
May 2008
Herindrasana Ramampiaro, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Ranking and clustering of search
results
Analysis of Similarity graph

Ksenia Alexander Shevchuk

Table of context

1 INTRODUCTION 2

1.1 OVERVIEW 2
1.2 MOTIVATION 3
1.3 PROBLEM SPECIFICATION 4
1.4 LAYOUT OF THE THESIS 5

2 THEORETICAL BACKGROUND 6

2.1 THEORETICAL EXPLANATION OF THE PROBLEM 6
2.1.1 Similarity matrix 6
2.1.2 Eigenvector centrality 7
2.1.3 The main idea of the project. Link popularity 8
2.1.4 Clustering coefficient for unweighted graph 9
2.1.5 Comparison of the two coefficients 11

2.2 BASIC RETRIEVAL 16
2.3 HYPERLINK ANALYSIS ALGORITHMS OF RANKING 19

2.3.1 InDegree Algorithm 19
2.3.2 PageRank Algorithm [5] 20
2.3.3 HITS (Hyperlink Induced Topic Distillation) Algorithm 23
2.3.4 Salsa (Stochastic Approach for Link-Structure Analysis) Algorithm 24

3 STATE OF THE ART. EXISTING DEFINITIONS OF CLUSTERING COEFFICIENT FOR THE

WEIGHTED GRAPH 25

4 CLUSTERING OF THE WEIGHTED GRAPH AND REPLACING OF THE EIGENVECTOR WITH

THE LINK POPULARITY 31

4.1 THE MAIN IDEA 31
4.2 CLUSTERING COEFFICIENT FOR THE WEIGHTED GRAPH 32
4.3 EVALUATION OF THE CLUSTERING COEFFICIENT 33

5 TESTING AND RESULTS 35

5.1 DESCRIPTION OF CLUSTERING COEFFICIENT TESTING 35
5.2 EVC AND LINK POPULARITY CORRELATION TESTING 41

6 DISCUSSION AND EVALUATION 44

7 CONCLUSION AND FUTURE WORK 44

REFERENCES 45

APPENDIX 1. RESULT TABLES FOR THREE CLUSTERING COEFFICIENTS (CC1, CCW AND CCR)

 46

APPENDIX 2. SOURCE MATLAB CODE FOR CLUSTERING COEFFICIENT CALCULATION 49

APPENDIX 3. HISTOGRAMS OF LINK STRENGTHS FOR SIMILARITY GRAPHS 52

APPENDIX 4. HISTOGRAMS FOR THE SNIT GRAPHS. 54

APPENDIX 5. SCATTER PLOTS OF LP AND EVC FOR THE SIMILARITY GRAPHS 55

APPENDIX 6. SOURCE CODE FOR LP AND EVC CALCULATION 57

APPENDIX 7. CORRELATIONS OF LP AND EVC FOR SNIT GRAPHS 58

 2

1 Introduction

Managing large databases is one of the main problems of information systems. Today almost

everyone uses such huge database as the World Wide Web to find relevant information of any

kind.

The main problem is how to find the appropriate document among the millions of others, and

that is not only the problem of the World Wide Web but also the problem of such databases as

large company’s documentation databases and libraries.

It is not difficult to find all the documents which corresponds the request but it is often the

problem to get the few most relevant documents from thousands of corresponding ones. That is

the problem of ranking.

How to provide a fast ranking algorithm, which is not dependent on the structure of the

database—as an alternative to Hyper-link-based ranking algorithms like PageRank, which are

dependent on the hyper-link structure of the database—is the topic of this project.

1.1 Overview

The most common search today is web search. Searching using the web search engine like

Google is writing some query in the search field, and retrieving the set of documents which

corresponds to this query. This is text based search, where the search engine retrieves all the

documents which include or not (depends on the type of a query) the query words.

There are three main problems in the process of retrieving: how to preprocess documents of the

whole database to provide quick retrieval (typically, by building an inverted index over terms);

how to deal with the user query to provide all of the documents that could be interesting for the

user; and how to rank the resulting retrieved document set to show the user the most relevant

results in the first page of the list of results.

Most often full text search, which evaluates each document as a string of different terms, is

preferred. To speed up the search process some common terms built over the text can be used

(such as names of different chapters), or some structure can be added to the text (like a trie)

Figure 1 shows the example of a trie [1].

 3

Figure 1. A trie over strings ”ada”, ”adalia”, “amanda”, “amelie” and “barbara”. On the left, basic

formulation, on the write, the version used in practice

Dealing with the user query is the problem of which type of the retrieval models to chose. There

are three main models: Boolean, Vector and Probabilistic. While the Boolean model retrieves

only document that includes all words of the query and does not take in account how often the

specific term occurs in the document, the Vector model provides some ranking in respect to

occurrence of terms in the document (not required that all of the terms of the query must be

found in the document) [for more details see p. 16]

The problem of ranking (the main problem of this project) is resolved in part in the Word Wide

Web by evaluating link structure of the document set. The documents of the web include hyper-

links to each other and the graph of such links can be built, where nodes of the graph are

documents and edges are the hyper-links. The main idea is that the more important documents

that have hyperlink/hyperlinks to the particular document, the more important document is. This

algorithm provides not only the most relevant documents to the query but also the most

important, good quality documents as the first in the results list [for more details p. 19].

1.2 Motivation

All of the Web search engines rank the result list of retrieved documents, but why is it so

important to do that? For example, the Word Wide Web is a very huge database of different

types of documents (html, pdf, doc, etc.) and different types of information (ex., if one searches

for just a car, he can receive both information about different brands of cars and about George

Bush’s car), and the number of retrieved documents could be thousands or millions. Thus there is

a need to specify as good as possible the subject of interest while searching, and search systems

(like Google) should have opportunity to automatically pick out the most relevant search results

(rank the result).

 4

Most users of different search engines do not look beyond the first page of results. Therefore, it

is important for the ranking function of the search engine to output the desired results within the

top few pages. However, users are most interested in pages that are not only relevant, but also

authoritative, that is, trusted sources.

In Web search (hyperlink ranking), the focus shifts from relevance to authoritativeness. The task

of the ranking function here is to identify and rank highly the authoritative documents within the

collection of Web pages.

However, there are many domains for which hyperlinks are only sparsely applied, or even

absent. Furthermore the results of hyperlink ranking are not always good enough (there could be

some web pages that are created only for hyper linking).

Using the similarity ranking method, the problem of having an artificially created relevance of

the document could also arise. The different versions of the same document can make that

document relevant in respect to similarity.

But the similarity ranking method has some advantages. For example, not only text databases are

needed to be searchable. It should be possible to search in pictures, music and films collections.

It should be possible to find a picture which has something specific in it (an elephant), and if one

has managed to compute the values of similarity between two objects (ex. pictures) then it is

possible to use the method of similarity ranking. But it could be very difficult to identify objects

in the picture, or some actor, playing in a film; this problem is not discussed in this work.

1.3 Problem specification

The method of ranking that uses similarity graph analysis does not need documents in the

database to be linked with hyperlinks. This method does not deal with authority; instead, the

method sorts documents with respect to their relevance by using the similarity graph, which is

built up by calculating similarity values for all pairs of documents in the database. The document

is more relevant if it is strongly similar to the large number of the documents of the retrieved part

(is the most central node of this part of the documents). This method can be used in all

domains—even those (ex., images) for which all standard forms of analysis (text and hyperlink

analysis) are impossible.

In this work the similarity matrix will be studied. The problem here is to rank the results of a

search in the easiest and quickest way, using the similarity matrix. We assume that the

eigenvector of the similarity matrix of the retrieved documents gives the rank value to every of

those (the higher the value for the document in the eigenvector (EVC value) is, the more relevant

the document is). But it is often difficult to calculate the eigenvector (too much time and

resources is needed). Here we’ll try to confirm that for the high clustered (high linked) similarity

 5

matrix the eigenvector rank the documents in the same manner as Link Popularity vector (Link

Popularity of the node is the sum of the weights of all the outgoing links o this node) does. So

there are the following problems to be solved in this work:

1. Evaluate the clustering of the similarity matrix and confirm that it is high.

2. Compare the ranking results of the eigenvector ranking and the Link Popularity ranking

and confirm for the high clustered graph the correlation between those is larger than for

the low clustered graph.

1.4 Layout of the thesis

In chapter 2, the main theoretical background will be outlined. Theory behind our problem is

discussed in 2.1, the basic concepts of the Information Retrieval Model (Theory of organization

of information retrieval systems) are presented in 2.2 and four different ranking hyperlink

methods will be discussed in 2.3.

Chapter 3 covers and compares four different definitions of the clustering coefficient for

weighted graphs found in the literature.

In the chapter 4 the main idea of how to rank the searching results in the easiest way (4.1), how

to evaluate the clustering of the similarity graph (invention of the new clustering coefficient for

the weighted graph) (4.2) and how to test the new clustering coefficient (4.3) are discussed.

In the last chapter (chapter 5) two tests are described. The test of the new clustering coefficient

(by compare the coefficient of similarity graph, random graph and non weighted graph) (5.1) and

the test of the ranking method (5.2).

Discussion and evaluation of the result of the work can be find in chapter 6. The thesis ends with

some recommendations for the future work and conclusion.

 6

2 Theoretical background

In this section some theoretical explanation of the problems of this thesis will be introduced and

some basic theory of information retrieval will be discussed: models of retrieving the document

set from the database based on the user query, and the currently most popular hyperlink analysis

algorithms of ranking.

2.1 Theoretical explanation of the problem

As mentioned before the method of ranking, discussed in this thesis uses the similarity graph

built for the whole database, but how does the information retrieval system based on the

similarity graph work? The process is as follows. The whole database is first preprocessed by

building the similarity graph (matrix). When the user writes the query to the database, documents

that could be relevant to the query are retrieved (using some information retrieval model

discussed below). After that the result document set is ranked with respect to the subgraph of

similarity for this set. The most relevant document for the topic will be the one that has the

largest centrality value of all documents of the retrieved subset. This is the advantage of the

similarity-based ranking algorithm—that we don’t need to analyze all the nodes from the whole

set, thus we save time and resources (the hyperlink analysis needs to process the whole database

to find out the most central results [see p. 19]).

2.1.1 Similarity matrix

 How is the similarity matrix built? The similarity graph (“S-graph”— a weighted, symmetric

graph), which shows how similar documents in the domain are (all with all) is the graph whose

nodes are documents of the domain, and whose links show similarity between the nodes (link

weights represent degree of similarity). Those weights (similarity values) vary from 0 to 1:

[] NjNisij ...2,1;...2,1;1,0 ==∈ , where N is the number of nodes in the graph. Then the

similarity matrix is the N:N squared symmetric matrix whose elements are the similarity values

(ex. the element on the i-th row and j-th column is the similarity value between nodes i and j)

The process of building the similarity matrix is shown in Example 1.

Example 1

We have four text documents:

1. The main problem of this project is the problem of ranking.

2. Our problem, discussed in the paper, is the problem of ranking.

3. My current work includes some discussion about retrieved documents relevance.

 7

4. The main problem of this project is the problem of ranking.

Let’s assume that the similarity value for documents 1 and 2 is “0.5”, for 1 and 3- “0”, for 1 and

4- “1”, for 2 and 3- “0”, for 2 and 4- “0.5” and for 3 and 4-“0”. Now we can build the similarity

graph and the similarity symmetric matrix (Figure 2).

Figure 2. a)- similarity graph for Example 1, b)- similarity matrix

How the documents are retrieved according to the user query as well as the way of calculating

the similarity between every pair of documents is not the subject of this work, but in Section 2.2

the basic theory of these problems is briefly presented.

2.1.2 Eigenvector centrality

After the similarity matrix is built, the search in the database can be performed. There is no use

of finding the most central node (the node which is the most similar to every other node) of the

whole similarity graph. That document (corresponding to the most central node) will be just the

most similar to all other documents, thus the most common. It is more useful to calculate

centrality for a topic-focused subset of important nodes. For example, if we find out the subset of

documents which has the word ‘flowers’ inside, than the most relevant document for the topic

’flowers’ will likely be the one that has the largest centrality value of all documents of this

subset. The relevance of each document (centrality) is the corresponding value in the eigenvector

of the similarity matrix (EVC- eigenvector centrality). The following explanation shows the

point here.

We start with the similarity matrix of all documents retrieved in respect to some query and we

need to find the value of relevance for each of those documents. First we set the same positive

value];1[, Nipi ∈ for each of the documents, where N is the number of retrieved documents

(nodes in the similarity graph). Next we calculate new values using the equation ∑
≠

=
ij

ijj

new

i spp ,

1

3

2

4

0.5

0.5 1.0

a)

105.01

0100

5.0015.0

105.01

b)

 8

where ijs is the similarity value between nodes i and j. This means that the new value of

relevance of the node i (new

ip) is calculated as the sum of relevancies of nodes linked to it,

normalized by similarity links weights (ijs). Then we normalize the vector of relevancies

(()NppP ...1=) and calculate again new values of relevancies, using the same equation. We

must repeat this again and again until this vector will converge, which means that i

new

i pcp =/

or PcP
new =/ , where c is the constant of normalization. So we have an eigenvector problem

here: PSP ** =λ , where λ is the largest eigenvalue (because we took only positive relevancies

in the start and those only grew with iterations). Thus P is the eigenvector of the similarity

matrix S.

The problem is that the number of the nodes in the retrieved by querying subset can still be very

large (more than 1000 nodes), and the eigenvector calculation for such a graph needs much time

and resources. In this project we’ll try to replace eigenvector calculation with the calculation of

link popularities of the nodes.

2.1.3 The main idea of the project. Link popularity

The alternative method to rank the results of search is to calculate just the Link Popularity for

each of the result documents. If the eigenvector calculation requests a lot of iterations then the

Link popularity is just the one iteration, setting the first relevance values like “1”:

∑
≠

=
ij

iji sp *1 .The Link popularity of the node i is the sum of all weights of the links of this

node: ∑
=

=
ik

j

jii wL
1

, , where iL is Link popularity of the node i, ijji sw =, is the weight of the link

between nodes i and j, and ik is the number of the nodes linked to the node i. We can also

define }......,{ 21 Ni LLLLLP = as the vector of link popularities for every node.

The problem which is faced here is to show that ranking with Link Popularity gives roughly the

same result as ranking with the eigenvector for the similarity matrix. Here we suppose that if the

graph is well linked (which is true for every similarity graph) then the eigenvector will rank the

documents in the same manner as the link popularity [see p. 31 for explanation].

But we need to evaluate how well linked a graph is: we need some numeric coefficient which is

high for well linked graphs and low for poorly linked graphs. Such a coefficient is called the

clustering coefficient.

 9

2.1.4 Clustering coefficient for unweighted graph

For graphs that are unweighted (links weights can be only “1” or “0”) two alternative clustering

coefficients have been defined. Here good clustering implies that if one node in the graph is

linked to two others then there is a high probability that those two are linked with one another

[2]. The clustering coefficient for an unweighted graph is large if there are many triangles in it,

which is the case if there are often three linked nodes. In the other words, clustering coefficient is

the fraction of the connected three nodes groups that are connected each to each (in triangles), or

probability of two nodes to be neighbors if they have the same neighbor.

It can be calculated like the following:]1,0[,
*3

∈= cc
N

N
cc

con

t , where tN is the number of

triangles in the graph and conN - the number of connected triples of nodes; or alternatively

]1,0[,
*6

∈= cc
N

N
cc

path

t , where pathN is the number of paths that have length two.

A triangle and a connected triple are shown on the Figure 3. For the graph in Figure 3 a) the

clustering coefficient will be 1
3

1*3
==cc , while for Figure 3 b) cc = 0.

Figure 3. Triangle (a) and connected triple (b)

Figure 4 shows the connection between triples and paths. One connected triple in the graph

corresponds to two directed paths with length 2.

Figure 4. Connected triple and directed path length 2 (a- connected triple, b- corresponding paths)

2 3

2 3

a b

1
1

2 3

1

1

2 3

1

2 3

a b

 10

There is another definition of the clustering coefficient such as]1,0[,
,

,
∈= i

icon

it

i cc
n

n
cc , where icc

is the clustering coefficient of the node i, itn , - number of triangles linked to the node i, and

iconn , - the number of connected triples linked to the node i, triples that have the node i in the

middle (j-i-k). The clustering coefficient of the whole graph than is calculated as follows.

∑=
N

icc
N

cc
1

, where N is the total number of nodes in the graph.

Now we have two definitions:

Definition 1:

]1,0[,
*3

11 ∈= cc
N

N
cc

con

t or]1,0[,
*6

11 ∈= cc
N

N
cc

path

t , where

tN - the number of triangles in the graph

conN - the number of connected triples

pethN - the number of directed paths that have the length two

Definition 2:

∑=
N

icc
N

cc
1

2 ,]1,0[,
,

,
∈= i

icon

it

i cc
n

n
cc

itn , - number of triangles which include the node i

iconn , - number of connected triples which include the node i

N- number of nodes in the graph

Example 2 shows that these two definitions gives the different values of clustering.

Example 2

Two different clustering coefficients calculated for the graph shown in Figure 5.

Figure 5. Example graph.

1. 5/3
5

1*3
1 ==cc

2 4

1

3

 11

2. 12/7
4

03/111
2 =

+++
=cc

These two coefficients are only appropriate for unweighted graphs but in our situation we have

similarity graphs that are weighted with weights which vary from 0 to 1, and that’s why we need

here some other measure of clustering which has the same properties as those coefficients for

unweighted graphs. The challenge for me here is to invent such a clustering coefficient based on

the above definitions. But which of those two definitions is more appropriate to base on: the one

which calculates the coefficient for the whole graph or that one which first calculates the

clustering coefficient for every node? The problem of this choice is the subject of the next

section.

2.1.5 Comparison of the two coefficients

If we make a plot (axis- 1cc (CMN) and ordinate- 2cc (CDW)) [see Figure 6] from the results of

Table II of Mark Newman’s article [2], we can see that these two clustering coefficients are like

each other for the low values, while 2cc is much larger for high values; but it is also obvious that

both are not larger than 1 and are like each other in this point.

Figure 6. Correlation between 1cc (CMN) and 2cc (CDW)

 12

We can assume from these data that for most graphs the scatter from the Figure 6 will take the

form of a curve shown in the Figure 7.

Figure 7. Proposed correlation curve. Axis- 1cc (CMN) and ordinate- 2cc (CDW))

Let’s take a look at the two extreme cases of graphs shown in Example 3 and Example 4.

Example 3 (flower)

Here is the graph with the one central node (which has a large number of neighbors (6)) and a

large number (6) of nodes linked to this central node (which have a few (2) neighbors).

Figure 8. The graph of the Example 3 (flower)

This graph (Figure 8) has the first clustering coefficient very low, but the second very high.

1. 7/3
156

3*3
1 =

+
=cc

1
0

1

CMN

CDW

6

1

7

2 3

5

4

 13

2. 35/31
7

15/36
2 =

+
=cc

Density of this graph is low: 28/9

2

7

9
=

=t (the number of links divided to the number of all

possible links).

Now we’ll generalize the Example 3. Let’s assume that the number of triangles linked to the

middle node is k, then the number of nodes is N=2k+1. The number of connected triples linked to

the middle node is kk
kkN

−=
−

=

 −
22

2

)12(2

2

1
 and the number of possible links in the graph

is kk
kkN

+=
+

=

 22
2

2)12(

2
. So we can write:

1.
12

3

22

*3*3
21

+
=

−+
==

kkkk

k

N

N
cc

con

t

2.
14

124

12

)2/(21
2

22

2
−

+−
=

+

−+
== ∑

k

kk

k

kkkk
cc

N
cc

N

i

3.
12

3

2

3
2

max +
=

+
==

kkk

k

N

N
t l , where lN is the number of links and maxN is the number of

all possible links.

The larger k is, the higher the second clustering coefficient is, and the lower the first one is.

Example 4 (chain)

The graph here (Figure 9) has just one triangle and a long chain linked to that triangle.

Figure 9. Graph from the Example 4 (chain)

This graph has the both clustering coefficients low and the second is lower than the first one.

Density is also low.

1. 8/3
323

1*3
1 =

++
=cc

2. 3/1
7

3/12
2 =

+
=cc

1

2

3 4 7 5 6

 14

3. 4/1

2

7

7
=

=t

Now we’ll generalize the Example 4 as we did in the previous one. Let’s assume that the number

of nodes in the chain (node 4, node 5…) is k, then the number of nodes is N=3+k. The number of

possible links in the graph is
2

127

2

)4)(3(

2

2 ++
=

++
=

 kkkkN
. So we can write:

1.
4

3

1311

1*3*3
1

+
=

−+++
==

kkN

N
cc

con

t

2.
3

3/7

3

3/1111
2

+
=

+

++
== ∑

kk
cc

N
cc

N

i

3.
127

26
2

max ++

+
==

kk

k

N

N
t l

The larger k is, the lower both of the clustering coefficients are, but the second clustering

coefficient is lower than the first one (for all k > 0).

In these two examples from above we have two different cases: in the first case (Example 3) the

first clustering coefficient is lower than the second and in the other case (Example 4) the first

clustering coefficient is higher than the second one. The Figure 10 shows these cases. This

supports our assumption: that for large values of clustering, the first clustering coefficient will be

lower than the second one, and that the opposite will hold for the small values.

Figure 10. Correlation between clustering coefficients with the growth of nodes number. Blue- Example 3 and

red- Example 4

1
0

1

CMN

CDW

 15

Example 3 is much like the case when a few nodes have a large number of neighbors (high link

popularity) and a large number of nodes have a few neighbors (low link popularity). The Figure

11 shows how the number of nodes with a given link popularity depends on the link popularity.

Most of point in the Figure 6 which lie above the middle line are examples of such a graph. Such

(power-law) graphs can not be seen as a similarity graphs as well as the graph from Example 3.

Figure 11. Link popularity (axis) and the number of node (Nl) with such the Link popularity L

Both of the examples above are not typical similarity graphs (graphs with the large clustering

coefficient), because in the similarity graph the neighbors of the node (which are strongly linked

to the node) are supposed to be linked with each other (if the document is very like two other

documents then those are also like each other). But the second clustering coefficient of the

Example 3 tells that this graph has high clustering coefficient and that’s why it could be

evaluated like a good similarity graph. So we can not evaluate such a graph using the second

clustering coefficient.

In our case we are most interested in how the whole graph is linked and not how each node is

linked. That’s why we need to take the triangle as the unit of analysis, rather than the node. We

need to evaluate the percentage of triangles in the whole graph and not the percentage of

triangles linked to the node. Thus in this project we have chosen the first clustering coefficient of

the previous section as a basis for our new definition of clustering coefficient of the weighted

graph.

1
0

1

L

Nl

 16

2.2 Basic Retrieval

Now let’s discuss some basic of the information retrieval to have some overview around the

main theme of this thesis.

The Information retrieval system consists of three main parts: IR (Information Retrieval) model,

the logical view of the documents and the user task [3]. IR model is the set of rules of how

documents should be chosen from the database based on the user’s query. Logical view of the

document is the way of how the document is represented in the system to provide retrieval. It can

be represented as a full text, with index terms (words that represents semantics of the document)

or with the full text and structure (chapters, paragraphs, etc.) In the case of index terms,

representation weights (numerical values) are usually used to identify the relevance of each

index term for information retrieval. Weight is associated with the pair (document, index term)

and qualifies the importance of the index term for describing the document semantic contents.

Users query is a set of index terms (words that are needed to be found in the document). Problem

here is that a lot of semantics in a document or user request is lost by replacing the text with

index terms.

There are three main IR models: Boolean, Vector and Probabilistic. This models uses index

terms documents representation for retrieval.

The most simple is the Boolean model. Weights for Index terms can be only 1 or 0. }{, 1,0i jw ∈ .

Queries are Boolean expressions of keywords.

For example,)11,0()0,1,0()1,1,1()0,1,1()0,0,1()(∨∨∨∨=¬∧∨= cab kkkq , where q- query and

, ,
a b c

k k k - keywords of the query. Figure 12 illustrates the sets of documents that contains

keywords and query result.

Figure 12. Three sets of the documents containing ak , bk and ck Index terms. With the blue color the query

)11,0()0,1,0()1,1,1()0,1,1()0,0,1()(∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨====¬¬¬¬∧∧∧∧∨∨∨∨==== cab kkkq is shown.

Documents are retrieved by counting the similarity between documents and user’s query. If

sim=1 between the document and the query then the document is relevant, if sim=0 then it is not

kb

Nl

ka

(1,0,0) (1,1,0)

(1,1,1)

(0,1,0)

(0,0,1)

(0,1,1)

 17

relevant. For each of the documents of the collection Index term vector is assigned. It has as

many dimensions as Index terms in the whole collection. Documents vector has 1 in the

dimensions of existing Index terms in it and 0 in all other dimensions. Similarly the query vector

is built up.

sim=1 if the document have 1 in all those dimensions where the query vector has.

sim=0 in all other cases.

In Vector model weights for each of index terms for each of the documents are assigned. These

weights are >= 0 and non-binary. Similarity is also non-binary in comparison with the Boolean

model and varies from 0 to 1. As in the Boolean model, vectors are assigned to the documents

and to the query. Similarity is calculated as the cosine of the angle between two vectors:
j

d

and q
r

.
,1 ,

2 2

, ,1 1

(,)

t

i qij i j

j
t t

j
i j i qi j

w wd q
sim d q

d q w w

=

= =

×•
= =

× ×

∑

∑ ∑

r r

r r , where ,
j

d q
r r

- norms, jiw , - weight of ik

index term in jd document and qiw , is the weight of ik index term in q. In Figure 13 similarity is

the cosine of θ.

Figure 13. sim(jd
r

,q)=cos(θ)

Thus we can rank all retrieved documents and can find those that are most similar to the query.

In the Probabilistic model similarity between the query and the vector is calculated with the help

of probabilities of relevance and non-relevance for each of retrieved documents. Weights for

index terms here are binary. }{, 1,0i jw ∈ }{, 1,0i qw ∈ .

If q is subset of index terms, R- set of relevant documents and R - set of non-relevant documents,

then similarity is calculated as follows.
()

(,)
()

j

j

j

P R d
sim d q

P R d
= , where ()jP R d - the probability

for the document
j

d to be relevant to the query q and ()
j

P R d is the probability for
j

d to be

θ

jd
r

q

 18

non-relevant. This can be transformed as follows.
)()(

)()(
),(

RPRdP

RPRdP
qdsim

j

j

j
×

×
= , where

)(RdP j
- the probability of randomly selecting the document jd from the set R of relevant

documents and P(R) is the probability that a document randomly selected from the collection is

relevant.)(RdP j and)(RP -analogous and complementary. This expression can be written for

the index terms as follows.
)())(())((

)())(())((
),(

11

11

RPRkPRkP

RPRkPRkP
qdsim

i

n

ii

n

i

i

n

ii

n

i

j
×∏×∏

×∏×∏
=

==

==
, where)(RkP i -

the probability that the index term ik exists in a document randomly selected from the set R,

)(RkP i - the probability that the index term ik is not found in the document jd and analogous

for)(RkP i and)(RkP i . n is the number of all index terms in the collection. Out from this the

key expression for ranking computation in the probabilistic model is

 −
+

−
××∑

=)(

)(1
log

)(1

)(
log~),(

1

,,
RkP

RkP

RkP

RkP
wwqdsim

i

i

i

i
n

i

jiqij . In this model documents can be

retrieved recursively. In the first iteration the following assumption is made:)(RkP i =0.5

and
N

n
RkP i =)(, where N is the total number of the documents in the collection. In the next

iteration out from the set of retrieved documents in the first iteration (V) and sub sets of V (iV)

consisting special index terms (ik) probability can be calculated as
1

5,0
)(

+

+
=

V

V
RkP i

i
 and

1

5,0
)(

+−

−
=

VN

Vn
RkP

i

i
.

If you compare these models, the most cleanly formalized and simple is the Boolean model, but

it could give bad recall or bad precision, because of it requires exact matching of query terms to

document terms. It doesn’t retrieve the documents which are partly appropriate to the query.

Thus this model is the weakest classic method.

The advantage of the probabilistic model is that documents are ranked in decreasing order of

their probability of being relevant, hence it is better than Boolean model because it provides

partial matches (with probability <1). Disadvantage is that this method does not take in account

the frequency of occurrence of the term in the document (binary weights). The solution to this

problem is to assign non binary weights to index terms which refer in addition to other terms

properties to their frequency of occurrence. This provides a vector model. Thus it also retrieves

 19

“partly relevant” documents. It seems that it outperforms both the Boolean and the probabilistic

model. Of course here the result depends on the weight calculating technique.

All the above methods are defined to find all the documents that could be relevant to the query.

But the number of such documents can be enormous, that’s why we need to rank them

afterwards.

2.3 Hyperlink analysis algorithms of ranking

The most well known methods of ranking are the hyperlink ranking algorithms. The explanation

about how does those algorithms work is given below.

First the common variables and constants for all of the hyperlink algorithms are defined [4].

In the beginning the hyperlink graph is constructed based on the set of Web pages. A node is

created for every Web page, and a directed edge is placed between two nodes if there is a

hyperlink between the corresponding Web pages (if there are multiple links between two pages,

only a single edge is placed). No self-loops are allowed. The problem is to assign the weight to

each of the nodes to represent its authority. These weights are used to rank the pages.

Let P be the set of nodes, and let N be the size of the set P. Let G = (P, E) denote the hyperlink

graph. The input to the link analysis algorithm is the matrix W of the graph G, where W[i, j] = 1

if there is a link from node i to node j , and zero otherwise. The output of the algorithm is an N-

dimensional (N-the number of the documents) vector a, where ia , the i-th coordinate of the

vector a, is the authority weight of node i in the graph.

Here are some other terms that are used in hyperlink analysis. For a node i B(i)={j:W[j,i]=1} is

the set of nodes that point to node i (Backwards links), and F(i)={j:W[i,j]=1} is the set of nodes

that are pointed to by node i (Forward links). Set A is used to denote the set of notes with non-

zero authority score, and H to denote the set of notes with non-zero hub score. The undirected

authority graph),(aa EAG = is the graph on the A, where we place an edge between two nodes i

and j, if ∅≠∩)()(jBiB . This graph is defined by the matrix WW
T (number of elements

in)()(jBiB ∩).

2.3.1 InDegree Algorithm

In this algorithm the popularity (authority) of a page is measured by the number of pages that

link to this page (link popularity). It ranks pages according to their in-degree in the graph G. That

is, for every node i,)(iBai = .

 20

2.3.2 PageRank Algorithm [5]

The main idea of this algorithm is that a good authority is one that is pointed to by many good

authorities. Not all links carry the same weight.

Brin and Page, the inventors of PageRank, began with a simple summation equation, The

PageRank authority weight i-th node, ia , is the sum of the authority weights of all nodes

pointing into i.

∑=
∈)()(iBj

j

i
jF

a
a , where)(jF is the number of forward links from node j. Notice that the

PageRank weight ja is tempered by the number of recommendations made by j ()(jF). The

problem is that the ja values, the weights of pages pointing to page i, are unknown. To resolve

this problem, Brin and Page used an iterative procedure.

In the beginning, all pages have equal weights (1/N). Next step is to compute ia using the above

equation. This is followed by calculating ja , etc.

Let)1(+k

ia be the weight of node i at iteration k+1. Then, ∑=
∈

+

)(

)1(

)(iBj

k

jk

i
jF

a
a and

PiNai ∈= ,/1)0(

This process is repeated until the PageRank weights will eventually converge to some final

stable values. Brin and Page use the notion of a random surfer. Imagine a web surfer who

randomly follows the hyperlink structure of the Web. If surfer spends a large proportion of his

time on a particular page, then this page is important.

Example 5

Figure 14 illustrates the directed graph of six Web pages and Table 1 shows the results of

iterations.

 21

Figure 14. Web page graph of six pages

Let M be a normalized form of the matrix W, where
)(iF

W
M

T

ijT

ij = and)(k
a
r

is the weights vector

(with components Nia
k

i ..1,)(∈) at the k-th iteration. Now ∑=
∈)()(iBj

j

i
jF

a
a equation can be

written as)()1(kTk
aMa
rr

=+ .

For the graph from Figure 14:

=

001000

2/102/1000

2/12/10000

03/1003/13/1

000000

0002/12/10

M

Here we can mention that the problem of finding the authority weights vector

()Naaaa ...21=
r

 is the problem of finding the eigenvector of the matrix TM , which

corresponds to the largest eigenvalue (1max =λ): aMa
T rr

=maxλ

Each of the iterations involves one vector-matrix multiplication, which generally requires

)(2NO computations. M is a very sparse matrix (a large proportion of its elements are 0) because

most web pages links to only a few of other pages. Sparse matrices are good for several reasons.

First, they require minimal storage, since sparse storage schemes, which store only the nonzero

elements of the matrix and their locations exist. Second, vector-matrix multiplication involving a

sparse matrix requires much less than the)(2NO computations. It requires)(NO (if the total

number of nonzero links is O(N)) The iterative process is a simple linear stationary process.

Iteration0 Iteration1 Iteration2 Rank at Itr.2

6/1)0(

1 =a 18/1)1(

1 =a 36/1)2(

1 =a 5

6/1)0(

2 =a 36/5)1(

2 =a 18/1)2(

2 =a 4

6/1)0(

3 =a 12/1)1(

3 =a 36/1)2(

3 =a 5

6/1)0(

4 =a 4/1)1(

4 =a 72/17)2(

4 =a 1

6/1)0(

5 =a 36/5)1(

5 =a 72/11)2(

5 =a 3

6/1)0(

6 =a 6/1)1(

6 =a 72/14)2(

6 =a 2

Table 1. Three iterations of weighting and rankling results

1 2

3

6 5

4

 22

There could be some problems with such method of weights calculation. For example, there is

the problem of rank sinks (dangling nodes). Sink is the situation when it is not possible to come

out of some part of the graph following the links. The random surfer gets caught whenever he

enters a dangling node (sink). Figure 15 shows the simple example of such situation.

Figure 15. Node three is a sink node.

In the graph from Figure 14 nodes with numbers four, five and six make also a sink. The

problem with sinks is that if you use)()1(kTk
aMa =+ equation for calculating the weights, then a

lot of nodes (those not in sinks) will have zero weight in the converged eigenvector.

To fix this, Brin and Page define their first adjustment, which we call the stochasticity adjustment.

They allow the “random Web surfer” to hop (again at random) from any page to any other, with

probability ε/N . Then the probability of following an out-link from j is))(1)(1(jFε− . In terms

of matrices, this amounts to adding an all-to-all ‘random surfer matrix’ (or ‘teleportation matrix’)

R̂ , and weighting the sum to retain probability conservation. The PageRank eigenvalue equation

then becomes ()aRMa T ˆ)1(εε +−= . The all-to-all matrix R̂ (with NRij 1ˆ =) makes the

effective network which is represented by the sum ()RM T ˆ)1(εε +− a single SCC (strongly

connected component—a graph for which all nodes are reachable from all other nodes). Hence

there are no sinks in this effective network, and thus no sink problem: all entries in a are positive

definite [6].

There is also a problem with cycles (an example is shown in Figure 16). The algorithm doesn’t

converge at all in this situation.

Here the node 1 only points to the node 2 and vice versa, creating an infinite loop or cycle.

Iterates in this situation will not converge no matter how long the process is run. The cyclic

graph has zero eigenvalue gaps (for example the graph in Figure 16 has eigenvalues ±1). However

a bigger graph can have cycles (and usually does), but still converge. What is needed is that the

1

2 3

1 2

Figure 16. Cycle

 23

cycle lengths have a greatest common factor 1. An example of such a graph is shown in Figure

17.

Figure 17. Graph with cycles which will converge

These problems are solved by Brin and Page by modification of)()1(kTk
aMa =+ equation

according to the Markov theory. This equation looks like the power method (the method of

finding the eigenvalue and eigenvector of matrix) applied to a Markov chain (the process in which

the further step is not dependent on the previous, there can be different further steps which have

different probability to happen) with transition probability matrix TM . Nodes with no forward

links, create 0 rows in the matrix. All the other rows create stochastic rows (a right stochastic

matrix is a square matrix each of whose rows consists of nonnegative real numbers with each

row summing to 1 [7]). Thus, TM is called sub stochastic.

With Markov theory we can make adjustments to)()1(kTk
aMa =+ equation by modifying TM

matrix that insure convergence properties, because for any starting vector, the power method

applied to a Markov matrix P converges to a unique positive vector called the stationary vector as

long as P is aperiodic.

2.3.3 HITS (Hyperlink Induced Topic Distillation) Algorithm

The rule in HITS algorithm is that a good authority is one that is pointed to by many good hubs.

In this algorithm a two-level weight propagation scheme is proposed. Every page has two

identities: hub and an authority weights. Hub weight is the sum of the authority weights of the

nodes that are pointed to by the hub (quality of the page as a pointer to useful resources,) and the

authority weight is the sum of the hub weights that point to this authority.

The following iterative algorithm is used for computing the hub and authority weights. First all

authority and hub weights are set to 1. In subsequent iterations, the authority weights are

updated, and then the hub weights are updated. After each iteration a normalization step is

applied, so that the vectors become unit vectors in some norm. The algorithm iterates until the

vectors converge.

2

4

1

7 8

5 6

3

 24

Let h denote the N-dimensional vector of the hub weights, where ih , the i-th coordinate of vector

h, is the hub weight of node i. ia is correspondingly the N-dimensional vector of the authority

weights.

Algorithm:

Repeat until the weight converges.

For Hi ∈ ; ∑=
∈)(

/1
iFj

jhi ach

For Ai ∈ ; ∑=
∈)(

/1
iBj

jai hca

Normalize

hc and ac are undetermined constants (are chosen in the manner to give a vector of unit length

as a result) without which a consistent solution is in general impossible. If this process converge

we’ll get those vectors of hubs and of authorities as eigenvector equation:

hWWcchWcWcaWch
T

ha

T

ahh ***)*/(1**/1**/1**/1 ===

aWWccaWcWchWca
T

hah

T

a

T

a ***)*/(1**/1**/1**/1 ===

From these two equation we can see that h and a are eigenvectors of matrices T
WWH = and

WWA
T= , which are symmetric.

2.3.4 Salsa (Stochastic Approach for Link-Structure Analysis) Algorithm

This algorithm combines ideas from both HITS and PageRank. Here hub and authority scores are

taken from HITS, and normalization (hence stochastic) from PageRank. The Salsa algorithm

performs a random walk, alternating between the hub and authority directions. The random walk

starts from some authority node selected uniformly at random, then it proceeds by alternating

between backward and forward steps. When at a node on the authority direction the algorithm

selects one of the incoming links uniformly at random and moves to a hub node. When at a node

on the hub direction, the algorithm selects one of the outgoing links uniformly at random and

moves to an authority. The authority weights are defined to be the stationary distribution of this

random walk. Formally, the Markov Chain of the random walk has transition probabilities.

In this algorithm a and h are eigenvectors of matrices norm

T
WMA = and T

norm MWH = , were the

matrix normW is row normalized matrix W (
)(

,
iB

W
W

ij

normij =)

 25

3 State of the art. Existing definitions of clustering

coefficient for the weighted graph

Here some existing definitions of the clustering coefficient of the weighted graph are reviewed.

All of these definitions are based on the second definition for the unweighted graph introduced in

the introduction [see p. 9] (one node clustering).

First some terms useful for the following definitions are introduced.

For each graph the adjacency matrix A can be associated, whose elements ija take the value 1 if

an edge connects nodes i and j and 0 otherwise (i,j= 1,2,…,N, where N is the number of nodes in

the graph).

The strength of the node i: is is the sum of weights of all the links linked to the node i (Link

popularity): ∑
∈

=
)(iGj

iji ws , where G(i) is the neighborhood of the node i. Degree ik of the node i is

the number of links that are linked to this node.

Then the first definition of the clustering coefficient [8] for the node is

∑ ∈
+

−
=

hj

w

jhihij

ihij

ii

w
caaa

ww

ks
ic

,

11]1;0[,
2

)(

)1(

1
)(. Here we take into account weights of only

two edges linked to the node i (ijw and ihw). We have a normalization factor)1(−ii ks which

ensures that 1)(0 1 ≤≤ icw and that)(1 icw recovers the topological clustering coefficient in the

case Njiconstwij ,...,2,1,; == .Thus this definition combines both topological properties and

weights distribution. But this definition considers only two of the three weights of triangles of

the node.

Another definition [9] is ∑ ∈
−

=
hj

w

jhihij

ii

w
cwww

kk
ic

,

2

3/1

2]1;0[,)~,~,~(
)1(

1
)(, max/~ www ijij = , where

maxw is the maximum weight over the whole graph. This definition also fulfils the requirement of

being the topological clustering coefficient in the binary case.

One more definition is [10]]1;0[,)(3

,

,

3 ∈=
∑
∑

w

hj ihij

hj jhihijw
c

pp

ppp
ic , where ijp is a kind of probability

that the weight is like 1:
minmax

min

ww

ww
p

ij

ij
−

−
= , which is the linear normalization of weight:

]1;0[∈p . It can be also used as]1;0[,
ˆˆ

ˆˆˆ
)(3

,

,

3 ∈=
∑
∑

w

hj ihij

hj jhihijw
c

ww

www
ic , were max/ˆ www ijij = This

 26

clustering coefficient is the average number of triangles divided by the average number of the

connected triples.

The last clustering coefficient, introduced by Holme is defined as
∑

∑
=

hj ihij

hj jhihijw

www

www
ic

,max

,

4)(.

Table 2 shows the properties of all coefficients above [11].

Feature wc1 wc2 w
c3 wc4

Recovering of the topological clustering coefficient in the binary case X X X

1)(0 ≤≤ ic
w X X X

Uses global maxw in normalization X X X

Takes into account all weights in triangle X X

Invariant to weight permutation for one triangle X

Takes into account weights of edges not participating in any triangle X X X

Table 2. Comparison of different clustering coefficients

All of the weighted clustering coefficients except the fourth will be like the clustering coefficient

for an unweighted graph (
)1(

2
)(

−
=

ii

i

kk

t
ic , where it is the number of triangles connected to the

node i). The last coefficient will be like
2

2
)(

i

i

k

t
ic = which comes to be like the unweighted

clustering coefficient only when 1>>ik .

1)(0 ≤≤ ic
w is true for all weighted coefficients except wc4 which never reaches unity for the

reason mentioned above. Let us consider the limiting values in more detail. For all coefficients,

0=w
c signifies the absence of triangles. A necessary condition for 11 =wc , 12 =wc and 13 =w

c

is that edges exist between all neighbours of vertex i. However, each coefficient sets a different

requirement for the weights. When 11 =wc is irrespective of edge weights. Contrary to this,

12 =wc requires that the weights of all edges maxwww jkij == , all weights in each triangle are

equal to the maximum weight in the network. Finally, 13 =w
c if each “outer” edge maxww jk = ,

irrespective of the weights ijw of edges that are connected to the node i.

Global maxw is used in normalization in all versions except wc1 , where only the local strength is

matters. This particular choice means that within the same network, two vertices whose

neighborhood topology and relative weight configuration are similar can have the same values of

 27

wc1 even if all the weights in the neighborhood of one vertex are small and those in the

neighborhood of the other are large.

Weights of all edges of triangles in which i participates are taken into account in wc2 and wc4

definitions. However, wc1 takes into account only the weights of the edges connected to i. If the

clustering coefficient for the unweighted graph of the same topology is like 1 (1=c) and all

weights of the graph (kjjkw ≠,) are equal, then w
c3 is insensitive to the weights ijw .

Invariance to permutation of weights within a single triangle is only present in wc2 , showing that

it deals with the triangles as an entity.

Weights of edges not participating in triangles are taken into account in all definitions except wc2 ,

where such edges only enter through the vertex degree k.

All the above differences are shown in Table 3.

 28

The node wc1 wc2 w
c3

1 ≈0 1

1 ≈0 ≈0

1 ≈0 1

1 ≈0 ≈0

≈1/2 1/3 ≈1

≈0 ≈0 ≈0

1/3 ≈0 1/3

≈1/2 ≈0 ≈0

Table 3. Values of the weighted clustering coefficients for different weight configurations when vertex i (solid

circle) participates in a single triangle. maxw is considered to be unity (1). Here ----are links with weights <<1

and ___are links with weights=1

Table 3 displays the value of the clustering coefficient for a vertex participating in one triangle

with varying weight configurations, including vanishingly small weights (maxw is considered to

be unity). wc4 is omitted as it is closely related to w
c3 but is normalized in a way which can be

viewed as incorrect. Next, we compare the behavior of the different coefficients in two different

empirical networks [11].

First network is the International Trade Network (ITN). The ITN is constructed from trade

records between the world’s countries during the year 2000, such that vertices denote countries,

edges trade relationships, and edge weights trade volumes. The weights are calculated using the

dollar volumes of exports and imports between countries (ijexp -export value from i to j and

ijimp - import value from i to j). We have chosen the edge weights ijw as a measure of the total

trade volume such that)exp(exp*2/1 jiijjiijij impimpw +++= . The network constructed in this

 29

manner has N = 187 countries connected with E = 10252 edges, i.e., it has a relatively high edge

density of 52 %.

Figure 18. Clustering coefficients computed for the international trade network (ITN) as function of vertex

strength s: unweighted c (black �) and weighted wc1 (red ◦), wc2 (green����), and wc3 (blue ∆).

Figure 18 shows the different weighted clustering coefficients as function of vertex strength s.

The unweighted clustering coefficient c is also displayed. Due to the large number of edges, c

remains high for all s. For low s, wc1 follows c very closely, whereas for high values of s, wc1 gets

values somewhat higher than c, which can be attributed to high-trade-volume countries engaging

in mutual high-volume trade. This effect is far more pronounced in wc2 , which displays a power-

law like increasing trend βscw ∝2 with β ≈ 0.4, spanning several decades. w
c3 is seen to remain

rather insensitive to the weights. Note that the overall level of wc2 and w
c3 is much lower than that

of c and wc2 due to weight normalization by the global maxw and to a broad distribution of weights.

The next example is Scientific Collaboration Network (SCN): The SCN is constructed from

scientists who have jointly authored manuscripts submitted to the condensed matter physics e-

print archive (http://www.arxiv.org) from 1995 to 2005. In this network, vertices correspond to

scientists and edges to co-authorships of papers. The edge weights have been defined such that

∑ −=
p pjpipij nw)1/()(δδ , where the index p runs over all the papers, 1=ipδ if scientist i is an

author of paper p and 0 otherwise, and pn is the number of authors of paper p. This network has

N = 40422 nodes and an average degree of k ≈ 8.7.

 30

Figure 19. Clustering coefficients computed for the scientific collaboration network (SCN) as function of

vertex degree k: unweighted c (black �) and weighted wc1 (red ◦), wc2 (green����), and wc3 (blue ∆). The lower

panel displays the ratio of the weighted coefficients to the unweighted c.

Figure 19 displays different clustering coefficients as a function of degree (upper panel) as well

as the ratio of the weighted clustering coefficients to the unweighted coefficient (lower panel).

wc1 remains rather close to c for k < 10 but for k > 10 their ratio is somewhat increased, indicating

that the weights of edges that do not participate in triangles are relatively low and/or the weights

of edges participating in several triangles are relatively high. In contrast, the shape of wc2 differs

from c for k < 10. The ratio is the largest for low-degree vertices, becoming approximately

constant at k ≈ 10. A possible reason for this is that young scientists (e.g. graduate students) tend

to participate in repeated collaborations involving a relatively small number of authors, giving

rise to high intensity triangles. w
c3 appears to capture the low-k behavior of wc2 as well as the high-

k-behavior of wc1 .

It is clear from the above considerations that there is no ultimate formulation for a weighted

clustering coefficient. Instead, we have seen that the different definitions capture different

aspects of the problem at hand. For unweighted networks, it is straightforward to measure how

many edges out of possible ones exist in the neighborhood of a vertex; yet the questions of how

to measure the amount of weight located in this neighbourhood and what to compare this with,

are far from obvious. In a way, wc1 and wc2 can be seen as limiting cases: wc1 compares the weights

associated with triangles to the average weight of edges connected to the focal vertex, while wc2

disregards the strength of the focal node and measures triangle weights only in relation to the

maximum edge weight in the network. w
c3 can be viewed as an interpolation between these two,

albeit being a somewhat uncontrollable one as is evident from the examples in Table 3. Given

these observations, we feel that there is no single general-purpose measure for characterizing

clustering in weighted complex networks.

 31

4 Clustering of the weighted graph and replacing of the

eigenvector with the Link popularity

4.1 The main idea

The assumption here is that if the similarity graph is highly clustered than we can use the link

popularity vector (LP) for ranking of results and not the eigenvector. In the other words, if the

node of the similarity graph has a high eigenvector centrality (EVC) than it also has a high L

(link popularity).

The point here is that the similarity graph is a good clustered graph. As discussed before, the

clustering coefficient [see p. 9] measures how well nodes in the graph are linked with another.

Good clustering for the graph means that if the node is linked to two other nodes than there is a

large probability that those two are also linked. It should be true for the similarity graph because

it is obvious that if a document is very like two other documents then those two are like each

other.

We should remember that the above discussion is true for the links that have high link strengths.

Because we have a similarity graph here, if the node is strongly linked with the two other nodes

than those two are with high probability strongly linked with each other.

EVC of the node in its turn is high if the node is well connected to the nodes which are well

connected. High L of the node means that the node is good connected to its neighbors. But thus

if we have high clustering of the graph then if the node is well connected to its neighbors, the

nodes of its neighborhood are also well connected (because there is a large probability that

every pair of nodes of the neighborhood are linked). And the well connected neighborhood of the

well connected node means the high EVC. And opposite: if the node has a high EVC that means

first of all that this node has a good connected neighborhood. Thus, by high clustering, the

neighbors of the node’s neighbors are also neighbors of the node. Out from this we have a high

Link popularity of the node.

This point is tested in the further section [see p. 41].

The main problem here is to measure the clustering coefficient of the weighted graph. We

discussed the two different definitions of the clustering coefficient for the unweighted graph and

some definitions of clustering coefficient for the weighted graph. Those weighted clustering

coefficients are not able to measure clustering characteristics taking an account both topology

and weights of links in the graph, and thus we need to invent a new definition (definitions) of

clustering coefficient for the weighted graph which should have the same properties as those for

the unweighted graph.

 32

4.2 Clustering coefficient for the weighted graph

The clustering coefficient for the weighted graph is defined here based on the first definition [the

reasons are given on p. 11] of the clustering coefficient for an unweighted graph:

]1,0[,
*3

∈= cc
N

N
cc

con

t .

Here we make two different definitions but the first of those is used afterwards only for

similarity graph structure analyzing.

The first definition is the same as that one for the non weighted graph but for the reduced graph.

First all weak links are removed and after that the clustering coefficient is calculated as if there

are weights “1” on the strong links:]1,0[;...2,1,;
*3

∈=>= ccNjitw
N

N
cc ij

con

t

t . Here t is a

parameter which varies from 0 to 1.

The next definition is much more useful and it uses products of weights in triangles and

connected triples. If ∑
∆

••= acbcab wwwP1 is the sum of triangle products over the whole graph,

where a, b and c are nodes of the same triangle and acbcab www ,, are the corresponding link

weights, and if ∑
Λ

•= BCAB wwP2 is the sum of connected triple products over the whole graph,

where A, B and C are nodes of the same connected triple and BCAB ww , are the corresponding

link weights, then the clustering coefficient is defined as
2

1

*

*3

Pw

P
ccw = , where w is the average

weight over all links in the graph:
link

N

i

N

ij

ij

N

w

w

∑∑
= +=

=
1 1

 , with linkN - the number of the non zero links

in the graph.

From this definition we can confirm that this clustering coefficient doesn’t vary from 0 to 1 as it

was for an unweighted graph. It varies from 0 to ∞ .

Example 6

For example, if we have a graph which has only one triangle and the long chain of nodes linked

to this triangle, and links of triangle has the largest weight (1), other links are very weak (has

weight 10 <<< ε), for example, 310−=ε and the number of links with the weight ε is large, for

example, 810=εN , than clustering coefficient will be around 30. Figure 20 shows such a graph.

 33

Figure 20. Example graph

For this graph 11 =P , 2

2)1(23 εε ε −++= NP and
ε

ε ε

N

N
w

+

+
=

3

3
 . Then we can write that

91,29
1,00003,0

3

1010*3

3

)3(

3

))1(23(
3

3

3
132

1

1
2

=
+

=
+

=
+

 →

−++
+

+
=

−−

<<

>>
εε

εε
ε

εε

ε

ε

ε

ε
ε N

N
N

N
cc Nw

4.3 Evaluation of the clustering coefficient

How we can evaluate our new definition of the clustering coefficient [p. 32]? If we assume that

the clustering coefficient is high for the similarity graph, then we can calculate our coefficient

for that graph and check if it is high. But how shall we know if it is high? We need something to

compare with. We can calculate the same clustering coefficient for the graph with same

topology, but with the random weights on the links (random graph), which should have the

clustering coefficient much lower than the similarity graph. We can also compare our coefficient

for the similarity graph with the coefficient for the graph with the same topology, but all the

links weights like “1” (corresponding coefficient for unweighted graph) We suppose that the

clustering coefficient for the unweighted graph is also lower than the one for the similarity

graph, and clustering coefficients for the random and non weighted graphs are almost like each

other. Figure 21 shows the example of the graphs.

Figure 21. a)- similarity graph, b)- random graph and c)- non weighted graph.

1

2

3 4 … N

1 1

1

ε ε ε

1

2

5 8

4

0.67 0.70

0.73 0.05

6

0.80 7

a)

2

5 8

4

0.60 0.01

0.20 0.45

6

1
7

b)

2

5 8

4

1 1

1 1

6

1
7

c)

1 1

 34

Now we’ll try to confirm the above assumption—that clustering coefficients for random (ccr)

and non weighted (cc1) graphs are almost like each other.

First let’s take a look at the random graph. The average weight of all the links of such a graph is

5,0=w . Then we can show that our clustering coefficient (ccw) for the graph with all links

weight equal to 0,5 is exactly equal to the clustering coefficient for an unweighted graph.

1
*3

5,0*5,05,0

5,0*5,0*5,0*3*3

)5.0(cc
N

N

www

www

ccw
BCAB

acbcab

====
Λ

∆

Λ

∆

Λ

∆

∑

∑

∑

∑

We can say that every random value of weight for ccr looks like niww ii ...2,1, =+= ε , were n

is the number of links and iε can be positive or negative with the same probability because of the

randomness. So the sum of all iε is almost ”0”: 0
1

≈∑
=

n

i

iε .Now we can write an expression for

the random clustering coefficient as

1
5,0*5,05,0

5,0*5,0*5,0*3

*

*3

)(*

)()(*3

))((

))()((*3

))((

))()((*3

2

3

5454

2

321313221321

23

5454

2

321313221

2

321

3

54

321

cc

ww

w

www

www

www

www

www

www

ccr

==

=≈

+++

+++++++

=

=
+++

+++++++

=

=
++

+++

=

∑

∑

∑

∑

∑ ∑∑

∑∑ ∑∑

∑

∑

∑

∑

Λ

∆

Λ

∆

Λ ΛΛ

∆∆ ∆∆

Λ

∆

Λ

∆

εεεε

εεεεεεεεεεεε

εεεε

εεεεεεεεεεεε

εε

εεε

Our testing results from the next chapter confirm that the above reasoning is correct.

 35

5 Testing and results

In this section the following will be tested:

1. New clustering coefficient for weighted graphs. Here we shall compare the result for

similarity graphs with results for graphs with the same structure, but with random

weights on the links, and with results for the unweighted graphs with the same structure.

2. If the Link Popularity for similarity graphs correlates with the EVC, and is this

correlation larger than for the random graphs.

5.1 Description of Clustering coefficient testing

Here we used two different data sets: one was taken from the Wikipedia free encyclopaedia, and

the other was just 10 similarity graphs built from hit lists which were obtained from search

engine results. MATLAB software was used to do all the calculations of clustering.

In the first case we took, from the similarity graph with 50000 nodes, 20 sub graphs which have

101 nodes each, and 95 sub graphs with 501 nodes each(with the help of MATLAB). For each of

these graphs we calculated three different clustering coefficients (ccw- clustering coefficient for

the similarity graph, cc1- clustering coefficient for the unweighted graph and ccr- clustering

coefficient for the random graph). The two tables of results for 101 nodes and for 501 nodes

graphs are shown in Appendix 1. The source code with some comments you can find in

Appendix 2. The Figure 22 and Figure 23 compare the clustering coefficients ccw, cc1 and ccr.

Here the results are sorted with respect to cc1.

Figure 22. Comparison of ccw (red _), cc1 (green --) and ccr (blue ..) for 101 nodes graphs from the Table 7.

 36

Figure 23. Comparison of ccw (red _), cc1 (green --) and ccr (blue ..) for 501 nodes graphs from the Table 8.

Our assumption made in the previous section is confirmed here: the average value for ccw for

both cases (101-node graphs and 501-node graphs) is lager than the average values for cc1 and

ccr. There are only 5 exceptions for 101-node graphs, and 7 exceptions for 501-node graphs,

which have ccw <cc1 or/and ccw<ccr. But as the Figure 24 and the Figure 25 shows all of those

exceptions are not good examples for the similarity graphs because they have a very low

clustering (small number of triangles in comparison with connected triples) and density. For

example, from Table 4 (calculation of the first definition of clustering coefficient of the previous

section (with threshold)) one can see that, in the comparison with the other graphs, those

exceptions have very low weights on the links. Table 4 shows the results for the first definition

clustering coefficient with different thresholds: from 0,1 to 0,9 for 101 nodes graphs. If we delete

all low-weighted links (with weights smaller than 0,1) and after that get these clustering

coefficient like ”0” it means that there are no links in triangles with weights large than 0,1- no

strong triangles, which is not possible in the good similarity graphs. Thus those graphs can’t be

evaluated as similarity graphs. Those graphs occur due to the problem of taking the random sub-

graphs from the good similarity graph.

 37

Figure 24. a)- graph from index[100;200]; b)- index [200;300]; c= index[400;500] and d)- index[700;800]

a) b)

c) d)

 38

Figure 25. a)- index[3500;4000]; b)- index[4000;4500]; c)- index[4500;5000]; d)- index[5000;5500]; e)-

index[6500;7000]; f)- index[28500;29000]; g)- index[34500;35000]

a)
b)

c)

e)

f) g)

d)

 39

cct(0,1) cct(0,2) cct(0,3) cct(0,4) cct(0,5) cct(0,6) cct(0,7) cct(0,8) cct(0,9) index

0,193548 0,5 0 0 0 0 0 0 0 [1;100]

0 0 0 0 0 0 0 0 0 [100;200]

0 0 0 0 0 0 0 0 0 [200;300]

0,315287 0,204545 0 0 0 0 0 0 0 [300;400]

0,148148 0,157895 0 0 0 0 0 0 0 [400;500]

0,228571 0,295775 0 0 0 0 0 0 0 [500;600]

0,3 0,545455 0 0 0 0 0 0 0 [600;700]

0 0 0 0 0 0 0 0 0 [700;800]

0,268293 0,4 0 0 0 0 0 0 0 [800;900]

0,256708 0,284314 0,275641 0,428571 0 0 0 0 0 [900;1000]

0,205298 0,207653 0,228311 0,176471 1 0 0 0 0 [1000;1100]

0,280936 0,326733 0,338983 0 0 0 0 0 0 [1100;1200]

0,399388 0,402921 0,41475 0,342268 0 0 0 0 0 [1200;1300]

0,157895 0,15808 0,16 0,095238 0 0 0 0 0 [1300;1400]

0,134328 0,145161 0,157895 0,230769 0,375 0 0 0 0 [1400;1500]

0,131474 0,121622 0,104478 0,098901 0,375 0 0 0 0 [1500;1600]

0,244514 0,303797 0,666667 0,75 0 0 0 0 0 [1600;1700]

0,22619 0,28125 0,375 0,75 1 1 1 1 1 [1700;1800]

0,24 0,214286 0 0 0 0 0 0 0 [1800;1900]

0,111111 0,096774 0,193548 0,2 0,333333 0,6 0 0 0 [1900;2000]

Table 4. The first definition for clustering coefficient.

For comparison, Figure 26 shows some of the better graphs with higher clustering. In this picture

you can see that the number of triangles in comparison with the number of connected triples is

larger than in the previous figures. But one must remember that it is not enough for high

clustering to have a large number of triangles. Those triangles should have the high weight also.

So such a graph as Figure 25 d) can be acceptable as a similarity graph if the link weights of the

“tails” are very small (which is not true in our case) and if the link weights of the triangles are

large.

Figure 26. a)- index[1900;2000] and b)- index[48500;49000]

a) b)

 40

Now let’s take a look at the 10 full similarity graphs (not slices from the large similarity graph as

in the previous testing example).

The results analogous to those from Table 8 and Table 9 are shown in Table 5.

N n t tw cc1 ccw ccr the query

288 41058 0,99347 0,096708 0,99929 5,808 0,9998 "belona"

487 117830 0,99565 0,16302 0,99926 2,0901 0,99927 "fotball"

479 114480 1 0,10056 1 1,7295 1 "fredrikstad"

466 105640 0,97502 0,087417 0,98745 3,3828 0,98733 "jens stoltenberg"

472 110100 0,99046 0,083118 0,99581 1,2381 0,99576 "mette marit"

406 82215 1 0,3065 1 1,5552 0,99985 "schibsted"

457 102860 0,98717 0,13778 0,99449 1,5656 0,9943 "selvangivelse"

493 121280 1 0,19707 1 1,1847 1,0001 "telenor"

457 102860 0,98717 0,13778 0,99449 1,5656 0,99465 "toyota"

424 89555 0,99865 0,11509 0,99903 1,4061 0,99918 "wikipedia"

Average 0,996982 2,15257 0,997024

Table 5. Clustering coefficient for fool similarity graphs

And the results like Figure 22 Figure 23 will be like those in Figure 27.

Figure 27. Comparison of ccw (red _), cc1 (green --) and ccr (blue ..) for 501 nodes graphs from the Table 5

Here we can see that the difference between average ccw and cc1/ccr is even larger than in the

previous testing, and also that ccw is always higher than cc1/ccr. So we believe that the

exceptions from the previous testing were due to the similarity test graphs being not good

enough (poorly focused). But why are the first and the fourth values of ccw in Table 5 so much

larger than “1”?

 41

Let’s make a histogram of links strength for all the graphs used in Table 5 (Appendix 3.

Histograms of link strengths for similarity graphs). Here we can see that the larger the difference

between high values of link strength and low values of link strength is, the higher ccw is. This is

analogous to the situation in Example 6, where we have 3 links with weight “1” and a large

number of links with weight 0.001.

If we now take a look at the histograms for some of those ‘slice’ graphs from the previous testing

(Appendix 4. Histograms for the ‘slice’ graphs.) we can note that, if the graph has a high ccw,

then it has a histogram like the three first ones in the Appendix 4: most of the links have some

special link strength. The explanation for this is that, if most of the link strengths are like each

other, then there is a large probability that the ccw is also large [from our definition on p. 32].

5.2 EVC and Link popularity correlation testing

For the first part of the testing we took the largest connected component for each of the 11

graphs (good similarity examples) and drew a scatter graph (Link popularity- x and EVC- y) for

both similarity and random graphs. A connected component of a graph is a subgraph in which

there is a path from every node to every other node.

Here we need to take the largest connected component (component with maximum number of

nodes) for every graph, because nodes of the other small components have a “0” EVC value.

Table 6 shows some results. The source code you can find in the Appendix 6.

In Table 6 the ccw of the component, the correlation coefficient between EVC and LP, and the

weighted and unweighted densities of the component are shown. Here the correlation coefficient

(Cor) of two vectors X and Y is calculated as

following:),(),(/),(),(YYCXXCYXCYXCor = ,)))(((*),(yx YXEYXC µµ −−= , E is the

expected value, and EXx =µ

 42

Index
N of the
component

ccw of the
component

Correlation
coefficient t tw

[500;600] 40 0,310115746 0,962296 0,091026 0,016227

[500;600]rand 40 0,227517651 0,928454 0,091026 0,046485

[700;800] 50 0,000393004 0,791615 0,044898 0,004653

[700;800]rand 50 0,029001219 0,507246 0,044898 0,022221

[1000;1100] 89 0,233880974 0,934325 0,067416 0,021048

[1000;1100]rand 89 0,214769852 0,914391 0,067416 0,034555

[1200;1300] 93 0,443101543 0,986663 0,122253 0,045135

[1200;1300]rand 93 0,392977451 0,980712 0,122253 0,063107

[1300;1400] 93 0,163231938 0,878905 0,04792 0,016194

[1300;1400]rand 93 0,114210458 0,822305 0,04792 0,023692

[1500;1600] 80 0,172180569 0,880754 0,038291 0,012217

[1500;1600]rand 80 0,106511738 0,773038 0,038291 0,017408

[1600;1700] 9 1,095762779 0,94615 0,277778 0,05125

[1600;1700]rand 9 0,439093782 0,852147 0,277778 0,128175

[2000;2500] 494 0,458717008 0,866009 0,025162 0,005001

[2000;2500]rand 494 0,182818871 0,829829 0,025162 0,012529

[6000;6500] 341 0,52998867 0,535485 0,009971 0,001707

[6000;6500]rand 341 0,125245006 0,61576 0,009971 0,004926

[7500;8000] 458 0,283769289 0,735926 0,010243 0,001088

[7500;8000]rand 458 0,111682506 0,706898 0,010243 0,004965

[8000;8500] 454 0,373868501 0,843412 0,010785 0,001357

[8000;8500]rand 454 0,138695349 0,773868 0,010785 0,005335

Table 6. Correlation between Link popularity and EVC

Here we can see that the most part of similarity graphs have larger clustering coefficient than

random graphs and larger correlation coefficient. There are only two exceptions here: one (blue)

with the ccw of the random graph large than ccw of the similarity graph (but the clustering

coefficient is so low that we can’t evaluate this graph as a similarity graph) and one (red) with

the correlation coefficient of the similarity graph lower than correlation coefficient for the

random graph (but here the both density values are very low, which is also not a good property

for the similarity graph). Further details are shown in Appendix 7. Correlations of LP and EVC.

If we make a scatter plot between EVC and LP for our 10 almost complete similarity graphs, we

get, for all of the random graphs (built with the same topology as the similarity graphs), the

correlation coefficient almost exactly “1” (Cor=0,9997). The correlation coefficients for

similarity graphs are also high, but lower than those for random graphs. The results are shown in

 43

Table 7. The scatter plot for a random graph is shown in Figure 28, and all of the scatter plots for

the similarity graphs can be found in Appendix 5..

Figure 28. Scatter plot of LP and EVC for the random graph buil on similarity graph of ”telenor” query

Our explanation of this result is as follows. If we have a large number of nodes, then the weight

distribution on the links will be almost normal The Link popularity for every node will then be

NNwLP *5.0* =≈ (for the Figure 28 5.246493*5.0 =≈LP); and as Figure 28 shows, LP

varies very little, in the interval (225; 265) (if you’ll compare with the same figure for the

similarity graph (Appendix 5) it varies in the interval (20; 180)). Because all the nodes have the

same distribution of the link weights connected to them, and the same number of links, the

equation ∑
≠

=
ij

ijj

new

i spp [see p. 7] will converge with only one iteration, and the EVC value will

be almost the same for all the nodes. This is shown in the Figure 28: EVC varies in the interval

(0,041; 0,048). In comparison, for the true similarity graphs EVC varies in the interval (0,01;

0,08) (Appendix 5). Thus ccw for the similarity graph in this case is always higher than ccw for

the random graph; but our assumption that the higher ccw always gives the higher correlation

coefficient between LP and EVC does not hold in this case.

 belona fotball fredrikstad
jens
stoltenberg

mette
marit schibsted selvangivelse telenor toyota wikipedia

C 0.9375 0.9914 0.9836 0.9078 0.9985 0.9788 0.9862 0.9988 0.9862 0.9898

Cr 0.9997 0.9996 0.9996 0.9997 0.9997 0.9996 0.9997 0.9997 0.9997 0.9997

Table 7. Correlation coefficients for similarity graphs of the different queries (belona), C- for the similarity

graphs and Cr- for the random graphs.

We can also mention that the scatter plots from Appendix 5 are related to the histograms from

Appendix 3. For example, those graphs that have two sets of link strengths (“belona”, “football”,

”jens stoltenberg”) have also two sets of Link popularity scores and EVC scores.

 44

6 Discussion and evaluation

In this work the new clustering coefficient for the weighted graph was invented. This coefficient

(ccw) shows how good clustered (good linked) the graph is. As the testing results of the previous

section show, this coefficient is good to use for evaluating weighted graphs because it is higher

for the real similarity graph than for the random (which we assume to be badly linked than the

similarity graph) and the unweighted graph of the same topology. But this coefficient doesn’t

have the property of the clustering coefficient for the unweighted of being always not higher than

“1” and not lower than ”0”. It varies from “0” to “ ∞ “. It seems also that the clustering

coefficient (ccw) gives information about the distribution of link weights. If the clustering

coefficient is close to “1” than there is more like normal distribution of weights (Appendix 3

(“mette marit”)), but if the clustering coefficient is significantly higher than “1” then there is a

large number of low weighted links and some high weighted links, but little or nothing in

between (Appendix 3 (“belona”)).

In the first testing case of the previous section we had that the correlation coefficient between the

eigenvector of the similarity graph and the link popularity vector of the graph was higher for the

similarity graphs than for random graphs. It was also true that the higher the clustering

coefficient is, the higher the correlation between LP and EVC is. But in the other testing case

(almost complete similarity graphs) this trend was opposite: the correlation coefficient between

LP and EVC was higher for the random (low clustering) graphs than for similarity (high

clustering) graphs. This was not expected; and we found that this correlation depends on the

density of the graph. (For complete random-weighted graphs, the EVC scores and the link

popularity scores are almost the same for every node (see p.41)). In the second testing case we

had link density almost like “1” in all of the graphs—so that these graphs were complete or

almost complete.

However, the correlation coefficient between the LP and EVC for the similarity graphs is high in

both testing cases, so as we supposed in chapter 1 (1.3 Problem specification) we can use the

Link Popularity vector instead of the eigenvector for ranking search results.

7 Conclusion and Future work

During this work, a clustering coefficient for weighted symmetric graphs was invented and

tested. It can be used in the future for evaluation of clustering in weighted graphs. But how the

coefficient depends on the distribution of weights, and which value of the clustering coefficient

is the “best” (shows the highest clustering of the graph) needs to be better defined.

 45

The LP (link popularity) vector can be used to rank the search results (using similarity graph)

instead of EVC (eigenvector) vector. But how the density of the graph affects this correlation

coefficient, and how the clustering coefficient is related to the correlation coefficient, are

questions for future work.

 References

[1] R. Baeza-Yates, G. Navarro. Text Searching: Theory and Practice. In: Formal Languages

and Applications, Berlin, Springer, pages 565-597 (2004)

[2] M. E. J. Newman. The structure and function of complex networks. In: SIAM Review,

Vol. 45, No. 2, pages 167-256 (2003)

[3] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval. ACM Press

Series/Addison Wesley, New York, (1999)

[4] A. Borodin, G. O. Roberts, J. S. Rosenthal, P. Tsaparas. Link analysis ranking:

Algorithms, theory and experiments. In: ACM Transactions on Internet Technology

(TOIT), Vol. 5, No. 1, pages 231 - 297 (2005)

[5] A. N. Langville, C. D. Meyer. Google’s PageRank and Beyond. The science of search

engine ranking. Award for Best Professional (AAP)/Scholarly Book in Computer &

Information Science. (2006)

[6] J. Bjelland, G. Canright, K. Engø-Monsen. Link analysis and Web search, Oslo, Telenor

R&I (2008)

[7] Wikipedia free encyclopaedia. http://en.wikipedia.org/wiki/Stochastic_matrix (2008)

[8] M. Barthelemy, A. Barrat, R. Pastor-Satorras, A. Vespignani. Characterization and

modelling of weighted networks. In: Phisica A 346, pages 34-43 (2005)

[9] J.-P. Onnela, J. Saramåki, J. Kertesz, K. Kaski. Intensity and coherence of motifs in

weighted complex networks. In: Phys. Rev. E 71 (2007)

[10] S. E. Ahnert, D. Garlaschelli, T. M. A. Fink, G. Caldarelli. An ensemble approach to the

analysis of weighted networks. In: Phys. Rev. E 76 (2007)

[11] J. Saramåki, M. Kivelå, J.-P. Onnela, K. Kaski, J. Kertesz. Generalizations of the

clustering coefficient to weighted complex networks. In: Phys. Rev. E 75 (2007)

[12] Library at

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=10922&obj

ectType=FILE (2008)

[13] Tulip hompage. http://tulip.labri.fr/ (2008)

 46

Appendix 1. Result tables for three clustering coefficients

(cc1, ccw and ccr)

In the tables N is the number of nodes in the graph, n is the number of links in the graph, t is the

density of the graph (which is
2/)1(−

=
NN

n
t), tw is the weighted density (

2/)1(

1

−
=

∑
=

NN

w

t

n

i

i

)

and index shows the numbers of nodes which were taken from the whole 50000 nodes graph.

Table 8. Clustering coefficient for 101 nodes graphs

N n t tw cc1 ccw ccr index

100 69 0,01395 0,00195 0,1472 0,4567 0,1284 [1;100]

101 55 0,0109 0,00155 0,0441 0,0032 0,0674 [100;200]

101 59 0,0117 0,00195 0,0723 0,0097 0,0184 [200;300]

101 112 0,0222 0,0032 0,2877 0,4839 0,2865 [300;400]

101 78 0,01545 0,0019 0,2163 0,2311 0,2436 [400;500]

101 89 0,0176 0,00275 0,2184 0,334 0,1983 [500;600]

101 54 0,0107 0,0016 0,2455 0,4199 0,3199 [600;700]

101 67 0,01325 0,0014 0,0763 0,0051 0,0763 [700;800]

101 80 0,01585 0,002 0,1809 0,4847 0,1567 [800;900]

101 204 0,0404 0,0117 0,2409 0,3707 0,2231 [900;1000]

101 265 0,0525 0,01605 0,2022 0,2345 0,1981 [1000;1100]

101 123 0,02435 0,0056 0,2042 0,451 0,2394 [1100;1200]

101 523 0,10355 0,03755 0,3954 0,4431 0,385 [1200;1300]

101 206 0,0408 0,00895 0,1503 0,1637 0,1395 [1300;1400]

101 85 0,01685 0,004 0,0795 0,3489 0,1169 [1400;1500]

101 124 0,02455 0,00685 0,1091 0,1723 0,1146 [1500;1600]

101 124 0,02455 0,00455 0,2077 0,4594 0,2187 [1600;1700]

101 123 0,02435 0,0053 0,1425 0,7969 0,1404 [1700;1800]

101 76 0,01505 0,0024 0,1458 0,2598 0,1607 [1800;1900]

101 104 0,0206 0,00455 0,1561 0,4833 0,1341 [1900;2000]

Average 0,17612 0,330595 0,1783

 47

N n t tw cc1 ccw ccr index

501 3065 0,02445 0,00555 0,1877 0,4587 0,1874 [2000;2500]

501 777 0,0062 0,00195 0,1744 0,1969 0,1814 [2500;3000]

501 686 0,00548 0,002584 0,14946 0,158765 0,154723 [3000;3500]

501 572 0,00457 0,002318 0,12082 0,087682 0,084218 [3500;4000]

501 529 0,00422 0,002686 0,1185 0,037947 0,118054 [4000;4500]

501 527 0,00421 0,003206 0,08511 0,022804 0,065669 [4500;5000]

501 894 0,00714 0,002249 0,19218 0,123907 0,19318 [5000;5500]

501 1074 0,00857 0,001852 0,14651 0,300957 0,139348 [5500;6000]

501 705 0,00563 0,001676 0,1382 0,165122 0,147377 [6000;6500]

501 524 0,00418 0,00318 0,11794 0,038495 0,126195 [6500;7000]

501 636 0,00508 0,001801 0,12377 0,200421 0,11033 [7000;7500]

501 1090 0,0087 0,001005 0,11904 0,319126 0,114721 [7500;8000]

501 1120 0,00894 0,001216 0,15544 0,350656 0,152527 [8000;8500]

501 904 0,00722 0,001369 0,14519 0,39172 0,133987 [8500;9000]

501 810 0,00647 0,001124 0,15784 0,304261 0,160854 [9000;9500]

501 801 0,0064 0,001165 0,15602 0,493368 0,166162 [9500;10000]

501 1179 0,00941 0,001126 0,17866 0,562911 0,17728 [10000;10500]

501 1067 0,00852 0,001218 0,15718 0,495992 0,152236 [10500;11000]

501 1274 0,01017 0,002001 0,17391 0,814473 0,184845 [11000;11500]

501 1063 0,00849 0,00116 0,13468 0,340036 0,131701 [11500;12000]

501 1125 0,00898 0,00169 0,18882 0,716779 0,174497 [12000;12500]

501 1207 0,00964 0,001725 0,16601 0,553342 0,160839 [12500;13000]

501 1051 0,00839 0,001173 0,15147 0,518364 0,137774 [13000;13500]

501 1159 0,00925 0,001833 0,15833 0,331788 0,156 [13500;14000]

501 1013 0,00809 0,001735 0,17002 0,406979 0,159665 [14000;14500]

501 1092 0,00872 0,001549 0,14707 0,801552 0,134988 [14500;15000]

501 971 0,00775 0,000985 0,15586 1,29571 0,156738 [15000;15500]

501 1051 0,00839 0,002468 0,13821 0,236818 0,145349 [15500;16000]

501 1124 0,00897 0,001388 0,16219 0,542103 0,158394 [16000;16500]

501 1131 0,00903 0,002479 0,19137 0,400309 0,196012 [16500;17000]

501 947 0,00756 0,001117 0,15 0,794527 0,149012 [17000;17500]

501 1220 0,00974 0,001763 0,15023 0,406813 0,148377 [17500;18000]

501 1212 0,00968 0,001821 0,12817 0,336995 0,123798 [18000;18500]

501 882 0,00704 0,001151 0,1423 0,638735 0,141008 [18500;19000]

501 1128 0,00901 0,001539 0,18856 0,592483 0,179411 [19000;19500]

501 971 0,00775 0,001103 0,14373 0,796134 0,144897 [19500;20000]

501 864 0,0069 0,001508 0,16114 0,823072 0,162207 [20000;20500]

501 965 0,0077 0,001389 0,15416 0,760639 0,158728 [20500;21000]

501 985 0,00786 0,001444 0,19987 0,702719 0,184956 [21000;21500]

501 1048 0,00837 0,00132 0,16376 0,474865 0,165303 [21500;22000]

501 963 0,00769 0,001694 0,13451 0,23656 0,136838 [22000;22500]

501 954 0,00762 0,001425 0,17492 0,499399 0,160631 [22500;23000]

501 974 0,00778 0,001435 0,20788 0,555642 0,190973 [23000;23500]

501 1135 0,00906 0,002672 0,221 0,381789 0,218923 [23500;24000]

501 960 0,00766 0,002164 0,24761 0,443693 0,237617 [24000;24500]

501 981 0,00783 0,002514 0,29669 0,405307 0,291925 [24500;25000]

501 1106 0,00883 0,002366 0,22168 0,483318 0,215775 [25000;25500]

501 1012 0,00808 0,001639 0,17511 0,313019 0,1737 [25500;26000]

501 1053 0,00841 0,001456 0,15195 0,559949 0,143513 [26000;26500]

501 1303 0,0104 0,002395 0,1685 0,426062 0,169681 [26500;27000]

501 1038 0,00829 0,002024 0,17713 0,331658 0,179077 [27000;27500]

501 1042 0,00832 0,002569 0,16318 0,226068 0,143864 [27500;28000]

 48

N n t tw cc1 ccw ccr index

501 1071 0,00855 0,002738 0,22016 0,366151 0,229161 [28000;28500]

501 653 0,00521 0,001987 0,1662 0,149186 0,159599 [28500;29000]

501 952 0,0076 0,001538 0,16884 0,482454 0,147109 [29000;29500]

501 1017 0,00812 0,001484 0,15947 0,560944 0,151692 [29500;30000]

501 1015 0,0081 0,001396 0,19615 0,525879 0,206249 [30000;30500]

501 971 0,00775 0,001467 0,20498 0,549256 0,199566 [30500;31000]

501 1057 0,00844 0,001218 0,16385 0,546128 0,162632 [31000;31500]

501 945 0,00754 0,001182 0,15184 0,607291 0,161003 [31500;32000]

501 701 0,0056 0,001854 0,156 0,322801 0,16631 [32000;32500]

501 839 0,0067 0,001396 0,1215 0,399616 0,114021 [32500;33000]

501 884 0,00706 0,001219 0,17968 0,705455 0,191614 [33000;33500]

501 1071 0,00855 0,001742 0,21443 0,48156 0,204559 [33500;34000]

501 1108 0,00885 0,001681 0,19586 0,639113 0,204419 [34000;34500]

501 681 0,00544 0,003489 0,10551 0,09374 0,093311 [34500;35000]

501 929 0,00742 0,001862 0,16281 0,593517 0,16301 [35000;35500]

501 772 0,00616 0,001455 0,18837 0,574518 0,18712 [35500;36000]

501 870 0,00695 0,001178 0,15279 0,757621 0,156489 [36000;36500]

501 919 0,00734 0,001324 0,16299 0,509101 0,191466 [36500;37000]

501 1093 0,00873 0,001574 0,15366 0,418827 0,139058 [37000;37500]

501 863 0,00689 0,002019 0,26795 0,549482 0,26346 [37500;38000]

501 1037 0,00828 0,001318 0,15064 0,564194 0,14786 [38000;38500]

501 954 0,00762 0,001556 0,1584 0,664596 0,154632 [38500;39000]

501 745 0,00595 0,002018 0,16508 0,282668 0,157175 [39000;39500]

501 912 0,00728 0,001167 0,18761 0,962863 0,19971 [39500;40000]

501 846 0,00675 0,001494 0,17783 0,605513 0,181785 [40000;40500]

501 820 0,00655 0,00138 0,17042 0,775921 0,161524 [40500;41000]

501 916 0,00731 0,001947 0,14809 0,363551 0,151156 [41000;41500]

501 946 0,00755 0,001113 0,14034 0,472739 0,122379 [41500;42000]

501 867 0,00692 0,000896 0,15184 0,617221 0,150279 [42000;42500]

501 1008 0,00805 0,000932 0,14481 0,609448 0,148538 [42500;43000]

501 1249 0,00997 0,001475 0,17211 0,519738 0,177122 [43000;43500]

501 844 0,00674 0,000886 0,1355 0,596559 0,14027 [43500;44000]

501 781 0,00624 0,001232 0,18281 0,763873 0,19394 [44000;44500]

501 873 0,00697 0,000944 0,16431 0,790968 0,1637 [44500;45000]

501 915 0,00731 0,001127 0,1863 1,053668 0,186993 [45000;45500]

501 1087 0,00868 0,003071 0,17788 0,45184 0,174185 [45500;46000]

501 795 0,00635 0,000999 0,15592 0,672109 0,150983 [46000;46500]

501 691 0,00552 0,000854 0,17302 0,614588 0,189682 [46500;47000]

501 989 0,0079 0,001521 0,16826 0,4561 0,166683 [47000;47500]

501 548 0,00438 0,002391 0,12232 0,136275 0,130124 [47500;48000]

501 639 0,0051 0,001321 0,1339 0,22064 0,130531 [48000;48500]

501 687 0,00549 0,000792 0,16135 1,105902 0,161391 [48500;49000]

501 798 0,00637 0,001114 0,16547 0,437163 0,172673 [49000;49500]

Average 0,16496 0,488718 0,16303

Table 9. Clustering coefficient for the 501 nodes graphs

 49

Appendix 2. Source MATLAB code for clustering coefficient

calculation

1) A few commands for taking the sub matrix of the matrix

load sim.mat %loading the large 50000 nodes matrix

mat=sim

sim1000_1100=mat(1000:1100,1000:1100)% taking the 100 nodes large sub matrix

save sim1000_1100.mat sim1000_1100 %saving the sub matrix to the mat file

2) The function for ccw, cct , cc1 and cct(tt) calculation

function [T] = clust_1(r,c,non,tt)%the function which returns the vector T
%whose elements are cc1, ccr and cct with the threshold like tt
%the input parameters are r-vector of row numbers of non zero element of
%the matrix, c-vector of column numbers of non zero element of the matrix
%and non- vector of non zero elements
n1=length(c);% the number of non zero elements
n2=n1-1;
trip=[0];%the vector of connected triples,
%each element is the product of the two weights of the links in the triple
triangles=[0];%the vector of the triangles
%each element is the product of three weights of the links in the triangle
k=1;
kt=1;
for i=1:n2 %for all the nodes
 i1=i+1;
 while (i1<=n1) && (c (i)==c(i1))% if nodes i and i1 are linked to the
 %same node
 non1=non (i)*non(i1);%then calculate the product of the link weights
 trip(k)=non1;% and add the triple to the triple vector
 for i2=1:n1 %check this triple if it is triangle
 x1=(c(i2)==r(i)) && (r(i2)==r(i1)); %if nodes i and i1 are linked
 t=false;
 if x1
 non2=non1*non(i2);% calculate the product of the three links
 non2=non2*10000000000;
 non2=round (non2);
 non2=non2/10000000000;
 i5=kt-1;
 if t==false
 triangles(kt)=non2;% add the triangle to triangle vector
 kt=kt+1;
 end
 end
 end
 k=k+1;
 i1=i1+1;
 end
end
n3=length(trip);% the number of connected triples
sumtr=0;
for i=1:n3
 sumtr=sumtr+trip(i);% sum of all the connected triples
end
n3=length(triangles);% the number of triangles
sumtriang=0;
for i=1:n3
 sumtriang=sumtriang+triangles(i);% sum of all the triangles
end

 50

s=0;
for i=1:n1
 s=s+non(i);
end
%trip
%sumtr
%triangles
%sumtriang
clustOnes=length(triangles)/length(trip);% calculating of cc1
s=s/n1;
clustW=sumtriang/(s*sumtr);% calculating of ccw
for i=1:n1% deleting of all the weights that are smaller than tt
 if non (i)<tt
 c(i)=0;
 r(i)=0;
 non(i)=0;
 end
end
cc=nonzeros(c);
rr=nonzeros(r);
nonn=nonzeros(non);
s1=0;
for i=1:length(nonn)
 s1=s1+nonn(i);
end
s1=s1/length(nonn);
for i=1:length(cc)
 FFmatT(rr(i),cc(i))=nonn(i);% forming the redused matrix
end
%FFmatT
%spy(FFmatT)
n1=length(cc);
n2=n1-1;
k=1;
kt=1;
sumtr1=0;
triangles1=[0];
for i=1:n2 % calculation of cct
 i1=i+1;
 while (i1<=n1) && (cc (i)==cc(i1))
 sumtr1=sumtr1+1;
 non1=nonn(i)*nonn(i1);
 for i2=1:n1
 x1=(cc(i2)==rr(i)) && (rr(i2)==rr(i1));
 t=false;
 if x1
 non2=non1*nonn(i2);
 non2=non2*10000000000;
 non2=round (non2);
 non2=non2/10000000000;
 i5=kt-1;
 if t==false
 triangles1(kt)=non2;
 kt=kt+1;
 end
 end
 end
 k=k+1;
 i1=i1+1;
 end
end
%sumtr1
sumtriang1=length(triangles1);
if sumtriang1==1 && triangles1(1)==0

 51

 sumtriang1=0;
end
%sumtriang1
clustT=sumtriang1/sumtr1;
T=[clustOnes clustW clustT]% resulting vector

3) The function which calls the previous function for both random and original graph and
calculates two densities.

function [r] = clustChek(mat,place,tt)% the function which calls the previous

function,
% for original and for random graphs, calculates also two densities,
% and writes the result to the xls file.
% mat-the sim. matrix, place- the coordinates in the xls file were to write
% and tt- threshold.
Fmat=spconvert (mat);% convert the matrix to the sparse form
[r1,c1,non1]=find(Fmat);%take column, row and value vectors of the non zero

elements
n=length(non1);
for i=1:length(non1)% make the random graph
 FmatR(r1(i),c1(i))=rand;
end
FmatR(n,n)=0;
FFmatR= (FmatR+FmatR');% make the random matrix symmetric
nonR=nonzeros(FFmatR);%take the vector of non zero elements from the random

graph
N=length(Fmat);%number of elements
n=length(non1)/2;%number of links
Nmax=N*(N-1)/2;%the maximum possible links
Tett=n/Nmax;% density
sW=0;
for i=1:length(non1)%sum all weights
 sW=sW+non1(i);
end
TettW=sW/(2*Nmax);%weighted density
T=clust_1(r1,c1,non1,tt);% call the previous function for original graph
cT=T(3);% read cct
T1=clust_1(r1,c1,nonR,tt);% call the previous function for the random graph
RR=T1(2);
Result=[N n Tett TettW T(1) T(2) RR cT];% make the vector of results
r=xlswrite('Result.xls', Result,'RR1',place);% write the result vector to the

file
end

4) The three commands for each mat file, which stores the matrix.

load sim22000_22500.mat; % read the matrix from the mat file
mat=sim22000_22500;% make the matrix variable mat
e=clust(mat,'A73',0.1);% call the previous function

 52

Appendix 3. Histograms of link strengths for similarity

graphs

 53

Appendix 4. Histograms for the ‘slice’ graphs.

ccw=1,29571 ccw=0,962863 ccw=1,053668

ccw=0,087682 ccw=0,165122 ccw=0,149186

Appendix 5. Scatter plots of LP and EVC for the similarity

graphs

 “belona” “fotball”

 “fredrikstad” “jens stoltenberg”

 56

“mette marit” “schibsted”

“selvangivelse” “telenor”

“toyota” “wikipedia”

 57

Appendix 6. Source code for LP and EVC calculation

function [LP,V,clustW,Cor,N,matrix,Tett,TettW,n]=comp(mat)%function that

%calculates Link popularity vector(LP), EVC(V) and correlation coefficient
%(Cor) between EVC and LP of the largest component of the matrix
Fmat=spconvert (mat);
n =length (Fmat);
[r1,c1,non1]=find(Fmat);
Fmat (n,n)=0;
FFmat= (Fmat+Fmat');
A=sparse(FFmat);
[scc scc_sizes]=components(A)[12];%find out the components, scc- vector
%of numbers of components (if the node i is in a component j then
%scc(i)==j) and scc_sizes- number of nodes in the component
max=1;
for i=1:length(scc_sizes)% find the largest component
 if scc_sizes(i)>max
 max=scc(i);
 end
end
nod=find(scc==max);%find the numbers of nodes of the largest component
clear matrix;
for i=1:length(nod)%make the similarity matrix of the component
 for j=1:length(nod)
 matrix(i,j)=FFmat(nod(i),nod(j))/2;
 end
end
[rr,cc,nonn]=find(matrix);
for i=1:length(nonn)% make the random component matrix
 matrixR(rr(i),cc(i))=rand;
end
[rr,cc,nonnR]=find(matrixR);
N=length(matrix);%number of nodes

n=length(nonn)/2;%number of the links
Nmax=N*(N-1)/2; %maximum possible links
Tett=n/Nmax;% density of the component
sW=0;
for i=1:n
 sW=sW+nonn(i);
end
TettW=sW/Nmax;% weighted density of the component
sWR=0;
for i=1:n
 sWR=sWR+nonnR(i);
end
TettWR=sWR/Nmax;% weighted density of the random component
clustW=clust_1LP(rr,cc,nonn)% clustering coefficient of the component
clustWR=clust_1LP(rr,cc,nonnR);%ccw of the random component
[LP,V]=LP_V(matrix);
[LPR,VR]=LP_V(matrixR);
V=abs(V);
scatter(LP,V);% make the graphical representation: x-LP, y-EVC
title('Original graph')
xlabel('Links Popularity');
ylabel('Eigen Vector');
Cor=corrcoef(LP,V)% correlation coefficient
CorR=corrcoef(LPR,VR);
end

Appendix 7. Correlations of LP and EVC for ‘slice’ graphs

Here we used Tulip software to get pictures of the graphs [13].
index N of component ccw of component correlation t tw n

[500;600] 40 0,310115746 0,962296 0,091026 0,016227 71

[500;600]rand 40 0,227517651 0,928454 0,091026 0,046485 71

 59

index N of component ccw of component correlation t tw n

[700;800] 50 0,000393004 0,791615 0,044898 0,004653 55

[700;800]rand 50 0,029001219 0,507246 0,044898 0,022221 55

 60

index N of component ccw of component correlation t tw n

[1000;1100] 89 0,233880974 0,934325 0,067416 0,021048 264

[1000;1100]rand 89 0,214769852 0,914391 0,067416 0,034555 264

 61

index N of component ccw of component correlation t tw n

[1200;1300] 93 0,443101543 0,986663 0,122253 0,045135 523

[1200;1300]rand 93 0,392977451 0,980712 0,122253 0,063107 523

 62

index N of component ccw of component correlation t tw n

[1300;1400] 93 0,163231938 0,878905 0,04792 0,016194 205

[1300;1400]rand 93 0,114210458 0,822305 0,04792 0,023692 205

 63

index N of component ccw of component correlation t tw n

[1500;1600] 80 0,172180569 0,880754 0,038291 0,012217 121

[1500;1600]rand 80 0,106511738 0,773038 0,038291 0,017408 121

 64

index N of component ccw of component correlation t tw n

[1600;1700] 9 1,095762779 0,94615 0,277778 0,05125 10

[1600;1700]rand 9 0,439093782 0,852147 0,277778 0,128175 10

 65

index N of component ccw of component correlation t tw n

[2000;2500] 494 0,458717008 0,866009 0,025162 0,005001 3064

[2000;2500]rand 494 0,182818871 0,829829 0,025162 0,012529 3064

 66

index N of component ccw of component correlation t tw n

[6000;6500] 341 0,52998867 0,535485 0,009971 0,001707 578

[6000;6500]rand 341 0,125245006 0,61576 0,009971 0,004926 578

 67

index N of component ccw of component correlation t tw n

[7500;8000] 458 0,283769289 0,735926 0,010243 0,001088 1072

[7500;8000]rand 458 0,111682506 0,706898 0,010243 0,004965 1072

 68

index N of component ccw of component correlation t tw n

[8000;8500] 454 0,373868501 0,843412 0,010785 0,001357 1109

[8000;8500]rand 454 0,138695349 0,773868 0,010785 0,005335 1109

 3

1

	Title Page
	Microsoft Word - Mast1.doc

