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1 Introduction

Early attempts at aquatic scenes in computer games typically treated water

as planar surfaces with authored textures. In today’s real-time applications,

simple bump mapped planes are still an encountered approximation of watery

backdrops. Although this may be an adequate solution in particularly calm

cases, the shortcomings become obvious when the scene is a large oceanscape

agitated by wind forces, or when the water is a subject of interaction.

This work is focused on the problem of graphically reproducing typical off-

shore environments. More specifically, the aim is to realistically simulate and

visualize the surface of open seas at real-time rendering rates, using current

consumer range hardware. This implies very large water surfaces dominated

by unhindered wind-driven waves, but also influenced by the presence of wa-

tercraft activity and offshore installations. The discourse begins with a look

at potential existing approaches, and proceeds to discuss fruitful combina-

tions and possible extensions.

The ocean is an important arena in computer visualization. One example is

from the offshore industry, where virtual environments have become impor-

tant tools in monitoring, planning, training, etc. In later years, such tools

have included more and more visual elements, and featured increasingly re-

alistic settings.

The system implemented here tackles unbounded ocean surfaces, with real-

istic distributions of wind-driven waves. The surfaces are treated as periodic

elevation fields, and synthesized from statistically sampled frequency spectra.

Obvious repeating structures across a surface, due to this periodic nature,

are avoided by decomposing the elevation field synthesis, using two or more

discrete spectra with different frequency scales.

To enable responsive water surfaces, with opportunities for boat wakes, sur-

face obstacles, etc., a GPU-based water solver is also included. Its imple-

mentation features a convenient input interface, which exploits hardware

rasterization both for efficiency and to provide smooth surface deflections,
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connected deflective paths, etc.

Finally, polygonal representations of visible ocean regions are obtained using

a GPU-accelerated tessellation scheme suitable for wave fields. This scheme

provides view-dependent resolutions, with very little geometry ending up

outside the view volume, and is highly economic with regards to data transfer.
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2 Prior work

Water and ocean simulation has long been a popular research topic in the

computer graphics community. Today, computer animated water may well

fool the eye. With the current advances in graphics hardware, realism is also

taking root in real-time water simulation. Wielding modern programmable

graphics processors, researchers are able to capture a wider range of phenom-

ena at increasing detail, while keeping interactive rendering rates.

This chapter begins by looking at prevalent approaches to modeling the struc-

ture of ocean water. The discussion is divided into geometrical, statistical,

and physical models. These categories are more or less connected, but denote

different abstractions of the problem, typically diverging in generality, real-

ism and perfomance. Geometric models focus on modeling individual surface

waves, with which more complex shapes and dynamics are composed. Statis-

tical models rely on empirical data from oceanographic research for a natural

distribution of wave parameters, or may assume statistical self-similarity in

the surface structure at different scales. Physical models typically see wa-

ter as a system of particles or regions that physically interact, and that are

influenced by forces acting on the system.

The optical behaviour of water is discussed next, concentrating on adapta-

tions for computer graphics and issues regarding rendering. The concluding

topic in this chapter is considerations in real-time ocean simulation, such as

economizing the resolution of the model and balancing the use of available

hardware resources.

2.1 Geometrical models

A popular method for modeling water surfaces is constructing an animated

height field by linear combination of traveling periodic functions. The choice

of functions and parameters, and the number of terms used, are subject to

variation in literature. Notably, the number of affordable terms is still limited

7



Figure 1: Various wave profiles. From top to bottom: sinusoid wave,

piecewise quadratic wave, blended wave, quadratic wave with exponenti-

ated argument. The functions used here are: sinusoid(x) = cos(2 π x) and

quadratic(x) = 8 (x− 0.5)2 − 1.

in real-time computation, with regard to modeling of large oceanic regions.

Before the days of 108 transistor graphics chips in personal computers, Max

used a Cray-1 supercomputer to produce ray-traced animations of water sur-

faces [Max81]. In his implementation, the surfaces are generated by super-

posing a set of 2D sinusoids. Low amplitude sinusoids are used to produce

detailed ripples near the eye. Higher amplitude waves, which have visibly

wider troughs and narrower crests in nature than do sinusoids, are modeled

by approximating the Fourier expansion of cycloid curves. A full temporal

period of resulting height fields is rendered and recorded onto film, which

can then be seamlessly looped. For a periodic cycle of frames, the sinu-

soid frequencies are restricted to multiples of some reasonable fundamental

frequency.

Ocean surface waves can take on shapes that are problematic, or even im-

possible, to represent by a sum of sinusoids, such as sharp crests or breaking

fronts. To produce waveforms more closely resembling natural ocean waves
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Figure 2: Gerstner waves

under different conditions, Peachey uses a linear blend of sinusoid and cy-

cloid terms [Pea86]. For a more convenient formulation, the cycloids are

approximated by piecewise quadratic functions. Since steep waves naturally

form narrow crests and wide troughs, steepness is used to control the shift

from a sinusoidal shape towards a cycloidal shape. Now, as waves move onto

shallower water they gradually steepen, and undergo a realistic change in

appearance from long smooth swells to shorter and choppier waves. Waves

moving onto shore also grow steeper in the front, and assume an asymmetric

profile. This is achieved by exponentiating the argument to the wave func-

tion, which is in the range [0, 1), so values are shifted towards the low end

of the interval. See figure 1. Peachey further accounts for wave refraction,

i.e. directional changes due to seabed topography, and implements a particle

system to simulate spray from breaking waves.

Fournier and Reeves adapt the Gerstner wave model, a parametric repre-

sentation of trochoidal waves [FR86]. Using this representation, samples

are displaced laterally towards wave peaks, conveniently resulting in higher

sample rates where the magnitude of the gradient is greater, i.e. where the

geometric error would be greater with a uniform sample rate. See figure 2.

In their formulation, Fourier and Reeves extend the Gerstner model, taking

wave direction and depth into account, to enable asymmetric wind-driven

waves and waves breaking on the shore. They further simulate wave refrac-
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tion, as well as spray and foam, which is realized using particle systems.

Ts’o and Barsky achieve wave refraction by wave-tracing, which can be

thought of as ray-tracing over a subsea topography [TB87]. In their for-

mulation, waves are traced in a similar manner as a ray would be traced

through refractive media. The contribution of the different waves are sub-

sequently superposed on a height field, using sinusoidal shapes. This height

field is finally represented by Beta-splines, whose tension parameters can be

used to tweak the appearance of the final surface.

2.2 Statistical models

While realistic looking scenes can be achieved by the above methods, using

enough components, they do not solve the problem of selecting an appropriate

set of parameters for the model. Tuning these manually may turn into a

cumbersome task as more components are thrown in. Rather than manual

tuning, a model that provides a natural distribution of components based on

meaningful governing parameters like wind and gravity would be valuable.

Moreover, sum evaluation intensifies as the number of terms grows, becoming

an important point of optimization.

Loosely qualifying as a statistical approach, time-varying stochastic fractals

have been used to simulate a variety of natural phenomena. Perlin used

stochastic fractals, essentially summations of a noise function at different

scales, to generate images of fire, water, clouds and more [Per85]. See figure

3. Musgrave makes extensive use of fractals in landscape imaging, therein

ocean simulation [Mus93]. While such models are attractively simple, water

does not generally exhibit fractal shapes. Plausible results can be achieved

for calm waters, but the physical basis seems too weak to realistically portray

natural propagation, wind-driven scenarios, etc.

Mastin et al. use an empirical frequency spectrum of wind-driven ocean,

given by the Pierson-Moskowitz filter, to sample an appropriate set of fre-

quency components [MWM87]. In their formulation, sampling is done by
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Figure 3: Perlin noise. (a) shows four smoothly interpolated noise sets, with

different amplitudes and frequencies. (b) shows the sum of these functions

forming a stochastic fractal, made to resemble rippled water waves.

transforming a white noise image, by an FFT algorithm, and applying the

filter to the resulting spectrum. The filtered frequency data is further used

to synthesize a discrete height map of an ocean region, by the inverse FFT.

See figure 6 for a visual example of synthesis from an oceanic spectrum. The

height maps can be animated by phase manipulation in the frequency do-

main, and in this regard, two different schemes are explored. The proposed

model applies to fully developed wind-driven seas, and does not account for

shallow water phenomena. Notably, only a few parameters, e.g. wind direc-

tion and speed, need be specified to generate a fairly realistic ocean surface.

The method used by Mastin et al. produces discrete height fields, due to

the IFFT, which may introduce issues like aliasing, depending on the field

of view. Moreover, the underlying components are sinusoidal, and do not

readily compose agitated seas exhibiting cycloidal waveforms. Thon et al.

also use the Pierson-Moskowitz spectrum, but do not transform sampled data

into spatial images [TDG00]. Instead, they select a representative set of fre-

quency components from the sampled spectrum, and assign corresponding

parameters to trochoid waveforms, as given by the Gerstner model. The
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result is a continuous surface, defined by a sum of trochoids, which can be

evaluated as needed upon rendering. Since no optimized algorithm is applied

in computing the superposition, such as the FFT, the number of affordable

components is reduced. To compensate for this, the main structure of tro-

choid waveforms is perturbed using a three-dimensional turbulence function,

thereby adding a finer detail level to the surface.

Tessendorf replaces the Pierson-Moskowitz filter with the Phillips spectrum,

which is directly applicable to noise in the Fourier domain [Tes04]. In his

course notes, a number of modifications is introduced to allow more control

over the model, like supression of small wavelengths and waves with direc-

tionality dissimilar to that of the wind. The IFFT is applied to the generated

data, and a discrete height map is obtained. To allow choppier waves, a field

of horizontal displacement vectors is computed, based on the gradient of the

height map. Horizontal displacements are applied to grid points along with

height displacements, pushing samples towards peaks in a similar manner as

Gerstner waves. The height field is animated by frequency domain phase ma-

nipulation, accounting for dispersion of water surface waves, i.e. the relation

between wavenumber and propagative speed.

2.3 Physical models

The motion of fluids is described by a set of nonlinear partial differential

equations, called the Navier-Stokes equations, or NSE for short. Equation

1 shows one formulation of the NSE, for an incompressible Newtonian fluid.

Here, ρ and µ are measures of the fluid’s density and viscosity, respectively.

v is the continuous velocity field within the fluid, ∇p is a pressure gradient,

and f represents other forces, like gravity. The latter equation states the

conservation of volume, in other words incompressibility. Given well formed

boundary conditions, this set of equations seems to accurately model the

motion of fluid volumes, such as water. Most problems based on the NSE

are too complex to lend themselves to analytical solution, and must be solved

numerically. Numerical methods for solving such problems are well adapted
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for scientific simulation, but typically unsuitable for real-time purposes, due

to computational intensity. If superficial realism can be settled for, however,

a number of simplifications can be considered.

inertia︷ ︸︸ ︷
ρ ( ∂v/∂t︸ ︷︷ ︸

unsteady
acceleration

+ v · ∇v︸ ︷︷ ︸
convective

acceleration

) = −∇p︸ ︷︷ ︸
pressure
gradient

+ µ∇2v︸ ︷︷ ︸
viscosity

+ f︸︷︷︸
other
forces

∇ · v = 0

(1)

Numerous papers have addressed computational fluid dynamics in the con-

text of computer graphics. Early, in this respect, Kass and Miller turn to

a substantially simplified set of equations called the 2D shallow water equa-

tions, which models the surface of water [KM90]. In their formulation, a

linear approximation of the shallow water equations is used, and solved on a

uniform finite difference grid. This approximation can be stated as a second

order differential equation, with the form:

∂2h

∂t2
= g d

(
∂2h

∂x2
+

∂2h

∂y2

)
(2)

Here, h is the surface height at position (x, y), g is the gravitational accel-

eration, and d is the varying depth of the water. Kass and Miller’s model

makes assumptions (e.g. low fluid velocities, height field representation) that

can only result in good approximations for relatively calm cases, when gen-

tler forces are at work. In addition to wave refraction, which was accounted

for in less physically based models discussed in section 2.1, this model also

reproduces the reflection of waves off objects in the water.

Modeling water as a surface, and not a volume, limits the range of phenomena

that are readily captured. Indeed, a lot goes on under the surface that

contributes to the motion of the surface itself. The 2D grid model used

by Kass and Miller, for example, does not reproduce the swirling motions

often seen in fluids. Stam addresses the full NSE, to produce both 2D and

3D fluid animations [Sta99]. In his formulation, the problem is solved on a
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grid, incorporating a semi-Lagrangian scheme to solve for advection in the

fluid. This involves interpolation between cells in the velocity grid, simulating

particles moving within the fluid. The result is a fast and numerically stable

fluid solver that would allow the user to interact with fluid volumes in real-

time on a graphics workstation at the time of publication. The model suffers

from numerical dissipation, however, which introduces issues like increased

rotational damping and mass dissipation. Damping can to some extent be

remedied by having the animator add external forces to keep flows alive

longer. Though the model is not accurate within engineering standards, it is

capable of creating realistic looking scenarios with nice swirling flows.

Foster and Fedkiw adapt the semi-Lagrangian method introduced by Stam

in their modeling and animation of liquids [FF01]. In their formulation, mass

dissipation is addressed by tracking the motion of the liquid surfaces, using

a hybrid representation of inertialess particles and a level set. Particles are

used in sparse regions of the fluids, where explicit details such as splashes

can be seen. The level set is preferred in more well-resolved regions, where a

smooth surface is desired. Keeping track of particles in cases like splashing

prevents the loss of mass when regions of liquid are too small to be resolved

by the level set.

Premože et al. borrow from a technique called smoothed particle hydrody-

namics, originally from astrophysics [PTB+03]. This is a Lagrangian ap-

proach, where fluid regions are modeled as particles that can move about in

the fluid, as opposed to Eulerian approaches where fluids are modeled us-

ing fixed grids. Smoothed particle hydrodynamics is primarily applicable to

compressible fluids, so Premože et al. adopts a similar method that solves

the NSE for incompressible fluids. Particle-based methods are particularly

useful when situations like splashing can be expected, as discussed by Fos-

ter and Fedkiw, but one challenge is constructing a smooth surface, both

spatially and temporally coherent, from the particle representation.

On larger scales, the discussed fluid solvers do not nearly handle real-time,

most distantly the full volume-of-fluid solvers. The computational complexity
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of these methods puts strict limits on affordable scale and resolution, even

offline. Recently, Thürey et al. presented a hybrid method that couples 2D

and 3D fluid simulation [TRS06]. In their formulation, the full fluid flow is

computed in a region of interest, and a faster two-dimensional shallow water

simulation is used for the surrounding surface. Both models are solved using

the lattice Boltzmann method, which approximates the NSE by relaxing the

fluid’s incompressibility constraint. The 3D region can be moved within the

2D region during the course of simulation, allowing the animator to add

complex flow around a moving boat, for example.

2.4 Optics and rendering

In addition to models describing the surface geometry of oceans, a suitable

model to describe the interaction between water and light is needed to give

the surface a realistic appearance. Fortunately, the optical behaviour of wa-

ter is well theorized. As in the modeling of a physical structure, however,

the scope of the simulation must be limited to stay within reasonable com-

putational bounds.

The ocean is a near perfect specular reflector, with varying translucency.

Essential in its visual characteristics is the relation between incoming light

and the light that is reflected away from and refracted into the water/air

at different incidences. The intensity fraction of reflected rays at the inter-

face of two media, at different angles of incidence, is given by the Fresnel

equations. Figure 24 illustrates the relation between the angles of incident

light and refracted light, and 25 shows the Fresnel reflectance at difference

incidence angles. Since the Fresnel term tends to change rapidly over rippled

waters, it is preferrable to evaluate this term per pixel. At this rate the eval-

uation makes a target for optimization, and an approximation is often used,

e.g. reciprocals (Jensen and Goliás [JG01]), a 1D lookup texture (Heidrich

and Seidel [HS99]), or a 2D lookup texture (Hu et al. [HVT+06]). Fresnel

reflectance is explained more in detail in appendix C.
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Calculating the contributions from reflected and refracted light is a global il-

lumination problem that can be solved by methods such as ray-tracing. This

process can be particularly time consuming, with translucency contributing

for the worse, so in real-time, its sophistication must typically be reduced

substantially, e.g. by only taking first-order rays into account. For reflec-

tions and refractions from the global environment, e.g. the sky and the sea

bottom, a common approach is to use cube maps. Environment mapping of

water surfaces is explained further in appendix D. For local reflections and

refractions, e.g. from objects in the water, one possible technique is to render

the scene as reflected by a flat mirror into a projective texture, and perturb

texture coordinates according to the sea topography on lookup (Jensen and

Goliás). Conversely, the water surface casts light onto other surfaces, creat-

ing caustics. Caustics are patterns formed by the focusing and defocusing

of reflected and refracted rays on receiving surfaces. This phenomenon is

also addressed by Jensen and Goliás, who generate caustic texture maps,

approximating receivers as planar.

The absorption and scattering of light due to water molecules and impurities

in the water contributes to the color seen at the surface, and is responsible

for phenomena like godrays, i.e. visible shafts of scattered light. Such water

volume effects are addressed by Iwasaki et al., who approximate second-

order scattering by solving the radiative transfer equation numerically on

a number of sampling planes [IDN03]. While relatively thorough, this volu-

metric approach is not very suitable for real-time computation. Premože and

Ashikhmin simplify the radiative transfer problem, using empirical equations

and experimental optical parameters to estimate the radiance of scattered

light [PA01]. Jensen and Goliás obtain closed formulae for the color contri-

bution from deep water volumes, by ignoring effects like godrays. Refractions

can then be looked up in a precalculated cube map, using the direction of

refracted rays.

High contrast ratios are typical for ocean scenes, where glittering and glaring

reflections of the sun are commonly seen. Memory formats used in digital

imaging and rendering have very limited luminosity ranges compared to the
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with HDR without HDR

Figure 4: High dynamic range versus low dynamic range. From the game

Half-Life 2: Lost Coast.

capabilities of human vision, however. Using standard lighting, high con-

trast scenes are typically rendered with severly truncated luminance, making

bright areas like ocean glitter look rather dull. High dynamic range (HDR)

lighting addresses this by using a higher memory precision, enabling a larger

dynamic range in rendering. See figure 4. Newer graphics cards support high

dynamic range rendering, trending towards increased precision. Pioneering

work on high dynamic range imaging is found in Debevec and Malik’s article

[DM97], and a recent example of high dynamic range rendering in real-time

use is discussed by McTaggart et al. [MGM06].

2.5 Real-time simulation

Most of the literature discussed in the previous paragraphs is primarily con-

cerned with offline rendering. Having an efficient mathematical description

of an ocean, however, challenges are still abundant when piecing together

a real-time implementation. Firstly, oceanscapes tend to be very big, and

large parts of the scenes are often visible at the same time, making a level

of detail scheme important to the efficiency of the simulation. Secondly, the

geometry of ocean surfaces changes constantly, inciting optimization in the
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data transfer between CPU and GPU. Since modern day graphics cards have

become highly flexible and powerful, parts of the simulation could even be

moved to the GPU, in the attempt to achieve a better load balance between

the two processing units, and at the same time downscale the CPU-to-GPU

data transfer.

Isidoro et al. simulate ocean entirely on graphics hardware, using a single

pass per frame [IVB02]. In their implementation, the ocean surface is con-

structed from four sinusoids, whose sum is evaluated in a vertex shader and

used to perturb a stored mesh. The mesh is animated by phase shifting the si-

nusoids. Further visual detail is added in the pixel shader by bump mapping.

The bump map is obtained by combining two predefined texture maps, and

animated by scrolling the textures at different rates. Since the bump map

describes tangent space perturbations, a transformation into world space is

required. Finally, lighting is performed using a cube mapped environment

and a 1D texture map to approximate the Fresnel term.

Finch extends this approach, using Gerstner waves to displace the mesh

vertices [Fin04]. Further, the tangent space bump map is generated by

superposing about 15 higher frequency sinusoids. This implementation is

more physically faithful, accounting for the dispersion relation, controlling

the choppiness of the waves according to their steepness, and using a less

provisional bump map. The result is a fast simulation, due to the relatively

few wave components and the low bandwidth toll. The quality of the simu-

lation is largely dependent on a good choice of matching parameters. More

complex dynamics could be achieved by increasing the number of geometric

waves, but evaluating their sum at every vertex would eventually become a

performance consideration.

Kryachko exploits vertex textures, and uses authored animated height maps

both for bump mapping and mesh perturbation [Kry05]. This technique was

used in the game Pacific Fighters, where four maps with different spatial

and temporal scales were combined for fragment shading, and the two larger

scales were used to displace the underlying mesh within a vertex shader.
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Kryachko applies a simple level of detail scheme, where a radial grid follows

the camera, using lower resolution with increasing distance from the camera.

Since both the grid and the maps can be stored in video memory, very little

data need to be transferred from the CPU.

Rather than authored maps, a more physically rooted means of acquiring

height maps might be preferred, like the FFT-based techniques described

earlier. Using vertex textures, the maps may either be precalculated and

stored in video memory, transferred to the GPU at every update, or calcu-

lated directly on the GPU. Moreland and Angel describe an implementation

of the FFT running solely on the GPU, with a performance comparable to

that of highly optimized CPU libraries [MA03]. Using a GPU algorithm to

perform the FFT step can serve to balance the load between the CPU and

the GPU, the CPU being a common bottleneck. Another inmportant real-

ization is that both input and output are stored on the GPU-side, which is

where the visualization data are often needed. This allows a reduction in

bandwidth load, another typical bottleneck in visualization applications.

Mitchell adopts the techniques outlined by Tessendorf, performing Fourier

synthesis on graphics hardware by a GPU-implementation of the FFT [Mit05].

In his implementation, a low frequency band is used in the synthesis of a

displacement map, whereas a broader frequency band is used in a detailed

version of the height field, for normal mapped lighting. Having a low fre-

quency version for geometric displacement allows lower resolution grids with-

out undersampling artifacts from higher frequencies. The two maps are also

exploited for damping effects from e.g. plant matter, suppressing higher fre-

quencies by blending between the maps in the lighting stage. This prominent

use of the GPU shows promising framerates, with a low toll on both CPU

and bandwidth resources.

Chiu and Chang extend Mitchell’s GPU-based approach, implementing both

GPU-based tessellation and spray simulation [CC06]. Their tessellation scheme

consists of adjusting a stored rectangular grid in the view plane so its pro-

jection onto the ocean plane covers the currently visible ocean region. The
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vertices are then projected onto the ocean plane, where the height field is eval-

uated. See figure 14. This results in a view-dependent level of detail, where

far regions are automatically tessellated with a lower resolution. Moreover,

the simulated ocean surface is unbounded, using tiled height maps, since the

grid continuously follows the visible region of ocean. The spray simulation

is handled by a particle system, using floating point textures to store and

evolve particle states on the GPU.

Krüger and Westermann present a general framework for solving systems of

linear equations on the GPU, using efficient texture-based layouts for vec-

tors and matrices [KW05]. A conjugate gradient solver is implemented, and

demonstrated on the 2D wave equation. See equation 9, section 4.1.4. This

shallow water simulation is run with interactive framerates, at relatively high

resolutions, not accounting for 3D representation of the generated height

map.

Concluding the section with a note on level of detail schemes, there exists

a variety of LOD techniques designed for height fields, being important in

the context of large-scale terrain rendering. Without further discussion, the

reader is referred to work such as the GPU-based approach of Losasso and

Hoppe [LH04].
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3 Problem statement

Starting off, the elected problem is clarified, and a scope for the thesis is

defined. The outlined scope is further viewed in relation to prior work, and

the value of an implementation tackling the problem is discussed.

3.1 Scope

The aim here is to simulate and visualize water surfaces under typical off-

shore conditions at real-time rates, without relying on particularly expensive

computing hardware. The term “real-time” is used in a strict sense, since the

implemented functionality is intented for integration into larger systems that

are already computationally intensive. Thus, relatively low CPU-usage and

highly interactive framerates are prioritized. Another point with respect to

later use is to make the functionality easily accessible in an open scene-graph

library.

Most focus is devoted to issues that are not as well resolved for interactive

simulation of open seas, e.g. how to reproduce a seemingly infinite ocean

region realistically and efficiently. In simulating the surface structure, wind-

driven waves are regarded as most important, but it is also interesting to

capture the notion of a responsive surface that interacts with moving vessels

or stationary offshore installations. For surface rendering, good 3D represen-

tations are needed. Thus, a suitable tessellation scheme for wave fields should

be identified. Due to the vast extent of ocean surfaces, view-dependent res-

olutions are needed, and due to the constantly changing geometry, economic

data transfer is of high importance.

3.2 Relation to prior work

Among existing modeling approaches, physical models, discussed in section

2.3, seem best equipped to handle the general case, responding realistically to
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forces applied. It is not clear, however, that such models will allow the user

to easily set up complicated scenarios like wind-driven oceanscapes. After

all, the forces that create such situations have complex causes themselves.

Moreover, NSE solvers are still too expensive for real-time simulation, even

at modest scales and resolutions.

Purely geometrical models, discussed in section 2.1, are simple, and have

been used to produce interesting shapes, such as asymmetric wind-driven

waves. Further, such models have proven themselves in fast GPU-based

implementations, as seen in section 2.5, where wave components are evaluated

and combined directly on the GPU. The affordable frequency resolution is

somewhat limited, however, and the problem of composing a natural wave

field under given conditions is not well resolved by these techniques alone.

The statistical FFT-based models, discussed in section 2.2, are capable of

generating highly realistic wind-driven wave fields, solving the problem of

acquiring a natural wave distribution under given conditions. The wave

fields are tileable, which allows for arbitrarily large surfaces. For arbitrary

views, e.g. if the camera is allowed to move freely, however, distinct artificial

periodicity is a problem with such techniques, as noted by the authors. An-

other drawback is that they do not provide a means of interacting with the

surface, to create boat wakes, etc.

The surface optics of water are well understood, and well adapted to real-

time computer graphics. Sophisticated lighting techniques, accounting for

water volume scattering and global illumination, have been used to achieve

impressive visual results, but are computationally intensive and less suited

for real-time rendering. In this work, perfomance is prioritized, and a simple

lighting model is opted for, focusing on correct surface optics and realistic

global reflections. For techniques approximating local reflections/refractions

and caustics, handling fairly well in real-time, the reader is referred to work

discussed in section 2.4.

Level of detail and hidden surface removal schemes have been extensively

studied, as mentioned in section 2.5, and good solutions exist for elevation
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data rendering, that could also be used here. It is desirable to look fur-

ther, however, to see what characteristics separate ocean surfaces e.g. from

geological terrains, and how this could be exploited.

In conclusion, realistic ocean simulation at certain scales and under certain

conditions has been shown possible in real-time. Realistically simulating

large-scale open seas, with scattered boating activity, etc., still has associated

problems.

3.3 Value

On a globe covered in around 70% ocean, water seems as good an element

as any to focus attention to. In computer visualization, the ocean is an

important arena. One example is from the offshore industry, where virtual

environments have been adopted to improve cross-disciplinary information

sharing, decision making, and more.

Convincing natural backdrops not only serve as a benchmark for computer

games these days, but are to a higher degree expected elements in professional

applications. Apart from being cosmetic selling features, such elements can

improve the user’s experience and provide intuitive visual cues, e.g. about

weather conditions. It is important, however, that the simulation does not

interfere with application workflow, and it may well be expected that the

application runs smoothly on a standard issue laptop computer.
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4 Real-time simulation and visualization of

open seas

This chapter describes theory, problems and proposed solutions falling under

the scope of the thesis in detail. The discourse is divided into modeling,

section 4.1, which is concerned with describing the physical structure and

motion of oceanic surface waves, and tessellation, section 4.2, where the aim

is to prepare an appropriate set of rendering primitives from the model.

The final task in the visualization process is to perform realistical lighting,

ensuring that triangles are filled with colors that correspond as closely as

possible to the optical properties of water. Appendices C and D briefly

explain the theory and techniques used to achieve realistic water surface

shading in this work.

Details from the implementation of this theory follow in section 4.3, where

both an overview of the implemented system and relevant specifics are given.

Finally, significant results are discussed in section 4.4.

4.1 Modeling

The open seas are typically dominated by wind-driven waves. Statistical

methods supported by oceanographic research, see section 2.2, have perhaps

provided the most complete solution to the problem of modeling such sce-

narios effectively and realistically. As noted by Tessendorf, such techniques

have proven themselves in the production of several films, among others Wa-

terworld and Titanic [Tes04]. The first two sections here (4.1.1 and 4.1.2)

follow the principles from Tessendorf’s course notes, turning to statistical

analysis in the modeling of a basic structure for an ocean surface. The next

section (4.1.3) discusses the artificial periodicity that may become a concern

with this FFT-based method, and possible countermeasures. The last section

(4.1.4) presents a GPU-based solver of the wave equation, as an extension to

the wind-driven simulation.
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4.1.1 Synthesis

Assume that an unbounded ocean surface can be expressed as the sum of 2D

sinusoid waves of different amplitudes, direction, phases and wavenumbers.

Thus, the surface can be represented as a spectrum of frequency components.

In the discrete case, there exists an efficient algorithm, the Fast Fourier

Transform, which computes the sum of wave components given by such a

spectrum at O(N2 · log N2) time for an N2 image. Näıvely computing the

sum of N2 wave components, on the other hand, would result in an asymptote

of O(N4) for an equally sized image.

Stating the surface heights at discrete horizontal positions x as the inverse

Fourier transform of a frequency spectrum, the surface has the form:

h(x, t) =
∑
k

h̃(k, t) eik·x , (3)

where k is a wave vector specifying a wave by its direction and wavenum-

ber. h̃(k, t) denotes a complex entry in the spectrum, whose modulus and

argument correspond to the amplitude and phase of wave k, respectively. A

time argument t is included for later, since the height map is intended for

animation. The slope of the height field can be expressed as:

∇h(x, t) =
∑
k

ik h̃(k, t) eik·x . (4)

To guide the selection of wave components for a representative ocean surface,

the Phillips spectrum can be used. This spectrum approximates amplitude

variances in empirical ocean spectrums, and is given by:

Ph(k) = A
e−1/(k L)2

k4
|k̂ · ŵ|2 . (5)

Here, A is a constant used to amplify the wave field, k is the wavenumber of

wave k, and w is a vector denoting the wind over the field. L is the largest

possible wave resulting from this wind, and is given by |w|2/g, where g is the

gravitational constant.
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(a) frequency spectrum (b) 1D distribution function

Figure 5: The Phillips spectrum

For the spectrum shown in figure 5 (a), the wind is blowing at a 45◦ angle.

As can be seen in the figure, frequency components with an angle dissimilar

to this is suppressed by the cosine factor, |k̂ · ŵ|2, in equation 5. Further, the

1D distribution function, i.e. the factor that depends on k in the equation,

acts as a filter that emphasizes lower frequencies. See figure 5 (b). This func-

tion can be interpreted as the amplitude variance for a given wavenumber.

By equation 5 alone, waves traveling along the wind in both directions are

favored. To avoid having waves traveling against the wind, components with

k ·w < 0 can be suppressed, e.g. the lower left half of the spectrum in figure

5 (a).

Using this model to generate a scenario with the prescribed statistical proper-

ties, the first step is to populate a spectrum with draws from a random num-

ber generator. Each frequency component is then assigned values (ξr + i ξi),

where ξr and ξi are independent draws from a probability distribution. As

noted by Tessendorf, a gaussian distribution goes well with experimental

data, so the standard normal distribution is suitable here. With a standard

deviation of 1, the complex random variable can be scaled, i.e. divided by
√

2, so its corresponding amplitude also has a standard deviation of 1. Fi-

nally, each component is filtered by the Phillips spectrum, according to its
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(a) frequency domain (b) spatial domain

Figure 6: Ocean synthesis. (a) shows the magnitudes of a sampled frequency

spectrum, and (b) shows the spatial height map synthesized from this spec-

trum.

wave vector. Thus, the final formula for generating an ocean spectrum is:

h̃0(k) =
1√
2

(ξr + i ξi)
√

Ph(k) . (6)

Figure 6 shows an example scenario with a resolution of 2562, i.e. more

than sixty thousand wave components. To summarize, the spectrum (a) is

generated using equation 5 and 6, and the corresponding height map (b) is

synthesized using equation 3.

4.1.2 Animation

With a sampled set of wave components, a method for realistically animating

these components is needed. A look at how surface waves propagate in

water is then in order. Water is a dispersive medium, which means that the

velocities of waves traveling in water stand in relation to their wavenumbers.

Taking a surface wave, in this case a sinusoid, sin(k ·x−ω t+φ), the angular

frequency ω for a given wavenumber k must be determined. This is resolved

by the dispersion relation, which can be stated as:

ω(k) =
√

g k tanh(k h)
h�0

≈
√

g k , (7)
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argument change corresponding phase shift

Figure 7: Animating the phase of a wave k in the frequency domain

where g is the gravitational constant and h is the height of the water. For

large values of h the hyperbolic tangent factor can be equated with 1, ignoring

influence from the sea bottom, and reducing the dispersion relation to ω(k) =
√

g k. The effects of surface tension is also ignored, since the waves considered

here are large enough for such effects to diminish.

The relation between velocity c and angular frequency ω in a wave is c = ω/k.

Thus, by equation 7, a wave’s velocity as a function of its wavenumber is

c =
√

g/k, meaning that waves with long wavelengths, or low wavenumbers,

travel faster in water than waves with shorter wavelengths.

Using the dispersion relation to animate wave phases, a spectrum generated

by equation 6, h̃0, serves as the initial state of the ocean. Manipulating the

argument of a component in h̃0, without modifying the modulus, corresponds

to a phase shift in the spatial domain. See figure 7. Multiplying h̃0(k) by

ei ω(k) t shifts the initial phase of wave k by ω(k) t/k, propagating the wave

in accordance with the dispersion relation. The expression

h̃(k, t) = h̃0(k) ei ω(k) t + h̃∗0(−k) e−i ω(k) t (8)

additionally preserves the complex conjugation property h̃∗(k, t) = h̃(−k, t),

which guarantees a real-valued image in the spatial domain. Using equation 8

and 3, expressions for an animated height map h(k, t) that are only dependent

on the initial spectrum h̃0(k) are now obtained. Not being dependent on
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Figure 8: Realism disrupted by repeating patterns

previous time steps, the time resolution of the model can be controlled freely

during simulation.

4.1.3 Overcoming artificial periodicity

The height maps acquired by the above methods, such as the spatial map in

figure 6, are ultimately intended for displacement mapping of a 3D surface.

Since maps synthesized by equation 3 are spatially periodic, these maps tile

seamlessly, enabling an unbounded surface. This periodicity is apparent when

large regions of a tiled height field is visible, however, posing an unnatural

look on the surface. Figure 8 illustrates the artificial periodicity introduced

when several tiles are concurrently visible over a rendered ocean surface.

According to Tessendorf, map resolutions of up to 20482 were used in the

production of Waterworld and Titanic. Since an inverse Fourier transform is

performed at every time step of the animation, however, desired frame rates

can only be expected to emerge at lower resolutions in real-time, say at 2562

or below. The scene in figure 8, for example, was rendered at real-time rates

using a resolution of 1282. The higher the map resolution, the larger surface

regions could the tiles be scaled across, without losing too much of higher

frequency details on the surface. Thus, artificial periodicity is particularly

problematic in real-time situations, where small maps are necessary. By

scaling up the tiles, the surface assumes a less detailed look, while by keeping

a small scale, repeating patterns are more easily noticed.
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(a) interleaved spectra (b) synthesized signals

Figure 9: Interleaved spectra. (a) shows two spectra (magnitudes shown

here) following the same continuous distribution, both with 16 frequency

components. (b) shows resulting spatial signals: the upper two signals are

synthesized from the spectra in (a). Both have more than three spatial

periods visible in the shown range. The bottom signal, which is the sum of

the above signals, has a much longer period.

One possible solution to this problem is to decompose the ocean spectrum

into two, or more, interleaved spectra. See figure 9. The three signals shown

in figure (b) have similar characteristics, as guided by the underlying sta-

tistical model, but the bottom signal has a much longer spatial period. By

deploying multiple discrete ocean spectra whose wave components are sam-

pled at different intervals, with a relatively large least common multiple, a

linear combination of the resulting spatial maps will have a much longer pe-

riod. The scene in figure 10 was rendered using two interleaved spectra with

resolutions of 1282. Compare to figure 8. Using this technique, the inherent

periodicity in the wave field is much less obvious, without excessively adding

to the computational complexity.

To correctly account for wave dispersion, the spectra must be animated sep-

arately, in accordance with the dispersive relation. Simply modifying the

horizontal scales of the wave fields would lead to incorrect dispersion be-

tween waves from the different maps in a combined wave field. Moreover,

the statistical properties of the combined field would no longer follow the
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Figure 10: Using two combined wave fields to avoid artificial periodicity

desired distribution. By separately sampling and animating the spectra, ac-

counting for the scaled wavenumbers, the resulting spatial maps can be scaled

and combined with correct relative wave speeds, following the governing sta-

tistical model.

See section 4.3.2 for implementation details.

4.1.4 A GPU-based water solver

The model so far is able to reproduce wind-driven oceans quite realistically,

when nothing else is interfering with the water’s development. Also inter-

esting are interactions with water, e.g. by user-supplied forces. As Mitchell

suggests, a synthesized wave field could be composited with arbitrary wave-

forms, opening opportunities for shore interactions, boat wakes, etc [Mit05].

If physical accuracy has lower priority than computational cost and interac-

tive frame rates, a fast water solver could run in parallel with the FFT-based

simulation, and used to add complexity to the underlying structure in regions

of interest.

One equation that can be used to simulate a water surface quite efficiently,

is the 2D wave equation, which has the form:

∂2h

∂t2
= c2

(
∂2h

∂x2
+

∂2h

∂y2

)
. (9)

Here, h is the surface height at location (x, y), and c is the wave speed. As-

suming constant depth, this equation coincides with the linearized shallow
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Figure 11: The wave equation approximated on a finite difference grid. A

one-dimensional slice of water heights is shown here, with faint areas showing

differences from the previous state.

water equations, as addressed by Kass and Miller [KM90]. See equation 2,

section 2.3. To plausibly model water movement, the waves need to undergo

some form of damping as they propagate. This can be achieved by intro-

ducing a dissipative term to equation 9, bringing the wave equation to the

form:
∂2h

∂t2
− k

∂h

∂t
= c2

(
∂2h

∂x2
+

∂2h

∂y2

)
, (10)

where k is a positive damping constant.

In the following, a discrete analogue of equation 10 is used to model water

surfaces subjected to deflection. The applied formulation is described in

the work of Nishidate and Nikishkov, who solve the wave equation with

damping on the CPU [NN05]. In this implementation, the GPU is employed

as the computational kernel in the time integration, using textures as render

targets, as Krüger and Westermann [KW05]. Further, hardware accelerated

rasterization is exploited to efficiently supply the algorithm with input, i.e.

arbitrary forces and obstacles. With anti-aliasing conveniently available, this

can be used to provide smooth deflections and connected paths, e.g. to

produce boat wakes. Figure 12 shows two real-time scenarios, where smooth

wake-like waves are achieved by letting the user paint deflective paths into

the framebuffer using anti-aliased lines.

Discretized in time and space, the wave equation can be approximated using
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a finite difference scheme. See figure 11. On a uniform 2D grid, equally

spaced in both dimensions (∆x = ∆y), the discrete analogue of equation 10

is:

0 =
ht+∆t

i,j + ht−∆t
i,j − 2 ht

i,j

∆t2
− k

ht−∆t
i,j − ht

i,j

∆t
−

c2
4 ht

i,j − ht
i+1,j − ht

i−1,j − ht
i,j+1 − ht

i,j−1

∆x2
,

where ht
i,j is the water height in grid cell (i, j) at time t. The unknown term

here is ht+∆t
i,j , i.e. the water heights at the next time step of the simulation.

A regrouping yields:

ht+∆t
i,j = ht

i,j + (1− k ∆t) (ht
i,j − ht−∆t

i,j ) +

∆t2 c2

∆x2
(4 ht

i,j − ht
i+1,j − ht

i−1,j − ht
i,j+1 − ht

i,j−1) .
(11)

The height map at time t + ∆t, as given by equation 11, relies on the two

previous states of the simulation, ht and ht−∆t. While simple, this explicit

form is only stable for sufficiently small values of ∆t, as noted by Nishidate

and Nikishkov. Specifically, no wave should travel more than one cell in a

single time step. Thus, there is not too much freedom in controlling the

time resolution. The implicit scheme used by Krüger and Westermann is

unconditionally stable, allowing for longer time steps, though not as simple.

Disregarding the term containing ht−∆t
i,j in equation 11, the form is similar

to a spatial smoothing filter. If four additional neighboring cells ht
i±1,j±1 are

considered in the calculation of ht+∆t
i,j , the height map will tend to have a

smoother look, typically making it more suitable for displacement mapping.

See section 4.3.4 for implementation details.

4.2 Tessellation

The representation of the ocean surface is so far in the form of elevation maps,

i.e. discrete height fields, from the methods of section 4.1. To render the

surface in three dimensions, this representation should be translated into a
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(a) height map (b) 3D surface

Figure 12: 2D water solver. (a) A height map resulting from the simulation,

with the Utah teapot rendered into the map as an obstacle. In this example,

a map resolution of 640 × 400 was used. (b) A similar height map used to

displace a 3D mesh.

set of rendering primitives that can be efficiently rasterized. Modern graphics

hardware is primarily optimized for polygon rendering, and triangular meshes

are very common 3D representations. Preparing such a representation, the

task is to find good configurations of triangles that preserve relevant details,

yet avoid wasteful use of geometry.

A common problem with static polygonal representations is situations where

lots of polygons end up contributing very little to the final image. Complex

objects viewed from afar may reduce to a few pixels, and geometry that is

occluded by some other part of the scene, facing away from the camera, or

simply outside the field of view, ends up with no contribution but a reduction

in performance. Level of detail (LOD) and hidden surface removal schemes

address these problems, using view dependent mesh resolutions and culling

heuristics. Much research has focused on designing such techniques specif-

ically for height fields, e.g. elevation data from terrains. Thus, since the

water surfaces under consideration here are regarded as height fields, there

exists several techniques that could be used for these purposes.

Apart from the height field trait, there are further properties of ocean surfaces

that could be considered in the search for a suitable tessellation scheme.

Compared to typical terrain scenarios, the sea has rather monotonic height

variations. Sea surfaces are rather flat, while landscapes tend to exhibit more
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(a) (b) (c)

Figure 13: Computing a screen-aligned bounding rectangle, whose projection

onto the ocean plane is guaranteed to cover the visible ocean region, even

after displacements are applied. 2D simplification: (a) intersection between

the viewing frustum and the bounding volume of the ocean surface, in world

space. (b) resulting vertices projected onto the ocean plane. (c) after a

transformation into normalized device coordinates a bounding rectangle is

obtained, discarding the depth of the intersections (horizontal axis).

irregular features. Hand in hand with this comes the fact that very large parts

of ocean scenes are often concurrently visible, and yet another side of it is

that only small regions are typically occluded at a time, making it harder to

take advantage of self-occlusion. A final characteristic that should be kept

in mind is the periodic nature of the underlying FFT-based height maps.

In this section, the concept of projecting a uniform grid from the view plane

and onto the ocean plane is explored. The purpose is to achieve a continuous

level of detail, providing coarser tessellation with increasing distance from the

camera, and at the same time minimize geometry outside the field of view.

This technique was introduced by Johanson, and implemented on the CPU

[Joh04]. It is desirable to do this on the GPU, however, to avoid a continuous

transfer of vertices to the GPU, and to refrain from transformations on a per

vertex basis on the CPU. Chiu and Chang implemented such a scheme on

the GPU, but few implementation details and results are given [CC06].

Consider the ocean plane and the two parallel planes that touch the highest

and lowest possible surface deflections, respectively. Between the upper and

lower planes lies an unbounded volume containing the ocean surface. The

first step in the tessellation scheme is to identify the intersection between
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the viewing frustum and this volume. This can be done by transforming the

eight corners of the frustum from clip space to world space, and intersect the

twelve corresponding edges with both the upper and lower planes. See figure

13 (a). Denoting the xy–plane in world space as the ocean plane, the upper

and lower planes are defined by the normal vector (0, 0, 1) and their distance

from the ocean plane ±D, where D is the largest possible displacement. The

corners of the viewing frustum in world space are (P ·V)−1 ·(±1,±1,±1, 1)T ,

where V is the view transformation and P is the projection transformation.

Now, by projecting the intersection onto the ocean plane, a minimal region

of interest is defined. This region is just large enough to ensure that no gaps

are introduced between the ocean surface and the viewing volume after dis-

placement mapping. The next step is thus to project the vertices resulting

from the intersection onto the ocean plane. See figure 13 (b). If less than

three vertices in both the upper and lower planes were found, however, the

ocean is outside the view and needs not be rendered. By further transform-

ing the points to normalized device coordinates, a screen-aligned bounding

rectangle for the visible ocean region can be obtained, simply by identifying

the minimum and maximum x– and y–coordinates. See figure 13 (c).

The final step of the scheme is to project a uniformly spaced rectangular grid

from the view plane and onto the ocean plane. See figure 14. This can be done

by projecting the corners of the bounding rectangle, given by the previous

steps, onto the ocean plane, then perform bilinear interpolation between

the resulting points, using homogeneous coordinates. The corners are given

in normalized device coordinates, so the projected points can be found by

transforming the line defined by (x, y,±1, 1) for each corner (x, y) to world

space, then intersect these lines with the xy–plane, also using homogeneous

coordinates.

As Johanson points out, there are cases when the direction of the camera

leads to instability when computing the projected grid, e.g. when the cam-

era points away from the ocean plane or is positioned inside the bounding

volume. Johanson suggests computing the projection with a second camera,

36



(a) seen from outside the frustum (b) seen from the projecting camera

Figure 14: A projected grid. (a) tessellation seen from a second camera.

Notice the increased vertex spacing in the far end of the viewing frustum.

(b) tessellation seen from the projecting camera. Notice the uniform spacing

of vertices.

a projector, which can be aimed slightly differently than the viewing camera,

using simple heuristics to avoid such cases. More can be read about this in

Johanson’s work.

Computing the four projected corner points is performed once per frame, and

is a suitable task for the CPU. Interpolating between them to position the

grid, however, is performed on a per vertex basis, and should be handled by a

vertex processor. By feeding the GPU with the corner positions, the bilinear

interpolation could be implemented in a vertex shader, where subsequent

displacement mapping and transformations are also applied. This not only

frees up the CPU, but avoids the continuous transfer of grid positions to

the GPU, since a cached static grid can now be used. Assuming grid points

in the range [0..1, 0..1], vertex positions can be used as interpolants in the

vertex shader.

After placing a vertex in the ocean plane, its position may be used to look

up a displacement from a texture map. The FFT-based displacement maps

describe tiled height fields in world space, and so, any position may be used

to address a displacement, with texture coordinate wrapping enabled. If the

height field is decomposed into two or more different scales, as suggested
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in section 4.1.3, multiple displacements are looked up with differently scaled

texture coordinates. The result is a seamless unbounded surface, and a tessel-

lation that follows the visible ocean region. Moreover, the resolution is close

to uniform in post-perspective space, meaning that regions near the camera

automatically receive a high resolution in world space, and conversely for

farther regions.

See section 4.3.3 for implementation details.
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Figure 15: Class diagram for the implemented Coin3D nodes.

4.3 Implementation details

The techniques described in section 4.1 and 4.2 were implemented in C++,

and abstracted as scene-graph nodes, using Coin3D. Coin3D is a high-level

scene-graph library build around OpenGL, whose API is compatible with

TGS ’s Open Inventor. More information about the Coin3D-library is found

in appendix B. Additionally, OpenGL was used for more low-level operations,

and the OpenGL Shading Language was used to program vertex and fragment

shaders.

4.3.1 Overview

Figure 15 shows the most important classes that have a part in the ocean

surface simulation and visualization. The top class, Ocean, is a simple con-

tainer node for the ocean related classes, used for grouping the nodes as an

entity in a scene-graph. The classes WaveField and TileMap handle the sam-

pling, animation and synthesis of wind-driven waves field maps, which are

described in sections 4.1.1 to 4.1.3. The FresnelMap class generates a tex-

ture containing Fresnel reflectance approximations as functions of refractive
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Figure 16: Sequence diagram for the setup stage of an ocean scene.

indices and the incidence angle. See appendix C. The SkyMap class loads

images of a natural environment, and sets up a texture cube map for envi-

ronment mapping. See appendix D. The SoPerspectiveCamera, a part of the

Coin library, is important to the OceanSurface class, which uses information

about the view volume to determine how the currently viewed region should

be tessellated. The OceanShader class is a container for the shader program,

which handles the final positioning of the grid and the surface color shading

on the GPU. The Grid class is responsible for generating a triangle strip

set, forming a uniform rectangular mesh that can be used in the tessellation

scheme.

Figure 16 shows in sequence how an ocean scene is set up before the main pro-

gram loop. It should be mentioned here that fields are the main mechanism

for manipulating nodes in Coin. Changes to a node field are automatically

detected by the Coin system, which uses this to determine what OpenGL

instructions need to be updated and cached before continuing with render-

ing, and to notify nodes that have a registered interest in another node’s

state. The ocean setup stage consists of instantiating and configuring the

needed nodes, and adding them to a container. First, a WaveField node is
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(a) triggered by a timer (b) triggered by camera motion

Figure 17: Both diagrams describe sequences that are part of the main loop

in an ocean scene. (a) Height field animation is controlled by a timer that

fires at specified intervals. (b) Tessellation updates are triggered by changes

in the camera’s parameters.

set up. This node allocates the desired number of TileMap instances, and ini-

tial spectra are sampled using the given parameters. FresnelMap, SkyMap

and camera nodes are configured and added to the scene, and finally, an

OceanSurface instance is set up with a given grid resolution and TileMap

scales. This object creates an OceanShader node, which is informed about

the height map scales, and a grid with the specified resolution and vertices

in the range [0..1, 0..1].

After the setup stage is completed, the data generated by the FresnelMap,

SkyMap and Grid instances are cached. Since the data does not change, the

system does not need to update this during the course of the simulation.

Figure 17 shows sequences that control animation and teseelation, which are

part of the program’s main loop. Animation is shown in figure (a), where the

height field from the FFT-based simulation is updated. The WaveField node

is notified about changes in a timer node, which is set to fire at certain inter-

vals. This triggers phase shift, inverse Fourier transform, and normal map

calculation. In figure (b), the OceanSurface node is notified about changes
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in the camera node. The OceanSurface node then obtains information about

the view volume from the camera, calculates the corners of the projected

grid in world space. The corners, which are used to position the grid vertices

during vertex shading, are finally passed to the OceanShader. See section

4.2.

After these sequences are completed, Coin will have detected changes in the

WaveField and the OceanShader nodes. Upon rendering, all modified nodes

are invoked. The WaveField node then updates the texture maps that contain

height field data, and the OceanShader node updates the vertex shader with

the new grid corners.

4.3.2 WaveField and TileMap

The WaveField node is responsible for generating animated height maps, as

described in section 4.1.1 and 4.1.2, and corresponding normal maps. With

the technique described in section 4.1.3 in mind, this node is designed to

operate with multiple spectra, where each spectrum is handled by a TileMap

instance. The fields of this node, seen in figure 15, are: size, which determines

the resolution of the height maps; amplifier, gravity and wind, which are

parameters for the statistical wave field model; interval, which specifies the

interval at which wave field updates are triggered; and seed, which is the

initial value handed to the random number generator prior to the sampling

of frequency components.

With two spectra, which was mostly used during testing, two TileMap in-

stances are created, generating two separate sets of data. The WaveField

node packs this data into two 2D textures, for displacement mapping, and

calculates two corresponding normal maps, which are stored as separate slices

in a 3D texture for normal mapping. The displacement maps are stored as 32-

bit precision floating point textures with nearest neighbor filtering, since this

is typically the only type supported by hardware for vertex texture fetches.

The normal maps are only needed in the fragment shader, and are set up

with linear filtering.

42



The FFTW library was used to perform inverse FFT on the CPU. This could

be replaced by any other FFT-library, or, as Mitchell suggests, a GPU-based

implementation of the FFT [Mit05].

4.3.3 OceanSurface and OceanShader

The OceanSurface instance calculates the intersection between the view vol-

ume and the ocean volume each time the camera node changes. See section

4.2. If no intersection is found, the rendering of the ocean surface is deferred.

If an intersection volume is found, four appropriate corners for the projected

grid are calculated and passed to the OceanShader node.

The vertex shader operates on the static grid generated by the Grid class, and

assumes that incoming vertices are in the range [0..1, 0..1]. The vertices are

positioned in the ocean plane by interpolating between the specified corner

vertices. Thus, the world space position of a vertex prior to displacement is

given by:

gl Position = c[0] * (1.0 - x) * (1.0 - y) + c[2] * x * y +

c[1] * x * (1.0 - y) + c[3] * (1.0 - x) * y;

gl Position /= gl Position.w;

where c[0..3] are homogeneous coordinates specifying the corners of the viewed

region, and (x, y) is the position of the incoming vertex.

The vertex position is further manipulated by displacing its z–coordinate.

Displacements are looked up from the available displacement maps, using the

new world space position, (x, y), multiplied with the scale specified for each

height map. Since graphics cards commonly support only nearest neighbor

filtering for floating point textures, a function linear lookup is implemented,

which looks up the four nearest texels for a given texture coordinate, and

returns the interpolated value. Thus, for each available displacement map

displacements[i], the instructions:

gl Position.z += linear lookup(displacements[i], scale[i] * gl Position.xy);
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are called. The vertex is finally transformed to clip space.

In the fragment shader, the first step is to look up a normal vector from each

slice of the 3D normal map. As in the vertex shader, the texture coordinate

is scaled to match the specified scales of the corresponding spectra. It is

assumed that no model transformation is needed for the ocean surface, since

wind direction and scale can be controlled by setting the perameters of the

WaveField node. Thus, the average of the looked up normals is used directly

in the lighting calculations.

Next, the view vector is calculated, and reflectance is looked up from the

map containing the Fresnel function, using n · v as the texture coordinate,

where n is the normal vector and v is the view vector towards the camera.

Reflections from the global environment are looked up from a cube map,

using the reflected view vector as the lookup argument. Optionally, Phong

shaded sun light is added to the reflective color, before the color is mixed with

a refractive color, using the reflectance coefficient to control the blending. A

static bluish reflection is used here, but, as mentioned earlier, the cube map

could also be used to store refractive colors. Finally, the calculated color is

written to the output register.

4.3.4 Solver

The solver examples were set up using the libraries GLEW and GLUT, as

well as a class, FramebufferObject, for handling framebuffer objects. See

appendix B for information about these resources.

The sequence diagram in figure 18 shows how a water solver simulation is

initialized, how it receives input, and how it updates the animated height map

from time step to time step. During the initalization stage, a Solver object

and a Shader object is instantiated. The Solver object, which runs on the

CPU, acts as an interface for the shader, which runs on the GPU. At the end

of the initalization stage, the simulation is set up with the desired parameters,

and the simulation buffer is filled with inital data, usually monotone data
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Figure 18: Sequence diagram for a program using the water solver. The

diagram shows the initialization stage, and input and update cycles, which

are outlined by the upper and lower frames, respectively.
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describing a water surface at rest.

The data are held in two buffers in texture memory. One buffer holds the
data from the previous state of the simulation, a source buffer, and the
other buffer is filled information about the new state as updated values are
computed, a destination buffer. The buffers swap roles at the end of each
time step. The data are organized in 32-bit 4-channel textures as follows
(with reference to equation 11):

Channel 0 - heights from the previous state, i.e. ht
i,j

Channel 1 - the difference in heights from the two previous time steps, i.e. ht
i,j − ht−∆t

i,j

Channel 2 - quantities describing user-supplied forces

Channel 3 - information about the environment

Channel 1 can be interpreted as the vertical speed in each cell at a given

time. Channel 2 lets the user specify accelerations, which will change the

vertical speed in corresponding cells over a few iterations of the simulation.

This seems to produce better results than simply applying deflections directly

and abruptly. In this implementation, channel 3 is interpreted as a boolean

value, specifying whether the cell is occupied by a surface obstacle or not.

If the mathematical model was extended to account for depth, it would be

natural to store depth data in this channel.

When the main loop starts, the input and update cycles run as separate

processes. The input cycle is invoked when the Solver objects receives a

startRendering call from the program. This lets the user modify the active

source buffer using OpenGL calls, e.g. glLine or glPoint, before new values

are computed. An optional argument, colormask, lets the user specify which

channel(s) will receive the input.

During the update cycle, the new state of the simulation is computed. The

fragment shader program is the workhorse here. The iteration is executed by

first adjusting the viewport to ensure on-to-one pixel to texel mapping, and

then draw a quadrilateral which covers the viewport exactly. For each frag-

ment of the rasterized quadrilateral, the shader looks up the corresponding

texel and its neighboring texels, updates the heights, velocities and accelera-
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tions, and writes the new values to the destination buffer. After the output

cycle is completed, this buffer can be bound as a texture and be used in dis-

placement mapping. In fragment shading, normals are calculated by looking

up the finite difference between neighboring cells.
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4.4 Results

The proposed techniqes were tested both isolated and in combonation, with a

focus on experimenting with parameters that are critical to performance, e.g.

frequency resolution and grid resolution. The first section here examines how

the tiled wave fields perform, focusing on the technique for avoiding artificial

periodicity over large regions, described in section 4.1.3. The next section

tests the wave equation solver, described in section 4.1.4, and how this might

perform as a part of a larger oceanic scene. The last section examines the

visual quality and performance provided by the tesselation scheme described

in section 4.2.

The tests were executed on a laptop PC, with the following relevant specifi-
cations:

CPU - Dual core, 2 GHz, with 2046 MB of RAM

GPU - NVIDIA GeForce Go 7900 GS, with 256 MB memory

4.4.1 Wave field tiling

Figure 19 shows the visual difference, and the difference in performance,

for simulations running with one and two spectra, respectively. Two spectra

means more CPU-processing, lead to a doubling of data transfer, and require

twice the number of texture fetches, compared a sole spectrum. The increase

in CPU usage, and cut in frame rate does not seem discouraging, however,

considering that the two tiles are sufficient to describe the structure of an

ubounded ocean surface.

The tests shown in figure 19 uses frequency spectra of 1282 components,

which might be excessive if performance has a higher priority than visual

detail. Figure 20 shows the visual results for simulations with lower frequency

resolutions. The corresponding performance measures are:
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(a) single spectrum, 60 fps, 30% CPU

(b) two spectra, 45 fps, 35% CPU

Figure 19: One versus two spectra. Both scenes were rendered from the

same camera location, with a uniform grid of 10.000 vertices. (a) Using one

spectrum of 1282 components. The animated height field tiles 10 times across

the grid in each direction. (b) Using two spectra with a total of 2 × 1282

components. The two height field decompositions repeats 10 and 6.77 times

across the grid, respectively.
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(a) 2× 1282 wave components (b) 2× 642 wave components

(c) 2× 322 wave components (d) 2× 162 wave components

Figure 20: Four scenes with different frequency resolutions, all using two

spectra.

# components FPS CPU

2× 162 105 20%

2× 322 100 25%

2× 642 80 30%

2× 1282 45 35%

The frame rate drops dramatically above 2 × 642 components. Though the

scene in figure 20 (d) is rendered at a high frame rate, it seems a bit lacking

in detail. The scene in (b) looks much more visually pleasing, and performs

quite well, with almost double the frame rate of scene (a). Figure 19 showed

a cut in frame rate of about 25% with two spectra, compared to one. Going

down to spectra of 642 components, however, the cut in framerate is less than

10% with two spectra.
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(a) filled polygons

(b) wireframe

Figure 21: The wave equation solver in combination with the FFT-based

simulation. The scene was rendered at 130 fps, using a uniform 128 × 128

geometric grid, 64 × 64 wind-driven wave components, and a resolution of

512× 512 for the wave equation solver.

4.4.2 Wakes and obstacles

The GPU-based 2D wave equation solver was tested against a CPU-based

equivalent, to examine the advantages of a GPU-accelerated implementation.

The following performance was measured when animating height maps of the

given resolutions:

resolution CPU GPU

2562 215 fps 600 fps

5122 55 fps 220 fps

10242 14 fps 60 fps

The CPU usage lies at about 25%, in all cases, for the GPU-based solver,

while the corresponding percentage is 100% for the CPU-based solver, as
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could be expected.

The scene in figure 21 shows the GPU-based solver in combination with a

wind-driven wave field. The height maps were combined by simple superpo-

sition, with the solver texture positioned in the center of the grid, and the

wind-driven wave field tile repeating across the entire grid. The simulatoin

was not tested on a very large scale, but the results seem to indicate that

interesting complexity and interactions can be added in confined regions of a

scene, without taking too large a bite out of performance. This could serve

as a nice option if the viewer is examining a particular area closely, and if

available application resources are detected.

4.4.3 Tessellation

The tessellation scheme described in section 4.2 was first tested with no

simulation running, to compare the GPU-based implementation with a solely

CPU-based implementation. The following differences in performance were

measured at given mesh resolutions:

# vertices CPU GPU

210 245 fps 710 fps

211 130 fps 460 fps

212 70 fps 280 fps

213 10 fps 160 fps

Rendering was constantly triggered in these examples, and the CPU (one of

the CPUs in the dual core) pushes close to a 100% with both implementa-

tions. Since the GPU handles the vertex positioning, and the grid remains

cached, i.e. no data transfer, much higher frame rates can be achieved with

the GPU-based implementation, as indicated by the results.

Further testing showed that the mesh resolution must be quite high to avoid

swimming artifacts as the camera moves over the ocean surface. These are

seen as slight flickering in the mesh geometry, due to the fact that the vertices
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Figure 22: A tessellated surface with 1292 vertices, or 215 triangles. The

height field is composed of two frequency spectra, both of 642 components.

The scene was rendered at 42 frames per second.

constantly change positions in world space, which the height field does not,

revealing that there is more information in the height data than resolved by

the mesh. This is particularly noticeable if the waves have large amplitudes or

features that are not as smooth, and if the screen resolution is high, requiring

very fine tessellations. Thus, optimized vertex processing is crucial for the

useability of this technique.

Figure 22 shows a scene rendered with 2(15) triangles, and the corresponding

performance. With such a grid resolution, the geometric artifacts may still

be noticeable towards the horizon, depending on the position, orientation

and movement of the camera. Since there is more information in the far

regions of the scene, it might be better not to aim for an as close to uniform

grid resolution in post-perspective camera space as possible, but to allow for

somewhat higher vertex counts towards the horizon of the viewed region.

By experimentally pushing vertices towards the far plane, less swimming

artifacts were observed. This was done by exponentiating the y–interpolant

in the vertex shader before the vertex position is calculated. A resulting

tessellation can be seen in figure 23, which has less superfluous triangles

close to the camera than a projected uniform grid, and more well resolved

height data towards the horizon of the scene.
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Figure 23: Surface tessellation wireframe with 1292 vertices, or 215 triangles.

The height field is composed of two spectra, both of 322 components. The

scene was rendered at 48 frames per second.
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5 Conclusions

Concluding the document, some of the inferences made preparing the pre-

sented work are set forth. A summary of contributions is presented, as

well as suggestions for further work, both related to the specific Coin3D-

implementation and to future research.

5.1 Inferences

The implemented FFT-based statistical method is capable of generating

highly realistic wind-driven wave fields by tuning a few intuitive parameters.

The periodic properties of the wave fields allows for the construction of seam-

lessly tiled surfaces. It is problematic to directly exploit this for large ocean

regions, however, due to apparent repeating structures across the surface,

becoming disruptive of realism when viewed from arbitrary locations. Using

discrete spectra with real-time friendly resolutions, this artificial periodicity

can be avoided if the wave field is decomposed into two or more separately

animated spectra. By sampling these at different scales, with a large least

common multiple, a statistically faithful wave field with correct dispersive

properties can be synthesized, without exhibiting the strict periodicity of a

single discrete spectrum.

A fast GPU-based 2D water solver is included in the implementation. This

simulation can be switched on and off, and positioned in regions of interest.

The efficient interface allows quickly applying smooth and connected deflec-

tions, which seems highly useful in this case. Although this part of the ocean

simulation is not rigorous, a point of importance in many cases seems to be

simply to capture the notion of a responsive surface aware of its environment,

even if it is in a theoretically superficial manner. The goal here has been to

woo the user, and not to produce scientific data. Moreover, the particular

physical model used could easily be extended, e.g. by accounting for varying

depth, or replaced by a more sophisticated model.
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The adopted tessellation scheme seems suited for the type of surface in ques-

tion. Due to small and monotonic height variations, relative to the extent

of the surface, the polygonal resolution across the visible region is close to

uniform in post-perspective camera space. Moving performance critical parts

of the algorithm to the GPU proved efficient, enabling high frame rates for

unbounded surfaces while preserving relevant geometric details.

Periodic elevation maps seem effective for modeling large ocean regions, as

long as obvious repeating structures are avoided. Combined with a suitable

tessellation scheme, such as the one discussed in section 4.2, the amount of

data that need to be updated and uploaded to the graphics unit is very small

compared to the extent of the regions. The only transfer needed here is of

the limited elevation data, which are packed into textures. If the animation

and synthesis steps are moved to the GPU, which is a proven possibility,

the bandwidth required for the simulation is almost eliminated. Elevation

maps cannot directly represent all shapes and details characteristic of very

rough seas, but this can be improved by calculating horizontal displacements,

applying foam textures, and simulating spray, as noted by other authors.

5.2 Summary of contributions

A method of modeling large oceanic regions that avoids frequently occurring

patterns has been described. The proposed solution overcomes problems as-

sociated with similar previous techniques, without impeding performance.

The resulting model is suitable for real-time simulation, and capable of pro-

viding large and relatively detailed wave fields that follow natural wave dis-

tributions under given wind conditions.

A 2D wave equation solver that utilizes GPU-based fragment processing has

been implemented. This coincides with previous work, both specifically re-

lated to water surface modeling, and to general purpose GPU-computing.

To the author’s knowledge, however, a 2D wave equation solver has not been

demonstrated in combination with FFT-based statistical ocean models. Fur-
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ther, the provided interface exploits hardware rasterization to efficiently feed

arbitrary forces and obstacles to the algorithm.

A GPU-based tessellation scheme that handles unbounded height fields has

been implemented and demonstrated. This is compared to a previous imple-

mentation with purely CPU-based computation. The scheme seems suitable

for large ocean surfaces, with close to uniform geometric resolution in post-

perspective camera space, and little geometry ending up outside the view

volume.

5.3 Further work

The implementation could benefit from several extensions that have not been

in focus in this thesis. More importantly, perhaps, is allowing for choppier

waves with foam, to reproduce rougher seas. Foam can be simulated cheaply

using alpha-blended foam textures, as suggested e.g. by Jensen and Goliás,

looking at the surface slope to determine how much foam should be blended

in [JG01]. Tessendorf suggests an easily implemented extension to the FFT-

based ocean model, where horizontal displacements are calculated, again

based on the surface slope, to provide choppy waves [Tes04]. It would be

interesting to see how this could be fruitfully combined with the suggested

tessellation scheme. It is suspected that sharp crests will pose difficulties if

the tessellation scheme is used straightforwardly, due to the high geometric

resolutions needed to reproduce coherent sharp features. A suggestion for

overcoming this is to dynamically increase the geometric resolution around

such features, exploiting the recent support for geometry shaders on graphics

hardware.

Further effects that could be included are local reflections and realistic water

color. Real-time friendly approximations for both local reflections and water

color are described by Jensen and Goliás [JG01]. To improve the quality of

bright reflections, high dynamic range rendering could also be considered.

Using the implemented tessellation algorithm, there are cases where the re-
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sults are unstable, e.g. when the camera is positioned very close to the

surface. If the camera is allowed to move without restrictions, a separate

programmatically controlled view transformation, a “projector” transforma-

tion, should be used in the calculations. Thus, a heuristic for aiming and

positioning the projector is needed. Johanson suggests some simple heuris-

tics, but also notes that improvements could be identified [Joh04].

A possible measure to increase performance is to move the animation and

synthesis steps for the FFT-based model to the GPU, as demonstrated by

Mitchell [Mit05]. Another possibility, if memory allows it, is to store height

maps from a full prerendered period in a 3D texture, then look up along the

time dimension as needed.

With the 2D water solver in mind, it would be interesting to allow for the

covered region to move continuously during simulation, e.g. with the motion

of a vessel. Similar functionality is achieved by Thürey et al., who move a

simulated 3D region within a larger 2D region by copying and moving values

in the grid structure [TRS06].
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A Contents of the digital disk

The accompanying digital disk contains the images found in this document,

in the path png/, the document itself, in pdf/, and the source code from the

implemented techniques, in the path src/.

The source code is arranged in a Microsoft Visual Studio solution, which

contains the following projects (with references to corresponding test results):

OceanFlyover tests the tessellation scheme in combination with the FFT-

based simulation (section 4.4.3).

SolverCPU contains the CPU-based implementation of the 2D wave equa-

tion solver (section 4.4.2).

SolverGPU contains the GPU-based implementation of the 2D wave equa-

tion solver (section 4.4.2).

TessellationCPUvsGPU tests the tessellation scheme isolatedly, both the

CPU-based implementation and the GPU-based implementation (sec-

tion 4.4.3).

TileSolverCombo tests the GPU-based wave equation solver in combina-

tion with the FFT-based simulation (section 4.4.2).

WaveField tests the performance of FFT-based simulation with two com-

bined spectra, compared to a single spectrum (section 4.4.1).

Within these projects, the names of the C++ source files correspond to the

classes described in section 4.3. Fragment and vertex shader sources are given

the file extension glsl.
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B Software libraries

The accompanying source code relies on the following external resources, all

available on several platforms:

Coin3D - available at http://www.coin3d.org/, licensed under GNU GPL.
Documentation is found at http://doc.coin3d.org/Coin-dev/.

FFTW - available at http://www.fftw.org/.

FramebufferObject - available at http://www.gpgpu.org/developer/.

GLEW - available at http://glew.sourceforge.net/.

GLUT - available at http://www.opengl.org/resources/libraries/.
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Figure 24: An illustration of Snell’s law. Here, the upper medium is air, and

the lower medium (shaded) is water. The interface between the two media

is the center horizontal line. The angle of incidence is θi, and the angle of

refraction is θt.

C Reflection and refraction

To believably capture the appearance of ocean surfaces, an understanding of

light’s interactions with water is needed. Particularly interesting here are the

events that occur when photons reach the air-water boundary. Water is both

a transmissive medium, and an excellent specular reflector. Depending on the

angle of which light hits the interface between two transmissive media, such

as water and air, one fraction of the photons is reflected back into the first

medium, and another fraction is transmitted through the next medium. For

reflected photons, the direction of travel is simply reflected about the surface

tangent, assuming perfect specular reflection. Photons that are transmitted

through a new medium undergo a change in speed, causing refraction, i.e. a

slight change in direction. See figure 24. The angle of a refracted ray is given

by Snell’s law:

n1 sin θ1 = n2 sin θ2 , (12)

where θ1 is the angle of the incident light and θ2 is the angle of the refracted

light, or conversely. n1 and n2 are the refractive indices of the two media. For

light, these measure the slowdown of photons in the given media compared

to the light speed in vacuum. In this work, the refractive indices of air and
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(a) air to water (b) water to air

Figure 25: Fresnel reflectance at the air-water houndary. (a) and (b) show the

reflectance for light transmitted by air and water, respectively. The vertical

line in (b) marks the critical angle, beyond which total internal reflection

occurs. The middle curve, in both diagrams, is the average of the reflectance

for s–polarized and p–polarized radiation.

water are assumed to be 1 and 1.333, respectively. It is also assumed that

their values are equal for all wavelengths of light. This is not the case, as

evident in e.g. rainbows, but an adequate approximation here.

Another important relation is the probability for a photon to reflect at an

interface given its angle of incidence, or in other words, the fraction of the

total light intensity that is diverted into a reflected ray. This coefficient is

given by the Fresnel equations, which state the reflectance for s–polarized

and p–polarized radiation at the interface of two media. Assuming unpolar-

ized light, containing an equal mix of the two polarizations, the reflection

coefficient is:

R =
1

2

[
sin(θt − θi)

sin(θt + θi)

]2

+
1

2

[
tan(θt − θi)

tan(θt + θi)

]2

, (13)

where θt is obtained using equation 12. The transmission coefficient T is

simply the remaining fraction of the light’s intensity, i.e. T = 1−R.

Figure 25 shows the Fresnel reflectance for light hitting ocean water from

above the surface (a), and from below the surface (b). Since the reflectance

varies rapidly over a rippled surface, the intention here is to evaluate this
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coefficient at every pixel of the rendered surface. Simply evaluating equa-

tion 13 in a fragment shader, however, would be poor design with regards

to performance. A much cheaper solution is to approximate the Fresnel co-

efficient using a precomputed texture map. With linear interpolation, such

an approximation has relatively small errors, even at low resolutions, e.g. 32

texels. When precomputing a 1D texture, it is more convenient to substitute

θi with cos−1 t in equation 12 and 13, using t = cos θi as the texture coordi-

nate. Thus, the reflectance can be looked up by passing t = n ·v, where n is

the surface normal and v is the view vector, rather than computing θi.
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Figure 26: Rendering an ocean surface with a cube mapped environment.

D Environment mapping

Having determined the direction of an incoming light ray at a point on the

ocean surface, the next step is to determine the origin of the ray, i.e. what

should be reflected, and what should be refracted. Cube mapping is a conve-

nient way to look up contributions from far away objects, e.g. the sky. Cube

maps are natively supported by current graphics hardware, and integrated

into high-level shading languages. With a cube mapped environment, texels

are simply addressed using the reflection vector, or refraction vector, at a

given surface fragment.

In figure 26, the fragment under evaluation is the center dot. The reflec-

tive contribution at this fragment is looked up from a cube map using the

reflection vector, then multiplied with the air-to-water reflection coefficient

given by equation 13. Assuming deep waters, the cube map could also con-

tain refractions. As Jensen and Goliás suggest, realistic water color could be

precalculated into the cube map, and looked up using the refraction vector

[JG01]. This refractive contribution is finally multiplied by the water-to-air

transmission coefficient, and added to the fragment color.

A cube mapped environment is only suitable for global reflections, from dis-

tantly located objects. Reflections from objects closer to the camera, how-

ever, are not as easily captured, since the surface will be undulating and the

camera will be moving about, making the position of the objects significant.
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Only taking first-order rays into account, one common approximation is to

treat the ocean surface as a flat horizontal mirror, and render a mirror image

of the scene into a projective texture in an additional rendering pass. When

reflections are looked up from this texture, the map coordinates can be per-

turbed, consulting the normal map of the ocean surface, to achieve a rippled

mirror image. Local reflections have not been in focus here, but more can be

read about this, e.g. in the work of Jensen and Goliás [JG01].
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