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Abstract

Wireless networks have witnessed a great success recently. The number of

users along with the traffic demands have grown exponentially. Therefore,
the wireless resources of a single Radio Access Technology (RAT) might
not be sufficient to meet this increase in traffic demand.

Recently, several new technologies have been standardized, which made
it common to encounter geographical areas where two or more RATs have

overlapping coverage, forming the so-called Heterogeneous Wireless Net-
works (HWNs). This gives the opportunity to exploit the pool of resources

of the coexisting RATs in order to boost the capacity, and subsequently
generate higher revenue. However, this requires coordination among the

different RATs, known in the literature as Common Radio Resource Man-
agement (CRRM).

This work is devoted to shedding light on the importance of CRRM, and
the role it can play in increasing the generated revenue in HWNs scenarios.
This choice is dictated by the importance of the economic aspects for the

success of the wireless services business. Moreover, this aspect has not been
sufficiently addressed in the literature where the focus has been mainly on

the user’s perspective.
The considered system is a cellular / Wireless Local Area Network

(WLAN) overlay network which can be easily found in real scenarios, and
the emphasis is mainly on RAT selection which is the first involved CRRM

component when a new connection request is received.
First, RAT selection schemes that prioritize the traffic with the highest

contribution to the revenue are proposed, showing the impact that these
schemes have on revenue as well as the Quality of Service (QoS). Addition-
ally, the role of WLAN offloading in alleviating the traffic load from the

cellular RAT is highlighted.
Second, revenue-maximizing RAT selection policies are implemented.

To this end, Markov Decision Process (MDP) is used to derive the optimal
policy. An investigation of MDP as a tool for modeling RAT selection prob-

lems has been conducted, including how to tune the involved parameters
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in order to achieve the targeted goal.

Another aspect that is covered by this work is net neutrality, which can
be seen as an additional constraint when taking RAT selection decisions.

Applying net neutrality regulations involves providing equal treatment to
all Internet traffic. However, it allows granting exemption to some non-

Internet access traffic know as specialized services. This case has been
integrated in the modeling of RAT selection policies, and the impact of net
neutrality adoption on the performance of various RAT selection policies,

each having different admission strategy, is shown. The results depict that,
with a careful choice of the RAT selection strategy, the loss in revenue

caused by applying net neutrality could be reduced.
The effect of net neutrality is then further investigated by considering

different ways of bandwidth reservation for specialized services. The aim
is to figure out which way of bandwidth reservation achieves better results,

and to study the impact of the ratio of reserved bandwidth for specialized
services on the revenue. The results indicate that it would be more ben-

eficial to dedicate bandwidth for specialized services in the whole HWN
as compared to reserving the bandwidth in cellular RAT only, as the QoS
experienced by the Internet access services is less affected in the first case.

In this research work, RAT selection problem is tackled from an opera-
tor’s perspective. However, both operator’s and user’s perspectives can be

seen as complimentary. While the focus is on revenue maximization, QoS
metrics are considered when comparing the studied RAT selection schemes.
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Chapter 1. Motivation and Focus of This Thesis

1.1 Motivation

The wireless telecommunications sector has evolved tremendously in the

past decades. Smart devices have become affordable and widely available,
leading to a fast growth of number of users along with the amount of data

to be transmitted. A single Radio Access Technology (RAT) might not
have enough capacity to cater for this explosion of data, making the need
for cooperation among co-existing RATs inevitable.

The term Heterogeneous Wireless Networks (HWNs) denotes wireless
networks where two or more RATs co-exist. They have become prevalent

especially with the deployment and standardization of various technologies
ranging fromWireless Wide Area Networks (WWAN) and down to Wireless

Local Area Network (WLAN). Some examples of these standards include
Worldwide Interoperability for Microwave Access (WiMAX), 3rd Genera-

tion Partnership Project Long Term Evolution (3GPP LTE) and Wireless
Fidelity (WiFi).

The evolution of wireless sector has caused the users’ expectations in
terms of Quality of Service (QoS) to become very high. However, it is known
that the wireless resources are scarce; and with the demand for resources

driven upwards [1], those demands are expected to exceed, in short period,
the wireless capacity.

Moreover, the network operators are requested to follow the regulations
and rules that govern the telecommunications market. One such regulation

that gained lots of attention recently is net neutrality. It aims to hinder
network operators from exercising any kind of traffic discrimination. Such

regulations may impose additional challenges in a resource-limited environ-
ment.

Network operators are therefore facing a major challenge: how to benefit
from the existence of HWNs and find solutions that optimize the usage of
the available resources, in order to satisfy the customers’ demands and

enhance the system performance.
One way to alleviate the problem of scarcity of resources could be the

expansion of the wireless capacity by adding more base stations (BS) or
femto cells. However, beside the increase in cost that is incurred by such

solutions, the congestion problem is not totally resolved since the entire
traffic still has to go through the same core network. Moreover, this solution

will lead to higher number of small-size cells, which will in turn increase the
handover rates in the network [2] and incur extra complexity due to heavy

interference management [3].
Another candidate solution to cope with the increasing demand for

wireless resources consists of enabling the operation of LTE in unlicensed

spectrum. 3GPP announced the operation of LTE license-assisted access

5



1.2. RAT Selection as Key Component for Resource

Management in HWNs

(LTE-LAA) as an enhancement in LTE release 13 [4]. This means that LTE-

LAA and other technologies, particularly WiFi, will be sharing the same
band. However, this imposes challenges in securing fair coexistence of LTE-

LAA and WiFi, and in avoiding that they affect each other’s performance.
The adoption of appropriate channel access scheme is hence required [5, 6].

Moreover, compatible smartphones have to become available in the market.
Some commercial tests have already been in place and higher bandwidth
and faster speed are claimed to be reached [7, 8].

In addition to the abovementioned solutions, mechanisms that manage
the utilization of the wireless resources, namely Common Radio Resource

Management (CRRM), remain crucial. CRRM allows to get advantage of
the pools of combined resources of the co-existing RATs in heterogeneous

networks. It provides means to control the admitted traffic and its dis-
tribution in the system, allowing a better assignment of resources. When

the utilization of resources is optimized, a better system performance may
be achieved, and a larger number of connections may be served which is

translated by larger customer base and increase in the generated revenue.
CRRM mechanisms consist of several components. One major compo-

nent, which is the center of the work in this thesis, is the RAT selection. In

the following section, RAT selection and its main aspects will be presented.

1.2 RAT Selection as Key Component for

Resource Management in HWNs

In an HWN, each of the available RATs has its own internal RRM controller

that is responsible for managing the resources internally. To coordinate
among the coexisting RATs, an entity that operates at a higher level is
needed. This is often referred to in the literature as CRRM or Joint Radio

Resource Management [9, 10].
CRRM mechanisms help optimize the usage of the wireless resources

and ensure a better system performance. The main components of CRRM
include: RAT selection, vertical handover (VHO), and congestion con-

trol [11]. RAT selection is of particular importance, being the first func-
tionality that is triggered upon the arrival of a new connection request. It

is responsible for the decision of admission or rejection of the arriving con-
nections, and for the selection of the appropriate RAT that the connection

will be assigned to.
Taking admission decision is not straightforward; several aspects have

to be taken into account by the RAT selection component during this pro-

cess, such as ensuring that the selected RAT is able to satisfy the QoS

6



Chapter 1. Motivation and Focus of This Thesis

requirements of the application requesting connection, avoiding to connect

to the RATs that are highly-loaded, and avoiding to assign connections to
a RAT that will likely disappear shortly. This latter issue requires the RAT

selection component to be able to predict the availability of the different
RATs.

1.2.1 Importance of RAT Selection

Adopting RAT selection strategies allows to achieve several gains, which

include:

1. Capacity gain: when the resources are allocated efficiently, the num-
ber of users that the system is capable to serve becomes larger.

2. Enhanced system performance: by taking into account the load of

the different RATs, the RAT selection module can contribute into a
more efficient load distribution and a more stable system.

3. Enhanced user satisfaction: RAT selection can be tailored to perform

the admission based on the user preferences. While some users prefer
to connect to the cheapest RAT, others might be more interested in
connecting to the one that provides high connection speed.

4. Increase in generated revenue: By increasing the network capacity,
more users may be served and hence higher revenue may be achieved.

A well-designed RAT selection policy does not only increase the resource
utilization, it may also help the network operator take decisions that en-
hance the network performance. For instance, by studying and analyzing

the performance of RAT selection strategies, the operator may identify the
need to add WLAN access points (APs) at certain locations to offload part

of the traffic from the cellular network.
RAT selection and the other CRRM components collaborate to enhance

the system performance. Information exchange among those components
is hence necessary to dictate the decision taken at each level [12].

1.2.2 RAT Selection Classification

The RAT selection strategies can be classified based on the way the newly-
arriving traffic is treated when the network is overloaded. In other words,

when the system load reaches a certain maximum value, RAT selection
functionality might decide to allow or deny new connections requests, de-
pending on the operator’s strategy. Two important admission strategies

can be distinguished [9]:
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Management in HWNs

• User blocking admission: new calls are blocked when the consumption

of system resources reaches its maximum.

• Bandwidth sharing admission: new connections are admitted and
they share the bandwidth with the existing ones.

In terms of decision making, RAT selection can be classified as user-initiated

or network-initiated [2]. User-initiated approaches imply that the mobile
terminal selects the RAT to connect to. In this case, the user has the

flexibility of selecting the network of its preference. This choice depends
on different parameters such as connectivity cost, signal strength and link
capacity. At the opposite, network-initiated RAT selection is performed by

the network whose goal is mainly the maximization of the capacity and the
enhancement of the system performance.

In user-initiated RAT selection, three main stages are to be distin-
guished (Figure 1.1):

• Monitoring: The user terminal monitors the available RATs and the
network conditions.

• Network selection: Based on the results obtained from the monitoring
phase, the user selects the RAT to connect to. The decision criteria

that governs the network selection depends on the application and
the user preferences. For instance, a user might decide to connect to

the RAT with the lowest connectivity cost or the one with the best
QoS provisioning.

• Call setup: After the selection of the candidate RAT, the call is es-

tablished. In the case where the selected RAT is no more available,
the one that comes next on the list is chosen.

Figure 1.1: Stages of user-initiated RAT selection.

With network-initiated RAT selection, the objective is different. The de-
cision criteria are usually network-utility-oriented such as load balancing,
system capacity enhancement, or revenue maximization. With network-

centric RAT selection, the involved stages are the following (Figure 1.2):
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• Collecting traffic measurements: This requires the existence of net-

work components that are assigned the task of collecting traffic mea-
surements and other needed information.

• Decision making: The RAT selection decisions are taken transpar-

ently to the users, by adopting the decision that maximizes the net-
work utility or by following a given allocation policy.

• Call setup: The call is allocated to the selected RAT.

Compared to network-initiated RAT selection, user-initiated approaches of-
fer some advantages; they take into account the user preferences without

incurring significant signaling load. However, user-initiated approaches suf-
fer from a major drawback: when it is up to the users to take the RAT
selection decision, they do not cooperate, which leads to a decrease in the

system performance.
The RAT selection policies that are studied in this work are network-

initiated with user blocking admission.
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Figure 1.2: Stages of network-initiated RAT selection.

1.3 Research Context

The objective of this research work is to propose intelligent ways for re-

sources allocation in HWNs that allow to maximize the revenue while tak-
ing into account the QoS requirements of the offered traffic. Finding cost-

effective solutions is a major concern for network operators to help their
business survive the various obstacles that are emerging, which are mainly
dictated by the scarcity of wireless resources compared to the fast-increasing

demands.

9



1.3. Research Context

1.3.1 Adopted Scenario

In this thesis, an HWN is considered, and particularly, an overlay cellular /
WLAN network that is run by a single operator. Cellular and WLAN can

be seen as having complementary characteristics. While WLAN provides
local coverage at a relatively low cost, the cellular network is characterized

by global coverage, more suitability for mobile users, and better QoS pro-
visioning. The network operator can benefit from this complementarity to

offer better services to the users. Moreover, this network architecture is
commonly found in real scenarios such as LTE / WiFi or WiMAX / WiFi

overlay networks.
It is assumed that the mobile terminals are multi-mode in order to

allow the users to connect to any of the available RATs. Furthermore,
user profile differentiation is taken into consideration. As observed in real
world, all users don’t belong to the same category and their requirements

and preferences may vary. Therefore, in this research work, two classes of
services (or user profiles) are considered. Offering several user profiles is

beneficial for both the users and the operator. On one hand, it provides
more options to the users allowing them to choose the profile that suits best

their needs and preferences (required QoS, suitable price,..). On the other
hand, this supplies the operator with a better knowledge of the users and

allows to grant different priority levels to different categories of users.

1.3.2 Research Questions

A survey of the existing literature shows that most research work has dealt

with CRRM problem from a user’s point of view, where the objective is
to maximize the user’s utility [13–15]. While this side is highly important,
it is also interesting to tackle the problem from the operator’s side. This

observation initiated the main idea behind this research work which aims
to prove the efficiency of CRRM, and particularly the RAT selection com-

ponent, as means for revenue enhancement in HWNs.
An important aspect in the considered HWN scenario is the role that

WLAN may play in alleviating the traffic load of the cellular RAT. Since
WLAN is characterized by local coverage, this involves the need for an

analytical model that captures the probability for a user to be under the
coverage of WLAN, which will be addressed in this research work.

Another issue that might affect the revenue in wireless networks is the
adoption of net neutrality regulation. Studying how to formulate RAT
selection policies that are net neutrality-compliant will also be part of this

research work.
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Figure 1.3: Addressed research questions.

Considering the abovementioned context, the focus of this work is nar-
rowed to the following research questions:

• RQ1 - How much revenue may be gained by the implementation of
well-designed CRRM mechanisms?

• RQ2 - How important is the WLAN offloading in HWNs scenarios?

• RQ3 - How to design RAT selection policies that allow to maximize
the revenue?

• RQ4 - What is impact of net neutrality regulation on the revenue and
the QoS?

Figure 1.3 illustrates the addressed research questions.

1.4 Thesis Outline

The present thesis consists of two parts. The first part, Part I, is composed
of the following four chapters:

• Chapter 1: provides the motivation of this work. RAT selection and
its importance are highlighted, the considered HWN scenario is pre-

sented, and the main research questions addressed in the present the-
sis are introduced.

• Chapter 2: background information on CRRM is provided. Markov
chain and Markov Decision Process (MDP) as tools for modeling RAT
selection are presented. An insight on pricing in wireless networks and

its importance as a RRM tool is also provided in this chapter.
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1.4. Thesis Outline

• Chapter 3: this chapter is devoted to presenting the contribution, by

providing a summary of the published articles as well as the obtained
results.

• Chapter 4: concludes the thesis. The main issues are summarized

and some open problems for future research are pointed out.

Part II consists of the published articles that resulted from this research
work.
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Chapter 2. Background

In this chapter, the related background is presented. First, RAT se-

lection and VHO are introduced as two important components of CRRM.
Second, Markov chain and MDP are presented as the tools of choice for

modeling RAT selection, in addition to some reflections concerning solving
MDPs. Afterwards, Poisson Point Process (PPP) is introduced as a tool

for spatial distribution modeling which allowed to derive a formulation of
the coverage probability of WiFi. Finally, pricing and the role it can play
as a resource management tool in wireless networks is highlighted, and a

summary of some of the well-known pricing schemes in wireless networks is
provided.

2.1 Radio Resource Management in

Heterogeneous Wireless Networks

Radio resource management is of significant importance in resource-limited
wireless networks. With the deployment of HWNs, new specifically de-

signed CRRM components have emerged. Their role is the coordination
between the co-existing RATs. Two CRRM components that gained lots

of attention in the literature are presented in this section, namely RAT
selection and VHO.

2.1.1 RAT Selection

RAT selection plays a substantial role in CRRM frameworks [9] [10]. Dif-
ferent approaches for RAT selection have been proposed in the literature
and can be divided into the following categories:

• Load-balancing-based RAT selection: aims to balance the traffic among
the existing RATs, which results in an efficient utilization of the wire-

less resources and a more stable system. Load balancing schemes are
network-centric. Triggered at the session setup phase, load balanc-
ing schemes may be complemented by regularly checking the load in

the different RATs and handing off some of the ongoing sessions to a
different RAT in case the current one has become overloaded.

• Service-class-based RAT selection: where each class of service i.e.
voice, video streaming, and data, is assigned to the most appropri-
ate RAT that was designed for this kind of service. While this type

of algorithms provide good QoS, it doesn’t consider the load balanc-
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Networks

ing issue which might arises if the traffic was not evenly distributed

among the different classes of services.

• Policy-based approaches: presented in [16]. In addition to the service
type, the position of the user (whether he/she is indoor or outdoor)

is also accounted for as criterion for RAT selection decision.

In addition to the abovementioned categories, other RAT selection strate-

gies, e.g. terminal-driven strategies, have been proposed in the litera-
ture [17].

2.1.2 Vertical Handover

Another CRRM component that has been widely studied in literature is
VHO. Traditionally, VHO is performed due to mobility, when a user moves

out of the coverage of the serving RAT and needs to connect to another
RAT that has become available during an active session, avoiding that

this session gets dropped. This kind of mobility-based handover aims to
preserve QoS and is usually user-initiated.

VHO, on the other hand, can play another important role as RRM
tool [18], which may be seen as a complementary functionality to RAT

selection. After the admission decision has been taken by the RAT selec-
tion module at call initiation time, it is important to maintain the QoS

experienced by this call, or to keep the traffic balanced among the differ-
ent RATs when the network conditions change. For this purpose, when
a network is detected as congested, network-motivated VHO may be ini-

tiated to re-allocate some of the calls. This helps also release resources
for potential session requests that might arrive to the previously congested

RAT, especially for requests coming from terminals with one network inter-
face. Network-motivated handover allows hence a better utilization of the

wireless resources.
While network-motivated RAT selection and VHO are important as

CRRM tools, implementing such modules encounters several challenges. In
order to select the appropriate RAT to accommodate the new or handed off

calls, various information should be made available to those modules, such
as the current load of all RATs, the number and type of interfaces that
each mobile terminal is equipped with, and the type of application that is

currently run by the users.
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2.2 Modeling RAT Selection

RAT selection can be modeled with the help of various mathematical tools
each having its own characteristics in terms of complexity, accuracy and

performance. The choice of the mathematical tool is also dependent on the
objective of optimization. It is therefore important to acquire knowledge of

the various potential tools and choose the one that best suits the studied
problem and defined objective.
In a HWN environment, numerous attributes are involved in the RAT

selection process, making it difficult to have a model that captures all of
them. These attributes can be:

• RAT-specific: such as bandwidth (total bandwidth of each RAT, av-
erage bandwidth a user can occupy), price charged for connecting to

each RAT and current traffic load.

• application-specific: such as required QoS or required security level.

• terminal-specific: such as battery life and available network interfaces.

In the literature, the mathematical theories that are commonly used in mod-
eling RAT selection include Markov chain and MDP, fuzzy logic, multiple

attribute decision making (MADM) and game theory. A comprehensive
survey on these theories can be found in [19]. Although each of these theo-

ries has its own features and functionalities, it is possible to combine several
of them when modeling a RAT selection problem.

In this research work, Markov chain and MDP were the chosen tools for
modeling RAT selection.

2.3 Preliminaries on Markov Chain and Markov

Decision Process

2.3.1 Markov Chain

Markov chain is a stochastic process which allows the modeling of systems
that satisfy the Markov properties, i.e. the future state is dependent on the

current state only (memoryless system) [20]. It provides a rigid analytical
tool that can be used to model RAT selection.
A Markov chain is characterized by a set of states S with a transition

probability matrixP where Pij represents the transition probability to state
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Process

j given that the current state is i . Pij can be defined as follows [21]:

Pij = P (St = j|St−1 = i), i ∈ S, j ∈ S, ∀t St ∈ S (2.1)

where St is a random variable representing the state at time t.
Steady-state probability or equilibrium probability: The probability

Pi(t) that the system is in state i at step t converges to a limit πi as t
tends to infinity. πi is called the steady-state probability of the Marko-
vian process. The steady-state probability can be computed from a set of

balance equations that balance the probabilities of entering and leaving a
state in equilibrium. The resulting equations to compute the steady-state

probability are the following:

πi

∑
j �=i

pij =
∑
j �=i

πipji, i ∈ S (2.2)

In vector-matrix notation, π, the row vector with elements πi, can be writ-

ten in the form:
π = πP. (2.3)

along with the normalization equation:∑
i∈S

πi = 1 (2.4)

The solution of the set of equations defined in (2.3) is unique.

2.3.2 Markov Decision Process

Markov chains lack dynamism and are often used for performance analysis.

MDP considers, by contrast, actions and rewards (or costs), allowing to
capture the dynamism of the system. It is used for decision making under

uncertainty [22].
MDP can be described as a mathematical framework that allows to

model the system’s dynamics when a decision maker (such as RAT selec-

tion module) applies an action to its environment and then transits from
one state to another, in order to optimize the network’s defined objectives.

The usage of MDP as a modeling tool brings two important gains:

• In wireless networks where the resources are limited, static decisions
may lead to underutilization of resources. With the help of MDP,
dynamic optimization of the network operation can be obtained. This

results in significant improvement of resource utilization.
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• MDP modeling allows the design of optimization problems with mul-

tiple objectives. An example of a combined objective could be the
combination of revenue maximization and load balancing.

A known drawback of MDP is the computation time used to find the opti-
mal solution which increases fast with the number of system states. How-

ever, it is possible to store the solution of an MDP model in look-up tables.
This reduces significantly the time needed to find the optimal solution.

Moreover, near-optimal solutions can be derived to reduce the complex-
ity of the studied problem which results in finding sub-optimal but faster

solutions [23, 24].

Markov Decision Process Formulation

In RAT selection problems, the MDP model serves to derive the optimal

RAT selection policy which maximizes a given objective function. At each
decision time, defined by the arrival of a new connection request, the RAT
selection module chooses an action a that is available at the system’s cur-

rent state s. Subsequently, the RAT selection entity receives an immediate
reward and the system evolves to a new state s′ according to a state tran-

sition probability Pss′(a). An MDP model can be uniquely identified by a
tuple (S, A, Pss′(a), R, T ) defined as follows [22]:

• S is a finite set of feasible states. At any given time, the system’s

current state is s ∈ S.

• A is a finite set of actions that the decision maker can take. The
chosen action is based on the current state of the integrated system.

• Pss′(a) represents the transition probability from state s to state s′

when action a is taken.

• R is the immediate reward obtained following a taken action a.

• T is the set of decision epochs. In the case of RAT selection, it is

the time following the arrival of a new connection request. T can be
finite or infinite.

The goal of MDP is to find the optimal policy π that optimizes a certain

objective function, where π is defined as a mapping from state s to action
a:

Π = {π : S → A|πs ∈ As, ∀s ∈ S} (2.5)

where As ⊂ A is the action space at state s.

An optimal policy is the one that, among all possible policies, maximizes
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the expected utility. A fundamental result of the theory of MDP is that

each MDP has an optimal policy [21].

2.4 Methods for Solving MDPs

A known aspect related to solving MDPs is the computational complex-

ity. MDP problems can be solved with the help of linear programming in
polynomial time. However, linear programming is a general technique and

the polynomial in the theoretically-efficient algorithms are of high order in
practice, making them impractical [21]. This explains the need for more

efficient techniques that consider the special characteristics of MDP.
There are three classical ways to solve MDP models [25]:

• Linear programming: It consists of formulating the problem as an

optimization problem with linear objective function and constraints,
and finding the optimal value function.

• Successive approximations: It consists of iteratively computing a
value function that approximates the optimal value V ∗. Examples of

successive approximations methods are value iteration and Q-learning.

• Direct policy search: It searches for an optimal policy in the space
of policies. An example of direct policy search is the policy iteration

method.

In the following, linear programming, value iteration, Q-learning, and policy
iteration methods are briefly explained.

2.4.1 Linear Programming

To solve an MDP with the help of linear programming, an optimization
problem is formulated as the maximization of the utilities. The QoS formu-

lations are usually included as constraints in the linear program by trun-
cating the state space to those points that satisfy the constraints. The
problem can be formulated as follows:

maximize
∑
s∈S

V (s)

subject to V (s) = r(s, a) + γ
∑
s′∈S

P (s, s′, a)V (s′)
(2.6)

where V (s) is the utility of state s, r(s, a) is the reward obtained from

choosing action a at state s, P (s, s′, a) is the transition probability from
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state s to state s′ when action a is chosen, and γ is a discount factor whose

value is in the interval [0, 1).
The constraints in (2.6) are known as the Bellman equations [21].

2.4.2 Value Iteration

As mentioned earlier, value iteration is a successive approximation algo-
rithm. It starts by computing the optimal value function assuming a one-

stage horizon, then a two-stage horizon, and so on. It stops when the
change of the optimal value function is less than some specified threshold
ε [21].

The algorithm for value iteration works as follows [26]:

• Step 0: Set the utility V 0(s) = 0 for each state s, and set k = 0.

• Step 1: For each state s, compute V k+1(s):

V k+1(s) = max
a∈A(s)

{r(s, a) +
∑
s′∈S

P (s, s′, a)V k(s′)}

• Step 2: If (CLOSE ENOUGH(V k, V k+1)) go to step 3. Otherwise,
set k = k+1 and return to step 1. The functionCLOSE ENOUGH()

is defined below.

• Step 3: For each s ∈ S, compute the stationary optimal policy:

π(s) = arg max
a∈A(s)

{r(s, a) + γ
∑
s′∈S

P (s, s′, a)V k(s′)}

• return π

CLOSE ENOUGH() returns true if:

max
s∈S

∣∣∣V k+1(s)− V k(s)
∣∣∣ < ε,

and γ ∈ [0, 1) is a discount factor.

2.4.3 Q-Learning

Reinforcement learning generates near-optimal solutions to large and com-
plex MDPs. It offers the possibility to solve MDPs that suffer from curse
of dimensionality, which makes them unsolvable, with the help of dynamic

programming. Reinforcement learning requires the update of quantities in
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its database known as Q-factors, which are stored for each state-action pair

in the system.
A particular reinforcement learning algorithm that appears to be suit-

able for RAT selection is the Q-learning [27]. It is a technique for solving
MDPs when the state transition probabilities are unknown.

Q-learning provides a rule to successively approximate the value func-
tionQ(s, a), called as Q-function. The Q-function is updated as follows [28]:

Qt+1 = (1− α)Qt(st, at) + α[r(st, at) + γV ∗(st+1)]

where α ∈ (0, 1] is the learning rate. It indicates the extent to which the
newly acquired information will override the old values,

γ ∈ (0, 1] is a discount factor,
r(st, at) is the one-step reward when applying action at from state st,

and V ∗(st+1) denotes the value function that maximizes the Q-function at
state st+1 over all actions a.

The optimal policy is therefore computed as:

Q∗
t (st, a) = max

a∈A(s)
Qt(st, a).

2.4.4 Policy Iteration

The policy iteration method performs a search among the finite group of

possible policies for the MDP in order to find the optimal one in a finite
number of steps. The algorithm of policy iteration works as follows [29]:

• Step 0: An arbitrary policy π is chosen by selecting a random action
for each state.

• Step 1 - Value determination:
While not done:

– Given the current policy π, the utility (value function) Vπ is
computed for all states. This can be achieved by solving the

following system of linear equations:

Vπ(s) = r(s, π(s)) + γ
∑
s′∈S

p(s, s′, π(s))Vπ(s
′)

where r(s, π(s)) and p(s, s′, π(s)) denote respectively the reward

and the transition probability to state s′ from the current state s,
given that policy π is chosen, and γ ∈ (0, 1] is a discount factor.

– update the state utilities.

22



Chapter 2. Background

– for each s ∈ S, compute π̃ as follows:

π̃(s) = arg max
a∈A(s)

{r(s, a) + γ
∑
s′∈S

p(s, s′, a)Vπ(s
′)}

• Step 2 - Policy improvement: if π̃ = π, the algorithm is stopped with

πopt = π, otherwise, go to step 1.

2.4.5 Reflections on the Methods for Solving MDPs

Linear programming is a general method that does not capture the MDP

specifics. However, it offers the advantage of performing the optimization
over several constraints. Dynamic programming methods, i.e. value itera-

tion and policy iteration, are standard algorithms for solving MDPs. These
methods are model-based, which means they require a priori knowledge of
the state transitions probabilities and rewards. However, when the number

of states increases, the problem of curse of dimensionality emerges. Rein-
forcement learning, on the other hand, remains applicable even when state

space becomes computationally intractable, but the solutions they generate
are near-optimal.

Value iteration method has two weaknesses: (1) it can take a long time
to converge in some situations even when the underlying policy is not chang-

ing, and (2) it works by computing the value of each state in order to find
the optimal policy, instead for searching for the optimal policy directly.

The policy iteration, on the other hand, starts with a random policy,
computes each state’s utility given that policy, and then selects a new op-

timal policy.
There isn’t currently a standard agreement over which algorithm is bet-

ter (policy iteration or value iteration). For small MDPs, policy iteration is

often very fast and converges with very few iterations. However, for MDPs
with large state spaces, value iteration may be preferred. For this reason, in

practice, value iteration seems to be used more often than policy iteration,
and it is therefore the method of choice in this research work for solving

MDP problems.

2.5 Poisson Point Process for Spatial

Distribution Modeling

When addressing RAT selection in integrated cellular / WLAN networks,

the need for modeling the spatial distribution of the cellular BSs, WLAN
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APs, as well as the users arises. This can be realized with the help of a

spatial point process such as PPP. This latter has been used extensively
for modeling unplanned networks [30] which is typically the case of WLAN

APs’ deployment.
The HWN adopted in this work can be seen as a 2-tier network, where

tier-1 is the cellular RAT and tier-2 is the WLAN. In addition, the positions
of BSs (resp. APs) belonging to tier-k can be modeled according to a
homogeneous PPP, φ(k), with intensity λ(k), where λ(k) is defined as the

number of BSs (resp. APs) per area unit, and k ∈ {1, 2}.
Similarly, the users are considered scattered in the plane according to

a homogeneous PPP, φ(u), with intensity λ(u) users per area unit, indepen-
dently of φ(k).

In this research work, the use of PPP allowed to derive a simple formu-
lation for the coverage probability of WLAN. First, it is assumed that each

AP covers a circular area of known radius R, i.e. the transmission of each
AP can be received clearly by users residing at a distance not exceeding

R. Second, the interference from neighboring APs is considered negligible.
Hence, a typical user is said to be under the coverage of WLAN if the dis-
tance r separating this user from the nearest AP is less than R. Therefore,

the probability that a user is under WLAN coverage is equivalent to the
cumulative distribution function of r, namely P[r < R].

Without loss of generality, the typical user is considered to be located
at the origin of the plane under consideration [30]. Then, knowing that

the null probability of a 2D Poisson process in an area Z is exp(−λZ) [31],
P[r > R] becomes:

P[r > R] = P[φ(2) ∩ b(0, R) = 0] = e−πλ(2)R2
(2.7)

where b(0, R) is the Euclidean ball of radius R centered at origin.
Hence, the coverage probability of tier-2 (i.e. WLAN), Pc,2, can be

formulated as:

Pc,2 = P[r < R] = 1− P[r > R] = 1− e−πλ(2)R2
(2.8)

2.6 Pricing in Wireless Networks

Affected by the evolution of the wireless technologies, pricing the wireless

services took different shapes throughout the years. While in the early
stage, flat pricing (i.e. users are charged a fixed fee periodically irrespective
of their consumption) was the most common [32], this pricing strategy is

no longer viable with the current conditions [33], and more sophisticated
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pricing schemes need to be devised taking into account the disproportion

between the users’ demands and the available wireless resources.
When setting pricing policies, the network operator is interested in of-

fering competitive prices in order to increase its customers’ base. However,
this must not come at the expense of network stability and system perfor-

mance.
In addition to its known economical role, pricing the wireless services

has gained attention recently as tool for RRM. In fact, the applied pricing

scheme dictates the user’s behavior, thus affecting the load and the per-
formance of the network [34, 35]. For instance, if the prices are too high,

this might lead to a decrease in the customers’ base, while setting very low
prices will likely lead to capacity issues as the the number of customers will

tend to increase fast. Moreover, offering large data allowance drives higher
the volume of data consumed per user.

Various solutions have been proposed in the literature, where pricing
has been used as tool to solve RRM problems from an economic point of

view [36]. And with the exponential increase in data demand, the network
operators started to resort to pricing to alleviate the network congestion
[33, 37]. Their goal is to find effective pricing policies that help control the

traffic load, allow to offer satisfactory QoS to the users, and achieve the
targeted profit.

2.6.1 Aspects of a Pricing Scheme

When devising a pricing scheme, cost recovery and profit realization should
indeed be considered. In addition, other aspects are important and must
be taken into account by the network operator. These aspects include:

• The user’s willingness to pay: It represents the amount of money that
a user is willing to pay for a certain volume of consumed data and at
certain QoS guarantees.

• The structure of the pricing scheme: A user always prefers to purchase
services at prices that are easy to interpret [38], and where it is easy

to predict the total amount to pay without hidden or unexpected
expenses [39]. Complicated pricing schemes can have repellent impact
on users especially when other providers are offering simple pricing

plans.

• Computation and implementation complexity: The lower the imple-
mentation complexity of a pricing scheme is, the more practical it

becomes.
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• Acquisition of network usage information: Some pricing schemes, e.g.

congestion-based schemes (introduced in Section 2.6.2), require to con-
tinually receive information regarding the load of the network. This

information is a required parameter to calculate an updated value
of the price. This kind of information exchange not only increases

the implementation complexity of the pricing scheme, but also causes
additional traffic load to the network.

2.6.2 Common Pricing Schemes in Wireless Networks

Various pricing schemes have been proposed in the literature, which can be
categorized under static and dynamic schemes [32].

Static Pricing

This category includes the pricing schemes for which the price is pre-decided

and is not dependent on other parameters such as the network load.

1. Flat rate pricing:
With flat rate pricing, the charged price is fixed, irrespective of the

bandwidth usage. The user pays a subscription fee over a given period
(for example monthly) and can use as much data as he/she wants

during the paid period. Several variations can be found under the flat
pricing category. The simplest form is the unlimited data plan where
no cap on the usage exists. Other variations try to give the users

some incentive to monitor the amount of bandwidth usage by setting
a cap (maximum data usage) beyond which a penalty is imposed to

the user. An example of penalty can be in the form of charging the
user proportionally to the excess usage by changing from flat to usage-

based pricing. A penalty could also involve throttling the speed to a
minimal one for the remaining time of the actual period.

The operators offer often a variety of flat rate plans, each defined by

a fixed price and a usage cap, and the user can choose the plan that
is the most suitable for his/her usage and needs.

Flat pricing is no doubt the simplest to implement by the operator and
encourages the customers to use the network by offering predictable

monthly fees. However, flat pricing can affect negatively the system
performance especially when no cap is set. On the other hand, heavy
users will receive greater benefit than customers with low usage, which

creates market segmentation. It would also become difficult to define
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a fair price for resources when the peak load costs are mainly driven

by heavy users [32].

2. Two-tier pricing:

With two-tier pricing, the provider offers price points for several data
usage options. For example, a user is charged a fixed price p1 if

his consumption is below a threshold th1, and a fixed price p2 for a
consumption that exceeds th1.

Two-tier pricing provides economical incentive to users to keep their
data consumption at a low level, hence leading to a less congested

network. It offers higher granularity and also better revenue than flat
and volume-based pricing [40]. However, the values of the different

parameters have to be selected carefully. For instance, if p2 is rel-
atively low, then the user’s behavior will be similar to that of flat
pricing.

3. Usage-based pricing:

With usage-based pricing, also known as volume-based pricing, the
user is charged a certain price respective to the data usage. As men-
tioned above, usage-based is often combined with flat rate pricing

when the amount of consumed data exceeds the defined cap.

In addition to the pricing schemes mentioned above, other schemes can
also be found under the static pricing category such as pricing that is based

on QoS classes (Paris metro pricing, token pricing, priority pricing), pricing
that are bound by negotiated contracts, application-based and time-of-day.

The reader may refer to [32] for a detailed description of each of these
schemes.

Dynamic Pricing

Dynamic pricing, also known as congestion pricing, is based on the idea of
dynamically changing the price depending on the current load of the net-

work. It is a promising solution that uses economics to tackle the congestion
problem. By offering lower prices in periods of low network load, the users

will be encouraged to shift their usage to off-peak periods [41]. Hence, dy-
namic pricing promotes efficient use of the wireless resources by influencing
users’ behaviors and reshaping the traffic (Figure 2.1). The following four

sub-categories can be found under dynamic pricing: Raffle-based, Real-time
congestion, Auction-based and Day-ahead time-dependent [32].

1. Raffle-based pricing:

With raffle-based pricing, the day is divided into peak and off-peak
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Figure 2.1: Effect of congestion pricing on shifting the user’s demand [42].

periods. A probabilistic incentive in form of lottery is offered to en-

courage the users to shift their network usage to off-peak periods. The
reward amount is proportional to the users’ contribution in reducing

the traffic load in peak periods.

While this form of pricing tries to motivate the time-shift of usage, it
suffers from uncertainty of the reward. As a consequence, the users

might not get enough incentive to shift their demand to off-peak pe-
riods.

2. Real-time congestion pricing:
With real-time congestion pricing, the network announces the prices

based on the actual level of congestion. The response from the users
is used subsequently to compute the new prices.

3. Auction-based pricing:
Auction-based pricing implies that users declare how much they are

willing to pay for each packet. The network operator selects a certain
amount of received packets to be admitted. The lowest admitted bid

or “cost of congestion” is the amount charged for all users. This type
of pricing requires the existence of automated agents at the users’

terminals that are able to make bids and receive the updated price.

4. Day-ahead time-dependent pricing:

As its name implies, day-ahead pricing suggests to inform the users
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about the projected prices one day in advance. The traffic is moni-

tored daily and compared to a baseline traffic trace. The variation in
traffic volume is used to compute the prices for the next day.

Day-ahead pricing offers an advantage over raffle-based pricing in a

sense that the users have advance knowledge over the prices that
they will get charged. On the other hand, the price computation is

based on the traffic of the day before and does not reflect the exact
congestion of the current traffic.

When dynamic pricing is applied, the users get incentive to delay a certain

amount of traffic to periods when prices get lower. Therefore, the network
usage during peak hours will decrease and this leads to an alleviation of

the congestion problem. Consequently, a better QoS may be provided to
the users and the generated revenues may increase.

However, the implementation of dynamic pricing involves new system
requirements and modeling challenges. Moreover, whether the users will ac-

cept or not this kind of pricing is to be considered. While in real world static
pricing are still dominating as pricing plans, some variants of congestion-
based pricing have started to be adopted or are under trial [32].
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Chapter 3. Publications and Contributions

Throughout this research work, the major target has been to find ef-

ficient ways of resources assigning in HWNs in order to help the network
operators maximize their revenue. The QoS metrics are accounted for when

evaluating the performance of the proposed solutions. The research results
are presented in five publications which are attached in Chapter A to Chap-

ter E.
First, the enhancement realized by RAT selection and VHO in terms

of revenue is investigated and compared to the case where the assignment

of network resources is done arbitrarily (Publication A). Then the focus is
shifted to RAT selection by proposing a scheme that prioritizes the traffic

with the highest contribution to revenue (Publication B).
Afterwards, the problem is generalized by deriving the optimal RAT se-

lection scheme with the help of MDP. Moreover, the role that WLAN can
play as an extension to the cellular RAT is investigated (Publication C).

Then, an additional constraint is considered, namely net neutrality. Pub-
lication D highlights the net neutrality aspect and its impact on the rev-

enue and QoS in wireless networks. And finally, in Publication E, revenue-
maximizing RAT selection policies are studied with net neutrality integra-
tion.

The author of the thesis played an active role in the research and in writ-
ing those publications under the supervision of Prof. Yuming Jiang. Anna

N. Kim contributed in the discussions and identification of the problem ad-
dressed in Publication A. Jie Xu contributed in the discussions and provided

the simulation code that was further adapted and used to draw the results
presented in publication A. Xavier Gelabert contributed in Markov chain

modeling, the discussions around the studied topic and the interpretation
of the results in the work presented in Publications B and C.

Each of the abovementioned publications has been subject to interna-
tional peer-reviewing. Publications A, B and D are published in conference
proceedings, while Publication C and E are published in journals.

In the following, a brief summary of the included publications is pre-
sented along with the main contributions.

3.1 List of Publications Included in This Thesis

3.1.1 Publication A

• Elissar Khloussy, Jie Xu, Anna N. Kim and Yuming Jiang; Maxi-
mizing Network Revenue through Resource Management in Heteroge-

neous Wireless Networks; 16th IEEE Symposium on Computers and
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Communications (ISCC), Kerkyra, Greece, June 28-July 1, 2011.

Summary of the Paper

This paper studies the impact of CRRM in an overlay WiMAX/WiFi envi-
ronment. Two CRRM components are considered, namely admission con-

trol and VHO. A multi-service environment is proposed in which real-time
applications are prioritized over the elastic applications. Real-time applica-

tions are admitted to WiMAX solely for the QoS guarantees that WiMAX
provides. The objective is to find mechanisms for distributing the elastic

traffic between WiMAX and WiFi in order to maximize the profit.
The problem is formulated as an optimization problem. To compute the

revenue generated in the studied scenario, a volume-based billing scheme
is applied, inspired from the one suggested in [43]. The obtained revenue

as well as some quality of experience metrics are presented. The simula-
tion results prove that the network revenue is significantly increased when
CRRM is applied. The increase in revenue obtained with VHO is shown to

be slightly higher than the one obtained through admission control. How-
ever, since the gap in revenue between the two cases is insignificant, it is

concluded that admission control is preferred over VHO. The small sacrifice
in revenue is compensated by the avoidance of the overhead that the VHO

process introduces in practice.

Contributions

This paper establishes a starting point for this thesis and the contributions
can be summarized as follows:

• It highlights the improvement in terms of revenue that can be realized

when CRRM schemes are implemented, compared to the case where
the traffic admission is random.

• The problem of managing the resources is tackled from a provider’s

viewpoint, unlike most of the work in the literature where this kind
of research problems is addressed from a user’s perspective. This also

applies to the other publications included in this thesis.

• The pricing in WiMAX and WiFi is integrated into the optimization

problem and different billing schemes are adopted for streaming and
elastic applications.
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3.1.2 Publication B

• Elissar Khloussy, Xavier Gelabert and Yuming Jiang; A Revenue-
Maximizing Scheme for Radio Access Technology Selection in Hetero-

geneous Wireless Networks with User Profile Differentiation; Lecture
Notes in Computer Science, Vol. 8115, pp. 66 - 77, Springer, 2013.

(Proceedings of 19th EUNICE/IFIP WG 6.6 International Workshop
on Advances in CommunicationNetworking, Chemnitz, Germany, Au-
gust 28 - 30, Chemnitz, Germany, 2013.)

Summary of the Paper

The focus of this paper is on RAT selection and how it may contribute
to maximizing the revenue in HWNs. Considering a multi-service network,

an algorithm for traffic distribution among the two available RATs, namely
LTE andWiFi, is proposed. Specifically, two types of service or user profiles,

C1 and C2, are considered where C1 is granted priority in using LTE which
is characterized by its global coverage and QoS guarantees. In exchange,
C1 is charged higher connection fees than C2.

C1 targets the business sector known to be more sensitive to the QoS
than to the charged fees, while C2 targets the individuals who prefer cheap

connections and can tolerate some degradation in the perceived QoS.
To reflect the different priority levels granted to each of the traffic pro-

files, a load threshold θ in LTE is introduced. θ is defined as the percentage
of LTE capacity that the low-priority traffic is allowed to occupy and share

with C1 traffic.
The proposed RAT selection algorithm tries first to allocate the incom-

ing C2 traffic to WiFi which is considered as an extension network to LTE.
In the case where this admission is not possible (user is not under the cov-
erage of WiFi or WiFi does not have available resources) then C2 traffic

may be admitted to LTE as long as the load in this latter is below θ. The
proposed scheme does not allow C1 traffic to compete with C2 traffic in us-

ing WiFi resources to keep the QoS perceived by C2 traffic at an acceptable
level.

The system is modeled with the help of a 3-dimensional Markov chain.
The analytical model is then validated by simulation and a good matching

between the model and the simulation is proven.
The last part of the paper is dedicated to revenue maximization with

focus on the threshold θ as a key parameter. The goal is to find, for each
combination of the offered traffic loads of C1 and C2, the optimal value of θ
for which the revenue is maximized, while keeping the blocking probability

for class i below a predefined threshold βi, i ∈ {1, 2}.
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Finding the optimal value of θ is important for the network operator.

Through acquiring advance knowledge regarding the usage patterns of the
network (expected offered load of the different user profiles), the network

operator may adjust the value of θ accordingly, and a better usage of the
network resources as well as higher revenue may be secured.

Contributions

The main contributions of this paper are the following:

• It gives insight into the importance of CRRM and how a good usage
of the network resources may lead to enhanced results (revenue in our

case).

• An analytical model for the proposed RAT selection scheme is derived
and validated.

• The provided analysis may help the network operator make design
decisions that allow to increase the profit.

3.1.3 Publication C

• Elissar Khloussy, Xavier Gelabert and Yuming Jiang; Investigation

on MDP-Based Radio Access Technology Selection in Heterogeneous
Wireless Networks; Computer Networks, 2015 Nov 14;91:57-67.

Summary of the Paper

This paper adds several dimensions to the problem proposed in paper B.

The same multi-service network architecture with two types of user profiles
is considered. However, this time the dynamism of the system is captured,

and the optimal RAT selection policy which maximizes the revenue is de-
rived with the help of MDP. The problem is generalized by allowing both

traffic classes to be served by cellular or WLAN, with the possibility of
handover between the two RATs for the low-priority traffic.

In addition to addressing the main RAT selection problem, other related
sub-problems are also tackled, namely modeling the coverage probability of

WLAN, and a further investigation of the choice of the weights in the MDP
framework and its impact on the obtained results. Since both traffic classes
could be admitted to any of the RATs, a 4-dimensional Markov chain serves

to model the proposed RAT selection scheme.
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Contributions

The main contributions of this paper can be summarized as follows:

• Investigation of the MDP-based approach for RAT selection with the
objective of maximizing the revenue.

• Investigation of the choice of the weights in the MDP framework and
how this may affect the obtained results.

• Deriving an analytical model for the coverage probability of WLAN
with the help of PPP.

• The performance of the MDP-based RAT selection scheme is eval-
uated and compared to the performance of two other static RAT

selection schemes.

• The importance of traffic offloading to WLAN is also highlighted.

3.1.4 Publication D

• Elissar Khloussy and Yuming Jiang; The Impact of Net Neutrality on

Revenue and Quality of Service in Wireless Networks; 15th IEEE An-
nual Consumer Communications & Networking Conference (CCNC),

Las Vegas, USA, Jan 12 - 15, 2018.

Summary of the Paper

In Paper D, the integration of net neutrality and RAT selection is addressed.
Net neutrality regulation calls for equal treatment of Internet traffic, and
allows to grant exemption to some non-Internet access traffic that requires

high transmission quality, known as specialized services (SS). The aim of
this paper is to give insight into the impact that net neutrality has on both

the revenue and the QoS. To this end, a comparison of the performance
of four net neutral RAT selection policies, having different traffic admis-

sion strategies (LTE-first or WLAN-first), with and without privilege to SS
traffic, is conducted.

The results obtained by the four net neutral policies are compared to
those realized by the non-net neutral revenue-maximizing policy that was

introduced in Paper C. Markov chain and MDP are used to model the
studied policies. The traffic is divided into two classes: SS traffic and
Internet Access Services (IAS) traffic and the performance of the policies

in terms of revenue, social benefit and blocking probability is analyzed. In
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addition, the impact of the ratio of the reserved capacity for SS traffic on

the revenue and blocking probability is explored.
The obtained results underline that, applying net neutrality would lead

to a decrease in the generated revenue, however this decrease may be re-
duced by the proper choice of the net neutral RAT selection policies. Hence,

in order to support net neutrality and at the same time maximize the rev-
enue, the Internet service provider has to carefully choose/design the proper
RAT selection policy.

The results obtained in this paper are preliminary, and are meant to
give insight into the consequences that may occur when net neutrality reg-

ulations are implemented. While far from exhaustive, they shed light on
further study along this direction.

Contributions

The main contributions of this paper are:

• An important problem, namely net neutrality integration with RAT

selection policies, is addressed.

• It highlights that, with the proper choice of RAT selection policy,
the negative effect on the revenue incurred by the introduction of net
neutrality may be mitigated.

• The importance of the right choice of the proportion of reserved band-

width for SS traffic is also highlighted.

3.1.5 Publication E

• Elissar Khloussy and Yuming Jiang; Revenue-Maximizing Radio Ac-

cess Technology Selection with Net Neutrality Compliance in Het-
erogeneous Wireless Networks; Wireless Communications and Mobile

Computing journal, 2018.

Summary of the Paper

This paper addresses the problem of deriving revenue-maximizing RAT
selection policies that are net neutrality-compliant. The objective is to

answer the following question: how the bandwidth reservation for SS traffic
would be made in a way that allows to maximize the revenue while in
compliance with net neutrality, and how the choice of the ratio of reserved

bandwidth would affect the revenue?
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Two scenarios for bandwidth reservation for SS traffic are proposed,

namely capacity reservation in LTE only, and reservation across the whole
HWN. The two variants of RAT selection policies are modeled with the

help of MDP. The results obtained are compared to those of a revenue-
maximizing policy that does not account for net neutrality (introduced in

paper C). It is shown that reserving resources in the whole HWN may be
more beneficial as it guarantees better social benefit than the other variant,
as well as lower blocking probability for IAS traffic, at the expense of a

marginal loss in the generated revenue.

Contributions

The main contributions of this paper are:

• Investigation of MDP-based approach for RAT selection with net neu-

trality compliance, and with revenue maximization as objective.

• Two variants of bandwidth reservation for SS traffic are proposed.

• The impact of the ratio of reserved capacity for SS traffic on the
achieved revenue is investigated with both variants of the RAT selec-

tion policy.

• For the use of the results in this paper, an Internet service provider,

given its traffic condition, could do similar numerical investigation to
find out how much capacity it could reserve for SS traffic to maximize

the revenue.

3.2 Publication not Included

3.2.1 Publication F

In addition to the publications mentioned above, the author of the thesis

also contributed to the following research paper, which does not take part
of this work:

• Jie Xu, Yuming Jiang, Andrew Perkins, and Elissar Khloussy; Mul-
tiservice Load Balancing in a Heterogeneous Network with Vertical

Handover; Proceedings of the 1st European Teletraffic Seminar, 2011
Sep.
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Figure 3.1: Included publications and relationship to the research questions.

Summary of the Paper

In this paper, load balancing mechanisms are investigated in an overlay
WiMAX/WiFi network through vertical handover. System performance of
the HWN in which elastic applications share network capacity with stream-

ing applications is studied.
All traffic is assumed to arrive to WiMAX in the first place. Streaming

applications are given strict preemptive priority over elastic applications in
WiMAX. Then, based on the expected finish time (in WiMAX and WLAN),

handing off certain elastic applications to WLAN is conducted, either on
their arrivals or during their service. Two different handover mechanisms

are studied. The first one selects the file with maximum remaining size to
be handed off to WLAN, at the opposite to the second one which performs

the handover for files with minimum remaining size.
The results indicate that the selection of files with minimum remaining

size outperforms the other mechanism at the cost of significant increase in

the number of handovers. A closer analysis of the simulation results also
indicate that both the load balancing granularity and integration of elastic

and streaming applications in WiMAX determine the performance of the
whole system.

3.3 Summary of Publications and Contributions

While working on the different publications that resulted from this research
work, the aim has been to provide answers to the research questions listed

in Section 1.3.2. In most of them, and particularly Papers A and B, the gain
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in revenue resulting from implementing CRRM mechanisms is highlighted,

which answers RQ1. Moreover, the role that WLAN can play in mitigating
the traffic load of cellular RAT is highlighted in Paper C, providing an

answer to RQ2. In Papers C and E, optimal RAT selection policies that
aim to maximize the revenue are derived and MDP is used to this end, thus

answering RQ3. And finally, net neutrality is accounted for as additional
constraint in Papers D and E, and the impact of integrating net neutrality
regulation on the revenue and the QoS has been addressed, providing answer

to RQ4.
The relationship of the publications to the different research questions

is illustrated in Figure 3.1.
The results obtained throughout this research effort allow to build some

knowledge that may help the network operator gain higher revenue; know-
ing how to intelligently manage the wireless resources and how to tune cer-

tain system parameters may have significant impact on both the achieved
revenue and the QoS.
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Chapter 4. Conclusion

With the fast evolution of wireless communication, network operators

are forced to find innovative solutions to cater for the massive increase of
data traffic. Several approaches may be considered to face this challenge

such as expanding the network capacity through the addition of femto cells
or acquiring additional spectrum. Another promising solution that emerged

recently is the LTE-LAA, which is subject to tests by different providers.
However, these approaches alone may not be sufficient.
HWNs offer several advantages that help face this explosion in data de-

mand. When two or more RATs co-exist, additional wireless resources be-
come available. To get benefit from this heterogeneity, cooperation among

the coexisting RATs is required. This can be realized through CRRM
which helps establish a communication and coordination among the differ-

ent RATs in order to accomplish the performance goals.
CRRM is composed of several components that include RAT selection,

vertical handover, and congestion management. RAT selection is a funda-
mental CRRM functionality which intervenes at call setup and corresponds

to the selection of the initial RAT to serve the newly arriving request. The
selection of the appropriate RAT is governed by several criteria such as
QoS requirements, user preferences and policies, link quality, and traffic

load. Despite the advantages that CRRM offers in terms of enhancing the
system performance, the implementation of CRRM strategies is not trivial

and imposes many challenges.
Another means that is proved to be an important tool for resource

management is pricing. The network operators have started to resort to
different forms of pricing in order to provide incentive to the users to adjust

their usage in a way that alleviates the congestion especially in peak hours.
Pricing is a crucial issue and is now subject to intensive research. Dynamic

pricing has started to emerge and some dynamic plans have already been
implemented. This opens another direction in managing the congestion and
handling the fast-growing demands.

The objective of this research work is to shed light on the importance
of CRRM, and particularly RAT selection, and the significant gains that

may be achieved by implementing CRRM functionalities in HWNs. The
problem is addressed from a network operator’s viewpoint, and revenue-

maximizing RAT selection schemes are derived. Under this main objective,
several research problems have been covered, namely investigating MDP as

tool for modeling RAT selection policies, and defining a model that captures
the coverage probability of WLAN.

Furthermore, the integration of net neutrality within RAT selection
frameworks is tackled. Specifically, the impact of net neutrality on the
revenue and QoS in HWNs scenarios is highlighted. Moreover, granting

exemption to specialized services that net neutrality allows is addressed
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and solutions for bandwidth reservation for specialized services in HWNs

are proposed and evaluated.
Wireless technologies are in continuous evolution, and the growth in

bandwidth demand is driven upwards at the same time. Whether or not
any of the upcoming technologies will be able to meet the capacity demands

is hard to predict. But until then, heterogeneous networks, if well managed,
seem to offer promising solutions that allow to boost the capacity, and
subsequently increase the generated revenue.

This research work covers an area of growing interest. The results ob-
tained thus far are encouraging, and it is therefore interesting to continue

in the same direction. Some issues that are left for future study include:

• Combining more than one CRRM component, investigating the in-
teraction between them, and the impact of this integration on the

revenue and the system performance.

• Exploring other mathematical theories such as MADM and game the-
ory, and the insight they might provide which could not be captured

with MDP.

• Further investigation of the impact of net neutrality on the gener-
ated revenue, and exploring the possibility of deriving closed-form

expression for the obtained solution, i.e. expressing the revenue as
an explicit function of the adopted net neutrality approach and the

involved parameters.
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Elissar Khloussy, Jie Xu, Anna N. Kim and Yuming Jiang; Maximizing
Network Revenue through Resource Management in Heterogeneous Wire-

less Networks; 16th IEEE Symposium on Computers and Communications
(ISCC), Kerkyra, Greece, June 28-July 1, 2011.

Abstract Several radio access technologies are now likely to coexist in
the same area, and form the so-called heterogeneous wireless networks. In

this paper, we study the coordination between WiMAX and WiFi through
radio resource management in order to maximize the network operator’s

revenue. Two solutions for the optimization problem, in which vertical
handover and admission control are invoked, are suggested and compared.

The simulation results indicate that, through our methods, the network
revenue could be greatly increased without seriously degrading the user
experience in terms of call-average throughput.

Keywords

heterogeneous networks, radio resource management, revenue, WiMAX,
WiFi.
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A.1 Introduction

In next generation networks, it is more likely to witness the coexistence of

several technologies (e.g. GSM, WiFi and WiMAX) within the same area.
Because each of these technologies has its own characteristics, such as cov-

erage, cost and data rates, their coexistence can be beneficial for both users
and network operators. On one hand, it gives the users the choice of get-
ting connected to their preferred network. This choice is usually dependent

on both the cost and the Quality of Service (QoS) that the users’ applica-
tion requires. While on the other hand, this coexistence helps the network

operators increase their revenue and provide a better service to the users.
However, management of resources in such networks becomes challenging

and coordination between the different Radio Access Technologies (RAT)
becomes necessary in order to accomplish the overall performance goal.

The objective of our work is to efficiently allocate resources in hetero-
geneous wireless networks. This topic is broad and can be viewed from

different angles depending on who is interested in the outcome of the net-
work design (either the user or the network operator). In the current work,
we focus on the network operator’s perspective by studying how the op-

erator’s revenues can be maximized through Radio Resource Management
(RRM) in heterogeneous network, particularly in a WiMAX/WiFi inte-

grated network. The problem, as viewed from the user’s perspective, will
be the subject of a future work.

In the literature, many research papers and articles dealing with re-
source management in integrated wireless networks can be found. Authors

of [2] reviewed recent joint call admission control algorithms and classified
them based on the approach adopted for the selection of the most appropri-

ate RAT. Call admission control is studied thoroughly but independently
from any other RRM scheme. In [3], the authors proposed two preemption-
based call admission control schemes for real-time and non-real-time traffic

in integrated heterogeneous mobile and wireless networks. Their main goal
was to satisfy the QoS requirements for the different types of traffic by

taking advantages of the service features of heterogeneous networks and
the moving nature of mobile users. Vertical handover as RRM and how it

increases the network performance was studied in [4]. The goal was to im-
prove the system throughput through access selection and load sharing. A

cost and a profit functions were associated to each handoff and the mobile
selects the network with the highest profit function. J. Kim in [5] focused on

load balancing in heterogeneous networks. A marginal cost function was
proposed to determine how to transit user traffic among networks. This
allowed for appropriate assignment of new traffic and redistribution of ex-

isting traffic, and hence the traffic load of the entire network system could
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be balanced.

Less work has been conducted to study the network’s revenue maxi-
mization. In [6], a gametheoretic model was presented to study the case

of competing profit-maximizing providers that offer resources on-demand
to the users. I. Chen et al. analyzed in [7] the integration of pricing with

admission control in order to maximize the revenues generated without
sacrificing the QoS constraints in a single network that handles multiclass
traffic.

In this study, we consider the maximization of the operator’s revenues
(profit) in heterogeneous networks through RRM. The particular case of

a WiMAX/WiFi network is studied in which streaming applications are
prioritized over elastic applications because of the stringent QoS they re-

quire, and can only be hosted in WiMAX. Elastic applications arrive first
to WiMAX, and then the network decides whether and when a vertical

handover to WiFi has to be performed. This decision is based on the maxi-
mization of our objective function. The optimization problem is formulated,

and two solutions are proposed. The first solution, a Handover solution,
finds the optimal file size to be served in WiMAX, and then triggers a han-
dover of the remaining size of the file to WiFi. The second solution, called

Admission Control solution, dispatches the files to WiFi on their arrivals,
if the revenues they are expected to generate in WiFi are higher than their

revenues in WiMAX. We compare the performance of the two mechanisms
along with a Random Admission scheme by simulation. The results indi-

cate that our two proposed solutions lead to considerably higher revenues
without serious degradation of the user satisfaction.

The paper is organized as follows. In Section A.2, we elaborate on
the system model, Section A.3 describes the adopted billing schemes for

WiMAX and WiFi. Section A.4 introduces the optimization problem and
suggests two solutions. In Section A.5, the simulation details are provided,
and the results are analyzed and discussed, before concluding in Section

A.6.

A.2 System Model

WiMAX and WiFi are two RATs having different characteristics that in

some cases can be complementary. While the former provides wider cover-
age (up to 50 Kilometers [8]) with bandwidths that are somewhat higher

and better QoS guarantees, the latter is widely deployed and offers cheaper
prices. Fig. A.1 depicts the considered scenario. WiMAX and WiFi co-
exist in the same area. Within the coverage of one WiMAX base station,

there exist several WLAN access points. Users that reside in a commonly
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Figure A.1: A WiMAX / WiFi heterogeneous network.

covered area can connect to any of the RATs. Users A and B can connect
only to WiMAX as their locations are not covered by any of the existing
WLAN access points. It is worth mentioning that, for the users to be able

to exploit this combination, their mobile terminals should have connection
interfaces to both WiFi and WiMAX.

The network operators can benefit from this type of integrated networks
to offer better service to their subscribers and at the same time increase

their revenue. This can be realized by the means of an efficient resource
management mechanism. This resource management includes admission

control, vertical handover, congestion control, and inter-system schedul-
ing [1] which will be described shortly hereby. Admission control is triggered

when a new call arrives. Its role is the selection of the network that is more
appropriate to handle the candidate call depending on the considered ob-
jective function. Vertical handover is the process by which an ongoing call

is transferred from one network to the other. It can be either user-initiated
or network-initiated in a sense that the decision of switching to another

radio access network can be taken by the user or forced by the network.
Only network-initiated handover will be considered in this study. Conges-

tion control tries to balance the load between the integrated networks and
is generally triggered by load measurements that have to be conducted pe-

riodically. And finally, the inter-system scheduling that assigns different
packets to different RATs.

In this study, we consider the case of a heterogeneous WiFi/WiMAX
network that is owned by one network operator, with two types of calls
being offered: video calls (divided into Normal quality and High quality

video calls) and file transfer calls. Both types of calls arrive to WiMAX
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in the first place. Video streaming calls can be processed in WiMAX only,

because of the QoS they require. let Cwimax represent the total capacity
of WiMAX, and N the number of ongoing streaming calls of which: Nnorm

is the number of normal-quality video applications requiring bandwidth Cv

each, and Nhigh is the number of high-quality video calls requiring addi-

tional bandwidth Cextra. Thus, N = Nnorm + Nhigh and the bandwidth
occupied by all ongoing video calls is Cvideos = N · Cv + Nhigh · Cextra.
Therefore, we can still admit new video calls to the system as long as the

condition Cvideos ≤ Cwimax is valid. When the admission of a new video
call violates the latter condition, this call is immediately blocked.

On the other hand, the arrival of a file transfer call does not affect
the streaming calls which are granted higher priority. Upon the arrival of

a new file transfer call, it will be admitted to WiMAX where it can be
totally served, partially served and then handed off to WiFi, or it might be

directed and served entirely in WiFi. File transfer calls, share, in WiMAX,
the remaining free bandwidth without affecting the capacity reserved by

the prioritized streaming calls. While in WiFi, all ongoing file transfer calls
share the entire WiFi bandwidth.
In this considered scenario, we assume that the network has all needed

information regarding the overall system performance. This allows the
operator to perform the network optimization, provided that the service fee

is not a critical factor to the end-user. To satisfy the mentioned condition,
the parameters in the adopted billing scheme have to be chosen in a way

to keep the user’s willingness to pay at a relatively high level.
Hence, our task is to find mechanisms for distributing the file transfer

calls between WiMAX and WiFi that allows the network operator to real-
ize the highest achievable profits. This requires to have predefined billing

schemes for the services provided in each of the RATs.

A.3 Billing Schemes

In this section, we introduce the billing schemes that will be adopted in

this study for both WiMAX and WiFi networks.

A.3.1 Billing Schemes in WiMAX

As stated earlier, WiMAX can host video streaming calls as well as file
transfer calls. Let us consider the following parameters:

• WiMAX has in total Rtot OFDM symbols.
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• Video calls have minimum guaranteed rate Rmin

• Video calls can request extra rate Rextra that will incur additional
price to be paid by the user.

• File transfer calls share the remaining unused bandwidth after video
calls have been served.

The billing schemes for WiMAX, which are inspired by [9], can be de-
scribed as follows:

Video streaming

Video streamers will be charged a fixed price for the minimum rate Rmin.
Then, if they require an additional extra rate Rextra, a floating price is
added. Pricing Pv(r) for this class of service can be formulated as:

Pv(r) = V1 ·Rmin + V2 · Rextra (A.1)

Where:

• r: is the reserved rate.

• V1: is the fixed price charged for the minimum rate Rmin.

• V2: is the price charged for the additional rate Rextra.

V2 can be formulated as:

V2 =
K

Rtot − Rmin
(A.2)

Where:

• K: is a pricing constant fixed by the operator.

File transfer calls

File sharing has no QoS guarantees in WiMAX. Their pricing will be an
increasing function of the reserved OFDM symbols up to a maximum value

Smax. When the reserved symbols exceed Smax, a fixed price will then be
charged. Hence, the price for file transfer calls Pf (s) can be formulated as

follows:

Pf (s) =

{
γ · ( −s2

Smax
+ 2s) if s ≤ Smax

γ · Smax otherwise
(A.3)

Where:
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Figure A.2: Comparison of revenues generated by file transfer calls in
WiMAX and WiFi.

• s: is the number of reserved symbols.

• γ: is a constant coefficient in monetary unit (MU) per reserved sym-

bol.

A.3.2 Billing Schemes in WiFi

As mentioned earlier, WiFi will host only file transfer calls, and offers
cheaper connection price in comparison to WiMAX. A fixed price per re-

served symbol will be considered. Pricing charged in WiFi Pw(s) becomes:

Pw(s) = ω · s (A.4)

Where:

• ω: is the price per reserved symbol s in WiFi.

Fig. A.2 shows the revenues in WiMAX and WiFi as a function of

the file size. The curve of WiFi revenues remains below WiMAX revenues’
curve up to a certain value of the file size, above which it becomes more

profitable to serve the file in WiFi. This value of file size depends on the
choice of the values of the different pricing parameters. Fig. A.2 is based
on the values used in our simulation code and detailed in Subsection A.5.1.
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A.4 Optimization Formulation

A.4.1 Optimization Problem

The objective of our optimization problem is the maximization of the to-
tal network revenue. The solution of this problem consists of finding the

best distribution of the file transfer calls between WiMAX and WiFi that
contributes to the highest revenue. Since video calls are served with pre-

emptive priority in WiMAX, the revenue generated by serving video calls
is the same with different distribution mechanisms for file transfer calls.

Therefore, we only need to consider the revenue generated by serving file
transfer calls, which can be formulated as:

Revtot(x) = Revwimax(x) + Revwifi(FileSize− x) (A.5)

Where:

• Revtot(x) denotes the total revenue generated by serving a file transfer

call of initial size FileSize of which x is processed in WiMAX and
the remaining size (FileSize− x) is processed in WiFi.

We first calculate the optimal value of x, denoted as xopt, without con-
sidering the practical limits. In other words, the file in WiMAX can be
switched to WiFi in any time epoch.

By plugging the billing schemes into Eq. (A.5), we can get the revenue
generated by a file transfer call as function of its size. Two cases can be

distinguished:
The first one is the case where x requires less than Smax OFDM symbols

to be processed in WiMAX; in this case, the first part of Eq. (A.3) applies
for Revwimax, and hence Revtot becomes:

Revtot(x) = γ · (
−x2

(bpswimax)2 · Smax
) +

2 · x

bpswimax
) (A.6)

+ ω ·
(FileSize− x)

bpswifi

Where:

• bpswimax: is the number of bits per symbol in WiMAX.

• bpswifi: is the number of bits per symbol in WiFi.
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Subsequently, by calculating the derivative of Revtot in respect to x we

can find the value of xopt:

dRevtot

dx
=

−2 · γ · x

(bpswimax)2 · Smax
+

2 · γ

bpswimax
−

ω

bpswifi
(A.7)

The optimal size to be served in WiMAX xopt is then the value of x for
which dRevtot

dx
is equal to zero:

xopt = bpswimax · Smax(1−
bpswimax

bpswifi

ω

2 · γ
) (A.8)

The second case is for x requiring more than Smax OFDM symbols; by
applying the second part of Eq. (A.3), Revtot becomes:

Revtot(x) =
γ · Smax

bpswimax
+ ω · (

(FileSize− x)

bpswifi
) (A.9)

In this case, dRevtot

dx
is always negative, which means that Revtot(x) is a

decreasing function.

Based on the cases studied above, x should not exceed (Smax · bpswimax)
bits in order to ensure a maximization of the network’s revenue.

A.4.2 Proposed Solutions

Different solutions for our optimization problem i.e. maximizing Revtot(x)
can be defined according to the constraint on the value of x.

In general, the domain of values of x can be expressed as follows:

x

⎧⎨⎩
= 0 File totally served in WiFi

∈ ]0, F ileSize[ File partially served in WiMAX
= FileSize File totally served in WiMAX

Two solutions are proposed in this study:

Handover solution

This solution considers that the file can be totally served in WiMAX, or

partially served in WiMAX and then handed off to WiFi. In this case, the
optimization problem becomes:

maximize
x

Revtot(x)

subject to 0 < xi ≤ FileSizei, i = 1, . . . , m.

Where:
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• m represents the number of ongoing file transfer calls in WiMAX.

The aim of the Handover scheme is to solve the optimization problem
described above. The size to be served in WiMAX x can be obtained,

according to this approach, as follows:

x =

{
FileSize if FileSize ≤ xopt

xopt otherwise

Upon the arrival of a new file transfer call, it is first admitted into WiMAX.

Subsequently, a handover test is performed to decide whether and when
this file has to be handed off to WiFi:

• The optimal size to be served inWiMAX (xopt) is calculated according
to (A.8).

• The size of the file is compared to xopt.

• In the case where the file size is less or equal than xopt, the file is then

entirely processed in WiMAX and no handover to WLAN is triggered.

• Otherwise, xopt is served in WiMAX, before handing off the remaining
size to WiFi.

Admission control solution

The admission control solution considers that a file will be either entirely

served in WiMAX or in WiFi. This can be translated by the following
problem formulation:

maximize
x

Revtot(x)

subject to xi = 0 or xi = FileSizei, i = 1, . . . , m.

According to this approach, the revenue gained by the admission of a file

transfer call of size FileSize is:

Revtot = max(Revwimax(FileSize), Revwifi(FileSize))

where Revwimax and Revwifi are obtained by (A.3) and (A.4) respectively.

In this scheme, the selection of the candidate RAT to host a newly arriving
elastic application is performed through comparing the expected revenues

in WiMAX and WiFi and then admitting the call into the RAT with higher
generated revenue.

In other words, this scheme suggests that, an admitted file transfer call
is directed and totally served in WiFi only in the case where the revenue it
can generate in WiFi is expected to be higher than its revenue in WiMAX.

65



A.5. Simulation

Table A.1: Simulation parameters

WiMAX capacity in the WLAN area 7.0 Mbps

Bits per symbol in WiMAX 576

Bits per symbol in WiFi 144

Bandwidth for normal quality video 500 kbps

Bandwidth for high quality video 800 kbps

Percentage of high quality video calls 20 %

Average file size 0.0646 Mb

Average video length 150.0 s

A.5 Simulation

The simulation was conducted in Matlab. The values of the different pa-

rameters are shown in Table A.1. For elastic applications, bounded Pareto
distribution is adopted to represent a heavy-tailed distribution for file sizes,
with shape parameter of value 1.1, while an exponential distribution is con-

sidered for the arrival intervals of real-time applications as well as for the
arrival intervals of elastic applications.

In order to evaluate the performance of our two initially proposed so-
lutions, a third scheme, called Random Access scheme, is also simulated.

With this scheme, the distribution of elastic applications is performed ac-
cording to the proportion of the remaining free capacity in WiMAX (after

streaming calls have been served) to the capacity of WiFi, without any
considerations on the revenue. Hence, in this case, elastic applications are

more likely to be moved and served in WiFi when the load of video traffic
in WiMAX increases.

A.5.1 Numerical Values

Different parameters are involved in the billing schemes, namely γ, ω, Smax,
V1, and K. The choice of the values of these parameters is critical as they

affect directly the revenue. These parameters were investigated in [9], and
we are particularly interested in the values that contribute in increasing the

network revenue:

• γ: It was demonstrated that the symbol price for best effort calls has

to be less than 0.9 MU / symbol beyond which the revenue starts
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to decrease (the user satisfaction decreases). Hence, we adopted the

value of 0.5 for γ.

• ω: Due to the non QoS guarantee, the symbol price in WiFi should

be significantly lower than that in WiMAX. We chose the value of 0.2
MU/symbol for ω.

• Smax: Smax was given the value of 182.04 that corresponds to a file
of size 0.1Mb.

• V1 and K: Considering that the price per symbol for video calls has
to be higher than that of a file transfer call in WiMAX, we assigned

the value 0.9 to V1. For K, we adopted the value 10 as in [9].

A.5.2 Discussion

In addition to the generated revenues, two common performance metrics

are considered in comparing the studied approaches, namely the average file
service time and the throughput represented by time-average throughput
and call-average throughput (explained in [10]). The value variations of the

considered parameters are studied according to ρvideo, which represents the
load of the video traffic with respect to the capacity of WiMAX.

Revenues

Fig. A.3 depicts the revenues generated by all three proposed solutions with-

out taking into account the revenues from real-time traffic that has no effect
on the comparison results. The Handover solution provides higher revenues
than the Admission Control scheme and they both considerably outperform

the Random Access scheme. With Random Access, the generated revenue
increases with the increasing load of streaming calls in WiMAX. This is

due to the higher probability of distributing files to WLAN, which results
in increasing the revenue. We conclude that the Handover solution pro-

poses a ’relaxation’ on the constraint on the size x to be served in WiMAX,
by considering continuous values for x, and forms an upper bound to the

Admission Control solution in which x can be assigned only one of two
values, i.e. it can be either equal to zero or equal to the total size of the

file (FileSize). However, it can be seen that the revenue gap between Han-
dover and Admission Control is not very significant. Therefore, Admission
Control should be preferred in this case since normally Handover introduces

much more overheads in practice.
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Figure A.3: Revenues generated as function of the offered video load.

Average file service time

With the increase of the offered load of video traffic, the average file service

time for all three cases increases fast (Fig. A.4), particularly when the
value of this offered load surpasses 0.6. This is due to the fact that, when

the number of video calls served in WiMAX increases, file transfer calls
processed in WiMAX will suffer from low available capacity because of

the priority granted to video calls. While the service degradation in the
Random Access solution is more tolerable, the Handover solution performs
the worst. The reason can be related to the cost of the handover process.

Finally, the performance of the Admission Control solution is worse than the
Random Access because it admits large files in WiFi network where they

can provide higher revenues. However, these files get smaller bandwidth
and consequently a slower service.

Throughput

The third metric adopted for the comparison of the performance of the three

studied schemes is the throughput. The results show that the throughput
decreases with the increase of the offered video load (Fig. A.5 and Fig. A.6).

This decrease in throughput is directly related to the increase in the file
average service time metric. In terms of call-average throughput, all three

solutions perform roughly the same. Whereas, we notice that the decay
is slower for time-average throughput because this latter depends solely
on the system throughput. This explains as well the gap in time-average

throughput of Random Admission solution with the two other schemes.
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Figure A.4: File service time as function of the offered video load.
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Figure A.5: Time-average throughput as function of the offered video load.

However, this gap becomes negligible when the offered video load increases

because, at this stage, the whole capacity of WiMAX is reserved for video
calls, leaving only small space to serve the elastic traffic.

As a conclusion on the performance evaluation of the Handover and
Admission Control schemes, we can say that, although according to tradi-

tional QoS metric, like average service time and time-average throughput,
our proposed schemes perform worse compared with Random Access, how-

ever, and according to call-average throughput, which is believed to be
the most proper metric with respect to Quality of Experience (QoE), our
schemes perform very close.

We could not compare the results found in the current work to some
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Figure A.6: Call-average throughput as function of the offered video load.

other results. The reason is that, in the literature, the problem of maximiz-
ing the operator’s revenues was mostly studied in single networks scenar-

ios. In the future, it would be interesting to compare our results to those
emerging from different billing schemes and draw some conclusions in this

direction.

A.6 Conclusion and Future Work

This paper studies the maximization of the network operator’s revenue
through RRM in heterogeneous networks. The particular case of a WiFi /

WiMAX integrated network is chosen. Two schemes are proposed and com-
pared. Simulation results show that, by adopting RRM, higher profits can

be achieved as compared to the case where no resource management scheme
is adopted and the admission control is performed randomly. Moreover, in

terms of QoE, the performance of our proposed methods is relatively close
to that of the Random Access scheme.

This paper does not cover all aspects of the studied problem. Other
RRM schemes have to be investigated in the future. Also, adding a third
class of services for voice calls, as well as comparing the results for different

values of pricing parameters could enhance the present work.
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Abstract In this paper, the problem of Radio Access Technology (RAT)

selection in Heterogeneous Wireless Networks (HWNs) is tackled from an
operator’s perspective, with the objective of maximizing the generated rev-

enue. Two user profiles are considered with different priority levels. An
integrated 3GPP Long Term Evolution (LTE) and Wireless Fidelity (WiFi)
network is considered as an example of HWN, where LTE is used mainly

for the high-priority class, while a portion of its resources, defined by a load
threshold, can be shared by the low-priority class. A Markovian model is

defined and validated by simulation. Subsequently, the value of the load
threshold for resource sharing in LTE is investigated, and an optimization

problem is formulated to find the optimal threshold for which the revenue
is maximized.

Keywords

heterogeneous wireless networks, resource management, revenue maxi-

mization.
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B.1 Introduction

With the tremendous evolution of wireless network technologies and the

increasing demand from users to be always best connected, various Radio
Access Technologies (RATs) have been standardized and deployed. It has

become very likely to encounter geographical areas covered by more than
one RAT, each with different characteristics in terms of latency, coverage,
and link capacity. By providing more connection options than a single-RAT

network, a Heterogeneous Wireless Network (HWN) offers the operator
additional tuning knobs to meet the users’ needs and at the same time

generate higher revenues.
In this paper, we consider the scenario of a HWN that is run by a single

operator and where two RATs are integrated, namely 3rd Generation Part-
nership Project (3GPP) Long Term Evolution (called LTE hereafter) and

Wireless Fidelity (WiFi). This network scenario is rather practical and can
be found from real networks. Moreover, mobile devices and smartphones

supporting both technologies are now available in the market. With these
factors combined, it becomes of interest to investigate mechanisms that al-
locate users’ connections effectively, allowing an efficient utilization of the

system resources.
In order to take advantage of the combined features of the different

coexisting RATs in a HWN, a good coordination among these RATs is
required. This involves the adoption of Common Radio Resource Manage-

ment (CRRM) strategies, a critical factor for the success of HWNs. Among
the various CRRM functionalities [1], RAT selection is known to be most

fundamental. It can be user-centric or operator-centric. Typically, a user-
centric RAT selection scheme considers the user’s preferences as objective,

such as signal strength and access cost. An operator-centric one is oriented
towards maximizing the network utility, e.g. the overall HWN capacity,
and takes into consideration the network-related parameters such as the

RATs’ loads and capabilities as well as the existing service types [1]. In
this paper, we address an operator-centric RAT selection with the specific

objective of maximizing the operator’s revenue.
A thorough analysis and classification of the recently proposed radio

resource management procedures in HWNs can be found in [1, 2]. In [1],
the authors provided a case study that illustrated the potential gain of-

fered by CRRM especially in terms of capacity enhancement. In [3], a
CRRM scheme that minimizes the vertical handover rate and service cost

while achieving the desired Quality of Service (QoS) was proposed. In
CRRM, RAT selection functionality has gained a particular attention in
the literature. For example, Gelabert et al. provided in [4] a framework to

allocate services in HWNs with the help of Markov chain. The model was
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used to compare and evaluate the performance of various RAT selection

policies that fall into three categories: service-based, load-balancing based
and multi-mode terminal driven strategies. However, the users’ perceived

QoS was the main focus of most of the proposed RAT selection algorithms
e.g., [5–7].

Very few operator-centric approaches with the objective of maximizing
the operator’s revenue can be found. In [8], a fuzzy neural-based CRRM
strategy was presented. Both techno-economic cognitive mechanisms and

user differentiation concepts were investigated, with the aim of guarantee-
ing the user satisfaction to be maintained at a certain target level, while

also considering the network’s generated revenue. However, the proposed
CRRM strategy, based on a fuzzy neural network, is complex for implemen-

tation in real networks. In our early work [9], CRRM strategies based on
call admission control and vertical handover were presented and compared.

It was shown that a significant increase of revenue could be incurred by
the adoption of CRRM policies. However, the evaluation in [9] was only

based on simulation. Other admission control where decisions are taken
dynamically to maximize the operator’s revenue can also be found in the
literature [10, 11].

In this paper, we propose a new scheme for RAT selection that is intu-
itive and easy to implement. In addition, the proposed approach is devised

to work at a different level in the sense of providing the operator with the
initial setting of an important parameter i.e., the load threshold in LTE, at

the early planning phase of the system. With an appropriate setting of the
load threshold, system resources can be used efficiently and the revenue

can be maximized. To demonstrate its use, a specific example of HWN,
which is an integrated LTE/WiFi network, is considered. Also, for practi-

cal reasons, only two user profiles with different priority levels are offered
and a load threshold is defined in LTE to reserve resources to the high-
priority users. Importantly, an analytical model for the proposed scheme

is presented and validated by simulation. In addition, we investigate the
impact of the choice of the load threshold on the revenue and solve the

corresponding optimization problem.
The paper is organized as follows. Sec. B.2 describes the system model

and the proposed RAT selection scheme. In Sec. B.3, the different elements
of the Markovian model are introduced. Sec. B.4 presents the results

obtained by the model and the simulation. In Sec. B.5 we introduce and
solve the optimization problem for finding the optimal threshold value, and

Sec. B.6 concludes the paper.
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Figure B.1: RAT selection block.

B.2 The System Model and User Profile-Based

RAT Selection

We consider an integrated LTE/WiFi heterogeneous network. While WiFi

offers broadband data transmission for a limited-coverage area at low cost
and simple control plane, LTE provides more efficient services and better

QoS with wider coverage area, at bandwidth and cost comparable to that
of the WLAN [12, 13].

In the considered scenario, a user can be either residing in an area
covered by LTE only, or in a dual coverage area with a probability Pdual.

Two user profiles C1 and C2 are provided. Class C1 has higher priority than
class C2. Practically, the prioritized class C1 targets the business sector,

known to be more sensitive to the perceived QoS than the charged price.
The low-priority class C2 targets the individual users who care mainly about
the access cost, and don’t have strict requirements with respect to the QoS.

Naturally, C1 users get faster connection speed by paying higher connection
fees as compared to users belonging to C2 class. In terms of admission to

LTE, C1 users have a privilege in using LTE resources over C2. For this
purpose, a load threshold θ is defined as the percentage of LTE capacity

that the low-priority users are allowed to share with C1 users.
The RAT selection block, as illustrated in Fig. B.1, requires mainly two

types of inputs: network parameters (LTE and WiFi loads and the value of
θ), and user parameters (the user’s class of service, and whether the user

is in a dual-coverage area or not). It generates as output the decision of
admitting or blocking the arriving session, as well as the selected RAT in
the case where the session admission is successful.

Based on the RATs characteristics and the considered user profile dif-
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ferentiation, we propose the following RAT selection strategy:

• When a new C1 session arrives, it is admitted to LTE as long as LTE
has enough available resources. This policy reflects the operator’s

willingness to offer better QoS for C1 users whose contribution, in
terms of generated revenue, is more significant than C2 users.

• When a new C2 session arrives, the RAT selection module tries to

admit this session into WiFi first. This way, the operator benefits
from the capacity of WiFi to accommodate sessions belonging to the
low-priority profile, keeping more resources in LTE available for C1

class. In the case where the admission of the new C2 session to WiFi
is not possible (user out of WiFi coverage or WiFi is overloaded), and

with traffic load in LTE below the threshold θ, the RAT selection
module allows the admission of the new C2 session to LTE.

• When the load in LTE exceeds θ, only C1 sessions are allowed to be

admitted to LTE.

� � � � � � � � � �	 
 � � 
 � 
 � � � � 	

� � � � � �� � � � � � � � �� � � � � � � � �� � � � �  ! " " # �
� � � �

#
� �

!
��

�
� � 	


 � � � 
 � � � � � � � � �
� �

� � �

(a) Arrival of C1 session.

� � � � � � �  ! �" # $ % & ' # ' ' �  "

( ) * + , - . / .0 1 2 + , 3 4 + 5+ ) 1 6 4 7, + 8 1 6 , 0 + 8 . )- . / . 9
: ; < < = > ? @ A B = C C ; AC > D = E =

F G H I J KF L M N O P Q Q R S T U V W R X X P VX S Y Z [

\ ] ^ ^ _ ` a b c ` d e ] f

g h i

j k

l m n

o p
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Figure B.2: Algorithm for RAT selection.

Fig. B.2 illustrates the proposed RAT selection algorithm. Note that

though the proposed RAT selection scheme gives higher priority to C1 class
in using LTE, it also tries to keep the QoS of C2 class from degrading
drastically. This is realized by not allowing C1 users to compete with C2

users in using WiFi resources, even when LTE is overloaded.
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B.3 The Analysis

The considered scenario can be modeled by the means of a 3D Markov
chain. Each state S(i, j, k) represents a state of the network in which i

sessions of class C1, and j sessions of class C2 are being served in LTE, and
k sessions of class C2 are being served in WiFi.

The transition from one state to another is initiated upon the arrival /
departure of a C1 or C2 session to/from any of the two RATs. We assume
the traffic generated in both classes C1 and C2 to be inelastic, and arriving

according to Poisson processes with rates λ1 and λ2 respectively. As for
the session holding times, they follow exponential distributions with mean

values 1/μ1 and 1/μ2 for classes C1 and C2 respectively. We would like to
stress that, at the session level, these assumptions are rather realistic [14].

B.3.1 The Set of Feasible States

In the proposed scenario, we assume a fixed total bandwidth for each of the

RATs, namely Clte and Cwifi for LTE and WiFi respectively, each being
partitioned into a fixed set of basic bandwidth units (bbu) as in, e.g. [15, 16].
A state of the network is called feasible if each of its dimensions does not

exceed the limit defined by the RATs capacities. Let I , J and K denote
the maximum values of i, j and k that can be accommodated by the sys-

tem. Since C1 class has the priority in using LTE up to the totality of its
resources, and so does C2 in WiFi, The values of I and K can be defined

as: I =
⌊

Clte

b1

⌋
, and K =

⌊
Cwifi

b2

⌋
, where bi is the number of bbu required

for a Ci session, and �x	 is the largest integer not greater than x. Here, we

highlight that while the main interest of network operators is to increase
their revenue, it is also critical that the QoS level remains acceptable, which

can be ensured with properly chosen bi. There are various techniques for
calculating bi, and a promising technique is effective bandwidth [17], but

this is out of the scope of the present paper. Here we assume bi is given.
As for J, it can be expressed as the minimum of two quantities, namely

the maximum number of C2 sessions allowed to be in LTE assuming that no
C1 sessions are being served in the system, and the number of C2 sessions
that can be admitted to LTE after serving the i ongoing C1 sessions. Hence,

J can be defined as follows:

J(i) = min(

⌊
θ
Clte

b2

⌋
,

⌊
Clte − b1 · i

b2

⌋
). (B.1)

Hence, the set of feasible states in the proposed system can be written as:

S = {S(i, j, k)| 0≤ i ≤ I , 0 ≤ j ≤ J(i), 0 ≤ k ≤ K}. (B.2)
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Table B.1: Transition rates from generic state S(i, j, k).

To State Rate Condition

S(i+ 1, j, k) λ1 i < I
S(i− 1, j, k) i.μ1 i > 0

S(i, j, k+ 1) λ2.Pdual k < K
S(i, j, k− 1) k.μ2 k > 0

S(i, j+ 1, k) λ2.(1− Pdual) j < J(i) ∧ k < K
λ2 j < J(i) ∧ k = K

S(i, j − 1, k) j.μ2 j > 0

B.3.2 State Transitions

Having defined the set of feasible states, we need to specify the transitions
between the different states in order to build the transition rate matrix Q.
The transition rates from a given state S(i, j, k) to any of its neighboring

states are provided in Table B.1. After creating Q matrix, the next step is
to find the stationary probability vector. This can be obtained with the help

of numerical methods, and specifically we use the Successive Overrelaxation
Method (SOR) [18]. The steady state probability allows us to derive the

needed performance metrics as shown in the following subsection.

B.3.3 Performance Metrics

Average number of sessions

The average number of sessions admitted in the system for both classes is
defined as follows:

E[x] =
∑

S(i,j,k)∈S

x · P(i,j,k) , x ∈ {i, j, k} . (B.3)

where E[x] is the average value of x, and P(i,j,k) is the steady state proba-
bility for the state S(i, j, k).

Blocking probability

By (B.3), the average number of users is found, which also represents the

carried traffic in the system. This latter can be computed as the portion of
the offered traffic A (A = λ/μ) that has been admitted successfully to the

system as follows:

E[x] = Aγ · (1− Pb,γ), γ ∈ {1, 2} . (B.4)
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where Pb,γ is the blocking probability of class Cγ , x = i for γ = 1, and

x = j + k (with E[j + k] = E[j] +E[k]) for γ = 2. Therefore, the blocking
probability of class Cγ is computed as:

Pb,γ = 1−
E[x]

Aγ
, γ ∈ {1, 2} . (B.5)

Throughput

The throughput of a certain class of service is the product of its carried

traffic by the throughput of the total allocated bbu for this class in the
serving RAT. Hence, the throughput for service class Cγ can be defined as:

Thγ =
∑
α

E[x] · bγ · rα , γ ∈ {1, 2} . (B.6)

where: rα is the throughput (in Mbps) per bbu of RAT α, x = i for γ = 1,

x = j for (γ = 2 ∧ α = LTE), and x = k for (γ = 2 ∧ α = WiFi).

B.4 Validating the Analysis

To validate the analytical model, a system-level simulation has been con-
ducted in Matlab. The simulation was run for 5000 time units, and the

same simulation repeated 100 times to get its average performance. The
applied RAT selection policy in simulation follows the state feasibility con-

ditions imposed for the Markov model. For ease of presentation, we used
the settings in Table B.2 to analyze the performance of the proposed RAT

selection policy. The analysis may be further extended for other more re-
alistic settings. The results are plotted in Fig. B.3 and Fig. B.4, with
the 95% confidence intervals provided. the results show a good matching

between the model and the simulation, proving the validity of our proposed
Markovian model.

Fig. B.3 depicts the blocking probabilities for classes C1 and C2, con-
sidering different values of θ, ranging from 0 i.e., no C2 sessions can be

admitted to LTE, to 1 where the whole capacity of LTE can be shared
by traffic of both classes. It is shown that, when the admission to LTE is

restricted to C1 class solely, the low-priority class suffers from extremely
high blocking probability. This is a consequence of the limited coverage

and smaller capacity of WiFi as compared to LTE. Therefore, denying the
access of C2 sessions to LTE decreases their probability of being admitted
to the system. However, when the admission of C2 class to LTE is allowed,

through an increase of the value of θ, the blocking probability of C2 class
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Table B.2: System parameters.

Parameter Symbol Value

Capacity of LTE Clte 10
Capacity of WiFi Cwifi 5
Number of bbu required per C1 session b1 2

Number of bbu required per C2 session b2 1
Throughput per bbu in LTE rlte 1Mbps

Throughput per bbu in WiFi rwifi 1Mbps
Arrival rate of C1 class λ1 1/60 s−1

Arrival rate of C2 class λ2 1/30 s−1

Session holding time of C1 class 1/μ1 200 s

Session holding time of C2 class 1/μ2 150 s
Dual coverage probability Pdual 0.6
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Figure B.3: C1 and C2 blocking probabilities for different values of θ.

drops fast, leading to an enhancement of the QoS perceived by the low-
priority users. On the other hand, the blocking probability of class C1 is

not severely affected by the admission of C2 sessions to LTE.
Another performance metric is depicted in Fig. B.4, namely the through-

put. With the increase of the value of θ, the throughput of C2 sessions
increases fast. This is directly related to the decrease of the blocking prob-

ability of C2 class in similar conditions as discussed earlier. Also, even
when C2 sessions are allowed to share the entire capacity of LTE, this does
not cause a dramatical decrease of the throughput of C1 sessions, which are

granted the double number of bbu per session as compared to C2 class.
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Figure B.4: C1 and C2 throughput variations for different values of θ.

B.5 Revenue Maximization

In the previous sections, a RAT selection strategy in HWNs with profile

differentiation has been proposed, and several performance metrics have
been derived with the help of a Markovian model. According to the pro-
posed scenario, the number of users that can be admitted to LTE is directly

related to the value of the load threshold θ. Therefore, the parameter θ
plays a key role in determining the revenue generated in the overall sys-

tem, and any variation of its value can cause an increase or decrease of
the operator’s profit. In this section, we aim to find the optimal value of

θ that leads to maximizing the network revenue, while guaranteeing that
the user’s perceived QoS in terms of blocking probability stays below a

predefined threshold β.
Let R1 and R2 denote the prices that users pay for C1 and C2 connec-

tions respectively, with R1 > R2. A simple way to formulate the operator’s
average revenue is:

Avg Rev = R1 · E[i] + R2 · (E[j] + E[k]) (B.7)

where the detailed expressions of E[i], E[j] and E[k] are given by (B.3)
with x = i, x = j and x = k respectively.
The optimization problem for revenue maximization can be formulated

as:
maximize

θ
Avg Rev

subject to θ ∈ Sθ

Pb,i ≤ βi , i ∈ {1, 2} .

(B.8)
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where Sθ is the set of values of θ chosen as: Sθ = {0, 0.1, 0.15, 0.2, .., 1}, and

Pb,i is the blocking probability of class Ci, i ∈ {1, 2}.
The admission of C2 sessions to LTE is dependent on the value of θ.

For each combination of values of the offered traffic loads A1 and A2 of C1

and C2 respectively, we intend to find the optimal threshold θ∗ that solves

the optimization problem in (B.8). For this purpose, we use Algorithm 1.

Algorithm 1 Algorithm for finding the optimal threshold θ∗.

Input: A1, A2

Output: θ∗, Avg Rev∗

Initialize: sol ← 0 , Avg Rev∗ ← 0

for all θ in Sθ do

Find Pb,1, Pb,2, Avg Rev
if (Pb,1 ≤ β1) ∧ (Pb,2 ≤ β2) then

sol ← 1
if Avg Rev > Avg Rev∗ then

Avg Rev∗ ← Avg Rev
θ∗ ← θ

end if

end if

end for

if sol=1 {a solution has been found} then

Return θ∗, Avg Rev∗

end if

As shown in Algorithm 1, to find θ∗ for some given values of the offered
load traffic of C1 and C2 profiles, we first start with the smallest value of θ

(i.e. θ = 0), and keep increasing it until we find the value that provides a
feasible solution for the considered optimization problem. Once found, we
keep increasing the value of θ to check if highest revenue could be achieved

without violating the blocking probability constraints. If there are more
than one value of θ that ensure the same highest revenue, we have interest in

choosing the smallest θ∗, as it corresponds to a smaller blocking probability
for the high-priority class.

Fig. B.5 depicts the selected values of θ∗ for different traffic loads of
C1 and C2 classes. It shows that, for small values of A1, C2 class can share

up to 60% of CLTE . When A1 increases, the value of θ∗ decreases, and it
becomes less likely to find a θ∗ that solves the optimization problem.

Finding the optimal threshold has an important impact on the generated
revenue. This can be deduced from Fig. B.6 that depicts the revenue of
the network for arbitrary load thresholds compared to the revenue achieved

with the optimal threshold, for an offered traffic A1 = 0.8 of class C1. Fig.

84



Chapter B. Publication B

� � � � � � � � 	 
 � � 
 � � � � � � � � � � � � � ��

�

�

�

 

!

"

#

$

% & ' ( ) * + , - .

/ 0
12 34 5

678

9 : ;

< = >

? @ A

B C D

E F G

H I J

Figure B.5: Optimal threshold value for β1 = 5% and β2 = 10%.
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Figure B.6: Revenue for arbitrary and optimal load thresholds, A1 = 0.8
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B.6 clearly shows that the optimal threshold always achieves the highest

revenue.
When the offered traffic for C2 is low, e.g. A2 = 1.5, an arbitrary

threshold of 25% or 40% provide the same revenue as θ∗. However, for a
load traffic of C2 profile exceeding the value of 3, a threshold of 25% is

no more sufficient. It leads to significantly lower achieved revenue than
the optimal threshold, because it cannot satisfy the QoS constraint for
C2 profile. This choice of the threshold results in blocking C2 sessions, and

hence deprives the operator from the profit that could have been be achieved
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Table B.3: Values of Pb,1 and Pb,2, A1 = 0.8 Erlang.

θ = 25% θ = 40% θ∗

Pb,1 0.33 % 0.36 % 0.31 %
A2 = 1.1 Pb,2 2.2 % 0.77 % 2.52 %

Pb,1 0.55 % 0.99 % 0.99 %
A2 = 3.1 Pb,2 11.3 % 1.52 % 1.52 %

Pb,1 0.61 % 1.34 % 1.30 %
A2 = 4.1 Pb,2 16 % 3.44 % 3.7 %

from the potential admittance of the blocked C2 sessions if a proper choice
of the load threshold was initially made. These results are indeed consistent

with the ones given by Fig. B.5. Similarly, when choosing the value of 40%
for the LTE load threshold, less revenue could be achieved due to blocking

of C2 sessions when the traffic load of this latter is high. The blocking
probabilities Pb,1 and Pb,2 for the same values of θ are presented in Table

B.3. For targeted blocking probabilities β1 = 5% and β2 = 10%, a choice
of threshold of 25% will cause unacceptable blocking probabilities for C2

class when the load of this latter exceeds the value of 3. Therefore, the
network operator has interest in knowing, based on a pre-assessment of the

users’ load and profiles, the optimal setting of the load threshold in LTE
that allows the maximum number of users to be admitted to the system
and leads to the highest achievable revenue.

B.6 Conclusion

In this paper, we present an algorithm for RAT selection in HWNs where

different user profiles are supported, with the objective of enhancing the
system capacity and maximizing the network operator’s revenue, without

degrading the QoS. An LTE/WiFi heterogeneous network is chosen as a
representative of HWN, and a load threshold in LTE is defined to reserve

resources for the high-priority user profile. Sessions of low-priority are
preferably admitted to WiFi, unless the user was not in a dual-coverage

area or WiFi was overloaded. In these latter cases, LTE’s load is consid-
ered to decide on whether to admit the low-priority session to LTE or reject

it. A 3D Markov model is defined to study and analyze the proposed RAT
selection scheme that is further validated by simulation. Then, an optimiza-
tion problem is presented, and a solution is provided in order to find the

optimal load threshold that ensures the highest achievable revenue, while
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satisfying the blocking probability constraints. Finally, the importance of

defining the optimal value of the load threshold is highlighted.
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Appendix C

Publication C

Elissar Khloussy, Xavier Gelabert and Yuming Jiang; Investigation on
MDP-Based Radio Access Technology Selection in Heterogeneous Wireless

Networks; Computer Networks. 2015 Nov 14;91:57-67.

Abstract The new generation of wireless networks is characterized by

heterogeneity i.e. the coexistence of two or more Radio Access Technolo-
gies (RAT) in the same geographical area. While this coexistence of RATs

offers various advantages, it also imposes many challenges for the network
operator, whose aim is to maximize the generated revenue while satisfying

the customers’ increasing demands. One important mechanism in Hetero-
geneous Wireless Networks (HWN) is the RAT selection. It is normally

triggered when a new call arrives, and provides the decision on whether the
call can be admitted or not, and by which RAT it has to be served. Different
approaches can be used to tackle the problem of RAT selection in HWNs.

In this paper, we study Markov Decision Process (MDP)-based RAT selec-
tion in a cellular / WLAN heterogeneous network where the maximization

of the revenue is considered as objective. An optimal RAT selection policy
is therefore derived. The performance of the optimal scheme is evaluated in

comparison with two other policies, namely Cellular-First policy and Load
Balancing policy.

Keywords

radio access technology (RAT) selection, Markov decision processes (MDPs),

heterogeneous wireless networks, Poisson Point Process.
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C.1 Introduction

The new generation of wireless networks is characterized by heterogeneity

where two or more Radio Access Technologies (RATs) coexist in the same
geographical area. The coexisting RATs may have different, but often com-

plementary characteristics in terms of coverage, latency and link capacity.
This trend of multiplicity of RATs is also expected to be dominating in the
future for the many advantages it offers. These advantages include, among

others, multiple connectivity options, and an expansion of the coverage at
a relatively low structure cost [2]. However, this imposes additional chal-

lenges for the operator especially in finding means of coordination among
the coexisting RATs.

Getting full advantage of the combined features of the deployed RATs
is crucial for the network operator. On one hand, this can be explained

by the fast increase of demands from users with high Quality of Service
(QoS) requirements, coupled with the proliferation of bandwidth-hungry

applications widely available on smart phones, and electronic devices. On
the other hand, the wireless resources are very scarce as compared to the
growing demands. Therefore, the operator has interest in making the best

utilization of all available resources to increase the capacity of the network
and meet, as much as possible, the users’ expectations and demands.

Heterogeneous Wireless Networks (HWN) provide many opportunities
for capacity improvement. Considering the case of a cellular / WLAN

overlay network, WLAN can play an important role in alleviating some of
the problems encountered by the cellular network in terms of congestion

and coverage (WLAN offloading [3]). By deploying access points (APs)
in specific targeted areas such as cell edges, and hotspots, considerable

amount of traffic can be carried by the WLAN [4], thus increasing the
network capacity.
Cellular and WLAN have complementary characteristics. On one hand,

broadband cellular networks such as 3GPP Long Term Evolution (LTE)
can implement quite complex resource management schemes, more efficient

QoS and wider coverage than WLAN. On the other hand, WLAN is charac-
terized by its cheap deployment and access costs, small coverage and limited

QoS guarantees. A network operator can, through an efficient management
of the joint pool of resources of both RATs, take advantage of their com-

bined features to increase the overall system performance and consequently
generate higher profit.

Managing resources in HWNs involves setting up policies that regulate
the amount and type of traffic served by each of the RATs. These regula-
tions may vary depending on whether the adopted scheme is user-centric

or operator-centric. For instance, considering the user’s perspective, the
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objective is usually to guarantee the best achievable QoS such as low de-

lay and blocking probabilities or high throughput. The operator, however,
would be more interested in maximizing the network’s capacity in order to

accommodate the maximum number of users and increase the generated
revenue.

A well known key mechanism for resource management in HWNs sce-
narios is RAT selection. It consists of taking a decision, at each arrival of
a new call request, on whether to accept this call or not, and the RAT to

which it can be admitted. A well-designed RAT selection policy allows a
better assignment of the traffic to the available access networks, increasing

the number of sessions that the system can accommodate.
Different approaches can be used to tackle the RAT selection problem

in HWNs. In the present work, we investigate Markov Decision Process
(MDP)-based RAT selection with the objective of maximizing the opera-

tor’s revenue. Different user profiles with their respective QoS requirements
and charged prices are considered, and a preferential treatment is provided

to the profile that is charged higher fees. Moreover, the spatial distri-
bution of the base stations (BSs) and APs (for the cellular and WLAN
respectively), and that of the users in the HWN are taken into account in

modeling the traffic.
The main contributions of this paper can be summarized as follows:

(1) Investigation of the MDP-based approach for RAT selection, with focus

on revenue maximization as objective.

(2) Considering the operator’s policy of granting different levels of priority

to the different classes of service, the reflection of this policy by tuning
the parameters of the MDP model is discussed.

(3) The coverage probability of WLAN is analytically modeled with the

help of Poisson Point Process (PPP).

(4) The spatial distribution of the users is also captured with PPP.

(5) Evaluation of the performance of the MDP-based RAT selection with

comparison to two other static RAT selection schemes.

(6) Highlight on the role of WLAN in traffic offloading and improving the

perceived QoS.

The remaining of the paper consists of the following parts: Section C.2
presents the motivation and related work in the literature. Section C.3
describes the system model. In Section C.4, the components of the MDP

problem are presented. Section C.5 discusses the revenue maximization
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problem. Section C.6 presents and analyzes the obtained results. Finally,

we conclude this study in Section C.7.

C.2 Motivation and Related Work

Broadband cellular networks, despite their great promises, might not be
able to meet the expected increase in demands of data traffic in the near

future [5]. This incites the network operators to be in perpetual search for
solutions that alleviate the problem of increasing traffic load, and WLAN

has been considered as one appealing candidate to complement the cellu-
lar network. For example, WiFi offloading is of great importance for the

different advantages it provides, namely the usage of unlicensed spectrum,
being a well-established technology, and more importantly all new smart

phones, and electronic devices planned for 4G have the features of WiFi
radio embedded, a trend that is likely to continue for 5G as well.

In order for the network operator to benefit from the WLAN capacity to
alleviate the load of cellular network, a strategy for the distribution of traffic
among the two RATs is needed. This can be partly realized through the

implementation of an efficient RAT selection mechanism. While different
approaches can be used in dealing with RAT selection problem, MDP is a

good candidate for this optimization owing to its appealing properties.
MDP can be defined as a Markov chain with the addition of an action

model and a performance criterion. It has been widely applied in various
areas such as ecology, economics, and network routing [6]. In the case

of RAT selection problems, MDP is also an intuitive stochastic control
approach. Even though MDP suffers from a dimensionality problem when

the number of states in the MDP is increased to represent a large number
of connections, some approaches have been suggested in the literature (such
as in [7]) where approximation solutions are provided. One other example

can be found in [8] where a reduced dimension MDP-based call admission
control scheme has been proposed. The results in [8] show a great reduction

in the complexity of the original MDP model, making it practical and cost-
effective for implementation in HWNs. We believe, with such solutions,

the effectiveness and the promising results of MDP-based schemes can be
exploited by the network operators. Nevertheless, in this paper, our focus

is on investigating the effectiveness of using MDP to maximize revenue
generation in HWNs. For this reason, we shall only consider the original

MDP, leaving its simplification to future study.
In the literature, several RAT selection policies have been proposed.

In [6], a threshold-based framework for call admission control has been

provided and different objective functions have been proposed and inves-
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tigated. In [9], the authors proposed a heuristic RAT selection scheme

in co-located wireless networks which aims to enhance the user’s QoS in
terms of minimizing the call blocking probability. In [18], a stochastic pro-

cess algebra is used to build a framework for network selection strategies
in 3G-WLAN networks. Different strategies are evaluated, namely general

non-deterministic strategies (random strategy and relative received signal
strength (RRSS)-based strategy), WLAN-first and service-based. The con-
sidered performance measures (average throughput, handover rates and

RAT blocking probability) which aim to compare the performance of the
different schemes, take into account the user’s and the network operator’s

perspectives. However, no specific objective function is considered. Few
RAT selection schemes have been proposed with the aim of maximizing

the operator’s revenue such as [10] and [11]. However, the adopted pricing
scheme is not taken into consideration. Pricing is a very important factor,

and has a direct impact on the network’s generated revenue.
An important aspect in cellular / WLAN HWNs scenarios is the spatial

distribution of BSs, APs and users. Some of the proposed RAT selection
schemes in the literature took the users and BSs’ distribution into account
such as [12] and [13]. However this has been done through a decomposition

of the cell into rings and sectors, and by considering users belonging to the
same zone to be having the same geometrical property. None of the men-

tioned work has included an analytical model for the spatial distribution of
the APs and the users.

C.3 System Model

C.3.1 Network Architecture

We consider the case of a cellular / WLAN overlay network such as, for
example, in [14]. A typical example that can be met nowadays is an LTE /

WiFi heterogeneous network. The traffic arrivals to the different base sta-
tions are independently distributed. Hence, and without loss of generality,

we can shift our focus to a single cell Ctarg that corresponds to the coverage
area of one cellular BS. The cellular RAT has global coverage, overlaying

the WLAN i.e. within the coverage of the considered BS there exists one
or more WLAN AP(s).

In the studied system, we consider two user profiles or classes, namely
class 1 and class 2 with different priority levels. Class 1 traffic, which
is charged higher price, is granted higher priority. It targets mainly the

business sector’ users who have strict requirements on QoS, and are less
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sensitive to the charged prices. Class 2 traffic has normal priority and

targets individual users who prefer to pay low monthly fees and can tolerate
some degradation of their perceived QoS. All users belonging to the same

profile are charged identically.
The role of the MDP-based RAT selection scheme is to find the optimal

distribution of the traffic among the existing RATs which leads to the
maximization of the objective function (the revenue in our case).

C.3.2 Spatial Distribution

Because of the overlay nature of our studied HWN scenario, a connection

request might occur either in an area that is covered by the cellular RAT
only, or in a dual coverage area. In the latter case, the call can be admitted

to the cellular or the WLAN depending on the decision provided by the
RAT selection policy. Here arises the need for getting knowledge regarding

the spatial distribution of the three players in this scenario, namely the BSs,
APs, and the users. The considered network architecture can be seen as a

2-tier heterogeneous network, where tier-1 is the cellular and tier-2 is the
WLAN RAT. A spatial point process, such as PPP provides a concise and

tractable model for HWNs, by offering a statistical modeling for the spatial
distribution of users and base stations of each tier. In fact, PPP model
has been used extensively for modeling unplanned networks [15] which is

typically the case of WLAN APs’ deployment. In our considered scenario,
the different aspects of the PPP model can be described as follows:

• The positions of BSs / APs belonging to tier-k are modeled according
to a homogeneous PPP φ(k) with intensity λ(k), where λ(k) is defined

as the number of BSs / APs per area unit, and k ∈ {1, 2} with k = 1
refers to the cellular RAT and k = 2 refers to the WLAN.

• Users are also scattered in the plane according to an homogeneous
PPP φ(u) with intensity λ(u) users per area unit, independently of

φ(k).

Through PPP modeling, different metrics can be captured. In the following,

we derive (1) the probability for a user to be under tier-k’s coverage, and
(2) the traffic arrival rates.

Coverage probability

The cellular system has global coverage i.e. all users in the considered
HWN fall under the coverage of the cellular RAT. Therefore, the coverage

probability of cellular is Pc,1 = 1.
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As for the coverage probability of WLAN, it can be derived with the

help of PPP as follows. First, we assume that each AP covers a circular area
of known radius R, i.e. the transmission of each AP can be received clearly

by users residing at a distance not exceeding R. Second, the interference
from neighboring APs is considered negligible. Hence, a typical user is said

to be under the coverage of WLAN if the distance r separating this user
from the nearest AP is less than R. Therefore, the probability that a user
is under the coverage of WLAN is equivalent to the cumulative distribution

function of r, namely P[r < R]. Without loss of generality, we consider that
the typical user is located at the origin of the plane under consideration [15].

Then, knowing that the null probability of a 2D Poisson process in an area
Z is exp(−λZ) [16], we can derive the coverage probability of the WLAN

Pc,2 as follows:

P[r > R] = P[φ(2) ∩ b(0, R) = 0] = e−πλ(2)R2
(C.1)

where b(0, R) is the Euclidean ball of radius R centered at origin. Hence,
the coverage probability of tier-2 is given by:

Pc,2 = P[r < R] = 1− P[r > R] = 1− e−πλ(2)R2
(C.2)

Traffic arrivals and holding times

Having two user profiles generating traffic to the system, we define ψ as

the ratio of class 2 users to the total number of users, and (1− ψ) that of
class 1 users to the total number of users residing in the system. And with

the assumption that users of class i, i ∈ {1, 2} generate traffic following a
Poisson distribution with average σi calls/second, the traffic arrival rates

λ1 and λ2 of classes 1 and 2 respectively can be easily derived as follows:

λ1 = σ1(1− ψ)λ(u)|Ctarg| arrivals/second (C.3)

λ2 = σ2ψλ(u)|Ctarg| arrivals/second (C.4)

where |Ctarg| is the area of the targeted cell Ctarg (in area unit).
As for the call holding time for class i, traffic of both classes is assumed

to be inelastic, i.e. the average duration of the service is independent of the
allocated number of channels, and following exponential distribution with
mean 1/μi, i ∈ {1, 2}.

C.4 Markov Decision Process Formulation

An MDP model is provided to derive the optimal RAT selection policy

which maximizes our objective function. This model can be uniquely iden-
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tified by five components: the state space, decision epochs, action space,

state dynamics and the reward function. We define each of these compo-
nents in the following subsections.

C.4.1 State Space

The state space represents the number of ongoing sessions in the HWN i.e.

the number of class 1 sessions being served in the cellular RAT, number
of class 1 sessions being served in the WLAN, and similarly, number of

class 2 sessions being served in cellular and those in WLAN. For ease of
representation in MDP, we model the problem with one particular AP in

WLAN that we call the targeted AP. Hence, a 4D-MDP serves to build
our model. On the other hand, we assume a fixed total capacity for both

RATs, each being partitioned into a fixed number of basic bandwidth units
(bbu) as in, e.g. [14, 17, 19]. This implies that a limited number of sessions

can be served simultaneously by each RAT. The total capacities of the
cellular and the WLAN RATs can be defined as integers that we denote
by C1 and C2 respectively. Any new arriving call that cannot be granted

its required amount of bbu is blocked. Thus, by restricting the number of
ongoing connections in the system, the delivered QoS can be maintained at

a certain target level. Considering that each session of class i requires bi

bbu, we can define the following row vectors:

• State vector of the cellular RAT:

s1 = [n1,1, n1,2] ∈ Z
2
+

• State vector of the WLAN:
s2 = [n2,1, n2,2] ∈ Z

2
+

• State vector of the system:

s = [s1, s2] = [n1,1, n1,2, n2,1, n2,2]

Where:
nj,i denotes the number of sessions of class i in RAT j

Z+ represents the set of non-negative integer numbers. Hence, the state
space S of the system, which is the set of all feasible states where the QoS
conditions in both RATs are not violated, becomes:

S =
{
s = [s1, s2] = [n1,1, n1,2, n2,1, n2,2] ∈ Z

4
+,

n1,1 · b1 + n1,2 · b2 ≤ C1, n2,1 · b1 + n2,2 · b2 ≤ C2}
(C.5)
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C.4.2 Decision Epochs and Actions

At each arrival of a class i session request, i ∈ {1, 2}, the RAT selection

policy makes a decision on the admission of the new session. A decision
epoch occurs at each new session request. It is defined as the time following
immediately an arrival event. As for the events of call completion, they do

not require any decision to be taken by the system.
The action taken following each decision epoch can be defined as a

vector a = [a1, a2] where ai denotes the action resulting from the arrival
of a class i session. A decision can be either to admit the arriving session

to cellular RAT, admit it to WLAN or block it. ai can be defined as follows:

ai =

⎧⎪⎨⎪⎩
−1, if the session is admitted to cellular.

1, if the session is admitted to WLAN.

0, if the session is blocked.

The action space of the MDP is defined as the set of vectors a as follows:

A = {a = [a1, a2], a1 ∈ {−1, 0, 1} , a2 ∈ {−1, 0, 1}} (C.6)

However, for a given state s ∈ S, the decision should always lead to a

state s′ that is also in S. Moreover, when the system is in state (0,0,0,0),
the action (0,0) should be avoided in order for the system to keep evolving.

Hence, for a given state s = [n1,1, n1,2, n2,1, n2,2] ∈ S, the state action space
As ⊂ A is given by:

As = {a ∈ A : ai �= −1 if [s1 + eu
i , s2] /∈ S,

ai �= 1 if [s1, s2 + eu
i ] /∈ S,

ai = 0 if [s1 + eu
i , s2] /∈ S and [s1, s2 + eu

i ] /∈ S,

a �= (0, 0) if s = (0, 0, 0, 0)}

(C.7)

Where eu
i ∈ {0, 1}I , is a row vector of zeros except for the ith element

which is equal to 1, (I being the number of traffic classes, I = 2). s1 + eu
i

corresponds to an increase of the sessions of the ith class by 1 in the cellular

RAT. s2 + eu
i corresponds to an increase of the sessions of the ith class by

1 in the WLAN.

The admission of a class 1 session, to either cellular RAT or WLAN, might
involve the vertical handover of one or more class 2 sessions. This handover

can be performed from cellular to WLAN or vice versa.

C.4.3 State Dynamics

The state dynamics of the MDP are defined by two parameters, namely the

expected sojourn time and the transition probabilities.
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Expected sojourn time

The sojourn time τ(s, a) is defined as the expected time for the system to

stay in state s ∈ S given that action a ∈ As is chosen, until a new state is
entered. The sojourn time is used to compute the transition probabilities
for a continuous-time MDP, and its value can be expressed [6, 10] as follows:

τ(s, a) =

⎧⎨⎩
2∑

i=1

λi|ai|+

2∑
i=1

2∑
j=1

nj,iμi

⎫⎬⎭
−1

(C.8)

Where λi is the arrival rate for class i traffic, i ∈ {1, 2}, defined by (C.3)

and (C.4) for i = 1 and i = 2 respectively, and 1/μi is the mean value of
the call holding time of class i.

Transition probabilities

Let Pss′(a) denote the transition probability from state s = [s1, s2] ∈ S to
state s′ ∈ S, s �= s

′, provided that action a ∈ As is chosen. Pss′(a) can

thus be written as:

Pss′(a) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1δ(−a1)τ(s,a), if s′ = [s1 + eu
1 , s2].

λ1δ(−a1)τ(s,a)h, if s′ = [s1 + eu
1 − nh,2 · e

u
2 , s2 + nh,2 · e

u
2 ].

λ2δ(−a2)τ(s,a), if s′ = [s1 + eu
2 , s2].

λ1P
∗
c,2δ(a1)τ(s,a), if s′ = [s1, s2 + eu

1 ].

λ1P
∗
c,2δ(a1)τ(s,a)h, if s′ = [s1 + nh,2 · e

u
2 , s2 + eu

1 − nh,2 · e
u
2 ].

λ2P
∗
c,2δ(a2)τ(s,a), if s′ = [s1, s2 + eu

2 ].

μ1n1,1τ(s,a), if s′ = [s1 − eu
1 , s2] .

μ2n1,2τ(s,a), if s′ = [s1 − eu
2 , s2].

μ1n2,1τ(s,a), if s′ = [s1, s2 − eu
1 ].

μ2n2,2τ(s,a), if s′ = [s1, s2 − eu
2 ].

0, otherwise.

(C.9)

Where:
P ∗

c,2 is the coverage probability of the targeted AP: P
∗
c,2 =

Pc,2

|Ctarg|λ(2) ,

nh,2 represents the number of class 2 sessions that were handed off from
one RAT to another to free resources for the newly admitted class 1 session,
0 ≤ nh,2 ≤ 
 b1

b2
� , and 
x� is the smallest integer greater than x,

h is a variable that takes 1 as value if a vertical handover was performed,
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and 0 otherwise,

and δ(x) is a function defined as:{
0, if x ≤ 0

1, if x > 0

C.4.4 Policy and Reward Function

For each state s = [s1, s2] ∈ S, an action a ∈ As is chosen according to a
policy πs ∈ Π, where Π is a set of admissible policies defined as:

Π = {π : S → A|πs ∈ As, ∀s ∈ S} (C.10)

The reward function for choosing action a ∈ As, when the system is in

state s ∈ S can be defined as follows:

r(s,a) = w1,1 · δ(−a1)− kc,w · nh,2 · h

+w2,1 · δ(a1)− kw,c · nh,2 · h

+w1,2 · δ(−a2) +w2,2 · δ(a2)

(C.11)

where:
wj,i ∈ R+ is the weight associated with the admission of a class i session

into RAT j, R+ being the set of non-negative real numbers,
kc,w is the cost associated for handing off a class 2 session from the cellular

network to WLAN,
and kw,c is the cost associated for handing off a class 2 session from WLAN

to the cellular network.
The first two lines in (C.11) show that the gain obtained from the admission
of a class 1 session to the cellular network (resp. WLAN) is computed as the

weight associated to this admission minus the cost incurred by the eventual
handover of class 2 sessions. This reflects the fact that the handover is

not favorable unless the gain obtained is the highest achievable gain among
all possible solutions. However, the admission of a class 2 session, being a

low-priority traffic, does not invoke any kind of handover.
By solving the MDP, an optimal policy π∗ that maximizes the reward

function can be found. The values of the weights and the handover costs in
the reward function (C.11) have to be defined based on the objective that

the operator wants to maximize. The RAT selection module will, based
on the optimal policy provided by the MDP, decides on the admission or
rejection for every arriving session as explained in Fig. C.1.

A summary of the notations used in the paper is presented in Table C.1.
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Table C.1: Table of notations.

Symbol Description

|Ctarg| Coverage area of the targeted base station in the cellular RAT

φ(k) Poisson Point Process distribution of RAT k

φ(u) Poisson Point Process distribution of users

R Radius of the circular area covered by an AP
r Distance separating a typical user from the nearest AP

λ(k) Number of BS / AP per unit area of RAT k

λ(u) Number of camping users per unit area
λi The arrival rate of class i

pc,k Coverage probability of RAT k
ψ Ratio of class 2 users to the total number of users

σi The average number of calls per second generated by a class i user
1/μi The average call holding time of class i
Ck Capacity (number of channels) of RAT k

bi Number of bbu required to serve a class i user
nj,i number of sessions of class i in RAT j

sk The state vector of RAT k
s The state vector of the system

S The state space of the system
ai The action resulting from the arrival of a class i session

a Vector representing the action taken following a decision epoch
A The action space of the MDP

As The action space of state s
τ(s, a) Expected sojourn time in state s when action a is chosen
Pss′(a) Transition probability from state s to state s′ when action a is chosen

P ∗
c,2 Coverage probability of the targeted AP

nh,2 Number of class 2 sessions that were handed off from one RAT to another

h A variable that designates if a vertical handover was performed or not for class 2 traffic
πs Policy chosen at state s
Π Set of admissible policies

r(s,a) Reward function for state s when action a is chosen
wj,i Weight associated for admitting a class i session in RAT j

π∗ Optimal RAT selection policy
Pri Price charged for user of class i

Rev The revenue or charges collected from the admission of class 1 and class 2 sessions
ρi Traffic load of class i

kc,w Cost associated to the handoff of a class 2 session from cellular to WLAN
kw,c Cost associated to the handoff of a class 2 session from WLAN to cellular

C.5 Pricing Scheme and Revenue Maximization

Problem

Pricing of services is highly important, and has a substantial impact on
user satisfaction and operator revenue. Various pricing schemes have been

proposed and studied in the literature. These schemes include flat-pricing,
volume-based, and dynamic pricing. A comprehensive survey on pricing
practices and their predominance in different parts of the world can be

found in [20].
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Figure C.1: RAT selection module.

Pricing and revenue are tightly related. The term revenue, as used in

this paper, indicates the charges collected from the subscribers in monetary
unit (MU). It is function of the charged prices and the number of subscribers

belonging to the different offered profiles. In our studied scenario, we try
to maximize the network’s income by prioritizing the admission of class 1

users to the system, for their higher contribution in the generated revenue.
This can be reflected by the appropriate choice of the weights in the reward

function (C.11).
The weights are important system parameters that affect the decisions

taken by the admission controller, and different combinations of weights
may lead to different optimal policies π∗. By varying the values of these
weights, the network operator can shape the admitted traffic, in order to

reach a specific goal, such as balancing the traffic load, increasing the gen-
erated revenue, or it could be a combination of more than one objective.

C.6 Numerical Results

In this section, the performance of the optimal MDP-based RAT selection
scheme is analyzed. To solve the MDP problem and find the optimal policy,

we used the relative value iteration algorithm from the MDP toolbox (de-
veloped by [21]). The system parameters used in our analysis are depicted
in Table C.2. A higher value was assigned to kc,w than that of kw,c because

the handover to WLAN comes at a higher risk due to the local coverage of
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this latter. We also assume hereby that the price Pri, charged for class i,

is chosen as: Pr1 = 2 · Pr2.

Table C.2: System parameters.

Parameter Symbol Value

Cellular Capacity C1 30 bbu

WLAN Capacity C2 5 bbu

Number of bbu required per class 1 session b1 2 bbu

Number of bbu required per class 2 session b2 1 bbu

Traffic intensity of class 1 (λ1/μ1) ρ1 2 to 14 Erlang (E)

Traffic intensity of class 2 (λ2/μ2) ρ2 6 E

Average Session holding time for class 1 1/μ1 200 s

Average Session holding time for class 2 1/μ2 150 s

Cost of handoff of class 2 session from cellular to WLAN kc,w 0.5

Cost of handoff of class 2 session from WLAN to cellular kw,c 0.3

C.6.1 Performance Evaluation

The aim of the MDP-based scheme is to find the optimal policy for RAT
selection that maximizes the defined objective function. We analyze the

performance of this Optimal scheme by comparing it to the performance of
two static policies which we model with the help of Markov chain.
The first scheme is the Cellular-First scheme which works as follows:

All arriving traffic is admitted to the cellular RAT as long as this latter has
available resources. When the cellular network becomes overloaded, class

2 traffic is sent to WLAN while class 1 traffic is admitted to the cellular
network if it was possible to free the needed resources by handing off a

part of class 2 traffic to WLAN. In case the handover was not possible, the
traffic is sent to WLAN if this latter has enough resources, and blocked

otherwise.
The second scheme, called Load Balancing policy, as suggested in [22],

works as follows: When a session arrives, it is admitted to the RAT where
its admission results in the minimum load (the load of a RAT being the
ratio of occupied channels over the total available channels). In the case

where the admission of the session results in same load for all existing RATs,
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the policy selects randomly the RAT to accommodate the newly arriving

session.

C.6.2 Performance Metrics

The following performance metrics were chosen to compare the abovemen-

tioned schemes.

Average revenue

The average revenue (in MU) depends on the charged prices as well as the

average number of sessions that the system can admit for each of the user
profiles. It can be computed as:

E[Rev] = Pr1 ·E[n1,1 + n2,1] + Pr2 ·E[n1,2 + n2,2]

Blocking probability

A class i session is blocked, in general, when none of the two RATs has free
bi bbus available, or when the session is initiated out of the coverage of the

WLAN and the cellular RAT has no enough free resources to accommodate
it. In the case of Optimal and Cellular-First, where handover of class 2

traffic is allowed, the computation of the blocking probability of class 1
takes also into account whether a vertical handover of class 2 session(s)

makes the admission of class 1 traffic to a congested network possible or
not.

C.6.3 Results

The values of the considered performance metrics for the Optimal RAT se-
lection scheme, as well as for the Cellular-First and Load Balancing schemes

are depicted in Fig. C.2, C.3, and C.4. These values are for load of class 1
traffic ρ1 varying from 2 to 14 Erlang (E), load of class 2 traffic ρ2 = 6 E,

and for coverage probability of the targeted AP P ∗
c,2 = 0.6.

The values of the weights in the reward function are chosen as follows:

w1,1 = 2, w1,2 = 1, w2,1 = 2 and w2,2 = 1, where a higher weight is assigned
for the admission of class 1 traffic, reflecting the higher priority granted to

this latter.
Among the three studied policies, the Optimal policy provides the high-

est revenue (Fig.C.2). The Optimal policy is hence able to find the optimal

traffic distribution that can generate the highest profit among the compared
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Figure C.2: Average revenue [MU].
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Figure C.3: Class 1 blocking probability.
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Figure C.4: Class 2 blocking probability.

policies. Cellular-First policy achieves lower revenue than the Optimal pol-
icy, but is able to outperform the Load Balancing policy, which is due to
the fact that admitting to cellular RAT first will take better benefit from

the large capacity and global coverage of this network, while WLAN is used
only as extension to the cellular RAT when this is needed.

In terms of blocking probabilities, the results show that the Load Bal-
ancing policy achieves the lowest blocking probabilities for class 2 traffic.

This is because this policy does not provide privileges to class 1 traffic over
class 2 traffic. The blocking probabilities obtained through the Optimal

policy are higher than the two other policies. This can be explained by the
choice of the weights that is revenue-based only and does not account for

the difference in the QoS of the two networks. Assigning equal weights for
the admission of a class i session to both cellular RAT and WLAN means
that the Optimal policy will not differentiate between the different grades

of QoS that an admitted session might undergo in the different RATs.
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For an operator, whose interest is to maximize the profit generated from

its HWN, the RAT selection policy provided by MDP is a good candidate.
Not only it guarantees the highest profit, but it also keeps the QoS at a

comparable level to the ones obtained with the Load Balancing and Cellular-
First schemes.

C.6.4 Effect of the Weights

The decisions taken by the Optimal policy are directly affected by the values
of the weights (w1,1, w1,2, w2,1 and w2,2) in the reward function. It is there-

fore important to have a good insight into the choice of these weights. For
this purpose, we experiment hereby with different combinations of weights

values and analyze their impact on the average revenue. Nine sets of weights
were selected for this comparison as shown in Table C.3. For ease of illus-
tration, we assign the value of 2 to Pr1 and 1 to Pr2. The weights wj,i in

the nine defined sets were chosen in a way that a weight for the admission
of a class i session varies between 0 and Pri, which is an intuitive choice

having the maximization of revenue as our objective. However, w1,1 was
fixed to Pr1 to reflect the higher priority granted to class 1 traffic to be

admitted to cellular RAT where a better QoS can be offered.
First, we examine the revenue obtained by the different sets of weights

for a varying traffic load of class 1, and for load of class 2 ρ2 = 6 E (Fig.
C.5). The plots show how the achieved revenue can vary with the chosen

set of weights. Among all sets, set 9 performed the worst. This is obviously
due to the fact that, the weights for admission to WLAN for class 1 and
class 2 are set to zero meaning that the MDP will favor the admission

of both traffic to the Cellular RAT, and the benefit from the capacity of
WLAN is minimal.

The highest revenue was obtained from set 2 when the load of the
system was relatively low (ρ1 < 12). However, when the load increases, set

1 outperforms set 2. This can be explained as follows: when the traffic is
low compared to the system capacity, it is more beneficial to assign lower

value for w2,1 (such as in set 2) which is translated by a lower admission
of class 1 traffic to WLAN, while the cellular RAT has enough capacity to

accommodate the incoming traffic. On the other hand, when the system
is overloaded, the capacity of cellular RAT will not be enough to serve the
traffic, and admitting more traffic to WLAN would result in an increase of

the system capacity and, consequently, a higher revenue can be achieved.
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Figure C.5: Revenue obtained for varying traffic load.

Table C.3: The different selected sets of weights.

Sets w1,1 w2,1 w1,2 w2,2

Set 1 2 2 1 1

Set 2 2 1 1 1

Set 3 2 0 1 1

Set 4 2 2 0 1

Set 5 2 2 1 0

Set 6 2 1 0 1

Set 7 2 1 1 0

Set 8 2 0 0 1

Set 9 2 0 1 0

Due to the heterogeneous nature of the traffic, we also compared the

revenue achieved by the nine sets of weights for different values of traffic
mix (ρ1 + ρ2), namely (1) low traffic mix and (2) high traffic mix. In Fig.
C.6, the revenue is depicted for a low value of traffic mix (ρ1 + ρ2=10).

When class 2 traffic is dominating, i.e. ρ1

ρ1+ρ2
is low, the performance of
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Figure C.6: Revenue obtained by the different sets of weights for traffic mix

ρ1 + ρ2 = 10 E.

all sets of weights is very close except for set 6 and set 8 (plot of set 6
overlaps with that of set 8 in Fig. C.6). This is because these two sets

favor the admission of class 2 sessions to WLAN. However, when class 1
traffic dominates i.e. ρ1

ρ1+ρ2
> 0.6, the weights for the admission of class 2

traffic become less important, and therefore the revenue obtained from sets

6 and 8 becomes closer to that of the other sets of weights.
The revenues obtained from the different sets of weights for a high

traffic mix (ρ1 + ρ2 =20) are depicted in Fig. C.7. In this case, we see a
clearer differentiation of the revenues obtained from the different weights,

and the highest revenue is obtained by set 1, which complies with the results
deduced from Fig. C.5.

The results obtained hereby showed that the set of weights that provides
the maximum revenue varies with the traffic load and traffic mix. The

network operator can therefore, based on an a priori knowledge of the
traffic distribution and patterns, use the appropriate set of weights in order
to maximize the gained profit.

C.6.5 Effect of the Coverage Probability of WLAN

In Subsection C.6.3, we evaluated the performance of the MDP-based RAT
selection scheme along with two other policies, for the same value of the

coverage probability of WLAN. Because of its importance, we try hereby
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Figure C.7: Revenue obtained by the different sets of weights for traffic mix

ρ1 + ρ2 = 20 E.

to further investigate this parameter. Two values of the WLAN coverage
probability are considered, namely P ∗

c,2 = 0.6 and P ∗
c,2 = 0.3, and the results

provided by the MDP-based RAT selection policy for these two values are

shown in Fig. C.8, C.9 and C.10, where ρ1 varies from 2 to 14 E, and ρ2 is
fixed to 6 E. In terms of revenue, it is shown that, due to a loss in the WLAN

resources, it is not possible to achieve the same revenue as when WLAN
has wider coverage (Fig. C.8). Similarly, a negative effect on the blocking

probability for both classes of services can be noticed (Fig. C.9 and C.10).
When the WLAN has very low coverage, it is no more capable of alleviating

the load of cellular RAT which becomes congested faster. Therefore, the
role that WLAN can play in increasing the capacity of the cellular network

is important, allowing the system to serve a larger number of users. A
wider coverage of the WLAN results not only in higher generated revenue
but also in a better QoS for both class 1 and class 2 traffic.

C.7 Conclusion

RAT selection strategies are key components in heterogeneous wireless sys-
tems, where more than one RAT coexist, and multiple user profiles are

supported each having different QoS requirements. In this paper, we study
the performance of MDP-based RAT selection in a cellular / WLAN het-
erogeneous network, with the objective of maximizing the revenue of the

overall system. For performance evaluation, we compared the Optimal pol-
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Figure C.8: Average revenue [MU].
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Figure C.9: Class 1 blocking probability.
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Figure C.10: Class 2 blocking probability.

icy derived from MDP to two other RAT selection policies: Cellular-First
and Load Balancing. The results show that, even though the MDP-based

Optimal scheme makes a negative effect on the blocking probabilities, it
achieves the highest revenue among all policies. In addition, to better un-

derstand and provide insights into the MDP-based scheme, the impact of
the weights in the MDP objective function has been investigated for differ-
ent traffic loads and traffic mix values. Finally, the importance of the role

that WLAN plays in offloading the cellular RAT is highlighted.
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Abstract The net neutrality principle, also known as Open Internet,
states that users should have equal access to all Internet content and that

Internet Service Providers (ISPs) should not practice differentiated treat-
ment on any of the Internet traffic. While net neutrality aims to restrain

any kind of discrimination, it also provides exemption for a certain category
of Internet traffic known as specialized services (SS), by allowing the ISP

to dedicate part of the resources for the latter. In this work, we shed light
on this particular case by comparing five Radio Access Technology (RAT)
selection policies in heterogeneous wireless networks where SS traffic and In-

ternet access services (IAS) traffic are carried. The studied policies include
a non-net-neutral revenue-maximizing policy used as reference policy, and

four other net-neutral policies with and without exemption to SS traffic.
The results show that, even though, as expected, integrating net neutrality

regulation within RAT selection policies can lead to a decrease in the gen-
erated revenue, a properly designed net-neutral policy will not only be able

to reduce this decrease in revenue but also can maintain a similar level of
social benefit in terms of the number of users admitted to the system.

Keywords
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D.1 Introduction

The net neutrality debate has gained lots of attention over the past decade.

The main idea behind net neutrality principle is that Internet Service
Providers (ISPs) should treat all Internet traffic equally regardless of the

content, application, device, sender or receiver. Although the net neutrality
debate has targeted, at the beginning, the wired public Internet, it is clear
that it will address the wireless networks as well. Opponents to wireless net

neutrality argue that the characteristics of wired and wireless networks dif-
fer in many aspects and that the challenges faced by wireless networks are

greater compared to the ones faced by wired connectivity. Such challenges
are mainly due to the wireless medium; they include signal attenuation,

interference, and handovers, among others [8]. Therefore, what applies
to wired networks might not necessarily apply to wireless ones. However,

considering that a significant fraction of Internet traffic is being sent over
wireless connectivity, we believe that the applied regulations have to be

quite similar in both wired and wireless networks.
Net neutrality principle allows the ISP to grant exemption to some

non-Internet access services that require high transmission quality, known

as specialized services (SS) [2]. Some examples of SS include VoLTE, lin-
ear broadcasting IPTV, and real-time health services [15]. The ISP can

dedicate a certain amount of bandwidth to SS to secure that those ser-
vices receive the required Quality of Service (QoS). However, this should

not lead to a degradation of the QoS experienced by the Internet access
services (IAS) traffic.

In a previous work [9], we studied revenue-maximizing Radio Access
Technology (RAT) selection in a Long Term Evolution (LTE) / Wireless

Fidelity (WiFi) Heterogeneous Wireless Network (HWN). The traffic with
the highest contribution to the revenue was granted higher priority in get-
ting access to the network and in being served in LTE, at the expense of

blocking or handing over the low-priority traffic. This way of traffic han-
dling allows to maximize the revenue but it indeed violates net neutrality

regulations, due to the fact that the low-priority traffic is treated with some
kind of discrimination [14].

RAT selection is an important radio resource management component
that helps tackle the problem of scarcity of wireless resources in HWNs.

Despite the emergence of other solutions to deal with the same problem,
such as LTE license-assisted access (LTE-LAA) which enables the operation

of LTE in unlicensed spectrum [3, 11], the role of RAT selection will remain
important.
In this work, we aim to investigate how applying net neutrality-compliant

RAT selection policies would affect the generated revenue and the QoS per-
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ceived by both high and low-priority traffic, where the high-priority traffic

is represented by SS and the low-priority traffic is represented by IAS. To
the best of our knowledge, no other work has been conducted in this di-

rection where RAT selection policies are investigated, with net neutrality
integration.

The rest of the paper is organized as follows. In Section D.2, the mo-
tivation and related work are presented. Section D.3 describes the system
model. In Section D.4, we introduce the studied RAT selection strategies

and their implementation. In Section D.5, we provide an analysis of the
obtained results. Finally, we conclude in Section D.6.

D.2 Motivation and Related Work

Net neutrality has been heavily discussed in the past decade as a potential
way to prevent the ISPs from exercising any type of discrimination on

the Internet traffic. Content providers, in general, support net neutrality
especially in monopolistic regimes where an ISP might have pricing power
over the Internet access market. The ISPs, on the other hand, argue that

service differentiation is crucial, giving them incentive to further invest in
expanding their infrastructure and provide better QoS [16]. Wu in [17]

expanded the net neutrality debate by suggesting that policymakers ought
to consider how to apply net neutrality regulations to wireless networks.

This was opposed by a number of economists (e.g. [5]) who argued that,
unlike the wired market, the competition will remain high in the wireless

one.
Mart́ınez et al. in [14] provided an initial analysis of the impact of

net neutrality on quality of experience-based differentiation in mobile net-
works. In [6], the authors focused on the content provider discrimination
and discussed the impact of some of the disruptive network applications on

net neutrality. Some other works, e.g. [12, 16], proposed alternative reg-
ulations to net neutrality. Authors in [13] studied the paid prioritization

where the content providers decided to pay for this priority in monopolistic
access market. They showed that, with ISP’s optimal pricing, the service

differentiation became efficient and the social welfare among the different
content providers was close to its maximum. Altman et al. in [1] presented

a bargaining framework to decide how much the ISP should charge the
content provider.

In our work, we focus on one ISP and study how the generated revenue
as well as the social benefit and the blocking probability of the offered traffic
would be affected when net neutrality regulation is integrated within the

applied RAT selection policies in heterogeneous wireless networks.
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D.3 System Model

We consider a heterogeneous wireless network consisting of LTE and WiFi

that coexist in the same geographical area. The traffic arrivals to the differ-
ent base stations (BSs) are independently distributed. Hence, and without

loss of generality, we can shift our focus to a single cell that corresponds to
the coverage area of one cellular BS. The cellular RAT has global coverage,
overlaying the WLAN i.e. within the coverage of the considered BS, one or

more WLAN access point(s) might be found. This is similar to the model
considered in [9].

Two types of traffic are carried, namely SS and IAS traffic, where IAS
is charged a price Pl, while SS is charged the same price Pl in the case

where this latter is not granted any preferential treatment, and a price
Ph > Pl otherwise. Naturally, this pricing differentiation affects the traffic

distribution among SS and IAS. In this paper, we adopt that, and the
percentage of traffic that is being sent as SS traffic can be computed with

the help of the following demand function that was proposed in [4] and has
been adopted in the literature e.g., [7]:

D[Ph] = e
−(

Ph
Pl

−1)2
. (D.1)

D.4 RAT Selection Strategies

We consider five RAT selection strategies for the admission of SS and IAS
traffic. The first strategy is revenue-maximizing and does not take into

account net neutrality restrictions, while the four others are net neutrality-
compliant. Our objective is to give insight into how the revenue and the

QoS are affected when net neutrality regulations are applied. A comparison
of the considered RAT selection policies is provided in Table D.1.

D.4.1 Description of the RAT Selection Strategies

Table D.1: Comparison of the studied policies.

Policy A Policy B Policy C Policy D Policy E

Priority for SS Equal treatment for SS & IAS Reserved capacity for SS Equal treatment for SS & IAS Reserved capacity for SS
Revenue-maximizing LTE-first admission LTE-first admission WLAN-first admission WLAN-first admission

SS charged Ph Equal pricing SS charged Ph Equal pricing SS charged Ph

Non-net-neutral Net-neutral Net-neutral Net-neutral Net-neutral

Handover of IAS traffic allowed No handover No handover No handover No handover
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• Policy A - Revenue-maximizing policy: With this policy, the decision

of traffic admission is taken based on the generated revenue solely,
i.e. neither net neutrality nor QoS requirements are taken into con-

sideration. For its higher contribution in the generated revenue, SS
is granted high priority in getting admitted to the network and in

getting served in LTE. A handover of one or more IAS sessions might
be performed between LTE and WiFi in case there was need to re-
distribute the traffic, allowing to accommodate more sessions in the

system. In return, the price charged to SS traffic is Ph. Due to the
preferential treatment granted to SS traffic over IAS traffic, Policy A

is considered a non-net-neutral one [10].

• Policy B - LTE-First policy and strictly net-neutral: This policy is
strictly net-neutral in the sense that no privileges are granted to any
type of traffic; arriving SS and IAS sessions are admitted and served

with equal priority. The admission is LTE-first based, where the
arriving traffic is admitted first to LTE as long as LTE has enough

free resources, and afterwards to WiFi when LTE becomes overloaded.
SS and IAS are charged the same price Pl.

• Policy C - LTE-First net-neutral policy with exemption to SS: This

policy follows the net neutrality regulations which allow to grant ex-
emption to SS traffic. Similar to Policy B, the traffic admission is
also LTE-first based. In addition, a part of the resources pool in

LTE is reserved to SS traffic, while the remaining LTE resources and
the whole WiFi resources can be accessed and used by both types of

traffic. With policy C, SS traffic is charged Ph for the reserved band-
width it is granted in LTE, while IAS traffic is charged Pl. Fig. D.1

provides an abstraction of the system model where a portion of the
LTE capacity is dedicated to SS traffic i.e. LTE resources are divided

into two parts: reserved capacity (for SS traffic only) and common
capacity (for both SS and IAS traffic).

• Policy D - WLAN-First policy and strictly net-neutral: This policy
admits the arriving traffic on a WLAN-first basis i.e. traffic is ad-

mitted to WLAN until this latter becomes overloaded, and to LTE
afterwards. Policy D treats both SS and IAS traffic equally, and both

are charged the same price Pl.

• Policy E - WLAN-First net-neutral policy with exemption to SS: Sim-
ilarly to policy D, the traffic is admitted on WLAN-first basis. How-
ever, part of LTE resources is reserved for SS traffic, while the remain-

ing LTE resources and the entire WiFi resources can be occupied by
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Figure D.1: System model - net-neutral policy with exemption to SS traffic.

both SS and IAS traffic. SS traffic is charged Ph and IAS traffic is

charged Pl.

D.4.2 Implementation of the RAT Selection Strategies

Policy A aims to distribute the traffic among LTE and WiFi in a way that

maximizes the generated revenue. This scenario can be modeled with the
help of Markov Decision Process (MDP). In the following, the notation

RAT i will be used to identify the available RATs, where RAT 1 designates
LTE and RAT 2 designates WiFi. Similarly, class j traffic represents SS
for j = 1 and IAS for j = 2.

The MDP model is identified by the following components:

• State space:

S =
{
s = [s1, s2] = [n1,1, n1,2, n2,1, n2,2] ∈ Z

4
+

}
(D.2)

where ni,j represents the number of ongoing sessions of class j traffic
in RAT i, i ∈ {1, 2} and j ∈ {1, 2}.

• Action space: the action space of the MDP model is defined as the

set of vectors a as follows:

A = {a = [a1, a2], a1 ∈ {−1, 0, 1} , a2 ∈ {−1, 0, 1}} (D.3)

A vector a = [a1, a2] represents the action taken following each deci-
sion epoch, where aj denotes the action resulting from the arrival of a

class j session. A decision can be either to admit the arriving session
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to LTE, admit it to WiFi or block it. We define aj as follows:

aj =

⎧⎪⎨⎪⎩
−1, if the session is admitted to LTE.

1, if the session is admitted to WiFi.

0, if the session is blocked.

• Policy: For each state s = [s1, s2] ∈ S, an action a ∈ As is chosen

according to a policy πs ∈ Π, where As ⊂ A represents the set of
feasible actions for state s and Π is a set of admissible policies defined

as:
Π = {π : S → A|πs ∈ As, ∀s ∈ S} (D.4)

• Reward function: the reward function that we want to maximize
reflects the revenue achieved by the admission of both classes of traffic.
Hence, the reward function for choosing action a ∈ As, when the

system is in state s ∈ S can be defined as follows:

r(s,a) = w1,1 · δ(−a1)− kc,w · nh,2 · h

+w2,1 · δ(a1)− kw,c · nh,2 · h

+w1,2 · δ(−a2) + w2,2 · δ(a2)

(D.5)

where:
wi,j ∈ R+ is the weight associated with the admission of a class j

session into RAT i, R+ being the set of non-negative real numbers,
kc,w is the cost associated for handing off an IAS session from LTE
to WiFi and kw,c is the cost associated for handing off an IAS session

from WLAN to LTE,
nh,2 represents the number of IAS sessions handed off from one RAT

to another,
h is a variable that takes 1 as value if a vertical handover was per-

formed, and 0 otherwise,
and δ(x) is a function defined as:{

0, if x ≤ 0

1, if x > 0

Since our objective is to maximize the revenue, the weights wi,j in the
reward function are assigned the value Ph for j = 1 and Pl for j = 2. For

more details about the MDP modeling, the reader is referred to [9].
To implement Policies B, C, D and E, a 4-dimensional Markov chain

has been used where the transitions between states are defined according
to the definition of the policies (either LTE-first or WLAN-first), and the
resource reservation for SS traffic is also taken into account for Policies C

and E.
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Table D.2: System parameters

Parameter Symbol Value

Average session holding time - SS traffic 1/μ1 200 s
Average session holding time - IAS traffic 1/μ2 150 s
Total traffic intensity ρ 2-12 Erlang

Price charged for high-priority traffic Ph 1.6 MU
Price charged for low-priority traffic Pl 1 MU

D.5 Numerical Results

The values of the different system parameters used in this work are sum-

marized in Table D.2. The total arrival requests follow a Poisson process
with traffic intensity ρ. Each of these requests may randomly choose SS or

IAS due to pricing and to the probability to choose SS which is given by
(D.1). As a result, the traffic intensities of SS and IAS, denoted by ρ1 and
ρ2, can be respectively found as:

ρ1 = D[Ph] · ρ

ρ2 = (1− D[Ph]) · ρ

where D[Ph] is found from (D.1). As for the call holding time, it is assumed

to be inelastic, i.e. the average duration of the service is independent of
the allocated number of channels. Particularly, it follows an exponential

distribution with mean 1/μ1 and 1/μ2 for SS and IAS traffic respectively.
For Policies C and E, the value of 15% is assigned to the ratio of reserved

capacity in LTE for SS traffic.

D.5.1 Revenue

The term revenue, as used in this paper, designates the charges paid by the

users in exchange for the services they are receiving. It is hence the amount
paid by them for transmitting their traffic over the network in monetary

unit (MU).
The revenue achieved when applying the different RAT selection policies

is depicted in Fig. D.2. With Policy A, which is the revenue maximizing
policy, SS sessions are charged Ph and are granted, in return, higher priority

in getting admission to the system and in using LTE network over the IAS
traffic. Moreover, a handover of IAS traffic is also allowed whenever there is
the need to re-distribute the traffic among LTE and WiFi in order to admit

more sessions. Policy A is hence the one that allows to achieve the highest
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Figure D.2: Revenue achieved in monetary unit [MU].

revenue among the five studied policies. With Policies C and E, SS sessions
are also charged Ph in exchange for the reserved resources they are getting

in LTE. The results show that Policy C is able to achieve higher revenue
than Policy E. This is because Policy C fully exploits LTE resources before

admitting traffic to WiFi, while Policy E admits the traffic to WiFi first
which has local coverage and this can result in loss of some of the traffic sent

to WiFi and, consequently, a decrease in the revenue. Policies B and D offer
equal treatment to both SS and IAS traffic which are also charged equally.

Both achieve lower revenue than the other policies with some advantage to
Policy B which admits the traffic on LTE-first basis, unlike Policy D.

In comparison with what is achieved by the revenue-maximizing non-
net-neutral policy, i.e. Policy A, the difference in revenue highly depends
on the adopted net-neutral policy, which varies from less than 10% up to

30% as shown in Fig. D.2.
Regardless of the adopted RAT selection policy, the achieved revenue

is affected by the ratio Ph/Pl. To illustrate this, we plotted in Fig. D.3
the revenue obtained by Policy C for different ratios Ph/Pl. It is shown

that the achieved revenue first increases with the increase of Ph/Pl, then
starts to decrease. This is because when the price Ph of SS traffic becomes

too high compared to Pl, the users will tend to send the majority of traffic
as low-priority traffic as can be deduced from (D.1), which will result in a

decrease of the revenue.
Another important parameter that affects the revenue achieved by ap-

plying Policies C and E is the share of bandwidth that is reserved to SS

traffic. This parameter will be further investigated in Section D.5.4.
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D.5.2 Social Benefit

We define the social benefit as the total number of admitted sessions into
the network regardless of the traffic type. This metric offers insight into

the user experience. Fig. D.4 depicts the number of admitted sessions
realized by all five RAT selection policies. Policy A is able to admit the

highest number of sessions. Policy B comes in the second place despite its
low achieved revenue observed in Fig. D.2. This indicates that Policy B

performs well in terms of session admission and the low revenue is mainly
due to the difference in pricing between the two types of traffic. A similar
observation can be noticed with Policy E in the sense that the relatively

high revenue achieved by this policy is also due to the difference in pricing,
which indicates that Policy E admits mostly SS sessions, resulting in high

revenue but low number of total admitted sessions.
The results show also that the policies that offer equal traffic treatment

perform better in terms of social benefit than their respective policies that
reserve capacity to SS traffic (i.e. Policy B outperforms C, and D outper-

forms E). Nevertheless, the difference in terms of social benefit achieved by
the studied policies is generally small, e.g. less than 5% shown in Fig. D.4.

D.5.3 Blocking Probability

SS traffic

The blocking probability of SS traffic obtained with the studied RAT selec-

tion schemes is depicted in Fig. D.5. Policy D, which admits the traffic on
WLAN-First basis without bandwidth reservation for SS traffic, performs
the worst. This is due to the possibility of loss of traffic when admitted

to WLAN. Policies B and E have comparable performance when the traffic
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Figure D.4: Social benefit.

load is low. However, when the traffic load increases, Policy E outperforms

Policy B. This is mainly due to the capacity reservation in LTE for SS
traffic that Policy E allows. As for Policy A, despite granting priority to

SS traffic, it does not outperform Policy C. This is due to the way the
reward function (D.5) is built, where only revenue maximization has been

considered without taking QoS into account. Policy C allows to realize
the lowest blocking probability for SS traffic among all studied policies and

this is because it combines both bandwidth reservation for SS traffic and
LTE-First admission.

IAS traffic

Fig. D.6 depicts the blocking probability of IAS traffic obtained with the
considered RAT selection policies. With Policy B, where the two classes

of traffic receive equal treatment, the blocking probability of IAS traffic
is the lowest. The result of Policy A is in the middle, while the policies
that reserve capacity for SS traffic (Policies E and C) perform the worst,

which shows that reserving bandwidth for SS traffic has clear effect on the
blocking probability of IAS traffic. The results show also that the blocking

probability obtained by the WLAN-First based policies D and E is higher
than that by their respective LTE-First based Policies B and C.

D.5.4 Proportion of Reserved Capacity for SS Traffic

When studying the performance of Policies C and E, we have to take into

account that the obtained results are dependent on the share of the reserved
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Figure D.5: Blocking probability - specialized services traffic.
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Figure D.6: Blocking probability - Internet access traffic.

capacity in LTE for SS traffic. It is hence interesting to investigate how
varying the proportion of the reserved capacity for SS would affect the

revenue and the blocking probability of both SS and IAS traffic. Since
Policy C achieves higher revenue than Policy E, we shift our focus to Policy

C to study its performance with three values of the proportion of reserved
capacity : 10%, 15% and 20%.

Revenue

The revenue obtained by Policy C for the different proportions of reserved
LTE bandwidth is depicted in Fig. D.7. It is shown that when we increase

the share of reserved capacity in LTE, the revenue starts to increase in
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Figure D.7: Revenue in monetary unit [MU] - different ratios of reserved
capacity.

the beginning. Then when this share becomes relatively high, the revenue
starts again to decrease. The reason is that, when large portion of band-

width is reserved, this will result in “wasted” resources, and consequently, a
significant portion of IAS traffic will be rejected. This results in loss of the
revenue that could have been realized if the resources were better managed

to allow the accommodation of a higher number of IAS sessions.

Blocking probability

• SS traffic: It is evident that the increase of the share of reserved

bandwidth in LTE will lead to a decrease of the blocking probability
of SS traffic as depicted in Fig. D.8.

• IAS traffic: when the share of reserved bandwidth in LTE for SS

traffic is small, the blocking probability of IAS traffic is low (Fig.
D.9). However, when this share increases, higher blocking probability

of IAS traffic is observed.

D.6 Conclusion

In this work, we discuss net neutrality and highlight its impact on the rev-
enue and the QoS of both SS and IAS traffic in a heterogeneous LTE /

WiFi network. We study the performance of five different RAT selection
policies: a revenue-maximizing policy that is not compliant to net neutral-
ity, and four other net-neutral policies. The results show that, even though,

as expected, applying net neutrality regulations can lead to a decrease in
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Figure D.8: Blocking probability of SS - different ratios of reserved capacity.
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Figure D.9: Blocking probability of IAS - different ratios of reserved capac-

ity.

revenue, this decrease can be reduced by choosing proper net-neutral RAT

selection policies. In terms of social benefit, even though a similar decrease
can be observed, the decrease is so small that the difference may be ne-

glected in deciding which policy to use. Concerning QoS, applying net
neutrality regulations with bandwidth reservation for SS traffic can lead

to a decrease in the blocking probability of this latter. However, for IAS
traffic, the lowest blocking probability is achieved with the policies that

are strictly net-neutral. Finally, the choice of the share of reserved LTE
resources for SS traffic is investigated.
We conclude that in order to support net neutrality and at the same

time maximize revenue and meet the QoS requirements, the RAT selection

132



Chapter D. Publication D

policy has to be designed / chosen carefully. We believe that, though far

from exhaustive, the results in this paper on the considered policies shed
light on further study along this direction.
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[14] Mart́ınez L, Álvarez San-Jaime O, Markendahl J. Net neutrality prin-

ciples and its impact on quality of experience based service differen-
tiation in mobile networks. Regional Conference of the International

Telecommunications Society (ITS). 2015 Oct 25;28.

[15] Sørensen F. On the origin of specialised services.
https://eng.nkom.no/topical-issues/news/on-the-origin-of-specialised-

services. 2014 Jun 6.

[16] Tang J, Ma RT. Regulating monopolistic ISPs without neutrality. Net-
work Protocols (ICNP), 2014 IEEE 22nd International Conference on.

2014 Oct 21 (pp. 374-384).

[17] Wu T. Wireless carterfone. International Journal of Communication.
2007;1:389-426.

136



Appendix E

Publication E

Elissar Khloussy and Yuming Jiang; Revenue-Maximizing Radio Access
Technology Selection with Net Neutrality Compliance in Heterogeneous

Wireless Networks; Wireless Communications and Mobile Computing jour-
nal, 2018.

Abstract

The net neutrality principle, also known as Open Internet, states that

users should have equal access to all Internet content and that Internet Ser-
vice Providers (ISPs) should not practice differentiated treatment on any

of the Internet traffic. While net neutrality aims to restrain any kind of
discrimination, it also grants exemption to a certain category of Internet

traffic known as specialized services (SS), by allowing the ISP to dedicate
part of the resources for the latter. In this work, we consider a heteroge-
neous LTE / WiFi wireless network and we investigate revenue-maximizing

Radio Access Technology (RAT) selection strategies that are net neutrality-
compliant, with exemption granted to SS traffic. Our objective is to find

out how the bandwidth reservation for SS traffic would be made in a way
that allows to maximize the revenue while in compliance with net neutrality,

and how the choice of the ratio of reserved bandwidth would affect the rev-
enue. The results show that reserving bandwidth for SS traffic in one RAT

(LTE) can achieve higher revenue, but this gain in revenue is minimal. On
the other hand, when the capacity is reserved across both LTE and WiFi,

higher social benefit in terms of number of admitted users can be realized,
as well as lower blocking probability for the Internet access traffic.
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E.1. Introduction

E.1 Introduction

Heterogeneous Wireless Networks (HWNs), where two or more Radio Ac-

cess Technologies (RATs) coexist in the same geographical area, offer sev-
eral opportunities to the Internet Service Provider (ISP) such as multiple

connectivity options and a low-cost coverage expansion [24]. The ISPs, fac-
ing the fast increase in traffic demands, have interest in making the best
utilization of all available resources in the HWN in order to increase the

capacity of the network and meet, as much as possible, their customers’
expectations and demands.

Managing resources in HWNs involves setting up policies that regulate
how the arriving traffic is distributed and served among the available RATs.

A well known key mechanism for resource management in HWNs scenarios
is RAT selection. It consists of taking a decision, at each arrival of a new

call request, on whether to accept this call or not, and the RAT to which
it can be admitted.

The decision taken by the RAT selection policy is based on the objective
set by the ISP such as the maximization of the generated revenue. However,
it is important to set rules that regulate how the traffic is served in order

to avoid that the ISP exercises any kind of traffic discrimination. Hence,
the principle of net neutrality has gained lots of attention recently.

The main idea behind net neutrality is that ISPs should treat all Inter-
net traffic equally regardless of the content, application, device, sender or

receiver. While net neutrality principle states that all Internet traffic has
to receive equal treatment, an exemption is granted to some non-Internet

access services that require high transmission quality, known as specialized
services (SS) [3]. Some examples of SS include VoLTE, linear broadcasting

IPTV, and real-time health services [19]. In order to secure higher Quality
of Service (QoS) to SS, the ISP is allowed to dedicate a certain amount
of bandwidth to those services, without causing a degradation of the QoS

experienced by the Internet access services (IAS) traffic.
However, in order to follow the net neutrality regulations, the ISPs

might lose some of the generated revenue. Having revenue maximization
as our main focus, we address the following problem: how the bandwidth

reservation for SS traffic would be made in a way that allows to maximize
the revenue while in compliance with net neutrality, and how the choice of

the ratio of reserved bandwidth would affect the revenue?
In the present work, we derive RAT selection policies that allow to

maximize the revenue while being net neutrality-compliant at the same
time. We consider an integrated Long Term Evolution (LTE) / Wireless
Fidelity (WiFi) heterogeneous network. The optimal RAT selection policies

are derived with the help of Markov Decision Process (MDP). Two types
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of traffic are considered, namely SS and IAS traffic. To reserve bandwidth

for SS traffic, two cases are proposed: bandwidth reserved in LTE only,
and bandwidth reserved in the whole HWN. Our aim is to figure out which

way of bandwidth reservation is better to adopt, and to investigate how the
revenue would be affected by the choice of the ratio of reserved bandwidth

to SS traffic.
The main contributions of this paper can be summarized as follows:

1. Investigation of the MDP-based approach for RAT selection, with

focus on revenue maximization as objective.

2. Integration of net neutrality in the RAT selection policy, with two
variants of bandwidth reservation for SS traffic.

3. The impact of the ratio of reserved bandwidth for SS traffic is studied

with both variants.

4. The coverage probability of WLAN is analytically modeled with the
help of Poisson Point Process (PPP).

5. The spatial distributions of the cellular base stations (BS), WiFi ac-

cess points (AP) as well as the users are also captured with PPP.

The remaining of the paper consists of the following parts: Section E.2
presents the motivation and related work in the literature. Section E.3

describes the system model. In Section E.4, the components of the MDP
problem are presented. Section E.5 presents and analyzes the obtained

results. Finally, we conclude this study in Section E.6.

E.2 Motivation and Related Work

Net neutrality has been heavily discussed in the past decade as a potential
way to prevent the ISPs from exercising any type of discrimination on

the Internet traffic. Content providers, in general, support net neutrality
especially in monopolistic regimes where an ISP might have pricing power

over the Internet access market. The ISPs, on the other hand, argue that
service differentiation is crucial for QoS enhancement [21].

The use of capacity increase as an alternative to deal with QoS concerns
resulting from applying net neutrality has been addressed in the literature.

While this seems plausible, early study, e.g. [18], already showed that the
relationship between the net neutrality regulation and investment incentives
is subtle, and that it is difficult to draw general unambiguous conclusions

regarding this issue. In addition, recent study, e.g. [16], further shows that
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when strict net neutrality is applied, the ISPs will no longer have incentive

to invest in expending their infrastructure and enhance the QoS.
Wu in [23] expanded the net neutrality debate by suggesting that policy-

makers ought to consider how to apply net neutrality regulations to wireless
networks. This was opposed by a number of economists (e.g. [8]) who ar-

gued that, unlike the wired market, the competition will remain high in the
wireless one.
Mart́ınez et al. in [17] provided an initial analysis of the impact of net

neutrality on quality of experience-based differentiation in mobile networks.
In [9], the authors shed light on the content provider discrimination and

discussed the impact of some of the disruptive network applications on
net neutrality. In some other work, e.g. [15, 21], alternative regulations

to net neutrality have been proposed. Authors in [16] studied the paid
prioritization where the content providers decide to pay for this priority in

monopolistic access market. They showed that, with ISP’s optimal pricing,
the service differentiation becomes efficient and the social welfare among

the different content providers is close to its maximum. Altman et al. in
[1] presented a bargaining framework to decide how much the ISP should
charge the content provider.

In a previous work [12], we investigated MDP as a tool for modeling
revenue-maximizing RAT selection policies. However, net neutrality was

not taken into account in the derived model. The way the traffic was
handled provided privileges to the high-priority traffic in getting admission

to LTE which offers better QoS guarantees, at the expense of blocking or
handing over part of the low-priority traffic from one RAT to another. This

allows to achieve higher revenue but violates the net neutrality regulations.
Net neutrality and its integration in RAT selection policies have been

addressed in [13], where the performance of various RAT selection strategies
that are net neutrality-compliant was compared. The objective was to give
insight into the effect of applying net neutrality regulations on the revenue

and the QoS.
In the present work, we model two variants of RAT selection policy, that

differ by the way the bandwidth reservation for SS traffic is exercised. Both
are net neutrality-compliant and aim to maximize the generated revenue.

By comparing their performance, we try to find the most appropriate way
of bandwidth reservation for SS traffic, and investigate the impact of the

ratio of this reserved bandwidth on the generated revenue.
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E.3 System Model

E.3.1 Network Architecture

We consider the case of an LTE / WiFi overlay network [20]. The traffic
arrivals to the different BSs are independently distributed. Hence, and

without loss of generality, we can shift our focus to a single cell Ctarg that
corresponds to the coverage area of one cellular BS. LTE has global coverage,

overlaying the WLAN i.e. within the coverage of the considered BS there
exists one or more WiFi AP(s).

Two types of traffic are served, namely SS and IAS traffic, where IAS
is charged a price Pl, while SS is charged a price Ph > Pl. Naturally, this

pricing differentiation affects the traffic distribution among SS and IAS. In
this paper, we adopt that, and the ratio of traffic that is being sent as
SS traffic out of the total traffic can be computed with the help of the

following demand function that was proposed in [6] and has been adopted
in the literature e.g. [10]:

D[Ph] = e
−(

Ph
Pl

−1)2
, (E.1)

which implies that, out of the total traffic, the ratio of IAS traffic is (1−

e
−(

Ph
Pl

−1)2
).

E.3.2 Spatial Distribution

Because of the overlay nature of our studied HWN scenario, a connection re-
quest might occur either in an area that is covered by the cellular RAT only,

or in a dual coverage area. In the latter case, an arriving session request can
be admitted to LTE or to WiFi depending on the decision provided by the

RAT selection policy. Here arises the need for getting knowledge regarding
the spatial distribution of the BSs and the APs. The considered network

architecture can be seen as a 2-tier heterogeneous network, where tier-1 is
LTE and tier-2 is WiFi. A spatial point process, such as PPP provides a

concise and tractable model for HWNs, by offering a statistical modeling
for the spatial distribution of the BSs and APs. In fact, PPP model has
been used extensively for modeling unplanned networks [11] which is typi-

cally the case of WLAN APs’ deployment. In our considered scenario, the
different aspects of the PPP model can be described as follows:

• The positions of BSs / APs belonging to tier-k are modeled according

to a homogeneous PPP φ(k) with intensity λ(k), where λ(k) is defined
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as the number of BSs /APs per area unit, and k ∈ {1, 2} with k = 1

refers to LTE and k = 2 refers to WiFi.

• Users are also scattered in the plane according to a homogeneous PPP

φ(u) with intensity λ(u) users per area unit, independently of φ(k).

Through PPP modeling, different metrics can be captured. In the following,

we derive the probability for a user to be under tier-k’s coverage, and the
traffic arrival rates.

Coverage probability

The cellular system has global coverage i.e. all users in the considered HWN
fall under the coverage of the cellular RAT. Hence, the coverage probability

of LTE is Pc,1 = 1.
As for the coverage probability of WiFi, it can be derived with the help

of PPP as follows. First, we assume that each AP covers a circular area of
known radius R, i.e. the transmission of each AP can be received clearly by

users residing at a distance not exceeding R. Second, the interference from
neighboring APs is considered negligible. Hence, a typical user is said to be
under the coverage of WLAN if the distance r separating this user from the

nearest AP is less than R. Therefore, the probability that a user is under
WLAN coverage is equivalent to the cumulative distribution function of r,

namely P[r < R]. Without loss of generality, we consider that the typical
user is located at the origin of the plane under consideration [11]. Then,

knowing that the null probability of a 2D Poisson process in an area Z
is exp(−λZ) [2], we can derive the coverage probability of WiFi Pc,2 as

follows:

P[r > R] = P[φ(2) ∩ b(0, R) = 0] = e−πλ(2)R2
(E.2)

where b(0, R) is the Euclidean ball of radius R centered at origin. Hence,
the coverage probability of tier-2 is given by:

Pc,2 = P[r < R] = 1− P[r > R] = 1− e−πλ(2)R2
(E.3)

Traffic arrivals and holding times

With the assumption that each user of class i, i ∈ {1, 2} (i = 1 represents SS
and i = 2 represents IAS) generates traffic following a Poisson distribution
with average σi calls/second, the traffic arrival rates λ1 and λ2 of classes 1

and 2 respectively can be easily derived as follows:

λ1 = σ1 ·D[Ph] · λ
(u) · |Ctarg| arrivals/second (E.4)
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λ2 = σ2 · (1− D[Ph]) · λ
(u) · |Ctarg| arrivals/second (E.5)

where |Ctarg| is the area covered by the targeted cell Ctarg (in area unit),
and D[Ph] is found from (E.1).

Note that in (E.4) and (E.5), λ(u) · |Ctarg| appears in both λ1 and λ2,
together with σ1 and σ2 respectively. To simplify the representation, in later

analysis and results, we will simply use λ1 = σ1D[Ph] and λ2 = σ2(1−D[Ph])
with σ1 and σ2 normalized against λ(u) · |Ctarg|.
As for the call holding time for class i, the traffic of each class is assumed

to be inelastic, i.e. the average duration of the service is independent of the
allocated number of channels, and following exponential distribution with

mean 1/μi, i ∈ {1, 2}.

E.4 Markov Decision Process Formulation

An MDP model is provided to derive the optimal RAT selection policy

which maximizes our objective function. This model can be uniquely iden-
tified by five components: the state space, decision epochs, action space,

state dynamics and the reward function. We define each of these compo-
nents in the following subsections.

E.4.1 State Space

The state space represents the number of ongoing sessions in the HWN i.e.
the number of SS sessions being served in LTE and WiFi, and similarly, the

number of IAS sessions being served in both LTE and WiFi. For ease of
representation in MDP, we model the problem with one particular AP in
WLAN that we call the targeted AP. Hence, a 4D-MDP serves to build our

model. On the other hand, we assume a fixed total capacity for both RATs,
each being partitioned into a fixed number of basic bandwidth units (bbu)

as in, e.g. [7, 20, 22]. This implies that a limited number of sessions can be
served simultaneously by each RAT. The total capacities of LTE and WiFi

can be defined as integers that we denote by C1 and C2 respectively. Any
newly arriving session that cannot be granted its required amount of bbu

is blocked. Thus, by restricting the number of ongoing connections in the
system, the delivered QoS to the different connections can be maintained

at an acceptable level. To simplify the notation, we refer to each type of
served traffic as class i, with i = 1 denotes SS traffic and i = 2 denotes IAS
traffic.

We define the following row vectors:
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• State vector of LTE:

s1 = [n1,1, n1,2] ∈ Z
2
+

• State vector of WiFi:
s2 = [n2,1, n2,2] ∈ Z

2
+

• State vector of the system:

s = [s1, s2] = [n1,1, n1,2, n2,1, n2,2]

where:
nj,i denotes the number of sessions of class i in RAT j, j ∈ {1, 2}, with

j = 1 refers to LTE and j = 2 refers to WiFi,
Z+ represents the set of non-negative integer numbers.

The state space S of the system, which is the set of all feasible states,
differs according to the RAT selection policy. The following two cases are

to be distinguished: reserved bandwidth for SS traffic in LTE only, and
reserved bandwidth for SS in both LTE and WiFi.

• State space - reserved bandwidth in LTE only

In this case, the state space can be defined as follows:

S =
{
s = [s1, s2] = [n1,1, n1,2, n2,1, n2,2] ∈ Z

4
+,

n1,1 + n1,2 ≤ C1, n2,1 + n2,2 ≤ C2, n1,2 ≤ (C1 − C1,res)}

(E.6)

where C1,res represents the number of reserved bbu in LTE for the

usage of SS traffic.

• State space - reserved bandwidth in LTE and WiFi
In this case, the reserved bandwidth for SS traffic is spread across the

available RATs, namely LTE and WiFi. The state space in this case
becomes:

S =
{
s = [s1, s2] = [n1,1, n1,2, n2,1, n2,2] ∈ Z

4
+,

n1,1 + n1,2 ≤ C1, n2,1 + n2,2 ≤ C2, n1,2 + n2,2 ≤ (C1 +C2 − Cres)}

(E.7)

where Cres denotes the number of bbu reserved for SS traffic in both

LTE and WiFi.

E.4.2 Decision Epochs and Actions

At each arrival of a class i session request, i ∈ {1, 2}, the RAT selection

policy makes a decision concerning the admission of this new session. A

146



Chapter E. Publication E

decision epoch occurs at each new session request. It is defined as the time

following immediately an arrival event. As for the events of call completion,
they do not require any decision to be taken by the system.

The action taken following each decision epoch can be defined as a vec-
tor a = [a1, a2] where ai denotes the action resulting from the arrival of a

class i session. A decision can be either to admit the arriving session to
LTE, admit it to WiFi or block it. ai can be defined as follows:

ai =

⎧⎪⎨⎪⎩
−1, if the session is admitted to LTE.

1, if the session is admitted to WiFi.

0, if the session is blocked.

The action space of the MDP is defined as the set of vectors a as follows:

A = {a = [a1, a2], a1 ∈ {−1, 0, 1} , a2 ∈ {−1, 0, 1}} (E.8)

However, for a given state s ∈ S, the decision should always lead to a
state s′ that is also in S. Moreover, when the system is in state (0,0,0,0),

the action (0,0) should be avoided in order for the system to keep evolving.
Hence, for a given state s = [n1,1, n1,2, n2,1, n2,2] ∈ S, the state action space

As ⊂ A is given by:

As = {a ∈ A : ai �= −1 if [s1 + eu
i , s2] /∈ S,

ai �= 1 if [s1, s2 + eu
i ] /∈ S,

ai = 0 if [s1 + eu
i , s2] /∈ S and [s1, s2 + eu

i ] /∈ S,

a �= (0, 0) if s = (0, 0, 0, 0)}

(E.9)

Where eu
i ∈ {0, 1}2, is a vector of zeros except for the ith element which is

equal to 1.

E.4.3 State Dynamics

The state dynamics of the MDP are defined by two parameters, namely the

expected sojourn time and the transition probabilities.

Expected sojourn time

The sojourn time τ(s, a) is defined as the expected time for the system to
stay in state s ∈ S given that action a ∈ As is chosen, until a new state is
entered. The sojourn time is used to compute the transition probabilities

for a continuous-time MDP, and its value can be expressed as [5, 14]:

τ(s, a) = [λ1|a1|+ (n1,1 + n2,1)μ1 + λ2|a2|+ (n1,2 + n2,2)μ2]
−1 (E.10)
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Where λi is the arrival rate for class i traffic, i ∈ {1, 2} found from (E.4)

and (E.5), and 1/μi is the mean value of the call holding time of class i.

Transition probabilities

Let Pss′(a) denote the transition probability from state s = [s1, s2] ∈ S to
state s′ ∈ S, s �= s

′, provided that action a ∈ As is chosen. The state

transition probabilities can thus be written as:

Pss′(a) = ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1δ(−a1)τ(s,a), if s′ = [s1 + eu
1 , s2].

λ2δ(−a2)τ(s,a), if s′ = [s1 + eu
2 , s2].

λ1P
∗
c,2δ(a1)τ(s,a), if s′ = [s1, s2 + eu

1 ].

λ2P
∗
c,2δ(a2)τ(s,a), if s′ = [s1, s2 + eu

2 ].

μ1n1,1τ(s,a), if s′ = [s1 − eu
1 , s2] .

μ2n1,2τ(s,a), if s′ = [s1 − eu
2 , s2].

μ1n2,1τ(s,a), if s′ = [s1, s2 − eu
1 ].

μ2n2,2τ(s,a), if s′ = [s1, s2 − eu
2 ].

0, otherwise.

(E.11)

Where:

P ∗
c,2 is the coverage probability of the targeted AP: P ∗

c,2 =
Pc,2

|Ctarg|λ(2) , and

δ(x) is a function defined as: {
0, if x ≤ 0

1, if x > 0

E.4.4 Policy and Reward Function

For each state s = [s1, s2] ∈ S, an action a ∈ As is chosen according to a
policy πs ∈ Π, where Π is a set of admissible policies defined as:

Π = {π : S → A|πs ∈ As, ∀s ∈ S} (E.12)

The reward function for choosing action a ∈ As, when the system is in

state s ∈ S can be defined as follows:

r(s,a) = w1,1 · δ(−a1) +w1,2 · δ(−a2) + w2,1 · δ(a1) + w2,2 · δ(a2) (E.13)

where wj,i ∈ R+ is the weight associated with the admission of a class i

session into RAT j, R+ being the set of non-negative real numbers. Since
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our objective is to maximize the revenue, the weights wj,i in the reward

function are assigned the value Ph for i = 1 and Pl for i = 2.
By solving the MDP, an optimal policy π∗ that maximizes the reward

function can be found. The RAT selection module will then, based on the
optimal policy provided by the MDP, decide on the admission or rejection

for each arriving session. A summary of the notations used in the paper is
presented in Table E.1.

E.5 Numerical Results

In this section we present and analyze the results obtained from the im-

plementation of the two variants of the net neutral revenue-maximizing
RAT selection policy, namely bandwidth reservation for SS in LTE only

and bandwidth reservation for SS in the HWN as a whole. In addition, the
results obtained from a non-net neutral revenue-maximizing RAT selection

policy (introduced in [12, 13]) are presented as reference. The non-net neu-
tral policy prioritizes the admission of SS services traffic, and allows the

handover of IAS traffic between LTE and WiFi when there is need to free
resources for SS traffic.

To solve the MDP problem and find the optimal policy, we used the
relative value iteration algorithm, defined in the MDP toolbox (developed
by [4]). If not otherwise stated, the values of the system parameters used

in our analysis are as shown in Table E.2.

E.5.1 Revenue

The term revenue, as used in this paper, designates the charges paid by
the customers in exchange for the services they are receiving. In our case,

it is the amount paid by them for transmitting their traffic over the ISP’s
network in monetary unit (MU).

The revenue achieved when applying the two variants of the net neutral
RAT selection policy along with that achieved by the non-net neutral one

is depicted in Fig. E.1, for the values of average session holding times (1/μ1

and 1/μ2) stated in Table E.2, and by varying the average call arrival rates

σ1 and σ2 (i.e. varying λ1 and λ2 (c.f. (E.4))). The x-axis represents
the total traffic intensity ρ = λ1/μ1 + λ2/μ2. As expected, the non-net

neutral policy is the one that achieved the highest revenue. In addition, the
results show that both net neutral variants have comparable performance in
terms of revenue with an advantage to reserving capacity in LTE. Because

LTE has global coverage and better QoS guarantees than WiFi, reserving
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Table E.1: Table of notations.

Symbol Description

|Ctarg| Coverage area of the targeted LTE base station

φ(k) Poisson Point Process distribution of RAT k
R Radius of the circular area covered by an AP

r Distance separating a typical user from the nearest AP

λ(k) Number of BS / AP per unit area of RAT k

λ(u) Number of camping users per unit area
λi The arrival rate of class i
pc,k Coverage probability of RAT k

σi The average number of sessions per second generated by a class i user
1/μi The average session holding time of class i

Ck Capacity (number of channels) of RAT k
nj,i Number of sessions of class i in RAT j

sk The state vector of RAT k
s The state vector of the system

S The state space of the system
ai The action resulting from the arrival of a class i session

a Vector representing the action taken following a decision epoch
A The action space of the MDP

As The action space of state s
C1,res Number of reserved bbu for SS traffic in LTE
Cres Number of reserved bbu for SS traffic in the HWN

τ(s, a) Expected sojourn time in state s when action a is chosen
Pss′(a) Transition probability from state s to state s′ when action a is chosen

P ∗
c,2 Coverage probability of the targeted AP

πs Policy chosen at state s
Π Set of admissible policies

r(s,a) Reward function for state s when action a is chosen
wj,i Weight associated for admitting a class i session in RAT j

π∗ Optimal RAT selection policy
Ph Price charged for SS traffic

Pl Price charged for IAS traffic
ρ Total traffic load = sum of traffic load of SS and IAS traffic

capacity in LTE to SS traffic allows larger number of SS sessions to be

admitted to the system, resulting in higher revenue as compared to the
case where the bandwidth reservation is done across LTE and WiFi.
To show the impact of varying the session durations on the revenue,

we experimented with fixed arrival rates with values σ1 = 0.028 and σ2 =
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Table E.2: System parameters.

Parameter Symbol Value

Capacity of LTE C1 30 bbu
Capacity of WiFi C2 5 bbu

Price charged for SS traffic Ph 1.6 monetary unit (MU)
Price charged for IAS traffic Pl 1.0 MU

Reserved bandwidth for SS traffic in LTE C1,res 5 bbu
Reserved bandwidth for SS traffic in the HWN Cres 5 bbu

Total traffic intensity ρ 2 to 12 Erlang (E)
Ratio of SS traffic D[Ph] 0.69

Average Session holding time - SS traffic 1/μ1 200 s
Average Session holding time - IAS traffic 1/μ2 150 s

0.03, and varied the average session holding times (Fig. E.2). In this

case, similar trends are observed as in Fig. E.1. We notice, however, that
the achieved revenue has become lower as compared to the case where the

session durations are fixed. This is because, for the same traffic intensity
level, Fig. E.1 is resulted from higher traffic rates (or indeed higher call

arrival rates) with shorter session duration times, while Fig. E.2 is from
lower traffic rates (or indeed lower call arrival rates) with longer session
duration times. As a result, the wireless resources become reserved for

shorter time and more calls could be admitted for the case of Fig. E.1,
providing higher revenue. While for the case of Fig. E.2, with increased

session duration times, implying lower call arrival rates with the same traffic
intensity level, the wireless resources become reserved for longer time, fewer

arrivals will be admitted giving hence lower revenue.

E.5.2 Social Benefit

The social benefit is a metric that offers insight into the user experience,

and is defined as the total number of admitted sessions into the network
regardless of the traffic type. Fig. E.3 depicts the number of admitted ses-

sions obtained by the three considered RAT selection policies. We observe
that the non-net neutral policy is the one that achieves the highest social

benefit as it allows to re-arrange the traffic between LTE and WiFi in order
to admit the highest possible number of sessions. It is also shown that,

when reserving capacity for SS spans the whole HWN, it becomes possible
to admit more sessions (particularly IAS sessions) than in the case where
the reserved bandwidth is in LTE only, and therefore a better social benefit

is realized.

151



E.5. Numerical Results

2 3 4 5 6 7 8 9 10 11 12
2

4

6

8

10

12

14

16

R
e
v
e
n
u
e
 [
M

U
]

non-net neutral

reserved capacity in LTE

global capacity reservation

Figure E.1: Revenue achieved in monetary unit [MU] - fixed session dura-
tions.

2 3 4 5 6 7 8 9 10 11 12
2

4

6

8

10

12

14

16

R
e
v
e
n
u
e
 [
M

U
]

non-net neutral

reserved capacity in LTE

global capacity reservation

Figure E.2: Revenue achieved in monetary unit [MU] - fixed arrival rates.

E.5.3 Blocking Probability

The blocking probability obtained by the considered RAT selection policies

is depicted in Fig. E.4 and Fig. E.5 for SS and IAS traffic respectively.
We observe that the blocking probability for SS traffic is lower when the

reserved bandwidth is in LTE only, while for IAS traffic it is the opposite,
which also confirms the results for revenue and social benefit depicted in Fig.

E.1, Fig. E.2, and Fig. E.3. On the other hand, while the non-net neutral
policy provides the lowest blocking probability for SS traffic due to the
priority granted to the latter, it provides the highest blocking probability

for IAS traffic.
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Figure E.3: Social benefit.

Having compared the three performance metrics (revenue, social benefit,

and blocking probability), we conclude that reserving capacity for SS traffic
in the whole HWN offers more advantages despite an insignificant loss in

revenue, by providing a better social benefit and lower blocking probability
for IAS traffic.
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Figure E.4: Blocking probability - specialized services traffic.

E.5.4 Reserved Capacity for SS - Impact on Revenue

In this part, we investigate the impact of the ratio of reserved capacity
for SS traffic on the generated revenue for both studied scenarios, namely

when the dedicated capacity for SS traffic is reserved in LTE only, and
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Figure E.5: Blocking probability - Internet access traffic.

when it is reserved across the HWN. Unlike the investigation above where
the reserved capacity for SS is fixed as shown in Table E.2, the values of

reserved capacity ratio vary from 0% to 20% in the investigation of this
subsection.

In the first case, i.e. capacity reserved in LTE only, the revenue tends to
increase with the increase of the reserved bandwidth up to a certain point,

after which the revenue starts to decrease (Fig. E.6). This is due to the
fact that when the ratio of reserved capacity is high, some resources will

be reserved unnecessarily, while they could have been exploited to admit
IAS traffic. We lose therefore some revenue that could have been achieved
if more IAS traffic was admitted.

In the second case, where the bandwidth reservation for SS traffic is done
across all RATs in the HWN, the behavior is similar (Fig. E.7). However,

we notice that the graph is smoother than in the first case. This allows
us to conclude that varying the ratio of reserved capacity for SS traffic in

this case has less impact on the revenue than when we reserve capacity in
LTE only. This is due to the possibility of admitting larger number of IAS

sessions when the bandwidth reservation for SS traffic is done across the
HWN.

E.6 Conclusion

In this work, we present a model for RAT selection in HWNs where net
neutrality is taken into consideration and with the objective of maximizing
the revenue. We study particularly the exemption granted to SS traffic

that the net neutrality regulation allows. Two variants of the RAT selec-

154



Chapter E. Publication E

R
ev

en
ue

 [M
U

]

capacity ratio

0
0.2

5

0.15 12

10

10
0.1 8

15

60.05
4

0 2

Capacity reservation in LTE

4

6

8

10

12

14

Figure E.6: Revenue - different ratio of reserved capacity (LTE only).
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Figure E.7: Revenue - different ratio of reserved capacity (global reserva-
tion).

tion strategy are proposed, namely bandwidth reservation in LTE only, and
bandwidth reservation in the whole HWN. The MDP formulation for the

two variants is presented, and a model for the spatial distribution of the
BSs, APs, and the users is provided. Our objective has been to give insight

into how the bandwidth reservation for SS traffic should be made in order
to ensure a maximum revenue while remaining compliant to net neutrality,

and how the ratio of reserved bandwidth should be chosen. In terms of
performance, we conclude that reserving resources in the whole HWN may
be more beneficial as it guarantees better social benefit than the other vari-

ant, as well as lower blocking probability for IAS traffic, at the expense of
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a marginal loss in the generated revenue. Moreover, the impact of the ratio

of reserved capacity for SS traffic on the achieved revenue was investigated
with both variants of the RAT selection policy.

As a final remark, using MDP in this work, we have managed to for-
mulate the RAT selection problem. However, we were not able to obtain

closed-form expression for the solution, i.e. expressing the revenue as an
explicit function of the adopted net neutrality approach and the involved
parameters. To address this limitation, we have resorted to using math-

ematical tool to numerically solve the MDP problem and get the results.
The numerical results presented in the paper were obtained through imple-

menting the mathematical model in MATLAB. By varying the inputs along
different angels, mainly traffic density (either due to traffic rate changes or

session service time changes) and the ratio of reserved capacity, we have
tried to give an overall picture. For the use of the results in this paper,

an ISP, given its traffic condition, could do similar numerical investigation
(e.g. as for Fig. E.6) to find out how much capacity it could reserve for SS

traffic to maximize the revenue.
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