& NTNU

Innovation and Creativity

Implementing LOD for physically-based
real-time fire rendering

Lars Tangvald

Master of Science in Computer Science
Submission date: June 2007

Supervisor: Torbjgrn Hallgren, IDI
Co-supervisor: 0dd Erik Gundersen, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

Objective is to continue earlier work done on physically-based fire rendering by Samuel Grgdal
and Geir Storli in spring 2006.

Specific problems include:

1. Making the fire part of a large scene by including it in a scenegraph.

2. Implementing level of detail (LOD) for the fire to increase efficiency of rendering

3. Modify fire rendering to take advantage of new features found in Nvidia's Geforce 8 line.

4. Extensive testing of implemented methods to evaluate performance and possible
improvements.

Assignment given: 20. January 2007
Supervisor: Torbjgrn Hallgren, IDI

Abstract

In this paper, I present a framework for implementing level of detail (LOD)
for a 3d physically based fire rendering running on the GPU. While realistic
fire rendering that runs in real time exists, it is generally not used in real-time
applications such as game, due to the high cost of running such a rendering.
Most research into the rendering of fire is only concerned with the fire itself,
and not how it can best be included in larger scenes with a multitude of other
complex objects.

I present methods for increasing the efficiency of a physically based fire
rendering without harming its visual quality, by dynamically adjusting the
detail level of the fire according to its importance for the current view. I
adapt and use methods created both for LOD and for other areas to alter
the detail level of the visualization and simulation of a fire rendering. The
desired detail level is calculated by evaluating certain conditions such as
visibility and distance from the viewpoint, and then used to adjust the detail
level of the visualization and simulation of the fire.

The implementation of the framework could not be completed in time, but
a number of tests were run to determine the effect of the different methods
used. These results indicate that by making adjustments to the simulation
and visualization of the fire, large boosts in performance are gained without
significantly harming the visual quality of the fire rendering.

il

Preface

This is a master’s thesis for the Master of Science in Technology (Computer
Science) program at the Department of Computer and Information Science
(IDI). The thesis was written by Lars Tangvald during my 5th and final year
at the Norwegian University of Science and Technology (NTNU).

While working on this thesis I have, together with my supervisor Odd Erik
Gundersen, written and submitted a work-in-progress paper to Theory and
Practice of Computer Graphics 2007. The paper was accepted for presenta-
tion at the conference, and is appended at the end of this thesis.

I would like to extend a thanks to my supervisor Odd Erik Gundersen for
motivation, guidance and feedback.

il

v

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Goals and requirementso 2
1.3 Approach 3
1.4 Structure 4
1.5 Summary 5

2 Background 7
2.1 Computational fluid dynamics 8

2.1.1 Structure of CFD programs 8
2.1.2 Navier Stokes 9
2.2 Fire e 9
2.2.1 Different approaches to fire rendering 10
2.2.2 Storli and Rgdal’s approach to fire rendering 11
2.3 Application performance 13
2.3.1 Performance factors 14
232 LOD 17
2.3.3 Application areas of LOD 20
2.4 Graphics processing unit 21
2.4.1 Architecture oL 21
2.4.2 Vertexshader 22
24.3 Geometry shader Lo 23
24.4 Fragment shader L. 23
2.4.5 Unified shader architecture 24
24.6 GPU programming 24

vi CONTENTS

3 Previous Work 27
3.1 LOD conditions 27
3.2 Dynamics LOD 30

3.2.1 Simulation simplification 30
322 Viewculling oo 30
33 GPULOD 32
3.4 Particle systems LOD00 32
3.5 Other LOD methods 33
3.5.1 Image filtering 33
3.5.2 Simplification of polygonal geometry 35
3.5.3 Billboarding oo 36

4 LOD for fire rendered on the GPU 37
4.1 Overviewo 37
4.2 Fire rendering considerations 38

421 Overal LOD 38
4.2.2 Visualization 39
4.2.3 Simulation oo 39
4.2.4 GPU considerations 39
4.3 Overall LOD calculation 40
4.3.1 LOD conditions 40
4.3.2 Viewculling oL 42
4.4 Visualization LOD 00000 43
4.4.1 Particle clustering oL 43
4.4.2 Altering particle count and size 44
4.4.3 Altering particle textures 45
4.4.4 Altering the dynamic lighting system 45
445 Viewculling oo 45
4.5 Simulation LOD oo 46
4.5.1 Altering CFD grid resolution 46
4.5.2 Simplification of simulation calculations 47
453 Viewculling oo 48
4.6 Conclusion 48
4.6.1 Overal LOD 48
4.6.2 Visualization, 49
4.6.3 Simulation oL 51

4.7 Summary ... 52

CONTENTS

5 Implementation
5.1 Overall structure
5.2 Program flow oo
5.2.1 General functionality
5.2.2 LOD operations,
5.2.3 Simulation LOD 0000
5.2.4 Visualization LOD
6 Results
6.1 Validity of results o
6.2 Results.
6.2.1 Impact of running the LOD algorithm
6.2.2 Multiple fire objects
6.2.3 Visualization and simulation detail levels
6.2.4 Texture disabling
6.2.5 Viewculling
6.2.6 Simulation step skipping
6.3 Summary
7 Discussion
7.1 General
7.2 Evaluation
7.3 Conclusion
7.4 Contributions
7.5 Futurework

A Result tables

B Theory and Practice of Computer Graphics 2007 paper

vii

55
95
99
99
60
62
64

67
68
68
68
70
71
73
75
76
7

79
79
80
82
83
84

93

viii CONTENTS

List of Figures

1.1

2.1
2.2
2.3

2.4
2.5

3.1
3.2

4.1

4.2
4.3

5.1
5.2
5.3
5.4
5.9

6.1
6.2
6.3
6.4
6.5
6.6

Examples of fire rendering in games. 2

Physically based fire rendering by Samuel Rgdal and Geir Storli. 12

Visualization of fire simulations from [KESRO6]. 13
Polygonal model of a monkey displayed at two different detail

levels. o 19
Geforce 6 architecture oL 22
Geforce 8 architecture oL 23
Fountain particle system with SLOD implemented. 33
Image filtering used for zooming. 35

[ustrating the difficulty in predicting future states of a fire

rendering. Lo 43
[lustration of how the overall LOD is calculated. 50
How grid resizing is performed. 52
Application hierarchy. 58
General functionality of the application. 60
LOD operations on fire objects. 61
Pseudo code for simulation LOD. 63
Pseudo code for visualization LOD. 65
Position of fire for performance tests. 67
Exampled of resized texture slice. 70
Screen shot of three fires running simultaneously. 71
Screen shots of fire using different grid sizes. 72
[lustration of varying particle count. 73
Fire particles rendered without textures. 74

1X

LIST OF FIGURES

List of Tables

6.1

6.2
6.3
6.4
6.5
6.6
6.7

Al

A2
A3
A4
A5

Performance impact of running the resize algorithm for differ-
ent grid resolutions.
Performance with multiple fire objects rendered.
Performance results for different grid sizes and particle counts.
Performance impact of disabling particle textures.
Performance impact of culling of fire components.
Frame rate impact of view culling when fire is outside view.
Performance impact of using simulation step skipping..

Performance impact of running combined portions of the LOD

algorithm. L
Performance impact of running the overall LOD calculations. .
Performance impact of running the visibility evaluation.
Performance impact of calculating the step skipping.
Performance impact of altering particle count.

X1

93
93
93

94

X1l

LIST OF TABLES

Chapter 1

Introduction

As computer hardware becomes more powerful, graphical applications such
as games become more and more advanced, becoming increasingly detailed
and realistic in their portrayal of virtual worlds. An important element in
making a virtual environment seem realistic is the incorporation of natu-
ral phenomena such as realistic lighting, water and fire. However, while
the detail level of lighting and water in real-time applications has increased
radically in recent years, the quality of fire has not. Fire is still mostly
rendered using static animations or simplistic particle systems, which is be-
coming increasingly contrasted with the quality of other natural phenomena.
A possible reason for this is that running a more realistic fire rendering is
costly compared to the increase in visual quality gained. Realistic rendering
of fire requires considerable resources, making it unsuitable for inclusion in
a scene with numerous other objects that may also require considerable re-
sources. The focus of this thesis is to create a fire rendering that minimizes
the resource usage when the fire is not the dominating object in the view.

1.1 Motivation

While numerous physically based fire renderings have been presented in re-
cent years | [il |, realistic fire has yet to be seen in real-time
graphical applications that contain complete virtual environments. As work
on producing fast and realistic fire has been focused only on the fire itself and
not on making it part of a larger scene, including such fire in an application
would have a severe impact on the application’s performance. Thus the most

2 CHAPTER 1. INTRODUCTION

obvious use of virtual environments, games, still only use simplistic fire ren-
dering such as static animations and simplistic particle systems. Examples
of fire in games can be seen in Figure 1.1.

Figure 1.1: Fire rendering in games. Left: F.E.A.R.™Middle: Thief: Deadly
Shadows™Right: TES: Oblivion™

This thesis is based on my work from the fall 2006 project ” Level of Detail
for Physically Based Fire Simulation” and the 2006 Thesis ” Physically Based
Simulation and Visualization of Fire in Real-Time using the GPU” [[KESR00]
by Knut Erik Samuel Rgdal and Geir Storli. In the fall 2006 project I pre-
sented a method for implementing level of detail for a 2D physically based
fire rendering also presented by Rgdal and Storli. The method was used in
simple tests, which indicated that it could give good results, but was not
implemented for a real fire rendering. I wish to implement the method for a
full fire rendering running on the GPU to verify the validity of the results. I
also wish to expand the method from two to three dimensions, and create an
implementation for cutting edge graphics hardware to get the best results.
The 3D fire rendering presented in [[KESROG] and [SRO6] will be used as a
basis. Additionally, I wish to explore the possibilities offered by Nvidia’s
newest graphics chip, the G80, to further improve the fire rendering.

1.2 (oals and requirements
The main objective is to present a method for making a physically based

fire rendering running on the GPU more efficient by adding dynamic level of
detail (LOD) to it. The dynamic LOD should continuously alter the detail

1.3. APPROACH 3

level of the fire according to its importance in the current view, thus increas-
ing efficiency without hurting visual quality when the fire is not important to
the current view. A framework will be constructed which combines the phys-
ically based fire rendering with the LOD method to allow the fire rendering
to be rendered in a scene with other complex objects. The requirements used
to evaluate the framework are outlined below.

R1: The framework should allow a 3D physically based fire rendering
to run in real time.

R2: The framework should allow the fire rendering to be contained in
a scene that also contains numerous other complex objects.

R3: The framework should allow several fire renderings to exist in the
same scene, each with individual detail levels.

R4: The framework should allow the fire simulation to be run at vary-
ing detail levels to increase either performance or quality as needed.

R5: The framework should allow the fire visualization to run at varying
detail levels to increase either performance or quality as needed.

R6: The framework should dynamically alter the detail level of the fire
to conserve resources while giving the greatest possible quality when
the fire dominates the view.

R7: The framework should, as far as is possible, run on the GPU.

The success of the method will be evaluated based on how well the framework
satisfies these requirements.

1.3 Approach

My approach for this thesis is outlined below.

I will examine subjects relevant for implementing LOD for a GPU-
based 3D rendering of Fire. The subjects include general background
information concerning LOD, architecture of GPU chipsets, GPU pro-
gramming, methods for rendering fire on the GPU, and a look at which
factors affect the performance of an application running on the GPU.

4 CHAPTER 1. INTRODUCTION

I will examine previous work done with LOD. I will examine methods
that may be used or adapted for use with fire rendering, as well as
methods for dynamically adapting the detail level of particle systems,
dynamics systems, and GPU programs.

e [will propose different methods for implementing LOD for a 3D ren-
dering of fire running on a GPU. Different methods will be presented
for the visualization and simulation of the rendering. The advantages
and disadvantages of each method will be evaluated, and a subset of
the methods will be chosen for implementation.

e [will implement the chosen methods for a 3D fire rendering running on
a GPU. The implementation will focus on allowing multiple fire objects
with individual simulations, visualizations, and detail levels, as well as
allowing an arbitrary number of other objects.

o [will run a set of tests designed to evaluate the implementation’s im-
pact on performance and visual quality.

e [will evaluate the implementation, based on the results from testing.
I will also present possibilities for future improvements of the LOD
application.

Each item in this list will be presented in a separate chapter of the report.

1.4 Structure

The report consists of the chapters described below.

1. Introduction: Describes the motivation and objectives for the thesis,
how the problem will be approached, and the overall structure of the
report.

2. Background: Examines subjects relevant for the thesis. Gives an in-
troduction to GPU-based fire rendering, application performance, GPU
architecture and programming, fluid dynamics, and LOD.

3. Previous work: Examines previous work done with LOD, with a
focus on methods that may be used or adapted for a GPU-based ren-
dering of fire.

1.5. SUMMARY d

4. LOD for fire rendered on the GPU: Presents different possibilities
for implementing LOD for a GPU-based fire rendering. Evaluates the
advantages and disadvantages of each methods, and selects a subset for
implementation.

5. Implementation: Describes the implementation of the chosen solu-
tion.

6. Results: Shows results attained from testing of the implementation.

7. Discussion: Evaluates the results of the implementation and makes a
conclusion based on the evaluation. Discusses possible improvements
and future work.

The background and previous work chapters (Chapter 2 and 3) are revised
and expanded versions of the background and previous work chapters from
the 2006 fall project report. The biggest changes for this thesis are moving
the method from 2d to 3d and from the CPU to the GPU.

1.5 Summary

Fire in real-time applications such as computer games has seen few real
advancements in recent years compared to other natural phenomena such
as water. I attempt to address this issue by implementing a dynamically
changing level of detail in order to allow for a realistic fire rendering while
minimizing the resource usage when the fire is not important for the view. I
look at different methods that can be used or adapted for this purpose, and
create an implementation running on a modern GPU. A set of requirements
are presented and will be used to evaluate the results of the implementation.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

Numerous fields are related to fire rendering, GPU programming and LOD.
To understand fire rendering it is necessary to understand the concept of
computational fluid dynamics (CFD), which is the basis for the simulation
portion of a physically based fire rendering. There are also different ways to
perform both the simulation and visualization of fire.

Performing the fire rendering on a graphics processing unit (GPU) is a
possible method for increasing the speed of the rendering while making the
CPU free to perform other tasks. The inherent parallelism of GPU archi-
tecture can also lead to significant efficiency increases for suitable problems.
Writing code for a GPU can be quite different from writing code for a CPU,
but there are analogies that can be drawn between regular programming re-
sources and those of a GPU. These analogies can be exploited in order to
move problems far outside the field of graphics over to a GPU with good
results.

Finally, a brief introduction of level of detail (LOD) is given. To optimize
the performance of a graphical program it is important to know what factors
play a role in the performance. Such factors can be graphical, in terms
of what we see on the monitor, or they could be computations that are
performed behind the scenes. Once these factors are known and understood,
it becomes possible to find the best way to alter the detail level of a scene in
order to get the optimal relationship between performance and quality.

7

8 CHAPTER 2. BACKGROUND

2.1 Computational fluid dynamics

The field of computational fluid dynamics (CFD) is dedicated to using com-
puter calculations to solve fluid dynamics problems [|. Originating in
the 1960s, the field has become increasingly popular as the processing power
of computer hardware increases. More powerful hardware allows for simu-
lating more detailed models. A CFD program consists of three main parts:
pre-processing, solver, and post-processing. The Navier-Stokes equations are
most commonly used when implementing a CFD program.

2.1.1 Structure of CFD programs

A CFD program consists of three main parts: pre-processing, solver, and
post-processing. The three parts are fairly independent in that changing one
part does not affect the others. The most common way of structuring the
program is outlined here:

The pre-processing portion of the program uses the program input to
define the problem in a way the solver can understand. The general steps of
doing this are outlined below.

e Defining the computational domain.

e Forming a grid of discrete cells from the domain.

e Choosing which phenomena to include in the simulation.

e Defining the properties of the fluid.

e Specifying boundary conditions.

The solver takes the output of the pre-processing step as input, and uses it
to produce a solution by the steps outlined below.

e Approximating unknown flow variables.
e Discretizing by using the approximations in the fluid equations.

e Solving the equations.

2.2. FIRE 9

Solving may be handled in a number of different ways, but the most com-
mon method today is the finite volume method]| |. Finally, the post-
processing step consists of analysis and evaluation of the results from the
solver. Post-processing often includes some form of visualization, from sim-
ple graphs to the detailed visualizations used for realistic fire rendering.

2.1.2 Navier Stokes

The Navier-Stokes equations describe the motion of liquids and gases |]
The Navier-Stokes equations can be used for a variety of different purposes,
such as aerodynamics, fluid flow and semiconductors. The governing prin-
ciple of the equations is conservation of momentum. Rather than model
values such as pressure and velocity, the Navier-Stokes equations model the
flux of these values. Directly solving these equations will usually be far too
time-consuming to be practical or even possible. Therefore, simplifications
are usually made by disregarding certain fluid properties such as viscosity,
using numerical approximations, and using simplified models corresponding
to fluid behavior found by empirical study. The Navier-Stokes equations for
incompressible fluids are shown in Equation 2.1.

Du 1 9

Dr = prJruV u+F (2.1)
Equation 2.1 describes the velocity field of the fluid, governing the motion
of density through the fluid. The density p of the fluid describes how much
fluid is contained in a volume unit. The viscosity p describes how thick the
fluid is. The pressure p describes with how much force the fluid is compacted
at a certain point. The velocity vector u describes in what direction and how
fast the fluid is flowing at a certain point. F describes what external forces
are applied to the fluid at a point or the fluid system as a whole.

2.2 Fire

Modeling of fire is modeling of gases. When fire is ignited, there is a chemical
reaction between oxygen in the air and the fuel source, creating heat | -
The characteristic glow we associate with fire is the result of heat radiation
from the gases of the fire system. As the particles of the gas cool down, they
become smoke.

10 CHAPTER 2. BACKGROUND

A physically based fire rendering is a fire rendering which is based on
the physical characteristics of fire, rather than simply being something that
looks superficially similar. The type of fire rendering considered here has a
separate simulation and visualization part, so the simulation is independent
of the visualization and vice versa. Both the simulation and visualization
can be done in a number of different ways. A brief description of some of the
different methods is given before a more indepth presentation of the approach
done in |].

2.2.1 Different approaches to fire rendering

An important factor in fire rendering is the requirements in terms of perfor-
mance and accuracy. Whether or not the fire needs to render in real time
determines what sort of simplifications and models are used. Running the
rendering on a GPU may improve performance, but not to a degree where a
fully realistic rendering can be run in real time on current hardware. Different
methods give different results in terms of performance and accuracy.

Fire simulation

The simulation of the fire is the computations concerning the motion of
the fire, whether through calculating the speed and direction of particles
or calculating the values of a velocity or temperature field. One way of
simulating the fire is to not really simulate it, but simply use a motion model
which appears similar to that of real fire. Using a model is a cheap way
to get a fire that appears to behave accurately. Fractal perturbations may
be used to emulate the turbulent behavior of fire, but the fire would not be
realistic physically, and it is very difficult to include variations such as wind
and obstacles | |. A slightly more accurate model would be the use of
predefined velocity fields, made to be similar to real fire | |. However, the
conditions and parameters of a fire can have a large impact, and seemingly
insignificant changes can drastically alter the results, making this approach
inaccurate unless all the fires modeled are very similar. A more accurate
approach is to use CFD simulations | |. The fluid dynamics are then
calculated continually so the fire develops in a more realistic manner, with
the possibility to adjusting the accuracy and performance by using models
at low levels.

2.2. FIRE 11

Fire visualization

The visualization of the fire is what directly affects the view of the scene.
In addition to the appearance of the fire itself, effects the fire has on the
environment such as lighting are part of the fire visualization. One way of
visualizing the fire itself is by using a particle system | Il |. If the
particles are simple points, this approach requires a huge number of particles
to give a good result, preventing real time rendering. Instead, primitives are
rendered with a texture and blended together, requiring fewer particles to
avoid gaps in the fire |]. The downside to using textured primitives
is that with larger primitives the clean lines and contours of a real fire are
lost, while with smaller primitives more are required, decreasing performance.
Another approach to the visualization is to use volume rendering, visualizing
the volume of the fire instead of many small particles contained in the volume.
Different approaches to volume rendering exist, including mesh rendering
[], ray casting | |, and texture splatting |].

2.2.2 Storli and Rgdal’s approach to fire rendering

The focus of this thesis is the fire rendering presented in []. In their
thesis, Samuel Rgdal and Geir Storli created a fire rendering that includes
many important features such as wind, smoke and dynamic lighting. Their
fire rendering does not match real fire visually, but has very good performance
and good physical and visual accuracy. Some example screenshots of the fire
rendering can be seen in Figure 2.1

Fire simulation

The fire simulation is done by using a CFD implementation with a stable fluid
solver presented in | |. The most important simplifications made are that
the fluid is incompressible and has zero viscosity. An incompressible fluid
does not expand or contract, while zero viscosity means it has no resistance
against motion. While these assumptions make the equations much easier
to solve, there is an added problem in that the expansion of hot gases is an
important aspect of real fire. To compensate for this problem, expansion is
emulated by adding more fluid to the expanding area.

Turbulence is included to create the chaotic behavior characteristic of fire,
with vorticity confinement| | used to emphasize turbulence. A global

12 CHAPTER 2. BACKGROUND

Figure 2.1: Physically based fire rendering by Samuel Rgdal and Geir Storli.

wind field is used to give the effects of wind, but also to make the fire react
accurately when the fire is moved. The smoke from the fire is modeled
together with the fire itself, as the smoke is simply cooled exhaust gases.
The fire is simulated either in 3D or 2D. When simulated in 2D, a slice sys-
tem is used to expand the result to 3D. By simulating two or more slices, the
results can be interpolated out to fill the 3D volume. But while this increases
performance while still giving a good visual result in general, it becomes im-
possible to accurately include the effects of wind on the fire [[{IZSRO6].

Fire visualization

Rgdal and Storli implemented three different ways to visualize the fire, out-
lined below.

1. Black-body radiation: Uses the density and temperature fields to
give a color value for each cell in the grid. Only used in the two-
dimensional fire rendering, but looks highly realistic.

2. Particle system: Uses a system of textured particles. Each particle
is a quadratic polygon rotated to face the camera and textured with
a predefined texture. The color and opacity of a particle is decided
by the fire heat at the particle’s location in the grid. At all times
there is a predefined number of particles in the fire. Each particle is
spawned around the base of the fire and travels through the velocity
field of the fluid, constantly changing its color and opacity. When

2.3. APPLICATION PERFORMANCE 13

a particle’s opacity drops beneath a certain threshold, it is removed
from the system and respawned at the base of the fire. The smoke is
visualized in the same way, albeit with fewer and larger particles with
their own predefined texture.

3. Volume rendering: Uses a technique known as ray marching. For
each pixel, a ray is calculated from the pixel position toward the fire.
Rays crossing the fire’s bounding box are given color from the grid
cells they pass through. However, the performance is worse than for
the particle system, and the visual results are not convincing.

Examples of the three visualization methods can be seen in Figure 2.2. Rgdal
and Storli also included dynamic lighting in their fire rendering. Having the
fire light up the environment is an important aspect of making it appear real-
istic. The lighting effect is created by having stationary or moving dynamic
lights inside the fire volume. The intensity of each light is varied accord-
ing to the heat at the light’s position. This lights up the environment, and
the varying intensity of each light produces the characteristic flickering effect
common to real flame.

Figure 2.2: Visualization of fire simulations from [I[XESRO6]. Left: Two-
dimensional Black-body radiation. Middle: Three-dimensional particle sys-
tem. Right: Three-dimensional volume rendering.

2.3 Application performance

The processing power required to render a scene depends on the complexity
of the objects to be rendered. Simple objects with few details are less com-

14 CHAPTER 2. BACKGROUND

putationally demanding than complex objects. However, when an object is
far away, or barely visible, it becomes difficult to notice the difference be-
tween simple and complex objects of similar shapes. The idea behind LOD
is to take advantage of this similarity by reducing the detail of objects that
are considered to be less important based on such things as size on screen,
distance from camera, motion, and so on |]. Reducing the detail level
of less important objects increases the efficiency of a program relative to the
perceived detail the user experiences.

2.3.1 Performance factors

Different components of an application affect the performance in different
ways. In order to increase the efficiency of a program it is important to
determine which factors affect the performance most, and which of these
factors can be safely reduced when the object is not important for the overall
appearance of the view. The two different types of factors are considered,
analogous with the fire rendering described earlier. Simulation factors are
not directly related to the appearance of an object, but include such things
as object dynamics and artificial intelligence (Al). Visualization factors are
directly related to the appearance of the object and include such things as
texturing and lighting.

Simulation

The simulation portion of an application consists of all the processes not
directly related to the visual result. Simulation may cover different aspects
of a scene, from physics calculations to procedural animation | . Two
of the most important simulation factors can be said to be Al and physics:

e AI: Determines the behavior of actors based on certain rules and the
current state of the application. The complexity of Al calculations may
vary greatly, from a moving paddle in Pong' to the behavior of human
characters in a detailed simulation of crowd behavior|]. AI has
become increasingly complex in recent years, with game developers in
particular attempting to create the most lifelike adversaries possible,
from first-person shooting games to turn-based strategy games.

Thttp://www.pong-story.com

2.3. APPLICATION PERFORMANCE 15

e Physics: has always been very important for certain application
types. In the oil industry, the accuracy of a simulation result may
decide whether a venture results in a huge profit or staggering loss. In
construction, physical simulations are used to determine the strength
of materials needed for a certain structure. For a real-time application
the desire for accurate physics must be weighed against the need for
speed. However, as processing power increases, the accuracy of physics
also increases, resulting in games with physics that appear to be highly
realistic, and even fairly realistic fire rendering that runs in real time.

The impact of these factors run the gamut from insignificant to dominating,
but play an important role in modern applications. The simulation portion
of a common application typically runs on a general CPU rather than spe-
cialized hardware. As general hardware is slower for most any task than
hardware specifically designed for the task would be, simulations lose some
performance compared to tasks that run on specialized hardware. This is
changing, however. With ways being found for simulation code to make use
of the advantages of GPU chipsets, such as greatly increased parallelism. Ad-
ditionally, specialized hardware is starting to appear for physics processing?.

Visualization

The visualization portion of an application consists of displaying the current
state of the application in some manner for the user. This visualization does
not strictly have to be very visual (sound is another example), but the visual
portion is the focus here. A typical visualization may include several factors
as outlined below.

e Geometry: There are a number of different ways to represent geom-
etry visually. In older games, geometry was usually represented with
two-dimensional sprites; simple images, possibly with several images to
represent the object seen from different angles. 2d sprites is a fast but
visually unconvincing way to visualize an object (though still some-
times used for certain objects such as fire in a game). Another way is
to use volume rendering. An object is seen as a collection of cells, each
having color and opacity values. The object is rendered either by some
form of ray tracing, combining the values of each cell corresponding to a

http://www.ageia.com/

16

CHAPTER 2. BACKGROUND

pixel on the monitor, or by extracting a surface from the object |].
Volume rendering is seldom used in games, but is more common in sci-
entific applications, as it gives a good representation of the content
of the object and not just its shape. The most common rendering
method for real time applications is polygonal rendering. The surface
of an object is approximated by a series of small patches, commonly
triangular or quadratic. The accuracy of the representation depends on
the number of polygons used. Modern GPU chipsets are optimized for
polygonal rendering, making polygons a fast method which dominates
real time graphical applications such as games.

Textures: Texturing is a way to increase the apparent detail level
of an object without increasing geometry complexity. A texture may
include information about color, materials, surface direction and more.
Using textures, a flat polygon may appear to have a large amount of
detail. While textures increase the calculation complexity of a scene, it
is vastly faster than trying to visualize the same detail level using only
geometry. A brick wall rendered using only geometry would require
a very large number of polygons for every brick in the wall. Using
textures, the same wall could be rendered using only a single textured

polygon.

Lighting: Lighting is a very important factor in making a scene appear
realistic. The lighting model used has a large impact on the appear-
ance and complexity of a scene. A simple lighting model might simply
calculate the lighting for a point based on the direction of the surface
compared to the direction of the light, whereas more complex models
might include the effects of light bouncing off objects or the tracing
of light rays as they pass through and bounce off different surfaces.
The latter two, known respectively as radiosity|] and ray tracing
[|, are very costly to calculate, and typically not used in real time
applications.

Resolution: The resolution of different aspects of the scene may have
a large impact on performance. The resolution of the entire scene
decides how many pixels need to have their color calculated. Low
resolutions are faster to render, but the result looks more blocky. The
colors of each pixel is a sample from the application scene. When the
number of samples is low, the discrete nature of each pixel becomes

2.3. APPLICATION PERFORMANCE 17

more apparent. This effect of distortion due to a low sample count is
known as aliasing. The effect of aliasing may be reduced with a number
of different techniques, but this increases calculation complexity. In
addition to the resolution of the view frame, the resolution of texture
images or grids used for volumetric calculations have much the same
effect, with greater resolutions giving more accurate results at the cost
of increased calculation complexity.

These factors can complement each other in terms of complexity and
realism in different ways; more detailed texturing may reduce the need for
detailed geometry, but at lower resolutions it is harder to see fine detail in
objects, so their detail level does not have to be as high.

2.3.2 LOD

For any given view of a scene with many different objects in it, it is likely that
some objects are more important for the appearance of the scene than others.
Objects that are closer to the camera appear larger than those further away,
and it is harder to discern fine detail on the objects far from the camera.
The basic premise being LOD is to take advantage of the fact that when an
object is far away or obscured in some way, a less complex object will have
the same appearance to the viewer while requiring less processing power to
render | |. By replacing the objects that are less important to the view
with less detailed versions of themselves, the performance of the application
can be improved with little or no impact on the visual quality of the scene.

LOD in graphics

The goal of using LOD for graphical objects is to adjust the detail level of
less important objects to reduce the complexity of a scene while retaining
their overall appearance. LOD for graphical objects is generally divided in
three separate methods, as outlined below | -

e Discrete: When or before the program is initialized, several versions
of an object are created. Each version of the object has a different
detail level, such as different number of polygons for a geometric object.
When the scene is rendered, the application chooses one version of
the object depending on how important it is for the current view. If
the object is of little importance, a version with a low detail level is

18 CHAPTER 2. BACKGROUND

chosen, and so on. Discrete LOD is easy to implement and fast, but
since each version is stored separately, more storage space is required.
Also, when an object transitions from one detail level to another it can
be noticeable, leading to a jarring popping effect. Additionally, if an
object is very large rendering the entire object at a single detail level
may give poor results, since one part of the object may be important
for the view, while another is relatively insignificant. An example of a
polygonal model displayed at two different detail levels can be seen in
Figure 2.3°.

e Continuous: Only stores a single version of the object. Changes in
detail level are applied dynamically during run-time. A suitable detail
level is chosen based on the object’s importance. The structure of the
object is then changed according to some predefined methods. This
will usually give much smoother transitions than with discrete LOD,
as the transition steps can be as small as desired. Continuous LOD is
slower, however, and like discrete LOD uses a single detail level for the
entire object, no matter how large an area it spans.

e View-dependent: Approaches the problem in a different way, by
only considering the view from the camera. The scene is then altered
by reducing detail levels as much as possible while preserving the ap-
pearance from the camera. A sphere, for instance, might be changed so
that the front and back are simplified greatly, while the profile from the
camera’s point of view is largely unaltered. Unlike discrete and con-
tinuous LOD, view-dependent LOD is not restricted to a single detail
level for a single object, making it more suitable for large objects such
as terrain. View-dependent LOD requires significantly more processing
power than discrete or continuous, but can give much better results,
especially for objects spanning large areas.

LOD for dynamic systems

LOD is not restricted to visualization. LOD can also be applied to dynamic
systems | |. Calculations can be performed with varying degrees of accu-
racy, with less accurate calculations used when an object is less important for
the current view. There is an additional consideration that needs to be made,

3Model is taken from the modeling program Blender (http://www.blender3d.org).

2.3. APPLICATION PERFORMANCE 19

Figure 2.3: Polygonal model of a monkey displayed at two different detail
levels.

however. In visualization, the detail level of the current frame only affects
the current frame. For a dynamic system, however, simplifications made to
the current frame may affect future frames as well. When a simplification is
used, it introduces an inaccuracy in the result. This result will generally be
used for the calculations in the following frames, and if the following frames
also uses simplified calculations the inaccuracy will be increased with each
step, potentially producing a very different final result from what is correct.

This may not be as large a problem as it seems, though. The main
concern for most real-time applications is how the user perceives the result,
and not how accurate the result actually is [CheO1]. Therefore, flaws in the
calculations are generally acceptable, as long as the user does not notice that
they are flawed.

Another problem which does not exist for visualization is what to do
when a moving object is not visible at all. Consider a ball that is thrown in
the air. If the viewer turns away from the ball, the application should use as
few resources as possible to calculate the motion of the air, since that motion
won’t be visible. However, the ball must continue moving so that when the
viewer turns back to look at it, it appears to have followed its trajectory
correctly. If the ball is still hanging in the same position as when the viewer
turned away it will ruin the illusion of accuracy. Approximating the position
of the ball when the viewer turns back is therefore important to maintain
the illusion while reducing calculation complexity [DF97].

20 CHAPTER 2. BACKGROUND

2.3.3 Application areas of LOD

Because the primary reason for using LOD is to improve performance, it is
mostly used for applications designed to run in real time. Interactivity is
also often a factor, since non-interactive applications are far easier to opti-
mize. Using LOD allows for including more detail without sacrificing overall
performance or improving performance without sacrificing apparent quality.
Modern computer games often include so much detail in a scene that most
home computers would not be capable of rendering it all in full detail. But
since user experience is more important than actual realism and accuracy
the most important aspect becomes to make the scene appear detailed and
realistic. A few possible uses for LOD algorithms are outlined below.

e Geometry: Alteration of object geometry is probably the most widespread
use of LOD. When an object is far away or otherwise unimportant, it
becomes harder to see much more than the object’s general shape. The
object may then be rendered with less geometric detail than usual,
increasing performance without noticeably sacrificing visual quality

[JIEDOS][Eri00].

e Terrain: A subset of geometry, terrain deserves special consideration
as it is somewhat different from other geometric objects. Terrain is
usually rendered as a single large object that spans a very large area
in the scene. This makes traditional discrete and continuous LOD
unsuitable for terrain, as the entire model is rendered with a single
detail level. Terrain is therefore one of the primary usage areas of view-
dependent LOD | |, and much research has been done on how
to render terrain efficiently| I I Il I].

e Physics: Physical calculations can be performed with a number of
different accuracy levels depending on the importance of the object. If
an object is not clearly visible, it becomes less important for the object
to behave accurately and approximations may be used | il].

e Logic: Logic here refers to the autonomous behavior of actors that
are not controlled by the user. The behavior of non-player characters
(NPCs) in a game is an example of the result of logic calculations.
These calculations can, like physical simulations, be simplified when
the NPC is far away or not visible | i I]. If an object

2.4. GRAPHICS PROCESSING UNIT 21

is to move between point A and B and the viewer is watching it all the
way, the application calculates each step of the journey and updates the
object’s position continually. If the viewer is not watching, however,
the application only needs to calculate how long the movement takes,
and simply change the object’s position from A to B.

2.4 Graphics processing unit

In earlier years, graphical calculations would be done on the CPU. A matrix
representing the pixels of the screen would be constructed in software, and
then sent to the monitor for displaying. The graphics hardware was merely
a tool for sending the pixel matrix from the CPU to the monitor. As the
hardware evolved, more functions were moved from software to hardware.
An implementation in hardware has the advantage of being much faster than
the equivalent software implementation and lessening the CPU’s burden. The
downside is that hardware implementations lack the flexibility of the CPU.
This made it hard for software developers to make the most of the hardware
without binding themselves to a single manufacturer or even card. The cre-
ation of programmable shaders meant that developers had much more power
to create the effects they wanted in graphical applications. Most current
cards work with two different types of shaders; vertex shaders and frag-
ment shaders, with the newest cards having a third: the geometry shader.
Traditionally, the shaders use separate portions of hardware for their func-
tionality. However, new chipsets use a unified shader architecture, combining
the functionality into a single unit to make better use of available resources.
Programmable shaders also had a secondary (and possibly unexpected) re-
sult, in that GPU chipsets could now be used to perform tasks that are not
directly related to graphics. Because modern GPUs are focused on paral-
lelism, tasks that are suited for running in parallel will often be much faster
on a GPU than on a CPU. Using the GPU for tasks that are not directly
related to graphics has become known as general purpose GPU (GPGPU)
programming| .

2.4.1 Architecture

The hardware of a GPU chipset receives data from the parent application,
and outputs a frame buffer. Data passes through the different portions of

22 CHAPTER 2. BACKGROUND

the architecture, with each step using the output from the previous step as
input. In most current graphics cards, the vertex and fragment shaders are
separate units with separate resources. In newer cards using a unified shader
architecture, all shader types share resources, which increases efficiency. In
addition to the different shaders, the GPU chipset also contains certain fixed-
feature parts such as depth-testing and rasterization. The architecture of an
older Nvidia Geforce 6 card can be seen in Figure 2.4*, while the architecture
of a newer Nvidia Geforce 8 card can be seen in Figure 2.5°.

Hnst

ﬁ‘jE]E]D[I]

Cull / Cl1p/ Setup
Z-Cull I-—‘ Rasterization

Texture and
Fragment Processing 1 L L] Texture Cache |4—

I
P
Fragment Crossbar

LN NN NN 2N AN 2N 2NN 2 2N N N A AN A A

Z-Compare
and Blend

Memury Memury Memury Memnry
Partmon Pamhon Pamhon Pamtion

e

Figure 2.4: Geforce 6 architecture

2.4.2 Vertex shader

The vertex shader takes as its input vertex data from the application, consist-
ing of such things as vertex position, vertex normals and texture coordinates.
Its most basic task is to transform these values from the world coordinates
of the application to screen coordinates. The vertex shader may also make
arbitrary changes to any of these values to change the appearance of the
view.

4Image source: [Pha07]
*Image source: http://www.hardwaresecrets.com

2.4. GRAPHICS PROCESSING UNIT 23

| Host |
Setup | Rstr / ZCull
Vix Thread Issue Geom Tl‘ll’ald Issue letl Thrnd Issue

M- M-M- m-m- m-

Figure 2.5: Geforce 8 architecture

2.4.3 Geometry shader

The geometry shader is only present on newer GPU chipsets. It takes as its
input the output from the vertex shader. Unlike the vertex shader, which can
only change existing data, the geometry shader can add or remove primitives
from the scene. An example could be the creation of a sphere. With only
a vertex shader, the application would need to supply every vertex of the
sphere to the GPU. With the geometry shader, the application could simply
send the position and radius of the sphere, and the geometry shader would
create all the other primitives needed to form the sphere. The advantage
is that far less data needs to be sent from the system to the GPU, thus
increasing efficiency.

2.4.4 Fragment shader

The fragment shader takes as its input the results of the rasterization of
the primitives generated by the vertex and geometry shaders. The output
of each fragment shader can be said to be a potential pixel in the finished
result. The result from a fragment shader may be discarded if the fragment
in question fails its depth test (it was behind another fragment and the two
are not blended together in any way). The fragment shader uses the lighting
and primitive information calculated in previous shaders to determine the
color of a single fragment.

24 CHAPTER 2. BACKGROUND

2.4.5 Unified shader architecture

One problem that can appear with the traditional, separate shader architec-
ture is that the amount of work for each shader type may be very different.
In many graphical applications the vertex shader does little more than pass
data on, while the fragment shader makes advanced calculations for lighting
and texturing. The result may be that the vertex shader resources are largely
idle while the fragment shader is heavily taxed. The unified shader architec-
ture is an attempt to remedy the problem by combining the resources for the
different shader types. The resources are allocated to the shaders according
to which shader perform the most complex calculations.

2.4.6 GPU programming

Graphics hardware has in the later years approached and in some ways sur-
passed the CPU in terms of flexibility and power | |. A very significant
step has been the introduction of programmable GPUs, which allow pro-
grammers to do just about any task with the graphics hardware instead of
the CPU. This can be a tremendous advantage, as even with hardware that
by today’s standards is becoming obsolete, the GPU performs certain tasks
much faster than the CPU. GPU programs are usually written in one of
the three languages GLSLS, CG”, or HLSL®. The three languages are very
similar in syntax and semantics, and porting programs from one to another
is usually fairly simple. The syntax and semantics of the three languages
are close to that of C, but with their own set of standard routines and data
types. The resources available for GPU programs also differ from those of a
normal CPU program, but there are certain analogies that can be made be-
tween CPU programming and GPU programming, and these analogies may
be used to port almost any CPU program to GPU code.

GPU analogies

The resources available when creating GPU programs differ from the re-
sources available when creating standard CPU programs. However, analogies
may be made between the resources available to a GPU and the resources

Shttp://www.opengl.org/documentation/glsl/
"http://developer.nvidia.com/page/cg_main.html
8http://www.neatware.com/lbstudio/web /hlsl.html

2.4. GRAPHICS PROCESSING UNIT 25

available to a CPU to help understanding how to transfer algorithms between
the two. The GPU analogies of common CPU resources are outlined below

[J

e Data arrays: The primary form of stored data on the GPU is in
textures. A two-dimensional texture is basically a two-dimensional
array of numerical values.

e Inner loops: The inner loop of a CPU program corresponds to a
fragment program on the GPU. The fragment program computes the
value of the smallest output primitive; the pixel.

e Computation invocation: The invocation of the inner loop is the
invocation of the fragment program: rasterization.

e Feedback: Feedback is not directly available from GPU programs.
However, the result does not have to be rendered to a monitor. The
results of a GPU program can be rendered back to a new texture, and
the values can be extracted from this texture.

e Computational domain: The size of the computational domain is
determined by the texture coordinates used for rendering. The coor-
dinates can be seen as array indices, and the rasterizer interpolates
between the given coordinates to map out the entire range.

e Computational range: As the rasterization invokes the computation,
the coordinates of the primitive’s vertices determine the computation
range. As the primitive is rasterized, it’s size determines the number
of separate fragments calculated.

These analogies are particularly useful when performing GPGPU program-
ming.

GPGPU programming

GPGPU programming is based on using the properties of the GPU to perform
computations not related to graphics |]. While most modern GPUs
have been designed with real-time graphical applications, such as games,
in mind, the programmability introduced with the shader architecture has
opened up many possibilities for using it for other purposes. As an example

26 CHAPTER 2. BACKGROUND

we examine a mathematical function. The function takes an input of some
form, and returns an output. To implement this on a GPU, we need three
things: A way to send the input to the GPU, a way to perform the function,
and a way to return the result to the user. The input can be passed to the
GPU either as a value stored in a variable or, if needed, a series of values
stored in a texture. Next, the programmable shaders can be used to compute
the result of the function. Finally, the result can be returned by using the
GPU’s render-to-texture ability.

The above approach can be used for virtually any problem, though be-
cause of the relatively high overhead in sending data to and from the GPU,
it’s best if all the necessary data for the problem can be stored in the GPU’s
texture memory, which on modern graphics cards is usually 256mb or more.

Chapter 3

Previous Work

The premise behind level of detail (LOD) is to alter the detail level of an
object according to its importance to maximize the ration between applica-
tion performance and accuracy | |. While little research has been done
on how to implement LOD algorithms for physically based fire rendering, a
considerable amount of work has been done on creating LOD methods for
other areas of application. Some of this work may be used or adapted for
use with a fire rendering.

Prior to changing the detail level of an object, a set of rules need to
be defined for how the wanted detail level of an object is to be calculated.
Numerous different rules may be used, depending on the circumstances of
the application.

LOD algorithms may be categorized according to the problems they are
used to solve, with different methods being used for different portions of an
application. LOD for dynamic systems deal with simplifying the dynamics
part of a scene by approximating or culling calculations that do not need
full simulation. Particle LOD deals with increasing the efficiency of particle
systems by manipulating particle counts or particle interactions. Finally,
numerous other LOD methods may be adapted for use with the fire rendering.

3.1 LOD conditions

Prior to applying LOD algorithms to an object, the object’s preferred detail
level must be determined. The preferred detail level is calculated based on
how important the object is for the current view. If an object dominates

27

28 CHAPTER 3. PREVIOUS WORK

the view it should be rendered at a high detail level, but if the object is
relatively insignificant it is best not to waste resources on it. Determining
the importance of an object can be done in a number of ways, outlined below

[J

e Distance: The distance from the object to the point of view is gen-
erally a good indication of how important the object will be for the
current view. If the object is far away from the point of view it is
rendered at a lower detail level as fine detail is harder to see at a dis-
tance. One problem with this approach is that the parameters of the
view changes, distance may be a poor indication of importance. Field
of view and focus changes may make a far-away object more important
than a closer one.

e Size: The size of an object on the current view may be a better indi-
cation of importance than distance where view parameters are subject
to change. If an object is large in the view, it is more likely to draw
attention, and fine detail is easier to discern. Thus, larger objects are
rendered with more detail than smaller object.

e Visibility: How visible an object is may determine the detail level it
is rendered with. If an object is obscured by another, it is generally
not necessary to render it at full detail, as much of the object can’t be
seen. If the object is not visible at all because it is outside the view
or completely obscured behind another object, it may not be necessary
to render the object at all. Environmental conditions may also affect
the visibility of an object. Fog or smoke may reduce the visibility of
the object, allowing it to be rendered at a lower detail level without a
noticeable decrease in quality.

e Eccentricity: When looking at an image, viewers tends to focus first
on an area around the center of the image. Objects near the center
of the view become more noticeable than those closer to the edges.
Objects near the center of the view may therefore be rendered at higher
detail levels than objects near the edges.

e Speed: If an object is moving, it may be harder to discern fine detail
on it. Objects moving at high speeds may therefore be rendered at
lower detail levels without the decrease in quality being obvious to the

3.1. LOD CONDITIONS 29

viewer. However, moving objects also tend to draw attention more
than stationary objects, and this needs to be taken into consideration,
especially if the speed of the object is low.

e Attention-directed: Objects that stand out from their environments
will tend to be more noticeable than objects that blend in more. If all
objects but one in a scene are gray, while the last object is a vibrant
color, the last object will stand out, and therefore be more noticeable
than others and should be rendered with more detail. Conversely, ob-
jects that are very similar to their environments may be rendered with
less detail.

Additionally, there may be other factors not directly related to the individ-
ual object that need to be considered. These factors may deal with scene
environments or application considerations that may affect the detail level of
renderings [].

e Frame rate requirements: It may be desirable for an application to
run with a constant frame rate regardless of the content of the current
view. If the current frame rate is below the target frame rate, the detail
level of all objects may be lowered correspondingly, or the impact of
the importance rating may be increased, lowering the detail level of
unimportant objects more than that of important objects.

e Limitations of human vision: Human vision is geared toward notic-
ing certain features in a view. Focus effects tend to make us ignore
objects that are out of focus, so if certain objects are rendered out of
focus they can be rendered at a lower detail level, both because the
viewer will tend to ignore it and because the blurriness will make it
harder to see detail. Also, if a certain task is to be performed, we tend
to focus most of the objects related to that task to the exclusion of
other objects.

Depending on the circumstances of an application, some or all of the condi-
tions presented may be used to determine the detail level of the objects in a
scene.

30 CHAPTER 3. PREVIOUS WORK

3.2 Dynamics LOD

The CFD portion of the physically based fire rendering is an important factor
of its performance. Simplifying the calculations of the CFD might therefore
be a good way to increase performance. When an object is not important
for the current view, it may be possible to simplify its simulation to increase
performance without hurting the apparent quality of the view. Additionally,
any object that are out of view may have their simulations culled, drastically
reducing the amount of calculations needed.

3.2.1 Simulation simplification

When an object is determined to be of little importance to the current scene,
the simulation of that object can be simplified in some way. A way to do this
is to replace the simulation with a simpler simulation, which is less accurate
but faster to calculate. | | presents an environment with a number of
bouncing robots and a single large puck. As the puck and the robots move
around, the robots attempt to avoid collisions with the puck, the walls, and
each other. Robots that are not important for the current view use simpler
simulations to calculate their movements. If a robot seems to be about to
collide with something, however, it is switched back to full simulation to
achieve an accurate collision response. This increases the overall efficiency
of the application without hurting the appearance noticeably.

3.2.2 View culling

View culling is a good way to reduce the computational complexity of dy-
namic systems. Reducing the calculation detail for parts of the system that
are not currently visible is a good way to increase efficiency. In | | view
culling LOD is used to increase the efficiency of a traffic system. Full simu-
lation of actors in the system is only done for the actors within the current
view. For the rest of the system, approximations are used to calculate the
position of actors by using an event system. The vehicles outside the view
are moved between predicted locations in discrete steps. If the path of a
vehicle intersects the current view, the vehicle is moved in a discrete step to
the entry point of the view, and then simulated fully until it leaves the view
again.

3.2. DYNAMICS LOD 31

As for the vehicles described, a view culled simulation will generally be
replaced by some form of proxy simulation until the system determines it
should be simulated fully again. Proxy simulations may vary from doing
nothing at all to attempting to approximate accurate states of the simulation
[- | |l] and |] consider three basic problems that are
likely to appear when performing view culling on dynamic systems:

e Consistency: If the view turns away from a simulation, and then
turns back at a later time, the simulation should appear to have been
running fully in the meantime.

e Completeness: If fully simulated, objects may move in and out of
the view on their own. It is important that proxy simulations allow for
predicting when objects should return to being fully simulated. Oth-
erwise, a fixed view may eventually empty itself, as objects move out
of the view, but never in.

e Causality: There may be relationships between objects that affect
the results of the simulation. A simple example may be two objects
that move perpendicular to one another, one outside the view and one
initially inside. If both objects are simulated fully, the object initially
inside the view will leave it, but bounce off the other object moving
along its path, and return to the view. However, if the second object
has its simulation culled, the collision might not register, resulting in
the first object never reentering the view.

The importance of these problems depend on how easy it is for a viewer
to spot flaws in the proxy simulation used | . If it is easy for the
user to predict future states of a simulation the proxy simulation should
attempt to approximate these future states correctly. If the future states
of the simulation are impossible to predict, however, it is much harder to
spot inconsistencies, and less effort needs to be made to approximate the
simulation. An object moving in a straight line with constant speed is an
example of a simulation that is easy to predict, whereas an object with a
completely random motion pattern is an example of a simulation that is
impossible to predict.

32 CHAPTER 3. PREVIOUS WORK

3.3 GPU LOD

Running the fire rendering on the GPU gives a large increase in performance
compared to running it on the CPU. However, running an LOD algorithm
for the fire on the CPU would remove much of this advantage, so finding
ways of running LOD on the GPU is necessary to get a good result.

[] presents a method for running a geometry LOD method on the
GPU. The method implements a form of discrete LOD by storing the struc-
ture of an object in a quad-tree, which is then stored in texture memory. The
method performs two passes when running: one for LOD testing and one for
rendering. In the testing pass, each node of the quad-tree is tested in a frag-
ment program. If the error of a node is below a certain threshold it is kept,
otherwise it is discarded. Finally, visibility culling is performed. A second
pass renders the geometry of the selected nodes. The method gives better
performance than an equivalent CPU implementation and reduces CPU load.

[| presents a method for implementing continuous LOD on the GPU.
An object is stored at the highest detail level in GPU memory, and updated
according to current LOD parameters as the application runs. When the
detail level is altered, the data is altered by the CPU, and then sent to GPU
storage, relying on the speed of the PCI-E bus for performance. As such, the
LOD algorithm itself does not really run on the GPU, as mesh alteration is
done on the CPU and the results uploaded to the GPU.

3.4 Particle systems LOD

Calculating particle behavior can have a significant impact on performance.
While calculations for each particle will usually be fairly simple, the com-
monly high number of particles results in a high total complexity. A common
way of reducing the detail level of a particle system is to reduce the num-
ber of particles (often while increasing the size of each individual particle).
This reduces the number of calculations needed for the system. A different
approach is to cluster particles together. In | | a method for clustering
particles is presented. The idea behind particle clustering is to increase the
speed of simulation calculation without sacrificing visual quality. Particles
can be clustered together based on such factors as position and speed. Each
particle is visualized individually, but simulation calculations are performed
per cluster rather than per particle. All the particles in a cluster share

3.5. OTHER LOD METHODS 33

one physical behavior, which can lead to errors when collisions occur, as all
particles in the cluster will have the same collision response. The collision
problem can be corrected by dissolving clusters that are about to collide,
allowing each particle to have a more accurate collision response, and then
reform new clusters after the collision. Another problem with the clustering
approach is that the cluster structure may be noticeable along the edges of
a particle system, as seen in Figure 3.1.

Figure 3.1: Fountain particle system with SLOD implemented. Left: System
running without SLOD. Right: System running with SLOD.

3.5 Other LOD methods

There are numerous LOD methods that may be used or adapted for use
with the physically based fire rendering. For resizing the CFD grids it may
be possible to adapt methods for image filtering, or methods for adjusting
the polygon counts of geometric models. Using billboarding to speed up
visualization may be an option when the fire is at a low detail level.

3.5.1 Image filtering

In two dimensions, the discrete cells of the grid used for CFD calculations
may be considered to be similar to the pixels of a digital image. As such, it
may be possible to use methods for resizing digital images to resize the CFD
grid, which should have a considerable effect on performance.

34 CHAPTER 3. PREVIOUS WORK

Different methods for resizing images are presented in | |. There are
many different methods for resizing images, but the more complex methods
are not considered here. The methods considered are outlined below, first
for increasing image size and then for reducing it.

e Pixel replication: A very simple method for increasing image size if
the image is to be resized with an integer factor. Each pixel is copied
in both direction according to the resizing factor. Only works when the
resizing factor is an integer, and the result is very blocky.

e Nearest neighbor filtering: The new image grid is considered as
lying on top of the old grid. Each pixel of the new image is then given
the same value as the pixel closest to it in the old image. The result
has the same problem with blocky appearance as with pixel replication,
but the resizing factor does not have to be an integer.

e Bilinear filtering: Works similarly to nearest neighbor, but instead
of using the nearest pixel value from the old grid, an interpolation
between the four nearest neighbors are used. This reduces the blocky
appearance from nearest neighbor, but if the resizing factor is large the
result will look very blurry.

e Bicubic filtering: The most common method for image resizing. Sim-
ilar to bilinear and nearest neighbor, but uses the nearest 16 neighbors
to give value to each new pixel. The results of bicubic filtering are
better than for bilinear, with less blur and clearer edges.

Results from using some of these methods can be seen in Figure 3.2,

Using these methods for shrinking images works exactly the same way,
with simple pixel replication replaces by pixel deletion, where columns are
rows of pixels are deleted in accordance with the resizing factor. The danger
when shrinking images is in losing fine detail such as edges. With the simpler
methods such as pixel deletion or nearest neighbor it is more likely that
important detail is lost. Blurring the image slightly before shrinking it is
a way to counteract this by spreading the wanted detail out across a larger
portion of the image.

IFiltering performed in Adobe Photoshop™ (http://www.adobe.com)

3.5. OTHER LOD METHODS 35

Figure 3.2: Image filtering used for zooming. Image of size 64x64 is zoomed
to 1024x1024 using three different filtering techniques. A portion of each

zoomed image is displayed. Top left: Original 64x64 image. Top right:
Nearest neighbor. Bottom left: Bilinear. Bottom right: Bicubic.

3.5.2 Simplification of polygonal geometry

Polygonal meshes are non-uniform grids with discrete cells. As such, it may
be possible to apply methods for dynamically restructuring such meshes to
the CFD grid used for the fire rendering. Since polygonal meshes is the
dominating method for geometry visualization in real-time applications, a lot
of research has been done to determine efficient LOD methods for polygon
meshes | i I]. The general approach is to combine or remove
certain parts of the geometry to increase rendering speed. Some methods that
may be adapted for use with the CFD grid are outlined below | .

36

CHAPTER 3. PREVIOUS WORK

Vertex removal: A vertex is removed from the mesh. This effectively
deletes all faces connected to that vertex. New faces are constructed
over the hole, using fewer faces.

Vertex clustering: A uniform grid is placed over the mesh. For each
cell in the grid, every vertex inside the cell is merged, reducing the
number of vertices and faces.

Vertex pair contraction: Combines pairs of vertices into single ver-
tices according to some algorithm, usually an error measurement.

Edge collapse: Merges the two vertices of an edge together, deleting
the edge and collapsing the edge’s faces into edges.

Face collapse: Merges the three vertices of a face together, deleting
the face and turning the neighboring faces into edges.

Face clustering: Similar to vertex clustering, but with faces instead
of vertices.

These methods may be used for any grid of discrete cells, but because almost
all polygonal meshes are irregular the result may not be as good for uniform
grids such as the CFD used for the fire rendering.

3.5.3 Billboarding

[

| presents a method for increasing performance when rendering large

landscapes, using a technique known as billboarding. Billboarding is a method
for simplifying detailed geometry by projecting the geometry as textures to
a much less detailed geometry. In | |, highly detailed models of tree fo-
liage is projected onto a small number of polygons, slanted to give the best
view from the camera’s position. Approximations of lighting are calculated
to increase the apparent accuracy and to help smooth the transitions from
one detail level to another. This method allows for rendering highly detailed
landscape with a large number of trees and other objects at a good speed.

Chapter 4

LOD for fire rendered on the
GPU

When implementing a method for dynamic LOD for a physically based ren-
dering of fire, there are three separate aspects to consider. The three aspects
are how to calculate the desired detail level, how to alter the visualization of
the fire to reach the desired detail level, and how to alter the simulation of
the fire to reach the desired detail level.

This chapter will present a simple overview of the different concepts and
approaches used to determine the most suitable methods for implementa-
tion. Additionally, different constraints and possibilities introduced by the
fire rendering used as a basis will be considered. Different possibilities for
the three aspects of the LOD algorithm are then presented an evaluated.
Finally, a subset of the presented methods are chosen for inclusion in the
LOD framework.

4.1 Overview

There are three separate aspects of the implementation of dynamic LOD for
the fire rendering. These three aspects are labeled overall LOD, visualization
LOD, and simulation LOD. Overall LOD is basically a value that describes
the importance of the fire to the current view, and may be calculated based
on different conditions such as distance from camera, visibility, etc. Visu-
alization LOD is using the overall LOD value to change the visualization
component of the fire rendering. If the overall LOD value is lowered, the

37

38 CHAPTER 4. LOD FOR FIRE RENDERED ON THE GPU

visualization is rendered using a lower detail level, increasing the speed of
the rendering. Similarly, simulation LOD uses the overall LOD value to alter
the detail level of the fire simulation. As the visualization and simulation
components of the fire rendering are fairly independent, the LOD methods
used are also independent. Thus, different combinations of methods may be
used.

The idea behind the LOD algorithm is to use techniques presented in
Chapter 2 and 3 to implement dynamic LOD for the fire rendering presented
in [|. The way the fire rendering is implemented affects which LOD
techniques are most suitable to get the best performance and visual results.
Thus, the implementation of the fire rendering needs to be considered when
evaluating different LOD methods.

4.2 Fire rendering considerations

When applying an LOD algorithm to the fire rendering, there are certain
considerations that need to be made. Certain methods will be more suitable
to implementation than others, depending on the methods used for the fire
rendering itself. The way the fire rendering is performed needs to be consid-
ered when choosing methods for overall LOD calculation, Visualization LOD,
and Simulation LOD. Additionally, the fact that the fire rendering runs on
the GPU impacts the way calculations are performed and results stored.

4.2.1 Overall LOD

The overall LOD is a combined evaluation of different LOD conditions that
determines the detail level the fire will be rendered with. The fire rendering
itself places no restrictions on what LOD conditions are most suitable for
use. The overall LOD calculation is fairly independent of the fire rendering
itself. Overall LOD is a value declaring what detail level the fire, or any
other object, should be rendered with to get the best result in terms of
performance and visual quality. The overall LOD value thus depends more
on the nature of the application surrounding the fire rendering than the fire
rendering itself, meaning the fire rendering implementation does not affect
what LOD conditions are most suitable for overall LOD calculation.

4.2. FIRE RENDERING CONSIDERATIONS 39

4.2.2 Visualization

[| presents three different ways to perform the visualization of the
fire: Black-body radiation tables, a system of textured particles, and volume
rendering by ray marching. Black-body radiation gave excellent results for a
two-dimensional fire rendering, but proved difficult to extend to three dimen-
sions. As the volume rendering method gave relatively unconvincing results,
the system of textured particles will be used here.

The particle visualization works by having a set of particles that follow the
motion of the fire fluid. The color and transparency values of a particle are
given by the properties of the fluid at a particle’s current position. Eventually
a particle will pass beyond the core of the fire, or its visibility will be reduced
as it cools down. When the visibility falls below a certain threshold, the fire
respawns at the base of the fire. The performance of the particle visualization
is primarily dependent on the number and size of the particles. Thus, to
improve the efficiency of the visualization, adjusting the particle count and
particle size are probably the best options.

4.2.3 Simulation

The physical simulation for Rgdal and Storli’s fire rendering is done by per-
forming CFD calculations on a grid of discrete cells. Each frame the values
of the grid are recalculated to emulate the effect of a flowing fluid. The com-
putational complexity of these calculations is high, so the resolution of the
grid is an important factor in performance. To increase performance of the
simulation, it is necessary to either find ways to dynamically alter the size of
the grid or simplify the calculations used.

4.2.4 GPU considerations

As the data for the fire rendering is stored in texture memory there are
certain considerations that need to be made when constructing the LOD
algorithm. As transferring the data to the CPU, performing calculations,
and then transferring back would introduce significant delays, it is preferable
to perform the LOD calculations on the GPU. The result should also be
stored directly on the GPU without being passed through the CPU.

40 CHAPTER 4. LOD FOR FIRE RENDERED ON THE GPU

Performing LOD calculations

The LOD calculations should preferably be calculated on the GPU. Cal-
culations are performed on the GPU by using programmable shaders. A
piece of geometry (most commonly a single square) is sent to the GPU. Pro-
grammable shaders then calculate the color values for each pixel using light-
ing calculations and texture information. By putting input data in textures
the shader can then be used to calculate most any problem. The physically
based fire rendering uses this method to calculate the fluid properties. The
LOD algorithm should run on the GPU where doing so is reasonable. It is
reasonable that any part of the algorithm that alters data stored on the GPU
also runs on the GPU.

Data storage and retrieval

The result of shader calculations is commonly stored in a color buffer which
is then rendered to the screen. It is possible to read pixel values from this
buffer back to the CPU, but doing so is slow and inefficient as the data
transfer speed is far lower between GPU and CPU than internally on the
GPU. It is possible to avoid this inefficiency by rendering the shader result
directly to texture memory, as is done for the fire rendering algorithm. The
LOD algorithm should store its result directly in texture memory to avoid
the inefficiency of transferring large amounts of data between GPU and CPU.

4.3 Overall LOD calculation

The overall LOD value of a fire rendering is an indication of the detail level
the fire will be rendered with. The value used to alter the detail level of the
fire rendering is calculated based on a set of conditions. Additionally, view
culling may be used to replace the complex fire simulation with a simpler
simulation if the fire is outside the current view.

4.3.1 LOD conditions

The overall LOD value of the fire is calculated by evaluating certain condi-
tions. These conditions are chosen from the list presented in Chapter 3.1.
The suitability of each condition will be considered, and one or more will be
chosen for implementation and testing.

4.3. OVERALL LOD CALCULATION 41

e Distance from viewpoint: Evaluates the distance between the fire
object and the camera. Distance is simple to implement and fast to
calculate, but may be unsuitable if the camera’s field of view is subject
to change. Field of view changes might for instance be used to zoom
the view, so that an object that is actually far away fills the screen. In
such a case, distance would be a poor condition, since the object that
fills the screen would still be rendered using a low detail level.

e Size in pixels: Somewhat similar to evaluating the distance between
fire and camera, but pixel size avoids the effects of changing camera
field of view by only evaluating how large the object is in the view.
Size is more complex to calculate, however, and changing field of view
is not likely to be a factor for the fire application.

e Object speed: Calculates the LOD value by evaluating the fire ob-
ject’s speed across the view, meaning its speed relative to the camera’s
rotation. This is an attempt to take advantage of the fact that it is
harder to discern detail on objects moving quickly. Calculating the rel-
ative speed is simple and fast, but there is a risk of noticeable popping
if an object’s relative speed is constantly changing.

e Obscuring objects: Attempts to determine whether or not the fire
object is obscured by other objects in the scene. If the fire is partially or
completely concealed by another object, the LOD value may be lowered
accordingly. Complex to calculate, but may offer a good increase in
efficiency.

Some of the conditions listed in Chapter 3.1 are concerned with how the
characteristics of human vision and mentality affect how we interpret a view,
and where we are likely to direct our attention. These conditions will not
be considered further as the simple application surrounding the fire will not
attempt to model any of these effects. The result of evaluating the chosen
conditions will be used to alter the detail level of the fire rendering. While
performing the overall LOD calculation on the GPU should be possible, it
may be better to do so on the CPU. The reason for this is primarily that the
particle system still needs to pass all the particles from the CPU to GPU.
Since the overall LOD value may be used to alter the number of particles, it
should therefore be calculated and stored on the CPU.

42 CHAPTER 4. LOD FOR FIRE RENDERED ON THE GPU

If the LOD framework is later to be implemented for a fire which uses
geometry shaders to render completely on the GPU, however, the calculation
of the overall LOD value may also be moved to the GPU, as information
about the application’s camera will be available to shader programs.

4.3.2 View culling

When an object that is subject to physical simulation is no longer visible on
the screen, the simulation of the object can often be simplified considerably,
depending on the nature of the object in question. The important thing about
the simplified simulation is that it maintains the illusion that the object is
still undergoing full simulation. An obvious example of this is an object
undergoing a predictable motion. If the view pans away from the object for
some time and then back, and the object is still in the same position, a viewer
will easily realize that the simulation has been halted in between. This ties in
with the three problems of consistency, completeness and causality presented
in Chapter 3.2.2. However, if the position of the object is approximated in
some way as the view pans back, it may be possible to make it appear to the
viewer as if the object has been simulated constantly, while still drastically
reducing the complexity of the simulation.

For a fire rendering, a possible solution is to simply halt the rendering
of the fire altogether when the view pans away from it. The justification for
doing this lies with the chaotic nature of a physically based fire rendering.
Unlike with an object undergoing easily predictable motion, it is very hard to
accurately predict how the fire should look in the future. Thus, a viewer will
probably not be able to tell the difference between a rendering that has been
running constantly for a set amount of time, and a rendering that has been
halted for a portion of that time. This effect can be seen in Figure 4.1. View
culling may be done by checking if the fire is currently within the camera’s
field of view. One aspect that may need special consideration, however, is
the inclusion of dynamic lighting. Even if a fire simulation is halted due to
view culling, the fire should still give off light to its surroundings, preferably
with the same flickering effect gained from the full simulation. For this, a
simple proxy simulation may be used for the lights in order to get the desired
effect.

4.4. VISUALIZATION LOD 43

Figure 4.1: Ilustrating the difficulty in predicting future states of a fire
rendering. Left: Fire state at starting point. Middle: Fire state after halting
for some time and only running a few frames. Right: Fire state after running
continually for some time.

4.4 Visualization LOD

The main component of the fire visualization is the particle system. The
most important aspect of the visualization LOD is therefore to change the
particle system to increase efficiency as the fire becomes less important to
the view. Additionally, changes to the dynamic lighting system may be used
to maintain the flickering effect of the fire while the fire itself is not rendered.

4.4.1 Particle clustering

The clustering method presented in [DO01] works by grouping particles that
share certain characteristics such as position and velocity. Each particle
in the group is visualized individually, but the entire group behaves as a
single particle physically. However, as the particles in the fire rendering
simply fetch their simulation data from the fluid simulation, there is little
performance to be gained from this approach. Additionally, the information
about other particles needed to evaluate possible clusters would be hard to
access on the GPU, because when sent to the GPU, each particle is treated
independently, without access to the data of any other particles. This means
that this method would probably have to be implemented on the CPU, or
large changes would have to be made to the way particles are stored and
rendered.

44 CHAPTER 4. LOD FOR FIRE RENDERED ON THE GPU

4.4.2 Altering particle count and size

With Rgdal and Storli’s implementation, the size and number of particles for
the fire rendering are constant. Particles that pass beyond the fire respawn
at the base. When the fire is small or otherwise unimportant for the view,
the particle system will usually contain a lot of redundancy in that several
particles will occupy the same space on the screen. Removing some of the
redundant particles would increase performance. As such, lowering the par-
ticle count may be a good way to increase the efficiency of an unimportant
fire object.

A possible way of altering the particle count is to merge particles to-
gether. Several particles are replaced by a single, larger particle. While
this may give a fairly good performance increase, the method has a major
drawback similar to particle clustering. As mentioned earlier, on the GPU
each particle has no information about the other particles. As for particle
clustering, particle merging requires the ability to determine which particles
share similar attributes such as position and speed. Having this information
on the GPU would require changes to the data structure, and would also
be costly to calculate. For these reasons, particle merging would need to be
implemented on the CPU.

Another possibility is to use the respawning functionality of the particles
to alter the particle count. However, stopping all respawning until the par-
ticle count reaches the desired level might create unnatural gaps in the fire.
Instead, the ratio between current and target particle counts may be used
to control respawning. If the target particle count is half that of the current
particle count, only every other particle would respawn, thus gradually lower-
ing the particle count to the desired level. Reducing the particle count might
produce gaps in the fire, which may be counteracted by increasing the size of
each individual particle. Additionally, the apparent overall intensity of the
fire is created by the contribution of many partially transparent particles.
To prevent the intensity from changing when the particle count changes, the
intensity of each particle should be changed according to the particle count.

Currently the number of particles used by the fire rendering is governed
by the CPU, as each particle needs to be passed from the CPU to the GPU
for rendering. The change in particle count and respawn ratio would also
need to be implemented on the CPU, which could potentially slow down the
rendering since a message needs to be passed from the GPU to CPU when a
particle decays. With a geometry shader the particles are generated on the

4.4. VISUALIZATION LOD 45

GPU, and so the respawning algorithm could also be moved to the GPU,
resulting in higher performance. The size of particles can be controlled by
the GPU by passing a single parameter to the geometry or vertex shaders.

4.4.3 Altering particle textures

As the importance of a fire object is reduced, the detail of the fire particles
becomes less important. When the overall detail level is low, reducing the
detail level of the particle textures may increase performance without hurting
the fire’s appearance noticeably. On newer GPU chipsets it is unlikely that
resizing the particle texture would have a large impact on performance, but
disabling the texture may have a larger impact. When the overall LOD value
is low enough, the textures can be disabled and the particle rendered using
a single color.

4.4.4 Altering the dynamic lighting system

The dynamic lighting system presented in | | works by having a num-
ber of stationary or moving lights within the fire. Each light’s intensity is
set according to the properties of the fire fluid at the light’s position. The
changing properties of the fluid and thereby of the lights create the charac-
teristic flickering effect of the fire. Any changes to the lighting system should
preserve this flickering effect.

To reduce the detail level of the lighting system, it may be possible to
reduce the number of lights used while increasing the intensity of each light.
Additionally, the motion of each light may be changed to a simple, pre-
defined motion instead of following the fluid motion. It should be possible to
implement changes to the lighting system on the GPU, simply using different
shader code when employing a simpler version of the lighting simulation.

4.4.5 View culling

While the effect of changing the parameters of the visualization in |]
is very dependent on the simulation detail level, disabling the visualization
completely should have a significant impact. This is especially true if the
visualization is being also disabled, or rendered at a low detail level.

When the fire is outside the current view the majority of the visualization
may simply be switched off, as the results would not be visible. However, the

46 CHAPTER 4. LOD FOR FIRE RENDERED ON THE GPU

dynamic lighting system affects the scene in general, and therefore requires
consideration.

If the simulation is running normally when the visualization is culled,
the lights may be updated as normally. If the simulation also undergoes
some form of view culling, however, the lights would become static, and
the characteristic flickering effect would be lost. To avoid this, the lighting
system may use a simple proxy simulation instead of evaluating the fluid
properties. A stochastic calculation may be used to control the motion and
intensity of the lights, preserving the lighting’s flickering effect.

4.5 Simulation LOD

The simulation of the fire rendering is governed by CFD calculations per-
formed on a grid of discrete cells. The complexity of these calculations and
the resolution of the grid has a significant impact on performance. Adjusting
the grid resolution or simplifying the calculations used is therefore a good
way to increase performance.

4.5.1 Altering CFD grid resolution

The resolution of the grids used for CFD calculations has a large impact on
the performance of the application. Thus, dynamic resizing of the CFD grids
is an important aspect of increasing the efficiency of the fire rendering.

One way to resize the grids is to simply delete or add columns, rows
and slices along the edges until the desired size is reached. This is likely to
be fairly simple to do, but significant amounts of data might be lost when
reducing size. The method may also lead to odd appearance when increasing
size as the fire would ”grow” into the added cells.

Another possibility is to use methods for the resizing of polygonal meshes,
as presented in Chapter 3.5.2. There are numerous different such methods,
but they rely on the non-uniformity of most polygonal meshes to alter their
structure. As such, mesh resizing methods are not very suitable for the
uniform CFD grids. Additionally, implementing such methods on the GPU
would be complicated, as seen in | | and |].

A third option is to adapt methods for image filtering, presented in Chap-
ter 3.5.1. There are many different image interpolation techniques, but only
nearest neighbor, bilinear and bicubic filters are considered here. These three

4.5. SIMULATION LOD 47

methods give the cells in the new grid values based on nearby cells in the old
grids. While the methods usually work on two-dimensional grids, it is fairly
simple to extend them to a three-dimensional grid.

Nearest neighbor filtering simply selects the value of the cell in the old
grids that is closest to the cell in the new grid. Nearest neighbor is fast and
simple, but data may be lost as some cells are discarded completely when
the grid resolution is lowered. Bilinear filtering normally works by giving
the new cell a value based on the 2x2 closest cells in the old grid. For the
three-dimensional grid the value would be taken from the 2x2x2 closest cells.
Bilinear filtering is more accurate than nearest neighbor, but also slower.
Finally, bicubic filtering would use the 4x4x4 closest cells to determine the
value of the new cell, again increasing the accuracy and cost of the method.

As the CFD grids are stored on the GPU as texture slices, it should be
possible to implement the resizing method on the GPU by rendering to tex-
ture, similarly to how the fire rendering itself is performed. As the act of
sampling values from a texture is a relatively costly function, it may be de-
sirable to minimize the number of texture lookups used. This is particularly
true when the samples will be done from different areas of the texture, as
would be the case for texture slices. Additionally, consideration needs to be
given to whether to generate new textures of appropriate sizes when resiz-
ing, or simply changing which parts of the textures are used. The former is
slower, but helps conserve texture memory, while the latter is faster but does
not free up texture memory as the detail level is lowered.

4.5.2 Simplification of simulation calculations

The fire rendering method presented in | | performs full simulation
steps for each time step of the rendering. When the fire is not important
to the current view it may be possible to reduce the complexity of these
calculations. Two ways to do this could be to use a simple proxy simulation
for the fluid behavior, or to use simulation step skipping.

A proxy simulation could be simple calculations that alter the motion of
the fire fluid according to known models of fire behavior, with the addition of
simple stochastic variations to prevent the fire from looking like a static ani-
mation. Using a proxy simulation should reduce the cost the the simulation,
though the fire will likely look unconvincing if examined by the viewer.

Simulation step skipping means not performing the fluid simulation for
every frame that is rendered. If the simulation calculations are halted, the

48 CHAPTER 4. LOD FOR FIRE RENDERED ON THE GPU

fire particles would still travel through the system based on the current fluid
state, though the appearance would be that of a static animation. By not
performing the CFD calculations for each time step, performance could be
increased without hurting the appearance of an unimportant fire object. It is
possible that simulation step skipping could adversely impact the appearance
of the fire motion, but testing should reveal any such issues. Using proxy
simulations on the GPU could be done by invoking different shader code for
the simulation, while step skipping would be done simply by not invoking
the simulation of the fire every frame.

4.5.3 View culling

As mentioned in Chapter 4.3.2, predicting future states of the fire simulation
is very difficult. Thus, a possibility is to simply halt simulation while the fire
is outside the view. Doing so should significantly increase the speed of the
application without a viewer being able to notice a difference in appearance.
However, as mentioned before, the dynamic lighting calculations for the fire
rendering would need to be replaced by a proxy simulation to preserve the
appearance of the light the fire gives off to its surroundings.

4.6 Conclusion

Of the different methods presented, some are more suitable for use with the
type of fire rendering considered as a basis. Based on their perceived suit-
ability, some of the methods are chosen for inclusion in the LOD framework.

4.6.1 Overall LOD

What conditions are most suited for calculating the overall LOD value of an
object will depend on the nature of the application used. The conditions are
chosen based on the expected benefit when running with Rgdal and Storli’s
fire rendering as well as how general the condition is. Conditions that depend
on the nature of the application the fire is used in are not included for the
framework, though they may give good results for other applications.

To calculate the overall LOD value of a fire object, a simple distance
evaluation will be used. While distance is not suitable for every application,
it is still the most general in that it is simple to calculate and works well in

4.6. CONCLUSION 49

most situations. The other conditions are more complex to calculate and not
as generally suitable. One method that may also give a good result in general
is to check where any other objects obscure the view of the fire. However,
the best way to evaluate this condition is most likely to use the z-buffer on
the GPU. This makes checking for obscuring objects more suitable for a fire
rendering where the particle system also runs complete on the GPU, using a
geometry shader. Thus, for the current framework only distance will be used
to calculate the overall LOD value.

The overall LOD value will be at maximum when the fire is within a
certain distance from the camera. It will then be lowered gradually as the
fire moves away, until it reaches a minimum level. The formula used to
calculate the distance LOD is seen in Equation 4.1.

b
7 1.0) (4.1)
lod is the overall LOD level, b is a base value determining how far away the
fire will be when the detail level starts to decrease, and d is the distance
between the fire object and the camera. e

Additionally, view culling will be used when the fire is outside the current
view. The application will check if the fire is visible or not and store the result
separately from the overall LOD value. Because of the chaotic nature of the
fire and the difficulty in predicting its movements while outside the view, view
culling is used to halt certain aspects of the rendering and replace others with
simple proxy simulations. The angle between the camera and the fire will be
compared to the field of view of the camera to determine if the fire is visible
or not. Figure 4.2 shows how the visibility and distance evaluations will be
used by the application to determine how the fire is rendered.

lod = min(

4.6.2 Visualization

The overall LOD value for the fire will be used to alter the parameters of
the particle system used for visualization. When the overall LOD value
is lowered, the number of particles will be reduced. Because of the way the
particle system in | | works, and because it is preferable to implement
the LOD algorithm on the GPU where possible, the respawn functionality will
be used to reduce or increase the number of particles. When the overall LOD
value is changed, a respawn ration will be calculated by Equation 4.2, where
r is the respawn ration, tc is the desired particle count, and cc is the current

50 CHAPTER 4. LOD FOR FIRE RENDERED ON THE GPU

aaaaaaaaaaaaaaaaaaaaa

Close. Renders at high deteil isible. Renders at high detal

Figure 4.2: Illustration of how the overall LOD is calculated. Left: Distance
LOD. Right: View culling.

particle count. The target particle count will be calculated using Equation
4.3, where mc is the maximum particle count, and lod is the overall LOD
value of the fire. To balance the effect of changing the number of particles,
the size and intensity of each particle will change as well. Size will be changed
according to Equation 4.4, where s is the calculated particle size, and ms is
the particle size at the highest detail level. The size is not changed linearly,
as that would make the particles too large too quickly. Particle intensity will
be calculated using Equation 4.5, where ¢ is the calculated intensity and mz
is the intensity at the highest detail level.

_tc

r (4.2
cc
tc = mc* lod (4.3)
ms
§ = —— 4.4
Vliod (44
mi
= — 4.
" lod (45)

For the particle textures, the same texture will be used for particles of
different sizes, giving different relative texture resolutions. Additionally, at
the lowest detail level the particles will be rendered without textures. The
dynamic lighting system will be replaced by a simple proxy simulation when
the detail level drops below a certain threshold. The proxy simulation will

4.6. CONCLUSION 51

use simple stochastic calculations to vary the position and intensity of the
lights.

When the fire object is not visible in the current view, view culling will
be used and the visualization of the particle system will be turned off. No
aspects of the visualization will be calculated, except for the dynamic lights,
which will be calculated using the simple proxy simulation.

4.6.3 Simulation

The most important component of the simulation LOD method is the dy-
namic resizing of the CFD grids, which are stored as textures on the GPU.
To resize the textures, nearest neighbor filtering will be used. Because the
LOD method will be continuous, each change to the grid size should be small,
thus reducing much of the risk of losing data. The chaotic nature of the fire
should also make any such data loss difficult to detect. Additionally, as tex-
ture sampling is a relatively costly operation on the GPU, it is preferable
to have as few texture samplings as possible. The grid size will be changed
according to Equation 4.6, where s is the calculated grid size, and mr is the
grid size at the maximum detail level.

s =mr * lod (4.6)

An illustration of how the grid resizing occurs between a 3x3-grid and a
15x15-grid can be seen in Figure 4.3. Errors that may occur are displayed in
the Figure, but exaggerated, as the grid resizing will be continuous, thereby
taking making smaller steps at a time.

Simulation step skipping will be used to reduce the number of CED com-
putations performed when the overall LOD value is lowered. The number of
frames between each new CFD computation will be determined by Equation
4.7, with t being rounded to the nearest whole number.

1

t= —
lod

(4.7)

Finally, as for the visualization, the simulation will be halted when the
fire is outside the current view, due to the difficulty in spotting such pauses
as mentioned in Chapter 4.3.2. One exception is in a fire that has just been
ignited. A recently ignited flame should be simulated fully for a certain
period of time, until it has gone beyond the initial ignition phase.

52

CHAPTER 4. LOD FOR FIRE RENDERED ON THE GPU

Figure 4.3: Grid resizing using nearest neighbor. Framed area in bottom left
is the 3x3-version of the grid. Left: Grid scaled up. Right: Grid scaled down.

4.7 Summary

A quick summary of the methods chosen to be part of the framework for
including LOD with a physically based fire rendering is outlined below.

e Overall LOD: The overall LOD value of a fire object will be calculated

using a simple distance measurement between the camera and the fire.

View culling: A view culling parameter will be set to either on or off
depending on whether or not the fire is visible in the current view.

Visualization: As the overall LOD is changed, the number of particles
and each particle’s size and intensity will change accordingly. The
number of particles will be changed by varying how many particles
respawn when a particle leaves the fire. The same particle texture will
be used for all particle sizes, and at the lowest detail level particles
will be rendered without textures. When the fire is not visible, the
visualization will be turned off, except for the dynamic lighting system,
which will be replaced by a simple proxy simulation.

Simulation: Nearest neighbor filtering for image resizing will be used
to resize the CFD grids, stored in textures, as the detail level changes.
As the overall LOD value lowers the CFD computations will no longer
be performed each frame, with the number of steps skipped increasing
as the detail level lowers further. Finally, the simulation is halted
completely when the fire is not visible.

4.7. SUMMARY 53

As the methods are tested and evaluated, changes may be made to improve
the quality of the algorithm.

o4 CHAPTER 4. LOD FOR FIRE RENDERED ON THE GPU

Chapter 5

Implementation

The implementation of the framework presented in Chapter 4.6 could not be
completed in time for the thesis deadline (the reasons for this are discussed
in Chapter 7.1.) Thus, this chapter describes a partial implementation of
the framework, becoming more a plan for an implementation of most of the
intended features of the framework.

The implementation presented in this chapter consists of the overall struc-
ture of the application, the implementation of the fire rendering itself, and
the implementation of the different aspects of the LOD algorithm.

The application structure describes the overall construction of the entire
application, governing scene initialization, object relationships, and input
handling. The fire rendering structure describes the implementation of the
physically based fire rendering, which is based on Rgdal and Storli’s fire ren-
dering. The LOD algorithm describes how the application calculates overall
LOD values for different objects and how these values are used to alter the
detail level of each fire object in the scene.

5.1 Overall structure

The framework is implemented using Simple DirectMedia Layer! for graphics
initialization and CG? for GPU shader programs.

The main components of the framework are the classes Scenegraph, Cam-
era, Node, FireObject, FireSimulator, ParticleSystem, and FireParameters.

thttp:/ /www.libsdl.org
2http://developer.nvidia.com/object/cg_toolkit.html

95

96 CHAPTER 5. IMPLEMENTATION

The class ModelObject is also included as an example of an object in the
scene that is not a fire. SceneObject is the abstract class from which Mode-
10bject and FireObject inherits. The functionality and relationship between
the classes is outlined below.

e Camera: The camera class contains the data for the current viewpoint
in the scene. The class has methods that may be used to move and
rotate the view according to user input or other parameters.

e FireObject: Implements the abstract SceneObject class. The Fire-
Object class functions as a wrapper for the different components of the
fire rendering, passing on calls for LOD calculations or other parame-
ter changes and initializing the fire rendering according to a specified
configuration file.

e FireParameters: Stores all the parameters for a fire object as well
as references to the different textures and shader programs used for
rendering and LOD operations. The FireParameters class serves as a
centralized storage for the fire object’s parameters to make changing
those parameters easier for the LOD operations.

e FireSimulator: Contains functionality for the fluid simulation portion
of the fire rendering, as well as LOD operations to be performed on the
fluid simulation. Stores references to the 3d textures used for rendering,
the central FireParameters instance, and the GPU shader programs
used to perform simulation steps and LOD operations on the CFD
grids.

e ModelObject: Implements the abstract SceneObject class. Stores a
single geometry-object loaded from file that may be rendered in the
scene together with fire objects or other model objects.

e Node: Stores a reference to a single object in the scene. The object
may be any type that implements the abstract SceneObject class. Node
contains functionality for calculating its overall LOD value and passing
it on to the SceneObject it governs. A Node may also have a series of
child nodes, which are normal Nodes that inherit position and other
parameters from their parent.

5.1.

OVERALL STRUCTURE 57

ParticleSystem: Contains functionality for the visualization of the
fire rendering, as well as LOD operations to be performed on the visu-
alization. Stores references to the 3d textures used for the visualization
of the fire, the central FireParameters instance, and the GPU shader
programs used to render the system of textured particles and perform
LOD operations on the particle system.

Scenegraph: Contains all data for the current scene. Stores references
to the current Camera instance used and a list of Node-instances. Con-
tains functionality for adding nodes to the scene, updating all nodes in
the scene, rendering all nodes in the scene, and handling user input.

SceneObject: Abstract class. Specifies the functionality required for
objects in the scene, as well as common data. Contains virtual functions
for updating, rendering and LOD calculation.

Texture3dd: Stores data for the grid of discrete cells used by the fire
rendering. Emulates a 3d textures by using slices. Each slice is stored
as a 2d texture with the specified width and height, with the number of
slices being the depth of the 3d texture. Because the same texture may
not be used as both input and output for a GPU shader program, the
result of a computation is written to a temporary texture. The tempo-
rary texture is then swapped in so that the old input texture becomes
the new output texture and the old output texture becomes the new
input texture. Texture3d also contains functionality for resizing.

The framework also contains peripheral functionality for initialization, such
as initializing OpenGL and CG, and loading objects from files. The overall
hierarchy of the application is illustrated in Figure 5.1.

o8

CHAPTER 5. IMPLEMENTATION

Scenegraph

Camera

Mode

SceneDbject

FireObject

ParticleSystem

AV

Ai‘_\.

ModelObject

[

FireParametors

FireSimulator

Texturedd

Figure 5.1: Application hierarchy:.

5.2. PROGRAM FLOW 59

5.2 Program flow

For each frame of the application a number of operations are performed by
the application main loop. These operations are divided into the general
functionality of the application for visualization and simulation of scene ob-
jects as well as input handling, and LOD operations. The LOD operations
consist of the different operations performed to calculate overall LOD values,
fire visibility, and visualization and simulation LOD.

5.2.1 General functionality

The general functionality of the application consists of a rough description
of all the steps performed by the main loop for each frame rendered. These
steps are outlined below and illustrated in Figure 5.2.

1. Update: The list of nodes in the scenegraph is traversed, and the
update()-method run for each. What update() does depends on the
type of object stored in the node. For a fire object, update() will run
a single time step for the fire simulator, calculating new values for the
fire fluid textures.

2. Calculate LOD: Performs LOD operations for each node in the scene-
graph. The type of operation will depends on the type of object. Each
node will calculate an overall LOD value and pass it on to the Sce-
neObject it has stored. The details of LOD operations for a fire object
are specified further down.

3. Render: The list of nodes in the scenegraph is traversed, and the
render()-method run for each. Render() runs the visualization for the
node’s object, typically displaying it on the screen. For a fire object,
render() will perform a visualization step by rendering all the particles
in the particle system according to the fluid values at each particle’s
position.

4. Handle input: Handles any input from the user such as key presses
and mouse movements, typically to alter the motion of camera or ob-
jects or other parameters for the scene.

60 CHAPTER 5. IMPLEMENTATION

mainkoog Sceneqraph Mode SceneCbject
e] : :
: ': update() : :
: : '1| update() :
I I | ™
| | | |
A T |
| "I calcLod() | :
: : | calcLod{lod) :
I I | 4|
| | | |
N Tende) T I !
: .-: resnder) : :
: : #: render) :
| handielnput() | : .__1|
| ! I I
e — i | |

Figure 5.2: General functionality of the application.

5.2.2 LOD operations

The LOD operations performed on the fire objects in the scene are outlined
below, with more detailed looks at Visualization and Simulation LOD given
further down. The sequence of steps for these operations are also illustrated
in Figure 5.3.

5.2. PROGRAM FLOW 61

Mode Camera FirsQbjact FiraSimulator Particl GlEm
I iiti [| [[
getPosition)

I M| | [[
I ition | 1 I I
I I | |

: calcLod(lodValues) J : :

i
: : calcLod(ledValues) :
i

I [| [[
I I P [[
| | calcLod{lodValues) |
| | [o
I [il
-

Figure 5.3: LOD operations on fire objects.

1. Each node’s calcLod()-method is invoked from the scenegraph with a
reference to the current camera.

2. The node fetches the camera’s current position using getPosition().

3. The node calculates the distance between itself and the camera, and
uses the distance to calculate the overall LOD value.

4. The node determines whether its object is visible or not by calculating
the angle between it and the camera’s view direction, and comparing
the result to the camera’s field of view.

5. The node invokes the calcLod() method of its object, passing along the
overall LOD value and the visibility rating.

6. The FireObject instance uses the visibility rating to determine whether
the visualization and simulation should be switched off, and a proxy
simulation used for the dynamic lighting. The simulation must be run
for a certain period after ignition so the fire has progressed to a stable
burning state.

62 CHAPTER 5. IMPLEMENTATION

7. If the overall LOD value has changed, it is then passed on to the FireS-
imulator and ParticleSystem’s calcLod()-methods. If the overall LOD
value has not changed, no further steps are performed.

8. The FireSimulator uses the overall LOD value to alter the detail level
of the fire simulation by setting simulation step skipping parameters
and resizing the CFD grids. A more detailed look at this step can be
seen in Chapter 5.2.3.

9. The ParticleSystem uses the overall LOD value to alter the detail level
of the fire visualization. A more detailed look at this step can be seen
in Chapter 5.2.4.

5.2.3 Simulation LOD

The simulation LOD consists of two main parts: simulation step skipping
and CFD grid resizing. Pseudo code for the simulation LOD can be seen
in Figure 5.4. The step skipping is simply an integer telling the application
how many frames should be rendered between each time a simulation step is
performed. When the fire simulator is invoked, it compares a counter to this
value. If the counter is below the value, the counter is incremented and the
simulation step is skipped. If the counter has reached the threshold value,
the counter is reset and the simulation step is performed.

The CFD grid resizing is done using a form of nearest neighbor filtering.
The 3d textures are stored as a set of 2d texture slices, with the number of
slices being the depth of the texture. When the 3d textures are resized, the
textures themselves are not resized. What changes is simply how much of
the texture is used. This is done to avoid the likely slowdown of constantly
having to generate new textures. The textures are scaled according to the
ratio between the new and current grid resolutions. Depth scaling is done
by going through each slice in the new grid, and using the nearest slice
from the old grid as the input texture. The individual texture slices are
scaled by altering the texture coordinates used to render the slice. By scaling
the texture coordinates according to the ratio between new and old grid
resolutions, the values of the slice are stretched or compressed to a larger or
smaller area of the texture.

5.2. PROGRAM FLOW

63

/%

x FireSimulator’s calcLod()—method
x @param lod 1s a value between 0 and 1
v/
void calcLod(float lod){
// Time step skipping
stepSkip = (int)1/lod;

// CFD grid resizing

for each 3dtexture t used by fire rendering{
t—>resize (lod);

}

}
/%

x 3d texture’s resizing method. Size

x 1s a simplification of the values width,
x height and depth.

x @param lod 1s a value between 0 and 1
«/
void resize (float lod){

newSize = maxSize *x lod;

scaleFactor = newSize/currentSize;

for i from 0 to newSize{
nearestSlice = i % scale;
bind input texture nearestSlice to input;
bind output texture i to output;
texCoords = currentSizexscaleFactor;
render slice to output texture using texCoords;
}
swap output and input textures;
currentSize = newSize;

}

Figure 5.4: Pseudo code for simulation LOD.

64 CHAPTER 5. IMPLEMENTATION

5.2.4 Visualization LOD

The visualization LOD consists of the changes made to the particle system.
These changes include altering the count, size, and intensity of particles.
Pseudo code for the visualization LOD can be seen in Figure 5.5. The particle
count is changed linearly with the overall LOD value. The count is changed
by altering how particles spawn. Normally, as a particle’s visibility passes
below a certain threshold it decays (is removed), and is respawned at the base
of the fire. The LOD algorithm changes this by setting a spawn ratio so that
more or less than one particle may spawn each time a particle decays. The
spawn ratio is the ratio between the current particle count and the target
particle count.

As the particle count changes, the size and intensity of each particle also
changes. The intensity and size of each particle changes with the overall
LOD value to compensate for having fewer or more particles. The changed
parameters are only applied to new particles. Additionally, if the overall
LOD value is at a minimum level, particle textures are disabled.

The decayParticle()-method is not a part of the general LOD algorithm,
but is changed to incorporate the spawn ratio. When a particle decays a
counter is incremented by the current spawn ratio. If the counter’s value is
higher than 1 a single particle is spawned and the counter is decremented by
1, until its value falls below 1.

5.2. PROGRAM FLOW

65

/%
x ParticleSystem s calcLod()—method
x @param lod is a value between 0 and 1

void calcLod(float lod){
targetCount = maxCount * lod;
spawnRatio = targetCount / currentCount;

pSize = baseSize / sqrt(lod);
pIntensity = baselntensity / lod;

if lod is at minimum level{
disable particle textures,
}

}
VAT

x Effect of adding spawn ratio to particle
* TEesSpawning

*/
void decayParticle (){
counter = counter + spawnRatio;

while (counter >= 1.0){

spawn particle at random location near fire
counter ——;

}

base ;

Figure 5.5: Pseudo code for visualization LOD.

66

CHAPTER 5. IMPLEMENTATION

Chapter 6

Results

This chapter presents the results of various tests run to verify the viability
of the LOD framework. Because the full physically based fire rendering with
LOD could not be completed in time for the deadline, the results presented
here are from tests run on Rgdal and Storli’s fire rendering. All tests were run
on an Intel 1.83GHz Core Duo with 1GB RAM and an NVIDIA Geforce 7600
Go with 512 MB VRAM. For performance tests, the fire would be rendered
as shown in Figure 6.1. Tests were performed by manually adjusting the

Figure 6.1: Position of fire for performance tests.

detail level of the fire rendering and evaluating the impact on performance
and visual quality.

The validity of the results will be considered, as the implementation was
not completed in time. Then the different results will be presented, evalu-
ating the cost of running the different LOD operations, and then the results

67

68 CHAPTER 6. RESULTS

for the different components of the fire rendering. Finally, a brief summary
will be given, highlighting the most important discoveries made.

6.1 Validity of results

The results presented are from a series of tests that were run using the
incomplete implementation. Most of the tests were run on the application
using Rgdal and Storli’s code as a basis. Because the implementation could
not be completed in time, the tests were generally performed by manually
changing the detail level of the different aspects of the fire rendering.

While the results of these tests are not conclusive proof of the LOD algo-
rithm’s viability, they should offer a good indication of how well the algorithm
works and how it will affect the different aspects of the fire rendering.

6.2 Results

The different tests performed will be presented in turn here, and the achieved
results will be considered. The tests cover the LOD algorithm, the rendering
of multiple fires, variations in the detail level of fire visualization and simu-
lation, view culling, and simulation step skipping.

While the detail level changes made by the LOD algorithm are important
for the end result, it is also important to consider the performance impact of
the LOD algorithm itself. Performance gains from reducing the detail level
of the fire are not much good if the LOD algorithm itself is very costly to
run.

6.2.1 Impact of running the LOD algorithm

Tests were run to see how the different aspects of the LOD algorithm such
as overall LOD calculation, visualization LOD, and simulation LOD would
affect the performance of the application. With one exception, however, none
of the LOD calculations made any discernible difference to the application
performance. The only exception to this is the grid resizing algorithm. The
performance impact of the grid resizing was tested by running the texture
resizing on a test texture alongside Rgdal and Storli’s fire rendering. The
number of 3d textures used for testing was the same as the number of 3d

6.2. RESULTS 69

textures used in the fire rendering. The resolution of the 3d textures was also
the same as that of the ones used for the fire rendering. Each frame, the resize
algorithm would run for the full size of the textures (basically resizing them
from full size to full size). The results for different grid resolutions can be seen
in Table 6.1. As these results show, the negative impact on performance from

Grid size | Grid resizing | No grid resizing
16x24x16 27.82 29.32
24x36x24 13.54 14.19
32x48x32 5.76 5.94

Table 6.1: Performance impact of running the resize algorithm for different
grid resolutions.

the grid resizing is very small. Most of the impact that is there is likely to
stem from the overhead of rendering slices to framebuffer objects. As such,
it may be possible to lessen this small impact by combining the resizing
algorithm with the simulation of the fire using an extra parameter, rather
than perform the resizing separately. The visual impact of gradually scaling
the CFD grids can only be gauged with a functional implementation of the
entire method. However, the visual result of gradually scaling a single static
texture slice is illustrated in Figure 6.2. Combining the different aspects of
the LOD algorithm seemingly produced the exact same result as only running
grid resizing, further reinforcing the conclusion that only grid resizing has an
impact on performance. The result tables for the combined algorithm and
the different portions that had no discernible effect may be seen in Appendix
A.

There are a couple of things that may change these results. For the overall
LOD calculations, only distance LOD was calculated, which is probably the
simplest LOD condition to evaluate. If more complex conditions such as
pixel size or obscuring objects are included, the overall LOD calculations
may have an impact on performance. Also, when grid resizing is performed,
the textures themselves are not resized. The internal values are altered, and
the fire rendering changes how much of the texture is used. The amount of
texture memory used by a fire rendering is therefore static. Actually resizing
the textures may allow for conserving resources, but could also make the
algorithm slower.

70 CHAPTER 6. RESULTS

Figure 6.2: Single resized texture slice. Left: Slice is rendered as a full
128x128 texture. Right: Same texture after gradually using nearest neighbor
filtering to scale it down to 12x12.

6.2.2 Multiple fire objects

A part of the objective of this thesis is to enable the fire to exist in a large
scene with other objects, including other fire objects. Each fire object should
have individual simulations, visualizations, and LOD values. Thus, it is
important to determine how the performance scales with multiple fire objects.
The performance impact of running multiple fire objects at the same time
may be seen in Table 6.2 and an illustration of three fires running side by
side is shown in Figure 6.3. As is seen, performance scales roughly linearly

No. of fires | Performance
1 30.23
2 14.34
3 9.44
4 7.23

Table 6.2: Performance with multiple fire objects rendered at the same detail
level. Grid size 16x24x16, 2048 fire particles and 512 smoke particles. All
fire objects are rendered at the same distance from the camera.

6.2. RESULTS 71

with the number of fire objects. This is a promising result, as it indicates
that there is not a large amount of overhead involved with including several
fire objects.

Figure 6.3: Screen shot of three fires running simultaneously.

6.2.3 Visualization and simulation detail levels

The simplest way to alter the detail level of the fire rendering is to alter
either the resolution of the CFD grids, or the number of particles used for
visualization. Table 6.3 shows the performance from the 3D fire rendering
running on the GPU, using different grid dimensions and particle counts. As

Grid size
Particle count | 16x24x16 | 24x36x24 | 32x48x32

512 169.19 32.87 6.58
1024 92.36 22.19 6.12
2048 47.23 15.19 5.94
4096 24.63 11.07 5.54
8192 12.72 7.11 4.87
16384 7.04 5.08 3.93

Table 6.3: Performance results for fire rendering using different grid sizes and
particle counts. Fire rendered without smoke.

72 CHAPTER 6. RESULTS

expected, the impact from altering the particle count is greater when the grid
dimensions are small, as the simulation dominates the calculation complexity
when the dimensions are larger. This indicates that altering particle count
needs to be combined with altering the grid dimensions to be effective. For
a grid size of 16x24x16, doubling the number of particles roughly halves the
performance of the rendering. For a grid size of 32x48x32, however, even
multiplying the particle count by 32 doesn’t quite halve the performance.

The visual result of rendering the fire using different resolutions for the CFD
grids is illustrated in Figure 6.4. The still images do not fully convey the

Figure 6.4: Screen shots of fire using different grid sizes and 4096 particles.
Left: 16x24x16 Middle: 24x36x24 Right: 32x48x32

impact as it is mainly apparent from the motion of the fire, but altering the
resolution of the CFD grids has a significant effect on the animation of the
fire. As is mentioned in [[KIESRO6], increasing the resolution of the grids will
decrease the effects of vorticity confinement and similar parameters. The
result is that as grid resolution increases the fire animation will gradually
become more uniform, until it eventually just resembles a simple cone. This
is a significant problem, as the fire should not alter its behavior significantly
when the detail level changes. While the behavior changes gradually, which
makes it harder to notice, the difference in behavior between different grid
sizes is large enough that a viewer is likely to notice it. However, the behav-
ior also depends on parameters set for the flame. A way to counteract the
changing behavior is to scale the parameters with the grid resolution. Do-
ing so should preserve the overall behavior of the fire as the grid size changes.

6.2. RESULTS 73

The visual impact of lowering the particle count as the fire moves away from
the camera is illustrated in Figure 6.5. As the particle count is lowered the
particle size and intensity is increased accordingly. The particle counts for

Figure 6.5: Screen shots of fire seen at different distances using different
particle counts and grid resolution 16x24x16. Left: 20 particles. Middle: 200
particles. Right: 4000 particles.

the images in Figure 6.5 is lowered by a large amount as the fire moves away.
The difference between the closest and farthest images is 3980 particles, or
99.5% of the total number of particles. However, even with so few parti-
cles the fire still displays the characteristic flickering behavior and overall
appearance.

6.2.4 Texture disabling

Altering the particle textures as the detail level is lowered is included to
further increase performance when the detail level is low. The performance
impact of disabling particle textures with different particle counts is shown in
Table 6.4. The performance impact of disabling particle textures is somewhat
surprising, giving a bigger performance boost than anticipated even with
relatively few particles. The performance impact is, as expected, lower when
fewer particles are used, but even with only 256 particles performance is more
than tripled.

The difference in visual quality when viewing the fire at different distances
with particle textures disabled is shown in Figure 6.6. The visual result is
also promising. Even at close range the quality of the fire is not much worse
than when using textures, and further away it becomes very difficult to spot

74 CHAPTER 6. RESULTS
Particle count | Textured | Not textured
256 317.39 1002.23
512 169.53 806.94
1024 93.01 575.79
2048 47.20 375.12
4096 24.63 215.85

Table 6.4: Performance impact of disabling particle textures. Grid resolution
used is 16x24x16.

Figure 6.6: Fire particles rendered without textures using grid resolution
16x24x16 and 2048 particles.

the difference. The smoke, however, becomes noticeably blocky, even at a
distance. The reason is that the smoke particles are rendered at a much
larger size than the fire particles. When the particles are large, the square
shape of the untextured particles becomes noticeable even at a distance.

The problem, then, is that while disabling particle textures gives a signif-
icant performance boost, the visual quality becomes a problem if the particle
size is increased significantly. Disabling particle textures thus becomes a
problem when combined with the change in particle count and size as the
fire moves further away. However, since the performance boost from dis-
abling particles is significant, it may be a good option to reduce the amount
of change made to particle count and size. Disabling particle textures should
make up for the performance loss from having more particles.

6.2. RESULTS 1)

6.2.5 View culling

View culling is performed to increase the efficiency of the rendering when the
fire is outside the current view. Performance impact from culling different
components when the fire is in view can be seen in Table 6.5. It should be

Components running | 16x24x16 | 24x36x24 | 32x48x32
Both 29.45 14.20 5.90
Visualization 37.12 37.13 37.21
Simulation 1301.32 265.10 7.54

Table 6.5: Performance when running one or both of visualization and sim-
ulation using different grid resolutions. Particle count is 2048 fire particles
and 512 smoke particles.

noted that the simulation of the particles (updating of speed and position)
are done in the simulation step of the rendering. The visualization step only
renders the particles to the view. An interesting aspect to consider is the
overhead of running the visualization. The leap from 37 to 1300 frames per
second when disabling the visualization seems significant. A counter argu-
ment to this is that when running the visualization using a system of only
a single particle, enabling or disabling the particle system seems to have no
discernible effect. Compared to the results seen in Figure 6.5 this is a very
promising result, since lowering the particle count gives a good performance
boost, and the fire can still look convincing with few particles when it is far
away. As noted earlier, however, the performance impact of the visualization
is directly related to CFD grid resolution, as the exponential rise in simula-
tion cost will quickly dominate the visualization cost.

Performance results for culling of different components when the fire is out-
side the view are seen in Table 6.6. As can be seen, merely looking away
from the fire increases performance significantly (the fire runs at roughly 20
frames per second when visible and fully rendered). The overhead of passing
the particles to the rendering pipeline is also visible in the difference between
enabled and disabled visualization. While the internal culling in the graphics
pipeline will reduce the cost, passing the particles to the point where they
are culled still incurs a significant cost.

CHAPTER 6. RESULTS

Visualization on

Visualization off

Simulation on

445.83

1297.39

Simulation off

615.34

1729.11

Table 6.6: Frame rate impact of view culling when fire is outside view. Par-
ticle count is 4096 fire particles and 512 smoke particles, and grid size is
16x24x16.

6.2.6 Simulation step skipping

Simulation step skipping is performed to increase the performance of the
simulation when the detail level of the fire is reduced. Skipping simulation
steps means that the fluid simulation calculations are not performed every
frame. If the fluid simulation is halted, the fire fluid would act as a static
velocity field, which the fire particles could still flow through normally. The
fire would appear as a simple static animation, however. The idea is to
not perform the fluid simulation every frame, thus increasing performance
while preserving the overall behavior for a fire rendered at low detail. The
impact on performance from simulation step skipping can be seen in Table
6.7. With only the simulation running, the performance increases roughly

Frames skipped | Simulation only | Simulation and visualization
0 256.90 14.22
1 504.82 25.66
2 790.18 33.17
3 1063.92 39.63
7 1285.03 40.70
15 1313.31 41.23

Table 6.7: Performance impact of using simulation step skipping. Fire run
with grid resolution 24x36x24, 2048 fire particles, and 512 smoke particles.
Frames skipped refers to the number of frames rendered between each sim-
ulation step. Skipping three frames means running the simulation for every
fourth frame, and so on.

linearly when between 0 and 4 frames are skipped. However, after that
the performance increase drops sharply, with an apparent cap at around

6.3. SUMMARY 7

1300 frames per second. It is likely that application overhead for running
CFD shader program or other peripheral operations prevent the frame rate
from rising much above this level. This assumption is supported by results
found when using grid size 16x24x16, where the frame rate would be around
1300 with no frames skipped but never rise much, and also when using grid
size 32x48x32, where the frame rate would continue to rise linearly longer,
until reaching approximately the same value. The same trend is seen when
the visualization is included, though the performance is lower due to the
significant performance hit from running the visualization.

These results indicate that step skipping may only give good performance
results when the CFD resolution is high. Unfortunately, skipping simulation
steps slows down the progression of the fluid, making the animation look
somewhat odd at close ranges (which is where using high grid resolutions is
appropriate). Increasing the size of each time step can alleviate this problem,
but with the existing code increasing the time step value by a factor greater
than 4 tends to introduce instabilities and erratic behavior to the fire. The
combination of these results leads to the conclusion that with the current
code, time step skipping does not work particularly well. However, if the
instability and performance cap problems are solved, this may be a good
way to increase the performance of the fire.

6.3 Summary

The results from the different tests run on the partially completed dynamic
LOD framework have been presented in this chapter. An outline of the most
important observations made is given below.

e The LOD algorithm itself has little impact on performace, with only
the texture resizing introducing a small overhead.

e The performance impact of the visualization’s detail level depends on
the simulation’s detail level. At small CFD grid sizes, the performance
scales roughly linearly with particle count. But as the CFD grids in-
crease in size, the cost of the simulation increases exponentially, quickly
dominating the cost of the fire rendering.

e Changing CFD grid size changes the overall behavior of the fire. This
needs to be corrected by scaling fire parameters together with the CFD
grid size.

78

CHAPTER 6. RESULTS

Reducing particle count while increasing particle size and intensity
gives good visual results, with the characteristic flickering of the fire
preserved at a distance even when the particle count is reduced from
4096 to 20.

Disabling particle textures gives a larger performance boost than ex-
pected, and good visual results. However, the visual quality declines
when particle size increases, giving a conflict with the technique of
increasing particle size as the detail level is lowered.

View culling gives very good performance increases by disabling fire
visualization and simulation when the fire object is not in the current
view.

Simulation step skipping gives a good performance boost, but works
best at high CFD grid sizes, and noticeably slows down the development
of the fire. Attempting to increase step size to fix slowdown introduces
instability to the fire.

While the results presented here are tentative rather than being conclusive
proof that the algorithm works as wanted, the results are a strong indication
that a fully implemented dynamic LOD algorithm will give good results both
in terms of performance and visual quality.

Chapter 7

Discussion

In this chapter I discuss the results achieved during the work with this thesis.
I discuss the problems encountered while trying to construct and implemen-
tation of the LOD framework; problems that led to my inability to fully finish
the framework. The requirements presented in Chapter 1 are evaluated based
on the capabilities of the framework presented in 4.6. A conclusion is then
made based on the evaluation and experiences made while working. The
primary contributions from my work to the field of graphics and LOD are
presented. Finally, I present various ways in which the algorithm could be
improved in the future.

7.1 General

I have presented a method for adding a dynamic LOD algorithm to a phys-
ically based fire rendering running on the GPU. The algorithm runs on the
GPU where this is reasonable, and requires little resources to alter the detail
level of the fire rendering. However, while the test results presented indicate
that the algorithm will give good results in terms of performance and vi-
sual quality, I was unable to complete the implementation and get conclusive
results.

As I was set to begin implementation, I made an unfortunate choice in
that I decided to use the code from | |, and attempt to change it to
incorporate my LOD method, rather than start over. This was done because
I initially believed this to be less work than to build a new fire rendering
from scratch. The code I attempted to use was highly complex, difficult to

79

80 CHAPTER 7. DISCUSSION

read, and incompatible with what I wished to accomplish. Thus, much of the
time was spent on what can best be described as ”fiddling”; attempting to
make changes to the code to incorporate the LOD algorithm and scenegraph
functionality. This approach was eventually abandoned, but there was not
sufficient time remaining to complete the fire rendering with LOD before the
deadline. Part of the reason why I attempted to work on earlier code was that
the size of the code and the fact that two people had worked on it made it
seem likely that there may not be enough time to build the application from
scratch. Closer examination later on, however, revealed that a considerable
amount of the code was for peripheral functionality that was not necessary
or even made the implementation of LOD harder. These problems can be
attributed to a lack of effort on the prestudy for the thesis. Had more time
been spent on studying the code and considering the different options rather
than starting to code with little forethought, these problems might have been
avoided and a proper implementation of the fire LOD algorithm completed.

In the end, the problems I encountered forced me to settle for running
small tests for various parts of the framework, and evaluating the effect the
different LOD operations would have on the fire rendering in terms of per-
formance impact and visual quality.

7.2 Evaluation

The evaluation of the constructed framework is somewhat troublesome, as
there are in fact two separate frameworks, both incomplete. Some function-
ality was completed for the framework that used Rgdal and Storli’s code as
a basis, but it turned out that not enough time was available to make the
necessary changes to their code to make it compatible with important func-
tionality. The new framework contains some of the missing functionality, but
there was not enough time to complete the fire rendering for proper testing.
The evaluation of each requirement presented in Chapter 1.2 will consider
whether the requirement is satisfied by the framework presented in Chapter
4.6.

e R1: The framework should allow a 3D physically based fire
rendering to run in real time:
The framework simply wraps a fire rendering based on Rgdal and
Storli’s fire rendering in a single object. The fire still renders in real
time, thus satisfying the requirement.

7.2. EVALUATION 81

e R2: The framework should allow the fire rendering to be con-
tained in a scene that also contains numerous other complex
objects:

The framework satisfies this requirement by containing the fire in an
object which is placed in a scenegraph. The scenegraph can contain an
arbitrary number of other objects.

e R3: The framework should allow several fire renderings to
exist in the same scene, each with individual detail levels:
As the fire object is treated as any other object in the scenegraph, any
number of fire objects may be included in the scene. Each fire object
has its own simulation, visualization, and detail level. The requirement
is satisfied.

e R/4: The framework should allow the fire simulation to be

run at varying detail levels to increase either performance or
quality as needed:
The framework enables changing the detail level of the fire simulation
by altering the size of the grids used for CFD calculations and by
introducing simulation step skipping. View culling is used to disable
the simulation when the fire is out of view. These techniques give good
results in terms of performance and visual quality, though changes in
fire behavior need to be counteracted. This requirement is satisfied.

e R5: The framework should allow the fire visualization to run

at varying detail levels to increase either performance or qual-
ity as needed:
The framework enables changing the detail level of the fire visualiza-
tion by changing particle count and size, disable particle textures, and
use view culling to disable the particle system and replace the dynamic
lighting system with a simple proxy simulation when the fire is out of
view. The different changes in detail level give good results in terms of
visual quality and performance. This requirement is satisfied.

e R6: The framework should dynamically alter the detail level
of the fire to conserve resources while giving the greatest pos-
sible quality when the fire dominates the view:

Nearest neighbor filtering is used to dynamically alter the CFD grid
size. The particle system detail level is dynamically altered by setting

82 CHAPTER 7. DISCUSSION

a respawn ratio to alter the particle count. A simple stochastic system
is used for the dynamic lighting proxy simulation. This requirement is
satisfied.

e R7: The framework should, as far as is possible, run on the
GPU:
Running the entire LOD algorithm on the GPU is possible, but cur-
rently impractical. The reason is that for GPUs without geometry
shaders every fire particle needs to be passed from the CPU to the
GPU. The overall LOD calculation and setting of different parameters
is therefore done on the CPU, while the most costly component, the
CFD grid resizing, is done on the GPU. If the fire rendering is moved
completely to the GPU, the LOD algorithm could also run completely
on the GPU. This requirement is satisfied.

Because the implementation of the framework could not be completed in
time, the evaluation presented here is tentative, based on the different test
results presented in Chapter 6. In particular, the results of dynamically
altering the detail level could not be tested.

7.3 Conclusion

Because the implementation could not be completed in time for the deadline
the evaluation of the results are only tentative, and more work is required
to determine if the LOD algorithm will truly give the desired effect on the
fire rendering, allowing it to run well as part of a larger scene with a variety
of other complex objects. As it is, the results of the tests performed are not
definite proof that the algorithm works. They do, however, give a strong
indication that the LOD algorithm will give good results, both in terms of
performance and visual quality. The test results indicate that a complete
implementation of the framework will satisfy the requirements specified in
Chapter 1.2, though more thorough testing of a finished implementation is
needed to determine how to apply the different LOD components to get the
best result.

Some important observations have been made that should contribute to
future work in this area. I have shown that there are significant performance
gains to be made by adjusting the detail level of a fire rendering. I have also
shown that when a fire rendering is of little importance to the current view,

7.4. CONTRIBUTIONS 83

it is not necessary to render it at full detail, and that changes to the detail
level can be performed on the GPU to avoid slowdown.

The largest unknown that remains is the dynamic change in detail level.
A difficult aspect of working with LOD is how to make the transition from
one detail level to another smooth. If the viewer moves a small amount away
from a fire object, it should not be noticeable that the detail level of the
fire has changed. Even if the difference between the smallest and greatest
detail levels are noticeable, the difference for each small step should not be.
Because the implementation was not completed, the visual impact of moving
from one detail level to another could not be tested.

7.4 Contributions

We have presented a method for increasing the efficiency of a physically based
fire rendering running on a GPU. The contributions of this work to the area
of real-time rendering of physically based fire are as follows:

e A method for applying dynamic LOD to a physically based rendering
of fire, tested with the fire rendering presented in [].

e A method for including multiple fire objects, each with individual vi-
sualizations, simulations and detail levels.

e A method for dynamically altering the detail level of the fire’s particle
system, using particle respawning as a way of altering particle count,
altering the size and intensity of each particle, and using texture dis-
abling and view culling, in order to increase the performance of the fire
rendering.

e A method for dynamically altering the detail level of a fluid simulation
based on the Navier-Stokes equations, using nearest neighbor filtering
to gradually scale the size of the CFD grids as well as simulation step
skipping and view culling, in order to increase the efficiency of the fire
rendering.

e The methods used for the different components of overall LOD cal-
culation, visualization LOD, and simulation LOD are all independent,
allowing for replacing each component to better suit the needs of an
individual application.

84 CHAPTER 7. DISCUSSION

The simulation LOD in particular uses a general technique that should be
possible to use for most any fluid simulation that uses the Navier-Stokes
equations on a grid of discrete cells. A work-in-progress article |]
was submitted to and approved for presentation at Theory and Practice of
Computer Graphics 2007. The paper was awarded the Terry Hewitt prize'.

7.5 Future work

There are numerous possibilities for improving and expanding the LOD al-
gorithm, and some of these are discussed below.

e While the test results presented here are an indication of the viability
of having dynamic LOD for physically based fire renderings, a complete
implementation of the LOD algorithm is needed for conclusive results.

e There is a significant variety of ways to perform the various LOD op-
erations. While the most suited methods may vary from application
to application, thorough testing of the different LOD conditions and
formulas for calculating various LOD values should be performed to
determine the advantages and disadvantages of each.

e The functionality offered by new GPU chipsets such as the Geforce 8
series should make it possible to move even more of the load of the
fire rendering from the CPU to the GPU or find other ways to increase
the efficiency of the rendering. Similarly, the new functionality may
offer new and improved ways to perform the LOD calculations. The
new geometry shader in particular should present an opportunity to
move more of the rendering and attached LOD algorithm to the GPU,
further reducing the amount of necessary communication between the

CPU and GPU.

e The system of textured particles used by Rgdal and Storli is one of
several different ways to perform the visualization of the fire. Other
visualization methods may be more costly to perform but offer more

!The Terry Hewitt Prize is awarded to the best technical research student
paper on the basis of both the written paper and its presentation. All pa-
pers submitted by Master students and Ph.D students are eligible for this prize
(http://www.eguk.org.uk/TPCG06/cfp.html).

7.5. FUTURE WORK 85

realistic results. Examples include volume renderings or visualizations
that project values to relatively simple polygonal surfaces. Such meth-
ods may also benefit considerably from dynamic LOD, allowing them
to be implemented for real-time applications.

e As for visualizations, there are different possible ways to perform the
simulation of the fire, such as doing the simulation without the grid of
discrete cells. Finding ways to perform dynamic LOD for these simu-
lation methods can expand the versatility and application possibilities
for the algorithm.

e As mentioned previously, CFD calculations are used for many different
types of application areas involving fluid dynamics. While the details
differ, the basic principles of the different types of fluid calculations are
very similar. The LOD algorithm could conceivably be expanded to
many of these areas such as water simulations and more general gas
simulations.

86

CHAPTER 7. DISCUSSION

Bibliography

[AL02]

[BDLO3]

[Blo8s]

[Che01]

[CO02]

[DFY7]

[DO01]

[DQN02]

Nick Foster Arnauld Lamorlette. Structural modeling of flames
for a production environment. Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques, pages
729-735, 2002.

Niels Jgrgen Christensen Bent Dalgaard Larsen. Real-time ter-
rain rendering using smooth hardware optimized level of detail.
2003.

Jules Bloomenthal. Polygonization of implicit surfaces. Computer
Aided Geometric Design, Volume 5, pages 341-355, 1988.

Stephen Chenney. Simulation level-of-detail. 2001.

H. Vilhjédlmsson J. Dingliana S. Dobby B. McNamee C. Peters
T. Giang C. O’Sullivan, J. Cassell. Levels of detail for crowds
and groups. Computer Graphics Forum, Volume 21 number 4,
pages 733-741, 2002.

Stephen Chenney David Forsyth. View-dependent culling of dy-
namic systems in virtual environments. Proceedings 1997 Sym-
posium on Interactive 3D Graphics, pages 5558, 1997.

Ming C. Lin David O’Brien, Susan Fisher. Automatic simplifica-
tion of particle system dynamics. Computer Animation, 2001.
The Fourteenth Conference on Computer Animation. Proceed-
ings, pages 210-257, 2001.

Henrik Wann Jensen Duc Quang Nguyen, Ronald Fedkiw. Phys-
ically based modeling and animation of fire. Proceedings of the

87

88

[DT03]

[Eri00]

[FDO5]

[FRO6]

[Hop98§]

[Hue03]

[HV95]

[JHOT]

[JJ05]

[JK05]

BIBLIOGRAPHY

29th annual conference on Computer graphics and interactive
techniques, pages 721-728, 2002.

Machiko Tamura Tadahiro Fujimoto Kazunobu Muraoka Nor-
ishige Chiba Daiki Takeshita, Shin Ota. Particle-based visual
simulation of explosive flames. Computer Graphics and Applica-
tions, 2003. Proceedings. 11th Pacific Conference on, pages 482—
486, 2003.

Carl M. Erikson. Hierarchical levels of detail to accelerate the

rendering of large static and dynamic polygonal environments.
PhD thesis, University of North Carolina, Chapel Hill, NC, 2000.

George Drettakis Francis Schmitt Florent Duguet, Carlos Her-
nandez. Level of detail continuum for huge geometric data. SIG-
GRAPH 2005, 2005.

Oscar Ripolles Carlos Granell Francisco Ramos, Miguel Chover.
Continuous level of detail on graphics hardware. Proceedings
of the 15th International Conference on Discrete Geometry for
Computer Imagery, 2006.

Hugues Hoppe. Smooth view-dependent level-of-detail control
and its application to terrain rendering. Proceedings of the con-
ference on Visualization '98, pages 35—42, 1998.

David Luebke Martin Reddy Jonathan D. Cohen Amitabh Varsh-
ney Benjamin Watson Robert Huebner. Level of Detail for 3D
Graphics. Morgan Kaufmann Publishers, 2003.

W Malalasekera H.K. Versteeg. An introduction to Computational
Fluid Dynamics, The Finite Volume Method. Prentice Hall, 1995.

Deborah Carlson Jessica Hodgins. Simulation levels of detail for
real-time animation. Graphics Interface '97, pages 1-8, 1997.

Sheng Li Xuehui Liu Junfeng Ji, Enhua Wu. Dynamic lod on gpu.
Computer Graphics International 2005, pages 108-114, 2005.

Ridiger Westermann Jens Kriiger. Gpu simulation and render-
ing of volumetric effects for computer games and virtual environ-
ments. Computer Graphics Forum, 24(3), 2005.

BIBLIOGRAPHY 89

[KESR06] Geir Storli Knut Erik Samuel Rgdal. Physically Based Simulation

[KP89]

[Lev02]

[LGI6]

[MBO6]

[OEG07]

[PBO1]

[Pha05]

[PLI6]

[RBYS]

and Visualization of Fire in Real-Time using the GPU. PhD the-
sis, Norwegian University of Science and Technology, Trondheim
Norway, 2006.

E.M Hoffert K. Perlin. Hypertexture. International Conference
on Computer Graphics and Interactive Techniques, pages 253—
262, 1989.

Joshua Levenberg. Fast view-dependent level-of-detail rendering
using cached geometry. Proceedings of the conference on Visual-
wzation ‘02, pages 259-266, 2002.

James K. Hahn Larry Gritz. Bmrt: A global illumination imple-
mentation of the renderman standard. Journal of Graphics Tools,
Vol. 1, No. 3, pages 29-47, 1996.

Hassan Foroosh Murat Balci. Real-time 3d fire simulation using a
spring-mass model. Multi-Media Modelling Conference Proceed-
ings, 2006 12th International, page 8pp, 2006.

Lars Tangvald Odd Erik Gundersen. Level of detail for physi-
cally based fire. Proceedings of Theory and Practice of Computer
Graphics, 2007.

Pierre Poulin Philippe Beaudoin, Sebastian Paquet. Realistic and
controllable fire simulation. No description on Graphics interface
2001, pages 159-166, 2001.

Matt Pharr(editor). GPU Gems 2. Addison-Wesley, 2005.

William Ribarsky Larry F. Hodges Nick Faust Gregory A. Turner
Peter Lindstrom, David Koller. Real-time, continuous level of de-
tail rendering of height fields. Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques, pages
109-118, 1996.

Michael Destriau Roland Borghi. Combustion and flames : chem-
wcal and physical principles. Editions Technip, 1998.

90

[RCGO2]

[SAKR00]

[SB05]

[SCOg]

[SC01]

[Shi90]

[SPCO5]

[SROG]

[SRWHOS]

[Sta99]

BIBLIOGRAPHY

Richard E. Woods Rafel C. Gonzalez. Digital Image Processing,
Second Fdition. Prentice Hall, 2002.

R. A. Crawfis S. A. King and W. Reid. Fast volume rendering
and animation of amorphous phenomena. 2000.

O. Franzke J. Kopf O. Deussen S. Behrendt, C. Colditz. Re-
alistic real-time rendering of landscapes using billboard clouds.
Proceedings of Furographics 2005, Volume 24, 2005.

David Forsyth Stephen Chenney, Jeffrey Ichnowski. Efficient dy-
namics modeling for vrml and java. Proceedings of the third sym-
posium on Virtual reality modeling language, pages 1524, 1998.

David Forsyth Stephen Chenney, Okan Arikan. Proxy simulations
for efficient dynamics. Proceedings of Furographics 2001, 2001.

Peter Shirley. A ray tracing method for illumination calculation
in diffuse-specular scenes. Proceedings of Graphics Interface 90,
pages 205-217, 1990.

Peter Shirley Claudio T. Silva Steven P. Callahan, Joao L.
D. Comba. Interactive rendering of large unstructured grids us-
ing dynamic level-of-detail. Visualization, 2005. VIS 05. IEEE,
pages 199-206, October 2005.

Odd Erik Gundersen Samuel Rgdal, Geir Storli. Physically based
simulation and visualization of fire in real-time using the gpu.
Proceedings of Theory and Practice of Computer Graphics, 2006.

Hans-Peter Seidel = Stefan Rottger Wolfgang Heidrich,
Philipp Slusallek. Real-time generation of continuous levels
of detail for height fields. Proc. 6th Int. Conf. in Central Europe
on Computer Graphics and Visualization, pages 315-322, 1998.

Jos Stam. Stable fluids. SIGGRAPH ’99: Proceedings of the 26th
annual conference on Computer graphics and interactive tech-
niques, pages 121-128, 1999.

BIBLIOGRAPHY 91

TG00

[TKHO4]

[YZ03]

Christopher Peters Carol O. Sullivan Thanh Giang,
Robert Mooney. Aloha : Adaptive level of detail for hu-

man animation. Eurographics 2000 short paper proceedings,
pages 71-77, 2000.

Daut Daman Tan Kim Heok. A review on level of detail. Com-
puter Graphics, Imaging and Visualization, 2004, pages 70-75,
2004.

Zhe Fan Arie Kaufman Hong Qin Ye Zhao, Xiaoming Wei. Vox-
els on fire. Proceedings of the 14th IEEE Visualization 2003
(VIS’03), page 36, 2003.

92

BIBLIOGRAPHY

Appendix A

Result tables

The following result tables are included for completeness, though they were
considered too superfluous to include in the results chapter.

Grid size | LOD running | No LOD

16x24x16 27.81 29.28

24x36x24 13.60 14.22

32x48x32 5.78 5.90
Table A.1: Performance impact of running combined portions of the LOD
algorithm.

Grid size | LOD calculated | LOD not calculated

16x24x16 29.08 29.22

24x36x24 14.24 14.17

32x48x32 5.96 5.97

Table A.2: Performance impact of running the overall LOD calculations.

Grid size | View culling | No view culling
16x24x16 29.08 29.22
24x36x24 14.24 14.17
32x48x32 5.96 2.97

Table A.3: Performance impact of running the visibility evaluation.

93

94

APPENDIX A. RESULT TABLES

Grid size | Step skipping | No step skipping
16x24x16 29.08 29.22
24x36x24 14.24 14.17
32x48x32 5.96 5.97

Table A.4: Performance impact of calculating the step skipping.

Grid size | Particle adjust | No Particle adjust
16x24x16 29.08 29.22
24x36x24 14.24 14.17
32x48x32 5.96 5.97

Table A.5: Performance impact of altering particle count.

Appendix B

Theory and Practice of
Computer Graphics 2007 paper

The following paper was submitted to and presented at the TPCGO7 confer-
ence.

95

EG UK Theory and Practice of Computer Graphics (2007)
Ik Soo Lim, David Duce (Editors)

Level of Detail for Physically Based Fire

Odd Erik Gundersen and Lars Tangvald

Norwegian University of Science and Technology, Trondheim, Norway

Abstract

In this paper, we propose a framework for implementing level of detail for a physically based fire rendering
running on the GPU. The physics of the fire is simulated using a fluid solver and combustion modelling, and the
fire is visualised using a particle system. Our preliminary results indicate that by adjusting the simulation domain
and particle system, performance can be increased without noticeably degrading the fire visually when it is far

from the camera.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism, Animation

1. Introduction

Computer games push the limits of real-time graphics, and
current titles like Gears of War™and The Elder Scrolls:
Oblivion™have stunning graphics. Still, there is a long way
to go until virtual environments are mistaken for real ones.
Generally, games that take place in cities look more realis-
tic than games that take place in natural environments. Con-
trary to human-build structures, natural phenomena are very
complex, and thus hard to visualise in a realistic manner,
especially in real-time. Until natural phenomena are ren-
dered in a convincing way, virtual environments will look
exactly like that; virtual. Our belief is that rendering of natu-
ral phenomena should be based on the laws of physics. How-
ever, there are problems related to this philosophy as solving
equations describing the laws of physics often are computa-
tionally very demanding. This is because either lots of small
equations need to be computed or that the solutions only can
be approximated numerically using methods needing several
iterations.

Our focus is on realistic rendering of fire. As many other
natural phenomena, like smoke, water, and explosions, fire
can be simulated using computational fluid dynamics (CFD).
CFD methods used for creating realistic flames have gener-
ally been too computationally demanding for real-time im-
plementations [TOT*03] [LF02]. But as hardware is becom-
ing increasingly more powerful, this is changing. In recent
years, numerous methods for rendering realistic fire that run
in real-time have been published [ZWF*03] [AH05] [BF06].

(© The Eurographics Association 2007.

Although the papers referenced above describe real-time
techniques for rendering physically based fire, they are not
easily utilised in a virtual environment. This is because they
use large amounts of the resources available to render the fire
only, even when the fires are far away from the camera and
are not important to the scene. Similar problems related to
object geometry are solved using level of detail (LOD) algo-
rithms. LOD algorithms seek to reduce the detail of object
geometry without creating a visual difference. Reducing the
detail of the objects leads to shorter processing time, which
again leads to higher frame rates. However, there is a lack
of research on LOD algorithms for fluid dynamics system in
the literature. We aim to develop a framework that enables
the inclusion of a physically based fire into a virtual environ-
ment.

Our goal is to enhance our previous work on real-time
fires presented in [RSG06] and [GRS06] with a LOD algo-
rithm that reduces the computational cost without creating a
notable difference in visual quality. As both the simulation
and visualisation is completely executed on the GPU, this is
a requirement for our LOD algorithm too. The framework is
still under development, and the results presented in this pa-
per are preliminary. In spite of that, the results indicate that
we are on the right track.

Our contribution. The collection of methods presented
in this paper is a first step to towards a fully GPU imple-
mented LOD framework for rendering physically based real-
time fires. Solutions for both the simulation part and visual-
isation part of the fire rendering process are presented. Dy-

Odd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire

namically resizing the resolution of the simulation domain
together with simulation step skipping are the methods pro-
posed for reducing the computational cost of the simula-
tion, while particle size adjustment and particle count resiz-
ing are used for reducing the cost of the visualisation step.
The framework can easily be extended to work for animating
both smoke and explosions.

This paper is organised as follows. After a brief overview
of related work, an introduction of the fire rendering algo-
rithm is presented. Then, the LOD framework is proposed
followed by preliminary results. The paper concludes with
summary and future work.

2. Related Work

As physically based fires traditionally have been too compu-
tationally demanding for real-time applications, several non-
physical methods have been developed. The most promi-
nent non-physically based method is presented in [Ngu04].
They use video-textured sprites for creating believable rag-
ing fires with smoke in real-time. In order to add variety
to the flames, two flame animations are combined in var-
ious ways. Another non-physical approach is presented in
[KCROO]. They use volume rendering in combination with
a set of textures to visualize animated amorphous materials
such as fire, smoke, and dust. Dynamics and illusion of mo-
tion are created through cycling the textures in each voxel.
In [FMFO06], a method that uses a photometric solid defining
luminous intensities for a set of zentihal and azimuthal direc-
tions is presented. The intensities are stored in a 2D texture
and by rotating this texture the fire is animated.

We have not been able to find any previous work on LOD
algorithms used with physically based fires. There are how-
ever a plethora of literature published on LOD. LOD for
graphics is generally divided into three different types of
methods according to [LRC*03]. These are discrete, which
uses different versions of objects generated before starting
the application, continuous, which generates new versions of
the object during run-time, and view-dependant, which gen-
erates multiple detail levels of the same object during run-
time.

[HDO4] presents a list of of conditions that determines
the importance of an object to the current frame. Among
these conditions are velocity of the objects, distance from
camera, size, and whether the objects are completely or par-
tially visible. LOD has been applied to object geometry
[CCSS05] [DHDSO05] including terrain [Hop98] [RHSS98],
physics [HC97] [FC97], and autonomous behaviour of ob-
jects not controlled by the user, like computer played charac-
ters and effect from weapons [OCV*02]. [OFLO01] presents
a method for clustering particles together to increase calcu-
lation efficiency of particle systems.

3. Rendering Physically Based Fire

The fire rendering process is divided into two parts. First,
the fire is simulated, and then the simulation is visualised.
Simulation is the most computationally demanding process
because it solves a fluid system. This fluid system evolves
four fields controlling the temperature, the amount of ex-
haust gas, the amount of fuel, and the velocity in the simu-
lation domain. The simulation domain is the limited volume
where the fire can burn.

After simulation, the state of the fluid system is visualised
using a particle system of textured particles. The particles
flow through the simulation domain guided by the velocity
field. For each voxel in the simulation domain, a fire colour
is computed and stored in a table called the fire colour field.
The particle’s texture colour is looked up in the fire colour
field based on the particle’s position.

The rest of this chapter gives a brief overview of the fire
rendering process. For a detailed description of the complete
method, see [RSG06].

3.1. Simulating Fire

The fire is simulated by evolving a fuel gas field, an exhaust
gas field, and a temperature field in co-evolution with a ve-
locity field. These fields are governed by the Navier-Stokes
equations and the combustion process, which converts fuel
gas to exhaust gas and heat when the temperature exceeds
a certain threshold. Buoyancy due to heat then causes the
hot exhaust gas to rise, which in combination with vorticity
confinement, cause the characteristic fire-like motion.

3.1.1. The Simulation Domain

We use a voxel data structure to represent the simulation do-
main and will refer to each unit as a cell. The simulation do-
main limits the volume where a fire is simulated. There are
two different kinds of cells in the simulation domain; interior
cells and boundary cells. Each cell contains a corresponding
field value. When discretizing the fields into cells, the field
values are defined in the centre of the cells and assumed to
be uniform inside each one. As for boundary conditions, the
boundary cells are set to O in the density fields and to the
wind vector for the velocity field.

3.1.2. Velocity field

The velocity field u is governed by the Navier-Stokes equa-
tions for incompressible flow with zero viscosity, also known
as the Euler equations:

ou

E——(wV)u—Vp—i-F (1)

Vou=0 2)

(© The Eurographics Association 2007.

Odd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire

The first term on the right-hand side of equation 1 is the
self-advection of the velocity causing velocity to move along
itself. The second term, —V p, is the pressure gradient caus-
ing velocity to move from areas of high pressure to areas
of low pressure. The pressure field is used as a correct-
ing term ensuring that equation 2 holds. Equation 2 is the
non-divergence condition, which states that the velocity field
should be mass conserving. The last term on the right hand
side of equation 1 is the external force acting on the velocity
field. The external force actually consists of several separate
forces as shown in equation 3:

F= fvarticity + fgruvily + fbuoyancy7 3

where fyoriciry is the vorticity confinement force, foraviry
is the gravity force due to fuel and exhaust gases, and
Jbuoyancy 1s the buoyancy force due to heat.

3.1.3. Fire density fields

The three separate scalar fields specifying the amount of fuel
gas, exhaust gas, and heat distributed throughout the sim-
ulation domain are collectively referred to as the fire den-
sity fields. These three scalar fields are evolved by the same
equation:

% =7U‘Vd+KdV2d7(ldd+Sd+Cd 4)

The parameter d is a scalar quantity that represents either
the amount of fuel gas, exhaust gas, or temperature in a cell
in the simulation domain; denoted by g, a or T respectively.
Equation 4 describes the evolution of a scalar field over time
in the simulation domain as the velocity field u affects the
scalar field. We use a slightly modified form of the equations
described in [Sta99].

The first term on the right-hand side in equation 4 gov-
erns the advection of the scalar quantity d by the velocity
field u, while the second term governs the diffusion of the
scalar quantity d. Kk, is the diffusion constant controlling
the amount of diffusion associated with each of the density
fields. Furthermore, the third term governs the dissipation
of the scalar quantity d where o; denotes the dissipation
rate. The dissipation rate ensures that fuel gas, exhaust gas,
and temperature will decrease over time. S; denotes a source
term used for increasing the scalar quantity d. Only the fuel
gas field has a source, which is used for injecting fuel, while
temperature and exhaust gas are produced solely in the com-
bustion process. Cy is the combustion term that controls the
effect of the combustion process on a specific density field.

3.2. Visualising Fire

Using a precomputed black-body radiation lookup table, a
fire colour field is computed based on the exhaust gas and

(© The Eurographics Association 2007.

temperature fields. The fire is visualised using a particle sys-
tem, and the particle positions are updated based on the ve-
locity field, and the particle colours are read from the fire
colour field. Smoke is implemented in a separate particle
system, and the light intensity is based on the fire colour
field.

3.2.1. Computing the fire colour field

We use Planck’s formula for black-body radiation (equation
5) in order to calculate the intensity radiated by the hot ex-
haust gas.

21thc?

(&)

By using the wavelengths of red, green, and blue light and
the temperature of the gas, we calculate the three intensities
Byed, Bgreen, and Byy,,.. These intensities have a very high dy-
namic range whereas the resulting colour should have a lim-
ited dynamic range suitable for display on traditional com-
puter monitors. To map the given intensities between 0 and
1, we use the exponential mapping function from [Mat97]:

n = 1 — elaverage (6)

L is the original intensity, and Layerqge is @ constant con-
trolling the overall brightness. The resulting intensity n will
be in the range [0,1).

Equations 5 and 6 are used to precompute black-body ra-
diation colour values for a user specified range of tempera-
tures, which are stored in a one dimensional lookup table.

At the beginning of each visualization step, the exhaust
gas and temperature fields are used in combination with the
black-body radiation lookup table in order to compute the
fire colour field. This is done for each cell in the simula-
tion domain. Equation 7 shows how the colour ¢ in the fire
colour field is computed based on the temperature 7', exhaust
gas a, and a temperature scaling factor T, which is used
to control the resulting brightness of the fire. lookup is the
black-body radiation lookup table.

¢ = a X lookup (EcaleT))

3.2.2. Visualisation using two particle systems

We visualize the fire and the smoke using separate particle
systems defined in the simulation domain. By computing
a separate smoke field instead of trying to incorporate the
smoke into the fire colour field, we get more control over the
appearance and the amount of smoke produced in the fire.
Each particle represents a small element of the fire or the

Odd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire

smoke and has a set of associated variables: spawn position,
current position, initial spawn delay, current velocity, and
colour. Spawn position and initial spawn time are given at
the beginning of the simulation, whereas the other variables
are dynamically updated. A particle’s colour is specified by
an RGBA colour value. The amount of smoke is computed
based on the temperature at a given cell and the amount of
exhaust gas, quite similar to how the fire colour field is gen-
erated.

Initially, after the given spawn delay, a particle’s position
is set to the spawn position of the particle. A simple Euler
step is later used to update a particle’s position:

X; = X; +v;0t, 8)

where x; and v; are the position and velocity of particle
i respectively and &r is the timestep. Based on the particle
position, the particle’s velocity and colour are found by in-
terpolating samples from the discretized simulation velocity
and fire colour fields.

When a particle’s intensity drops below a certain thresh-
old, it is respawned by resetting its position to its spawn po-
sition. A minimum initial lifetime ensures that the particle
is not respawned before it has had a chance to enter the fire.
Particles are textured to create more low-level detail.

3.3. Additional Properties

Fires interact with their surroundings. Our fire implementa-
tion reacts to dynamic wind, looks realistic when moved, and
illuminates surrounding objects. Wind is generated dynami-
cally by utilising Perlin noise curves [Per85]. The wind vec-
tor operates on the simulation domain. Simulation domain
advection is used for moving the fire around. The simulation
domain and the particles are advected using the distance vec-
tor, which is the distance between the new and old position.

In addition, lights with dynamically set intensities are im-
plemented. One or more point light sources are placed inside
the simulation domain, and based on their position in the
simulation domain the light intensities are computed from
the amount of exhaust gas and temperature at their respec-
tive position. The dynamic lighting produces the flickering
light often associated with fires.

4. Level of Detail Framework

As shown above, rendering of fire is a complex task with
several steps utilising different technologies. Thus, there are
several possible ways to reduce the computational load. We
propose four different strategies, and they are:

Simulation domain resizing: The resolution of the sim-
ulation domain is changed according to the distance be-
tween the fire and the viewer. At close range, the simula-

tion is done at maximum resolution, while reduced with
prolonged range.

Simulation step skipping: By skipping simulation steps
when the fire is not significant to the view, lots of re-
sources can be saved. The visualisation steps are not
skipped though.

Particle count adjustment: The amount of particles in the
particle system is reduced when the camera moves away
from the fire and increased when moving towards it.

Particle resizing: The size of the particles is increased
when reducing the particle count and decreased when the
particle count rises.

The following sections describe in detail the different
strategies used in our LOD algorithm for physically based
fire rendering.

4.1. Overall LOD

The overall LOD of an object is a value describing how de-
tailed the object should be rendered. Two LOD conditions
determines the overall LOD, and these are view culling and
distance.

View culling determines whether the fire is inside the view
or not. The angle between the camera’s view direction and
the line from the camera to the fire is calculated. If the angle
exceeds a certain value, the fire is determined to be outside
the view, and no further calculations are performed.

The distance between the camera and the fire is calculated.
The detail level of the fire decreases linearly as the distance
increases. This strategy is based on the assumption that a fire
seen at a distance need less details to be visually convincing.
The LOD value for distance is calculated by the formula:

b
lod = —, 9
od =~ ©))
where b is the maximum distance the camera can be away
from the fire while still rendering the fire at full detail, and d
is the distance between the fire and the camera.

4.2. Simulation Domain Resizing

The most computational demanding step in our fire render-
ing algorithm is solving the fluid dynamics system. There-
fore, reducing the amount of computations associated with
solving the fluid dynamics system is most important. Our
solution is to resize the simulation domain according to how
important the fire is to the scene. By reducing the size of the
simulation domain, the Navier-Stokes equations are solved
fewer times for each simulation step, and thus the fire need
less resources to render.

The resolution of the simulation domain is changed ac-
cording to the distance between the fire and the viewer. At

(© The Eurographics Association 2007.

Odd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire

close range, the simulation is done at maximum resolution,
while it is reduced when prolonging the range.

To transfer values from the old simulation domain to the
new, a form of bilinear filtering for three dimensions is used.
Each cell in the new simulation domain is given the aver-
age value of the eight closest cells from the old simulation
domain.

4.3. Simulation Step Skipping

In [RSGO6], the simulation is done at each time step. How-
ever, when the flame is not significant to the view, it is
not necessary to perform these calculations for every frame.
Thus, simulation steps may be skipped while letting the par-
ticles used for visualisation travel through the simulation
domain fetching old values from the velocity and fire den-
sity fields. This may, however, lead to a static looking fire if
too many steps are skipped as the simulation in practice is
slowed down.

There are other possible variants to this strategy. One is
to extend the interval between each simulation step while vi-
sualising at constant intervals. This will probably lead to a
more flickering fire, but the simulation is not slowed down
and therefore the fire will not look static. The computational
savings will not be as good as for step skipping as long as the
intervals between simulation runs are less than a full step.
However, the visual quality of the fire animation might be
better. It might, however, be hard to implement a fully work-
ing version of this variant for the GPU.

The other variant of this strategy is a more low-level one.
In stead of skipping or extending the interval between sim-
ulation steps, it is possible to lower the quality of the sim-
ulation. The velocity field simulation may be skipped every
other simulation step, and the velocity field computed last
simulation step may be used to evolve the fire density fields
in the current simulation step. This will, for each skipped ve-
locity field simulation, save the computational cost of solv-
ing twenty iterations of the Jacobi method, which are used
for solving the advection step in the velocity field. Still, the
Jacobi method is used to solve the diffusion step in all three
density fields. Informal tests we have done show that reduc-
ing the diffusion approximation from twenty to four itera-
tions may give satisfying visual results. This strategy will
not save as many GPU cycles as the other two variants, but
the visual quality should be better.

4.4. Particle Count Adjustment

In [RSGO06], the size of the particles and the particle count is
constant. When a particle is no longer visible it respawns at
the base of the fire. When the fire is small or viewed briefly, a
lower particle count is needed as the details of the fire is less
important for the visual quality of the fire. There are several
possible ways of adjusting the particle count.

(© The Eurographics Association 2007.

As in [OFLO1], particles with similar position and speed
may be clustered together when computing the motion of the
particle and visualised individually. Clustering particles may
be a good solution when the motion of the particles are com-
puted individually. The particles in our particle systems fetch
their velocity from the velocity field, and their new positions
are found from their velocity and current position. This is
done in parallel for several particles at once (how many de-
pend on your specific GPU). Another reason for gains in the
frame rate when rendering fire on the GPU is that the fire par-
ticles are not connected in any way. The particles need not
to know anything about other particles and thus only need to
read from its own location in memory. We have not imple-
mented this strategy.

Another option is to cluster neighbouring particles into
one particle that behaves as one both for simulation and vi-
sualisation. As with the other method mentioned above, this
would require knowledge about other particles, which would
decrease the gain of performing the calculations on the GPU.
Therefore this method has not been investigated further ei-
ther.

We use particle respawning together with the cameras dis-
tance from the fire to control the particle count of the parti-
cle system. We define a target respawning variable that is set
based on the distance between the fire and the camera. The
target value is set to all particles in the particle system when
the camera is close to the fire. The farther away the camera is
from the fire, the lower target value. Particles are respawned
until the target value is reached. If the particle count of the
particle system is higher than the target value, no particles
are respawned.

Halting respawning would create a region of the flame
with few or no particles followed by a wall of flame as
respawning restarts. To counteract this, spawning can be
done according to the ratio of current and desired particle
count. For example, if the particle count is twice the target
count only every other particle will respawn until the desired
count is reached.

The target particle count decreases linearly with the fire’s
overall LOD value. The target count ¢ is determined by the
formula

t = basecount x lod, (10)

where basecount is the base particle count used at the
highest detail level and lod is the overall LOD value. Par-
ticles are added to or removed from the fire by altering the
respawn rate of particles instead of adding or removing par-
ticles instantly.

4.5. Particle Resizing

When reducing the number of particles in the particle sys-
tem, the fire may look less dense as the particles are quite

Odd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire

small. Also, strange looking holes may appear in the flame.
To counterbalance this, we adjust the particle size accord-
ing to particle count. If the number of particles is lowered,
the size of each particle is increased in scale to compensate.
Altered particle size only affects newly spawned particles.

Particle size increases logarithmically as the fire’s overall
LOD value decreases. The size of particles s is determined
by the formula:

s =logd, (11)

where d is the distance from the camera.

4.6. Other Considerations

For many physical simulations it is important to approximate
the behaviour when not in view. For example, you expect a
ball or a heat-seeking missile to have a certain behaviour
when not in your view. If a ball is thrown out of your view
and bounces on a wall, you expect it to return in the same di-
rection. Also, if a heat-seeking missile is aimed and launched
at you, you will not stop running just because you cannot see
it any longer. Because of the turbulent behaviour of a fire,
you will not have any visual expectations of how the flames
have evolved when not looking at them. Thus, visual expec-
tations of the viewer will not cause any problems.

There is a problem connected to illumination, though. The
fire illuminates its surroundings and the light intensity is set
based on the fire’s properties. Something will have to be
done to approximate the light intensity of the fire as it may be
possible to look at the illuminated surroundings and not the
fire. The fire intensity may be stochastically generated based
on the maximum, minimum and mean temperature of the
fire. In transitions between simulated light intensity and ran-
domly generated, the light intensity will be interpolated be-
tween the last random generated and current simulated value
for a short time interval. The light intensity will be generated
by a proxy simulation when the fire is not in the view.

4.7. The Complete Algorithm

The LOD algorithm shown in Figure 1 is run for each frame.
The algorithm first checks if the fire is visible. If not, the vi-
sualization is disabled, and a simple stochastic simulation is
used to maintain the flickering of the dynamic lights. If the
fire is visible, a single LOD value is calculated based on the
fires distance from the camera as well as a factor determined
by the scale of the scene. The LOD value is used to calculate
a new size for the simulation domain and a new particle tar-
get count and spawn ratio. The simulation domain resizing is
done by using a three dimensional form of bilinear filtering.
When a fire particle is set to respawn the spawn ratio deter-
mines whether no, one or several particles are spawned.

calcLOD()
if fire object does not
intersect view frustum
enableProxySimulation();
disableParticleVisualization();
return;

01dL0OD = newL0D;
newLOD = min(distance(), 1);
if newLOD == 0ldLOD

return;
newGridSize = maxGridSize * newL0D;
resizeGrid(newGridSize) ;
stepSkipping = 1 / newLOD;

targetParticleCount =
maxParticleCount*newLOD;

particleSpawnRatio =
targetParticleCount
/currentParticleCount;

distance()
dist = abs(cameraPosition
- firePosition);
return LODFactor / dist;

resizeGrid(newGridSize)
for each newcell in new grid
val = 0;
find intersection in old grid closest
to newcell’s position

for each oldcell

in old grid bordering intersection
val += oldcell;

newcell = val / 8;

particleRespawn()
if (currentParticleCount
!= targetParticleCount)
counter = counter + particleSpawnRatio;
while (counter > 1)
spawn single particle;
counter = counter - 1;
currentParticleCount++;
Adjust particle parameters;
else
respawn single particle;
currentParticleCount--;

Figure 1: Pseudo code for the LOD framework for our phys-
ically based fire implementation.

5. Results and Evaluation

All tests were run on an intel 1.83GHz Core Duo with
1GB RAM and an NVIDIA Geforce 7600 Go with 512 MB
VRAM. Three different tests have been implemented. The
first one focused on possible LOD methods and ran with-
out a proper fluid simulation. Simulation domain resizing,
step skipping, particle resizing, and particle count adjust-
ment was implemented. The performance gains indicated by
these results did convince us that we were on the right track.

Table 1 shows the result of the second test, which was a
2D fire rendering running on the CPU using different grid
dimensions. As can be seen, the performance increases lin-

(© The Eurographics Association 2007.

Odd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire

early with the size of the grid, with performance roughly
quadrupling when the dimensions are halved. The resulting
flame is shown i figure 3.

5.1. Results

Grid size | Frame rate

128x128 12.76
64x64 51.25
32x32 202.54
16x16 798.68

Table 1: Performance results for the second test: two-
dimensional flame using different simulation domain sizes.

Table 2 shows the performance result from the third test.
A 3D fire that ran completely on the GPU with different grid
dimensions and particle counts was tested, see figure 2 for
the visual result. The tests were run with the camera a con-
stant distant from the fire. As expected, the impact from al-
tering the particle count is greater when the grid dimensions
are small, as the simulation dominates the calculation com-
plexity when the dimensions are larger. This indicates that
altering particle count needs to be combined with altering
the simulation dimensions to be effective.

Grid size
Particle count | 16x24x16 | 24x36x24 | 32x48x32

512 43.27 20.87 6.28
1024 37.12 18.19 6.12
2048 29.20 14.19 5.94
4096 20.11 10.07 5.54
8192 12.37 7.86 4.87
16384 7.64 5.78 3.93

Table 2: Performance results (frames per second) for the
third test with a three-dimensional flame using different sim-
ulation domain sizes and particle counts.

6. Summary and Future Work

We have presented an algorithm for combining dynamic
LOD with physically based fire rendering on the GPU. The
algorithm is based on changing the size of the simulation
domain and altering the particle system to increase perfor-
mance of the fire rendering when the fire is far away or
not visible. While the work is still incomplete, the prelimi-
nary results presented indicate that the algorithm should give
good performance gains without significantly degrading the
visual appearance of the fire when it is far away from the
camera.

Future work will include implementing the complete
framework for execution on the GPU to get conclusive re-
sults.We will also investigate additional ways to calculate

(© The Eurographics Association 2007.

Figure 3: Screen captures from the second test. The figure
shows three different 2D fire renderings with simulation do-
main dimensons 32x32, 64x64 and 128x128.

the relative importance of the fire, for instance determining
whether other objects obscure the camera’s view of the fire.

References

[AHO5] ADABALA N., HUGHES C. E.: Grid-less control-
lable fire. Game Programming Gems 5 (K. Pallister, Ed.),
Charles River Media (2005), 539-549.

[BF0O6] BALCI M., FOROOSH H.: Real-time 3d fire simu-
lation using a spring-mass model. Multi-Media Modelling
Conference Proceedings, 2006 12th International (2006),
8pp.

[CCSS05] CALLAHAN S. P., COMBA J. L. D., SHIRLEY
P., SiLvA C. T.: Interactive rendering of large unstruc-
tured grids using dynamic level-of-detail. Visualization,
2005. VIS 05. IEEE (October 2005), 199-206.

[DHDS05] DUGUET F., HERNANDEZ C., DRETTAKIS
G., SCHMITT F.: Level of detail continuum for huge ge-
ometric data. SIGGRAPH 2005 (2005).

[FC97] FoORSYTH D., CHENNEY S.: View-dependent
culling of dynamic systems in virtual environments. Pro-
ceedings 1997 Symposium on Interactive 3D Graphics
(1997), 55-58.

[FMF06] F.B.-L.,M. L., FR.: Afigraph O06: Enhanced
illumination of reconstructed dynamic environments us-
ing a real-time flame model. In Proceedings of the 4th
international conference on Computer graphics, virtual
reality, and interaction in Africa (Aire-la-Ville, Switzer-
land, Switzerland, 2006), ACM Press.

[GRS06] GUNDERSEN O. E., R@DAL S., STORLI G.:
Physically based simulation and visualization of fire in
real-time using the gpu. In Eurographics UK Chapter

Odd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire

Figure 2: Screen captures from the third test. Fire rendering at different distances using 20, 200, and 4000 particles and

simulation domain dimensions 16x24x16.

Proceedings: Theory and Practice of Computer Graph-
ics 2006 (Aire-la-Ville, Switzerland, 2006), Eurographics
Association, pp. 13-22.

[HC97] HODGINS J., CARLSON D.: Simulation levels
of detail for real-time animation. Graphics Interface *97
(1997), 1-8.

[HDO4] HEeoK T. K., DAMAN D.: A review on level of
detail. Computer Graphics, Imaging and Visualization,
2004 (2004), 70-75.

[Hop98] HoOPPE H.: Smooth view-dependent level-of-
detail control and its application to terrain rendering. Pro-
ceedings of the conference on Visualization 98 (1998),
35-42.

[KCROO] KING S. A., CRAWFIS R. A., REID W.: Fast
volume rendering and animation of amorphous phenom-
ena.

[LFO2] LAMORLETTE A., FOSTER N.: Structural model-
ing of flames for a production environment. Proceedings
of the 29th annual conference on Computer graphics and
interactive techniques (2002), 729-735.

[LRC*03] LUEBKE D., REDDY M., COHEN J. D,
VARSHNEY A., WATSON B., HUEBNER R.: Level of
Detail for 3D Graphics. Morgan Kaufmann Publishers,
2003.

[Mat97] MATKOVIC K.: Tone Mapping Techniques and
Color Image Difference in Global Illumination. PhD
thesis, Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Favoritenstrasse 9-
11/186, A-1040 Vienna, Austria, 1997.

[Ngu04] NGUYEN H.: Fire in the “vulcan” demo. In
GPU Gems: Programming Techniques, Tips, and Tricks
for Real-Time Graphics, Fernando R., (Ed.). Addison-
Wesley Professional, 2004, pp. 87-105.

[OCV*02] O’SULLIVAN C., CASSELL J., VILHJALMS-

SON H., DINGLIANA J., DOBBY S., B. MCNAMEE
C. PETERS T. G.: Levels of detail for crowds and groups.
Computer Graphics Forum, Volume 21 number 4 (2002),
733-741.

[OFLO1] O’BRIEN D., FISHER S., LIN M. C.: Automatic
simplification of particle system dynamics. Computer An-
imation, 2001. The Fourteenth Conference on Computer
Animation. Proceedings (2001), 210-257.

[Per85] PERLIN K.: An image synthesizer. In SIGGRAPH
’85: Proceedings of the 12th annual conference on Com-
puter graphics and interactive techniques (New York, NY,
USA, 1985), ACM Press, pp. 287-296.

[RHSS98] ROTTGER S., HEIDRICH W., SLUSALLEK P.,
SEIDEL H.-P.: Real-time generation of continuous levels
of detail for height fields. Proc. 6th Int. Conf. in Central
Europe on Computer Graphics and Visualization (1998),
315-322.

[RSG06] Ro@DAL S., STORLI G., GUNDERSEN O. E.:
Realistic 2d fire in real-time. In Norsk Informatikkonfer-
anse NIK 2006 (Trondheim, Norway, 2006), Tapir Forlag,
pp- 189-200.

[Sta99] StAM J.: Stable fluids. In SIGGRAPH ’99:
Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques (New York,
NY, USA, 1999), ACM Press/Addison-Wesley Publishing
Co., pp. 121-128.

[TOT*03] TAKESHITA D., OTA S., TAMURA M., FUJI-
MOTO T., MURAOKA K., CHIBA N.: Particle-based vi-
sual simulation of explosive flames. Computer Graphics
and Applications, 2003. Proceedings. 11th Pacific Con-
ference on (2003), 482-486.

[ZWF*03] ZHAO Y., WEI X., FAN Z., KAUFMAN A.,
QIN H.: Voxels on fire. Proceedings of the 14th IEEE
Visualization 2003 (VIS’03) (2003), 36.

(© The Eurographics Association 2007.

