
June 2007
Svein Johan Knapskog, ITEM
André Årnes, Kripos

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Intrusion Detection in High-Speed
Networks

Martin Riegel
Claes Lyth Walsø

Problem Description
In this assignment, methods for high-speed intrusion detection using programmable network
monitoring cards will be studied. A distributed high-speed intrusion detection system based on an
IDS and DAG monitoring cards is to be deployed in the Uninett backbone network, and
experiments and testing will be performed. In addition, strategies for handling high-speed
network data, such as the use of programmable network cards, parallel processing and sampling
will be considered. Possible applications for a prototype may be real-time security monitoring, as
well as the collection and statistical analysis of security relevant data.

Assignment given: 01. February 2007
Supervisor: Svein Johan Knapskog, ITEM

ABSTRACT

This thesis investigates methods for implementing an intrusion detection system (IDS) in a
high-speed backbone network. The work presented in this report is run in cooperation with
Kripos and Uninett.

The popular IDS software, Snort, is deployed and tested in Uninett’s backbone network. In
addition, the monitoring API (MAPI) is considered as a possible IDS implementation in the
same environment. The experiments conducted in this report make use of the programmable
DAG card, which is a passive monitoring card deployed on several monitoring sensors in
Uninett’s backbone.

As a limitation of the workload, this report only focuses on the detection of botnets. Botnets
are networks consisting of infected computers, and are considered to be a significant threat on
the Internet as of today.

A total of seven experiments using Snort are presented. These experiments test 1) the impact
the number of rules have on Snort, 2) the importance of good configuration, 3)the importance
of using well written rules, 4) Snort’s ability to run in an environment with minimum external
traffic, 5) the impact the size of the processed packets have, 6) the impact the TCP protocol
has on packet processing and 7) Snort’s ability to run as a botnet detection system for a longer
period of time.

Based on the results from these experiments, it is concluded that Snort is able to run as a
botnet detection system in a high-speed network.

This report also discusses some strategies for handling high-speed network data and some
future aspects. In addition, ideas for further work and research are given in the end of the
report.

i

PREFACE

This thesis serves as a Master of Science thesis pursued in the 10th semester of the masters
programme in telematics at the Norwegian University of Science and Technology, NTNU.

The motivation for the research described in this report was given by Uninett and André
Årnes from the Computer Crime Division at Kripos.

We would like to thank our main supervisor, André Årnes, for continuous feedback and help
throughout the semester, and professor Svein J. Knapskog for his helpful advice and guid-
ance. Also thanks to Erik Hjelmås at Gjøvik University College for providing the IRC server
used in the experiments.

A very special thanks goes to Arne Øslebø at Uninett. Without you, this thesis would never
have been finished.

Trondheim, June 2007

Martin Riegel Claes Lyth Walsø

iii

ABBREVIATIONS

In this section, abbreviations commonly used in the report are listed in alphabetical order and
explained:

AIM AOL Instant Messenger
A freeware for instant messaging

API Application Programming Interface
A set of routines, protocols and tools for creating software applications

C&C Command Control
A C&C server is a server used to control and communicate with bots

CPU Central Processing Unit
The processing component in a computer

CSV Comma Separated Value
A file format which values are separated by a comma

DAG Data Acquisition and Generation
A Gigabit Ethernet monitoring card

DiMAPI Distributed MAPI
A distributed functionality for MAPI (see below)

DoS Denial of Service
A computer attack that attempts to make resources unavailable

FTP File transfer protocol
Protocol used on the Internet for transferring files

GB Giga Byte
One billion bytes

Gpbs Giga bit per second
One billion bits per second. Used in network traffic context

GUI Graphical User Interface
An user interface which let people interact with a computer

ICMP Internet Control Message Protocol
A protocol part of the Internet protocol suite

IDS Intrusion Detection System
A system which detects intrusion attempts in a computer network

IGRP Interior Gateway Routing Protocol
A protocol for exchanging routing data

v

vi

IP Internet Protocol
A data-oriented protocol used for communicating data across a packet-switched network

IPS Intrusion Prevention System
A system which prevents intrusion attempts in a computer network. Often used with an
IDS(see above)

IRC Internet Relay Chat
A communication protocol

ISP Internet Service Provider
An company which sells Internet access to customers

LBNL Lawrence Berkeley National Laboratory
Laboratory in USA which is managed by the University of California

LOBSTER Large-scale Monitoring of Broadband Internet Infrastructures
A pilot European infrastructure for accurate Internet traffic monitoring

MAPI Monitoring API
An API (see above) for creating functionalities for network monitoring

MB Mega Byte
One million bytes

NIC Network Interface Controller
An adapter circuit board installed in a computer to provide a physical connection to a
network

OS Operating system
The operating system installed on a computer/server

OSI Open Systems Interconnection
A network standard which provides a layered reference model

Pcap Packet Capture
API (see above) for capturing packets on a computer network

PIDS Privacy IDS
An IDS (see above) that is specifically tailored to intrusion attempts related to privacy
issues

PoS Packet over SONET
A protocol for sending packets over a SONET (see below)

SCAMPI Scaleable Monitoring Platform for the Internet
A European project to develop a scaleable monitoring platform for the Internet

SONET Synchronous Optical Networking
A method for computer communication over optical fiber

SSH Secure Shell
A network protocol for securing a communication channel

TB Tera Byte
One trillion bytes

vii

TCP Transmission Control Protocol
A transport protocol that guarantees reliable and in-order delivery of sender to receiver
data

ToS Type of Service
A field in the IP header used for specifying a service

UDP User Datagram Protocol
A connectionless network protocol

VM Virtual Machine
A virtual machine achieved by using VMWare

CONTENTS

Abstract i

Preface iii

Abbreviations vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1
1.3 Context . 2

1.3.1 Threats on the Internet . 2
1.3.2 Botnets . 2

1.4 Research methodology . 3
1.5 Contributions . 3
1.6 Structure . 4

2 Background 5
2.1 Introduction . 5
2.2 IDS . 5

2.2.1 Signature- and Anomaly-Based IDS . 6
2.2.2 Network-Based IDS . 6
2.2.3 Host-Based IDS . 6
2.2.4 Stack-Based IDS . 6
2.2.5 High-Speed IDS . 7

2.3 Related Work . 7
2.3.1 A Splitter architecture . 7
2.3.2 HotBots 07 . 8

2.4 Snort . 8
2.4.1 The Ruleset . 9

2.5 MAPI . 9
2.5.1 The Ruleset . 10

2.6 Additional Software . 10
2.6.1 VMware . 10
2.6.2 Wireshark . 11
2.6.3 Cerebus . 11

2.7 UNINETT . 12
2.7.1 Passive sensor . 13

2.8 DAG cards . 14
2.8.1 Filters . 14
2.8.2 Making filters . 15

2.8.2.1 Filter syntax . 16
2.9 Botnet . 18

ix

x CONTENTS

2.9.1 Botnet Protocols . 18
2.9.2 The Botnet Lifecycle . 19
2.9.3 Consequences . 19
2.9.4 Botnet Families . 20

2.10 The IRC protocol . 20

3 Approach 23
3.1 Introduction . 23
3.2 Architecture . 23

3.2.1 Security Aspects . 24
3.2.2 Botmaster . 25
3.2.3 Bot . 25
3.2.4 IRC Server / C&C Server . 26
3.2.5 IDS . 27
3.2.6 Pros and Cons . 28

3.3 Implementation Preparations . 28
3.3.1 Compiling the Bots . 28
3.3.2 IDS Rules . 31
3.3.3 Malicious Traffic Script . 32

3.4 Implementing Snort . 32
3.4.1 Experiment 1 - Testing The Number of Rules 34
3.4.2 Experiment 2 - Optimising Snort Configuration 34
3.4.3 Experiment 3 - Testing Impact of Common Strings 35
3.4.4 Experiment 4 - Testing With Minimum External Traffic 35
3.4.5 Experiment 5 - Testing Packet Length Input 35
3.4.6 Experiment 6 - Testing Impact of the TCP Protocol 36
3.4.7 Experiment 7 - IDS Stand-Alone Test . 36

3.5 Implementing MAPI . 37

4 Results 39
4.1 Introduction . 39
4.2 Results from the Experiments . 40

4.2.1 Experiment 1 - Testing Number of Rules 40
4.2.2 Experiment 2 - Optimising Snort Configuration 42
4.2.3 Experiment 3 - Testing Impact of Common Strings 43
4.2.4 Experiment 4 - Testing With Minimum External Traffic 43
4.2.5 Experiment 5 - Testing Packet Length Input 44
4.2.6 Experiment 6 - Testing Impact of the TCP Protocol 45
4.2.7 Experiment 7 - IDS Stand-Alone Test . 46

5 Analysis 47
5.1 Introduction . 47
5.2 Analysing the Experiments . 47

5.2.1 Experiment 1 - Testing Number of Rules 48
5.2.2 Experiment 2 - Optimising Snort Configuration 51
5.2.3 Experiment 3 - Testing Impact of Common Strings 54
5.2.4 Experiment 4 - Testing With Minimum External Traffic 55
5.2.5 Experiment 5 - Testing Packet Length Input 56
5.2.6 Experiment 6 - Testing Impact of the TCP Protocol 57

CONTENTS xi

5.2.7 Experiment 7 - IDS Stand-Alone Test . 58
5.3 Sources of Error . 58
5.4 Conclusion . 59

6 Discussion 61
6.1 Introduction . 61
6.2 Snort vs. MAPI . 61

6.2.1 The Rules . 61
6.2.2 Performance . 61
6.2.3 Distributed approach . 62

6.3 DAG cards and Other Hardware . 62
6.4 Circumventing the IDS . 63
6.5 Botnet Similarities . 63
6.6 Alternative Detection Algorithms . 63
6.7 Handling the Detection Data . 64
6.8 Future Prospects . 64

6.8.1 A distributed Approach . 64
6.8.2 IPv4 vs. IPv6 . 65

7 Further work 67
7.1 Introduction . 67
7.2 Implementing MAPI as an IDS . 67
7.3 Testing Maximum Traffic Load . 67
7.4 Botnets Based on Other Protocols . 67
7.5 Increased experiment length and frequency . 68
7.6 Dynamic Rules . 68
7.7 Notification Upon Detection . 68
7.8 Detection of Other Types of Intrusion . 68
7.9 Sampling . 68

References 70

A Modified Snort configuration file 71
A.1 snort.noflow.conf . 71

B MAPI IDS program 77
B.1 MAPI IDS program . 77

LIST OF FIGURES

1.1 Active bot-infected computers per day . 3

2.1 Overview of the splitter architecture . 7
2.2 A Snort rule . 9
2.3 A MAPI rule . 10
2.4 Illustration of a virtual machine . 11
2.5 Overview over UNINETT’s backbone . 12
2.6 DAG 4.3s Networking monitoring card . 14
2.7 Options for making filters . 15
2.8 DAG Filter syntax . 16
2.9 DAG Filter syntax example . 17
2.10 How hosts become part of botnets . 19
2.11 A small IRC network . 21

3.1 Overview of the experimental architecture . 24
3.2 UNINETT sensor . 27
3.3 Rbot configuration file . 30
3.4 An example of a content matching Snort rule . 31
3.5 mIRC bot command script . 32
3.6 Snort.noflow.conf . 33
3.7 Snort.tweak.conf . 35
3.8 Mapi cooking function . 37

5.1 Detection Ratio in experiment 1 . 48
5.2 Snort drop ratio in experiment 1 . 49
5.3 Processed packets per second in experiment 1 . 50
5.4 Detection Ratio in experiment 2 . 51
5.5 Snort dropping ratio in experiment 2 . 52
5.6 Packet drop ratio in experiment 3 . 54
5.7 The effect of the slen value . 56
5.8 The impact of the TCP protocol . 57

A.1 snort.noflow.conf part 1 . 71
A.2 snort.noflow.conf part 2 . 72
A.3 snort.noflow.conf part 3 . 73
A.4 snort.noflow.conf part 4 . 74
A.5 snort.noflow.conf part 5 . 75

B.1 MAPI IDS program part 1 . 77
B.2 MAPI IDS program part 2 . 78

xiii

LIST OF TABLES

4.1 Results when using 5 rules . 40
4.2 Results when using 30 rules . 40
4.3 Results when using 50 rules . 40
4.4 Results when using 100 rules . 41
4.5 Results when using 200 rules . 41
4.6 Results when using 1000 rules . 41
4.7 Results when using 200 rules with optimised configuration file 42
4.8 Results when using 1000 rules with optimised configuration file 42
4.9 Results when common words are inlcuded in the ruleset 43
4.10 Results when using 5 rules and a minimum of external traffic 43
4.11 The effect of the slen value when using the modified configuartion file 44
4.12 The effect of the slen value when using the optimised configuartion file 44
4.13 The impact the TCP protocol has on the ratio of dropped packets 45
4.14 The IDS stand-alone test . 46

xv

CHAPTER1
INTRODUCTION

In this report, methods for high-speed intrusion detection systems using programmable net-
work monitoring cards will be studied. A high-speed intrusion detection system (IDS) based
on Snort, MAPI and DAG monitoring cards will be deployed in the Uninett backbone net-
work, and experimental testing will be performed. In addition, strategies for handling high-
speed network data will be considered.

1.1 MOTIVATION

With the increasing amount of threats on the Internet there is also an increasing need for sys-
tems to detect intrusion attempts. These IDSs need to be able to detect known attacks and to
handle new ones as they are discovered.

Modern high-speed networks set requirements to scalability of the IDS, as high-speed IDS
need to monitor every IP packet and flow and correlate this with the IDS’s database for known
attacks.

The research presented in this report is inspired by the LOBSTER1 and SCAMPI2 projects.
LOBSTER is a pilot European Infrastructure for large-scale monitoring of broadband Internet
infrastructure. LOBSTER uses passive monitoring sensors connected to the network at speeds
from 2.5 to 10 Gbps. SCAMPI is a predecessor to LOBSTER and is an acronym for a Scalable
Monitoring Platform for the Internet. The research presented in this report is conducted in
cooperation with Uninett. Uninett is responsible for the national research and educational
network, and they are also part of the SCAMPI and LOBSTER projects.

1.2 OBJECTIVE

The primary objective of this project is to implement an IDS in Uninett’s backbone. Strengths
and weaknesses of the different approaches will be studied using Snort and MAPI. Snort is
an open source, de facto standard for intrusion detection and prevention. MAPI is a network
monitoring API designed for high-speed networks.

The IDSs presented in this report will, due to workload limitations, only focus on botnets.
The overall goal of this report is however to end up with a scalable IDS implemented on a 2.5
Gbps link. Due to privacy issues this report does not include a distributed approach, as access
was only granted for one sensor. This is further discussed in Section 6.8.1.

1http://www.ist-lobster.org/
2http://www.ist-scampi.org/

1

2 CHAPTER 1. INTRODUCTION

1.3 CONTEXT

This section will explain some of the current threats on the Internet relevant for this report.

1.3.1 Threats on the Internet

According to the Symantec3 Internet Security Threat Report [Cor06], malicious attacks have gone
from being network-based to target client side applications. [Cor06] is a report of the secu-
rity threat level on the Internet based on the observations made in the fist six months of 2006,
while [Cor07] is for the last six months of 2006. Symantec’s observations are based on the traf-
fic collected on several honeypots and by utilizing over 40.000 sensors in over 180 countries.

The following points sums up some highlights mentioned in [Cor06] and [Cor07]:

• An average of 6110 Denial of Service(DoS) attacks daily in the first six months of 2006.

• In the first six months of 2006, 86% of all targeted attacks were against the home user
sector. This increased to 93% during the last six months.

• During the first half of 2006, 18% of all distinct malicious code samples were new.

• Worms made out 38 of the top 50 malicious code samples during the same period.

• During 2006 there was an 81% increase of phishing messages, which again increased
another 6% the last six months.

• 84% of the phishing activity had financial gain as intention.

As can be seen from the last point, and also mentioned throughout [Cor06], [Cor07] and
[BY07], there has been an increase in attacks with the purpose of financial gain.

Also worth mentioning in this connection is that 38% of DoS attacks were directed against
Internet Service Providers (ISP) during the first half of 2006.

1.3.2 Botnets

According to [RZMT06], a botnet is a network consisting of infected computers. These com-
puters, or bots, are under human control.

Symantec mentions in [Cor06] that they have detected an average of 57,717 active bot net-
works per day during the first six months of 2006. As mentioned in [Cor07], this increased to
63,912 during the last six months. Figure 1.1 shows the number of active bot-infected comput-
ers per day during 2006. The moving average line is a calculated mean value of the number of
active bots at the given period.

Approximately 6.000 of these were command and control servers (C&C). C&C servers are
servers which provide communication channels for the botmaster, which allows the botmas-
ter to communicate with the bots in the network [RZMT06].

3Symantec is, according to their website, "a global leader in infrastructure software, enabling businesses and
consumers to have confidence in a connected world." They sell and manufacture security software.

1.4. RESEARCH METHODOLOGY 3

Figure 1.1: Active bot-infected computers per day. The figur is extracted from [Cor07]

Botnets will be further elaborated in Section 2.9 as they are the main focus of the research
conducted in this report.

1.4 RESEARCH METHODOLOGY

The following is the scientific steps of the research presented in this report:

1. It is necessary to perform a background and theoretical study.

2. The design of the experimental architecture and intrusion detection system has to be
made.

3. The experiments have to be prepared, i.e., locate and install bots in a safe environment.
In addition, an IRC server has to be set up in a remote location.

4. Conduct the actual experiments.

5. The results from the experiments will be analysed and discussed.

1.5 CONTRIBUTIONS

This report demonstrates that it is possible to use the popular intrusion detection system Snort
as an IDS in a high-speed environment, with the use of specialized network hardware in the
DAG cards.

The experiments conducted in this report were run in cooperation with Uninett. On the basis
of these experiments several bugs in MAPI were discovered. These bugs have been reported,
but they are not included in this report, as they are outside the topic if this research.

4 CHAPTER 1. INTRODUCTION

1.6 STRUCTURE

This section gives a brief description on the rest of the chapters in the report.

Chapter 2
Chapter 2 provides some background knowledge needed to understand the research pre-
sented further in this report.

Chapter 3
Chapter 3 presents the experimental approach.

Chapter 4
Chapter 4 presents the results from the experiments. The results are given in tables.

Chapter 5
Chapter 5 analyses and discusses the results given in Chapter 4.

Chapter 6
Chapter 6 discusses some of the different elements in relations with the experiments presented
in this report.

Chapter 7
Chapter 7 suggest some further work related to the research presented here.

The configuration files, bot source code and IDS rules, are included as a digital attachment
to this report.

CHAPTER2
BACKGROUND

This chapter will provide some background material needed for further reading of this report.

The term IDS will be explained and different kinds of IDSs will be discussed. Some related
work will be presented next. An overview over the hardware and software used in the re-
search will then given (i.e., Snort, MAPI and some other software applications, and also the
DAG-cards). In addition, information about Uninett and some background information about
botnets and the IRC protocol will be presented.

2.1 INTRODUCTION

As mentioned in Chapter 1, this report focuses around the process of implementing an IDS in a
high-speed environment and the problem and challenges which may arise in that connection.

2.2 IDS

An Intrusion Detection System is continuously inspecting network activity. The IDS is look-
ing for suspicious traffic traversing the network, mainly in the inbound direction. However,
there are some IDSs which also analyses the traffic in the outbound direction.

As opposed to other network monitoring systems, an IDS looks for specific traffic patterns
which are believed to be malicious or suspicious. When suspicious traffic is detected an IDS
may take a number of actions. The most common is to alert the administrators who can take
necessary actions.

As mentioned, there are several kinds of IDSs, all of which works in different ways. Some
of the most important ones will be explained in the following sections in order to get a full
understanding of how an IDS works. Section 2.2.5 describes IDSs working in high-speeds
environments and some related work. Most of the explanations below are extracted from
NISTs1 Guide to Intrusion Detection and Prevention Systems [SM07]. As the title suggest, [SM07]
also covers the field of Intrusion Prevention Systems (IPS). According to [SM07], an IPS is
software that has all the capabilities of an IDS, but can also attempt to stop possible incidents.
This report will, however, focus on IDS.

1NIST - National Institute of Standards and Technology

5

6 CHAPTER 2. BACKGROUND

2.2.1 Signature- and Anomaly-Based IDS

Signature-based detection is the process of looking for known malicious network traffic pat-
terns. This process works very well with known threats, although any new suspicious activity
will not be detected.

Anomaly-based detection is the process of comparing the network traffic pattern to what is con-
sidered to be known normal traffic. The IDS monitors the traffic over a period of time, known
as the training period, and creates a profile of the normal traffic. Statistical methods are then
applied to detect deviations. These profiles may be quite extensive and anomaly-based IDS
has shown to work well when it comes to detecting unknown threats.

2.2.2 Network-Based IDS

A network-based IDS simply analyses the network traffic. According to [SM07], it is most
commonly deployed at the network boundaries. The traffic is analysed in real-time as it tra-
verses the network. Usually a filter is used to decide which traffic is to be let through and
which is to be further analysed by the IDS.

Some of the strengths of a network-based IDS are explained in [LA00]. Itis worth mentioning
that this type of IDS does not rely on any software or operation system specifications on the
hosts, even though they may be configured to do so if necessary. Because it provides real-time
packet analysis, a fast and efficient response may be achieved. Using a network-based IDS
makes it harder for an attacker to hide her tracks.

2.2.3 Host-Based IDS

A host-based IDS analyses the activity of a single host for suspicious activity (i.e., network
traffic specific for the host, system logs, running processes, application activity, file access and
modification, and system and application configuration changes) [SM07].

[LA00] list some of the strengths in host-based IDS. This type of detection is less prone to false
positives, and may make it possible to see whether an attack was successful. A host-based
IDS may also detect system specific activity at the host. Depending on the implementation,
host-based IDSs may provide close to real-time analysis. In addition, no additional hardware
is needed by using a host-based IDS.

2.2.4 Stack-Based IDS

[LA00] refers to stack-based IDSs as the newest of IDS technology. These IDSs analyse the
packets as they traverse the layers of the protocol stack. If the IDS detects malicious traffic,
the packets may be rejected before they are processed at the application layer. It is claimed in
[LA00] that a complete stack-based IDS checks both inbound and outboud traffic.

This kind of IDS will not be discussed any further, as it is considered outside the scope of
this report.

2.3. RELATED WORK 7

2.2.5 High-Speed IDS

A high-speed IDS is, in this report, referred to as an IDS working in an environment with ex-
cessive bandwidth, from 2.5 Gbps to 10 Gbps. [SYL03] mentions that the main problem with
running an IDS in such environments is the huge amounts of data that needs to be processed.

The next Section describes some work related to high-speed IDS research presented in this
report.

2.3 RELATED WORK

In this report, related work is considered to be research on high-speed IDSs and also IDSs
specifically designed to detect botnets based on IRC. More specificly, this also includes re-
search related to the LOBSTER and SCAMPI projects, mentioned in section 1.1.

2.3.1 A Splitter architecture

Several solutions for handling the problems concerning high-speed IDS have been published.
One solution is described in [XCA+06] by some of the LOBSTER partners. The article presents
a traffic splitter architecture, which was also mentioned in [CAM04]. The purpose of this
architecture is to split the traffic among several intrusion detector sensors. One important
principle is that packets that belong to the same attack will be processed by the same sensor.
Figure 2.1 presents an overview of the splitter architecture.

Figure 2.1: Overview of the splitter architecture. Copied from [CAM04].

The splitter architecture consists of the following components:

• The early filtering process only checks the IP packet headers. If the header is not known
to be malicious and the packet contains no payload, the packet is filtered out. Otherwise,
the packet is forwarded to the load distributor.

• The purpose of the load distributor is to divide the network traffic among the end sen-
sors, and to keep them as evenly loaded as possible. In addition, the packets of the same
network flow should be examined by the same sensor. This is achieved by computing

8 CHAPTER 2. BACKGROUND

a hash function on selected fields in the packet headers, and then forward the packets
with the same hash value to the same sensor.

• The locality buffers attempts to rearrange the interleaving of packets in the traffic so that
subsequent packets will trigger the same ruleset as often as possible, and thus decrease
the processing time.

This architecture is shown to work well with high speed networks below 1Gbps. However,
the architecture based on special designed hardware which will not be used in the research in
this report. See [XCA+06] and [CAM04] for further elaboration.

2.3.2 HotBots 07

In April 2007, a conference (HotBots 07) about botnet research was arranged in Cambridge,
USA. The article [KRH07] describes a method to detect, track, and characterize botnets on
high-speed networks. It is claimed that their method:

1. is entirely passive and therefore invisible to operators,

2. scales to the largest of networks,

3. is based on flow data analysis, which limits privacy issues,

4. has a false positive rate of less than 2%,

5. helps identify botnets that are most affecting real users and customers,

6. can detect botnets that use encrypted communication, and

7. helps quantify size of botnets, identify and characterize their activities without joining
the botnet.

The main focus in this thesis report is however to implement a high-speed IDS using MAPI
and Snort, eleborated in sections 2.5 and 2.4, respectively. The mentioned approach will, how-
ever, not be considered any further.

[GH07] is another article presented at HotBots 07. This article is more relevant to the research
conducted in connection with this thesis. [GH07] presents a method which relies on the de-
tection of the communication channel between bot and the C&C server. This method is based
on the special nicknames that are assigned to the bots in a botnet. By looking at the IRC traffic
and inspecting special "unhuman" nicknames, they are able to detect IRC-based botnets.

2.4 SNORT

The research presented in this report, uses the open source IDS called Snort. The following
text is cited from Snort’s official website (www.snort.org):

Snort is an open source network intrusion prevention and detection system utilizing a rule-driven
language, which combines the benefits of signature, protocol and anomaly based inspection methods.

2.5. MAPI 9

With millions of downloads to date, Snort is the most widely deployed intrusion detection and preven-
tion technology worldwide and has become the de facto standard for the industry.

Snort may be used as a packet sniffer like tcpdump, as a packet logger, or as an IDS. When
using Snort as an IDS, it uses a set of rules to detect intrusions. These rules are explained in
the next section.

2.4.1 The Ruleset

According to their website, rules are based on detecting the actual vulnerability as opposed
to a specific signature. A signature is based on an exploit of a unique piece of data.

Figure 2.2 shows an example Snort rule2.

A Snort rule

a l e r t tcp any any −> 1 9 2 . 1 6 8 . 1 . 1 5 0 111 (content : " |00 01 86 a5|" ; msg : "mountd
a c c e s s " ;)

Figure 2.2: A Snort rule, as presented in [Pro06].

In short terms, the rule in 2.2 will make Snort alert with the message mountd access, when tcp
packets with the destination address 192.168.1.150, port 111 is received and the given payload
specified in content:" |00 01 86 a5|" is matched.

The rule header is the text up to the first parenthesis in Figure 2.2. As explained in [Pro06],
the rule header contains the rules action, protocol, source, and destination IP addresses and
netmasks, and the source and destination ports information. Following the header is the rule
option section.

The rule option Section is according to [Pro06] the heart of Snorts intrusion detection engine.
As can be seen in Figure 2.2, this is where the content matching rule is expressed.

2.5 MAPI

The research presented in this report also uses the Monitoring API called MAPI. The follow-
ing text is cited from the MAPI webpage (mapi.uninett.no):

MAPI, or Monitoring API, is a multi-user programming interface designed to simplify the develop-
ment of network monitoring software and allows users to express their monitoring needs in a device-
independent way. The main abstraction provided by MAPI is the network flow. Although flows have
been used before in network monitoring systems, MAPI gives flows a first-class status.

The experiments described in makes use of MAPI 2.0Beta1, which was released in Septem-
ber 2006. MAPI supports normal NICs (network interface controller), SCAMPI adapters, and
also DAG cards without a co-processor. MAPI is implemented in C and provides a wide set of

2Because of available page width in the report the rule is split over two lines.

10 CHAPTER 2. BACKGROUND

monitoring functionalities. MAPI runs as a background daemon. A user typically makes his
own programs which uses functions available in MAPI. These programs connect to the MAPI
daemon when they are executed. MAPI supports both libpcap and its own DAG API.

The paper [TPP+06] presents a distributed extension to MAPI (DiMAPI). By using DiMAPI,
it is possible to create an IDS working with several sensors. [TPP+06] also presents a network
IDS. The usage of DiMAPI is discussed in Section 6.8.1.

2.5.1 The Ruleset

It is easy to create rules corresponding to the Snort rules in MAPI. Figure 2.3 presents the code
lines representing the same rule as in figure 2.2.

A MAPI rule

1 example = mapi_create_flow ("/dev/dag0 ") ;
2 mapi_apply_function (example , " BPF_FILTER " , " tcp AND dst host 1 9 2 . 1 6 8 . 1 . 1 5 0 AND dst port 111 ") ;
3 mapi_apply_function (example , "STR_SEARCH" , " |00 01 86 a5|" , 0 , 1500) ;
4 mapi_apply_function (example , " TO_FILE " , MFF_PCAP, " example . pcap " , 0) ;
5
6 i f (mapi_connect (example) < 0) {
7 p r i n t f (" Could not connect to flow %d\n" , example) ;
8 e x i t (EXIT_FAILURE) ;
9 }

10
11 mapi_close_flow (example) ;

Figure 2.3: A MAPI rule. Only the relevant lines are included.

First, as shown in Figure 2.3, the correct flow is created for the network interface of interest,
dag0 . Second, the filter, which corresponds to the rule header in the Snort rule, is created.
Line 4 applies the search string function. This corresponds to the content: "|00 01 86 a5|" part
of the Snort rule in Figure 2.2. Line 5 simply logs the detection in a pcap file.

The if test is simply to check whether the flow was created in a correct manner. Finally, the
flow is closed. Notice that there are some lines missing in order to make this a complete C
program.

2.6 ADDITIONAL SOFTWARE

In order to set up the experiments described in this report, some additional software is needed.
A short explanation of this additional software is given in the following sections.

2.6.1 VMware

VMware is basically a program that emulates a computer. This makes it possible for multiple
operating systems to co-exist as virtual machines (VM) inside the program, as illustrated in
Figure 2.4. The main advantage of suing VMware for virtualization is that it is very easy to
control the environment, especially when it comes to quickly pausing or shutting down an OS

2.6. ADDITIONAL SOFTWARE 11

if needed. These latter qualities are favourable for running the experiments throughout the
report in a secure manner, as will be further elaborated in Chapter 3.

Figure 2.4: Illustration of a virtual machine

Another positive aspect with how VMware operates, is that it is easy to install monitoring
software on the host OS outside of the VMs. This makes it very easy to see how the VM
interacts with the external environment and take actions on unwanted communication.

2.6.2 Wireshark

According to wireshark.org, Wireshark is a popular network protocol analyser, previously
known as Ethereal. A popular way of using Wireshark is to install it as a packet sniffer. This
means that the computer administrator can get a complete picture of the traffic going from or
to a computer.

Wireshark makes it possible to inspect traffic patterns, and it is a helpful tool when conduct-
ing the experiments described in Chapter 3. As will be shown, Wireshark makes it easy to
distinguish between the traffic originating from the VM operating in normal mode and when
the different bots are started.

2.6.3 Cerebus

According to dragos.com/cerebus, Cerebus is a "full screen, GUI and text-based unified IDS alert
file browser and data correlator".

Cerebus makes it possible to read Snort alert files saved in the unified format. The unified
format is written in binary and is amongst one of fastest (if not the fastest)3 logging format
available in Snort. Cerebus is a very useful tool when conducting the experiments throughout
the report.

3According to [Pro06]; configuring Snort, output modules, unified.

12 CHAPTER 2. BACKGROUND

2.7 UNINETT

"The UNINETT group supplies network and network services for universities, university col-
leges and research institutions and handles other national ICT4 tasks. The Group is owned
by the Norwegian Ministry of Education and Research and consists of a parent company and
four subsidiaries" 5.

Uninett’s network structure is very comprehensive and the network bandwidth is continu-
ously increasing, as the network equipment is replaced with high-speed lines and new hard-
ware. The fastest links are currently operating at a speed as high as 10 Gbps, with the majority
of the network operating on speeds around 150-1000 Mbps and some on 2.5 Gbit.

Figure 2.5: Overview over UNINETT’s backbone6

The GigaCampus programme7 is a four year initiative put forward by UNINETT. The over-
4ICT - Information and Communication Technology
5Quoted from http://www.uninett.no/om.en.html
7http://www.gigacampus.no

2.7. UNINETT 13

all objective is to address key networking challenges on the campus networks of Norwegian
universities and university colleges towards 2009. One goal in this initiative is to increase the
overall speed on the network. This means that gigabit networks should be a reality for most
of the connected users, and all the big universities should be connected with 10 Gbps links.

2.7.1 Passive sensor

As mentioned above, UNINETT has an extensive network which requires monitoring on dif-
ferent levels. UNINETT has placed passive sensors throughout their network. These are fast
computers with one or two DAG-card(s) installed. Information about DAG cards and how
they operate are further elaborated in section 2.8. The experiments in this report will be car-
ried out on a sensor connected to one of the most busy lines on the UNINETT backbone.

As a reference; the average traffic load8 on the sensor on a typical day day, shows that ap-
proximately 160.000 packets is sent trough each seconds. The size of these packets sums up to
125MB each second - giving a total of 10.8 TB data per day.

8http://drift.uninett.no/

14 CHAPTER 2. BACKGROUND

2.8 DAG CARDS

DAG cards are basically advanced network monitoring cards with support for bandwith up
to 10 Gbps. They are, however, quite more sophisticated than a normal network interface
card, in the sense that it is possible to program these cards to do packet processing directly
on-board.

As mentioned in Section 2.7.1, UNINETT has placed passive sensors with DAG cards dif-
ferent places in their network. The DAG model 4.3S, as shown in Figure 2.6, was used in the
experiments described in this thesis. This card supports 2.5 Gbps speeds on a Packet Over
Sonet (Pos) link.

Figure 2.6: DAG 4.3s Networking monitoring card
Copyright Endace [Ltd05] 2005

DAG 4.3S can be extended with an extra co-processor, which allows for even more packet
processing directly on the card. The main advantage of moving the processing to the card, is
that hardware processing can be much faster than software processing. Another advantage is
that it is possible to use the card as a filter, where packets which are not of interest are dropped
instead of being forwarded to the software.

2.8.1 Filters

The DAG 4.3S card is, as mentioned, capable of storing filters on the card. When the card op-
erates in default mode with one filter set, the card can store up to 16.384 filters. The filters are
basically simple, one-line specifications used to describe characteristics of packets considered
to be a match. In addition there is an action specified for each filter. The two possible actions
are defined as:

• Accept
Accepted packets are passed on to the host computer.

• Reject
Rejected packets are dropped and not delivered to the host.

DAG 4.3S supports filtering on the different categories listed below. It should be underlined
that if the categories are not present in the filter, they are just ignored when the filters are
checked in the packet processing.

2.8. DAG CARDS 15

• Ingress interface
This filtering option is not relevant for research presented in this report, because the
tested DAG 4.3S card only has one interface.

• Protocol
It is possible to filter on the different protocols ICMP, IGRP, TCP/RawIP or UDP.

• Source and destination IP addresses
Filtering can be done according to which source and destination IP address the packet
is going to and from. In addition, filtering can be done on whole or parts of a subnet.

• TCP and UDP source and destination port numbers
It is possible to filter the packets on one or many given port numbers, either on the
source or destination address - or both.

• TCP flags
The TCP flags are typically SYN, ACK, FIN, PSH, URG or RST and can be used in the
filtering.

2.8.2 Making filters

The filters on the DAG card can be written in different "languages". As can be seen in Figure
2.7 below, there are basically three different ways to make a filter.

Figure 2.7: Options for making filters.
Copyright Endace [Ltd05] 2005

First, there are the written rules on the native DAG card format. As seen on the bottom left

16 CHAPTER 2. BACKGROUND

side in Figure 2.7, these rules are basically filters which can be loaded directly into the co-
processor by the filter loader.

Second, there are the Snort rules. These rules are written in the Snort format and can be
copied directly from the rules used by Snort. Before it is possible to use the rules as filters
on the DAG card, they have to be translated into DAG format. This is done using the Snort
rule compiler, a program shipped with the DAG software. After compilation, the transformed
Snort rules can be read by the filter loader and copied into the co-processor.

The third and last option, is to use rules written for the Tcpdump program. Just like the
Snort rules, these rules need to be compiled before they can be used. This is done with the
Tcpdump rule compiler, which generates DAG filters that can be read into the co-processor by
the filter loader.

2.8.2.1 Filter syntax

Figure 2.8 shows the filter syntax for the filters used in the co-processor.

DAG Filter syntax

<number> <act ion > <protocol > <src−ip > <src−port > <dst−ip > <dst−port > <tcp−f l a g s >

Figure 2.8: DAG Filter syntax

Some syntax fields are already mentioned in Section 2.8.1, but are somewhat further elabo-
rated in the list below.

• <number> is the filter number which is an integer between 0 and 16384. The highest
numbers are processed first. Filter number 0, is often a "reject all" filter. This means that
the packets that reach this filter, are basically packets that did not match any of the other
filters and can therefore be discarded.

• <action> is either reject or accept the packet if the filter is matched.

• <protocol> is the protocol which is to be filtered on, and can be either ALL or one of
ICMP, IGRP, TCP/RawIIP and UDP.

• <src-ip> is a source IP address or subnet. The field is a 32 bit binary string, with the
most significant bit starting at position 0. The following symbols can be used: 0, 1 or -,
where 0 and 1 represents binary bits while - represents a "do not care bit". This means
that a complete 32 bit string represented with 1s and 0s is a complete IPv4 address. If the
last eight bits are "don’t care" bits, the filtering will match all IP addresses in a C-class
subnet instead of one single IP address.

• <src-port> is the source port(s). The field is a 16 bit binary string, with the most signifi-
cant bit starting at position 0. The following symbols can be used: 0, 1 or -, where 0 and
1 represents binary bits while - represents a "do not care bit". This means that a complete
16 bit string with 1s and 0s refers to one specific port. 0000000000010101 equals port 21,
while 00000000010— means that the filter will match port numbers between 16 and 23.

2.8. DAG CARDS 17

• <dst-ip> is a destination IP address or subnet. See <src-ip> for more details.

• <dst-port> is the destination port(s). See <src-port> for more details.

• <tcp-flags> is the TCP flag that is set. This is an eight bit field which, e.g., represents the
values SYN, ACK, FIN, PSH, URG or RST.

Figure 2.9 below shows an example of a filter. Note that there are two entries, namely line 1
and 0.9

DAG Filter syntax example

#1
1 accept tcp
src−ip {−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−} src−port {−−−−−−−−−−−−−−−−}
dst−ip {1100000010101000−−−−−−−−−−−−−−−−} dst−port {0000000000010101}
tcp−f l a g s {−−−−−−1−}

#0
0 r e j e c t a l l
src−ip {−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−} src−port {−−−−−−−−−−−−−−−−}
dst−ip {−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−} dst−port {−−−−−−−−−−−−−−−−}
tcp−f l a g s {−−−−−−−−}

Figure 2.9: DAG Filter syntax example

This first entry matches packets where the traffic is TCP, the destination subnet is 192.168.0.0/16
and destination port is 21. In addition, the TCP-flag SYN has to be set in the packet header.
The second entry, line 0, basically rejects all packets which are not matched by line 1, regard-
less of each source or destination IP, traffic type or port numbers.

9Because of available page width in the report, the filters are split over four lines, while they originally are
written on one line each.

18 CHAPTER 2. BACKGROUND

2.9 BOTNET

A botnet is a network of bots, i.e., a collection of computers which are infected with some
kind of malicious distributed software. This means that a bot is actually a program running
on the infected host. As previously mentioned in Section 1.3.1, botnets are considered a sig-
nificant threat on the Internet. The following sections elaborates the concept of botnets and
the consequences they have on the end-users and the network.

2.9.1 Botnet Protocols

There are several ways to implement a botnet, and several communication protocols which
may be used between the bots and the C&C servers. The following points list some various
protocols used, as mentioned in [SBH+07].

• Internet Relay Chat
According to [RZMT06], [GH07] and [KRH07], to name a few, most botnets are based on
the IRC protocol. According to [GSN+07], using IRC makes it attractive to the botmaster
due to its redundancy, scalability and versatility. Beacause of its importance, the IRC
protocol is further explained in Section 2.10.

• Web-based
According to [SBH+07], web-based C&Cs are the second most common type. [SBH+07]
continues by mentioning two types of web-based botnets. The first one, echo-based,
means that the bot simply announces its existence to the C&C server. This may for
example be achieved by sending the information as an URL to the web server.

The second type, command-based, uses GUI web interfaces to issue instructions to the
bots.

• Peer-to-peer
As mentioned in [GSN+07], a peer-to-peer network is a network in which any node in
the network can act as both client and server. Botnets based on peer-to-peer architecture
are more resilient, as there is no centralized C&C server.

• Instant messaging
Computers infected with a bot would in this case communicate using known instant
messaging protocols, such as AIM, Yahoo!, ICQ and MSN.

• FTP-based
According to [SBH+07], there are cases in which the FTP protocol is used. The bot may
collect information from the host, and then upload the captured information to an FTP
server.

[SBH+07] also claims that IRC is going to stay the leading protocol and application for C&C
servers for a long time to come, even though uses of other protocols are increasing. In the
following, all the use of the term botnet is restricted to refer to an IRC based botnet.

2.9. BOTNET 19

2.9.2 The Botnet Lifecycle

Any vulnerable computer could become a part of a botnet, and an example on how the com-
puter is compromised and turned into a bot is given below. This example is an excerpt from
[RZMT06] and is illustrated in Figure 2.10 below.

1. As shown in the figure, the first step is to exploit a vulnerability in the software running
on the victim’s computer. This can be achieved by using self-replicating worms, e-mail
viruses, etc.

2. After the attack, the exploited host will execute a script which will download a bot bi-
nary. The bot binary will install itself on the computer. Once this is installed, the bot
software will start every time the computer is rebooted.

3. Most commonly, the bot running on the host will connect to a remote server. The IRC
protocol is, in this example, used for communicating and controlling the bots. At this
point, a communication channel between the infected host and the IRC server is set up.

4. The vulnerable computer is now part of the botnet and is under control of the botmaster
via the IRC server. The botmaster has full control over the IRC server and thus all bots
in her network. The botmaster may now send commands to her bots and prepare and
execute a full blown attack. In addition, it is possible to modify the bots if necessary.

Figure 2.10: Stepwise procedure on how host become part of a botnet.

It is worth mentioning that this is only one example of how a host is turned into a bot. As
mentioned, several other methods and communication protocols may be used, but this will
not be elaborated any further in this report.

2.9.3 Consequences

As mentioned in [KRH07], a botnet may be used to launch distributed DoS attacks, send spam,
trojan, phishing e-mails, and so on. All of which may have devastating effect on the networks.

20 CHAPTER 2. BACKGROUND

As mentioned in [IH05], botnets may also be used to perform click frauds and stealing per-
sonal information. Software programmed to capture sensitive information such as bank ac-
count numbers, PIN codes, passwords, etc., may have financial implications to the end-users.
In addition to loosing private and personal data, the users may be employees of companies
whose business strategies and other sensitive information may be compromised.

2.9.4 Botnet Families

Today there exists several botnet families. [BY07] describes four of the biggest ones; Agobot,
SDBot, SpyBot, and GT Bot. It is, however, difficult to get hold of the source codes to the
different bots as a researcher with non-criminal intentions. Some are, however, available and
will be used in the research presented in this report. The following is a list of these botnets,
based on IRC, with a short explanation:

• SDBot
This bot appeared in October 2002. According to [BY07], SDBot is a fairly simple bot,
consisting of about 2.000 lines of C code. It is, however, claimed to be easily extendable.

[SBH+07] states that SDBot’s key to success is due to poor security on the compromised
systems, and also the fact that the author released it as an open source. SDBot spreads
itself by exploiting software using blank or common passwords on the host. The bot
also includes a backdoor that allows an attacker to gain access to the infected host.

• RBot
As mentioned in [SBH+07], the RBot family is one of the most pervasive and complex
of the ones existing today. Filenames and techniques used are different from one variant
to another. This bot was, according to [SBH+07], the first one to use compression and
encryption.

This bot includes functionalities that make it possible for the botmaster to download
and execute files, creating a SOCKS proxy, participating in DDoS attack, logging key-
strokes on the hosts, to name a few. In addition to using weak passwords as SDBot does,
RBot also exploits vulnerabilities in the Windows operating system and common soft-
ware applications. [SBH+07] also claims that RBot can termintate many antivirus and
security products to ensure that it can continue to run undetected.

• DBot
Unfortunately, there is not much documentation available about this bot, which makes
it all the more interesting. This bot also provides a wide set of functionality. Some of the
features are multicommand topic and chat parsing, IRC connection timeout and the abil-
ity to use unlimited number of irc servers, to name a few. Maybe the most threatening
feature is that this bot also includes a bypass to Windows XP Service Pack 2’s firewall.
At least this is claimed in features.txt, which is appended to the source codes.

2.10 THE IRC PROTOCOL

As the focus of this thesis is on IRC-based botnets, this section provides some background
knowledge of the IRC protocol.

2.10. THE IRC PROTOCOL 21

According to [OR93], "IRC itself is a teleconferencing system, which (through the use of the
client-server model) is well-suited to running on many machines in a distributed fashion."
The backbone of IRC is the connection of the IRC servers. Clients connect to these servers and
may then chat with other clients connected to the same network. An example of a small IRC
network is given in Figure 2.11 below.

Figure 2.11: Example of a small IRC network, as presented in [OR93]. A, B, C, D and E are all
servers, while 1, 2, 3 and 4 represent clients connected to the servers.

When clients are communicating with each other, the messages traverse the relevant servers.
If for example clients 1 and 3 are communicating, the messages are sent through both server
A and server B.

The clients have chosen unique nicknames as identifications, and may join or form their own
channel. When connected to a channel, clients may send messages to each other, either pub-
licly to all clients in the channel, or to specific clients privately. If, for example, clients 1, 2 and
3 are in the same channel, all messages to that channel are sent to all clients and the relevant
servers.

In connection with botnets, the bots will sign on to one or more specific IRC channels which
are maintained by the botmaster. The botmaster can now control the bots by sending com-
mands through the channel.

See [OR93] for further elaboration of the IRC protocol.

CHAPTER3
APPROACH

This chapter describes how the different implementations of the IDSs on the high-speed net-
work is carried out. First, an introduction is given, followed by the experimental approach.
The different implementations are described in Section 3.4 and Section 3.5. The results from
these implementations are given in Chapter 4, and these results are again analysed and dis-
cussed in chapter 5.

3.1 INTRODUCTION

As mentioned in Chapter 2, installing an IDS on a high-speed network is not trivial. The main
issue is the high data rate, which makes it hard to compare the packets and rules in real time.
This probably sets a limit to the number of rules that simultaneously can be checked.

In addition, there are some challenges when it comes to choosing which rules to use. Be-
cause of the comparison problem, it is preferred to use as few rules as possible to find the
desired traffic. That means that the rules should not only be able to identify the traffic, but
also identify the traffic without generating too many false positives1.

The following list is a point-by-point overview of the experimental approach described fur-
ther in Section 3.3.

1. Set up a bot, an IRC server and botmaster on three different locations.

2. Set up an IDS; either as a MAPI implementation or by using Snort.

3. Run a mIRC script on the botmaster computer. The script generates malicious traffic
between the botmaster and IRC server.

4. Detect the malicious traffic using the IDS.

5. Analyse and compare the detected traffic.

3.2 ARCHITECTURE

Figure 3.1 presents an overview of the experimental setup. The botmaster, bot, and IRC server
are installed on computers located on three different places; the botmaster and bot will be lo-
cated on one side of the IDS while the IRC server is located on the other side. This is done in

1According to [SBH+07], a false positive is an event that the system reported that appears bad and in point of
fact is benign. [SBH+07] mentions, however, that a false negative is when the system reports that something is
okay (or does not report anything) and in point of fact the event is bad

23

24 CHAPTER 3. APPROACH

such a way that commands sent from the botmaster to the IRC server also will be detected by
the IDS, in addition to the traffic between the IRC server and bot.

The communication between the different computers will mainly take place on the Uninett
network, as previously mentioned in Section 2.7. Even though two of the computers are lo-
cated on other networks, the traffic is routed through the sensor where the IDS is installed.

Figure 3.1: Overview of the experimental architecture.

3.2.1 Security Aspects

An important point when it comes to the architecture is to make sure that the security is at-
tended to. As can be seen from Figure 3.1, there are basically two components which are
especially vulnerable; the bot and the IRC server. The computer running the botmaster only
utilizes well known programs, and is not more exposed than any other computer connected to
the Internet. The IDS is only available through the SSH protocol and therefore not considered
to be any threat to the experiments.

The computer running the bot is probably the most vulnerable part in the architecture. Bots
can be harmful and if precautions are not made, one could end up giving away control over
the computer to another botmaster. To prevent this from happening, the bot executables used

3.2. ARCHITECTURE 25

in the experiments were all compiled by the authors. This is further elaborated in Section 3.3.1.
Because of this, it was guaranteed that the bots at least used a configuration file configured by
the authors.

To deal with any unwanted behaviour, the bot programs were all run in a test environment
where the traffic generated by the bots was monitored. First after the traffic pattern and be-
haviour was thoroughly checked, the bot was allowed to run on the Internet as described in
Figure 3.1. In addition, only safe commands were tested. These commands are basically only
commands which make the bots reply with their, e.g., version and uptime information. How-
ever, some scanner and vulnerabilities commands are included in the detection rules, which
are further explained in 3.3.2.

The IRC server is the other vulnerable component besides the bot. The main reason for this,
is that the bot is connected to the IRC server and a channel on the server. If someone were to
compromise the computer and take control over the IRC server, they would in theory control
the connected bot as well.

To prevent this from happening, some measures were taken. First of all, the IRC server was
only running when the experiments were conducted, and not left on after the experiments
were conducted. In addition, the server was configured to only allow traffic from the IP ad-
dresses belonging to the botmaster- and the bot computer. Last, the IRC server was protected
with a server and a channel password.

More on the security for the different components, is to some extent described in the sub-
sections below.

3.2.2 Botmaster

The botmaster is a standard Windows XP computer with an IRC client program installed. As
mentioned, the botmaster is located at the opposite side of the IRC server according to the IDS.

The botmaster is only responsible for sending commands to the IRC server. This is done
from mIRC, an IRC client program. As explained on section 3.3.3, these commands are sent
from a mIRC script.

Since the tasks performed on the botmaster are so limited, there are minimal requirements
to hardware setup.

3.2.3 Bot

The computer where the bots are executed, is a standard Windows XP installation. As with
the botmaster, the bot computer is located at the opposite side of the IRC server according to
the IDS in figure 3.1.

The bot executables require very little when it comes to system resources, so there are mini-
mum requirements when it comes to the hardware setup. However, the test bots used in this
article were designed for the Windows platform and therefore a Windows installation is re-

26 CHAPTER 3. APPROACH

quired when choosing an operating system.

As mentioned in Section 2.9, bots can be very harmful and extra caution is required when
working on them. In that connection, VMware was used to control the environment when
running the different bots. This means that the bots were installed and run inside of a VM.
More details on VMware are found in Section 2.6.1.

To get an overview over the traffic originating from the bot, Wireshark was used. As ex-
plained in Section 2.6.3, this program makes it possible to see every packet going to and from
a computer. By installing Wireshark on the host OS outside the VM, a complete picture of the
traffic pattern generated from the bot was acquired.

In addition to the traffic monitoring outside the VM, Process Exlorer from Sysinternals2 was
used to keep an eye on the behaviour of the bot executables inside the virtual machine. This
made it easy to control the environment and to check if other processes were spawned from
the bot executables.

The precautions and traffic sniffing, mentioned above, was mainly conducted to check the
behaviour of the bot. After the initial testing was finished and no malicious traffic detected, a
connection to the real IRC server (in Figure 3.1) was allowed and established.

3.2.4 IRC Server / C&C Server

It is important for the reader to understand that, in this connection, the IRC server and the
Command & Control server are two names for the same thing. As previously mentioned in
Section 2.9, the IRC Server is the place the bots connect to. Since the botmaster can control
and command the bots from this server, the name C&C server is commonly used.

The computer hosting the IRC server is, similar to the botmaster- and the bot computer, also
a plain Windows XP. Running an IRC server, that at least in the magnitude needed for the
experiments in this report, requires no significant hardware worth mentioning.

In contrast to the botmaster and bot, the IRC server is located on a subnet on the opposite
side of the IDS. This is due to fact that the IDS needs to be able to capture both traffic going to
and from the server.

The IRC server software used throughout the experiments is a program called UnrealIRCd3.
The configuration of this software is pretty much a default installation and are therefore not
elaborated any further.

There are, however, a couple of modifications which have been made. Even though the server
was completely controlled by the authors throughout the experiments, the security still had to
be attended to. As mentioned in Section 3.2.1, only the IP addresses of the botmaster- and the
bot computer were allowed to connect to the server. In addition, the UnrealIRCd was closed
down between the experiments.

2Available at http://www.microsoft.com/technet/sysinternals/utilities/ProcessExplorer.mspx
3Available at http://www.unrealircd.com/

3.2. ARCHITECTURE 27

3.2.5 IDS

The IDS is probably the most important part of the architecture seen in Figure 3.1. Because
of the high speed of the link where the IDS is installed, this computer requires fast hardware.
See also Section 2.7.

The computer is a Linux Debian/sarge, running on a Pentium Xeon 3.2 GHz CPU with 3
GB memory and 1 GB swap. The PCI bus is a 64bit PCI-X bus. This component is responsible
for delivering the packets from the DAG cards, see below, to the software where the process-
ing is done.

As discussed in Section 2.8, there are two DAG cards installed on the IDS; one for each traffic
direction on the link. This means that dag0 is responsible for the traffic from A to B, while dag1
is responsible for the traffic from B to A.

Figure 3.2 below, is a sketch of the computer running the IDS and illustrates how the packets
arriving via the fiber tab is processed in the computer via the DAG card.

Figure 3.2: Uninett sensor

Both Snort and Mapi need to be able to pick up the packets from the bus for processing. Snort
uses a library called libpcap4 modified for the DAG card, while Mapi talks directly to the DAG
card via the DAG API.

As described in Section 2.8.1, it is possible to load filters on the DAG card and co-processor.
The DAG card processes the packets according to the filters and either rejects or accepts them,
as figure 3.2 illustrates. Rejected packets are discarded and accepted packets are delivered to

4Available from http://sourceforge.net/projects/libpcap/

28 CHAPTER 3. APPROACH

the software, in this case Snort, for further processing.

Hardware processing in the DAG card is much faster and less CPU intensive than process-
ing done in software and Snort. However, the DAG filters are not as advanced as the Snort
rules, making the filters less suited for, e.g., filtering on the packet payload.

3.2.6 Pros and Cons

One of the advantages with this architecture is that the experiments are conducted in a gen-
uine environment. This means that the IDS is tested in a network with real traffic and real
external users connected to it. The authors of this report have no controll over the traffic gen-
erated by these external users - making the experiments very realistic.

Another advantage, is that the security is attended to with this architecture. The securtiy
aspects mentioned in Section 3.2.1 make the experiments as safe as possible - also when work-
ing on potentially "dangerous" bots.

By using only one bot and one C&C server at the time, the experiments are easily controlled.
However, this also implies that the IDS will not be tested on a full-grown bot network.

Another disadvantage is that there are potentially many sources of error which may affect
the experiments. These sources are further discussed in Section 5.3.

3.3 IMPLEMENTATION PREPARATIONS

Before the experiments can begin, some preparations need to be done. These preparations are
discussed in the following sections.

3.3.1 Compiling the Bots

Since the experiments in this report required the use of bots, these had to be downloaded. Pre-
compiled bots can be programs designed to do a lot of damage, and they are not in any way
safe to install. By compiling the bots from source, however, it is much easier to control their
behaviour. In addition, all events may, in principle, be verified by static analysis of the source
code. To ensure the safety in the experiments throughout this report, only self-compiled bots
were used.

The source code to the tested bots were downloaded from two internet sites, namely dark-
sun.ws and ryan1918.org. These sites contained source code to a lot of different bots and bot
versions. In addition to the bots mentioned in Section 2.9.4, several other bots were compiled;
Phatbot-st0ney-Fixed, spybot1.4, agobot3-0.2.1-pre4-priv and pBot_v2 amongst others. However,
because of different runtime- and connection problems these were not used in the final exper-
iments.

Most of the downloaded source code was made with Visual Studio 6. However, the bots used
in this report were all compiled on Vistual Studio .NET 2003 without any problems worth
mentioning.

3.3. IMPLEMENTATION PREPARATIONS 29

Figure 3.3 on the following page, shows the RBot configuration file in the rx-asn-2-re-worked
v3 version. The file displayed is pretty much the same as the default configuration shipped
with the source code, with some modifications. The values one line 26 to 45 are more or less
changed to reflect on the set up used in the experiments, e.g., the IP address to the IRC server
has been changed. Also, all the password fields have been set for maximum safety.

In addition to the bot compiled from rx-asn-2-re-worked v3, bots from source code Dbot.v3.1
and sdbot05b[skbot]_mods_by_sketch were compiled and tested. The original source codes, in
addition to the modified source code used for building the bots, are included as a digital
attachment to this report.

30 CHAPTER 3. APPROACH

RBot configuration file

/ / b o t c o n f i g u r a t i o n (g e n e r i c) − doesn ’ t need t o be e n c r y p t e d
i n t port = 6667 ; / / s e r v e r p o r t
i n t port2 = 6667 ; / / backup s e r v e r p o r t
i n t socks4port = 2 0 0 5 ; / / Por t # f o r s o c k 4 daemon t o run on − CHANGE THIS ! ! !
i n t t f t p p o r t = 6 9 ; / / Por t # f o r t f t p daemon t o run on
i n t ht tppor t = 5 6 7 8 ; / / Por t # f o r h t t p daemon t o run on
i n t r l o g i n p o r t = 5 1 4 ; / / Por t # f o r r l o g i n daemon t o run on
BOOL topiccmd = TRUE; / / s e t t o TRUE t o e n a b l e t o p i c commands
BOOL rndfilename = FALSE ; / / use random f i l e name
BOOL AutoStart = FALSE ; / / e n a b l e a u t o s t a r t r e g i s t r y k e y s
char p r e f i x = ’ . ’ ; / / command p r e f i x (one c h a r a c t e r max .)
i n t maxrand = 2 ; / / how many random numbers in t h e n i c k
i n t nicktype = CONSTNICK; / / n i c k t y p e (s e e r n d n i c k . h)
BOOL n i c k p r e f i x = FALSE ; / / n i c k upt ime & mirc p r e f i x

i f d e f DEBUG_LOGGING
char l o g f i l e [] = "%temp%\\bot . log " ;
endif

ifndef NO_CRYPT / / Only use e n c r y p t e d s t r i n g s or your b i n a r y w i l l no t be s e c u r e ! !

else / / Recommended t o use t h i s on ly f o r Crypt () s e tup , t h i s i s u n s e c u r e .

char bot id [] = " rx−asn−2−re−worked by IDS " ; / / b o t i d
char vers ion [] = " Version 3 Mod by IDS " ; / / Bo t s ! v e r s i o n r e p l y
char password [] = " IDSbotS " ; / / b o t password
char server [] = " IRC−SERVER" ; / / s e r v e r
char serverpass [] = " IDSbotS " ; / / s e r v e r password
char channel [] = " # IDSbot " ; / / c h a n n e l t h a t t h e b o t s h o u l d j o i n
char chanpass [] = " IDSbotS " ; / / c h a n n e l password
char server2 [] = " " ; / / backup s e r v e r (o p t i o n a l)
char channel2 [] = " " ; / / backup c h a n n e l (o p t i o n a l)
char chanpass2 [] = " " ; / / backup c h a n n e l password (o p t i o n a l)
char f i lename [] = " IDSbot . exe " ; / / d e s t i n a t i o n f i l e name
char k e y l o g f i l e [] = " keylog " ; / / k e y l o g f i l e n a m e
char valuename [] = " IDSbot " ; / / v a l u e name f o r a u t o s t a r t
char nickconst [] = " IDSbot " ; / / f i r s t p a r t t o t h e b o t ’ s n i c k
char szLoca lPayloadFi le [] = " IDSbot . exe " ; / / Pay load f i l e n a m e
char modeonconn [] = "−x i +B" ; / / Can be more than one mode and c o n t a i n b o t h + and −
char explo i tchan [] = " # IDSbot " ; / / Channel where e x p l o i t m e s s a g e s g e t r e d i r e c t e d
char keylogchan [] = " # IDSbot " ; / / Channel where k e y l o g me s s a g e s g e t r e d i r e c t e d
char psni f f chan [] = " # IDSbot " ; / / Channel where p s n i f f me s s a g e s g e t r e d i r e c t e d

char * authost [] = {
" *@* . * "

} ;

char * v e r s i o n l i s t [] = {
"mIRC v6 . 1 2 Khaled Mardam−Bey " ,

} ;

char regkey1 [] = " Software\\Microsof t\\Windows\\CurrentVersion\\Run" ;
char regkey2 [] = " Software\\Microsof t\\Windows\\CurrentVersion\\RunServices " ;
char regkey3 [] = " Software\\Microsof t\\OLE" ;
char regkey4 [] = "SYSTEM\\CurrentControlSet\\Control\\Lsa " ;

endif

i f d e f PLAIN_CRYPT
char key [1 6] = " 9 jah3msnso23kam2 " ; / / CHANGE THIS ! ! ! hmmm . . Do I even need t h i s now?
endif

Figure 3.3: Rbot configuration file

3.3. IMPLEMENTATION PREPARATIONS 31

3.3.2 IDS Rules

The IDS rules are very important when it comes to detecting unwanted traffic. Since this the-
sis centers around botnets, the test rules used throughout the experiments are to some degree
bot focused. However, a part of the testing is done with respect to measuring the performance
capabilities of Snort and MAPI and therefore requires different rules.

Control commands sent from the botmaster to the bots are sent in clear text and thus eas-
ily readable. This is however not the case if the traffic is encrypted. Encrypted traffic is not
relevant in this report, and the experiments further on will only involve unencrypted packets.

There are many ways to make rules. One could focus on everything from the IP address
itself to, e.g., the source or destination port number, IP address/subnet, content matching or
TCP flags.

The rules used throughout the experiments, are all content matching rules. This means that
the content of the IP packet payload is matched with the given content specified in each rule.
The content can be binary code as well as normal ASCII strings. In this report, only rules with
bot commands as ASCII strings are used.

Figure 3.4 shows an example of a Snort rule used for testing. Note that a properly format-
ted rule should be written on one line.

An example of a content matching Snort rule

a l e r t tcp $HOME_NET any −> $EXTERNAL_NET any
(msg : " Bot Test " ; content : " . getcdkey " ; c l a s s t y p e : bot−t e s t ; s id : 9 0 0 0 0 0 1 ;)

Figure 3.4: An example of a content matching Snort rule

In addition to the content matching rule in figure 3.4, it is important to explain the first part
of the rule, namely; alert tcp $HOME_NET any -> $EXTERNAL_NET any. Alert means that
the rule will cause an ALERT action in Snort. Tcp means that Snort should only continue to
process the rule if it infact is a tcp packet.

The variables $HOME_NET and $EXTERNAL_NET are set to value any in the Snort configu-
ration, meaning that the rule is processed as alert tcp any any -> any any. This instructs Snort
to match the rule with all tcp packets, regardless of what their source or destination port or
address might be.

Using any any instead of specific ports or addresses is a deliberate choice by the authors. One
of the main points with this report is to discover botnet activity, regardless of which protocol
that is utilized for the transfer of bot commands. Even though a big percentage of the com-
mands are sent via the IRC protocol, botmasters often tend to use IRC servers communicating
on other ports than the standard 6667 IRC server port. Using any any makes sure that these
packets being sent over non-standard ports are analysed as well.

32 CHAPTER 3. APPROACH

As is mentioned above, a part of the experiments are conducted to measure the performance
in Snort and MAPI. Since it was preferred to keep the false positive alerts to a minimum, rules
with random content were generated. The point was therefore not to get many alerts, but to
test the software with many rules.

See Section 2.5.1 for how these rules can be implemented in MAPI.

3.3.3 Malicious Traffic Script

To test the rules mentioned in Section 3.3.2, it was necessary to send a number of bot com-
mands from the botmaster. The IRC client program, mIRC, was used in this connection. By
using mIRC’s built in timer and script support, it was possible to make a simple script which
could send commands repeatedly.

Figure 3.5 shows how the timer command was run from mIRC, and what the script send-
ing the bot command looked like.

mIRC bot command script

S t a r t i n g the t imer from the mIRC command l ine
/timer1 60 1 /. bot

S c r i p t sending a p r i v a t e message to the channel # IDSBot with a bot command
/bot {

/privmsg #IDSBot . getcdkey
}

Figure 3.5: mIRC bot command script

In the figure above, mIRC repeats the bot-command every second, 60 times. The timer also
supports milliseconds by setting a -m switch, which is a nice feature when many packets are
to be tested against the IDS. As can be seen in the figure, mIRC sends a private message to the
channel IDSBot. This is the channel that the bots are connect to, as mentioned in Section 3.3.1.
The IRC server receives the private message and then forwards it to the bots connected.

3.4 IMPLEMENTING SNORT

This section explains how Snort was configured, implemented and tested in the high-speed
backbone network. In addition, the procedure for how the different experiments were con-
ducted is elaborated here. Notice that the configuration files used throughout the experi-
ments, are included as digital attachments to this report.

A Snort installation is controlled by the configuration file, snort.conf. This report started out
with a default configuration file, namely snort.conf shipped with snort-2.6.1.5.tar.gz5.

As mentioned, there are a lot of options which need to be set. After some reading in [Pro06],
some modifications to the original snort.conf was made. The most important modifications

5Available from snort.org

3.4. IMPLEMENTING SNORT 33

are listed in Figure 3.6, while the complete, modified Snort configuration file, snort.noflow.conf,
is available in the appendix.

Snort.noflow.conf

1
2 # Where to s t o r e the unifed log f i l e s ,
3 conf ig l o g d i r : /home/ids/snor t/logs
4
5 # A l e r t s to f i l e snor t . a l e r t . max 128Mb in s i z e
6 output a l e r t _ u n i f i e d : f i lename snor t . a l e r t , l i m i t 128
7
8 # Logs to f i l e snor t . log . max 128Mb in s i z e
9 output l o g _ u n i f i e d : f i lename snor t . log , l i m i t 128

10
11
12 # Which i n t e r f a c e to l i s t e n on
13 conf ig i n t e r f a c e : dag0
14
15
16 # Flow module − not used in the experiments
17 # preprocessor flow : s t a t s _ i n t e r v a l 0 hash 2
18
19
20 # D i f f e r e n t a l e r t which had to be disabled
21 conf ig d i s a b l e _ d e c o d e _ a l e r t s
22 conf ig d i s a b l e _ t c p o p t _ e x p e r i m e n t a l _ a l e r t s
23 conf ig d i s a b l e _ t c p o p t _ o b s o l e t e _ a l e r t s
24 conf ig d i s a b l e _ t c p o p t _ t t c p _ a l e r t s
25 conf ig d i s a b l e _ t t c p _ a l e r t s
26 conf ig d i s a b l e _ t c p o p t _ a l e r t s
27 conf ig d i s a b l e _ i p o p t _ a l e r t s
28
29
30 # IP defragmentation module . See snor t . noflow . conf in appendix for f u l l documentation
31 preprocessor f r a g 3 _ g l o b a l : max_frags 65536
32 preprocessor frag3_engine : po l i cy l inux
33
34
35 # IP packet reassembly module . See snor t . noflow . conf in appendix for f u l l documentation
36 preprocessor stream4 : d i s a b l e _ e v a s i o n _ a l e r t s , max_sessions 50000
37 preprocessor stream4_reassemble : both , por ts a l l , n o a l e r t s
38
39
40 # Where the r u l e s are lo ca t ed
41 var RULE_PATH /home/ids/snor t/ r u l e s
42
43 # include $RULE_PATH/noflow−5. r u l e s
44 # include $RULE_PATH/noflow−30. r u l e s
45 # include $RULE_PATH/noflow−50. r u l e s
46 # include $RULE_PATH/noflow−100. r u l e s
47 include $RULE_PATH/noflow−200. r u l e s
48 # include $RULE_PATH/noflow−1000. r u l e s

Figure 3.6: Snort.noflow.conf

First of all the configuration file was changed to make Snort disregard whether a flow was
established, hence the name snort.noflow.conf. When running Snort with flows enabled, the
authors discovered that packets in an already established flow were not checked. Since this
was not the wanted functionality (the IDS is, as mentioned, supposed to inspect all packet)
the flow module was commented out in line 17-18.

Second, it was desirable to reassemble packets on, again, all ports and to/from all addresses.
Thus, line 37: both and ports all, where both represents traffic to all addresses and ports all
means to check all ports.

Third, some strange false alerts had to be eliminated. This was done by disabeling the various
alerts on line 21-27. In addition, stream4 was configured to not alert on different events such

34 CHAPTER 3. APPROACH

as TCP overlap (disable_evasion_alerts, line 36) and insertion or evasion attacks (noalerts, line
37).

The following sections present the experiements which were conducted in this report. The
results from these experiments are given in Chapter 4, and the results are further analysed in
Chapter 5.

Note that one planned experiment had to be omitted, and is thus removed from the re-
port. This was experiment 8: Testing DAG hardware filtering. It turned out that that the DAG
firmware supporting filtering, did not work as expected and therefore had to be replaced with
another firmware version. Unfortunately, this latter firmware did not support filtering.

3.4.1 Experiment 1 - Testing The Number of Rules

The purpose of this experiment is to test Snort’s detection ability when different number of
rules are used. To check whether Snort alerts on these rules, malicious packets generated by
the script in Section 3.3.3 are sent. 50, 100, 250, 500, 750 and 1000 packets will be sent during
the tests. Statistics, including the number of detections, and the number of processed and
dropped packets in Snort will be presented.

The number of rules to be tested are 5, 30, 50, 100, 200 and 1000. The rules are all content
based, as previously mentioned in Section 3.3.2, using a string search algorithm. To avoid false
positives during testing, the rules have different content and there is only one rule matching
the malicious packet being sent. However, all alerts are always checked for false positives or
other correct detections.

In experiment 1, Snort is run with the modified configuration file mentioned in section 3.3,
namely snort.noflow.conf. The results of this experiment are given in tables in Section 4.2.1.
To make the experiments as accurate as possible, three trials are conducted for each number
of malicious packets being sent. The results given in section 4.2.1 are calculated averages of
these three trials.

3.4.2 Experiment 2 - Optimising Snort Configuration

The tests conducted in experiment 1, gave a good impression of Snort’s performance when
different number of rules were used. Due to the results, listed in section 4.2.1, it was how-
ever likely that improvements could be made to the configuration which again would boost
the general performance. After further study of [Pro06], a few options in the module stream4
stood out.

Figure 3.7 lists the most important part of the file snort.tweak.conf. Snort.tweak.conf is used
in this experiment, and is basically a modified version of snort.noflow.conf.

The three most important options from the figure are timeout, server_inspect_limit and noinspect.
In short, these three options control, respectively; how long time inactive streams should be
kept in the state table, how many bytes of each packet Snort should inspect, and whether Snort
should perform stateful inspection. The impact these modifications had on the performance

3.4. IMPLEMENTING SNORT 35

Snort.tweak.conf

1 preprocessor stream4 : d i s a b l e _ e v a s i o n _ a l e r t s , max_sessions 10000 , noinspect ,
2 timeout 1 , s e r v e r _ i n s p e c t _ l i m i t 1540 , memcap 1048576

Figure 3.7: Snort.tweak.conf

is further elaborated in Section 5.2.2.

Experiment 2 is conducted in the same manner as experiment 1, namely by sending malicious
commands generated by the botmaster’s mIRC script a given number of times. However,
the rules tested in this experiment are limited to 200 and 1000. The reason to why only these
rulesets were chosen, is explained in Section 5.2.2.

3.4.3 Experiment 3 - Testing Impact of Common Strings

The purpose of this experiments is so check Snort’s sensitivity to excessive detections. To
achieve this, rules for detecting the strings GET, POST and password were created, in addition
to the .getcdkey rule used in experiment 1 and 2. The total number of rules used in this test is
200.

Even though the unified log setting specified in the configuration file is among the fastest
offered in Snort, logging is still a performance issue. In order to rule out logging as a possible
source of error to the experiment, the log setting was disabled. The results will be compared
to another 200-ruleset, also with logging disabled. This ruleset does however not include the
common words.

3.4.4 Experiment 4 - Testing With Minimum External Traffic

This small experiment is simply to test Snort’s detection ratio in a controlled environment,
with a minimum amount of external traffic.

In experiment 4, Snort is installed on the same machine as the bot computer. Therefore only a
minimum of packets traversing the local area network will be processed.

This experiment will use the 5-ruleset and the modified configuration file from experiment
1. 100 bot commands will be sent via the mIRC script.

3.4.5 Experiment 5 - Testing Packet Length Input

As Snort reads all incoming packet headers and payloads, it should be possible to limit how
much of the packets Snort will process. In theory, this should increase the processing and
possibly make Snort faster.

Slen is a modifiable parameter on the DAG card, which is set via one of the DAG utilities.
This parameter basically controls how many bytes of a packet which is transmitted to the

36 CHAPTER 3. APPROACH

software. DAG’s default slen value is 1540.

This experiment will test slen values from 1540 and down to 200. In addition, the packet
drop ratio for each slen value will be recorded. The test will be conducted in two rounds,
using both the modified configuration file and the optimised one.

Notice that the IDS looses some of its impact when reducing the slen value, as only a part
of the packet is processed by Snort. However, it is reasonable to assume that bot commands
will not fill an entire packet payload of 1540 bytes.

3.4.6 Experiment 6 - Testing Impact of the TCP Protocol

This experiment is more an observation than an experiment. The idea here is to get a better
understanding of how Snort works and reacts in a high-speed environment. As most packets
are TCP packets, this experiment analyses the effect these packets has on Snort. In this con-
nection, especially the ratio of packets dropped by Snort will be studied.

To check whether this observation actually is correct, Snort will be run in different time in-
tervals at random times. No bot commands will be sent in this experiment, but the 200-ruleset
is still included for performance monitoring. The ratio of TCP packets recorded will then be
compared to the ratio of packets dropped by Snort.

3.4.7 Experiment 7 - IDS Stand-Alone Test

This final experiment is conducted in order to observe in which degree Snort handles a high-
speed environment over a given period of time. Therefore Snort will run with a small set of
botnet rules, which identify actual RBot commands.

These commands are:

.capture screen

.capture frame

.capture video

.getcdkeys

.getclip

.keylog

.secure

.ddos.stop

.ddos.syn

.ddos.ack

.ddos.random

.icmpflood

.pingflood

.pingstop

.synflood

.synstop

.tcpflood

3.5. IMPLEMENTING MAPI 37

.udpflood

.udpstop

The measurement data in this experiment is the number of dropped and processed packets,
the time spent and the number of detections made. The detections, should there be any, will
be checked with Uninett’s list of known botnets.

Another aspect of this experiment is to see whether these rules will provide false positives.

3.5 IMPLEMENTING MAPI

Unfortunately, as will be explained in the last part of this section, the testing of MAPI had to
be omitted. However; the configuration, implementation and methods for testing will still be
examined because of its relevance for this report. Notice that a MAPI test program, is included
as a digital attachment to this report.

MAPI is quite different than Snort when it comes to how the program is run. While Snort
is controlled via a configuration file where every option can be tweaked, MAPI is basically
stand-alone programs. These programs communicate with a MAPI daemon running in the
background, as elaborated in section 2.5. Even though this daemon has a small configuration
file, the MAPI programs do not and are individually customized to solve the tasks they are
made for.

Another big difference is how the rules works. While Snort has rule files with one rule per
line, MAPI programs have to make flows and apply a string search function on the flow, as
mentioned in Section 2.5. As of today, this string search function does only support AND, and
not OR. This implicates that if multiple string search functions are added to one flow, they
will behave as str_search1 AND str_search2 AND ... To get OR functionality, one has to make
as many flows as there are rules and apply one string search function to each rule.

A five rule MAPI program is included in Appendix B. As can be seen from the code, five
different flows are connected to the network interface dag0. In contrast to the code in Figure
2.3, line 2, the five rule program does not add BPF-filters to the flow. It is purely a content
matching program, meaning that it only adds string search functions on the five flows.

The MAPI programs work on a per-packet basis in default mode. This means that it will
only look at one packet at the time. This is often not the wanted behaviour on an IDS; if a
packet is split up into several small pieces, the IDS will fail to alert on the activity because the
commands or malicious code are split over several packets.

MAPI provides a function called cooking which offers both packet defragmentation and stream
reassembly. Figure 3.8 shows how this functionality can be applied to a flow.

Mapi cooking function

1 mapi_apply_function (fd , "COOKING" , −1, −1, 1 , BOTH_SIDE)

Figure 3.8: Mapi cooking function

38 CHAPTER 3. APPROACH

In short terms, Figure 3.8 adds the cooking function to the flow fd. The parameters given with
the function are defaults, except for BOTH_SIDES which "cooks" both client and server side
data. More on cooking is found in [MAP06] appendix C.

As mentioned in the start of this section, the testing of MAPI had to be omitted. The main
reason for this was unstabilities in the MAPI implementation. The first test failed on the
packet counter function and to some extend the string search function. To get around this
problem, a new version of MAPI was installed. The new version worked great until another
memory related bug terminated the test programs.

The mentioned bugs could unfortunately not be corrected in a reasonable time frame, mean-
ing that the testing was cancelled. However, MAPI is still discussed in Section 6 and also
suggested as further work in chapter 7.

CHAPTER4
RESULTS

This chapter presents the results, given in raw data, from the experiments conducted in Sec-
tion 3.4. The results are further calculated and analysed in Chapter 5.

4.1 INTRODUCTION

The results throughout the Chapter are presented in tables for easy reading. The measurement
data used in these tables are:

• # sent packets
the number of malicious packets (i.e., botnet commands) that was sent.

• # detected packets
the number of packets that was detected by Snort.

• # processed packets
the total number of packets that was analysed by Snort.

• # dropped packets
the number of packets that was dropped by Snort.

• # Time (s)
the time spent, given in seconds.

• Slen
the value of slen, used in experiment 5.

• Drop ratio
the ratio of dropped packets in experiment 5.

• TCP ratio in %
the ratio of TCP packets processed by Snort, used in experiment 6.

• Packets dropped in %
The packets dropped by Snort in experiment 6, given in percent.

Note that not all of these items will be included in every table due to the different types of
experiments.

39

40 CHAPTER 4. RESULTS

4.2 RESULTS FROM THE EXPERIMENTS

The results are printed in their respective sections, as they were presented in sections 3.4.1 -
3.4.7.

4.2.1 Experiment 1 - Testing Number of Rules

Table 4.1 presents the data gathered when using 5 rules.

sent # detected # processed # dropped Time (s)
packets packets packets packets

50 27,3 3945998 1071600 55,7
100 53,3 7609318 2337236 103,7
250 128,3 18540047 6084694 254,7
500 213,7 10185766 3139288 146,3
750 338,3 12684324 3792193 192,3
1000 458,0 14573446 4752877 141,0

Table 4.1: Results when using 5 rules

Table 4.2 presents the data gathered when using 30 rules.

sent # detected # processed # dropped Time (s)
packets packets packets packets

50 30,0 8558052 2255167 118,3
100 57,7 3927710 965597 38,0
250 135,0 10296377 3005477 149,0
500 281,3 10291044 3014016 143,3
750 448,3 14633768 4462452 198,7
1000 544,7 16227945 4712382 225,0

Table 4.2: Results when using 30 rules

Table 4.3 presents the data gathered when using 50 rules.

sent # detected # processed # dropped Time (s)
packets packets packets packets

50 35,3 4722290 1289989 69,3
100 70,3 3537676 982207 54,0
250 152,7 8227898 2849350 131,7
500 313,0 15820640 5362863 256,3
750 483,3 15121603 5082254 230,7
1000 563,0 13524141 4694245 211,3

Table 4.3: Results when using 50 rules

4.2. RESULTS FROM THE EXPERIMENTS 41

Table 4.4 presents the data gathered when using 100 rules.

sent # detected # processed # dropped Time (s)
packets packets packets packets

50 28,7 3757943 1079614 58,0
100 58,7 7589512 2435632 110,3
250 139,0 9612739 3330650 139,3
500 300,3 9357781 3174200 134,0
750 461,0 14412979 4516658 201,7
1000 577,0 15604236 4876274 215,7

Table 4.4: Results when using 100 rules

Table 4.5 presents the data gathered when using 200 rules.

sent # detected # processed # dropped Time (s)
packets packets packets packets

50 30,7 4344739 1214148 59,7
100 60,7 8277882 2149331 116,0
250 149,0 9827296 2636264 136,7
500 294,0 9074404 3097138 129,7
750 459,7 15206487 4732788 206,3
1000 572,7 16493553 5666268 220,0

Table 4.5: Results when using 200 rules

Table 4.6 presents the data gathered when using 1000 rules.

sent # detected # processed # dropped Time (s)
packets packets packets packets

50 15,7 3193019 1463615 60,0
100 38,7 7149154 3223847 117,7
250 104,0 9422250 4390845 144,3
500 206,3 8584910 4063170 132,7
750 293,7 12876115 6007375 198,0
1000 358,7 15680484 7490446 355,7

Table 4.6: Results when using 1000 rules

42 CHAPTER 4. RESULTS

4.2.2 Experiment 2 - Optimising Snort Configuration

This section presents the results from running the experiment with the optimised version of
the Snort configuration file. The test is performed using the same 200 and 1000 rules as in
experiment 1.

Table 4.7 presents the data gathered when using 200 rules.

sent # detected # processed # dropped Time (s)
packets packets packets packets

50 41,0 9487701 1947048 75,3
100 79,3 6789107 1558987 55,0
250 198,0 8725457 2045654 70,3
500 399,0 9074404 4076847 135,0
750 598,7 23508501 5832509 193,0
1000 794,3 26710527 6510127 219,3

Table 4.7: Results when using 200 rules with optimised configuration file

Table 4.8 presents the data gathered when using 1000 rules.

sent # detected # processed # dropped Time (s)
packets packets packets packets

50 35,3 5912337 2253011 57,7
100 69,0 11245336 4033848 108,0
250 176,7 14964240 5245812 146,7
500 339,0 14317250 6273053 140,7
750 520,0 21815652 9169182 213,0
1000 682,3 21909508 9317177 215,0

Table 4.8: Results when using 1000 rules with optimised configuration file

4.2. RESULTS FROM THE EXPERIMENTS 43

4.2.3 Experiment 3 - Testing Impact of Common Strings

This section presents the results from experiment 3. As can be seen from Table 4.9, there was
a great number of detections of the common words that were included in the rules.

Table 4.9 presents the data gathered when using in the ruleset.

detected # processed # dropped Time (s)
packets packets packets
18302,3 3612454 1168767 34,0
45839,0 8320440 2127811 48,7
64251,7 12583371 4103625 112,7
94895,7 18954585 6662638 170,3

135563,3 28100965 9280670 249,0

Table 4.9: Results when common words are inlcuded in the ruleset

4.2.4 Experiment 4 - Testing With Minimum External Traffic

This section presents the results from experiment 4. As seen in table 4.10, Snort can easily
handle detections when it is not running in a high-speed environment.

Table 4.10 presents the data gathered when using 5 rules and a minimum of external traffic.

sent # detected # processed # dropped Time (s)
packets packets packets packets

100 100,0 4046 0 101,0

Table 4.10: Results when using 5 rules and a minimum of external traffic

44 CHAPTER 4. RESULTS

4.2.5 Experiment 5 - Testing Packet Length Input

This section presents the results from experiment 5. As can be seen from both tables, the
packet drop ratio decreases drastically when slen is close to 1500. Testing was conducted on
slen values down to 200. These are however excluded as the values starting with 1492 and
lower all had a drop ratio of 0.0.

Table 4.11 presents the data gathered when using different slen values with the modified con-
figuartion file.

Slen Drop ratio
1536 0,254115
1524 0,282133
1508 0,415595
1504 0,365214
1500 0,136623
1496 0,057712
1492 0
1488 0
1480 0
1472 0

Table 4.11: The effect of the slen value when using the modified configuartion file

Table 4.12 presents the data gathered when using different slen values with the optimised
configuartion file.

Slen Drop ratio
1536 0,221902
1524 0,235542
1508 0,237085
1504 0,159672
1500 0,000396
1496 0
1492 0
1488 0
1480 0
1472 0

Table 4.12: The effect of the slen value when using the optimised configuartion file

4.2. RESULTS FROM THE EXPERIMENTS 45

4.2.6 Experiment 6 - Testing Impact of the TCP Protocol

This section presents the results from experiment 6. The results are presented in the order
they were gathered.

Table 4.13 presents the data gathered when testing the impact of the TCP protocol on Snort.

TCP ratio in % Packets dropped in
%

66,908 20,644
68,857 34,163
69,833 31,195
69,304 32,461
67,852 29,151
68,764 40,117
69,019 35,883
69,656 33,041
69,122 35,899
70,057 30,518
61,396 0,000
60,973 0,000
60,824 0,000
61,902 0,000
61,784 0,000
62,904 0,000
62,688 0,000
62,515 0,000
62,246 0,000
61,705 0,000
63,447 0,390
62,84 0,005
64,487 0,000
64,673 0,000
64,65 0,000
63,006 0,144
60,272 0,000
60,825 0,000
60,859 0,000
62,574 0,676
62,465 2,004
65,542 15,960
65,973 20,484

Table 4.13: The impact the TCP protocol has on the ratio of dropped packets

46 CHAPTER 4. RESULTS

4.2.7 Experiment 7 - IDS Stand-Alone Test

This section presents the results from experiment 7.

Table 4.14 resents the data gathered when running the IDS at night, without injecting any
malicious packets.

detected # processed # dropped Time
packets packets packets

1 3,95E+09 0 10h 32m 45s
2 3,89E+09 1041118 10h 41m 14s
1 2,54E+09 21 12h 35m 1s
8 3,91E+09 24420344 11h 4m 46s

Table 4.14: The IDS stand-alone test

CHAPTER5
ANALYSIS

This chapter presents an analysis of the results found in chapter 4. Section 5.3 discusses some
possible sources of error before the conclusion in Section 5.4 sums up the experiments.

5.1 INTRODUCTION

The following sections analyses the results in the same order as they were presented in sec-
tions 4.2.1 - 4.2.7.

5.2 ANALYSING THE EXPERIMENTS

All figures in the following sections are based on calculations of the data presented in the
tables given in the different sections in Chapter 4.

47

48 CHAPTER 5. ANALYSIS

5.2.1 Experiment 1 - Testing Number of Rules

Figure 5.1 shows the detection ratio for each ruleset test conducted in experiment 1. As can be
seen in the figure, most of the tests have a detection ratio close to 0.60. However, when using
5 and 1000 rules, the detection ratio is somewhat low.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0 200 400 600 800 1000 1200

D
e

te
ct

io
n

 r
at

io

Sent packets

5 Rules

30 Rules

50 Rules

100 Rules

200 Rules

1000 Rules

Figure 5.1: The detection ratio for each of the ruleset tests in experiment 1.

The low detection ratio when using 5 rules is probably due to statistical deviations as Snort
does not drop particular more packets than the other rule-tests, as can be seen in Figure 5.2.
From Figure 5.2, increasing the number of rules from 5 to 200 does not seem to have a negative
effect on dropped packet ratio. However figure 5.2 shows that if 1000 rules are used, the
dropped packet ratio increases dramatically.

5.2. ANALYSING THE EXPERIMENTS 49

0

0,1

0,2

0,3

0,4

0,5

0,6

0 200 400 600 800 1000 1200

D
ro

p
p

e
d

 p
ac

ke
ts

 r
at

io

Sent packets

5 Rules

30 Rules

50 Rules

100 Rules

200 Rules

1000 Rules

Figure 5.2: The ratio of packets dropped by Snort for each of the ruleset tests.

Figure 5.3 shows the number of processed packets per second during the experiment. As the
figure shows, the number is mainly between 60.000 and 75.000 packets per second. This figure
is simply included to show that it is not variations in the traffic load that causes the results
given here. In fact, the deviations in the 5- and 1000-ruleset test in Figure 5.3 does not have
noticeable effect when compared to the detection ratio in Figure 5.1.

50 CHAPTER 5. ANALYSIS

40000,00

50000,00

60000,00

70000,00

80000,00

90000,00

100000,00

110000,00

0 200 400 600 800 1000 1200

P
ro

ce
ss

e
d

 p
ac

ke
ts

 p
e

r
se

co
n

d

Sent packets

5 Rules

30 Rules

50 Rules

100 Rules

200 Rules

1000 Rules

Figure 5.3: Processed packets per second divided on each of the ruleset tests.

From Figure 5.1 and 5.2, it is shown that Snort is still far from working optimally in a high-
speed network. The detection ratio is low, and the drop ratio is high.

This experiment reveals that the number of rules has an impact on the processing done by
Snort. The reason for this is probably that more rules increases the total number of compar-
isons needed per incoming packet. A valid question is then how many rules an IDS needs
for satisfying botnet detection. Whatever the answer is, experiment 2 shows that it is possible
to have 1000 rules, and even get a higher detection rate that with the other rulesets in this
experiment.

5.2. ANALYSING THE EXPERIMENTS 51

5.2.2 Experiment 2 - Optimising Snort Configuration

Figure 5.4 shows the packet detection ratio of using the optimised Snort configuration file. As
shown, it has a clear positive effect when compared to the respective ruleset-tests in experi-
ment 1 which used the modified configuration file.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 200 400 600 800 1000 1200

D
e

te
ct

io
n

 r
at

io

Sent packets

200 Rules

1000 Rules

Figure 5.4: The detection ratio for using 200 and 1000 rules using the optimised Snort configura-
tion file.

Because there was not much difference between using 5 and 200 rules in experiment 1, this
experiment only used the 200 and 1000 ruleset. As can be seen from Figure 5.4, the detection
ratio of the test using 200 rules has increased from about 0.60 in experiment 1 to about approx-
imately 0.80 in experiment 2. The positive effect is even greater with the 1000-ruleset test. As
can be seen, the detection ratio has increased from approximately 0.40 in experiment 1 to 0.70
in experiment 2. Notice that the 1000-ruleset now actually has a higher detection ratio than
the highest ratio presented in experiment 1.

52 CHAPTER 5. ANALYSIS

The effect is also shown in Figure 5.5, where Snort now has a lower packet drop ratio com-
pared to the ratio in Figure 5.2 from experiment 1. However, the drop ratio is still relatively
high.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 200 400 600 800 1000 1200

D
ro

p
p

e
d

 p
ac

ke
ts

 r
at

io

Sent packets

200 Rules

1000 Rules

Figure 5.5: The ratio of packets dropped by Snort when using the optimised version of the Snort
confiuration file on the 200- and 1000-rule-test.

This experiment implies that the Snort configuration has an effect on the packet processing,
and thus the detection ratio. Some of the options mentioned in Figure 3.7 in Section 3.4.2,
especially max_session, disable_evasion_alerts and memcap, had very little or no effect on the
performance and are not further discussed. Timeout, server_inspect_limit and noinspect, on the
other hand, showed to have a very positive effect.

Timeout basically means that Snort keeps an inactive stream in a state table for a given num-
ber of seconds, before the stream is deleted. This value was changed from the the default 30
seconds to 1 second in the experiment.

Server_inspect_limit is probably the most important modification. This instructs Snort to only
inspect the first given number of bytes of the packet. The smaller server_inspect_limit, the
faster Snort performs. However, there is a downside, namely that Snort only inspects the first
n-bytes. This makes it possible to hide commands further back in the packet payload.

Stateful inspection is built upon keeping a record of the different IP sessions. Since Snort uti-
lizes stateful packet inspection by default, and Snort’s state-table only handles up top 100.000
simultaneous sessions (according to [Pro06]), the performance was far from optimal. Noin-

5.2. ANALYSING THE EXPERIMENTS 53

spect disabled this stateful inspection, meaning that Snort did not have to keep a record of
streams in its memory, and thus work faster.

Even though the server_inspect_limit is one the most powerful modifications in connection
with enhancing Snort’s performance, this was deliberately not used. This is due to the fact
that the authors focused on making Snort as fast as possible without limiting the packet pay-
load size in the software.

54 CHAPTER 5. ANALYSIS

5.2.3 Experiment 3 - Testing Impact of Common Strings

Figure 5.6 shows the packet drop ratio in experiment 3, which included a few common rules
in the ruleset. The included words were GET, POST, password and .getcdkey.

One of the purposes with this test was to see the importance of using well written rules.
With poorly written rules, processing may increase resulting in packet loss.

As Figure 5.6 shows, it may seem that more packets are dropped when alerts are frequent.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 200 400 600 800 1000 1200

D
ro

p
p

e
d

 p
ac

ke
t

ra
ti

o

Sent packets

Regular rules

Common words includes a rules

Figure 5.6: Packet drop ratio when the common words GET, POST, password and .getcdkey are
included in the rulseset.

This experiment was conducted several times. In some of the trials there was no difference in
the packet drop ratio when using the common words rules. This may indicate that there is no
significant variations in the processing time. Because of multiple possible sources of errors, it
is therefore hard to draw a conclusion based on this experiment.

5.2. ANALYSING THE EXPERIMENTS 55

5.2.4 Experiment 4 - Testing With Minimum External Traffic

This small experiment was conducted simply to test if Snort actually performs well in a more
normal environment, as opposed to the high-speed environment.

As shown in Table 4.10 in Section 4.2.4, it is shown that Snort can easily detect intrusions
when it is not implemented on a high-speed network. Not surprisingly the experiment gave
a 100% detection ratio, and no packets were dropped by Snort.

The reason to why Snort processed more packets than the 100 bot commands that were sent
is simply that network messages, retransmissions, ping messages, etc., was captured and
analysed as well.

56 CHAPTER 5. ANALYSIS

5.2.5 Experiment 5 - Testing Packet Length Input

The result from this experiment is probably the most important ones analysed. It turned out
that by varying the slen value, it was possible for Snort to analyze and process up to and be-
yond 150.000 packets per second.

As can easily be seen from Figure 5.7, the packet drop ratio escalates when the slen value
exceeds 1500. It seems that as long as the value is kept below 1500, the drop ratio decreases to
0.0, Snort is thus able to process all incoming packets.

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

1470 1480 1490 1500 1510 1520 1530 1540

D
ro

p
p

e
d

 p
ac

ke
ts

 r
at

io

Value of slen

Normal configuration

Optimised configuration

Figure 5.7: The effect of the slen value.

Notice that the packet drop ratio is noticeably lower when using an optimised Snort configu-
ration file, as was shown in experiment 2.

The reason for the result in this experiment is a bit unclear. Most likely is it due to hard-
ware limitations on the IDS computer, more specificly the 64-bits PCI-X bus (as mentioned in
Section 3.2.5). Since a DAG card header is appended to the packet, an extra transfer on the
bus is necessary should the packet exceed 1500 bytes.

5.2. ANALYSING THE EXPERIMENTS 57

5.2.6 Experiment 6 - Testing Impact of the TCP Protocol

Figure 5.8 presents the result, given in Table 4.13. The respective tests are sorted in ascending
order.

0

5

10

15

20

25

30

35

40

45

D
ro

p
p

e
d

 p
ac

ke
ts

 r
at

io
%

Ratio of processed TCP packets
%

Figure 5.8: The impact the TCP protocol has on the ratio of dropped packets

It seems like the ratio of TCP packets has a clear impact of the ratio of dropped packets when
studying the figure. When the ratio of TCP packets exceeds approximately 65%, Snort has to
drop packets in order to keep up with the traffic load.

This result is not very surprising as TCP packets have bigger payloads, and thus need more
processing time than for example a small UDP packet. However, it is important to mention
that the rules used in the testing are limited to checking TCP packets.

58 CHAPTER 5. ANALYSIS

5.2.7 Experiment 7 - IDS Stand-Alone Test

The purpose of this experiment was to test if the IDS can handle the traffic load without gen-
erating too many false positives.

Table 4.14 in Section 4.2.7 presents four runs conducted at night time. As can be seen from the
table, a very large number of packets have been processed, with only a few packets dropped
(all have a drop ratio below 1%).

However, all of the four runs had false positives. The log file contained alerts which were
results of website URLs containing different words in the ruleset. Even though some false
positives were documented, the IDS could handle the traffic load. The false postives ratio was
however quite manageable when compared to the total number of processed packets.

Notice that these tests were conducted at night, which means that the traffic pattern differs
from the daytime traffic.

Worth mentioning is that the plan was to check detections with Uninett’s list of known C&C
servers as a measure for false positives. However, the number of detections were so low that
they could easily be identified as false positives when reviewing the log file.

Unfortunately, due to workload limitations, experiment 7 had to be conducted over a few
nights. This is not really a satisfying scenario, as the result does not provide statistical signifi-
cant values. Although, it gives a small picture of Snort’s capabilities.

5.3 SOURCES OF ERROR

As presented in [AAM04] and [AAMP04], there are some problems regarding efficient and
accurate methods for evaluating IDSs.

Firstly, as mentioned in [AAMP04], an IDS’s performance varies significantly with different
distributions of packets. This has, however, been taken into consideration by continuously
monitoring both packet count and packet loss on the backbone network. Since these data
were of no significant value when evaluating Snort, it has been excluded from this report.

Secondly, as shown in [AAPM02], IDSs performance is sensitive to packet and ruleset con-
tent. The packet contents analysed in the experiments originates from the end users and are
thus uncontrollable. However, as seen in experiment 3, multiple detections may cause higher
drop ratio.

Thirdly, [AAPM02] mentions that IDS performance varies with the choice of processor ar-
chitecture. This report is based on using the currently available software and hardware used
by Uninett, so processor architecture is not taken in consideration in the experiments con-
ducted. It is however discussed in sections 6.3.

When it comes to measuring false positives, the problem of efficiency arises. Even though
an IDS is tested in both a controlled and a real, uncontrollable environment, it is not possible

5.4. CONCLUSION 59

to test how the IDS will respond in every possible case.

The IDS rules are also subject to errors. In cases where string searching algorithms are used,
there is always a possibility for false positives. Consider for instance if there is a rule for
detecting DBot’s command "!r". This would probably trigger an excessive amount of false
positives. Also worth mentioning in the case of string searches, is that false positives will oc-
cur if someone is accessing a website accidentally describing bot commands or similar. This
for example the case when conducting experiment 7.

Another important source of error to take into consideration is the fact that the experiments
were conducted over several days and in different time periods of the day. As the traffic pat-
ters varies over the day, this will again cause the testing to vary.

Lastly, it is important to mention that only a limited number of tests were conducted. This
is due to the limited workload in writing this report. Ideally, in order to rule out other sources
of errors, and to get statistically significant results, the experiments should have been repeat-
edly conducted over a longer period of time.

5.4 CONCLUSION

The following is a summary from the findings in the experiments conducted:

1. The number of rules included in the IDS matter, but not significantly.

2. Optimising the Snort configuration file has had a positive effect. It is for example pos-
sible to include more rules using the optimised version. Worth mentioning, is that the
optimised configuration file used in this report is not claimed to be fully optimised. It
may be possible to tweak the configuration and enhance the performance even more.

3. It is difficult to say to which degree frequent detections causes Snort to drop packets,
although it is most likely as frequent detections leads to more processing. Writing good
rules should be regarded as an important factor in order to reduce the risk for false
positives.

4. By limiting the slen value in the DAG card, it is possible for Snort to process all incoming
packets. This effect may also be possible using other network interface cards or the
server inspect limit in Snort.

5. The ratio of TCP packets matter. A higher ratio of TCP packets causes the packet drop
ratio to increase.

Based on these findings, it is plausible to use Snort as botnet detection on a high-speed link. By
using an optimised configuration file and writing good relevant rules, and especially setting
the slen value to 1500 or less, it is possible to at least use Snort up to 150.000 packets per second.

Unfortunately, the maximum traffic load that Snort could handle with the given settings, was
not possible to find. This was due to the decreasing load1 on the backbone when the exper-

1During the period of conducting the experiments, the average traffic load was about 120,000 packets per
second. One month earlier the traffic load had an average of about 160,000 packets per second, according to
drift.uninett.no.

60 CHAPTER 5. ANALYSIS

iments were conducted; the number of required packets for the testing could simply not be
fulfilled.

The experiments described in this report where conducted on one of the most loaded links
in the country. This obviously implies that Snort can run on links that have less traffic than in
the experiments conducted in this report - at least based on the experience from this report,
and the hardware available.

Chapter 6 discusses some more elements surrounding this specific field of research.

CHAPTER6
DISCUSSION

This chapter discusses some of the elements in connection with the preceding experiments.

6.1 INTRODUCTION

The following sections presents some arguments, i.e., the authors’s opinions, based on the
results and analysis presented in Chapter 4 and chapter 5, respectively.

6.2 SNORT VS. MAPI

This report has evaluated both Snort and MAPI used as an IDS in a high-speed environment.
Snort has been tested quite thoroughly, while MAPI unfortunately could not be tested due to
the bugs mentioned in Section 3.5. The following sections lists some important aspects with
an IDS, and discusses these from Snort’s and MAPI’s point of view.

6.2.1 The Rules

As mentioned in Section 3.3.2, 3.4, and 3.5, rules are handled differently; Snort has its own
rule files while MAPI connects flows and then add string search functions on these.

Snort is per today very easy to handle when it comes to managing the rules. If a new rule
is needed, it is simply added to a rule file, and after a restart, Snort has included the new rule
in the ruleset.

Rules in MAPI, on the other hand, are not so easy to handle. The string search function
can only be applied to one flow at the time, as discussed in section 3.5. Adding a new rule
therefore implies that a new flow has to be written into the program.

If the string search function is rewritten to handle OR, this would be a major improvement
because one would only need to apply one flow. String search functions may then be added
to this flow.

6.2.2 Performance

When Snort operates with default settings, Snort performs poorly, and is not suited for run-
ning in high-speed environments. Even with the modifications done in snort.noflow.conf, Snort
still gave an unsatisfactory high drop ratio. However, as is shown in the final experiment,

61

62 CHAPTER 6. DISCUSSION

Snort demonstrated that it can be used in high-speed environments, as it had a drop ratio less
than 1%.

MAPI could not, as mentioned, be tested to the same extend as Snort. Therefore no results
documenting its performance is presented in this report. However, UNINETT claims to pre-
viously have run MAPI with over 40 flows connected simultaneously. This information, com-
bined with the observations from the previously MAPI experiments, makes MAPI a promising
candidate at least.

6.2.3 Distributed approach

As of today, Snort has no built-in support for a distributed architecture, i.e, one central ap-
plication controlling the monitoring process on the other computers included in the network.
There are however some alternatives, like SURF IDS1.

SURF IDS has different sensors scattered around in the network, all their running own in-
stances of the Snort application. The difference with this setup, compared to a normal setup,
is that the logging is sent to a central logging server which handles the processing. Even
though this provides a good picture of the whole network, the downside is that if, e.g., rules
are to be changed or the configuration updated, Snort has to be updated and restarted on all
of the involved computers.

As will be further elaborated in Section 6.8.1, MAPI offers an extension called DiMAPI. DiMAPI
makes it possible to write one MAPI program which connects to a given number of network
interfaces on a given number of computers. This means that it is possible to control everything
from one central server, making it very easy to, e.g, update the rules for all of the involved
computers.

6.3 DAG CARDS AND OTHER HARDWARE

There are basically two components which are especially important regarding an IDS; namely
the IDS software and the hardware. The hardware in this connection is the network interface
card. As mentioned in Section 2.8, the NIC used in this report is the Endance DAG 4.3S net-
work card. The details can be found in Section 2.8, and is not further elaborated here.

The DAG card played a major role in achieving the results found in the experiments. This
especially relates to Snort’s performance. It is unlikely that another NIC could cope with the
high data rate and deliver the same performance as the DAG card did.

The sensor where the experiments were conducted is connected to a 2.5 Gbps link. When the
GigaCampus programme, mentioned in Section 2.7, is completed, this link will most likely
have been upgraded to a 10 Gbps link. If Snort is going to have any chance of processing this
traffic, it is important that the hardware is able to handle up to 10 Gbps.

As mentioned in Section 2.8, hardware filters can be loaded into the DAG card. These fil-
ters were supposed to be tested as a separate experiment in chapter 3. Unfortunately, as

1SURF IDS homepage at http://ids.surfnet.nl

6.4. CIRCUMVENTING THE IDS 63

mentioned in section 3.4, this experiment was omitted due to firmware problems with the
DAG card and co-processor. It is nevertheless the authors’ opinion that this, if deployed,
would boost the performance of the IDS. By simply filtering out protocols which constitute a
significantly amount of the network traffic, a lot of processing is eliminated in the software.
The downside is that botnet traffic could be sent over the filtered protocols, and thus go by
undetected.

6.4 CIRCUMVENTING THE IDS

IDSs that use string search functions may easily be circumvented by using special crafted and
untypical commands. For example by renaming RBot’s ".getcdkeys"-command to, e.g., ".qw-
ert", the IDS will not detect this as a malicious command as it is not part of the ruleset. [GH07]
however describes an IRC nickname evaluation method based on the untypical commands
and nicknames often used in IRC based botnets, as mentioned in Section 2.3.2.

The string search will also be circumvented if the botnet is encrypting its communication.
Encrypted botnets are a great challenge for IDS developers, since they also can circumvent
anomaly based IDSs.

The IDS tested in this report is based on botnets using the IRC protocol. Botnets using other
communication protocols will therefore not be detected, unless they by coincidence uses the
same commands as the IRC based botnets.

If the input of packet payload is limited to a fixed value by, e.g., setting the slen or server_inspection_limit
value, the IDS may easily be circumvented by placing the malicious payload at the end of the
packet. In order for this to work, the botmaster must know how much of the packet payload
that is analysed by the IDS.

6.5 BOTNET SIMILARITIES

There are, as mentioned in Section 2.9.4, several kinds of botnets and botnet families.

A botnet detection system should aspire to having rules that includes signatures for as many
bots as possible. By choosing commands which are similar between the different families, the
IDS can detect more botnets using fewer rules. Due to the fact that almost every bot family
and bot distribution have different commands, this can, however, be very difficult.

The IDS should also include the individual commands as well. However, commands such
as ".version" should not be included as this rule would generate a lot of false positives. The
experiments conducted in this report indicates that it is possible to run Snort with 1000 rules
in a high-speed environment. With such a large number of rules, it should be possible to
include most of the malicious botnet commands from the most popular botnet families.

6.6 ALTERNATIVE DETECTION ALGORITHMS

Some of the LOBSTER partners presents in [AAMP03] an alternative string matching algo-
rithm implemented in Snort. It is claimed in this article that the algorithm improves the per-
formance by 10% - 36%. There are however other ways to detect malicious traffic than using

64 CHAPTER 6. DISCUSSION

string search.

The article [BS06] presents an anomaly based IRC botnet detection algorithm. This algorithm
combines an IRC mesh detection component with a TCP scan detection heuristic they have
called the TCP work weight. This algorithm is, at the time of writing, not tested in a high-speed
environment.

6.7 HANDLING THE DETECTION DATA

In a high-speed environment the logging of detected data can in some cases get quite exces-
sive. It is therefore important to have good routines to handle the detected data.

In this connection it is important that responsible personnel are notified as fast as possible.
Quick alerting is necessary in order to make countermeasures before the indications evolve
into a full scale attack.

For administrators it is also important that the detected data is handled in such a matter so
that it is possible to perform statistical analysis of this data. This makes it possible to discover
and handle vulnerabilities in the network. Captured data may also be used in network re-
search or to get a general view of the threat level.

As mentioned in [SBH+07]; if the data is to be used in relation with digital forensics, the data
needs to be handled with care. It is important not to jeopardise the integrity of the collected
evidence. One possible way is to use hash function on the captured data. These functions
makes a unique hash value of the given data. It is then not possible to tamper with the data
without changing the hash value.

6.8 FUTURE PROSPECTS

The research presented in this report was the first step in implementing an IDS in Uninett’s
backbone network. There is however still some research that needs be conducted and this
is suggested in Chapter 7. The following Section discussed some future prospects in this
connection.

6.8.1 A distributed Approach

As mentioned in Section 2.5, MAPI offers a distributed extension called DiMAPI. DiMAPI en-
ables flow creation and manipulation of local and remote monitoring sensors, as mentioned
in [TPP+06]. The article also claims that the response latency is very close to the actual round
trip time between the monitoring application and sensors - making it usable in a distributed
IDS implementation.

A distributed IDS is very useful for detection large scale attacks. There are however some
challenges in this connection. As more IDSs are interconnected, more data is processed and
needs to be handled and correlated.

An distributed botnet dection system combining all the sensors in the LOBSTER project,

6.8. FUTURE PROSPECTS 65

would for example lead to huge tasks when it comes to process the information gathered.
Detected botnet traffic from multiple sensors would need to be compared and correlated, in
order to check whether the alert found in location A is the same as the alert in location B.

Another distributed IDS is presented in [SYL03]. This article suggests a peer-to-peer IDS ar-
chitecture which can be used in a Gigabit network. It is claimed in this article that the IDS has
a packet loss ratio less than 10%.

6.8.2 IPv4 vs. IPv6

Even though IPv4 is most commonly used today, it is obvious that the use of IPv6 will increase
in near future.

As of today, MAPI only supports IPv4, while Snort is already IPv6 compatible. MAPI needs
to be adapted to support IPv6, if it is to be used in the future. The DAG card is already IPv6
compatible.

The main challenge with IPv6 is that the size of the average packets increases. The IPv6 packet
header itself, is twice the size as the packet headers in IPv4. In addition, the payload size will
increase, making it tougher for both hardware and software to keep up with the processing.

CHAPTER7
FURTHER WORK

This Chapter presents some further work in connection with the research presented through-
out this report.

7.1 INTRODUCTION

Due to the limited time span and workload, some limitations of the research had to be made.
As a consequence this Chapter presents suggested research, which could not be conducted by
the authors.

7.2 IMPLEMENTING MAPI AS AN IDS

The research presented in this report was planned to include a MAPI implementation. Be-
cause of bugs in the software, this had to be omitted. If a future release of MAPI fixes the
mentioned bugs and is more stable, MAPI should definitely be retested.

A retest should include the same parameters as Snort did in the experiments, so that a com-
parison of the two IDS implementations is possible.

7.3 TESTING MAXIMUM TRAFFIC LOAD

The experiments mentioned in this report was conducted on a busy backbone link. At the
time of conducting the experiments, the traffic unfortunately started to decrease due to sum-
mer vacation. This basically meant that it was not possible to test Snort’s maximum capacity.
The number of packets per second, was simply too low to challenge Snort.

If a maximum limit should be found, one could expand the experiments by varying the slen
or server_inspect_limit value on respectively the DAG card and in the Snort configuration even
further.

Further work should include testing of Snort’s maximal capacity, by using sensors located
at busier links.

7.4 BOTNETS BASED ON OTHER PROTOCOLS

As the research presented in this report was only focused on IRC based botnet, further work
should include botnets based on other protocols. E.g., the protocols mentioned in Section
2.9.1. This is also due to the fact that many botnets tend to utilze other protocols than IRC.

67

68 CHAPTER 7. FURTHER WORK

7.5 INCREASED EXPERIMENT LENGTH AND FREQUENCY

One of the drawbacks with this report, is that the number of experiments was limited due to
the available time, as mentioned in Section 5.3. To get results of significant statistical values,
these experiments should be repeated, i.e., the experiments should be conducted both multi-
ple times and over longer time periods.

These experiments should take variations in the traffic pattern into consideration.

7.6 DYNAMIC RULES

It is possible to use dynamic rules in Snort. A dynamic rule is a rule which is loaded, but
never used before it is activated by some sort of a trigger. This trigger may be a special event
or another rule.

An idea could be to make dynamic rules which changes the configuration if a special con-
dition is met. Even though this is not tested, it may be possible to write a script that decreases
the server_inspect_limit value should the TCP ratio exceed a certain point, or for example if the
dropped packet ratio exceeds an undesirable value.

7.7 NOTIFICATION UPON DETECTION

The IDS implementations presented in this report should include functionality for notifying
responsible personnel. This functionality should also include appropriate handling of the
detection data, as discussed in Section 6.7.

7.8 DETECTION OF OTHER TYPES OF INTRUSION

The main purpose of this research was to investigate high-speed IDS implementations, but
was limited to detecting botnets due to scope limitation. However, real high-speed IDSs
should handle several other threats in addition to the botnets. It is the authors’s opinion
that a complete high-speed IDS should be able to detect all known threats.

7.9 SAMPLING

A possible research suggestion to look into, is sampling. This basically means that instead of
analysing each packet, every given number of packet is inspected. It is also possible to use
other parameters, e.g., inspecting at random times or random flows.

By using sampling the processing performance is less critical, since the amount of packets
are significantly lowered.

REFERENCES

[AAM04] Spyros Antonatos, Kostas G. Anagnostakis, and Evangelos P. Markatos. Gener-
ating Relistic Workloads for Network Intrusion Detection Systems. Proceedings of
Fourth International Workshop on Software and Performance (WOSP), 2004.

[AAMP03] K. G. Anagnostakis, S. Antonatos, E. P. Markatos, and M. Polychronakis. E2XB: A
Domain-specific String Matching Algorithm for Intrusion Detection. Proceedings
of the 18th IFIP International Information Security Conference, 2003.

[AAMP04] Spyros Antonatos, Kostas G. Anagnostakis, Evangelos P. Markatos, and Michalis
Polychronakis. Performance Analysis of Content Matching Intrusion Detection
Systems. Proceedings of the IEEE/IPSJ Symposium on Applications and the Internet
(SAINT), 2004.

[AAPM02] Spyros Antonatos, Kostas G. Anagnostakis, Michalis Polychronakis, and Evange-
los P. Markatos. Benchmarking and design of string matching intrusion detection
systems. Technical Report 315 ICS-FORTH, 2002.

[BS06] James R. Binkley and Suresh Singh. An Algorithm for Anomaly-based Botnet
Detection. FLOCON CERT/SEI, Vancouver WA, 2006.

[BY07] Paul Barford and Vinod Yegneswaran. An Inside Look at Botnets. Advances in
Information Security , Vol. 27, 2007.

[CAM04] Ioannis Charitakis, Kostas Anagnostakis, and Evangelos P. Markatos. A Network-
Processor-Based Traffic Splitter for Intrusion Detection. ICS-FORTH Technical Re-
port 342, 2004.

[Cor06] Symantec Corporation. Symantec Internet Security Threat Report. Volume X, 2006.

[Cor07] Symantec Corporation. Symantec Internet Security Threat Report. Volume XI,
2007.

[GH07] Jan Goebel and Thorsten Holz. Rishi: Identify Bot Contaminated Hosts by IRC
Nickname Evaluation. HotBots 07, 2007.

[GSN+07] Julian B. Grizzard, Vikram Sharma, Chris Nunnery, Brent ByungHoon Kang, and
David Dagon. Peer-to-Peer Botnets: Overview and Case Study. HotBots 07, 2007.

[IH05] Nicholas Ianelli and Aaron Hackwort. Botnets as a Vehicle for Online Crime.
CERT Coordination Center, 2005.

[KRH07] Anestis Karasaridis, Brian Rexroad, and David Hoeflin. Wide-scale Botnet Detec-
tion and Characterization. HotBots 07, 2007.

[LA00] Brian Laing and Jimmy Alderson. How To Guide - Implementing a Network
Based Intrusion Detection System. Internet Security Systems, 2000.

69

70 REFERENCES

[Ltd05] Endance Measurements System Ltd. Co-processor IP Filter Software User Man-
ual. http://www.endance.com, 2005.

[MAP06] MAPI. A Tutorial Introduction to MAPI. http://mapi.uninett.no, 2006.

[OR93] J. Oikarinen and D. Reed. Internet Relay Chat Protocol. Request for Comments:
1459, http://www.ietf.org/rfc/rfc1459.txt, 05 1993.

[Pro06] The Snort Project. Snort User Manual. http://www.snort.org, 2006.

[RZMT06] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A Mul-
tifaceted Approach to Understanding the Botnet Phenomenon. Internet Measure-
ment Conference 2006, 2006.

[SBH+07] Craig A. Schiller, Jim Binkley, David Harley, Gadi Evron, Tony Bradley, Carsten
Willems, and Michael Cross. Botnets: The Killer Web App. Syngress Publishing,
Inc.,, 2007.

[SM07] Karen Scarfone and Peter Mell. Guide to Intrusion Detection and Prevention Sys-
tems (IDPS). National Institute of Standards and Technology, 2007.

[SYL03] Bo Song, Ming Ye, and Jie Li. Intrusion Detection Technology Research based
High-Speed Network. IEEE, 2003.

[TPP+06] Panos Trimintzios, Michalis Polychronakis, Antonis Padadogiannakis, Michalis
Foukarakis, Evangelos P. Markatos, and Arne Øslebø. DiMAPI: An Application
Programming Interface for Distributed Network Monitoring. Proceedings of the
10th IEEE/IFIP Network Operations and Management Symposium (NOMS), 2006.

[XCA+06] Konstantinos Xinidis, Ioannis Charitakis, Spiros Antonatos, Kostas G. Anagnos-
takis, and Evangelos P. Markatos. An Active Splitter Architecture for Intrusion
Detection and Prevention. IEEE Transactions on Dependable Secure Computing, 2006.

APPENDIX A
MODIFIED SNORT CONFIGURATION FILE

This appendix lists the modified Snort configuration file.

A.1 SNORT.NOFLOW.CONF

Figures A.1, A.2, A.3, A.4 and A.5 present the code for snort.noflow.conf .

snort.noflow.conf (continues on page 72)

1 #−−
2 # http : / /www. s n o r t . o rg Snor t 2 . 6 . 1 . 5 R u l e s e t
3 # Contact : snort−s i g s @ l i s t s . sourceforge . net
4 #−−
5 # Id
6
7 var HOME_NET any
8 var EXTERNAL_NET any
9

10 conf ig l o g d i r : /home/ids/snor t/logs
11 conf ig i n t e r f a c e : dag0
12
13 conf ig d i s a b l e _ d e c o d e _ a l e r t s
14 conf ig d i s a b l e _ t c p o p t _ e x p e r i m e n t a l _ a l e r t s
15 conf ig d i s a b l e _ t c p o p t _ o b s o l e t e _ a l e r t s
16 conf ig d i s a b l e _ t c p o p t _ t t c p _ a l e r t s
17 conf ig d i s a b l e _ t t c p _ a l e r t s
18 conf ig d i s a b l e _ t c p o p t _ a l e r t s
19 conf ig d i s a b l e _ i p o p t _ a l e r t s
20
21 var RULE_PATH /home/ids/snor t/ r u l e s
22
23 # Flow module
24 # preprocessor flow : s t a t s _ i n t e r v a l 0 hash 2
25
26 # f rag3 : Target−based IP defragmentation
27 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 #
29 # Frag3 i s a brand new IP defragmentation preprocessor t h a t i s capable of
30 # performing " t a r g e t−based " process ing of IP fragments . Check out the
31 # README. frag3 f i l e in the doc d i r e c t o r y for more background and c o n f i g u r a t i o n
32 # information .
33 #
34 # Frag3 c o n f i g u r a t i o n i s a two step process , a g loba l i n i t i a l i z a t i o n phase
35 # followed by the d e f i n i t i o n of a s e t of defragmentation engines .
36 #
37 # Global c o n f i g u r a t i o n d e f i nes the number of fragmented packets t h a t Snort can
38 # t r a c k a t the same time and gives you options regarding the memory cap for the
39 # subsystem or , opt iona l ly , al lows you to p r e a l l o c a t e a l l the memory for the
40 # e n t i r e f rag3 system .
41 #
42 # f r a g 3 _ g l o b a l opt ions :
43 # max_frags : Maximum number of f rag t r a c k e r s t h a t may be a c t i v e a t once .
44 # Default value i s 8192 .
45 # memcap : Maximum amount of memory t h a t f rag3 may a c c e s s a t any given time .

Figure A.1: snort.noflow.conf part 1

71

72 APPENDIX A. MODIFIED SNORT CONFIGURATION FILE

snort.noflow.conf (continued from page 71, continues on page 73)

46 # Default value i s 4MB.
47 # p r e a l l o c _ f r a g s : Maximum number of indiv idua l fragments t h a t may be processed
48 # a t once . This i s ins tead of the memcap system , uses s t a t i c
49 # a l l o c a t i o n to i n c r e a s e performance . No default value . Each
50 # p r e a l l o c a t e d fragment e a t s ~1550 bytes .
51 #
52 # Target−based behavior i s at tached to an engine as a " po l i cy " for handling
53 # overlaps and r e t r a n s m i s s i o n s as enumerated in the Paxson paper . There are
54 # c u r r e n t l y f i v e po l i cy types a v a i l a b l e : "BSD" , "BSD−r i g h t " , " F i r s t " , " Linux "
55 # and " Last " . Engines can be bound to standard Snort CIDR blocks or
56 # IP l i s t s .
57 #
58 # f rag3_engine options :
59 # t imeout : Amount of time a fragmented packet may be a c t i v e before expir ing .
60 # Default value i s 60 seconds .
61 # t t l _ l i m i t : Limit of d e l t a al lowable for TTLs of packets in the fragments .
62 # Based on the i n i t i a l rece ived fragment TTL .
63 # min_t t l : Minimum a c ce p ta b le TTL for a fragment , f r a g s with TTLs below t h i s
64 # value w i l l be discarded . Defaul t value i s 0 .
65 # detect_anomal ies : A c t i v a t e s f rag3 ’ s anomaly d e t e c t i o n mechanisms .
66 # pol i cy : Target−based pol i cy to ass ign to t h i s engine . Defaul t i s BSD .
67 # bind_to : IP address s e t to bind t h i s engine to . Defaul t i s a l l hosts .
68 #
69 # Frag3 c o n f i g u r a t i o n example :
70 # preprocessor f r a g 3 _ g l o b a l : max_frags 65536 p r e a l l o c _ f r a g s 262144
71 # preprocessor frag3_engine : po l i cy l inux \
72 # bind_to [1 0 . 1 . 1 . 1 2 / 3 2 , 1 0 . 1 . 1 . 1 3 / 3 2] \
73 # detect_anomal ies
74 # preprocessor frag3_engine : po l i cy f i r s t \
75 # bind_to 1 0 . 2 . 1 . 0 / 2 4 \
76 # detect_anomal ies
77 # preprocessor frag3_engine : po l i cy l a s t \
78 # bind_to 1 0 . 3 . 1 . 0 / 2 4
79 # preprocessor frag3_engine : po l i cy bsd
80
81 preprocessor f r a g 3 _ g l o b a l : max_frags 65536
82 preprocessor frag3_engine : po l i cy l inux
83
84
85
86 # stream4 : s t a t e f u l i n s p e c t i o n /stream reassembly for Snort
87 #−−
88 # Use in concer t with the −z [a l l | e s t] command l ine switch to defea t s t i c k /snot
89 # a g a i n s t TCP r u l e s . Also performs f u l l TCP stream reassembly , s t a t e f u l
90 # i n s p e c t i o n of TCP streams , e t c . Can s t a t e f u l l y d e t e c t var ious portscan
91 # types , f i n g e r p r i n t i n g , ECN, e t c .
92
93 # s t a t e f u l i n s p e c t i o n d i r e c t i v e
94 # no arguments loads the d e f a u l t s (timeout 30 , memcap 8388608)
95 # options (opt ions are comma del imited) :
96 # d e t e c t _ s c a n s − stream4 w i l l d e t e c t s t e a l t h portscans and generate a l e r t s
97 # when i t sees them when t h i s option i s s e t
98 # detec t_s ta te_problems − d e t e c t TCP s t a t e problems , t h i s tends to be very
99 # noisy because there are a l o t of crappy ip s tack

100 # implementations out there
101 #
102 # d i s a b l e _ e v a s i o n _ a l e r t s − turn o f f the poss ib ly noisy m i t i g a t i o n of
103 # overlapping sequences .
104 #
105 # t t l _ l i m i t [number] − d i f f e r e n t i a l of the i n i t i a l t t l on a s e s s i o n versus
106 # the normal t h a t someone may be playing games .
107 # Routing f l a p may cause l o t s of f a l s e p o s i t i v e s .
108 #
109 # k e e p s t a t s [machine|binary] − keep s e s s i o n s t a t i s t i c s , add " machine " to
110 # get them in a f l a t format for machine reading , add
111 # " binary " to get them in a u n i f i e d binary output
112 # format
113 # noinspect − turn o f f s t a t e f u l i n s p e c t i o n only
114 # t imeout [number] − s e t the s e s s i o n timeout counter to [number] seconds ,
115 # defaul t i s 30 seconds
116 # max_sessions [number] − l i m i t the number of s e s s i o n s stream4 keeps
117 # t r a c k of
118 # memcap [number] − l i m i t stream4 memory usage to [number] bytes (does
119 # not include s e s s i o n tracking , which i s s e t by the
120 # max_sessions option)
121 # log_f lushed_streams − i f an event i s detec ted on a stream t h i s option w i l l
122 # cause a l l packets t h a t are s tored in the stream4
123 # packet b u f f e r s to be f lushed to disk . This only
124 # works when logging in pcap mode !
125 # s e r v e r _ i n s p e c t _ l i m i t [bytes] − Byte l i m i t on server s ide i n s p e c t i o n .
126 # enable_udp_sessions − turn on t r a c k i n g of " s e s s i o n s " over UDP. Requires
127 # conf igure −−enable−stream4udp . UDP s e s s i o n s are
128 # only created when there i s a r u l e for the sender or
129 # responder t h a t has a flow or f l o w b i t s keyword .
130 # max_udp_sessions [number] − l i m i t the number of simultaneous UDP s e s s i o n s

Figure A.2: snort.noflow.conf part 2

A.1. SNORT.NOFLOW.CONF 73

snort.noflow.conf (continued from page 72, continues on page 74)

131 # to t r a c k
132 # udp_ignore_any − Do not i n s p e c t UDP packets unless there i s a port s p e c i f i c
133 # r u l e for a given port . This i s a performance improvement
134 # and turns o f f i n s p e c t i o n for udp xxx any −> xxx any r u l e s
135 # c a c h e _ c l e a n _ s e s s i o n s [number] − Cleanup the s e s s i o n cache by number s e s s i o n s
136 # a t a time . The l a r g e r the value , the
137 # more s e s s i o n s are purged from the cache when
138 # the s e s s i o n l i m i t or memcap i s reached .
139 # Defaul ts to 5 .
140 #
141 #
142 #
143
144 preprocessor stream4 : d i s a b l e _ e v a s i o n _ a l e r t s , max_sessions 50000
145
146 # tcp stream reassembly d i r e c t i v e
147 # no arguments loads the default c o n f i g u r a t i o n
148 # Only reassemble the c l i e n t ,
149 # Only reassemble the default l i s t of por ts (See below) ,
150 # Give a l e r t s for " bad " streams
151 #
152 # Avai lable opt ions (comma del imited) :
153 # c l i e n t o n l y − reassemble t r a f f i c for the c l i e n t s ide of a connect ion only
154 # serveronly − reassemble t r a f f i c for the server s ide of a connect ion only
155 # both − reassemble both s i d e s of a s e s s i o n
156 # n o a l e r t s − turn o f f a l e r t s from the stream reassembly s tage of stream4
157 # ports [l i s t] − use the space separated l i s t of por ts in [l i s t] , " a l l "
158 # w i l l turn on reassembly for a l l ports , " d e f a u l t " w i l l turn
159 # on reassembly for ports 21 , 23 , 25 , 42 , 53 , 80 , 110 ,
160 # 111 , 135 , 136 , 137 , 139 , 143 , 445 , 513 , 1433 , 1521 ,
161 # and 3306
162 # favor_old − favor an old segment (based on sequence number) over a new one .
163 # This i s the default .
164 # favor_new − favor an new segment (based on sequence number) over an old one .
165 # o v e r l a p _ l i m i t [number] − l i m i t on overlaping segments for a s e s s i o n .
166 # f l u s h _ o n _ a l e r t − f l u s h e s stream when an a l e r t i s generated for a s e s s i o n .
167 # f lush_behavior [mode] −
168 # default − use old s t a t i c f l u s h p o i n t s (default)
169 # large_window − use new l a r g e r s t a t i c f l u s h p o i n t s
170 # random − use random f l u s h p o i n t s defined by flush_base ,
171 # f lush_seed and f lush_range
172 # f lush_base [number] − lowest allowed random f l u s h p o i n t (512 by default)
173 # f lush_range [number] − number i s the space within which random f l u s h p o i n t s
174 # are generated (default 1213)
175 # f lush_seed [number] − seed for the random number generator , d e f a u l t s to
176 # Snort PID + time
177 #
178 # Using the default random f lushpoints , the s m a l l e s t f l u s h p o i n t i s 512 ,
179 # and the l a r g e s t i s 1725 bytes .
180 preprocessor stream4_reassemble : both , por ts a l l , n o a l e r t s
181
182
183
184 # ###
185 # Step # 4 : Configure output plugins
186 #
187 # Uncomment and conf igure the output plugins you decide to use . General
188 # c o n f i g u r a t i o n for output plugins i s of the form :
189 #
190 # output <name_of_plugin >: <conf igura t ion_opt ions >
191 #
192 # log_tcpdump : log packets in binary tcpdump format
193 # −−−
194 # The only argument i s the output f i l e name .
195 #
196 # output log_tcpdump : tcpdump . log
197
198 # database : log to a v a r i e t y of databases
199 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
200 # See the README. database f i l e for more information about conf igur ing
201 # and using t h i s plugin .
202 #
203 # output database : log , mysql , user=root password= t e s t dbname=db host= l o c a l h o s t
204 # output database : a l e r t , postgresql , user=snor t dbname=snor t
205 # output database : log , odbc , user=snor t dbname=snor t
206 # output database : log , mssql , dbname=snor t user=snor t password= t e s t
207 # output database : log , orac le , dbname=snor t user=snor t password= t e s t
208
209 # u n i f i e d : Snort u n i f i e d binary format a l e r t i n g and logging
210 # −−−
211 # The u n i f i e d output plugin provides two new formats for logging and generat ing
212 # a l e r t s from Snort , the " u n i f i e d " format . The u n i f i e d format i s a s t r a i g h t
213 # binary format for logging data out of Snort t h a t i s designed to be f a s t and
214 # e f f i c i e n t . Used with barnyard (the new a l e r t /log processor) , most of the
215 # overhead for logging and a l e r t i n g to various slow storage mechanisms such as

Figure A.3: snort.noflow.con part 3

74 APPENDIX A. MODIFIED SNORT CONFIGURATION FILE

snort.noflow.conf (continued from page 73, continues on page 75)

216 # databases or the network can now be avoided .
217 #
218 # Check out the spo_unif ied . h f i l e for the data formats .
219 #
220 # Two arguments are supported .
221 # f i lename − base f i lename to wri te to (current t ime_t i s appended)
222 # l i m i t − maximum s i z e of spool f i l e in MB (default : 128)
223 #
224 output a l e r t _ u n i f i e d : f i lename snor t . a l e r t , l i m i t 128
225 output l o g _ u n i f i e d : f i lename snor t . log , l i m i t 128
226
227
228 # prelude : log to the Prelude Hybrid IDS system
229 # −−−
230 #
231 # p r o f i l e = Name of the Prelude p r o f i l e to use (default i s snor t) .
232 #
233 # Snort p r i o r i t y to IDMEF s e v e r i t y mappings :
234 # high < medium < low < i n f o
235 #
236 # These are the default mapped from c l a s s i f i c a t i o n . conf ig :
237 # i n f o = 4
238 # low = 3
239 # medium = 2
240 # high = anything below medium
241 #
242 # output a l e r t _ p r e l u d e
243 # output a l e r t _ p r e l u d e : p r o f i l e =snort−p r o f i l e−name
244
245
246 # You can o p t i o n a l l y define new r u l e types and a s s o c i a t e one or more output
247 # plugins s p e c i f i c a l l y to t h a t type .
248 #
249 # This example w i l l c r e a t e a type t h a t w i l l log to j u s t tcpdump .
250 # ru le type suspic ious
251 # {
252 # type log
253 # output log_tcpdump : suspic ious . log
254 # }
255 #
256 # EXAMPLE RULE FOR SUSPICIOUS RULETYPE :
257 # suspic ious tcp $HOME_NET any −> $HOME_NET 6667 (msg : " I n t e r n a l IRC Server " ;)
258 #
259 # This example w i l l c r e a t e a r u l e type t h a t w i l l log to sys log and a mysql
260 # database :
261 # ru le type r e d a l e r t
262 # {
263 # type a l e r t
264 # output a l e r t _ s y s l o g : LOG_AUTH LOG_ALERT
265 # output database : log , mysql , user=snor t dbname=snor t host= l o c a l h o s t
266 # }
267 #
268 # EXAMPLE RULE FOR REDALERT RULETYPE :
269 # r e d a l e r t tcp $HOME_NET any −> $EXTERNAL_NET 31337 \
270 # (msg : " Someone i s being LEET" ; f l a g s :A+ ;)
271
272 #
273 # Include c l a s s i f i c a t i o n & p r i o r i t y s e t t i n g s
274 # Note for Windows users : You are advised to make t h i s an absolute path ,
275 # such as : c :\ snor t\ e t c \ c l a s s i f i c a t i o n . conf ig
276 #
277
278 include c l a s s i f i c a t i o n . conf ig
279
280 #
281 # Include r e f e r e n c e systems
282 # Note for Windows users : You are advised to make t h i s an absolute path ,
283 # such as : c :\ snor t\ e t c \ r e f e r e n c e . conf ig
284 #
285
286 include r e f e r e n c e . conf ig
287
288 # ###
289 # Step # 6 : Customize your r u l e s e t
290 #
291 # Up to date snor t r u l e s are a v a i l a b l e a t ht tp : / /www. s n o r t . o rg
292 #
293 # The snor t web s i t e has documentation about how to wri te your own custom snor t
294 # r u l e s .
295
296 # include $RULE_PATH/ l o c a l . r u l e s
297 # include $RULE_PATH/bad−t r a f f i c . r u l e s
298 # include $RULE_PATH/ e x p l o i t . r u l e s
299 # include $RULE_PATH/scan . r u l e s
300 # include $RULE_PATH/ f i n g e r . r u l e s

Figure A.4: snort.noflow.con part 4

A.1. SNORT.NOFLOW.CONF 75

snort.noflow.conf (continued from page 74)

300 # include $RULE_PATH/ f i n g e r . r u l e s
301 # include $RULE_PATH/ f t p . r u l e s
302 # include $RULE_PATH/ t e l n e t . r u l e s
303 # include $RULE_PATH/rpc . r u l e s
304 # include $RULE_PATH/ r s e r v i c e s . r u l e s
305 # include $RULE_PATH/dos . r u l e s
306 # include $RULE_PATH/ddos . r u l e s
307 # include $RULE_PATH/dns . r u l e s
308 # include $RULE_PATH/ t f t p . r u l e s
309
310 # include $RULE_PATH/web−c g i . r u l e s
311 # include $RULE_PATH/web−co ldfus ion . r u l e s
312 # include $RULE_PATH/web−i i s . r u l e s
313 # include $RULE_PATH/web−frontpage . r u l e s
314 # include $RULE_PATH/web−misc . r u l e s
315 # include $RULE_PATH/web−c l i e n t . r u l e s
316 # include $RULE_PATH/web−php . r u l e s
317
318 # include $RULE_PATH/ s q l . r u l e s
319 # include $RULE_PATH/x11 . r u l e s
320 # include $RULE_PATH/icmp . r u l e s
321 # include $RULE_PATH/netb ios . r u l e s
322 # include $RULE_PATH/misc . r u l e s
323 # include $RULE_PATH/at tack−responses . r u l e s
324 # include $RULE_PATH/ o r a c l e . r u l e s
325 # include $RULE_PATH/mysql . r u l e s
326 # include $RULE_PATH/snmp . r u l e s
327
328 # include $RULE_PATH/smtp . r u l e s
329 # include $RULE_PATH/imap . r u l e s
330 # include $RULE_PATH/pop2 . r u l e s
331 # include $RULE_PATH/pop3 . r u l e s
332
333 # include $RULE_PATH/nntp . r u l e s
334 # include $RULE_PATH/other−ids . r u l e s
335 # include $RULE_PATH/web−a t t a c k s . r u l e s
336 # include $RULE_PATH/backdoor . r u l e s
337 # include $RULE_PATH/sh e l l c ode . r u l e s
338 # include $RULE_PATH/pol i cy . r u l e s
339 # include $RULE_PATH/porn . r u l e s
340 # include $RULE_PATH/ i n f o . r u l e s
341 # include $RULE_PATH/icmp−i n f o . r u l e s
342 # include $RULE_PATH/virus . r u l e s
343 # include $RULE_PATH/chat . r u l e s
344 # include $RULE_PATH/multimedia . r u l e s
345 # include $RULE_PATH/p2p . r u l e s
346 # include $RULE_PATH/spyware−put . r u l e s
347 # include $RULE_PATH/experimental . r u l e s
348
349
350 # include $RULE_PATH/community−bot . r u l e s
351 # include $RULE_PATH/community−web−c l i e n t . r u l e s
352 # include $RULE_PATH/bot−our−noflow . r u l e s
353
354 # include $RULE_PATH/noflow−5. r u l e s
355 # include $RULE_PATH/noflow−30. r u l e s
356 # include $RULE_PATH/noflow−50. r u l e s
357 # include $RULE_PATH/noflow−100. r u l e s
358 include $RULE_PATH/noflow−200. r u l e s
359 # include $RULE_PATH/noflow−1000. r u l e s

Figure A.5: snort.noflow.con part 5

APPENDIX B
MAPI IDS PROGRAM

This appendix lists a MAPI IDS program with five rules.

B.1 MAPI IDS PROGRAM

Figures B.1 and B.2 present the code for the MAPI IDS program .

MAPI IDS program (continues on page 78)

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <unistd . h>
4 # include < s i g n a l . h>
5 # include <net/e t h e r n e t . h>
6 # include <sys/time . h>
7 # include < n e t i n e t /ip . h>
8 # include <sys/socket . h>
9 # include < n e t i n e t /in . h>

10 # include <arpa/ i n e t . h>
11 # include <mapi . h>
12 # include < s t r i n g . h>
13
14 / / d e c l a r e some f u n c t i o n s
15 s t a t i c void terminate () ;
16
17 / / g l o b a l l y i n i t i a l i z e t h e mapi−f l o w s
18 i n t aa , ab , ac , ad , fd ;
19
20 / / g l o b a l p a c k e t c o u n t e r s , f i d
21 i n t f i d ;
22
23 / / g l o b a l p a c k e t c o u n t e r
24 mapi_resu l t s_ t * dres ;
25
26 / / t ime v a r i a b l e s
27 t ime_t s t a r t , end ;
28
29 / / program s t a r t s h e r e
30 i n t main (i n t argc , char * argv []) {
31
32 / / d e f i n e s i g n a l s which c a l l s t e r m i n a t e () and a b o r t s t h e program ; e . g , c t r l−c
33 s i g n a l (SIGINT , terminate) ;
34 s i g n a l (SIGQUIT , terminate) ;
35 s i g n a l (SIGTERM, terminate) ;
36
37 / / c r e a t e a f l o w us ing t h e dag0 i n t e r f a c e
38 fd = mapi_create_flow ("/dev/dag0 ") ;
39 aa = mapi_create_flow ("/dev/dag0 ") ;
40 ab = mapi_create_flow ("/dev/dag0 ") ;
41 ac = mapi_create_flow ("/dev/dag0 ") ;
42 ad = mapi_create_flow ("/dev/dag0 ") ;
43
44 / / c h e c k whe the r we c o u l d c r e a t e t h e f l o w s
45 i f (aa < 0 && ab < 0 && ac < 0 && ad < 0 && fd < 0) {

Figure B.1: MAPI IDS program part 1

77

78 APPENDIX B. MAPI IDS PROGRAM

Mapi 5-rule program (continued from page 77)

46 p r i n t f (" Could not c r e a t e flow %d\n" , aa) ;
47 e x i t (EXIT_FAILURE) ;
48 }
49
50 / / Apply p a c k e t c o u n t i n g on t h e f d f l o w
51 f i d = mapi_apply_function (fd , "PKT_COUNTER") ;
52
53 / / Apply t h e s t r i n g s e a r c h f u n c t i o n (c o n t e n t r u l e match ing) t o t h e f l o w s
54 mapi_apply_function (aa , "STR_SEARCH" , " . getcdkey " , 0 , 1500) ;
55 mapi_apply_function (ab , "STR_SEARCH" , " . synflood . s t a r t " , 0 , 1500) ;
56 mapi_apply_function (ac , "STR_SEARCH" , " . synflood . stop " , 0 , 1500) ;
57 mapi_apply_function (ad , "STR_SEARCH" , " . ddos . ack " , 0 , 1500) ;
58
59 / / Apply t h e f i l e w r i t e r f u n c t i o n t o t h e d i f f e r e n t f l o w s
60 mapi_apply_function (aa , " TO_FILE " , MFF_PCAP, " aa . pcap " , 0) ;
61 mapi_apply_function (ab , " TO_FILE " , MFF_PCAP, " ab . pcap " , 0) ;
62 mapi_apply_function (ac , " TO_FILE " , MFF_PCAP, " ac . pcap " , 0) ;
63 mapi_apply_function (ad , " TO_FILE " , MFF_PCAP, " ad . pcap " , 0) ;
64
65 / / s t a r t t h e aa f l o w
66 i f (mapi_connect (aa) < 0) {
67 p r i n t f (" Could not connect to flow %d\n" , aa) ;
68 e x i t (EXIT_FAILURE) ;
69 }
70
71 / / s t a r t t h e ab f l o w
72 i f (mapi_connect (ab) < 0) {
73 p r i n t f (" Could not connect to flow %d\n" , ab) ;
74 e x i t (EXIT_FAILURE) ;
75 }
76
77 / / s t a r t t h e ac f l o w
78 i f (mapi_connect (ac) < 0) {
79 p r i n t f (" Could not connect to flow %d\n" , ac) ;
80 e x i t (EXIT_FAILURE) ;
81 }
82
83 / / s t a r t t h e ad f l o w
84 i f (mapi_connect (ad) < 0) {
85 p r i n t f (" Could not connect to flow %d\n" , ad) ;
86 e x i t (EXIT_FAILURE) ;
87 }
88
89 / / s t a r t t h e f d f l o w
90 i f (mapi_connect (fd) < 0) {
91 p r i n t f (" Could not connect to flow %d\n" , fd) ;
92 e x i t (EXIT_FAILURE) ;
93 }
94
95 / / s t a r t s c r i p t
96 p r i n t f ("\n Working . . . \ n") ;
97
98 / / s t a r t t h e t i m e r
99 time(& s t a r t) ;

100
101 / / make t h e s c r i p t run f o r e v e r u n t i l we t e r m i n a t e
102 while (1) {
103 s leep (1) ;
104 }
105
106 return 0 ;
107 }
108
109
110 void terminate () {
111
112 p r i n t f ("\n Finished . . \ n") ;
113
114 time(&end) ;
115 double d i f = d i f f t i m e (end , s t a r t) ;
116 dres = mapi_read_resul ts (fd , f i d) ;
117
118 p r i n t f ("\n=== S t a t i s t i c s ===\n") ;
119 p r i n t f ("Run−time : %.2 l f seconds .\n\n" , d i f) ;
120
121 p r i n t f (" Tota l packets : %l l u \n" , * ((unsigned long long *) dres−>r es)) ;
122
123 mapi_close_flow (aa) ;
124 mapi_close_flow (ab) ;
125 mapi_close_flow (ac) ;
126 mapi_close_flow (ad) ;
127 mapi_close_flow (fd) ;
128
129 e x i t (EXIT_SUCCESS) ;
130 }

Figure B.2: MAPI IDS program part 2

