifLength)) {

// Calculating score for current position
for (1 = 0; 1 < motifLength; 1++) {
#pragma CO PIPELINE
#pragma CO SET stageDelay 32
switch (sequence[l4+counter]) {
case ((char) 'A’):
sum += pwm[O0][1];
break ;
case ((char)’C’):
sum += pwm[1][1];
break ;
case ((char) 'G’):
sum += pwm[2][1];
break ;
case ((char) 'T"):
sum += pwm[3][1];

break ;
default:
// Do nothing here
break ;
}

}
// Stating that counter and sum will be result data
nHitStart = counter;
nHitScore = sum;

// Sending result to filter
co_stream write(counter stream , &nHitStart, sizeof(intl6));
co_stream write(sum_stream, &nHitScore, sizeof(float));

IF_SIM(resultswritten4+;)
IF_SIM (cosim_logwindow _fwrite (log, "Wrote score %f to filter , for pattern starting at
position %d.\n", nHitScore, nHitStart);)

// Reading new sequence base from stream
i

f(co_stream_read (dna_stream , &nSampleDna, sizeof(char)) == co_err_none) {
IF_SIM(samplesread++;)
sequence[k] = (char)nSampleDna;
k++;
} else {
break;

}

// Updating counter and reseting sum
counter-+4-;
sum = 0;

}

// Closing streams

co_stream _close(pwm_stream) ;
co_stream_close(iteration_stream);
co_stream _close(dna_stream);
co_stream _close(counter_stream);
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co_stream_close(sum_stream) ;

IF_SIM (cosim _logwindow _fwrite (log, "Closing PWM process; Symbols in sequence read: %d,
results written: %d\n", samplesread, resultswritten);)
IF_SIM (break;) // Only run once for desktop simulation
} while (1)

}
//
// This is the hardware ’filter’ process
//
vo

id Filter (co_ stream threshold stream , co_stream counter stream , co_stream sum _stream,
co_ stream start stream , co_ stream score stream )
{
float threshold;
int filterMode;
intl6 nResultStart;
float nResultScore;
intl6 nHitStart;
float nHitScore;
IF_SIM(int resultsread; int resultswritten;)

IF_SIM(cosim _logwindow log;)
IF_SIM(log = cosim_logwindow create (" Filter");)

do { // Hardware processes run forever
IF_SIM(resultsread=0; resultswritten =0;)

// Opening streams

co_stream open(threshold stream , O RDONLY, FLOAT TYPE) ;

co_stream open(counter stream , O RDONLY, INT TYPE(MAX STREAMWIDTH/4) ) ;
co_stream_open(sum_stream, O_RDONLY, FLOAT_TYPE) ;

co_stream_open(start _stream , O_WRONLY, INT_TYPE(MAX_ STREAMWIDTH/4) ) ;
co_stream_open(score_stream, O_WRONLY, FLOAT_TYPE) ;

// Reading threshold value from stream; determining filter mode
i

f(co_stream_read (threshold_stream , &threshold , sizeof(float)) != co_err_none) {
// Filter is set to summation filter
filterMode = 1;

IF_SIM(cosim _logwindow fwrite (log, "Filter Mode: %d\n", filterMode) ;)

} else {

// Filter is set to threshold filter

filterMode = 2;

IF_SIM(cosim _logwindow fwrite (log, "Filter Mode: %d\n", filterMode) ;)
IF_SIM(cosim _logwindow fwrite (log, "Threshold value: %f\n", threshold);)

}

// Initiating filtered result data
nResultStart = 0;

nResultScore = 0;

// Reading computed results from stream

while (co_stream_read (counter_stream , &nHitStart, sizeof(intl6)) == co_err_none) {
if (co_stream _read (sum_stream, &nHitScore, sizeof(float)) — co_err_none) {

IF_SIM ( resﬁltsread++;)

if (filterMode == 1) { // Summation filter
nResultScore += nHitScore;
} else { // Threshold filter
if (nHitScore >= threshold) {
// Stating that the result score will pass through the filter
nResultStart = nHitStart;
nResultScore = nHitScore;

// Sending filtered result to consumer
co_stream _write(start_stream , &nResultStart, sizeof(intl6));
co_stream _write(score_stream, &nResultScore, sizeof(float));

IF_SIM(resultswritten 4+;)
IF_SIM(cosim _logwindow _fwrite (log, "Filtered score %f for pattern starting at

position %d.\n", nResultScore, nResultStart);)

}
}
}
}
if (filterMode == 1) { // Summation filter
// Sending result score from summation filter to consumer
co_stream write(start stream , &nResultStart, sizeof(int16));
co_stream write(score stream, &nResultScore, sizeof(float));
IF_SIM(resultswritten++4;)
IF_SIM(cosim _logwindow fwrite (log, "Filtered combined score %f for the entire sequence
.\n", nResultScore) ;)
}

// Closing streams
co_stream_close(threshold _stream);
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//
//
//

co_stream _close(counter_stream);
co_stream _close(sum_stream) ;
co_stream _close(start_stream);
co_stream _close(score_stream )

IF_SIM(cosim _logwindow fwrite (log,
"Closing Filter process; Results read: %d, results filtered: %d\n", resultsread ,

resultswritten) ;)

IF_SIM (break ;) // Only run once for desktop simulation
} while (1) ;

Impulse C configuration function

void config_ FPWM (void xarg)

{

}

co_stream threshold_stream ;
co_stream pwm_stream;
co_stream iteration_stream;
co_stream dna_stream;
co_stream counter_ stream;
co_stream sum_stream;
co_stream start_ stream;
co_stream score_stream;

co_process producer process;
CO_process pwm_ process;
co_process filter process;

CO_ process coOnsumer_process;
IF_SIM (cosim _logwindow _init () ;)

char xparameter;

if (arg != NULL) {
parameter = (charx) arg;
} else {

parameter = NULL;

threshold stream = co_stream create("threshold stream", FLOAT TYPE, MIN STREAMDEPTH) ;
pwm_stream = co_stream create('"pwm _ stream'", FLOAT TYPE, COLUMNS+ROWS) ;
iteration stream = co stream create("iteration stream", INT TYPE(MAX STREAMWIDTH/4) ,
MIN STREAMDEPTH) ; - B B B
dna_stream = co_stream create("dna stream", CHAR TYPE, MAX SEQUENCE) ;
counter stream = co_stream create('"counter stream'", INT TYPE(MAX STREAMWIDTH/4) ,
FILTER_QUEUE) ;
sum_stream = co_stream _create("sum_stream" , FLOAT_ TYPE, FILTER_QUEUE) ;
start _stream = co_stream _create("start_stream", INT_TYPE(MAX_STREAMWIDTH/4) , WRITE_QUEUE) ;
score_stream = co_stream_create('"score_stream", FLOAT_TYPE, WRITE_QUEUE) ;

producer _process = co_process_create("Producer", (co_function)Producer,
5,
threshold _stream ,
pwm _stream,
iteration stream ,
dna_stream ,
parameter) ;

pwm_ process = co_process create('"PWM", (co_ function)PWM,
5,
pwm _stream,
iteration stream ,
dna_stream ,
counter stream ,
sum _stream) ;

filter _process = co_process_create(" Filter", (co_function) Filter ,
5,
threshold _stream ,
counter stream ,
sum _stream,
start stream ,
score stream);

consumer process = co_ process create("Consumer" ,(co function)Consumer,
_ 20 _ _
start _stream ,
score stream ) ;

co_ process_config(pwm process, co_loc, "PE0");
co_process_config(filter _process , co_loc, "PE0");

co_architecture co_initialize (int param)

{
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return(co_architecture_create("FPWM","generic_vhdl" ,config FPWM, (void x*)param));
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FPWM2008

FPWM2008.h

LITTTELDD 000007000 77777777777777777777777777777777777717777777771777177

Impulse—C(c) 2003—2008 Impulse Accelerated Technologies, Inc.

/
/
/

S~
~

#define MAX STREAMWIDTH 64 /+ buffer width for FIFO in hardware x/
#define MIN_STREAMDEPTH 1 /% minimum buffer size for FIFO in hardware =/

#define DNA_ INPUT_FILE "dna.txt"
#define PWM_INPUT_FILE "pwm. txt"
#define OUTPUT_FILE "out.txt"

#define COLUMNS 4 /% A,C,G,T =/
#define ROWS 8 /% length of pattern/motif =/

#define MAX_SEQUENCE 300

#define FILTER_QUEUE MAX_ SEQUENCE /x FIFO length between PWM and Filter x/
#define WRITE_QUEUE ((MAX_SEQUENCEx10)/100) /% FIFO length between Filter and Consumer x*/

#define VALID CHAR(a) (((a) > 64) && ((a) < 91) && ((a) != 74) && ((a) != 79) && ((a) != 85)
7 (1) (0))

FPWM2008 sw.c

LIDTTLTLTTI D077 77077 777777777777777777777777777777777777777177177771777
Impulse—C(c) 2003—2008 Impulse Accelerated Technologies, Inc.

//
//
//
//
// FPWM2008_sw.c: includes the software test bench processes and
// main() function for the parallel floating—point version of
// the FPWM system .

//

//

//

See additional comments in FPWM2008.h.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "co.h"
#include "cosim log.h"
#include "FPWM?2008.h"

extern co_architecture co_initialize(void x);

// Globals

static char xpwmHeader, xdnaHeader;
static float *xpwm;

static char xdnaSequence;

static int pwmSize, dnaLength;
static int filterMode;

static charx pwmList [2];

//

// This is the function for reading an input sequence from a file , based on a function
// from the Impulse CoDeveloper example project 'SmithWatermanSerial’

//

void read sequence(const char xDnaFileName, FILE sxdnalnFile) {

char xbuffer = (charx)malloc(32«xsizeof(char));
char xsequence, =header;

int sequenceLength

int size = 32;

int status = 0;

int nonvalid;

char character;

// Opening sequence input file
dnalnFile = fopen (DnaFileName, "r");

if ( dnalnFile == NULL ) {
fprintf(stderr, "Error opening sequence input file %s\n", DnaFileName);
character = getc (stdin);
exit(—1);

// Finding the size of the header line
status = fread (buffer, sizeof(char), 1, dnalnFile);

// Making sure the sequence is in the correct input format
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if (buffer[0] != '>") {
printf("Sequence in %s must be in FASTA format , starting with '>’\n", DnaFileName);

// Triming off non—valid characters before sequence
buffer [0] = ’\n’;
while (! (VALID CHAR((int)buffer[0]))) {

fread (buffer , sizeof(char), 1, dnalnFile);

// Finding the size of the sequence, after pruning the header line
fscanf(dnalInFile, "%s", buffer);
sequencelength = 0;
nonvalid = 0;
while (fread (buffer , sizeof(char), 1, dnalnFile)) {
if (VALID_CHAR( (int ) buffer [0]))
sequenceLength 4+,
if (!(VALID_CHAR((int)buffer[0])))
nonvalid++;
}

// Closing sequence input file
if (fclose (dnalnFile) != 0) {
printf (" Error closing sequence input file\n");

// Allocating memory to store the sequence and header line
header = (charx)malloc(sizexsizeof(char));
sequence = (charx)malloc((sequenceLength + 1)xsizeof(char));

// Reopening sequence input file
dnalnFile = fopen (DnaFileName, "r");

if( dnalnFile = NULL ){
printf("Error opening sequence input file %s file\n", DnaFileName) ;
exit(—1);

s

// Pruning ’'>
fread (buffer, sizeof(char), 1, dnalnFile);

// Reading sequence name

status = fscanf(dnalnFile, "%s", header);
if (status <= 0 || status > size){
printf("Error reading %s file header\n", DnaFileName);
exit(—1);
}
size = 1; /% Why shouldn’t this value be 0?7 Would cause an error x/
// Reading the sequence
printf("\nReading sequence %s: ", header);

while (fread (buffer, sizeof(char), 1, dnalnFile)) {
if (VALID_CHAR((int)buffer[0])) {
sequence[size++] = buffer [0];

}
printf("done\n");

if (size —1 != sequenceLength){
printf (" Error reading %s file sequence\n", DnaFileName);
exit(—1);

// Closing sequence input file
if (fclose(dnalnFile) != 0) {
printf("Error closing sequence input file\n");

}

// Saving sequence data
dnaHeader = header;
dnaSequence sequence;
dnaLength = sequenceLength

free (buffer);

//
// This is the function for reading a filter threshold from file
//
fl

oat read threshold(const char % FilterFileName, FILE xfilterInFile) {
char xheader;

int status = 0;

int size = 32; /x size of header x/

float threshold;

header = (char*)malloc(sizexsizeof(char));

// Reading matrix name
status = fscanf(filterInFile , "%s", header);



if (status <= 0 || status > size){
printf("Error reading %s file header\n", FilterFileName);
exit(—1);

// Reading threshold value
fscanf(filterInFile , "%f", &threshold);
free (header);

// Returning threshold wvalue
return threshold;

//
// This is the function for calculating pwm-values from count—values
1/
fl

oat convert_value (float ¢, float N) {
double s = 0.25;

double P = 0.25;

double p, valueTemp ;

float pwmValueTemp;

p = (double) ((c+s)/(N+(4%s)));
valueTemp = (double) (p/P);
pwmValueTemp = (float) log(valueTemp);

return pwmValueTemp ;

//
// This is the function for converting an alignment matrix to pwm
1/
fl

oat xconvert_matrix (float * matrix) {

int i, j;
float xpwmTemp;
double N;

pwmTemp = (float*)malloc(ROWS+xCOLUMNS«sizeof(float));

for (j = 0; j < ROWS; j++) {
N = (matrix [ j*COLUMNS+0|+ matrix [ j*COLUMNS+1]+matrix [ j*COLUMNSH2]+matrix [ j *COLUMNS+3]) ;
for (i = 0; i < COLUMNS; i++4) {

pwmTemp[ j *COLUMNSti | = convert value (matrix[j*COLUMNSti], N);

}

return pwmTemp;
}
//
// This is the function for reading an input matrix from a file and converting it to a pwm,
// based on a function from the Impulse CoDeveloper example project ’'SmithWatermanSerial’
//
void read_matrix (const char * PwmFileName, FILE xpwmlInFile) {

char xbuffer = (charx)malloc(32«xsizeof(char));

char xheader;

int status = 0;

int size = 32; /x size of header =/

int matrixSize = COLUMNS«xROWS;
float *matrix;
int i, j;

// Finding the size of the header line and pruning ’>~

status = fread (buffer, sizeof(char), 1, pwmlInFile);
// Making sure the next matrix have been found
while (buffer [0] != ">~

status = fread (buffer, sizeof(char), 1, pwmlInFile);
}
// Allocating memory to store header line and matrix
header = (charx)malloc(sizexsizeof(char));
matrix = (floats*)malloc(matrixSizexsizeof(float));

// Reading matrix name

status = fscanf(pwmlInFile, "%s", header);

if (status <= 0 || status > size){
printf("Error reading %s file header\n", PwmFileName);
exit(—1);

// Reading and storing the matrix
printf("\nReading matrix %s: ", header);
for (j — 03 j < ROWS; j++4) {
for(i = 0; i < COLUMNS; i++) {
fscanf (pwmlInFile, "%f", &matrix[ j*COLUMNS}i ]) ;
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}
}
printf("done\n");

// Saving pwm data

pwmHeader = header;
printf("Converting %s: ", header);
pwm = convert matrix(matrix);

printf("done\n");
pwmSize = matrixSize ;

free (matrix);
free (buffer);

//
// This is the software ’'reader’ process
/
v

oid Producer(co_stream threshold_0,
co_stream iteration_0 ,
co_stream iteration_1 , co_stream dna_0,

int ¢

IF_SIM(cosim _logwindow log =
// Opening streams

co_stream open(threshold 0, O WRONLY, FLOAT TYPE);
co_stream open(threshold 1, O WRONLY, FLOAT TYPE);
co_stream open(pwm_0, O WRONLY, FLOAT TYPE) ;
co_stream open(pwm_1, O WRONLY, FLOAT TYPE) ;

co_stream threshold_1,

co_stream dna_1,

co_parameter

cosim logwindow create ("Producer");)

co_stream open(iteration_0 , O WRONLY, INT TYPE(MAX STREAMWIDTH/4)) ;

co_stream_open(iteration _ B
co_stream_open(dna_0, O_WRONLY, CHAR_TYPE) ;
co_stream_open(dna_1, O_WRONLY, CHAR_TYPE) ;
// Preparing to send thresholds
int n;

float nSampleThreshold;

// Preparing to send matrices
int i, j;

float nSamplePwm;

// Preparing to send
int k;

char nSampleDna;

sequence

// Reading sequence from input file
const char % DnaFileName = DNA_INPUT_FILE;
FILE * dnalnFile;

read_sequence(DnaFileName, dnalnFile);

// Determining type of filter based on command line
if(filters == NULL) {

// Filter is set to summation filter

filterMode = 1;
} else {

// Filter is set to threshold filter

filterMode = 2;

// Opening threshold input file

const char x FilterFileName = filters;

FILE % filterInFile;

filterInFile = fopen(FilterFileName,

if ( filterInFile == NULL ) {
fprintf(stderr, "Error opening filter

npny

¢ = getc(stdin);
exit(—1);
// Reading threshold value for first matrix from

nSampleThreshold = read threshold(FilterFileName,

input file %s\n",

input

1, O_WRONLY, INT_TYPE(MAX_ STREAMWIDTH/4) ) ;

argument

file and
filterInFile);

co_stream _write(threshold 0, &nSampleThreshold, sizeof(float));
// Reading threshold value for second matrix from input file and sending it

nSampleThreshold = read threshold(FilterFileName,

filterInFile);

co stream write(threshold 1, &nSampleThreshold, sizeof(float));

file
0) {

closing filter

// Closing threshold input
if (fclose(filterInFile)
printf("Error

input file\n");
¥

// Opening matrix input file
const char % PwmFileName = PWM_INPUT_FILE;
FILE * pwmlInFile;

pwmlInFile = fopen (PwmFileName, "r");

co_stream pwm_0,

co_stream pwm_1,

filters)

FilterFileName);

sending it
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if ( pwmlInFile == NULL ) {
fprintf(stderr, "Error opening matrix input file %s\n", PwmFileName) ;
¢ = getc(stdin);
exit(—1);

// Reading first input matrix from input file and converting it to pwm
read matrix (PwmFileName, pwmlInFile);
pwmList [0] = (chars*)pwmHeader;

// Sending first matrix
printf("Sending %s: ", pwmList[0]) ;
for (i = 0; i < pwmSize; i+4) {
nSamplePwm = (float )pwml[i];
co_stream _write (pwm_0, &nSamplePwm, sizeof(float));

printf("done\n");
free (pwm) ;

// Reading second input matrix from input file and converting it to pwm
read _matrix (PwmFileName, pwmlInFile);
pwmList [1] = (charx*)pwmHeader;

// Sending second matrix
printf("Sending %s: ", pwmList[1]);
for(i = 0; i < pwmSize; i++) {
nSamplePwm = (float )pwm]|[i];
co_stream write(pwm_1, &nSamplePwm, sizeof(float));

printf("done\n");
free (pwm) ;

// Closing matrix input file
if (fclose (pwmlInFile) = 0) {
printf("Error closing matrix input file\n");

}

// Sending sequence length and actual sequence
co_stream_write (iteration_0 , &dnaLength, sizeof(intl6));
co_stream write (iteration 1, &dnalength, sizeof(intl16));
printf("\nSending %s...\n\n", dnaHeader);
for(k = 1; k <= dnalLength; k+4++) {

nSampleDna = (char)dnaSequence|[k];

co stream write(dna_ 0, &nSampleDna, sizeof(char));

co stream write(dna 1, &nSampleDna, sizeof(char));

printf("done sending %s\n", dnaHeader);
free (dnaSequence) ;

// Closing streams
co_stream_close(threshold_0);
co_stream_close(threshold _1);
co_stream_close(pwm_0) ;
co_stream_close(pwm_1);
co_stream_close(iteration_0);
co_stream_close(iteration_1);
co_stream_close(dna_0);
co_stream close(dna_1);

//

// This is the software ’writer’ process

//

void Consumer(co_stream start_ 0, co_ stream score 0, co_ stream start 1, co_

{

intl6 nResultStart;
int resultEnd;
float nResultScore;
unsigned int count = 0;
const char % FileName = OUTPUT_FILE;
FILE % outFile;

IF_SIM (cosim _logwindow log = cosim_logwindow_create ("Consumer") ;)

// Opening output file

outFile = fopen (FileName, "w");

if ( outFile = NULL ) {
fprintf(stderr, "Error opening file %s for writing\n", FileName);
exit(—1);

}

// Opening streams

co_stream_open(start _ O_RDONLY, INT_TYPE(MAX_ STREAMWIDTH/4) ) ;
co_stream_open(score _ O_RDONLY, FLOAT _TYPE) ;
co_stream_open(start _ O_RDONLY, INT_TYPE(MAX_STREAMWIDTH/4)) ;
co_stream_open(score_ O_RDONLY, FLOAT _TYPE) ;

score

-
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IF_SIM (cosim _logwindow _write(log, "Consumer reading results...\n");)

// Reading filtered results streamed from first filter; then writing them to screen and

file
while (co_stream_read (start_0, &nResultStart, sizeof(intl6)) —= co_err_none) {
if (co_stream read (score 0, &nResultScore, sizeof(float)) == co_err none) {
if (filterMode == 1) { // Summation filter

resultEnd = dnalLength — 1;
} else { // Threshold filter
resultEnd = nResultStart + (ROWS-1);

}

fprintf(outFile , "%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmList[0],
nResultScore) ;

IF_SIM(cosim_logwindow _fwrite (log, "Result: %s %d %d %s %f\n", dnaHeader, nResultStart ,
resultEnd , pwmList[0], nResultScore);)

printf ("%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmList[0], nResultScore

)
count+-+;
}
}
// Reading filtered results streamed from second filter; then writing them to screen and
file
while (co_ stream read (start_ 1, &nResultStart, sizeof(intl16)) == co_err none) {
if (co_stream read (score_ 1, &nResultScore, sizeof(float)) == co_err_ none) {
if (filterMode == 1) { // Summation filter
resultEnd = dnalLength — 1;
} else { // Threshold filter
resultEnd = nResultStart + (ROWS-1);
}
fprintf(outFile , "%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmList[1],
nResultScore) ;
IF_SIM(cosim_logwindow _fwrite (log, "Result: %s %d %d %s %f\n", dnaHeader, nResultStart ,
resultEnd , pwmList[1], nResultScore);)
printf ("%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmList[1], nResultScore
)3
count+-+;
}
}
IF_SIM(cosim_logwindow fwrite (log, "Consumer read %d filtered results\n", count);)

printf("\n\nThe application produced %d filtered scores for %s\n", count, dnaHeader);

free (dnaHeader) ;
free (pwmHeader) ;

// Closing output file
if (fclose(outFile) != 0) {
printf (" Error closing result output file\n");

// Closing streams

co_stream _close(start_0);
co_stream _close(score_0);
co_stream _close(start_1);
co_stream _close(score_1);

/
/ Impulse C Main Function
/
n

t main(int argc, char xxargv)

_ee e e

co architecture my arch;
void xparam = NULL;
char xfilter;

char =xarg;

int c¢;

printf("\n\n== IMPULSE-C APPLICATION: FPWM 2008 ==\n");
switch (arge) {

case 1:
printf("Executing with summation filter\n");
my_arch = co_initialize (param);
co execute(my arch);
break ; -
case 2:
printf("Executing with threshold filter\n");
arg = (charxx)argv;
filter = (charx)arg|[1];
my arch = co initialize (filter);
co execute(my arch);
break ; -
default:
printf("\nWrong use of parameters!\n");
break;
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printf (" Application complete! Press the Enter key to continue...\n");
¢ = gete(stdin);

return (0) ;

FPWM2008 hw.c

%/////////////////////////////////////////////////////////////////////////////
// Impulse—C(c) 2003—2008 Impulse Accelerated Technologies, Inc.

//

// FPWM2008 hw.c: includes the hardware processes and configuration

// function for the parallel floating—point version of the FPWM
//
//
//
//

system .

See additional comments in FPWM2008.h.

#include "co.h"
#include "cosim_log.h"
#include "FPWM2008. h"
#include "co_math.h"

// Software process declarations (see FPWM2008_sw.c)

extern void Producer(co_ stream threshold 0, co_ stream threshold 1, co_ stream pwm_ 0,

pwm_1, co_ stream iteration_0 ,
co_ stream iteration 1, co_ stream dna 0, co_ stream dna_ 1, co_ parameter filters);

extern void Consumer(coistream start 0, co_stream score_ 0, co_stream start_ 1, co_ stream

score 1);

// This is the hardware ’pwm’ process
void PWM(co_stream pwm, co_stream iteration , co_stream dna, co_stream counter, co_stream
co_parameter nlnstance)

int i, j, k, l;

float nSamplePwm ;

float matrix [COLUMNS][ROWS];
int16 dnaLength ;

int motifLength ;

char nSampleDna;

char sequence [MAX SEQUENCE];
intl6 nCounter;

float nSum;

intl6 nHitStart ;

float nHitScore;

IF_SIM(int samplesread; int resultswritten ;)

IF_SIM (cosim _logwindow log3;)
IF_SIM(log = cosim_logwindow _create ("PWM") ;)

do { // Hardware processes run forever
IF_SIM(samplesread=0; resultswritten=0;)

// Stating motif length
motifLength = ROWS;

// Opening streams

co_stream open(pwm, O RDONLY, FLOAT TYPE) ;

co_stream open(iteration , O RDONLY, INT TYPE(MAX STREAMWIDTH/4)) ;
co_stream open(dna, O RDONLY, CHAR TYPE);

co_stream open(counter , O WRONLY, INT TYPE(MAX STREAMWIDTH/4) ) ;
co_stream open(sum, O WRONLY, FLOAT TYPE) ;

// Reading pwm from stream
for (j—0; j<ROWS; j++) {
for (i=0; i<COLUMNS; i++) {
co_stream_read (pwm, &nSamplePwm, sizeof(float));

matrix[i1][j] = (float)nSamplePwm ;
}
}
// Reading sequence length from stream
if(co_stream read(iteration , &dnalLength, sizeof(intl6)) = co_err none) {
IF_SIM(cosim _logwindow fwrite (log, "Sequence length is %d\n", dnaLength);)
}

// Reading portion of sequence from stream neccessary to start computation
for(k = 0; k < motifLength; k++4) {

co_stream read (dna, &nSampleDna, sizeof(char));

IF_SIM(samplesread++;)

sequence|[k] = (char)nSampleDna;

}

co_stream

sum ,
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// Initiating counter and sum
nCounter = 0;
nSum = 0;

// Computing result scores for all subsequences
while (nCounter <= (dnaLength — motifLength)) {

// Calculating score for current position
for (1 = 0; 1 < motifLength; 1+4++4) {
#pragma CO PIPELINE
#pragma CO SET stageDelay 32
switch (sequence|[14nCounter]) {
case ((char)’A’):
nSum += matrix[0][1];
break ;
case ((char)’C’):
nSum += matrix[1][1];
break ;
case ((char)'G’):
nSum += matrix[2][1];
break ;
case ((char) 'T7):
nSum += matrix[3][1];

break ;
default :
// Do nothing here.
break ;
}

}
// Stating that counter and sum will be result data
nHitStart = nCounter;
nHitScore = nSum;

// Sending result to filter
co_stream _write(counter , &nHitStart, sizeof(intl6));
co_stream _write (sum, &nHitScore, sizeof(float));

IF_SIM(resultswritten++4;)
IF_SIM(cosim _logwindow fwrite (log, "Wrote score %f to filter , for pattern starting at
position %d.\n", nHitScore, nHitStart);)

// Reading new sequence base from stream

if (co_stream read (dna, &nSampleDna, sizeof(char)) == co_ err none) {
IF_SIM(samplesread++;)
sequence [k] = (char)nSampleDna;
k++;
} else {
break ;
}
// Updating counter and reseting sum
nCounter++4;
nSum = 0;

}

// Closing streams
co_stream close(pwm);
co_stream close(iteration);
co_stream close(dna);
co_stream close(counter);
co_stream close(sum);

IF_SIM(cosim logwindow fwrite (log, "Closing PWM process %d; Symbols in sequence read: %d,
results written: %d\n", nlnstance, samplesread, resultswritten)j)
IF_SIM (break;) // Only run once for desktop simulation
} while (1) ;

}
//
// This is the hardware ’'filter ' process
//
vo

id Filter (co_stream threshold, co_stream counter, co_stream sum, co_stream start, co_stream
score , co_parameter nlInstance)
{
float nThreshold;
int filterMode;
intl6 nResultStart;
float nResultScore;
intl6 nHitStart;
float nHitScore;
IF_SIM(int resultsread; int resultswritten ;)

IF_SIM (cosim _logwindow log}:)
IF_SIM(log = cosim_logwindow _create (" Filter") ;)

do { // Hardware processes run forever
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IF_SIM(resultsread =0; resultswritten=0;)

// Opening streams

co_stream_open(threshold , O_RDONLY, FLOAT TYPE) ;
co_stream_open(counter , O_RDONLY, INT_TYPE(MAX_STREAMWIDTH/4) ) ;
co_stream open(sum, O RDONLY, FLOAT TYPE) ;

co_stream open(start, O WRONLY, INT TYPE(MAX STREAMWIDTH/4)) ;
co_stream open(score, O WRONLY, FLOAT TYPE) ;

// Reading threshold value from stream; determining filter mode

if (co stream read (threshold , &nThreshold, sizeof(float)) != co err none) {
// Filter is set to summation filter N N
filterMode = 1;
IF_SIM (cosim _logwindow _fwrite (log, "Filter Mode: %d\n", filterMode);)

} else {
// Filter is set to threshold filter
filterMode = 2;
IF_SIM (cosim _logwindow _fwrite (log, "Filter Mode: %d\n", filterMode);)
IF_SIM (cosim _logwindow _fwrite (log, "Threshold value: %f\n", nThreshold);)

}

// Initiating filtered result data
nResultStart = 0;
nResultScore = 0;

// Read computed results from stream
while (co_stream read (counter, &nHitStart, sizeof(intl6)) = co_err none) {
if (co stream read (sum, &nHitScore, sizeof(float)) = co_err_ none) {
IF_SIM(resultsread++;)

if (filterMode == 1) { // Summation filter
nResultScore += nHitScore;
} else { // Threshold filter
if (nHitScore >= nThreshold) {
// Stating that the result score will pass through the filter
nResultStart = nHitStart;
nResultScore = nHitScore;

// Sending filtered result to consumer
co_stream write(start, &nResultStart, sizeof(intl6));
co_stream write(score, &nResultScore, sizeof(float));

IF_SIM(resultswritten++4;)
IF_SIM(cosim _logwindow fwrite (log, "Filtered score %f for pattern starting at
position %d.\n", nResultScore, nResultStart);)

}
}
}
}
if (filterMode == 1) { // Summation filter
// Sending result score from summation filter to consumer
co_stream_write(start , &nResultStart , sizeof(intl6));
co_stream_write(score, &nResultScore, sizeof(float));
IF_SIM(resultswritten44;)
IF_SIM (cosim_logwindow _fwrite (log, "Filtered combined score %f for the entire sequence
.An", nResultScore) ;)
}

// Closing streams
co_stream close(threshold);
co_stream close(counter);
co_stream close(sum) ;
co_stream close(start);
co_stream _close(score);

IF_SIM (cosim _logwindow _fwrite (log ,
"Closing filter process %d; Results read: %d, results filtered: %d\n", nlnstance,
resultsread , resultswritten);)

IF_SIM (break;) // Only run once for desktop simulation
} while (1)
}

//

// Impulse C configuration function

void config FPWM2008(void xarg)
{
co_stream threshold 0;
co_stream threshold 1;
co_stream pwm_0;
co_stream pwm_1;
co_stream iteration_0;
co_stream iteration_1;
co_stream dna_0;
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co_stream dna_1;
co_stream counter_0;
co_stream sum_0;
co_stream counter_1;
co_stream sum_1;
co_stream start 0
co_stream score_ 0
co_stream start 1
co_stream score_1;

co_process producer process;

co_process PWMO;
co_process PWMI;
co_process Filter0;
co_process Filterl;

CO_process consumer_process;
IF_SIM (cosim _logwindow _init () ;)

char xparameters;

if (arg != NULL) {
parameters = (charx) arg;
} else {

parameters = NULL;

co_stream create("threshold 0",

threshold 0 =
1 = i

threshold 1 = co_stream create("threshold

FLOAT_ TYPE, MIN_ STREAMDEPTH) ;
FLOAT TYPE, MIN STREAMDEPTH) ;

pwm_ 0 = co_stream create("pwm_ 0",
pwm_1 = co_ stream create("pwm_ 1",

FLOAT TYPE,
FLOAT TYPE,

COLUMNS*ROWS) ;
COLUMNS*ROWS) ;

co_stream create("iteration 0",

INT TYPE(MAX STREAMWIDTH/4) , MIN_ STREAMDEPTH)

iteration_ 0 =
H

iteration_1 = co_stream_create("iteration_1", INT_TYPE(MAX_STREAMWIDTH/4) , MIN_STREAMDEPTH)
5

dna_0 = co_stream _create("dna_0",

dna_1 = co_stream _create("dna_1", L
counter _0 = co_stream _create("counter_0",

CHAR_TYPE, MAX_SEQUENCE) ;
CHAR_TYPE, MAX_SEQUENCE) ;
INT_TYPE(MAX_STREAMWIDTH/4) , FILTER_QUEUE) ;

sum_0 = co_stream _create("sum_0", FLOAT_TYPE, FILTER_QUEUE) ;

counter 1 = co_stream _create("counter_1", INT_TYPE(MAX_STREAMWIDTH/4) , FILTER_QUEUE) ;
sum_1 = co_stream create("sum_ 1", FLOAT TYPE, FILTER_ QUEUE) ;

start 0 = co_stream create("start 0", INT TYPE(MAX STREAMWIDTH/4) , WRITE QUEUE) ;
score 0 = co_stream create("score 0", FLOAT TYPE, WRITE QUEUE) ;

start 1 = co_stream create("start 1", INT TYPE(MAX STREAMWIDTH/4) , WRITE QUEUE) ;
score 1 = co_stream create("score 1", FLOAT TYPE, WRITE QUEUE) ;

producer process = co_process create("Producer", (co_ function)Producer,

9,
threshold 0,
threshold _1,
pwm_0,
pwm_1,
iteration_0 ,
iteration_1 ,
dna_0,
dna_1,
parameters ) ;

PWMO = co_process create("PWMO",

s

pwm_0,
iteration_0 ,

dna_ 0,

counter O,

sum_0,

0);

(co_function)PWM,

PWMl = co_process_create("PWMIL",
6,
pwm_1,
iteration_1,
dna_1,
counter_ 1,
sum_1,
1)

(co_function)PWM,

Filter0 = co_process_ create(" Filter0",
6,
threshold 0,
counter O,
sum_0,
start 0,
score_ O,
0);

(co_function) Filter ,

Filterl = co_process_create("Filterl",
6,
threshold_ 1,

counter_ 1,

(co_function) Filter ,
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sum_1,
start _ 1,
score_ 1,
1)
consumer process = co_process_ create('"Consumer" ,(co_function)Consumer,
s
start 0,
score_ O,
start 1

)
score 1);

co_process config(PWMO, co_ loc, "PE0");
co_process_config(PWMIL, co_loc, "PE0");
co_process_config(Filter0, co_loc, "PE0");

co_process_config(Filterl , co_loc, "PE0");

}

co_architecture co_initialize (int param)

{

return(co_architecture_create("FPWM2008","cray_rt" ,config_ FPWM2008, (void *)param));
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FPWMi

FPWDMi.h

??/////////////////////////////////////////////////////////////////////////////
// Impulse—C(c) 2003—2008 Impulse Accelerated Technologies, Inc.
//

#define MAX STREAMWIDTH 64 /+ buffer width for FIFO in hardware x/
#define MIN_STREAMDEPTH 1 /% minimum buffer size for FIFO in hardware x/

#define DNA INPUT_FILE "dna.txt"
#define PWM_INPUT_FILE "pwm. txt"
#define OUTPUT_FILE "out.txt"

#define COLUMNS 4 /+ A,C,G,T x/
#define ROWS 8 /x length of pattern/motif x/

#define MAX_SEQUENCE 300

#define FILTER_QUEUE MAX_ SEQUENCE /% FIFO length between PWM and Filter =/
#define WRITE_QUEUE ((MAX_SEQUENCEx10) /100) /% FIFO length between Filter and Consumer =/

#define VALID CHAR(a) (((a) > 64) && ((a) < 91) && ((a) != 74) && ((a) !'= 79) && ((a) != 85)
7 (1) = (0))

FPWMi_ sw.c

[I1T0077 007700077007 77777777777777777777777777777777777777777777777777171777
Impulse—C(c) 2003—2008 Impulse Accelerated Technologies, Inc.

//
//
//
//
// FPWMi_sw.c: includes the software test bench processes and
// main() function for the basic "fixed—point" version of the
// FPWM system .

//

//

//

See additional comments in FPWMi.h.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "co.h'"
#include "cosim log.h"
#include "FPWMi. h"

extern co_architecture co_initialize (void x);

// Globals

static char xpwmHeader, *dnaHeader;
static int *pwm;

static char xdnaSequence;

static int pwmSize, dnaLength;
static int filterMode;

//

// This is the function for encoding a floating—point value to fixed—point,
// taken from the software framework of the existing VHDL solution

//

int fpEncode (float x) {

return x *x 16777216;
}

//

// This is the function for decoding a fixed—point value back to floating—point,
// taken from the software framework of the existing VHDL solution
//
fl

oat fpDecode(int x) {
return (float) ((x)/16777216.0) ;
}

//
// This is the function for calculating pwm-values from count—values
//
int convert value(float ¢, float N) {
double s = 0.25;
double P = 0.25;
double p, valueTemp;
float pwmValueTemp ;
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p = (double) ((cts)/(N+(4%s)));
valueTemp = (double) (p/P);
pwmValueTemp = (float) log(valueTemp);

return fpEncode (pwmValueTemp) ;

//
// This is the function for converting an alignment matrix to a pwm
//
in

t xconvert matrix (float * matrix) {

int i, j;
int xpwmTemp;
double N;

pwmTemp = (int x)malloc (ROWSxCOLUMNS«sizeof(int)):
for (j — 05 j < ROWS; j++) {
N = (matrix[j*COLUMNS+0]+matrix [ j*COLUMNS+1]+matrix [ j*COLUMNS+2]+matrix [ j*COLUMNS+3]) ;
for (i = 0; i < COLUMNS; i+-+)
pwmTemp|[ j *COLUMNSti ] = convert_value (matrix[j+«COLUMNS+i], N);

}

return pwmTemp;

his is the function for reading an input matrix from a file and converting it to a pwm,
ased on a function from the Impulse CoDeveloper example project 'SmithWatermanSerial’

o o

oid read_matrix (const char x PwmFileName, FILE spwmlInFile) {
char xbuffer (charx)malloc(32«xsizeof(char));

char xheader;

int status = 0;

int size = 32; /x size of header =/

int matrixSize = COLUMNS«xROWS;

float *matrix;

int i, j;

char character;

// Opening matrix input file

pwmlInFile = fopen (PwmFileName, "r'");

if ( pwmlInFile == NULL ) {
fprintf(stderr, "Error opening matrix input file %s\n", PwmFileName) ;
character = getc (stdin);
exit(—1);

}

// Finding the size of the header line
status = fread (buffer, sizeof(char), 1, pwmlInFile);

// Making sure the matrix is in the correct input format
if (buffer [0] = '>")
printf("Matrix in %s must be in FASTA format , starting with '>’\n", PwmFileName);

}
// Closing matrix input file
if (fclose (pwmlInFile) != 0) {

printf("Error closing matrix input file\n");
}
// Allocating memory to store header line
header = (charx)malloc(sizexsizeof(char));

matrix = (float=*)malloc(matrixSizexsizeof(float));

// Reopening matrix input file

pwmlInFile = fopen (PwmFileName, "r");

if ( pwmInFile == NULL ){
printf("Error opening matrix input file %s file\n", PwmFileName);
exit(—1);

// Pruning ’>’
fread (buffer , sizeof(char), 1, pwmlInFile);

// Reading matrix name

status = fscanf(pwmlInFile, "%s", header);

if (status <= 0 || status > size){
printf("Error reading %s file header\n", PwmFileName);
exit(—1);

// Reading and storing the matrix
printf("\nReading matrix %s: ", header);
for(j — 0; j < ROWS; j++4) {

for(i = 0; i < COLUMNS; i++) {
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fscanf(pwmlInFile, "%f", &matrix[j*COLUMNS+i]) ;

}
printf("done\n");
// Closing matrix input file

if (fclose (pwmlInFile) != 0) {
printf (" Error closing matrix input file\n");

// Saving pwm data

pwmHeader = header;
printf("Converting %s: ", header);
pwm = convert_matrix(matrix);
printf("done\n");

pwmSize = matrixSize ;

free (matrix);
free (buffer);

}

//

// This is the function for reading an input sequence from a file , based on a function
// from the Impulse CoDeveloper example project *SmithWatermanSerial’

//

void read sequence(const char xDnaFileName, FILE xdnalnFile) {

char xbuffer = (charx)malloc(32«sizeof(char));
char xsequence, xheader;

int sequencelLength;

int size = 32;

int status = 0;

int nonvalid;

char character;

// Opening sequence input file

dnalnFile = fopen (DnaFileName, "r");

if ( dnalnFile == NULL ) {
fprintf(stderr, "Error opening sequence input file %s\n", DnaFileName);
character = getc (stdin);
exit(—1);

// Finding the size of header line
status = fread (buffer, sizeof(char), 1, dnalnFile);

// Making sure the sequence is in the correct input format
if (buffer[0] = '>7) {
printf("Sequence in %s must be in FASTA format, starting with >>’\n", DnaFileName) ;

}
// Triming off non—valid characters before sequence
buffer [0] = ’\n’;

while (! (VALID_CHAR((int)buffer [0]))) {
fread (buffer , sizeof(char), 1, dnalnFile);
}

// Finding the size of the sequence, after pruning the header line
fscanf(dnalInFile, "%s", buffer);
sequencelength = 0;
nonvalid = 0;
while (fread (buffer, sizeof(char), 1, dnalnFile)) {
if (VALID CHAR((int )buffer [0]))

sequencelLength++4;
if (!(VALID CHAR((int)buffer[0])))
nonvalid++;
}
// Closing sequence input file
if(fclose(dnalnFile) != 0) {
printf("Error closing sequence input file\n");
}
// Allocating memory to store the sequence and header line
header = (char*)malloc(sizexsizeof(char));
sequence = (charx)malloc((sequencelLength + 1)xsizeof(char));

// Reopening sequence input file

dnalnFile = fopen (DnaFileName, "r");

if( dnalnFile == NULL ){
printf("Error opening sequence input file %s file\n", DnaFileName);
exit(—1);

// Pruning ’'>°
fread (buffer, sizeof(char), 1, dnalnFile);

// Reading sequence name
status = fscanf(dnalnFile, "%s", header);
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if (status <= 0 || status > size){
printf("Error reading %s file header\n", DnaFileName);
exit(—1);
}
size = 1; /% Why shouldn’t this value be 0?7 Would cause an error x/
//Reading the sequence
printf("\nReading sequence %s: ", header);

while (fread (buffer, sizeof(char), 1, dnalnFile)) {
if (VALID CHAR((int)buffer[0])) {
sequence|size++4] = buffer [0];

printf("done\n");

if (size —1 !|= sequenceLength){
printf("Error reading %s file sequence\n", DnaFileName);
exit(—1);

}
// Closing sequence input file
if (fclose(dnalnFile) = 0) {
printf("Error closing sequence input file\n");

}

// Save sequence data
dnaHeader = header;
dnaSequence = sequence;
dnalength = sequencelLength;

free(buffer);

// This is the software ’'reader’ process
void Producer(co_stream threshold_stream , co_stream pwm_stream, co_stream iteration_stream ,
co_stream dna_stream , co_parameter filter)

float threshold;
IF_SIM(cosim _logwindow log = cosim_logwindow create ("Producer");)

// Opening streams

co_stream open(threshold stream , O WRONLY, INT TYPE(MAX STREAMWIDTH/2)) ;
co_stream open(pwm _stream, O WRONLY, INT TYPE(MAX STREAMWIDTH/2) ) ;
co_stream open(dna_stream , O WRONLY, CHAR TYPE) ;

co_stream open(iteration stream , O WRONLY, INT TYPE(MAX STREAMWIDTH/4) ) ;

// Determining type of filter based on command line argument
i

f(filter == NULL) {

// Filter is set to summation filter
filterMode = 1;

} else {

// Filter is set to threshold filter

filterMode = 2;

threshold = fpEncode(atof(filter));

co_stream _write(threshold _stream , &threshold , sizeof(int32));

}

// Reading matrix from input file and converting it to pwm
const char x PwmFileName = PWM INPUT FILE;

FILE % pwmlInFile; - -

read matrix (PwmFileName, pwmlInFile);

// Sending matrix

int i, j;

int nSamplePwm;

printf("Sending %s: ", pwmHeader)

for(i = 0; i < pwmSize; i++4) {
nSamplePwm = (int)pwm][i];

co_stream _write (pwm_stream, &nSamplePwm, sizeof(int32));
printf("done\n");
free (pwm) ;

// Reading sequence from input file

const char x DnaFileName = DNA INPUT FILE;
FILE % dnalnFile; - -
read sequence(DnaFileName, dnalnFile);

// Sending sequence length and actual sequence
int k;
char nSampleDna;
co_stream_write (iteration_stream , &dnaLength, sizeof(intl6));
printf("Sending %s...\n\n", dnaHeader);
for(k = 1; k <= dnaLength; k++) {
nSampleDna = (char)dnaSequence[k];
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co_stream_write (dna_stream , &nSampleDna, sizeof(char));
printf("done sending %s\n", dnaHeader);
free (dnaSequence) ;

// Closing streams

co_stream close(threshold stream );
co_stream close(pwm _stream) ;
co_stream close(iteration stream);
co_stream close(dna_stream);

// This is the software ’writer’ process
//
void Consumer(co_stream start_stream , co_stream score_stream)
{

intl6 nResultStart;

int resultEnd;

int32 nResultScore;

float resultScore;

unsigned int count = 0;

const char x FileName = OUTPUT_FILE;
FILE % outFile;

IF_SIM(cosim_logwindow log = cosim_logwindow create ("Consumer") ;)

// Opening output file

outFile = fopen (FileName, "w'");

if ( outFile == NULL ) {
fprintf(stderr, "Error opening file %s for writing\n", FileName);
exit(—1);

// Opening streams
co_stream_open(start_stream , O_RDONLY, INT_TYPE(MAX_STREAMWIDTH/4) ) ;
co_stream_open(score_stream , O_RDONLY, INT_TYPE(MAX_STREAMWIDTH/2) ) ;

IF_SIM(cosim_logwindow write(log, "Consumer reading results...\n")j;)

// Reading filtered results from stream; then writing them to screen and file

while (co_stream read (start stream , &nResultStart, sizeof(intl16)) == co_err none) {
if (co_stream read (score stream, &nResultScore, sizeof(int32)) == co_err none) {
if (filterMode == 1) { // Summation filter

resultEnd = dnalLength — 1;
} else { // Threshold filter
resultEnd = nResultStart + (ROWS-1);

resultScore = fpDecode (nResultScore);

fprintf(outFile , "%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmHeader,
resultScore);

IF_SIM(cosim_logwindow _fwrite (log, "Result: %s %d %d %s %f\n", dnaHeader, nResultStart ,
resultEnd , pwmHeader, resultScore);)

printf ("%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmHeader, resultScore);

count-+-+;

}

IF_SIM(cosim_logwindow fwrite (log, "Consumer read %d filtered results\n", count);)
printf("\n\nThe application produced %d filtered scores for %s\n", count, dnaHeader);

free (dnaHeader) ;
free (pwmHeader) ;

// Closing output file
if(fclose(outFile) = 0) {
printf (" Error closing result output file\n");

// Closing streams
co_stream _close(start_stream);
co_stream _close(score_stream);

}

//

// Impulse C Main Function

//

int main(int argc, char sxxargv)
{

co architecture my arch;
void xparam = NULL;
char xfilter;

char =xarg;

int c¢;

printf("\n\n== IMPULSE-C APPLICATION: FPWMi ==\n");
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switch (arge) {

case 1:
printf("Executing with summation filter\n");
my_arch = co_initialize (param);
co_execute(my_arch);
break ;

case 2:
printf ("Executing with threshold filter; ");
arg = (charxx)argv;

filter = (charx)arg[1];
printf("threshold set at %s\n", filter);

my arch = co _initialize(filter);
co_execute(my arch);
break ;

default:
printf ("\nWrong use of parameters!\n");
break ;

}

printf (" Application complete! Press the Enter key to continue...\n");
¢ = gete(stdin);

return (0) ;

}
FPWMi_hw.c

[11110777770707777777777777777777777777777777777777771777717777177771171177777
Impulse—C(c) 2003—2008 Impulse Accelerated Technologies, Inc.

//
//
//
//
// FPWMi hw.c: includes the hardware processes and configuration
// function for the basic "fixed—point" version of the FPWM
//
//
//
//

system .

See additional comments in FPWMi.h.

#include "co.h"
#include "cosim_log.h"
#include "FPWMi.h"
#include "co_math.h"

// Software process declarations (see FPWMi_sw.c)
extern void Producer(co_ stream threshold stream , co_ stream pwm_stream, co_ stream

iteration stream , co_stream dna_stream ,
co_parameter filter);
extern void Consumer(co_ stream start stream , co_ stream score stream);

// This is the hardware ’pwm’ process

void PWM(co_stream pwm_stream, co_stream iteration_stream , co_stream dna_stream, co_
counter _stream , co_stream sum_stream)

int i, j, k, l;

int32 nSamplePwm ;

int32 pwm|[COLUMNS][ROWS];
int16 dnaLength ;

int motifLength ;

char nSampleDna;

char sequence [MAX SEQUENCE];
intl6 counter;

int32 sum;

intl6 nHitStart ;

int32 nHitScore;

IF_SIM(int samplesread; int resultswritten ;)

IF_SIM (cosim _logwindow log3;)
IF_SIM(log = cosim_logwindow _create ("PWM") ;)

do { // Hardware processes run forever
IF_SIM(samplesread=0; resultswritten=0;)

// Stating motif length
motifLength = ROWS;

// Opening streams

co_stream open(pwm _stream, O RDONLY, INT TYPE(MAX STREAMWIDTH/2) ) ;

co stream open(iteration stream , O RDONLY, INT TYPE(MAX | SI‘REAMWIDI‘H/ ))s
co_stream open(dna stream , O RDONLY, CHAR TYPE),

co stream open(counter stream , O WRONLY, INT TYPE(MAX STREAMWIDTH/4)) ;
co stream open(sum stream, O WRONLY, INT TYPE(MAX STREAMWIDTH/2)) ;

// Reading pwm from stream

stream
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for (j=0; j<ROWS; j++)
for (i=0; i<COLUMNS; i++) {
co_stream_read (pwm_stream, &nSamplePwm, sizeof(int32));
pwm[i][j] = (int32)nSamplePwm;

Reading sequence length from stream
(co_stream read (iteration stream , &dnalength, sizeof(intl6)) == co_err none) {
IF_SIM(cosim _logwindow fwrite (log, "Sequence length is %d\n", dnaLength);)

}
//
if

}

// Reading portion of sequence from stream neccessary to start computation
for (k = 0; k < motifLength; k++) {
co_stream_read (dna_stream , &nSampleDna, sizeof(char));
IF_SIM(samplesread++;)
sequence[k] = (char)nSampleDna;

// Initiating counter and stream
counter = 0;
sum = 0;

// Computing result scores for all subsequences
while (counter <= (dnaLength — motifLength)) {

// Calculating score for current position
for (1 = 0; 1 < motifLength; 1+4++4) {
#pragma CO PIPELINE
#pragma CO SET stageDelay 32
switch (sequence|[l4+counter]) {
case ((char) ’A’):
sum += (int32)pwm[0][1];
break ;
case ((char)’C’):
sum += (int32)pwm[1][1];
break ;
case ((char)'G’):
sum += (int32)pwm[2][1];
break ;
case ((char) 'T7):
sum += (int32)pwm|[3][1];

break ;
default :
// Do nothing here.
break ;
}

}
// Stating that counter and sum will be result data
nHitStart = counter;
nHitScore = sum;

// Sending result to filter
co_stream _write (counter_stream , &nHitStart, sizeof(intl6));
co_stream _write (sum_stream, &nHitScore, sizeof(int32));

IF_SIM(resultswritten++4;)
IF_SIM(cosim _logwindow fwrite (log, "Wrote score %d to filter , for pattern starting at
position %d.\n", nHitScore, nHitStart);)

// Reading new sequence base from stream

if (co_stream read (dna_stream , &nSampleDna, sizeof(char)) = co_err none) {
IF_SIM(samplesread++;)
sequence [k] = (char)nSampleDna;
k++;
} else {
break ;
}
// Updating counter and reseting sum
counter-++;
sum = 0;

}

// Closing streams

co_stream close(pwm_stream) ;
co_stream close(iteration stream);
co_stream close(dna_stream);
co_stream close(counter stream);
co_stream close(sum_stream);

IF_SIM(cosim _logwindow fwrite (log, "Closing PWM process; Symbols in sequence read: %d,
results written: %d\n", samplesread, resultswritten);)
IF_SIM (break;) // Only run once for desktop simulation
} while (1) ;
}
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//
// This

//

void Filter (co_stream threshold_stream,
co_stream start_stream , co_stream

{

is the hardware ’filter’ process.

co stream counter stream ,
score stream)

co_stream

int32 threshold;

int filterMode;

intl6 nResultStart;

int32 nResultScore;

intl6 nHitStart;

int32 nHitScore;

IF_SIM(int resultsread; int resultswritten ;)
IF_SIM (cosim _logwindow log3;)

IF_SIM(log = cosim_logwindow _create ("Filter");)

do { // Hardware processes run forever
IF_SIM(resultsread=0; resultswritten=0;)

// Opening streams

co_stream_open(threshold_stream , O_RDONLY, INT_TYPE(MAX_STREAMWIDTH/2) ) ;
co_stream open(counter stream , O RDONLY, INT TYPE(MAX STREAMWIDTH/4) ) ;
co_stream open(sum _stream, O RDONLY, INT TYPE(MAX STREAMWIDTH/2) ) ;
co_stream open(start stream , O WRONLY, INT TYPE(MAX STREAMWIDTH/4) ) ;
co_stream open(score_ stream, O WRONLY, INT TYPE(MAX STREAMWIDTH/2) ) ;

// Reading threshold value from mode

stream; determining filter

sum stream,

if (co stream read (threshold stream , &threshold , sizeof(int32)) != co err none) {
// Filter is set to summation filter B B
filterMode = 1;
IF_SIM (cosim _logwindow _fwrite (log, "Filter Mode: %d\n", filterMode);)
} else {
// Filter is set to threshold filter
filterMode = 2;
IF_SIM (cosim _logwindow _fwrite (log, "Filter Mode: %d\n", filterMode);)
IF_SIM (cosim _logwindow _fwrite (log, "Threshold value: %d\n", threshold)})
}
// Initiating filtered result data
nResultStart = 0;
nResultScore = 0;
// Reading computed results from stream
while (co_stream read (counter stream , &nHitStart, sizeof(intl6)) = co_err none) {
if (co_stream read (sum_stream, &nHitScore, sizeof(int32)) == co_err_ none) {
IF_SIM(resultsread++;)
if (filterMode == 1) { // Summation filter
if (nHitScore > 0) {
nResultScore += (int32)nHitScore;
} else { // Threshold filter
if (nHitScore >= threshold) {
// Stating that the result score will pass through the filter
nResultStart = nHitStart;
nResultScore = nHitScore;
// Sending filtered reslut to consumer
co_stream write(start stream , &nResultStart, sizeof(intl6));
co_stream write(score stream, &nResultScore, sizeof(int32));
IF_SIM(resultswritten++4;)
IF_SIM(cosim _logwindow fwrite (log, "Filtered score %d for pattern starting at
position %d.\n", nResultScore, nResultStart);)
}
}
}
}
if (filterMode == 1) { // Summation filter
// Sending result score from summation filter to consumer
co_stream_write (start_stream , &nResultStart, sizeof(intl6));
co_stream_write (score_stream, &nResultScore, sizeof(int32));
IF_SIM(resultswritten 4++4;)
IF_SIM(cosim _logwindow fwrite (log, "Filtered combined score %d for the entire sequence
.An", nResultScore) ;)
}

// Closing streams

co_stream close(threshold stream );
co_stream close(counter stream);
co_stream _close(sum_stream) ;
co_stream _close(start_stream);
co_stream _close(score_stream);

IF_SIM (cosim _logwindow _fwrite (log ,
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"Closing Filter process; Results read: %d, results filtered:

resultswritten);)

IF_SIM (break;) // Only run once for desktop simulation
} while (1) ;

//

// Impulse C configuration function
//

void config  FPWMi(void xarg)

{

co_stream threshold_stream ;
co_stream pwm_stream;
co_stream iteration_stream;
co_stream dna_stream;
co_stream counter_stream;
co_stream sum_stream;
co_stream start_stream;
co_stream score_stream;

co_process producer_process;
Co_process pwm_ process;
co_process filter process;
CO_process consumer_process;
IF_SIM(cosim _logwindow _init () ;)

char xparameter;

if (arg != NULL) {
parameter = (charx) arg;
} else {

parameter = NULL;

%d\n", resultsread ,

threshold _stream = co_stream _create("threshold_stream", INT_TYPE(MAX_ STREAMWIDTH/2) ,

MIN_STREAMDEPTH) ;

pwm_stream = co_stream _create("pwm_stream", INT_TYPE(MAX_STREAMWIDTH/2) , COLUMNS+ROWS) ;
iteration stream = co_stream create("iteration stream", INT_ TYPE(MAX STREAMWIDTH/4) ,

MIN _STREAMDEPTH) ;

dna_stream = co_stream create("dna stream", CHAR TYPE, MAX SEQUENCE) ;
counter stream = co_stream create("counter stream'", INT TYPE(MAX STREAMWIDTH/4) ,

FILTER QUEUE) ;

sum_stream = co_stream create("sum _ stream'", INT TYPE(MAX STREAMWIDTH/2) , FILTER QUEUE) ;
start stream = co_stream create("start stream'", INT TYPE(MAX STREAMWIDTH/4) , WRITE QUEUE) ;
score stream = co_stream create("score stream'", INT TYPE(MAX STREAMWIDTH/2) , WRITE QUEUE) ;

producer _process = co_process_create("Producer", (co_function)Producer,

5,

threshold _stream ,
pwm_stream,
iteration_stream ,
dna_stream ,
parameter) ;

pwm _process = co_process_create("PWM", (co_function)PWM,
5,
pwm _stream,
iteration stream ,
dna_stream ,
counter stream ,
sum_stream) ;

filter process = co_process create("Filter", (co_ function)Filter ,

;
threshold _stream ,
counter_stream ,
sum _stream,

start _stream ,
score_stream)

consumer_process = co_process_create("Consumer" ,(co_function)Consumer,

2,
start stream ,
score stream);

co_ process config(pwm process, co_ loc, "PE0");
co_ process config(filter process, co_loc, "PEQ");
}

co_architecture co _initialize (int param)

return(co_architecture_create("FPWM" , "cray rt", config_ FPWMi, (void

*)param) ) ;
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FPWM2008i

FPWM2008i.h

LITTTELDD 000007000 77777777777777777777777777777777777717777777771777177

Impulse—C(c) 2003—2008 Impulse Accelerated Technologies, Inc.

/
/
/

S~
~

#define MAX STREAMWIDTH 64 /+ buffer width for FIFO in hardware x/
#define MIN_STREAMDEPTH 1 /% minimum buffer size for FIFO in hardware =/

#define DNA_ INPUT_FILE "dna.txt"
#define PWM_INPUT_FILE "pwm. txt"
#define OUTPUT_FILE "out.txt"

#define COLUMNS 4 /% A,C,G,T =/
#define ROWS 8 /% length of pattern/motif =/

#define MAX_SEQUENCE 300

#define FILTER_QUEUE MAX_ SEQUENCE /x FIFO length between PWM and Filter x/
#define WRITE_QUEUE ((MAX_SEQUENCEx10)/100) /% FIFO length between Filter and Consumer x*/

#define VALID CHAR(a) (((a) > 64) && ((a) < 91) && ((a) != 74) && ((a) != 79) && ((a) != 85)
7 (1) (0))

FPWM2008i sw.c

LIDTTLTLTTI D077 77077 777777777777777777777777777777777777777177177771777
Impulse—C(c) 2003—2008 Impulse Accelerated Technologies, Inc.
FPWM2008i sw.c: includes the software test bench processes and
main () function for the parallel "fixed—point" version of the

FPWM system .

See additional comments in FPWM2008i.h.

e
e

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "co.h"
#include "cosim log.h"
#include "FPWM2008i.h"

extern co_architecture co_initialize(void x);

// Globals

static char xpwmHeader, xdnaHeader;
static int xpwm;

static char xdnaSequence;

static int pwmSize, dnaLength;
static int filterMode;

static charx pwmList [2];

/
/ This is the function for encoding a floating —point value to fixed—point,
/ taken from the software framework of the existing VHDL solution

/

/
/
/
/
int fpEncode (float x) {
return x x 16777216;

//

// This is the function for decoding a fixed—point value back to floating—point,
// taken from the software framework of the existing VHDL solution
1/
fl

oat fpDecode(int x)
return (float) ((x)/16777216.0) ;

}

//

// This is the function for reading an input sequence from a file , based on a function
// from the Impulse CoDeveloper example project 'SmithWatermanSerial’

//

void read sequence(const char xDnaFileName, FILE xdnalnFile) {

char xbuffer = (chars)malloc(32+sizeof(char));
char xsequence, xheader;



114 Source Code

int sequenceLength
int size = 32;

int status = 0;

int nonvalid;

char character;

// Opening sequence input file
dnalnFile = fopen (DnaFileName, "r");

if ( dnalnFile == NULL ) {
fprintf(stderr, "Error opening sequence input file %s\n", DnaFileName);
character = getc (stdin);
exit(—1);

// Finding the size of header line
status = fread (buffer, sizeof(char), 1, dnalnFile);

// Making sure the sequence is in the correct input format
if (buffer[0] != '>")
printf("Sequence in %s must be in FASTA format , starting with '>’\n", DnaFileName);

// Triming off non—valid characters before sequence

buffer [0] = ’\n’;

while (! (VALID CHAR((int)buffer[0]))) {
fread(buffe;, sizeof (char), 1, dnalnFile);

}

// Finding the size of the sequence, after pruning the header line
fscanf(dnaInFile, "%s", buffer);
sequencelength = 0;
nonvalid = 0;
while (fread (buffer, sizeof(char), 1, dnalnFile)) {
if (VALID_CHAR( (int ) buffer [0]))

sequenceLength 4+
if (!(VALID_CHAR((int)buffer[0])))
nonvalid+-+4;
}
// Closing sequence input file
if (fclose(dnalnFile) != 0) {
printf("Error closing sequence input file\n");
}
// Allocating memory to store the sequence and header line
header = (charx)malloc(sizexsizeof(char));
sequence = (charx)malloc((sequencelLength + 1)xsizeof(char));

// Reopening sequence input file
dnalnFile = fopen (DnaFileName, "r");

if( dnalnFile = NULL ){
printf("Error opening sequence input file %s file\n", DnaFileName) ;
exit(—1);

s

// Pruning ’'>
fread (buffer, sizeof(char), 1, dnalnFile);

// Reading sequence name

status = fscanf(dnalnFile, "%s", header);
if (status <= 0 || status > size){
printf("Error reading %s file header\n", DnaFileName);
exit(—1);
size = 1; /+* Why shouldn’t this value be 0? Would cause an error =/
//Reading the sequence
printf("\nReading sequence %s: ", header);

while (fread (buffer, sizeof(char), 1, dnalnFile)) {
if (VALID_CHAR((int)buffer[0])) {
sequence[size++] = buffer [0];

}
printf("done\n");

if (size —1 != sequenceLength){
printf (" Error reading %s file sequence\n", DnaFileName);
exit(—1);

// Closing sequence input file
if (fclose(dnalnFile) != 0) {
printf("Error closing sequence input file\n");

// Saving sequence data
dnaHeader = header;
dnaSequence = sequence;
dnaLength = sequenceLength
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free (buffer);

//
// This is the function for reading a filter threshold from file
//
int read threshold(const char % FilterFileName, FILE xfilterInFile) {
char xheader;
int status = 0;
int size = 32; /% size of header =/
float threshold;

header = (charx)malloc(sizexsizeof(char));

// Reading matrix name

status = fscanf(filterInFile , "%s", header);

if (status <= 0 || status > size){
printf("Error reading %s file header\n", FilterFileName);
exit(—1);

// Reading threshold value
fscanf(filterInFile , "%f", &threshold);

free (header);

// Returning threshold wvalue
return fpEncode(threshold);

// This is the function for calculating pwm-values from count—values
//
int convert_value (float c, float N) {

double s = 0.25;

double P = 0.25;

double p, valueTemp ;

float pwmValueTemp;

p = (double) ((cts)/(N+(4%5)));
valueTemp = (double) (p/P);
pwmValueTemp = (float) log(valueTemp);

return fpEncode (pwmValueTemp) ;

}
//
// This is the function for converting an alignment matrix to a pwm
//
int xconvert_matrix (float * matrix) {

int i, j;

int sxpwmTemp;

double N;

pwmTemp = (int x)malloc (ROWS«COLUMNS«sizeof(int));

for (j = 0; j < ROWS; j++) {

N = (matrix [ j*COLUMNS+0|+ matrix [ j*COLUMNS+1]+matrix [ j*COLUMNSH2]+matrix [ j *COLUMNS+3]) ;
for (i = 0; i < COLUMNS; i++4) {
pwmTemp[ j *COLUMNSti | = convert value (matrix[j*COLUMNSti], N);

}

return pwmTemp;
}
//
// This is the function for reading an input matrix from a file and converting it to a pwm,
// based on a function from the Impulse CoDeveloper example project ’'SmithWatermanSerial’
//
void read_matrix (const char * PwmFileName, FILE xpwmlInFile) {

char xbuffer = (charx)malloc(32«xsizeof(char));

char xheader;

int status = 0;

int size = 32; /x size of header =/

int matrixSize = COLUMNSxROWS;

float *matrix;

int i, j;

// Finding the size of the header line and pruning ’>~

status = fread (buffer, sizeof(char), 1, pwmlInFile);

// Making sure the next matrix have been found
while (buffer [0] != '>)
status = fread (buffer, sizeof(char), 1, pwmlInFile);
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}

// Allocating memory to store header line and matrix
header = (char*)malloc(sizexsizeof(char));

matrix = (floatx*)malloc(matrixSizexsizeof(float));

// Reading matrix name

status = fscanf(pwmlInFile, "%s", header);

if (status <= 0 || status > size){
printf("Error reading %s file header\n", PwmFileName);
exit(—1);

// Reading and storing the matrix
printf("\nReading matrix %s: ", header);
for (j — 0: j < ROWS; j++) {
for (i = 0; i < COLUMNS; i++) {
fscanf(pwmlInFile, "%f", &matrix[j*COLUMNS+i]) ;

}
printf("done\n");

// Saving pwm data

pwmHeader = header;
printf("Converting %s: ", header);
pwm = convert matrix(matrix);
printf("done\n");

pwmSize = matrixSize ;

free (matrix);
free (buffer);

// This is the software ’'reader’ process

void Producer(co_stream threshold_0, co_stream threshold_1, co_stream pwm_0, co_stream

co_stream iteration_0 ,

co_stream iteration 1, co_ stream dna_ 0, co_ stream dna 1, co_ parameter filters)
int ¢
IF_SIM(cosim_logwindow log = cosim_logwindow create ("Producer");)

// Opening streams

co_stream open(threshold 0, O WRONLY, INT TYPE(MAX STREAMWIDTH/2) ) ;
co_stream open(threshold 1, O WRONLY, INT_ TYPE(MAX STREAMWIDTH/2) ) ;
co_stream open(pwm_0, O WRONLY, INT TYPE(MAX STREAMWIDTH/2)) ;
co_stream _open(pwm_1, O_WRONLY, INT_TYPE(MAX_ STREAMWIDTH/?2)) ;
co_stream_open(iteration_0 , O_WRONLY, INT_TYPE(MAX_STREAMWIDTH/4) ) ;
co_stream_open(iteration_1 , O _WRONLY, INT_TYPE(MAX_STREAMWIDTH/4) ) ;
co_stream_open(dna_0, O_WRONLY, CHAR_TYPE) ;

co_stream_open(dna_1, O_WRONLY, CHAR_TYPE) ;

// Preparing to send thresholds
int n;
int nSampleThreshold;

// Preparing to send matrices
int i, j;
int nSamplePwm ;

// Preparing to send sequence
int k;
char nSampleDna;

// Reading sequence from input file

const char % DnaFileName = DNA_INPUT_FILE;
FILE % dnalnFile;
read_sequence(DnaFileName, dnalnFile);

// Determining type of filter based on command line argument
if(filters == NULL) {

// Filter is set to summation filter

filterMode = 1;
} else {

// Filter is set to threshold filter

filterMode = 2;

// Opening threshold input file

const char x FilterFileName = filters;

FILE % filterInFile;

filterInFile = fopen(FilterFileName, "r'");

if ( filterInFile == NULL ) {
fprintf(stderr, "Error opening filter input file %s\n", FilterFileName);
¢ = getc(stdin);
exit(—1);

pwm_1,



117

// Reading threshold value for first matrix from input file and sending it
nSampleThreshold = read_threshold(FilterFileName, filterInFile);
co_stream _write(threshold_0, &nSampleThreshold, sizeof(int32));
// Reading threshold value for second matrix from input file and sending it
nSampleThreshold = read threshold(FilterFileName, filterInFile);
co_stream write(threshold 1, &nSampleThreshold, sizeof(int32));

// Closing threshold input file
if (fclose(filterInFile) != 0) {
printf ("Error closing filter input file\n");

}

// Opening matrix input file
const char x* PwmFileName = PWM_INPUT_FILE;
FILE = pwmlInFile;

pwmlInFile = fopen (PwmFileName, "r");

if ( pwmlInFile == NULL ) {
fprintf(stderr, "Error opening matrix input file %s\n", PwmFileName) ;
¢ = getc(stdin);
exit(—1);

}

// Reading first input matrix and converting it to pwm
read matrix (PwmFileName, pwmlInFile);
pwmList [0] = (chars*)pwmHeader;

// Sending first matrix
printf("Sending %s: ", pwmList[0]) ;
for (i = 0; i < pwmSize; i+4) {
nSamplePwm = (int)pwm][i];
co_stream _write (pwm_0, &nSamplePwm, sizeof(int32));

printf("done\n");
free (pwm) ;

// Reading second input matrix and converting it to pwm
read _matrix (PwmFileName, pwmlInFile);
pwmList [1] = (charx)pwmHeader ;

// Sending second matrix
printf("Sending %s: ", pwmList[1]);
for(i = 0; i < pwmSize; i++) {
nSamplePwm = (int)pwml[i];
co_stream write(pwm_1, &nSamplePwm, sizeof(int32));

printf("done\n");
free (pwm) ;

// Closing matrix input file
if (fclose (pwmlInFile) = 0) {
printf("Error closing matrix input file\n");

// Sending sequence length and actual sequence
co_stream_write (iteration_0 , &dnaLength, sizeof(intl6));
co_ stream write(iteration 1, &dnaLength, sizeof(intl6));
printf("\nSending %s...\n\n", dnaHeader);
for(k = 1; k <= dnalLength; k+4++) {

nSampleDna = (char)dnaSequence|[k];

co stream write(dna_ 0, &nSampleDna, sizeof(char));

co stream write(dna 1, &nSampleDna, sizeof(char));

printf("done sending %s\n", dnaHeader);
free (dnaSequence) ;

// Closing streams
co_stream_close(threshold_0);
co_stream_close(threshold _1);
co_stream_close(pwm_0) ;
co_stream_close(pwm_1);
co_stream_close(iteration_0);
co_stream_close(iteration_1);
co_stream close(dna_0);
co_stream close(dna_1);

//

// This is the software ’writer’ process
//
v
{

oid Consumer(coistream start 0, co_stream score_ 0, co_stream start_ 1, co_ stream

intl6 nResultStart;
int resultEnd;

int32 nResultScore;
float resultScore;

score 1)
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//
//
//

in

unsigned int count = 0;
const char x FileName = OUTPUT_FILE;
FILE * outFile;

IF_SIM (cosim _logwindow log = cosim_logwindow _create ("Consumer") ;)

// Opening output file

outFile = fopen (FileName, "w'");

if ( outFile — NULL ) {
fprintf(stderr, "Error opening file %s for writing\n", FileName);
exit(—1);

// Opening streams

co_stream_open(start_0, O_RDONLY, INT_TYPE(MAX_STREAMWIDTH/4) ) ;
co_stream_open(score_0, O_RDONLY, INT_TYPE(MAX_STREAMWIDTH/2) ) ;
co_stream_open(start_ 1, O_RDONLY, INT_TYPE(MAX_STREAMWIDTH/4) ) ;
co_stream_open(score_1, O_RDONLY, INT_TYPE(MAX_STREAMWIDTH/2) ) ;

IF_SIM (cosim _logwindow _write(log, "Consumer reading results...\n");)

// Reading filtered results streamed from first filter; then writing them to screen and

file
while (co_ stream read (start_ 0, &nResultStart, sizeof(intl16)) == co_err none) {
if (co_stream read (score 0, &nResultScore, sizeof(int32)) == co_err_ none) {
if (filterMode == 1) { // Summation filter

resultEnd = dnalLength — 1;
} else { // Threshold filter
resultEnd = nResultStart + (ROWS-1);

resultScore = fpDecode (nResultScore);

fprintf(outFile , "%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmList[0],
resultScore);

IF_SIM(cosim_logwindow _fwrite (log, "Result: %s %d %d %s %f\n", dnaHeader, nResultStart ,
resultEnd , pwmList[0], resultScore);)

printf ("%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmList[0], resultScore)

B
count-++;

}
}
// Reading filtered results streamed from second filter; then writing them to screen and
file
while (co_ stream read (start_ 1, &nResultStart, sizeof(intl16)) == co_err none) {
if (co_stream read (score_ 1, &nResultScore, sizeof(int32)) == co_err_ none) {
if (filterMode == 1) { // Summation filter
resultEnd = dnalLength — 1;
} else { // Threshold filter
resultEnd = nResultStart + (ROWS-1);
resultScore = fpDecode (nResultScore);
fprintf(outFile, "%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmList[1],
resultScore);
IF_SIM(cosim_logwindow _fwrite (log, "Result: %s %d %d %s %f\n", dnaHeader, nResultStart ,
resultEnd , pwmList[1], resultScore);)
printf ("%s %d %d %s %f\n", dnaHeader, nResultStart, resultEnd, pwmList[1], resultScore)
H
count-+4-+;
}
}
IF_SIM(cosim_logwindow fwrite (log, "Consumer read %d filtered results\n", count);)

printf("\n\nThe application produced %d filtered scores for %s\n", count, dnaHeader);

free (dnaHeader) ;
free (pwmHeader) ;

// Closing output file
if(fclose(outFile) != 0) {

printf (" Error closing result output file\n");
}

// Closing streams

co_stream _close(start_0)
co_stream close(score 0)
co_stream close(start 1)
co_stream close(score 1)

Impulse C Main Function
t main(int argc, char xxargv)
co_architecture my_arch;

void xparam = NULL;
char xfilter;
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char =*xarg;
int c;

printf ("\n\n== IMPULSE-C APPLICATION:
switch (arge) {

case 1:
printf ("Executing with summation
my arch = co_initialize (param);
co_ execute(my arch);
break ; -

case 2:
printf ("Executing with threshold
arg = (charxx)argv;
filter = (charx)arg|[1l];
my_arch = co_initialize(filter);
co_execute(my_arch);
break ;

default:
printf ("\nWrong use of parameters
break ;

}

printf("Application
¢ = getc(stdin);

complete!

return (0) ;

}
FPWM2008i hw.c

Press the Enter key to continue...

FPWM 20081 ==\n");

filter\n");

filter\n");

N

\n'") s

N N N N N,

Impulse—C(c) 2003—2008

FPWM2008i_hw . c:
parallel
system .

Impulse Accelerated Technologies,

Inc.

includes the hardware processes and configuration
"fixed—point" version

of the FPWM

See additional comments in FPWM2008i.h.

//
//
//
//
//
// function for the
//
//
//
//

#include "co.h"

#include "cosim_log.h"
#include "FPWM2008i.h"
#include "co math.h"

// Software process declarations

extern void Producer(co_ stream threshold 0,

pwm_1, co_ stream iteration_0 ,

co_stream iteration_ 1,

extern void Consumer(co_ stream start O,
score_1);

//

// This is the hardware

//

void PWM(co_stream pwm, co_stream
co_parameter nlnstance)

{

int i, j, k, 1;

int32 nSamplePwm ;

int32 matrix [COLUMNS] [ROWS] ;
int16 dnalength ;

int motifLength ;

char nSampleDna;

char sequence [MAX SEQUENCE];
intl6 nCounter;

int32 nSum;

intl6 nHitStart;

int32 nHitScore;

’pwm’ process

IF_SIM(int samplesread; int

IF_SIM (cosim _logwindow log ;)

co_stream dna__

iteration ,

(see FPWM2008i sw.c)

co_stream threshold 1,

0, co_stream dna_1,
co_stream score_ O,

co__parameter
co_stream start 1,

co_ stream dna, co_ stream counter ,

resultswritten ;)

IF_SIM(log = cosim_logwindow _create ("PWM") ;)

do {
IF_SIM(samplesread=0;

// Stating motif length
motifLength = ROWS;

// Opening streams

// Hardware processes run forever
resultswritten =0;)

co_stream open(pwm, O RDONLY, INT TYPE(MAX STREAMWIDTH/2)) ;

co_stream open(iteration, O RDONLY,

INT TYPE(MAX STREAMWIDTH/4) ) ;

co_stream_open(dna, O_RDONLY, CHAR_TYPE) ;

co_stream pwm_0,

filters);
co_stream

co_stream

co stream sum,
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co_stream_open(counter , O_WRONLY, INT_TYPE(MAX_STREAMWIDTH/4)) ;
co_stream _open(sum, O WRONLY, INT_TYPE(MAX_ STREAMWIDTH/2)) ;

// Reading pwm from stream
for (j=0; j<ROWS; j++) {
for (i=0; i<COLUMNS; i++) {
co_stream read (pwm, &nSamplePwm, sizeof(int32));
matrix[i][j] = (int32)nSamplePwm ;

}

// Reading sequence length from stream

if (co_stream read (iteration , &dnalength, sizeof(int16)) == co_err none) {
IF_SIM(cosim_logwindow _fwrite (log, "Sequence length is %d\n", dnaLength);)

// Reading portion of sequence from stream neccessary to start computation
for (k = 0; k < motifLength; k++) {

co_stream_read (dna, &nSampleDna, sizeof(char));

IF_SIM(samplesread++;)

sequence[k] = (char)nSampleDna;

// Initiating counter and sum
nCounter = 0;
nSum = 0;

// Computing result scores for all subsequences
while (nCounter <= (dnaLength — motifLength)) {

// Calculating score for current position
for (1 = 0; I < motifLength; 1++4+) {
#pragma CO PIPELINE
#pragma CO SET stageDelay 32
switch (sequence[l4+nCounter]) {
case ((char)’A’):
nSum += (int32)matrix [0][1];
break ;
case ((char)’C’):
nSum += (int32)matrix[1][1];
break ;
case ((char)’G’):
nSum += (int32)matrix [2][1];
break ;
case ((char) 'T7):
nSum += (int32)matrix [3][1];

break ;
default :
// Do nothing here.
break ;
}

}
// stating that counter and sum will be result data
nHitStart = nCounter;
nHitScore = nSum;

// Sending result to filter
co_stream write(counter, &nHitStart, sizeof(intl6));
co_stream write(sum, &nHitScore, sizeof(int32));

IF_SIM(resultswritten++4;)
IF_SIM(cosim _logwindow fwrite (log, "Wrote score %d to filter , for pattern starting at
position %d.\n", nHitScore, nHitStart);)

// Reading new sequence base from stream

if (co_stream _read (dna, &nSampleDna, sizeof(char)) == co_err_none) {
IF_SIM(samplesread++;)
sequence[k] = (char)nSampleDna;
k++;
} else {
break ;
}

// Updating counter and reseting sum
nCounter +-;
nSum = 0;

}

// Closing streams
co_stream close(pwm);
co_stream close(iteration);
co_stream close(dna);
co_stream_close(counter);
co_stream_close(sum)

IF_SIM(cosim_logwindow _fwrite (log, "Closing PWM process %d; Symbols in sequence read: %d,
results written: %d\n", nlnstance, samplesread, resultswritten)j)
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}

//
//
//

{

IF_SIM (break;) // Only run once for desktop simulation
} while (1)

// Filter is set to summation filter
filterMode = 1;

IF_SIM (cosim _logwindow _fwrite (log, "Filter Mode: %d\n", filterMode);)

} else {

// Filter is set to threshold filter
filterMode = 2;

IF_SIM(cosim _logwindow fwrite (log, "Filter Mode: %d\n", filterMode) ;)

This is the hardware ’filter’ process

id Filter(co_ stream threshold, co stream counter, co_ stream sum, co_ stream start
score , co_parameter nInstance)

int32 nThreshold;

int filterMode;

intl6 nResultStart;

int32 nResultScore;

intl6 nHitStart;

int32 nHitScore;

IF_SIM(int resultsread; int resultswritten ;)

IF_SIM (cosim _logwindow log3;)

IF_SIM(log = cosim_logwindow _create ("Filter");)

do { // Hardware processes run forever

IF_SIM(resultsread =0; resultswritten=0;)
// Opening streams
co_stream open(threshold , O RDONLY, INT TYPE(MAX STREAMWIDTH/2)) ;
co_stream open(counter , O RDONLY, INT TYPE(MAX STREAMWIDTH/4) ) ;
co_stream open(sum, O RDONLY, INT TYPE(MAX STREAMWIDTH/2)) ;
co_stream open(start, O WRONLY, INT TYPE(MAX STREAMWIDTH/4)) ;
co_stream open(score, O WRONLY, INT TYPE(MAX STREAMWIDTH/2)) ;
// Reading threshold value from stream; determining filter mode
if (co_stream _read (threshold , &nThreshold , sizeof(int32)) != co_err_none) {

IF_SIM(cosim _logwindow fwrite (log, "Threshold value: %d\n", nThreshold) ;)

}

// Initiating filtered result data
nResultStart = 0;

nResultScore = 0;

// Reading computed results from stream

while (co_stream_read (counter , &nHitStart, sizeof(intl6)) —= co_err_none) {

if (co_stream _read (sum, &nHitScore, sizeof(int32)) — co_err_none) {

IF_§IM(resEltsread++;)

if (filterMode == 1) { // Summation filter
if (nHitScore > 0) {
nResultScore += (int32)nHitScore;

}
} else { // Threshold filter
if (nHitScore >= nThreshold) {

// Stating that the result score will pass through the filter

nResultStart = nHitStart;
nResultScore = nHitScore;

// Sending filtered result to consumer
co_stream write(start, &nResultStart, sizeof(intl6));
co_stream write(score, &nResultScore, sizeof(int32));

IF_SIM(resultswritten++4;)

entire

s

co_stream

sequence

IF_SIM(cosim_logwindow _fwrite (log, "Filtered score %d for pattern starting at
position %d.\n", nResultScore, nResultStart);)
}
}
}
}
if (filterMode == 1) { // Summation filter
// Sending result score from summation filter to consumer
co_stream write(start , &nResultStart, sizeof(int16));
co_stream write(score, &nResultScore, sizeof(int32));
IF_SIM(resultswritten 4++4;)
IF_SIM(cosim _logwindow fwrite (log, "Filtered combined score %d for
.\An", nResultScore) ;)
}

// Closing streams
co_stream _close(threshold);
co_stream_close(counter);
co_stream_close(sum) ;
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}

co_stream_close(start);
co_stream_close(score);

IF_SIM (cosim _logwindow _fwrite (log ,

"Closing filter process %d; Results read: %d, results filtered: %d\n", nlnstance,

resultsread , resultswritten)j)

IF_SIM (break ;) // Only run once for desktop simulation
} while (1)

//

/1

Impulse C configuration function

//
void config_ FPWM2008i(void x*arg)

{

co_stream threshold_0;
co_stream threshold _1;
co_stream pwm_0;
co_stream pwm_1;
co_stream iteration_0;
co_stream iteration 1;
co_stream dna_0;
co_stream dna_1;
co_stream counter_ O0;
co_stream sum_0;
co_stream counter_1;
co_stream sum_1;
co_stream start O
co_stream score_ 0;
co_stream start_1;
co_stream score_1;

co_process producer_process;
co_process PWMO;

co_process PWMI;

co_process Filter0;

co_process Filterl;

Co_process consumer_process;
IF_SIM(cosim _logwindow _init () ;)

char xparameters;

if (arg != NULL) {
parameters = (charx) arg;
} else {

parameters = NULL;

}

threshold _0 = co_stream_create("threshold_0", INT_TYPE(MAX_ STREAMWIDTH/2) , MIN_STREAMDEPTH)

threshold _1 = co_stream_create("threshold_1", INT_TYPE(MAX_ STREAMWIDTH/2) , MIN_STREAMDEPTH)

;
pwm_0 = co_stream _create("pwm_0", INT_TYPE(MAX_STREAMWIDTH/2) , COLUMNS+ROWS) ;
pwm_1 = co_stream _create("pwm_1", INT_TYPE(MAX_STREAMWIDTH/2) , COLUMNS+ROWS) ;

iteration 0 = co_stream _create("iteration_ 0", INT_TYPE(MAX_ STREAMWIDTH/4) , MIN_ STREAMDEPTH)

;
iteration 1 = co_stream create("iteration 1", INT TYPE(MAX STREAMWIDTH/4) , MIN STREAMDEPTH)

;
dna_ 0
dna_1

co_stream create('"dna_ 0", CHAR TYPE, MAX SEQUENCE) ;
co_stream create('"dna 1", CHAR TYPE, MAX SEQUENCE) ;

counter 0 = co stream create("counter 0", INT TYPE(MAX STREAMWIDTH/4), FILTER QUEUE) ;

sum_0 = co_stream _create("sum 0", INT_TYPE(MAX_ STREAMWIDTH/2) , FILTER QUEUE);

counter 1 = co stream create("counter 1", INT TYPE(MAX STREAMWIDTH/4), FILTER QUEUE) ;

sum_1 = co_stream create("sum_1", INT_TYPE(MAX STREAMWIDTH/2) , FILTER_QUEUE) ;

start _0 = co_stream_create("start_0", INT_TYPE(MAX_ STREAMWIDTH/4) , WRITE_QUEUE) ;
score_0 = co_stream_create("score_0", INT_TYPE(MAX_ STREAMWIDTH/2) , WRITE_QUEUE) ;
start _1 = co_stream_create("start_1", INT_TYPE(MAX_ STREAMWIDTH/4) , WRITE_QUEUE) ;
score_1 = co_stream_create("score_1", INT_TYPE(MAX_ STREAMWIDTH/2) , WRITE_QUEUE) ;

producer _process = co_process_create("Producer", (co_function)Producer,

9,

threshold 0,
threshold:I,
pwm_ 0,
pwm:l,
iteration 0 ,
iterationil s
dna 0,
dna:I,
parameters ) ;

PWMO = co_process_create("PWM0", (co_function)PWM,
6,
pwm_0,
iteration_0 ,
dna_0,

Source Code



123

counter_0,

sum_0,
0):
PWMI = co_process_create("PWMIL", (co_function)PWM,
6,
pwm_1,
iteration 1,
dna_1,
counter 1,
sum_ 1,
1)
Filter0 = co_process_create("Filter0", (co_function)Filter ,

6,
threshold_0,
counter_0,

sum_0,
start _ 0,
score_0 ,
0):
Filterl = co_process create("Filterl", (co_ function)Filter ,
6

threshold 1,
counter 1,

sum_ 1,

startil,

scoreil,

1)

consumer _process = co_process_create("Consumer" ,(co_function)Consumer,

4,
start _ 0,
score_0,
start _ 1

;
score_1);

co_process_config(PWMO, co_loc, "PE0");
co_process config(PWMIl, co_ loc, "PE0");
co_ process_config(Filter0, co_loc, "PE0");
co_ process_config(Filterl , co_ loc, "PE0");

}

co_architecture co_initialize (int param)

return (co_architecture create("FPWM2008i","cray rt" , config FPWM2008i,(void x)param)) ;
}
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Appendix C

HDL Build Reports

FPWM

======== Building target ’build’ in file _Makefile ========
HW_SRC="FPWM_hw.c"; \

for i in $HW_SRC; do CPP_INCLUDES="$CPP_INCLUDES -include $i"; done; \
echo | "C:\Impulse\CoDeveloper2\MinGW\bin\gcc" -E -DWIN32 -DIMPULSE_C_SYNTHESIS -DRC_INVOKED -DBYTE="unsigned char" -DWOI
"C:\Impulse\CoDeveloper2\bin\impulse_snoot" -Timpulse-c FPWM.i FPWM.snt
"C:\Impulse\CoDeveloper2\bin\impulse_prep" FPWM.snt FPWM.pkO

Impulse C Transformations

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

A1l rights reserved.

Build May 7 2007.

processing FPWM.snt...

"C:\Impulse\CoDeveloper2\bin\impulse_porky" -iterate -fold -unused-syms -unused-types -Dmemcpys -const-prop -scalarize
"C:\Impulse\CoDeveloper2\bin\impulse_porky" -build-arefs FPWM.pkl FPWM.pky
"C:\Impulse\CoDeveloper2\bin\impulse_impc" FPWM.pky FPWM.sic

Impulse C Preprocessor

Copyright 2003-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Build May 7 2007.

---Software activated---

processing FPWM.pky...

analyzing co_initialize...

found architecture definition: FPWM/generic_vhdl

analyzing config FPWM...creating stream threshold_stream ...

creating stream pwm_stream ...

creating stream iteration_stream

creating stream dna_stream ...

creating stream counter_stream

creating stream sum_stream ...

creating stream start_stream

creating stream score_stream

creating process producer_process

creating process pwm_process

creating process filter_process

creating process consumer_process
"C:\Impulse\CoDeveloper2\bin\impulse_s2xml" FPWM.sic > FPWM.xic
Impulse C to XML

Copyright 2003-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Build May 7 2007.

"C:\Impulse\CoDeveloper2\bin\impulse_arch.exe" "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdl_vhdl.xml" -std_logic -nc
Impulse C HDL Design Generator

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

A1l rights reserved.

Loading C:\Impulse\CoDeveloper2\Architectures\cray_xdi_vhdl.xml
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Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/Cray/RT/bus.xml
Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/target.xml

Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/Cray/technology.xml
Loading C:/Impulse/CoDeveloper2/Architectures/Cray/system.xml

Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/Xilinx/float.xml
Loading FPWM.xic

"C:\Impulse\CoDeveloper2\bin\impulse_sm.exe" -g "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdi_vhdl.xml" -1f1
Stage Master Version 2.7

Copyright by Green Mountain Computing Systems, 2003-2006.

All rights reserved.

Build Jan 19 2007.

Analyzing PWM:

.......... Multiple access to pwm reduces minimum rate to 2
................. done 17 blocks.

Analyzing Filter:

............. done 13 blocks.

Generating

Warning: Recursively used variables may reduce pipeline rate in PWM b10 (1 sum)
Generating .. done.Results:

= m o m el

| PwM

Block #0 loop:
Stages: 28
Max. Unit Delay: 0
Block #1 loop:
Stages: 6
Max. Unit Delay: 1
Block #2 loop:

Stages: 3

Max. Unit Delay: 32
Block #3:

Stages: 1

Max. Unit Delay: 32
Block #4:

Stages: 2

Max. Unit Delay: 1
Block #5:

Stages: 1

Max. Unit Delay: O
Block #6 loop:

Stages: 3
Max. Unit Delay: 32
Stages: 1

Max. Unit Delay: 33
Block #8 loop:

Stages: 13

Max. Unit Delay: 1
Block #9:

Stages: 1

Max. Unit Delay: O
Block #10 pipeline:

Latency: 7

Rate: 6

Max. Unit Delay: 32

Effective Rate: 192
Block #11:

Stages: 2

Max. Unit Delay: 1
Block #12:

Stages: 1

Max. Unit Delay: 32
Block #13:

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| Block #7:
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| Stages: 1
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Max. Unit Delay: O
Block #14:
Stages: 1
Max. Unit Delay: 33
Block #15:
Stages: 1
Max. Unit Delay: 0O
Block #16:
Stages: 1
Max. Unit Delay: O
Operators:
4 Adder(s)/Subtractor(s) (5 bit)
2 Adder(s)/Subtractor(s) (9 bit)
1 Adder(s)/Subtractor(s) (16 bit)
7 Adder(s)/Subtractor(s) (32 bit)
2 Comparator(s) (2 bit)
4 Comparator(s) (8 bit)
7 Comparator(s) (32 bit)
4 Floating-point Adder(s)/Subtractor(s) (32 bit)
Total Stages: 30
Max. Unit Delay: 33

Block #0 loop:

Stages: 20

Max. Unit Delay: 1
Block #1:

Stages: 1

Max. Unit Delay: O
Block #2:

Stages: 1

Max. Unit Delay: 0
Block #3:

Stages: 1

Max. Unit Delay: 0
Block #4 loop:

Stages: 13

Max. Unit Delay: 1
Block #5:

Stages: 1

Max. Unit Delay: 1
Block #6:

Stages: 4

Max. Unit Delay: 32
Block #7:

Stages: 4

Max. Unit Delay: 1
Block #8:

Stages: 1

Max. Unit Delay: O
Block #9:

Stages: 1

Max. Unit Delay: 1
Block #10:

Stages: 1

Max. Unit Delay: 0O
Block #11:

Stages: 1

Max. Unit Delay: O
Block #12:

Stages: 1
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| Max. Unit Delay: 0

Operators:

3 Comparator(s) (2 bit)

2 Comparator(s) (3 bit)

1 Floating-point Adder(s)/Subtractor(s) (32 bit)

| Total Stages: 22
| Max. Unit Delay: 32

Writing output done.

"C:\Impulse\CoDeveloper2\bin\impulse_genvhdl.exe" FPWM.xhw hw/FPWM_comp.vhd
Impulse C RTL Component Generator

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Generating PWM ...

Generating Filter

---Software activated---

chmod -R +rw hw

"C:\Impulse\CoDeveloper2\bin\impulse_lib.exe" "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdl_vhdl.xml" -hwdir
Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Loading C:\Impulse\CoDeveloper2\Architectures\cray_xd1l_vhdl.xml

Loading C:/Impulse/CoDeveloper2/Architectures/Cray/Opteron/RT/cpu.xml
Loading C:/Impulse/CoDeveloper2/Architectures/Cray/system.xml

Loading FPWM.xic

for i in FPWM_sw.c; do cp $i sw; done

for i in FPWM.h; do cp $i sw; done

chmod -R +rw sw

FPWM2008

======== Building target ’build’ in file _Makefile ========
HW_SRC="FPWM2008_hw.c"; \

for i in $HW_SRC; do CPP_INCLUDES="$CPP_INCLUDES -include $i"; done; \

echo | "C:\Impulse\CoDeveloper2\MinGW\bin\gcc" -E -DWIN32 -DIMPULSE_C_SYNTHESIS -DRC_INVOKED -DBYTE="unsigned ch
"C:\Impulse\CoDeveloper2\bin\impulse_snoot" -Timpulse-c FPWM2008.i FPWM2008.snt
"C:\Impulse\CoDeveloper2\bin\impulse_prep" FPWM2008.snt FPWM2008.pk0

Impulse C Transformations

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

A1l rights reserved.

Build May 7 2007.

processing FPWM2008.snt...

"C:\Impulse\CoDeveloper2\bin\impulse_porky" -iterate -fold -unused-syms -unused-types -Dmemcpys -const-prop -sc
"C:\Impulse\CoDeveloper2\bin\impulse_porky" -build-arefs FPWM2008.pkl FPWM2008.pky
"C:\Impulse\CoDeveloper2\bin\impulse_impc" FPWM2008.pky FPWM2008.sic

Impulse C Preprocessor

Copyright 2003-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Build May 7 2007.

---Software activated---

processing FPWM2008.pky...

analyzing co_initialize...

found architecture definition: FPWM2008/cray_rt

analyzing config_ FPWM2008...

creating stream threshold_0

creating stream threshold_1

creating stream pwm_0

creating stream pwm_1

creating stream iteration_0

creating stream iteration_1

creating stream dna_0
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creating stream dna_1

creating stream counter_0

creating stream sum_0

creating stream counter_1

creating stream sum_1

creating stream start_0

creating stream score_0

creating stream start_1

creating stream score_1

creating process producer_process

creating process PWMO

creating process PWM1

creating process Filter0

creating process Filteril

creating process consumer_process
"C:\Impulse\CoDeveloper2\bin\impulse_s2xml" FPWM2008.sic > FPWM2008.xic
Impulse C to XML

Copyright 2003-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Build May 7 2007.

"C:\Impulse\CoDeveloper2\bin\impulse_arch.exe" "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdi_vhdl.xml" -std_logic -nc
Impulse C HDL Design Generator

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Loading C:\Impulse\CoDeveloper2\Architectures\cray_xdi_vhdl.xml
Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/Cray/RT/bus.xml
Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/target.xml
Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/Cray/technology.xml
Loading C:/Impulse/CoDeveloper2/Architectures/Cray/system.xml
Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/Xilinx/float.xml
Loading FPWM2008.xic

"C:\Impulse\CoDeveloper2\bin\impulse_sm.exe" -g "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdi_vhdl.xml" -1float FPWMZ
Stage Master Version 2.7

Copyright by Green Mountain Computing Systems, 2003-2006.

All rights reserved.

Build Jan 19 2007.

Analyzing PWM:

.......... Multiple access to matrix reduces minimum rate to 2
................. done 17 blocks.

Analyzing Filter:

............. done 13 blocks.

Generating

Warning: Recursively used variables may reduce pipeline rate in PWM b10 (1 nSum)
Generating .. done.

Results:

| = eeememmmm__

| PWM

Block #0 loop:
Stages: 28
Max. Unit Delay: O
Block #1 loop:
Stages: 6
Max. Unit Delay: 1
Block #2 loop:

Stages: 3
Block #3:

Stages: 1

Max. Unit Delay: 32
Block #4:

Stages: 2

Max. Unit Delay: 1
Block #5:

|
|
|
|
|
|
|
|
| Max. Unit Delay: 32
|
|
|
|
|
|
|
|

Stages: 1
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Max. Unit Delay:

Block #6 loop:
Stages: 3

Max. Unit Delay:

Block #7:
Stages: 1

Max. Unit Delay:

Block #8 loop:

Stages: 13

Max. Unit Delay:
Block #9:

Stages: 1

Max. Unit Delay:
Block #10 pipeline:

Latency: 7
Rate: 6

Max. Unit Delay:

Effective Rate:
Block #11:
Stages: 2

Max. Unit Delay:

Block #12:
Stages: 1

Max. Unit Delay:

Block #13:
Stages: 1

Max. Unit Delay:

Block #14:
Stages: 1

Max. Unit Delay:

Block #15:
Stages: 1

Max. Unit Delay:

Block #16:
Stages: 1

Max. Unit Delay:

Operators:

4 Adder(s)/Subtractor(s) (5 bit)

2 Adder(s)/Subtractor(s) (9 bit)

1 Adder(s)/Subtractor(s) (16 bit)

7 Adder(s)/Subtractor(s) (32 bit)

2 Comparator(s) (2 bit)

4 Comparator(s) (8 bit)

7 Comparator(s) (32 bit)

4 Floating-point Adder(s)/Subtractor(s) (32 bit)

Total Stages: 30

Max. Unit Delay: 33

Block #0 loop:

Stages: 20

Max. Unit Delay:
Block #1:

Stages: 1

Max. Unit Delay:
Block #2:

Stages: 1

Max. Unit Delay:
Block #3:

Stages: 1

Max. Unit Delay:

32

33

0

32

192

32

33
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Block #4 loop:

|

| Stages: 13

| Max. Unit Delay: 1
| Block #5:

| Stages: 1

| Max. Unit Delay: 1
| Block #6:

| Stages: 4

| Max. Unit Delay: 32
| Block #7:

| Stages: 4

| Max. Unit Delay: 1
| Block #8:

| Stages: 1

| Max. Unit Delay: O
|  Block #9:

| Stages: 1

| Max. Unit Delay: 1
| Block #10:

| Stages: 1

| Max. Unit Delay: O
| Block #11:

| Stages: 1

| Max. Unit Delay: 0O
| Block #12:

| Stages: 1

|

Max. Unit Delay: 0O

Operators:

3 Comparator(s) (2 bit)

2 Comparator(s) (3 bit)

1 Floating-point Adder(s)/Subtractor(s) (32 bit)

| Total Stages: 22
| Max. Unit Delay: 32

Writing output done.

"C:\Impulse\CoDeveloper2\bin\impulse_genvhdl.exe" FPWM2008.xhw hw/FPWM2008_comp.vhd
Impulse C RTL Component Generator

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

A1l rights reserved.

Generating PWM ...

Generating Filter

---Software activated---

chmod -R +rw hw

"C:\Impulse\CoDeveloper2\bin\impulse_lib.exe" "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdl_vhdl.xml" -hwdirhw -files
Impulse C Software Interface Generator

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Loading C:\Impulse\CoDeveloper2\Architectures\cray_xdi_vhdl.xml

Loading C:/Impulse/CoDeveloper2/Architectures/Cray/Opteron/RT/cpu.xml

Loading C:/Impulse/CoDeveloper2/Architectures/Cray/system.xml

Loading FPWM2008.xic

for i in FPWM2008_sw.c; do cp $i sw; done

for i in FPWM2008.h; do cp $i sw; done

chmod -R +rw sw

FPWMi

======== Building target ’build’ in file _Makefile ========
HW_SRC="FPWMi_hw.c"; \
for i in $HW_SRC; do CPP_INCLUDES="$CPP_INCLUDES -include $i"; done; \
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echo | "C:\Impulse\CoDeveloper2\MinGW\bin\gcc" -E -DWIN32 -DIMPULSE_C_SYNTHESIS -DRC_INVOKED -DBYTE="unsigned ch
"C:\Impulse\CoDeveloper2\bin\impulse_snoot" -Timpulse-c FPWMi.i FPWMi.snt
"C:\Impulse\CoDeveloper2\bin\impulse_prep" FPWMi.snt FPWMi.pkOImpulse C Transformations
Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Build May 7 2007.

processing FPWMi.snt...

"C:\Impulse\CoDeveloper2\bin\impulse_porky" -iterate -fold -unused-syms -unused-types -Dmemcpys -const-prop -sc
"C:\Impulse\CoDeveloper2\bin\impulse_porky" -build-arefs FPWMi.pkl FPWMi.pky
"C:\Impulse\CoDeveloper2\bin\impulse_impc" FPWMi.pky FPWMi.sicImpulse C Preprocessor
Copyright 2003-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Build May 7 2007.

---Software activated---

processing FPWMi.pky...

analyzing co_initialize...

found architecture definition: FPWMi/cray_rt

analyzing config FPWMi...

creating stream threshold_stream

creating stream pwm_stream ...

creating stream iteration_stream

creating stream dna_stream ...

creating stream counter_stream ...

creating stream sum_stream ...

creating stream start_stream ...

creating stream score_stream ...

creating process producer_process

creating process pwm_process

creating process filter_process

creating process consumer_process

"C:\Impulse\CoDeveloper2\bin\impulse_s2xml" FPWMi.sic > FPWMi.xic

Impulse C to XML

Copyright 2003-2007, Impulse Accelerated Technologies, Inc.

A1l rights reserved.

Build May 7 2007.

"C:\Impulse\CoDeveloper2\bin\impulse_arch.exe" "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdi_vhdl.xml" -std_
Impulse C HDL Design Generator

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

A1l rights reserved.

Loading C:\Impulse\CoDeveloper2\Architectures\cray_xdl_vhdl.xml

Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/Cray/RT/bus.xml

Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/target.xml

Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/Cray/technology.xml

Loading C:/Impulse/CoDeveloper2/Architectures/Cray/system.xml

Loading FPWMi.xic

"C:\Impulse\CoDeveloper2\bin\impulse_sm.exe" -g "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdi_vhdl.xml" FPY
Stage Master Version 2.7

Copyright by Green Mountain Computing Systems, 2003-2006.

All rights reserved.

Build Jan 19 2007.

Analyzing PWM:

.......... Multiple access to pwm reduces minimum rate to 2

................. done 17 blocks.

Analyzing Filter:

.............. done 14 blocks.

Generating

Warning: Recursively used variables may reduce pipeline rate in PWM b10 (1 sum)
Generating .. done.

Results:

[ = m .

| PWM

| Block #0 loop:
| Stages: 25
| Max. Unit Delay: 0
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Block #1 loop:

Stages: 6

Max. Unit Delay: 1
Block #2 loop:

Stages: 3

Max. Unit Delay: 32
Block #3:

Stages: 1

Max. Unit Delay: 32
Block #4:

Stages: 2

Max. Unit Delay: 1
Block #5:

Stages: 1

Max. Unit Delay: O
Block #6 loop:

Stages: 3

Max. Unit Delay: 32
Block #7:

Stages: 1

Max. Unit Delay: 33
Block #8 loop:

Stages: 10

Max. Unit Delay: 1
Block #9:

Stages: 1

Max. Unit Delay: 0O
Block #10 pipeline:

Latency: 4

Rate: 2

Max. Unit Delay: 32

Effective Rate: 64
Block #11:

Stages: 2

Max. Unit Delay: 1
Block #12:

Stages: 1

Max. Unit Delay: 32
Block #13:

Stages: 1

Max. Unit Delay: 0O
Block #14:

Stages: 1

Max. Unit Delay: 33
Block #15:

Stages: 1

Max. Unit Delay: O
Block #16:

Stages: 1

Max. Unit Delay: 0O
| = o e ——mmmmmmmmmmmm oo
Operators:
4 Adder(s)/Subtractor(s) (5 bit)
2 Adder(s)/Subtractor(s) (9 bit)
1 Adder(s)/Subtractor(s) (16 bit)
11 Adder(s)/Subtractor(s) (32 bit)
2 Comparator(s) (2 bit)
4 Comparator(s) (8 bit)

7 Comparator(s) (32 bit)

| Total Stages: 27
| Max. Unit Delay: 33

| Filter
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Block #0 loop:

Stages: 15

Max. Unit Delay: 1
Block #1:

Stages: 1

Max. Unit Delay: 0
Block #2:

Stages: 1

Max. Unit Delay: O
Block #3:

Stages: 1

|

I

|

I

I

|

I

|

I

|

I

| Max. Unit Delay: 0
| Block #4 loop:

| Stages: 8

| Max. Unit Delay: 1
| Block #5:

I Stages: 1

| Max. Unit Delay: 1
| Block #6:

I Stages: 1

| Max. Unit Delay: 1
| Block #7:

| Stages: 1

| Max. Unit Delay: 32
| Block #8:

I Stages: 1

| Max. Unit Delay: 1
| Block #9:

I Stages: 1

| Max. Unit Delay: 0
| Block #10:

| Stages: 1

| Max. Unit Delay: 1
| Block #11:

I Stages: 1

| Max. Unit Delay: 0
| Block #12:

I Stages: 1

| Max. Unit Delay: 0
| Block #13:

| Stages: 1

| Max. Unit Delay: 0

| Operators:

| 1 Adder(s)/Subtractor(s) (32 bit)
| 3 Comparator(s) (2 bit)

| 2 Comparator(s) (3 bit)

| 2 Comparator(s) (32 bit)

| Total Stages: 17
| Max. Unit Delay: 32

Writing output done.

"C:\Impulse\CoDeveloper2\bin\impulse_genvhdl.exe" FPWMi.xhw hw/FPWMi_comp.vhd
Impulse C RTL Component Generator

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Generating PWM ...

Generating Filter

---Software activated---

chmod -R +rw hw

"C:\Impulse\CoDeveloper2\bin\impulse_lib.exe" "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdl_vhdl.xml" -hwdir
Impulse C Software Interface Generator

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.
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All rights reserved.

Loading C:\Impulse\CoDeveloper2\Architectures\cray_xdi_vhdl.xml
Loading C:/Impulse/CoDeveloper2/Architectures/Cray/Opteron/RT/cpu.xml
Loading C:/Impulse/CoDeveloper2/Architectures/Cray/system.xml

Loading FPWMi.xic

for i in FPWMi_sw.c; do cp $i sw; done

for i in FPWMi.h; do cp $i sw; done

chmod -R +rw sw

FPWM2008i

==== Building target ’build’ in file _Makefile
HW_SRC="FPWM2008i_hw.c"; \
for i in $HW_SRC; do CPP_INCLUDES="$CPP_INCLUDES -include $i"; done; \

echo | "C:\Impulse\CoDeveloper2\MinGW\bin\gcc" -E -DWIN32 -DIMPULSE_C_SYNTHESIS -DRC_INVOKED -DBYTE="unsigned char" -DWOI
"C:\Impulse\CoDeveloper2\bin\impulse_snoot" -Timpulse-c FPWM2008i.i FPWM2008i.snt
"C:\Impulse\CoDeveloper2\bin\impulse_prep" FPWM2008i.snt FPWM20081i.pk0

Impulse C Transformations

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

A1l rights reserved.

Build May 7 2007.

processing FPWM2008i.snt...

"C:\Impulse\CoDeveloper2\bin\impulse_porky" -iterate -fold -unused-syms -unused-types -Dmemcpys -const-prop -scalarize
"C:\Impulse\CoDeveloper2\bin\impulse_porky" -build-arefs FPWM2008i.pk1l FPWM20081i.pky
"C:\Impulse\CoDeveloper2\bin\impulse_impc" FPWM2008i.pky FPWM2008i.sic

Impulse C Preprocessor

Copyright 2003-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Build May 7 2007.

---Software activated---

processing FPWM2008i.pky...

analyzing co_initialize...

found architecture definition: FPWM2008i/cray_rt

analyzing config FPWM2008i...

creating stream threshold_O

creating stream threshold_1

creating stream pwm_O

creating stream pwm_1

creating stream iteration_0

creating stream iteration_1

creating stream dna_0

creating stream dna_1

creating stream counter_0

creating stream sum_O

creating stream counter_1

creating stream sum_1

creating stream start_0

creating stream score_0

creating stream start_1

creating stream score_1 ...

creating process producer_process

creating process PWMO

creating process PWM1

creating process Filter0

creating process Filteril

creating process consumer_process

"C:\Impulse\CoDeveloper2\bin\impulse_s2xml" FPWM2008i.sic > FPWM2008i.xic

Impulse C to XML

Copyright 2003-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Build May 7 2007.

"C:\Impulse\CoDeveloper2\bin\impulse_arch.exe" "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdl_vhdl.xml" -std_logic -nc
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Impulse C HDL Design Generator

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Loading C:\Impulse\CoDeveloper2\Architectures\cray_xd1l_vhdl.xml
Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/Cray/RT/bus.xml
Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/target.xml

Loading C:/Impulse/CoDeveloper2/Architectures/VHDL/Cray/technology.xml
Loading C:/Impulse/CoDeveloper2/Architectures/Cray/system.xml

Loading FPWM2008i.xic

"C:\Impulse\CoDeveloper2\bin\impulse_sm.exe" -g "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdi_vhdl.xml" FPW
Stage Master Version 2.7

Copyright by Green Mountain Computing Systems, 2003-2006.

All rights reserved.

Build Jan 19 2007.

Analyzing PWM:

.......... Multiple access to matrix reduces minimum rate to 2
................. done 17 blocks.

Analyzing Filter:

.............. done 14 blocks.

Generating

Warning: Recursively used variables may reduce pipeline rate in PWM b10 (1 nSum)
Generating .. done.

Results:

[ = e m—m— e mmmmmmmmmmmmmo

| PwM

Block #0 loop:
Stages: 25
Max. Unit Delay: O
Block #1 loop:
Stages: 6
Max. Unit Delay: 1
Block #2 loop:

Stages: 3

Max. Unit Delay: 32
Block #3:

Stages: 1

Max. Unit Delay: 32
Block #4:

Stages: 2

Max. Unit Delay: 1
Block #5:

Stages: 1

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

| Max. Unit Delay: 0
| Block #6 loop:

| Stages: 3
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Max. Unit Delay: 32
Block #7:
Stages: 1

Max. Unit Delay: 33
Block #8 loop:

Stages: 10

Max. Unit Delay: 1
Block #9:

Stages: 1

Max. Unit Delay: O
Block #10 pipeline:

Latency: 4

Rate: 2

Max. Unit Delay: 32

Effective Rate: 64
Block #11:

Stages: 2

Max. Unit Delay: 1
Block #12:
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Stages: 1

Max. Unit Delay: 32
Block #13:

Stages: 1

Max. Unit Delay: O
Block #14:

Stages: 1

Max. Unit Delay: 33
Block #15:

Stages: 1

Max. Unit Delay: 0O
Block #16:

Stages: 1

Max. Unit Delay: 0O

Operators:

4 Adder(s)/Subtractor(s) (5 bit)

2 Adder(s)/Subtractor(s) (9 bit)

1 Adder(s)/Subtractor(s) (16 bit)
11 Adder(s)/Subtractor(s) (32 bit)
2 Comparator(s) (2 bit)

4 Comparator(s) (8 bit)

7 Comparator(s) (32 bit)

| Total Stages: 27
| Max. Unit Delay: 33

Block #0 loop:

Stages: 15

Max. Unit Delay: 1
Block #1:

Stages: 1

Max. Unit Delay: 0O
Block #2:

Stages: 1

Max. Unit Delay: 0
Block #3:

Stages: 1

Max. Unit Delay: O
Block #4 loop:

Stages: 8

Max. Unit Delay: 1
Block #5:

Stages: 1
Block #6:

Stages: 1

Max. Unit Delay: 1
Block #7:

Stages: 1

Max. Unit Delay: 32
Block #8:

Stages: 1

Max. Unit Delay: 1
Block #9:

Stages: 1

Max. Unit Delay: 0O
Block #10:

Stages: 1

Max. Unit Delay: 1
Block #11:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Max. Unit Delay: 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Stages: 1
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| Max. Unit Delay: 0
| Block #12:

| Stages: 1

| Max. Unit Delay: 0O
| Block #13:

| Stages: 1

| Max. Unit Delay: 0

| Operators:

| 1 Adder(s)/Subtractor(s) (32 bit)
| 3 Comparator(s) (2 bit)

| 2 Comparator(s) (3 bit)

| 2 Comparator(s) (32 bit)

| Total Stages: 17
| Max. Unit Delay: 32

Writing output done.

"C:\Impulse\CoDeveloper2\bin\impulse_genvhdl.exe" FPWM2008i.xhw hw/FPWM2008i_comp.vhd
Impulse C RTL Component Generator

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

All rights reserved.

Generating PWM ...

Generating Filter

---Software activated---

chmod -R +rw hw

"C:\Impulse\CoDeveloper2\bin\impulse_lib.exe" "-aC:\Impulse\CoDeveloper2\Architectures\cray_xdl_vhdl.xml" -hwdir
Impulse C Software Interface Generator

Copyright 2002-2007, Impulse Accelerated Technologies, Inc.

A1l rights reserved.

Loading C:\Impulse\CoDeveloper2\Architectures\cray_xdl_vhdl.xml

Loading C:/Impulse/CoDeveloper2/Architectures/Cray/Opteron/RT/cpu.xml

Loading C:/Impulse/CoDeveloper2/Architectures/Cray/system.xml

Loading FPWM2008i.xic

for i in FPWM2008i_sw.c; do cp $i sw; done

for i in FPWM2008i.h; do cp $i sw; done

chmod -R +rw sw

Build of target ’build’ complete ========
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